
Publication# 18468 Rev. A Amendment /0
Issue Date: May 1994

Using a PCI Bus as the I/O Bus on an
Am29030� Microprocessor Design

Application Note
by David Stoenner

Advanced
Micro

Devices

This application note describes how the Peripheral Component Interconnect (PCI) bus can be used
as the I/O bus portion on a two-bus microcontroller design. Additionally, one programmable logic part,
the MACH�220 device, is added for the entire control logic for both the memory control and the signal
conversion between the Am29030� microprocessor and Revision 2.0 of the PCI I/O bus.

INTRODUCTION
The Peripheral Component Interconnect (PCI) local bus
is a high-performance, 32-bit or 64-bit bus with multi-
plexed address and data lines. It is intended for use as
an interconnect mechanism between highly integrated
peripheral controller components, peripheral add-in
boards, and processor/memory systems. Because the
bus is multiplexed, the number of pin contacts is re-
duced, making the peripheral cheaper to implement. To
accomplish this, PCI adds a layer between the CPU and
the peripherals, resulting in a processor-independent
bus that can be used for a variety of CPUs and proces-
sor speeds.

The PCI bus is a well-defined interface that is specified
for the signals as well as the physical characteristics of
the connector and the loading. Since inexpensive pe-
ripherals will become available to meet PC needs, it
would therefore be advantageous to extend the use of
the PCI bus into the embedded processor market. Since
the 29K� Family is one of the premiere RISC families
used in embedded control, this application note shows
how easily the PCI bus can be adapted to the 29K Fami-
ly processor to meet the requirement of an I/O bus.

THE PCI BUS
In order to create an industry standard for PCI, the PCI
Special Interest Group (SIG) has defined a specifica-
tion. The PCI Local Bus Specification, Revision 2.0, de-
fines the protocol, electrical, mechanical, and
configuration specifications for PCI local bus compo-
nents and expansion boards. (See page 5 for informa-
tion on ordering the specification.)

Basics of the PCI Bus
The PCI bus is an address/data multiplexed bus. Addi-
tionally, the control signals are multiplexed with the byte
control signals. The PCI bus supports a burst protocol
that accepts an address with multiple data packets. This
protocol is identical to the 29K Family, making the inter-
face design easily accomplished.

Arbitration on the PCI bus ranges from a simple design
of direct priority to a more complicated design of using
arbitration under the existing bus master for the next bus
master. The protocol also supports bus master preemp-
tion if desired. Additionally, complex caching cycles for
multiprocessors also are defined. With forethought, the
PCI SIG specified that these features be optional and
not required.

Use of the PCI Bus in this Design
This design focuses on the minimum requirements of
the PCI bus, with the exception of parity. Currently, parity
is not supported on this design because of the complex-
ity of the chips that would need to be added to the de-
sign. Bus master arbitration is limited to the Am29030
processor “parked” on the PCI bus being the main mas-
ter, and the peripheral chips requesting the bus as nec-
essary. No support for time-out and bus master
preemption is included, so it is the responsibility of each
master to ensure that each peripheral does not use the
bus to the exclusion of the other peripherals.

The memory design is taken directly from the original
EZ-030 demonstration board (see the EZ-030 Demon-
stration Board Theory of Operation application note),
except that the MACH220 device replaces all the dis-
crete PAL� devices of the EZ-030 board design. Since
the EZ-030 board supports a memory clock (MEMCLK)
of 16 MHz, this application note also focuses at 16 MHz
for both the memory and the PCI bus clock. The PCI bus
clock is defined from 0 to 33 MHz, so this falls within that
limit. Also, 33-MHz clock rates, and therefore the bus,
require more careful layout than the 16-MHz clock.

The rest of this application note focuses on the
MACH220 device and the extra circuitry needed to im-
plement the control portion of the PCI bus. Schematics
for this design are shown in Appendix A and the PAL
equations are listed in Appendix B.

AMD

2 Title

THEORY OF OPERATIONS
As discussed in the introduction, this design is a modifi-
cation of the original EZ-030 board design. The major
change is that the three control PAL devices of the
EZ-030 board design are merged into one large control
PAL device, the MACH220 device, shown in the sche-
matic on page 8. Pages 9 through 12 show the need
of multiplexing the address and data bus together, and
pages 13 through 15 depict the three separate PCI con-
nectors.

Figures 1 and 2 show block diagrams for the original and
modified board designs, respectively.

The PCI bus is a multiplexed address, data, and control
bus to conserve on pins. The Am29030 processor is not
a multiplexed address and data bus part, so in the sche-
matic on page 12 , the 12 octal parts required to do the
address/data multiplexing are shown. U20 through U23,
74F244s, support placing the initial address in the first
clock cycle of the frame. (Note that the upper four bits,
A31–A28, are driven onto the PCI bus with 0s. These
bits are used on the local Am29030 processor side to
decode the various PCI bus cycles that are to be accom-
plished.)

U16 through U19, 74F245s, are the data buffers used to
input or output the data off or onto the PCI bus. These
parts will be used for Am29030 processor PCI bus
cycles, as well as when another PCI bus master is using
the DRAM memory.

If another bus master takes over the PCI bus and wants
to perform a DRAM memory cycle, the parts U24
through U27 capture the address on the first clock cycle
of the FRAME signal. The parts are 20L8s used to cap-
ture addresses A31–A10, A1, and A0 in a clock-enabled
register configuration. The equations for the 20L8s are
in Appendix B. The address bits A9–A2 are captured in a
22V10, which is a combination clock-enabled register
and a counter that supports the burst feature that PCI
has defined and enables the maximum throughput al-
lowed. This PAL device also detects an upper address
bit carry if the requesting master tries to burst across a
1K address boundary, which is then used by the PCI
controller to signal a STOP condition on the PCI bus.
This then is the full address and data support for both
bus master and bus slave.

The schematics shown on pages 13 through 15 of this
document show the PCI connectors. With the exception
of the interrupts and the bus request/grant signals being
point to point, all the other signals are bused in common.

Each slot is given its own interrupt to the processor from
the INTA of the PCI bus. Interrupts on the PCI bus are
negative True and level sensitive so they fit nicely to the
Am29030 processor interrupt input structure without a
need for additional interrupt controllers. Each bus re-
quest and grant is given to the MACH220 device to arbi-

trate the bus. All the power pins of the PCI connector in
this design are for 5 V; 3.3 V is not considered.

MACH220 DEVICE
The heart of the design is the MACH220 device, shown
in the schematic on page 8. Internally this part can be
subdivided into the following categories:

Bus arbitration

PCI control signals

Memory control

RAS and CAS decode

Refresh timer

Each of these parts is detailed in the following sections.

Bus Arbitration
The bus arbiter in this design “parks” the Am29030 pro-
cessor on the bus with a PROC_BGRT unless any of the
PCI_BREQx’s become valid. When a PCI_BREQx be-
comes valid, then the PROC_BGRT is lowered and the
arbiter waits for the REQ (Am29030 processor memory
request) to be released for at least 2 clock cycles. At that
point, the highest level PCI_BREQx is arbitrated and its
corresponding PCI_BGRTx is issued. This grant is held
until the PCI_BREQx goes away, the PCI_FRAME is re-
leased, and the last IRDY and TRDY have been issued.
If another PCI_BREQx is active, then the arbiter will
move to the highest new PCI_BREQx. If no other
PCI_BREQx is active, then the PROC_BGRT is issued
again and the whole cycle starts over. No attempt is
made to make a rotating-priority arbiter, although that
could be accomplished in the buried macros of the
MACH220 device. This arbiter simply functions as a
fixed-priority level arbiter.

PCI Control Signals
This section has the largest number of equations. Some
of them are for support when the Am29030 processor is
the bus master, while some of them are for the slave
memory interface. Address bit A31 is the magic control
bit that determines whether the Am29030 processor
stays local to the memory subsystem or goes to the PCI
bus. If A31=0, then the Am29030 processor will stay in
local memory section; if A31=1, then an external PCI ac-
cess is started.

When the Am29030 processor is a bus master and goes
to the PCI bus to access a peripheral, A31=1 and
PROC_BGRT is True. PROC_BGRT controls the three-
state of the PCI_FRAME, PCI_IRDY, and PCI_C_BEx
control lines. If A31=1 and PROC_BGRT is True, a
PCI_FRAME signal is generated on the first line of the
equations and is then held True if the Am29030 proces-
sor is bursting on the bus (BURST True).

AMD

3Title

M
U

X

Serial Interface
(1 Pack)

SCC
85C30

(1 Pack)

Am29030
Microprocessor

(1 Pack)

27C010 (1 Pack)

Memory Control
(3 Packs)

1 Mbit × 32 ZIP DRAM
(8 Packs)

MAX232

(1 Pack)
8

32

22

8

17

11

(3 Packs)

Row/Column

Control

Address

OE

Host

18468A–1

Figure 1. EZ-030 Demonstration Board Block Diagram

RAS and CAS

Data

M
U

X

Serial Interface
(1 Pack)

SCC
85C30

(1 Pack)

Am29030
Microprocessor

(1 Pack)

27C010 (1 Pack)

MACH
PCI Controller

1 Mbit × 32 ZIP DRAM
(8 Packs)

MAX232

(1 Pack)
8

32

22

8

17

11

(3 Packs)
Row/Column

Control

Address

OE

Host

Figure 2. Modified EZ-030 Demonstration Board, With PCI I/O Bus

RAS and CAS

18468A-2

Address/
Data

PCI Bus

AD31–
AD0

PCI Bus
Connection

Control

Data

AMD

4 Title

The Am29030 processor address is enabled onto the
PCI bus with the term ADD_EN during the time that
PCI_FRAME is True while PCI_FRAME_D (delayed by
one clock PCI_FRAME) is False. This represents the
first cycle on the PCI bus. During this cycle, the
PCI_C_BEx lines output the appropriately decoded
control information. The only cycles this design supports
in master mode are:

Memory reads and writes
(A31=1, A30=0, PROC_IO_MEM=0)

Configuration reads and writes
(A31=1, A30=1, PROC_IO_MEM=0)

I/O reads and writes
(A31=1, A30=X, PROC_IO_MEM=1)

Configuration reads and writes also assert PCI_IDSELx
with the decode performed on the A29 and A28 address
bits. When PCI_FRAME_D becomes True, control goes
to the data portion of the cycle (PCI_DATA_CYCLE is
True) and the data bus is enabled with DATA_EN.
PCI_FRAME_D stays True until the last PCI_TRDY is
generated.

The data direction is handled by DATA_DIR. All
PCI_C_BEx signals are driven True during the data
cycle if the cycle is a read, or they are driven with the BEx
off the Am29030 processor during a write to the PCI bus.
On the PCI bus, a device indicates that it has been se-
lected by asserting a signal PCI_DEVSEL. However, if
no device responds, the Am29030 processor does not
terminate the transaction because no PROC_RDY is
asserted and there is a bus lock. To break this lock, a de-
fault timer is put into this design in the form of a 3-bit
counter (CT0, CT1, CT2) that gives the peripherals
8 clock cycles to respond. If no PCI_DEVSEL is re-
turned, then an Am29030 processor PROC_ERR is
generated. Additionally, PROC_ERR is generated in
normal cycles if the responding peripheral also asserts
PCI_STOP. During the data cycle, PCI_IRDY is driven
True at all times and PCI_TRDY is passed to the proces-
sor on PROC_RDY to signal the end of any given cycle
on the PCI bus.

For a PCI master access, a similar transaction takes
place in reverse if the incoming PCI address bus bit
A31=1 and A30=0. Every address issued on the PCI bus
is captured in the address register by the ADD_CLK line
being active with PCI_FRAME set to True and
PCI_FRAME_D set to False. The address register
(ADD_REG_EN) is always enabled onto the Am29030
processor address bus if any of the PCI_BGRTx signals
are True, which means the Am29030 processor does
not control its address bus.

If the PCI cycle is for the local memory system, then the
internal node DEV_SEL_NODE goes active, thereby
deactivating the three-state of the control for
PCI_STOP, PCI_DEVSEL, and PCI_TRDY, and enab-

ling the data bus drivers through the DATA_EN term.
Since the PCI bus gives the condition for read and write
under the control portion of the PCI bus, and does not
keep a write line active through the whole cycle, this fact
is captured on an internal node INTERNAL_WRITE.
This then controls the direction of the data buffers during
a PCI master cycle. INTERNAL_WRITE also drives the
WRITE line of the processor for the memory subsystem
during this time. PCI_TRDY then becomes MEM_RDY
as the state machine for the local memory goes through
its paces. If bursting is being done, the ADD_INC signal
tells the 22V10 the A9–A2 captured address to incre-
ment to the next address. If roll over is detected in the
22V10 by the ADD_STOP signal, then a PCI_STOP is
asserted, which says a new bus address is needed.

Memory Control
Memory control becomes almost a direct graft of that de-
scribed in the EZ-030 Demonstration Board Theory of
Operation application note. The same state machines
are implemented with the exception that accommoda-
tion is now made for more than one master to access
memory. REF_ACCESS still has top priority to do its job
to refresh the memory array. IDLE has more terms add-
ed to it to support the processor doing a local memory
cycle and the PCI bus doing its master cycle. PCI bus is
indicated by the PROC_BGRT set to False and the
PCI_DATA_CYCLE set to True. MEM_ACCESS is
started in the same manner as before and held as long
as burst is True for the Am29030 processor.

PCI, though, indicates that it is on its last cycle by deas-
serting PCI_FRAME, which has a similar control to the
Am29030 processor BURST signal. However, for a
complete cycle to take place, both TRDY and IRDY on
the PCI bus must be True so this is taken into account in
the equations for MEM_ACCESS, MEM_RDY, and
ADD_INC. If at any time, the PCI bus suspends the
memory access, then reads and writes occur to the
same address and are simply repeated because this is a
single-cycle memory unit.

RAS and CAS Decode
The RAS and CAS decode portion of the equations are
essentially the same as in the EZ-030 board application
note, with the exception that a new equation was added
to account for the source of the byte enable control.
When a local cycle is performed from the Am29030 pro-
cessor, the byte enables come from the processor on
the BEx pins. During a PCI cycle, they are issued on the
PCI_C_BEx pins on the PCI bus interface. Internal write
is used as the read/write indication (as was mentioned
before) because the PCI bus transfers the state of the
transfer on the first cycle and then does not retain a write
line for the remainder of the transaction.

AMD

5Title

Refresh Timer
The refresh timer is exactly as described in the EZ-030
Demonstration Board Theory of Operation application
note, consisting of a 7-bit timer with the eighth bit serving
as a REFRESH_REQ bit, which remembers that a re-
fresh needs to be arbitrated by the main memory system
arbiter. The counter will continue counting towards the
next refresh interval.

Serial Port
If used, the serial port can be exactly the same as de-
scribed in the EZ-030 Demonstration Board Theory of
Operation application note.

TIMING AND WORST-CASE ISSUES
This design assumes that the PGA Am29030 proces-
sor’s Scalable Clocking� feature is used, resulting in a
32-MHz processor with a 16-MHz external memory and
PCI bus interface. The worst-case timing in this design
then occurs in the memory system around a single-cycle
read at 16 MHz. The delay must be set at 20 ns for the
CAS pulse generation while 12 ns is the best time of a
MACH220 device for the combinatorial delay, making
CAS fall at 32 ns into the cycle. CAS access time is 20
ns. A set up of 9 ns makes an access time of 61 ns for a
62.5-ns cycle at 16 MHz. If additional setup or CAS ac-
cess time is needed, then the RAS/CAS decode can be
accomplished in a separate, faster decode PAL device.
The DELAY signal from the delay line can be used in this
PAL device, with the other state lines going to the faster
decode PAL device. Additionally, faster address multi-
plexers can be used, such as 74F or AS parts, instead of
the 74LS157s. This reduces the delay from 12 ns to 6 ns
and decreases the delay line requirement to 15 ns, gain-
ing an additional 5 ns on CAS access. Use of these fast-
er 74F/AS157s then requires 33-ohm series dampening
resistors before the DRAMs.

The PCI bus from the initiator side meets the setup times
up to 25 MHz, but the CLK to Q delays on the beginning
of edges are not to the delay specification. This is really
not of consequence to this design because the bus is
running slower than the maximum of 33 MHz. This slow-
er speed allows a more relaxed timing as well as board
layout in the final analysis. The rest of the paths, includ-
ing to and from the processor and the surrounding con-
trol logic, have wide margins of setup and hold that can
be used.

PCI BUS SIGNAL QUALITY
The PCI bus is defined to be a current-driven reflected-
wave transmission line. However, all the drivers
(74F24x and MACH device) used in this design to drive
the PCI bus signals are voltage drivers, and therefore,
incident-wave drivers. Reflected-wave drivers have to
settle the bus and therefore have two times the trans-
mission line distance to settle, but incident-wave drivers
have only one times the transmission line time distance.
This makes up for some of the clock-to-Q time of the
74F24x parts. The input threshold levels and the final
output drive levels on the PCI bus are TTL-compatible,
which means the 74F24x and MACH device drivers are
compatible. When laying out the design, the best layout
is the MACH device, buffers, and PAL devices on one
end of the transmission line, and the sockets for the PCI
bus in line towards the opposite end.

The PCI bus allows 10 loads of 10 pF per load maximum
at 33 MHz. This design uses six loads for the three slots.
The three-way load of the 74F24x and PAL devices then
represent about 35 pF, making up the other four loads.
At 16 MHz, though, this requirement could be easily re-
laxed if needed.

SUGGESTED REFERENCE
Bank Interleaved Memory System for an Am29030
Microprocessor application note, order# 18478, Ad-
vanced Micro Devices

EZ-030 Demonstration Board Theory of Operation
application note, order# 17580, Advanced Micro De-
vices

PCI Local Bus Specification, Revision 2.0
PCI Special Interest Group
M/S HF3–15A
5200 N. E. Elam Young Parkway
Hillsboro, Oregon 97124–6497
(503) 696–2000

Appendix A. Schematics
The schematics for this design are shown on the pages
that follow.

AMD

6 Title

AMD

7Title

AMD

8 Title

AMD

9Title

AMD

10 Title

AMD

11Title

AMD

12 Title

AMD

13Title

AMD

14 Title

AMD

15Title

AMD

16 Title

Appendix B. PAL Equations
This appendix shows the PAL equations in PALASM� software syntax for: the 030_PCI equations, the ADD_INCR
equations, and the ADD_REG equations.

030_PCI PAL EQUATIONS
;PALASM Software Design Description

;–––––––––––––––––––––––––––––––––– Declaration Segment ––––––––––––
TITLE Am29030 PROCESSOR TO PCI CONVERTOR
PATTERN 030_PCI.PDS
REVISION A
AUTHOR DAVID STOENNER
COMPANY AMD
DATE 02/21/93

CHIP Ux MACH220 DEVICE

;–––––––––––––––––––––––––––––––––– PIN Declarations –––––––––––––––
PIN ? MEMCLK
PIN ? /RESET
PIN ? /REQ
PIN ? A31
PIN ? A30
PIN ? A29
PIN ? A28
PIN ? /BURST
PIN ? /PROC_RDY
PIN ? /MEM_ACCESS REGISTERED
PIN ? /REF_ACCESS REGISTERED
PIN ? /ROM_CS
PIN ? /IDLE REGISTERED
PIN ? /MEM_RDY
PIN ? DELAY_IN
PIN ? /WE0
PIN ? /WE1
PIN ? /WE2
PIN ? /WE3
PIN ? /WRITE
PIN ? /CAS0
PIN ? /CAS1
PIN ? /CAS2
PIN ? /CAS3
PIN ? /MUX
PIN ? /RAS0
PIN ? /PROC_IO_MEM
PIN ? /PROC_ERR
PIN ? PCI_C_BE0
PIN ? PCI_C_BE1
PIN ? PCI_C_BE2
PIN ? PCI_C_BE3
PIN ? /PCI_FRAME
PIN ? /PCI_IRDY
PIN ? /PCI_TRDY
PIN ? /PCI_DEVSEL
PIN ? /PCI_DATA_CYCLE
PIN ? /DATA_EN
PIN ? /DATA_DIR
PIN ? /ADD_REG_EN

AMD

17Title

PIN ? /ADD_EN
PIN ? /ADD_CLK
PIN ? /ADD_INC
PIN ? /ADD_STOP
PIN ? /PROC_BREQ
PIN ? /PROC_BGRT
PIN ? /PCI_BREQ0
PIN ? /PCI_BREQ1
PIN ? /PCI_BREQ2
PIN ? /PCI_BGRT0
PIN ? /PCI_BGRT1
PIN ? /PCI_BGRT2
PIN ? PCI_IDSEL0
PIN ? PCI_IDSEL1
PIN ? PCI_IDSEL2
PIN ? /PCI_STOP

; ALL THE NODE DEFINITIONS

NODE ? CT0
NODE ? CT1
NODE ? CT2
node ? ST1
NODE ? DEV_SEL_NODE
NODE ? PCI_FRAME_D
NODE ? REF_REQ REGISTERED
NODE ? Q0 REGISTERED
NODE ? Q1 REGISTERED
NODE ? Q2 REGISTERED
NODE ? Q3 REGISTERED
NODE ? Q4 REGISTERED
NODE ? Q5 REGISTERED
NODE ? Q6 REGISTERED
NODE ? INTERNAL_WRITE
NODE ? RESETD
NODE ? REQ_D

;––––––––––––––––––––––––––––––––––– Boolean Equation Segment ––––––
EQUATIONS

; BUS ARBITER AND BUS GRANT STATE MACHINES

RESETD.CLKF = MEMCLK

RESETD := RESET

; REQ_D HAS BEEN ADDED TO FIX AN ARBITRATION PROBLEM OF THE Am29030 PROCESSOR REV
; B,C AND D. TO BE GUARANTEED THAT THE Am29030 PROCESSOR HAS GIVEN UP THE BUS WHEN
; BGRT HAS BEEN REMOVED, REQ MUST BE SAMPLED FALSE FOR 2 CLOCK CYCLES, HENCE THE
; ADDITION OF THE REQ_D TERM AND THE INCLUSION IN THE PCI_BGRTx TERMS. WHEN THIS
; PROBLEM IS FIXED, THE REQ_D MAY BE REMOVED FROM ALL EQUATIONS.

REQ_D.CLKF = MEMCLK

REQ_D := REQ

PROC_BGRT.CLKF = MEMCLK

AMD

18 Title

PROC_BGRT := /PROC_BGRT * /PCI_BREQ0 * /PCI_BREQ1 * /PCI_BREQ2 * /PCI_FRAME
 * /PCI_IRDY * /RESETD
 + PROC_BGRT * /PCI_BREQ0 * /PCI_BREQ1 * /PCI_BREQ2 * /RESETD

PCI_BGRT0.CLKF = MEMCLK

PCI_BGRT0.TRST = /RESET

PCI_BGRT0 := /PCI_BGRT0 * PCI_BREQ0 * /PROC_BGRT * /REQ * /REQ_D
 * /PCI_BGRT1 * /PCI_BGRT2 * /RESETD
 + PCI_BREQ0 * PCI_BGRT0 * /RESETD
 + PCI_BGRT0 * PCI_FRAME * PCI_FRAME_D * /RESETD

PCI_BGRT1.CLKF = MEMCLK

PCI_BGRT1.TRST = /RESET

PCI_BGRT1 := /PCI_BGRT1 * PCI_BREQ1 * /PCI_BREQ0 * /PROC_BGRT * /REQ
 * /REQ_D * /PCI_BGRT0 * /PCI_BGRT2 * /RESETD
 + PCI_BREQ1 * PCI_BGRT1 * /RESETD
 + PCI_BGRT1 * PCI_FRAME * PCI_FRAME_D * /RESETD

PCI_BGRT2.CLKF = MEMCLK

PCI_BGRT2.TRST = /RESET

PCI_BGRT2 := /PCI_BGRT2 * PCI_BREQ2 * /PCI_BREQ1 * /PCI_BREQ0 * /PROC_BGRT
 * /REQ_D * /REQ * /PCI_BGRT0 * /PCI_BGRT1 * /RESETD
 + PCI_BREQ2 * PCI_BGRT2 * /RESETD
 + PCI_BGRT2 * PCI_FRAME * PCI_FRAME_D * /RESETD

; PCI BUS CONTROL LOGIC

PCI_FRAME.TRST = PROC_BGRT * /RESET

PCI_FRAME = PROC_BGRT * REQ * A31 * /PCI_FRAME_D
 + PROC_BGRT * A31 * BURST * PCI_FRAME_D

PCI_FRAME_D.CLKF = MEMCLK

PCI_FRAME_D := PCI_FRAME

ADD_CLK = /PROC_BGRT * PCI_FRAME * /PCI_FRAME_D

ADD_EN = PROC_BGRT * PCI_FRAME * /PCI_FRAME_D * /RESET

ADD_REG_EN = PCI_BGRT0 + PCI_BGRT1 + PCI_BGRT2

ADD_INC = /PROC_BGRT * PCI_FRAME * PCI_FRAME_D * PCI_IRDY * PCI_TRDY

CT0.CLKF = MEMCLK

CT0 := PCI_FRAME * /PCI_DEVSEL * /CT0

CT1.CLKF = MEMCLK

CT1 := PCI_FRAME * /PCI_DEVSEL * (CT0 :+: CT1)

AMD

19Title

CT2.CLKF = MEMCLK

CT2 := PCI_FRAME * /PCI_DEVSEL * (CT2 :+: (CT1*CT0))

PROC_ERR = PROC_BGRT * CT2 * CT1 * CT0 * /PCI_DEVSEL
 + PROC_BGRT * PCI_DEVSEL * PCI_STOP
 + PROC_BGRT * PCI_FRAME * /PCI_DEVSEL * DEV_SEL_NODE

PCI_STOP.TRST = /PROC_BGRT * DEV_SEL_NODE * /RESET

PCI_STOP = /PCI_STOP * DEV_SEL_NODE * ADD_STOP
 + PCI_STOP * PCI_FRAME * DEV_SEL_NODE

PCI_DEVSEL.TRST = /PROC_BGRT * DEV_SEL_NODE * /RESET

PCI_DEVSEL = VCC

DEV_SEL_NODE.CLKF = MEMCLK

DEV_SEL_NODE := /PROC_BGRT * PCI_FRAME * A31 * /A30 * PCI_FRAME_D
 + /PROC_BGRT * DEV_SEL_NODE * PCI_FRAME
 + /PROC_BGRT * DEV_SEL_NODE * /PCI_FRAME * /PCI_TRDY
 + PROC_BGRT * PCI_FRAME * PCI_DEVSEL
 + PROC_BGRT * PCI_FRAME * DEV_SEL_NODE
 + PROC_BGRT * /PCI_FRAME * /PCI_TRDY

PCI_TRDY.TRST = /PROC_BGRT * DEV_SEL_NODE * /RESET

PCI_TRDY = MEM_RDY * /ADD_STOP

PCI_IRDY.TRST = PROC_BGRT * /RESET

PCI_IRDY.CLKF = MEMCLK

PCI_IRDY := PCI_FRAME * /PCI_IRDY
 + PCI_IRDY * PCI_FRAME
 + PCI_IRDY * /PCI_FRAME * /PCI_TRDY

PCI_C_BE0.TRST = PROC_BGRT * /RESET

PCI_C_BE0 = PCI_FRAME * /PCI_FRAME_D * WRITE
 + PCI_FRAME * PCI_FRAME_D * /WE0 * WRITE
 + PCI_FRAME * PCI_FRAME_D * /WRITE

PCI_C_BE1.TRST = PROC_BGRT * /RESET

PCI_C_BE1 = PCI_FRAME * /PCI_FRAME_D
 + PCI_FRAME * PCI_FRAME_D * /WE1 * WRITE
 + PCI_FRAME * PCI_FRAME_D * /WRITE

PCI_C_BE2.TRST = PROC_BGRT * /RESET

PCI_C_BE2 = PCI_FRAME * /PCI_FRAME_D * PROC_IO_MEM * A31 * /A30
 + PCI_FRAME * PCI_FRAME_D * /WE2 * WRITE
 + PCI_FRAME * PCI_FRAME_D * /WRITE

PCI_C_BE3.TRST = PROC_BGRT * /RESET

AMD

20 Title

PCI_C_BE3 = PCI_FRAME * /PCI_FRAME_D * PROC_IO_MEM * A31 * A30
 + PCI_FRAME * PCI_FRAME_D * /WE3 * WRITE
 + PCI_FRAME * PCI_FRAME_D * /WRITE

PCI_IDSEL0 = PROC_BGRT * REQ * A31 * A30 * /A29 * /A28

PCI_IDSEL1 = PROC_BGRT * REQ * A31 * A30 * /A29 * A28

PCI_IDSEL2 = PROC_BGRT * REQ * A31 * A30 * A29 * /A28

PCI_DATA_CYCLE = PCI_FRAME * PCI_FRAME_D

DATA_EN = PROC_BGRT * REQ * A31 * PCI_FRAME_D
 + /PROC_BGRT * DEV_SEL_NODE

DATA_DIR = PROC_BGRT * REQ * WRITE
 + /PROC_BGRT * DEV_SEL_NODE * INTERNAL_WRITE

WRITE.TRST = /PROC_BGRT

WRITE = INTERNAL_WRITE

INTERNAL_WRITE = PROC_BGRT * WRITE
 + /PROC_BGRT * PCI_FRAME * PCI_C_BE0 * /PCI_FRAME_D
 + /PROC_BGRT * PCI_FRAME * INTERNAL_WRITE * PCI_FRAME_D
 + /PROC_BGRT * PCI_FRAME * PCI_C_BE0 * INTERNAL_WRITE

; MEMORY STATE MACHINES FOR THE RAS CAS GENERATION

MINIMIZE_OFF

IDLE.CLKF = MEMCLK

IDLE := /IDLE * /MEM_ACCESS * /REF_ACCESS
 + RESETD
 + /IDLE * PROC_BGRT * MEM_ACCESS * ST1 * MEM_RDY * /BURST
 + /IDLE * /PROC_BGRT * MEM_ACCESS * ST1 * MEM_RDY * /PCI_FRAME
 + /IDLE * REF_ACCESS * /REF_REQ
 + IDLE * PROC_BGRT * /REF_REQ * /(REQ * /A31 * A30)
 + IDLE * /PROC_BGRT * /REF_REQ * /(PCI_DATA_CYCLE * A31 * /A30)

MINIMIZE_ON

REF_ACCESS.CLKF = MEMCLK

REF_ACCESS := IDLE * REF_REQ * /REF_ACCESS
 + REF_ACCESS * REF_REQ

MEM_ACCESS.CLKF = MEMCLK

MEM_ACCESS := IDLE * PROC_BGRT * REQ * /A31 * A30 * /REF_REQ * /MEM_ACCESS
 + IDLE * /PROC_BGRT * PCI_DATA_CYCLE * A31 * /A30
 * /REF_REQ * /MEM_ACCESS
 + MEM_ACCESS * /ST1
 + MEM_ACCESS * PROC_BGRT * BURST
 + MEM_ACCESS * /PROC_BGRT * PCI_FRAME
 + MEM_ACCESS * /PROC_BGRT * /PCI_FRAME*/PCI_IRDY

ST1.CLKF = MEMCLK

AMD

21Title

ST1 := MEM_ACCESS

MEM_RDY.CLKF = MEMCLK

MEM_RDY := PROC_BGRT * REQ * /A31 * /A30 * /MEM_RDY
 + MEM_ACCESS * /MEM_RDY
 + PROC_BGRT * MEM_ACCESS * MEM_RDY * BURST
 + /PROC_BGRT * MEM_ACCESS * MEM_RDY * PCI_FRAME
 + /PROC_BGRT * MEM_ACCESS * MEM_RDY * /PCI_FRAME * /PCI_IRDY

; ROM_CS ALSO DRIVES THE RDN PIN OF THE Am29030 PROCESSOR AND NEEDS TO BE 1 IF THE
; ROM IS 8 BITS WIDE AND 0 IF IT 16 BITS WIDE DURING A RESET. SO TO DO THIS,
; RESET WOULD BE OR’D WITH THE ROM_CS EQUATION IF 16-BIT MEMORY IS NEEDED.
; IT IS CURRENTLY COMMENTED OUT.

ROM_CS = PROC_BGRT * REQ * /A31 * /A30
; + RESET

PROC_RDY = PROC_BGRT * MEM_RDY
 + PROC_BGRT * PCI_DATA_CYCLE * PCI_TRDY * PCI_IRDY

MINIMIZE_OFF

RAS0 = MEM_ACCESS
 + REF_ACCESS * /MEMCLK
 + RAS0 * REF_ACCESS

MUX = MEM_ACCESS * /MEMCLK
 + MEM_ACCESS * MUX

CAS0 = REF_ACCESS
 + MUX * MEM_ACCESS * ST1 * /INTERNAL_WRITE * MEMCLK * DELAY_IN
 + MUX * MEM_ACCESS * ST1 * /INTERNAL_WRITE * CAS0 * DELAY_IN
 + MUX * MEM_ACCESS * ST1 * /INTERNAL_WRITE * CAS0 * /MEMCLK
 + MUX * MEM_ACCESS * ST1 * PROC_BGRT * INTERNAL_WRITE * WE0 * /MEMCLK
 + MUX * MEM_ACCESS * ST1 * /PROC_BGRT * INTERNAL_WRITE * PCI_C_BE0
 * /MEMCLK * /ADD_STOP

CAS1 = REF_ACCESS
 + MUX * MEM_ACCESS * ST1 * /INTERNAL_WRITE * MEMCLK * DELAY_IN
 + MUX * MEM_ACCESS * ST1 * /INTERNAL_WRITE * CAS1 * DELAY_IN
 + MUX * MEM_ACCESS * ST1 * /INTERNAL_WRITE * CAS1 * /MEMCLK
 + MUX * MEM_ACCESS * ST1 * PROC_BGRT * INTERNAL_WRITE * WE1 * /MEMCLK
 + MUX * MEM_ACCESS * ST1 * /PROC_BGRT * INTERNAL_WRITE * PCI_C_BE1
 * /MEMCLK * /ADD_STOP

CAS2 = REF_ACCESS
 + MUX * MEM_ACCESS * ST1 * /INTERNAL_WRITE * MEMCLK * DELAY_IN
 + MUX * MEM_ACCESS * ST1 * /INTERNAL_WRITE * CAS2 * DELAY_IN
 + MUX * MEM_ACCESS * ST1 * /INTERNAL_WRITE * CAS2 * /MEMCLK
 + MUX * MEM_ACCESS * ST1 * PROC_BGRT * INTERNAL_WRITE * WE2 * /MEMCLK
 + MUX * MEM_ACCESS * ST1 * /PROC_BGRT * INTERNAL_WRITE * PCI_C_BE2
 * /MEMCLK * /ADD_STOP

CAS3 = REF_ACCESS
 + MUX * MEM_ACCESS * ST1 * /INTERNAL_WRITE * MEMCLK * DELAY_IN
 + MUX * MEM_ACCESS * ST1 * /INTERNAL_WRITE * CAS3 * DELAY_IN
 + MUX * MEM_ACCESS * ST1 * /INTERNAL_WRITE * CAS3 * /MEMCLK
 + MUX * MEM_ACCESS * ST1 * PROC_BGRT * INTERNAL_WRITE * WE3 * /MEMCLK

AMD

22 Title

 + MUX * MEM_ACCESS * ST1 * /PROC_BGRT * INTERNAL_WRITE * PCI_C_BE3
 * /MEMCLK * /ADD_STOP

Q0.CLKF = MEMCLK

Q0.T := VCC

Q1.CLKF = MEMCLK

Q1.T := Q0

Q2.CLKF = MEMCLK

Q2.T := Q1 * Q0

Q3.CLKF = MEMCLK

Q3.T := Q2 * Q1 * Q0

Q4.CLKF = MEMCLK

Q4.T := Q3 * Q2 * Q1 * Q0

Q5.CLKF = MEMCLK

Q5.T := Q4 * Q3 * Q2 * Q1 * Q0

Q6.CLKF = MEMCLK

Q6.T := Q5 * Q4 * Q3 * Q2 * Q1 * Q0

REF_REQ.CLKF = MEMCLK

REF_REQ := Q6 * Q5 * Q4 * Q3 * Q2 * Q1 * Q0
 + REF_REQ * /REF_ACCESS

;–––

ADD_INCR PAL EQUATIONS
;PALASM Software Design Description

;–––––––––––––––––––––––––––––––––– Declaration Segment ––––––––––––
TITLE ADDRESS COUNTER AND INCREMENTER FOR THE PCI ADDRESS BUS
PATTERN ADD_INCR.PDS
REVISION A
AUTHOR DAVID STOENNER
COMPANY AMD
DATE 04/02/93

CHIP U10 PALCE22V10 DEVICE

;–––––––––––––––––––––––––––––––––– PIN Declarations –––––––––––––––
PIN 1 MEMCLK
PIN 2 /INC
PIN 3 A2
PIN 4 A3
PIN 5 A4
PIN 6 A5

AMD

23Title

PIN 7 A6
PIN 8 A7
PIN 9 A8
PIN 10 A9
PIN 11 /OE
PIN 12 GND
PIN 13 /LOAD
PIN 22 Q2 REGISTERED
PIN 21 Q3 REGISTERED
PIN 20 Q4 REGISTERED
PIN 19 Q5 REGISTERED
PIN 18 Q6 REGISTERED
PIN 17 Q7 REGISTERED
PIN 16 Q8 REGISTERED
PIN 15 Q9 REGISTERED
PIN 23 /ADD_STOP REGISTERED
PIN 24 VCC

;––––––––––––––––––––––––––––––––––– Boolean Equation Segment ––––––
EQUATIONS

ADD_STOP := INC*Q9*Q8*Q7*Q6*Q5*Q4*Q3*Q2

Q2 := INC*/Q2
 + LOAD*A2

Q3 := INC*(Q3 :+: Q2)
 + LOAD*A3

Q4 := INC*(Q4 :+: (Q3*Q2))
 + LOAD*A4

Q5 := INC*(Q5 :+: (Q4*Q3*Q2))
 + LOAD*A5

Q6 := INC*(Q6 :+: (Q5*Q4*Q3*Q2))
 + LOAD*A6

Q7 := INC*(Q7 :+: (Q6*Q5*Q4*Q3*Q2))
 + LOAD*A7

Q8 := INC*(Q8 :+: (Q7*Q6*Q5*Q4*Q3*Q2))
 + LOAD*A8

Q9 := INC*(Q9 :+: (Q8*Q7*Q6*Q5*Q4*Q3*Q2))
 + LOAD*A9

Q2.TRST = OE
Q3.TRST = OE
Q4.TRST = OE
Q5.TRST = OE
Q6.TRST = OE
Q7.TRST = OE
Q8.TRST = OE
Q9.TRST = OE

;–––

AMD

24 Title

ADD_REG PAL EQUATIONS
;PALASM Software Design Description

;–––––––––––––––––––––––––––––––––– Declaration Segment ––––––––––––
TITLE ADDRESS REGISTER FOR THE 32-BIT PCI ADDRESS BUS
PATTERN ADD_REG.PDS
REVISION A
AUTHOR DAVID STOENNER
COMPANY AMD
DATE 04/22/93

CHIP UXX PALCE20V8 DEVICE

;–––––––––––––––––––––––––––––––––– PIN Declarations –––––––––––––––
PIN 1 MEMCLK
PIN 3 A0
PIN 4 A1
PIN 5 A2
PIN 6 A3
PIN 7 A4
PIN 8 A5
PIN 9 A6
PIN 10 A7
PIN 12 GND
PIN 13 /OE
PIN 15 Q0 REGISTERED
PIN 16 Q1 REGISTERED
PIN 17 Q2 REGISTERED
PIN 18 Q3 REGISTERED
PIN 19 Q4 REGISTERED
PIN 20 Q5 REGISTERED
PIN 21 Q6 REGISTERED
PIN 22 Q7 REGISTERED
PIN 23 /LOAD
PIN 24 VCC

;––––––––––––––––––––––––––––––––––– Boolean Equation Segment ––––––
EQUATIONS

Q0 := /LOAD*Q0
 + LOAD*A0

Q1 := /LOAD*Q1
 + LOAD*A1

Q2 := /LOAD*Q2
 + LOAD*A2

Q3 := /LOAD*Q3
 + LOAD*A3

Q4 := /LOAD*Q4
 + LOAD*A4

Q5 := /LOAD*Q5
 + LOAD*A5

Q6 := /LOAD*Q6
 + LOAD*A6

Q7 := /LOAD*Q7
 + LOAD*A7

;–––

AMD

25Title

Copyright 1994 Advanced Micro Devices, Inc. All rights reserved.
29K, Am29030, and Scalable Clocking are trademarks; and MACH, PAL, and PALASM are registered trademarks of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

