
Publication# 19716 Rev. A Amendment /0

Issue Date: March 1995. WWW: 5/4/95
This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended
to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Advanced
Micro

Devices

Am29202
Low-Cost RISC Microcontroller with
IEEE-1284-Compliant Parallel Interface

Advance Information



DISTINCTIVE CHARACTERISTICS
Completely integrated system for
cost-sensitive embedded applications
requiring high performance

Full 32-bit RISC architecture offers faster
instruction execution and higher performance.

— 32-bit instruction/data bus

— 22-bit address bus

— 192 general-purpose registers

— Fully pipelined, three-address instruction
architecture

— 104-Mbyte address space

— 12-, 16-, and 20-MHz operating frequencies

— 16 VAX MIPS sustained at 20 MHz

Glueless system interfaces with on-chip wait
state control lower total system cost.

— ROM controller supports four banks of ROM,
each separately programmable for 8-, 16-, or
32-bit-wide interface.

— DRAM controller supports four banks of
DRAM, each separately programmable for
16- or 32-bit-wide interface.

— 2-port peripheral interface adapter (PIA)

Two-channel DMA controller (one external)
with queued reload for internal peripherals

On-chip timer and interrupt controller

IEEE Std 1284-1994-compliant parallel port
interface (peripheral-side only) supports fast
bidirectional data transfers.

— Compatibility, Nibble, Byte, and ECP modes

— Supports Microsoft Windows Printing System

Bidirectional bit serializer/deserializer for direct
connection to raster input and output devices

12-line programmable I/O port
(8 lines interruptible)

DRAM page-mode support improves memory
access time.

On-chip DRAM mapping reduces memory
requirements.

Advanced debugging support

— IEEE Std 1149.1-1990-compliant Standard
Test Access Port and Boundary Scan Architec-
ture (JTAG) for testing system hardware

— Instruction tracing

— UART serial port

Software and hardware development tools
widely available from AMD  and Fusion29K 

partners

Binary compatibility with all 29K  Family of
RISC microcontrollers and microprocessors

132-pin Plastic Quad Flat Pack (PQFP) package

GENERAL DESCRIPTION
The Am29202 RISC microcontroller is a highly inte-
grated, 32-bit embedded processor implemented in com-
plementary metal-oxide semiconductor (CMOS)
technology. Based on the 29K architecture, the Am29202
microcontroller is part of a growing family of RISC micro-
controllers, which includes the Am29200 and
Am29205 microcontrollers, along with the high-perfor-
mance Am29240 , Am29245 , and Am29243 RISC
microcontrollers. A feature summary of the Am29200
RISC microcontroller family is included in Table 1.

With its 32-bit instruction and data bus, the Am29202 mi-
crocontroller is functionally very similar to an Am29200
microcontroller, operating with a reduced pin count and
fewer peripherals. The low-cost Am29202 microcon-
troller is well-suited for cost-sensitive embedded ap-
plications requiring the enhanced performance of a

32-bit instruction/data bus and an IEEE-1284-compliant
parallel port interface. The Am29202 microcontroller in-
corporates a complete set of system facilities commonly
found in printing, imaging, graphics, and other em-
bedded applications.

The Am29202 microcontroller meets the common re-
quirements of embedded applications such as laser
printers, imaging applications, graphics processing, in-
dustrial control, and general purpose applications re-
quiring high performance in a compact design. Specific
applications include products based on Microsoft’s Win-
dows Printing System, such as personal and workgroup
600-DPI laser printers and midrange inkjet printers, as
well as scanners and multifunction peripherals, among
others.

AMD A D V A N C E I N F O R M A T I O N

2 Am29202 RISC Microcontroller

Am29202 MICROCONTROLLER BLOCK DIAGRAM

DACK

Interrupts

DRAMSpace
ROM

Memory

Serial Port

Parallel Port
Controller DMA Controller

Programmable

Interrupt

DRAM Controller

Timer/Counter

I/O Port

Controller
Serializer/

Deserializer

ROM
Controller

PIA
Controller

Peripherals

2 22 32
PIA

Chip Selects
Address

Bus
Instruction/Data
Bus

4

4 2 12 2

4/4

ROM
Chip Selects

Serial
Data

Printer/Scanner
Video

I/O

10 2
Parallel Port

Control/Status
Lines

DREQ5 3
Clock/

Lines
Control

JTAGMEMCLK

Am29000 CPU

ROM

RAS/CAS

CUSTOMER SERVICE
AMD’s customer service network includes U.S. offices,
international offices, and a customer training center. Ex-
pert technical assistance is available from AMD’s world-
wide staff of field application engineers and factory
support staff.

Hotline, E-mail, and Bulletin Board Support
For answers to technical questions, AMD provides a toll-
free number for direct access to our engineering support
staff. For overseas customers, the easiest way to reach
the engineering support staff with your questions is via
fax with a short description of your question. AMD 29K
Family customers also receive technical support
through electronic mail. This worldwide service is avail-
able to 29K Family product users via the international In-
ternet e-mail service. Also available is the AMD bulletin
board service, which provides the latest 29K Family
product information, including technical information and
data on upcoming product releases.

Engineering Support Staff

(800) 292-9263, ext. 2 toll-free for U.S.

0031-11-1163 toll-free for Japan

(512) 602-4118 direct dial worldwide

44-(0)256-811101 U.K. and Europe hotline

(512) 602-5031 fax

epd.support@amd.com e-mail

Bulletin Board

(800) 292-9263, ext. 1 toll-free for U.S.

(512) 602-7604 direct dial worldwide

Documentation and Literature

A simple phone call gets you free 29K Family informa-
tion, such as data books, user’s manuals, data sheets,
application notes, the Fusion29K Partner Solutions
Catalog and Newsletter, and other literature. Interna-
tionally, contact your local AMD sales office for com-
plete 29K Family literature.

Literature Request

(800) 292-9263, ext. 3 toll-free for U.S.

(512) 602-5651 direct dial worldwide

(512) 602-7639 fax for U.S.

(800) 222-9323, option 1 AMD Facts-On-Demand
fax information service
toll-free for U.S.

AMDA D V A N C E I N F O R M A T I O N

3Am29202 RISC Microcontroller

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. Valid order numbers are formed by a
combination of the elements below.

AM29202 –12 C

TEMPERATURE RANGE

PACKAGE TYPE
K = 132-Lead Plastic Quad Flat Pack (PQB132)

SPEED OPTION

DEVICE NUMBER/DESCRIPTION
Am29202 RISC Microcontroller

Valid Combinations

AM29202–12

–12 = 12.5 MHz
–16 = 16.67 MHz
–20 = 20 MHz

K \W

SHIPPING OPTION
\W = Trimmed and Formed

Valid Combinations
Valid Combinations list configurations planned to
be supported in volume. Consult the local AMD
sales office to confirm availability of specific valid
combinations, and check on newly released
combinations.

AM29202–20

 C = Commercial (TC = 0°C to +85°C)

KC\WAM29202–16

AMD A D V A N C E I N F O R M A T I O N

4 Am29202 RISC Microcontroller

Table 1. Product Comparison—Am29200 Microcontroller Family

FEATURE Am29205
Controller

Am29202
Controller

Am29200
Controller

Am29245
Controller

Am29240
Controller

Am29243
Controller

Instruction Cache — — — 4 Kbytes 4 Kbytes 4 Kbytes

Data Cache — — — — 2 Kbytes 2 Kbytes

Cache Associativity — — — 2-way 2-way 2-way

Integer Multiplier Software Software Software Software 32 x 32-bit 32 x 32-bit

Memory Management
Unit (MMU)

— — — 1 TLB
16 Entry

1 TLB
16 Entry

2 TLBs
32 Entry

Data Bus Width
Internal
External

32 bits
16 bits

32 bits
32 bits

32 bits
32 bits

32 bits
32 bits

32 bits
32 bits

32 bits
32 bits

ROM Interface
Banks
Width
ROM Size (Max/Bank)
Boot-Up ROM Width
Burst-Mode Access

3
8, 16 bits
4 Mbytes
16 bits

Not Supported

4
8, 16, 32 bits

4 Mbytes
8, 16, 32 bits

Not Supported

4
8, 16, 32 bits
16 Mbytes

8, 16, 32 bits
Supported

4
8, 16, 32 bits
16 Mbytes

8, 16, 32 bits
Supported

4
8, 16, 32 bits
16 Mbytes

8, 16, 32 bits
Supported

4
8, 16, 32 bits
16 Mbytes

8, 16, 32 bits
Supported

DRAM Interface
Banks
Width
Size: 32-Bit Mode
Size: 16-Bit Mode
Video DRAM
Access Cycles
 Initial/Burst
DRAM Parity

4
16 bits only

—
8 Mbytes/bank
Not Supported

3/2
No

4
16, 32 bits

16 Mbytes/bank
8 Mbytes/bank
Not Supported

3/2
No

4
16, 32 bits

16 Mbytes/bank
8 Mbytes/bank

Supported

3/2
No

4
16, 32 bits

16 Mbytes/bank
8 Mbytes/bank

Supported

2/1
No

4
16, 32 bits

16 Mbytes/bank
8 Mbytes/bank

Supported

2/1
No

4
16, 32 bits

16 Mbytes/bank
8 Mbytes/bank
Not Supported

2/1
Yes

On-Chip DMA
Width (ext. peripherals)
Total Number of Channels
Externally Controlled
External Master Access
External Master Burst
External Terminate Signal

8, 16 bits
2
1

No
No
No

8, 16, 32 bits
2
1

No
No
No

8, 16, 32 bits
2
2

Yes
No
Yes

8, 16, 32 bits
2
2

Yes
Yes
Yes

8, 16, 32 bits
4
4

Yes
Yes
Yes

8, 16, 32 bits
4
4

Yes
Yes
Yes

Double-Frequency
CPU Option No No No No Yes Yes

Low Voltage Operation No No No Yes Yes Yes

Peripheral Interface
Adapter (PIA)

PIA Ports
Data Width
Min. Cycles Access

2
8, 16 bits

3

2
8, 16, 32 bits

3

6
8, 16, 32 bits

3

6
8, 16, 32 bits

1

6
8, 16, 32 bits

1

6
8, 16, 32 bits

1

Programmable I/O Port
(PIO)

Signals
Signals programmable
 for interrupt generation

8

8

12

8

16

8

16

8

16

8

16

8

Serial Ports
Ports
DSR/DTR

1 Port
PIO signals

1 Port
PIO signals

1 Port
Supported

1 Port
Supported

2 Ports
1 Port Supported

2 Ports
1 Port Supported

Interrupt Controller
External Interrupt Pins
External Trap and Warn
 Pins

2

0

2

0

4

3

4

3

4

3

4

3

Parallel Port Controller
32-Bit Transfer
IEEE-1284 Interface

Yes
No
No

Yes
Yes
Yes

Yes
Yes
No

Yes
Yes
No

Yes
Yes
No

Yes
Yes
No

JTAG Debug Support No Yes Yes Yes Yes Yes

Serializer/Deserializer Yes Yes Yes Yes Yes No

Pin Count and Package 100 PQFP 132 PQFP 168 PQFP 196 PQFP 196 PQFP 196 PQFP

Voltage
VCC
I/O Tolerance

5 V
5 V

5 V
5 V

5 V
5 V

3.3 V or 5 V
5 V

3.3 V or 5 V
5 V

3.3 V or 5 V
5 V

Processor Clock Rate 12, 16 MHz 12, 16, 20 MHz 16, 20 MHz 16 MHz 20, 25, 33 MHz 20, 25, 33 MHz

AMDA D V A N C E I N F O R M A T I O N

5Am29202 RISC Microcontroller

RELATED AMD PRODUCTS
29K Family Devices

Part No. Description

Am29000� 32-bit RISC microprocessor

Am29005 Low-cost 32-bit RISC microprocessor with no MMU and no branch target cache

Am29030 32-bit RISC microprocessor with 8-Kbyte instruction cache

Am29035 32-bit RISC microprocessor with 4-Kbyte instruction cache

Am29040 32-bit RISC microprocessor with 8-Kbyte instruction cache and 4-Kbyte data cache

Am29050 32-bit RISC microprocessor with on-chip floating point unit

Am29200 32-bit RISC microcontroller

Am29205 Low-cost 32-bit RISC microcontroller

Am29240 32-bit RISC microcontroller with 4-Kbyte instruction cache and 2-Kbyte data cache

Am29243 32-bit data RISC microcontroller with instruction and data caches and DRAM parity

Am29245 Low-cost 32-bit RISC microcontroller with 4-Kbyte instruction cache

29K FAMILY
DEVELOPMENT SUPPORT PRODUCTS
Contact your local AMD representative for information
on the complete set of development support tools. The
following software and hardware development products
are available on several hosts:

Optimizing compilers for common high-level
languages

Assembler and utility packages

Source- and assembly-level software debuggers

Target-resident development monitors

Simulators

Execution boards

THIRD-PARTY
DEVELOPMENT SUPPORT PRODUCTS
The Fusion29K Program of Partnerships for Application
Solutions provides the user with a vast array of products
designed to meet critical time-to-market needs. Prod-
ucts and solutions available from the AMD Fusion29K
Partners include

Silicon products

Software generation and debug tools

Hardware development tools

Board level products

Laser printer solutions

Networking and communication solutions

Multiuser, kernel, and real-time operating systems

Graphics solutions

Manufacturing support

Custom software consulting, support, and training

AMD A D V A N C E I N F O R M A T I O N

 6 Am29202 RISC Microcontroller

TABLE OF CONTENTS

DISTINCTIVE CHARACTERISTICS 1.

GENERAL DESCRIPTION 1.

Am29202 MICROCONTROLLER BLOCK DIAGRAM 2.

CUSTOMER SERVICE 2.

ORDERING INFORMATION 3.

Am29200 MICROCONTROLLER FAMILY COMPARISON 4.

RELATED AMD PRODUCTS 5.

29K FAMILY DEVELOPMENT SUPPORT PRODUCTS 5.

THIRD-PARTY DEVELOPMENT SUPPORT PRODUCTS 5.

KEY FEATURES AND BENEFITS 10.

IEEE-1284-COMPLIANT ADVANCED PARALLEL INTERFACE 10.

WINDOWS PRINTING SYSTEM COMPATIBILITY 10.

COMPLETE SET OF COMMON SYSTEM PERIPHERALS 10.

PERFORMANCE OVERVIEW 11.

DEBUGGING AND TESTING 12.

COMPLETE DEVELOPMENT AND SUPPORT ENVIRONMENT 12.

PIN INFORMATION

CONNECTION DIAGRAM 13.

PQFP PIN DESIGNATIONS (Sorted by Pin Number) 14.

PQFP PIN DESIGNATIONS (Sorted by Pin Name) 15.

LOGIC SYMBOL 16.

PIN DESCRIPTIONS 17.

FUNCTIONAL DIFFERENCES 20.
Advanced Parallel Interface 20.
Memory Map Changes 20.
Pin Changes for the Am29202 Microcontroller 20.

ROM CONTROLLER 22.
ROM Control Register (RMCT, Address 80000000) 22.

DRAM CONTROLLER 23.
DRAM Control Register (DRCT, Address 80000008) 23.
Refresh Control Changes 24.

PERIPHERAL INTERFACE ADAPTER (PIA) 25.
PIA Control Register 0/1 (PICT0/1, Address 80000020/24) 25.

DMA CONTROLLER 26.
DMA0 Control Register (DMCT0, Address 80000030) 26.
DMA0 Address Register (DMAD0, Address 80000034) 27.
DMA1 Control Register (DMCT1, Address 80000040) 27.

PROGRAMMABLE I/O PORT 29.
PIO Control Register (POCT, Address 800000D0) 29.
PIO Input Register (PIN, Address 800000D4) 30.
PIO Output Register (POUT, Address 800000D8) 30.
PIO Output Enable Register (POEN, Address 800000DC) 30.

AMDA D V A N C E I N F O R M A T I O N

 7Am29202 RISC Microcontroller

SERIAL PORT 31.
Serial Port Control Register (SPCT, Address 80000080) 31.
Serial Port Status Register (SPST, Address 80000084) 32.

INTERRUPTS AND TRAPS 33.
Current Processor Status Register (CPS, Register 2) 33.
Interrupt Control Register (ICT, Address 80000028) 34.
Vector Numbers 35.
Sequencing of Interrupts and Traps 37.
Exception Reporting and Restarting 37.

DEBUGGING AND TESTING 39.
Main Data Path 39.

IEEE-1284-COMPLIANT ADVANCED PARALLEL INTERFACE 41.
Upgrading Hardware and Software 41.
Minimal System Design 42.

OVERVIEW 42.
Communication Modes 43.

EXTERNAL SIGNALS 44.
Dedicated Signal Lines 44.
Mode-Allocated PIO Lines 44.
Software-Driven Status Lines 44.

REGISTERS 46.
Advanced Parallel Control Register (APCT, Address 800000A0) 47.
Advanced Parallel Status Register (APST, Address 800000A4) 50.
Advanced Parallel Interrupt Mask Register (APIM, Address 800000A8) 52.
Advanced Parallel Interrupt Status Register (APIS, Address 800000AC) 53.
Advanced Parallel Data Register (APDT, Address 800000B0) 54.

INITIALIZATION 54.

CONTROLLING THE PARALLEL PORT INTERFACE 55.
Polling 55.
Interrupts 55.
Data Transfers 55.

Data Interrupts 55.
DMA 58.
Full-Word Transfer 58.

ECP Commands 59.
Using Full-Word Transfer with ECP Commands 59.

Mode Selection 60.
Communicating a Mode Choice to the Host 60.
Configuring the API to Support a Negotiated Mode 60.

Software Control of Handshaking 60.

USING SOFTWARE IN IEEE-1284 MODES 61.
Compatibility Mode 61.

Automatic Handshakes 61.
Data Transfers 61.
Preventing Deadlocks During Data Transfer 61.
Enabling Negotiation to Another Mode 63.

Negotiation Phase 63.
Terminating a Mode 63.
Device ID 63.
Idle Mode 64.

Nibble Mode 64.
Data Transfers 64.
First Nibble 64.

AMD A D V A N C E I N F O R M A T I O N

 8 Am29202 RISC Microcontroller

Second Nibble 65.
Changing Modes 65.
Nibble Idle Phase 65.
Nibble ID 65.

Byte Mode 66.
Automatic Handshakes 66.
Data Transfers 66.
Using DMA in Byte Mode 66.
Setting Status Information 66.
Changing Modes 67.
Byte Idle Phase 67.
Byte ID 67.

ECP Forward 68.
Automatic Handshakes 68.
Distinguishing Commands From Data 68.
Using CPE 68.
Handling Deadlocks 69.
Changing Modes 69.

ECP Reverse 69.
Automatic Handshakes 69.
Data Transfers 69.
Distinguishing Commands From Data 70.
Changing Modes 70.
ECP Reverse ID 70.

ABSOLUTE MAXIMUM RATINGS 71.

OPERATING RANGES 71.

DC CHARACTERISTICS over COMMERCIAL Operating Range 71.

CAPACITANCE 71.

SWITCHING CHARACTERISTICS over COMMERCIAL Operating Range 72.

SWITCHING WAVEFORMS 73.

SWITCHING TEST CIRCUIT 74.

THERMAL CHARACTERISTICS 74.

PHYSICAL DIMENSIONS 76.

AMDA D V A N C E I N F O R M A T I O N

 9Am29202 RISC Microcontroller

LIST OF FIGURES
Figure 1. ROM Control Register 22.
Figure 2. DRAM Control Register 23.
Figure 3. PIA Control Register 0 25.
Figure 4. DMA0 Control Register 26.
Figure 5. DMA0 Address Register 27.
Figure 6. DMA1 Control Register 28.
Figure 7. PIO Control Register 29.
Figure 8. PIO Input Register 30.
Figure 9. PIO Output Register 30.
Figure 10. PIO Output Enable Register 30.
Figure 11. Serial Port Control Register 32.
Figure 12. Serial Port Status Register 32.
Figure 13. Current Processor Status Register 33.
Figure 14. Interrupt Control Register 34.
Figure 15. Maximum External System Design 41.
Figure 16. Minimal System Design 42.
Figure 17. Advanced Parallel Control Register 47.
Figure 18. Advanced Parallel Status Register 50.
Figure 19. Advanced Parallel Interrupt Mask Register 52.
Figure 20. Advanced Parallel Interrupt Status Register 53.
Figure 21. Advanced Parallel Data Register 54.
Figure 22. Example: Using A Control Status Condition to Generate an Interrupt in Compatibility Mode 56.
Figure 23. Example: Using the Data Status Condition in Compatibility Mode 57.
Figure 24. Advanced Parallel Port Buffer Read Cycle for Forward Transfers 58.
Figure 25. Advanced Parallel Port Buffer Write Cycle for Reverse Transfers 58.

LIST OF TABLES
Table 1. Product Comparison—Am29200 Microcontroller Family 4.
Table 2. Internal Peripheral Address Ranges 16.
Table 3. Internal Peripheral Address Assignments 17.
Table 4. Vector Number Assignments 32.
Table 5. Interrupt and Trap Priority Table 34.
Table 6. Main Data Scan Path 35.
Table 7. Feature Comparison of Supported IEEE-1284 Communication Modes 39.
Table 8. IEEE-1284 Parallel Interface Signal Names by Mode 41.
Table 9. Parallel Port Register Summary 42.
Table 10. APMODE Values 45.
Table 11. Using Control Status Conditions in IEEE-1284 Modes 58.
Table 12. PQFP Thermal Characteristics 71.

AMD A D V A N C E I N F O R M A T I O N

10 Am29202 RISC Microcontroller

KEY FEATURES AND BENEFITS
The Am29202 microcontroller offers the performance of
the Am29200 microcontroller with the slightly reduced
feature set required for a smaller package. As an up-
grade to the Am29205 microcontroller, the low-cost
Am29202 microcontroller offers the enhanced perfor-
mance of a 32-bit instruction/data bus and an
IEEE-1284-compliant parallel interface.

IEEE-1284-Compliant
Advanced Parallel Interface
The Am29202 microcontroller includes a new parallel
port interface, called the Advanced Parallel Interface
(API), that is compliant with IEEE Std 1284-1994. The
IEEE-1284 standard specifies the operation of an exten-
sible, bidirectional, multimode parallel interface that pro-
vides access to a variety of peripheral devices, such as
printers, scanners, multifunction peripherals, storage
devices, network interfaces, and others. This standard
bidirectional protocol enables the development of new
peripherals that can return significant data, as well as
basic status, to the host.

AMD’s implementation of this protocol on the Am29202
microcontroller supports a number of communications
modes, allowing access to both high-speed and low-
overhead communications. The supported modes in-
clude: Compatibility (standard Centronics) mode, Nibble
(reverse) mode, Byte (reverse) mode, and ECP (bidirec-
tional) mode.

The standard IEEE-1284 communications modes are
supported using a mixture of hardware and software
controls. Automatic hardware handshakes and hard-
ware DMA support are provided in all modes except
Nibble. Full software control provides easy access to in-
put status information with a variety of software strate-
gies, including polling, interrupt service, and DMA. The
API supports peripheral-side designs only.

Windows Printing System Compatibility
Because of its high performance, full feature set, glue-
less interfaces, and low total system cost, the Am29202
microcontroller was chosen by Microsoft to be the refer-
ence hardware design for its Windows Printing System.
The Windows Printing System provides substantial per-
formance improvements for a new class of printers that
are optimized for the Windows operating system.

These new printers utilize features of the IEEE-1284
parallel interface to provide a fast, bidirectional commu-
nication channel that improves the transfer of data be-
tween host and peripheral and also allows the printer to
communicate status information back to the host PC.
While not limited in functionality to a specific application,
the Am29202 microcontroller has the performance and
feature set ideally suited to meet the needs of these low-
to mid-range laser printers.

Complete Set of Common System
Peripherals
The Am29202 microcontroller minimizes system cost by
incorporating a complete set of system facilities com-
monly found in embedded applications, eliminating the
cost of additional components. The on-chip functions in-
clude: a ROM controller, a DRAM controller, a peripheral
interface adapter, a DMA controller, a bidirectional ser-
ializer/deserializer, a programmable I/O port, an
IEEE-1284-compliant parallel port interface, a serial
port, an interrupt controller, and an IEEE-1149.1-com-
pliant JTAG debug port.

The Am29202 microcontroller provides a glueless at-
tachment to external ROMs, DRAMs, and other periph-
eral components. Processor outputs have edge-rate
control that allows them to drive a wide range of load ca-
pacitances with low noise and ringing. This eliminates
the cost of external logic and buffering.

The Am29202 microcontroller lets product designers
capitalize on the very low system cost made possible by
the integration of processor and peripherals. Many sim-
ple systems can be built using only the Am29202 micro-
controller and external ROM and/or DRAM memory.

ROM Controller

The ROM controller supports four individual banks of
ROM or other static memory. Each ROM bank has its
own timing characteristics, and each bank may be of a
different size: either 8, 16, or 32 bits wide. The ROM
banks can appear as a contiguous memory area of up to
16 Mbytes in size. The ROM controller also supports
writes to the ROM memory space for devices such as
Flash EPROMs and SRAMs.

DRAM Controller

The DRAM controller supports four separate banks of
dynamic memory, each of which can be a different size:
either 16 or 32 bits wide. The DRAM banks can appear as
a contiguous memory area of up to 64 Mbytes in size. To
support system functions such as on-the-fly data com-
pression and decompression, four 64-Kbyte regions of
the DRAM can be mapped into a 16-Mbyte virtual ad-
dress space.

Peripheral Interface Adapter (PIA)

The peripheral interface adapter allows for additional
system features implemented by external peripheral
chips. The PIA interface permits glueless interfacing
from the Am29202 microcontroller to two external
peripherals, each with a separate 4-Mbyte address
space.

AMDA D V A N C E I N F O R M A T I O N

11Am29202 RISC Microcontroller

DMA Controller

The DMA controller in the Am29202 microcontroller pro-
vides two channels for transfer of data between the
DRAM and internal peripherals and one channel for ex-
ternal transfers. One of the DMA channels is double
buffered to relax the constraints on the reload time.

Interrupt Controller

The interrupt controller generates and reports the status
of interrupts caused by on-chip peripherals.

Programmable I/O Port (PIO)

The Am29202 microcontroller’s I/O port permits direct
access to 12 individually programmable external input/
output signals. Eight of these signals can be configured
to cause interrupts. Four of these signals are shared
with the IEEE-1284-compliant parallel port interface.

Serial Port

The serial port implements a full-duplex UART.

Serializer/Deserializer

The bidirectional bit serializer/deserializer (video inter-
face) permits direct connection to a number of laser
marking engines, video displays, or raster input devices
such as scanners.

Performance Overview
The Am29202 microcontroller offers a significant margin
of performance over CISC microprocessors in existing
embedded designs, since the majority of processor fea-
tures were defined for the maximum achievable per-
formance at a very low cost. This section describes the
features of the Am29202 microcontroller from the
point of view of system performance.

Instruction Timing

The Am29202 microcontroller uses an arithmetic/logic
unit, a field shift unit, and a prioritizer to execute most
instructions. Each of these is organized to operate on
32-bit operands and provide a 32-bit result. All opera-
tions are performed in a single cycle.

The performance degradation of load and store opera-
tions is minimized in the Am29202 microcontroller by
overlapping them with instruction execution, by taking
advantage of pipelining, and by organizing the flow of
external data into the processor so that the impact of ex-
ternal accesses is minimized.

Pipelining

Instruction operations are overlapped with instruction
fetch, instruction decode and operand fetch, instruction
execution, and result write-back to the register file.
Pipeline forwarding logic detects pipeline dependencies
and routes data as required, avoiding delays that might
arise from these dependencies.

Pipeline interlocks are implemented by processor hard-
ware. Except for a few special cases, it is not necessary
to rearrange instructions to avoid pipeline dependen-
cies, although this is sometimes desirable for perfor-
mance.

Instruction Set Overview

The Am29202 microcontroller employs a three-address
instruction set architecture. The compiler or assembly-
language programmer is given complete freedom to al-
locate register usage. There are 192 general-purpose
registers, allowing the retention of intermediate calcula-
tions and avoiding needless memory accesses. Instruc-
tion operands may be contained in any of the
general-purpose registers, and the results may be
stored into any of the general-purpose registers.

The instruction set contains 117 instructions that are di-
vided into nine classes. These classes are integer arith-
metic, compare, logical, shift, data movement, constant,
floating point, branch, and miscellaneous. The floating-
point instructions are not executed directly, but are emu-
lated by trap handlers.

All directly implemented instructions are capable of
executing in one processor cycle, with the exception of
interrupt returns, loads, and stores.

Data Formats

The Am29202 microcontroller defines a word as 32 bits
of data, a half-word as 16 bits, and a byte as 8 bits. The
hardware provides direct support for word-integer
(signed and unsigned), word-logical, word-Boolean,
half-word integer (signed and unsigned), and character
data (signed and unsigned).

Word-Boolean data is based on the value contained in
the most significant bit of the word. The values TRUE
and FALSE are represented by the MSB values 1 and 0,
respectively.

Other data formats, such as character strings, are sup-
ported by instruction sequences. Floating-point formats
(single and double precision) are defined for the proces-
sor; however, there is no direct hardware support for these
formats in the Am29202 microcontroller.

Protection

The Am29202 microcontroller offers two mutually exclu-
sive modes of execution, the user and supervisor
modes, that restrict or permit accesses to certain proces-
sor registers and external storage locations.

The register file may be configured to restrict accesses
to supervisor-mode programs on a bank-by-bank basis.

AMD A D V A N C E I N F O R M A T I O N

12 Am29202 RISC Microcontroller

Page-Mode Memories

The Am29202 microcontroller uses the page-mode ca-
pability of common DRAMs to improve the access time
in cases where page-mode accesses can be used. This
is particularly useful in very low-cost systems with
16-bit-wide DRAMs, where the DRAM must be ac-
cessed twice for each 32-bit operand.

DRAM Mapping

The Am29202 microcontroller provides a 16-Mbyte re-
gion of virtual memory that is mapped to one of four
64-Kbyte blocks in the physical DRAM memory. This
supports system functions such as on-the-fly data com-
pression and decompression, allowing a large data
structure such as a frame buffer to be stored in a com-
pressed format while the application software operates
on a region of the structure that is decompressed. Using
a mechanism that is analogous to demand paging, sys-
tem software moves data between the compressed and
decompressed formats in a way that is invisible to the
application software. This feature can greatly reduce the
amount of memory required for printing, imaging, and
graphics applications.

Interrupts and Traps

When the microcontroller takes an interrupt or trap, it
does not automatically save its current state information
in memory. This lightweight interrupt and trap facility
greatly improves the performance of temporary inter-
ruptions such as simple operating-system calls that re-
quire no saving of state information.

In cases where the processor state must be saved, the
saving and restoring of state information is under the
control of software. The methods and data structures
used to handle interrupts—and the amount of state in-
formation saved—may be tailored to the needs of a par-
ticular system.

Interrupts and traps are dispatched through a 256-entry
vector table which directs the processor to a routine that
handles a given interrupt or trap. The vector table may
be relocated in memory by the modification of a proces-
sor register. There may be multiple vector tables in the
system, though only one is active at any given time.

The vector table is a table of pointers to the interrupt and
trap handlers and requires only 1 Kbyte of memory. The
processor performs a vector fetch every time an inter-
rupt or trap is taken. The vector fetch requires at least
three cycles, in addition to the number of cycles required
for the basic memory access.

Debugging and Testing
Software debugging on the Am29202 microcontroller is
facilitated by the instruction trace facility and instruction
breakpoints. Instruction tracing is accomplished by forc-
ing the processor to trap after each instruction has been
executed. Instruction breakpoints are implemented by
the HALT instruction or by a software trap.

A scan interface compliant with IEEE Std 1149.1-1990
(JTAG) Standard Test Access Port and Boundary-Scan
Architecture is provided to test system hardware in a
production environment. It contains extensions that al-
low a hardware-development system to control and ob-
serve the processor without interposing hardware
between the processor and system.

Complete Development and
Support Environment
A complete development and support environment is vi-
tal for reducing a product’s time-to-market. Advanced
Micro Devices has created a standard development en-
vironment for the 29K Family of processors. In addition,
the Fusion29K third-party support organization provides
the most comprehensive customer/partner program in
the embedded processor market.

Advanced Micro Devices offers a complete set of hard-
ware and software tools for design, integration, debug-
ging, and benchmarking. These tools, which are
available now for the 29K Family, include the following:

High C� 29K optimizing C compiler with assem-
bler, linker, ANSI library functions, and 29K archi-
tectural simulator

XRAY29KTM source-level debugger

MiniMON29KTM debug monitor

A complete family of demonstration and develop-
ment boards

In addition, Advanced Micro Devices has developed a
standard host interface (HIF) specification for operating
system services, the Universal Debug Interface (UDI) for
seamless connection of debuggers to ICEs and target
hardware, and extensions for the UNIX common object
file format (COFF).

This support is augmented by an engineering hotline, an
on-line bulletin board, and field application engineers.

AMDA D V A N C E I N F O R M A T I O N

13Am29202 RISC Microcontroller

CONNECTION DIAGRAM

132-Lead Plastic Quad Flat Pack

Top View

30
31

13
0

85

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

91
90
89

87
86

84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67

12
4

12
3

12
2

12
1

12
0

11
9

11
8

11
7

11
6

11
5

11
4

11
3

11
2

11
1

11
0

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

26
27
28
29

32
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

88

92
93
94
95
96
97
98
99

12
5

12
6

12
7

12
8

12
9

13
1

13
2

Note:
Pin 1 is marked for orientation.

AMD A D V A N C E I N F O R M A T I O N

14 Am29202 RISC Microcontroller

PQFP PIN DESIGNATIONS (Sorted by Pin Number)

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name

1 VCC 34 ID7 67 PIAOE 100 POE

2 MEMCLK 35 ID6 68 DACK1 101 PACK

3 VCC 36 ID5 69 A21 102 PBUSY

4 GND 37 ID4 70 A20 103 PIO15

5 INCLK 38 ID3 71 A19 104 PIO14

6 GND 39 ID2 72 A18 105 PIO13

7 VCC 40 ID1 73 A17 106 GND

8 ID31 41 ID0 74 A16 107 VCC

9 ID30 42 GND 75 A15 108 PIO12

10 ID29 43 VCC 76 A14 109 PIO11

11 ID28 44 RXD 77 A13 110 PIO10

12 ID27 45 UCLK 78 A12 111 PIO9

13 ID26 46 TXD 79 A11 112 PIO8

14 ID25 47 ROMCS3 80 GND 113 PIO7/REVOE

15 ID24 48 ROMCS2 81 VCC 114 PIO6/DATASTROBE

16 ID23 49 ROMCS1 82 A10 115 PIO5/SELECTIN

17 ID22 50 ROMCS0 83 A9 116 PIO4/INIT

18 ID21 51 RSWE 84 A8 117 TDO

19 ID20 52 ROMOE 85 A7 118 VDAT

20 ID19 53 RAS3 86 A6 119 VCC

21 ID18 54 RAS2 87 A5 120 GND

22 ID17 55 RAS1 88 A4 121 PSYNC

23 ID16 56 RAS0 89 A3 122 DREQ1

24 VCC 57 CAS3 90 A2 123 INTR0

25 GND 58 CAS2 91 A1 124 INTR2

26 ID15 59 CAS1 92 A0 125 VCLK

27 ID14 60 CAS0 93 VCC 126 LSYNC

28 ID13 61 WE 94 GND 127 TMS

29 ID12 62 VCC 95 BOOTW 128 TRST

30 ID11 63 GND 96 WAIT/TRIST 129 TCK

31 ID10 64 PIACS1 97 PAUTOFD 130 TDI

32 ID9 65 PIACS0 98 PSTROBE 131 RESET

33 ID8 66 PIAWE 99 PWE 132 GND

AMDA D V A N C E I N F O R M A T I O N

15Am29202 RISC Microcontroller

PQFP PIN DESIGNATIONS (Sorted by Pin Name)

Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No.

A0 92 GND 63 ID27 12 RAS0 56

A1 91 GND 80 ID28 11 RAS1 55

A2 90 GND 94 ID29 10 RAS2 54

A3 89 GND 106 ID30 9 RAS3 53

A4 88 GND 120 ID31 8 RESET 131

A5 87 GND 132 INCLK 5 ROMCS0 50

A6 86 ID0 41 INTR0 123 ROMCS1 49

A7 85 ID1 40 INTR2 124 ROMCS2 48

A8 84 ID2 39 LSYNC 126 ROMCS3 47

A9 83 ID3 38 MEMCLK 2 ROMOE 52

A10 82 ID4 37 PACK 101 RSWE 51

A11 79 ID5 36 PAUTOFD 97 RXD 44

A12 78 ID6 35 PBUSY 102 TCK 129

A13 77 ID7 34 PIACS0 65 TDI 130

A14 76 ID8 33 PIACS1 64 TDO 117

A15 75 ID9 32 PIAOE 67 TMS 127

A16 74 ID10 31 PIAWE 66 TRST 128

A17 73 ID11 30 PIO4/INIT 116 TXD 46

A18 72 ID12 29 PIO5/SELECTIN 115 UCLK 45

A19 71 ID13 28 PIO6/DATASTROBE 114 VCC 1

A20 70 ID14 27 PIO7/REVOE 113 VCC 3

A21 69 ID15 26 PIO8 112 VCC 7

BOOTW 95 ID16 23 PIO9 111 VCC 24

CAS0 60 ID17 22 PIO10 110 VCC 43

CAS1 59 ID18 21 PIO11 109 VCC 62

CAS2 58 ID19 20 PIO12 108 VCC 81

CAS3 57 ID20 19 PIO13 105 VCC 93

DACK1 68 ID21 18 PIO14 104 VCC 107

DREQ1 122 ID22 17 PIO15 103 VCC 119

GND 4 ID23 16 POE 100 VCLK 125

GND 6 ID24 15 PSTROBE 98 VDAT 118

GND 25 ID25 14 PSYNC 121 WAIT/TRIST 96

GND 42 ID26 13 PWE 99 WE 61

AMD A D V A N C E I N F O R M A T I O N

16 Am29202 RISC Microcontroller

LOGIC SYMBOL

ROMCS3–ROMCS0

A21–A0

ID31–ID0PSYNC

INTR0

RESET
INCLK

22

TDO

32

4

ROMOE
RSWE

RAS3–RAS0 4

CAS3–CAS0 4

WE

PIACS1–PIACS0 2

PIAOE
PIAWE

MEMCLK

TRST

TDI
TCK

TMS

WAIT

DREQ1 DACK1

PIO15–PIO4
(4 shared)

PSTROBE
PAUTOFD

PBUSY
PACK

POE
PWE

UCLK
RXD

TXD

VCLK
LSYNC

VDAT

12

INTR2

BOOTW

INIT (PIO4)
SELECTIN (PIO5)

DATASTROBE (PIO6)
REVOE (PIO7)

AMDA D V A N C E I N F O R M A T I O N

17Am29202 RISC Microcontroller

PIN DESCRIPTIONS
Note: The UCLK signal must be tied High if the serial
port is not used.

Clocks
INCLK
Input Clock (input)

This is an oscillator input at twice the processor and sys-
tem operating frequency. It can be driven at TTL levels.

MEMCLK
Memory Clock (output)

This is a clock output at one-half of the frequency of
INCLK. Most processor outputs, and many inputs, are
synchronous to MEMCLK. MEMCLK drives out with
CMOS levels.

Processor Signals
A21–A0
Address Bus (output, synchronous)

The address bus supplies the byte address for all ac-
cesses, except for DRAM accesses. For DRAM ac-
cesses, multiplexed row and column addresses are
provided on A14–A1. The signals A23–A22 and burst-
mode devices are not supported on the Am29202 micro-
controller.

ID31–ID0
Instruction/Data Bus (bidirectional, synchronous)

The instruction/data bus (ID bus) transfers instructions
to, and data to and from the processor.

INTR2, INTR0
Interrupt Requests 2 and 0 (input, asynchronous,
internal pull-up transistors)

These inputs generate prioritized interrupt requests.
The interrupt caused by INTR0 has the highest priority,
and the interrupt caused by INTR2 has the lower priority.
The interrupt requests are masked in prioritized order by
the Interrupt Mask field in the Current Processor Status
Register and are disabled by the DA and DI bits of the
Current Processor Status Register. These signals have
special hardening against metastable states, allowing
them to be driven with slow-transition-time signals. The
INTR3 and INTR1 signals are not supported on the
Am29202 microcontroller.

RESET
Reset (input, asynchronous)

This input places the processor in the Reset mode. This
signal has special hardening against metastable states,
allowing it to be driven with a slow-rise-time signal.

WAIT/TRIST
Add Wait States/Three-State Control
(input, synchronous, weak internal pull-up)

The WAIT signal may be asserted during a PIA, ROM, or
DMA access to extend the access indefinitely. The

WAIT/TRIST pin is also used for three-state control dur-
ing test. When asserted during a processor reset, all
output pins go into a high impedance state. For normal
operation, this pin must be pulled High during reset.

ROM Interface
BOOTW
Boot ROM Width (input, asynchronous)

This input configures the width of ROM Bank 0, so the
ROM can be accessed before the ROM configuration
has been set by the system initialization software. The
BOOTW signal is sampled during and after a processor
reset. If BOOTW is High before and after reset (tied
High), the boot ROM is 32 bits wide. If BOOTW is Low
before and after reset (tied Low), the boot ROM is 16 bits
wide. If BOOTW is Low before reset and High after reset
(tied to RESET), the boot ROM is 8 bits wide. This sig-
nal has special hardening against metastable states, al-
lowing it to be driven with a slow-rise-time signal and
permitting it to be tied to RESET.

ROMCS3–ROMCS0
ROM Chip Selects, Banks 3–0 (output,
synchronous)

A Low level on one of these signals selects the memory
devices in the corresponding ROM bank. ROMCS3 se-
lects devices in ROM Bank 3, and so on. The timing and
access parameters of each bank are individually pro-
grammable.

ROMOE
ROM Output Enable (output, synchronous)

This signal enables the selected ROM Bank to drive the
ID bus. It is used to prevent bus contention when switch-
ing between different ROM banks or switching between
a ROM bank and another device or DRAM bank.

RSWE
ROM Space Write Enable (output, synchronous)

This signal is used to write an alterable memory in a
ROM bank (such as an SRAM or Flash EPROM). RSWE
supports only writes of width equal to or greater than the
width of the memory, and the memory must be at least
16 bits wide. The CAS3–CAS0 signals can serve as indi-
vidual byte strobes for writes to the ROM space, if ROM
byte writes are enabled.

DRAM Interface
CAS3–CAS0
Column Address Strobes, Byte 3–0 (output,
synchronous)

A High-to-Low transition on these signals causes the
DRAM bank selected by RAS3–RAS0 to latch the col-
umn address and complete the access. To support byte
and half-word writes, column address strobes are pro-
vided for individual DRAM bytes. CAS3 is the column
address strobe for the DRAMs, in all banks, attached to

AMD A D V A N C E I N F O R M A T I O N

18 Am29202 RISC Microcontroller

ID31–ID24. CAS2 is for the DRAMs attached to
ID23–ID16, and so on. These signals are also used in
other special DRAM cycles.

The CAS3–CAS0 signals can be enabled to act as indi-
vidual byte strobes for byte writes to the ROM space. In
this configuration, ROM accesses do not conflict with
DRAM accesses or refresh even though CAS3–CAS0
may be used by both the ROM and DRAM.

RAS3–RAS0
Row Address Strobe, Banks 3–0 (output,
synchronous)

A High-to-Low transition on one of these signals causes
a DRAM in the corresponding bank to latch the row ad-
dress and begin an access. RAS3 starts an access in
DRAM Bank 3, and so on. These signals are also used in
other special DRAM cycles.

WE
Write Enable (output, synchronous)

This signal is used to write the selected DRAM bank.
“Early write” cycles are used so the DRAM data inputs
and outputs can be tied to the common ID bus.

Peripheral Interface Adapter (PIA)
PIACS1–PIACS0
Peripheral Chip Selects, Regions 1–0 (output,
synchronous)

These signals are used to select individual peripheral
devices. DMA Channel 1 may be programmed to use
PIACS1. PIACS5–PIACS2 are not supported on the
Am29202 microcontroller.

PIAOE
Peripheral Output Enable (output, synchronous)

This signal enables the selected peripheral device to
drive the ID bus.

PIAWE
Peripheral Write Enable (output, synchronous)

This signal causes data on the ID bus to be written into
the selected peripheral.

DMA Controller
DACK1
DMA Acknowledge, Channel 1 (output,
synchronous)

This signal acknowledges an external transfer on DMA
Channel 1. DMA transfers can occur to and from internal
peripherals independent of these acknowledgments.
DACK0 is not supported on the Am29202 microcontroller.

DREQ1
DMA Request, Channel 1 (input, asynchronous,
internal pull-up)

This signal requests an external transfer on DMA
Channel 1). This request is individually programmable
to be either level- or edge-sensitive for either polarity of

level or edge. DMA transfers can occur to and from in-
ternal peripherals independent of these requests.
DREQ0 is not supported on the Am29202
microcontroller.

I/O Port
PIO15–PIO8, PIO7/REVOE, PIO6/DATASTROBE,
PIO5/SELECTIN, PIO4/INIT
Programmable Input/Output
(input/output, asynchronous)

The PIO signals are available for direct software control
and inspection. PIO15–PIO8 may be individually pro-
grammed to cause processor interrupts. These signals
have special hardening against metastable states, al-
lowing them to be driven with slow-transition-time sig-
nals. PIO7–PIO4 are shared with the IEEE-1284-
compliant parallel port interface. The I/O port has control
of these lines when the parallel port is not enabled. The
signals PIO3–PIO0 are not supported on the Am29202
microcontroller.

Advanced Parallel Interface (API)
Note: For more complete descriptions of these signals
and their use, see the functional description of the
IEEE-1284-compliant parallel interface beginning on
page 41.

DATASTROBE/PIO6
(output, synchronous)

DATASTROBE causes incoming data from the host to
be latched externally on the rising edge. It is generated
by a number of different signals and edges in various
IEEE-1284 modes.

INIT/PIO4
(input, asynchronous)

The INIT signal comes from the IEEE-1284 signal nInit/
nReverseRequest and can optionally cause control
interrupts on either edge.

PACK
Parallel Port Acknowledge (output, synchronous)

This signal is used by the microcontroller to acknowl-
edge a transfer from the host or to indicate to the host
that data has been placed on the port.

PAUTOFD
Parallel Port Autofeed (input, asynchronous)

This signal is directly input from the IEEE-1284 signal
nAutofd/HostBusy/HostAck. It is used by the host in re-
verse-channel modes to signal reverse data strobe. It is
also used in other contexts in various modes. PAUTOFD
can optionally cause control interrupts on either edge.

PBUSY
Parallel Port Busy (output, synchronous)

Output to the IEEE-1284 signal Busy/PtrBusy/PeriphAck,
this signal comes from the API when it is enabled.

AMDA D V A N C E I N F O R M A T I O N

19Am29202 RISC Microcontroller

POE
Parallel Port Output Enable (output, synchronous)

This signal enables latched data on the data bus, to be
read by the processor under interrupt or DMA control.

PSTROBE
Parallel Port Strobe (input, asynchronous)

Directly input from the IEEE-1284 signal nStrobe/
HostClk, PSTROBE is used in some forward modes to
generate data strobe assertions and to signal data pres-
ence. In other modes, PSTROBE signals something
other than a data transfer. The PSTROBE signal can op-
tionally cause control interrupts on either edge.

PWE
Parallel Port Write Enable (output, synchronous)

This signal is used to latch the data bus for outgoing
(peripheral-to-host) transmission.

REVOE/PIO7
(output, synchronous)

REVOE is used to drive latched output data in the
reverse direction, from peripheral to host.

SELECTIN/PIO5
(input, asynchronous)

SELECTIN comes from the IEEE-1284 signal
nSelectIn/1284Active. It transitions (along with
PAUTOFD) to signal the request to negotiate an
IEEE-1284 mode and to signal the termination from an
IEEE-1284 mode. SELECTIN can optionally cause con-
trol interrupts on either edge.

Serial Port
UCLK
UART Clock (input)

This is an oscillator input for generating the UART (seri-
al port) clock. To generate the UART clock, the oscilla-
tor frequency may be divided by any amount up to
65,536. The UART clock operates at 16 times the serial
port’s baud rate. As an option, UCLK may be driven
with MEMCLK or INCLK. It can be driven with TTL lev-
els. UCLK must be tied High if unused.

TXD
Transmit Data (output, asynchronous)

This output is used to transmit serial data.

RXD
Receive Data (input, asynchronous)

This input is used to receive serial data.

Video Interface
VCLK
Video Clock (input, asynchronous)

This clock is used to synchronize the transfer of video
data. As an option, VCLK may be driven with MEMCLK
or INCLK. It can be driven with TTL levels.

VDAT
Video Data (input/output, synchronous to VCLK)

This is serial data to or from the video device.

LSYNC
Line Synchronization (input, asynchronous)

This signal indicates the start of a raster line.

PSYNC
Page Synchronization (input/output,
asynchronous)

This signal indicates the beginning of a raster page.

JTAG 1149.1 Boundary Scan Interface
TCK
Test Clock Input (asynchronous input, internal
pull-up)

This input is used to operate the test access port. The
state of the test access port must be held if this clock is
held either High or Low. This clock is internally synchro-
nized to MEMCLK for certain operations of the test
access port controller, so signals internally driven and
sampled by the test access port are synchronous to pro-
cessor internal clocks.

TMS
Test Mode Select (input, synchronous to TCK,
internal pull-up)

This input is used to control the test access port. If it is
not driven, it appears High internally.

TDI
Test Data Input (input, synchronous to TCK,
internal pull-up)

This input supplies data to the test logic from an external
source. It is sampled on the rising edge of TCK. If it is not
driven, it appears High internally.

TDO
Test Data Output (three-state output, synchronous
to TCK)

This output supplies data from the test logic to an exter-
nal destination. It changes on the falling edge of TCK. It
is in the high-impedance state except when scanning is
in progress.

TRST
Test Reset Input (asynchronous input, internal
pull-up)

This input asynchronously resets the test access port.
This input places the test logic in a state such that no out-
put driver is enabled. The TRST input must be asserted
in conjunction with the RESET input for correct proces-
sor initialization, whether or not the JTAG port is used.

AMD A D V A N C E I N F O R M A T I O N

20 Am29202 RISC Microcontroller

FUNCTIONAL DIFFERENCES
The Am29202 microcontroller is functionally very similar
to the Am29200 microcontroller, operating with a re-
duced pin count and fewer peripherals. The major differ-
ences include a new IEEE-1284-compliant bidirectional
parallel port interface, a new refresh scheme, a smaller
address bus (22 bits), only one external DMA channel,
no direct DMA, no video DRAM support, fewer PIOs,
fewer PIAs, no burst-mode ROM, no external traps, few-
er interrupt request pins, and a new JTAG scan path.

This large section (through page 70) describes the tech-
nical differences between the Am29202 and Am29200
microcontrollers and omits much of the information
common to both processors. For a complete description
of the technical features, on-chip peripherals, program-
ming interface, and instruction set, please refer to the
Am29200 and Am29205 RISC Microcontrollers User’s
Manual (order# 16362).

Note : All registers with bits designated as “reserved”
should be programmed with 0s to ensure compatibility.

Advanced Parallel Interface
The parallel interface on the Am29202 microcontroller is
completely different from the one included on the
Am29200 and Am29205 microcontrollers. The new port
is called the Advanced Parallel Interface (API) and is de-
scribed in considerable detail in the section
“IEEE-1284-Compliant Advanced Parallel Interface,” be-
ginning on page 41.

Memory Map Changes
All addresses are in the microcontroller’s instruction/
data memory address space. The address space is
partitioned as shown in Table 2. Internal peripheral reg-
isters are selected by offsets from address 80000000h.
The address assignment of the various internal periph-
erals and controllers is shown in Table 3.

The address assignments for the parallel port registers
have changed from those assigned for the Am29200
and Am29205 microcontrollers. The following register
addresses are not supported on the Am29202 micro-
controller:

Parallel Port Control Register 800000C0
Parallel Port Data Register 800000C4
Parallel Port Status Register 800000C8

Accesses to addresses that are not supported on the
Am29202 microcontroller will generate an Unsupported
Peripheral Address trap (see Table 4). The new address
assignments for the Advanced Parallel Interface (API)
registers are shown in Table 3.

Pin Changes for the
Am29202 Microcontroller
The reduced pin count of the Am29202 microcontroller
comes from having a smaller address bus and fewer
ports on some of the peripherals. The following signals
supported on the Am29200 microcontroller are not
available on the Am29202 microcontroller.

Processor signals: A23–A22, R/W, WARN, INTR1,
INTR3, TRAP1–TRAP0, STAT2–STAT0

ROM interface signals: BURST

DRAM interface signals: TR/OE

PIA signals: PIACS5–PIACS2

DMA signals: DREQ0, DACK0, TDMA, GREQ,
GACK

I/O port signals: PIO3–PIO0

Serial port signals: DSR, DTR

Table 2. Internal Peripheral Address Ranges

Address RangeAddress Range
(hexadeximal) Selection Maximum Physical Size

00000000–03FFFFFF
40000000–43FFFFFF
50000000–50FFFFFF
60000000–63FFFFFF
80000000–800000FC
90000000–90FFFFFF
91000000–91FFFFFF
92000000–92FFFFFF
93000000–93FFFFFF
94000000–94FFFFFF
95000000–95FFFFFF
—all others—

ROM Banks (all)
DRAM Banks (all)
Mapped DRAM Banks (all)
VDRAM transfers
Internal peripherals/controllers
PIA Region 0 (PIACS0)
PIA Region 1 (PIACS1)
PIA Region 2 (PIACS2)
PIA Region 3 (PIACS3)
PIA Region 4 (PIACS4)
PIA Region 5 (PIACS5)
Reserved

16 Mbyte
64 Mbyte
16 Mbyte

Not Supported
—

4 Mbyte
4 Mbyte

Not Supported
Not Supported
Not Supported
Not Supported

AMDA D V A N C E I N F O R M A T I O N

21Am29202 RISC Microcontroller

Table 3. Internal Peripheral Address Assignments

Address
Peripheral (hexadecimal) Register

ROM Controller 80000000 ROM Control Register
80000004 ROM Configuration Register

DRAM Controller 80000008 DRAM Control Register
8000000C DRAM Configuration Register

DRAM Mapping Unit 80000010 DRAM Mapping Register 0
80000014 DRAM Mapping Register 1
80000018 DRAM Mapping Register 2
8000001C DRAM Mapping Register 3

Peripheral Interface Adapter 80000020 PIA Control Register 0
80000024 PIA Control Register 1♦

Interrupt Controller 80000028 Interrupt Control Register

DMA Channel 0 80000030 DMA0 Control Register
80000034 DMA0 Address Register
80000070 DMA0 Address Tail Register
80000038 DMA0 Count Register
8000003C DMA0 Count Tail Register

DMA Channel 1 80000040 DMA1 Control Register
80000044 DMA1 Address Register
80000048 DMA1 Count Register

Serial Port 80000080 Serial Port Control Register
80000084 Serial Port Status Register
80000088 Serial Port Transmit Holding Register
8000008C Serial Port Receive Buffer Register
80000090 Baud Rate Divisor Register

Advanced Parallel Interface 800000A0 Advanced Parallel Control Register
800000A4 Advanced Parallel Status Register
800000A8 Advanced Parallel Interrupt Mask Register
800000AC Advanced Parallel Interrupt Status Register
800000B0 Advanced Parallel Data Register

Programmable I/O Port 800000D0 PIO Control Register
800000D4 PIO Input Register
800000D8 PIO Output Register
800000DC PIO Output Enable Register

Video Interface 800000E0 Video Control Register
800000E4 Top Margin Register
800000E8 Side Margin Register
800000EC Video Data Holding Register

—all others— Reserved

Note:
♦ PIA Control Register 1 is reserved on the Am29202 microcontroller.

AMD A D V A N C E I N F O R M A T I O N

22 Am29202 RISC Microcontroller

WS3ResDW3

Figure 1. ROM Control Register

31 23 15 7 0

DW0

Res

WS0 DW1

Reserved

WS1Res DW2

Reserved

WS2Res

ReservedLM

BWE

Res

ROM CONTROLLER
The on-chip ROM controller provides a glueless inter-
face to static memory devices such as ROM, EPROM,
SRAM, Flash EPROM, and memory-mapped peripher-
als.

The ROM interface on the Am29202 microcontroller ac-
commodates up to four banks of static memory space.
These banks can be 8, 16, or 32 bits wide, with a maxi-
mum address space of 4 Mbytes per bank, instead of the
16 Mbytes supported by the Am29200 microcontroller.

Burst-mode ROM accesses are not supported on the
Am29202 microcontroller, since the BURST pin is not
present.

ROM Control Register
(RMCT, Address 80000000)
The ROM Control Register (Figure 1) controls the ac-
cess of ROM Banks 0 through 3. Bits controlling burst-
mode on the Am29200 microcontroller are now
reserved on the Am29202 microcontroller.

Bit 31: Reserved

Bits 30–29: Data Width, Bank 0 (DW0) —This field indi-
cates the width of the ROM in Bank 0, as follows:

DW0 ROM Width

00 32 bits

01 8 bits

10 16 bits

11 Reserved

Bit 28: Large Memory (LM) —This bit controls the size
of the ROM banks and the total size of the ROM address
space. If the LM bit is 0, each ROM bank is up to 1 Mbyte
in size, for placement within a 4 Mbyte total ROM ad-
dress space. If the LM bit is 1, each ROM bank is up to 4
Mbytes in size, for placement within a 16-Mbyte total
ROM address space.

Bit 27: Byte Write Enable (BWE) —This bit controls
whether or not the CAS3–CAS0 signals are used as
byte strobes during writes to the ROM address space. If
BWE is 0, the CAS3–CAS0 signals are not active during
ROM writes (unless there is a hidden refresh at the
same time). If BWE is 1, the CAS3–CAS0 signals are
used as byte strobes during a ROM write with hidden re-
fresh prohibited during a ROM read or write.

Bit 26: Reserved

Bits 25–24: Wait States, Bank 0 (WS0) —This field
specifies the number of wait states in a ROM access
(i.e., the number of cycles in addition to one cycle re-
quired to access the ROM). Zero-wait-state cycles are
supported for ROM reads. Writes to the ROM address
space have a minimum of one wait state, even when
wait states are programmed at zero.

Other bits of this register have a definition similar to
DW0 and WS0 for ROM Banks 1 through 3.

AMDA D V A N C E I N F O R M A T I O N

23Am29202 RISC Microcontroller

DRAM CONTROLLER
The Am29202 microcontroller directly supports DRAM
devices without any additional components, providing
RAS and CAS generation, address multiplexing, and re-
fresh generation. The on-chip DRAM controller utilizes
page-mode accesses and CAS-before-RAS refresh to
extract maximum performance from DRAM devices.

The DRAM interface accommodates up to four banks of
DRAM that can be configured as a contiguous memory.
Each bank is individually configurable in width. In addi-
tion, four 64-Kbyte regions of the DRAM can be mapped
into a 16-Mbyte virtual address space.

For random accesses, the DRAM controller provides a
fixed access time of 3 cycles plus 1 cycle of RAS pre-
charge after each access. Sequential accesses use the
DRAM page mode with 3 cycles for the first access, fol-
lowed by 2 cycles for each additional access, followed
by 1 cycle of precharge.

To support a lower pin count, several signals used by the
Am29200 microcontroller for DRAM interfacing are not
available on the Am29202 microcontroller.

The TR/OE signal for normal DRAM output enable and
video DRAM transfer is not available on the Am29202
microcontroller. Any DRAM with an OE line should have
this line either tied to the appropriate CAS signal, or tied
directly to ground (asserted) to always be enabled. This
will not cause any circuit contention, since the DRAM’s
internal logic gates the external OE signal with the de-
vice’s internal chip select from the processor’s RAS.
Video DRAM transfers are not supported on the
Am29202 microcontroller.

DRAM Control Register
(DRCT, Address 80000008)
The DRAM Control Register (Figure 2) controls the ac-
cess to and refresh of DRAM Banks 0 through 3.

Bit 31: Page-Mode DRAM, Bank 0 (PG0) —When this
bit is 1, burst-mode accesses to DRAM Bank 0 are per-
formed using page-mode accesses for all but the first

access. When this bit is 0, page-mode accesses are not
performed.

Bit 30: Data Width, Bank 0 (DW0) —This field indicates
the width of the DRAM in Bank 0, as follows:

DW Value DRAM Width

0 32 bits

1 16 bits

Bit 29: Disable Bank Refresh, Bank 0 (DBR0) —When
this bit is 1, DRAM refresh does not occur for DRAM
Bank 0.

Bit 28: Large Memory (LM) —This bit controls the size
of the DRAM banks and the total size of the DRAM ad-
dress space. If the LM bit is 0, each DRAM bank is up to 4
Mbytes in size, for placement within a 16 Mbyte total
DRAM address space.

If the LM bit is 1, each DRAM bank is up to 16 Mbytes in
size, for placement within a 64-Mbyte total DRAM ad-
dress space.

Other bits of this register have a definition similar to
PG0, DBR0, DW0 for DRAM Banks 1 through 3.

Bit 15: Static-Column DRAM (SC) —When this bit is 1,
page-mode accesses to the DRAM are performed using
static-column accesses. Static column accesses differ
from page-mode cycles only in that CAS3–CAS0 are
held Low throughout a read access. The timing of the ac-
cess is not affected, and write accesses are not affected.
When this bit is 0, normal page-mode accesses are per-
formed, if enabled.

Bits 14–9: Reserved

Bits 8–0: Refresh Rate (REFRATE) —This field indi-
cates the number of MEMCLK cycles between DRAM
refresh intervals. A DRAM refresh interval is the time re-
quired to refresh all enabled DRAM banks. CAS-before-
RAS cycles are performed, overlapped in the
background with other non-DRAM accesses when
possible. If one or more banks have not been refreshed

31 23 15 7 0

PG0

REFRATE

DW0

PG1

Reserved

DW1

PG2

Reserved

DW2

PG3

DW3 ReservedLM

DBR0

Reserved

SC

Figure 2. DRAM Control Register

DBR1 DBR2 DBR3

AMD A D V A N C E I N F O R M A T I O N

24 Am29202 RISC Microcontroller

in the background when the REFRATE interval expires
twice, the processor forces a panic-mode refresh of the
unrefreshed banks.

The minimum REFRATE count for the Am29202 micro-
controller is 16. A zero in the REFRATE field disables re-
fresh. On reset, this field is initialized to the value 1FFh.

Refresh Control Changes
Two basic improvements have been made to the refresh
control mechanism over that implemented on the
Am29200 microcontroller.

Panic refresh has been redefined.

Selectable DRAM refresh by bank has been added.

Panic Refresh

A panic refresh will occur when the REFRATE field in the
DRAM Control Register has decremented to 0 twice.
Rather than immediately refreshing all unrefreshed
banks at the first available opportunity, these banks are
refreshed in sequence, with each 4-cycle CAS-before-
RAS refresh separated by 12 cycles from the next re-
fresh. Having gaps between the refreshes allows DMA
transfers to occur in between. The maximum interval be-
tween refreshes on the same (enabled) bank is:

((number of rows/bank) – 1) * REFRATE +
 (16 MEMCLK cycles * number of enabled banks)

This assumes each DRAM bank can be refreshed within
16 cycles of the preceding bank’s refresh.

Hidden or non-panic refreshes are unchanged from the
Am29200 microcontroller.

Selectable DRAM Refresh

Since unused DRAM banks need no refresh, the
Am29202 microcontroller provides a selectable DRAM
bank refresh option. This feature eliminates unneces-
sary refresh cycles, reducing the likelihood of a panic re-
fresh and speeding up the refresh process. Four new
bits have been added to the DRAM Control Register to
support this feature. A single bit is present for each
DRAM bank and, when set high, disables that DRAM
bank from being refreshed. All DRAM banks are en-
abled for DRAM refresh at processor reset.

AMDA D V A N C E I N F O R M A T I O N

25Am29202 RISC Microcontroller

Figure 3. PIA Control Register 0

Reserved

31 23 15 7 0

IOWAIT1IOWAIT0

IOEXT0 IOEXT1

Res Res

PERIPHERAL INTERFACE ADAPTER (PIA)
PIA space on the microcontroller is divided into regions,
each of which can be directly attached to an off-chip pe-
ripheral device. The microcontroller’s dedicated PIA
chip select signals will assert a peripheral device’s chip
select pin when the associated PIA region on the micro-
controller is read or written.

With two PIA chip select signals and a smaller address
bus, the Am29202 microcontroller supports up to two
peripheral devices, each with its own 22-bit memory
space, for a maximum size of 4 Mbytes per PIA region.
The PIACS5–PIACS2 signals are not supported on the
Am29202 microcontroller.

PIA Control Register 0/1
(PICT0/1, Address 80000020/24)
The PIA Control Register 0 (Figure 3) controls the ac-
cess to PIA Regions 0 and 1 on the Am29202 microcon-
troller. The PIA Control Register 1 is not available on the
Am29202 microcontroller, since this product does not
support PIA Regions 2, 3, 4, or 5.

Bit 31: Input/Output Extend, Region 0 (IOEXT0) —If
this bit is one, the end of a PIA access is extended by
one cycle after PIAOE is deasserted or by two cycles af-
ter PIAWE is deasserted. This provides one additional
cycle of output disable time or data hold time for reads
and writes, respectively.

Bits 30–29: Reserved

Bits 28–24: Input/Output Wait States, Region 0
(IOWAIT0)—This field specifies the number of wait
states taken by an access to PIA Region 0. An I/O read
cycle takes at least three cycles (two wait states), and an
I/O write cycle takes at least four cycles (three wait
states). If the IOWAIT0 field specifies an insufficient
number of wait states for an access (for example,
IOWAIT0 = 00010b for a write), the processor takes the
required minimum number of wait states instead of the
specified number.

Other bits perform similar functions to IOEXT0 and
IOWAIT0 for PIA Region 1.

Bits 15–0: Reserved . These bits are reserved on the
Am29202 microcontroller and should be written with 0s
to ensure compatibility.

AMD A D V A N C E I N F O R M A T I O N

26 Am29202 RISC Microcontroller

DMA CONTROLLER
The Am29202 microcontroller supports two types of
DMA transfers: internal and external transfers. Direct
DMA transfers between an external device and DRAM
using an address supplied by the external device are not
supported on the Am29202 microcontroller since the
GREQ and GACK pins are not available on this device.

Internal DMA transfers can be requested by the parallel
port, serial port, and video interface. Each of these inter-
nal peripherals has a field in its control register for speci-
fying which of the two DMA channels is to be used for the
transfer. The DMA-enable field for the IEEE-1284-com-
pliant parallel port is DMAMODE in the Advanced Paral-
lel Control (APCT) Register.

External DMA transfers are requested by off-chip
peripherals using DREQ1.

DMA Channel 0 (DMA0) is available to internal peripher-
als only. DMA Channel 1 (DMA1) can be requested by
either internal or external peripherals.

The Am29200 microcontroller signals DREQ0, DACK0,
GREQ, GACK, and TDMA are not supported on the
Am29202 microcontroller.

DMA0 Control Register
(DMCT0, Address 80000030)
The DMA0 Control Register (Figure 4) controls DMA
Channel 0 on the Am29202 microcontroller. DMA Chan-
nel 0 on the Am29202 microcontroller is available for
transfers between internal peripherals and DRAM only;
external transfers are not supported.

Bits 31–24: Reserved

Bits 23–22: Data Width (DW) —This field indicates the
width of the data transferred by the DMA channel, as fol-
lows:

DW Value DMA Transfer Width

00 32 bits

01 8 bits

10 16 bits

11 32 bits, address unchanged

The value DW=11 is used to repeatedly transfer a fixed
pattern from a single DRAM location to a peripheral. For
example, it can be used with the video shifter to display a
blank area of a printed page without requiring that a
memory buffer be allocated for the blank area.

Bits 21–10: Reserved

Bit 9: Transfer Up/Down (UD) —This bit controls the
addressing of memory for the series of DMA transfers. If
the UD bit is 1, the DMA address (in the DMA0 Address
Register) is incremented after each transfer. If the UD bit
is 0, the DMA address is decremented after each trans-
fer. The amount by which the address is incremented or
decremented is determined by the width of the transfer.

DW Value
Address
Increment/Decrement

00 (32 bits) +/– 4

01 (8 bits) +/– 1

10 (16 bits) +/– 2

11 (32 bits) +/– 0

Bit 8: Read/Write (RW) —This bit controls whether the
DMA transfer is to or from the DRAM. If the RW bit is 1,
the DMA channel transfers data from the DRAM to the
peripheral. If the RW bit is 0, the DMA channel transfers
data from the peripheral to the DRAM.

Bit 7: Enable (EN) —This bit enables the DMA channel
to perform transfers. A 1 enables transfers, and a 0 dis-
ables transfers.

Bit 6: Reserved

Bit 5: Count Terminate Enable (CTE) —This bit, when
1, causes the DMA channel to terminate the transfer
when the DMACNT field of the DMA Count Register
decrements past zero. If this bit is 0, the DMA transfer
does not terminate, though the DMA channel still decre-
ments the count after every transfer.

Bit 4: Queue Enable (QEN) —This bit, when 1, enables
the DMA queuing feature (which is implemented only on
DMA Channel 0). DMA queuing allows the DMA0
Address Register and DMA0 Count Register to be
reloaded automatically at the end of a DMA transfer
from the DMA0 Address Tail Register and the DMA0

ReservedReserved

31 23 15 7 0

DW

UD

RW

EN

Res

CTE

CTI

Res

QEN

Figure 4. DMA0 Control Register

AMDA D V A N C E I N F O R M A T I O N

27Am29202 RISC Microcontroller

Reserved

Figure 5. DMA0 Address Register

31 23 15 7 0

DRAMADDR

Count Tail Register, respectively. Queuing permits a se-
cond transfer to start immediately after a first transfer
has terminated, greatly reducing the response-time re-
quirement for software to set up and start the second
transfer. When this bit is 0, DMA queuing is disabled,
and the DMA0 Address Register and DMA0 Count Reg-
ister are set directly to initiate a transfer.

Bits 3–1: Reserved

Bit 0: Count Terminate Interrupt (CTI) —The CTI bit is
used to report that the DMA channel has generated an
interrupt because of count termination. If the CTE bit is
one and the DMACNT field decrements past zero, the
CTI bit is set and a processor interrupt occurs.

DMA0 Address Register
(DMAD0, Address 80000034)
The DMA0 Address Register (Figure 5) contains the ad-
dresses for a transfer by DMA Channel 0.

Bits 31–24: Reserved

Bits 23–0: DRAM Address (DRAMADDR) —This field
contains the DRAM address for the next DMA transfer to
or from the DRAM. The DRAMADDR field is increm-
ented or decremented (based on the UD bit) by an
amount determined by the width of the DMA transfer.
The increment or decrement amount is 1 for a byte
transfer, 2 for a halfword transfer, and 4 for a word trans-
fer. To support repeated transfers from the same word,
the address can be left unchanged.

The DRAMADDR field wraps from the value 000000h to
FFFFFFh when decremented and from FFFFFFh to
000000h when incremented. Addresses must be
aligned with the data width of the transfer.

DMA1 Control Register
(DMCT1, Address 80000040)
DMA1 Control Register (Figure 6) controls DMA Chan-
nel 1. Queuing is not implemented on DMA Channel 1.

Bit 31: DMA Extend (DMAEXT) —The DMAEXT bit
serves a function very similar to the IOEXTx bits in the
PIA Control registers. This bit is set to provide an addi-
tional cycle of output disable time for a read or an addi-
tional cycle of data hold time for a write.

Bits 30–29: Reserved

Bits 28–24: DMA Wait States (DMAWAIT) —This field
specifies the number of wait states taken by an external
access by DMA Channel 1. An external DMA read cycle
takes at least three cycles (two wait states) and an exter-
nal DMA write cycle takes at least four cycles (three wait
states). If the DMAWAIT field specifies an insufficient
number of wait states for an access (for example,
DMAWAIT = 00010b for a write), the processor takes the
required minimum number of wait states instead of the
specified number.

Bits 23–22: Data Width (DW) —This field indicates the
width of the data transferred by the DMA channel, as fol-
lows:

DW Value DMA Transfer Width

00 32 bits

01 8 bits

10 16 bits

11 32 bits, address unchanged

The value DW=11 is used to repeatedly transfer a fixed
pattern from a single DRAM location to a peripheral.

Bits 21–20: DMA Request Mode (DRM) —This field in-
dicates how external DMA requests are signaled by
DREQ1, as follows:

DRM Value DREQ1 Request

00 Active Low

01 Active High

10 High-to-Low transition

11 Low-to-High transition

The DRM field is set to 00 by a processor reset.

AMD A D V A N C E I N F O R M A T I O N

28 Am29202 RISC Microcontroller

31 23 15 7 0

DMAWAIT DW

UD

RW

DRM Reserved

EN

Reserved

CTE

CTI

Res

ACSDMAEXT

Res

Figure 6. DMA1 Control Register

Bit 19: Assert Chip Select (ACS) —This bit controls
whether DMA Channel 1 asserts PIACS1 during an ex-
ternal peripheral access. If the ACS bit is 1, the DMA
channel asserts PIACS1; if the ACS bit is 0, the DMA
channel does not assert PIACS1.

Bits 18–10: Reserved

Bit 9: Transfer Up/Down (UD) —This bit controls the
addressing of memory for the series of DMA transfers. If
the UD bit is 1, the DMA address (in the DMA1 Address
Register) is incremented after each transfer. If the UD bit
is 0, the DMA address is decremented after each trans-
fer. The amount by which the address is incremented or
decremented is determined by the width of the transfer,
as follows:

DW Value
Address
Increment/Decrement

00 (32 bits) +/– 4

01 (8 bits) +/– 1

10 (16 bits) +/– 2

11 (32 bits) +/– 0

Bit 8: Read/Write (RW) —This bit controls whether the
DMA transfer is to or from the DRAM. If the RW bit is 1,
the DMA channel transfers data from the DRAM to the
peripheral. If the RW bit is 0, the DMA channel transfers
data from the peripheral to the DRAM.

Bit 7: Enable (EN) —This bit enables the DMA channel
to perform transfers. A 1 enables transfers, and a 0 dis-
ables transfers.

Bit 6: Reserved

Bit 5: Count Terminate Enable (CTE) —This bit, when
1, causes the DMA channel to terminate the transfer
when the DMACNT field of the DMA Count Register
decrements past zero. If this bit is 0, the CTE field does
not terminate the DMA transfer, though the DMA chan-
nel still decrements the count after every transfer.

Bits 4–1: Reserved

Bit 0: Count Terminate Interrupt (CTI) —The CTI bit is
used to report that the DMA channel has generated an
interrupt because of count termination. If the CTE bit is
one and the DMACNT field decrements past zero, the
CTI bit is set and a processor interrupt occurs.

AMDA D V A N C E I N F O R M A T I O N

29Am29202 RISC Microcontroller

PROGRAMMABLE I/O PORT
The I/O port permits direct programmable access of up
to twelve external PIO signals, as either inputs, outputs,
or open-drain outputs. When used as inputs, eight of
these signals, PIO15–PIO8, can be programmed to
cause edge- or level-sensitive interrupts. The Am29202
microcontroller supports PIO signals PIO15–PIO4.

Four PIO signals (PIO7–PIO4) are shared with the
IEEE-1284-compliant parallel port interface. The ac-
cess to these additional IEEE-1284-specific input and
output signals is controlled by the parallel port. To use
REVOE and DATASTROBE as outputs and SELECTIN
and INIT as inputs, the POCT, PIN, POUT, and POEN
registers must be configured before the parallel inter-
face is enabled.

When the parallel port is enabled, it has control of the
shared signals. The I/O port has control of the lines
when the parallel port is not enabled or after a processor
reset. The I/O port signals may be read at any time, irre-
spective of the parallel port ownership of those signals.

PIO Control Register
(POCT, Address 800000D0)
The PIO Control Register (Figure 7) controls interrupt
generation and determines the polarity of PIO15–PIO4.
Note that IRM15, value 11 is now reserved; it cannot be
used to signal a change in the parallel port configuration
to the host.

Bits 31–30: Interrupt Request Mode, PIO15
(IRM15)—This field enables PIO15 to generate an inter-
rupt and indicates whether PIO15 is level- or edge-sen-
sitive in generating the interrupt. The IRM15 field
controls PIO15 as follows:

IRM15 Value PIO15 Interrupt

00 Interrupt disabled

01 Level-sensitive

10 Edge-sensitive

11 Reserved

The INVERT field (see below) further conditions inter-
rupt generation. If the INVERT bit for PIO15 is 0, an in-
terrupt, if enabled, is generated by a High level on PIO15
(level-sensitive) or on a Low-to-High transition (edge-
sensitive) of PIO15. If the INVERT bit for PIO15 is 1, an
interrupt, if enabled, is generated by a Low level on
PIO15 (level-sensitive) or on a High-to-Low transition
(edge-sensitive) of PIO15.

Bits 29–16: IRM14 through IRM8 —The IRM14–IRM8
fields enable interrupts and specify level- or edge-sensi-
tivity for PIO14–PIO8, respectively. These fields are
identical in definition to IRM15.

Bits 15–4: PIO Inversion (INVERT) —This field deter-
mines how the level on each PIO signal is reflected in the
PIO Input and PIO Output Registers, and how interrupts
are generated. The most significant bit of the INVERT
field determines the sense of PIO15, the next bit deter-
mines the sense of PIO14, and so on. A 0 in this field
causes the internal and external sense of the respective
PIO signal to be noninverted; a High external level is re-
flected as a 1 internally, and a Low is reflected as a 0 inter-
nally. A 1 in this field causes the internal and external
sense of the respective PIO signal to be inverted; a High
external level is reflected as a 0 internally, and a Low is
reflected as a 1 internally.

Bits 3–0: Reserved . These bits are reserved on the
Am29202 microcontroller and should be written with 0s
to ensure compatibility.

INVERT

Figure 7. PIO Control Register

31 23 15 7 0

IRM
15

IRM
14

IRM
13

IRM
12

IRM
11

IRM
10

IRM
9

IRM
8 Res

AMD A D V A N C E I N F O R M A T I O N

30 Am29202 RISC Microcontroller

PIN

Figure 8. PIO Input Register

31 23 15 7 0

Reserved Res

POUT

Figure 9. PIO Output Register

31 23 15 7 0

Reserved Res

POEN

Figure 10. PIO Output Enable Register

31 23 15 7 0

Reserved Res

PIO Input Register
(PIN, Address 800000D4)
The PIO Input Register (Figure 8) reflects the external
levels of PIO15–PIO4.

Bits 31–16: Reserved

Bits 15–4: PIO Input (PIN) —This field reflects the lev-
els on each PIO signal. The most significant bit of the
PIN field reflects the level on PIO15, the next bit reflects
the level on PIO14, and so on. The correspondence be-
tween levels and bits in this register is controlled by the
INVERT field.

Bits 3–0: Reserved . These bits are reserved on the
Am29202 microcontroller and will be read as 0s.

PIO Output Register
(POUT, Address 800000D8)
The PIO Output Register (Figure 9) determines the lev-
els driven on the PIO signals, for those signals enabled
to be driven by the PIO Output Enable Register.

Bits 31–16: Reserved

Bits 15–4: PIO Output (POUT) —This field determines
the levels on each PIO signal, if so enabled by the PIO
Output Enable Register. The most significant bit of the
POUT field determines the level on PIO15, the next bit

determines the level on PIO14, and so on. The corre-
spondence between levels and bits in this register is
controlled by the INVERT field.

Bits 3–0: Reserved . These bits are reserved on the
Am29202 microcontroller and should be written with 0s
to ensure compatibility.

PIO Output Enable Register
(POEN, Address 800000DC)
The PIO Output Enable Register (Figure 10) determines
whether or not the PIO signals are driven as outputs.

Bits 31–16: Reserved

Bits 15–4: PIO Output Enable (POEN) —This field de-
termines whether each PIO signal is driven as an output.
The most significant bit of the POEN field determines
whether PIO15 is driven, the next bit determines wheth-
er PIO14 is driven, and so on. A 1 in a bit position en-
ables the respective signal to be driven according to the
associated POUT and INVERT bits, and a 0 disables the
signal as an output.

Bits 3–0: Reserved . These bits are reserved on the
Am29202 microcontroller and should be written with 0s
to ensure compatibility.

AMDA D V A N C E I N F O R M A T I O N

31Am29202 RISC Microcontroller

SERIAL PORT
The on-chip serial port is a UART that permits full-duplex,
bidirectional data transfer using the RS-232 standard.
Serial port registers provide a programmable baud rate
generator, odd/even parity capability, choice of word
length, a test mode, and DMA access.

The operations of the serial port are similar on the
Am29200 and Am29202 microcontrollers, except that
the DSR and DTR handshake signals are not available
on the Am29202 microcontroller. These functions, if
needed, can be recreated with available PIO signals.

Serial Port Control Register
(SPCT, Address 80000080)
The Serial Port Control Register (Figure 11) controls
both the transmit and receive sections of the serial port.

Bits 31–27: Reserved

Bit 26: Loopback (LOOP) —Setting this bit places the
serial port in the loopback mode. In this mode, the TXD
output is set High and the Transmit Shift Register is con-
nected to the Receive Shift Register. Data transmitted by
the transmit section is immediately received by the re-
ceive section. The loopback mode is provided for testing
the serial port.

Bit 25: Send Break (BRK) —Setting this bit causes the
serial port to send a break, which is a continuous Low
level on the TXD output for a duration of more than one
frame transmission time. The transmitter can be used to
time the frame by setting the BRK bit when the transmit-
ter is empty (indicated by the TEMT bit of the Serial Port
Status Register), writing the Serial Port Transmit Hold-
ing Register with data to be transmitted, and then wait-
ing until the TEMT bit is set again before resetting the
BRK bit.

Bits 24–22: Reserved

Bits 21–19: Parity Mode (PMODE) —This field speci-
fies how parity generation and checking are performed
during transmission and reception (the value “x” is a
don’t care):

PMODE Value
Parity Generation and
Checking

0xx No parity bit in frame

100 Odd parity (odd number of
 1s in frame)

101 Even parity (even number
 of 1s in frame)

110 Parity forced/checked as 1

111 Parity forced/checked as 0

Bit 18: Stop Bits (STP) —A 0 in this bit specifies that
one stop bit is used to signify the end of a frame. A 1 in
this bit specifies that two stop bits are used to signify the
end of a frame.

Bits 17–16: Word Length (WLGN) —This field indi-
cates the number of data bits transmitted or received in a
frame, as follows:

WLGN Value Word Length

00 5 bits

01 6 bits

10 7 bits

11 8 bits

Data words of less than eight bits are right-justified in the
Transmit Holding Register and Receive Buffer Register.

Bits 15–10: Reserved

Bits 9–8: Transmit Mode (TMODE) —This field en-
ables data transmission and controls the operational
mode of the serial port for the transmission of data, as
follows:

TMODE Value Effect on Transmit Section

00 Disabled

01 Generate interrupt requests for service

10 Generate DMA Channel 0 requests

11 Generate DMA Channel 1 requests

Requests for service are requests to write the Transmit
Holding Register with data to be transmitted. Placing the
transmit section into the disabled state causes all inter-
nal state machines to be reset and holds the transmit
section in an idle state with TXD High. Serial port pro-
grammable registers are not affected when the transmit
section is disabled.

Bits 7–3: Reserved

Bit 2: Receive Status Interrupt Enable (RSIE) —This
bit enables the serial port to generate an interrupt be-
cause of an exception during reception. If this bit is 1 and
the serial port receives a break or experiences a framing
error, parity error, or overrun error, the serial port gener-
ates a Receive Status interrupt.

AMD A D V A N C E I N F O R M A T I O N

32 Am29202 RISC Microcontroller

Bits 1–0: Receive Mode (RMODE) —This field enables
data reception and controls the operational mode of the
serial port for the reception of data:

RMODE
Value Effect on Receive Section

00 Disabled

01 Generate interrupt requests for
 service

10 Generate DMA Channel 0 requests

11 Generate DMA Channel 1 requests

Requests for service are requests to read data from the
Receive Buffer Register. Placing the receive section into
the disabled state causes all internal state machines to
be reset and holds the receive section in an idle state.
Serial port programmable registers are not affected
when the receive section is disabled.

Serial Port Status Register
(SPST, Address 80000084)
The Serial Port Status Register (Figure 12) indicates the
status of the transmit and receive sections of the port.

Bits 31–11: Reserved

Bit 10: Transmitter Empty (TEMT) —This bit is 1 when
the transmitter has no data to transmit and the Transmit
Shift Register is empty. This indicates to software that it
is safe to disable the transmit section.

Bit 9: Transmit Holding Register Empty (THRE)
When the THRE bit is 1, the Transmit Holding Register
does not contain valid data and can be written with data
to be transmitted. When the THRE bit is 0, the Transmit
Holding Register contains valid data not yet copied to
the Transmit Shift Register for transmission and cannot
be written. If so enabled by the TMODE field, the THRE

bit causes an interrupt or DMA request when it is set.
The THRE bit is reset automatically by writing the Trans-
mit Holding Register. This bit is read-only, allowing other
bits of the Serial Port Status Register to be written (for
example, resetting the BRKI bit) without interfering with
the data request.

Bit 8: Receive Data Ready (RDR) —When the RDR bit
is 1, the Receive Buffer Register contains data that has
been received on the serial port, and can be read to ob-
tain the data. When the RDR bit is 0, the Receive Buffer
Register does not contain valid data. If so enabled by the
RMODE field, the RDR bit causes an interrupt or DMA
request when it is set. The RDR bit is reset automatically
by reading the Receive Buffer Register.

Bits 7–4: Reserved

Bit 3: Break Interrupt (BRKI) —The BRKI bit is set to
indicate that a break has been received. If the RSIE bit is
1, the BRKI bit being set causes a Receive Status inter-
rupt. The BRKI bit should be reset by the Receive Status
interrupt handler.

Bit 2: Framing Error (FER) —This bit is set to indicate
that a framing error occurred during reception of data. If
the RSIE bit is 1, the FER bit being set causes a Receive
Status interrupt. The FER bit should be reset by the Re-
ceive Status interrupt handler.

Bit 1: Parity Error (PER) —This bit is set to indicate that
a parity error occurred during reception of data. If the
RSIE bit is 1, the PER bit being set causes a Receive
Status interrupt. The PER bit should be reset by the Re-
ceive Status interrupt handler.

Bit 0: Overrun Error (OER) —This bit is set to indicate
that an overrun error occurred during reception of data.
If the RSIE bit is 1, the OER bit being set causes a Re-
ceive Status interrupt. The OER bit should be reset by
the Receive Status interrupt handler.

31 23 15 7 0

Reserved Reserved

LOOP

BRK

Res

WLGN

PMODE

STP

Reserved

TMODE

RMODE

RSIE

Figure 11. Serial Port Control Register

31 23 15 7 0

THRE

RDR

Reserved

PER

OER

Reserved

BRKI

FER

TEMT

Figure 12. Serial Port Status Register

AMDA D V A N C E I N F O R M A T I O N

33Am29202 RISC Microcontroller

INTERRUPTS AND TRAPS
The Am29202 microcontroller employs a lightweight in-
terrupt and trap facility that does not automatically save
its current state in memory. Saving and restoring state
information is under software control. Interrupts and
traps are dispatched using a vector table that can be re-
located in memory (see Table 4).

External traps, WARN, INTR3, and INTR1 are not sup-
ported on the Am29202 microcontroller. PIO signals can
be used as additional interrupts when more inputs are
required. Two new bits are defined in the Interrupt Con-
trol Register to support the IEEE-1284 parallel port.

Current Processor Status Register
(CPS, Register 2)
This protected special-purpose register (see Figure 13)
controls the behavior of the processor and its ability to
recognize exceptional events. The IM field values have
changed for the Am29202 microcontroller.

Bits 31–18: Reserved

Bit 17: Timer Disable (TD) —When the TD bit is 1, the
Timer interrupt is disabled. When this bit is 0, the Timer
interrupt depends on the value of the IE bit of the Timer
Reload Register. Note that Timer interrupts may be dis-
abled by the DA bit regardless of the value of either TD
or IE. The intent of this bit is to provide a means of disab-
ling Timer interrupts without having to perform a non-
atomic read-modify-write operation on the Timer Reload
Register.

Bits 16–15: Reserved

Bit 14: Interrupt Pending (IP) —This bit allows soft-
ware to detect the presence of interrupts while the inter-
rupts are disabled. The IP bit is set if an interrupt request
is active, but the processor is disabled from taking the
resulting interrupt due to the value of the DA, DI, or IM
bits. If all interrupt requests are subsequently deacti-
vated while still disabled, the IP bit is reset.

Bits 13–12: Trace Enable, Trace Pending (TE,
TP)—The TE and TP bits implement a software-con-
trolled, instruction single-step facility. Single stepping is
not implemented directly, but rather emulated by trap
sequences controlled by these bits. The value of the TE

bit is copied to the TP bit whenever an instruction com-
pletes execution. When the TP bit is 1, a Trace trap oc-
curs.

Bit 11: Trap Unaligned Access (TU) —The TU bit en-
ables checking of address alignment for external data-
memory accesses. When this bit is 1, an Unaligned
Access trap occurs if the processor either generates an
address for an external word not aligned on a word ad-
dress-boundary (i.e., either of the least significant two
bits is 1) or generates an address for an external half-
word not aligned on a half-word address boundary (i.e.,
the least significant address bit is 1). When the TU bit is
0, data-memory address alignment is ignored.

Alignment is ignored for input/output accesses. The
alignment of instruction addresses is also ignored (un-
aligned instruction addresses can be generated only by
indirect jumps). Interrupt/trap vector addresses always
are aligned properly by the processor.

Bit 10: Freeze (FZ) —The FZ bit prevents certain regis-
ters from being updated during interrupt and trap pro-
cessing, except by explicit data movement. The affected
registers are: Channel Address, Channel Data, Channel
Control, Program Counter 0, Program Counter 1, Pro-
gram Counter 2, and the ALU Status Register.

When the FZ bit is 1, these registers hold their values.
An affected register can be changed only by a Move-To-
Special-Register instruction. When the FZ bit is 0, there
is no effect on these registers and they are updated by
processor instruction execution as described in this
manual.

The FZ bit is set whenever an interrupt or trap is taken,
holding critical state in the processor so it is not modified
unintentionally by the interrupt or trap handler.

If the Freeze (FZ) bit of the Current Processor Status
Register is reset from 1 to 0, two cycles are required be-
fore all program state is reflected properly in the regis-
ters affected by the FZ bit. This implies that interrupts
and traps cannot be enabled until two cycles after the FZ
bit is reset for proper sequencing of program state.
There is no delay associated with setting the FZ bit from
0 to 1.

Bits 9–8: Reserved

31 23 15 7 0

TPIP
TETD

Reserved

FZ
TU DIWM

SM

IM

DA

Figure 13. Current Processor Status Register

Res Res Res

AMD A D V A N C E I N F O R M A T I O N

34 Am29202 RISC Microcontroller

Bit 7: Wait Mode (WM) —The WM bit places the proces-
sor in the Wait mode. When this bit is 1, the processor
performs no operations. The Wait mode is reset by an
interrupt or trap for which the processor is enabled, or by
the assertion of the RESET pin.

Bits 6–5: Reserved

Bit 4: Supervisor Mode (SM) —The SM bit protects
certain processor context, such as protected special-
purpose registers. When this bit is 1, the processor is in
the Supervisor mode and access to all processor con-
text is allowed. When this bit is 0, the processor is in the
User mode and access to protected processor context is
not allowed. An attempt to access (either read or write)
protected processor context causes a Protection Viola-
tion trap.

Bits 3–2: Interrupt Mask (IM) —The IM field is an en-
coding of the processor priority with respect to external
interrupts. The interpretation of the interrupt mask is
specified as follows:

IM Value Result

00 INTR0 enabled

01 INTR0 enabled

10 INTR2 and INTR0 enabled

11 INTR2, INTR0, and internal
 peripheral interrupts enabled

Note that the INTR0 interrupt cannot be disabled by the
IM field.

Bit 1: Disable Interrupts (DI) —The DI bit prevents the
processor from being interrupted by internal peripheral
requests and by external interrupt requests INTR2 and
INTR0. When this bit is 1, the processor ignores all inter-
nal and external interrupts. However, internal traps, Tim-
er interrupts, and Trace traps may be taken. When this
bit is 0, the processor takes any interrupt enabled by the
IM field, unless the DA bit is 1.

Bit 0: Disable All Interrupts and Traps (DA) —The DA
bit prevents the processor from taking any interrupts
and most traps. When this bit is 1, the processor ignores

interrupts and traps. When the DA bit is 0, all traps are
taken; interrupts are taken if otherwise enabled.

Interrupt Control Register
(ICT, Address 80000028)
Two new bits, APDI and APCI, have been added to Inter-
rupt Control Register (Figure 14) to support the
IEEE-1284-compliant parallel port. The APDI interrupt
occurs when a hardware handshake-supported data
transfer mode receives (or is ready to transmit) a data
byte and when interrupts are desired instead of DMA.
The APCI interrupt occurs for a variety of combined
mask-selectable events requiring processor interven-
tion, such as mode changes and status input. Semi-au-
tomatic and manual modes utilize APCI interrupts for
some phase transitions, including data handling.

Bits 31–28: Reserved

Bit 27: Video Interrupt (VDI) —A 1 in this bit indicates
the video interface has generated an interrupt request.

Bits 26–24: Reserved

Bits 23–16: I/O Port Interrupt (IOPI) —A 1 in this field
indicates the respective PIO signal has generated an in-
terrupt request. A 1 in the most significant bit of the IOPI
field indicates PIO15 has caused an interrupt, the next
bit indicates PIO14 has caused an interrupt, and so on.

Bit 15: Reserved

Bit 14: DMA Channel 0 Interrupt (DMA0I) —A 1 in this
bit indicates DMA Channel 0 has generated an interrupt
request.

Bit 13: DMA Channel 1 Interrupt (DMA1I) —A 1 in this
bit indicates DMA Channel 1 has generated an interrupt
request.

Bit 12: Advanced Parallel Port Data Transfer Inter-
rupt (APDI) —A 1 in this bit indicates that the IEEE-1284
parallel port interface is requesting a data transfer.

Writing a 1 to the APDS clears the data transfer request
status that caused the APDI. This is usually not neces-
sary, because a read or write (whichever is appropriate
in a particular mode) to the Advanced Parallel Data Reg-

Figure 14. Interrupt Control Register

31 23 15 7 0

IOPI

VDI

DMA1I
DMA0I

RXSI
RXDI

ResReserved Res

APCI
APDI

Res

Res

TXDI

AMDA D V A N C E I N F O R M A T I O N

35Am29202 RISC Microcontroller

ister automatically clears the APDS condition. Clearing
the APDI bit when the DMAMODE bit in the APCT Reg-
ister is set is undefined and not recommended.

Bit 11: Advanced Parallel Port Control Condition In-
terrupt (APCI) —A 1 in this bit indicates that the
IEEE-1284 parallel port interface has detected a valid
control condition.

This bit is the OR of all the control condition interrupt bits
in the APIS register, (ECI, DEVINITI, INITHLI, INITLHI,
SELINHLI, SELINLHI, PAUTOHLI, PAUTOLHI,
PSTBHL and PSTBLHI), which are in turn masked from
the control condition bits in the APST register. The APCI
bit must be cleared separately from the bit or bits that
caused the APCI interrupt.

Writing a 1 to any of the control status bits in the APST
Register or to the interrupt bits in the APIS Register will
clear the condition that caused the interrupt (if masked).
All of the bits require such a condition clear action, ex-
cept for the device initialization interrupt: It is cleared
when the parallel port interface is returned to IEEE-1284
Compatibility mode.

Bits 10–8: Reserved

Bit 7: Serial Port Receive Status Interrupt (RXSI) —A 1
in this bit indicates the serial port has generated an inter-
rupt request because of the status of the receive logic.

Bit 6: Serial Port Receive Data Interrupt (RXDI) —A 1
in this bit indicates the serial port has generated an inter-
rupt request because receive data is ready.

Bit 5: Serial Port Transmit Data Interrupt (TXDI) —A 1
in this bit indicates the serial port has generated an inter-
rupt request because the Transmit Holding Register is
empty.

Bits 4–0: Reserved

Vector Numbers
When an interrupt or trap is taken, the processor deter-
mines an 8-bit vector number associated with the inter-
rupt or trap. The vector number gives the number of a
vector table entry. The physical address of the vector
table entry is generated by replacing bits 9–2 of the val-
ue in the Vector Area Base Address Register with the
vector number.

Vector numbers are either predefined or specified by an
instruction causing the trap. The assignment of vector
numbers is shown in Table 4 (vector numbers are in dec-
imal notation).

An Unsupported Peripheral Address trap has been add-
ed for the Am29202 microcontroller. A vector 6 trap will
occur for accesses to peripheral addresses other than
those listed in Table 2.

AMD A D V A N C E I N F O R M A T I O N

36 Am29202 RISC Microcontroller

Table 4. Vector Number Assignments

Number Type of Trap or Interrupt Cause

0 Illegal Opcode Executing undefined instruction1

1 Unaligned Access Access on unnatural boundary, TU = 1
2 Out-of-Range Overflow or underflow

3–4 Reserved
5 Protection Violation Invalid User-mode operation2

6 Unsupported Peripheral Address Access to unsupported address
7 Reserved
8 User Instruction Mapping Miss No DRAM mapping for access
9 User Data Mapping Miss No DRAM mapping for access

10 Supervisor Instruction Mapping Miss No DRAM mapping for access
11 Supervisor Data Mapping Miss No DRAM mapping for access

12–13 Reserved
14 Timer Timer Facility
15 Trace Trace Facility
16 INTR0 INTR0 input
17 Reserved
18 INTR2 INTR2 input
19 Internal Internal peripheral

20–21 Reserved
22 Floating-Point Exception Unmasked floating-point exception3

23 Reserved
24–29 Reserved for instruction emulation

(opcodes D8–DD)
30 MULTM MULTM instruction
31 MULTMU MULTMU instruction
32 MULTIPLY MULTIPLY instruction
33 DIVIDE DIVIDE instruction
34 MULTIPLU MULTIPLU instruction
35 DIVIDU DIVIDU instruction
36 CONVERT CONVERT instruction
37 SQRT SQRT instruction
38 CLASS CLASS instruction

39–41 Reserved for instruction emulation
(opcode E7–E9)

42 FEQ FEQ instruction
43 DEQ DEQ instruction
44 FGT FGT instruction
45 DGT DGT instruction
46 FGE FGE instruction
47 DGE DGE instruction
48 FADD FADD instruction
49 DADD DADD instruction
50 FSUB FSUB instruction
51 DSUB DSUB instruction
52 FMUL FMUL instruction

Notes:
1. This vector number also results if an external device removes INTRx before the corresponding interrupt or trap is taken by the

processor.

2. Some Supervisor-mode operations cause Protection Violations to facilitate virtualization of certain operations.

3. The Floating-Point Exception trap is not generated by the processor hardware. It is generated by the software that implements
the virtual arithmetic interface.

AMDA D V A N C E I N F O R M A T I O N

37Am29202 RISC Microcontroller

Notes: (continued)
4. Some of Vector Numbers 64–255 are reserved for software compatibility. These are documented in the Host Interface (HIF)

Specification (order# 11539) available from AMD.

Table 4. Vector Number Assignments (continued)

Number Type of Trap or Interrupt Cause

53 DMUL DMUL instruction
54 FDIV FDIV instruction
55 DDIV DDIV instruction
56 Reserved for instruction emulation

 (opcode F8)
57 FDMUL FDMUL instruction

58–63 Reserved for instruction emulation
 (opcode FA–FF)

64–255 ASSERT and EMULATE instruction traps See Note 4
 (vector number specified by instruction)

Sequencing of Interrupts and Traps
To resolve conflicts, interrupts and traps are taken ac-
cording to the priority shown in Table 5. In this table, in-
terrupts and traps are listed in order of decreasing
priority. Interrupts and traps fall into one of two catego-
ries depending on the timing of their occurrence relative
to instruction execution. The column labels Inst and
Async have the following meanings:

Inst—Generated by the execution or attempted
execution of an instruction.

Async—Generated asynchronous to and indepen-
dent of the instruction being executed, although it
may be a result of an instruction executed previously.

The principle for interrupt and trap sequencing is that the
highest priority interrupt or trap is taken first. Other inter-
rupts and traps either remain active until they can be tak-
en or they are regenerated when they can be taken. This
is accomplished depending on the type of interrupt or
trap, as follows:

1. All traps in Table 5 with priority 8 or 9 are regenerated
by the re-execution of the causing instruction.

2. Most of the interrupts and traps of priority 3 through 7
must be held by external hardware until they are tak-
en. The exceptions to this are listed in item 3.

3. The exceptions to item 2 are the Timer interrupt and
the Trace trap. These are caused by bits in various
registers in the processor and are held by these reg-
isters until taken or cleared. The two relevant bits are
the Interrupt (IN) bit of the Timer Reload Register for
Timer interrupts and the Trace Pending (TP) bit of the
Current Processor Status Register for Trace traps.

4. All traps of priority 1 and 2 in Table 5, except for the Un-
aligned Access trap, are not regenerated. These traps
are mutually exclusive and are given high priority be-
cause they cannot be regenerated: They must be tak-
en if they occur. If one of these traps occurs at the
same time as a reset, it is not taken and its occurrence
is lost.

5. The Unaligned Access trap is regenerated internally
when an external access is restarted by the Channel
Address, Channel Data, and Channel Control regis-
ters. Note that this trap is not necessarily exclusive to
the traps discussed in item 4 above.

Exception Reporting and Restarting
The PC1 column in Table 5 describes the value held in
the Program Counter 1 Register (PC1) when the inter-
rupt or trap is taken. For traps in the Inst category, PC1
contains either the address of the instruction causing
the trap, indicated by Curr, or the address of the instruc-
tion following the instruction causing the trap, indicated
by Next.

For interrupts and traps in the Async category, PC1 con-
tains the address of the first instruction not executed due
to the taking of the interrupt or trap. This is the next
instruction to be executed upon interrupt return, as indi-
cated by Next in the PC1 column.

AMD A D V A N C E I N F O R M A T I O N

38 Am29202 RISC Microcontroller

Priority Type of Interrupt or Trap

User-Mode Data Mapping Miss
Supervisor-Mode Data Mapping Miss
Unsupported Peripheral Address

Inst/Async PC1 Channel Regs

Inst
Inst
Inst

Next
Next
Next

2 Unaligned Access
Out-of-Range
Assert Instructions
Floating-Point Instructions
Integer Multiply/Divide Instructions
EMULATE

Inst
Inst
Inst
Inst
Inst
Inst

Next
Next
Next
Next
Next
Next

3 INTR0 Async Next Multiple

4 INTR2 Async Next Multiple

5 Internal peripheral interrupts Async Next Multiple

6 Timer Async Next Multiple

7 Trace Async Next Multiple

8 Inst
Inst

Curr
Curr

9
(Lowest)

Illegal Opcode
Protection Violation

Inst
Inst

Curr
Curr

All
All
All

All
N/A
N/A
N/A
N/A
N/A

N/A
N/A

N/A
N/A

User-mode Inst Mapping Miss
Supervisor-mode Inst Mapping Miss

 1
(Highest)

Table 5. Interrupt and Trap Priority Table

AMDA D V A N C E I N F O R M A T I O N

39Am29202 RISC Microcontroller

DEBUGGING AND TESTING
The Am29202 microcontroller provides debugging and
testing features at both the hardware and software lev-
els. Instruction tracing and instruction breakpoints are
supported. However, the processor status outputs
STAT2–STAT0 are not available on the Am29202 micro-
controller.

A JTAG-compliant test access port facilitates system
testing in a production environment. A new main data
scan path for the Am29202 microcontroller is provided
below. The ICTEST1 and ICTEST2 data paths are un-
changed.

Main Data Path
Table 6 shows a 160-cell path used to access the proces-
sor pins. This path is divided into five sets of cells. Where
applicable, each set has a cell that enables the outputs of
the set to be driven on the processor’s pins. These cells
are not connected to a processor pin. Some of these cells
affect outputs not normally enabled and disabled during
normal system operation.

The sets of cells are divided logically as follows:
1) clocks, requests, and reset, 2) miscellaneous periph-
eral control signals, 3) memory and peripheral controls,
4) instruction/data bus. Note that the GREQ, GACK,
STAT2–STAT0, R/W, and TR pins are included in the
main scan path for special emulation devices only;
these external pins are not included on the Am29202
microcontroller.

Table 6. Main Data Scan Path

Bit Cell Name Comments

1 MEMCLK
2 RESET
3 LSYNC
4 VCLK
5 INTR2
6 INTR0
7 DREQ1
8 GREQ

9 TOPDRV Enables the drivers for PSYNC through PWE
10 PSYNCI PSYNC input
11 PSYNCO PSYNC output
12 VDATI VDAT input
13 VDATO VDAT output
14 PIOI4 PIO4 input
15 PIOO4 PIOO4 output
16 PIOI5 PIO5 input
17 PIOO5 PIO5 output
. .
. .

36 PIOI15 PIO15 input
37 PIOO15 PIO15 output
38 PBUSY
39 PACK
40 POE
41 PWE
42 PSTROBE
43 PAUTOFD
44 WAIT
45 BOOTW

46 ABIDRV Enables the driving of the A21–A0 outputs
47 A0
48 A1
. .
. .

68 A21

AMD A D V A N C E I N F O R M A T I O N

40 Am29202 RISC Microcontroller

Table 6. Main Data Scan Path (continued)

Bit Cell Name Comments

69 BOTDRV Enables the drivers for DACK1 through RXD
70 DACK1
71 R/W
72 PIAOE
73 PIAWE
74 PIACS0
75 PIACS1
76 GACK
77 TR
78 WE
79 CAS0
80 CAS1
81 CAS2
82 CAS3
83 RAS0
84 RAS1
85 RAS2
86 RAS3
87 ROMOE
88 RSWE
89 ROMCS0
90 ROMCS1
91 ROMCS2
92 ROMCS3
93 TXD
94 UCLK
95 RXD

96 DBIDRV Enables the ID bus drivers
97 IDI0 ID0 input
98 IDO0 ID0 output
99 IDI1 ID1 input

100 IDO1 ID1 output
. .
. .

159 IDI31 ID31 input
160 IDO31 ID31 output

Note:
Drive-enable cells are shown in boldface.

AMDA D V A N C E I N F O R M A T I O N

41Am29202 Microcontroller

IEEE-1284-COMPLIANT
ADVANCED PARALLEL INTERFACE
The Am29202 microcontroller offers a new parallel port
interface that is compliant with the IEEE Std 1284-1994
Standard Signaling Method for a Bidirectional Parallel
Peripheral Interface for Personal Computers.

The new Advanced Parallel Interface (API) replaces the
parallel interface included on the Am29200 and
Am29205 microcontrollers (referred to in this data sheet
as the classic port).

Note: This data sheet has been written with the as-
sumption that the reader has a thorough and complete
understanding of the IEEE-1284 standard and all the
electrical and timing specifications it contains. IEEE Std
1284-1994 can be ordered directly from the IEEE by
calling 1-800-678-IEEE (US) or 1-908-981-1393 and re-
questing document #SH17335.

Upgrading Hardware and Software
The Advanced Parallel Interface has been designed to
minimize the hardware and software changes required
to upgrade from the classic port; however, some
changes will be required to upgrade.

The maximum external system circuitry needed to im-
plement the API is shown in Figure 15. The parallel port
does not attach directly to the microcontroller, but is at-
tached to the interface via buffers. To support the new
IEEE-1284-compliant parallel port, data must be
latched in the interface using a bidirectional bus-driver/
latch such as a 74ALS652. The handshaking signals,
PSTROBE, PAUTOFD, SELECTIN, INIT, PACK, and
PBUSY, are connected to the microcontroller via simple
interface circuits. The inputs PSTROBE, PAUTOFD,
SELECTIN, and INIT should be connected to the pro-
cessor via a Schmitt-trigger inverter such as a
74HCT14, and the outputs PACK and PBUSY should be
connected to the host via an inverter/driver such as a
74LS240. PERROR, SELECT, and FAULT are driven by
software through programmer-defined PIOs or PIAs.

The API also requires software/driver changes, since
the programmable registers and their addresses have
changed from those used on the classic port. These
changes are described later in this section.

Am29202
Microcontroller

74ALS652

A B

PACK

PBUSY

FAULT

SELECT

PERROR

PIO4 INIT

PIO5 SELECTIN

PIO6 DATASTROBE

PIO7 REVOE

PWE

POE

ID7–ID0 ID7–ID0 Data8–Data1

Select/XFlag

PError/AckDataReq/nAckReverse

nAck/PtrClk/PeriphClk

Busy/PtrBusy/PeriphAck

PACK

PBUSY

PSTROBE

PAUTOFD

GAB

GBA

CAB

CBA

nStrobe/HostClk

nAutoFd/HostBusy/HostAck

nInit/nReverseRequest

nSelectIn/1284Active

Figure 15. Maximum External System Design

nFault/nDataAvail/nPeriphRequest

AMD A D V A N C E I N F O R M A T I O N

42 Am29202 Microcontroller

Minimal System Design
While the new parallel interface on the Am29202 micro-
controller adds considerable functionality, it is not re-
quired that the port be operated in full IEEE-1284
compliance. Using a subset of the hardware and the
register set, the designer can set up the API to operate in
a mode similar to that of the classic port on the Am29200
and Am29205 microcontrollers. A minimal system de-
sign for this configuration is shown in Figure 16.

Host-to-peripheral data must be latched in the interface
using a three-state latch such as a 74LS374. The hand-
shaking signals, PSTROBE, PAUTOFD, PACK, and
PBUSY, are connected to the microcontroller via simple
interface circuits. The inputs PSTROBE and PAUTOFD
should be connected to the processor via a Schmitt-trig-
ger inverter such as a 74HCT14, and the outputs PACK
and PBUSY should be connected to the host via an in-
verter such as a 74LS240.

PBUSY

PAUTOFD

ID7–ID0 Data8–Data1

PSTROBE

74HCT14

Am29202
Microcontroller

Figure 16. Minimal System Design

POE

PACK

74LS240

SELECTIN

INIT

Vcc

74LS374

DATASTROBE

Software can then minimally control the API to operate
in a manner similar to the classic port on the Am29200
and Am29205 microcontrollers. This is accomplished by
configuring the interface for Compatibility mode (by set-
ting APMODE to 1) and leaving it there. Interrupts will be
received for data transfer in the forward direction.

OVERVIEW
The IEEE-1284 standard specifies the operation of an
extensible, bidirectional, multimode parallel interface,
providing access to a variety of peripheral devices, such
as printers, scanners, storage devices, and network in-
terfaces. It supports several different communications
modes that allow access to both high-speed and low-
overhead communications, providing a path for data to
be sent from the peripheral device to the host and reduc-
ing the amount of user interaction required to operate a
peripheral. AMD’s implementation of the IEEE-1284
standard on the Am29202 microcontroller provides:

Compatibility, Nibble, Byte, and ECP
modes —Support for peripheral-side operation in
these modes (host-side designs are not supported).

Automatic hardware handshakes —Correctly
timed requests to support data transfers that match
IEEE-1284 protocols; automatic in all modes except
Nibble.

Hardware DMA support in all modes except Nibble.

External control lines —Access to IEEE-1284 con-
trol lines through existing classic port signals and
PIO lines. Registers and control logic are provided to
easily support other required mode lines and con-
trols in software.

Software control —Easy access to input status in-
formation with a variety of software strategies, in-
cluding polling, interrupt service, and DMA.

Windows Printing System compatibility —The
Am29202 microcontroller was chosen by Microsoft
as its hardware reference platform for this software.

The Am29202 microcontroller supports the standard
IEEE-1284 communications modes using a mixture of
hardware and software controls.

Hardware controls include fast automatic data transfer
handshakes and real-time status lines, as well as inter-
rupts and pollable status for software-driven operations.

Operations not directly supported in hardware include:
mode transitions of any type, IEEE-1284 negotiation
and termination, mode approvals and denials, and
Nibble mode data transmission. These operations are
handled using interrupts and application software.

A special control interrupt in the ICT Register is provided
to manage mode changes, negotiation, and termination.
Using this APCI control interrupt, software modifies an
API interrupt mask register at each stage of an
IEEE-1284 transition, selecting the edge required for the
next interrupt (as well as doing the work required at that
phase transition). This structure allows for easy control of
modes without processor delay loops or polling. Data
handling is facilitated by a pollable status bit and a se-
cond dedicated interrupt (APDI) in the ICT Register.

AMDA D V A N C E I N F O R M A T I O N

43Am29202 Microcontroller

Table 7. Feature Comparison of Supported IEEE-1284 Communication Modes

IEEE-1284 MODES

FEATURE
Compatibility
(Centronics) Nibble Byte ECP

Data Path Forward
(Host-to-peripheral)

Reverse
(Peripheral-to-host)

Reverse
(Peripheral-to-host)

Forward
(Host-to-peripheral)

Reverse
(Peripheral-to-host)

Bidirectional No (Note 1) No (Note 2) No (Note 2) Yes

Full-Word
Transfer

Yes No No Forward mode only

Hardware
Handshaking

Automatic Semi-automatic Automatic Automatic

Hardware
DMA Support

Yes No Yes Yes

Notes:
1. Bidirectional when used with Nibble or Byte mode with transfer direction controlled by host.

2. Bidirectional when used with Compatibility mode. These two modes cannot be active simultaneously.

Communication Modes
AMD’s implementation of the IEEE-1284 standard on
the Am29202 microcontroller supports the following
IEEE-1284 modes (see Table 7).

Compatibility Mode —Provides an asynchronous,
byte-wide forward (host-to-peripheral) channel with
data and status lines used according to their original
(Centronics) definitions. Compatibility mode is back-
ward compatible with many existing devices, includ-
ing the PC parallel port and the classic parallel port
on the Am29200 and Am29205 microcontrollers.

Nibble Mode —Provides an asynchronous, reverse
(peripheral-to-host) channel, under control of the
host. Data bytes are transmitted as two sequential,
four-bit nibbles using four peripheral-to-host status
lines. Nibble mode is used with Compatibility mode
to implement a bidirectional channel. These two
modes cannot be active simultaneously.

Byte Mode —Provides an asynchronous, byte-wide
reverse (peripheral-to-host) channel using the eight
data lines of the interface for data and the control/
status lines for handshaking. Byte mode is used with
Compatibility mode to implement a bidirectional
channel, with transfer direction controlled by the

host, when the host and peripheral both support bi-
directional use of the data lines. The two modes can-
not be active simultaneously.

Extended Capabilities Port (ECP) Mode —Pro-
vides an asynchronous, byte-wide, bidirectional
channel. For faster forward transfers, an interlocked
handshake replaces Compatibility mode’s minimum
timing requirements for its interface signals. A con-
trol line is provided to distinguish between command
and data transfers. A command may optionally be
used to indicate data compression or a channel ad-
dress (determined by the application).

Mode selection is made by the application software,
based on mode requests made by the external
IEEE-1284 host. These mode requests are called
IEEE-1284 negotiations and are attempts to communi-
cate beyond the base level (Compatibility mode). The
negotiations, responses, and mode changes are all
moderated by the application software (an IEEE-1284
driver), on interrupts caused by the IEEE-1284 interface
hardware, in response to IEEE-1284 activity on the in-
terface.

AMD A D V A N C E I N F O R M A T I O N

44 Am29202 Microcontroller

EXTERNAL SIGNALS
Note: All IEEE-1284 interface signal levels discussed in
this document are inverted, from the IEEE-1284 cable to
the peripheral circuitry at the processor, and vice versa
(see Figure 15). Signal names shown in this document
in all upper case letters (e.g., PSTROBE) are Am29202
microcontroller signals; they represent IEEE Std
1284-1994 signal names (e.g., nStrobe) that have been
inverted at the processor/interface chip terminal.

While many signals are named differently in each
IEEE-1284 communication mode, the primary reference
in this data sheet is to the Am29202 microcontroller sig-
nal name at the pin. To facilitate reference to timing dia-
grams in the IEEE standard document, the inverted
IEEE-1284 Compatibility mode signal name is some-
times listed in this data sheet in parentheses following the
Am29202 microcontroller signal name, e.g., PSTROBE
(nStrobe). Table 8 maps the Am29202 microcontroller
signal names to all those used in the IEEE-1284 stan-
dard.

Dedicated Signal Lines
PACK (output)
Output through an inverting buffer to nAck/PtrClk/
PeriphClk, this signal is active when the API is en-
abled.

PAUTOFD (input)
Input via an inverting buffer from nAutofd/HostBusy/
HostAck, PAUTOFD is used by the host in reverse-
channel modes to signal reverse data strobe. It is
also used in other contexts in various modes. The
PAUTOFD signal can optionally cause control inter-
rupts on either edge.

PBUSY (output)
Output through an inverting buffer to Busy/PtrBusy/
PeriphAck, this signal comes from the Advanced
Port when it is enabled.

POE (output)
Made active by a read from address 800000B0, this
signal enables latched data on the data bus, to be
read by the processor under interrupt or DMA control.

PSTROBE (input)
Input via an inverting buffer from nStrobe/HostClk,
the PSTROBE signal is used in some forward modes
to generate data strobe assertions and to signal data
presence. In other modes, PSTROBE signals some-
thing other than a data transfer. The PSTROBE sig-
nal can optionally cause control interrupts on either
edge.

PWE (output)
Made active by a write to address 800000B0, this
signal is used to latch the data bus for outgoing
(peripheral-to-host) transmission.

Mode-Allocated PIO Lines
Extended IEEE-1284 modes require dedicated control
signal lines for their operation. Some of these lines ap-
pear as outputs or are read as inputs from existing PIO
lines. The function of these pins changes from general-
purpose PIO to specific-purpose IEEE-1284 control line
while the API is enabled. When the API is enabled, the
API has control of the signal lines. If the API is not en-
abled, the PIO port has control of the lines.

DATASTROBE/PIO6 (output)
The DATASTROBE line causes forward data to be
latched in the external forward data latch during ap-
propriate modes. This line supplies a strobe pulse
with timing dependent upon the current API mode
and controlled by the APMODE field.

INIT/PIO4 (input)
The INIT signal comes via an inverting buffer from
nInit/nReverseRequest and can optionally cause
control interrupts on either edge.

REVOE/PIO8 (output)
The REVOE signal is controlled by hardware and is
used in Byte and ECP modes to force the data latch/
buffer to drive data in the peripheral-to-host direc-
tion. This signal is used when the peripheral device
has control of the IEEE-1284 data bus. Because of
strict IEEE-1284 specifications on reinitialization,
this signal must be driven directly.

SELECTIN/PIO5 (input)
The SELECTIN line comes via an inverting buffer
from nSelectIn/1284Active. It transitions (along with
PAUTOFD) to signal the request to negotiate an
IEEE-1284 mode and to signal the termination from
an IEEE-1284 mode. This line can optionally cause
control interrupts on either edge.

Software-Driven Status Lines
Only the signals that are required in hardware for
IEEE-1284 transfers are included in the mode-allocated
PIOs. Other parallel IEEE-1284 status lines that are
used during status outputs, mode transitions, or slow
modes only are driven by software through program-
mer-defined parallel lines. PIAs or PIOs are acceptable,
since these are outputs modified by software only.

FAULT (output)
This signal is driven by software and output to nFault/
nDataAvail/nPeriphRequest.

PERROR (output)
This signal is driven by software and output to
PError/AckDataReq/nAckReverse.

SELECT (output)
This signal is driven by software and output to Select/
XFlag.

AMDA D V A N C E I N F O R M A T I O N

45Am29202 Microcontroller

Table 8. IEEE-1284 Parallel Interface Signal Names by Mode

Am29202 Microcontroller
Signal Name 1

Signal Names As Specified in IEEE Std 1284-1994
Signal Name 1
(Inverted from IEEE-1284
bus interface)

Compatibility
Mode

Nibble
Mode

Byte
Mode

ECP
Mode

PSTROBE nStrobe — HostClk HostClk

PAUTOFD nAutoFd HostBusy HostBusy HostAck

SELECTIN nSelectIn 1284Active 1284Active 1284Active

INIT nInit — — nReverseRequest

ID7–ID0 Data8–Data1 — Data8–Data1 3 Data8–Data1 3

PACK nAck PtrClk PtrClk PeriphClk

PBUSY Busy PtrBusy/
Data4, Data8

PtrBusy PeriphAck

PERROR PError AckDataReq/
Data3, Data7

AckDataReq nAckReverse

SELECT Select XFlag/
Data2, Data6

XFlag XFlag

FAULT nFault nDataAvail/
Data1, Data5

nDataAvail nPeriphRequest

DATASTROBE 2 DATASTROBE — — DATASTROBE 4

REVOE 2 — — REVOE REVOE 5

Notes:
1. The primary form of reference in this data sheet is to the Am29202 microcontroller signal name at the pin, shown in all upper case

letters. To facilitate reference to timing diagrams in the IEEE-1284 standard document, the inverted IEEE-1284 Compatibility
mode signal name is sometimes shown in parentheses following the Am29202 microcontroller signal name, e.g., PSTROBE
(nStrobe).

2. These signals are not called out in the IEEE-1284 Std document. However, they are used on the Am29202 microcontroller in the
modes shown.

3. When reversed by REVOE, these lines are bidirectional.

4. Used on the Am29202 microcontroller in ECP Forward mode only.

5. Used on the Am29202 microcontroller in ECP Reverse mode only.

AMD A D V A N C E I N F O R M A T I O N

46 Am29202 Microcontroller

REGISTERS
The parallel port interface is controlled through its five
registers, which are summarized in Table 9.

The Advanced Parallel Control (APCT) Register
is used to enable and control the API, to change
modes, and to directly or indirectly control operation
of the internal hardware. This register can be written
with control data, and the status of those bit fields can
be read back.

The Advanced Parallel Status (APST) Register
supplies real-time status information on the opera-
tion of the API and its incoming and outgoing signals.
This register is comprised of three types of signals:
status signals from within API hardware, real-time
snooping bits of the output and input signals used by
the API, and the real-time values of the interruptible
condition bits prior to being masked into the Ad-
vanced Parallel Interrupt Status Register (APIS).
These values are then OR’d into the Interrupt Control
(ICT) Register for the microcontroller via the APCI
(Advanced Parallel Control Interrupt). The APST sig-
nals provide access to the status from polling rou-
tines or interrupt service.

The Advanced Parallel Interrupt Mask (APIM)
Register specifies the particular IEEE-1284 signal
inputs that are combined to cause the next APCI in-
terrupt; there also exists a mask for the single APDI
data interrupt. (In this context, the mask allows the
corresponding signal to pass through.) This allows
easy programmer control as each IEEE-1284 transi-
tion occurs. Also, a special ECP Forward mode
Command Interrupt and a Device Initialization inter-
rupt is included in the interruptible signals.

The Advanced Parallel Interrupt Status (APIS)
Register reports the APST condition bits that have
been masked in the APIM Register. This register is
used by interrupt service routines to determine the
condition that caused the latest APCI interrupt. Writ-
ing to this register with a 1 in each appropriate bit
position clears the condition latch for each interrupt.
Also writing to the same bit positions in the APST
Register clears the same condition bits, thus allow-
ing polling routines to easily clear the same bits as
interrupt routines would do in the APIS.

The Advanced Parallel Data (APDT) Register is a
special register decode that addresses the external
data latch. The register does not exist internal to the
API; it causes the generation of the POE or PWE sig-
nals that read external data, or latch it, respectively.

Table 9. Parallel Port Register Summary

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Register Name
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Mnemonic
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Function
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Address

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Advanced Parallel Control
ÁÁÁÁÁ
ÁÁÁÁÁ

APCT
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reads and writes values of control bits
ÁÁÁÁÁ
ÁÁÁÁÁ

800000A0
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Advanced Parallel Status

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

APST

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reads interface status;
reads interrupt edge bits; clears interrupts

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

800000A4

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Advanced Parallel Interrupt Mask ÁÁÁÁÁ
ÁÁÁÁÁ

APIM ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reads and writes mask bit values ÁÁÁÁÁ
ÁÁÁÁÁ

800000A8
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Advanced Parallel Interrupt Status

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

APIS

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reads enabled interrupt bits and clears interrupts

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

800000AC

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Advanced Parallel Data
ÁÁÁÁÁ
ÁÁÁÁÁ

APDT
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reads external latched parallel input data
ÁÁÁÁÁ
ÁÁÁÁÁ

800000B0

Note:
The address assignments for these registers are different from those assigned to the classic port registers on the Am29200
and Am29205 microcontrollers.

AMDA D V A N C E I N F O R M A T I O N

47Am29202 Microcontroller

Advanced Parallel Control Register
(APCT, Address 800000A0)
The Advanced Port is controlled via the Advanced Par-
allel Control Register (Figure 17). It contains the AP-
MODE field, DMA channel select, and various control
bits. All bits read back their written states, except for the
AFAS bit, which reads back 0.

Bit 31: Internal Reverse Output Enable (INTREVOE)
Setting this bit to 1 forces the external signal REVOE
High. REVOE changes the data direction of the external
bus buffer/latch device to peripheral-to-host to drive the
IEEE-1284 bus with data that has been captured from
the processor. When the external parallel data direction
must be reversed, software can modify this signal on en-
tering and exiting different IEEE-1284 modes or sub-
modes.

REVOE is disabled by internal hardware when the inter-
face receives a Device Initialization condition (signaled
by INIT and SELECTIN asserted).

The return to Compatibility mode automatically releases
the REVOE disable. Software should determine and
write the proper condition of INTREVOE before return-
ing to Compatibility mode.

There is no effect from a Device Initialization condition if
INTREVOE is set to 0.

Bits 30–28: Reserved

Bit 27: Background Status Defer (BSD) —Background
Status Defer is used in Nibble mode to disable a portion
of the semi-automatic handshaking, allowing status
signaling back to the host.

While disabled, BSD allows PACK (nAck) deassertion
semi-automatic handshakes to occur with an indefinite
number of transfers.

When written to a 1, BSD disables the next PACK
deassertion handshake-completion mechanism. When
written to a 0, it releases the automatic handshake, but
only after a delay of TACKDELAY. This delay allows the re-
quired data setup time for status information before al-
lowing the PACK deassertion to occur.

Bit 26: Advanced Full Word Transfer (AFWT) —When
AFWT is set to 0, the data transfer logic will generate
one data transfer request per input byte, and the exter-
nal APDT will be defined as 8 bits wide. When AFWT is
set to 1 and the API is set to Compatibility or ECP For-
ward modes, the data transfer logic will generate a data
transfer request cycle every fourth PSTROBE
(nStrobe), and the external APDT will be defined as 32
bits wide (4 transfers).

The processor may read the BC field of the APST Regis-
ter to determine the number of complete handshakes
that have occurred since the last full word transfer. The
partial value in BC is cleared by clearing AFWT.

External logic must be used to concatenate the four for-
ward transfer bytes into a single 32-bit big-endian
packed word.

Bit 25: Command Polarity Expected (CPE) —CPE is
used with DMA in ECP Forward mode only to allow data
and command bytes to be handled differently.

If the command bit received with an ECP data byte does
not equal CPE, then APDS is asserted and DMA is re-
quested normally.

If the command bit equals CPE, ECS is asserted, and, if
masked (enabled), ECI will cause an APCI interrupt in
the ICT Register. The ECS condition is not cleared auto-
matically when the command byte is read; it must be
cleared in the APIS or APST register. The automatic
handshake is not completed when the command byte is
read; it is completed only when ECS is cleared.

31 23 15 7 0

INTREVOE

BSD

ACKLEN

Reserved

AFWT
CPE
ABC

AFAS

APDC
DMAMODE
APDHHA
AFACK
APDHHB
AFBUSY

APMODERes

Figure 17. Advanced Parallel Control Register

AMD A D V A N C E I N F O R M A T I O N

48 Am29202 Microcontroller

Bit 24: Asynchronous Busy Control (ABC) —ABC is
used to force PBUSY (Busy) asserted, during Compati-
bility mode only. ABC set to 1 forces PBUSY asserted.
ABC set to 0 stops forcing PBUSY asserted, and allows
PBUSY to return to the existing Compatibility-mode
busy status. Whenever the peripheral can no longer ac-
cept a byte, this bit is set by software to asynchronously
force PBUSY asserted.

ABC is only applicable in Compatibility mode; PBUSY
transitions that are requested in other modes occur nor-
mally and are output on PBUSY. Once the API is re-
turned to Compatibility mode, the ABC-generated (or
latch-full-generated) PBUSY will still be in effect.

Bit 23: Asynchronous Force Ack Set (AFAS) —AFAS
is used to generate special pulses during Compatibility
mode negotiations and delayed PACK (nAck) assertion
edges in Nibble mode. AFAS always reads back 0.

In Compatibility mode, a write of 1 to AFAS forces a
PACK pulse of length TACKLEN to be generated immedi-
ately. This will not normally be required because reading
data from the Advanced Parallel Data Register will gen-
erate a correctly timed PACK pulse automatically
(whether from an interrupt-driven instruction or from
DMA). This AFAS assertion can be used to force a spe-
cial PACK pulse needed in negotiation.

In Nibble mode, a write of 1 to AFAS will cause a delay of
length TACKDELAY, and then a PACK assertion only. A
PAUTOFD (nAutoFd) assertion (normal handshake)
from the host then automatically clears the PACK status
in this mode.

Bit 22: Advanced Force Busy (AFBUSY) —AFBUSY
is an optional control bit for the PBUSY pin in the Ad-
vanced Port. Whenever APDHHB is 1, AFBUSY set to 1
forces an active level on PBUSY and AFBUSY set to 0
forces an inactive level on PBUSY. The polarity from
AFBUSY to PBUSY is inverted. This bit should be set to
the proper condition before activating APDHHB.

AFBUSY is used when the API is in a mode that does not
support hardware handshaking or in a handshaking
mode where direct control is required.

If APDHHB is 1, AFBUSY directly controls the level driv-
en on PBUSY, whether or not the API is active. This al-
lows the PBUSY pin to be used for an alternate output
function if the parallel port is not used.

Bit 21: Advanced Port Disable Hardware Handshake
Busy (APDHHB) —When the API is enabled, APDHHB
set to 1 transfers control of PBUSY to the AFBUSY (Ad-
vanced Force Busy) register bit. APDHHB set to 0 al-
lows API hardware handshake logic to control PBUSY.
The AFBUSY bit must be set to the proper condition be-
fore activating APDHHB.

Bit 20: Advanced Force Ack (AFACK) —AFACK is an
optional control bit for the PACK pin in the Advanced
Port. Whenever APDHHA is set to 1, AFACK set to 1
forces an active level on PACK and AFACK set to 0
forces an inactive level on PACK. The polarity from
AFACK to PACK is not inverted. This bit should be set to
the proper condition before activating APDHHA.

AFACK is used when the API is in a mode that does not
support hardware handshaking or in a handshaking
mode where direct control is required (such as negoti-
ation).

If APDHHA is 1, AFACK directly controls the level driven
on PACK, whether or not the API is active. This allows
the PACK pin to be used for an alternate output function
if the parallel port is not used.

Bit 19: Advanced Port Disable Hardware Handshake
Ack (APDHHA) —When the API is enabled, APDHHA
set to 1 transfers control of PACK to the AFACK (Ad-
vanced Force Ack) register bit. APDHHA set to 0 allows
API hardware handshake logic to control PACK. The
AFACK bit should be set to the proper condition before
activating APDHHA.

When APDHHA is 1, the internal PACK logic will not start
a PACK cycle (delayed or pulsed). This allows transi-
tions back to internal PACK control without spurious
pulses. For this reason, APDHHA should only be
cleared when returning to Compatibility mode.

Bit 18: DMA Mode (DMAMODE) —DMAMODE con-
trols which mechanism services a data transfer request
condition (APDS) for modes that feature hardware
handshaking. When set to 1, DMA transfers are enabled
to a channel selected by the APDC field. When set to 0,
DMAMODE enables interrupts on APDI (if masked).

Bits 17–16: Advanced Port DMA Channel Select
(APDC)—APDC selects the DMA channel used to re-
quest a data transfer. If the API is enabled, DMAMODE
is set to 1, and a data transfer request (APDS) occurs,
then the DMA request of channel specified by the APDC
field will be asserted.

APDC Channel APDC1 APDC0

Channel 0 0 0

Channel 1 0 1

Reserved 1 x

Bits 15–8: Ack Length/Ack Delay (ACKLEN/ACKDE-
LAY)—This field has two contexts: ACKLEN in Compat-
ibility mode and ACKDELAY in all reverse modes. The
period of time represented by this field is measured in
MEMCLK cycles and is proportional to clock speed.

AMDA D V A N C E I N F O R M A T I O N

49Am29202 Microcontroller

In Compatibility mode, ACKLEN is the length of the
PACK (nAck) pulse generated by the automatic hand-
shakes (or when AFAS is asserted for manual PACK
control). When a data byte is read from the APDT Regis-
ter or AFAS is written to a 1, a pulse is generated auto-
matically on the PACK output of length TACKLEN. For
proper operation, this field’s minimum count is 1, and
the maximum is 255.

In reverse modes, when a data byte is read or when
AFAS is written to a 1, PACK is asserted after a delay of
length TACKDELAY. ACKDELAY is the delay value from
the time data is written to the Advanced Parallel Data
Register to the time the PACK signal is generated
(signaling data transfer) automatically in hardware. It
provides a minimum data setup time from when data is
output to when the PACK active edge signals the host
that the transfer is ready. The minimum value specified
for this time in the IEEE standard is 500 ns. The number
of cycles that this value represents will vary with the pro-
cessor clock frequency.

Bit: 7 Reserved

Bits 6–0: Advanced Parallel Mode (APMODE) —The
value in APMODE (see Table 10) sets the operating
mode of the API including all the automatic functions,
such as data transfer request timing, PACK pulse delay
and length timing, DATASTROBE source, PIO alloca-
tion, DMA direction, and PBUSY (Busy) context
changes. The mode selected will remain in effect until
changed. Mode changes are immediate when written.
APMODE is cleared at reset time.

When set to 0, the API is disabled, and the PIO port has
control of the shared signal lines. Interrupts from the API
are disabled when APMODE is 0, whether their individu-
al masks are set or not. The HL and LH status conditions
for INIT, SELECTIN, PSTROBE, and PAUTOFD are not
available in the APST Register when APMODE is 0.

Table 10. APMODE Values

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

APMODE

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Mode Description

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Handshake
Mode

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

DMA Support

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

PIOs Allocated

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Disabled
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

None
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

None
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

None
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Compatibility Mode

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Automatic

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

INIT/PIO4
SELECTIN/PIO5
DATASTROBE/PIO6

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Nibble Mode (and ID)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Semi-
Automatic

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

No

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

INIT/PIO4
SELECTIN/PIO5

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

3 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Byte Mode (and ID) ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Automatic ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Yes ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

INIT/PIO4
SELECTIN/PIO5
REVOE/PIO7ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ECP Forward Mode

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Automatic

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

INIT/PIO4
SELECTIN/PIO5
DATASTROBE/PIO6

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

5

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ECP Reverse Mode (and ID)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Automatic

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

INIT/PIO4
SELECTIN/PIO5
REVOE/PIO7

AMD A D V A N C E I N F O R M A T I O N

50 Am29202 Microcontroller

Advanced Parallel Status Register
(APST, Address 800000A4)
The status bits for the real-time signals used in commu-
nication and negotiation are available in the Advanced
Parallel Status Register (Figure 18).

All edge-detection and other control condition status bits
for use in polling or interrupting can be read in this regis-
ter, along with the data transfer status bit. These include
the eight different control input signal conditions: high-
to-low and low-to-high edge detection for each of the
signals PSTROBE, PAUTOFD, SELECTIN, and INIT;
the ECP Command condition, the Device Initialization
condition, and the Data Transfer Request condition.

All condition status bits (bits 15-0) are reset-only. Writing
a 1 clears the condition, and writing a 0 does not affect
the bit. Writing to read-only status does not affect the
bits.

The HL and LH status conditions for INIT, SELECTIN,
PSTROBE, and PAUTOFD are not available in the
APST Register when APMODE is 0.

Bit 31: PBUSY —This is the real-time value of the outgo-
ing PBUSY signal. This signal directly follows the
PBUSY pin.

Bit 30: PACK —This is the real-time value of the outgo-
ing PACK signal. This signal directly follows the PACK
pin.

Bit 29: INIT —This is the real-time value of the INIT input
pin. INIT is input to the device on PIO4.

Bit 28: SELECTIN —This is the real-time value of the
SELECTIN input pin. SELECTIN is input to the device
on PIO5.

Bit 27: PAUTOFD —This is the real-time value of the
PAUTOFD input pin.

Bit 26: PSTROBE —This is the real-time value of the
PSTROBE input pin.

Bits 25–22: Reserved

Bits 21–20: Byte Count (BC) —When AFWT is set to 1,
the Byte Count field contains the number of bytes that
have been received by the external logic for concatena-
tion into a full-word transfer. This count is useful in han-
dling partial-word transfers, such as data streams that
are a non-AFWT modulo length, or when an ECP com-
mand occurs. BC is a read-only field and is cleared when
AFWT is cleared.

Bits 19–16: Reserved

Bit 15: Advanced Port Data Transfer Status
(APDS)—APDS signals the readiness for a byte (or full
word, if AFWT is set to 1) of data to be transferred, irre-
spective of the data transfer method programmed, and
may be polled.

If DMAMODE is 0 and APDM is 1, then APDI is asserted
and an APDI interrupt occurs in the ICT Register. (Note
that there is no APDI bit in the Advanced Parallel Inter-
rupt Status Register; an APDS assertion masked by
APDM causes an APDI interrupt in the ICT directly.)

If DMAMODE is 1 and APDS is 1, then a DMA request
will be made to the channel specified by the APDC bit.

Writing a 1 to this bit will clear the data transfer request
condition, although this is normally not recommended,
since the data transfer request will be cleared automati-
cally when data is read or written to the Advanced Paral-
lel Data Register. Clearing the APDS bit when
DMAMODE is true is undefined and not recommended.

Bit 14: ECP Command Status (ECS) —ECS signals an
ECP Forward mode command byte within the data
stream. This condition blocks the completion of the ECP
Forward data handshake to allow the processor time to
interpret the command before more data is accepted.
This handshake is held off only for command bytes; data
bytes are transferred via APDI or DMA.

31 23 15 7 0

Reserved BC

ECS
APDS

Reserved Reserved

DEVINITS

PSTROBE
PAUTOFD
SELECTIN
INIT
PACK
PBUSY

INITHLS
INITLHS

SELINHLS
SELINLHS

PAUTOHLS
PAUTOLHS

PSTBHLS
PSTBLHS

Figure 18. Advanced Parallel Status Register

AMDA D V A N C E I N F O R M A T I O N

51Am29202 Microcontroller

This bit causes an ECI interrupt bit to be asserted when
the ECM bit is set to 1. Writing a 1 to this bit will clear the
ECS condition and allow the ECP Forward data hand-
shake to proceed.

Bit 13: Device Initialization Status (DEVINITS) —This
bit signals that the host has initiated an initialization
cycle. The IEEE-1284 specification requires that the in-
terface proceed immediately to Compatibility mode, ac-
complished by software upon the DEVINITI interrupt.

This bit causes a DEVINITI interrupt bit to be asserted
when the DEVINITM bit is set to 1. (REVOE is also
cleared immediately in hardware.) Writing a 1 to this bit
will clear the DEVINITS condition, but is not needed typi-
cally, as the condition is cleared when the interface is re-
turned to Compatibility mode.

Bits 12–8: Reserved

Bit 7: INIT High-to-Low Edge Detection Status
(INITHLS)—INITHLS signals that the INIT signal has
changed from High-to-Low (nInit has gone from Low-to-
High). This bit causes an INITHLI interrupt bit to be as-
serted when the INITHLM bit is set to 1. Writing a 1 to this
bit will clear the INITHLS condition.

Bit 6: INIT Low-to-High Edge Detection Status
(INITLHS)—INITLHS signals that the INIT signal has
changed from Low-to-High (nInit has gone from High-to-
Low). This bit causes a INITLHI interrupt bit to be as-
serted when the INITLHM bit is set to 1. Writing a 1 to this
bit will clear the INITLHS condition.

Bit 5: SELECTIN High-to-Low Edge Detection Status
(SELINHLS)—SELINHLS signals that the SELECTIN
signal has changed from High-to-Low (nSelectIn has
gone from Low-to-High). This bit causes a SELINHLI in-
terrupt bit to be asserted when the SELINHLM bit is set
to 1. Writing a 1 to this bit will clear the SELINHLS condi-
tion.

Bit 4: SELECTIN Low-to-High Edge Detection Status
(SELINLHS)—SELINLHS signals that the SELECTIN
signal has changed from Low-to-High (nSelectIn has
gone from High-to-Low). This bit causes a SELINLHI in-
terrupt bit to be asserted when the SELINLHM bit is set
to 1. Writing a 1 to this bit will clear the SELINLHS condi-
tion.

Bit 3: PAUTOFD High-to-Low Edge Detection Status
(PAUTOHLS)—PAUTOHLS signals that the PAUTOFD
signal has changed from High-to-Low (nAutofd has
gone from Low-to-High). This bit causes a PAUTOHLI
interrupt bit to be asserted when the PAUTOHLM bit is
set to 1. Writing a 1 to this bit will clear the PAUTOHLS
condition.

Bit 2: PAUTOFD Low-to-High Edge Detection Status
(PAUTOLHS)—PAUTOLHS signals that the PAUTOFD
signal has changed from Low-to-High (nAutofd signal
has gone from High-to-Low). This bit causes a PAUTOLHI
interrupt bit to be asserted when the PAUTOLHM bit is
set to 1. Writing a 1 to this bit will clear the PAUTOLHS
condition.

Bit 1: PSTROBE High-to-Low Edge Detection Status
(PSTBHLS)—PSTBHLS signals that the PSTROBE
signal has changed from High-to-Low (nStrobe signal
has gone from Low-to-High). This bit causes a PSTBHLI
interrupt bit to be asserted when the PSTBHLM bit is set
to 1. Writing a 1 to this bit will clear the PSTBHLS condi-
tion.

Bit 0: PSTROBE Low-to-High Edge Detection Status
(PSTBLHS)—PSTBLHS signals that the PSTROBE
signal has changed from Low-to-High (nStrobe signal
has gone from High-to-Low). This bit causes a PSTBLHI
interrupt bit to be asserted when the PSTBLHM bit is set
to 1. Writing a 1 to this bit will clear the PSTBLHS condi-
tion.

AMD A D V A N C E I N F O R M A T I O N

52 Am29202 Microcontroller

Advanced Parallel Interrupt
Mask Register (APIM, Address 800000A8)
The Advanced Parallel Interrupt Mask Register (Figure
19) contains the interrupt mask bits for each condition
status bit in the APST Register. When a mask bit is set to
1, it enables the corresponding condition status bit in the
APST Register into the corresponding interrupt status
bit of the APIS Register. When the mask bit is set to 0,
the corresponding interrupt status bit is 0. The mask reg-
ister is read/writeable.

All interrupt status bits in the APIS are OR’d together to
form the aggregate Advanced Parallel Control Interrupt
in the ICT Register.

Interrupts from the API are disabled when the APMODE
is 0, whether their individual masks are set or not. Note
that the APDM mask controls assertion of the APDI inter-
rupt, while all other mask bits control the APCI interrupt.

Bits 31–16: Reserved

Bit 15: Advanced Port Data Transfer Interrupt Mask
(APDM)—When APDM is set to 1, an assertion of the
APDS bit directly causes an APDI interrupt in the ICT
Register. When APDM is set to 0, there is no APDI inter-
rupt.

Bit 14: ECP Command Interrupt Mask (ECM) —When
ECM is set to 1, an assertion of the ECS bit sets the ECI
interrupt bit, causing an APCI interrupt. When EMC is 0,
the ECI interrupt bit is not set.

Bit 13: Device Initialization Interrupt Mask
(DEVINITM)—When DEVINITM is set to 1, an assertion
of the DEVINITS bit sets the DEVINITI interrupt bit,
causing an APCI interrupt. When DEVINITM is 0, the
DEVINITI interrupt bit is not set.

Bits 12–8: Reserved

Bit 7: INIT High-to-Low Interrupt Mask (INITHLM)
When INITHLM is set to 1, an assertion of the INITHLS bit

sets the INITHLI interrupt bit, causing an APCI interrupt.
When INITHLM is 0, the INITHLI interrupt bit is not set.

Bit 6: INIT Low-to-High Interrupt Mask (INITLHM)
When INITLHM is set to 1, an assertion of the INITLHS
bit sets the INITLHI interrupt, causing an APCI inter-
rupt. When INITLHM is set to 0, the INITLHI interrupt bit
is not set.

Bit 5: SELECTIN High-to-Low Interrupt Mask
(SELINHLM)—When SELINHLM is set to 1, an asser-
tion of the SELINHLS bit sets the SELINHLI interrupt bit,
causing an APCI interrupt. When SELINHLM is set to 0,
the SELINHLI interrupt bit is not set.

Bit 4: SELECTIN Low-to-High Interrupt Mask
(SELINLHM)—When SELINLHM is set to 1, an asser-
tion of the SELINLHS bit sets the SELINLHI interrupt bit,
causing an APCI interrupt. When SELINLHM is set to 0,
the SELINLHI interrupt bit is not set.

Bit 3: PAUTOFD High-to-Low Interrupt Mask
(PAUTOHLM)—When PAUTOHLM is set to 1, an asser-
tion of the PAUTOHLS bit sets the PAUTOHLI interrupt
bit, causing an APCI interrupt. When PAUTOHLM is set
to 0, the PAUTOHLI interrupt bit is not set.

Bit 2: PAUTOFD Low-to-High Interrupt Mask
(PAUTOLHM)—When PAUTOLHM is set to 1, an asser-
tion of the PAUTOLHS bit sets the PAUTOLHI interrupt
bit, causing an APCI interrupt. When PAUTOLHM is set
to 0, the PAUTOLHI interrupt bit is not set.

Bit 1: PSTROBE High-to-Low Interrupt Mask
(PSTBHLM)—When PSTBHLM is set to 1, an assertion
of the PSTBHLS bit sets the PSTBHLI interrupt bit,
causing an APCI interrupt. When PSTBHLM is set to 0,
the PSTBHLI interrupt bit is not set.

Bit 0: PSTROBE Low-to-High Interrupt Mask
(PSTBLHM)—When PSTBLHM is set to 1, an assertion
of the PSTBLHS bit sets the PSTBLHI interrupt, causing
an APCI interrupt. When PSTBLHM is set to 0, the
PSTBLHI interrupt bit is not set.

31 23 15 7 0

Reserved

ECM
APDM

Reserved

DEVINITM

INITHLM
INITLHM

SELINHLM
SELINLHM

PAUTOHLM
PAUTOLHM

PSTBHLM
PSTBLHM

Figure 19. Advanced Parallel Interrupt Mask Register

AMDA D V A N C E I N F O R M A T I O N

53Am29202 Microcontroller

Advanced Parallel Interrupt Status
Register (APIS, Address 800000AC)
The Advanced Parallel Interrupt Status Register (Figure
20) contains the masked condition bits that make up the
aggregate Advanced Parallel Control Interrupt in the
ICT Register. The bits can be read to determine the
source of the interrupt, and each bit can be written to a 1
to clear the corresponding condition and condition bit
(writing to the condition bit in the APST Register per-
forms the same function). The APCI is generated when
the logical OR of all control interrupt status bits is 1.

Bits 31–16: Reserved

Bit 15: Reserved —There is no APDI interrupt in the
APIS. Since there is only one data transfer interrupt, it
asserts the APDI bit in the ICT Register directly. The
APDS condition can be cleared in the APST Register.

Bit 14: ECP Command Interrupt (ECI) —This interrupt
bit indicates that an ECP Forward command has been
received. When this bit is a 1, the APCI interrupt occurs.

Writing a 1 to this bit clears the ECS and ECI conditions
and releases the ECP Forward handshake, allowing
more ECP data or command bytes to be received.

Bit 13: Device Initialization Interrupt (DEVINI-
TI)—When this bit is a 1, the APCI interrupt occurs.
When DEVINITI is written to a 1, the DEVINITS and
DEVINITI bits are cleared.

Bits 12–8: Reserved

Bit 7: INIT High-to-Low Interrupt (INITHLI) —When
this bit is a 1, the APCI interrupt occurs. When INITHLI is
written to a 1, INITHLS and INITHLI are cleared.

Bit 6: INIT Low-to-High Interrupt (INITLHI) —When
this bit is a 1, the APCI interrupt occurs. When INITLHI is
written to a 1, INITLHS and INITLHI are cleared.

Bit 5: SELECTIN High-to-Low Interrupt (SELINHLI)
When this bit is a 1, the APCI interrupt occurs. When
SELINHLI is written to a 1, SELINHLS and SELINHLI
are cleared.

Bit 4: SELECTIN Low-to-High Interrupt (SELINLHI)
When this bit is a 1, the APCI interrupt occurs. When
SELINLHI is written to a 1, SELINLHS and SELINLHI
are cleared.

Bit 3: PAUTOFD High-to-Low Interrupt (PAUTOHLI)
When this bit is a 1, the APCI interrupt occurs. When
PAUTOHLI is written to a 1, PAUTOHLS and PAUTOHLI
are cleared.

Bit 2: PAUTOFD Low-to-High Interrupt (PAUTOLHI)
When this bit is a 1, the APCI interrupt occurs. When
PAUTOLHI is written to a 1, PAUTOLHS and PAUTOLHI
are cleared.

Bit 1: PSTROBE High-to-Low Interrupt (PSTBHLI)
When this bit is a 1, the APCI interrupt occurs. When
PSTBHLI is written to a 1, PSTBHLS and PSTBHLI are
cleared.

Bit 0: PSTROBE Low-to-High Interrupt (PSTBLHI)
When this bit is a 1, the APCI interrupt occurs. When
PSTBLHI is written to a 1, PSTBLHS and PSTBLHI are
cleared.

31 23 15 7 0

Reserved

ECI
Reserved

Reserved

DEVINITI

INITHLI
INITLHI

SELINHLI
SELINLHI

PAUTOHLI
PAUTOLHI

PSTBHLI
PSTBLHI

Figure 20. Advanced Parallel Interrupt Status Register

AMD A D V A N C E I N F O R M A T I O N

54 Am29202 Microcontroller

31 23 15 7 0

Reserved APDATA

31 23 15 7 0

APDATA

a.

b.

Figure 21. Advanced Parallel Data Register

Advanced Parallel Data Register
(APDT, Address 800000B0)
The Advanced Parallel Data Register (Figure 21) is
used to read data from and write data to the parallel port.
This register is not implemented directly on the proces-
sor, but must be implemented by the user as an external
bidirectional data latch.

Writing to the APDT address causes a decoded PWE
output to write the current bus data byte or word to an
external Data Register. Reading from the APDT ad-
dress causes a decoded POE output to read data from
the external data register to the data bus. The decoder
operates even when the API is disabled.

Reading data from or writing data to the APDT automati-
cally causes data transfer requests to be cleared and
continues the appropriate handshake for the current
mode, except in Nibble mode.

Bits 7–0: Advanced Port Parallel Data (APDATA) for
8-bit transfers (Figure 21a) or
Bits 31–0: Advanced Port Parallel Data (APDATA) for
32-bit transfers (Figure 21b)—APDATA contains
packed-byte data being transferred to the processor
and from the IEEE-1284 parallel bus. The register must
exist external to the processor. The width of the field is
dependent on the AFWT bit. AFWT is valid in Compati-
bility and ECP Forward modes only.

The instruction or DMA channel must be programmed
for the proper width access to read the APDT correctly.

INITIALIZATION
During a processor reset, the APMODE field is set to 0,
disabling parallel port interrupts and giving control of the
shared PIO signals (PIO7/REVOE, PIO6/DATA-
STROBE, PIO5/SELECTIN, and PIO4/INIT) to the PIO
port.

In the APCT Register, all fields are set to 0 except
AFBUSY, APDHHB, and ACKLEN. AFBUSY and
APDHHB are set to 1, forcing PBUSY (Busy) Low. The
ACKLEN field is set to all 1s.

In the APST Register, the PSTBLHS, PSTBHLS,
PAUTOLHS, PAUTOHLS, SELINLHS, SELINHLS,
INITLHS, INITHLS, APDS, ECS, and DEVINITS bits are
set to 0.

In the APIM Register, all interrupt masks are set to 0.

The POCT, PIN, POEN, and POUT registers must be
configured before the parallel interface is enabled. Bits 6
and 7 of the POEN field must be set to 1; bits 4 and 5 of
the POEN field must be set to 0. The parallel port inter-
face can then be programmed incrementally, as re-
quired; there is no need to disable the interface before
writing other registers.

AMDA D V A N C E I N F O R M A T I O N

55Am29202 Microcontroller

CONTROLLING THE
PARALLEL PORT INTERFACE
The API has been designed to allow easy access to in-
put status information using a variety of software strate-
gies, including polling, interrupt service, and DMA.

In its Advanced Parallel Status (APST) Register, the API
reports a number of conditions that show either signal
transitions or a data transfer request. These control and
data transfer condition bits may be read and manipu-
lated by software to control the operation of the parallel
port interface (See Figures 22 and 23).

Eight of the condition bits are generated directly from ex-
ternal signal edges. The list below shows the signals
whose edges are detected and that have corresponding
edge-detection conditions in the APST Register. These
input signals have one condition for high-to-low transi-
tions, and one for low-to-high.

In general,

PSTROBE signals a forward data strobe.

PAUTOFD signals a reverse data strobe.

SELECTIN signals 1284Active.

INIT signals an ECP mode transition request or an
initialization request.

The other conditions in the control group are the ECS
and DEVINITS. The ECS condition signals a command
byte during an ECP transfer. The DEVINITS is a signal
generated when the host wants to asynchronously rein-
itialize the peripheral and set it back to Compatibility
mode.

The APDS condition bit signals the status of a data
transfer request. APDS indicates when a hardware
handshake-supported data transfer mode receives (or
is ready to transmit) a data byte.

Polling
The condition bit values in the APST Register can be
used to request service for the conditions by polling from
the support software. The specific condition can be
cleared by writing a 1 to the corresponding condition bit
in the APST Register.

Interrupts
If the particular condition requires faster response than
polling can accomplish, an interrupt can be generated.

There are two types of API interrupts: control and data
transfer. Each is supported with its own interrupt struc-
ture. The control (APCI) and data transfer (APDI) inter-
rupts appear separately in the Interrupt Control (ICT)
Register, allowing separate interrupt handlers for mode
transition and data handling.

The Advanced Parallel Interrupt Mask Register (APIM)
specifies the particular IEEE-1284 signal inputs that are
combined to cause the next APCI interrupt. There also
exists a mask (enable bit) for the single APDI data trans-
fer interrupt. This allows easy programmer control as
each IEEE-1284 transition occurs.

To generate an interrupt, the corresponding mask bit in
the Advanced Parallel Interrupt Mask Register (APIM)
for each condition must be set. When a condition bit is
true and its mask is set, the corresponding interrupt flag
is asserted in the Advanced Parallel Interrupt Status
Register (APIS). This register is used by interrupt ser-
vice routines to determine the condition that caused the
latest APCI interrupt. All control condition interrupts and
status bits must be reset manually, except for the
DEVINIT status/interrupt bits, which are cleared auto-
matically on entering Compatibility mode.

Data Transfers
Once a communications mode that supports full hard-
ware handshaking is entered, polled APDS data trans-
fer request bits, APDI interrupts, or DMA requests will
cause a move of data from the Advanced Parallel Data
(APDT) Register to memory in forward modes, and from
memory to the APDT for reverse modes. The Advanced
Parallel Data Register is a special register decode that
addresses the external data latch. The register does not
exist internal to the API; it causes the generation of the
POE or PWE signals that read external data, or latch it,
respectively.

In semi-automatically handshaked modes such as
Nibble mode, data is handled by a combination of APDI
and APCI interrupts.

Data transfer requests, whether serviced by polling, in-
terrupts, or DMA, are cleared automatically when the
data is transferred (read or written); normally APDS
need not be cleared by software directly.

Figure 24 shows the timing of an external access. This
external access is treated as either a DMA access or a
processor PIA access for the purpose of prioritization
with other accesses. Figure 25 shows the timing for a
buffer write.

Data Interrupts

The DMAMODE bit controls whether the Data Transfer
Request Status bit (APDS) causes an APDI data inter-
rupt (if masked) or a DMA request.

When the data transfer condition bit APDS is set to sig-
nal a data transfer, when DMAMODE is 0, and when the
Data Transfer Interrupt Mask bit APDM is 1, then the
APDI interrupt bit in the ICT Register is set, interrupting
the processor for a data transfer.

AMD A D V A N C E I N F O R M A T I O N

56 Am29202 Microcontroller

Figure 22. Example: Using A Control Status Condition to Generate an Interrupt in Compatibility Mode

PSTROBE true edge
(when APMODE = 1 for Compatibility mode)

APST Register

0

PSTBLHS
1

12
automatically sets the
condition status bit
PSTBLHS
(available for polling).

APIM Register

0

PSTBLHM
1

12

If the PSTBLHM mask
bit is written to a 1,

APIS Register

0

PSTBLHI
1

12

then a PSTBLHI interrupt

ICT Register

11

APCI
1

1213

generates an APCI interrupt.

Condition
Latch

PSTBLHM
Control Interrupt Mask

All other control
interrupt bits

Inputs that
cause condition

APCI
Interrupt

PSTBLHS Condition Status

PSTBLHI Condition
Interrupt

PSTROBE
true edge

Note:
This example chain of events, based on PSTROBE true edge, is true for Compatibility mode when the value of APMODE
is set to 1.

AMDA D V A N C E I N F O R M A T I O N

57Am29202 Microcontroller

Figure 23. Example: Using the Data Status Condition in Compatibility Mode

PSTROBE true edge,
signaling that data is available
(when APMODE = 1 for Compatibility mode),

15

APDS
1

1617automatically sets the
condition status bit APDS
in the APST Register
(available for polling).

15

APDM
1

1617If the DMAMODE is
written to a 0 and the
APDM mask bit
in the APIM Register
is written to a 1,

12

APDI
1

1314

then an APDI interrupt is
generated in the ICT Register.

APCT Register

18

DMAMODE

19

DMAMODE = 0 DMAMODE = 1

DMA transfer occurs to a
channel selected by the APDC
field. No interrupt is generated,
no matter the value of APDM.
The type of access is set by
the status of the DMA
controller.

APDC

17–16

Note:
This example chain of events, based on PSTROBE true edge, is true for Compatibility mode when the value of APMODE
is set to 1.

Condition
Latch

APDM Data Transfer
Request Interrupt Mask

Inputs that
cause data

transfer request
APDI
Interrupt

APDS Condition Status

DMA Channel
Selector

PSTROBE
true edge

0

1

DMAMODE

AMD A D V A N C E I N F O R M A T I O N

58 Am29202 Microcontroller

Data

MEMCLK

A21–A0

ID7–ID0 or
ID31–ID0

POE

PWE

Figure 24. Advanced Parallel Port Buffer Read Cycle for Forward Transfers

Note:
Please refer to IEEE Std 1284-1994 for complete timing requirements, transition event descriptions, and timing
diagrams specific to the standard.

MEMCLK

A21–A0

ID7–ID0

POE

PWE

Data

Figure 25. Advanced Parallel Port Buffer Write Cycle for Reverse Transfers

DMA

In all modes except Nibble, data handling can also be
supported with DMA. When a data transfer condition
(APDS) is set and DMAMODE is 1, the APDI is not as-
serted and a DMA transfer request is issued instead.
The APDC field selects a particular DMA channel to re-
quest.

A special command interrupt allows separate handling of
ECP-Forward-mode commands in the DMA data stream.

Full-Word Transfer

A faster mode of data transfer in the forward direction is
the full-word transfer. Full-word transfers are valid only
in Compatibility and ECP Forward modes.

This feature allows the designer to latch input data into
four external latches and to read the full word from the
APDT at one time, reducing the demand placed on the
processor and reducing bus bandwidth requirements.

External hardware is used in full-word transfer systems
to latch and concatenate the separately strobed data
bytes into a 32-bit word. Then, (in full-word transfer
mode) when a 32-bit word has been assembled, the API
automatically issues a single data request for the entire

AMDA D V A N C E I N F O R M A T I O N

59Am29202 Microcontroller

word. It does not issue data transfer requests for the in-
tervening bytes; in fact, it acknowledges them without
delay, speeding up the transfer greatly.

It is inadvisable to read the external APDT Register be-
fore receiving a data byte, whether in AFWT mode or
not. In either case, a data byte may be lost. Resetting the
external byte counter for AFWT operation whenever the
APDT is read will guarantee synchronization through
ECP command intervention.

ECP Commands
ECP mode supports several advanced features to im-
prove the effectiveness of the protocol for applications
such as raster image devices. These include support for
multiple channels of 8-bit bidirectional transfers, as well
as support for compression using run-length encoding.

To distinguish between commands and data, the con-
text of the ECP Forward data stream may be modified by
the status of the PAUTOFD (nAutoFd) signal at transfer
time. This bit is known as the command bit. The
IEEE-1284 standard calls for optional changes in pe-
ripheral handling of the data stream when the status of
the command bit changes. These changes are com-
pletely application-specific and are optional.

The API on the Am29202 microcontroller provides three
different features to facilitate automatic handling of com-
mand conditions in ECP Forward mode. These include:

Automatic hold-off of the data transfer mechanism
by not asserting APDS on the affected command
byte.

Generation of a specialized command status (that
can be masked to cause a command interrupt) called
ECS (ECP Command Status).

A way to set the expected polarity of the command bit
that should cause the ECS condition. This bit is
called CPE (Command Polarity Expected).

When the command bit (status of PAUTOFD) is the
same as CPE, the command status is set (ECS is as-
serted; if masked, ECI occurs). At this point, the normal
data transfer request is disabled and does not occur.
The data that is modified by the command bit must be
handled by a separate command handler. Even when
the command data is read, the normal data handshake
does not occur. This allows the peripheral to read the
byte value and accomplish any actions that the com-
mand implied, before allowing the data stream to restart.
The data stream will restart and continue automatically
when the interrupt handler clears the ECS condition (by
writing a 1 to the ECS or ECI bits).

Using Full-Word Transfer with ECP Commands

When a command occurs during an ECP full-word
transfer stream, the pending data count is ignored and
the ECP Command Status (and if masked, an ECP
Command Interrupt) bit is asserted. The software must
utilize the Byte Count (BC) field to determine the actual
location of the command within the full word being cap-
tured and the amount of external data that is valid. Then,
a read of the APDT captures the partial word in the em-
bedded command.

The current (command) byte will not be handshaked un-
til the ECS/ECI status is cleared. However, this proce-
dure should not be accomplished until the command
has been interpreted, the remaining data left in the full
word distributed to the appropriate buffer, and the BC
field cleared. The BC field is cleared by clearing the
AFWT bit.

The remaining full-word data requires that the AFWT bit
be set again and the DMA controller addresses be reset
for the new buffer locations affected by the intervening
command. Finally, the ECS bit is cleared to allow the in-
terface to continue with the next AFWT data byte.

AMD A D V A N C E I N F O R M A T I O N

60 Am29202 Microcontroller

Mode Selection
Changing modes successfully involves performing two
different kinds of operations in software:

Selecting an IEEE-1284 mode and communicating
that choice back to the host.

Setting up the Am29202 microcontroller’s internal
hardware to support the negotiated mode.

Communicating a Mode Choice to the Host

Although the IEEE-1284-compliant host initiates mode
change requests, it is the software on the peripheral side
that selects which mode the peripheral will support.

When the peripheral receives a request (along with an
IEEE-1284 extensibility byte) from the host to enter a
specific mode, the software evaluates the request and
signals the host when the requested mode is one that
the peripheral will support. This procedure is well docu-
mented in IEEE Std 1284-1994 with phase transition
diagrams, descriptions of signal transition events, and
timing diagrams.

Configuring the API to Support a Negotiated Mode

Setting up the Am29202 microcontroller hardware to
support the negotiated mode is accomplished by writing
a value to the APMODE field in the APCT Register. The
value of APMODE (see Table 10) tells the microcon-
troller to interpret incoming and outgoing signals ac-
cording to handshaking protocols particular to each
mode. It also sets other functions, such as the allocation
of PIOs and DMA direction.

Note that setting APMODE is completely independent of
the mode negotiation process. The host and peripheral
negotiate for a mutually acceptable mode, which may or
may not match the current APMODE setting. The pro-
grammer must reset APMODE at various times during
negotiation into and out of the modes:

Immediately after the interrupt for negotiating to
another mode is received, APMODE should be set
for Compatibility mode.

Immediately before negotiation is ended, APMODE
should be set to the desired value for the new mode.

When data-direction-change interrupts occur (from
ECP Forward to Reverse, or ECP Reverse to For-
ward), APMODE should be set for the appropriate
submode.

As a general rule, the desired APMODE setting should
not be enabled before the programmer is completely
ready for the Am29202 microcontroller hardware to be-
gin interpreting inputs according to the automatic hand-
shake protocols for that particular mode.

Software Control of Handshaking
If desired, the programmer can turn off all automatic
handshaking and take direct control of all aspects of the
API interface. Register fields provide complete access
to all the required controls to operate the parallel inter-
face using software alone.

When set to 1, the APDHHA and APDHHB bits in the
APCT Register turn over direct control of the PACK
and PBUSY outputs to the AFACK and AFBUSY bits.

The APDS field contains all real-time input values.

When the APMODE field in the APCT Register is set
to 0, no preset operating mode is defined. Although
the LH and HL status conditions for PSTROBE, PAU-
TOFD, SELECTIN, and INIT are not available in the
APST Register when APMODE is 0, the real-time
status of these signals, as well as those for PBUSY
and PACK, is available.

AMDA D V A N C E I N F O R M A T I O N

61Am29202 Microcontroller

USING SOFTWARE IN IEEE-1284 MODES
The API hardware provides a rich set of controls that
gives the programmer maximum flexibility. If desired,
most of the API operation (except for negotiation) can be
automatic. The programmer need only set up a few con-
trols for the Am29202 microcontroller hardware to han-
dle most handshakes automatically.

The key to this control is the APCI interrupt, generated
on the edges of the four protocol signals and on the ECP
Command and Device Initialization conditions. This in-
terrupt is used to manage mode changes, negotiation,
and termination. Application software must modify the
Advanced Parallel Interrupt Mask Register at each
stage of an IEEE-1284 transition, selecting the edges
required for the next possible interrupts, as well as doing
the work required at that phase transition.

This section presents some minimal programming
suggestions, not necessarily complete or in sequence,
to differentiate between what happens automatically in
the Am29202 microcontroller hardware and what
should be programmed in software. The programmer
should use the IEEE Std 1284-1994 document as the
authoritative reference source. Table 11, “Using Control
Status Conditions in IEEE-1284 Modes,” is presented to
facilitate reference back and forth between the two doc-
uments.

Compatibility Mode
This mode is the first, and most basic, of the IEEE-1284
modes. It is similar to the classic (Centronics) port in timing.

The API interface should always be initialized to Com-
patibility mode by software. This is the default
IEEE-1284 communications mode for all hosts and pe-
ripherals. This mode is maintained until the host has
successfully verified that it is connected to an
IEEE-1284-compliant device.

From Compatibility mode, the host can either negotiate
with the peripheral for another mutually supported mode
or transmit data to the peripheral using Compatibility
mode. A peripheral-to-host transfer is requested by the
host, negotiating with the peripheral for a mutually sup-
ported communication mode. At the direction of the
host, the API interface can be returned to Compatibility
mode at any time.

In Compatibility mode (APMODE set to 1), the API inter-
face provides automatically-handshaked data transfers
with polling, interrupt, or DMA support for forward byte
(or full-word) transfers.

Automatic Handshakes

The API generates automatic handshakes in Compati-
bility mode as follows: On PSTROBE (nStrobe) true
edge, the PBUSY (Busy) signal goes active and the data
transfer request bit (APDS) is driven true. The

DATASTROBE line is pulsed automatically when
PSTROBE is asserted. This causes the external low-to-
high-triggered data latch to capture the data on the ac-
tive edge of PSTROBE. PACK (nAck) is driven true
when data is read from APDT Register, for a pulse
length of TACKLEN. PBUSY is set false when PACK is set
false (the pulse is completed). PAUTOFD (nAutoFd)
status is available in the APST Register.

The Acknowledge Length (ACKLEN) field in the APCT
Register sets the length of the PACK pulse generated by
the automatic handshakes. In software:

Set the ACKLEN field to an appropriate length of time
in MEMCLK cycles. The IEEE standard calls out a
minimum PACK (nAck) pulse width of 500 ns, but a
longer one may be desired. The ACKLEN field can
be programmed from 1 to 255 cycles in length.

Data Transfers

Data transfer is requested on PSTROBE (nStrobe) go-
ing active. This sets the APDS bit, for polling.

To program interrupt-driven data transfers:

Set the APDM mask bit and clear DMAMODE, caus-
ing an APDI interrupt in the ICT Register whenever
the APDS is set. No DMA request will be issued.

To enable DMA transfers:

Set the DMAMODE bit to 1, causing a DMA request
to the channel set in the APDC field. No APDI is gen-
erated, irrespective of the status of APDM.

Preventing Deadlocks During Data Transfer

Deadlocks can occur when the forward channel has
stalled because it is full and the host is requesting status
information on the reverse channel. When using for-
ward-channel data transfers in Compatibility mode, the
programmer should set up certain controls to ensure
that clogging in the forward-channel does not preclude
negotiation into a reverse mode.

In order to prevent deadlocks, the programmer should
be aware of what is happening with the internal buffer at
all times. Setting up an internal busy length that can be
detected by the application allows software to determine
when the internal buffer is nearing full. There should be
enough space left over in the internal buffer so that, even
though the internal process is shown as busy, an APDS
interrupt will still be accepted for the last byte. The last
byte can then be rescued out of the external register and
stuck on the end of the buffer, even though it is internally
thought of as full.

Note that this requires the programmer to make a dis-
tinction between an external busy, where the API is tech-
nically busy (“buffer-full” busy), and an internal

AMD A D V A N C E I N F O R M A T I O N

62 Am29202 Microcontroller

Status Bit Name in
Am29202 Microcontroller’s

APST Register
APST Bit

Mnemonic

Signal State As Shown on Timing Diagrams in
IEEE Std 1284-1994

Compatibility
Mode

Byte and Nibble
Modes ECP Mode

PSTBLHS

PSTBHLS

PAUTOLHS

PAUTOHLS

SELINLHS

SELINHLS

INITLHS

INITHLS

nStrobe
True edge

nStrobe
False edge

nAutoFd
True edge

nAutoFd
False edge

nSelectIn
True edge

nSelectIn
False edge

nInit
True edge

nInit
False edge

PSTROBE Low-to-High
(True) Edge Detection Status

PSTROBE High-to-Low
(False) Edge Detection Status

PAUTOFD Low-to-High
(True) Edge Detection Status

PAUTOFD High-to-Low
(False) Edge Detection Status

SELECTIN Low-to-High
(True) Edge Detection Status

SELECTIN High-to-Low
(False) Edge Detection Status

INIT Low-to-High
(True) Edge Detection Status

INIT High-to-Low
(False) Edge Detection Status

HostClk
False edge

HostClk
True edge

HostBusy
False edge

HostBusy
True edge

1284Active
False edge

1284Active
True edge

nInit
True edge

nInit
False edge

HostClk
False edge

HostClk
True edge

HostAck
False edge

HostAck
True edge

1284Active
False edge

1284Active
True edge

nReverseRequest
True edge

nReverseRequest
False edge

Table 11. Using Control Status Conditions in IEEE-1284 Modes

Note:
The LH and HL designations refer to the signal at the Am29202 microcontroller, inverted from the IEEE-1284 bus.

AMDA D V A N C E I N F O R M A T I O N

63Am29202 Microcontroller

application-supported busy, where the application de-
cides that no more data is going to be accepted for a
period of time.

In this situation, the Advanced Forced Busy (AFBUSY)
bit in the APCT Register can be used to control the
PBUSY pin for the external busy condition. The Asynch-
ronous Busy Control (ABC) bit is used for the internal
busy condition, to asynchronously force PBUSY as-
serted when the application needs to appear busy.
When set, ABC will throttle the host during those periods
when the internal buffer is nearing full and the applica-
tion wants the peripheral to appear busy.

A simple way of preventing deadlocks is to:

Set ABC asserted at any time to throttle host data. In-
terrupts received for negotiation may continue to be
accepted.

Enabling Negotiation to Another Mode

To enable IEEE-1284 negotiation, in software:

Set SELECTIN false-edge interrupt mask (SELINHLM)
and PAUTOFD true-edge interrupt mask (PAUTOLHM)
to cause interrupts for transition to IEEE-1284 negoti-
ation mode. (Such a transition normally happens
only in the Forward Idle state.) When either interrupt
occurs, check for real-time status of the other status
value to signal the negotiation request.

Negotiation Phase
In AMD’s implementation of the IEEE-1284 standard on
the Am29202 microcontroller, the process of negotiation
between host and peripheral for a mutually acceptable
mode is handled completely by software. The basic
steps of the negotiation process are always the same,
no matter what mode is the final target or how many
times the same negotiation has already occurred.

The complete negotiation process is thoroughly de-
scribed in IEEE Std 1284-1994. This section presents
some minimal software recommendations that apply
specifically to AMD’s implementation of the standard.

Negotiation starts from the SELECTIN (nSelectIn) false-
edge interrupt where PAUTOFD is true, or from the
PAUTOFD true-edge interrupt where SELECTIN is
false.

During negotiation, the software should take direct con-
trol of the PACK (nAck) and PBUSY (Busy) status lines.
On assertion of APDHHA, PACK internal status will be
cleared, and PACK will not be automatically generated
in hardware. In software:

Set APDHHA and APDHHB true. Set the proper sta-
tus for signaling IEEE-1284 compliancy: PERROR
(PError) true, PACK (nAck) true, FAULT (nFault)
false, and SELECT (Select) true.

To ensure that the forthcoming extensibility byte is
not interpreted as data, disable data transfers by
clearing the APDM and DMAMODE bits.

Clear the SELINHLM and PAUTOLHM bits, set the
PSTBLHM bit, and return from interrupt.

Once in negotiation mode, the PSTROBE high-to-low
interrupt signals an extensibility byte on the data latch. In
software:

Set the PSTROBE false-edge interrupt mask
(PSTBHLM). At that interrupt, read the extensibility
byte in the APDT Register and determine if the mode
can be supported (or, if the peripheral chooses to
support it). APDS is cleared automatically.

Set the status lines for the mode selected. Set inter-
nal PBUSY status. Set PERROR false and set
FAULT (nFault) true if peripheral-to-host data is
available. Set the SELECT (XFlag) line to its ap-
propriate value (corresponding to the extensibility
feature requested), indicating approval for that
mode.

Set APMODE to the correct value for the new mode.

Before ending negotiation, enable a table of actions
in the negotiation section of the driver. The applica-
ble new mode will require a particular set of interrupt
masks, data transfer modes, and status lines to be
set.

Set the PACK (nAck) line false, ending the negoti-
ation.

If negotiation fails, the SELECT (Select) line is set false,
host-to-peripheral busy status is placed on PBUSY
(Busy), peripheral-to-host data available is set on
FAULT (nFault), and PACK (nAck) is set false.

Terminating a Mode

The SELINLHM interrupt edge mask should always be
set when in any IEEE-1284 mode, allowing driver sup-
port for mode termination. To enable application-driven
termination back to Compatibility mode:

Set the SELECTIN true-edge interrupt mask
(SELINLHM). At that interrupt, manually complete
the valid-state-termination handshake described in
the IEEE standard and return from interrupt. A new
interrupt on SELECTIN false edge can start another
negotiation.

Device ID

If the negotiated mode is a device ID mode, then that
mode is entered with data pending to be sent to the host.
That data is the device ID string, and it is inserted into the
data stream ahead of anything else already pending.
That mode is ended when the ID string has been sent
and must terminate for renegotiation.

AMD A D V A N C E I N F O R M A T I O N

64 Am29202 Microcontroller

Idle Mode

If the new mode is a reverse channel mode and there is
no data pending (reverse idle mode), then after the sta-
tus is latched on PACK (nAck), the host will either wait at
busy, terminate, or force the peripheral into an idle
mode.

Idle mode can be reached by the host assertion of
PAUTOFD (nAutoFd) while the host thinks there is no
data available, but the interface need not switch to idle
phase. Internal data available status will change
asynchronously through the application, but the host’s
knowledge of that status occurs only after it is signaled
on FAULT (nFault) and only after being strobed in with
PACK (nAck).

To signal the presence of new reverse data:

Assert FAULT and pulse PACK.

Once in idle mode, the interface can either stay in idle, or
terminate normally.

Nibble Mode
Nibble mode provides for slow software-driven reverse-
channel communications only. Nibble mode is the only
one of the supported IEEE-1284 modes that requires
the programmer to handle data transfers completely in
software. In order to set up the lines with status informa-
tion in addition to data, the first and second nibbles are
handled differently.

Data is carried on four status lines: FAULT (nFault),
SELECT (Select), PERROR (PError), and PBUSY
(Busy). No data is transferred on the signal lines used for
forward-channel data. The forward channel continues to
be driven by the host only, allowing unidirectional hosts
to have access to a reverse channel.

There is semi-automatic hardware handshake support.

No DMA transfers are available in this mode.

SELECTIN (nSelectIn) true-edge interrupts must be en-
abled for application-driven termination back to Com-
patibility mode.

The DATASTROBE line is not activated, once in this
mode.

Data Transfers

All data transfers are signaled via APDS status (and if
masked, APDI interrupts) and are handled from soft-
ware control. Semi-automatic handshakes are gener-
ated in this mode. To signal acknowledgment of data,
PACK (nAck) is automatically deasserted on the
deassertion of PAUTOFD (nAutoFd). This partial hand-
shake support (on PAUTOFD false edge) is termed
“semi-automatic.”

In software:

Set APDHHB true and handle PBUSY manually.

To utilize the delayed PACK mechanism, set the
APDHHA bit to 0. If fully manual control is desired,
set APDHHA to 1.

Load a delay value into ACKDELAY consistent with
the IEEE-1284 standard, or longer.

First Nibble

When PAUTOFD (nAutoFd) is asserted showing host
not busy, the API hardware automatically generates an
APDS data transfer request.

In software:

Distribute the bits of the low nibble of the first byte
into the nibble consisting of: FAULT, SELECT,
PERROR, and PBUSY for Data1–Data4.

Immediately assert AFAS to force PACK (nAck) as-
serted after a delay of length TACKDELAY.

AMDA D V A N C E I N F O R M A T I O N

65Am29202 Microcontroller

The built-in delay means that the processor need not be
interrupted again until the next PAUTOFD (nAutoFd)
assertion (showing ready for more data). PACK (nAck)
is semi-automatically deasserted on the deassertion of
PAUTOFD (nAutoFd) (signaling acknowledgment of
data). This completes the first nibble of the byte.

Second Nibble

For the second nibble, an extra step must be inserted at
the very end of the transfer. Before deasserting PACK
(nAck), the peripheral must place status information on
the lines previously used for data. Then, after a data set-
up time, PACK (nAck) can be deasserted, thus ending
the transfer of the byte.

For this to occur, the peripheral must do two things:
block the automatic deassertion of PACK (nAck) after
data is sent, and be interrupted when PAUTOFD
(nAutoFd) goes inactive.

The series of steps to transfer the second nibble is
shown below, in order:

When PAUTOFD (nAutoFd) is again asserted showing
host not busy, the API hardware generates another
APDS data transfer request.

In software:

Place the second nibble of the byte of data onto the
nibble data lines as for the first nibble. Also set
PAUTOHLM and Background Status Defer (BSD)
to 1.

PAUTOHLM will alert the service routine when to take
the transferred data off the nibble data lines and when to
put the return status information on them.

BSD controls the semi-automatic handshake that deas-
serts PACK (nAck), once asserted. When BSD is 0,
PACK (nAck) deasserts on PAUTOFD (nAutoFd)
deassertion (handshake completes). When BSD is 1,
PACK (nAck) is held asserted until BSD is again set to 0
(handshake deferred). When BSD is cleared, PACK
(nAck) is deasserted after a delay of length TACKDELAY
(deferred handshake completes).

Once the mask and BSD are set to the correct levels,
send the second nibble by again asserting AFAS.

After TACKDELAY, PACK (nAck) is asserted, and the host
again deasserts PAUTOFD (nAutoFd). This time the
PACK (nAck) is not deasserted automatically. Instead
PAUTOFD (nAutoFd) deassertion causes a control inter-
rupt on APCI. This BSD-based selection of the status-
output phase increases interrupt efficiency over being
interrupted every time PAUTOFD deasserts and does
not require constant rewrites to the APCT Register.

In software:

Update PBUSY (Busy) to the peripheral host-to-pe-
ripheral forward-channel-busy status (for the Com-
patibility mode channel), set reverse-data-available
status on FAULT, set PERROR to track FAULT, and
clear BSD, allowing the status phase to handshake.

After the delay, PACK (nAck) deasserts and the inter-
face is ready to send another byte or to change modes.

Changing Modes

To enable application-driven termination back to Com-
patibility mode:

Set the SELECTIN true-edge interrupt mask
(SELINLHM). At that interrupt, set APMODE to 1 for
Compatibility mode. Manually complete the valid-
state-termination handshake described in the IEEE
standard and return from interrupt. A new interrupt
on SELECTIN (nSelectIn) false edge can again start
another negotiation.

Nibble Idle Phase

In Nibble Idle phase, the peripheral must signal the pres-
ence of new reverse data. In software:

Assert FAULT and pulse PACK.

Nibble ID

Nibble ID mode is identical to Nibble mode, except that
Nibble ID mode is entered with data always pending,
and that data is always the IEEE-1284 ID data message.
Even if there is other data available in the stream, the ID
message is sent before any other pending data. When
the ID message is sent, the host terminates the mode
and renegotiates for any further data. This mode is dis-
tinguished from Nibble mode by software only.

AMD A D V A N C E I N F O R M A T I O N

66 Am29202 Microcontroller

Byte Mode
Byte mode supports byte-wide reverse data transfers on
the eight data lines used for forward channel data in
Compatibility mode. API support for Byte mode is similar
to that for Nibble mode, but offers automatic hand-
shakes, faster transmission, and less complicated pro-
gramming.

This mode, like ECP Reverse, requires a special exter-
nal signal to reverse the data direction, driving latched
output data onto the IEEE-1284 data bus. This line is
called REVOE and drives the external dual-direction
bus driver/latch (LS652 or ACT652).

The IEEE-1284 handshake protocol allows for the time
required to disable the host data-driver and enable the
peripheral data-driver, as well as to enter the reverse
mode. An opposite sequence is used for termination.

Data transfers are requested on PAUTOFD (nAutoFd)
assertion in this mode.

DMA transfers for data are enabled via the DMAMODE
bit.

SELECTIN (nSelectIn) true-edge interrupts must be en-
abled for application-driven termination back to Com-
patibility mode.

The DATASTROBE line is not activated, once in this
mode.

Automatic Handshakes

APDS occurs on PAUTOFD (nAutoFd) true edge and
signals host readiness for reverse data. One data-setup
time (500 ns) after the APDT data latch has been written,
PACK (nAck) is automatically asserted (this is delayed
through the ACKDELAY mechanism). The host will re-
move PAUTOFD (nAutoFd), acknowledging PACK
(nAck). Finally, PACK (nAck) deassertion occurs, com-
pleting the handshake.

The host will then send a pulse on the PSTROBE
(nStrobe) line signaling that the byte was accepted and
processed. This PSTROBE input will not cause a for-
ward data latching on DATASTROBE. It signals the ac-
knowledgment of a byte only. It can be ignored, or used
as a flow control indicator.

Another assertion of the PAUTOFD signal indicates that
another byte should be sent; the host will only request if
data is available.

The Acknowledge Delay (ACKDELAY) field in the APCT
Register is the minimum data setup time from when the
data is output to the time the PACK signal is generated
(signaling data transfer) automatically in hardware. In
software:

Load a delay value into ACKDELAY consistent with
the IEEE-1284 standard, or longer.

Data Transfers

Data transfer is requested on PAUTOFD (nAutoFd) go-
ing active. This sets the APDS bit.

To program interrupt-driven data transfers:

Set the APDM mask bit and clear DMAMODE, caus-
ing an APDI interrupt in the ICT Register whenever
the APDS is set. No DMA request will be issued.

To enable DMA transfers:

Set the DMAMODE bit to 1, causing a DMA request
to the channel pointed to by the APDC field. No APDI
is generated, irrespective of the status of APDM.

Using DMA in Byte Mode

Note that when using DMA in Byte mode, the first byte
cannot be transferred automatically. This is because the
direction of the data driver must be reversed after the
host has guaranteed disabling of its drivers. This occurs
after the first byte has been requested. In software:

Set INTREVOE immediately after PAUTOFD
(nAutoFd) assertion to set up reverse transfers. (The
first PAUTOFD assertion occurs after the host dis-
ables its data drivers.)

Set an interrupt for PAUTOFD (nAutoFd) false edge.
Program the DMA controller, enable it, and return
from interrupt.

Setting Status Information

Status lines are read by the host at the end of each byte
transfer.

Peripheral-to-host data available on FAULT (nFault)
and forward host-to-peripheral busy status on PBUSY
(Busy) must be setup at least 500 ns before the automat-
ic deassertion of PACK (nAck).

The nDataAvail flow control structure defined in the
IEEE-1284 standard requires a way to update the status
on the FAULT (nFault) signal line. A simple procedure in
software is to:

Set the DMA channel length to n-1.

Set the Count Terminate Enable (CTE) bit in the DMA
Control Register.

In the DMA count-terminate interrupt handler, clear
the status of data available by setting the FAULT sta-
tus to false before the next byte is requested.

Load the last byte into the APDT Register, causing
that byte to transmit automatically.

If the peripheral design requires a particular status func-
tion to be explicitly forced with a guaranteed data setup
time, then the processor may set an interrupt for
PAUTOFD deassertion and set Background Status De-
fer (BSD). BSD is used the same way as in Nibble mode.

AMDA D V A N C E I N F O R M A T I O N

67Am29202 Microcontroller

The hold-off procedure described below is available but
not required. Status lines can be updated by software at
their activity times and will be interpreted by the proces-
sor at the next byte completion (PACK deassertion).

In software:

Set BSD to hold off the PACK (nAck) deassertion that
completes the handshake.

Have the interrupt service routine for the PAUTOHLI
update the status values, then clear BSD and
PAUTOHLM (if it was a one-time update cycle), and
return from interrupt.

The clearing of BSD starts an ACKDELAY cycle and
deasserts PACK (nAck) at the completion of that period
automatically, thus guaranteeing data setup time.

Changing Modes

To enable application-driven termination back to Com-
patibility mode:

Set the SELECTIN true-edge interrupt mask
(SELINLHM). At that interrupt, set APMODE to 1 for
Compatibility mode. Determine and write the proper
condition of INTREVOE. Manually complete the val-
id-state-termination handshake described in the
IEEE standard and return from interrupt. A new inter-
rupt on SELECTIN (nSelectIn) false edge can start
another negotiation.

Byte Idle Phase

In Byte Idle phase, the peripheral must signal the pres-
ence of new reverse data. In software:

Assert FAULT and pulse PACK.

Byte ID

Byte ID mode is identical to Byte mode, except that Byte
ID mode is entered with data always pending, and that
data is always the IEEE-1284 ID data message. Even if
there is other data available in the stream, the ID mes-
sage is sent before any other pending data. When the ID
message is sent the host terminates the mode and rene-
gotiates for any further data. This mode is distinguished
from Byte mode by software only.

AMD A D V A N C E I N F O R M A T I O N

68 Am29202 Microcontroller

ECP MODE
A distinction of the ECP Forward and Reverse modes is
that they can be transferred to and from each another
without a renegotiation back to Compatibility mode.
They differ from Nibble and Byte modes in that respect.

In order to set up the Am29202 microcontroller hard-
ware for the correct automatic handshaking protocols,
the programmer must set the APMODE field to the cor-
rect value when entering and leaving ECP Forward and
ECP Reverse modes.

ECP Forward
ECP Forward mode operates similarly to the Compati-
bility mode, except that PBUSY (Busy) is used as re-
verse IEEE-1284 data strobe and PACK is not used at
all.

The host signals that data is available by asserting
PSTROBE (nStrobe). The peripheral regulates data
flow by delaying the acknowledgment of the PSTROBE
assertion when the channel is busy and the buffer is still
full. This acknowledgment hold-off stops the host from
continuing until the buffer is emptied. The APDS bit is
then set by PSTROBE assertion. When the peripheral
responds to the data transfer request (via polling, inter-
rupt service, or DMA), the API releases the hold and as-
serts PBUSY (Busy). Because the host data retrieval
and access time is overlapped with the peripheral data
transfer time, the total bus speed is high.

The software must enable the control interrupt for INIT
(nInit) assertion, to correctly transfer to the ECP Re-
verse mode.

The PERROR (PError) line is used to signal the setup
phases after negotiation and before the idle phases (the
beginning of automatically handshaked data transfers).
It also functions as the acknowledgment of the INIT
(nInit) signal, and tells the host when it can send data.

DMA transfers may be enabled for forward data using
the DMAMODE bit.

FAULT (nFault) may be driven asynchronously to signal
data available for transfer in ECP Reverse mode.

SELECTIN (nSelectIn) true-edge interrupts must be en-
abled for application-driven termination back to Com-
patibility mode.

Automatic Handshakes

The host signals that data is available by asserting
PSTROBE (nStrobe). Once PSTROBE asserts, hard-
ware automatically asserts PBUSY (Busy), signaling
acknowledgment and readiness to receive.

If data has not yet been extracted from the data latch
from the last data byte, the handshake mechanism will
hold off PBUSY (Busy) assertion until the data is read

from the APDT Register (irrespective of the read mech-
anism).

The host then responds by deasserting PSTROBE
(nStrobe). A data transfer request is generated by the
API hardware, along with the DATASTROBE, at
PSTROBE (nStrobe) deassertion. The DATASTROBE
line is pulsed automatically on PSTROBE (nStrobe)
deassertion.

Finally, the peripheral automatically signals acceptance
with PBUSY (Busy) deassertion.

Distinguishing Commands From Data

ECP Forward mode uses hardware handshaking to
transfer eight data bits, but the context of the data is mo-
dified by the PAUTOFD (nAutoFd) signal at transfer
time. The data is interpreted as a user-defined com-
mand when PAUTOFD is asserted and interpreted as
target native data when PAUTOFD is deasserted.

The instance of a command byte automatically causes
an ECP Command Status (ECS) condition instead of an
APDS condition. In software:

Set the ECM and the CPE bits to cause an APCI in-
terrupt.

The hardware handshake is automatically disabled by
the internal logic, and no data transfer requests occur for
that byte (until the ECS/ECI condition is cleared).

In software:

Read the command, interpret it completely, and then
re-enable hardware-handshaking by clearing the
ECS or ECI bits (in either the APST or APIS regis-
ters).

Using CPE

The decision to interrupt the data stream (either DMA- or
interrupt-supported) for an exception byte is controlled
by the Command Polarity Expected bit.

The use of the CPE bit in ECP Forward situations with
only single-byte commands in long data streams is very
simple. In software:

Set CPE to 1, allowing interrupts when PAUTOFD is
High (nAutoFd or HostAck is Low). Service the ECI
interrupt, read the command byte from APDT to de-
termine its meaning, set proper application-specific
context, clear interrupts (to set data stream going
again), and return from interrupt.

Some systems may use the command identifiers as a
means to transfer a second data stream (whether
thought of as an extended command stream or a second
data stream). In those conditions, where a series of
command bytes (command bit set) will be transferred
continuously between the non-command byte stream,

AMDA D V A N C E I N F O R M A T I O N

69Am29202 Microcontroller

the use of CPE can support easy DMA handling of both
streams.

Set CPE to 1 to detect the first command condition. In
the interrupt service routine for ECI, read the com-
mand byte directly from the APDT (the handshake
does not complete in this case), and set the context
or condition required.

Then, reverse the polarity of CPE and load a new ad-
dress and count into the DMA controller to handle the
second (command) data stream. Move the first byte
of the command stream to the buffer front and re-
lease the channel by clearing ECS/ECI, and return
from interrupt.

The DMA will transfer the remaining bytes in the com-
mand stream, and when the command bit changes
again, the ECS/ECI will once again occur.

Handle the transitions between conditions in the
same way, alternating between DMA pointers.

Handling Deadlocks

Note that if the peripheral deadlocks during forward data
transmission, the host will signal INIT (nInit), and then,
expect a PERROR (PError) to allow a reverse mode
transfer.

To ensure proper handling of deadlocks:

Always accept INITs in the middle of a handshake
(ECP Busy condition). They will only come if the pe-
ripheral deadlocks (stays busy in the middle of a
handshake for more than 35 ms).

Always clear the ECP Forward channel busy status
whenever INIT occurs.

Changing Modes

To transfer into ECP Reverse mode:

Set INIT true-edge interrupt mask (INITLHM). At that
interrupt, set APMODE to 5 for ECP Reverse mode.
Set INTREVOE, set up any DMA control variables,
reverse the polarity of the INIT interrupt, and assert
PERROR (PError) to begin reverse data transfer.

To enable application-driven termination back to Com-
patibility mode:

Set the SELECTIN true-edge interrupt mask
(SELINLHM). At that interrupt, set APMODE to 1 for
Compatibility mode. Determine and write the proper
condition of INTREVOE. Manually complete the val-
id-state-termination handshake described in the
IEEE standard and return from interrupt. A new inter-
rupt on SELECTIN (nSelectIn) false edge can start
another negotiation.

ECP Reverse
ECP Reverse mode, like Byte mode, requires a special
output line to reverse the data direction, driving latched
output data onto the IEEE-1284 data bus. This line is
called REVOE and drives the external bidirectional bus
driver/latch (LS652 or ACT652). The IEEE-1284 hand-
shake protocol allows for the timing of host data-driver
disabling and of peripheral data-driver enabling for en-
tering reverse modes, and the opposite sequence for
termination.

The control interrupt for INIT (nInit) deassertion must be
enabled to correctly transfer to the ECP Forward mode.

The PERROR (PError) line functions as the acknowl-
edgment of the INIT (nInit) signal and tells the host when
it can send data, in the reverse-to-forward phase.

DMA transfers for data are enabled via the DMAMODE
bit.

The host signals readiness for another byte of data by
asserting PAUTOFD (nAutoFd).

SELECTIN (nSelectIn) true-edge interrupts must be en-
abled for application-driven termination back to Com-
patibility mode.

The DATASTROBE line is not activated, once in this
mode.

Automatic Handshakes

The host signals readiness for data by requesting ECP
Reverse mode. The API automatically generates APDS
upon entry and automatically asserts PACK (nAck) after
the ACKDELAY period. PACK (nAck) assertion from the
peripheral is answered by PAUTOFD (nAutoFd)
deassertion signaling acknowledgment.

The API logic responds to PAUTOFD (nAutoFd)
deassertion by causing automatic PACK (nAck)
deassertion handshake, and PACK (nAck) deassertion
by the peripheral is answered by a PAUTOFD (nAutoFd)
assertion from the host, signaling an end to the hand-
shake for the byte. This final phase causes another data
transfer request.

In software:

Set the ACKLEN field to an appropriate data setup
time in MEMCLK cycles.

Data Transfers

A data transfer is automatically requested in two differ-
ent situations.

When the interface is first changed from ECP Forward to
ECP Reverse, the data transfer request is set, allowing
the programmer to setup the DMA control variables and
then transfer to ECP Reverse without being required to
“prime the pump” (which entails writing the first byte into

AMD A D V A N C E I N F O R M A T I O N

70 Am29202 Microcontroller

the APDT Register from the program and loading the
DMA controller for n-1 bytes).

Once ECP Reverse mode is established, PAUTOFD
(nAutoFd) assertion at the end of a transfer automatical-
ly causes the next data transfer request.

To enable reverse data transfers:

Set INTREVOE immediately after the PAUTOFD
(nAutoFd) assertion.

To program interrupt-driven data transfers:

Set the APDM mask bit and clear DMAMODE, caus-
ing a APDI interrupt in the ICT Register whenever the
APDS is set. No DMA request will be issued.

To enable DMA transfers:

Set the DMAMODE bit to 1, causing a DMA request
to the channel pointed to by the APDC field. No APDI
is generated, irrespective of the status of APDM.

Distinguishing Commands From Data

ECP Reverse mode uses hardware handshaking to
transfer eight data bits to the host, but the context of the
data may be modified by the PBUSY (Busy) signal.

To transfer data using DMA, force AFBUSY to the
condition required for the data stream, sending all
bytes as data.

To send commands using DMA, set the DMA byte
count for the stretch of non-command data, allowing
automatic handshaking and DMA data support.

Set the CTE bit in the DMA Control Register.

Then, on the DMA count-terminate interrupt, the proces-
sor may assert the command bit and send a single com-
mand byte by writing AFBUSY and writing the command
byte directly to the APDT.

Program the next stretch of non-command data into
the DMA byte length for the next automatic hand-
shaking period.

If data transfer is handled by APDI interrupts only, then
each individual request for data may be used to set both
reverse data into the APDT, as well as the command sta-
tus into AFBUSY.

Changing Modes

To transfer directly into ECP Forward mode:

Set INIT false-edge interrupt mask (INITHLM). At
that interrupt, set APMODE to 4 for ECP Forward
mode. Set INTREVOE to 0 and assert PSTROBE
(nStrobe) to begin forward data transfer.

If the host transitions back to ECP Forward mode with
the INIT (nInit) deassertion, pending data transfer re-
quests must be cleared before returning to ECP For-
ward mode. In software:

Write a 1 to the APDS (after disabling the DMA con-
troller if used).

To enable application-driven termination back to Com-
patibility mode:

Set the SELECTIN true-edge interrupt mask
(SELINLHM). At that interrupt, set APMODE to 1 for
Compatibility mode. Determine and write the proper
condition of INTREVOE. Manually complete the val-
id-state-termination handshake described in the
IEEE standard and return from interrupt. A new inter-
rupt on SELECTIN (nSelectIn) false edge can start
another negotiation.

ECP Reverse ID

ECP Reverse ID mode is identical to ECP Reverse
mode, except that ECP Reverse ID mode is entered with
data always pending, and that data is always the
IEEE-1284 ID data message. Even if there is other data
available in the stream, the ID message is sent before
any other pending data. When the ID message is sent,
the host terminates the mode and renegotiates for any
further data. This mode is distinguished from ECP Re-
verse mode by software only.

AMDA D V A N C E I N F O R M A T I O N

71Am29202 RISC Microcontroller

ABSOLUTE MAXIMUM RATINGS
Storage Temperature –65°C to +125°C.
Voltage on any Pin

with Respect to GND –0.5 to VCC +0.5 V.
Maximum VCC 6.0 V DC.

Stresses outside the stated ABSOLUTE MAXIMUM RATINGS
may cause permanent device failure. Functionality at or above
these limits is not implied. Exposure to absolute maximum rat-
ings for extended periods may affect device functionality.

OPERATING RANGES
Commercial (C) Devices

Case Temperature (TC) 0°C to +85°C (C).
Supply Voltage (VCC) +4.75 to +5.25 V.

Operating ranges define those limits between which the func-
tionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL Operating Range
Advance Information

Symbol Parameter Description Test Conditions Notes Min Max Unit

VIL Input Low Voltage 1 –0.5 0.8 V

VIH Input High Voltage 1 2.0 VCC +0.5 V

VILINCLK INCLK Input Low Voltage –0.5 0.8 V

VIHINCLK INCLK Input High Voltage 2.4 VCC +0.5 V

VOL
Output Low Voltage for
All Outputs except MEMCLK

IOL = 3.2 mA 0.45 V

VOH
Output High Voltage for
All Outputs except MEMCLK

IOH = –400 µA 2.4 V

ILI Input Leakage Current 0.45 V ≤ VIN ≤ VCC –0.45 V 2 ±10 or
+10/–200

µA

ILO Output Leakage Current 0.45 V ≤ VOUT ≤ VCC –0.45 V ±10 µA

ICCOP

Operating Power
Supply Current

VCC = 5.25 V, Outputs Floating;
Holding RESET active

3
4
5

175
234
280

mA
mA
mA

VOLC MEMCLK Output Low Voltage IOLC = 20 mA 0.6 V

VOHC MEMCLK Output High Voltage IOHC = –20 mA VCC –0.6 V

Notes:
1. All inputs except INCLK.
2. The Low input leakage current is –200 µA for the following inputs: TCK, TDI, TMS, TRST, DREQ1, WAIT, INTR2, and INTR0.

These pins have weak internal pull-up transistors.
3. ICC measured at 12.5 MHz, Vcc=5.25 V, Reset Condition.
4. ICC measured at 16.7 MHz, Vcc=5.25 V, Reset Condition.
5. ICC measured at 20.0 MHz, Vcc=5.25 V, Reset Condition.

CAPACITANCE
Advance Information

Symbol Parameter Description Test Conditions Min Max Unit

CIN Input Capacitance 15 pF

CINCLK INCLK Input Capacitance 15 pF

CMEMCLK MEMCLK Capacitance fC = 10 MHz 20 pF

COUT Output Capacitance 20 pF

CI/O I/O Pin Capacitance 20 pF

Note:
Limits guaranteed by characterization.

AMD A D V A N C E I N F O R M A T I O N

72 Am29202 RISC Microcontroller

SWITCHING CHARACTERISTICS over COMMERCIAL Operating Range

No. Parameter Description Min Max Min Max Min Max Unit

1 INCLK Period (=0.5T) Note 2, 9 25 62.5 30 62.5 40 62.5 ns

2 INCLK High Time Note 2 9 53.5 9 53.5 12 53.5 ns

3 INCLK Low Time Note 2 9 53.5 9 53.5 12 53.5 ns

4 INCLK Rise Time Note 2 4 4 4 ns

5 INCLK Fall Time Note 2 4 4 4 ns

6 MEMCLK Delay from INCLK 0 10 0 10 0 10 ns

7 Synchronous Output Valid Delay
from MEMCLK Rising Edge

Note 3a 1 11 1 11 1 15 ns

7a Synchronous Output Valid Delay
from MEMCLK Rising Edge

Note 3a 1 12 1 12 1 15 ns

7b Synchronous Output Valid Delay
from MEMCLK Falling Edge

Note 3b 1 10 1 10 1 15 ns

8 Synchronous Output Disable Delay
from MEMCLK Rising Edge

Note 8 1 10 1 10 1 15 ns

9 Synchronous Input Setup Time 10 10 12 ns

10 Synchronous Input Hold Time 0 0 0 ns

11 Asynchronous Pulse Width Note 4a, 9 4T 4T 4T ns

11a Asynchronous Pulse Width Note 4b ns

12 MEMCLK High Time Note 5 0.5T–3 0.5T+3 0.5T–3 0.5T+3 0.5T–3 0.5T+3 ns

13 MEMCLK Low Time Note 5 0.5T–3 0.5T+3 0.5T–3 0.5T+3 0.5T–3 0.5T+3 ns

14 MEMCLK Rise Time Note 5 0 4 0 4 0 5 ns

15 MEMCLK Fall Time Note 5 0 4 0 4 0 5 ns

16 UCLK, VCLK Period Note 2 25 30 40 ns

17 UCLK, VCLK High Time Note 2, 8 9 9 12 ns

18 UCLK, VCLK Low Time Note 2, 8 9 9 12 ns

19 UCLK, VCLK Rise Time Note 2 4 4 4 ns

20 UCLK, VCLK Fall Time Note 2 4 4 4 ns

21 Synchronous Output Valid Delay
from VCLK Edge

Note 6 1 15 1 15 1 20 ns

22 Input Setup Time to VCLK Edge Note 6, 7 10 10 15 ns

23 Input Hold Time to VCLK Edge Note 6, 7 0 0 0 ns

24 TCK Frequency 2 2 2 MHz
Notes:
1. All outputs driving 80 pF, measured at VOL=1.5 V and VOH=1.5 V. For higher capacitance, add 1 ns output delay per 20 pF

loading, up to 300 pF total capacitance.
2. INCLK, VCLK, and UCLK can be driven with TTL inputs. If not used, UCLK must be tied High.
3. a. Parameter 7a applies only to the outputs PIO15–PIO4 and DACK1. Parameter 7 applies to the remaining outputs.

b. Parameter 7b applies only to the outputs RASx, CASx, RSWE, and ROMOE. Some of these signals can
also be asserted during the rising edge of MEMCLK, depending on the type of access being performed.

4. a. Parameter 11 applies to all asynchronous inputs except LSYNC and PSYNC.
b. The LSYNC and PSYNC minimum width time is two bit-times. One bit-time corresponds to one internal video clock period.

The internal video clock period is a function of the VCLK period and the programmed VCLK divisor.
5. MEMCLK can drive an external load of 100 pF.
6. Active VCLK edge depends on the CLKI bit in the Video Control Register.
7. LSYNC and PSYNC may be treated as synchronous signals by meeting setup and hold times. The synchronization delay still

applies.
8. Not production tested but guaranteed by design or characterization.
9. T=1 MEMCLK period, as defined by the actual frequency on the MEMCLK pin.

20 MHz 16 MHz

Advance Information

12 MHzTest
Conditions

(Note 1)

AMDA D V A N C E I N F O R M A T I O N

73Am29202 RISC Microcontroller

SWITCHING WAVEFORMS

INCLK

MEMCLK

Synchronous
Outputs

Synchronous
Inputs

Asynchronous
Inputs

UCLK, VCLK

VCLK-Relative
Outputs

VCLK-Relative
Inputs

1.5 V
Note :
Video Timing may be relative to
VCLK falling edge if CLKI = 1.

1.5 V

1.5 V

16

17 18

2019
2.0 V

1.5 V
0.8 V

22

21

1.5 V

9 10

8

7

1.5 V
0.6 V

14

6
12 13

2.4 V
1.5 V

0.8 V

5

32

1

4

7b

11 11a

15

VCC – 0.6 V

7a

1.5 V

1.5 V

1.5 V 1.5 V

1.5 V

23

AMD A D V A N C E I N F O R M A T I O N

74 Am29202 RISC Microcontroller

SWITCHING TEST CIRCUIT

V

VL

IOL max = 3.2 mA

VREF = 1.5 V

IOH max = 400 µA

CL

VH

Am29202
Microcontroller
Pin Under Test

Model of Dynamic Test Load

Note:
CL is guaranteed to be a minimum 80-pF parasitic load. It represents the distributed load parasitic attributed to the test hardware
and instrumentation present during production testing.

THERMAL CHARACTERISTICS

PQFP Package
The Am29202 microcontroller is specified for operation
with case temperature ranges for a commercial temper-
ature device. Case temperature is measured at the top
center of the package as shown in the figure below.

θJA θCA

θJC

θJA = θJC + θCA

Thermal Resistance (°C/Watt)

ÉÉÉÉ

TC

The various temperatures and thermal resistances can
be determined using the following equations along with
information given in Table 12. (The variable P is power in
watts.)

θJA = θJC + θCA
P = ICCOP ⋅ VCC

TJ = TC + P ⋅ θJC
TJ = TA + P ⋅ θJA

TC = TJ – P ⋅ θJC
TC = TA + P ⋅ θCA

TA = TJ – P ⋅ θJA
TA = TC – P ⋅ θCA

Allowable ambient temperature curves for various air-
flows are given in Figures 26 and 27. These graphs
assume a maximum VCC and a maximum power supply
current equal to ICCOP . All calculations made using the
above information should guarantee that the operating
case temperature does not exceed the maximum case
temperature. Since P is a function of operating frequen-
cy, calculations can also be made to determine the am-
bient temperature at various operating speeds.

AMDA D V A N C E I N F O R M A T I O N

75Am29202 RISC Microcontroller

Table 12. PQFP Thermal Characteristics (°C/Watt) Surface Mounted

Airflow—ft./min. (m/sec)

Am29202 Microcontroller 0 (0) 200 (1.01) 400 (2.03) 600 (3.04)

θJA Junction-to-Ambient 36 32 29 27

θJC Junction-to-Case 8 8 8 8

θCA Case-to-Ambient 28 24 21 19

0
10
20
30
40
50
60
70
80
90

0 200 400 600
0

10
20
30
40
50
60
70
80
90

0 200 400 600

TC at 85°C
TC at 85°C

Air Flow (ft./min.)

Maximum
Ambient

(°C)

Air Flow (ft./min.)

20 MHz 16.67 MHz

0
10
20
30
40
50
60
70
80
90

0 200 400 600

TC at 85°C

Air Flow (ft./min.)

Maximum
Ambient

(°C)

12.5 MHz

Figure 26. Maximum Allowable Ambient Temperature
(Data Sheet Limit, ICCOPmax, VCC=+5.25 V, Average Thermal Impedance)

Thermal
Resistance
[θJA (°C/W)]

0
5

10
15
20
25
30
35
40
45

0 200 400 600

Air Flow (ft./min.)

Figure 27. Thermal Impedance

AMD A D V A N C E I N F O R M A T I O N

76 Am29202 RISC Microcontroller

0.020
0.040

S

0.947
0.953

1.075
1.085

1.097
1.103

0.947
0.953

1.075
1.085

1.097
1.103

0.008
0.012

Pin 1 I.D.

Pin 1

Pin 33

Pin 66

Pin
99

Pin 132

–A–

–D–

–B–

PHYSICAL DIMENSIONS
PQB 132, Trimmed and Formed

Plastic Quad Flat Pack (measured in inches)

See Detail X

Seating
Plane–C–

0.025 Basic

Top View

Side View

0.80 Ref

0.160
0.180

0.130
0.150

S

Note:
Not to scale. For reference only.

AMDA D V A N C E I N F O R M A T I O N

77Am29202 RISC Microcontroller

0.010

PQB 132 (continued)

0.008
0.012

7° Typ
0.010 Min

Flat Shoulder

0.045 x 45° Chamfer

0° Min

0.015
0.008 Pin 99

Gage Plane

0°≤0≤8°

Section S–S

Detail X

7° Typ

0.065 Ref

0.006
0.008

0.036
0.046

Note:
Not to scale. For reference only.

Trademarks

AMD, Am29000 and Fusion29K are registered trademarks; and 29K, Am29005, Am29030, Am29035, Am29040, Am29050, Am29200, Am29202,
Am29205, Am29240, Am29243, Am29245, XRAY29K, and MiniMON29K are trademarks of Advanced Micro Devices, Inc.

High C is a registered trademark of MetaWare, Inc.
Microsoft and Windows are registered trademarks of Microsoft Corp.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
 1995 Advanced Micro Devices, Inc.

