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IF YOU HAVE QUESTIONS, WE’RE HERE TO HELP YOU.

Customer Service

AMD’s customer service network includes U.S. offices, international offices, and
a customer training center. Expert technical assistance is available to answer 29K
Family hardware and software development questions from AMD’s worldwide
staff of field application engineers and factory support staff.

Hotline, Bulletin Board, and eMail Support

For answers to technical questions, AMD provides a toll-free number for direct
access to our engineering support staff. For overseas customers, the easiest way to
reach the engineering support staff with your questions is via fax with a short
description of your question. Also available is the AMD bulletin board service,
which provides the latest 29K product information, including technical informa-
tion and data on upcoming product releases. AMD 29K Family customers also
receive technical support through electronic mail. This worldwide service is avail-
able to 29K product users via the International UNIX eMail service. To access the
service, use the AMD eMail address: “29k-support@amd.com.”

Engineering Support Staff:
(800) 292-9263 ext. 2 toll free for U.S.
(512) 602-4118 local for U.S.
0800-89-1455 toll free for UK
0031-11-1163 toll free for Japan
(512) 602-5031 FAX for overseas

Bulletin Board:
(800) 292-9263 ext. 1 toll free for U.S.
(512) 602-4898 worldwide and local for U.S.

Documentation and Literature

The 29K Family Customer Support Group responds quickly to information and
literature requests. A simple phone call will get you free 29K Family information
such as data books, user’s manuals, data sheets, application notes, the Fusion29K
Partner Solutions Catalog and Newsletter, and other literature. Internationally,
contact your local AMD sales office for complete 29K Family literature.

Customer Support Group:
(800) 292-9263 ext. 3 toll free for U.S.
(512) 602-5651 local for U.S.
(512) 602-5051 FAX for U.S.
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Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but
not limited to implied warrants of merchantability of fitness for a particular applica-
tion. AMD  assumes no responsibility for the use of any circuit other than the circuit
in an AMD product.

The author and publisher of this book have used their best efforts in preparing this
book. Although the information presented has been carefully reviewed and is be-
lieved to be reliable, the author and publisher make no warranty of any kind, ex-
pressed or implied, with regard to example programs or documentation contained in
this book. The author and publisher shall not be liable in any event for accidental or
consequential damages in connection with, or arising out of, the furnishing, perfor-
mance, or use of these programs.

Trademarks

29K, Am29005, Am29027, Am29050, Am29030, Am29035, Am29040, Am29200,
Am29205, Am29240, Am29243, Am29245, EZ030, SA29200, SA29240,
SA29040, MiniMON29K, XRAY29K, ASM29K, ISS, SIM29, Scalable Clocking,
Traceable Cache and UDI are a trademark of Advanced Micro Devices, Inc.
Fusion29K is a registered service trademark of Advanced Micro Devices, Inc.
AMD and Am29000 are registered trademarks of Advanced Micro Devices, Inc.
PowerPC is a trademark of International Buisness Machines Corp.
MRI and XRAY are trademarks of Microtec Reasearch Inc.
High C is a registered trade mark of MetaWare Inc.
i960 is a trademarks of Intel, Inc.
MC68020 is a trademark of Motorola Inc.
UNIX is a trademark of AT&T.
NetROM is a trademark of XLNT Designs, Inc.
UDB and UMON are trademarks of CaseTools Inc.
Windows is a trademarks of Microsoft Corp.

Product names used in this publication are for identification purposes only and may
be trademarks of their respective companies.
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Preface

The first edition of this book brought together, for the first time, a
comprehensive collection of information required by the person developing software
for the Advanced Micro Devices 29K family of RISC microprocessors and
microcontrollers. This second edition contains all the material from the first. In
addition it adds many new topics such as performance evaluation and on–chip cache
operation. Topics such as interrupt processing and software debugging are extended
with the addition of new techniques. The book is useful to the computer professional
and student interested in the 29K family RISC implementation. It does not assume
that the reader is familiar with RISC techniques.

 Although certain members of the 29K family are equally suited to the
construction of a workstation or an embedded application, the material is mainly
applicable for embedded application development. This slant shall be appreciated by
most readers; since early in the 29K’s introduction AMD has promoted the family  as
a collection of processors spanning a wide range of embedded performance.
Additionally, in recent years, AMD started a range of microcontrollers, initially with
the Am29200. The inclusion of onchip peripherals in the microcontroller
implementations resulted in this particular extension to the family being well
received by the embedded processor community.

The success  of the 29K family, and of RISC technology in general, has created
considerable interest within the microprocessor industry. A growing number of
engineers are evaluating RISC, and an increasing number are selecting RISC rather
than CISC designs for new products.  Higher processor performance is the main
reason cited for adopting new RISC designs.  This book describes the methods used
by the 29K family –– many of which are characteristic of  the RISC–approach –– to
obtain a performance gain  vis–a–vis CISC processors. Many of the processor and
software features described will be compared with an equivalent CISC method; this
shall assist  the engineer making the CISC to RISC transition.
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Because the 29K family architecture reveals the processor’s internal pipeline
operation much more than a CISC architecture, a better understanding of how the
software can control the hardware and avoid resource conflicts is required to obtain
the best performance. Up to this point, software engineers have had to glean
information about programming the 29K family from scattered application notes,
conference proceedings and other publications. In addition much of the necessary
information has never been documented.  This has lead to a number of difficulties,
particularly where the most efficient use of the RISC design features is sought.

The material presented is practical rather than theoretical. Each chapter is in a
somewhat standalone form, reducing the need to read earlier chapters before later
chapters are studied. Many of the code examples are directly usable in real embedded
systems rather than as  student exercises.  Engineers planning on using the 29K
family will be able to extract useful code sequences from the book for integration into
their own designs. Much of the material presented has been used by AMD, and other
independent companies, in building training classes for computer professionals
wishing to quickly gain an understanding of the 29K family.

This book is organized as follows:

Chapter 1 describes the architectural characteristics of the 29K RISC
microprocessor and microcontroller family. The original family member, the
Am29000 processor, is described first. Then the family tree evolution is dealt with in
terms of each member’s particular features. Although all 29K processors are
application code compatible they are not all pin compatible. The ability of the 29K
family to be flexible in its memory requirements is presented. In addition, the chapter
shows the importance of keeping the RISC pipeline busy if high performance is to be
achieved.

Chapter 2 deals with application programming. It covers the main topics
required by a software developer to produce code for execution on a 29K.
Application coding is done in a high level language and the chapter assumes the C
language is most widely used. The dual register and memory stack technique used by
the 29K procedure calling–convention is described in detail, along with the process
of maintaining the processor’s local register file as a cache for the top of the register
stack. Application programs require runtime support. The library services typically
used by developers make demands upon such operating  system services. The Host
Interface (HIF) specifies a set operating  system services. The HIF services are
described and their relevance put in context.

Chapter 3 explains how to program a 29K at assembly level. Methods of
partioning and accessing a processor’s register space are described. This includes the
special register space which can only be reached by assembly level instructions. The
reader is shown how to deal with such topics as branch delay slots and memory access
latency. It is not expected that application programs will be developed in assembly
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language, rather, that assembly language coding skills are required by the operating
system developer. Some developers may only be required to utilize assembly coding
to implement, say, a small interrupt handler routine.

Chapter 4 deals with the complex subject of 29K interrupts. Because 29K
processors make no use of microcode, the range of interrupt handler options is
extended over the typical CISC type processor. Techniques new to the reader familiar
with CISC, such as lightweight interrupts and interrupt context caching, are
presented.  Most  application developers are moving toward writing interrupt
handlers in a high level language, such as C. This chapter describes the process of
preparing the 29K to handle a C level signal handler after taking an interrupt or trap.

Chapter 5 deals with operating system issues. It  describes, in detail, the process
of performing an application task context switch. This is one of the major services
performed by an operating system. A detailed knowledge of the utilized
procedural–linkage mechanism and 29K architectural features is required to
implement a high performance context switch. Also dealt with are issues concerning
the operation and maintenance of on–chip instruction and data memory cache.

Chapter 6 describes the Translation Look–Aside Buffer (TLB) which is
incorporated into many of the 29K family members. Its use as a basic building block
for a Memory Management Unit (MMU) is described.  This chapter also
demonstrates the use of the TLB to implement a software–controlled cache which
improves overall system performance.

Chapter 7 explains the operation of popular software debugging tools such as
MiniMON29K and GDB. The process of building a debug environment for an
embedded application is described. Also dealt with is the Universal Debug Interface
(UDI) which is used to connect  the user–interface process with the process
controlling the target hardware. The use of UDI introduces new freedom in tool
choice to the embedded product developer.

Chapter 8 helps with the sometimes difficult task of processor selection.
Performance benchmarks are presented for all the current 29K family members. The
effect on–chip cache and memory system performance have on system performance
is quantified. Systems are considered in terms of their performance and software
programming requirements.

Although I am the sole author of this book, I would like to thank my colleagues
at Advanced Micro Devices for their help with reviewing early manuscripts. I am
also grateful for their thoughtful suggestions, many of which were offered during the
porting of 4.3bsd UNIX to the Am29000 processor. I would  also like to thank Grant
Maxwell for his helpful comments and in particular his review of chapters 1, 5 and 8.
Bob Brians also extensively reviewed the first edition and suggested a number of
improvements; he also made many helpful comments when he reviewed the
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manuscript for this second edition. Mike Johnson and Steve Guccione reviewed the
section introducing superscalar processors. Chip Freitag reviewed chapter 8 and
helped me improve its quality. Discussions with Leo Lozano helped resolve many of
the issues concerning cache operation dealt with in chapter 5. Thanks also to
Embedded Systems Programming for allowing the use of material describing the
GDB debugger which first appeared in their volume 5 number 12 issue. Embedded
System Engineering is also thanked for allowing the reuse of material describing the
Am29040 processor and Architectural Simulator. Finally, I would like to thank the
Product Marketing Department of AMD’s Embedded Processor Division, for their
encouragement to complete this second edition.



1

Chapter 1

Architectural Overview

This Chapter deals with a number of topics relevant to the selection of a 29K
family member. General RISC architecture characteristics are discussed before each
family member is described in more detail. A RISC microprocessor can achieve high
performance only if its pipeline is kept effectively busy — this is explained. Finally,
the architectural simulator is described; it is an important tool in evaluating a proces-
sors performance.

The instruction set of the 29K family was designed to closely match the internal
representation of operations generated by optimizing compilers. Instruction execu-
tion times are not burdened by redundant instruction formats and options. CISC mi-
croprocessors trap computational sequences in microcode. Microcode is a set of se-
quences of internal processor operations combined to perform a machine instruction.
A CISC microprocessor contains an on–chip microprogram memory to hold the mi-
crocode required to support the complex instructions. It is difficult for a compiler to
select CISC instruction sequences which  result in the microcode being efficiently
applied to the overall computational task. The myopic microcode results in processor
operational overhead. The compiler for a CISC can not remove the overhead, it can
only reduce it by making the best selection from the array of instruction options and
formats — such as addressing modes. The compiler for a 29K RISC can exploit lean
instructions whose operation is free of microcode and always visible to the compiler
code–generator.

Each 29K processor has a 4–stage RISC pipeline: consisting of first, a fetch
stage, followed by decode, execute and write–back stages. Instructions, with few ex-
ceptions, execute in a single–cycle. Although instructions are streamlined, they still
support operations on two source operands, placing the result in a third operand. Reg-
isters are used to supply operands for most instructions, and the processor contains a
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large number of registers to reduce the need to fetch data from off–chip memory.
When external memory is accessed it is via explicit load and store operations, and
never via extended instruction addressing modes. The large number of registers,
within the processor’s register file, act effectively as a cache for program data. How-
ever, the implementation of a multiport register file is superior to a conventional data
cache as it enables simultaneous access to multiple operands.

Parameter passing between procedure calls is supported by dynamically sized
register windows. Each procedure’s register window is allocated from a stack of 128
32–bit registers. This results in a very efficient procedure call mechanism, and is re-
sponsible for considerable operational benefits compared to the typical CISC meth-
od of pushing and popping procedure parameters from a memory stack.

Processors in the 29K family also make use of other techniques  usually
associated with RISC, such as delayed branching, to keep the instruction hungry
RISC fed and prevent pipeline stalling.

The freedom from microcode not only benefits the effectiveness of the instruc-
tion processing stream, but also benefits the interrupt and trap mechanism required to
support such events as external hardware interrupts. The preparations performed  by
29K hardware for interrupt processing are very brief, and this lightweight approach
enables programmers to define their own interrupt architecture; enabling optimiza-
tions to be selected which are best for, say, interrupt through put, or short latency in
commencing handler processing.

The 29K family includes 3–bus Harvard memory architecture processors,
2–bus processors which have simplified and flexible memory system interfaces, and
microcontrollers with considerable on–chip system support. The range is extensive,
yet User mode instruction compatibility is achieved across the entire family [AMD
1993a]. Within each family–grouping, there is also pin compatibility. The family
supports the construction of a scalable product range with regard to performance and
system cost. For example, all of the performance of the top–end processor configura-
tions may not be required, or be appropriate, in a product today but it may be neces-
sary in the future. Because of the range and scalability of the family, making a com-
mitment to 29K processor technology is an investment supported by the ability to
scale–down or scale–up a design in the future. Much of the family’s advantages are
attained by the flexibility in memory architecture choice. This is significant because
of the important impact a memory system can have on performance, overall cost, and
design and test time [Olson 1988][Olson 1989].

The microcontroller family members contain all the necessary RAM and ROM
interface glue–logic on–chip, permitting memory devices to be directly connected to
the processor. Given that memory systems need only be 8–bit or 16–bit wide, the
introduction of these devices should hasten the selection of embedded RISC in future
product designs. The use of RISC need not be considered an expensive option in
terms of system cost or hardware and software design times. Selecting RISC is not
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only the correct  decision for expensive workstation designs, but increasingly for a
wide range of performance and price sensitive embedded products.

1.1 A  RISC DEFINITION

The process of dealing with an instruction can be broken down into stages (see
Figure 1-1). An instruction must then flow through the pipeline of stages before its
processing is complete. Independent hardware is used at each pipeline stage. In-
formation is passed to subsequent pipeline stages at the completion of each processor
cycle. At any instant, the pipeline stages are processing several instructions which are
each at a different stage of completion. Pipelining increases the utilization of the pro-
cessor hardware, and effectively reduces the number of processor cycles required to
process an instruction.

Figure 1-1. RISC Pipeline

fetch decode execute write–backInstruction #1

Instruction #2

Instruction #3

fetch decode execute write–back

fetch decode execute

1–cycle
cycle t t+1 t+2

With a 4–stage pipeline an instruction takes four cycles to complete, assuming
the pipeline stages are clocked at each processor cycle. However, the processor is
able to start a new instruction at each new processor cycle, and the average proces-
sing time for an instruction is reduced to 1–cycle. Instructions which execute in
1–cycle have only 1–cycle latency as their results are available to the next instruc-
tion.

The 4–stage pipeline of the 29K processor family supports a simplified execute
stage. This is made possible by simplifying instruction formats, limiting  instruction
complexity and operating on data help in registers. The simplified execute stage
means that only a single processor cycle is required to complete execute–stage pro-
cessing and the cycle time is also minimized.

CISC processors support a complex execution–stage which require several pro-
cessor cycles to complete. When an instruction is ready for execution it is broken
down into a sequence of microinstructions (see Figure 1-2). These simplified
instructions are supplied by the on–chip microprogram memory. Each microinstruc-
tion must be decoded and executed separately before the instruction execution–stage
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is complete. Depending on the amount of microcode needed to implement a CISC
instruction, the number of cycles required to complete instruction processing varies
from instruction to instruction.

Figure 1-2. CISC Pipeline
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Because the hardware used by the execute–stage of a CISC processor is utilized
for a number of processor cycles, the other stages of the pipeline have available addi-
tional cycles for their own operation. For example, if an execute–stage requires four
processors cycles, the overlapping fetch–stage of the next instruction has four cycles
to complete. If the fetch–stage takes four or less cycles, then no stalling of the pipe-
line due to execute–stage starvation shall occur. Starvation or pipeline stalling occurs
when a previous stage has not completed its processing and can not pass its results to
the input of the next pipeline stage.

During the evolution of microprocessors, earlier designs operated with slower
memories than are available today. Both processor and memory speeds have seen
great improvements in recent years. However, the low cost of high performance
memory devices now readily available has shifted microprocessor design. When
memory was slow it made sense overlapping multicycle instruction fetch stages with
multicycle execute stages. Once an instruction had been fetched it was worthwhile
getting as much execute–value as possible since the cost of fetching the instruction
was high. This approach drove processor development and led to the name Complex
Instruction Set Computer.

Faster memory means that instruction processing times are no longer fetch–
stage dominated. With a reduction in the number of cycles required by the fetch–
stage, the execute–stage becomes the dominant factor in determining processor per-
formance. Consequently attention turned to the effectiveness of the microcode se-
quences used to perform CISC instruction execution. Careful analysis of CISC
instruction usage revealed that the simpler instructions were much more frequently
used than the complex ones which required long microcode sequences. The conclu-
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sion drawn was that microcode rarely provides the exact sequence of operations re-
quired to support a high level language instruction.

The variable instruction execution times of CISC instructions results in com-
plex pipeline management. It is also more difficult for a compiler to work out the
execution times for different combinations of CISC instructions. For that matter it is
harder for the assembly level programmer to estimate the execution times of, say, an
interrupt handler code sequence compared to the equivalent  RISC code sequence.
More importantly,  streamlining pipeline operations enables reduced processor cycle
times and greater control by a compiler of the processor’s operation. Given that  the
execute–stage dominates performance, the RISC approach is to fetch more instruc-
tions which can be simply executed. Although a RISC program may contain 20%
more instructions than a program for a CISC, the total number of cycles required to
perform a task is reduced.

A number of processor characteristics have been proposed in the press as indica-
tive of RISC or CISC. Many of these proposals are made by marketing departments
which wish to control markets by using RISC and CISC labels as marketing rather
than engineering expressions. I consider a processor to be RISC if it is microcode free
and has a simple instruction execute–stage which can complete in a single cycle.

1.2 FAMILY MEMBER FEATURES

Although this book is about Programming the 29K RISC Family, the following
sections are not restricted to only describing features which can be utilized by soft-
ware. They also briefly describe key hardware features which affect a processor’s
performance and hence its selection.

All members of the family have User mode binary code compatibility. This
greatly simplifies the task of porting application code from one processor to another.
Some system–mode code may need to be changed due to differences in such things as
field assignments of registers in special register space.

Given the variation between family members such as the 3–bus Am29050 float-
ing–point processor and the Am29205 microcontroller, it is  remarkable that there is
so much software compatibility. The number of family members is expected to con-
tinue to grow; but already there is a wide selection enabling systems of ranging per-
formance and cost to be constructed (see Figure 1-3). If AMD continues to grow the
family at “both ends of the performance spectrum”, we might expect to see new mi-
crocontroller family members as well as superscalar microprocessors [Johnson
1991]. AMD has stated that future microprocessors will be pin compatible with the
current 2–bus family members.

I think one of the key features of 29K family members is their ability to operate
with varying memory system configurations. It is possible to build very high perfor-
mance Harvard type architectures, or low cost –– high access latency –– DRAM
based systems. Two types of instruction memory caching are supported. Branch Tar-
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Figure 1-3. Processor Price–Performance Summary

get Cache (BTC) memory is used in 3–bus family members to hide memory access
latencies. The 2–bus family members make use of more conventional bandwidth im-
proving instruction cache memory.

The higher performance 2–bus processors and microcontrollers have on–chip
data cache. When cache hit ratios are high, processing speeds can be decoupled from
memory system speeds; especially when the processor is clocked at a higher speed
than the off–chip memory system.

A second key feature of processors in the 29K family is that the programmer
must supply the interrupt handler save and restore mechanism. Typically a CISC type
processor will save the processor context, when an exception occurs, in accordance
with the on–chip microcode. The 29K family is free of microcode, making the user
free to tailor the interrupt and exception processing mechanism to suit the system.
This often leads to new and more efficient interrupt handling techniques. The fast in-
terrupt response time, and large interrupt handling capacity made possible by the
flexible architecture, has been sited as one of the key reasons for selecting a 29K pro-
cessor design.

All members of the 29K family make some use of burst–mode memory inter-
faces. Burst–mode memory accesses provide a simplified transfer mechanism for
high bandwidth memory systems. Burst–mode addressing only applies to consecu-
tive access sequences, it is used for all instruction fetches and for load–multiple and
store–multiple data accesses.
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The 3–bus microprocessors are dependent on burst–mode addressing to free–up
the address bus after a new instruction fetch sequence has been established. The
memory system is required to supply instructions at sequential addresses without the
processor supplying any further address information; at least until a jump or call type
instruction is executed. This makes the address bus free for use in data memory ac-
cess.

The non 3–bus processors can not simultaneously support instruction fetching
and data access from external memory. Consequently the address bus continually
supplies address information for the instruction or data access currently being sup-
ported by the external memory.  However, burst–mode access signals are still sup-
plied by the processor. Indicating that the processor will require another access at the
next sequential address, after the current access is complete, is an aid in achieving
maximum memory access bandwidth. There are also a number of memory devices
available which are internally organized to give highest performance when accessed
in burst–mode.

1.3 THE Am29000 3–BUS MICROPROCESSOR

The Am29000  processor is pin compatible with other 3–bus members of the
family (see Table 1-1) [AMD 1989][Johnson 1987]. It was the first member of the
family, introduced in 1987. It is the core processor for many later designs, such as the
current 2–bus processor product line. Much of this book describes the operation of
the Am29000 processor as the framework for understanding the rest of the family.

The processor can be connected to separate Instruction and data memory sys-
tems, thus exploiting the Harvard architectural advantages (See Figure 1-4). Alter-
natively, a simplified 2–bus system can be constructed by connecting the data and
address busses together; this enables a single memory system to be constructed.
When the full potential of the 3–bus architecture is utilized, it is usually necessary to
include in the memory system a bridge to enable instruction memory to be accessed.
The processor does not support any on–chip means to transfer information on the
instruction bus to the data bus.

The load and store instructions, used for all external memory access, have an
option field (OPT2–0) which is presented to device pins during the data transfer op-
eration. Option field value OPT=4 is defined to indicate the bridge should permit
ROM space to be read as if it were data. Instructions can be located in two separate
spaces: Instruction space and ROM space. Often these spaces become the same, as
the IREQT pin (instruction request type) is not decoded so as to enable distinction
between the two spaces. When ROM and Instruction spaces are not common, a range
of data memory space can be set aside for accessing Instruction space via the bridge.
It is best to avoid overlapping external address spaces if high level code is to access
any memory located in the overlapping regions (see section 1.10.4).
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Instruction Cache

Processor

I–Cache Associativity

On–Chip Floating–Point

On–Chip MMU

Scalable Bus Clocking

Programmable Bus Sizing

JTAG Debugging

Am29000 Am29050 Am29005

BTC
32x4 words

2 Way

No

Yes

No

No

No

BTC 64x4 or
128x2 words

2 Way

Yes

Yes

No

No

No

No

N/A

No

No

No

No

No

On–Chip Interrupt
Controller  Inputs

Yes
6

Yes
6

Yes
6

Table 1-1. Pin Compatible 3–bus  29K Family Processors

Date Cache – –

D–Cache Associativity – –

Integer Multiply in h/w No Yes

DMA Channels – –

Byte Endian Big/Little Big/Little

Burst–mode Addressing Yes, up to 1K bytes Yes, up to 1K bytes

Freeze Mode Processing Yes Yes

Delayed Branching Yes Yes

On–Chip Timer Yes Yes

On–Chip Memory Controler No No

–

Big/Little

Yes, up to 1K bytes

Yes

Yes

Yes

No

–

–

No

Clock Speeds (MHz) 16,20,25,33 20,25,33,40 16
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Figure 1-4. Am29000 Processor 3–bus Harvard Memory System
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All processors in the 29K family support byte and half–word size read and write
access to data memory. The original Am29000 (pre rev–D, 1990) only supported
word sized data access. This resulted in read–modify–write cycles to modify sub–
word sized objects. The processor supports insert– and extract–byte and half–word
instructions to assist with sub–word operations. These instructions are little used
today.

The processor has a Branch Target Cache (BTC) memory which is used to sup-
ply the first four instructions of previously taken branches. Successful branches are
20% of a typical instruction mix. Using burst–mode and interleaf techniques,
memory systems can sustain the high bandwidths required to keep the instruction
hungry RISC fed. However, when a branch occurs, memory systems can present con-
siderable latency before supplying the first instruction of the branch target. For ex-
ample, consider an instruction memory system which has a 3–cycle first access laten-
cy but can sustain 1–cycle access in burst–mode. Typically every 5th instruction is a
branch and for the example the branch instruction would take effectively 5–cycles to
complete its execution (the pipeline would be stalled for 4–cycles (see section 1.13)).
If all other instructions were executed in a single–cycle the average cycle time per
instruction would be 1.8 (i.e. 9/5); not the desired sustained single–cycle operation.
The BTC can hide all 3–cycles of memory access latency, and enable the branch
instruction to execute in a single–cycle.

The programmer has little control over BTC operation; it is maintained internal-
ly by processor hardware. There are 32 cache entries (known as cache blocks) of four
instructions each.  They are configured in a 2–way set associative arrangement. En-
tries are tagged to distinguish between accesses made in User mode and Supervisor
mode; they are also tagged to differentiate between virtual addresses and physical
addresses. Because the address in the program counter is presented to the BTC at the
same time it is presented to the MMU, the BTC does not operate with physical ad-
dresses. Entries are not tagged with per–process identifiers; consequently the BTC
can not distinguish between identical virtual addresses belonging to different pro-
cesses operating with virtual addressing. Systems which operate with multiple tasks
using virtual addressing must invalidate the cache when a user–task context switch
occurs. Using the IRETINV (interrupt return and invalidate) instruction is one con-
venient way of doing this.

The BTC is able to hold the instructions of frequently taken trap handler rou-
tines, but there is no means to lock code sequences into the cache. Entries are replaced
in the cache on a random basis, the most recently occurring branches replacing the
current entries when necessary.

The 3–bus members of the the 29K family can operate the shared address bus in
a pipeline mode. If a memory system is able to latch an address before an instruction
or data transfer is complete, the address bus can be freed to start a subsequent access.
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Allowing two accesses to be in progress simultaneously can be effectively used by
the separate instruction and data memory systems of a Harvard architecture.

1.3.1 The Am29005

The Am29005  is pin compatible with other 3–bus members of the family (see
Table 1-1). It is an inexpensive version of the Am29000 processor. The Translation
Look–Aside Buffer (TLB) and the Branch Target Cache (BTC) have been omitted.  It
is available at a lower clock speed, and only in the less expensive plastic packaging. It
is a good choice for systems which are price sensitive and do not require Memory
Management Unit support or the performance advantages of the BTC. An Am29005
design can always be easily upgraded with an Am29000  replacement later. In fact the
superior debugging environment offered by the Am29000 or the Am29050  may
make the use of one of these processor a good choice during software debugging. The
faster processor can always be replaced by an Am29005 when production com-
mences.

1.4 THE Am29050 3–BUS FLOATING–POINT MICROPROCESSOR

The Am29050 processor is pin compatible with other 3–bus members of the
family (see Table 1-1) [AMD 1991a]. Many of the features of the Am29050 were al-
ready  described in the section describing its closely related relative,  the Am29000.
The Am29050 processor offers a number of additional performance and system sup-
port features when compared with the Am29000. The most notable is the direct
execution of double–precision (64–bit) and single–precision (32–bit) floating–point
arithmetic on–chip. The Am29000 has to rely on software emulation or the
Am29027  floating–point coprocessor to perform floating–point operations. The
introduction of the Am29050 eliminated the need to design the Am29027 coproces-
sor into floating–point intensive systems.

The processor contains a Branch Target Cache (BTC) memory system like the
Am29000; but this time it is twice as big, with 32 entries in each  of the two sets rather
than the Am29000’s 16 entries per set.  BTC entries are not restricted to four instruc-
tions per entry; there is an option (bit CO in the CFG register) to arrange the BTC as
64 entries per set, with each entry containing two instructions rather than four. The
smaller entry size is more useful with lower latency memory systems. For example, if
a memory system has a 2–cycle first–access start–up latency it is more efficient to
have a larger number of 2–instruction entries. After all, for this example system, the
third and fourth instructions in a four per entry arrangement could just as efficiently
be fetched from the external memory.

The Am29050 also incorporates an Instruction Forwarding path which addi-
tionally helps to reduce the effects of instruction memory access latency. When a new
instruction fetch sequence commences, and the target of the sequence is not found in
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the BTC, an external memory access is performed to start filling the Instruction Pre-
fetch Buffer (IPB). With the Am29000 processor the fetch stage of the processor
pipeline is fed from the IPB, but the Am29050 can by–pass the fetch stage and feed
the first instruction directly into the decode pipeline stage using the instruction for-
warding technique. By–passing also enables up to  four cycles of external memory
latency to be hidden when a BTC hit occurs (see section 1.10).

The Am29050 incorporates a Translation Look–Aside Buffer (TLB) for
Memory Management Unit support, just like the Am29000 processor. However it
also has two region mapping registers. These permit large areas of memory to be
mapped without using up the smaller TLB entries. They are very useful for mapping
large data memory regions, and their use reduces the TLB software management
overhead.

The processor can also speed up data memory accesses by making the access
address available a cycle earlier than the Am29000. The method is used to reduce
memory load operations which have a greater influence on pipeline stalling than
store operations. Normally the address of a load appears on the address bus at the start
of the cycle following the execution of the load instruction. If virtual addressing is in
use, then the TLB registers are used to perform address translation during the second
half of the load  execute–cycle. To save a cycle, the Am29050 must make the physical
address of the load available at the start of the load instruction execution. It has two
ways of doing this.

The access address of a load instruction is specified by the RB field of the
instruction (see Figure 1–13). A 4–entry Physical Address Cache (PAC) memory is
used to store most recent load addresses. The cache entries are tagged with RB field
register numbers. When a load instruction enters the decode stage of the pipeline, the
RB field is compared with one of the PAC entries, using a direct mapping technique,
with the lower 2–bits of the register number being used to select the PAC entry. When
a match occurs the PAC supplies the address of the load, thus avoiding the delay of
reading the register file to obtain the address from the register selected by the RB field
of the LOAD instruction. If a PAC miss occurs, the new physical address is written to
the appropriate PAC entry.  The user has no means of controlling the PAC; its opera-
tion is completely determined by the processor hardware.

The second method used by the Am29050 processor to reduce the effect of pipe-
line stalling occurring as a result of memory load latency is the Early Address Gener-
ator (EAG). Load addresses are frequently formed by preceding the load with
CONST, CONSTH and ADD type instructions. These instructions prepare a general
purpose register with the address about to be used during the load. The EAG circuitry
continually generates addresses formed by the use of the above instructions in the
hope that a load instruction will immediately follow and use the address newly
formed by the preceding instructions.  The EAG must make use of the TLB address
translation hardware in order to make the physical address available at the start of the
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load instruction. This happens when, fortunately, the RB field of the load instruction
matches with the destination register of the previous  address computation instruc-
tions.

Software debugging is better supported on the Am29050 processor than on any
other current 29K family member. All 29K processors have a trace facility which en-
ables single stepping of processor instructions. However, prior to the Am29050 pro-
cessor, tracing did not apply to the processor operation while the DA bit (disable all
traps and interrupts) was set in the current processor status (CPS) register. The DA bit
is typically set while the processor is operating in Freeze mode (FZ bit set in the CPS
register).  Freeze mode code is used during the entry and exit of interrupt and trap
handlers, as well as other critical system support code. The introduction of Monitor
mode operation with the Am29050 enables tracing to be extended to Freeze mode
code debugging. The processor enters Monitor mode when a synchronous trap oc-
curs while the DA bit is set. The processor is equipped with a second set of PC buffer
registers, known as the shadow PC registers, which record the PC–bus activity while
the processor is operating in Monitor mode. The first set of PC buffer registers have
their values frozen when Freeze mode is entered.

The addition of two hardware breakpoint registers aids the Am29050 debug
support. As instructions move into the execute stage of the processor pipeline, the
instruction address is compared with the break address values. The processor takes a
trap when a match occurs. Software debug tools, such as monitors like Mini-
MON29K, used with other 29K family members, typically use illegal instructions to
implement breakpoints. The use of breakpoint registers has a number of advantages
over this technique. Breakpoints can be placed in read–only memories, and break ad-
dresses need not be physical but virtual, tagged with the per–process identifier.

1.5 THE Am29030 2–BUS MICROPROCESSOR

The Am29030  processor is pin compatible with other 2–bus members of the
family (see Table 1-2) [AMD 1991b]. It was the first member of the 2–bus family
introduced in 1991. Higher device construction densities enable it to offer high per-
formance with a simplified system interface design. From a software point of view
the main differences between it and the Am29000 processor occur as a result of re-
placing the Branch Target Cache (BTC) memory with 8k bytes of instruction cache,
and connecting the instruction and data busses together on–chip. However, the sys-
tem interface busses have gained a number of important new capabilities.

The inclusion of an instruction cache memory reduces off–chip instruction
memory access bandwidth requirements. This enables instructions to be fetched via
the same device pins used by the data bus. Only when instructions can not be supplied
by the cache is there contention for access to external memory. Research [Hill 1987]
has shown that with cache sizes above 4k bytes, a conventional instruction cache is
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Instruction Cache

Processor

I–Cache Associativity

On–Chip Floating–Point

On–Chip MMU

Narrow Memory Reads

On–Chip Interrupt
Controller  Input’s

Am29030

8K bytes

2–Way

No

Yes

Yes,  8/16 bit

Yes
6

Am29035

4K bytes

Direct–Mapped

No

Yes

Yes,   8/16 bit

JTAG Debugging Yes Yes

Yes
6

Programmable Bus Sizing No Yes,  16/32 bit

Table 1-2. Pin Compatible 2–bus  29K Family Processors

Date Cache (Physical) – –

D–Cache Associativity – –

Integer Multiply in h/w No No

DMA Channels – –

Byte Endian Big/Little Big/Little

Scalable Clocking 1x,2x 1x,2x

Burst–mode Addressing Yes, up to 1K bytes Yes, up to 1K bytes

Freeze Mode Processing Yes Yes

Delayed Branching Yes Yes

On–Chip Timer Yes Yes

On–Chip Memory Controler No No

Clock Speeds (MHz) 20,25,33 16

Am29040

8K bytes

2–Way

No

Yes

Yes,   8/16 bit

Yes

Yes
6

Yes,  16/32 bit

4K bytes

2–Way

Yes, 2–cycles

–

Big/Little

1x,2x

Yes, up to 1K bytes

Yes

Yes

Yes

No

0–33,40,50
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more effective than a BTC. At these cache sizes the bandwith requirements are suffi-
ciently reduced as to make a shared instruction/data bus practicable.

Each cache entry (known as a block) contains four consecutive instructions.
They are tagged in a similar manner to the BTC mechanism of the Am29000 proces-
sor. This allows cache entries to be used for both User mode and Supervisor mode
code at the same time, and entries to remain valid during application system calls and
system interrupt handlers. However, since entries are not tagged with per–process
identifiers, the cache entries must be invalidated when a task context switch occurs.
The cache is 2–way set associative. The 4k bytes of instruction cache provided by
each set results in 256 entries per set (each entry being four instructions, i.e. 16 bytes).

When a branch instruction is executed and the block containing the target
instruction sequence is not found in the cache, the processor fetches the missing
block and marks it valid. Complete blocks are always fetched, even if the target
instruction lies at the end of the block. However, the cache forwards instructions to
the decoder without waiting for the block to be reloaded. If the cache is not disabled
and the block to be replaced in the cache is not valid–and–locked, then the fetched
block is placed in the cache. The 2–way cache associativity provides two possible
cache blocks for storing any selected memory block. When a cache miss occurs, and
both associated blocks are valid but not locked, a block is chosen at random for re-
placement.

Locking valid blocks into the cache is not provided for on a per–block basis but
in terms of the complete cache or one set of the two sets. When a set is locked, valid
blocks are not replaced; invalid blocks will be replaced and marked valid and locked.
Cache locking can be used to preload the cache with instruction sequences critical to
performance. However, it is often difficult to use cache locking in a way that can out–
perform the supported random replacement algorithm.

The processor supports Scalable Clocking  which enables the processor to op-
erate at the same or twice the speed of the off–chip memory system. A 33 MHz pro-
cessor could be built around a 20 MHz memory system, and depending on cache uti-
lization there may be little drop–off in performance compared to having constructed
a 33 MHz memory system. This provides for higher system performance without in-
creasing memory system costs or design complexity. Additionally, a performance
upgrade path is provided for systems which were originally built to operate at lower
speeds. The processor need merely be replaced by a pin–compatible higher frequen-
cy device (at higher cost) to realize improved system performance.

Memory system design is further simplified by enforcing a 2–cycle minimum
access time for data and instruction accesses. Even if 1–cycle burst–mode is sup-
ported by a memory system, the first access in the burst is hardwired by the processor
to take 2–cycles. This is effective in relaxing memory system timing constraints and
generally appreciated by memory system designers. The high frequency operation of
the Am29030 processor can easily  result in electrical noise [AMD1992c]. Enforcing
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2–cycle minimum access times ensures that the address bus has more time to settle
before the data bus is driven. This reduces system noise compared with the data bus
changing state during the same cycle as the address bus.

At high processor clock rates, it is likely that an interleafed memory system will
be required to obtain bandwidths able to sustain 1–cycle burst mode access.  Inter-
leafing requires the construction of two, four or more memory systems (known as
banks), which are used in sequence. When accessed in burst–mode, each bank is giv-
en more time to provide access to its next storage location. The processor provides an
input pin, EARLYA (early address), by which a memory system can request early ad-
dress generation by the processor. This can be used to simplify the implementation of
interleaved memory systems. When requested, the processor provides early the ad-
dress of even–addressed banks, allowing the memory system to begin early accesses
to both even– and odd–addressed banks.

The processor can operate with memory devices which are not the full 32–bit
width of the data bus. This is achieved using the Narrow Read capability.  Memory
systems which are only 8–bit or 16–bit wide are connected to the upper bits of the
data/instruction bus. They assert the RDN (read narrow) input pin along with the
RDY (ready) pin when responding to access requests. When this occurs the processor
will automatically perform the necessary sequences of accesses to assemble instruc-
tions or data which are bigger than the memory system width.

The Narrow Read ability can not be used for data writing. However, it is very
useful for interfacing to ROM which contains system boot–up code. Only a single
8–bit ROM may be required to contain all the necessary system initialization code.
This can greatly simplify system design, board space, and cost. The ROM can be used
to initialize system RAM memory which, due to its 32–bit width, will permit faster
execution.

1.5.1 Am29030 Evaluation.

AMD provides a low cost evaluation board for the Am29030 at 16 MHz, known
as the EZ030 (pronounced easy–030). Like the microcontroller evaluation board, it is
a standalone, requiring an external 5v power supply and connection to a remote com-
puter via an RS–232 connection. The board is very small, measuring about 4 inches
by 4 inches (10x10 cm). The memory system is restricted to 16 MHz operation but
with scalable clocking the processor can run at 16 MHz or 33 MHz.

It contains 128k bytes of EPROM, which is accessed via 8–bit narrow bus proto-
col. There is also 1M byte of DRAM arranged as 256kx32 bits. The DRAM is ex-
pandable to 4M bytes. The EPROM is preprogrammed with the MiniMON29K de-
bug monitor and the OS–boot operating system described in Chapter 7.

1.5.2 The Am29035

The Am29035  processor is pin compatible with other 2–bus members of the
family (see Table 1-2).  As would be expected, given the AMD product number, its
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operation is very similar to the Am29030 processor. It is only available at lower clock
frequencies, compared with its close relative. And with half the amount of instruction
cache memory, it contains one set of the two sets provided by the Am29030. That is, it
has 4k bytes of instruction memory cache which is directly mapped. Consequently it
can be expected to operate with reduced overall performance.

In all other aspects it is the same as the Am29030 processor, except it has Pro-
grammable Bus Sizing which the Am29030 processor does not. Programmable Bus
Sizing provides for lower cost system designs. The processor can be dynamically
programmed (via the configuration register) to operate with a 16–bit instruction/data
bus, performing both read and write operations. When the option is selected, 32–bit
data is accessed by the processor hardware automatically performing two consecu-
tive accesses. The ability to operate with 16–bit and 32–bit memory systems makes
the 2–bus 29K family members well suited to scalable system designs, in terms of
cost and performance.

1.6 THE Am29040 2–BUS MICROPROCESSOR

The Am29040  processor is pin compatible with other 2–bus members of the
family (see Table 1-2). The processor was introduced in 1994 and offers higher per-
formance than the 2–bus Am29030; it also has a number of additional system support
facilities.

There is an enhanced instruction cache, now 8k bytes; which is tagged in much
the same way as the Am29030’s instruction cache, except there are four valid bits per
cache block (compared to the Am29030’s one bit per block). Partially filled blocks
are supported, and block reload begins with the first required instruction (target of a
branch) rather than the first instruction in the block. An additional benefit of having a
valid bit per–instruction rather than per–block is that load or store instructions can
interrupt cache reload. With the Am29030 processor, once cache reload had started,
it could not be postponed or interrupted by a higher priority LOAD instruction.

The Am29040 was the first 29K microprocessor to have a data cache. The 4k
byte data cache is physically addressed and supports both “copy–back” and “write–
through” policies. Like other 29K Family members, the data cache always operates
with physical addresses and cache blocks are only allocated on LOAD instructions
which miss (a “read–allocate” or “load–allocate” policy). The block size is 16 bytes
and there is one valid bit per block. This means that complete data blocks must be
fetched when data cache reload occurs. Burst mode addressing is used to reload a
block, starting with the first word in the block. The addition of a data cache makes the
Am29040 particularly well–suited to high–performance data handling applications.

The default data cache policy is “copy–back”. A four word copy–back buffer is
used to improve the performance of the copy–back operation. Additionally, cache
blocks have an M bit–field, which becomes set when data in the block is modified. If
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the M bit is not set when a cache block is reallocated, the out–going block is not co-
pied back.

When data cache is added to a processor, there can be difficulties dealing with
data consistency. Problems arise when there is more than one processor or data con-
troller (such as a DMA controller) accessing the same memory region. The Am29040
processor uses bus snooping to solve this problem. The method relies on the proces-
sor monitoring all accesses performed on the memory system. The processor inter-
venes or updates its cache when an access is attempted on a currently cached data
value. Cache consistency is dealt with in detail in section 5.14.4.

Via the MMU, each memory page can be separately marked as  “non cached”,
“copy–back”, or “write–through”. A two word write–through buffer is used to assist
with writes to memory. It enables multiple store instructions to be in–execution with-
out the processor pipeline stalling. Data accesses which hit in the cache require
2–cycle access times. Two cycles, rather than one, are required due to the potentially
high internal clock speed. The data cache operation is explained in detail in section
5.14.2. However, load instructions do not cause pipeline stalling if the instruction im-
mediately following the load does not require the data being accessed.

Scalable bus clocking is supported; enabling the processor to run at twice the
speed of the off–chip memory system. Scalable Clocking  was first introduced with
the Am29030 processors, and is described in the previous section describing the
Am29030. If cache hit rates are sufficiently high, Scalable Clocking enables high
performance systems to be built around relatively slow memory systems. It also of-
fers an excellent upgrade path when additional performance is required in the future.
The maximum on–chip clock speed is 50 MHz.

The Am29040 processor supports integer multiply directly. A latency of two
cycles applies to integer multiply instructions (most 29K instructions require only
one cycle). Again, this is a result of the potentially high internal clocking speeds of
the processor. Most 29K processors take a trap when an integer multiply is attempted.
It is left to trapware to emulate the missing instruction. The ability to perform high
speed multiply makes the processor a better choice for calculation intensive applica-
tions such as digital signal processing. Note, floating–point performance should also
improve with the Am29040 as floating–point emulation routines can make use of the
integer multiply instruction.

The Am29040 has two Translation Look–Aside Buffers (TLBs). Having two
TLBs enables a larger number of virtual to physical address translations to be cached
(held in a TLB register) at any time. This reduces the TLB reload overhead. The TLB
format is similar to the arrangement used with the Am29243 microcontroller. Each
TLB has 16 entries (8 sets, two entries per set). The page size used by each TLB can
be the same or different. If the TLB page sizes are the same, a four–way set associa-
tive MMU can be constructed with supporting software. Alternatively one TLB can
be used for code and the second, with a larger page size, for data buffers or shared
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libraries. The TLB entries have a Global Page (GLB) bit; when set the mapped page
can be accessed by any processes regardless of its process identifier (PID). The TLB
also enables parity checking to be enabled on a per page basis; and pages can be allo-
cated from 16–bit or 32–bit wide memory regions.

On–chip debug support is extended with the inclusion of two Instruction Break-
point Controllers and one Data Breakpoint Controller. This enables inexpensive de-
bug monitors such as the DebugCore incorporated within MiniMON29K to be used
when developing software. Breakpoints are supported when physical or virtual ad-
dressing is in use. The JTAG test interface has also been extended over other 29K
family members to include several new JTAG–processed instructions. The effective-
ness of the JTAG interface for hardware and software debugging is improved.

The Am29040 family grouping is implemented with a silicon process which en-
ables processors to operate at 3.3–volts. However, the device is tolerant of 5–volt in-
put/output signal levels. The lower power consumption achievable at 3.3–volts
makes the Am29040 suitable for hand–held type applications. Note, the device oper-
ates at a maximum clock frequency of 50 MHz.

A 29K processor enters Wait Mode when the Wait Mode bit is set in the Current
Processor Status (CPS) register. Wait Mode is extended to include a Snooze Mode
which is entered from Wait Mode while the interrupt and trap input lines are held in-
active. An interrupt is normally used to depart Wait or Snooze Mode. While in
Snooze mode, Am29040 power consumption is reduced. Returning from Snooze
mode to an interrupt processing state requires approximately 256 cycles. The proces-
sor can be prevented from entering Snooze Mode while in Wait Mode by holding, for
example, the INTR3 input pin active and setting the interrupt mask such as to disable
the INTR3 interrupt.

If the input clock is held high or low while the processor is in Snooze mode,
Sleep Mode is entered. Minimum power consumption occurs in this mode. The pro-
cessor returns to Snooze Mode when the input clock is restarted. Using Snooze and
Sleep modes enables the Am29040 processor to be used in applications which are
very power sensitive.

1.6.1 Am29040 Evaluation.

Like any 29K processor, the Am29040 can be evaluated using the Architectural
Simulator. But for those who wish for real hardware, AMD manufactures a number
of evaluation boards. The most popular being the SE29040 evaluation board. The
board, originally constructed in rev–A form, supports 4M bytes of DRAM (expand-
able to 64M bytes); DRAM timing is 3/1, i.e. 3–cycle first access then 1–cycle burst.
There is also 1M byte of 32–bit wide ROM and space for 1M byte of 2/1 SRAM.
Boards are typically populated with only 128K of SRAM. The memory system clock
speed is 25 MHZ and the maximum processor speed of 50 MHz is supported.
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There are connections for JTAG and a logic analyzer as well as two UARTs via
an 85C30 serial communications controller. The board requires a 5–volt power sup-
ply and there is a small wire–warp area for placement of additional system compo-
nents.

The later rev–B boards have an additional parallel port and Ethernet connection
(10–base–T). An AMD HiLANCE is used for Ethernet communication. The rev–B
board can also support memory system speeds up to 33 MHz.

1.7 A SUPERSCALAR 29K PROCESSOR

AMD representatives have talked at conferences and to the engineering press
about a superscalar 29K processor. No announcements have yet been made about
when such a processor will be available, but it is generally expected to be in the near
future. At the 1994 Microprocessor Forum, AMD presented a product overview, but
much of the specific details about the processor architecture were not announced.
However, piecing together available information, it is possible to form ideas about
what a superscalar 29K would look like.

This section does not describe a specific processor, but presents the superscalar
techniques which are likely to be utilized. A lead architect of the 29K family, Mike
Johnson, has a text book dealing with “Superscalar Microprocessor Design” ([John-
son 1991]) which covers the technology in depth. It might be expected that many of
the conclusions drawn in Johnson’s book will appear in silicon in a future 29K pro-
cessor.

AMD has stated that future microprocessors will be pin compatible with the cur-
rent 2–bus family members. This indicates that a superscalar 29K will be pin compat-
ible with the Am29030 and Am29040 processors. It is much more likely that the pro-
cessor will take 2–bus form rather than a microcontroller. User mode instruction
compatibility can also be expected. Given the usual performance increments that ac-
company a new processors introduction, it will likely sustain two–times the perfor-
mance of an Am29040 processor. This may be an underestimate, as higher clock rates
or increased use of Scalable Clocking may allow for even higher performance. The
processor is certain to have considerable on–chip instruction and data cache. AMD’s
product overview indicates that 2x, 3x and 4x Scalable Clocking will be supported
and there will be an 8K byte instruction cache and an 8K byte data cache. Also re-
ported was an internal clock speed up to 100 MHz at 3.3–volts.

A superscalar processor achieves higher performance than a conventional sca-
lar processor by executing more than one instruction per cycle. To achieve this it must
have multiple function units which can operate in parallel. AMD has indicated that
the initial superscalar 29K processor will have six function units. And since about
50% of instructions perform integer operations, there will be two integer operation
units, one integer multiplier and one funnel shifter. If a future the processor supports
floating–point operations directly, we can expect to see a floating–point execution
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unit added. Other execution units are included to deal with off–chip access via load
and store instructions; and to deal with branch instruction execution. All six function
units, except the integer multiplier, produce their results in a single–cycle.

High speed operation can only be obtained if as many as possible of the function
units can be kept productively busy during the same processor cycles. This will place
a heavy demand on instruction decoding and operand forwarding. Several instruc-
tions will have to be decoded in the same cycle and forwarded to the appropriate
execution unit. The demand for operands for these instructions shall be considerably
higher than must be dealt with by a scalar processor. The following sections describe
some of the difficulties encountered when attempting to execute more than one
instruction per cycle. Architectural techniques which overcome the inherent difficul-
ties are presented.

1.7.1 Instruction Issue and Data Dependency

The term instructions issue refers to the passing of an instruction from the pro-
cessor decode stage to an execution unit. With a scalar processor, instructions are is-
sued in–order. By that, I mean, in the order the decoder received the instructions from
cache or off–chip memory. Instructions naturally complete in–order. However with a
RISC processor out–of–order completion is not unusual for certain instructions. Typ-
ically load and store instructions are allowed to execute in parallel with other instruc-
tions. These instructions are issued in–order; they don’t complete immediately but
some time (a few cycles) later. The instructions following loads or stores are issued
and execute in parallel unless there is any data dependencies. Dependencies arise
when, for example, a load instructions is followed by an operation on the loaded data.

A superscalar processor can reduce total execution time for a code sequence if it
allows all instruction types to complete out–of–order. Instruction issue need not stop
after an instruction is issued to a function unit which takes multiple cycles to com-
plete. Consequently, function units with long latency may complete their operation
after a subsequent instruction issued to a low latency function unit. The Am29050
processor allows long latency floating–point operations to  execute in parallel with
other integer operations. The processor has an additional port on it’s register file for
writing–back the results of floating–point operations. An additional port is required
to avoid the contention which would arise with an integer operation writing back its
result at the same time. Most instructions are issued to an integer unit which, with a
RISC processor, has only one cycle latency. However, there is very likely to be more
than one integer unit, each operating in parallel.
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Write–Read Dependency

Even if a processor is able to support out–of–order instruction completion, it
still must deal with the data dependencies that flow through a program’s execution.
These flow dependencies (often known as true dependencies) represent the move-
ment of operands between instructions in a program.Examine the code below:

mul gr96,lr2,lr5 ;write gr96, gr96 = lr2 * lr5
add gr97,gr96,1 ;read gr96, write–read dependency

The first instruction would be issued to the integer
multiply unit; this will have (according to AMD’s
product overview) two cycles of latency. The result is
written to register gr96. The second instruction would
be issued to a different integer handling unit. However,
it has a source operand supplied in gr96. If the second
instruction had no data dependencies on the first, it
would be easy to issue the instruction while the first was
still in execute. However, execution of the first
instruction must complete before the second instruction
can start execution. Steps must be taken to deal with the
data dependency. This kind of dependency is also know
as write–read dependency, because gr96 must be
written by an earlier instruction before a later one can
read the result.

Some superscalar processors, such as the Intel i960 CA, use a
reduced–scoreboarding  mechanism to resolve data dependances [Thorton 1970].
When a register is required for a result, a one–bit flag is set to indicate the register is in
use. Currently in–execute instructions set the scoreboard bit for their result registers.
Before an instruction is issued the scoreboard bit is examined. Further instructions
are not issued if the scoreboard indicates that an in–execute instruction intends to
write a register which supplies a source operand for the instruction waiting for issue.
When an instruction completes, the relevant scoreboard bit is cleared. This may
result in a currently stalled instruction being issued.

It is unlikely a 29K processor will use scoreboarding; and even less likely it will
use a reduced–scoreboarding mechanism, such as the i960 CA, which only detects
data dependency for out–of–order instruction completion. A superscalar 29K
processor will support out–of–order instruction issue, which is described shortly.
Scoreboarding can resolve the resulting data dependencies. However, other
techniques, such as register renaming, enable instructions to be decoded and issued
further ahead than is possible with scoreboarding. This will be described in more
detail as we proceed.

mul

add

gr96

lr5lr2

gr97

1
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Write–Write Dependency

A second type of data dependency can complicate out–of–order instruction
completion. Examine the code sequence shown below:

mul gr96,lr2,lr5 ;write gr96, gr96 = lr2 * lr5
add gr97,gr96,1
add gr96,lr5,1 ;write gr96, write–write dependency

The result of the third instruction has an output dependency on the first
instruction. The third instruction can not complete before the first. Both instructions
write their results to register gr96, and completing the first instruction last would
result in an out–of–date value being held in gr96.  Steps must be taken to deal with the
data dependency. Because the completion of multiple instructions is dependent on
writing gr96 with the correct value, this kind of dependence is also known as a
write–write dependance.

Scoreboarding or reduced–scoreboarding can also resolve write–write
dependences. Before an instruction is issued, the scoreboard bit for the result register
is tested. If there is a currently in–execute instruction  planning on writing to the same
result register, the scoreboard bit will be set. This information can be used to stall
issuing until the result register is available.

The parallel execution possible with out–of–order completion, enables higher
performance than in–order completion, but extra logic is required to deal with data
dependency checking. With in–order instruction issue, instructions can no longer be
issued when a dependency is detected. If instruction issue is to continue when data
dependencies are present, the processor architecture becomes yet more complicated;
but the performance reward is extended beyond  that of out–of–order completion
with in–order issue.

Read–Write Dependency

Instruction issuing can continue even when the write–read and write–write
dependencies described above are present. The preceding discussion on data
dependency was restricted to in–order instruction issue. Certainly, when a data
dependency is detected, the unfortunate instruction can not be issued; but this need
not mean that future instructions can not be issued. Of course the future instruction
must be free of any dependencies. With out–of–order instruction issue, instructions
are decoded and placed in an instruction window. Instructions can be issued from the
window when they are free of dependencies and there is an available function unit.

The processes of decoding and executing an instruction is separated by the
instruction window, see Figure 1-5. This does not add an additional pipeline stage to
the superscalar processor. The decoder places instructions into the window. When an
instruction is free of dependencies it can be issued from the window to a function unit
for execution. The register window could be implemented as a large buffer within the
instruction decode unit, but this leads to a complex architecture. When an instruction
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is issued, the op–code and operands must be communicated to the function unit.
When multiple instructions are issued in a single cycle, a heavy demand is placed on
system busses and register file access ports. An alternative window implementation
is to hold instructions at the function units in reservation stations. This way
instructions are sent during decode to the appropriate function unit along with any
available operands. They are issued from the reservation station (really the window)
when any remaining dependencies are resolved and the function unit is available for
execution. The operation of reservation stations is described in more detail in section
1.7.2. 

Figure 1-5. The Instruction Window for Out–of–Order Instruction Issue

Instruction
Decode

Instruction Window

Instruction
Execute

mul gr96,lr2,lr5

add gr97,gr96,1

add gr96,lr5,1

An instruction is issued from the window when its operands are available for
execution. Future instructions may be issued ahead of earlier instructions which
become blocked due to data dependencies. Executing instructions out–of–order
introduces a new form of data dependency not encountered with in–order instruction
issue. Examine the code sequence below:

mul gr96,lr2,lr5 ;gr96 = lr2 * lr5
add gr97,gr96,1 ;read gr96
add gr96,lr5,1 ;write gr96, read–write dependency

The third instruction in the sequence uses gr96 for its result. The second
instruction receives an operand in the same gr96 register. The third instruction can
not complete and write its result until the second instruction begins execution;
otherwise the second will receive the wrong operand. The result of the third
instruction has an antidependency on the operand to the second instruction. The
dependency is very much like an in–order issue dependency but reversed. This kind
of dependency is also know as read–write dependance, because gr96 must be read by
the second instruction before the third can write its result to gr96.

Registers are used to hold data values. The flow of data through a program is
represented by the registers accessed by instructions. When instructions execute
out–of–order; the flow of data between instructions is restricted by the reuse of
registers to hold different data values. In the above example we want to issue the third
instruction but its use of gr96 creates a problem. The second instruction is receiving,
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via gr96, a data value produced by the first instruction. The register label gr96 is
merely used as an identifier for the data flow. What is intended is that data be passed
from the first instruction to the second. If our intentions could be communicated
without restricting data passing to gr96, then the third instruction could be executed
before the second.

The problem can be overcome by using register renaming, see section 1.7.3.
Briefly, when the first instruction in the above example is issued, it writes its result to
a temporary register identified by the name gr96. The second instruction receives its
operand from the same temporary register used by the first instruction. Execution of
the third instruction need not be stalled if it writes its result to a different copy of
register gr96. So now there are multiple copies of gr96. What really happens is
temporary registers are renamed to be gr96 for the duration of the data flow. These
temporary registers play the role of registers indicated by the instruction sequence.
They are tagged to indicate the register they are duplicating.

1.7.2 Reservation Stations

Each function unit has a number of reservation stations which hold instructions
and operands waiting for execution, see Figure 1-6. All the reservation stations for
each function unit combined represent the instruction window from which
instructions are issued. The decoder places instructions into reservation stations
[Tomasulo 1967] with copies of operands, when available. Otherwise operand values
are replaced with tags indicating the register supplying the missing data. Placing a
copy of a source operand into the reservation station when an instruction is decoded,
prevents the operand being updated by a future instruction; and hence eliminates
anidependency conflicts. A function unit issues instructions to its execute stage when
it is not busy and a reservation station has an instruction ready for execution. Once an
instruction is placed in a reservation station, its issue occurs regardless of any
instruction issue occurring in another function unit. There can be any number of
reservation stations attached to a function unit. The greater the number, the larger the
instruction window; and the further ahead the processor can decode and issue
instructions. Additionally, a greater number of reservation stations prevents short
term demands on a function unit resulting in decoder–stalling.

An instruction may be stalled in a reservation station when a data dependency
causes a tag, rather than data, to be placed in the operand field. The necessary data
will become available when some other instruction completes and the result made
available. The instruction producing the required data value may be in a reservation
station or in execution in the same function unit, or in another function unit. Result
values are tagged indicating the register they should be placed in. With a scalar
processor, the result is always written to the instruction’s destination register. But
when register renaming is used by a superscalar processor, results are written to a
register which is temporarily playing the role of the destination register. These
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Figure 1-6. A Function Unit with Reservation Stations
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temporary registers, known as copy or duplicate registers, are tagged to indicate the
real register they are duplicating.

 When a function unit completes an instruction, it places the result along with the
tag information identifying the result register on a result bus. If several function units
complete in the same cycle, there can be competition for the limited number of result
busses. Other function units monitor the result bus (or busses). Their intention is to
obtain the missing operands for instructions held in reservation stations. When they
observe a data valued tagged with a register value matching a missing operand they
copy the data into the reservation station’s operand field. This may enable the
instruction to be issued.

Once an instruction is placed into a reservation station it will execute in
sequence with other instructions held in other reservation stations within the same
function unit. Of course exceptional events, or the placing of instructions into the
instruction window which represent over speculation, can divert the planned
execution. The instruction window supports speculative instruction decoding. It is
possible that a branch instruction can result in unsuccessful speculation; and the
window must be refilled with instructions fetched from a new instruction sequence.
If a superscalar processor’s performance is to be kept high, it is important that
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speculation be successful. For this to be accomplished, branch prediction techniques
must be employed; more on this is in section 1.7.4.

1.7.3 Register Renaming

It was briefly described in the previous section dealing with read–write
dependency (antidependency), that register renaming can help deal with the conflicts
which arise from the reuse of the same register to hold data values. Of course these
dependencies only arise from the out–of–order instruction issue which occurs with a
superscalar processor. Also described were write–write (output) dependencies,
which occur with even in–order instruction issue when more than one instruction
wishes to write the same result register. Both these types of dependency can be
grouped under the heading storage conflicts. Their interference with concurrent
instruction execution is only temporary. Duplication of the result register for the
duration of the conflict can resolve the dependency and enable superscalar
instruction execution to continue.

The temporary result registers are allocated from a reorder buffer which
consists of 10 registers and supporting tag information. Every new result value is
allocated a new copy of the original assignment register. Copies are tagged to enable
them to be used as source operands in future instructions. Register renaming is shown
for the example code sequence below.

;original code                   ;code after register renaming
mul gr96,lr2,lr5 mul RR1,lr2,lr5  ;gr96 = lr2 * lr5
add gr97,gr96,1 add RR2,RR1,1
add gr96,lr5,1 add RR3,lr5,1

The write–write dependency between the first and third instruction is resolved
by renaming register gr96 to be register RR3 in the third instruction. The renaming
gr96 to be RR3 in the third instruction also resolves the read–write dependency
between the second and third instruction Using register renaming, execution of the
third instruction need not be stalled due to storage (register) dependency. Figure 1-7
shows the dependencies before and after register renaming.

Let’s look in more detail at the operation of the reorder buffer. When an instruc-
tion is decoded and placed in the instruction window (in practice, a reservation sta-
tion), a register in the reorder buffer is assigned to hold the instruction result.
Figure 1-8 shows the format of information held in the reorder buffer. When the
instruction is issued from the reservation station and, at a later time, execution com-
pleted, the result is written to the assigned reorder buffer entry.

If a future instruction refers to the result of a previous instruction, the reorder
buffer is accessed to obtain the necessary value. The reorder buffer is accessed via the
contents of the destination–tag field. This is known as a content–addressable
memory access. A parallel search of the reorder buffer is performed. All memory
locations are simultaneously examined to determine if they have the requested data.
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Figure 1-7. Register Dependency Resolved by Register Renaming

Before Renaming After Renaming

If the instruction producing the result has not yet completed execution, then the
dispatched instruction is provided with a reorder–buffer–tag for the pending data.
For example, the second instruction in the above code sequence would receive
register–buffer–tag RR1.

It is likely that the reorder buffer contains entries which are destined (tagged) for
the same result register. When the reorder buffer is accessed with a destination–tag
which has multiple entries, the reorder buffer provides the most recent entry. This
ensures the most recently assigned (according to instruction decode) value is used. In
such case, the older entry could be discarded; but it is kept in case of an exceptional
event, such as an interrupt or trap, occurring.

When an instruction completes, the reorder buffer entry is updated with the re-
sult value. A number of result busses are used to forward result values, and their

Figure 1-8. Circular Reorder Buffer Format
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associated tag information, to the reorder buffer. Function units monitor the flow of
data along these buses in the hope of acquiring data values required by their reserva-
tion stations. In this way, instructions are supplied the operands which where missing
when the instruction was decoded. When a reorder buffer has been updated with a
result, the entry is ready for retiring. This is the term given to writing the result value
into the real register in the register file. There is a bus for this task which connects
read ports on the reorder buffer to write ports on the register file. The number of ports
assigned to this task (2) limits the number of instructions which can be retired in any
one processor cycle. A register file with two write ports supports a maximum of four
instructions being retired during the same cycle; two instructions which modify re-
sult registers, one store instruction, and one branch instruction (these last two instruc-
tion types do not write to result registers). Figure 1-9 outlines the system layout.

When the reorder buffer becomes full, no further instruction decoding can occur
until entries are made available via instruction retiring. Instructions are retired in the
order they are placed in the reorder buffer. This ensures in–order retiring of
instructions. Should an exceptional event occur during program execution, the state
of instruction retirement specifies the precise position which execution has reached
within the program. Only completed instructions, without exceptions, are retired.

Figure 1-9. Multiple Function Units with a Reorder Buffer

Result and Tag Buses

Function
Unit

Function
Unit

Function
Unit

Reorder
Buffer

Register
FileInstruction

Decode

Operand Buses

Instruction Bus

Instruction
Cache

Instruction
Memory

reservation
stations (2)

Retirement Bus

10 word

3 word

4 word

2 word

4 instructions

4 word



30 Evaluating and Programming the 29K RISC Family

Figure 1-9 shows the operand busses supplying source operands from the
reorder buffer to the reservation stations. However, in some cases, when an
instruction is decoded and the operand register’s number presented to the reorder
buffer, no entry is found. This indicates there is currently no copy of the required
register. Consequently, the real register in the register file must be accessed to obtain
the data. For this reason the register file is provided with read ports (4) which supply
data to the operand bus.

1.7.4 Branch Prediction

Out–of–order instruction issue places a heavy demand on instruction decoding.
If reservation stations are to be kept filled, instruction decode must proceed at a rate
equal to, or greater than, instruction execution. Otherwise, performance will be
limited by the ability to decode instructions. The major obstacle in the way of
achieving efficient decoder operation is branching instructions. Unfortunately,
instruction sequences typically contain only about five or six instructions before a
further branch–type instruction is encountered. Compilers directed to producing
code specifically for superscalar processor execution try to increase this critical
parameter. Additionally, the fact that a target of a branch instruction need not be
aligned on a cache block boundary, can further reduce the efficiency of the decoding
processes.

The decoder fetches instructions and places them into the instruction window
for issue by a function unit. If an average decode rate of more than two instructions
per cycle is to be achieved, it is likely that a four–instruction decoder (or better) will
be required. In fact, AMD’s product overview indicates a four–instruction decoder is
used. To study this further, first examine the code below. The first target sequence
begins at address label L13. The linker need not align the L13 label at a cache block
boundary –– a cache block size of four instructions will be assumed. The same
alignment issue occurs with the second target sequence beginning at label L14. The
decoder is presented with a complete cache block rather than sequential instructions
from within the block. This requires a 128–bit bus between the instruction cache and
the decode unit. However, this is essential if instructions are to be decoded in parallel.
Figure 1-10 shows a possible cache block assignment, assuming the target of the first
instruction sequence begins in the second entry of the cache block. The target of the
second sequence begins in the third instruction of the block.

L13: ;target of a branch
add gr98,gr98,10 ;gr98 = gr98 + 10
sll gr99,gr99,2
cpgt gr97,gr97,gr98
jmpt gr97,L14 ;conditional branch to L14
 add lr4,lr4,gr99 ;branch delay slot, see section 1.13

L15:
load 0,0,gr97,lr4
store 0,0,gr97,gr96
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. . .
L14: ;target of branch

jmp L16 ;unconditional branch to L16
 const lr10,0 ;branch delay slot, always executed
. . .

The branch instruction from the first code sequence to label L14 is located in the
second instruction of the block. Assuming two cycles are required to fetch the target
block, the decoder is left with nothing to decode for several cycles. Additionally,
branch alignment has resulted in there being less than four instructions available for
decode during any cycle. The resulting decode rate is 1 instruction per cycle. This
would result in little better than scalar processor performance –– much less that the
desired 2 or more instructions per cycle.

Figure 1-10. Instruction Decode with No Branch Prediction

add gr98,gr98,10 sll gr99,gr99,2

cpgt gr97,gr97,gr98 jmpt gr97,L14 add lr4,lr4,gr99

jmp L16 const lr10,0

time
in cycles

Average Decode = 7/7
         rate         = 1 instructions/cycle

L16: . . .

two–cycle
delay

Cache block being decoded

In Figure 1-10 the target sequence is found in the cache. Of course the cost of the
branch would be much higher if the target instructions had to be fetched from
off–chip memory. Additionally, a two–cycle branch delay is shown. This is typically
defined as the time from decoding the branch instruction till decoding the target
instruction. The actual delay encountered is difficult to estimate, as the target address
is not known until the jump instruction is executed. Figure 1-10 shows the cycle
when the jump instruction is placed in the instruction window. When it will be issued
depends on a number of factors such as register dependency and reservation station
activity. Additionally the result of the jump must be forwarded to the decode unit
before further instruction decode can proceed. In practice, several cycles could
elapse before the decoder obtains the address of the cache block containing the target
instruction.

It is clear from the above discussion that a superscalar processor must take steps
to achieve a higher instruction decode rate. This is likely to involve some form of
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branch prediction. The decoder can not wait for the outcome of the branch instruction
to be know before it starts fetching the new instruction stream. It must examine the
instruction currently being decoded, and determine if a branch is present. When a
branching instruction is found, the decoder must predict both if the branch will be
taken and the target of the branch. This enables instructions to be fetched and
decoded along the predicted path. Of course, unconditional branches also benefit
from early fetching of their target instruction sequence; and they do not require
branch prediction support.

The instruction decode sequence for the previous code example is shown in
Figure 1-11 using branch prediction. Without waiting for the conditional–jump
instruction in the second entry of the cache block to execute, the decoder predicts the
branch will be taken and in the next cycle starts decoding the block containing the
target instruction. This results in a decode rate of 2.33 instructions per cycle. If the
prediction is correct, the decoder should be able to sustain a decode rate which
prevents starving the function units of instructions.

Figure 1-11. Four–Instruction Decoder with Branch Prediction

add gr98,gr98,10 sll gr99,gr99,2

cpgt gr97,gr97,gr98 jmpt gr97,L14 add lr4,lr4,gr99

jmp L16 const lr10,0

time
in cycles

Average Decode = 7/3
         rate         = 2.33 instructions/cycle

Cache block being decoded

Branch prediction supports speculative instruction fetching. It results in
instructions being placed in the instruction window which may be speculatively
dispatched and executed. If the branch is wrongly predicted, instructions still waiting
in reservation stations must be cancelled. Any wrongly predicated instructions which
reach execution must not be retired. This requires considerable support circuitry. For
this reason scoreboarding is used by some processors to support speculative
instruction fetching. With scoreboarding the decoder sets a scoreboard bit for each
instruction’s destination register. Since there is only one bit indicating there is a
pending update, there can be only one such update per register. Consequently, the
decoder stalls when encountering an instruction required to update a register which
already has a pending update. The scoreboarding mechanism is simpler to implement
than register renaming using a reorder buffer. However, its restrictions limit the
decoder’s ability to speculatively fetch instruction further ahead of actual execution.
This has been shown to result in about 21% poorer performance when a
four–instruction decoder is used [Johnson 1991].



33Chapter 1       Architectural Overview

It is certain that a superscalar 29K processor will incorporate a branch
prediction technique. Given that instruction compatibility is to be maintained, it is
likely that a hardware prediction rather than a software prediction method will be
employed. This will require the processor to keep track of previous branch activity.
An algorithm will likely help with selecting the most frequent branch paths; such as
branches to lower addresses are more often taken then not –– jump at bottom of loop.

1.8 THE Am29200 MICROCONTROLLER

The Am29200  was the first of the 29K family microcontrollers (see
Table 1-3) [AMD 1992b]. To date the Am29205  is the only other microcontroller
added to the family. Being microcontrollers, many of the device pins are assigned I/O
and other dedicated support tasks which reduce system glue logic requirements.  For
this reason none of the devices are pin compatible. The system support facilities, in-
cluded within the Am29200 package, make it ideal for many highly integrated and
low cost systems.

The processor supports a 32–bit address space which is divided into a  number of
dedicated regions (see Figure 1-12). This means that ROM, for example, can only be
located in the region preallocated for ROM access. When an address value is gener-
ated, the associated control–logic for the region is activated and used to control  data
or instruction access for the region.

There is a 32–bit data bus and a separate 24–bit address bus. The rest of the 104
pins used by the device are mainly for I/O and external peripheral control tasks
associated with each of the separate address regions.

By incorporating memory interface logic within the chip, the processor enables
lower system costs and simplified designs. In fact, DRAM devices can be wired di-
rectly to the microcontroller without the need for any additional circuitry.

At the core of the microcontroller is an Am29000 processor. The additional I/O
devices and region control mechanisms supported by the chip are operated by pro-
grammable registers located in the control register region of memory space. These
control registers are accessible from alternate address locations –– for historical rea-
sons. It is best, and essential if C code is used, to access these registers from the op-
tional word–aligned addresses.

Accessing memory or peripherals located in each address region is achieved
with a dedicated region controller. While initializing the control registers for each
region it is possible to specify the access times and, say, the DRAM refresh require-
ments for memory devices located in the associated region.

Other peripheral devices incorporated in the microcontroller, such as the UART,
are accessed by specific control registers. The inclusion of popular peripheral de-
vices and the associated glue logic for peripheral and memory interfaces within a
single RISC chip, enables higher performance at lower costs than existing systems
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Processor Am29200 Am29205

Programmable I/O 16 pins 8 pins

ROM  width
DRAM  width

8/16/32  bit
16/32 bit

16 bit
16 bit

Table 1-3. Am2920x Microcontroller Members of 29K Processor Family

Instruction Cache

I–Cache Associativity

On–Chip Floating–Point

On–Chip MMU

On–Chip Interrupt
Controller  Inputs

–

–

No

No

Yes
14

–

–

No

–

Serial Ports 1 1

Yes
10

– –

D–Cache Associativity – –

Integer Multiply in h/w No No

DMA Channels 2 1

Byte Endian Big Big

Scalable Clocking No No

Burst–mode Addressing Yes, up to 1K bytes Yes, up to 1K bytes

Freeze Mode Processing Yes Yes

Delayed Branching Yes Yes

On–Chip Timer Yes Yes

On–Chip Memory Controler Yes Yes

Clock Speeds (MHz) 16.7, 20 12.5,16.7

JTAG Debugging Yes No

Date Cache
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Figure 1-12. Am29200 Microcontroller Address Space
Regions
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(see Figure 1-13). Let’s take a quick look at each of the region controllers and spe-
cialized on–chip peripherals in turn.

1.8.1 ROM Region

First thing to realize is that ROM space is really intended for all types of
nonmultiplexed–address devices, such as ROM and SRAM. Controlling access to
these types of memories is very similar. The region is divided into four banks. Each
bank is individually configurable in width and timing characteristics. A bank can be
associated with 8–bit, 16–bit or 32–bit memory and can contain as much as 16M
bytes of memory (enabling a 64M bytes ROM region).

Bank 0, the first bank, is normally attached to ROM memory as code execution
after processor reset starts at address 0. During reset the BOOTW (boot ROM width)
input pin is tested to determine the width of Bank 0 memory. Initially the memory is
assumed to have 4–cycle access times (three wait states) and no burst–mode. The
SA29200 evaluation board contains an 8–bit EPROM at bank 0 (SA stands for stand–
alone). Other banks may contain, say, 32–bit SRAM with different wait state require-
ments. It is possible to arrange banks to form a contiguous address range.

Whenever memory in the ROM address range is accessed, the controller for the
region is activated and the required memory chip control signals such as CE (chip
enable), R/W, OE (output enable) and others are generated by the microcontroller.
Thus SRAM and EPROM devices are wired directly to pins on the microcontrol chip.
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 Figure 1-13. Am29200 Microcontroller Block Diagram
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1.8.2 DRAM Region

In a way similar to the ROM region, there is a dedicated controller for DRAM
devices which are restricted to being located in the DRAM address region. Once
again the region is divided into four banks which may each contain as much as 16M
bytes of off–chip memory. The DRAM region controller supports 16–bit or 32–bit
wide memory banks which may be arranged to appear as contiguous in address
range.

DRAM, unlike ROM, is always assumed to have 4–cycle access times. Howev-
er, if page–mode DRAM is used it is possible to achieve 2–cycle rather than 4–cycle
burst–mode accesses. Burst–mode is used when consecutive memory addresses are
being accessed, such as during instruction fetching between program branches. The
DRAM memory is often referred to as 3/2 rather than 4/2. The four cycles consist of
1-cycle precharge and 3–cycles latency, under certain circumstances the 1–cycle of
precharge can be hidden. This is explained in section 1.14.1 under the Am29200 and
Am29205 subheading.

The control register associated with each DRAM bank, maintains a field for
DRAM refresh support. This field indicates the number of processor cycles between
DRAM refresh. If refresh is not disabled, “CAS before RAS” cycles are performed
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when required. Refresh is overlapped in the background with non–DRAM access
when possible.

If a DRAM bank contains video–DRAM rather than conventional DRAM, then
it is possible to perform data transfer to the VDRAM shift register via accesses in the
VDRAM address range. The VDRAM is aliased over the DRAM region. Accessing
the memory as VDRAM only changes the timing of memory control signals such as
to indicate a video shift register transfer is to take place rather than a CPU memory
access.

1.8.3 Virtual DRAM Region

A 16–Mbyte (24 address bit) virtual address space is supported via four map-
ping registers. The virtually addressed memory is divided into 64K byte (16 address
bits) memory pages which are mapped into physical DRAM. Each mapping register
has two 8–bit fields specifying the upper address bits of the mapped memory pages.
When memory is accessed in the virtual address space range, and one of the four
mapping registers contains a match for the virtually addressed page being accessed,
then the access is redirected to the physical DRAM page indicated by the mapping
register.

When no mapping register contains a currently valid address translation for the
required virtual address, a processor trap occurs. In this case memory management
support software normally updates one of the mapping registers with a valid mapping
and normal program execution is restarted.

Only DRAM can be mapped into the virtual address space. The address region
supports functions such as image compression and decompression that yield lower
overall memory requirements and, thus, lower system costs. Images can be stored in
virtually addressed space in a compressed form, and only uncompressed into physi-
cally accessed memory when required for image manipulation or output video imag-
ing.

1.8.4 PIA Region

The Peripheral Interface Adapter (PIA) region is divided into six banks, each of
24–bit address space. Each bank can be directly attached to a peripheral device. The
control registers associated with the region give extra flexibility in specifying the
timing for signal pins connecting the microcontroller and PIA peripherals. The PIA
device–enable and control signals are again provided on–chip rather than in external
support circuitry.

When external DMA is utilized, transfer of data is always between DRAM or
ROM space and PIA space. More on DMA follows.

1.8.5 DMA Controller

When an off–chip device wishes to gain access to the microcontroller DRAM, it
makes use of the Direct Memory Access (DMA) Controller. On–chip peripherals can
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also perform DMA transfers; this is referred to as internal DMA. DMA is initiated by
an external or internally generated peripheral DMA request.

The only internal peripherals which can generate DMA requests are the parallel
port, the serial port and the video interface. These three devices are described shortly.
There are two external DMA request pins, one for each of the two on–chip DMA con-
trol units. Internal peripherals have a control register field which specifies which
DMA controller their DMA request relates to.

The DMA controllers must be initialized by software before data transfer from,
or to, DRAM takes place. The associated control registers specify the DRAM start
address and the number of transfers to take place. Once the DMA control registers
have been prepared, a DMA transfer will commence immediately upon request with
out any further CPU intervention. Once the DMA transfer is complete the DMA con-
troller may generate an interrupt. The processor may then refresh the DMA control
unit parameters for the next expected DMA transfer.

One of the DMA control units has the special feature of having a duplicate set of
DMA parameter registers.  At the end of a DMA transfer, when the primary set of
DMA parameter registers have been exhausted, the duplicate set is immediately co-
pied into the primary set. This means the DMA unit is instantly refreshed and pre-
pared for a further DMA request. Ordinarily the DMA unit is not ready for further use
until the support software has executed, usually via an end of DMA interrupt request.
Just such an interrupt may be generated but it will now be concerned with preparing
parameters for the duplicate control registers for the one–after–next DMA request.
This DMA queue technique is very useful when DMA transfers are occurring to the
video controller. In such case DMA can not be postponed as video imaging require-
ments mean data must be available if image distortion is to be avoided.

External DMA can only occur between DRAM or ROM space and two of the six
PIA address space banks. DMA only supports an 8–bit address field within a PIA ad-
dress bank.

One further note on DMA, the microcontroller does support an external DMA
controller; enabling random access by the external DMA device to DRAM and
ROM. The external DMA unit must activate the associated control pins and place the
address on the microcontroller address bus. In conjunction with the microcontroller,
the external DMA unit must complete the single 32–bit data access.

1.8.6 16–bit I/O Port

The I/O port supports bit programmable access to 16 input or output pins. These
pins can also be used to generate level–sensitive or edge–sensitive interrupts. When
used as outputs, they can be actively driven or used in open collector mode.

1.8.7 Parallel Port

The parallel port is intended for connecting the microcontroller chip to a host
processor, where the controller acts as an intelligent high performance control unit.
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Data can be transferred in both directions, either via software controlled 8–bit or
32–bit data words, or via DMA unit control. Once again the associated control regis-
ters give the programmer flexibility in specifying the timing requirements for con-
necting the parallel port directly to the host processor.

1.8.8 Serial Port

The on–chip serial port supports high speed full duplex, bi–directional data
transfer using the RS–232 protocol. The serial port can be used in an polled or inter-
rupted driven mode. Alternatively, it may request DMA access. The lightweight in-
terrupt structure of the Am29000 processor core, coupled with the smart on–chip pe-
ripherals, presents the software engineer with a wide range of options for controlling
the serial port.

1.8.9 I/O Video Interface

The video interface provides direct connection to a number of laser–beam
marking engines. It may also be used to receive data from a raster input device such as
a scanner or to serialize/deserialize a data stream. It is possible with external circuitry
support that a noninterleaved composite TV video signal could be generated.

The video shift register clock must be supplied on an asynchronous input pin,
which may be tied to the processor clock. (Note, a video image is built by serially
clocking the data in the shift register out to the imaging hardware. When the shift reg-
ister is empty it must be quickly refilled before the next shift clock occurs.) The
imaged page may be synchronized to an external page–sync signal. Horizontal and
vertical image margins as well as image scan rates are all programmable via the now
familiar on–chip control register method.

The video shift registers are duplicated, much like some of the DMA control
registers. This reduces the need for rapid software response to maintain video shift
register update. When building an image, the shift register is updated from the dupli-
cate support register. Software, possibly activated via a video–register–empty inter-
rupt, must fill the duplicate shift register before it becomes used–up. Alternatively,
the video data register can be maintained by the DMA controller without the need for
frequent CPU intervention.

1.8.10 The SA29200 Evaluation Board

The SA29200 is an inexpensive software development board utilizing the
Am29200 microcontroller. Only a 5v supply and a serial cable connection to a host
computer are required to enable board operation. Included on the board is an 8–bit
wide EPROM (128Kx8) which contains the MiniMON29K debug monitor and the
OS–boot operating system. There is also 1M byte of 32–bit DRAM (256Kx32) into
which programs can be loaded via the on–chip UART. The processor clock rate is 16
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MHz and the DRAM operates with 4–cycle initial access and 2–cycle subsequent
burst accesses. So, although the performance is good, it is not as high as other mem-
bers of the 29K family.

The SA29200 board measures about 3 by 3.5 inches (9x10 cm) and has connec-
tions along both sides which enable attachment to an optional hardware prototyping
board (see following section). This extension board has additional I/O interface de-
vices and a small wire–wrap area for inclusion of application specific hardware.

1.8.11 The Prototype Board

The prototying board is inexpensive because it contains mainly sockets, which
can support additional memory devices, and a predrilled wire–wrap area. The RISC
microcontroller signals are made available on the prototyping board pins. Some of
these signals are routed to the empty memory sockets so as to enable simple memory
expansions for 8–bit, 16–bit or 32–bit EPROM or SRAM. There is also space for up
to 16M bytes of 32–bit DRAM.

Using the wire–wrap area the microcontroller I/O signals can be connected to
devices supporting specific application tasks, such as A/D conversion or peripheral
control. This makes the board ideal for a student project. Additionally, the access
times for memory devices are programmable, thus enabling the effects of memory
performance on overall system operation to be evaluated.

1.8.12  Am29200 Evaluation

The Combination of the GNU tool chain and the low cost SA29200 evaluation
board and associated prototping board, makes available an evaluation environment
for the industry’s leading embedded RISC. The cost of getting started with embedded
RISC is very low and additional high performance products can be selectively pur-
chased from specialized tool builders. The evaluation package should be of particu-
lar interest to university undergraduate and post–graduate courses studying RISC.

1.8.13 The Am29205 Microcontroller

The Am29205 is a microcontroller member of the 29K family (see Table 1-3). It
is functionally very similar to the Am29200 microcontroller. It differs as a result of
reduced system interface specifications. This reduction enables a lower device pin–
count and packaging cost. The Am29205 is available in a 100–lead Plastic Quad Flat
Pack (PQFP) package. It is suitable for use in price sensitive systems which can oper-
ate with the somewhat reduced on–chip support circuitry.

The reduction in pin count results in a 16–bit data/instruction bus. The processor
generates two consecutive memory requests to access instructions and data larger
than 16–bits. The memory system interface has also been simplified in other ways.
Only 16–bit transfers to memory are provided for; no 8–bit ROM banks are sup-
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ported. The parallel port, DMA controller, and PIA, also now support transfers lim-
ited to the 16–bit data width.

Generally the number of service support pins such as: programmable Input/Out-
put pins (now 8, 16 for the Am29200 processor); serial communication handshake
signals DTR, DSR; DMA request signals; interrupt request pins; and number of de-
coded PIA and memory banks, have all been reduced. The signal pins supporting vid-
eo–DRAM and burst–mode ROM access have also been omitted. These omissions
do not greatly restrict the suitability of the Am29205 microcontroller for many proj-
ects. The need to make two memory accesses to fetch instructions, which are not sup-
ported by an on–chip cache memory, will result in reduced performance. However,
many embedded systems do not require the full speed performance of a 32–bit RISC
processor.

AMD provides a low cost evaluation board known as the SA29205. The board is
standalone and very like the SA29200 evaluation  board; in fact, it will fit with the
same prototype expansion board used by the SA29200. It is provided with a 256k
byte EPROM, organized as 128kx16 bits. The EPROM memory is socket upgradable
to 1M byte.  There is  512K byte of 16–bit wide DRAM. For debugging purposes, it
can use the MiniMON29K debug monitor utilizing the on–chip serial port.

1.9 THE Am29240 MICROCONTROLLER

The Am29240 is a follow–on to the Am29200 microcontroller (see Table 1-4).
It was first introduced in 1993. The Am29240 is a member of the Am2924x family
grouping which offers increased on–chip support and greater processing power. In
terms of peripherals the Am29240 has two serial ports in stead of the Am29200’s one.
It also has 4 DMA controllers in stead of two.

Unlike the Am29200, all of the Am29240 DMA channels support queued data
transfer. Additionally, fly–by DMA transfers are optionally supported. Normal
DMA transfers require a read stage followed by a write stage. The data being trans-
ferred is temporarily held in an on–chip buffer after being read. With fly–by DMA the
read and write stages occur at the same time. This results in a faster DMA transfer.
However, the device being accessed must be able to transfer data at the maximum
DRAM access rate.

The Am2924x family grouping, unlike the Am2920x grouping, support virtual
memory addressing. The Translation  Look–Aside Buffer (TLB) used to construct an
MMU scheme supports larger page sizes than the Am29000 processor. The page size
can be up to 16M bytes. The large page size enables extensive memory regions to be
mapped with only a few TLB mapping entries. For this reason only 16 TLB entries
are provided (8 sets, two entries per set). A consequence of the relatively large page
size is pages can not be individually protected against Supervisor mode reads and
execution –– this is possible with the smaller pages used by the Am29000 processor
(see section 6.2.1). This loss is outweighed by the benefits of the larger page size
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Processor Am29240 Am29243

Programmable I/O 16 pins 8 pins

ROM  width
DRAM  width

8/16/32  bit
16/32 bit

16/32 bit
8/16/32 bit (parity)

Table 1-4. Am2924x Microcontroller Members of 29K Processor Family

Instruction Cache

I–Cache Associativity

On–Chip Floating–Point

On–Chip MMU

On–Chip Interrupt
Controller  Input’s

4K bytes

2–Way

No

Yes

Yes
14

4K bytes

2–Way

No

Yes

Serial Ports 2 2

Yes
14

Data Cache (Physical) 2K bytes 2K bytes

D–Cache Associativity 2–Way 2–Way

Integer Multiply in h/w Yes, 1–cycle Yes, 1–cycle

DMA Channels 4 4

Byte Endian Big Big

Scalable Clocking 1x,2x 1x,2x

Burst–mode Addressing Yes, up to 1K bytes Yes, up to 1K bytes

Freeze Mode Processing Yes Yes

Delayed Branching Yes Yes

On–Chip Timer Yes Yes

On–Chip Memory Controller Yes Yes

Clock Speeds (MHz) 0–20,25,33 0–20,25,33

JTAG Debugging Yes Yes

Am29245

8 pins

8/16/32 bit
16/32 bit

4K bytes

2–Way

No

Yes

1

Yes
14

–

–

No

2

Big

No

Yes, up to 1K bytes

Yes

Yes

Yes

Yes

0–16

Yes
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which achieves virtual memory addressing with little TLB reload activity and with
only a small amount of chip area being required.

Increased performance is achieved by the inclusion of separate 4k byte instruc-
tion and 2k byte data caches. As with all 29K instruction caches, address tags are
based on virtual addresses when address translation is turned on. The first processor
in the 29K Family to have a conventional instruction cache was the Am29030. The
Am29240 cache is similar in operation to the Am29030’s cache. However, the
Am29240 processor has four valid bits per cache entry (four instructions) in place of
the previous one bit. This offers a performance advantage as cache blocks need only
be partially filled and need not be fetched according to block boundaries (more on
this in section 5.13.5).

 The data cache always operates with physical addresses. The block size is 16
bytes and there is one valid bit per block. This means that compete data blocks must
be fetched when data cache reload occurs. A “write–through” policy is supported by
the cache which ensures that external memory is always consistent with cache con-
tents. Cache blocks are only allocated for data loaded from DRAM or ROM address
regions. Access to other address regions is not cached. A two word write–through
buffer is used to assist with writes to memory. It enables multiple store instructions to
be in–execution without the processor pipeline stalling. Data accesses which hit in
the cache require 1–cycle access times. The data cache operation is explained in de-
tail in section 5.14.

Scalable bus clocking is supported; enabling the processor to run at twice the
speed of the off–chip memory system. Scalable Clocking was first introduced with
the Am29030 processors, and is described in the previous section describing the
Am29030. If cache hit rates are sufficiently high, Scalable Clocking enables high
performance systems to be built around relatively slow memory systems. It also of-
fers an excellent upgrade path when addition performance is required in the future.

Initially the ROM memory region is assumed to have four cycle access times
(three wait states) and no burst–mode –– same as Am29200. The four banks within
the region can be programmed for zero wait–state read and one wait–state write, or
another combination suitable for slower memory devices.

DRAM, unlike ROM, is always assumed to have 3–cycle access times. Howev-
er, if page–mode DRAM is used it is possible to achieve 1–cycle burst–mode ac-
cesses. Burst–mode is used when consecutive memory addresses are being accessed,
such as during instruction fetching. The Am29200 microcontroller supports 4–cycle
DRAM access with 2–cycle burst. The faster DRAM interface of the Am29240
should result in a substantial performance gain. Additionally, the 3–cycle initial
DRAM access can be reduced to 2–cycle if the required 1–cycle precharge can be
hidden. This is explained in section 1.14.1 under the Am29200 and Am29205 sub-
heading. Consequently the Am29240 DRAM is often referred to as 2/1 rather than
3/1.
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The Am29240 processor supports integer multiply directly in a single cycle.
Most 29K processors take a trap when an integer multiply is attempted. It is left to
trapware to emulate the missing instruction. The ability to perform high speed multi-
ply makes the processor a better choice for calculation intensive applications such as
digital signal processing. Note, floating–point performance should also improve
with the Am29240 as floating–point emulation routines can make use of the integer
multiply instruction.

The Am2924x family grouping is implemented with a silicon process which en-
ables processors to operate at 3.3–volts or 5–volts. The lower power consumption
achievable at 3.3–volts makes the Am29240 suitable for hand–held type applica-
tions.

1.9.1 The Am29243 Microcontroller

The Am29243 is an Am29240 microcontroller enhanced to deal with commu-
nication applications (see Table 1-4). For this reason the video interface is omitted.
The pins used have not been reassigned, and there is a possibility they will be allo-
cated in a future microcontroller for an additional communications support function.

Communication applications frequently require large amounts of DRAM, and it
is often critical that no corruption of the data occur. Parity error checking is often per-
formed by memory systems with the objective of detecting data corruption. It can be
difficult to built the necessary circuitry at high memory system speeds. The
Am29243 microcontroller has built–in parity generation and checking for all DRAM
accesses. When enabled by the DRAM controller, the processor will take trap num-
ber 4 when a parity error is detected. Having parity handling built–in enables single–
cycle DRAM accesses to be performed without any external circuitry required.

Because of the larger amounts of memory typically used in communication ap-
plications, the Am29243 has a second Translation Look–Aside Buffer (TLB). Hav-
ing two TLBs enables a larger number of virtual to physical address translations to be
cached (held in a TLB register) at any time. This reduces the TLB reload overhead.
The second TLB also has 16 entries (8 sets, two entries per set), and the page size can
be the same or different. If the TLB page sizes are the same, a four–way set associa-
tive MMU can be constructed with supporting software. Alternatively one TLB can
be used for code and the second, with a larger page size, for data buffers or shared
libraries. The TLB entries have a Global Page (GLB) bit; when set the mapped page
can be accessed by any processes regardless of its process identifier (PID).

1.9.2 The Am29245 Microcontroller

The Am29245 is a low–cost version of the Am29240 microcontroller (see
Table 1-4). To enable the lower cost, the data cache and the integer multiply unit have
been omitted. Further, there are only two DMA channels in place of the Am29240’s
four.  To further reduce cost, one of the two serial ports has also been omitted.
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The Am29245 is intended for use in systems which do not need the maximum
performance of the Am29240 or all of its peripherals; and can benefit from a reduced
processor cost. The Am29245 does not support Scalable Clocking and is only avail-
able at relatively lower clock speeds.

1.9.3 The Am2924x Evaluation

AMD has a number of boards available for Am2924x evaluation. Microcontrol-
lers in this family grouping all have the same pin configuration. This enables the
boards to operate with any of the Am2924x processors. The least expensive board is
the SD29240 it is a very small board, similar in form to the SA29200 board; it does
not have the expansion connector available with the SA29200. It is normally sup-
plied with an Am29240 or Am29245 installed. There is 1M byte of 32–bit wide
DRAM which operates at 16 MHz. When an Am29240 is used, Scalable Clocking
can enable the processor to operate at 32 MHz. The board also has a JTAG and
RS–232 connector. The 1M byte of 32–bit wide EPROM supplied with the board is
preprogrammed for MiniMON29K operation.

 Those with more money to spend, or requiring a more flexible evaluation board,
can use the SE29240 board. It contains an Am29243 processor but can be used to
evaluate an Am29240 or Am29245. Initially the board contains 1M byte of 36–bit
wide DRAM. However, this can be expanded considerably. The DRAM is 36–bits
wide due to the additional 4–bits required for parity checking. The maximum
memory speed is 25 MHz. Scalable Clocking can be used with a 32 MHz processor
when the memory system is configured for 16 MHz operation.

The SE29240 board has greater I/O capability than the SD29240 board. There
are connectors for two RS–232 ports and a parallel port. Debugging can be achieved
via a serial or parallel port link to the MiniMON29K DebugCore located in  EPROM.
Debugging is also supported via the JTAG or Logic Analyzer connections. There is a
small wire–wrap area for additional circuitry, and extra boards can be connected via
an expansion connector.

AMD also has an evaluation board intended for certain communication applica-
tions. The NET29K board has a triple processor pad–site. The board can operate with
either an Am29205, Am29200 or Am2924x (probably an Am29243) processor. The
processor pad site is concentric, the larger processor being at the outer position. The
similarity in the memory region controllers enables the construction of this unusual
board.

The memory system consists of 4M bytes of 36–bit wide DRAM, which is ex-
pandable. There is also 2M bytes of 32–bit EPROM. The EPROM can be replaced
with 1M byte of Flash programmable memory. For communications there is an AMD
MACE chip which provides an Ethernet capability via an 10–Base–T connector. Two
of the processors DMA channels are wired for MACE access. Once channel of an
85C30 UART is connected to an RS–449 connector which supports RS–422 signal
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level communication. This enables very fast UART communication. The Mini-
MON29K DebugCore and OS–boot operating system are initially installed in
EPROM (or Flash); and the DebugCore communicates via an on–chip UART con-
nected to an RS–232 (9–way) connector.

When the NET29K board is used with an Am29205 processor, the 16–bit pro-
cessor bus enables only half of the memory system to be accessed. The board is
physically small, measuring about 5 1/2 x 5 1/2 inches (14cm x 14cm). Debugging is
further supported by JTAG and Logic Analyzer connections. An inexpensive 9–volt
power supply is required.

1.10 REGISTER AND MEMORY SPACE

Most of the 29K instructions operate on information held in various processor
registers. Load and store type instructions are available for moving data between ex-
ternal memory and processor registers. Members of the 29K family generally sup-
port registers in three independent register regions which make up the 29K register
space. These regions are the General Purpose registers, Translation Look–Aside
(TLB) registers, and Special Purpose registers. Members of the 29K family which do
not support Memory Management Unit  operation, do not have TLB registers imple-
mented.

There are currently two core processors within the 29K family, the Am29000
and the Am29050. Other processors are generally derived from one of these core pro-
cessors. For example, the Am29030 has an Am29000 at its core, with additional sili-
con area being used to implement instruction cache memory and a 2–bus processor
interface. The differences between the core processors and their derivatives is  re-
flected in expansions to the special register space.

However, the special register space does appear uniform through out the 29K
family. Generally only those concerned with generating operating system support
code are concerned with the details of the special register space. AMD has specified a
subset of special registers which are supported on all 29K family processors. This
aids in the development and porting of Supervisor mode code.

The core processors support a 3–bus Harvard Architecture, with instructions
and data being held in separate external memory systems. There is one 32–bit bus
each for the two memory systems and a shared 32–bit address bus. Some RISC chips
have a 4–bus system, where there is an address bus for each of the two memory sys-
tems. This avoids the contention for use of a shared address bus. Unfortunately, it also
results in increased pin–count and, consequently, processor cost. The 29K 3–bus pro-
cessors avoid conflicts for the address bus by supporting burst mode addressing and a
large number of on–chip registers. It has been estimated that the Am29000 processor
losses only 5% performance as a result of the shared address bus.

All instruction fetches are directed to instruction memory; data  accesses are di-
rected to data memory or I/O space. These two externally accessible spaces consti-
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tute two of the four external access spaces. The other two are the ROM space and the
coprocessor space. The ROM space is accessed via the instruction bus. Like the
instruction space it covers a 232 range.

1.10.1 General Purpose Registers

All members of the family have general purpose registers which are made up
from 128 local registers and more than 64 global registers (see  Figure 1-14). These
registers are the primary source and destination for most 29K instructions. Instruc-
tions have three 8–bit operand fields which are used to supply the addresses of gener-
al registers.  All User mode executable instructions and code produced by high level
language compilers, are restricted to only directly assessing general purpose regis-
ters. The fact that these registers are all 32–bit and that there is a large number of
them, vis–a–vis CISC, reduces the need to access data held in external memory.

General purpose registers are implemented by a multiport register file. This file
has a minimum of three access ports, the Am29050 processor has an additional port
for writing–back floating–point results.  Two of the three ports provide simultaneous
read access to the register file; the third port is for updating a register value. Instruc-
tions generally specify two general purpose register operands which are to be oper-
ated on. After these operands have been presented to the execution unit, the result of
the operation is made available in the following cycle. This allows the result of an
integer operation to be written back to the selected general purpose register in the
cycle following its execution. At any instant, the current cycle is used to write–back
the result of the previous computation.

The Am29050 can execute floating–point operations in parallel with  integer
operations. The latency of floating–point instructions can be more than the 1–cycle
achieved by the integer operation unit. Floating–point results are written back, when
the operation is complete, via their own write–back port, without disrupting the inte-
ger units ability to write results into the general purpose register file.

Global Registers

The 8–bit operand addressing fields enable only the lower 128 of the possible
256 address values to be used for direct general purpose register addressing. This is
because the most significant address bit is used to select a register base–plus–offset
addressing mode. When the most significant bit is zero, the accessed registers are
known as Global Registers. Only the upper 64 of the global registers are  implement-
ed in the register file. These registers are known as gr64–gr127. Some of the lower
address–value global registers are assigned special support tasks and are not really
general purpose registers.

The Am29050 processor supports a condition code accumulator with global
registers gr2 and gr3. The accumulator can be used to concatenate the result of sever-
al Boolean comparison operations into a single condition code. Later the accumu-
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lated condition can be quickly tested. These registers are little used and on the whole
other, more efficient, techniques can be found in preference to their use.

Local Registers

When the most significant address bit is set, the upper 128 registers in the gener-
al purpose register file are accessed. The lower 7–bits of the address are used as an
offset to a base register which points into the 128 registers. These general purpose
registers are known as the Local Registers. The base register is located at the global
register address gr1. If the addition of the 7–bit operand address value and the register
base value produces a results too big to be contained in the 7–bit local register address
space, the result is rounded modulo–128. When producing a general purpose register
address from a local register address, the most significant bit of the general purpose
register address value is always set.

The local register base address can be read by accessing global register gr1.
However, the base register is actually a register which shadows global register gr1.
The shadow support circuitry requires that the base be written via an ALU operation
producing a result destined for gr1. This also requires that a one cycle delay follow
the setting of the base register and any reference to local registers.

Global register address gr0 also has a special meaning.  Each of the three oper-
and fields has an indirect pointer register located in the special register space. When
address gr0 is used in an operand field, the indirect pointer is used to access a general
purpose register for the associated operand. Each of the three indirect pointers has an
8–bit field and can point anywhere in the general purpose register space. When indi-
rect pointers are used, there is no distinction made  between global and local registers.

All of the general purpose registers are accessible to the processor while execut-
ing in User mode unless register bank protection is applied. General purpose registers
starting with gr64 are divided into groups of 16 registers. Each group can have access
restricted to the processor operating in Supervisor mode only. The AMD high level
language calling convention specifies that global registers gr64–gr95 be reserved for
operating system support tasks. For this reason it is normal to see the special register
used to support register banking set to disable User mode access to global registers
gr64–gr95.

1.10.2 Special Purpose Registers

Special purpose register space is used to contain registers which are not ac-
cessed directly by high level languages.  Registers such as the program counter and
the interrupt vector table base pointer are located in special register space.  Normally
these registers are accessed by operating system code or  assembly language helper
routines. Special registers can only be accessed by move–to and move–from type
instructions; except for the move–to–immediate case. Move–to and move–from
instructions require the use of a general purpose register. It is worth noting that
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move–to special register instructions are among a small group of instructions which
cause processor serialization. That is, all outstanding operations, such as overlapping
load or store instructions, are completed before the serializing instruction com-
mences.

Special register space is divided into two regions (see Figure 1-15). Those reg-
isters whose address is below sr128 can only be accessed by the processor operating
in Supervisor mode.  Different members of the 29K family have extensions to the
global registers shown in Figure 1-15. However, special registers sr0–sr14 are a sub-
set which appear in all family members. Certain, generally lower cost, family mem-
bers such as the Am29005 processor, which have no memory management unit, do
not have the relevant MMU support registers (sr13 and sr14). I shall first describe the
restricted access, or protected, special registers. I shall not go into the exact bit–field
operations in detail, for an expansion of field meanings see later chapters or the rele-
vant processor User’s Manual. The objective here is to provide a framework for bet-
ter understanding the special register space.

Special registers are not generally known by their special register  number. For
example, the program counter buffer register PC1 is known as PC1 by assembly lan-
guage programming tools rather than sr11.

Vector Area Base
Special register sr0, better known as VAB, is a pointer to the base of a table of

256 address values. Each interrupt or trap is assigned a unique vector number. Vector
numbers 0–63 are assigned to specific processor support tasks. When an interrupt or
trap exception is taken, the vector number is used to index the table of address values.
The identified  address value is read and used as the start address of the exception
handling routine. Alternatively with 3–bus members of the 29K family, the vector
table can contain 256 blocks of instructions.  The VF bit (vector fetch) in the proces-
sor Configuration register (CFG) is used to select the vector table configuration.
Each block is limited to 64 instructions, but via this method the interrupt handler can
be reached faster as the start of, say, an interrupt handler need not be preceded by a
fetch of the address of the handler. In practice the table of vectors to handlers, rather
than handlers themselves, is predominantly used due to the more efficient use of
memory. For this reason the two later 2–bus members of the 29K family only support
the table of vectors method; and the VF bit in the CFG register is reserved and effec-
tively set.

The first 29K processor, the Am29000, has a VAB register which requires the
base of the vector table to be aligned to a 64k byte address boundary. This can be in-
convenient and lead to memory wastage. More recent family members provide for a
1k byte boundary. Because the 3–bus family members support instructions being lo-
cated in Instruction space and ROM space (memory space is described in section
1.10.4), it is possible with these processors to specify that handler routines are in
ROM space by setting the RV bit (ROM vector area) in the CFG register when the VF
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bit  is zero. Or, when the more typical table of vectors method is being used by, setting
bit–1 of the handler address.  Since handler routines all start on 4–byte instruction
boundaries, bits 0 and 1 of the vector address are not required to hold address in-
formation. The 2–bus and microcontroller members of the 29K family do not support
ROM space and RV bit in the CFG registers is reserved.

Processor Status

Two special registers, sr1 and sr2, are provided for processor status reporting
and control. The two registers OPS (old processor status) and CPS (current processor
status) have the same bit–field format. Each bit position has been assigned a unique
task. Some bit positions are not effective with particular family members. For exam-
ple, the Am29030 processor does not use bit position 15 (CA). This bit is used to indi-
cate coprocessor activity. Only the 3–bus family members support coprocessor op-
eration in this way.

The CPS register reports and controls current processor operation. Supervisor
mode code is often involved with manipulating this register as it controls the enabling
and disabling of interrupts and address translation. When a program execution ex-
ception is taken, or an external event such as an interrupt occurs, the CPS register
value is copied to the OPS register and the processor modifies the CPS register to
enter Supervisor mode before execution continues in the selected exception handling
routine. When returning from the handler routine, the interrupted program is re-
started with an IRET type instruction. Execution of an IRET instruction causes the
OPS register to be copied back to the CPS register, helping to restore the interrupted
program context. Supervisor mode code often prepares OPS register contents before
executing an IRET and starting User mode code execution.

Configuration

Special register sr3, known as the configuration control register (CFG), esta-
blishes the selected processor operation. Such options as big or little endian byte or-
der, cache enabling, coprocessor enabling, and more are selected by the CFG setting.
Normally this register value is established at processor boot–up time and is infre-
quently modified.

The original Am29000 (rev C and later) only used the first six bits of the CFG
register for processor configuration. Later members of the family offer the selection
of additional processor options, such as instruction memory cache and early address
generation. Additional options are supported by extensions to the CFG bit–field as-
signment. Because there is no overlap with CFG bit–field assignment across the 29K
family, and family members offer a matrix of functionality, there are often reserved
bit–fields in the CFG register for any particular 29K processor. The function pro-
vided at each bit position is unique and if the function is not provided for by a proces-
sor, the bit position is reserved.
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The upper 8–bits of the CFG register are used for processor version and revision
identification. The upper 3–bits of this field, known as the PRL (processor revision
level) identify the processor. The Am29000 processor is identified by processor
number 0, the Am29050 is processor number 1, and so on. The lower 5–bits of the
PRL give the the revision level; a value of 3 indicates revision  ‘D’. The PRL field is
read–only.

Data Access Channel
Three special registers, sr4–sr6, known as CHA (channel address), CHD (chan-

nel data) and CHC (channel control), are used to control and record all access to ex-
ternal data memory. Processors in the 29K family can perform data memory access in
parallel with instruction execution. This offers a considerable performance boost,
particularly where there is high data memory access latency. Parallel operation can
only occur if the instruction pipeline can  be kept fed from the instruction prefetch
buffer (IPB),  instruction memory cache, or via separate paths to data and instruction
memory (Harvard style 3–bus processors). It is an important task of a high level lan-
guage compiler to schedule load and store instructions such that they can be success-
fully overlapped with other nondependent instructions (see section 1.13).

When data memory access runs in parallel, its completion will occur some time
after the instruction originally making the data access. In fact it could be several
cycles after the original request, and it may not be possible to determine the original
instruction. On many processors, keeping track of the original instruction is required
in case the load or store operation does not complete for some reason. The original
instruction is restarted after the interrupting complication has been dealt with. How-
ever, with the 29K family the original instruction is not restarted.  All access to exter-
nal memory is via the processor Data Channel. The three channel support registers
are used to restart any interrupted load or store operation. Should an exception occur
during data memory access, such as an address translation fault, memory access
violation, or external interrupt, the channel registers are updated by the processor re-
porting the state of the in–progress memory access.

The channel control register (CHC) contains a number of bit–fields. The con-
tents–valid bit (CV) indicates that  the channel support registers currently describe a
valid data access. The CV bit is normally seen set when a channel operation is inter-
rupted. The ML bit indicates a load– or store–multiple operation is in progress.
LOADM and STOREM instructions set this bit  when commencing and clear it when
complete. It is important to note that non–multiple LOAD and STORE instructions
do not set or clear the ML bit. When a load– or store–multiple operation is interrupted
and nested interrupt processing is supported, it is not sufficient to just clear the CV bit
to temporary cancel the channel operation. If the ML bit was left set, a subsequent
load or store operation would become confused with a multiple type operation. The
ML bit should be cleared along with the CV bit; this is best done by writing zero into
the CHC register. (See section 4.3.8 for more information about clearing CHC.)
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Integer operations complete in a single cycle, enabling the result of the previous
integer operation to be written back to the general purpose register file in the current
cycle.  Because external memory reads are likely to take several cycles to complete,
and pipeline stalling is to be avoided, the accessed data value is not written back to the
global register file during the following instruction (the write–back cycle). This re-
sults in the load data being held by the processor until access to the write–back port is
available. This is certain to occur during the execution of any future load or store
instruction which itself can not make use of its own write–back cycle. The processor
makes available via load forwarding circuitry the load data which awaits write–back
to the register file.

Register Access Protection
Special register sr7, known as RBP (register bank protect), provides a means to

restrict the access of general purpose registers by programs executing in User mode.
General purpose registers starting with gr64 are divided into groups of 16 registers.
When the corresponding bit in the RBP register is set, the associated bank of 16 regis-
ters is protected from User mode access. The RBP register is typically used to prevent
User mode programs from accessing Supervisor–maintained information held in
global registers gr64–gr95. These registers are reserved by the AMD high level lan-
guage calling convention for system level information.

On–Chip Timer Control
Special registers sr8 and sr9, known as TMC (timer counter) and TMR (timer

reload value), support a 24–bit real–time clock. The TMC register decrements at the
rate of the processor clock. When it reaches zero it will generate an interrupt if en-
abled. In conjunction with support software these two registers can be used to imple-
ment many of the functions often supported by off–chip timer circuitry.

Program Counter
A 29K processor contains a Master and Slave PC (program counter) address

register. The Master PC register contains the address of the instruction currently be-
ing fetched. The Slave contains the next sequentional instruction. Once an instruc-
tion flows into the execution unit, unless interrupted, the following instruction, cur-
rently in decode, will always flow into the execution unit. This is true for all instruc-
tions except for instructions such as IRET. Even if the instruction in execute is a
jump–type, the following instruction known as the delay–slot instruction is executed
before the jump is taken. This is known as delayed branching and can be very useful
in hiding memory access latencies, as the processor pipeline can be kept busy execut-
ing the delay–slot instruction while the new instruction sequence is fetched. It is an
important activity of high level language compilers to find useful instructions to
place in delay–slot locations.

The Master PC value flows along the PC–bus and the bus activity is recorded by
the PC buffer registers, see Figure 1-16. There are three buffer registers arranged in
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sequence. These buffer registers are accessible within special registers’ space as
sr10–sr12, better known as PC0, PC1 and PC2. The PC0 register contains the address
of the instruction currently in decode; register PC1 contains the address of the
instruction currently in execute; and PC2 the instruction now in write–back.
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PC MUX
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Branch
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Address
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Figure 1-16. Am29000 Processor Program Counter

PC–Buffer

When a program exception occurs the PC–buffer registers become frozen. This
is signified by the FZ bit in the current processor status register being set. When fro-
zen, the PC–buffer registers accumulate no new PC–bus information. The frozen PC
information can be used later to restart program execution. An IRET instruction
causes the PC1 and PC0 register information to be copied to the Master and Slave PC
registers and instruction fetching to commence. For this reason it is important to
maintain both PC1 and PC0 values when dealing with such system level activities as
nested interrupt servicing. Since the PC2 register records the address of a now
executed instruction, maintenance of its value is less important; but it can play an im-
portant role in debugging

When a CALL instruction is executed, the B–bus supplies the Master PC with
the address of the new instruction stream. Earlier, when the CALL instruction en-
tered the decode  stage, the PC–bus was used to fetch the delay–slot instruction; and
the address of the instruction following the delay–slot (the return address) was pre-
pared for entry into the Slave PC. On the following cycle, the CALL instruction en-
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ters the execute stage and the return address enters the Return Address register. Dur-
ing CALL execution, the return address is transferred to the register file via the R–
BUS.

MMU control

The last of the generally available special registers are concerned with memory
management unit (MMU) operation. Processors which have the Translation Look–
Aside Buffer (TLB) registers omitted will not have these two special registers. The
operation of the MMU is quite complex, and Chapter 6 is fully dedicated to the de-
scription of its operation. Many computer professionals working in real–time proj-
ects may be unfamiliar with MMU operation. The MMU enables virtual addresses
generated by the processor to be translated into physical memory addresses. Addi-
tionally, memory is divided into page sized quantities which can be individually pro-
tected against User mode or Supervisor mode read and write access.

Special register sr13, known as MMU, is used to select the page size; a mini-
mum of 1k bytes, and a maximum of 8k bytes. Also specified is the current User
mode process identifier. Each User mode process is given a unique identifier and Su-
pervisor mode processes are assumed to have identifier 0.

Certain newer 29K processors support two TLB systems on–chip. Each TLB
has a independently programmable page size. These processors, and their close rela-
tives can be programmed for a maximum page size of 16M bytes.

Additional Protected Special Registers

Monitor Mode

Some newer members of the 29K family have additional Supervisor only acces-
sible special registers which are addressed above sr14. Figure 1-17 shows the addi-
tional special registers for processors which support Monitor mode. Special register
sr15, known as RSN (reason vector), records the trap number causing Monitor mode

Special Purpose
Reg. No. Protected Registers

Figure 1-17. Additional Special Purpose Registers for the Monitor Mode Support

Reason Vector15 RSN

Mnemonic

Shadow Program Counter 020 SPC0

Shadow Program Counter 121 SPC1

Shadow Program Counter 222 SPC2
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to be entered.  Monitor mode extends the software debugging capability of the pro-
cessor; it was briefly described in the previous section describing the processor fea-
tures, and is dealt with in detail in later chapters. The shadow Program Counter regis-
ters constituted a second set of PC–buffer registers. They record the PC–bus activity
and are used to support Monitor mode debugging.

Am29050

Figure 1-18 shows the additional special registers used by the Am29050 pro-
cessor for region mapping. In the Am29050 case, the additional special registers sup-
port two  functions: debugging and region mapping. Four special registers in the
range sr16–sr19 extend the virtual address mapping capabilities of the TLB registers.
They support the mapping of two regions which are of programmable size. Their use
reduces the demand placed on TLB registers to supply all of a systems address map-
ping and memory access protection requirements.

Special Purpose
Reg. No. Protected Registers

Figure 1-18. Additional Special Purpose Registers  for the Am29050 Microprocessor

Mnemonic

Region Mapping Address 016 RMA0

Region Mapping Control 017 RMC0

Region Mapping Address 118 RMA1

Region Mapping Control 119 RMC1

Instruction and Data Breakpoints

Figure 1-19 shows the additional special registers for processors which support
breakpoint debugging. They facilitate the control of separate instruction access

Special Purpose
Reg. No. Protected Registers

Figure 1-19. Additional Special Purpose Registers  for Breakpoint Control

Mnemonic

Data Breakpoint Address 027 DBA0

Date Breakpoint Control 028 DBC0

Instruction Breakpoint Address 023 IBA0

Instruction Breakpoint Control 024 IBC0

Instruction Breakpoint Address 125

Instruction Breakpoint Control 126

IPA1

IBC1
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breakpoints and data access breakpoints. Some 29K processors have instruction
breakpoints only; others support both types of breakpoint.

On–Chip Cache Control

Figure 1-20 shows the additional special registers required to access on–chip
cache. There are only two additional registers, sr29 and sr30, required. Both registers
are used for communicating with the instruction memory cache supported by many
29K processors. If a processor also contains data cache, the memory can similarly be
accessed via the same cache interface registers. Supervisor mode support code con-
trols cache operation via the processor configuration register (CFG), and is not likely
to make use of the cache interface registers. These registers may be used by debug-
gers and monitors to preload and examine cache memory contents.

Special Purpose
Reg. No. Protected Registers

Figure 1-20. Additional Special Purpose Registers for On–Chip Cache Control

Cache Interface Register29 CIR

Mnemonic

Cache Data Register30 CDR

User Mode Accessible Special Registers

Figure 1-15 showed the special register space with its two regions. The region
addressed above sr128 is always accessible; and below sr128, registers are only ac-
cessible to the processor when operating in Supervisor mode.

The original Am29000 processor defined a subset of User mode accessible reg-
isters, in fact those shown in Figure 1-15. Every 29K processor supports the use of
these special registers, but, only the Am29050 has the full complement implemented.

Registers in the range sr128–sr135 are always present. However, the three reg-
isters sr160–sr162 are used to support floating–point and integer operations. Only
certain members of the 29K family directly support these operations in processor
hardware. Other 29K family members virtualize these three registers. When not
available, an attempt to access them causes a protection violation trap. The trap han-
dler identifies the attempted operation and redirects the access to shadow copies of
the missing registers. The accessor is unaware that the virtualization has occurred,
accept for the delay in completing the requested operation. In practice, floating–point
supporting special registers are not frequently accessed; except for the case of float-
ing–point intensive systems which tend to be constructed around an Am29050 pro-
cessor.
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Indirect Pointers

Special registers sr128–sr130, better known as IPA, IPB and IPC, are the indi-
rect pointers used to access the general purpose register file. For instructions which
make use of the three operand fields, RA, RB and RC, to address general purpose
registers, the indirect pointer can be used as an alternative operand address source.
For example, the RA operand field supplies the register number for the source oper-
and–A; if global register address gr0 is used in the RA instruction field, then the oper-
and register number is provided by the IPA register.

The IPA, IPB and IPC registers are pointers into the global register file. They are
generally used to point to parameters passed to User mode helper routines. They are
also used to support instruction emulation, where trap handler routines perform in
software the missing instruction. The operands for the emulated instruction are
passed to the trap handler via the indirect pointers.

ALU Support

Special registers sr131–sr134 support arithmetic unit operation. Register
sr131, better known as Q, is used during floating–point and integer multiply and di-
vide steps. Only the Am29050 processor can perform floating–point operations di-
rectly, that is, without coprocessor or software emulation help. It is also the only pro-
cessor which directly supports integer multiply. All other current members of the
29K family perform  these operations in a sequence of steps which make use of the Q
register.

The result of a comparison instruction is placed in a general purpose register, as
well as in the condition field of the ALU status register (special register sr132). How-
ever, the ALU status register is not conveniently tested by such instructions as condi-
tional branch. Branch decisions are made on the basis of True or False values held in
general purpose registers. This makes a lot of sense, as contention for use of a single
resource such as the ALU status register would lead to a resource conflict which
would likely result in unwanted pipeline stalling.

The ALU status register controls and reports the operation of the processor inte-
ger operation unit. It is divided into a number of specialized fields which, in some
cases, can be more conveniently accessed via special registers sr134 and sr135. The
short hand access provided by these additional registers avoids the read, shift and
mask operations normally required before writing to bit–fields in the ALU register.

Data Access Channel

The three channel control registers, CHA, CHD and CHC, were previously de-
scribed in the protected special registers section. However, User mode programs
have a need to establish load– and store–multiple operations which are controlled by
the channel support registers. Special register sr135, known as CR, provides a means
for a User mode program to set the Count Remaining field of the protected CHC reg-
ister. This field specifies the number of consecutive words transferred by the multiple
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data move operation. Should the operation be interrupted for any reason, the CR field
reports the number of transfers yet to be completed. Channel operation is typically
restarted (if enabled) when an IRET type instruction is issued.

Instruction Environment Registers

Special registers sr160 and sr162, known as FPE and FPS, are the floating–
point environment and status registers. The environment register is used by User
mode programs to establish the required floating–point operations, such as double–
or single–precision, IEEE specification conformance, and exception trap enabling.
The status register reports the outcome of floating–point operations. It is typically
examined as a result of a floating–point operation exception occurring. Only proces-
sors (Am29050) which support floating–point operations directly (free of trapware)
have real sr161 and sr162 registers. All other processors appear to have these regis-
ters via trapware support which creates virtual registers.

The integer environment is established by setting special register sr161, known
as INTE. There are two control bits which separately enable integer and multiplica-
tion overflow exceptions.  If exception detection is enabled, the processor will take
an Out–of–Range trap when an overflow occurs. Only processors (Am29040,
Am29240 and Am29243) which support integer multiply directly (free of trapware)
have a real sr161 register. All other processors appear to have an sr161 register via
trapware support.

Additional User Mode Special Registers

 Am29050

The Am29050 has an additional special register, shown in Figure 1-21. Register
sr164, known as EXOP, reports the instruction operation code causing a trap. It is
used by floating–point instruction exceptions. Unlike other 29K processors the
Am29050 directly executes all floating–point instructions. Exception traps can oc-
cur during these operations. When instruction emulation techniques are being used, it
is an easy matter to determine the instruction being emulated at the time of the trap.
However, with direct execution things are not as simple. The processor could ex-
amine the memory at the address indicated by the PC–buffer registers to determine
the relevant instruction opcode. But the Am29050 supports a Harvard memory archi-
tecture and there is no path within the processor to access the instruction memory as if
it were data. The EXOP register solves this problem. Whenever an exception trap is
taken, the EXOP register reports the opcode of the instruction  causing the exception.

Users of other 3–bus Harvard type processors such as the Am29000 and
Am29005 should take note; virtualizing the unprotected special registers sr160–162
requires that the instruction space be readable by the processor (virtualizing, in this
case, means making registers sr160–162 appear to be accessible even when they are
not physically present). This can only be achieved by connecting the instruction and
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Special Purpose
Reg. No.

Figure 1-21. Additional Special Purpose Register for the Am29050 Microprocessor

Mnemonic
Unprotected Registers

Exception Opcode164 EXOP

data busses together (disabling the Harvard architecture advantages by creating a
2–bus system) or providing an off–chip bridge. This bridge must enable the address
space to be reached from within some range of data memory space, at least for word–
size read accesses, and, all be it, with additional access time penalties.

The Am29050 processor has an additional group of registers known as the float-
ing–point accumulators. There are four 64–bit accumulators ACC3–0 which can be
used with certain floating–point operations. They can hold double– or single–preci-
sion numbers. They are not special registers in the sense they lie in special register
space. They are located in their own register space, giving the Am29050 one more
register space than the normal three register spaces of the other 29K family members.
However, like special registers, they can only be accessed by move–to and move–
from accumulator type instructions.

Double–precision numbers (64–bit) can be moved between accumulators and
general registers in a single cycle. Global registers are used in pairs for this operation.
This is possible because the Am29050 processor is equipped with an additional
64–bit write–back port for floating point data, and the register file is implemented
with a width of 64–bits.

1.10.3 Translation Look–Aside Registers

Although some 29K family members are equipped with region mapping regis-
ters, a Translation Look–Aside Buffer (TLB) technique is generally used to provide
virtual to physical address translation. The TLB is two–way set associative and up to
64 translations are cached in the TLB support registers.

The TLB registers form the basis for implementing a Memory Management
Unit. The scheme for reloading TLB registers is not dictated by processor micorcode,
but left to the programmer to organize.  This enables a number of performance boost-
ing schemes to be implemented with low overhead costs. However, it does place the
burden of creating a TLB maintenance scheme on the user.  Those used to having to
work around a processor’s microcode imposed scheme will appreciate the freedom.

TLB registers can only be accessed by move–to TLB and move–from TLB
instructions executed by the processor operating in Supervisor mode. Each of the
possible 64 translation entries (less than 64 with some 29K family members) requires



62 Evaluating and Programming the 29K RISC Family

a pair of TLB registers to fully describe the address translation and access permis-
sions for the mapped page. Pages are programmable in size from 1k bytes to 8k bytes
(to 16M byte with newer 29K processors), and separate read, write and execute per-
missions can be enabled for User mode and Supervisor mode access to the mapped
page.

There is only a single 32–bit virtual address space supported. This space is
mapped to real instruction, data or I/O memory. Address translation is performed in a
single cycle which is overlapped with other processor operations. This results in the
use of an MMU not imposing any run–time performance penalties, except where
TLB misses occur and the TLB cache has to be refilled. Each TLB entry is tagged
with a per–process identifier, avoiding the need to flush TLB contents when a user–
task context switch occurs. Chapter 6 fully describes the operation of the TLB.

1.10.4 External Address Space

The 3–bus members of the 29K family support five external 32–bit address
spaces. They are:

Data Memory — accessed via the data bus.

Input/Output — also accessed via the data bus.

Instruction — accessed via the instruction bus, normally read–only.

ROM — also accessed via the instruction bus, normally read–only.

Coprocessor — accessed via both data and address busses.  Note, the address
bus is only used for stores to coprocessor space. This enables 64–bit transfers
during stores and 32–bit during loads.
The address bus is used for address information when accessing all address

spaces except the coprocessor space. During load and store operations to coprocessor
space, address information can be supplied in a limited way by the OPT2–0 field of
the load and store instructions. Of course, with off–chip address decoding support,
access to coprocessor space could always be made available via a region of I/O or
data space. Coprocessors support off–chip extensions to a processor’s execution
unit(s). AMD supplied a coprocessor in the past, which was for floating–point sup-
port, the Am29027. It is possible that users could construct their own coprocessor for
some specialized support task.

Earlier sections discussed the read–only nature of the instruction bus of 3–bus
processors. Instructions are fetched along the instruction bus from either the ROM
space or the Instruction space. Access to the two 32–bit spaces is distinguished by the
IREQT processor pin. The state of this pin is determined by the RE (ROM enable) bit
of the current processor status register (CPS). This bit can be set by software or via
programmed event actions, such as trap processing. ROM space is intended for sys-
tem level support code. Typically systems do not decode this pin and the two spaces
are combined into one.
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The Input/Output (I/O) space can be reached by setting the AS (address space)
bit in load and store instructions.  Transfers to I/O space, like coprocessor space and
data space transfers, are indicated by the appropriate value appearing on the
DREQT1–0 (data request type) processor pins. I/O space access is only convenient
for assembly level routines. There is typically no convenient way for a high level lan-
guage to indicate an access is to be performed to I/O space rather than data space. For
this reason use of I/O space is often best avoided, unless it is restricted to accessing
some Supervisor maintained peripheral which is best handled via assembly language
code.

The 2–bus 29K family processors support a reduced number of off–chip address
spaces, in fact, only two: Input/Output space, and a combined Instruction/Data
memory space. Accessing both instructions and data via a shared instruction/data bus
simplifies the memory system design. It can also simplify the software; for example,
instruction space and data space can no longer overlap. Consider a 3–bus system
which has physical memory located at address 0x10000 in instruction space and also
different memory located at address 0x10000 in data space. Software errors can oc-
cur regarding accessing the correct memory for address 0x10000. It can also compli-
cate system tasks such as virtual memory management, where separate free–page
lists would have to be kept for the different types of memory.

The Translation Look–Aside buffer (TLB), used to support virtual memory ad-
dressing, supports separate enabling of data and instruction access via the R/W/X
(read/write/execute) enable bits. However, permission checking is only performed
after address translation is performed. It is not possible to have two valid virtual–to–
physical address translations present in the TLB at the same time for the same virtual
address, even if one physical address is for data space and the other instruction space.
This complicates accessing overlapping address spaces via a single 32–bit virtual
space.

Accessing virtual memory has similar characteristics to accessing memory via a
high level language. For example, C normally supports a single address space. It is
difficult and nonportable to have C code which can reach different address spaces.
Except for instruction fetching, all off–chip memory accesses are via load and store
type instructions. The OPT2–0 field for these instructions specifies the size of the
data being transferred: byte, half–word or 32–bit. The compiler assigns OPT field
values for all load and store instructions it generates. Unless via C language exten-
sions or assembly code post–processing, there is no way to set the load and store
instruction address–space–selecting options. Software is simplified by locating all
external peripherals and memory in a single address space; or when a Harvard archi-
tecture is used, by not overlapping the regions of data and instruction memory spaces
used.
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1.11 INSTRUCTION FORMAT

All instructions for the Am29000 processor are 32 bits in length, and are divided
into four fields, as shown in Figure 1-22.  These fields have several alternative defini-
tions, as discussed below.  In certain instructions, one or more fields are not used, and
are reserved for future use.  Even though they have no effect on processor operation,
bits in reserved fields should be 0 to insure compatibility with future processor ver-
sions.

Op

RC
I17..I10

I15..I8
VN

CE//CNTL

RA
SA

I9..I2
RB or I

I7..I0

RB

31 23 15 7 0

UI//RND//FD//FS

Figure 1-22.  Instruction Format

A//M

The instruction fields are defined as follows:

BITS 31–24
Op This field contains an operation code, defining the operation to be

performed. In some instructions, the least–significant bit of the op-
eration code selects between two  possible operands.  For this reason,
the least–significant bit is sometimes  labeled “A” or “M”,  with the
following  interpretations:

A (Absolute):  The A bit is used to differentiate between  Program–
Counter relative (A = 0)  and  absolute (A = 1) instruction addresses,
when these addresses appear within instructions.

M (IMmediate): The M bit selects between a register operand (M = 0)
and an immediate operand (M =1), when the alternative is allowed by
an instruction.

BITS 23–16
RC The RC field contains a global or local register–number, which is the

destination operand for  many instructions.
I17..I10 This field contains the most–significant 8  bits of a 16–bit instruction

address.  This is a  word  address, and may be Program–Counter rela-
tive or absolute, depending on the A bit of the operation code.
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I15..I8 This field contains the most–significant 8 bits of a 16–bit instruction
constant.

VN This field contains an 8–bit trap vector number.
CE//CNTL This field controls a load or store access.

BITS 15–8
RA The RA field contains a global or local register–number, which is a

source operand for many instructions.
SA The SA field contains a special–purpose register–number.

BITS 7–0
RB The RB field contains a global or local register–number, which is a

source operand for many instructions.
RB or I This field contains either a global or local register–number, or an

8–bit instruction constant, depending on the value of the M bit of the
operation code.

I9..I2 This field contains the least–significant 8 bits of a 16–bit instruction
address.  This is a word address, and may be Program–Counter rela-
tive, or absolute, depending on the A bit of the operation code.

I7..I0 This field contains the least–significant 8 bits of a 16–bit instruction
constant.

UI//RND//FD//FS
This field controls the operation of the CONVERT instruction.

The fields described above may appear in many combinations.  However, cer-
tain combinations which appear frequently are shown in Figure 1-23.

1.12 KEEPING THE RISC PIPELINE BUSY

If the external interface of a microprocessor can not support an instructon fetch
rate of one instruction per cycle, execution rates of one per cycle can not be sustained.
As described in detail in Chapter 6, a 4–1 DRAM (4–cycle first access, 1–cycle sub-
sequent burst–mode access) memory system used with a 3–bus Am29000 processor,
can sustain an average processing time per instruction of typically  two cycles, not the
desired 1–cycle per instruction. However, a 2–1 SRAM based system comes very
close to this target. From these example systems it can be seen that even if a memory
system can support 1–cycle burst–mode access, there are other factors which prevent
the processor from sustaining single–cycle execution rates.

It is important to keep the processor pipeline busy doing useful work. Pipeline
stalling is a major source of lost processor performance. Stalling occurs as a result of:
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31 23 15 7 0

X X X X X X X 1 I15..I8 RA I7..I0

31 23 15 7 0

X A I17..I10 RA I9..I2

31 23 15 7 0

X X X X X X X M VN RA RB or I

31 23 15 7 0

M CNTL RA RB or I

31 23 15 7 0

X X X X X X X M RC RA RB or I

31 23 15 7 0

X X X X X X X 0 RC RA RB

CE

Three operands, with possible 8–bit constant:

Three operands, without constant::

One register operand, with 16–bit constant:

Jumps and calls with 16–bit instruction address:

Two operands with trap vector number:

Loads and stores:

X X X X X X

X X X X X X X

Figure 1-23.  Frequently Occurring Instruction–Field Uses
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inadaquate memory bandwidth, high memory access latency, bus access contention,
excesive program branching, and instruction dependancies. To get the best from a
processor an understanding of instruction stream dependancies is required. Proces-
sors in the 29K familiy all have pipeline interlocks supported by processor hardware.
The programmer does not have to ensure correct pipeline operation, as the processor
will take care of any dependancies. However, it is best that the programmer arranges
code execution to smooth the pipeline operation.

1.13 PIPELINE DEPENDENCIES

Modification of some registers has a delayed effect on processor behavior.
When developing assembly code, care must be taken to prevent unexpected behav-
ior. The easiest of the delayed effects to remember is the one cycle that must follow
the use of an indirect pointer after having set it. This occurs most often with the regis-
ter stack pointer. It cannot be used to access a local register in the instruction that fol-
lows the instruction that writes to gr1. An instruction that does not require gr1 (and
that means all local registers referenced via gr1) can be placed immediately after the
instruction that updates gr1.

Direct modification of the Current Processor Status (CPS) register must also be
done carefully. Particularly where the Freeze (FZ) bit is reset. When the processor is
frozen, the special-purpose registers are not updated during instruction execution.
This means that the PC1 register does not reflect the actual program counter value at
the current execution address, but rather at the point where freeze mode was entered.
When the processor is unfrozen, either by an interrupt return or direct modification of
the CPS, two cycles are required before the PC1 register reflects the new execution
address. Unless the CPS register is being modified directly, this creates no problem.

Consider the following examples. If the FZ bit is reset and trace enable (TE) is
set at the same time, the next instruction should cause a trace trap, but the PC–buffer
registers frozen by the trap will not have had time to catch up with the current execu-
tion address. Within the trap code the processor will have appeared to have stopped at
some random address, held in PC1. If interrupts and traps are enabled at the same
time as the FZ bit is cleared, then the next instruction may suffer an external interrupt
or an illegal instruction trap. Once again, the PC–buffer register will not reflect the
true execution address. An interrupt return would cause execution to commence at a
random address. The above problems can be avoided by resetting FZ  two cycles be-
fore enabling the processor to once again enter freeze mode.

Instruction Memory Latency
The Branch Target Cache (BTC), or the Instruction Memory Cache, can be used

to remove the pipeline stalling that normally occurs when the processor executes a
branch instruction.  For the purpose of illustrating  memory access latency, the effects
of the BTC shall be illustrated. The address of a branch target appears on the address
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pins at the start of the write-back stage. Figure 1-24  shows the instruction flow
through the pipeline stages, assuming the external instruction memory returns the
target of a jump during the same cycle in which it was requested. This makes the Tar-
get instruction available at the fetch stage while the Delay instruction has to be stalled
before it can enter the execute stage. In  this case, execution is stalled for two cycles
when the BTC is not used to supply the target instruction. 

DelayInstruction
Fetch

Instruction
Decode

Instruction
Execution

Result
Write-Back

Am29000
Pipeline
Stages

Jump

Current

Delay

Delay

Delay

Jump

Jump

Target

Target

Target

Target+2Target+1

Target+1

Current Processor
cycle

Target = Target of jump instructionLegend: Delay = Delay instruction

future
cycles

Figure 1-24. Pipeline Stages for BTC Miss

1–cycle fetch

Jump = Jump instruction
Current = Current instruction

              =  Pipeline stall

Target + 1 = 1st instruction after target
Target + 2 = 2nd instruction after target

The address of the fetch is presented to the BTC hardware during the execute
stage of the jump instruction, the same time the address is presented to the memory
management unit. When a hit occurs, the target instruction is presented to the decode
stage at the next cycle. This means no pipeline stalling occurs. The external instruc-
tion memory has up to three cycles to return the instruction four words past the target
address. That is, if single-cycle burst–mode can be established in three cycles (four
cycles for the Am29050 processor) or less, then continuous execution can be
achieved. The BTC supplies the target instructions and the following three instruc-
tions, assuming another jump is not taken. Figure 1-25  shows the flow of instruc-
tions through the pipeline stages. 

Data Dependencies

Instructions that require the result of a load should not be placed immediately
after the load instruction. The Am29000 processor can overlap load instructions with
other instructions that do not depend on the result of the load. If 4-cycle data memory
is in use, then external data loads should (if possible) have four instructions
(4-cycles) between the load instructions and the first use of the data. Instructions that
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Figure 1-25. Pipeline Stages for a BTC Hit
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future
cycles

depend on data whose loads have not yet completed, cause a pipeline stall. The stall is
minimized by forwarding the data to the execution unit as soon as it is available.

Consider the example of an instruction sequence shown in Figure 1-26. The
instruction at Load+1 is dependent on the data loaded at Load. The address of load
data appears on the address pins at the start of the write-back stage. At this point,
instruction Load+1 has reached the execution stage and is stalled until the data is for-
warded at the start of the next cycle, assuming the external data memory can return
data within one cycle.

Instruction
Fetch

Instruction
Decode

Instruction
Execution

Result Write-
Back

Am29000
Pipeline
Stages

      Legend:    Load     =  Load instruction
  Current  = Current instruction

Load+1

Load

Current
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Load+1Load

LoadCurrent
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Load+2 Load+2

Load+1 Load+2

Load+1

1–cycle stall

Figure 1-26. Data Forwarding and Bad–Load Scheduling

future
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If the instruction were not dependent on the result of the load, it would have
executed without delay. Because of data forwarding and a 1-cycle data memory, the
load data would be available for instruction Load+2 without causing a pipeline stall.

1.14 ARCHITECTURAL SIMULATION, sim29

 AMD has for a long time made available a 29K simulator which accurately
models the processor operation. This simulator, known as the Architectural Simula-
tor, can be configured to incorporate memory system characteristics. Since memory
system performance can greatly influence overall system performance, the use of the
simulator before making design decisions is highly recommended.

Simulation of all the 29K family members is supported, making the simulator
useful in determining processor choice [AMD 1991c][AMD 1993c]. For example,
does a floating–point intensive application require an Am29050 or will an Am29000
suffice? Alternatively, the performance penalties of connecting the data and instruc-
tion busses together on a  3–bus Harvard Architecture processor can be determined.

Because the simulator models detailed processor operation, such as pipeline
stages, cache memory, instruction prefetch, channel operation and much more, the
simulation run–times are longer than if the Instruction Set Simulator (ISS) were used.
Consequently, the Architectural Simulator is seldom used for program debugging.
The ISS simulator is described in Chapter 7 (Software Debugging). This is one of the
reasons that the Architectural simulator does not utilize the Universal Debugger In-
terface (see section 7.5). Without a UDI interface, the simulator can not support inter-
active debugging. Simulation results are directed to a log file. Interpretating their
meaning and dealing with log file format takes a little practice; more on this later.

When used with a HIF conforming operating system, the standard input and out-
put for the simulated program use the standard input and output for the executable
simulator. Additionally, the 29K program standard output is also written to the simu-
lation log file.  AMD does not supply the simulator in source form; it is available in
binary for UNIX type hosts and 386 based PCs. The simulator driver, sim29, sup-
ports several command line options, as shown below. AMD updated the simulator
after version 1.1–8; the new version is compatible with the old and simulates at more
than four times the speed. The old simulator is still used with the Am29000 and
Am29050 processors. Only the new simulator models the Am2924x microcontrol-
lers and newer 2–bus processors. The following description of command line options
covers both simulator versions.

sim29 [–29000 | –29005 | –29030 | –29035 | –29050 ... –29240]
[–cfg=xx] [–d] [–e eventfile] [–f freq] [–h heapsize] [–L] [–n]
[–o outputfile] [–p from–to] [–r osboot] [–t max_sys_calls]
[–u] [–v] [–x[codes]] [–dcacheoff] [–icacheoff] [–dynmem <val>]
execfile [... optional args for executable]
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OPTIONS

–29000|29005|29030|29035|29040|29050|29200|29205|29240|...

Select 29K processor, default is Am29000. Depending on the proces-
sor selected, the old or new simulator is selected.

–cfg=xx Normally the simulator starts execution at address 0, with the proces-
sor Configuration Register (CFG) set to the hardware default value.
Its the application code or the osboot code responsibility to modify
the CFG registers as necessary. Alternatively, the CFG register can be
initialized from the command line. The –cfg option specifies the set-
ting for CFG,  where xx is a 1 to 5 digit HEX number. If the –cfg option
is used, no run–time change to CFG will take effect, unless an
Am292xx processor is in use. The –cfg option is seldom used; it
should be used where an osboot file is not supplied with the –r option.
Alternatively it can be used to override the cache enable/disable op-
eration of osboot code. This can enable the effects of cache to be de-
termined without the need to built a new osboot file. The –cfg option
is not supported by the newer simulator. Caches can be disabled using
the new –icacheoff and –dcacheoff options.

–d This option instructs the simulator to report the contents of processor
registers in the logfile at end of simulation.

–dcacheoff This option is only available with the newer simulator. When used it
causes the Configuration Register (CFG) to be set for data cache dis-
able.

–dynmem <val>

During execution a program may access a memory region out with
any loaded memory segment or heap and stack region. The simulator
can be instructed to automatically allocate (val=1) memory for the ac-
cessed region. Alternatively (default, val=0) an access violation is re-
ported.

–e eventfile An event file is almost always used. It enables  memory system char-
acteristics to be defined and the simulation to be controlled (see sec-
tion 1.14.1).

–f frequency Specify CPU frequency in MHz; the default for the Am292xx  and
Am29035 is 16 MHz; the Am2900x default is 25 MHz; and the de-
fault frequency for the Am29030 and Am29050 is 40 MHz.

–h heapsize This option specifies the amount of resource memory available to the
simulated  29K system. This memory is used for the register stack and
memory stack support as well as the run–time heap. The default size
is 32 K bytes; a heapsize value of 32.
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–icacheoff This option is only available with the newer simulator. When used it
causes the Configuration Register (CFG) to be set for instruction
cache disable.

–L This option is similar in nature to the –cfg option. It can be used to se-
lect the large memory model for the Am292xx memory banks. Nor-
mally this selection is performed in the osboot file. However, the –L
option can be used to override the osboot settings, without having to
build a new osboot file. This option is currently not supported in the
newer simulator.

–n Normally the simulator will allow access to the two words following
the end of a data section, without generating an access violation.
Some of the support library routines, such as strcpy(), used by 29K
application code, use a read–ahead technique to improve perfor-
mance. If the read–ahead option is not supported, then the –n option
should be used. Only the older simulator supports this option. The
newer simulator always allows access to the words just past the end of
the data section.

–o outputfile The simulator normally presents simulation results in file sim.out.
However an alternative result file can be selected with this option.

–p from–to The simulator normally produces results of a general nature, such as
average number of instructions per second. It  is possible, using this
option to examine the operation of specific code sequences within ad-
dress range from to to.

–r osboot The simulator can load two 29K executable programs via command–
line direction: osboot and program. It is normal to load an operating
system to deal with application support services; this is accomplished
with osboot. It is sometimes referred to as the romfile, because when
used with 29K family members which support separate ROM and
Instruction spaces, osboot is loaded into ROM space.  AMD supplies
a HIF conforming operating system called OS–boot which is general-
ly used with the –r option. Your simulation tool installation should
have a 29K executable file called osboot, romboot or even pumaboot
which contains the OS–boot code. Care should be taken to identify
and use the correct file. The newer simulator will automatically select
a default osboot file from the library directory if the –r option is not
used.

–t max_sys_calls

Specify maximum number of system call types that will be used dur-
ing simulation This switch controls the internal management of the
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simulator; it is seldom used and has a default value of 256. This option
is not supported by the newer simulator.

–u The Am292xx microcontroller family members have built–in ROM
and DRAM memory controllers. Programmable registers are used to
configure the ROM and DRAM region controllers. If the –u option is
used, application code in file program can modify the controller set-
tings, otherwise only code in osboot can effect  changes. This protects
application code from accidentally changing the memory region con-
figuration.

–v The OS–boot operating system, normally used to implement the os-
boot file, can modify its warm–start operation depending on the value
in register gr104 (see section 7.4). The –v switch causes gr104 to be
initialized to 0. When OS–boot is configured to operate with or with-
out MMU support, a run–time gr104 value of 0 will turn off MMU
use.

–x[code] If a 29K error condition occurs during simulation, execution is not
stopped. The –x option can be used to cause execution to stop under a
selected range of error conditions.  Note, the option is not supported
by the newer simulator. Each error condition is given a code letter. If –
x is used with no selected codes, then all the available codes are as-
sumed  active. Supported code are:
A Address error; data or instruction address out of bounds.
K Kernel error; illegal operation in Supervisor mode.
O Illegal opcode encountered.
F Floating–point exception occurred; such as divide by zero.
P A protection violation occurred in User mode
S An event file error detected.

execfile Name of the executable program to be loaded into memory; followed
by any command–line arguments for the 29K executable. It is impor-
tant that the program be correctly linked for the intended memory sys-
tem. This is particularly true for systems based on Am292xx proces-
sors. They have ROM and DRAM regions which can have very dif-
ferent memory access performance. If SRAM devices are to be used
in the ROM region, it is important that the application be linked for
the ROM region use rather than the DRAM.

It is best to run sim29 with the –r osboot option (this is the default operation with
the newer simulator). This is sometimes called cold–start operation. The osboot pro-
gram must perform processor initialization, bringing the processor into what is
known as the warm–start condition. At this point, execution of the loaded program
commences. It is possible to run the older simulator without the use of an osboot file;
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this is known as warm–start simulation. When this is done the simulator initializes
the processor special registers CFG and CPS to a predefined warm–start condition.
AMD documentation explains the chosen settings; they are different for each proces-
sor. Basically, the processor is prepared to run in User mode with traps and interrupts
enabled and cache in use.

To support  osboot operation, the simulator prepares processor registers before
osboot operation starts (see  Figure 1-27). 

register stack size

memory stack size

first instruction of User loaded code

end address of program data

start address of program data

end address of program text

start address of program text

address of end of physical memory

Operating system control info.

start of command line args (argv)

Figure 1-27. Register Initialization Performed by sim29
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argument pointer,  argv

argument count,   argclr2

lr3

The initial register information is extracted from the program file. Via the regis-
ter data, the osboot code obtains the start address of the program code. If osboot code
is not used (no –r command–line switch when using the older simulator), the 29K
Program Counter is initialized to the start address of program code, rather than ad-
dress 0. To support direct entry  into warm–start  code, the program argument in-
formation is duplicated in lr2 and lr3. Normally this information is obtained by os-
boot using the data structure pointed to by gr103.

The simulator intercepts a number of HIF service calls (see section 2.2). These
services mainly relate to operating system functions which are not simulated, but
dealt with directly by the simulator. All HIF services with identification numbers be-
low 256 are intercepted. Additionally service 305, for querying the CPU frequency,
is intercepted. Operating services which are not intercepted, must be dealt with by the
osboot code. The simulator will intercept a number of traps if the –x[codes] com-
mand line option is used; otherwise all traps are directed to osboot support code, or
any other trapware installed during 29K run–time.
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1.14.1 The Simulation Event File

Simulation is driven by modeling the 29K processor pipeline operation. Instruc-
tions are fetched from memory, and make their way through the decode, execute and
write–back stages of the four–stage pipeline. Accurate modeling of processor inter-
nals enables the simulator to faithfully represent the operation of real hardware.

The simulator can also be driven from an event file. This file contains com-
mands which are to be performed at specified  time values. All times are given in pro-
cessor cycles, with simulation starting at cycle 0. The simulator examines the event
file and performs the requested command at the indicated cycle time.

The syntax of the command file is very simple; each command is entered on a
single line preceded with a integer cycle–time value. There are about 15 to 20 differ-
ent commands; most of them enable extra information to be placed in the simulation
results file. Information such as recording  register value changes,  displaying cache
memory contents, monitoring floating–point unit operation, and much more. A se-
cond group of commands are mainly used with microcontroller 29K family mem-
bers. They enable the on–chip peripheral devices to be incorporated in the simula-
tion. For example, the Am29200 parallel port can receive and transmit data from files
representing off–chip hardware.

In practice, most of these commands are little used; with one exception, the SET
command (see note below). Most users of sim29 simply wish to determine how a
code sequence, representative  of their application code, will perform on different
29K family members with varying memory system configurations.  The SET com-
mand is used to configure simulation parameters and define the characteristics of
system memory and buss arrangements. I will only describe the parameters used with
the MEM option to the SET command.The cycle–time value used with the com-
mands of interest is zero, as the memory system characteristics are established before
simulation commences. One other option to the SET command of interest is
SHARED_ID_BUS; when used, it indicates the Instruction and Data buses are con-
nected together. This option only makes sense with 3–bus members of the 29K fami-
ly. All the 2–bus members already share a single bus for data and instructions, the
second bus being used for address values. The syntax for the commands of interest is
show below:

0 SET_SHARED_ID_BUS
0 SET  MEM   access  TO  value

Note, the SET command is accepted by both the older and newer versions of the
simulator. However, the newer version has an abbreviation to the SET command
shown below; the “SET MEM” syntax is replaced by a direct command and there is
no need for the “TO”.
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0 SET  MEM  IWIDTH  TO  32 older syntax
0 ROMWIDTH 32 newer syntax
romwidth 32 newer syntax

Am29000 and Am29050

Note, when the Instruction bus and Data busses are tied together with 3–bus pro-
cessors, the ROM space is still decoded separately from the Instruction space. Tying
the busses together will reduce system performance, because instructions can no
longer be fetched from Instruction space, or ROM space, while the Data bus is being
used.

Considering only the most popular event file commands simplifies the presenta-
tion of sim29 operation; and encourages its use. Those wishing to know more about
event file command options should contact AMD. They readily distribute the sim29
executable software for popular platforms and with relevant documentation.

Table 1-5 shows the allowed access and value parameters for 3–bus members of
the 29K family, that is, the Am29000 and Am29050 processors. Off–chip memory
can exist in three separately addressed spaces: Instruction, ROM , and Data. Memory
address–decode and access times (in cycles) must be entered for each address space
which will be accessed by the processor; default values are provided.

Table 1-5. 3–bus Processor Memory Modeling Parameters for sim29
Instruction ROM Data Value Default Operation

IDECODE RDECODE DDECODE 0–n 0 Decode address
IACCESS RACCESS DRCCESS 1–n 1 First  read

DWACCESS 1–n 1 First  write
IBURST RBURST DBURST T|F false Burst–mode supported
IBACCESS RBACCESS DBRACCESS 1–n 1 Burst read

DBWACCESS 1–n 1 Burst write

If a memory system supports burst mode, the appropriate *BURST access pa-
rameter must be set to value TRUE. The example below sets Instruction memory ac-
cesses to  two cycles; subsequent burst mode accesses are single–cycle. The example
commands only affect Instruction memory; additional commands are required to es-
tablish Data memory access characteristics. Many users of the simulator only require
memory modeling parameters from Table 1-5, even if DRAM is in use.

0 SET  MEM  IACCESS  TO  2
0 SET  MEM  IBURST  TO  true
0 SET  MEM  IBACCESS  TO  1

If DRAM memory devices are used, there are several additional access parame-
ters which can be used  to support memory system modeling (see Table 1-6). DRAM
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devices are indicated by the *PAGEMODE parameter being set. The 29K family in-
ternally operates with a page size of 256 words, external DRAM memory always op-
erates with integer multiples of this value. For this reason, there is never any need to
change the *PGSIZE parameter setting from its default value. The first read access to
DRAM memory takes *PFACCESS cycles; second and subsequent read accesses
take  *PSACCESS cycles. However, if the memory system supports burst mode, sub-
sequent read accesses take *PBACCESS cycles rather than *PSACCESS.

If static column DRAM memories are used, then memory devices do not require
CAS signals between same–page accesses. Static column memory use is indicated by
the *STATCOL parameter. Initial page accesses suffer the additional *PRECHAR-
GE access penalties, subsequent accesses all  have same access latencies. Note, burst
mode access can also apply to static column DRAM memory. Table 1-7 shows
memory modeling parameters for static column  memories.

Table 1-6. 3–bus Processor DRAM Modeling Parameters for sim29 (continued)

Instruction ROM Data Value Default Operation

IPAGEMODE PAGEMODE DPAGEMODE T|F false Memory is paged
IPGSIZE RPGSIZE DPGSIZE 1–n 256 Page size in words
IPFACCESS RPFACCESS DPFRACCESS 1–n 1 First  read in page mode

DPFWACCESS 1–n 1 First  write in page mode
IPSACCESS RPSACCESS DPSRACCESS 1–n 1 Secondary read within page

DPSWACCESS 1–n 1 Secondary write within page
IPBACCESS RPBACCESS DPBRACCESS 1–n 1 Burst read within page

DPBWACCESS 1–n 1 Burst write within page

Table 1-7. 3–bus Processor Static Column Modeling Parameters for sim29 (continued)

Instruction ROM Data Value Default Operation

ISTATCOL RSTATCOL DSTATCOL T|F false Static column memory used
ISMASK RSMASK DSMASK 0xffffff0 0 Column address mask, 64–words
IPRECHARGE RPRECH DPRECHARGE 0–n 0 Precharge on page crossing
ISACCESS RSACCESS DSRACCESS 1–n 1 Read access within static column

DSWACCESS 1–n 1 Write access within static column

Separate regions of an address space may contain more than one type of
memory device and control mechanism. To support this, memory banking is pro-
vided for in the simulator (see Table 1-8). The [I|R|D]BANKSTART parameter is
used to specify the start address of a memory bank; a bank is a contiguous region of
memory of selectable size, within an indicated address space. Once the *BANK-
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START command has been used, all following commands relate to the current bank,
until a new bank is selected. This type of command is more frequently used with mi-
crocontroller members of the 29K family.

Table 1-8. 3–bus Processor Memory Modeling Parameters for sim29 (continued)

Instruction ROM Data Value Default Operation

IBANKSTART RBANK DBANKSTART 0–n – Start address of memory region
IBANKSIZE BBAKSIZE DBANKSIZE 1–n 1 Size in bytes of memory region

Am29030 and Am29035
The parameters used with the SET command, when simulating 2–bus 29K fami-

ly members are a little different from 3–bus parameters (see Table 1-9). The parame-
ters shown are for the older simulator, but they are accepted by the new simulator. For
a list of alternative parameters, which are only accepted by the newer simulator, see
the following Am29040 section. There is no longer a ROM space, and although
instructions and data can be mixed in the same memory devices, separate modeling
parameters are provided for instruction and data accesses.

Table 1-9. 2–bus Processor Memory Modeling Parameters for older sim29

Instruction Data Value Default Operation

IACCESS DRACCESS 2–n 2 First  read from SRAM
DWACCESS 2–n 2 First  write from  SRAM

IBURST DBURST T|F true Burst–mode supported 
IBACCESS DBRACCESS 1–n 1 Burst read within page

DBWACCESS 1–n 1 Burst write within page
IWIDTH DWIDTH 8,16,32  32 Memory width
IPRECHARGE DPRECHARGE 0–n 0 Precharge on page crossing
IPACCESS DPRACCESS 2–n 2 First  access in page mode

DPWACCESS 2–n 2 First  write in page mode
IBANKSTART DBANKSTART 0–n – Start address of memory region
IBANKSIZE DBANKSIZE 1–n 1 Size in bytes of memory region
HALFSPEED HALFSPEED T|F false Memory system is 1/2 CPU speed

Consider accessing memory for instructions; IACCESS gives the access time,
unless DRAM is used, in such case, access time is given by IPACCESS. The use of
DRAM is indicated by the *PRECHARGE parameter value being non zero. First ac-
cesses to DRAM pages suffer an addition access delay of *PRECHARGE. If burst
mode is supported, with all memory device types, the access times for instruction
memory, other than the first access, is given by IBACCESS.



79Chapter 1       Architectural Overview

Both the current 2–bus 29K family members support Scalable Clocking, enab-
ling a half speed external memory system. They also support narrow, 8–bit or 16–bit,
memory reads. The Am29035 processor also supports dynamic bus sizing. All exter-
nal memory accesses can be 16–bit or 32–bit; processor hardware takes care of multi-
ple memory accesses when operating on 32–bit data. As with the 3–bus 29K family
members, the simulator provides for memory banking. This enables different
memory devices to be modeled within specified address ranges.

Alternative Am29030, Am29035 and Am29040
As stated in the previous section, the newer sim29 can accept the memory mod-

eling parameters used by the older sim29. However, the newer simulator can operate
with alternative modelling commands; these are shown on Table 1-10. Commands
can be in upper or lower case, but they are shown here in lower case. A list of avail-
able simulator commands can be had by issuing the command “sim29 –29040
–help”. An example of Am29040 processor simulation can be found in section 8.1.3

Table 1-10. 2–bus Processor Memory Modeling Parameters for newer sim29

Command value Operation

rombank <adds>  <size> Size and address of ROM/SRAM
rambank <adds>  <size> Size and address of DRAM
halfspeedbus true|false Scalable Clocking (default=false)
logging true|false Loging to file sip.log (default=false)

ROM/SRAM DRAM Value Default Operation

romread ramread 2–n 2 First read
romwrite ramwrite 2–n 2 First write
romburst ramburst T|F true Enable burst mode addressing
rombread rambread 1–n 1 Burst read within page
rombwrite rambwrite 1–n 1 Burst write within page
rompage rampage T|F true Enable page mode
rompread rampread 2–n 2 Single read within page
rompwrite rampwrite 2–n 2 Single write within page
rompwidth ramwidth 16,32  32 Bit width of memory

ramprecharge 0–n 0 DRAM precharge time
rampprecharge 0–n 0 Page mode DRAM prechage
ramrefrate 0–n 0 DRAM refresh rate (0=off)

ROM and SRAM memory types are modeled with the same set of commands.
The simulator allocates a default ROM/SRAM memory bank starting at address 0x0.
Unless a RAMBANK command is used to allocate a DRAM memory section at a low
memory address, all code and data linked for low memory addresses will be allocated
to the default ROM/SRAM memory bank.
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DRAM memory is modelled with the RAM* modelling commands. A default
DRAM memory section is established at address 0x4000,0000. Unless a
ROMBANK command is used to allocate a ROM/SRAM memory bank at this
address range, all accesses to high memory will be satisfied by the default DRAM
memory.

The default linker command files used with the High C 29K tool chain, typically
links programs for execution according the the above default memory regions. How-
ever, older release of the compiler tool chain (or other tool chains) may link for differ-
ent memory models. This would require the use of RAMBANK–type commands to
establish the correct memory model. Alternatively, a compiler command file could
be used to ensure a program is linked for the default simulator memory mode (see
section 2.3.6).

Am29200  and Am29205
The simulator does not maintain different memory access parameters for

instruction and data access when modeling microcontroller members of the 29K
family. However, it does support separate memory modeling parameters for DRAM
and ROM address regions (see Table 1-11). Each of these two memory regions has its
own memory controller supporting up to four banks. A bank is a contiguous range of
memory within the address range accessed via the region controller.  The DRAM re-
gion controller is a little more complicated than the ROM region controller. The pa-
rameters shown in Table 1-11 are for the older simulator, but they are accepted by the
new simulator. For a list of alternative parameters, which are only accepted by the
newer simulator, see the following Am29240 section.

The DRAM access is fixed at four cycles (1 for precharge + 3 for latency), it can
not be programmed. Subsequent accesses to the same page take four cycles unless
pagemode memories are supported. Note the first access is only three cycles rather
than four, as the RAS will already have met the precharge time. Basically, to prechar-
ge the RAS bit lines, all RAS lines need to be taken  high in between each change of the
row addresses.  A separate cycle is needed for precharge when back–to–back DRAM
accesses occurs. Use of pagemode memories is indicated by the PAGEMODE pa-
rameter being set; when used, the processor need not supply RAS memory strobe sig-
nals before page CAS strobes for same page accesses. This reduces subsequent page
access latency to three cycles. Additionally, when pagemode is used and a data burst
is attempted within a page, access latency is  two cycles. The DRAM memory width
can be set to 16 or 32–bits. Of course when an Am29205 is used, all data memory
accesses are restricted by the 16–bit width of the processor data bus.

To explain further, access times to DRAM for none pagemode memories follow
the sequence:

X,3,4,4,4,X,3,4,4,4,X,X,3,X,3,...
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Where X is a non–DRAM access, say to ROM or PIA space. For DRAM sys-
tems supporting pagemode the sequence would be:

X,3,2,2,2,<boundary crossing>,4,2,2,<boundary crossing>,X,3,2,2,2

Memory devices located in ROM space can be modeled with a wider range of
parameter values. Both SRAM and ROM devices can be modeled in ROM space. Us-
ing the RBANKNUM parameter, the characteristics of each bank can be selectively
described. Burst–mode addressing is only supported for instruction or data reading.
When the burst option is used (RBURST set to TRUE), read accesses, other than the
first for a new burst, take RBACCESS cycles rather than the standard RRACCESS
cycles. Memory device widths can be 8, 16 or 32–bits. If an Am29205 microcontrol-
ler is being modeled, memory accesses wider than the 16–bit bus width always re-
quire the processor to perform multiple memory transfers to access the required
memory location.

Table 1-11. Microcontroller Memory Modeling Parameters for sim29

ROM/SRAM value default DRAM Value  Default (Am29200)     Operation

1 Precharge on page crossing
RRACCESS 1–n 1 3 First  read
RWACCESS 2–n 2 3 First  write
RBURST T|F false Burst address in ROM region
RBACCESS 1–n 1 2 Burst read within page

2 Burst write within page
ROMWIDTH 8,16,32  32 DRAMWIDTH 16,32 32 Width of memory

PAGEMODE T|F false Page mode supported
RBANKNUM 0–3 – DBANKNUM 0–3 – Select which memory bank

Preparing sim29 for modeling an Am29200 system is not difficult. The follow-
ing commands configure the first two ROM banks to access non–burst–mode memo-
ries which are 32–bits wide, and have a 1–cycle read access, and a 2–cycle write ac-
cess.
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0 COM ROM bank 0 parameters
0 SET  MEM  rbanknum  to 0
0 SET  MEM  rraccess  to  1
0 SET  MEM  rwaccess  to  2

0 COM ROM bank 1 parameters
0 SET  MEM  rbanknum  to 1
0 SET  MEM  rraccess  to  1
0 SET  MEM  rwaccess  to  2

The following DRAM parameters, like the ROM parameters above, are correct
for modeling an SA29200 evaluation board. The first DRAM bank is configured to
support pagemode DRAM access, giving access latencies of 4:3:2 (4 for first, 3 for
same–page subsequent, unless they are bursts which suffer only 2–cycle latency).

0 COM DRAM bank 0 parameters
0 SET  MEM  dbanknum  to 0
0 SET   MEM  dpagemode  to  true

Alternative Am2920x  and Am2924x

As stated in the previous section, the newer sim29 can accept the memory mod-
eling parameters used by the older sim29. However, the newer simulator can operate
with alternative modelling commands; these are shown on Table 1-12. Commands
can be in upper or lower case, but they are shown here in lower case. A list of avail-
able simulator commands can be had by executing the command “sim29 –29240
–help”. An example of Am29200 microcontroller simulation can be found in section
8.1.
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Table 1-12. Microcontroller Processor Memory Modeling Parameters for newer sim29

Command value default Operation

rombank <adds>  <size> Size and address of ROM/SRAM
rambank <adds>  <size> Size and address of DRAM
halfspeedbus true|false Scalable Clocking (default=false)
logging true|false Loging to file sip.log (default=false)
parallelin <file> [<speed>] Parallel port input file
parallelout <file> [<speed>] Parallel port output file
serialin a|b <file> [ [<baud>] Serial port, a or b, input file
serialout a|b <file> [<baud>] Serial port, a or b, output file

ROM/SRAM DRAM Value Default (Am29240)   Operation

romread 1–n 1 First read
romwrite 2–n 2 First write
romburst T|F false Enable burst mode addressing
rombread 1–n 1 Burst read within page

rampage T|F true Enable page mode
rompwidth ramwidth 8,16,32  32 Bit width of memory

ramrefrate 0–n 255 DRAM refresh rate (0=off)

ROM and SRAM memory types are modeled with the same set of commands.
The simulator automaticlay allocates ROM/SRAM memory bank 0. Using the
ROMBANK parameter, the characteristics of each bank can be selectively de-
scribed. The default parameters are typically for a relatively fast memory system

The DRAM memory access times are fixed by the processor specification.
However, there are some DRAM modelling commands enabling selection of
memory system with and pagemode devices. The simulator automatically allocates
DRAM memory bank 0 at address 0x4000,0000. All accesses to memory above this
address will be satisfied by the DRAM memory bank.

It is usually less of a problem linking programs for execution on a 29K micro-
controller; as the processor hardware dictates, to some extend, the allowed memory
regions. The default linker command files used with the High C 29K tool chain, typi-
cally link programs for execution according the the processor specificity memory re-
gions. Compiler command files are described in section 2.3.6.

1.14.2 Analyzing the Simulation Log File

Running the architectural simulator is simple but rather slow. The inclusion of
detail about the processor pipeline results in slow simulation speeds. For this reason,
users typically select a portion of their application code for simulation. This portion
is either representative of the overall code or subsections whose operation is critical
to overall system performance.



84 Evaluating and Programming the 29K RISC Family

Older sim29 Log File Format

For demonstration purposes I have merely simulated the “hello world” program
running on an Am29000 processor. The C source file was compiled with the High C
29K compiler using the default compiler options; object file hello was produced by
the compile/link process. The memory model was the simulator default, single–cycle
operation. Given the selection of default memory parameter, there is no need for an
eventfile establishing memory parameters. However, I did use an eventfile with the
following contents:

0 log on channel

This option has not previously been described; it enables the simulator to pro-
duce an additional log file of channel activity. This can occasionally be useful when
studying memory system operation in detail. The simulator was started with the com-
mand:

sim29 –29000 –r /gnu/29k/src/osboot/sim/osboot –e eventfile  hello

Two simulation result files were produced; the most important of which, the de-
fault simulation output file, sim.out, we shall briefly examine. The channel.out file
reports all instruction and data memory access activity. The contents of the sim.out
file are shown below exactly as produced by the simulator:

AMD ARCHITECTURAL SIMULATOR, V# 1.0–17PC  
### T=3267 Am29000 Simulation of ”hello” complete –– successful
–––––––––––––––––––––––––––––––––––––––––––––––––––––
     <<<<< S U M M A R Y   S T A T I S T I C S >>>>>

 CPU Frequency = 25.00MHz

    Nops:50    
total instructions = 2992

User Mode:  291 cycles (0.00001164 seconds)
Supervisor Mode:  2977 cycles (0.00011908 seconds)
Total:  3268 cycles (0.00013072 seconds)

Simulation speed:    22.89 MIPS (1.09 cycles per instruction)

–––––––––– Pipeline ––––––––––
  8.45% idle pipeline:

  6.46% Instruction Fetch Wait
  0.46% Data Transaction Wait
  0.18% Page Boundary Crossing Fetch Wait
  0.00% Unfilled BTCache Fetch Wait
  0.49% Load/Store Multiple Executing
  0.03% Load/Load Transaction Wait
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  0.83% Pipeline Latency

Total Wait:     276 cycles  (0.00001104 seconds)

–––––––––– Branch Target Cache ––––––––––
Partial hits:    0
Branch btcache access: 2418
Branch btcache hits:2143
Branch btcache hit ratio:  88.63%
–––––––––– Translation Lookaside Buffer ––––––––––
TLB access:  0
TLB hits:         0
TLB hit ratio:        0.00%
–––––––––– Bus Utilization ––––––––––
Inst Bus Utilization:  70.01%

    2288 Instruction Fetches

Data Bus Utilization: 10.86%
      20 Loads
     335 Stores

–––––––––– Register File Spilling/Filling ––––––––––
       0 Spills,        0 Fills

Opcode Histogram
 ILLEGAL:       CONSTN:6        CONSTH:68        CONST:121    
  MTSRIM:5      CONSTHZ:          LOADL:          LOADL:       
     CLZ:          CLZ:         EXBYTE:          EXBYTE:       
. . .

System Call Count Histogram
    EXIT     1:1        GETARGS   260:1         SETVEC   289:2
  
. . .

–––––– M E M O R Y   S U M M A R Y ––––––
 Memory Parameters for Non–banked Regions
   I_SPEED: Idecode=0 Iaccess=1 Ibaccess=1
. . .

The simulator reports the total number of processor cycles simulated. Because
our example is brief, there are few User mode cycles. Most cycles are utilized by the
osboot operating system. The operating system runs in Supervisor mode and initial-
izes the processor to run the “hello world” program in User mode. The fast memory
system has enabled the processor pipeline to be kept busy, an 8.45% idle pipeline is
reported. A breakdown of the activities contributing to pipeline stalling is shown.

Next reported is the Branch Target Cache (BTC) activity. If a processor incorpo-
rating an Instruction Cache Memory rather than a BTC had been simulated, the corre-
sponding results would replace the BTC results shown. There were 2418 BTC ac-
cesses, of which 2143 found valid entries. This gives a hit ratio of 88.63%. Partial hits
refer to the number of BTC entries which were not fully used. This occurs when one
of the early entries in the four–entry cache block contains a jump.
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If the operating system had arranged for Translation Look–Aside Buffer (TLB)
use then the next section reports  its activity. In the example, the application ran with
physical addressing which does not require TLB support. Next reported is bus activ-
ity. The large number of processor registers results in little off–chip data memory ac-
cess, and hence Data Bus utilization. The  Instruction Bus is used to fill the Instruc-
tion Prefetch Buffer and BTC, and shows much higher utilization. Typically, pro-
grams are more sensitive to instruction memory performance than data memory.

The simulator then produces a histogram of instruction and system call usage.
The listing above only shows an extract of this information, as it is rather large. Ex-
amining this data can reveal useful information, such as extensive floating–point
instruction use.

Finally reported is a summary of the memory modeling parameters used during
simulation. This information should match with the default parameters or any param-
eters established by the eventfile. It is useful to have this information recorded along
with the simulation results.

Newer sim29 Log FIle Format
 As with the previous demonstration, the “hello world” program is used here to

show the output format of the newer architectural simulator. The selected processor
is this time an Am29240 microcontroller. The C source file was compiled with the
High C 29K compiler using the –O4 compiler options; object file hello was produced
by the compile/link process. The memory model was the simulator default. Given the
selection of default memory parameter, there is no need for an eventfile to establish
memory parameters. The simulator was started with the command shown below.
Note, there is no need to use the –r option and specify an osboot file.

sim29 –29240 hello

The simulation result file, sim.out, was produced. The contents of the sim.out
file are shown below exactly as produced by the simulator:

Am292xx Architectural Simulator, Version# 2.4  
Command line: /usr/29k/bin/sim240 –29240 hello 

Boot file: /usr/29k/lib/osb24x
Text section: 00000000 – 0000001f
Text section: 00000020 – 00000333
Text section: 00000340 – 0000035f
Text section: 00000360 – 00006b6b
BSS section: 40000400 – 400007df

Application file: hello
Text section: 40010000 – 4001332b
Text section: 4001332c – 4001333b
Text section: 4001333c – 4001334b
Data section: 40014000 – 40014993
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Lit section: 40014994 – 40014c63
BSS section: 40014c64 – 40014ca3

Argv memory: 400150a0 – 4001589f
Heap memory: 40015ca0 – 40035c9f
Memory stack: 40fbf7f0 – 40fdffef
Register stack: 40fdfff0 – 410007ef
Vector Area: 40000000 – 400003ff

ROM:   Address       Size  Rd  Wr Bmd BRd Wid
           0x0          *   1   1   0   1  32
RAM:   Address       Size  Rd  Wr Pmd PRd PWr Wid Ref
    0x40000000          *   2   2   1   1   1  32 255

Half speed memory = 0
Starting simulation...

hello world

HIF Exit: Value = 12
Simulation summary:

Cycles: 7101
  Supervisor mode = 100.0%
 User mode = 0.0%

MIPS = 18.8 (25.0 Mhz * ((5342 instructions)/(7101 cycles)))

Pipeline:
  Average run length= 5.9 instructions between jumps taken
  Fetches not used due to jumps = 299

PipeHold: 1759 cycles = 24.8%
 Fetch waits: 1520 cycles = 21.4%
  Load waits: 133 cycles = 1.9%
  Store waits: 79 cycles = 1.1%
  Load Multiple waits: 3 cycles = 0.0%
  Store Multiple waits: 24 cycles = 0.3%

Channel: Rom: accesses = 809
  Rom: average cycles per access = 1.0
  Ram: accesses = 1959
  Ram: average cycles per access = 1.7
  Ram: average cycles waiting for precharge = 0.2
  Ram: average cycles waiting for refresh = 0.2

Instruction Cache Size = 4 Kbytes
  Hit ratio = 66.4% (3766/5673)

Data Cache Size = 2 Kbytes
  Hit ratio = 63.6% (136/214)

The format of Log File will appear familiar to those experienced with the older
architectural simulator; the total number of processor cycles simulated is reported.
There are no User mode cycles as the default osboot (osb24x ) executed the hello
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program in Supervisor mode. Most cycles are utilized by the osboot operating sys-
tem. The relatively fast memory system has enabled the processor pipeline to be kept
busy, a 24.8% idle pipeline is reported. A breakdown of the activities contributing to
pipeline stalling is shown. Most pipeline stalls are due to instruction fetching; the
DRAM memory has a 2–cycle first access time, rather than the ideal 1–cycle. The
newer simulator reports the average number of instructions executed between jump
or branch instructions. The run length is shown to be 5.9 instructions, which is typical
of a 29K program.

Next reported is Channel activity. All load and store instructions make use of the
Channel. Statistics are presented separately for the ROM/SRAM and DRAM
memory systems. Typically, performance is much more sensitive to instruction
memory access rather than accesses to data. This is particularly true with the 29K
family due to its large number of on–chip registers.

Next reported is on–chip cache activity. There were 5673 accesses to the
instruction cache, of which 66.4% found valid entries. The Am29240 has the benefit
of a data cache and the results are shown. The hello program is small and only 214
data cache accesses were made, of which 63.4% hit in the cache.

Reported in the sim.out file before simulation started are the memory modeling
parameters used during simulation. This information should match with the default
parameters or any parameters established by the eventfile. It is useful to have this in-
formation recorded along with the simulation results. The values reported are shown
again below:

ROM:   Address       Size  Rd  Wr Bmd BRd Wid
           0x0          *   1   2   0   1  32
RAM:   Address       Size  Rd  Wr Pmd PRd PWr Wid Ref
    0x40000000          *   2   2   1   1   1  32 255

Half speed memory = 0

The ROM section refers to both ROM and SRAM memory. The tokens used are
a little cryptic. For example, “Rd” refers to memory read cycles. And “BRd” refers to
burst mode read times. The option to use Scalable Clocking was not selected; “Half
speed memory” is set to false.
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Chapter 2

Applications Programming

Application programming refers to the process of developing task specific soft-
ware. Typical 29K tasks are controlling a real–time process, processing  communica-
tions data, processing real–time digital signal, and manipulating video images. There
are many more types of applications, such as word processing which the 29K is suited
for, but the 29K is better known in the embedded engineering community which typi-
cally deals with real–time processing.

This chapter deals with aspects of application programming which the Software
Engineer is required to know. Generally, computer professionals spend more time
developing application code, compared to other software development  projects such
as operating systems. Additionally, applications are increasingly developed in a high
level language. Since C is the dominant language for this task, I shall present code
examples in terms of C. Assembly level programming is dealt with in a separate
chapter.

The first part of this chapter deals with the mechanism by which one C proce-
dure calls another, and  how they agree to communicate data and make use of proces-
sor resources [Mann et al. 1991b]. This is termed the  Calling Convention. It is pos-
sible that different tool developers could construct their own calling mechanism, but
this may lead to incompatibilities in mixing routines compiled by different vendor
tools. AMD avoided this problem by devising a calling convention which was
adopted by all tool developers. Detailed knowledge, of say, individual register sup-
port tasks for the calling convention is not presented, except for the register and
memory stacks which play an important role in the 29K calling  mechanism. In prac-
tice, C language developers typically do not need to be concerned about individual
register assignments, as it is taken care of by the compiler [Mann 1991c]. Chapter 3
expands on register assignment, and it is of concern here only in terms of understand-
ing the calling convention concepts and run–time efficiencies.
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Operating system support services (HIF services) are then dealt with. The tran-
sition from operating system to the application main() routine is described. Operat-
ing system services along with other support routines are normally accessed through
code libraries. These libraries are described for the predominant tool–chains. Using
the available libraries and HIF services, it is an easy task to arrange for interrupts to be
processed by C language handler routines; the mechanism is described. Finally, util-
ity programs for operations such as PROM preparation are listed and their capabili-
ties  presented.

2.1 C LANGUAGE PROGRAMMING

Making a subroutine call on a processor with general-purpose registers is ex-
pensive in terms of time and resources. Because functions must compete for register
use, registers must be saved and restored through register-to-memory and memory-
to-register operations. For example, a C function call on the MC68000  processor
[Motorola  1985] might use the statements:

char  bits8;
short bits16;
printf (”char=%c short=%d”, bits8, bits16);

After they are compiled, the above statements would generate the assembly-
level code shown below:

L15: .ascii ”char=%c short=%d\0”

MOVE.W –4[A6],D0 ;copy bits16 variable
EXT.L D0 ; to register
MOVE.L D0,–[A7] ;now push on stack
MOVE.B –1[A6],D0 ;copy bits8 variable

 EXTB.L D0 ; to register
MOVE.L D0,–[A7] ;now push on stack
PEA L15 ;stack text string pointer
JSR _printf 
LEA 12[A7],A7 ;repair stack pointer

The assembly listing above shows how parameters pass via the memory stack to
the function being called. The LINK instruction copies the stack pointer A7 to the
local frame pointer A6 upon entry to a routine. Within the printf()  routine, the param-
eters passed and local variables in memory are referenced relative to register A6.

To reduce future access delays, the printf()  routine will normally copy data to
general-purpose registers before using them. For instance, using a memory-to-
memory operation when moving data from the local frame of the function call stack
would reduce the number of instructions executed. However, these are CISC instruc-
tions that require several machine cycles before completion.

In the example, the C function call passes two variables, bits8 and bits16,  to the
library function printf() . The following assembly code shows part of the printf()
function for the MC68020.
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_printf:
LINK A6,#–32 ;local variable space
LEA 8[A6],A0 ;unstack string pointer

 . . . 
UNLK A6 
RTS ;return

Several multi–cycle instructions (like LINK and UNLK) are required to pass
the parameters and establish the function context. Unlike the variable instruction for-
mat in the MC68020, the 29K processor family has a fixed 32–bit instruction format
(see section 1.11). The same C statements compiled for the Am29000 processor gen-
erate the following assembly code for passing the parameters and establishing the
function context:

L1: .ascii “char=%c short=%d\0”
const lr2,L1
consth lr2,L1
add lr3,lr6,0 ;move bits8 and bits16
add lr4,lr8,0 ;to bottom of the

;activation record
call lr0,printf ;return address in lr0

The number of instructions required is certainly less, and they are all simple
single–cycle RISC instructions. However, to better understand just how parameters
are passed during a function call, explanation of the procedure activation records and
their use of the local register file is first required.

2.1.1 Register Stack

A register stack  is assigned an area of memory used to pass parameters and allo-
cate working registers to each procedure. The register cache replaces the top of the
register stack, as shown in Figure 2-1. All 29K processors have a 128–word local
register file; these registers are used to implement the cache for the top of the register
stack. Note, if desired only a portion of the 128–word register file need be allocated to
register cache use (see section 2.3.2).

The global registers rab (gr126) and  rfb (gr127) point to the top and the bottom
of the register cache. Global register rsp (also known as gr1) points to the top of the
register stack. The register cache, or stack window, moves up and down the register
stack as the stack grows and shrinks. Use of the register cache, rather than the
memory portion of the register stack, allows data to be accessed through local regis-
ters at high speed. On–chip triple–porting of the register file (two read ports and one
write port for most 29K family members), enables the register stack to perform better
than a data memory cache, which cannot support read and write operations in the
same cycle.
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Figure 2-1. Cache Window

2.1.2 Activation Records

A 29K processor does not apply  push or pop instructions to external memory
when passing procedure parameters. Instead each function is allocated an activation
record in the register cache at compile time. Activation records hold any local vari-
ables and parameters passed to functions.

 The caller stores its outgoing arguments at the bottom of the activation re-
cord.The called function establishes a new activation record below the caller’s re-
cord. The top of the new record overlaps the bottom of the old record, so that the out-
going parameters of the calling function are visible within the called functions ac-
tivation record.
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Although the activation record can be any size within the  limits of the physical
cache, the compiler will not allocate more than 16 registers to the parameter-passing
part of the activation record. Functions that cannot pass all of their outgoing parame-
ters in registers must use a memory stack for additional parameters; global register
msp (gr125) points to the top of the memory stack. This happens infrequently, but is
required for parameters that have their address taken (for example in C, &variable).
Data parameters at known addresses cannot be supported  in register address space
because  data addresses always refer to memory, not to registers.

The following code shows part of the printf()  function for the 29K family:

printf:
sub gr1,gr1,16 ;function prologue
asgeu V_SPILL,gr1,rab ;compare with top of window 
add lr1,gr1,36 ;rab is gr126
. . .
jmpi lr0 ;return
 asleu V_FILL,lr1,rfb ;compare with bottom

;of window gr127

The register stack pointer, rsp, points to the bottom of the current activation re-
cord. All local registers are referenced relative to rsp. Four new registers are required
to support the function call shown, so rsp is decremented 16 bytes. Register rsp per-
forms a role similar to the MC68000’s A7 and A6 registers, except that it points to data
in high-speed registers, not data in external memory.

The compiler reserves local registers lr0 and lr1  for special duties within each
activation record. The lr0 contains the execution starting address when it returns to
the caller’s activation record. The lr1 points to the top of the caller’s activation re-
cord, the new frame allocates local registers lr2 and lr3 to hold printf()  function local
variables.

As Figure 2-2 shows, the positions of five registers overlap. The three printf()
parameters enter from lr2, lr3 and lr4 of the caller’s activation record and appear as
lr6, lr7 and lr8 of the printf()  function activation record.

2.1.3 Spilling And Filling

If not enough registers are available in the cache when it moves down the regis-
ter stack, then a V_SPILL trap is taken, and the registers spill out of the cache into
memory. Only procedure calls that require more registers than currently are available
in the cache suffer this overhead.

Once a spill occurs, a fill (V_FILL trap) can be expected at a later time. The fill
does not happen when the function call causing the spill returns, but rather when
some earlier function that requires data held in a previous activation record (just be-
low the cache window) returns. Just before a function returns, the lr1 register, which
points to the top of the caller’s activation record, is compared with the pointer to the
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Figure 2-2. Overlapping Activation Record Registers
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bottom of the cache window(rfb). If the activation record is not stored completely in
the cache, then a fill overhead occurs.

The register stack improves the performance of call operations because most
calls and returns proceed without any memory access. The register cache contains
128 registers, so very few function calls or returns require register spilling or filling.

Because most of the data required by a function resides in local registers, there is
no need for elaborate memory addressing modes, which increase access latency. The
function-call overhead in the 29K family consists of a small number of single-cycle
instructions; the overhead in the MC68020 requires a greater number of multi-cycle
instructions.

2.1.4 Global Registers

In the discussion of activation records (section 2.1.2), it was stated  that func-
tions can use activation space (local registers) to hold procedure variables. This is
true, but procedures can also use  processor global registers to hold variables. Each
29K processor has a group of registers (global registers) which are located in the reg-
ister file, but are not part of the register cache. Global registers gr96–gr127 are used
by application programs. When developing software in C, there is no need to know
just how the compiler makes use of these global registers; the Assembly Level Pro-
gramming chapter, section 3.3, discusses register allocation in detail.
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Data held in global registers, unlike procedure activation records, do not survive
procedure calls. The compiler has 25 global registers available for holding temporary
variables. These registers perform a role very similar to the eight–data and eight–ad-
dress general purpose registers of the MC68020. The first 16 of the global registers,
gr96–gr111, are used for procedure return value passing. Return objects larger than
16 words must use the memory stack to return data (see section 3.3).

An extension to some C compilers has been made (High C  29K  compiler for
one), enabling a calling procedure to assume that some global registers will survive a
procedure call. If the called function is defined before calls are made to it, the compil-
er can determine its register usage. This enables the global register usage of the call-
ing function to be  restricted to available registers, and the calling function need only
save in local registers those global registers it knows are used by the by the callee.

2.1.5 Memory Stack

Because the register cache is limited in size, a separate memory stack is used to
hold large local variables (structs or arrays), as well as any incoming parameters be-
yond the 16th parameter. (Note, small structs can still be passed in local registers as
procedure parameters).  Register msp is the memory stack pointer. (Note, having two
stacks generally requires several operating system support mechanisms not required
by a single stack CISC based system.)

2.2 RUN–TIME HIF ENVIRONMENT

Application programs need to interact with peripheral devices which support
communication and other control functions. Traditionally embedded program devel-
opers have  not been well served by the tools available to tackle the related software
development. For example, performing the popular C library service printf() , using
a peripheral UART device, may involve developing the printf()  library code and
then underlying operating system code which controls the communications UART.
One solution to the problem is to purchase a real–time operating system. They are
normally supplied with libraries which support printf()  and other popular library ser-
vices. In addition, operating  systems contain code to perform task context switching
and interrupt handling.

Typically, operating system vendors have their own operating system interface
specification. This means that library code, like printf() , which ultimately makes op-
erating system service requests,  is not easily ported between different operating sys-
tems.  In addition, compiler vendors which typically develop library code for the tar-
get processor for sale along with the compiler, can not be assured of a standard inter-
face to the available operating system services.

AMD wished to relieve this problem and allow library code to be used on any
target 29K platform. In addition AMD wished to ensure a number of services would
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be available. These operating system services were considered necessary to enable
performance benchmarking of application code (for example the cycles service re-
turns a 56–bit elapsed processor cycle count). The result was the Host Interface spec-
ification, known as HIF. It specifies a number of operating system services which
must always be present. The list is very small, but it enables library producers to be
assured that their code will run on any 29K platform. The HIF specification states
how a system call will be made, how parameters will be passed to the operating sys-
tem, and how results will be returned. Operating system vendors need not support
HIF conforming services if they wish; they could just continue to use their own oper-
ating system interface and related library routines. But to make use of the popular
library routines from the Metaware  High C 29K compiler company, the operating
system company must virtualize the HIF services on top of the underlying operating
system services.

The original specification grew into what is now known as HIF 2.0. The specifi-
cation  includes services for signal handling (see following sections on C language
interrupt handlers), memory management support, run–time environment initializa-
tion and other processor configuration options. Much of this development was a re-
sult of AMD developing a small collection of routines known as OS–boot (see sec-
tion 7.4). This code can take control of the processor from RESET, prepare the run–
time environment for a HIF conforming application program, and support any HIF
request made by the application. OS–boot effectively implements a single applica-
tion–task  operating system. It is adequate for many user requirements, which may be
merely to benchmark 29K applications. With small additions and changes it is ade-
quate for many embedded products. However, some of the HIF 2.0 services, re-
quested by the community who saw OS–boot as an adequate operating system, were
of such a nature that they often cannot be implemented in an operating system ven-
dor’s product. For example the settrap service enables an entry to be placed directly
into the processor’s interrupt vector table; some operating systems, for example
UNIX, will not permit this to occur as it is a security risk and, if improperly used, an
effective way to crash the system.

There are standard memory, register and other initializations that must be per-
formed by a HIF-conforming operating system before entry into a user program. In C
language programs, this is usually performed by the module crt0.s. This module re-
ceives control when an application program is invoked, and executes prior to invoca-
tion of the user’s main() function. Other high-level languages have similar modules.
The following three sections describe: what a HIF conforming operating system
must perform before code in crt0.s starts executing; what is typically achieved in
crt0.s code; and finally, what run–time services are specified in HIF 2.0.
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2.2.1 OS Preparations before Calling start In crt0

According to the HIF specification, operating system initialization procedures
must establish appropriate values for the general registers mentioned below before
execution of a user’s application code commences.  Linked application code normal-
ly commences at address label start in module crt0.s. This module is automatically
linked with application code modules and libraries when the compiler is used to pro-
duce the final application executable. In addition, file descriptors for the standard in-
put and output devices must be opened, and any Am29027 floating–point coproces-
sor support as well as other trapware support  must be initialized.

Register Stack Pointer (gr1 )

Register gr1 points to the top of the register stack. It contains the main memory
address in which the local register lr0 will be saved, should it be spilled, and from
which it will be restored.  The processor can also use the gr1 register as the base in
base–plus–offset addressing of the local register file. The content of rsp is compared
to the content of rab to determine when it is necessary to spill part of the local register
stack to memory. On startup, the values in rab, rsp, and rfb should be initialized to
prevent a spill trap from occurring on entry to the crt0 code, as shown by the follow-
ing relations:

((64*4) + rab) ≤ rsp < rfb
rfb = rab + 512

This provides the crt0 code with at least 64 registers on entry, which should be a
sufficient number to accomplish its purpose. Note, rab and rfb are normally set to be a
window distance apart, 128 words (512 bytes), but this is not the only valid settings,
see section 2.3.2 and 4.3.1.

Register Free Bound ( gr127)
The register stack free–bound pointer, rfb, contains the register stack address of

the lowest-addressed word not contained within the register file. Register  rfb is refer-
enced in the epilog of most user program functions to determine whether a register
fill operation is necessary to restore previously spilled registers needed by the func-
tion’s caller. The rfb register should be initialized to point to the highest address of the
memory region allocated for register stack use.  It is recommended that this memory
region not be less than 6k bytes.

Register Allocate Bound (gr126)

The register stack allocate–bound pointer, rab, contains the register stack ad-
dress of the lowest-addressed word contained within the register file. Register rab is
referenced in the prolog of most user program functions to determine whether a regis-
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ter spill operation is necessary to accommodate the local register requirements of the
called function. Register rab is normally initialized to be a window distance (512 by-
tes) below the rfb register value

Memory Stack Pointer ( gr125)

The memory stack pointer (msp) register points to the top of the memory stack,
which is the lowest-addressed entry on the memory stack.  Register msp should be
initialized to point to the highest address in the memory region allocated for memory
stack use. It is recommended that this region not be less than 2k bytes.

Am29027 Floating–Point Coprocessor Support

The Am29027 floating–point coprocessor has a mode register which has a
cumbersome access procedure. To avoid accessing the mode register a shadow copy
is kept by the operating system and accessed in preference when a mode register read
is required. The operating system shadow mode value is not accessible to User mode
code, therefore an application must maintain its own shadow mode register value.
The floating–point library code which maintains and accesses  the shadow mode val-
ue, is passed the mode setting, initialized by the operating system, when crt0 code
commences. Before entering crt0, the Am29027 mode register value is copied into
global registers gr96 and gr97. Register gr96 contains the most significant half of the
mode register value, and gr97 contains the least significant half.

Open File Descriptors

File descriptor 0 (corresponding to the standard input device) must be opened
for text mode input. File descriptors 1 and 2 (corresponding to standard output and
standard error devices) must be opened for text mode output prior to entry to the
user’s program. File descriptors 0, 1, and 2 are expected to be in COOKED mode (see
Appendix A, ioctl() service), and file descriptor 0 should also select ECHO mode, so
that input from the standard input device (stdin) is echoed to the standard output de-
vice (stdout).

Software Emulation and Trapware Support

A 29K processor may take a trap in support of the  procedure call prologue and
epilogue mechanism. A HIF conforming operating system supports the associated
SPILL and FILL traps by normally maintaining two global registers (in the
gr64–gr95 range) which contain the address of the  users spill and fill  code. Keeping
these addresses available in registers reduces the delay in reaching the typically User
mode support code. A HIF conforming operating system also installs the SPILL and
FILL trap handler code which bounces execution to the maintained handler address-
es.
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Table 2-1. Trap Handler Vectors

Trap Description
32 MULTIPLY
33 DIVIDE
34 MULTIPLU
35 DIVID
36 CONVERT
42 FEQ
43 DEQ
44 FGT
45 DGT
46 FGE
47 DGE
48 FADD
49 DADD
50 FSUB
51 DSUB
52 FMUL
53 DMUL
54 FDIV
55 DDIV
64 V_SPILL   (Set up by the user’s task through a setvec call)
65 V_FILL    (Set up by the user’s task through a setvec call)
69 HIF   System Call

Note: The V_SPILL (64) and V_FILL (65) traps are returned to the user’s code to perform the trap
handling functions. Application code normally runs in User mode.

Additionally, the trapware code enabling HIF operating system calls is
installed. Also, all HIF conforming operating systems provide unaligned memory
access trap handlers.

A number of 29K processors do not directly support floating–point instructions
in hardware (see section 3.1.7). However the HIF environment requires that all
Am29000 User mode accessible instructions be implemented across the entire 29K
family. This means that unless an Am29050 processor is being used, trapware must
be installed to emulate in software the floating–point instructions not directly sup-
ported by the hardware. Table 2-1 lists the traps which  an HIF conforming operating
system must establish support  for before calling crt0 code.

When a 29K processor is supported by an Am29027 floating–point coproces-
sor, the operating system may chose to use the coprocessor to support floating–point
instruction emulation. For example, the trapware routine used for emulating the
MULTIPLY instruction is know as Emultiply ; however, if the coprocessor is avail-
able the E7multiply  routine is used.
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2.2.2 crt0 Preparations before Calling main()

Application code normally begins execution at address start in the crt0.s mod-
ule. The previous section described the environment prepared by a HIF conforming
operating system before the code in crt0.s is executed. The crt0.s code makes final
preparations before the application main() procedure is called.

The code in crt0.s first copies the Am29027 shadow mode register value, passed
in gr96 and gr97, to memory location __29027Mode. If a system does not have an
Am29027 floating–point coprocessor then there is no useful data passed in these reg-
isters. However, application code linked with floating–point libraries which make
use of the Am29027 coprocessor, will access the shadow memory location to deter-
mine the coprocessor operating mode value.

The setvec system call is then used to supply the operating system with the ad-
dresses of the user’s SPILL and FILL handler code which is located in crt0.s. Be-
cause this code normally runs in User mode address space, and the user has the option
to tailor the operation of this code, an operating system can not know in advance
(pre–crt0.s) the required SPILL and FILL handler code operation.

When procedure main() is called, it is passed two parameters; the  argc parame-
ter indicates the number of elements in argv; the second parameter, argv, is a pointer
to an array of the character strings:

main(argc, argv)
int argc;
char* argv[];

The  getargs HIF service is used to get the address of the argv array. In many
real–time applications there are no parameters passed to main(). However, to support
porting of benchmark application programs, many systems arrange for main() pa-
rameters to be loaded into a user’s data space. The crt0.s code walks through the
array looking for a  NULL terminating string; in so doing,  it determines the argc val-
ue. The register stack pointer was lowered by the start() procedure’s prologue code
to create a procedure activation record for passing parameters to main().

To aid run–time libraries a memory variable, __LibInit, is defined in uninitial-
ized data memory space (BSS) by the library code. If any library code needs initial-
ization before use, then the __LibInit variable will be assigned to point to a library
routine which will perform all necessary initialization. This is accomplished by the
linker matching–up the BSS __LibInit variable with an initialized __LibInit variable
defined in the library code. The crt0.s code checks to see if the __LibInit variable
contains a non zero address, if so, the procedure is called.

The application main() procedure is ready to be called by start(). It is not ex-
pected that main() will return. Real–time programs typically never exit. However,
benchmark programs do, and this is accomplished by calling the HIF exit service. If a
main() routine does not explicitly call exit then it will return to start(), where exit is
called should main() return.
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2.2.3 Run–Time HIF Services

Table 2-2 lists the HIF system call services, calling parameters, and the returned
values. If a column entry is blank, it means the register is not used or is undefined.
Table 2-3 describes the parameters given in Table 2-2 . Before invoking a HIF ser-
vice, the service number and any input parameters passed to the operating system are
loaded into assigned global registers. Each HIF service is identified by its associated
service number which is placed in global register gr121. Parameters are passed, as
with procedure calls, in local registers starting with lr2. Application programs do not
need to issue ASSERT instructions directly when making service calls. They normal-
ly use a library of assembly code glue routines. The write service glue routine is
shown below:

__write: ;HIF assembly glue routine for write service
const gr121,20 ;tav is gr121
asneq 69,gr1,gr1 ;system call trap
jmpti gr121,lr0 ;return if sucessful
const gr122,_errno ;pass errror number
consth gr122,_errno
store 0,0,gr121,gr122 ;store errnor number
jmpi lr0 ;return if failure

  constn gr96,–1

Application programs need merely call the _write() leaf routine to issue the ser-
vice request. The system call convention states that return values are placed in global
registers starting with gr96; this makes the transfer of return data by the assembly
glue routine very simple and efficient. If a service fails, due to, say, bad input parame-
ters, global register gr121 is returned with an error number supplied by the operating
system. If the service was successful, gr121 is set to Boolean TRUE (0x80000000).
The glue routines check the gr121 value, and if it is not TRUE, copy the value to
memory location errno. This location, unlike gr121 is directly accessible by a C lan-
guage application which requested the service.

Run–time HIF services are divided into two groups, they are separated by their
service number. Numbers 255 and less require the support of complex operating sys-
tem services such as file system management. Service numbers 256 and higher relate
to simpler service tasks. Note, AMD reserves service numbers 0–127 and 256–383
for HIF use. Users are free to extend operating system services using the unreserved
service numbers. Operating systems which implement HIF, OS–boot for example,
do not always directly support services 255 and lower. These HIF services are often
translated into native operating system calls which are virtualising HIF services. For
example, when a HIF conforming application program is running on a UNIX–based
system, the HIF services are translated into the underlying UNIX services. OS–boot
supports the more complex services by making use of the MiniMON29K message
system to communicate the service request to a debug support host processor (see
Chapter 7). For this reason, services 255 and lower are not always available. Services
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exit 1 exitcode Service does not return
open 17 pathname mode pflag fileno errcode
close 18 fileno retval errcod
read 19 fileno buffptr nbytes count errcode

 write 20 fileno buffptr nbytes count errcode
lseek 21 fileno offset orig where errcode
remove 22 pathname retval errcode
rename 23 oldfile newfile retval errcode
ioctl 24 fileno mode errcode
iowait 25 fileno mode count errcode
iostat 26 fileno iostat errcode
tmpnam 33 addrptr filename errcode
time 49 secs errcode
getenv 65 name addrptr errcode
gettz 67 zonecode dstcode errcode

sysalloc 257 nbytes addrptr errcode
sysfree 258 addrptr nbytes retval errcode

 getpsize 259 pagesize errcode
getargs 260 baseaddr errcode
clock 273 msecs errcode
cycles 274 LSBs cycles MSBs cycles errcode
setvec 289 trapno funaddr trapaddr errcode
settrap 290 trapno trapaddr trapaddr errcode
setim 291 mask di mask errcode
query 305 capcode hifvers errcode

capcode cpuvers errcode
capcode 027vers errcode
capcode clkfreq errcode
capcode memenv errcode

signal 321 newsig oldsig errcode
sigdfl 322 [gr125 points to HIF signal frame] Service does not return
sigret 323 [gr125 points to HIF signal frame] Service does not return
sigrep 324 [gr125 points to HIF signal frame] Service does not return
sigskp 325 [gr125 points to HIF signal frame] Service does not return
sendsig 326 sig errcode

Title gr121 gr121gr97gr96lr2 lr3 lr4

Table 2-2. HIF Service Calls

Service Calling Parameters Returned Values

with numbers 256 and higher do not require the support of a remote host processor.
These services are implemented directly by OS–boot. If an underlying operating sys-
tem, such as UNIX, is being used, then some of these services may not be available as
they may violate the underlying operating system’s security.
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When application benchmark programs use HIF services, care should be taken.
If a program requests a service such as time (service 49) it will suffer the delays of
communicating the service request to a remote host if the OS–boot operating system
is used. This can greatly effect the performance of a program, as execution will be
delayed until the remote host responds to the service request. It is better to use ser-
vices such as cycles (service 274) or clock (service 273) which are executed by the
29K processor and do not suffer the delays of remote host communication.

The assembly level glue routines for HIF services 255 and lower are rarely re-
quested directly by an application program. They are more frequently called upon by
library routines. For example, use of the library printf()  routine is the typical way of
generating a write HIF service request. The mapping between library routines and
HIF services may not be always direct. The printf()  routine, when used with a device
operating in COOKED mode, may only request write services when flushing buffers
supporting device communication. Appendix A contains a detailed description of
each HIF service in terms of input and output parameters, as well as error codes.

2.2.4 Switching to Supervisor Mode

Operating systems which conform to HIF normally run application code in User
mode. However, many real–time applications require access to resources which are
restricted to Supervisor mode. If the HIF settrap service is supported, it is easy to
install a trap handler which causes application code to commence execution in Su-
pervisor mode. The example code sequence below uses the settrap() HIF library rou-
tine to install a trap handler for trap number 70. The trap is then asserted using  assem-
bly language glue routine assert_70().

extern int super_mode();/* Here in User mode */
_settrap(70,super_mode);/* install trap handler */
assert_70(); /* routine to assert trap */
. . . /* Here in Supervisor mode */

The trap handler is shown below. Its operation is very simple; it sets the Supervi-
sor mode bit in the old processors status registers (OPS) before issuing a trap return
instruction (IRET). Other application status information is not affected. For exam-
ple, if the application was running with address translation turned on, then it will con-
tinue to run with address translation on, but now in Supervisor mode.

In fact the example relies on application code running with physical addressing;
or if the Memory Management Unit is used to perform address translation, then virtu-
al addresses are mapped directly to physical addresses. This is because  the Freeze
mode handler, super_mode(), runs in Supervisor mode with address translation
turned off. But the  settrap system call, which installs the super_mode() handler ad-
dress, runs in User mode and thus operates with User mode address values.
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.global _super_mode
_super_mode: ;gr64 is an OS temporary

mfsr gr64,ops ;read the OPS register
or gr64,gr64,0x10 ;set SM bit in OPS
mtsr ops,gr64 ;iret back to Supervisor mode
iret

The super_mode() and assert_70() routines have to be written in assembly lan-
guage. The IRET instruction in super_mode() starts execution of the JMPI instruc-
tion in the assert_70() routine shown below. The method shown of forcing a trap can
be used to test a systems interrupt and trap support software.

.global _assert_70
_assert_70: ;leaf routine

asneq 70,gr96,gr96 ;force trap 70
jmpi lr0 ;return
 nop

Table 2-3. HIF Service Call Parameters

Parameter Description

027vers The version number of the installed Am29027 arithmetic accelerator chip (if any)
addrptr A pointer to an allocated memory area, a command-line-argument array, a path-

name buffer, or a NULL-terminated environment variable name string.
baseaddr The base address of the command-line-argument vector returned by the getargs

service.
buffptr A pointer to the buffer area where data is to be read from or written to during the

execution of I/O services, or the buffer area referenced by the wait  service.
capcode The capabilities request code passed to the query  service. Code values are: 0 (re-

quest HIF version), 1 (request CPU version), 2 (request Am29027 arithmetic accel-
erator version), 3 (request CPU clock frequency), and 4 (request memory environ-
ment).

clkfreq The CPU clock frequency (in Hertz) returned by the query  service.
count The number of bytes actually read from file or written to a file.
cpuvers The CPU family and version number returned by the query  service.
cycles The number of processor cycles (returned value).
di The disable interrupts parameter to the setim  service.
dstcode The daylight savings time in effect flag returned by the gettz  service.
errcode The error code returned by the service. These are usually the same as the codes

returned in the UNIX errno variable.
exitcode The exit code of the application program.

(continued)
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Table 2-4. HIF Service Call Parameters (Concluded)

(continued)

Parameter Description

filename A pointer to a NULL-terminated ASCII string that contains the directory path of a tem-
porary filename.

fileno The file descriptor which is a small integer number. File descriptors 0, 1, and 2 are
guaranteed to exist and correspond to open files on program entry (0 refers to the
UNIX equivalent of stdin  and is opened for input; 1 refers to the UNIX stdout , and is
opened for output; 2 refers to the UNIX stderr , and is opened for output).

funaddr A pointer to the address of a spill or fill handler passed to the setvec  service.

hifvers The version of the current HIF implementation returned by the query  service.

iostat The input/output status returned by the iostat  service.

mask The interrupt mask value passed to and returned by the setim  service.

memenv The memory environment returned by the query  service.

mode A series of option flags whose values represent the operation to be performed. Used
in the open, ioctl,  and wait  services to specify the operating mode.

msecs Milliseconds returned by the clock  service.

name A pointer to a NULL-terminated ASCII string that contains an environment variable
name.

nbytes The number of data bytes requested to be read from or written to a file, or the number
of bytes to allocate or deallocate from the heap.

newfile A pointer to a NULL-terminated ASCII string that contains the directory path of a new
filename.

newsig The address of the new user signal handler passed to the signal  service.

offset The number of bytes from a specified position (orig) in a file, passed to the lseek  ser-
vice.

oldfile A pointer to NULL-terminated ASCII string that contains the directory path of the old
filename.

oldsig The address of the previous user signal handler returned by the signal  service.

orig A value of 0, 1, or 2 that refers to the beginning, the current position, or the position of
the end of a file.

pagesize The memory page size in bytes returned by the getpsize  service.

pathname A pointer to a NULL-terminated ASCII string that contains the directory path of a file-
name.

pflag The UNIX file access permission codes passed to the open  service.

retval The return value that indicates success or failure.

secs The seconds count returned by the time  service.

sig A signal number passed to the sendsig  service.

trapaddr The trap address returned by the setvec   and settrap  services. A trap address
passed to and returned by the settrap  service.

trapno The trap number passed to the setvec  and settrap  services.

where The current position in a specified file returned by the lseek  service.

zonecode The time zone minutes correction value returned by the gettz  service.
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2.3 C LANGUAGE COMPILER

I know of six C language compilers producing code for the 29K family. The
most widely used of these are: the High C 29K compiler developed by Metaware Inc;
and GNU supported by the Free Software Foundation and Cygnus Support Inc. De-
velopers of 29K software normally operate in a cross development environment,
editing and compiling code on one machine which is intended to run on 29K target
hardware. The High C 29K compiler is sold by a number of companies, including
AMD, and packaged along  with other vendor tools. High C 29K can produce code
for both big– and little–endian 29K operation. The GNU compiler, gcc, currently
(version 2.5) produces big–endian code. This does not present a problem as the 29K
is used predominantly in big–endian.

2.3.1 Compiler Optimizations

A RISC chip is very sensitive to code optimization. This is not surprising since
the RISC philosophy gives software greater access to a processor’s internals relative
to most CISC processors. Compilers make use of a number of code optimization
techniques which it is difficult for the assembly language programmer to consistently
make use of. Some of these techniques are briefly described below. For example:

Common Sub–Expression Elimination

... 
c=a+b;
...
d=a+b; /* sub-expression used again */
...

The expression a+b is a common sub-expression, it does not need to be eva-
luated twice. A more efficient compiler would store the result of the first evaluation
in a local or global register and reuse the value in the second expression. Temporary
variables used during interim calculations are optimized by the compiler. These com-
piler-generated temporaries are allocated to register cache locations.

Strength Reduction

 When ever possible “strength reduction” is performed. This refers to replacing
expensive instructions with less expensive ones. For example, replace multiplies by
factors of two with more efficient shift instructions.

Loop Invariant Code Motion

Sometimes a C programmer will place code in a loop which could have been
located outside of the loop. For example, variable initialization need not be repeated-
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ly executed in a loop.  The loop invariant initialization would be located before the
loop code. Hence, the amount of code required to support each loop iteration is mini-
mized.

Loop Unrolling
There are a number of optimization techniques applicable to code loops. The

objective is the same, to replace the loop with a sequence of faster executing code.
This often involves unrolling the loop partially or completely. For example, the
compiler may determine a loop is traversed, say, three times. It may be more effective
to replace the loop with three in–line versions of the loop. This would eliminate the
branching required by the loop. Additionally, when a loop is unrolled there are
generally increased opportunities to apply optimizations not available to the looped
alternative. Consequently, sections on the expanded loop need not be just
duplications of a single loop iteration, but something smaller and more register
efficient.

Dead–Code Elimination
Code which can never be executed is eliminated. This saves on memory usage.

Unexecutable code can result from a branch which can never be taken. Compilers
generally issues a warning when they detect “unreachable code”. Additionally, result
values which are never used can be eliminated; this can remove unneeded store
instructions.

Improved Register Allocation
A processor’s registers are a critical resource in determining performance.

Accessing registers is very much more efficient than accessing off–chip memory.
The ability of the compiler to devise schemes to keep data within the available
registers is critical. Additionally, given that the 29K compiler determines the size of a
procedure’s register window, it is important to minimize register allocation if spilling
and filling are to be avoided.

Constant Propagation And Folding
 Variables are often assigned constant values. Later, the variable is used in a cal-

culation. The 29K instruction format supports 8–bit immediate data constants. Ap-
plying constant variables as immediate data rather than holding the variable in a reg-
ister can be more efficient. Additionally, propagating an immediate value may enable
it to be combined with another immediate value at compile time. This is better than
performing a run–time calculation.

Register–to–Register Copying (Copy Propagation)
 When examining compiler generated code, particularly if the target is a CISC

processor, it is not unusual to see stores of register data to memory locations. This
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makes the register available for reuse. Later, the stored data is reloaded for further
processing. The better RISC compilers try to keep data in registers longer; and use
register–to–register copying rather than register–to–memory.

Memory Shadowing
The performance impact of a memory access is reduced when the access is per-

formed to a copy–back data cache. However, most processors do not have this advan-
tage available to them. The term “memory shadowing”  refers to the increased use of
registers for data variable storage. Again, directing accesses to registers rather than
off–chip memory has significant performance advantages. Of course, if a variable is
defined volatile it can not be held in a register.

Memory References Are Coalesced and Aligned
Data memory can be most efficiently accessed using burst–mode addressing.

This requires the use of load– and store–multiple instructions. When a sufficiently
large data object is being moved between memory and registers, it is best to use the
burst–mode supported instructions. The compiler can also arrange for frequently ac-
cessed data to be located (coalesced) in adjacent memory locations, even if the data
variables were not consecutively defined.

 There are also performance benefits to be had by aligning target instructions on
cache block boundaries. For example, a procedure can be aligned to start on a 4–word
boundary. This improves cache utilization and performance –– particularly with
caches which do not support partially filled cache blocks.

Delay Slot Filling
The compilers perform “delay slot filling” (see section 3.1.8). Delay slots occur

whenever a 29K processor experiences a disruption in consecutive instruction execu-
tion. The processor always executes the instruction in the decode pipeline stage, even
if the execute stage contains a jump instruction. Delay slot is the term given to the
instruction following the jump or conditional branch instruction. Effectively, the
branch instruction is delayed one cycle. Unlike assembly language programmers, the
compiler easily  finds useful instructions to insert after branching instructions. These
instructions, which are executed regardless of the branch condition, are effectively
achieved at no cost. Typically, an instruction that is invariant to the branch outcome is
moved into the delay slot just after the branch or jump instruction.

Jump Optimizations
 Because of the pipeline stalling effects of jump instruction, scheduling these

instructions can achieve significant performance improvements. The objective is to
reduce the number of taken branches. For example, code loops typically have condi-
tional tests at the top of the loop to test for loop completion. This results in branch
instructions at the top and the bottom of the loop. If the conditional branch is moved
to the bottom of the loop then the number of branches is reduced.
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Instruction Scheduling

The 29K allows load and store instructions to be overlapped with other instruc-
tions that do not depend on the load or store data. Ordinarily, a processor will load
data into a register before it makes use of it in the subsequent instruction. To enable
overlapping of the external memory access, the load instruction must be executed at
an earlier stage, before it is required. Best results are obtained if code motion tech-
niques are used to push the load instruction back by as many instructions as there are
memory access delay cycles (another name for this technique is instruction pre-
scheduling). This will prevent processor pipeline stalling caused by an operand value
not being available. Once again, code motion is best left to the compiler to worry
about.

Leaf Procedure Optimization

Leaf procedures are procedures which do not call other procedures; at least they
do not contain any C level procedure calls. However, they can contain transparent
routine calls inserted by the compiler. Because of this unique characteristic of leaf
routines, a number of optimizations can be applied. For example, simplified
procedure prologue and epilogue, alternative register usage. When a leaf is static in
scope (only known within the defining module) alternative parameter passing and
register allocation schemes can be applied.

With newer versions of the High C 29K compiler, it is possible to construct
simple procedures as transparent routines (see section 3.7). If a procedure qualifies
for a transparent–type implementation, then its parent (in the calling sequence) may
itself become a leaf procedure. This propagates the benefits obtained by leaf
procedures.

In–lining Simple Functions

The program may call a procedure but the compiler can replace the call with
equivalent in–line code. For very small procedures this can be a performance
advantage. However, as the called procedure grows in size and in–lining is frequently
applied, then code space requirements will increase. In–lining is frequently utilized
with C++ code which often has classes with small member functions. The register
requirements of a procedure can grow when it has to deal with in–line code rather
than a procedure call. This does not present much difficulty for a 29K processor as it
can individually tailor the register allocation to each procedure’s requirements with
dynamically sized register windows.

As stated above, it is possible to construct simple functions as transparent
routines (see section 3.7). This is not really in–lining, but it does further reduce the
overhead associated with even a leaf procedure. Additionally, placing code in a
transparent routine, which is shared, helps reduce the code expansion which occurs
with in–lining. For this reason using the C language key word _Transparent to define
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the type of small procedures, may be a performance advantage when used with C++
object member functions.

Global Function In–lining

When code in–lining is applied, it is typically limited to functions defined and
used within an single module. More elaborate schemes enable a function to be
defined in one module and the related code to be inserted in–line even if the call to the
function appears in another file. Applying function in–lining in this global fashion
can greatly extend the benefits of in–lining.

Two–pass Code Compilation

Most compilers apply their optimization statically. That is entirely at compile
time. However, by observing the program in execution, optimizations can be further
refined. For example, branch prediction can be applied statically, but observing the
frequency of actual branching reveals the most traversed code paths. Additionally,
the data which is most frequently accessed can be determined. With this information
a second pass of the compiler can be applied and further code optimizations incorpo-
rated.

Superblock Formation

Software optimizations are normally only applied within a code block. A block
is a code sequence which is bounded by a single entry point (at the top –– a lower
address) and one or more exit points (a jump or call instruction). Instruction
scheduling and other optimizations can be better utilized if an instruction block is
large. For this reason techniques which enlarge a block’s size and create a superblock
are important

A superblock may contain a number of basic blocks, yet code optimizations can
be applied over the larger superblock code sequence. Creation of a superblock can
require duplication of code. Typically the tail of a superblock will be duplicated (tail
recursion) to eliminate side entry points to the superblock. Optimization techniques
which help superblock creation are: loop unrolling, function in–lining, jump
elimination, code duplication, code migration, and code profiling.

2.3.2 Metaware High C  29K Compiler

The Metaware Inc. compiler, invoked with the hc29 driver, has held the position
as the top performing 29K compiler for a number of years. It generally produces the
fastest code, which is of the smallest size. It is available on SUN and HP workstation
platforms as well as IBM PC–AT machines. It may be made available on other plat-
forms depending on customer demand. A number of companies resell the compiler
along with other tools, such as debuggers and emulators.
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The compiler typically allocates about 12 registers for use by each new
procedure. However, a very large procedure could be allocated up to 128 registers.
This requires the register–stack cache be assigned the maximum window size of 128
registers. The “lregs=n” compiler switch (minimum n=36) enables the maximum
number of registers allocated to a procedure to be limited to less than 128. If the
“lregs” switch is used, it is possible to operate with a reduced window size. This
would increase the frequency of stack spilling and filling (and hence reduce effective
execution speeds) but would enable a faster task context switch time (see section
8.1.4). The maximum number of local registers which would require saving or
restoring would be limited to the reduced window size (window size = rfb – rab).

A number of the example code sequences shown in this book, and provided by
AMD, are configured to operate with a fixed window size of 512 bytes; in particular,
repair_R_stack in file signal.s and signal_associate in file sig_code.s. These files
should be modified to reflect the reduced window size. Ideally a Supervisor mode
accessible memory location, say WindowSize,  should be initialized by the operating
system to the chosen window size, and all subsequent code should access
WindowSize to determine the window size in use. Additionally, the spill handler
routine must be replace with the code shown below. The replacement handler
requires three additional instructions. But, unlike the more frequently used spill
handler (section 4.4.4), it is not restricted to operating with a fixed window size of
512 bytes.

spill_handler:
sub tav,rab,rsp ;calculate size of spill
srl gr96,tav,0x2
sub gr96,gr96,0x1
mtsr cr,gr96 ;number of words
sub tav,rfb,tav ;determine new rfb position
const gr96,0x200
or gr96,tav,gr96
mtsr ipa,gr96 ;point into register file
add rab,rsp,0x0 ;adjust rab position
storem 0,0x0,gr0,tav ;move data
jmpi tpc
 add rfb,tav,0x0 ;adjust rfb position

The above spill handler code  may fail if there is a procedure which does not use
the gr96 register. The compiler may hold a value in gr96 and expect it to survive the
function call; and the function call may result in spill handler execution. This is not
likely, but the use of gr96 above must be done with care.

A number of non–standard C features have been added to the compiler. These
features are often useful, but their use reduces the portability of code between
different C compilers. For example, the High C 29K compiler does not normally pack
data structures. The type modifier _Packed can be used to specify packing on a
per–structure bases. If structure packing is selected on the compiler command line,
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unpacked structures can be selectively specified with the _Unpacked type modifier.
For example:

typedef _Packed  struct packet_str /* packed structure */
{ char A;

int B;
. . .

} packet_t;

A HIF conforming operating systems provides unaligned memory access trap
handlers –– any 29K operating system may choose to do this. Hence, if an object larg-
er than a byte is accessed and the object is not aligned to an object–sized boundary,
then a trap will be taken and the trap handler will perform the required access in
stages if necessary. The trap handler will require several processor cycles to perform
its task. To the programmer, the required data is accessed as if it were aligned on the
correct address boundary. In the example above, structure member B is of size int but
is not aligned on a int–sized boundary (given object  A is a char and it is aligned on a
word–sized boundary).

Of course there is a performance penalty for use of trap handlers. For this reason,
packed data structures are seldom used. However, there use does reduce data
memory requirements, and for this reason data is often sent between processors in
packed data packets. When a data packet is received, its contents can be accessed as
bytes without any data alignment difficulties. Access of data larger than bytes may
require unaligned trap handler support, and thus suffer a performance penalty.

The High C 29K compiler offers a solution to the performance problem with the
type modifiers _ASSUME_ALIGNED and _ASSUME_UNALIGNED. They enable a
pointer to a unaligned structure to be declared. For example:

receive_packet(packet_p)
_ASSUME_UNALIGNED packet_t* packet_p;
{

int  data = packet_p–>B;/* unaligned access */
. . .

The receive_packet() procedure is passed a pointer to a data structure which is
known to be unaligned. Normally, when member B of the packet structure is
accessed, an unaligned trap occurs. However, informing the compiler of the
unaligned nature of the data enables the compiler to replace the normal load
instruction used to read the B data with a transparent helper routine call (see section
3.7). The transparent helper routine performs the same task as the trap handler but
with a reduced overhead.

2.3.3 Free Software Foundation, GCC

The GNU compiler, gcc, can be obtained from any existing users who are in a
position, and has the time, to duplicate their copy. Alternatively, the Free Software



113Chapter 2       Applications Programming

Foundation can be contacted. For a small fee, Cygnus Support Inc. will ship you a
copy along with their documentation. The GNU compiler is available in source form,
and currently runs on UNIX type host machines as well as 386 based IBM PCs and
compatibles.

Considering the Stanford University benchmark suite, the gcc compiler (ver-
sion 2.3) produces code which is on average 15–20% slower in execution compared
to hc29. The GNU compiler also used considerably more memory to contain  the
compiled code. Of course your application program may experience somewhat dif-
ferent results.

2.3.4 C++ Compiler Selection

Programmers first started developing C++ code for the 29K in 1988; they used
the AT&T preprocessor, cfront, along with the High C 29K compiler. A number of
support utilities were developed at that time to enable the use of cfront: nm29,
munch29, and szal29, which gave the size and alignment of 29K data objects (re-
quired for cross development environments).

 Because the GNU tool chains can support  C++ code development directly with
the the GCC compiler there is little use being made of the AT&T cfront preprocessor.
Additionally, MRI and Metaware have recently announced upgrades to their prod-
ucts which now enable C++ code development. (C++ makes extensive use of dynam-
ic memory resources, see section 2.4.1.)

2.3.5 Executable Code and Source Correspondence

The typically high levels of optimization applied by a compiler producing code
for RISC execution, can make it difficult to identify the relationship between 29K
instructions and the source level code. When looking at the 29K instructions
produced by the compiler, it is not always easy to identify the assembly instructions
which correspond to each line of C code. Optimizations such as: code motion,
sub–expression elimination, loop unrolling, instruction scheduling and more, all add
to the difficulty.

Fortunately, there is usually little need to study the resulting instructions
produced after compilation. However, it can occasionally be worth studying
compiler output  when trying to understand the performance of critical code
segments. It is difficult to obtain a small example of C code which demonstrates all
the potential code optimizations. The example below is interesting, but illustrates
only a few of the difficulties of relating source code to 29K instructions.

int strcmp(s1, s2) /* file strcmp.c */
char *s1,*s2;
{
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int cnt=0;
for(cnt=0;;cnt++);
{ if(s1[cnt]!=s2[cnt])

return –1;
if(s1[cnt]==’\0’ || s2[cnt]==’\0’) /* line 8 */

if(s1[cnt]==’\0’ && s2[cnt]==’\0’)
return 0;

else
return –1;

}
} /* line 14 */

The procedure, strcmp(), is similar to the ANSI library routine of the same
name. It is passed the address of two strings. The strings are compared to determine if
they are the same. If they are the same, zero is returned, otherwise –1 is returned. This
is not exactly the same behavior as the ANSI routine.

The procedure is based on a for–loop statement which compares characters in
the two strings until they are found to be different or one of the strings is terminated.
The algorithm used by the C code is not optimal. But this makes the example more
interesting as it challenges the compiler to produce the minimum code sequence. The
Metaware compiler was first used to compile the code with a high level of
optimization selected (–O7). The command line use was “hc29 –S –Hanno –O7
strcmp.c”. The “–S” switch causes the compiler to stop after it has produced 29K
assembly code –– no linking with libraries is performed. The “–Hanno” switch
causes the source C code to be embedded in the output assembly code. This helps
identify the assembly code corresponding to each line of C code. The assembly code
produced is shown below. Note that some assembly level comment statements have
been added to help explain the code operation.

.text

.word 0x40000 ; Tag: argcnt=2 msize=0

.global _strcmp
_strcmp:
;4   | int cnt=0;
;5   | for(cnt=0;;cnt++)

jmp L2
 const gr97,0 ;cnt=0

L3: ;top of for–loop
L2:
;6   | { if(s1[cnt]!=s2[cnt])

add gr96,lr2,gr97
load 0,1,gr99,gr96 ;load s1[cnt]
add gr96,lr3,gr97
load 0,1,gr98,gr96 ;load s2[cnt]
cpeq gr96,gr99,gr98 ;compare characters
jmpf gr96,L4 ; jump if different
 cpeq gr96,gr99,0 ;test if s1[cnt] == ’\0’

;8   | if(s1[cnt]==’\0’ || s2[cnt]==’\0’)
jmpt gr96,L5 ; jump if string end
 cpneq gr96,gr98,0 ;test s2[cnt]
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jmpt gr96,L3 ;for–loop if not end
 add gr97,gr97,1 ;increment cnt

L5:
;9   | if(s1[cnt]==’\0’ && s2[cnt]==’\0’)

cpneq gr96,gr99,0 ;here is at end of string
jmpt gr96,L4 ;jump if s1[]!=’\0’
 cpneq gr96,gr98,0
jmpt gr96,L7 ;jump if s2[]!=’\0’
 constn gr96,–1

;10  | return 0;
jmpi lr0 ;strings match
 const gr96,0 ;return 0

L4:
constn gr96,–1 ;no match

L7:
;12  | return –1;

jmpi lr0
 nop

The body of the for–loop is contained between address labels L3 and L5. The
compiler has filled the delay slot of jump instructions with other useful instructions.
Within the for–loop, LOAD instruction are used to access the characters of each
string. Register gr97 is used to hold the loop–count value, cnt. The count value is
incremented each time round the for–loop. The value in gr97 is added to the base of
each string (lr2 and lr3) to obtain the address of each character required for compari-
son. The LOAD instructions have been scheduled to somewhat reduce conflict for
off–chip access and reduce the pipeline stalling affects of LOAD instructions.

Within the body of the loop three tests are applied: one to determine if the char-
acters at the current position in the string match; the remaining two, to determine if
the termination character has been reached for either of the strings. The assembly
code after label L5 selects the correct return value when the tested characters do not
match or string termination is reached. There is unnecessary use of jump instructions
in the code following label L5 and also in the initial code jumping to label L2. It is
somewhat fortunate that this less optimal code does not appear within the more fre-
quently executed for–loop body.

The same code was compiled with the GNU compiler using command “gcc –S
–O4 strcmp.c”. The assembly code produced is shown below; it is quite different
from the Metaware produced code.

.text

.align 4

.global _strcmp

.word 0x40000
_strcmp:
L2: ;top of for–loop

load 0,1,gr117,lr2 ;load s1[cnt]
load 0,1,gr116,lr3 ;load s2[cnt]
cpneq gr116,gr117,gr116 ;compare characters
jmpf gr116,L5 ;jump if match
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 cpneq gr116,gr117,0 ;test for s1[] end
jmpi lr0 ;no match
 constn gr96,65535 ; return –1

L5: ;here if s1[cnt]==s2[cnt]
jmpfi gr116,lr0 ;return if at string end
 const gr96,0
add lr3,lr3,1 ;next s2[] character
jmp L2 ;for–loop
 add lr2,lr2,1 ;next s1[] character

All of the code is contained in the body of the for–loop. A for–loop transition
consists of 10 instructions, a decrease of one compared to the Metaware code. How-
ever, LOAD instructions are now placed back–to–back, and loaded data is used im-
mediately. Additionally, the normal path through the for–loop contains an additional
jump to label L5. This will increase the actual number of cycles required to execute a
single for–loop to more than 10 cycles. It is likely the Metaware produced code will
execute in a shorter time.

No register (previously gr97) is used to contain the cnt value. The pointers to the
passed strings, lr2 and lr3, are advanced to point to the next character within the for–
loop. Delay slot instructions are productively filled and there are no unnecessary
jump instructions.

Lines 8 through 12 of the source code are only applied if the tested characters are
found not to match. Consequently, it is redundant to test if either string has reached
the termination character –– if one has, they both have. This optimization should
have been reflected in the source code. However, the GNU compiler has identified
that it need only test string s1[] for termination. This results in the elimination of 29K
instructions relating to later C code lines. For example, there is no code relating to the
if–statement on line 9. If an attempt is made to place a breakpoint on source line 9
using the GDB source level debugger, then no breakpoint will be installed. Other de-
buggers may give a warning message or place a breakpoint at the first line before or
after the requested source line.

Programmers familiar with older generation compilers applied to CISC code
generation will notice the increased complexity in associating 29K instructions to
source C statements –– even for the simple example shown. As procedures become
larger and more complex, code association become increasingly more difficult. The
quality of 29K code produced by the better compilers available, make it very difficult
to consistently (or frequently) produce better code via hand crafting 29K instruc-
tions. Because of the difficulty of understanding the compiler generated code, it is
best to only incorporate hand–built code as separate procedures which comply with
the C language calling convention.

2.3.6 Linking Compiled Code

After application code modules have been compiled or assembled, they must be
linked together to form an executable file. There are three widely used linker tools:
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Microtec Research Inc. developed ld29; Information Processing Corp. developed
ld29i; and the GNU tool chain offers gld. Sometimes these tools are repackaged by
vendors and made available under different names. They all operate on AMD COFF
formatted files. However, they each have different command line options and link
command–file formats. A further limitation when mixing the use of these tools is that
ld29 operates with a different library format compared to the others. It uses an MRI
format which is maintained by the lib29 tool. The others use a UNIX System V for-
mat supported by the well known ar librarian tool.

It is best to drive the linker from the compiler command line, rather than invok-
ing the linker directly. The compiler driver program, gcc or hc29 for example, can
build the necessary link command file and include the necessary libraries. This is the
ideal way to link programs, even if assembly language modules are to be named on
the compiler command line. Note that the default link command files frequently use
aligns text (ALIGN .text=8192) and data sections to 8k (8192) byte boundaries. This
is because the OS–boot operating system (see Chapter 7) normally operates with ad-
dress translation turned on. The maximum (for the Am29000 processor) page size of
8k bytes is used to reduce run–time Memory Management Unit support overheads.

Different 29K evaluation boards can have different memory maps. AMD nor-
mally supplies the High C 29K linker in a configuration which produces a final code
image linked for a popular evaluation board –– many boards share the same memory
map. Additionally, AMD supplies linker command files for currently available
boards, such as the EZ030 and SA29200 boards. The linker command files are lo-
cated in the installation/lib directory; each command file ends with the file extension
.cmd. For example, the mentioned boards have command files: ez030.cmd and
sa200.cmd, respectively. The linker command files can be specified when the com-
piler is invoked. For example, the command “hc29 –o file –cmdez030.cmd file.c”
will cause the final image to be linked using the ez030.cmd command file. Using the
supplied linker command files is a convenient way to ensure a program is correctly
linked for the available memory resources.

The GNU compiler also allows options to be passed to the linker via the
“–Xlinker” flag. For example, the command line “gcc –Xlinker –c –Xlinker
ez030.cmd –o file file.c” will compile and link file.c. The linker will be passed the
option “–c ez030.cmd”. The GNU linker documentation claims the linker can
operate on MRI formatted command files. In practice, at least for the 29K, this is not
the case. The GNU linker expects MRI–MC68000 formatted command files, which
are a little different from MRI–29K formatted command files. Known differences are
the use of the “*” character rather than “#” before comments, and the key word
PUBLIC must be upper case. Those using the GNU tool chain generally prefer to use
the GNU linker command file syntax rather than attempt to use the AMD supplied
command files.
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When developing software for embedded applications there is always the prob-
lem of what to do with initialized data variables. The problem arises because vari-
ables must be located in RAM, but embedded programs are typically not loaded by an
operating system which prepares the data memory locations with initialized values.
Embedded programs are stored in ROM; this means there is no problem with pro-
gram instructions unless a program wishes to modify its own code at run–time.

Embedded system support tools typically provide a means of locating initial-
ized data in ROM; and transferring  the ROM contents to RAM locations before pro-
gram execution starts. The High C 29K linker, ld29, provides the INITDATA com-
mand for this purpose. Programs must be linked such that all references to writeable
data occur to RAM addresses. The INITDATA scans a list of sections and transfers
the data variables found into a new .initdat  section.  The list  contains the names of
sections containing initialized data. The linker is then directed to locate the new .init-
data section in ROM.The start address of the new section is marked with  symbol
initdat .

Developers are provided with the source to a program called initcopy() which
must be included in the application program. This program accesses the data in ROM
starting at label initdat  and transfers the data to RAM locations. The format of the
data located in the .initdat  section is understood by the initcopy() routine. This rou-
tine must be run before the application main() program. A user could place a call to
the initialization routine inside crt0.s.

Note, because initcopy() must be able to read  the appropriate ROM devices,
these devices must be placed in an accessible address space. This is not a problem for
2–bus members of the 29K family, but 3–bus members can have a problem if the .in-
itdat section is located in a ROM device along with program code. Processors with
3–bus architectures, such as the Am29000, have separately addressed  Instruction
and ROM spaces which are used for all instruction accesses. The Am29000 proces-
sor has no means of reading these two spaces to access data unless an external bridge
is provided. If program code and initialized data are located in the same ROM device,
the initcopy() program can only be used if an external bridge is provided. This bridge
connects the Am29000 processor data memory bus to the instruction memory bus. If
a 3–bus system does not have a bridge the romcoff utility can be used to initialize data
memory.

The romcoff utility can be used when the ld29 linker is not available and the
INITDATA linker command option is not provided. Besides being able to work with
3–bus architectures which have no bridge, it can be used to process program sections
other than just initialized data.  Sections which ultimately must reside in RAM can be
initialized from code located in ROM.

Fully linked executables are processed by romcoff to produce a new linkable
COFF file. This new module has a section called RI_text which contains a routine
called RAMInit() . When invoked, this routine initializes the processed sections,dur-
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ing preparation of the relevant RAM  regions. The new COFF file produced by romc-
off must be relinked with the originally linked modules. Additionally, a call to RA-
MInit()  must be placed in crt0.s or in the processor boot–up code (cold–start code) if
the linked executable is intended to control the processor during the processor RE-
SET code sequence.

When romcoff is not used with the “–r” option, it assumes that the ROM
memory is not readable. This results in a RAMInit()  function which uses CONST
and CONSTH instructions to produce the data values to be initialized in RAM. This
results in extra ROM memory requirements to contain the very much larger RAMI-
nit()  routine, but ensures that 3–bus architectures which do not incorporate a bridge
can initialize their RAM memory.

2.4 LIBRARY SUPPORT

2.4.1 Memory Allocation

The HIF specification requires that conforming operating systems maintain a
memory heap. An application program can acquire memory during execution by us-
ing the malloc() library routine. This routine makes use of the underlying sysalloc
HIF service. The malloc() call is passed the number of consecutive memory bytes
required; it returns a pointer to the start of the memory allocated from the heap.

Calls to malloc() should be matched with calls to library routine free(). This
routine is passed the start address of the previously allocated memory along with the
number of bytes acquired. The free() routine is supported by the sysfree HIF service.
The HIF specification states “no dynamic memory allocation structure is implied by
this service”. This means the sysfree may do nothing; in fact, this service with OS–
boot (version 0.5)  simply returns. Continually using memory without ever releasing
it and thus making it reusable, will be a serious problem for some application pro-
grams, in particular C++ which frequently constructs and destructs objects in heap
memory.

For this reason the library routines which interface to the HIF services perform
their own heap management. The first call to  malloc() results in a sysalloc HIF re-
quest for 8k bytes, even in the malloc() was for only a few bytes. Further malloc()
calls do not  result in a sysalloc request until the 8k byte pool is used up. Calls to free()
enable previously allocated memory to be returned to the pool maintained by the li-
brary.

The alloca() library routine provides a means of acquiring memory from the
memory stack rather than the heap. A pointer to the memory region within the calling
procedure’s memory stack frame, is returned by alloca(). The advantage of this
method is that there is no need to call a corresponding free routine. The temporary
memory space is automatically freed when the calling procedure returns. Users of the
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alloca() service must be careful to remember the limited lifetime of data objects
maintained on the memory stack. After returning from the procedure calling alloca(),
all related data variables cease to exist and should not be referenced.

2.4.2 Setjmp and Longjmp

The setjmp() and longjmp() library routines provide a means to jump from the
current procedure environment to a previous procedure environment. The setjmp()
routine is used to mark the position which a longjmp() will return to. A call to
setjmp() is made by a procedure, passing it a pointer to an environment buffer, as
shown below:

int setjmp(env)
jmp_buf env;

The buffer definition is shown below. It records the value of register stack and
memory stack support registers in use at the time of the setjmp() call. The setjmp()
call returns a value zero.

typedef struct jmp_buf_str
{ int* gr1;

int* msp;
int* lr0;
int* lr1;

} *jmp_buf;

The setjmp() routine is very simple. It is listed below to assist with the under-
standing of the longjmp() routine. It is important to be aware that setjmp(),
longjmp(), SPILL and FILL handlers, along with the signal trampoline code (see
section 2.5.3) form a matched set of routines. Their operation is interdependent. Any
change to one may require changes to the others to ensure proper system operation.

_setjmp: ;lr2 points to buffer
store 0,0,gr1,lr2 ;copy gr1 to buffer
add lr2,lr2,4
store 0,0,msp,lr2 ;copy msp
add lr2,lr2,4
store 0,0,lr0,lr2 ;copy lr0
add lr2,lr2,4
store 0,0,lr1,lr2 ;copy lr1
jmpi lr0 ;return
 const gr96,0

When longjmp() is called it is passed a pointer to an environment buffer which
was initialized with a previous setjmp() call. The longjmp() call does not return di-
rectly. It does return, but as the corresponding setjmp() establishing the buffer data.
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The longjmp() return–as–setjmp() can be distinguished from a setjmp() return as
itself, because the longjmp() appears as a setjmp() return with a non–zero value. In
fact the value  parameter passed to longjmp() becomes the setjmp() return value. A
C language outline for the longjmp() routine is shown below:

void longjmp(env, value)
jmp_buf env;
int value)
{

gr1 = env–>gr1;
lr2addr = env–>gr1 + 8;
msp = env–>msp;

/* saved lr1 is invalid if saved lr2address > rfb */
if (lr2addr > rfb) {

/*
 * None of the registers are useful.
 * Set rfb to lr2address–512 & rab to rfb–512
 * the FILL assert will take care of filling
 */
lr1 = env–>lr1;
rab = lr2addr – WindowSize;
rfb = lr2addr;

}
lr0 = env–>lr0;
if (rfb < lr1)

raise V_FILL;
return value;

}

The actual longjmp() routine code, shown below, is written in assembly lan-
guage. This is because the sequence  of modifying the register stack support registers
is very important. An interrupt could occur during the longjmp() operation. That in-
terrupt may require a C language interrupt handler to run. The signal trampoline code
is required to understand all the possible register stack conditions, and fix–up the
stack support registers to enable further C procedure call to be made.

_longjmp:
load 0,0,tav,lr2 ;gr1 = env–>gr1
add gr97,lr2,4 ;gr97 now points to msp
cpeq gr96,lr3,0 ;test return ”value”, it must
 srl gr96,gr96,31 ; be non zero
or gr96,lr3,gr96 ;gr96 has return value
add gr1,tav,0 ; gr1 = env–>gr1;
add tav,tav,8 ;lr2address =env–>gr1+8
load 0,0,msp,gr97 ;msp = env–>msp
cpleu gr99,tav,rfb ;if (lr2address > rfb)
jmpt gr99,$1

;{
 add gr97,gr97,4 ;gr97 points to lr0
add gr98,gr97,4 ;gr98 points to lr1
load 0,0,lr1,gr98 ;lr1 = value from jmpbuf
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sub gr99,rfb,rab ;gr99 has WindowSize
sub rab,tav,gr99 ;rab = lr2address–WindowSize
add rfb,tav,0 ;rfb = lr2address

$1: ;}
load 0,0,lr0,gr97 ;lr0 = env–>lr0
jmpi lr0 ;return
 asgeu  V_FILL,rfb,lr1 ;if (rfb < lr1) raise V_FILL;

; may fill from rfb to lr1

2.4.3 Support Libraries

The GNU tool chain is supported with a single library, libc.a.  However the High
C 29K tool chain is supported with a range of library options. It is best to use the com-
piler driver, hc29,  to select the appropriate library. This avoids having to master the
library naming rules and build linker command files.

The GNU libraries do not support word–sized–access–only memory systems.
Originally, the Am29000 processor could not support byte–sized accesses and all
memory accesses were performed on word sized objects. This required read–
modify–write access sequences to manipulate byte sized objects located in memory.
Because all current 29K processors support byte–size access directly, there is no need
to have specialized libraries for accessing  bytes. However, the High C 29K tool chain
still ships the old  libraries to support existing (pre–Rev D, 1990) Am29000 proces-
sors.

The hc29 driver normally links with three libraries: the ANSI standard C sup-
port library (libs*.lib), the IEEE floating–point routine library (libieee.lib), and the
HIF system call interface library (libos.lib). There are actually eight ANSI libraries.
The driver selects the appropriate library depending on the selected switches. The
reason for so many libraries is due to the support of the old word–only memory sys-
tems, the option to talk with an Am29027 coprocessor directly, and finally, the option
to select Am29050 processor optimized code.

The ANSI library includes transcendental routines (sin(), cos(), etc.) which
were developed by Kulus Inc. These routines are generally faster than the transcen-
dental routines developed by QTC Inc., which were at one time shipped with High C
29K. The QTC transcendentals are still supplied as the libq*.lib libraries, and must
now be explicitly linked. The Kulus transcendentals also have the advantage in that
they support double and single floating–point precision. The routines are named
slightly differently, and the compiler automatically selects the correct routine de-
pending on parameter type. The GNU libraries (version 2.1) include the QTC tran-
scendental routines.

Most 29K processors do not support floating–point instructions directly (see
section 3.1.7). When a non–implemented floating–point instruction is encountered,
the processor takes a trap, and operating system routines emulate the operation in
trapware code. If a system has an Am29027 floating–point coprocessor available,
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then the trapware can make use of the coprocessor to achieve faster instruction
emulation. This is generally five times faster than software based emulation. Keep-
ing the presence of the Am29027 coprocessor hidden in operating system support
trapware, enables application programs to be easily moved between systems with
and without a coprocessor.

However, an additional (about two times) speed–up can be achieved by applica-
tion programs talking to the Am29027 coprocessor directly, rather than via trapware.
When the High C 29K compiler is used with the “–29027” or “–f027” switches, inline
code is produced for floating–point operations which directly access the coprocessor.
Unfortunately the compiled code can not be run on a system which has no coproces-
sor. The ANSI standard C support libraries also support inline Am29027 coprocessor
access with the libs*7.lib library. When instructed to produce direct coprocessor ac-
cess code, the compiler also instructs the linker to use this library in place of the stan-
dard library, libs*0.lib.

The Am29050 processor supports integer multiply directly in hardware rather
than via trapware. It also supports integer divide via converting operands to floating–
point before dividing and converting back to integer. The High C 29K compiler per-
forms integer multiply and divide by using transparent helper routines (see section
3.7); this is faster than the trapware method used by the GNU compiler. When the
High C 29K compiler is used with the “–29050” switch, and the GNU compiler with
the “–m29050” switch,  code optimized for the use for an Am29050 processor is
used. This code may not run on other 29K family members, as the Am29050 proces-
sor has some additional instructions (see sections 3.1.6 and 3.1.7).

2.5 C LANGUAGE INTERRUPT HANDLERS

Embedded application code developers typically have to deal with interrupts
from peripheral devices requiring attention. As with general code development there
is a desire to deal with interrupts using C language code rather than assembly lan-
guage code. Compared to CISC type processors, which generally do not have a regis-
ter stack, this is a little more difficult to achieve with the 29K family. In addition, 29K
processors do not have microcode to automatically save their interrupted context.
The interrupt architecture of a 29K processor is very flexible and is dealt with in de-
tail in Chapter 4. This section presents two useful techniques enabling C language
code to be used for interrupts supported by a HIF conforming operating system.

The characteristics of the C handler function are important in determining the
steps which must be taken before the handler can execute. It is desirable  that the C
handler run in Freeze mode because this will reduce the overhead costs. These costs
are incurred because interrupts may occur at times when the processor is operating  in
a condition not suitable for immediately commencing interrupt processing. Most of
these overheads are concerned with register stack support and are described in detail
in section 4.4. This section deals with establishing an interrupt handler which can run
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in Freeze mode. The following section 2.5.3 deals with all other types of C language
interrupt handlers.

A  C language interrupt handler qualifies for Freeze mode execution if it meets
with a number of criteria:

It is a small leaf routine which does not attempt to lower the register stack
pointer. This means that, should the interrupt have occurred during a critical
stage in register stack management, the stack need not be brought to a valid
condition.

Floating–point instructions not directly supported by the processor are not used.
Many members of the 29K family emulate floating–point instructions in
software (see Chapter 3).

Instructions which may result in a trap are not used. All interrupts and traps are
disabled while in Freeze mode. This means the Memory Management Unit
cannot be used for memory access protection and address translation.

The handlers execution is short. Because the handler is to be run in Freeze mode
its execution time will add to the system interrupt latency.

The handler does not attempt to execute LOADM and STOREM instructions
while in Freeze mode. When a performance gain can be had, the High C 29K
compiler will use these instructions to move blocks of data; this does not
typically happen with short Freeze mode interrupt handlers. However, the High
C 29K compiler supports the _LOADM_STOREM pragma which can be used
to turn off or on (default) the use of LOADM and STOREM instructions.

Transparent procedure calls are not used (see section 3.7). They typically
require the support of indirect pointer which are not temporarily saved by the
code presented in this section.

The methods shown in this and the following section rely on application code
running with physical addressing; or if the Memory Management Unit is used to per-
form address translation, then virtual addresses are mapped directly to physical ad-
dresses. This is because  the macros used to install the Freeze Mode trap handlers are
used to generate code in User mode and thus operate with User mode address values.
However, Freeze mode code runs in Supervisor mode with address translation turned
off.

The Metaware High C 29K and GCC compilers prior to release 3.2 have no C
language extension to aid with interrupt handling. Release 3.2, or newer, support the
key word _Interrupt  as a procedure return type. Use of this C language extension
results in additional tag data (see section 3.6) preceding the interrupt handler routine.
Without the interrupt tag data, the only way to identify if a handler routine qualifies
for the above Freeze mode handler status, is to compile it  with the “–S” option and
examine the assembly language code. Alternatively, handler routines which make
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function calls can be immediately eliminated as unsuitable for operation in Freeze
mode. Examining the assembly language code would enable the nregs value used in
the following code to be determined. Small leaf routines operate with global registers
only. Starting with gr96, nregs is the number of global registers used by a C leaf han-
dler routine.

The interrupt_handler  macro defined below can be used to install a C level
interrupt handler which is called upon when the appropriate trap or interrupt oc-
curs.The code is written in assembly language because it must  use a carefully crafted
instruction sequence; the first part of which uses the HIF settrap  service to install, in
the processor vector table, the address ($1) which will be vectored to when the inter-
rupt occurs. The necessary code is written as a macro rather than a procedure call be-
cause the second part of the macro contains the start of the actual interrupt handler
code. This code, starting at address $1, is unique to each interrupt and can not be
shared. Note, the code makes use of push and pop macro instructions to transfer data
between registers and the memory stack. These assembly macros are described in
section 3.3.1.

.reg it0,gr64;freeze mode interrupt

.reg it1,gr65;temporary registers
; install  interrupt handler

.macro interrupt_handler, trap_number, C_handler, nregs

sub gr1,gr1,4*4 ;get lr0–lr3 space
asgeu V_SPILL,gr1,rab ;check for stack spill
add lr1,gr121,0 ;save gr121
add lr0,gr96,0 ;save gr96
const gr121,290 ;HIF 2.0 SETTRAP service
const lr2,trap_number ;trap number, macro parameter
const lr3,$1 ;trap handler address
consth lr3,$1
asneq 69,gr1,gr1 ;HIF service request
add gr121,lr1,0 ;restore gr121
add gr96,lr0,0 ;restore gr96
add gr1,gr1,4*4 ;restore stack
jmp $2 ;macro code finished
 asleu V_FILL,lr1,rfb ;check for stack fill

$1: push msp,lr0 ;start of Interrupt handler
pushsr msp,it1,ipa ;save special reg. ipa
const it0,nregs–2 ;number or regs. to save
const it1,96<<2 ;starting with gr96

$3: mtsr ipa,it1
add it1,it1,1<<2 ;increment ipa
sub msp,msp,4 ;decrement stack pointer
jmpfdec it0,$3
 store 0,0,gr0,msp ;save global registers

;
const lr0,C_handler
consth lr0,C_handler
calli lr0,lr0 ;call C level handler
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  nop
;

const it0,nregs–2 ;number of global registers
const it1,(96+nregs–1)<<2

$4: mtsr ipa,it1
load 0,0,gr0,msp ;restore global register
sub it1,it1,1<<2 ;decrement ipa
jmpfdec it0,$4
 add msp,msp,4 ;increment stack pointer
popsr ipa,it0,msp ;restore ipa
pop lr0,msp ;restore lr0
iret

$2:
 .endm

Because the C level handler is intended to run in Freeze mode, there is very little
code before the required handler, C_handler, is called. Registers lr0 and IPA are
saved on the memory stack before they are temporarily used. Then the required num-
ber of global registers (nregs)  starting with gr96 are also saved on the stack. The pro-
grammer must determine the nregs value by examining the handler routine assembly
code.

The interrupt_handler  macro must be used in an assembly language module.
Alternatively, a C language compiler extension can be used. The High C 29K compil-
er supports an extension which enables  assembly  code to be directly inserted into C
code modules. This enables a C macro to be defined which will call upon the assem-
bly language macro code. The example code below shows the C macro definition.

#define interrupt_handler(tap_number, C_handler, nregs) \
/*int trap_number; \
 void (*C_handler)(); \
 int nregs; */ \
 _ASM(” interrupt_handler ”#trap_number”,”#C_handler”,”#nregs);

Alternatively the C macro could contain the assembly macro code directly. Us-
ing the technique shown, C modules which use the macro must be first compiled with
the “–S” option; this results in an assembly language output file. The assembly lan-
guage file (.s file) is then assembled with an include file which contains the macro
definition. Note, C modules which use the macro must use the _ASM(“assembly–
string”) C extension to include the assembly language macro file (shown below) for
its later use by the assembler. The GCC compiler supports the asm(“assembly–
string”) C extension which achieves the same result as the High C 29K _ASM(“as-
sembly–string”) extension.

_ASM(” .include \”interrupt_macros.h\””);
/* int2_handler uses 8 regs. and is called 
when hardware trap number 18 occurs */

interrupt_handler(18,int2_handler,8);
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2.5.1 An Interrupt Context Cache with High C 29K

The interrupt_handler  macro code, described in the previous section, pre-
pares the processor to handle a C language interrupt handler which can operate within
the processor Freeze mode restrictions. The code saves the interrupted processor
context onto the current memory stack position before calling the C handler.

The interrupt_cache macro shown below can be used in place of the previously
described macro. Its use is also restricted to preparing the processor to handle a C
level handler which meets the Freeze mode execution criteria. However, its operation
is considerably faster due to the use of an Interrupt Context Cache. Section 4.3.9 de-
scribes context caching in more detail. A cache is used here only to save sufficient
context to enable a non–interruptable C level handler to execute.

The cache is implemented using operating system registers gr64–gr80. These
global registers are considered operating  system temporaries, at least gr64–gr79 are
(also known as it0–it3 and kt0–kt11). Register gr80 (known as ks0) is generally used
to hold operating system static data (see section 3.3). Processors which do not direct-
ly support floating–point operations contain instruction emulation software (trap-
ware) which normally uses registers in the gr64–gr79 range to support instruction
emulation.  Given application code can perform a floating–point operation at any
time, an operating system can not consider these registers contents remain static after
application code has run. For this reason and others, floating–point trapware normal-
ly runs with interrupts turned off, it is convenient to use these registers for interrupted
context caching.

The interrupt_handler  macro uses a loop to preserve the global registers used
by the Freeze mode interrupt handler. The interrupt_cache macro unrolls the loop
and uses register–to–register operations rather than register–to–memory. In place of
traversing the loop nregs times, the nregs value is used to determine the required
entry point to the unrolled code. These techniques reduce interrupt preparation times
and interrupt latency.

.macro interrupt_cache, trap_number, C_handler, nregs

sub gr1,gr1,4*4 ;get lr0–lr3 space
asgeu V_SPILL,gr1,rab ;check for stack spill
add lr1,gr121,0 ;save gr121
add lr0,gr96,0 ;save gr96
const gr121,290 ;HIF 2.0 SETTRAP service
const lr2,trap_number ;trap number, macro parameter
const lr3,$1–(nregs*4) ;trap handler address
consth lr3,$1–(nregs*4)
asneq 69,gr1,gr1 ;HIF service request
add gr121,lr1,0 ;restore gr121
add gr96,lr0,0 ;restore gr96
add gr1,gr1,4*4 ;restore stack
jmp $2 ;macro code finished
 asleu V_FILL,lr1,rfb ;check for stack fill
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add gr80,gr111,0 ;save gr111 to interrupt
add gr79,gr110,0 ; context cache
add gr78,gr109,0
add gr77,gr108,0 ;the interrupt handler  starts
add gr76,gr107,0 ;somewhere in this code range
add gr75,gr106,0 ;depending on the register
add gr74,gr105,0 ;usage of the C level code
add gr73,gr104,0
add gr72,gr103,0
add gr71,gr102,0
add gr70,gr101,0
add gr69,gr100,0
add gr68,gr99,0
add gr67,gr98,0
add gr66,gr97,0 ;save gr97
add gr64,lr0,0 ;save lr0

$1:
const lr0,C_handler
consth lr0,C_handler
calli lr0,lr0 ;call C level handler
 add gr65,gr96,0 ;save gr96

;
jmp $2–4–(nregs*4) ;determine registers used
 add lr0,gr64,0 ;restore lr0
add gr111,gr80,0 ;restore gr111 from interrupt
add gr110,gr79,0 ; context cache
add gr109,gr78,0
add gr108,gr77,0
add gr107,gr76,0
add gr106,gr75,0
add gr105,gr74,0
add gr104,gr73,0
add gr103,gr72,0
add gr102,gr71,0
add gr101,gr70,0
add gr100,gr69,0
add gr99,gr68,0
add gr98,gr67,0
add gr97,gr66,0
add gr96,gr65,0 ;retsore gr96
iret

$2:
 .endm

2.5.2 An Interrupt Context Cache with GNU

The previous section presented interrupt context caching when using the Meta-
ware High C 29K compiler. Global register assignment with the Free Software
Foundation compiler, GCC, is very different from High C 29K. Global registers
gr96–gr111 are little used, except for return values. GCC has very frugal global regis-
ter usage. It mainly uses global  registers gr116–gr120. This effects the interrupt
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preparation code required for Freeze mode C level handlers.  High C 29K uses global
registers in the gr96–gr111 range as temporaries before starting to use gr116–gr120.
The reduced use of global registers might make GCC a better choice for building
Freeze mode C–level interrupt handlers.

The assembler, as29, supplied with the GCC compiler chain does not support
macros directly. But it is possible to use the C preprocessor, CPP, to do macro instruc-
tion expansion.  The interrupt_cache macro shown below demonstrates the use of
CPP with 29K assembly code. The macro is used to install a C handler for the selected
trap_number. The early part of the macro code requests the HIF  settrap service be
used to insert the interrupt handler address into the processor vector table. The actual
address inserted depends on the register usage of the C handler.

The handler must be examined to determine the registers used. Parameter nregs
is used to specify the number of registers used in the gr116–gr120 range.  The handler
preparation code saves the necessary global registers in  an interrupt context cache
before calling the C code. Global registers gr96–gr111 are not saved in the cache, as it
is likely that they are not used by the handler –– it certainly has no return value.

The context cache is formed with global registers gr64–gr80. Registers
gr64–gr79 are used by floating–point emulation routines, and hence their contents
are available for use between floating–point trap instructions. This assumes that the
trapware runs with interrupts turned off which is normally the case. For more details
see section 2.5. Saving the registers used by the handler in this way is much faster
than pushing the registers onto an off–chip memory stack.

#define interrupt_cache(trap_number, C_handler, nregs)\ 
;start of interrupt_cache macro, nregs must be >=1  _CR_\ 
nop ;delay slot protection _CR_\
sub gr1,gr1,4*4 ;get lr0–lr3 space  _CR_\
asgeu V_SPILL,gr1,rab ;check for stack spill _CR_\
add lr1,gr121,0 ;save gr121  _CR_\
add lr0,gr96,0 ;save gr96  _CR_\
const gr121,290 ;HIF 2.0 SETTRAP service _CR_\
const lr2,trap_number ;trap number, macro parameter_CR_\
const lr3,cache_##trap_number–(nregs*4) ;handler adds._CR_\
consth lr3,cache_##trap_number–(nregs*4) ; _CR_\
asneq 69,gr1,gr1 ;HIF service request  _CR_\
add gr121,lr1,0 ;restore gr121  _CR_\
add gr96,lr0,0 ;restore gr96  _CR_\
add gr1,gr1,4*4 ;restore stack  _CR_\
jmp cache_end_##trap_number ;install code finished _CR_
 asleu V_FILL,lr1,rfb ;check for stack fill  _CR_\ 

;START of interrupt handler  code_CR_\
add gr70,gr120,0 ;save gr120  _CR_\
add gr69,gr119,0 ;save gr119  _CR_\
add gr68,gr118,0 ;save gr118  _CR_\
add gr67,gr117,0 ;save gr117  _CR_\
add gr64,lr0,0 ;save lr0  _CR_\

cache_##trap_number: ;gr96–gr111 not saved in cache _CR_\
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const lr0,C_handler ;call C–level handler_CR_\
consth lr0,C_handler ; _CR_\
calli lr0,lr0 ;call C level handler  _CR_\
 add gr66,gr116,0 ;save gr116  _CR_\

;  _CR_\
jmp L2–4–(nregs*4) ;determine registers used  _CR_\
 add lr0,gr64,0 ;restore lr0  _CR_\
add gr120,gr70,0 ;restore gr120 from cache  _CR_\
add gr119,gr69,0 ; _CR_\
add gr118,gr68,0 ; _CR_\
add gr117,gr67,0 ; _CR_\
add gr116,gr66,0 ; _CR_\
iret ; _CR_\

cache_end_##trap_number: ;end of interrupt cache macro _CR_

The code example below shows how the macro can be invoked. The routine
install_handlers() is written in assembly code. It includes a macro for a C level inter-
rupt handler, int2_handler(), assigned to 29K interrupt INTR2. The C level handler
was examined and found to be a qualifying leaf routine using only two global regis-
ters.

.text

.extern _int2_handler

.global _install_handlers
_install_handlers:

sub gr1,gr1,2*4 ;prologue not realy needed
asgeu V_SPILL,gr1,gr126 ;lower stack pointer
interrupt_cache(18,_int2_handler,2) ;macro example
add gr1,gr1,2*4 ;raise stack pointer
constn gr96,–1 ;return TRUE value
jmpi lr0 ;return
 asleu V_FILL,lr1,rfb ;procedure epilogue

The C preprocessor is invoked with the app shell script program shown below.
This is a convenient way of directing  CPP to process an assembly program source
file. The use of CPP has one problem; macros are expanded into long lines. The car-
riage returns in the macro source file do not appear in the expanded code.  To reinsert
the carriage returns and make the assembly code lines compatible with assembler
syntax, each assembly line in the macro is marked with the token _CR_. The UNIX
stream editor, sed, is then used to replace the _CR_ with a carriage return.

#!/bin/sh
#start of app shell script
#example, ”app file_in.s”
prams=$*
tmp=/tmp/expand.$$
cpp –P $prams > $tmp #invoke CPP
sed ’s/_CR_/\ 
/g’ $tmp 
rm $tmp
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2.5.3 Using Signals to Deal with Interrupts

Some C language interrupt handlers will not be able to run in Freeze mode.; be-
cause (as described in  section 2.5) they are unsuitable leaf routines, or are not leaf
routines and thus require use of the register stack. In this case the signal trampoline
code described in section 4.4 and Appendix B must be used. The trampoline code is
called by the Freeze mode interrupt handler after critical registers have been saved on
the memory stack. The C language handler is called by the trampoline code after the
register stack is prepared for further use. Note that interrupts can occur at times when
the register stack condition is not immediately usable by a C language handler.

The signal mechanism works by registering a signal handler function address
for use when a particular signal number occurs. This is done with the library routine
signal(). Signals are normally generated by abnormal events and the signal() routine
allows the operating system to call a user supplied routine which will be called to deal
with the event. The signal() function uses the signal HIF service to supply the address
of a library routine (sigcode) which will be called for all signals generated. (Note,
only the signal, settrap and sigret–type subset of HIF services are required.) The li-
brary routine is then  responsible for calling the appropriate C handler from a table of
handlers indexed by the signal number. When signal() is used a table entry is
constructed for the indicated signal.

signal(sig_number, func)
int sig_number;
void (*func)(sig_number);

A signal can only be generated for an interrupt if the code vectored to by the in-
terrupt calls the shared library routine known as the trampoline code. It is known as
the trampoline code because signals  bounce from this code to the registered signal
handler. To ensure that the trampoline code is called when an interrupt occurs, the
Freeze mode code vectored to by the interrupt must pass execution to the trampoline
code, indicating the signal which has occurred. The signal_associate macro shown
below can be used to install the Freeze Mode code and associate a signal number with
the interrupt or trap hardware number.

.reg it0,gr64;freeze mode interrupt

.reg it1,gr65;temporary registers

.macro signal_associate, trap_number, sig_number

sub gr1,gr1,4*4 ;get lr0–lr3 space
asgeu V_SPILL,gr1,rab ;check for stack spill
add lr1,gr121,0 ;save gr121
add lr0,gr96,0 ;save gr96
const gr121,290 ;HIF 2.0 SETTRAP service
const lr2,trap_number ;trap number, macro parameter
const lr3,$1 ;trap handler address
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consth lr3,$1
asneq 69,gr1,gr1 ;HIF service request
add gr121,lr1,0 ;restore gr121
add gr96,lr0,0 ;restore gr96
add gr1,gr1,4*4 ;restore stack
jmp $2 ;macro code finished
 asleu V_FILL,lr1,rfb ;check for stack fill

$1: const it0,sig_number ;start of Interrupt handler
push msp,it0 ;push sig_number on
push msp,gr1 ; interrupt context frame.
push msp,rab ;use push macro,
const it0, 512 ; see section 3.3.1
sub rab,rfb,it0 ;set rab = rfb–WindowSize

;
pushsr msp,it0,pc0 ;push special registers
pushsr msp,it0,pc1
pushsr msp,it0,pc2
pushsr msp,it0,cha
pushsr msp,it0,chd
pushsr msp,it0,chc
pushsr msp,it0,alu
pushsr msp,it0,ops
push msp,tav ;push tav (gr121)

;  set DI in CPS, but timer
mfsr it0,ops ; interrupts are still on
or it0,it0,0x2 ;this disables interrupts
mtsr ops,it0 ; in signal trampoline code

;
mtsrim chc,0 ;the trampoline code is
const it1,RegSigHand ; described in section 4.4.1
consth it1,RegSigHand ;RegSigHand is a library
load 0,0,it1,it1 ; variable
cpeq it0,it1,0 ;test for no handler
jmpt it0,SigDfl ;jmup if no handler(s)
 add it0,it1,4 ;it1 has trampoline address
mtsr pc1,it1 ;IRET to signal
mtsr pc0,it0 ; trampoline code
iret

$2: ;end of macro
 .endm

The above macro code does not disable the interrupt from the requesting device.
This is necessary for external interrupts; reenabling interrupts without having first
removed the current interrupt request, shall cause the interrupt to be immediately tak-
en again. The code sets the the DI–bit in the OPS special register; this means inter-
rupts will remain disabled in the trampoline code. It will be the responsibility of the C
language handler to clear the interrupt request; this may require accessing an off–
chip peripheral device. An alternative is to clear the interrupt request in the above
Freeze mode code and not set the DI–bit in the OPS. This would enable the trampo-
line and C language handler code to execute with interrupts enabled. This would lead
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to the possibility of nested signal events; however, the signal trampoline code is able
to deal with such complex events.

With the example signal_associate macro the trampoline code and the C han-
dler run in the processor mode at the time the interrupt occurred. They can be forced
to run in Supervisor mode by setting the Supervisor mode bit (SM–bit) when OR–ing
the DI–bit in the OPS register. Supervisor mode may be required to enable accessing
of the interrupting device when disabling the interrupt request. The address transla-
tion bits (PA and PD) may also be set at this time to turn off virtual addressing during
interrupt processing. To make these changes to the above example code, the value
0x72 should be OR–ed with the OPS register rather than the 0x2 value shown.

As described in section 2.5, a C language macro can be used to access the assem-
bly level macro instruction. When the High C 29K compiler is being used, the defini-
tion of the C macro is shown below. Users of the GCC compiler should replace the
_ASM() call with the equivalent asm() C language extension.

#define signal_associate(tap_number, sig_number) \
/*int trap_number; \
 int sig_number; */ \
 _ASM(” signal_associate ”#trap_number”,”#sig_number);

When the macro is used to associate a signal number with a processor trap num-
ber, it is also necessary to supply the address of the C language signal  handler called
when the signal occurs. The following  example  associates trap number 18 (floating–
point exception) with signal number 8. This signal is known to UNIX and HIF users
as  SIGFPE; when it occurs, the C handler  sigfpe_handler is called.

_ASM(” .include \”interrupt_macros.h\””);
signal_associate(18,8); /* trap 18, F–P */
signal(8,sigfpe_handler); /* signal 8 handler */‘

C language signal handlers are free of many of the restrictions which apply to
Freeze mode interrupt handlers. However, the HIF specification still restricts their
operation to some extent. Signal handlers can only use HIF services with service
numbers greater than 256. This means that printf()  cannot be used. The reason for
this is HIF services below 256 are not reentrant, and a signal may occur while  just
such a HIF service request was being processed. Return from the signal handler must
be via one of the signal return services: sigdft, sigret, sigrep or sigskp. If the signal
handler  simply returns, the trampoline code will issue a sigdfl service request on be-
half of the signal handler.

A single C level signal routine can be used to dispatch several C language inter-
rupt handlers. Section 4.3.12 describes an interrupt queuing method, where interrupt
handlers run in Freeze mode and build an interrupt descriptor (bead). Each descriptor
is placed in a list (string of beads) and a Dispatcher routine is used to process descrip-
tors. The signal handling method described above can be used to register a C level
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Dispatcher routine. This results in C level context being prepared only once and the
Dispatcher routine calling the appropriate C handler.

2.5.4 Interrupt Tag Words

Release 3.2, or newer, of the High C 29K compiler supports routines of defined
return–type _Interrupt. The use of this C language extension causes an additional tag
word to be placed ahead of the procedure code. Section 3.6 explains the format of the
interrupt tag in detail. Note, to use the _Interrupt key word with a PC hosted compiler,
it is necessary to add the line “#define _Interrupt _CC(_INTERRUPT)” to file
29k/bin/hc29.pro. The interrupt key word in conjunction with some simple support
routines presented below make optimizing of interrupt preparation very easy. By
examining the interrupt tag word it is possible to determine if a handler routine
qualifies for Freeze mode execution or will require HIF signal processing. The
example code shown below is for a HIF conforming operating system. However, a
different operating system may choose to respond to interrupt tag information in a
somewhat different manner. Only the signal, settrap and sigret–type subset of HIF
services are required. A different operating system may have equivalent support
services.

When an interrupt occurs, it would be possible to examine the interrupt tag word
of the assigned handler. However, this would be an overhead encountered at each
interrupt and it would increase interrupt processing time. It is better to examine the
tag word at interrupt installation time and determine the necessary interrupt
preparation code. Preceding sections have described interrupt context caching and
signal processing. It would be possible to examine the tag word in more detail than
the following example code undertakes. This would produce additional intermediate
performance points in the spectrum of interrupt preparation code; context caching
being the fastest point on the spectrum and signal processing the slowest. However,
signal processing can always be used and is free of the restrictions which apply to the
use of interrupt context caching, and context caching is frequently adequate. This
renders the chosen spectrum points as most practicable.

The example below shows two C language interrupt handler routines. The first,
f_handler(), looks like it will qualify for Freeze mode execution. The key word
_Interrupt has been used during the procedure definition and this will result in a
interrupt tag word. The second function, s_handler(), is not a leaf procedure and this
fact will be reported in its interrupt tag word. Being a non leaf routine, it will be
processed as a signal handler. Such routines receive a single parameter –– the signal
number.

extern int sig_sig /* defined in library code */
extern int sig_intr0 /* signal for INTR0 */
extern char *UART_p; /* pointer to UART  */
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char recv_data[50];

_Interrupt f_handler() /* Freeze mode handler */
{

static int count=0;
recv_data[count]=*uart_p; /* read from UART */

if(recv_data[count]==’\n’) /* test for end */
{ sig_sig=sig_intr0; /* signal #30 */

count=0; /* reset counter */
}
else count++;

}

_Interrupt s_handler(sig_number) /* signal handler */
int sig_number; /*  for sig_intr0 */
{

printf(”in signal handler number=%d\n”, sig_number);
printf(”received string=%s\n”, recv_data);
_sigret();

}

Most programmers do not want to become concerned with the details of
interrupt preparation. They simply wish to call an operating system service routine
which will examine the interrupt tag word and select the appropriate interrupt
preparation code. The library procedure, interrupt() , shown below, is just such a
service routine. The operation of this procedure will be described a little later. The
procedure ensures that either interrupt context caching or signal processing will be
applied for the supplied handler and selected 29K trap number. The interrupt()
routine must be executed during the system initialization stage, before traps or
interrupts are expected to occur. An example initialization sequence is shown below:

int sig_intr0;
main()
{

. . .
sig_intr0=interrupt(16,s_handler); /* INTR0 */
interrupt(17,f_handler); /* INTR1 */
. . .

Interrupt tag words are dealt with at interrupt installation time, and not at
program assembly or link time. There have been discussions about adding a compiler
pragma option to High C 29K release 4.0 which, when switched on, will cause a
macro instruction to be placed in output assembly code rather than an interrupt tag
word. This requires that the relevant C code be compiled, then assembled with an
include file which defines the replacement code for the interrupt macro instruction.
This technique has some disadvantages, principally that the macro must understand
the capabilities of the operating system and how it intends dealing with interrupts. In
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particular; if the interrupt should be processed in User or Supervisor mode, with
interrupts enabled or disabled; with or without address translation and so on. Use of a
macro does have the advantage that the interrupt preparation code appears in the final
linked program image. The tag word methods relies on the preparation code being
built in heap memory during interrupt installation. The preparation code is built in
consultation with the operating system and is thus more portable between different
operating systems which support somewhat different interrupt processing
environments.

Fortunately for the user, library routines are responsible for installing the
executable code into heap memory. The code itself is similar to the code of previous
sections. A portion of the code is linked into text space of the program image. At
installation time the code is copied into heap memory and further optimized. The
code sequence below is used for interrupt context caching.

.text

.align 4

.global _interrupt_cache_code

.global _interrupt_cache_end

.extern _sig_sig
_interrupt_cache_code:

add gr80,gr111,0 ;save gr111 to interrupt
add gr79,gr110,0 ; context cache
add gr78,gr109,0
add gr77,gr108,0
add gr76,gr107,0
add gr75,gr106,0
add gr74,gr105,0
add gr73,gr104,0
add gr72,gr103,0
add gr71,gr102,0
add gr70,gr101,0
add gr69,gr100,0
add gr68,gr99,0
add gr67,gr98,0
add gr66,gr97,0
add gr64,lr0,0 ;save lr0

;
const lr0,0 ;const and consth
consth lr0,0 ; need to be modified
calli lr0,lr0 ;call C handler
 add gr65,gr96,0

;
add gr111,gr80,0 ;restore gr111 from
add gr110,gr79,0 ; context cache
add gr109,gr78,0
add gr108,gr77,0
add gr107,gr76,0
add gr106,gr75,0
add gr105,gr74,0
add gr104,gr73,0
add gr103,gr72,0
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add gr102,gr71,0
add gr101,gr70,0
add gr100,gr69,0
add gr99,gr68,0
add gr98,gr67,0
add gr97,gr66,0
add gr96,gr65,0
add lr0,gr64,0 ;restore lr0
const gr64,_sig_sig ;the following eight 
consth gr64,_sig_sig ; instructions deal with 
load 0,0,gr64,gr64 ; sig_sig testing
cpeq gr65,gr64,0 ;test for zero
const gr66,_signal_associate_code + 4 ;no relative
consth gr66,_signal_associate_code + 4 ; addressing
jmpfi gr65,gr66 ;jump if sig_sig != 0
 nop
iret

_interrupt_cache_end:

The context cache code is a little different from the code shown in section 2.5.1.
Eight extra instruction have been added to support a memory variable called sig_sig.
It supports a very useful technique of two–level interrupt processing. Predominantly
a Freeze mode interrupt handler is used alone. However, when the sig_sig variable is
set to a signal number before the Freeze mode handler completes, a signal is
generated causing a second signal handler routine to execute after the Freeze mode
handler returns.

Examine the example handler routines. When interrupt INTR1 (vector 17)
occurs, the Freeze mode handler, f_handler(), normally accesses the interrupting
UART and receives a character; it then increments the count value and returns. The
processes of accessing the UART causes the interrupt request to be deasserted. This
results in a very fast interrupt handler written in C. However, when the received
character is a ‘\n’ (carriage return), sig_sig is set to the signal number allocated to the
INTR0 signal handler. This causes the s_handler() to be executed in response to the
signal. The occurrence of interrupt INTR0 (vector 16) also causes s_handler() to
execute as a signal handler associated with trap 16. The example interrupt()  service
automatically allocates signal numbers, starting with SIGUSR1, to handler routines
which are to be processed via signal trampoline code. The interrupt()  procedure
returns the selected signal number; zero is returned if a Freeze mode handler is
selected. An interrupt handler can be restricted to fast Freeze mode processing and
when more extensive processing is required the sig_sig variable can be set and a
second level handler invoked. (Note, the s_handler() routine calls the printf()
library routine.  This is not permitted with the High C 29K library routines as the
printf()  routine is not reentrant. However, the use of printf()  helps illustrate the
two–stage principle.)

To perform signal processing, the trampoline code shown below is placed in
heap memory. It is similar to the code of section 2.5.3. Interrupts are disabled before
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signal processing  commences; this is not necessary if a Freeze mode handler has
already requested the interrupting device to deassert the interrupt request. If a Freeze
mode handler is always executed before the associated signal handler, the three
indicated lines of code can be removed. Doing so enables nested interrupts to be
supported without explicitly reenabling interrupts in the signal hander. However, if
the signal preparation code is called directly from the interrupt vector table (via an
interrupting device) then interrupts must be initially disabled by the shared signal
preparation code.

.global _signal_associate_code

.global _signal_associate_end

.reg it0,gr64

.reg it1,gr65
_signal_associate _code: ;signal number in it0

const gr64,0 ;push signal number on stack
const it1,0 ;clear sig_sig variable
const it2,_sig_sig ; need not do this if signal
consth it2,_sig_sig ; handler is called directly
store 0,0,it1,it2 ; from vector table entry
push msp,it0 ;interrupt context stack
push msp,gr1 ;use ’push’macro’
push msp,rab ; see section 3.3.1
const it0, 512
sub rab,rfb,it0 ;set rab=rfb–WindowSize

;
pushsr msp,it0,pc0 ;push special registers
pushsr msp,it0,pc1
pushsr msp,it0,pc2
pushsr msp,it0,cha
pushsr msp,it0,chd
pushsr msp,it0,chc
pushsr msp,it0,alu
pushsr msp,it0,ops
push msp,tav ;push tav (gr121)

;  set DI in CPS, but timer
mfsr it0,ops ; interrupts are still on
or it0,it0,0x2 ;this disables interrupts
mtsr ops,it0 ; in signal trampoline code

;
mtsrim chc,0 ;the trampoline code is
const it1,RegSigHand ; described in section 4.4.1
consth it1,RegSigHand ;RegSigHand is a library
load 0,0,it1,it1 ; variable
add it0,it1,4 ;IRET to signal
mtsr pc1,it1 ; trampoline code
mtsr pc0,it0
iret

_signal_associate_end:

All of the code presented is available from AMD in source and linkable library
form. Now to the interrupt()  install routine itself, it is listed below and is
surprisingly short. Its operation is simple, it examines the interrupt tag word of the
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supplied C handler. Note that it assumes that the interrupt procedure has a one–word
procedure tag preceded by an interrupt tag word –– this is almost always the case. If
no interrupt tag is found then signal handling is selected. This would be the case if the
handler routine had been built with the GNU compiler which does not currently
support interrupt tag words.

Depending on the tag word, Freeze mode or signal processing is selected and the
appropriate code copied into heap memory space. For Freeze mode processing, only
the required number of global registers is saved in the interrupt context cache
(gr64–gr80). Additionally, only the minimum required amount of heap memory is
requested via the HIF–library malloc() service. After copying code into heap
memory, some instruction patching is performed to correctly reference the assigned
C handler. Finally the HIF–library _settrap() service is used to assign a trap handler
address to the requested trap number. Note that when the copying is performed, the
heap memory is only written to and never read. This will prevent the code being
placed into on–chip data cache, as 29K family data caches only allocate cache blocks
on data reads. Avoiding caching of the relevant heap memory ensures that the new
code will be fetched from instruction memory (see sections 5.13.2 and 5.14.4).

int interrupt (trap_number, C_handler)
int trap_number;
void (*C_handler)();
{

int *tag_p=(int*)C_handler – 2;
int ret_sig; /* return signal value */
int tag_word = *tag_p;
int glob_regs, *trap_handler, i, size;
_LOCK volatile int *code_p, *mem_p;    /* see section 5.14.1 */
if((tag_word & 0xff000000) != 0)

tag_word = –1; /* no interrupt tag word */
if((tag_word & 0xffff00ff)==0)
{ glob_regs=(tag_word & 0xff00) >> 8;

code_p=&interrupt_cache_code;
size=4*((2*glob_regs)+6+8); 8 for sig_sig code support
mem_p=(int*)malloc(size) /* get heap memory */
trap_handler=mem_p;
code_p=code_p+(16–glob_regs); /* find start of save */
for(i=1; i <=glob_regs; i++) /* copy save code */
    *mem_p++=*code_p++;

/* supply address to CONST instruction *
*mem_p++ =*code_p++  | ( (((int)C_handler&0xff00)<<8)
                       + ((int)C_handler&0xff)  );

/* supply address to CONSTH inst. */
*mem_p++ =*code_p++ | ( (((int)C_handler&0xff000000) >>8)
                      + (((int)C_handler&0xff0000) >>16)  );
for(i=1; i <=(4–2); i++) /* copy the call code */
    *mem_p++=*code_p++;
code_p=code_p + (16–glob_regs);  /* find start of restore */
for(i=1;i<=(glob_regs+2+8);i++)  /* copy restore code */
    *mem_p++=*code_p++;

8 required for sig_sig code supportret_sig=0;
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}
else
{static int sig_number= 30 ; /* SIGUSR1 in SigEntry */

ret_sig=sig_number;
signal(sig_number,C_handler);
size=4*(signal_associate_end–signal_associate_code);
mem_p=(int*)malloc(size); /* get heap memory */
trap_handler=mem_p;
code_p=signal_associate_code;
                /* supply sig_number to CONST instruction */
*mem_p++ = *code_p++ | ( ((sig_number&0xff00)<<8) 

   + (sig_number&0xff) );
for(i=1; i <=(size–1); i++) /* copy rest of code */
    *mem_p++ = *code_p++;
sig_number++;

}
_settrap(trap_number,(void(*)())trap_handler); /* HIF service */
return ret_sig;

}

Users of the above code which do not want to make use of the two–level
interrupt processing supported via the sig_sig variable, can remove the extra eight
instructions in the interrupt_cache_code and should also remove the extra code
copying indicated in the listing above. This will slightly improve interrupt
processing times for Freeze mode handlers. Other users who want to further exploit
the two–level approach can assign a single handler for all second level interrupt
processing, this is discussed in section 4.3.12. Interrupts are first dealt with in Freeze
mode by building an interrupt descriptor bead; then a second level Dispatcher routine
is responsible for popping beads off a string and calling the assigned second level
handler. Alternatively, a signal dispatcher technique can be applied; section 2.5.6
describes the method. Signal dispatching can be achieved entirely with support
routines accessible from C level –– this makes signal dispatching particularly
attractive.

If the interrupt()  routine is used extensively for multiple signal handlers, it will
be necessary to increase the size of the signal handler array (SigEntry, described in
Appendix B). The array is normally large enough to hold signal numbers 1 through
32). Unless signal allocation is started at a number less than SIGUSR1 (30), there is
normally only sufficient space for two signal handlers.

2.5.5 Overloaded INTR3

The microcontroller members of the 29K family contain several on–chip pe-
ripherals. These peripherals can generate interrupts which are all directed to the core
29K processor via interrupt line INTR3. This causes overloading of the INTR3 vec-
tor handler. When a microcontroller receives an INTR3 interrupt, it must examine its
Interrupt Control Register (ICR) to determine the source of the interrupt. This re-
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quires all interrupts to initially be processed via the INTR3 vector handler. The
INTR3 handler must call the appropriate device service routine. The service routine
first clears the interrupt request by writing a one to the correct bit in the ICR; it can
then reenable interrupts and service the current request. The general format of the
ICR is shown on Figure 2-3.

07152331

IOPI

res

Figure 2-3. 29K Microcontroller Interrupt Control Register

Processor Specificreserved

VDI

res

DMA0I

8915

vector 220 224 228 237

The overloading of INTR3 adds complexity to the task of building a Freeze
mode interrupt handler for each interrupting device. The problem can be resolved by
allocating a region of the vector table for use by the interrupting devices sharing
INTR3. The code below (intr3 ) reserves 33 vector table entries starting with vector
220 –– these vectors are not normally used by a 29K based system. When an INTR3
occurs, the code examines the ICR register with a Count Leading Zeros (CLZ)
instruction. This assigns the highest priority to the bit (interrupt) which is most–left
in the ICR register. The value produced by the CLZ instruction is added to the base
value of 220 and the result used to obtain the correct vector entry from the vector
table.

.reg it0,gr64

.reg it1,gr65

.global _intr3
_intr3 :

const it0,0x80000028 ;Interrupt Control register address
consth it0,0x80000028
load 0,0,it1,it0
clz it1,it1 ;priority order index

;
const it0, 220 ;base vector number
add it1,it0,it1 ;add offset to base
sll it1,it1,2 ;convert to word offset
mfsr it0,vab ;get vector table base
add it1,it0,it1 ;get handler address
load 0,0,it1,it1 ; from vector table
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jmpi it1 ;jump to interrupt
 nop ; handler

The intr3  code completes by jumping to the selected vector handler. Note, the
code makes use of the four interrupt temporary registers (it0–it3, gr64–gr67) nor-
mally reserved by an operating system for interrupt handling. Each peripheral device
which can set a bit in the ICR register is assigned a unique vector handler number in
the range 220–252. If no bit is found to be set in the ICR register, vector 252 is se-
lected.

Using the intr3  code, it is possible to use the previously described interrupt()
library routine to deal with  interrupts. A call to the the HIF library procedure
_settrap() is required to install the intr3 code for INTR3 handling. After this is done,
the interrupt()  routine can be used to assign interrupt handlers for the selected vector
numbers in the 220–252 range, as shown below.

main()
{

. . .
_settrap(19,intr3); /* INTR3 handler */
interrupt(224,VD_handler); /* VDI */
interrupt(237,DMA_handler); /* DMA0I */
. . .

The intr3  code does not clear the interrupt request in the ICR register; this is left
to the specific interrupt handler. However, this is insufficient for level sensitive I/O
port interrupts. In this case the interrupting condition must first be cleared for the cor-
responding PIO signal before the ICR bit is cleared. Consequently, the clearing of the
bit in the ICR register is redundant.

AMD evaluation boards are normally supplied with a combined OS–boot oper-
ating system and MiniMON29K DebugCore in the ROM memory. When the target
processor is a Microcontroller, the message system used to support OS–boot and De-
bugcore communication with MonTIP, typically uses an on–chip UART. All on–chip
peripheral generated interrupts are handled via INTR3. MiniMON29K bundle 3.0,
and earlier versions, are built using OS–boot version 2.0. This version of OS–boot
assigned the INTR3 handler for MiniMON29K’s sole use. This makes it very diffi-
cult to add additional interrupt handlers for on–chip peripherals. The problem can be
solved by applying the code shown below.

main()
{

void (*V_minimon)();
. . .
V_minimon=(void(*)())_settrap(19,intr3);/* INTR3 */
_settrap(220+24,V_minimon); /* RXSI interrupt */
_settrap(220+25,V_minimon); /* RXDI interrupt */
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_settrap(220+26,V_minimon); /* TXDI interrupt */
. . .

The _settrap() HIF library service is used to install a new INTR3 handler; the
address of the old handler is returned. The MiniMON29K code is used to process
three peripheral interrupts via INTR3. The _settrap() service is used again to sepa-
rately reinstall the handlers required by MiniMON29K. New interrupt handlers for
additional on–chip peripherals can then be installed with further calls to _settrap() or
interrupt() .

2.5.6 A Signal Dispatcher

Release 3.2, or newer, of the High C 29K compiler supports routines of defined
return–type _Interrupt. The use of this non–standard keyword was explained in sec-
tion 2.5.4. The keyword is used here to support a signal dispatcher. The method relies
on interrupts being processed in two stages. The first stage operates in Freeze mode.
It responds immediately to the interrupting device, captures any critical data and
deactivates the interrupt request. The second stage, if required, takes the form of a
signal handler. The sig_sig variable is used by the Freeze mode handler to request
signal handler execution. A signal handler can not be executed without a freeze mode
handler making the necessary request. This is because interrupts are not disabled in
the signal associate code.

The technique has a number of benefits: It is seldom necessary to disable inter-
rupts for long periods, as asynchronous interrupt events are only initially dealt with in
Freeze mode. This reduces interrupt latency. Signal handlers can be queued for pro-
cessing when nested interrupts would occur. This eliminates the need to prepare a C
level interrupt processing environment for each interrupt. A C level environment
need only be built for a Signal Dispatcher routine. The Signal Dispatcher is then re-
sponsible for calling the appropriate signal handler for all signals generated by inter-
rupts. The Signal Dispatcher is started in response to the first signal occurring. The
dispatcher causes execution of the first signal handler, then determines if other signal
handlers have been requested while the current signal handler was executing. The
dispatcher continues to processes signals until there are none remaining. At this point
the original interrupted state is restored. The original state being the processor state at
the time the first interrupt in the sequence occurred. The first interrupt occurred while
no interrupt or signal handler was being processed; and it caused the Signal Dispatch-
er to start execution.

Avoiding nested interrupts, other than for Freeze mode handling, is most
beneficial when large numbers of multiply nested interrupts are expected, and the
cost of preparing C level context for interrupt processing is high. For example, using
interrupt context caching, the processor can be prepared for Freeze mode interrupt
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processing in 1–2 micro seconds (at 16Mhz). However, with an Am29205
microcontroller which has a 16–bit off–chip bus and relatively slow DRAM memory,
as much as 40 micro seconds can be required to prepare the processor for a C level
signal handler. In this case it is best to prepare for C level interrupt handling only
once. Nested interrupts are avoided by adding new interrupts to a stack when further
interrupts occur while the Signal Dispatcher is executing.

As explained in section 2.5.4, a signal handler is requested when the sig_sig
variable is set by a Freeze mode handler. Previous example code showed how the sig-
nal handler could be started immediately after the Freeze mode handler completes.
The alternative code, shown here, causes the signal to be added to a stack of signals
waiting for processing. Both methods can coexist, setting the sig_sig variable to a
signal number ORed with 0x8000,0000 indicates the signal should be queued (if nec-
essary) rather than processed immediately.

First, examine the two interrupt handlers shown below. The Freeze mode han-
dlers, uart_handler() and timer_handler(), use the _Interrupt keyword. They both
qualify for Freeze mode execution. The UART handler, is similar to the example of
section 2.5.4. However, this time sig_sig is set to the signal number held in uart_sig
and the most significant bit is also set when the end of a string is encountered. This
will request the associated signal handler to be placed in the signal queue.

_Interrupt uart_handler() /* Freeze mode interrupt handler */
{

static int count=0;

recv[count]=*uart_p; /* access UART */
if(recv[count]==’\n’) /* end of string ? */
{ count=0;

sig_sig=0x80000000 | uart_sig;
}
else count++;

}

The Freeze mode timer handler reloads the on–chip timer control registers for
repeated timer operation. Each timer interrupt causes the tick  variable to be incre-
ment, and when a tick  value of 100 is reached, signal timer_sig is added to the signal
queue. The Freeze mode handler is written in C. However, it needs to access special
register 9 (TMR, the Timer Reload register) which is not normally accessible from C.
The problem is overcome by using the C language extensions _mfsr() and _mtsr().
They enable special register to be read and written.

_Interrupt timer_handler() /* Freeze mode interrupt handler */
{

static int tick=0;
int tmr;

tmr=_mfsr(9); /* read TMR special register */
tmr=tmr&(–1–0x02000000) /* clear IN bit–field */
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_mtsr(9,tmr); /* write to TMR register */
if(tick++ > 100)
{ tick=0;

sig_sig=0x80000000 | timer_sig;
}

}

 The second stage of the UART interrupt handler, the signal handler, is shown
below. Note, the sig_uart() routine calls the printf()  library routine.  This is not per-
mitted with the High C 29K library routines as the printf()  routine is not reentrant.
However, the use of printf()  helps illustrate the operating principle. Normally a sig-
nal handler must use the _sigret() signal return service, at least with a HIF conform-
ing operating system. However, when a signal handler is called from the dispatcher,
the signal return service should not be used. It is possible to determine if the dispatch-
er is in use by testing the variable dispatcher_running; it becomes non zero when
the dispatcher is in use. However, testing the dispatcher_running flag may be insuf-
ficient in some circumstances. It is possible that the Signal Dispatcher is running and
initiating signal handler execution. At the same time a signal handler may be re-
quested directly by, say, an interrupt. The Dispatcher is running but the directly re-
quested signal handler must use the signal return service.

Signals need not always be queued for processing. If a very high priority (im-
mediate) interrupt occurs and further signal processing is necessary, sig_sig should
be simply set to the signal number. In this case it is important that the signal handler
use the _sigret() service.

_Interrupt sig_uart(sig_number) /* signal handler for UART */
int sig_number;
{

printf(”in signal handler number=%d\n”, sig_number);
printf(”received string=%s\n”, recv_data);
if(!dispatcher_running)_sigret(); /* no _sigret() service call *

}

The Signal Dispatcher is implemented as a signal handler. The dispatcher re-
moves signals from a stack and calls the appropriate signal handler. When a signal
handler is requested by a Freeze mode handler, and the Signal Dispatcher is not cur-
rently executing, the requested signal (sig_sig value) is not immediately started. In its
place the dispatcher signal handler is initiated.

 Shown on Figure 2-4 is an example of the Signal Dispatcher in operation. The
first interrupt is from the UART. It is dealt with entirely in Freeze mode; the sig_sig
variable is not set such as to request a second stage signal handler. The UART gener-
ates the second interrupt. This time the sig_sig variable is set to request the sig_uart()
signal handler be started by the Signal Dispatcher. While the second stage handler is
running, a timer interrupt occurs. The Freeze mode timer handler requests a second
stage handler be started by the Signal Dispatcher. When the dispatcher completes the
currently executing second stage handler (the UART’s), it initiates the timer’s second
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Figure 2-4.  Processing Interrupts with a Signal Dispatcher
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stage handler. When there are no remaining second stage handler requests, the dis-
patcher issues a signal–return service request. The original programs context is then
restored and its execution restarted.

Integer variable dispatcher_sig holds the signal number used by the Signal
Dispatcher. The user must select a signal number. The example code below uses 7
(SIGEMT). The signal() library routine is used to assign procedure sig_dispatcher()
to signal number 7. Before signal and trap handlers can be installed, the procedures
and variables defined in the support libraries must be declared external; as shown
below.

extern void signal(int, void (*handler)(int));
extern int interrupt(int, _Interrupt (*C_handler)(int));
extern void sig_dispatcher(int);
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extern int sig_sig;
extern int dispatcher_sig ; /* dispatcher signal number */

int uart_sig, timer_sig;

During program initialization, after main() is called, the handler routines and
other support services must be installed. The code below uses the interrupt()  library
routine to install a signal handler (sig_timer() not shown) for timer interrupt support.
The call to interrupt()  returns the allocated signal number, and this number is saved
in timer_sig. The timer Freeze mode handler uses the timer_sig value to request the
timer signal handler be executed. The interrupt()  service is called a second time to
install the Freeze mode handler, timer_handler(). The second call causes vector
table entry 14 to be reassigned the address of the Freeze mode handler.

The UART handlers are installed using an alternative method. The signal() ser-
vice rather than the interrupt()  service is used to assign the sig_uart() signal handler
to signal number SIGUSR2. This method allows a specific signal number to be se-
lected, rather than using the interrupt()  service to allocate the next available signal
number. Most users will prefer the previous method used to automatically select sig-
nal numbers.

main()
{

_settrap(218,_disable);
_settrap(217,_enable);
_settrap(216,_timer_init);

dispatcher_sig=7; /* select signal number for dispatcher */
signal(dispatcher_sig, sig_dispatcher );

timer_sig=interrupt(14,sig_timer); /* install signal handler */
if(interrupt(14,timer_handler)) /* install Freeze handler */
   printf(”ERROR: Freeze mode handler not built for trap 14\n”);

if(interrupt(15,uart_handler) /* install Freeze handler */
   printf(”ERROR: Freeze mode handler not built for trap 15\n”);
uart_sig=SIGUSR2; /* chose a signal number */
signal(uart_sig,sig_uart); /* install signal handler */

timer_init(); /* initialize the timer */
. . .

The sig_dispatcher() requires two helper services, disable() and enable().
They are described in more detail shortly, but are simply used to enable and disable
processor interrupts. The _settrap() service is used above to install trap handlers for
these services. The timer_init()  routine is not required by the Signal Dispatcher. It is
included to simply make the example more complete.

The interrupt()  routine uses the signal_associate method of assigning a trap
number to a signal handler. The code was described in section 2.5.4, but a few small
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additions are required to support the Signal Dispatcher. The modified code is shown
below. There are two changes: Interrupts are not disabled (requiring that a Freeze
mode handler always be used for interrupt deactivation). A call to queue_sig is made
if the most significant bit of the signal number is set.

.reg it0,gr64

.reg it1,gr65
_signal_associate _code: ;signal number in it0

const gr64,0 ;push signal number on stack
;

const it1,0 ;clear sig_sig variable
const it2,_sig_sig ; need not do this if signal
consth it2,_sig_sig ; handler is called directly
store 0,0,it1,it2 ; from vector table entry

;
const it1, _queue_sig
consth it1, _queue_sig
jmpti gr64,it1 ;jump if msb–bit set
 nop
push msp,it0 ;interrupt context stack
push msp,gr1 ;use ’push’ macro’
push msp,rab ; see section 3.3.1
const it0, 512
sub rab,rfb,it0 ;set rab=rfb–WindowSize

;
pushsr msp,it0,pc0 ;push special registers
pushsr msp,it0,pc1
pushsr msp,it0,pc2
pushsr msp,it0,cha
pushsr msp,it0,chd
pushsr msp,it0,chc
pushsr msp,it0,alu
pushsr msp,it0,ops
push msp,tav ;push tav (gr121)

;
mtsrim chc,0 ;the trampoline code is
const it1,RegSigHand ; described in section 4.4.1
consth it1,RegSigHand ;RegSigHand is a library
load 0,0,it1,it1 ; variable
add it0,it1,4 ;IRET to signal
mtsr pc1,it1 ; trampoline code
mtsr pc0,it0
iret

_signal_associate_end:

The queue_sig routine is shown below. It pushes the signal number on a signal
stack and advances a stack pointer, sig_stack_p. The operation is performed while
still in Freeze mode and is therefor not interruptible. The variable
dispatcher_running is then tested. If it is set to TRUE, an interrupt return (IRET)
instruction is issued. If it is FALSE, the dispatcher_sig number is obtained and the
signal_associate code continues the process of starting a signal handler; but the
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signal number now in use will cause the Signal Dispatcher (sig_dispatcher()) to
commence execution.

_queue_sig : ;jump here from signal_associate
and it0,it0,0xff ;clear msb–bit 

;
const it3,_sig_stack_p
consth it3,_sig_stack_p
load 0,0,it2,it3 ;get pointer value
store 0,0,it0,it2 ;store signal number on stack
add it2,it2,4 ;advance stack pointer
store 0,0,it2,it3

;
const it3,_dispatcher_running
consth it3,_dispatcher_running
load 0,0,it2,it3 ;test if signal dispatcher
cpeq it2,it2,0 ; already running
jmpt it2,_start_dispatcher
 constn it2,–1
iret ;IRET if running

;
_start_dispatcher:

store 0,0,it2,it3 ;set dispatcher_running
const it3,_dispatcher_sig
consth it3,_dispatcher_sig
const it1,_signal_associate_code+5*4
consth it1,_signal_associate_code+5*4
jmpi it1 ;start signal handler
 load 0,0,it0,it3 ;signal=dispatcher_sig

Before the signal_associate code starts the dispatcher signal handler, the
dispatcher_running variable is set to TRUE. Until this variable is cleared, further
signal requests (if the most significant bit of the signal number is set) will be added to
the queue of signals waiting for processing. The process of adding a signal to the
queue is kept simple –– a stack is used. Reducing the amount of code required results
in less interrupt latency as the queue_sig code runs in Freeze mode.

The signal handler which performs the dispatch operation is written in C. The
code is shown below. It requires some simple assembly–level support routines which
are described later. Having the code in C is a convenience as it simplifies the task of
modifying the code. Modification is necessary if a different execution schedule is
required for signals waiting in the signal stack. The variables used in the Signal
Dispatcher routine are described below. Note, that sig_stack_p and
dispatcher_running are defined volatile. This is because they may also be modified
by a Freeze mode interrupt handler. It is important that the C compiler be informed
about this possibility. Otherwise it may perform optimizations which prevent value
changes from being observed, such as holding a copy of sig_dispatcher_p in
register, and repeatedly accessing the register.
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extern void (*_SigEntry[])(int); /* defined in HIF libraries */

int sig_stack[200]; /* signal stack */
volatile int *sig_stack_p=&sig_stack[0];
volatile int dispatcher_running; /* dispatcher running flag */
int sig_sig=0;
int dispatcher_sig; /* dispatcher signal number */

The example sig_dispatcher() is relatively simple  but effective. It first disables
interrupts before removing all current signals from the stack. The signal values are
transferred to an array. Interrupts are then reenabled. Performing this procedure with
interrupts disabled prevents other signals being added to the stack while the transfer
operation is being performed. Signals are transferred to the array in the reverse order
they were placed on the stack. This ensures that signals are ultimately processed in
the order in which they were originally requested.

No attempt is made to apply a priority order to pending signals. The necessary
code can be applied after the signals have been removed from the stack. Performing
priority ordering at C–level rather than in the sig_queue code has the advantage of
reducing interrupt latency. Due to the fast operation of 29K processors the need to
priority order signals is not high, as a signal request is not likely to be kept waiting
very long.

void sig_dispatcher (sig) /* Signal Dispatcher */
int sig;
{

int cps;
int *sig_p; /* array of signals */
static int sig_array[20]; /*  needing processing */
cps=disable(0x20002); /* set DI and TD in CPS */
for(;;)
{ sig_p=&sig_array[0]; /* mark array empty */

while(sig_stack_p!=&sig_stack[0])/* remove signals from
{ ––sig_stack_p;    /* stack */

*sig_p++=*(int*)sig_stack_p;  /* copy from 
} /*  stack to array */
enable(cps); /* enable interrupts */
while(sig_p!=&sig_array[0]) /* process signals removed */
{ ––sig_p; /*  from stack */

(*_SigEntry[(*sig_p)–1])(*sig_p);
}
cps=disable(0x20002); /* disable interrupts */
if(sig_stack_p==&sig_stack[0]) /* stack empty ? */

break;
}
dispatcher_running=0;
enable(cps); /* enable interrupts */
_sigret(); /* _sigret() HIF service */

} /* would restore interrupted cps */

When there are no remaining signals to process, the dispatcher requests the
_sigret() signal–return service. The dispatcher_running flag is also cleared. It is
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possible that a new signal arrives just after the flag is cleared but before the
signal–return service is complete, this can not be avoided. It does not create a
problem (other than a loss of performance) as a new dispatcher signal handler is
simply started.

The disable() and enable() support routines are used by the Signal Dispatcher to
enable and disable interrupts around critical code. Interrupts are disabled by setting
the DI bit in the Current Processor Status (CPS) register. Freeze mode handler rou-
tines can use the _mtsr() C language extensions to modify special registers. However,
they can not be used by the dispatcher routine as it may be operating in User mode.
Accessing special register space from User mode would create a protection violation.
The problem is overcome by installing assembly level trap handlers which perform
the necessary special register access. The _settrap() HIF service is used to install the
trap handlers. Further assembly routines are required to assert the selected trap num-
ber. The code for disable() is shown below.

.global _disable
_disable:

asneq 218,gr96,gr96
jmpi lr0
 nop

.global __disable
__disable:

mfsr gr96,ops ;read OPS
or gr97,gr96,lr2 ;OR with passed value
mtsr ops,gr97
iret ;copy OPS to CPS

A single parameter is passed to disable(). The parameter is ORed with the CPS
value and the CPS register updated. Since this task is performed by a trap handler, the
OPS register is actually modified; and OPS is copied to CPS when an IRET is issued.
There is a further advantage of using a trap handler to perform the task; the operation
can not be interrupted –– the read/modify/write of the the CPS is atomic.

The code for enable() is similar to disable(). In this case the passed parameter is
simply copied to the CPS. The disable() routine returns the CPS value before modi-
fying it. The value is normally stored and later passed to enable(). In this way only the
DI  and TD (timer disable) bits in the CPS are temporarily modified. Note, older
members of the 29K family do not support the TD bit. In such case, the interrupt dis-
able code used by the example sig_dispatcher() routine does not prevent interrupts
being generated by the on–chip timer. The the problem can be resolved by modifying
the __enable and __disable assembly routines to clear and set the interrupt enable
(IE) bit in the Timer Reload register.

.global _enable
_enable:

asneq 217,gr96,gr96
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jmpi lr0
 nop

.global __enable
__enable:

mtsr ops,lr2
iret

2.5.7 Minimizing Interrupt Latency

Interrupt latency is minimized if interrupts are never disabled. In practice this
can be difficult to achieve. There are often critical code sections which must run to
completion without interruption. Traditionally, interrupts are disabled before enter-
ing such code sections and reenabled upon critical section completion. However, if
interrupts are processed using the two–stage method described in section 2.5.6 (A
Signal Dispatcher), interrupt disabling can be eliminated.

In place of disabling interrupts  around a critical code section, the Signal Dis-
patcher is effectively disabled. This allows a first stage interrupt handler to interrupt a
critical code section. Second stage interrupt handlers (signal handlers) are not initi-
ated during the critical code section, as the Dispatcher is disabled. It is easy to disable
the Dispatched by simply indicating that it is already active; this will prevent its ac-
tivation which can occur when the first stage handler is completed (if the sig_sig vari-
able is set). First stage handlers execute in Freeze mode and can be configured to
avoid access to the shared resource being accessed by critical code sections. The ex-
ample below shows how the Signal Dispatcher can be deactivated around a critical
code section.

#define TRUE –1
#define FALSE 0

. . . interruptible code
dispatcher_running=TRUE; /* disable Dispatcher */
. . . start of critical code section

/* code  only interruptible by
   Freeze mode handler */

. . . end of critical code section
dispatcher_running=FALSE; /* enable Dispatcher */
if(sig_stack_p!=&sig_stack[0])

_sendsig(dispatcher_sig);
. . .

When the critical task has been accomplished, the Dispatcher is reenabled by
clearing the dispatcher_running variable. It is possible that one or more signal num-
bers were pushed on the signal stack during the critical stage. Hence, when the Dis-
patcher is reenabled, the signal stack must be tested to determine if there are any
pending signals. If there are, then the Signal Dispatcher must be started using the
_sendsig() HIF service.
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The method minimizes the latency in starting a Freeze mode interrupt handler
since their commencement is never disabled –– unless by another Freeze mode han-
dler. The latency in starting a second stage handler is not reduced. Further restrictions
may have to be applied to first stage handlers to disallow access to resources which
must be atomically manipulated within critical code sections –– such as linked–list
data structures.

2.5.8 Signal Processing Without a HIF Operating System

A signal processing technique is recommended for dealing with complex C lev-
el interrupt handlers. The previous sections have described in detail how signal pro-
cessing can be performed. AMD and other tool providers supply the necessary sup-
port code which has been well tested and is known to be reliable. However, some de-
velopers may select an operating system which does not support the HIF services re-
quired by the previous example code. Additionally, many embedded system are de-
pendant on simple home–made boot–up code, which provides few support services.

A commercial operating system will implement its own interrupt processing
services. It is likely these services will be somewhat based on the signal processing
code described in this book. However, the provided services should be used in prefer-
ence to the HIF services. In fact, the chosen operating system may not provide any
support for HIF services.

When building simple boot–up and run–time support code for a small
embedded system, it is best to provide the necessary HIF services required for signal
processing. If the boot–up code is based on AMD’s OS–boot product, then all HIF
services will be provided.  If OS–boot is not used, it is important that limited HIF
support be included in the developed code. Only the signal, settrap, sysalloc and
sigret–type subset of HIF services are required. A trap handler for HIF trap number
69 should be installed, and the code required to process the HIF service request
installed. Very little code is required and example code can be taken from OS–boot.

2.5.9 An Example Am29200 Interrupt Handler

The following example makes use of the code presented in the previous sections
of this chapter. The Programmable I/O (PIO) port of an Am29200 microcontroller is
configured such that PIO signal–pin PIO0 is an output, and PIO signal–pin PIO15 an
input. The system hardware ensures that the two pins are wired together. A two stage
interrupt handler is assigned to processing interrupts generated by a rising edge on
pin PIO15. By first clearing pin PIO0 and then setting it to one, an interrupt will be
generated.

First, a number of include files must be accessed to declare external data and
procedure type information. Newer versions of file signal.h contain the extern
declarations listed below. Hence, only when using an older signal.h file need the
extern statement be explicitly included.
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#include <hif.h>
#include <signal.h>

extern int interrupt(int, _Interrupt (*C_handler)(int));
extern int sig_sig;
extern int dispatcher_sig;
extern void intr3(void);
extern void _enable(void);
extern void _disable(void);
extern void enable(int);
extern int  disable(int);
extern void sig_dispatcher(int);

It is best to access the Programmable I/O port via support macros or procedures.
Macros have a speed advantage (unless in–line procedures are used), and below are a
number of macros and support data structures which simplify control of the PIO port

typedef volatile struct PIO_str /* PIO class */
{
    unsigned int  poct;
    unsigned int  pin;
    unsigned int  pout;
    unsigned int  poen;
} PIO_t;

PIO_t *PIO_p=(PIO_t*)0x800000d0; /* PIO object */
/* ICR pntr. */

volatile unsigned int* ICR_p=(unsigned int*)0x80000028;

#define PIO_enable_m(port) PIO_p–>poen |= (1 << (port))

#define PIO_disable_m(port) PIO_p–>poen &= ~(1 << (port))

#define PIO_rising_m(port) \
PIO_p–>poct |= (0x2 << (2* (port))); \
PIO_p–>poct &= ~(1 << (port));

#define PIO_falling_m(port) \
PIO_p–>poct |= (0x2 << (2* (port))); \
PIO_p–>poct |= (1 << (port));

#define PIO_high_m(port) \
PIO_p–>poct |= (0x1 << (2* (port))); \
PIO_p–>poct |= (1 << (port));

#define PIO_out_m(port, val) \
{ unsigned int tmp = PIO_p–>pout; \
    tmp &= ~(1 << (port)); \
    tmp |= (((val) & 1) << (port)); \
    PIO_p–>pout = tmp; \
}

#define ICR_clear_m(vec) *ICR_p |= (1<<(251–(vec)))
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Using the _Interrupt  keyword, first and second stage interrupt handlers are
defined below for the PIO15 interrupt. No real work is performed by the example
second stage handler, but it does demonstrate how a full–C–context handler can be
reached. The second stage handler does not qualify as a Freeze mode interrupt
handler because it is not a leaf routine.

int PIO15_sig;     /* signal number allocated to second stage */

_Interrupt PIO15_handler() /* first stage interrupt handlers */
{

ICR_clear_m(228); /* clear interrupt request */
PIO_out_m(0,0); /* clear PIO0 port bit */
sig_sig=0x80000000|PIO15_sig;   /* request secnd stage */

}

_Interrupt sig_PIO15(sig_number) /* second stage handlers */
int sig_number;
{

printf(”Running PIO15 signal handler\n”);
}

Before the interrupt mechanism can be put to work, the various support handlers
must be installed as shown below. The program is being developed with the
MiniMON29K DebugCore and this requires that the OS–boot support interrupt
handlers be preserved before the new interrupt handlers are added. The PIO support
macros are then used to establish the correct PIO port operation before the an
interrupt is generated by forcing a 0–1 level transition on PI0 pin PIO0.

int main()
{

void (*V_minimon)();
V_minimon=(void(*)())_settrap(19,intr3);   /* INTR3 */
_settrap(220+24,V_minimon); /* MiniMON support interrupts */
_settrap(220+25,V_minimon); /* see section 2.5.5 */
_settrap(220+26,V_minimon);

_settrap(218,_disable); /* signal dispatcher support */
_settrap(217,_enable); /* see section 2.5.6 */
dispatcher_sig=7; /* signal number for dispatcher */
signal(dispatcher_sig,sig_dispatcher);

/* application interrupt handlers for I/O port PIO15 */
PIO15_sig = interrupt(228,sig_PIO15); /* second stage */
if(interrupt(228,PIO15_handler))      /* first stage */

printf(”ERROR installing Freeze mode handler\n”);

/* configure PIO port operation */
PIO_p–>poct=0; /* clear control register */
PIO_enable_m(0); /* enable PIO0 output */
PIO_rising_m(15); /* PIO15 edge sensitive */

PIO_out_m(0,0); /* PIO0 = 0 */
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PIO_out_m(0,1); /* generate an interrupt */
}

Users of the High C 29K tool chain could test the interrupt handling mechanism
without first building the necessary hardware by asserting the assigned trap number
as shown below.

_ASM(” asneq 228,gr1,gr1”); /* test interrupt mechanism */

2.6 SUPPORT UTILITY PROGRAMS

There are a number of important utility programs available to the software de-
veloper. These tools are generally available on all development platforms and are
shared by different tool vendors. Most of the programs operate on object files pro-
duced by the assembler or linker. All linkable object files and executable files are
maintained in AMD Common Object File Format (COFF). This standard is very
closely based on the AT&T standard used with UNIX System V. Readers wishing to
know more about the details of the format may consult the High C 29K documenta-
tion or the  AT&T Programmer’s Guide for UNIX System V. The coff.h include file
found on most tool distributions, describes the C language data structures used  by the
COFF standard –– often described as the COFF wrappers.

2.6.1 Examining Object Files (Type .o And a.Out)

nm29
The nm29 utility program is used to examine the symbol table contained  in a
binary COFF file produced by the compiler, assembler or linker. The format is
very much like the UNIX nm utility. Originally nm29 was written to supply
symbol table information to the munch29 utility in support of the AT&T C++
cfront program. A number of command line options have been added to enable
additional information to be printed, such as symbol type and section type.

One useful way to use nm29 is to pipe the output to the sort utility, for example:
“nm29 a.out | sort | more”; each symbol is printed preceded by its value. The sort
utility arranges for symbol table entries to be presented in ascending value.
Since most symbols are associated with address labels, this is a useful way to
locate an address relative to its nearest address  labels.

munch29
This utility is used with the AT&T C++ preprocessor. This program is known as
cfront and converts C++ programs into C. After the C++ program has been
converted and linked with other modules and libraries, it is examined with
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nm29 to determine the names of any static constructor and destructor functions.
The C++ translator builds these functions as necessary and tags their names with
predefined character sequences. The output from nm29 is passed to munch29
which looks for constructor and destructor names. If found, munch29 builds C
procedures which call all the identified object constructors and destructors.
Because the constructor functions must execute before the application main()
program, the original program is relinked with the constructor procedures being
called before main(). The main() entry is replaced with _main(). This also
enables the call to destructor procedures to be made in _main() when main()
returns.

Because G++ is now available for C++ code development (note,  G++ is
incorporated into the GCC compiler), there is little use being made of the AT&T
cfront preprocessor. Additionally, MRI and Metaware are expected to shortly
have commercial C++ compilers available.

rdcoff
The rdcoff  utility is only available to purchasers of the High C 29K product.
This utility prints the contents of a COFF conforming object file. Each COFF
file section is presented in an appropriate format. For example, text sections are
disassembled. If the symbol table has not been striped from the COFF file, then
symbol values are shown. The utility is useful for examining COFF header
information, such as the text and data region start addresses. Those using GNU
tools can use the coff and objdump utilities to obtain this information.

coff This utility is a shorthand way of examining COFF files. It reports a summary of
COFF header information, followed by similar reports for each of the sections
found in the object file. The utility is useful for quickly checking the link
mapping of a.out type files; especially when a project is using a number of
different 29K target systems which have different memory system  layouts,
requiring different program linkage.

objdump
This utility is supplied with the GNU tool chain. It can be used to examine
selected parts of object files. It has an array of command line options which are
compatible with the UNIX System V utility of the same name. In a similar way
to the rdcoff  utility it attempts to format  selected  information in a meaningful
way.

swaf
This utility is used  to produce a General–Purpose ASCII (PGA) symbols file for
use with Hewlett–Packard’s B3740A Software Analyzer tool. This tool enables
a 16500B card cage along with a selection of logic analyzer cards to support
high level software debugging. The swaf utility builds a GPA symbols file from
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information extracted from a linked COFF file. When the GPA file is loaded into
the analyzer it is possible to display address values in symbol format rather than,
say, hex based integers. Via a remote computer, the HP16500B can be used to
support execution trace at source level

mksym
This utility is required to build symbol table information for the UDB debugger.
The UDB debugger does not directly operate with COFF symbol information. A
mksym command is typically placed in a makefile; after the 29K program has
been linked a new symbol table file should be built.

2.6.2 Modifying Object Files

cvcoff
The COFF specification states that object file information is maintained in the
endian of the host processor. This need not be the endian of the target 29K
processor. As described in Chapter 1, 29K processors can run in big– or
little–endian but are almost exclusively used in big–endian format. Endian
refers to which byte position in a word is considered the byte of lowest address.
With big–endian, bytes further left have lower addresses. Machines such as
VAXs and IBM–PCs operate with little–endian; and machines from SUN and
HP tend to operate with big–endian.

What this means to the 29K software developer is that  COFF files on, say, a PC
will have little–endian COFF wrappers. And COFF files on, say, a SUN
machine will have big–endian wrapers, regardless of the endianness of the 29K
target code. When object files or libraries containing object files are moved
between host machines of different endianness, the cvcoff utility must be used
to convert the endianness of the COFF wraper information. The cvcoff utility
can also be used to check the endianess of an object file. Most utility programs
and software development tools expect to operate on object files which are in
host endian; however, there are a few tools which can operate on  COFF files of
either host endianness. In practice this reduces the need to use the cvcoff utility.

strpcoff
This utility can be used to remove unnecessary information from a COFF file.
When programs are compiled with the “–g” option, additional symbol
information is added to the COFF file. The strpcoff utility can be used to
remove this information and any other details such as relocation data and
line–number pointers. Typically linkers have an option to automatically strip
this information after linking. (ld29 has the “–s” option.) The COFF file header
information needed for loading a program is not stripped.
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2.6.3 Getting a Program into ROM

After a program has been finally linked, and possibly adjusted to deal with any
data initialization problems (see section 2.3.6), it must be transferred into ROM de-
vices. This is part of the typical software development cycle for embedded processor
products. A number of manufacturers make equipment for programming PROM de-
vices. They normally operate with data files which must be appropriately formatted.
Tektronix Hex format and Motorola S3 Records are two of the commonly used file
formats. The coff2hex utility can be used to convert the COFF formatted executable
file produced by the linker into a new file which is correctly formatted for the selected
PROM programmer. If more than one PROM is to required to store the program,
coff2hex can be instructed to divide the COFF data into a set of appropriate files. Al-
ternatively, this task can be left to more sophisticated  programming equipment. The
utility has a number of command line options; the width and size of PROM devices
can be chosen, alternatively specific products can be selected by manufacture part
number.



160 Evaluating and Programming the 29K RISC Family



161

Chapter 3

Assembly Language Programming

Most developers of software for the 29K family will use a high level language,
such as C, for the majority of code development. This makes sense for a number of
reasons: Using a high level language enables a different processor to be selected at
some future date. The code, if written in a portable way, need only be recompiled for
the new target processor. The ever increasing size of embedded software projects
makes the higher productivity achievable with a high level language attractive. And
additionally, the 29K family has a RISC instruction set which can be efficiently used
by a high level language compiler [Mann et al 1991b].

However, the software developer must resort to the use of assembly code pro-
gramming in a number of special cases. Because of the relentless efficiency of the
current C language compilers for the 29K, it is difficult for a programmer to out–per-
form the code generating abilities of a compiler for any reasonably sized program.
For this reason it is best to limit the use of assembly code as much as possible. Some
of the support tasks which do require assembly coding are:

Low–level support routines for interrupts and traps (see Chapter 4).

Operating system support services such as system calls and  application–task
context switching (see Chapter 5). Also, taking control of the processor during
the power–up and initialization sequence.

Memory Management Unit trapware (see  Chapter 6).

Floating–point  and complex integer operation trapware, where the 29K family
member does not support the operation directly in hardware.

High performance versions of critical routines. In some cases it may be possible
to enhance a routines performance by implementing assembly code short–cuts
not identified by a compiler.
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This chapter deals with aspects of assembly level programming. There are some
differences between 29K family members, particularly in the area of on–chip periph-
erals for microcontrollers. The chapter does not go into details peculiar to individual
family members; for that it is best to study the processor User’s Manual.
The material covered is relevant to all 29K family members.

3.1 INSTRUCTION SET

The Am29000 microprocessor implements 112 instructions.  All hardware im-
plemented instructions execute in a single–cycle, except for IRET, IRETINV,
LOADM and STOREM. Instruction format was discussed in section 1.11. All
instructions have a fixed 32–bit format, with an 8–bit opcode field and 3, 8–bit, oper-
and fields. Field–C specifies the result operand register (DEST), field–A and field–B
supply the source operands (SRCA and SRCB). Most instructions operate on data
held in global or local registers, and there are no complex addressing modes sup-
ported. Field–B, or field–B and field–A combined, can be used to provide 8–bit or
16–bit immediate data for instructions. Access to external memory can only be per-
formed with the LOAD[M] and STORE[M] instructions. There are a number of
instructions, mostly used by operating system code, for accessing the processor spe-
cial registers.

The following sections deal with the different instruction classes. Some of the
instructions described  are not directly supported by all members of the 29K family.
In particular, many of the floating–point instructions are only directly executed by
the Am29050 processor. If an instruction is not directly supported by the processor
hardware, then a trap is generated during instruction execution. In this case, the oper-
ating system uses trapware to implement the instruction’s operation in software.
Emulating nonimplemented instructions in software means some instruction execu-
tion speeds are reduced, but the instruction set is compatible across all family mem-
bers.

3.1.1 Integer Arithmetic

The Integer Arithmetic instructions perform add, subtract, multiply, and divide
operations on word–length (32–bit) integers. All instructions in this class set the
ALU Status Register.  The integer arithmetic instructions are shown Tables 3–1 and
3–2.

The MULTIPLU, MULTIPLY, DIVIDE, and DIVIDU instructions are not  im-
plemented directly on most 29K family members, but are supported by traps. To de-
termine if your processor directly supports these instructions, check with the proces-
sor User’s Manual or the tables in Chapter 1. The Am29050 microprocessor supports
the multiply instructions directly but not the divide instructions.
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Mnemonic Operation Description

ADDS DEST <– SRCA + SRCB
IF signed overflow THEN Trap (Out Of Range)

ADD DEST <– SRCA + SRCB

ADDU DEST <– SRCA + SRCB
IF unsigned overflow THEN Trap (Out Of Range)

ADDCS DEST <– SRCA + SRCB + C (from ALU)
IF signed overflow THEN Trap (Out Of Range)

ADDC DEST <– SRCA + SRCB + C (from ALU)

ADDCU DEST <– SRCA + SRCB + C (from ALU)
IF unsigned overflow THEN Trap (Out Of Range)

SUBS DEST <– SRCA –  SRCB
IF signed overflow THEN Trap (Out Of Range)

SUB DEST <– SRCA –  SRCB

SUBU DEST <– SRCA –  SRCB
IF unsigned underflow THEN Trap (Out Of Range)

SUBCS DEST <– SRCA – SRCB – 1 + C (from ALU)
IF signed overflow THEN Trap (Out Of Range)

SUBC DEST <– SRCA –  SRCB – 1 + C (from ALU)

SUBCU DEST <– SRCA – SRCB –  1 + C (from ALU)
IF unsigned underflow THEN Trap (Out Of Range)

SUBRS DEST <– SRCB –  SRCA
IF signed overflow THEN Trap (Out Of Range)

SUBR DEST <– SRCB –  SRCA

SUBRU DEST <– SRCB –  SRCA
IF unsigned underflow THEN Trap (Out Of Range)

SUBRC DEST <– SRCB –  SRCA – 1 + C (from ALU)

(continued)

Table 3-1. Integer Arithmetic Instructions
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MUL Perform one–bit step of a multiply operation (signed)

MULL Complete a sequence of multiply steps

MULU Perform one–bit step of a multiply operation (unsigned)

DIVIDE DEST <– (Q//SRCA)/SRCB (signed)

DIV0 Intitialize for a sequence of divide steps (unsigned)

DIV Perform one–bit step of a divide operation (unsigned)

DIVL Complete a sequence of divide steps (unsigned)

DIVREM Generate remainder for divide operation (unsigned)

DIVIDU DEST <– (Q//SRCA)/SRCB (unsigned)
Q <– Remainder

Q <– Remainder

MULTIPLY Q//DEST <– SRCA * SRCB (signed)

SUBRCU DEST <– SRCB – SRCA – 1 + C (from ALU)
IF unsigned underflow THEN Trap (Out Of Range)

SUBRCS DEST <– SRCB –  SRCA – 1 + C (from ALU)
IF signed overflow THEN Trap (Out Of Range)

MULTIPLU Q//DEST <– SRCA  * SRCB (unsigned)

Mnemonic Operation Description

(continued)

Table 3-2. Integer Arithmetic Instructions (Concluded)

3.1.2 Compare

The Compare instructions test for various relationships between two values.
For all Compare instructions except the CPBYTE instruction, the comparisons are
performed on word–length signed or unsigned integers. There are two types of
compare instruction. The first writes a Boolean value into the result register (selected
by the instruction DEST operand) depending on the result of the comparison. A
Boolean TRUE value is represented by a 1 in the most significant bit position. A
Boolean FALSE is defined as a 0 in the most significant bit. The 29K uses a global or
local register to contain the comparison result rather than the ALU status register.
This offers a performance advantage as there is less conflict over access to a single
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shared resource. Compare instructions are frequently followed by conditional Jump
or Call instructions which depend on the contents of the compare result register.

The second type of compare instruction incorporates a conditional test in the
same instruction cycle accomplishing the comparison. These type of instructions,
known as Assert instructions, allow instruction execution to continue only if the re-
sult of the comparison is TRUE. Otherwise  a trap to operating system code is taken.
The trap number is supplied in the field–C (DEST) operand position of the instruc-
tion. Trap numbers 0 to 63 are reserved for Supervisor mode program use. If an As-
sert instruction, with trap number less than 64 is attempted while the processor is op-
erating in User mode, a protection violation trap will be taken. Note, this is will occur
even if the assertion would have been TRUE. Assert instructions are used in proce-
dure prologue and epilogue routines to perform register stack bounds checking (see
Chapter 2). Their fast operation makes them ideal for reducing the overhead of regis-
ter stack support. They are also used as a means of requesting an operating system
support service (system call). In this case a condition known to be FALSE is asserted,
and the trap number for the system call  is supplied in instruction field–C. The
Compare instructions are shown in Tables 3–3 and 3–4.

The CPBYTE performs four comparisons simultaneously. The four bytes in the
SRCA operand are compared with the SRCB operand and if any of them match then
Boolean TRUE is placed in the DEST register. The instruction can be very efficiently
used when scanning character strings. In particular, the C programming language
marks the end of character strings with a 0 value. Using the CPBYTE instruction with
SRCB supplying an immediate value 0, the string length can be quickly determined.

3.1.3 Logical

The Logical instructions perform a set of bit–by–bit Boolean functions on
word–length bit strings.  All instructions in this class set the ALU Status Register.
These instructions are shown in Table 3-5.

3.1.4 Shift

The Shift instructions (Table 3-6) perform arithmetic and logical shifts on glob-
al and local register data. The one exception is the EXTRACT instruction which op-
erates on double–word data. When EXTRACT is used, SRCA and SRCB operand
registers are concatenated to form a 64–bit data value. This value is then shifted by
the funnel shifter by the amount specified by the Funnel  Shift Count register (FC).
The high order 32–bits of the shifted result are placed in the DEST register. The fun-
nel shifter can be used to perform barrel shift and rotate operations in a single cycle.
Note, when the SRCA and SRCB operands are the same register, the 32–bit operand
is effectively rotated. The result may be written back to the same register or placed in
a different global or local register (see Figure 3-1). The funnel shifter is useful for
fixing–up unaligned memory accesses. The two memory words holding  the un-
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Mnemonic Operation Description

CPEQ IF SRCA = SRCB THEN DEST <– TRUE
ELSE DEST <– FALSE

CPNEQ IF SRCA <> SRCB THEN DEST <– TRUE
ELSE DEST <– FALSE

CPLT IF SRCA < SRCB THEN DEST <– TRUE
ELSE DEST <– FALSE

CPLTU IF SRCA < SRCB (unsigned) THEN DEST <– TRUE
ELSE DEST <– FALSE

CPLE IF SRCA <= SRCB THEN DEST <– TRUE
ELSE DEST <–  FALSE

CPLEU IF SRCA <= SRCB (unsigned) THEN DEST <– TRUE
ELSE DEST <– FALSE

CPGT IF SRCA > SRCB THEN DEST <– TRUE
ELSE DEST <– FALSE

CPGTU IF SRCA > SRCB (unsigned) THEN DEST <– TRUE
ELSE DEST <– FALSE

(continued)

Table 3-3. Compare Instructions

aligned data can be loaded into global registers, and then aligned by the EXTRACT
instruction into the destination register. A code example showing the rotate operation
of the funnel shifter is given below:

mtsrim fc,8 ;rotate 8–bits left
extract gr96,gr97,gr97 ;source in gr97

SRCA operand SRCB operand

DEST register

Figure 3-1. The EXTRACT Instruction  uses the Funnel Shifter

Funnel shift
count, FC
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CPGE IF SRCA >= SRCB THEN DEST <– TRUE
ELSE DEST <– FALSE

CPGEU IF SRCA >= SRCB (unsigned) THEN DEST <– TRUE
ELSE DEST <– FALSE

CPBYTE IF (SRCA.BYTE0 = SRCB.BYTE0) OR
     (SRCA.BYTE1 = SRCB.BYTE1) OR
     (SRCA.BYTE2 = SRCB.BYTE2) OR
     (SRCA.BYTE3 = SRCB.BYTE3)THEN DEST <– TRUE
ELSE DEST <– FALSE

ASEQ IF SRCA = SRCB THEN Continue
ELSE Trap (Vector Number – in field–C)

ASNEQ IF SRCA <> SRCB THEN Continue
ELSE Trap (Vector Number – in field–C)

ASLT IF SRCA < SRCB THEN Continue
ELSE Trap (Vector Number – in field–C)

ASLTU IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (Vector Number – in field–C)

ASLE IF SRCA <= SRCB THEN Continue
ELSE Trap (Vector Number – in field–C)

ASLEU IF SRCA <= SRCB (unsigned) THEN Continue
ELSE Trap (Vector Number – in field–C)

ASGT IF SRCA > SRCB THEN Continue
ELSE Trap (Vector Number – in field–C)

ASGTU IF SRCA > SRCB (unsigned) THEN Continue
ELSE Trap (Vector Number – in field–C)

ASGE IF SRCA >= SRCB THEN Continue
ELSE Trap (Vector Number – in field–C)

ASGEU IF SRCA >= SRCB (unsigned) THEN Continue
ELSE Trap (Vector Number – in field–C)

Mnemonic Operation Description

(continued)

Table 3-4. Compare Instructions (Concluded)
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Mnemonic Operation Description

AND DEST <– SRCA & SRCB

ANDN DEST <– SRCA & ~ SRCB

DEST <– ~ (SRCA & SRCB)

OR DEST <– SRCA | SRCB

NOR DEST <– ~ (SRCA | SRCB)

XOR DEST <– SRCA ^ SRCB

XNOR DEST <– ~ (SRCA ^ SRCB)

NAND

Table 3-5. Logical Instructions

Mnemonic Operation Description

SLL DEST <– SRCA << SRCB (zero fill)

SRL DEST <– SRCA >> SRCB (zero fill)

DEST <– SRCA >> SRCB (sign fill)SRA

DEST <– high–order word of (SRCA//SRCB << FC)EXTRACT

Table 3-6. Shift Instructions

3.1.5 Data Movement

The Data Movement instructions (Tables 3–7 and 3–8) move bytes, half–words,
and words between processor registers.  In addition, the LOAD[M] and STORE[M]
instructions move data between general–purpose registers and external devices, me-
mories or coprocessor.  The Am29050 processor has two additional instructions not
shown in Table 3-7. They are MFACC and MTACC; and are used to access the four
double–word floating point accumulators (see section 3.3.5). 
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Mnemonic Operation Description

LOAD DEST <– EXTERNAL WORD [SRCB]

LOADL DEST <– EXTERNAL WORD [SRCB]
assert *LOCK output during access

LOADSET DEST <– EXTERNAL WORD [SRCB]
EXTERNAL WORD [SRCB] <– h’FFFFFFFF’,
assert *LOCK output during access

LOADM DEST.. DEST + COUNT <– 
EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT * 4]

STORE EXTERNAL WORD [SRCB] <– SRCA

STOREM EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT * 4] <– 
SRCA .. SRCA + COUNT

EXBYTE DEST <– SRCB, with low–order byte replaced
                  by byte in SRCA selected by BP

EXHW DEST <– SRCB, with low–order half–word replaced
                  by half–word in SRCA selected by BP

EXHWS DEST <–  half–word in SRCA selected by BP,
                  sign–extended to 32 bits

INBYTE DEST <– SRCA, with byte selected by BP replaced
                  by low–order byte of SRCB

INHW DEST <– SRCA, with half–word selected by BP replaced
                  by low–order half–word of SRCB

MFSR DEST <– SPECIAL

MFTLB DEST <– TLB [SRCA]

MTSR SPDEST <– SRCB

STOREL EXTERNAL WORD [SRCB] <– SRCA
assert *LOCK output during access

(continued)

Table 3-7. Data Move Instructions
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Mnemonic Operation Description

MTSRIM SPDEST <–  0I16 (16–bit date formed with SRCA and SCRB fields

MTTLB TLB [SRCA] <– SRCB

(continued)
Table 3-8. Data Move Instructions (Concluded)

The LOAD and STORE instructions are most interesting (see  Figure 3-2 for the
instruction format). Instruction field–C is assigned a number of bit–field tasks which
control the external access operation. Bit CE, when set, indicates that the data trans-
fer is to coprocessor space. AMD makes a floating–point coprocessor, Am29027,
which was frequently used with the Am29000 processor before the Am29050 pro-
cessor became available. Because the Am29050 directly supports floating–point
instructions there are no new designs making use of the Am29027 coprocessor.

31 23 15 7 0

X X  X  X  X  X  X  M  0 OPT RA RB or I

AS

PA

SB

UA

Figure 3-2. LOAD and STORE Instruction Format

CE

Bit field AS when set is used to indicate that the access is to Input/Output (I/O)
space. I/O space is little used as there is no convenient means of accessing it from a
high level language such as C. For this reason peripheral devices are typically
mapped into external data memory space rather than I/O space.

The PA and UA bits are used by Supervisor mode code; PA is used by operating
systems which run with address translation turned on, but need to to access an exter-
nal memory physical address. When  bit PA is set, address translation is turned off for
the LOAD or STORE data access. This is useful when accessing peripheral devices.
When operating system code wishes to access a User’s code space, it sets the UA bit.
This causes the data transfer operation to execute with User rather than Supervisor
permission.  If the User mode program was running with address translation on then,
the PID field of the MMU register is used when checking TLB access permissions.
Normally Supervisor mode code operates with a fixed PID value of zero.
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The original versions of the Am29000 processor (rev–A to rev–B) did not sup-
port byte sized access to external memory. For this reason bytes and half–words had
to be extracted from words after they had been read from memory; the Extract Byte
(EXBYTE) and Extract half–word (EXHW) instructions are supported by the pro-
cessor for just this purpose. Additionally, when data objects smaller than a word were
written to external memory, a read–modify–write process had to be used. The Insert
Byte (INBYTE) and Insert half–word (INHW) instructions supported the process.

Rev–C and later versions of the Am29000 processor and all other 29K family
members directly support byte and half–word accesses to memory. The instructions
described above need no longer be used. To enable current versions of the Am29000
processor to be compatible with the original processor, the DW bit was added to the
processor configuration register (CFG). When the DW bit is clear the processor per-
forms rev–A type memory accesses. All new designs operate with the DW bit set; and
other 29K family members operate with an implied DW bit set.

The OPT field bits specify the size of the data object being moved. They are also
used to indicate a word sized access to Instruction ROM space is requested. External
logic must be incorporated in a memory system design if this option is to be sup-
ported. The OPT field appears on the OPT(2:0) output pins during the memory ac-
cess. It is important that the object size is consistent with the address boundaries de-
fined by the lower bits of the memory address. For example, if a word sized access
(OPT filed value is 0) is attempted with lower address bits aligned to a byte boundary
(A[1:0] not equal 0) then an unaligned access trap may occur.  The Unaligned Access
(UA) bit of the Current Processor Status (CPS) register must be set for the trap to be
taken. Additionally, alignment checking is only performed for instruction and data
memory, not for I/O or coprocessor space accesses.

The SB bit is used when reading bytes or half–words from external memory.
Sub–word sized accesses are determined by the OPT field; the processor  right–justi-
fies the accessed data within the destination register. The SB bit when  set causes the
remainder of the destination to be sign extended with the sign of the loaded data ob-
ject. When SB is clear, the destination register value is zero–extended. The SB bit has
no effect during external memory writes. During write operations, the data object is
replicated in all positions of the data bus. For example, a byte write would result in the
stored byte appearing in all four positions of the stored word. It is the responsibility of
external memory to decode the OPT field and lower address bits when determining
which byte position should be written. Note, the micorcontroller members of the 29K
family implement the memory glue logic on–chip.

 Instruction field–B (SRCB) supplies the external memory address for LOAD
and STORE instructions. Typically a CONST, or CONST  and CONSTH, instruction
sequences precedes the LOAD or STORE instruction and establishes the access ad-
dress for memory. However, the first 256 bytes of memory can be accessed with im-
mediate addressing, where the 8–bit SRCB value contains the address. Some systems
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may be able to make use of this feature where performance is critical and the use of
CONST type instructions is to be avoided.

 As described in Chapter 1, the use of LOAD and STORE instructions can effect
the processor pipeline utilization. Members of the 29K family which support a Har-
vard memory architecture, or contain on–chip instruction memory cache, can per-
form LOAD and STORE operations in parallel with other instructions. This prevents
pipeline stalling, as the instruction execution sequence can continue in parallel with
the external memory access. However, if the instruction following a LOAD operates
on the accessed data then pipeline stalling will still occur. For this reason LOAD
instructions should be positioned early in the instruction sequence,  enabling the data
memory access latency to be hidden. Pipeline stalling will also occur if LOAD and
store type instructions are placed back–to–back, as this can result in channel access
conflicts. For this reason, LOAD and Store instructions should be separated with oth-
er instructions as much as possible

3.1.6 Constant

The Constant instructions (Table 3-9) provide the ability to place half–word and
word constants into registers.  Most instructions in the instruction set allow an 8–bit
constant as an operand.  The Constant instructions allow the construction of larger
constants. The Am29050 processor has an additional instruction, CONSTHZ, not
supported in other 29K family members. It places a 16–bit constant in the upper half–
word position while the lower 16–bits are zero filled. 

Mnemonic Operation Description

CONST DEST <– 0I16 (16–bit date formed with SRCA and SCRB fields

CONSTH

CONSTN DEST <– 1I16

Replace high–order half–word of SRCA by I16

Table 3-9. Constant Instructions
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3.1.7 Floating–point

The Floating–Point instructions (Tables 3–10 and 3–11) provide operations on
single–precision (32–bit) or double–precision (64–bit) floating–point data.  In addi-
tion, they provide conversions between single–precision, double–precision, and in-
teger number representations.  In most 29K family members, these instructions cause
traps to routines which perform the floating–point operations in software. The
Am29050 processor supports all floating–point instructions directly in hardware. It
also has four additional instructions not shown in Tables 3–10 and 3–11. They are
MFAC ,DMAC and FMSM, DMSM; and are used to to perform single and double–
precision multiply–and–accumulate type instructions (see section 3.3.5).

3.1.8 Branch

The Branch instructions (Table 3-12) control the execution flow of instructions.
Branch target addresses may be absolute, relative to the Program Counter (with the
offset given by a signed instruction constant), or contained in a general–purpose reg-
ister (indirect addressing).  For conditional jumps, the outcome of the jump is based
on a Boolean value in a general–purpose register. Only the most significant bit in the
specified condition register is tested, Boolean TRUE is defined as bit–31 being set.
Procedure calls are unconditional, and save the return address in a general–purpose
register.  All branches have a delayed effect; the instruction following the branch is
executed regardless of the outcome of the branch.

 The instruction following the branch instruction is referred to as the delay slot
instruction. Assembly level programmers may have some difficulty in always find-
ing a useful instruction to put in the delay slot. It is best to find an operation required
regardless of the outcome of the branch. As a last resort a NOP instruction can be
used, but this makes no effective use of the processor pipeline. When programming
in a high level language the compiler is responsible for making effective use of delay
slots. Programmers not familiar with delayed branching often forget the delay slot is
always executed, with unfortunate consequences. For this reason, the example code
throughout this book shows delay slot instructions indented one space compared to
other instructions. This has proven to be a useful reminder.

The delay slots of unconditional branches are easier to fill than conditional
branches. The instruction at the target of the branch can be moved to, or duplicated at,
the delay slot; and the jump address can be changed to the instruction following the
original target instruction.

The JMPFDEC instruction is very useful for implementing control loops based
on a decrementing loop. The counter register (SRCA) is first tested to determine if the
value is FALSE, then it is decremented. The jump is then taken if a FALSE value was
detected. The code example below shows how  count words of external memory can
be written with zero. Note how the address pointer is incremented in the delay slot of
the jump instruction. Additionally, the  SRCA register must be initialized to count–2;
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Mnemonic Operation Description

FADD DEST (single–precision) <– SRCA (single–precision)
                                        + SRCB (single–precision)

DADD DEST (double–precision) <– SRCA (double–precision)
                                         + SRCB (double–precision)

FSUB DEST (single–precision) <– SRCA (single–precision)
                                        – SRCB (single–precision)

DSUB DEST (double–precision) <– SRCA (double–precision)
                                          – SRCB (double–precision)

FMUL DEST (single–precision) <– SRCA (single–precision)
                                        *  SRCB (single–precision)

DMUL DEST (double–precision) <– SRCA (double–precision)
                                          * SRCB (double–precision)

FDIV DEST (single–precision) <– SRCA (single–precision)/
                                          SRCB (single–precision)

DDIV DEST (double–precision) <– SRCA (double–precision)/
                                           SRCB (double–precision)

FEQ IF SRCA (single–precision) = SRCB (single–precision)
     THEN DEST <– TRUE
ELSE DEST <– FALSE

DEQ IF SRCA (double–precision) = SRCB (double–precision)
     THEN DEST <– TRUE
ELSE DEST <– FALSE

FGE IF SRCA (single–precision) >= SRCB (single–precision)
     THEN DEST <– TRUE
ELSE DEST <– FALSE

DGE IF SRCA (double–precision) >= SRCB (double–precision)
     THEN DEST <– TRUE
ELSE DEST <– FALSE

FGT IF SRCA (single–precision) > SRCB (single–precision)
     THEN DEST <– TRUE
ELSE DEST <– FALSE

(continued)

Table 3-10. Floating–Point Instructions



Chapter 3       Assembly Language Programming 175

Mnemonic Operation Description

IF SRCA (double–precision) = SRCB (double–precision)
     THEN DEST <– TRUE
ELSE DEST <– FALSE

SQRT

CONVERT

CLASS
DEST (single–precision, double–precision, extended–precision)
<–CLASS[SRCA (single–precision, double–precision, extended–precision)]

DGT

DEST (integer,single–precision, double–precision)
<–SRCA (integer, single–precision, double–precision)

DEST (single–precision, double–precision, extended–precision)
<–SQRT[SRCA (single–precision, double–precision, extended–precision)

(continued)

Table 3-11. Floating–Point Instructions (Concluded)

this is because the loop is taken  when the count value is 0 and –1, because the count
decrement is performed after the condition test. In practice, memory systems sup-
porting  burst–mode accesses could alternatively use a STOREM instruction to more
efficiently clear data memory.

const gr97,count–2 ;establish loop count
const gr98,0
const gr96,address ;establish memory address
consth gr96,address

clear: store 0,0,gr98,gr96 ;write zero to memory
jmpfdec gr97,clear ;test and decrement count
 add gr96,gr96,4 ;advance pointer

;arrive here when loop finished, gr97=–2

3.1.9 Miscellaneous Instructions

The Miscellaneous instructions (Table 3-13) perform various operations which
cannot be grouped into other instruction classes.  In certain cases, these are control
functions available only to Supervisor–mode programs.

The Count Leading Zeros instruction can be very useful to assembly level pro-
grammers. It determines the position of the most–significant one bit  in the SRCB
operand. If all bits are zero, then 32 is returned. The instruction is useful when deter-
mining priorities for, say, queues of interrupt requests, where each interrupt may set a
bit  in the register operated on. The highest priority interrupt in the queue can be
quickly determined by the CLZ instruction.
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Mnemonic Operation Description

CALL DEST <– PC//00 + 8
PC <– TARGET
Execute delay instruction

CALLI DEST <– PC//00 + 8
PC <– SRCB
Execute delay instruction

JMP PC <– TARGET
Execute delay instruction

JMPI PC <– SRCB
Execute delay instruction

JMPT IF SRCA = TRUE THEN PC <– TARGET
Execute delay instruction

JMPTI IF SRCA = TRUE THEN PC <– SRCB
Execute delay instruction

JMPF IF SRCA = FALSE THEN PC <– TARGET
Execute delay instruction

JMPFI IF SRCA = FALSE THEN PC <– SRCB
Execute delay instruction

JMPFDEC IF SRCA = FALSE THEN
     SRCA <– SRCA – 1
     PC <– TARGET
ELSE
     SRCA <– SRCA  – 1
Execute delay instruction

Table 3-12. Branch Instructions

3.1.10 Reserved Instructions

The remaining operation codes are reserved for instruction emulation.  These
instructions cause traps, much like the unimplemented floating–point instructions,
but currently have no specified interpretation.  The relevant operation codes, and the
corresponding trap vectors are given in the processor User’s Manual.

These instructions are intended for future processor enhancements, and users
desiring compatibility with future processor versions should not use them for any
purpose.

The software developer should be aware of the trap taken with the reserved
instruction opcode 0xff. When execution is attempted with this opcode a trap 63 is
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Mnemonic Operation Description

CLZ Determine number of leading zeros in a word

SETIP Set IPA, IPB, and IPC with operand register–numbers

EMULATE Load IPA and IPB with operand register–numbers, and Trap Vector
Number in field–C

INV  [ID] INV      reset all Valid bits in instruction and data caches
INV  1; reset all Valid bits in instruction cache
INV  2; reset all Valid bits in data cache

IRET perform an interrupt return sequence

IRETINV  [ID] IRETINV     perform an interrupt return and invalidate all caches
IRETINV  1; perform an interrupt return and invalidate instruction cache
IRETINV  2; perform an interrupt return and invalidate date cache

HALT Enter Halt mode on next cycle

Table 3-13. Miscellaneous Instructions

taken. This can occur when a program goes out–of–control and attempts to fetch
instructions from nonexistent memory.

3.2 CODE OPTIMIZATION TECHNIQUES

When a high level programming language is used for software development,
code optimization is left to the compiler. With assembly language programming, care
must be taken to avoid code sequences which impact upon the processor’s perfor-
mance. Section 3.1.5 described how LOAD and STORE instruction must be careful-
ly positioned if pipeline stalling is to be avoided. Section 3.1.8 discussed the delay
slot of branch instructions, and the importance of finding a useful instruction for
delay slot filling. This section describes a few more useful coding techniques which
can improve code execution performance.

Common Subexpression Elimination is a technique where a frequently occur-
ring code sequence is eliminated to only one occurrence. This usually requires the
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result of the code sequence to be held in register space for frequent and fast access.
The trade–off between expression reevaluation and consuming additional register
resources is easily made with the 29K family because of the large number of general
purpose registers available. Code subexpressions need not be large. They may be as
short as an address calculation using a pair of CONST – CONSTH instructions. The
calculation can be done once and the address kept around in a register for reuse.

Moving code out of loops is another technique frequently used to improve per-
formance. However, the typically small number of registers in a CISC processor can
often mean loop invariant code results have to be held in external memory. This can
lead to trade–offs between adding code within a loop or suffering the external
memory access penalties. Again, the large number of general purpose registers in the
29K assist  the programmer to achieve improved code.

Branch instructions are to be avoided as their use impacts badly on perfor-
mance. Processors supporting burst–mode addressing operate most efficiently when
instruction bursting is not disrupted with a branch instruction. This is particularly
true for memory systems which have a high first–access latency. The Branch Target
Cache incorporated in some 29K family members can help hide the effects of branch-
ing, but as the number of branch instructions is increased the chance of a hit occurring
in the cache is reduced.

Loop Inversion is a useful technique at reducing the use of branch instructions.
Often programmers will construct loops which have the loop condition test at the top
of the loop. This requires a branch be used at the bottom of the loop. If the conditional
branch is moved to the bottom of the loop then the number of branch instructions is
reduced

3.3 AVAILABLE REGISTERS

In essence, global registers gr64–gr95 are reserved for interrupt handlers and
the operating system use. The remaining 32 global registers (gr96–gr127) are re-
served for holding User mode program context. The high level language calling con-
vention described in Chapter 2 established this convention. Figure 3-3  illustrates the
partitioning of the global registers among the operating system and user program
tasks. General purpose registers 128–255  are better known as local registers, and ac-
cessed via the registers stack pointer, gr1, rather than directly addressed as global
registers. General purpose registers 128–255 can not be accessed like global registers
(gr96–gr127); they can only be accessed as local registers or via indirect pointers.  

The calling convention goes further than just dividing the register space into two
groups. The user space registers are assigned  particular high level language support
tasks. All but four registers (gr112–gr115) in user task space will be accessed and mo-
dified by compiler generated code at various times. Most of the registers are used as
compiler temporaries; three registers are used to support memory and register stacks;
and the remaining four registers support the high level language procedure call
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Figure 3-3.  General Purpose Register Usage
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mechanism and system calls. Global registers in the range gr121–gr127 are known to
the programmer  by special synonym; however the registers themselves operate no
differently from other global registers.

In particular gr121 (tav) and gr122 (tpc) are used to pass arguments to trap rou-
tines invoked with Assert type instructions. This occurs during procedure prologue
and epilogue as well as operating system service calls. At  other times, the compiler
uses these registers to hold temporary data values.

Register gr123 (lrp) is known as the Large Return Pointer. It is used when a pro-
cedure is required to return an object which is larger than 16 words and therefore can-
not fit in the normal return space (gr96–gr111). The caller must assign lrp to point to
memory which will hold the 17th and higher words of return data.

Register gr124 (slp) is known as the Static Link Pointer. It is used when acces-
sing data variables defined in a parent procedure. This occurs in some languages,
Pascal for example, where nested procedure declarations are permitted. The High C
29K and GNU compiler do not use this register unless C language extensions are
used.
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A called procedure can locate its dynamic parent and the variables of the dy-
namic parent because of the the caller–callee activation record linkage (see section
3.5). However, the linkage is not adequate to locate variables of the static parent
which may be referenced in the procedure. If such references appear in a procedure,
the procedure must be provided with a local register which forms part of the static
link pointer chain. Since there can be a hierarchy of static parents, the slp points to the
slp of the immediate parent, which in turn points to the slp of its immediate parent.

The memory–stack support register gr125 (msp) and the register–stack support
registers gr126 (rab),  gr127 (rfb) and gr1 (rsp), were discussed in detail in Chapter 2.
They maintain the current positions of the stack resources.

The calling convention does not assign any particular task to the registers in the
operating system (OS) group (gr64–gr95). However, over time a convention has
evolved among 29K processor users.The subdivision of the OS registers shown in
Figure 3-3 is widely adhered to. The subgroups are known as: the interrupt freeze
mode temporaries (given synonyms it0–it3); the operating system temporaries
(kt0–kt11); and the operating system statics support registers (ks0–ks15). Note, static
register ks0 is often combined with it0–kt11 to form an interrupt context cache (see
section 2.5.1). Consequently, ks1 is the first available static support register.

When developing a new assembly language procedure a useful technique is to
construct a C language routine which receives any passed parameters and imple-
ments the appropriate task. With the AMD High C 29K compiler, the procedure can
be compiled to produce an assembly language output file with the “–S –Hanno” com-
piler switches. The Assembly level code can then be directly modified into the re-
quired code sequence.

3.3.1 Useful Macro–Instructions

The code examples shown in later chapters make use of a number macros for
pushing and popping special registers to an external memory stack.  A macro instruc-
tion is composed of a sequence of simpler instructions. Effectively, a macro is an in–
line procedure call. Using macros is faster than making an actual procedure call but
consumes more instruction memory space.The macro definitions are presented be-
low:

 .macro pushsr,sp,reg,sreg ;macro name and parameters
mfsr reg,sreg ;copy from special
sub sp,sp,4 ;decrement pointer
store 0,0,reg,sp ;store on stack

 .endm
;
 .macro popsr,sreg,reg,sp ;macro name and parameters

load 0,0,reg,sp ;get from stack
add sp,sp,4 ;increment pointer
mtsr sreg,reg ;move to special

 .endm
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Note how the LOAD instruction is used first when poping. This enables the
ADD and MTSR instruction to overlap the LOAD execution and thus reduce pipe-
line stalling. This is particularly useful when  popsr  macro instructions are used
back–to–back in sequence. Such sequences are useful when a memory system does
not support burst mode addressing. If bust mode is supported then it can be more effi-
cient to use a LOADM instruction and then transfer the global  register date into the
special registers. However, LOADM and STOREM cannot be used in Freeze mode
code which frequently require popsr and pushsr instruction sequences. Similar mac-
ros are used to push and pop global registers:

 .macro push,sp,reg ;macro name and parameters
sub sp,sp,4 ;decrement pointer
store 0,0,reg,sp ;store on stack

 .endm
;
 .macro pop,reg,sp ;macro name and parameters

load 0,0,reg,sp ;get from stack
add sp,sp,4 ;increment pointer

 .endm

3.3.2 Using Indirect Pointers and gr0

Three of the 29K special registers are known as indirect pointers: IPA, IPB, and
IPC. These registers are used to point into general purpose register space, and support
indirect register access. They hold the absolute register number of the general pur-
pose register being accessed, and are used in instructions by referencing the pseudo–
register gr0. When an indirect pointer is to be used to identify an instruction operand,
gr0 is placed in the appropriate instruction operand field. Indirect pointer IPA is used
with the SRCA operand field. Similarly, IPB and IPC apply with the SRCB operand
and DEST instruction fields.

The indirect pointer registers are set with the SETIP and EMULATE instruc-
tions. Additionally, they are set when a trap is taken as a result of executing an
instruction which is not directly supported by the 29K processor. With some family
members this occurs with floating–point operations and integer multiply and divide.
The example code below shows how the gr0 register is used to select indirect pointer
use. Note,  indirect pointers can not be accessed in the cycle following the one in
which they are set; this explains the NOP instruction.

setip gr98,lr2,gr96 ;set indirect pointers
nop ;delay
add gr0,gr97,gr0 ;gr98 = gr97+gr96
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The main use of indirect pointers is to support transparent  routines (see section
3.7) and instruction emulation. With most 29K family members the integer multiply
instruction (MULTIPLY) is not directly supported.

multiply lr4,gr98,lr10 ;integer multiply, lr4 = gr98*lr10

On entering the trapware support  routine for the vector assigned to the MUL-
TIPLY instruction (vector number 32) the indirect pointers are set to IPC=lr4,
IPA=gr98 and IPB=lr10 for the above example. This enables the trap handler to easi-
ly and efficiently access the register operands for the instruction without having to
examine the actual instruction in memory.

When using a MTSRIM instruction to set an indirect pointer register value, it is
important to remember that the most significant bit (bit position 9) must be set if local
registers are to be accessed. This is because indirect pointers operate with absolute
register numbers. See the following section discussing the use of gr1 for more details
on register addressing.

3.3.3 Using gr1

Global register gr1 performs the special task of supporting indirect access of the
128 local registers. When an instruction operand, say SRCA, has its top most bit set
then base–plus–offset addressing is used to access the operand. This means only gen-
eral purpose registers in the range gr1–gr127 can be addressed via their absolute reg-
ister number given the supported instruction operand decoding. (Indirect pointers en-
able all general purpose registers to be accessed via absolute address numbers.) The
lower 7–bits of the operand supply the offset which is shifted left 2–bits then added
with the local register base held in register gr1. Register gr1 is a 32–bit register, and
bits 8–2 contain the local register base (see Figure 3-4).

31 23 15 7 0

Figure 3-4. Global Register gr1 Fields

local register base

2

0  0

The base offset calculation is performed modulo–128. The most significant ad-
dress bit is assumed set when forming the absolute address for all local register ac-
cesses.

29K processors use a shadow copy of the gr1 register when performing local
register addressing. The shadow copy can only be modified by an arithmetic or log-
ical instruction; a shift or load into gr1 will not update the shadow copy. Because of
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the shadow register technique,  there must be a delay of one cycle before the register
file can be accessed after gr1 has been modified.

3.3.4 Accessing Special Register Space

The special registers control the operation of the processor. They are divided
into two groups: those that can be accessed only in Supervisor mode and those which
have unrestricted access. Access of special registers sr128 and above do not generate
a protection violation when accessed in User mode. Special register space was de-
scribed in section 1.10.2. Not all 29K family members have fully implemented spe-
cial register spaces. In the Supervisor–only accessible space there are a number of
differences due to differences in on–chip resources such as cache memory and hard-
ware breakpoint registers. Because these are  not accessible to application code they
do not effect application code portability.

However, some members of the 29K family do not implement, in hardware, all
of the special  registers accessible by User mode programs.  In particular the floating
point support  registers (sr160–sr162) are only implemented on processors which di-
rectly support floating–point instructions in hardware. All other family members
virtualize these registers. An attempted access to unimplemented special registers
causes a Protection Violation trap to occur. The trapware code implements the access
and returns the result. Unfortunately, the trapware code does not use the indirect
pointer as they are not set by a protection violation trap. This means the trapware
must read the instruction space to determine the special register being accessed. This
leads to the consequence that the special floating point support registers can not be
virtualized with Harvard memory architectures which do not provide a memory
bridge to enable instruction memory to be accessed as data. The emulation technique
also requires the support of three operating system registers. The trapware is typical-
ly configured to use global registers ks13–ks15 (gr93–gr95) for this task.

Special registers are located in their own register space. They can only be ac-
cessed by the move–from (MFSR) and move–to (MTSR) instructions which transfer
data between special register space and general purpose registers. In addition there is
a MTSRIM instruction which can be used to set a special register with 16–bit im-
mediate data. The indirect pointers can not be used to access special register space.
This imposes some restriction in accessing special registers but in practice is accept-
able. However, where the address of a special register to be accessed  is contained in a
general purpose register, the technique shown below can be used. In the example, lr2
contains the address of the special register to be read with a MFSR instruction. The
example assumes instruction memory can be written to; the required instruction is
built in gr97 and stored in memory at an address given by gr98. The instruction is
then visited with a JMPI instruction. A jump instructions target address is visited
when the jump instruction contains a further jump in its delay slot. The second jump
is in the decode stage of the processor pipeline when the first jump is in execute. This
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means the second jump must be taken, and only the first instruction of the new
instruction stream is started before execution continues at  label continue.

const gr98,I_memory ;establish instruction address
consth gr98,I_memory
const gr97,0xC6600000 ;MFSR, DEST=gr96, SRCA=0
consth gr97,0xC6600000
sll lr2,lr2,8 ;lr2 has special register number
or lr2,lr2,gr97 ;instruction now constructed
store 0,0,lr2,gr98 ;store target instruction
jmpi gr98 ;visit the target instruction
 jmp continue ;must execute the delay slot

continue:

The constructed MFSR instruction places the result in register gr96. The lr2
source address value had to be shifted left 8–bits into the SRCA field position of the
MFSR instruction.

3.3.5 Floating–point Accumulators

The Am29050 processor is currently the only member of the 29K family which
directly supports in hardware floating–point arithmetic operations.  In addition to
supporting floating–point operations without using trapware emulation, functions
involving multiply–and–accumulate operations are supported by four additional
hardware instructions not implemented in other 29K family members. Sum–of–
product type operations are frequently required by many floating–point intensive ap-
plications, such as matrix multiplication. Implementing this operation efficiently in
hardware makes the Am29050 processor suitable for use in graphics and signal pro-
cessing applications.

The FMAC and DMAC instructions can be used to multiply two general pur-
pose register values together and sum the product with one of the four floating–point
accumulators. The DMAC instruction operates on double–precision operand data
and the FMAC operates on single–precision. Double–precision operands can be ac-
cessed from the register file in a single cycle as the register file is implemented as
64–bits wide, and there is 64–bit wide ports supplying data to the floating–point
execution unit components. Double–precision operands must be aligned on double–
register  address boundaries.

The FMSM and DMSM instructions support single and double–precision float-
ing–point multiply–and–sum. One operand for the multiplication is a general pur-
pose register, the second is accumulator 0; the product is summed with the second
instruction operand and the result placed back in the register file. These two instruc-
tions can be used  when the multiplier is a fixed value such as with SAXPY (single–
precision A times X plus Y).

The Floating–Point Unit on the Am29050 processor is constructed from a num-
ber of specialized operation pipelines; one for addition/subtraction, one for multi-



Chapter 3       Assembly Language Programming 185

plication , and one for division/square root. The functional units used by the pipelines
all operate  separately. This enables multiple floating–point instructions to be in
execute at the same time. Additionally floating–point operations can commence in
parallel with operations carried out by the processor’s integer pipeline. The operation
of some of the pipeline functional units can be multicycle and contention for re-
sources can result if simultaneous floating–point operations are being performed.
However, all floating–point operations are fully interlocked, and operations requir-
ing the result of a previous functional unit operation are prevented from proceeding
until that result is available. The programmer never has to become involved in the
pipeline stage details to ensure the success of an operation.

To sustain efficient use of the floating–point pipelines, four floating–point accu-
mulator registers are provided. The programmer must multiplex their use during
heavily pipelined code sequences to reduce resource contention. The Am29050 pro-
cessor can issue a new floating–point instruction every cycle but many of the opera-
tions have multicycle latency. Thus to avoid pipeline stalling, the results should not
be used until a sufficient number of delay cycles has passed (see Am29050 processor
User’s Manual). The processor has an additional 64–bit write port on the general pur-
pose register file for use by the floating–point unit. This enables floating–point re-
sults to be written back at the same time as integer  pipeline results.

The floating–point accumulators can be accessed by the MTACC (move–to)
and MFACC (move–from) instructions which are available to User mode code. Only
29K family members which directly support floating–point operations implement
these instructions.

3.4 DELAYED EFFECTS OF INSTRUCTIONS

Modification of some registers has a delayed effect on processor behavior.
When developing assembly code, care must be taken to prevent unexpected behav-
ior. The easiest of the delayed effects to remember is the one cycle that must follow
the use of an indirect pointer after having set it. This occurs most often with the regis-
ter stack pointer. It cannot be used to access a local register in the instruction that fol-
lows the instruction that writes to gr1. An instruction that does not require gr1 (and
that means all local registers referenced via gr1) can be placed immediately after the
instruction that updates gr1.

Direct modification of the CPS register must also be done carefully. Particularly
where the freeze (FZ) bit is cleared. When the processor is frozen, the special-pur-
pose registers are not updated during instruction execution. This means that the PC1
register does not reflect the actual program counter value at the current execution ad-
dress, but rather at the point where freeze mode was entered. When the processor is
unfrozen, either by an interrupt return or direct modification of the CPS, two cycles
are required before the PC1 buffer register reflects the new execution address. Unless
the CPS register is being modified directly, this creates no problem.
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Consider the following examples. If the FZ bit is cleared and trace enable (TE) is
set at the same time, the next instruction should cause a trace trap, but the PC buffer
registers frozen by the trap will not have had time to catch up with the current execu-
tion address. Within the trap code the processor will have appeared to have stopped at
some random address, held in PC1. If interrupts and traps are enabled at the same
time the FZ bit is cleared, then the next instruction could suffer an external interrupt
or an illegal instruction trap. Once again, the PC buffer register will not reflect the
true execution address. An interrupt return would cause execution to commence at a
random address. The above problems can be avoided by clearing FZ two cycles be-
fore enabling the processor to once again enter freeze mode.

3.5 TRACE–BACK TAGS

When the compiler generates the code for a procedure, it places a one or two
word tag before the first instruction of the procedure. The tag information is used by
debuggers to determine the sequence of procedure calls and the value of program
variables at a given point in program execution. The trace–back tag describes the
memory frame size and the number of local registers used by the associated proce-
dure. A one word tag is used unless the memory stack usage is greater than 2k words,
in which case a two–word tag is used. Figure 3-5 shows the format of the tag data.

Most of the tag data fields are self explanatory.  The M bit–field is set if the the
procedure uses the memory stack. In such case, msize is the memory stack frame size
in double words. The argcount is the number of in–coming arguments in registers
plus two. The T bit–field, when set, indicates the routine is transparent (see section
3.7).

When procedures are built in assembly language rather than, say C, the pro-
grammer is responsible for building the appropriate tag data word[s] ahead of the first
instruction. For an example see section 2.3.5. Figure 3-6 shows an example register
stack history for three levels of procedure calls. In the example, the current procedure
is a small leaf procedure. Small leaves differ from large leaf procedures in that they
do not lower the register stack and  allocate new local registers to the procedure.

Looking at the parent of the current procedure it can be seen the stack was low-
ered by six words (rsize) during the parent procedure prologue. The top of the activa-
tion record is identified by the procedure lr1 register value. In principal the start of the
grandparent procedure activation record can be found by subtracting the argcount
value from the address identified by the parent lr1. In this way the rsize for the parent
procedure can be determined; adding rsize to the parent’s gr1 value enables the
grandparent gr1 value to be obtained. Repeating the mechanism with the grandparent
lr1 value allows all previous activation records to be identified until the first proce-
dure call is found. The first procedure is identified by a tag value of zero, and is nor-
mally the start procedure in file crt0.s.
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31 23 15 7 0

argcount reserved fp

Figure 3-5. Trace–Back Tag Format
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argcount0 0 0 0 0 0 0 0 1 M T reserved

one–word tag

two–word  tag
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However, there is a problem with this scheme as shown in Figure 3-6. Small leaf
procedures do not have  lr1 values for their own activation record; they share the lr1
value of their parent. Additionally, large leaf procedures have a new lr1 register as-
signed, but because leaves do not call other procedures, the lr1 register is not assigned
to point to the top of the activation record. For this reason, the lr1 value can not be
initially used as a mechanism for walking back through procedure call register al-
location.

In practice, most debuggers walk back through instruction memory till they find
the current procedure tag value, then they look at the immediately following pro-
logue code. The first prologue instruction is normally a “SUB gr1, gr1, rsize*4”. If
the rsize is bigger than 64, then it is a CONST followed by a SUB. In any case the rsize
value is determined by this method rather than computing it from an lr1–argcount
based calculation.

Before the Am29050 processor, became available, floating–point intensive ap-
plications were normally supported with an Am29027 coprocessor. The procedure
call mechanism specified that coprocessor float registers 0–2 are allowed to be modi-
fied by the callee and are not saved across calls. Float registers 3–7 may  also be modi-
fied by the callee but are preserved across procedure calls. Thus the caller must first
save them before making a call, and restore them upon callee return. A region of the
procedure activation record is assigned for saving the coprocessor registers. Addi-
tionally, the fp field in the tag word is used to indicate the the number of registers
saved.
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Figure 3-6. Walking Back Through Activation Records
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When using an Am29050 processor the fp field value is always zero. The four
double–word accumulator registers are not preserved across a procedure call. If a
procedure uses the accumulators and wishes to preserve their contents,  it must first
save them before making a procedure call. This may involve temporary modifying
the special floating–point environment registers. Because the floating–point accu-
mulators are normally accessed by assembly language leaf routines, caller saving of
the accumulators results in a reduced overhead compared to callee saving.

3.6 INTERRUPT TAGS

The High C 29K compiler will place an additional tag word before the normal
procedure tag when the key word _Interrupt is used to define a procedure’s return
type. Figure 3-7 shows the typical tag word combination produced. The first proce-
dure of an interrupt handler, that is the procedure accessed after the interrupt vector is
processed and any necessary preparation work is performed, should be identified by
the _Interrupt key word. Examples of how interrupt tags are used by application code
is shown in section 2.5.4.

The second (or second and third) word of tag information has the same format as
all procedure tags. Only the first tag word is new and this word is known as the inter-
rupt tag word. It has several bit–fields which describe the execution environment re-
quired by the procedure. These fields can be examined at interrupt occurrence time or
at interrupt installation time to determine the appropriate steps required to prepare
the interrupt processing environment. The objective is to optimize interrupt prepara-
tion by only preserving the minimum required context. Of course, the exact steps tak-
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argcount reserved fp

Figure 3-7. Interrupt Procedure Tag Words
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en will be very much dependant on the operating system in use. For example, some
operating systems may process interrupts in User mode with address translation in
use. Others may process interrupts in Supervisor mode with physical addressing.

The C bit is set if the procedure calls any other procedure (excluding transparent
routines). That is, the C bit is set if the procedure is not a child. When a another proce-
dure is called, it may be necessary to have the register stack repaired before the first
procedure is entered. The local registers bit–field indicates the number of registers
required from the register stack cache. However, other procedures called by the first
procedure may require additional local registers. Note that large leaf routines may
require local registers but of course the C bit will still not be set. When the C bit is set,
preparation code is unlikely to scan the other bit–fields as it is usually necessary to
assume that called functions may perform any 29K operation.

The F bit will be set if any floating–point operations are performed. Most 29K
family members do not directly support floating–point instructions but take a trap
when a floating–point instruction is encountered. Trap handlers can not be entered
from Freeze mode and execution of a floating–point operation could modify the state
of floating–point accumulators (Am29050) or coprocessor (Am29027) status regi-
setrs.

The I bit is set if any of the indirect pointer registers (IPA, IPB and IPC) are mo-
dified by the procedure. These registers would be effected by a call to a transparent
helper routine which issues a trap. The High C 29K compiler uses a transparent rou-
tine to perform integer multiply with most 29K family members. If the I bit is set then
interrupt preparation code would be required to preserve the indirect pointer registers
before entering the first procedure. The Q bit is set when the Q register (sr131) is mo-
dified. This registers is used during floating–point and integer multiply and divide
emulation routines.

The 29K calling convention states that a procedure return its results in global
registers gr96–gr111. An interrupt handler routines does not have any return value.
However, it may use registers in this range to hold temporary values during proce-
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dure execution. The return registers bit–field indicates the number of registers used.
Additionally, temporary registers can be obtained from  register range gr116–gr120.
In fact, the GNU compiler prefers allocate temporary registers in this range before
allocation from the return registers range (see section 2.5.2). The temps. bit–field in-
dices the number of registers modified in the range gr116–gr124. When interrupt
processing is accomplished with a leaf routine, these bit–fields enable only the mini-
mum number of global registers to be saved before the interrupt handler procedure is
entered.

3.7 TRANSPARENT ROUTINES

Transparent routines are used to support small highly efficient procedure calls.
They are like small leaf procedures in that they do not lower the register stack and
allocate a new activation record. They are unlike leaf procedures in that the only
global registers which the caller does not expect to survive the call are tav (gr121) and
tpc (gr122). They are normally used to support compiler specific support routines
such as integer multiply (where the 29K hardware does not directly support this op-
eration).

Parameters are passed to transparent routines using tav and the indirect pointer
registers. Return values are via tpc and possibly the modified register identified by
indirect pointer ipc. Leaf procedures can call transparent routines without changing
their status as leaf routines.

Newer versions of the High C 29K compiler enable the user to select procedures
for implementation as transparent routines. For example, a procedure which would
normally be of return type “int” would be defined (and declared) as type “_Transpar-
ent int”. The _Transparent key word extends the C language. Of course there are a
number of restrictions which apply to transparent routine construction: They can
only receive two in–coming parameters (passed via IPA and IPB);  They must be of
type void or return an object of word–size or less (return values are passed via IPC);
They must not perform any floating point (and some integer) operations which re-
quire trapware support; And of course, they must not call any other procedures (even
if they are transparent).

3.8 INITIALIZING THE PROCESSOR

Reset mode is entered when the processor’s *RESET pin is activated. This
causes the  Current Processor Status (CPS) register to be set to the Reset mode values;
the processor operates in Supervisor mode with all data and instruction addresses be-
ing physical (no address translation); all traps and interrupts are disabled and the pro-
cessor Freeze mode bit  is set. (See the Initialization section of the processor User’s
Manual for the exact CPS register setting.) Individual 29K family members have
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additional  Reset mode conditions established, such as disabling cache memory
where appropriate.

Instruction execution begins at address 0. For processors supporting both
Instruction memory space and read–only memory (ROM) space,  ROM space is used
when fetching instructions from external memory. However, many Am29000 pro-
cessor systems apply no distinction when decoding instruction and ROM memory
space.

The programmer must establish control of the processor and available re-
sources. Section 7.4 discusses how this is achieved with the OS–boot operating sys-
tem. OS–boot is made available by AMD, and is used to implement  a single–task
application environment which supports HIF (see Chapter 2) system call services.
Because OS–boot is so freely available to the 29K community, it is convenient to use
the included processor start–up code sequence for any new designs.

3.9 ASSEMBLER SYNTAX

Assembly  language, like all languages, has a character set and a set of grammar
rules. Purchasers of the ASM29K  assembly language tool package from AMD or
other tool company, normally obtain a copy of the assembly language syntax specifi-
cation. There are a number of assembler tools available and all of them comply (but
not always fully) with the AMD defined syntax for assembly level programming.

Many of the assemblers have options which are unique, but it has been my expe-
rience that assemblers will generally accept code which is produced by any of the
available compilers.

3.9.1 The AMD Assembler

The AMD assembly language tool package, ASM29K, was used to develop all
of the assembly language examples shown in this book. The assembler, linker and
librarian tools included in the package were developed by Microrec Research Inc.
(MRI) for AMD. The tools are available on a number of platforms; the most popular
being SUN and HP workstations and IBM PCs and compatibles. This section does
not cover the details of the AMD assembler (as29) and its options as they are well
documented in the literature supplied with each purchased tool package.

During the introduction of the Am29000 processor, AMD had a second assem-
bly level tool package developed by Information Processing Techniques Corp. (IPT).
This second tool chain forms the basis of a number of elaborate tool packages made
available by third party tool suppliers. All of the tool suppliers are listed in the AMD
Fusion29Ksm Catalogue [AMD 1992a][AMD 1993b]. Both assemblers fully com-
ply with the AMD assembler syntax for 29K code. However, the librarian tools sup-
plied with the different tool packages maintain library code in different formats. This
means libraries cannot be shared unless reformatting is applied.
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3.9.2 Free Software Foundation (GNU),  Assembler

The Free Software Foundation Inc. is an organization based in Cambridge MA,
USA, which helps develop and distribute software development tools for a range of
processors. Anyone can contribute programs to the the foundation and users of
foundation supplied tools have the freedom to distribute copies of tools freely (or can
charge for this service if they wish). The foundation tools (often known as GNU
tools) include a complete tool chain for software development for the 29K family.
The GNU assembler is known as GAS, and is available in source form from AMD
and from the Cygnus Support company.

GAS is primarily intended to assemble the output from the GNU C language
compiler, GCC (see Chapter 2). It does accept code complying with the AMD assem-
bly language syntax; however, there are a number of differences. Most notably, it
does not support macro instructions. Developers may wish to use a UNIX utility such
as M4 or CPP to support macros with the GAS tool (section 2.5.2 has an example of
assembler macros using the C preprocessor, CPP).

A number of developers have compiled GAS for use in a cross–development
environment where the target processor is a 29K, but the development platform is a
SUN or HP workstation or an IBM 386–PC. These tools are available among the 29K
GNU community, many of which are university engineering departments. AMD has
a University Support Program which helps universities wishing to include the 29K in
educational programs, to obtain hardware and software development tools as well as
other class materials. There may be a university near you which will supply you with
a copy of the compiled GNU tools for a small tape handling charge.

If you get a copy of GAS from AMD or Cygnus or other Fusion29K partner,
then it is likely that the documentation supporting the tool was supplied. After instal-
ling the tools on a UNIX machine and updating the MANPATH variable to include
the GNU manual pages, it should be possible to just type “man gas” and obtain a dis-
play of the GAS program options. Alternatively look in the GAS source directories
for a file called 29k/src/gas/doc/gas.1 or as.1 to obtain the necessary documentation.
Below is a extract from the GAS manual pages which indicates some of the capabili-
ties of the tool.

gas [–a | –al | –as] [–f] [–I path] [–K] [–L] [–o objfile] [–R] [–v] [–W]
 files...

OPTIONS

–a | al | as

Turn on assembly listing; –al, listing only; –as, symbols, –a, everything.

–f Fast ––skip preprocessing (assume source is compiler output).

–I path

Add path to search  list for .include directives.
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–K Issue warning when difference tables altered for long displacements

–L Keep (in symbol table) local symbols starting with L.

–o objfile

Name the object–file output for GAS.

–R Fold data sections into text sections.

–v Announce GAS version.

–W Suppress warning messages.
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Chapter 4

Interrupts and Traps

This chapter describes techniques for writing interrupt and trap handlers for
29K processor-based systems. It also describes the interrupt hardware for the 29K
Processor Family, and the software environment within which interrupt handlers
execute.

Handler descriptions are separated into two major sections. The first discusses
Supervisor mode handlers and the second covers User mode handlers. The
descriptions apply equally well to interrupts and traps. For the purposes of this
chapter, User mode handlers refer to interrupt and trap handlers written in a
high-order language. However, it is possible to enter User mode without first
establishing high-order language support. Additionally, for our purposes we shall
call assembly level handlers Supervisor mode handlers.

Although interrupts are largely asynchronous events, traps most often occur
synchronously with instruction execution; however, both share common logic in the
29K Processor Family and are often handled entirely in Supervisor mode, with inter-
rupts disabled and Freeze mode (described later) in effect. However, interrupt and
trap handlers may execute in one or more of the stages shown in  Figure 4-1. Each
stage implies an increased level of complexity, and may execute a return from inter-
rupt (IRET instruction) if the process is complete. However, in the case where User
mode has been entered, the handler must first reenter Supervisor mode before execut-
ing an IRET instruction.

The first stage is entered when an interrupt occurs. In this stage the processor is
running in Supervisor mode, with Freeze mode enabled and interrupts disabled. In
the second stage Freeze mode is turned off (disabled), but the processor remains in
Supervisor mode with interrupts disabled. The third stage execution takes place with
interrupts enabled, but with the processor still operating in Supervisor mode. In the
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Figure 4-1. Interrupt Handler Execution Stages
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fourth stage, execution continues in User mode. Each  stage is discussed in the fol-
lowing sections of this chapter.

Before entering into a discussion of Supervisor mode interrupts and traps, it is
necessary to first understand the way interrupts are handled by the 29K family hard-
ware.

4.1 29K PROCESSOR FAMILY INTERRUPT SEQUENCE

When an interrupt or trap occurs and is recognized, the processor initiates the
following sequence of steps.

Instruction execution is suspended.

Instruction fetching is suspended.

Any in-progress load or store operation, which was not the cause of a trap, is
completed. In the case of load- and store-multiple, any additional operations are
suspended.

The contents of the Current Processor Status (CPS) register are copied into the
Old Processor Status (OPS) register.

The CPS register is modified as shown below. The letter “u” means unaffected,
and “r” indicates that this bit depends on the value of the RV bit in the CFG
register, or the R bit in the fetched interrupt vector. Note, only 3–bus 29K
processors have the R bit–field implemented. The letter “f” is only supported by
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the Am29040 processor; it is used hear to indicates the value of the PD bit is
unaffected when taking a trap or interrupt if the FPD (Freeze PD) bit is set in the
CFG register. Otherwise, the PD bit is set to a 1 (see section 5.14.2).

07152331

0 0 u u 0 0 0 1 0 r 0 1 1 u u 1 1

IP FZ RE PD SM IM DA
CA TE TU LK WM PI DI

TP

Figure 4-2. The Format of Special Registers CPS and OPS

0

MM

f

The setting of the Freeze (FZ) bit freezes the Channel Address (CHA), Channel
Data (CHD), Channel Control (CHC), Program Counters (PC0–PC2),and ALU
Status registers.

The address of the first instruction of the interrupt or trap handler is determined.
If the VF bit of the Configuration register is 1, the address is obtained by
accessing a vector from data memory. The access is performed by using the
physical address obtained from the Vector Area Base Address register and the
vector number. If the VF bit is 0, the instruction address is directly given by the
Vector Area Base Address register and the vector number. For all 29K
processors other than 3–bus processors, the VF  bit is reserved and effectively
set to 1.

With 3–bus processors, if the VF bit is 1, the R bit in the vector fetched above is
copied into the RE bit of the CPS register. If the VF bit is 0, the RV bit of the
Configuration register is copied into the RE bit. This determines whether or not
the first instruction of the interrupt handler is an instruction-ROM-space or
instruction-space.

An instruction fetch is initiated using the instruction address determined above.
At this point, normal instruction execution resumes.

No registers (beyond the interrupted program’s CPS) are saved when an inter-
rupt occurs. Any registers whose contents are essential to restarting the interrupted
program must be deliberately saved if they are going to be modified by the interrupt
handler.

4.2 29K PROCESSOR FAMILY INTERRUPT RETURN

After the handler has processed the interrupt, and control is given back to the
interrupted task, execution of an IRET or IRETINV instruction is used to cause the
Am29000 processor to initiate the following steps.
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Any in-progress LOAD or STORE operation is completed. If a load-multiple or
store-multiple sequence has been suspended, the interrupt return is not
completed until that operation is finished.

Interrupts and traps are disabled, regardless of the settings of the DA, DI, and IM
fields of the CPS register.

If the interrupt return instruction is an IRETINV, the Valid bit associated with
each entry in the Branch Target Cache memory is reset. In the case of
the Am29030 processor, the IRETINV instruction causes cache blocks to
become invalid, unless the blocks are locked and the cache is enabled.

The contents of the OPS register are copied into the CPS register. This normally
resets the FZ bit, allowing the Program Counters (PC0–PC2) and the CHA,
CHD, CHC, and ALU Status registers to update normally. The Interrupt
Pending bit (IP) of the CPS register is always updated by the processor. The
copy operation is irrelevant for this bit.

The address in Program Counter 1 (PC1) is used to fetch an instruction. The
CPS register conditions the fetch. This step is treated as a branch, in the sense
that the processor searches the Branch Target Cache memory for the target of the
fetch.

The fetched instruction above enters the decode stage of the pipeline.

The address in PC0 is used to fetch an instruction. The CPS register conditions
the fetch. This step is treated as a branch, in the sense that the processor searches
the Branch Target Cache memory for the target of the fetch.

The first fetched instruction enters the execute stage of the pipeline, and the
second instruction fetched enters the decode stage.

If the Contents Valid (CV) bit of the CHC register is 1, and the Not Needed (NN)
bit is 1 and Multiple Operation (ML) bit is also 0, an external access is restarted.
If the PC1 register points to an interrupted load- or store-multiple instruction,
and the ML bit is one, then an interrupted load- or store-multiple operation is
restarted. The external memory access is continued based on the contents of the
CHA, CHD, and CHC registers. The interrupt return is not completed until this
operation is finished.

Interrupts and traps are enabled per the appropriate bits in the CPS register.

The processor resumes normal operation.

It is important to remember that once an interrupt or trap occurs, the processor is
immediately vectored to the appropriate handler, with interrupts disabled, Freeze
mode enabled, and Supervisor mode execution. The next section discusses Supervi-
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sor mode interrupt handlers. The final section describes User mode interrupt han-
dlers. Both sections include 29K Processor Family assembly language source code
examples.

4.3 SUPERVISOR MODE HANDLERS

4.3.1 The Interrupt Environment

After an interrupt or trap occurs, and the event is recognized by the processor,
the 29K family hardware interrupt sequence, described earlier, is initiated. Interrupt
handler code begins execution at this point.

The amount of code necessary to handle an interrupt or trap depends on the na-
ture of the interruption, and the degree to which a given operating system supports
interrupts and traps. For robust systems, interrupt and trap handlers must be sure to
return to an environment guaranteed to be intact when their processing is complete.
Some systems may elect to terminate a program if certain interrupts and traps occur,
while others may ignore these entirely. The operating system will also set some stan-
dards for register availability in interrupt routines. As stated in the section describing
the calling convention (Chapter 2), AMD recommends that the 29K processor’s
global registers gr95 and below be reserved for non User-mode code. Additionally
section 3.3, of Assembly Language Programming, goes further, and suggests an al-
location scheme for operating system, reserved registers. (See Table 4-1.)

Table 4-1. Global Register Allocations

Registers Name Description

gr1 rsp Local register stack pointer
gr64–67 it0–it3 Interrupt handler  temporaries
gr68–79 kt0–kt11 Temporaries for use by operating system
gr80–92 ks0–ks12Operating system statics
gr93–95 ks13–ks15Floating-point trap handler  statics
gr96–127 various Reserved by Am29000 processor calling 

conventions

In essence, global registers (gr64–gr95) are reserved for interrupt handlers and
the operating system. The remaining 32 global registers (gr96–gr127) are reserved
for holding the interrupted program’s context.

Existing floating-point trap handlers use gr64–gr78 as temporary registers,
with interrupts disabled. In addition, registers gr93–gr95 are used to hold static vari-
ables for these routines. The register assignments in these routines can easily be
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changed, but fifteen temporary global registers and three static global registers must
be allocated. Note, with the Am29050 processor, only the integer divide instructions
are not directly supported by the processor hardware and require trapware support.
This requires six temporary global registers and no static global registers.

If all of the local registers are given over to User-mode code use, then interrupt
and trap handlers must also assume that the local registers are being used and may not
be arbitrarily rewritten, unless the values they contain are saved upon entry, and are
restored prior to exit. If a cache window size (rfb–rab) less than the physical register
file size is used, then a number of non-static temporary local registers can be made
available for handler use.

Fortunately, most interrupt handlers can operate very efficiently using only a
few temporary registers. It is recommended that global registers gr64–gr67 (it0–it3 )
be allocated for this purpose. However, additional temporary registers kt0–kt3 may
be used for interrupt handlers if these registers are not used by the operating system.

4.3.2 Interrupt Latency

The determination of the number of cycles required to reach the first instruction
of an interrupt or trap handler is a little complicated. First consider the case for the
non-vector fetch, table of handlers method.

An external interrupt line may have to be held active for one cycle before the
processor internally recognizes it. Once recognized, one cycle is required to internal-
ly synchronize the processor. Now any in-progress load or store must be completed
(Dc cycles, where 0 ≤ Dc ≤ Dw, note Dw is the number of cycles required to complete
a data memory write and is often greater than Dr, the number of cycles required to
complete a data memory read). One cycle is then required to calculate the vector. The
first instruction can then be fetched (Ir  cycles) and presented to the instruction fetch
unit. One cycle is required by the fetch unit and a further cycle by the decode unit
before the instruction reaches execute. If the first instruction is found in the cache,
then the Branch Target Cache memory forwards the instruction directly to the decode
unit. The total latency (minimum of five cycles for the hit case) is given by the equa-
tion below.

delay(miss) = 1 + 1 + Dc + 1 + Ir + 1 + 1

delay(hit) = 1 + 1 + Dc + 1 + 1 + 1

Now let’s consider the case for a table of vectors, that is the VF bit in the CFG
register is set (always the case for 2–bus processors and microcontrollers). The vec-
tor must still be calculated and any in-progress load or store completed before the
vector can be fetched from data memory. Additionaly, if the processor has a data
cache, the cache state is synchronized after any current data access is completed.
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Data cache synchronizing is discussed in detail at the end of this section. The number
of cycles required to read the data memory is represented by Dr. Once the address of
the handler has been fetched it must be routed to the processor PC, this takes one
cycle. A further cycle occurs before the address reaches the Address Pins. Delays in-
volved in fetching the first instruction are then the same as described above. Once
again, if the first instruction is found in the cache, the Branch Target Cache memory
forwards the instruction directly to the decode unit. The total latency (minimum of
seven cycles for the hit case) is given by the equation below.

delay(miss) = 1 + 1 + Dc + <cache sync.> + 1 + Dr + 1 + 1 + Ir + 1 + 1

delay(hit) = 1 + 1 + Dc + <cache sync.> + 1 + Dr + 1 + 1 + 1

The Am29050 processor supports instruction forwarding. This enables instruc-
tions to be forwarded directly to the decode unit, bypassing the fetch unit and saving
one cycle. The minimum latency for the Am29050 processor for the vector fetch and
non-vector fetch methods is six cycles and four cycles, respectively.

The Am29040 and Am2924x processors have data cache which can add to inter-
rupt latency. Consider that the Am29240 has a two word write–buffer which must be
flushed before interrupt processing can be completed. This adds as much as 2xDw
cycles to interrupt latency. The processor could be performing a load when inter-
rupted. If the load caused a block (cache entry) to be allocated, then the load would be
completed but block allocation canceled.

Cache synchronizing for the Am29040 processor is a little more complicated.
The worst case condition occurs when the write buffer is full and a load is performed.
The load can cause block allocation and because of the write–back policy, the se-
lected block may have to be copied–back. The Am29040 always flushes the write–
buffer before reloading a new block. Cache reload can not be cancelled even if the
interrupt occurs before the write–buffer is flushed. However, the loaded block will be
held in the reload buffer (see Figure 5-9) and the copy–back buffer returned to the
cache. Unfortunately, the reload buffer contents will never make it into the cache.

The effects of data cache synchronizing on interrupt latency are summarize be-
low:

Am29240 <cache sync.> = 2 x Dw

Am29040 <cache sync.> = (2 x Dw) + (4 x Dr)

4.3.3 Simple Freeze-mode Handlers

The simplest interrupt or trap handler will execute in its entirety in Supervisor
mode, with interrupts disabled, and with the FZ bit set in the CPS register. This corre-
sponds to the first stage depicted in  Figure 4-1.
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The FZ bit in the Current Processor Status register is responsible for locking the
values in the Program Counters (PC0–PC2), the Channel registers (CHA, CHD and
CHC), and the ALU status. As long as the FZ bit remains set, these registers will not
be updated. Note, the PC0–PC2 registers are not the actual Program counter, but a
three-stage buffer store that records the stages of program execution.

If the intention is to ignore the interrupt and return control to the interrupted pro-
cess, the entire handler can consist of little more than an IRET instruction. After the
interrupt request has been cleared, execution of this instruction will cause the proces-
sor to perform the interrupt return sequence described above, resuming execution of
the interrupted program at the point of interruption.

4.3.4 Operating in Freeze mode

Interrupt or trap handlers executing only a small number of instructions before
returning will benefit from the very short latency of the interrupt sequence performed
by the 29K processor. This is because the 29K processor offers superior performance
when compared with conventional processors that save a great deal of context when-
ever an interrupt or trap occurs.

Because the executing program’s context is often not disturbed by the interrupt
or trap handling code, both the reaction time (latency) and processing time of the in-
terrupt handler are minimized.

In this context, no registers (except the CPS) have been saved when an interrupt
or trap handler is given control by the processor. In addition, if the Program Counter
registers (PC0 and PC1) are left undisturbed, the 29K processor’s instruction pipe-
line is more quickly restarted when the handler returns.

But, because Freeze mode has frozen the contents of several important registers,
there are some instructions that should not be used in this context, or whose use is
restricted. These instructions are:

Instructions that can generate traps. These should not be used because traps are
disabled in Freeze mode. These include ASSERT, emulated floating-point
operations  (e.g., FADD),  and  certain  integer operations whose execution
could cause a trap to occur. Note, the Am29050 processor executes all floating
point operations directly and thus these instructions can be used with the
Am29050 processor as they will not generate a trap.
If a trap generating instruction is executed it will have the same affect as a NOP

instruction. An exception trap is caused by bad memory accesses. These traps are al-
ways taken, even if they occur in Freeze-mode code. Because the processor registers
were already frozen at the time of the nested trap, it can be difficult to determine the
cause of the trap or issue an IRET instruction.

However, if an Am29050 processor is being used and a trap occurs when the DA
bit is set in the CPS register, Monitor mode is entered. Monitor mode (section 4.3.5)
can be used by monitors to debug kernel Freeze-mode code.
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Instructions that use special registers––these instructions may be used;
however, any modified registers may have to be saved and restored before the
interrupt handler returns. The EXTRACT and INSERT instructions are in this
category.

Instructions that modify special registers–– because of the normal side effect of
their operation, these instructions must be used with caution. There are three
subgroups within this group:

—Arithmetic and logical instructions that set the Z, N, V, and C status bits in the
ALU Status register. These instructions can be used in Freeze mode if the ALU
status bits are not used. Because Freeze mode disables updating the ALU Status
register, extended precision arithmetic instructions, such as ADDC or SUBC,
will not execute properly.

—Load-Multiple and Store Multiple. These instructions cannot be used in Freeze
mode, because the Channel registers (CHA, CHD, and CHC) upon which their
execution depends are frozen.

—LOAD and STORE instructions with the set BP option enabled, if the Data
Width Enable (DW bit) is 0. In this case, if BP must be set, it will have to
be done explicitly by using a Move-To-Special Register (MTSR) instruction.
Therefore, LOAD and STORE instructions with word-aligned addresses (i.e.,
those whose least significant 2 bits are 0) may be used without additional effort;
however, if byte or half-word instructions are needed, the BP register must be
explicitly set prior to execution of a non-word-aligned LOAD, STORE,
INSERT, or EXTRACT instruction.
All other instructions may be used without restriction, keeping in mind the in-

herent implications of Freeze mode. (Note: Other restrictions apply to Am29000
processors manufactured prior to revision C.)

4.3.5 Monitor mode

Monitor mode only applies to the Am29050 processor. If a trap occurs when the
DA bit in the CPS register is a 1, the processor starts executing at address 16 in
instruction ROM space. Monitor mode is not entered as a result of asynchronous
events such as timer interrupts or activation of the TRAP(1–0) or INTR(3–0) lines.

On taking a Monitor mode trap the Reason Vector register (RSN) is set to indi-
cate the cause of the trap. Additionally, the MM bit in the CPS register is set to 1.
When the MM bit is set, the shadow program counters (SPC0, SPC1, and SPC2) are
frozen, in a similar way to the FZ bit freezing the PC0–PC2 registers. Because the
shadow program counters continue to record PC-bus activity when the FZ bit is set,
they can be used to restart Freeze mode execution. This is achieved by an IRET or
IRETINV instruction being executed while in Monitor mode.
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Because Monitor mode traps are used by monitors in the debugging of trap and
interrupt handlers and are not intended for operating system use, they are dealt with
further in Chapter 7 (Software Debugging).

4.3.6 Freeze-mode Clock Interrupt Handler

The code shown in this example illustrates one way to program a clock that
keeps the current time. One important aspect of this routine is the need to minimize
overhead in the function, taking as little time as possible to update the clock when an
interrupt occurs. Allocating two Operating System Static registers (ks1, ks2) to con-
tain millisecond and second values reduces the need to access data memory inside the
handler.

; freeze mode clock interrupt handler
;

.equ IN,0x0200000 IN-bit of TMR reg

.reg CLOCK,ks1 ;1 ms increments

.reg SECS,ks2 ;time in seconds

.equ CPUCLK,25 ;CPU clock in MHz

.equ RATE,1000 ;ints per second

intr14:
const it0,IN ;IN-bit in TMR
consth it0,IN
mfsr it1,tmr
andn it1,it1,it0 ;clear IN-bit
mtsr tmr,it1
const it0,RATE
cplt it0,CLOCK,it0 ;check if 1 sec
jmpf it0,carry ;jump if CLOCK > RATE
 add CLOCK,CLOCK,1 ;increment CLOCK
iret

carry:
const CLOCK,0
add SECS,SECS,1 ;increment seconds
iret

This handler executes once each time an interrupt from the on-board timer oc-
curs. In the preceding code, timer interrupts are assumed to occur once each millisec-
ond, therefore the value in the CLOCK register will increment 1000 times in one se-
cond. When the 1000th interrupt occurs, the CLOCK register is set to 0, and the SECS
variable is incremented.

The 29K processor Timer Counter register includes a 24-bit Timer Count Value
(TCV) field that is automatically decremented on every processor cycle. When the
TCV field decrements to 0, it is written with the Timer Reload Value (TRV) field of
the Timer Reload (TMR) register on the next cycle. The Interrupt (IN) bit
of the TMR register is set at the same time. The following code illustrates a technique
to initialize the timer for this purpose.
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; freeze mode clock interrupt initialization
;

.equ TICKS,(CPUCLK*1000000/RATE)

.equ IE,0x1000000 ;IE-bit in TMR reg

clkinit:
const it0,TICKS ;i.e., 25,000
consth it0,TICKS
mtsr tmc,it0 ;set counter value
const it0,(IE|TICKS) ;value+int.–enable
consth it0,(IE|TICKS)
mtsr tmr,it0 ;set reload value
const SECS,0 ;set seconds=0
jmpi lr0
 const CLOCK,0 ;set clock=0

Assuming  the processor is running at 25 MHz, setting the timer reload and
count values to 25000 causes the count to decrement to 0 once each millisecond. This
will accumulate 1000 counts during one second of CPU execution. If two Operating
System Static registers can not be spared for this purpose, the SECS variable should
be located in main memory. The modified code for incrementing the seconds counter
in memory is shown below.

SECS: .word 0

carry:
const it0,SECS
consth it0,SECS
load 0,0,it1,it0
add it1,it1,1
const CLOCK,0
store 0,0,it1,it0
iret

Because the SECS variable is only referenced once per second, the performance
degradation due to this change would be minimal. The initialization code would also
need to be modified to set the memory location for SECS to 0 in this case.

4.3.7 Removing Freeze mode

Some interrupt handlers will benefit from removing Freeze mode, without en-
abling interrupts, in order to use the load-multiple and store-multiple instructions. A
less common, reason for removing Freeze mode is the ability to use ALU Status bits:
V, N, Z, and C. In either case, several registers must be saved before the Freeze-mode
bit in the CPS register can be cleared.

The removal of Freeze mode represents entry into the second stage of interrupt
handling, as shown in Figure 4-1.

The frozen Program Counters (PC0 and PC1) must be saved so that the handler
will be able to resume execution of the interrupted program. If external data memory
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is to be accessed, the CHA, CHD and CHC Channel registers must be saved so that
their contents can be restored after a load- or store-multiple instruction has been
executed. Saving the channel registers also saves the Count Remaining register,
which is contained within the CHC register. Additionally, before any ALU/Logical
operations are performed, the ALU register must be saved.

After the Program Counters have been saved and before any Channel or ALU
operation is executed, Freeze mode can be removed by clearing the Freeze (FZ) bit of
the CPS register. This immediately removes the freeze condition, and all registers,
including the Program Counters, will update normally. The PC0 register shall reflect
the PC-BUS activity on the cycle following the clearing of Freeze mode. One cycle
later, the PC1 register shall begin to reflect the PC-BUS activity for the current
execution stream. Other registers will only be updated when the relevant instructions
are performed (as described above).

The primary benefit of leaving Freeze mode is the ability to use the load- and
store-multiple instructions. After Freeze mode has been exited, the DA bit in the CPS
register is still set and instructions causing traps should not be used. Thus, many of
the restrictions listed in the section titled Operating in Freeze mode (section 4.3.4)
will still apply, with the additional requirement that several of the interrupt temporary
global registers will be needed to hold the saved registers.

An example of code that implements removing Freeze mode is shown below.

; Removing Freeze mode example code
;

.equ FZ,0x00000400 FZ-bit in CPS

.equ SM,0x00000010 SM-bit in CPS

.equ PD,0x00000040 PD-bit in CPS

.equ PI,0x00000020 PI-bit in CPS

.equ DI,0x00000002 DI-bit in CPS

.equ DA,0x00000001 DA-bit in CPS

.equ REMOVE,(SM|PD|PI|DI|DA)

.equ FREEZE,(REMOVE|FZ)

intr0: ;interrupt vector points here
mfsr it0,pc0 ;save PC0
mfsr it1,pc1 ;save PC1
mtsrim cps,REMOVE ;remove Freeze mode
mfsr it3,alu ;save ALU
mfsr kt0,cha ;save CHA
mfsr kt1,chd ;save CHD
mfsr kt2,chc ;save CHC

;
; The interrupt handler code goes here
;

mtsr chc,kt2 ;restore CHC
mtsr chd,kt1 ;restore CHD
mtsr cha,kt0 ;restore CHA
mtsr alu,it3 ;restore ALU
mtsrim cps,FREEZE ;set Freeze mode
mtsr pc1,it1 ;restore PC1
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mtsr pc0,it0 ;restore PC0
iret

The example code begins by saving the Program Counters (PC0 and PC1), us-
ing MFSR instructions to move the values from special registers to temporary global
registers it0 and it1.

Freeze mode is then disabled by clearing the FZ bit in the CPS register. (Note the
bits set by the MTSRIM instruction are system implementation dependent; the RE bit
may be required.) Once Freeze mode is turned off, the ALU register will be modified
by any ALU/Logical operation. Thus, it is important that the ALU register be saved
now. (Note that two processor cycles are needed, after Freeze mode is removed, to
allow the program state to properly update the program counters.)

If interrupts are not to be re-enabled and the kernel does not require the use of
global registers (kt0–kt2), then these registers can be used to extend the number of
available interrupt temporary registers.

The ALU register is saved in temporary kernel register it3. The Channel regis-
ters (CHA, CHD and CHC) are then saved in operating system temporary registers
kt0–kt2.

The interrupt handler is still executing with interrupts disabled at this point in
the program, but load- and store-multiple instructions can be freely used, as long as
they do not cause another interrupt or trap to occur. Note, even with the DA bit in the
CPS register set, certain traps such as a Data Access Exception can still be taken.
When the handler is finished, it must reverse the process by restoring all the saved
registers. No particular order of instructions is necessary, as long as Freeze mode is
entered before PC1 and PC0 are restored. Additionally, instructions affecting the
ALU register must not be used after the saved value has been restored. By restoring
the ALU unit after Freeze mode is entered, instructions are prevented from affecting
the ALU register.

When the IRET instruction is executed, the restored Program Counters
(PC0–PC1) are used to resume the interrupted program. The restored CPS (saved in
OPS by the CPU) and Channel register contents are used to restart any unfinished
operations.

If enough global registers are not available for saving the Program Counters and
Channel registers, memory could be used for this purpose. In this case, six words of
memory are needed. Example code for saving and restoring the registers in the user’s
memory stack is shown below. Note, the pushsr and popsr macro instructions first
introduced in section 3.3.1 (page 119), are used in the example code and are presented
again below:

.macro pushsr,sp,reg,sreg
mfsr reg,sreg
sub sp,sp,4
store 0,0,reg,sp
.endm
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; .macro popsr,sreg,reg,sp
load 0,0,reg,sp
add sp,sp,4
mtsr sreg,reg
.endm

; save registers on memory stack
;

pushsr msp,it0,pc0 ;save PC0
pushsr msp,it0,pc1 ;save PC1
pushsr msp,it0,alu ;save ALU
pushsr msp,it0,cha ;save CHA
pushsr msp,it0,chd ;save CHD
pushsr msp,it0,chc ;save CHC

;
const it3,FZ
mfsr it2,cps
andn it2,it2,it3
mtsr cps,it2 ;remove Freeze mode

;
; The interrupt handler code goes here
;

const it3,FZ
mfsr it2,cps
or it2,it2,it3
mtsr cps,it2 ;set Freeze mode

;
popsr chc,it0,msp ;restore CHC
popsr chd,it0,msp ;restore CHD
popsr cha,it0,msp ;restore CHA
popsr alu,it0,msp ;restore ALU
popsr pc1,it0,msp ;restore PC1
popsr pc0,it0,msp ;restore PC0
iret

The previous code can be made more efficient by saving more registers at a time,
at the expense of using a greater number of global registers. Using store-multiple
instructions to save the registers’ contents takes advantage of Burst mode in the
processor memory system.

4.3.8 Handling Nested Interrupts

Handling Nested Interrupts is a complex topic, and the method presented in this
section discusses multiple levels of interrupt nesting [Mann 1992b]. Two methods
are presented. The first method results in an interrupt mechanism similar to the
interrupt scheme used by some CISC microprocessors. The second method takes
advantage of the 29K family RISC architecture, and offers better performance. The
following section, titled An Interrupt Queuing Model  (section 4.3.10), provides an
alternative solution to the problem that offers better interrupt processing throughput.

For any interrupt handler taking a significant amount of time to execute, it is
usually important to permit interrupts of a higher priority to occur. This keeps the
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latency of higher priority interrupts within acceptable limits. Whenever an interrupt
is allowed to preempt the execution of another interrupt handler, the interrupts are
said to be “nested.” That is, execution of the lower priority handler is interrupted, and
the higher priority handler begins execution immediately.

To allow for nested interrupts, it is only necessary to save the registers or
temporary variables that could be overwritten by a new interrupt handler’s context.
As in the previous example, the program counters (PC0 and PC1) and channel
registers (CHA,CHD, and CHC) need to be saved. In addition, because more than
one execution thread may need to be restarted, the Old Processor Status (OPS) and
ALU registers must be saved.

Because an interrupt may occur immediately after being enabled, it is important
that the PC0 and PC1 registers reflect the activity of the current execution PC-BUS.
As already described in the Removing Freeze Mode section, a two cycle delay occurs
before the PC1 register starts updating. Thus Freeze mode must be removed two
cycles before interrupts are enabled.

If the interrupt handler intends to use integer multiply or divide instructions or
emulated floating point instructions, the contents of the Indirect Pointers (IPA, IPB
and IPC) and the Q register should also be saved. Before interrupts are enabled, it is
also important to clear the CHC register, so that incomplete  load- or store-multiple
instructions are not restarted when the first interrupt return (IRET) instruction is
executed. Figure 4-3 illustrates the context in which this could lead to unfortunate
results.

In Figure 4-3, execution of a load-multiple instruction in the main program is  in
progress when an external interrupt occurs. This results in control being given to a
first-level interrupt handler. The handler enables interrupts, and another interrupt oc-

Figure 4-3.  Interrupted Load Multiple Instruction
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curs (e.g., a Timer Interrupt). When this happens, the second-level interrupt handler
is given control.

After completing its processing, execution of an IRET instruction causes the
processor to use the information in its CHC register to resume the interrupted load-
multiple instruction; but this is in the context of the first-level interrupt handler, rath-
er than in the main program where it was interrupted.

This CHC discussion is merely an explanation to stress that the CHC register
should not only be saved and restored in each interrupt level, but that CHC should
also be cleared before interrupts are enabled. This will ensure that only when the
proper copy of the CHC is restored will execution of an IRET instruction restart the
interrupted load- or store-multiple operation.

A problem, relating to clearing the CHC register, has been observed with a
number of 29K family members. The problem effects the last word of a LOADM
instruction reaching its destination register when the LOADM is interrupted. The
problem can be overcome by performing a LOADM or STOREM instruction in the
interrupt handler after coming off Freeze mode but before reenabling interrupts. The
LOADM or STOREM must use a CR value of one or greater. Processors have a
hidden internal shadow CHC which may not be cleared by a move of zero into the
CHC register. A LOADM or STOREM instruction causes the hidden CHC register to
be cleared. The problem can also be overcome by performing a STORE or LOAD
instruction while still in Freeze mode. If interrupts are not reenabled by the interrupt
handler, no special steps are required to deal with the interrupted LOADM difficulty.
The problem is of little importance, as interrupt handlers generally perform the
solutions described without additional code being added.

Additionally, when a trap occurs as a result of a Data Exception Error (DERR)
the TF bit in the CHC will become set. It is important that the CHC register be cleared
rather than be restored for the context containing the violating data access. Otherwise
an interrupt handler loop will result.

4.3.9 Saving Registers

The following code illustrates saving the necessary registers, turning off Freeze
mode, and enabling interrupts.

;multi-level nested interrupt handler
;example code
;

intr0: ;save registers
pushsr msp,it0,pc0 ;save PC0
pushsr msp,it0,pc1 ;save PC1
pushsr msp,it0,alu ;save ALU
pushsr msp,it0,cha ;save CHA
pushsr msp,it0,chd ;save CHD
pushsr msp,it0,chc ;save CHC
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pushsr msp,it0,ops ;save OPS
;
;come off freeze - could use mtsrim

const it1,FZ
mfsr it0,cps ;get CPS
andn it0,it0,it1
mtsr cps,it1 ;remove Freeze mode

;
;save more regs while PC0,1 get in step

pushsr msp,it0,ipa ;save IPA
pushsr msp,it0,ipb ;save IPB
pushsr msp,it0,ipc ;save IPC
pushsr msp,it0,q ;save Q

;
mtsrim CHC,0 ;clear CHC
andn it0,it1,(DI|DA)
mtsr cps,it1 ;enable interrupts

dispatch:
;
; Interrupt handler code starts here.
; Dispatch to appropriate service routine.

Saving the Indirect Pointers and Q register is a user preference, but their con-
tents are modified by several 29K processor instructions. It is important to bear this in
mind when writing interrupt handlers. The safest approach is to always save the con-
tents of these registers.

The above code uses a stack to save the register contents, similar to the way a
CISC processor’s microcode saves processor state. However, better performance can
be achieved by use of the large number of processor registers to cache the interrupted
context before having to resort to an interrupt context stack. The following code per-
forms much the same task as the previous code, but it can reach the interrupt dispatch-
er (label dispatch:) in twelve cycles less for the first interrupt and costs only an addi-
tional two cycles for interrupts at greater levels of nesting (assuming MTSRIM is
used to update the CPS register).

This code implements a first level interrupt context cache in global registers
kt4–kt10. Global register kt11 is used to keep a record of the current level of interrupt
nesting; and should be initialized to –1, that is cache empty. Considering the speed of
the 29K family, it is likely  the first-level interrupt processing will be complete before
a further interrupt occurs, thus avoiding the need to save context on a memory stack.
The use of registers rather than memory to save context also results in reduced laten-
cy between the time the interrupt occurred and the appropriate service routine starts
executing.

The example code below does not store the indirect pointer registers (IPA, IPB,
IPC, and Q). These registers do not need to be saved except by interrupt handlers
which either make use of the indirect pointers, use emulated arithmetic instructions,
or use integer multiply or divide. Best performance is achieved by postponing the



212 Evaluating and Programming the 29K RISC Family

saving of these registers to the specific handler routine which expects to use them.
Correspondingly, a handler which uses them is also responsible for restoring them.

.equ Kmode,(PD|PI|SM|IM)

not_1st: ;save on stack
pushsr msp,it0,pc0 ;save PC0
pushsr msp,it0,pc1 ;save PC1
pushsr msp,it0,alu ;save ALU
pushsr msp,it0,cha ;save CHA
pushsr msp,it0,chd ;save CHD
pushsr msp,it0,chc ;save CHC
pushsr msp,it0,ops ;save OPS
jmp dispatch–8
 mtsrim cps,REMOVE ;remove Freeze mode

intr0: ;save registers
jmpf kt11,not_1st ;test cache in use
 add kt11,kt11,1 ;level count

;
cache: ;save in cache

mfsr kt4,pc0 ;save PC0
mfsr kt5,pc1 ;save PC1
mtsrim cps,REMOVE ;remove Freeze mode
mfsr kt6,alu ;save ALU
mfsr kt7,cha ;save CHA
mfsr kt8,chd ;save CHD
mfsr kt9,chc ;save CHC
mfsr kt10,ops ;save OPS

;
mtsrim chc,0 ;clear CHC
mtsrim cps,Kmode ;enable interrupts

;
dispatch:
;
; Interrupt handler code starts here.
; Dispatch to appropriate handler.

4.3.10 Enabling Interrupts

Interrupts are enabled by clearing the DI and DA bits of the CPS. If an un-
masked interrupt, INTR[0..3], is pending at this point (the IP bit of the CPS register is
set to 1), the processor will immediately process the interrupt and execute the handler
at the new vector address.

In the previous code example, when interrupts are enabled, and if an interrupt
occurs, the succeeding register saves will not be performed; however, the recently
invoked interrupt handler will save these registers if it intends to enable interrupts
during its execution. The contents of the Indirect Pointers and Q register will be pre-
served, or not touched, depending on the nature of the nested interrupt handler.

When clearing the DI and DA bits of the CPS register, the state of the other bits
must be saved. The first example code illustrates this by using an ANDN instruction
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to AND the c urrent contents of the register, with a complement bit pattern of the DA
and DI bits in that register (i.e., 11111111 1111 1100).

Figure 4-4 shows the interrupt enable logic of the Am29000 processor. Notice
that interrupts generated by the on-chip timer are controlled by the DA bit in the CPS
register. This indicates it is impossible to enable traps for use by ASSERT and other
instructions, without also permitting asynchronous interrupts from the timer to occur
(unless the on-chip timer is not being used). If it is necessary to avoid timer interrupts,
the IE bit in the TMR register can be saved, then cleared to disable timer interrupts.

The interrupt inputs to the Prioritizer logic (as shown in Figure 4-4) are not
latched, and must be continuously asserted by an interrupting external device until
the interrupt has been recognized. Recognition of the interrupt is usually accom-
plished by executing an instruction that accesses the interrupting device. This re-
moves the interrupt request, which must be done before interrupts are enabled; other-
wise, the same interrupt will recur immediately when interrupts are enabled.

The Interrupt Mask (IM) field of the CPS register can be used to disable recogni-
tion of interrupt requests on the INTR inputs. The mask bits implement a simplified
interrupt priority scheme that can be set up to recognize only higher-priority inter-
rupts, while another handler is in execution.

The two-bit IM field allows four priority levels to be established. An IM field
value of zero (IM=00) enables only the interrupts occurring at the INTR0 input.
When IM = 01, both INTR0 and INTR1 are enabled; if IM = 10, then INTR0, INTR1,
and INTR2 are enabled; and if IM = 11, then INTR0, INTR1, INTR2, and INTR3 are
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Figure 4-4.  Am29000 Processor Interrupt Enable Logic
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enabled. The only way to disable the INTR0 input is to set the DI (Disable Interrupts)
bit to 1 in the CPS register.

An example code fragment that sets the IM bits for a handler, according to its
priority, is shown below.

; set interrupt mask according to priority, then enable interrupts
;

.equ MYLEVEL,2

.equ IM,0b1100

setim:
mfsr it0,cps
andn it0,it0,(IM|DI|DA)
or it0,it0,((MYLEVEL-1)<<2)
mtsr cps,it0

In the above example, after the CPS has been moved to a global register, the bits
corresponding to the IM field, the DI bit, and the DA bit are cleared by ANDing them
with a complement mask. Next, the bits defined by the MYLEVEL definition (de-
creased by 1) are ORed into the proper position in the IM field, and the result is stored
back into the CPS. With the values shown, the IM field is set to the value 01, which
enables interrupts on INTR0 and INTR1.

In the main part of the handler, any Am29000 processor instructions can be
executed; however, because most of the global registers have not been saved, the han-
dler may not have any extra working space. Depending on the number of registers
needed to carry out the handler’s task, a few additional global registers may have to
be saved, then restored.

4.3.11 Restoring Saved Registers

The final act of an interrupt or trap handler, before executing the IRET instruc-
tion, is to restore the contents of all saved registers so the complete environment of
the interrupted task is restored before execution is resumed. The proper approach to
restoring the saved registers is to reverse the steps taken to save them.

Any additional registers saved by a specific handler called by the interrupt dis-
patcher must restore the additional registers before the generic interrupt return code
is executed. In the case of an external interrupt, it is also important that the specific
handler has cleared the external device causing the interrupt line to be held active.
Otherwise, the processor may be forced into an interrupt handler loop. Because of
internal delays in the processor, the external interrupt must be cleared at least three
cycles before interrupts are enabled. In practice this requirement is easily met.

At this point, interrupts are still enabled. The last portion of the restoration pro-
cess must run with interrupts disabled, because important processor configuration
data is being reloaded, and an interrupt occurring during this phase could hopelessly
confuse the process.
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The final code fragment is shown below:

; code to disable interrupts and complete
; the restoration of registers prior to
; issuing an IRET instruction.
;

popsr msp,it0,q ;restore Q
popsr msp,it0,ipc ; IPC
popsr msp,it0,ipb ; IPB
popsr msp,it0,ipa ; IPA

;
const it3,(FZ|DI|DA)
mfsr it2,cps ;disable interrupts
or it2,it2,it3 ;and
mtsr cps,it2 ;set Freeze mode

;
popsr ops,it0,msp ;restore OPS
popsr chc,it0,msp ; CHC
popsr chd,it0,msp ; CHD
popsr cha,it0,msp ; CHA
popsr alu,it0,msp ; ALU
popsr pc1,it0,msp ; PC1
popsr pc0,it0,msp ; PC0
iret

The interrupt context restore code for the first-level context cache method is
shown below. Restoring the context from registers is much faster than accessing an
external memory stack.

.equ DISABLE,(PD|PI|SM|DI|DA)

.equ FREEZE,(DISABLE|FZ)
;

sub kt11,kt11,1 ;decrement
jmpf kt11,not_1st ;level counter
 mtsrim cps,FREEZE ;disable and Freeze

;
;restore from cache

mtsr ops,kt10 ;restore OPS
mtsr chc,kt9 ;restore CHC
mtsr chd,kt8 ;restore CHD
mtsr chc,kt7 ;restore CHA
mtsr alu,kt6 ;restore ALU
mtsr pc1,kt5 ;restore PC1
mtsr pc0,kt4 ;restore PC0
iret

not_1st: ;restore from stack
popsr ops,it0,msp ;restore OPS
popsr chc,it0,msp ;restore CHC
popsr chd,it0,msp ;restore CHD
popsr cha,it0,msp ;restore CHA
popsr alu,it0,msp ;restore ALU
popsr pc1,it0,msp ;restore PC1
popsr pc0,it0,msp ;restore PC0
iret
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4.3.12 An Interrupt Queuing model

One approach to solving the latency demands of a high-performance system is
to simply queue interrupts in a linked list when they occur, and process them in a
higher-level context. Figure 4-5 illustrates the structure and linkages of individual
entries in the example queue. This method results in a greater interrupt processing
throughput. Less time is spent executing Freeze mode context stacking and unstack-
ing when compared with the previously described nested interrupt handling method.

In the example program, only a few global registers are allocated—because
placing an entry into a global queue is a simple operation.

The example code in this section applies to handling receive data interrupts
from a UART port, but several types of interrupts can easily share the same queue.
For simplicity, queue entries consist of three words plus an optional data block.

Pointer to the next entry in the queue (forward link).

Received data count / active flag.

Pointer to the handler for this entry.

An optional data block.

Once an I/O operation has begun (in this case, reception of data from a UART),
an interrupt occurs for the UART device and the handler is called to place a new entry
into the global queue.

As each byte arrives, the first section of the handler continues the I/O process,
often by simply reading the data from the UART and indicating that the data has been
accepted. This causes the UART to remove the interrupt input and prepare to receive
new data.

IRQTIRQH Next Entry

Count/Active Flag

Pointer to Handler

Optional Data

Next Entry

Head of Queue Tail of QueueFirst Entry Second (last) Entry

Figure 4-5.  Interrupt Queue Entry Chaining

Count/Active Flag
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Only one receive operation for a given interrupt can be in progress at a time. This
allows the queue entry to contain three things: a static entry descriptor that holds a
pointer to the next entry in the queue, the byte count, and a pointer to the high-level
handler function.

The example shown below uses four global (interrupt temporary) registers for
its queue building processes. Because interrupts are disabled during this entire part of
the process, handlers for other interrupts can use these same registers.

After the first byte has been stored in the static buffer, the handler must deter-
mine if the queue is empty or if it already contains one or more entries. If empty, the
handler can immediately invoke a routine to process the entry. If the queue contains
one or more entries, the current entry is linked into the queue. The code is shown be-
low.

; UART receive interrupt handler (intr0)
;

.reg irqh,gr80 ;queue head pointer

.reg irqt,gr81 ;queue tail pointer

.data
entry:

.word 0,0,receive ;entry descriptor

.block 256 ; and data block

intr0:
const it1,entry+4 ;address of entry
consth it1,entry+4
load 0,0,it0,it1 ;get count
add it3,it1,8 ;address of data
add it3,it3,it0 ;add count
add it0,it0,4 ;increment count
store 0,0,it0,it1 ;count->entry+4
const it2,uart_rcv ;UART data address
consth it2,uart_rcv
load 0,1,it2,it2 ;get data from UART
store 0,1,it2,it3 ;save in buffer

cpeq it0,it0,4 ;first byte?
jmpt it0,startup ;yes, start daemon
 nop
iret ;no, return

startup: ;go daemon if not already running
cpeq it2,irqh,0 ;is queue empty
jmpf it2,add ;no, link this entry
 sub it1,it1,4 ;point to entry
jmp daemon ;yes, go daemon
 add irqh,it1,0 ;init queue header

add:
store 0,0,it1,irqt ;tail->entry
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add irqt,it1,0 ;entry->tail
iret ;return

When interrupts occur for the second and succeeding bytes, they are stored in
the local data block, following the static descriptor entry.

After each byte has been stored, the handler can immediately return because a
routine has been invoked to process the entire queue. In UNIX systems, this routine is
often called a daemon. Once invoked, it continues to process entries until the queue is
empty, at which point it terminates its own execution. The title Dispatcher shall be
used to describe the routine  invoked to process queue entries (see Figure 4-6).  A
dispatcher routine may operate in User mode;  in such case it’s operation is very simi-
lar to a signal handler (described in section 4.4).

End

Main Program

IRET

Figure 4-6.  An Interrupt Queuing Approach

Freeze mode
 code

Interrupt
queue

processing

add queue entry

Dispatcher
add queue entry

add queue entry

The queue processing Dispatcher for this example must run with interrupts en-
abled; otherwise, new data bytes could not be received from the UART, and other in-
terrupt driven processes could not execute. Before interrupts are enabled, a number
of processor registers must be saved, as indicated earlier. Nine kernel temporary reg-
isters are allocated for this purpose (kt3–kt11). Because the Dispatcher  is used to pro-
cess all queued interrupts, it will not be necessary to push these temporary registers
onto the memory stack. The example queue processing code is shown below.

; queue processing Dispatcher
;

.equ DISABLE,(PD|PI|SM|DI|DA)

.equ Kmode,(PD|PI|SM|IM)

.equ FREEZE,(DISABLE|FZ)
;
Dispatcher:

mfsr kt3,PC0 ;save PC0
mfsr kt4,PC1 ;save PC1
mfsr kt5,PC2 ;save PC2
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mfsr kt6,CHA ;save CHA
mfsr kt7,CHD ;save CHD
mfsr kt8,CHC ;save CHC
mfsr kt9,ALU ;save ALU
mfsr kt10,OPS ;save OPS
mtsrim CPS,DISABLE ;remove Freeze mode
mtsrim CHC,0 ;clear CHC
add irqt,irqh,0 ;set tail = head

loop:
mtsrim CPS,Kmode ;enable interrupts
add kt11,irqh,8 ;point to handler
load 0,0,kt11,kt11 ;get address
calli kt11,kt11 ;call handler
 nop
mtsrim CPS,DISABLE ;disable interrupts

cpeq kt11,irqt,irqh ;queue empty?
jmpt kt11,finish ;yes, wrapup
 nop
load 0,0,kt11,irqh ;no, get next entry
jmp loop ;and loop back
 add irqh,kt11,0 ;with head<-next

finish:
mtsrim cps,FREEZE ;enable freeze mode
const irqh,0 ;make queue empty
mtsr PC0,kt3 ;restore PC0
mtsr PC1,kt4 ;restore PC1
mtsr PC2,kt5 ;restore PC2
mtsr CHA,kt6 ;restore CHA
mtsr CHD,kt7 ;restore CHD
mtsr CHC,kt8 ;restore CHC
mtsr ALU,kt9 ;restore ALU
mtsr OPS,kt10 ;restore OPS
iret ;terminate execution

Note that the example code does not save the Indirect Pointers (IPA–IPC) or the
Q register. If any of the individual high-level handlers will disturb the contents of
these registers, they must also be saved. If high-level handlers are written carefully, it
will not be necessary to save.

The queue processor is responsible for removing entries from the queue and
calling the handler associated with each entry. In the above example, a pointer to the
high level handler is contained in the third word of the entry descriptor (in this case,
receive).

The handler is called after Freeze mode has been disabled, and interrupts are en-
abled. When the handler receives control, the IRQH register points to the queue entry.

The high-level handler is responsible for removing the data associated with a
queue entry, and it must do this with interrupts disabled; however, interrupts need
only be disabled while the data is being removed and when the queue entry data count



220 Evaluating and Programming the 29K RISC Family

is reset to zero. Any other portions of the handler not relevant to these tasks can run
with interrupts enabled.

After the handler has disposed of the data, it returns control to the Dispatcher,
which disables interrupts, enables Freeze mode, and attempts to process the next
entry in the queue. If no entries remain, it restores the saved registers from kernel
temporary registers kt3–kt10, and executes an IRET instruction to return control to
the  interrupted task.

In cases where a transaction with an external device takes a long time, compared
with the execution time of the high-level handler, the data is moved in chunks.
An execution profile of this process might include the following threads.

Interrupt-1

Process daemon

Interrupt-2

High-level Handler-1

High-level Handler-2

Handler-1 is
interrupted

interrupted

Handler-1
completes

Process daemon

Figure 4-7. Queued Interrupt Execution Flow

User process

User process
is interrupted

User process 
resumes exeuction

Handler-2 is

returns

Interrupt function stores several bytes of data into the data block.

Process Dispatcher executes the high-level handler, which empties the bytes,
zeros the count in the queue entry.

Another handler might execute for another active interrupt task.

Interrupt function creates new queue entry for the next series of received data
bytes.

High-level handler gets called to remove the bytes after the process Dispatcher
has finished with the current queue entry.

Figure 4-7 illustrates  this process. The occurrence of Interrupt-1 causes the on-
going User process to be interrupted, and initiates execution of its interrupt handler.
The process builds the first queue entry and initiates execution of the Process Dis-
patcher. The Dispatcher passes control to High-level Handler-1, which begins execu-
tion.

This handler is interrupted by the occurrence of Interrupt-2 and Interrupt-1
events as it executes between these interruptions. When Handler-1 completes, it re-
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turns control to the Process Dispatcher, which selects the next queue entry and turns
control over to high-level Handler-2.

During this execution, one more Interrupt-1 event occurs, which results in the
creation of another queue entry. This entry is processed when high-level Handler-2
finishes its execution and the Process Dispatcher again receives control.

High-level Handler-1 processes the remaining data and returns control to the
Process Dispatcher which, upon finding no more queue entries, returns to the inter-
rupted user process.

Each execution of the interrupt processes Interrupt-1 or Interrupt-2, as well as
the Process Dispatcher and high-level Handler-1 and high-level Handler-2 code seg-
ments, is quite short; however, with the short execution approach, individual inter-
rupt priorities are not taken into account. If priority handling of interrupts is impor-
tant, a different approach is needed. For example, entries could be linked into a single
queue, with their position in the queue determined by their priority. In this case, more
sophisticated queue handling procedures would have to be implemented; however, a
given high-level handler would still execute to completion before another handler is
given control.

To handle fully-nested priority-oriented interrupts, that is the ability of a higher
priority interrupt to preempt the execution of a lower priority handler, requires
an interrupt stack (possibly with the support of a interrupt context cache). It is ques-
tionable whether the responsiveness of the nested interrupt technique would override
the increased overhead of saving and restoring many sets of registers.

In the approach shown in the previous code only nine global registers are re-
quired. These serve for all interrupt handlers in the system. During the execution
of the Freeze-mode interrupt handler only four interrupt temporary registers are used
(it0–it3).

4.3.13 Making Timer Interrupts Synchronous

The 29K on–chip timer can be configured to generate an interrupt when the
Timer Counter Register (TCR) decrements to zero; more accurately, when the 24–bit
TCV field of the TCV register reaches zero. The TCV field is decremented with each
processor cycle; when it reaches zero, it is loaded with the Timer Reload Value field
(TRV) in the Timer Reload register (TR).

When the Interrupt Enable bit (IE) of the TR register is set and the TCV reaches
zero, the processor will take a timer interrupt unless the DA bit is set  in the Configu-
ration Register (CFG). Two–bus and microcontroller members of the 29K family can
additionally disable timer interrupts by setting the TD bits in the CPS register. Timer
interrupts are not disabled by setting the DI bit in the CFG. This means timer inter-
rupts can not be simply disabled along with other external asynchronous interrupts
by setting DI. Note, the TRAP[1,0] asynchronous inputs are not disabled by setting
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the DI bit. For this reason, the use of TRAP[1,0] pins requires complex software sup-
port. It is best to avoid the use of these input pins.

It is often desirable to disable timer interrupts during critical code stages, be-
cause timer interrupts often lead to such tasks as context switching. However, timer
interrupts may be required to support a real–time clock, and to maintain accuracy, a
timer interrupt can not be missed. The timer interrupt must be taken but processing
the event can be postponed till later, when it can be dealt with. To do this efficiently,
the Freeze mode interrupt handler for the timer should set register ast to true. This
register is a kernel space support register chosen from the range ks0–ks15
(gr80–gr95). It indicates an Asynchronous Software Trap (AST) is ready for proces-
sing. The ast register can be quickly tested with an ASSERT type instruction, as
shown below:

mfsr it0,ops ;get OPS register, DA already clear
andn it0,it0,1 ;clear DI bit
mtsrim ops,it0 ;enable interrupts
asneq V_AST,ast,0 ;trap if ast != 0, timer ’event’
iret ;otherwise iret

Clearing the DI bit reenables asynchronous interrupts (with the exception that
TRAP[1,0] are already active); but we must check to see if an AST is pending (timer
event). The high level timer processing is performed before the IRET instruction is
executed, via trapware supporting the V_AST trap.

4.4 USER-MODE INTERRUPT HANDLERS

Many present day operating systems allow interrupt handlers to be written in
high-order languages. User mode routines for 29K Processor Family based systems
are no different. When providing this facility, the operating system designer must be
aware of the following concerns.

User mode programs are often written by programmers who lack specific
knowledge of the operating system and it’s allocation of global registers.

The User mode handler, when written in a high-level language, such as C, will
require access to the local register stack, as well as global registers defined for
its management.
A good approach for addressing these concerns is to perform all necessary regis-

ter saving, with interrupts disabled, while in Supervisor mode; remove the cause of
the interrupt, then enable interrupts and enter User mode to execute the user’s inter-
rupt handler code. This allows interrupt (signal) handlers to be compatible with
AMD’s Host Interface (HIF) v2.0 Specification (see section 2.2), which includes the
definition of operating system services . These services install and invoke user-sup-
plied interrupt handlers for floating-point exceptions and keyboard interrupt
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(SIGFPE and SIGINT) events. It also allows the operating system to perform its own
register preservation and restoration processes, without burdening the user with tech-
nical operating system details. Complete listings of the code contained in this section
are provided in Appendix B and also by AMD in their library source code. Users who
intend to modify any of this code should bear in mind that the SPILL , FILL , setjmp,
longjmp, and Signal Trampoline code are highly interdependent.

The code uses an expanded interface definition that uses a set of global registers
to hold the important local register stack support values emitted by compiler gener-
ated code in User mode programs. The registers defined for this environment are
shown in Table 4-2, and were discussed in detail in section 3.3 (page 117).

Table 4-2. Expanded Register Usage

Names Registers
Usage Description

tav gr121 Trap Argument Vector
tpc gr122 Trap Return Pointer
lrp gr123 Large Return Pointer
slp gr124 Static Link Pointer
msp gr125 Memory Stack Pointer
rab gr126 Register Allocate Bound
rfb gr127 Register Free Bound

In order to prepare for execution of a User mode handler, the HIF specification
indicates that the Supervisor mode portion of the handler must save important regis-
ters in the user’s memory stack, as shown in Figure 4-8. In the figure, the stack point-
er (msp) is shown decremented by 48 bytes (12 registers times 4 bytes each), and
positioned to point to the saved value of register tav.

Other registers may need to be saved to allow complete freedom in executing
29K processor instructions (such as multiply or divide trap routines) in the User-
mode handler code. Candidates for saving are the Indirect Pointers (IPA–IPC), the Q
register, the stack frame pointer, fp (lr1), and the local register stack bounds in rfb. In
addition, because high-level languages use many of the global registers as tempo-
raries, these (gr96–gr124) may also have to be saved.

4.4.1 Supervisor mode Code

When an interrupt occurs, the supervisor portion of the interrupt handler is
executed. This code is responsible for saving important processor registers, as shown
in Figure 4-8.  The assembler macro instructions, used earlier in this chapter (push,
pop, pushsr and popsr), and described in detail in section 3.3.1 (page 119), are used in
the following code examples to aid in pushing special registers onto the memory
stack.
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The code to save the registers is executed in Supervisor mode, with Freeze mode
enabled, as indicated in prior section 4.3.7. This ensures that a higher priority inter-
rupt does not disrupt this critical section of code. The code is shown below.

; supervisor portion of interrupt handler
;
sigint:

jmp interrupt
 const it0,2 ;SIGINT

;
sigfpe:

const it0,8 ;SIGFPE
;
interrupt :

sub msp,msp,4
store 0,0,it0,msp ;save signal number
sub msp,msp,4
store 0,0,gr1,msp ;push gr1
sub msp,msp,4
store 0,0,rab,msp ;push rab
const it0,512
sub rab,rfb,it0 ;set rab = rfb-512

;
pushsr msp,it0,PC0
pushsr msp,it0,PC1
pushsr msp,it0,PC2
pushsr msp,it0,CHA
pushsr msp,it0,CHD
pushsr msp,it0,CHC
pushsr msp,it0,ALU
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pushsr msp,it0,OPS
;

sub msp,msp,4
store 0,0,tav,4 ;push tav

trampoline:

At this point in the code, with all of the critical registers saved, the memory stack
will appear as shown in Figure 4-8. When the User mode interrupt handler is com-
plete, these registers will be restored.

Special provisions were made in the code above in anticipation of the following
situation: If a FILL  operation is interrupted, and the trampoline code has not yet
realigned the rab register to rfb-WindowSize, another interrupt occurring at that
point could again activate the trampoline code. This interrupt could cause the tram-
poline code to assume that a FILL  operation was in progress, thereby causing it to
“reposition” the value in PC1 to recommence the (assumed) FILL  operation.

; Now come off freeze, and go to user -mode code.
; ensure load/store does not restart
;
trampoline : ;ensure load/store 

mtsrim chc,0 ; does not restart
const it1,RegSigHand
consth it1,RegSigHand
load 0,0,it1,it1
cpeq it0,it1,0
jmpt it0,SigDfl ;jump if no handler(s)
 add it0,it1,4
mtsr pc1,it1
mtsr pc0,it0
iret

Two types of interrupts are handled by this code: keyboard interrupts and float-
ing-point exceptions. It is assumed that the interrupt vectors were previously set to
vector to either sigint or sigfpe, depending on the type of interrupt. Interrupt tempo-
rary (it0 ) is used to contain the type of interrupt (signal), when entering the common
code at label interrupt .

Once the memory stack is set up as indicated, the User mode portion of the han-
dler (beginning at label sigcode) is placed into execution by loading Program Count-
ers (PC0 and PC1) with the address of the handler. Then while still in Freeze mode
with interrupts disabled, an IRET instruction is executed to begin execution of the
handler.

The HIF specification indicates that User mode signal handlers must call one of
the specified signal return services to return control to the user’s code at the appropri-
ate point. When one of these services (sigret, sigrep, sigdfl, or sigskp) is called via an
ASSERT instruction, msp will point to the same location shown in Figure 4-8, so the
supervisor portion of the handler can properly restore the interrupted task’s environ-
ment.
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The following code fragment illustrates how one of the return services restores
all of the registers. It is invoked by the HIF Service Trap (69) with interrupts disabled
and Freeze mode enabled—as is the case with any interrupt or trap.

; Signal return service, restore registers
;
sigret:
; assume msp points to tav
 load 0,0,tav,msp ;restore tav

add msp,msp,4
;

popsr OPS,it0,msp ;pop specials
popsr ALU,it0,msp
popsr CHC,it0,msp
popsr CHD,it0,msp
popsr CHA,it0,msp
popsr PC2,it0,msp
popsr PC1,it0,msp
popsr PC0,it0,msp
load 0,0,rab,msp ;pop rab
add msp,msp,4
load 0,0,it0,msp ;pop rsp
add gr1,it0,0
add msp,msp,8 ;discount signal 
iret ; number

As indicated in the HIF Specification, User mode interrupt handlers must save a
number of additional registers, to prepare for executing high-level language code.
The following section discusses some of the necessary preparations.

4.4.2 Register Stack Operation

The 29K Processor Family contains 128 general registers that can be configured
as a register stack. In this case, global register (gr1) is used to point to the first register
in this group that belongs to the current process. This first register is addressed as lr0
(local register 0).

Several additional global registers provide other information describing the
register stack bounds. These are all shown in Figure 4-9, which illustrates the imple-
mentation of the local register file as a shadow copy of the memory-based register
stack cache.

The rab, rsp, lr1, and rfb registers (shown in Figure 4-9) contain the bounds of
the current memory stack cache in the form of addresses.

The rsp (register stack pointer) shown in Figure 4-9  is assigned to global regis-
ter gr1, whose low-order 9 bits (bits 0 and 1 are not used for register addressing) are
used to address the local register file whenever a local register number is encountered
in a 29K processor instruction. Therefore, local register lr2 is actually referenced by
the CPU, by adding 8 (2 words) to the value held in register gr1.

Other important details of the register stack and local register file are discussed
in Chapter 7 (Operating System Issues).



227Chapter 4       Interrupts and Traps

Figure 4-9. Register and Stack Cache
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The important concern in writing interrupt handlers that use local registers is
that the local register file bounds and contents at the time of an interrupt reflect the
current state of the interrupted program.

For example, looking at Figure 4-9, when an application calls a function, the ac-
tivation record for the new function is allocated immediately below the current rsp;
occupying part of the register file whose corresponding section is indicated as “un-
used.” If the new activation record is larger than the currently unused space (i.e., rsp
is decremented to point below the current value in the rab register), the stack is said to
have overflowed. When this overflow occurs, some of the existing registers in the
local register file must be “spilled” to make room for the new activation record. The
number of registers involved in the “spill” must be sufficient to allow the entire new
activation record to be wholly contained in the local register stack.

A similar situation occurs when a called function is about to return to its caller
and the entire activation record of the caller is not currently contained in the local
register file. In this case, the portion of the caller’s activation record not located in the
register file must be “filled” from the memory stack cache. Management of the local
register file requires the use of User mode functions that perform SPILL  and FILL
operations, in concert with a Supervisor mode trap handler when the SPILL  or FILL
operation is needed.
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4.4.3 SPILL and FILL Trampoline

High-level language compilers automatically generate code that tests for a re-
quired SPILL  upon entry to a called function, and for a required FILL  operation just
before a called function exits. In either case, the SPILL  or FILL  is initiated by an
ASSERT instruction whose assertion fails. This causes the SPILL  or FILL  trap han-
dler to begin its execution in Supervisor mode with special registers frozen.

The Supervisor mode code must initiate execution of the appropriate handler by
leaving Supervisor mode, and doing its processing in User mode. Several benefits are
obtained from operating SPILL  or FILL  handlers in User mode. First, the overhead
of leaving Freeze mode is avoided, handlers must leave Freeze mode because they
require the use of load- and store-multiple instructions. Additionally, FILL  and
SPILL  handlers may require several machine cycles to complete, if they were to op-
erate with DA set, a potential interrupt latency problem would result.

The following entry points, SpillTrap  and FillTrap  are directly invoked by
their corresponding hardware vectors when the associated ASSERT instruction
is executed. The operands SpillAddrReg and FillAddrReg  are aliased to kernel stat-
ic registers (two of ks0–ks15), which hold the addresses of the User mode SPILL  and
FILL  handlers.

Because the processor’s execution jumps from Supervisor mode to User mode
in this fashion, the SpillTrap  and FillTrap  code is called a trampoline. The Spill-
Trap  and FillTrap  trampoline code is shown below.

SpillTrap:
;
; Preserve the return address in the
; designated register

mfsr tpc,PC1
;
; Fixup PC0 and PC1 to point at the user
; designated spill handler

mtsr PC1,SpillAddrReg
add tav,SpillAddrReg,4
mtsr PC0,tav

;
; And return to that handler

iret

FillTrap:
;
; Preserve the return address in the
; designated register

mfsr tpc,PC1
;
; Fixup PC0 and PC1 to point at the user
; designated fill handler
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mtsr PC1,FillAddrReg
add tav,FillAddrReg,4
mtsr PC0,tav

;
; And return to that handler

iret

The SpillTrap  and FillTrap  routines both turn control over to the User mode
sections of their respective handlers by modifying the addresses held in the proces-
sor’s frozen PC0 and PC1 registers. This happens after the current address in PC1 has
been temporarily saved in register tpc (gr122).

When the IRET instruction is executed, the processor reenters User mode, with
the same interrupt enable state as when the trap occurred, and begins execution at the
address loaded into PC1.

4.4.4 SPILL Handler

The FILL  and SPILL  handlers are executed in User mode to ensure the greatest
processor performance for these operations. The handlers are invoked by the Super-
visor mode trap handler, usually with interrupts enabled. This permits SPILL  and
FILL  operations to be interrupted, and to use load- and store-multiple operations to
accomplish their task.

An example User mode SPILL  handler is shown below.

; spill handler
;
; spill registers from (*gr1-*rab)
; and move rab down to where gr1 points.
;
; On entry: rfb - rab = windowsize,
; gr1 < rab.
;
; Near the end: rfb - rab > windowsize,
; gr1 == rab

; On exit: rfb - rab = windowsize,
; gr1 == rab
;

.global spill_handler

spill_handler:
sub tav,rab,gr1 ;bytes to spill
srl tav,tav,2 ;bytes to words
sub tav,tav,1 ;make zero based
mtsr CR,tav ;set CR register
sub tav,rab,gr1
sub tav,rfb,tav ;dec. rfb by tav
add rab,gr1,0 ;copy rsp into rab
storem 0,0,lr0,tav ;store lr0..lr(tav)
jmpi tpc ;return...
 add rfb,tav,0



230 Evaluating and Programming the 29K RISC Family

In the above code, that the condition for entry is that global register gr1 (rsp) has
already been decremented to a value less than the current value in rab. This lower
value is what signals the need to spill some registers. The order in which the manage-
ment registers are changed by the SPILL  handler is very important, particularly if an
interrupt were to occur during the SPILL  operation. In this case, register rab must be
changed before rfb.

The value in register rab is maintained for convenience, and performance gain;
it is a cache of the rfb-WindowSize value. The rfb register is the anchor point for
local register file (cache) and memory resident register-stack crossover.

4.4.5 FILL Handler

The FILL  handler is similar to the SPILL  handler, except that bytes are moved
from the memory stack to the local register file. This handler is initiated when the
value in lr1 is larger than the current value in the rfb register.

; fill registers from [*rfb..*lr1)
; and move rfb upto where lr1 points.
;
; On entry: rfb - rab = windowsize,
; lr1 > rfb
; Near the end: rfb - rab < windowsize,
; lr1 == rab + windowsize
; On exit: rfb - rab = windowsize,
; lr1 == rfb
;

.global fill_handler
fill_handler:

const tav,(0x80<<2)
or tav,tav,rfb ;tav=[rfb]<<2
mtsr IPA,tav ;ipa = [rfb]<<2
sub tav,lr1,rfb ;tav = byte count
add rab,rab,tav ;push up rab
srl tav,tav,2 ;word count
sub tav,tav,1 ;zero based
mtsr CR,tav ;set CR register
loadm 0,0,gr0,rfb ;load registers
jmpi tpc ;return...
 add rfb,lr1,0 ;...pushing up rfb

In the case of a fill condition, the rfb register must be changed only after the
FILL  operation is complete; however, the rab register is modified prior to execution
of the LOADM instruction. That is, the anchor point indicated by register rfb must be
updated only after the data transfer has been accomplished.
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4.4.6 Register File Inconsistencies

The discussion of SPILL  and FILL  User mode handlers is important when
writing interrupt routines because a SPILL  or FILL  may be incomplete at the time
the interrupt occurs. Depending on whether a SPILL  or FILL  is in progress, the in-
terrupt handler must prepare the register stack support registers before attempting to
pass control to a User mode handler that makes use of the local register file.

Figure 4-10  illustrates a global view of the register stack, as it might appear both
in the local registers and in the memory stack cache at the time of an interrupt. In this
case, the interrupt occurred during execution of a SPILL  operation, probably during
execution of the STOREM instruction. Therefore, the address in register gr1 has al-
ready been decremented in anticipation that the proposed activation record will fit in

Figure 4-10. Stack Upon Interrupt
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the local registers. In addition, because a SPILL  operation was necessary, the rab
register has also been set equal to gr1 in the SPILL  handler.

The interrupt handler must recognize this condition because it must prepare the
register stack for entry into a C language user interrupt function. This will require the
stack management registers to be consistent. Repairing stack inconsistencies de-
pends on the interrupt handler being able to recognize each unique situation where
such an inconsistency could occur. In the case of the C language environment, there
are three situations that must be detected.

The interrupt occurred when a SPILL  was in progress, in which case the dis-
tance between the values in the rfb and rab registers exceeds the size of the local
register file (referred to as the WindowSize).

The interrupt occurred when a FILL  operation was in progress, in which case
the distance between the values in the rfb and rab registers is less than the size of
the local register file.

The interrupt occurred during a far-longjmp operation (see Figure 4-12a), in
which case the value (gr1 + 8) — which is the address of local register lr2 on the
register memory stack — is greater than the value in the rfb register.

The following code fragment illustrates a method of recognizing these inconsis-
tent stack conditions.

The Supervisor  mode portion of the interrupt handler has saved the important
processor registers as shown in Figure 4-8.  Because the User mode portion of the
handler is intended to execute a C language function, additional registers will need to
be saved. The register stack support registers, indirect pointers (IPA–IPC), as well as
global registers (gr96–gr124)  are pushed onto the memory stack just below the sig-
nal context frame.

sigcode :
push msp,lr1 ;push R–stack 
push msp,rfb ; support
push msp,msp ;M–stack support
sub msp,msp,3*4 ;Floating Point

;
pushsr msp,tav,IPA ;User mode specials
pushsr msp,tav,IPB
pushsr msp,tav,IPC
pushsr msp,tav,Q

;
sub msp,msp,29*4 ;push gr96–gr124
mtsrim cr,29–1
storem 0,0,gr96,msp

Additional space on the memory stack is allocated for floating point registers. If
the C language signal handler is to make use of floating point resources then the nec-
essary critical support registers should be saved.  Further discussion of these and an
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explanation of the format of the saved context information can be found in Chapter 5
(Operating System Issues). After the additional context status has been saved the reg-
ister stack condition can then be examined.

;Recognize inconsistent stack conditions

const gr96,WindowSize;get cache size
consth gr96,WindowSize
load 0,0,gr96,gr96
add gr98,msp,SIGCTX_RAB
load 0,0,gr98,gr98 ;interrupted rab
sub gr97,rfb,gr98 ;rfb–rab <= WS
cpgeu gr97,gr97,gr96
jmpt gr97,nfill ;jmp if spill 
 add gr97,gr1,8 ;or normal stack
cpgtu gr97,gr97,rfb ;longjmp test
jmpt gr97,nfill ;yes, longjmp case
 nop ;jmp if gr1+8 > rfb

;
;Fixup registers to re–start FILL operation

ifill:
add gr96,msp,SIGCTX_RAB+4
push gr96,rab ;resave rab=rfb–512
const gr98,fill_handler+4
consth gr98,fill_handler+4
push gr96,gr98 ;resave PC0
sub gr98,gr98,4
push gr96,gr98 ;resave PC1
const gr98,0
sub gr96,gr96,3*4 ;point to CHC
push gr96,gr98 ;resave CHC=0

The variable WindowSize is initialized to the size of the local register stack, in
bytes, when the library signal function is first called. Referring to Figure 4-10, and to
the code fragment shown above, it is clear that the result of subtracting the saved rab
from rfb will be larger than the local register stack size. Therefore, the program will
handle the spill (and normal interrupt) cases by jumping to label nfill . The longjmp
case, once detected, is also sent to the nfill  label, where the code discriminates be-
tween the conditions.

;discriminate between SPILL, longjmp and
; normal interrupts
nfill:

cpgtu gr96,gr1,rfb ;if gr1 > rfb 
jmpt gr96,lower ;then gr1 = rfb
 cpltu gr96,gr1,rab ;if gr1 < rab
jmpt gr96,raise ;then gr1 = rab
 nop

sendsig:

In the interrupted FILL  case, the saved rab value is over-written with the re-
aligned rab value. The send-signal code (section 4.4.1) subtracted the WindowSize



234 Evaluating and Programming the 29K RISC Family

from the value in rfb to determine the aligned rab value. This was done before issuing
an IRET to sigcode.

Essentially, this restores rab  to where it pointed immediately before executing
the function call that caused the FILL  operation. Note that this recomputation is also
valid for a normal case, where the management registers are consistent.

The two comparisons shown below determine which method, if any, should be
used to repair the value in register gr1. The method depends on whether a longjmp,
SPILL , or normal interrupt occurred. This is required to align gr1 to a valid cache
position where longjmp or SPILL  is interrupted. The following code fragment
shows the code associated with the lower and raise labels.

;lower or raise value in gr1

lower:
jmp sendsig
 add gr1,rfb,0 ;set gr1 = rfb

raise:
jmp sendsig
 add gr1,rab,0 ;set gr1 = rab

According to the situation depicted in Figure 4-10, when a SPILL  operation is
interrupted, code at the raise label is executed; however, the code resumes at the label
sendsig.

The code fragment titled “fix–up registers to restart FILL operation”, shown
above, is entered if the interrupt occurred during a FILL  operation. If so, it is neces-
sary to change the saved values for the Program Counters, PC0 and PC1, and clear the
value saved in the CHC register. These registers are assumed to have been saved in
the order shown in  Figure 4-8. This is required in addition to realigning the register
stack support register, rab.

The identifiers called SIGCTX_RAB, and SIGCTX_SIG are defined as numer-
ic offsets (to be added) to the memory stack address held in register msp. Making
these changes will effectively restart the FILL  operation from its beginning. This
code also falls into the code beginning at label nfill , but in the case of an interrupted
FILL  operation, the value in register gr1 will not be adjusted.

4.4.7 Preparing the C Environment

After stack repairs have been made to the (possibly inconsistent) management
registers, it is necessary to prepare for C language interrupt handler code execution.
These preparations consist mainly of setting up a new stack frame from which the
user’s handler can execute. At this point in the process, the register stack and memory
cache appear as shown in Figure 4-11.

The following code fragment picks up at the label sendsig, which is repeated for
clarity. The handler is almost ready to pass control to the user’s C language handler
code, but first it must set up a stack frame that looks as though the user’s function was
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Figure 4-11. Stack After Fix–up

called in a normal fashion (rather than being invoked as part of an interrupt handler).
This is accomplished in the same way a normal C language function allocates its
stack frame upon entry.

; Create an activation record on the stack
; for our handler, so the user code will
; operate as though it has been “called”
;

.equ RALLOC,4*4 ;space for function
sendsig:

sub gr1,gr1,RALLOC
asgeu V_SPILL,gr1,rab
add lr1,rfb,0 ;set lr1 = rfb
add gr97,msp,SIGCTX_SIG
load 0,0,lr2,gr97 ;restore sig number
sub gr97,lr2,1 ;get handler index
sll gr97,gr97,2 ;point to addresses

;Handler must not use HIF services other ;than the _sigret() type.
const gr96,SigEntry
consth gr96,SigEntry
add gr96,gr96,gr97
load 0,0,gr96,gr96 ;registered handler 
cpeq gr97,gr96,0
 jmpt gr97,NoHandler
 nop
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calli lr0,gr96 ;call C–level
 nop ;signal handler

NoHandler:
jmp __sigdfl
 nop

The user function called by the above code is assumed to be one that has been
passed to the signal library function to process either SIGINT or SIGFPE interrupts,
or both. The SigEntry label in the above code refers to a table of pointers. In the ex-
ample, one contains the address of a user signal handler for keyboard interrupts (SI-
GINT) and the other points to the handler for floating-point exceptions (SIGFPE). A
pointer to the user handler for each of these is installed in the SigEntry table by the
signal library function.

4.4.8 Handling Setjmp and Longjmp

Although not strictly related to interrupt handling, many C language libraries
contain a setjmp routine used to record the values of the register and memory stack
support registers, and an additional longjmp routine that allows a program to jump to
a consistent environment saved by a previous call to the setjmp routine.

  Figure 4-12 illustrates the location in the stack and memory cache to which the
saved information from a previously executed setjmp call might refer. The saved in-
formation (stored in a special record specified in the call to setjmp), contains the val-
ues of gr1, msp, lr0, and lr1, as they appear when the call to setjmp was made.

Interrupt handler code must make provisions for a User mode handler to call the
longjmp function from within the code. During the course of executing the longjmp,
the values stored in the marker record are loaded into their respective registers. The
processor is executing in User mode, with interrupts enabled, so this process might be
interrupted at any point. The interrupt handler code that recognizes stack inconsis-
tencies (presented earlier) handles this case by fixing up the management registers, to
establish a consistent stack. When the interrupt handler returns, the longjmp will be
properly completed.

Not all User mode signal handlers will have to contend with the complexities
introduced by setjmp and longjmp function calls. In this case, the code presented
earlier can be somewhat simplified; however, because the amount of code devoted to
this potential situation is very small, it is recommended that users provide the addi-
tional checks and compensating code.
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Chapter 5

Operating System Issues

Because application programs make use of operating system services, the
overhead costs associated with typically requested services is of great interest. With
the performance levels offered by the best RISC implementations, these overhead
costs have become very low. However, the often increased complexity of RISC
operating systems has lead to some confusion about the efficiency of operating
system implementations.

This chapter discusses in detail the various forms of  context switching which
occur  between operating system and application code. This particular task is one of
the more complex functions supported by a typical operating system. Also discussed
are general issues related to context switching.  The large number of registers
available to application programs may initially suggest that the 29K  is not ideal at
performing application context switching. However, there are a number of
optimizations which, when applied, greatly reduce context save and restore times
[Mann 1992a].

The code examples shown make use of a number macros for pushing and
popping special registers to an external memory stack. These macros were presented
in section 3.3.1, Assembly Programming.

Within this chapter, context information will be frequently stored and reloaded
from a per–task data region known as the Process Control Block (PCB). An operating
system register in the range of ks1–ks12  is assumed to point  within the PCB stack.
The example code assumes that the relevant register known as pcb has already been
assigned the correct memory address value by operating system specific code. The
example code also uses constants of the form CTX_CHC. These are offsets from the
top of the PCB stack (lower address) to the relevant address containing the desired
register information (the CHC register in the example). When a memory stack is used
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to save the context in place of the PCB data structure, the CTX_ offset constants may
still be used.

5.1 REGISTER CONTEXT

Part of the increased performance of the 29K family comes from using 128
internal registers as a register stack cache. The cache holds the top of the run–time
stack. Each procedure obtains its necessary register allocation by claiming a region
of the register stack. The register cache does not have to be flushed (spilled) until
there is insufficient unallocated register space. This happens infrequently. The
register stack offers greater performance benefits over a data memory cache, due to
register cache triple porting on–chip (two read ports and one write port).  Note,  the
Am29050 has an additional write port which can be used to simultaneously
write–back a result from the floating–point unit. Chapter 2 explains in detail the
procedure calling mechanism’s use of the cache.

However, when a context switch is required from one user task to another user
task, it is necessary to copy all internal registers currently allocated to the current user
task to a data memory save region. This makes the registers available for use by the
in–coming task.

In performing a context switch, a clear understanding is required of processor
register usage. The AMD C  Language register usage convention  (see section 2.1)
makes 33 of the 65 global registers (gr1, gr96–gr127) available for User data storage.
Global registers gr128–gr255, used to implement the local register stack, are also
used by the compiler generated code. (See section 3.3 (page 117) of Chapter 3,
Assembly Language Programming, for global register assignment.)

Processor global registers gr64–gr95 are not accessed by C generated code.
These registers are normally used by the Supervisor to store operating system
information or implement interrupt handler temporary working space. Particular
Supervisor implementations may store data in registers gr64–gr95. This data is
relevant to the task currently executing, and includes such information as pointers to
memory resident data structures containing system support information. This data
may also have to be copied–out to memory when a task switch is required.

The C procedure calling convention specifies that global registers gr96–gr111
are used for return value passing. For a procedure returning a 32–bit integer, only
register gr96 is required to store return value information. The compiler generally
uses these global registers for temporary working space before the return value data
is determined. The compiler has nine more temporary registers in the gr112–gr127
range which can also be used for temporary data storage. Other registers in this range
are used to implement register stack support functions.

When more registers are required by a procedure for data storage, the local
register stack can be used.  This reduces the need to use external data memory to store
procedure data.
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The prologue of each procedure lowers the register stack pointer (gr1) by the
amount necessary to allocate space for a procedure’s in–coming and out–going
parameters. The prologue code is generated by the compiler, and can thus lower the
stack pointer by an additional amount to make temporary registers available to the
procedure. The compiler is more likely to do this when the “–O” optimization switch
is used and the procedure has an unusually large register requirement.

Each 29K processor reserves global register gr1 to implement a register stack
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Figure 5-1. A Consistent Register  Stack Cache
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pointer, which points to the base of the current procedure register allocation
(activation record) (see Figure 5-1). Register gr1 points to the first local register
allocated to the procedure, known as lr0. Local register lr1, located in the register
cache at location [gr1]+4, is the second local register available to the procedure. The
C calling convention rules state that this register is reserved for pointing to the top of
the procedure activation record. The lr1 register, known as the frame pointer, points
to the first register above the register group allocated to the current procedure (see
Figure 5-2). The frame pointer is used during register stack filling (cache filling)
when it must be determined if the registers allocated to the current procedure are
located in the register stack and not spilled–out (flushed out) to external  data
memory.
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Figure 5-2. Current Procedures Activation Record
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A leaf procedure is defined as one that does not call any other procedure.
Because leaf procedures have no out–going parameters (data passed to called
functions), they do not have to lower the register stack pointer and create an
activation record. It is likely they have sufficient temporary working space in the 25
global registers available to each procedure. Of course, when one procedure calls
another it must assume the called procedure will use  available global registers, and
thus store critical data to local register locations or external data memory. However, a
particularly large leaf procedure may allocate an activation record to gain access to
additional local register storage. Leaf procedures which do this obtain a new lr1
register that  need not be used to point to the top of the activation record (because
leaves do not call other procedures). In this case, a leaf procedure is free to use local
register  lr1 as additional temporary storage.

It is interesting to note, a performance gain is achieved by some C compilers by
breaking a previously listed rule. That is, a calling procedure need not always assume
the called procedure will  use all 25 global registers. If the called procedure is defined
before calls are made to it, the compiler can determine its register usage. This enables
the compiler to only issue code to save the global registers effected by the callee,
rather than  preserve all global registers which are in use at the time of the call.

5.2 SYNCHRONOUS CONTEXT SWITCH

The discussion in the Register Context  section  is not a complete introduction to
the register stack mechanism required to support C procedures executing on a 29K
processor (see Chapter 2). However, the information  is required to understand the
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process  of a synchronous context switch. In a synchronous context switch, the
currently executing user task voluntarily gives up the processor to enable another
task to start execution. This is normally done via a system call. Because of the C
calling rules, the procedure which makes the system call cannot itself be a leaf
function. This means that the lr1 value of the procedure making the system call
always contains a valid pointer to the top of the current activation record. If the
library routine implementing the system call does not lower the register stack (in
practical terms –– it is a small leaf procedure), the current lr1 value is a valid pointer
to the top of the activation record.

At first glance it seems the large number of internal registers must result in an
expensive context save and restore time penalty. Further study shows that this is not
the case.

Much of the time required to complete a context switch is associated with
moving data between external memory and internal registers. However, a significant
portion of the time is associated with supervisor overhead activities.

When saving the context of the current process all the registers holding data
relevant to the current task must have their contents copied to the external data
memory save area.

A 29K processor contains a number of special purpose registers. There are eight
user task accessible special registers, sr128–sr135, used to support certain
instruction type execution. Assuming the exiting–task (the one that is being saved)
was written in C and the system call library code does not contain any explicit
move–to–special–register instructions, there is no need to save the registers as any
instructions requiring the support of special registers would have completed by the
time of the context switch system call. The AMD C calling convention does not
support preservation of these special registers across a procedure call.

Of the 15 supervisor–mode only accessible special registers (sr0–sr14), three
registers are allocated to controlling access to external data memory (the channel
registers). Because at the time of a synchronous context switch there is no
outstanding data memory access activity, these registers also need not be saved. This
is only true if an instruction causing a trap is used to issue the system call and there is
no outstanding data memory access DERR pending. The Am29000 processor
serializes (completes) all channel activity before trap handler code commences. For
more detail on the DERR pending issue, see the Optimization section which follows.

On entering the system call procedure, the 25 global registers used by the calling
procedure  no longer contain essential data. This means that they need not be saved.
The register stack support registers and the relevant global supervisor registers must
be saved.

Additionally four global registers (gr112–gr115) reserved for the user (not
affected by the compiler) must be saved if any application program uses them. If
these registers are not being used on a per–User basis, but shared between all Users
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and the Supervisor code, then they need not be saved. For example, a real–time
system may chose to place peripheral status information in these registers for users to
examine. The status information may be updated by Supervisor mode interrupt
handlers.

The context information is stored in a per–task data region known as the Process
Control Block (PCB).  The example task context save code below assume the
register pointing to the PCB data region, pcb, has already been assigned the correct
memory address starting value.

An operating system register in the range ks1–ks12  is assumed to point  to the
bottom of the PCB stack. Note that the CPS register bits set by the MTSRIM
instruction are system dependent; the RE bit may be required in some cases and the
IM field value is system dependent,

.equ SIG_SYNC, –1 ;indicate a synchronous save

.equ ENABLE,(SM|PD|PI)

.equ DISABLE,(ENABLE|DI|DA)

.equ FPStat0,gr93 ;floating–point

.equ FPStat1,gr94 ;trapware support

.equ FPStat2,gr95 ;registers

sync_save : ;example synchronous context save
constn it0,SIG_SYNC
push pcb,it0
push pcb,gr1
push pcb,rab ;push rab
pushsr pcb,it0,pc0 ;push specials
pushsr pcb,it0,pc1
sub pcb,pcb,1*4 ;space pc2
pushsr pcb,it0 ;push CHC
pushsr pcb,it0 ;push CHD
pushsr pcb,it0 ;push CHC
sub pcb,pcb,1*4 ;space for alu
pushsr pcb,ops ;push OPS
mtsrim cps,DISABLE ;remove freeze
sub pcb,pcb,1*4 ;space for tav
mtsrim chc,0 ;possible DERR

;
push pcb,lr1 ;push R–stack 
push pcb,rfb ; support
push pcb,msp ;push M–stack  pnt.

;
mtsrim cps,ENABLE ;enable interrupts

;
push pcb,FPStat0 ;floating point
push pcb,FPStat1
push pcb,FPStat2

;
sub pcb,pcb,4*4 ;space for IPA..Q

;
sub pcb,pcb,9*4 ;space gr116–124
sub pcb,pcb,4*4 ;push gr112–115, optional
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mtsrim cr, 4–1
storem 0,0,gr112,pcb
sub pcb,pcb,16*4 ;space for gr96–111

Local registers currently in use, those that lie in the region pointed to by gr1 and
rfb (gr127), require saving. Not all of the local register cache needs saving. The
example code below assumes the user was running with address translation on. Thus,
to gain access to the user’s register stack, the Supervisor must use the UA option bit
when storing out the cache contents. If the user had been running in physical address
mode, then there is no need for the Supervisor to use the UA option to temporarily
obtain User mode access permissions.

The context save code example above, operates with physical addresses in
Supervisor mode. This means address translation is not enabled. To enable data
address translation when the UA bit is use, the PD bit in the CPS register must be
cleared. Some operating system developers may choose to run the Supervisor mode
code with address translation turned on; in such cases, the PD bit will already be
cleared. Remember, once the PD bit is reset, it is possible to take a TLB miss. With the
UA bit set during the cache store operation, the TLB miss will relate to the temporary
User mode data memory access.

.equ UA,0x08 ;UA access

.equ PD,0x40 ;PD bit

mtsrim cps,ENABLE&~PD ;virtual data
;

sub kt0,rfb,gr1 ;get bytes in cache
srl kt0,kt0,2 ;adjust to words
sub kt0,kt0,1
mtsr cr,kt0
storem 0,UA,lr0,gr1 ;save lr0–rfb

;
mtsrim cps,ENABLE ;return to physical

5.2.1 Optimizations

When an ASSERT instruction is used to enter Supervisor mode, all outstanding
data memory access activity is completed before the trap handler gains control. If no
data access error (DERR) occurs then the channel registers will contain no valid data
and need not be saved. However, when the channel access is serialized and forced to
complete, a priority four DERR may have occurred. The DERR trap competes with
the priority three system call trap (higher than four), and thus the system call trap
handler commences but with the channel still containing information pertaining to
the failed data access.

A performance gain can be obtained by not saving the channel registers to
external data memory. If the memory system hardware is unable to generate the
DERR signal, then the channel registers should not be saved. Additionally,  if the
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software developer knows the previous data memory access has been completed or
was to a known memory location, there may be no need to save the channel registers.
The code shown below is an alternative to the previous system call trap handler entry
code, the transaction–fault bit (TF)  in the channel control  register (CHC)  is tested to
determine if channel registers need saving.

A further performance gain can be obtained by not saving the PC0 register.
When the PC1 register is restored, the PC0 register can be determined by adding 4 to
the PC1 address value. To achieve the best performance gains, the code in the
subsequent  Restoring Context  section may be optimized to avoid restoring channel
registers CHA and CHD if the CHC contents–valid (CV)  bit is zero.

save_channel: ;deal with
pushsr pcb,it0,cha ;DERR fault
pushsr pcb,it0,chd
pushsr pcb,it0,chc
jmp channel_saved
 mtsrim chc,0 ;clear TF

sync_save : ;example synchronous context save
constn it0,SIG_SYNC
push pcb,it0
push pcb,gr1
push pcb,rab ;push rab
sub pcb,pcb,1*4 ;space for pc0
pushsr pcb,it0,pc1 ;push pc1
sub pcb,pcb,1*4 ;space for pc2
mfsr it0,chc ;test TF bit
sll it0,it0,31–10 ; in CHC set
jmpt it0,save_channel
 sub pcb,pcb,2*4 ;space for cha,chd
const it0,0
push pcb,it0 ;push CHC=0

channel_saved:
sub pcb,pcb,1*4 ;space for alu
pushsr pcb,ops ;push OPS
mtsrim cps,DISABLE ;remove freeze
sub pcb,pcb,1*4 ;space for tav

When restoring the task currently being saved, it is not necessary to reload all
128 local registers, or even the part of the register file in use at context save time
([gr1]––[rfb]). Only the activation record of the last executing procedure for the task
([gr1]––[lr1])  (see Figure 5-3). This greatly reduces the time required to restore a
task context originally saved by a synchronous context switch. Typically the size of a
procedure activation record ([gr1]–––[lr1]) is twelve words. To achieve this
optimization, the push of rab and rfb, shown in the previous code fragment, must be
changed to the code shown below. This ensures only one activation record is restored.
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Figure 5-3. Overlapping Activation Records Eventual Spill Out of the Register Stack Cache
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.equ WS,512 ;Window Size

const it0,WS ;replacement for
sub rab,lr1,it0 ; push rab
push pcb,rab ;push lr1–512

;
push pcb,lr1 ;replacement for push rfb
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Burst mode enables data to be loaded–from or stored–to memory consecutively,
without the processor continuously supplying addresses information. An external
address latch/counter is required to support such memory systems with an Am29000
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or Am29050 processor. A system designer can use this feature to reduced context
switch times.

5.3 ASYNCHRONOUS CONTEXT SWITCH

An asynchronous context switch occurs when the current task unexpectedly
gives up the processor to enable another task to execute. This may occur when a timer
interrupt results in the supervisor deciding the current task  is no longer the task of
highest priority. Unlike at the point at which a synchronous context switch occurs,
when an interrupt occurs the state of the processor is not restricted to a simple state.

Because an interrupt may occur in a leaf procedure, it is not possible to
determine if the current lr1 value contains a valid pointer to the  top of the procedure
activation record. Further, the interrupt may have occurred during a procedure
prologue, where the register stack pointer (gr1) has been lowered but the lr1 value
has not yet been updated. This means when an asynchronous–saved task is switched
back in, it is impossible to restore only the activation record of the interrupted
procedure. The register stack containing valid data, that is [gr1]––[rfb], must be
restored. Assuming this amounts to half of the register file, an additional 2.6 micro
seconds would be required to restore the task with a single–cycle Am29000
processor memory system at 25MHz.

A task voluntarily giving up the processor via a system call from within a
procedure of typical activation record size can be restored faster then a task  giving up
the processor involuntarily via an asynchronous interrupt.

When a User mode program is interrupted  it could mean the current process is to
be sent a signal, such as a segmentation violation. It could also mean that the
Supervisor wishes to gain control of the processor to support servicing the
interrupting device. If the current process is being signaled, the label user_signal
should be jumped to by Supervisor mode  interrupt handler (see the example code
below). This is explained in the later section titled User Mode Signals (section 5.5). If
Supervisor support code is required for peripheral device servicing, then the action to
be taken is very much dependent on the interrupting device needs.

.equ SIGALRM,14 ;alarm signal

time_out: ;timer interrupt handler
jmp interrupt_common
 const it0,SIGALRM ;signal number

interrupt_common:

;Depending on required processing,
;jump to user_signal for current process signaling.
;Or, jump to user_interrupt to save the current process context.

Some interrupts can be serviced in Freeze mode, without the need to save the
current process context. Use of these so–called lightweight interrupt handlers can
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offer significant performance gains. Other interrupts will require the interrupted
process context to be saved. This is described in the following section, Interrupting
User Mode (section 5.4).

It is possible an interrupt has arrived that requires a signal to be sent to a process
which is not the currently executing process. In this case, the operating system must
first save the current process context and then restore the context of the signaled
process. Once the in–coming process is prepared to run, using the code in the Restore
Context  section (section 5.10),  the restored context will have to be then placed on the
signal stack as described in the User Mode Signals (section 5.5). Thus, execution
would begin in the User mode trampoline code of the in–coming process. To follow
this in detail, later sections of the chapter shall have to be studied.

5.4 INTERRUPTING USER MODE

This section describes how the operating system can prepare the processor to
execute a C level interrupt handler, where the handler is to run in Supervisor mode
and the interrupt occurred  during User mode code execution.

Because the User mode task is being asynchronously interrupted, the complete
processor state must be saved. The context information should be stored in the PCB
rather than a temporary stack, as a context switch to a new user task may occur after
the interrupt has been processed. Storing  the state in the PCB saves having to copy
the state from the temporary stack to the PCB after the context switch decision has
been made. When saving task context, a performance optimization is obtained by
only saving the registers which are currently in use. However, such optimizations
typically only apply to synchronous–task context saving.

When User mode is interrupted, the special purpose support registers may
contain valid data. This means an additional nine special register data values must be
copied to  external data memory, compared to the synchronous context switch.

Below is a code example of interrupt context saving. Notice the rab stack
support register is adjusted to a window distance below rfb within the interrupt
disabled portion of the code. This is to conform to the same PCB format used by those
who wish to perform the register stack fix–up with User mode code, rather than in the
Supervisor code shown. Register rab is merely a convenience value for determining
rfb–WindowSize (WindowSize normally 512) in detecting a SPILL  condition.
However, it is also used to determine FILL  or SPILL  interruption. Should the User
mode stack fix–up code be interrupted during it’s operation, it is important that it does
not become confused with  the original SPILL  or FILL  interrupt.  Realigning the rab
register whilst interrupts are off prevents this confusion.

.equ WS,512 ;Window Size

user_interrupt : ;saving User mode context
push pcb,it0 ;stack signal id
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push pcb,gr1
push pcb,rab ;stack real rab
const it0,WS
sub rab,rfb,it0 ;set rab=rfb–512

;
pushsr pcb,it0,pc0 ;push specials
pushsr pcb,it0,pc1
pushsr pcb,it0,pc2
pushsr pcb,it0,cha
pushsr pcb,it0,chd
pushsr pcb,it0,chc
pushsr pcb,it0,alu
pushsr pcb,it0,ops
mtsrim cps,DISABLE ;remove freeze
push pcb,tav
mtsrim chc,0 ;clear CHC

;
push pcb,lr1 ;push R–stack 
push pcb,rfb ; support
push pcb,msp ;M–stack pnt.

;
mtsrim cps,ENABLE ;enable interrupts

;
push pcb,FPStat0 ;floating point
push pcb,FPStat1
push pcb,FPStat2

;
pushsr pcb,kt0,ipa ;more specials
pushsr pcb,kt0,ipb
pushsr pcb,kt0,ipc
pushsr pcb,kt0,q

The 25 global registers, known to contain no valid data during a synchronous
context switch, must also be considered active, and consequently saved.  Because
these global registers are located adjacent to the four global registers reserved for the
user, a single store–multiple instruction can be used to save the relevant global
registers. Considering a single–cycle memory system, two micro seconds should be
required to save the additional current task context.

sub pcb,pcb,29*4 ;push gr96–gr124
mtsrim cr,29–1 ;including optional save of 
storem 0,0,gr96,pcb ; gr112–gr115

If the interrupt is expected to result in a context switch then the local registers
currently in use require saving. Note, this can be postponed (see the following
optimizations section). Not all of the local register cache needs to be saved. However,
as is explained below, do not simply assume that  those that lie in the region pointed to
by gr1 and rfb (gr127) are the only active cache registers. 

When a synchronous context switch occurs the register stack is known to be in a
valid condition (see Figure 5-1). With an asynchronous event causing a context
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switch, the stack may not be in a valid condition. There are three inconsistent
situations that must be detected and dealt with.

The interrupt occurred when a SPILL  was in progress, in which case the
distance between the values in the rfb and rab registers exceeds the size of the
local register file (referred to as the Window Size). All of the  local register file
must be saved. Some of the cached data may have already been copied out to
memory locations just below rfb. This data should remain at this location on the
memory resident portion of the stack until the task is restarted.

The interrupt occurred when a FILL  operation was in progress, in which case
the distance between the values in the rfb and rab registers is less than the size of
the local register file. Some data may have been copied in from the top of the
memory resident portion of the  register stack into local registers just above rab.
These registers will not be saved during the normal cache save ([gr1]–[rfb] ). To
deal with  this the FILL  must be restarted when the context is restored.

The interrupt occurred during a far–longjmp operation. A far–longjmp is
defined as one in which the future (gr1 + 8) value—which is the address of local
register lr2 on the register memory stack—is greater than the current value in
the rfb  register. In this case the local registers contain no valuable data because a
previous activation record (present during setjmp) is about to be restored from
the memory resident portion of the stack.

.equ WS,512 ;Window Size

R_fixup: ;register stack fix–up
add kt0,pcb,CTX_RAB
load 0,0,kt2,kt0 ;get rab value
sub kt0,rfb,kt2 ;window size
srl kt0,kt0,2 ;convert to words
cpeq kt1,kt0,WS>>2 ;test for valid
jmpt kt1,norm ; stack condition
 cpltu kt1,kt0,WS>>2 ;test for FILL
jmpt kt1,ifill ; interrupt
 add kt1,gr1,8 ;test far–longjmp
cpgtu kt1,kt1,rfb ; interrupt
jmpt kt1,illjmp ;yes, gr1+8 > rfb
 nop

;
ispill: ;deal with interrupted SPILL

const kt1,WS
jmp norm ;gr1=rfb–512
 sub gr1,rfb–kt1

;
ifill: ;deal wilth interrupted FILL

add kt1,pcb,CTX_CHC
const kt0,0
push kt1,kt0 ;resave CHC=0
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add kt0,FillAddrReg,4
add kt1,pcb,CTX_PC0
push kt1,kt0 ;resave PC0,PC1
push kt1,FillAddrReg
add kt1,pcb,CTX_RAB
push kt1,rab ;resave rab=rfb–512

;
norm: ;deal with consistant stack

sub kt1,rfb,gr1 ;bytes in cache
srl kt1,kt1,2 ;convert to words
sub kt1,kt1,1 ;adjust for storem
mtsrim cr,kt1
mtsrim cps,ENABLE&~PD ;virtual data
storem 0,UA,lr0,gr1 ;copy to stack
mtsrim cps,ENABLE ;physical data

;
illjmp: ;valid local registers now saved

Once the user’s User mode register stack has been saved, the interrupt  handler
continues using the user’s Supervisor mode register and memory stacks.

.macro const32,reg,data
const reg,data ;zero high, set low
consth reg,data ;high 16–bits
.endm

const32 msp,SM_STACK ;Supervisor M–stack
const32 rab,SR_STACK–WS
add gr1,rfb,8 ;prepare Supervisor
const32 rfb,SR_STACK ; R–stack support
add lr1,rfb,0 ; registers

;
;call appropriate C–level interrupt handler

The current task context has now been saved. After the interrupt has been
processed the operating system can select a different task to restore. This operation is
described in a subsequent section entitled Restoring Context (section 5.10). The PCB
structure for the out–going task shall not be accessed until the task is again restored as
the current executing task.

5.4.1 Optimizations

When User mode is interrupted, processing continues using the user’s
Supervisor mode stacks. This is necessary because the interrupt may result in the
process being put to sleep until some time later when it is again able to run. When the
process is put to sleep, the process state is stored in the Supervisor memory stack,
described in the Interrupting Supervisor Mode section (section 5.6). If the user’s
User mode context was saved on a shared interrupt stack rather than the per–process
Supervisor stack, then  the context would have to be copied from the global interrupt
stack to the Supervisor stack before a context switch could proceed.
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The code shown above determines the region of cache registers currently in use
and stores them out onto the top of the user’s User mode register stack. This operation
can be postponed. The interrupt handler will use the register cache in conjunction
with the Supervisor mode register stack. If the interrupt handler runs to completion
and no context switch  occurs, then the cache need not be saved. If a context switch
does occur then the cache will be saved on the top of the user’s Supervisor mode
register stack. This means some User mode data contained in the cache may be
temporary saved on the the Supervisor stack; however, this is not a problem.

The previous code determines the region of the cache currently in use, it does
not bring the stack into a valid condition. The code following the label R_fixup:  in
the User Mode Signals section (section 5.5) does bring the stack into a valid
condition, and can be used to replace the code shown above. Once the stack support
registers are restored to a valid state, the stack–cut–across method described in the
later User System Calls section (section 5.7) can be used to attach the cache to the
Supervisor mode stack. By this method the storing of cache data can be prevented and
any unused portion of the cache is made immediately available to the interrupt
service routine.

5.5 PROCESSING SIGNALS IN USER MODE

Asynchronous context switches often occur because an interrupt has  occurred
and must  be processed by a handler function developed in C. A technique often
overlooked in real–time applications is using a signal handler to process the interrupt.
This often avoids much of the supervisor overheads associated with a context  switch.
Additionally, a context switch requires the instruction cache to be flushed. Signal
handlers run in the context of the interrupted User mode process, this avoids the need
to flush the cache.

It is not necessary to store the contents of the local register file. After signal
support code has fixed–up the stack management support registers, the C level
handler code can continue to use the register stack as if the interrupted procedure had
executed a call to the handler function. In as little as 5.5 micro seconds from the time
of receiving the interrupt, the Am29000 can be executing the interrupt handler code
which was written in C.

Unlike asynchronous context switching, the interrupted context  can not be
saved in the PCB. To do so would be convenient if a context switch was possible after
the signal handler had finished executing. The PCB structure would be already
updated. However, a further interrupt may occur during the C level signal handler
execution, which may itself result in an immediate context switch and require the use
of the PCB data save area. Additionally, the signal handler may do a longjmp to a
setjmp which occurred in User mode code before the signal handler started
executing. For this reason the context information is placed on the User’s memory
stack pointed to by msp.
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Users of operating systems complying with the AMD HIF–specification are
required to complete signal handler preparation tasks in User mode code supplied in
AMD libraries. HIF compliant operating systems only save the signal–number
through the tav register portion of the interrupt frame on the user’s memory stack.
The remaining part of the interrupt frame is saved by the user’s code. Any necessary
register stack management is performed. The User mode code is shown in Appendix
B and described in detail in section 4.4. The following code is for operating systems
which save the complete interrupt frame and prepare for a User mode signal while in
Supervisor mode

.equ SIGILL,4 ;illegal operation

.equ WS,512 ;Window Size

protect: ;Protection violation trap handler
jmp user_signal ;send interrupted task a signal
 const it0,SIGILL ;signal number

If  the interrupted User mode code was running with address translation turned
on, then the user’s memory stack must be accessed by the Supervisor using the UA bit
during LOAD and STORE instructions (note, this is also true for the push and pushsr
macros). The following code example shows pushing onto a physically accessible
user memory stack. If the user’s stack were virtually addressed, then the push
instructions would be replaced by move to temporary register instructions. After
interrupts were enabled the PD bit in the CPS register would be cleared to enable data
address translation, and then the temporary registers would be pushed onto the user’s
memory stack using the UA bit during the STORE instruction operation. Once the
frozen special registers had been saved, via the use of temporary registers, the
Supervisor could continue to run with the CPS register bits PD and DA cleared, and
store the remaining user state via push operations.

user_signal : ;prepare to process a signal
push msp,it0 ;stack signal id
push msp,gr1
const it0,WS
sub rab,rfb,it0 ;set rab=rfb–512

;
pushsr msp,it0,pc0 ;push specials
pushsr msp,it0,pc1
pushsr msp,it0,pc2
pushsr msp,it0,cha
pushsr msp,it0,chd
pushsr msp,it0,chc
pushsr msp,it0,alu
pushsr msp,it0,ops
mtsrim cps,DISABLE ;remove freeze
push msp,tav
mtsrim chc,0 ;clear CHC

;
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push msp,lr1 ;push R–stack 
push msp,rfb ; support
push msp,msp ;M–stack support

;
mtsrim cps,ENABLE ;enable interrupts

;
push msp,FPStat0 ;floating point
push msp,FPStat1
push msp,FPStat2

;
pushsr msp,kt0,ipa ;more specials
pushsr msp,kt0,ipb
pushsr msp,kt0,ipc
pushsr msp,kt0,q

;
sub msp,msp,29*4 ;push gr96–gr124
mtsrim cr,29–1 ;including optional save of 
storem 0,0,gr96,msp ; gr112–gr115

The register stack must now be brought into a valid condition, if is not already in
a valid condition. Valid is defined as consistent with the conditions supporting a
function call prologue. As described in the previous section 5.3, Asynchronous
Context Switching, the stack may not be valid if a SPILL , FILL  or far–longjmp  is
interrupted.

Unlike the asynchronous context save case, with signal processing our intention
is not to simply determine the active local registers for saving on the user’s memory
portion of the register stack, but to enable the user to continue making function calls
with the existing stack. That is, the C language signal handler will appear to have
been called in the normal manner, rather than as a result of an interrupt.

; Register stack fixup
R_fixup:

const kt0,WS ;WindowSize
add kt2,msp,CTX_RAB
load 0,0,kt2,kt2 ;interrupted rab
sub kt1,rfb,kt2 ;determine if
cpgeu kt1,kt1,kt0 ;rfb–rab>=WindowSize
jmpt kt1,nfill ;jmp if spill

;or valid stack
 add kt1,gr1,8 ;check if 
cpgtu kt1,kt1,rfb ; gr1+8 > rfb
jmpt kt1,nfill ;yes, long–longjmp
 nop

;
ifill: ;here for interrupted FILL restart

add kt1,msp,CTX_CHC
const kt0,0
push kt1,kt0 ;resave CHC=0
add kt0,FillAddrReg,4
add kt1,msp,CTX_PC0
push kt1,kt0 ;resave PC0,PC1
push kt1,FillAddrReg
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add kt1,msp,CTX_RAB
push kt1,rab ;resave rab=rfb–512

;
nfill: ;move gr1 into valid range

cpgtu kt0, gr1, rfb ;if gr1 > rfb
jmpt kt0, lower ;far–longjmp case
cpltu kt0, gr1, rab ;if gr1 < rab then 
jmpf kt0, sendsig ;interrupted spill
 nop

raise:
add gr1, rab, 0
jmp sendsig
 nop

lower:
add gr1, rfb, 0
jmp sendsig
 nop

Now use the signal number to determine the address of the corresponding signal
handler. The code below assumes there is an array of signal handlers. The first entry
of the array is held at memory address SigArray.

sendsig: ;prepare to leave Supervisor mode
add kt0,msp,CTX_SIGNUMB
load 0,0,gr96,kt0 ;get signal numb.
sub kt2,gr96,1 ;handler index...
sll kt2,kt2,2 ; ...in words
const kt1,SigArray
consth kt1,SigArray
add kt2,kt2,kt1
load 0,0,gr97,kt2 ;handler adds.

;
mtsrim cps,FREEZE ;enter Freeze mode
const kt1,_trampoline
add kt0,kt1,4
mtsr pc1,kt1 ;return to user
mtsr pc0,kt0 ;and process signal
iret

Via an IRET, execution is continued in User mode  procedure trampoline. This
procedure is often located in the memory page containing the PCB structure. Using
User accessible global registers gr96 and gr97, two parameters, the signal number
and a pointer to the signal handler routine, are passed to the trampoline code.  The
handler routine is called, passing to it the signal number and a pointer to the saved
context.

;User mode entry to signal handler
_trampoline: ;Dummy Call

sub gr1,gr1,6*4 ;space for C–call
asgeu V_SPILL,gr1,rab
add lr1,gr1,6*4
add lr0,gr97,0 ;copy handler()
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add lr2,gr96,0 ;copy signal #
add lr3,msp,0 ;pass CTX pointer

;
calli lr0,lr0 ;call handler()
 nop

;
add gr1,gr1,6*4 ;restore stack
 nop
asleu V_FILL,lr1,rfb
const tav,SYS_SIGRETURN
asneq V_SYSCALL,gr1,gr1 ;system call

After the signal handler returns, the interrupted context is restored via the
sigreturn system call. The supervisor mode code  used to implement the restoration
process is shown in the section titled Restoring Context (section 5.10). At the time of
the system call trap, the memory stack pointer, msp, must be pointing to the structure
containing the saved context. The system call code checks relevant register data to
ensure that the User is not trying to gain Supervisor access permissions as a result of
manipulating the context information during the signal handler execution. (Note, it is
likely that assembly code library supporting the sigreturn system call shall copy the
lr2 parameter value to the msp register before issuing the system call trap.)

5.6 INTERRUPTING SUPERVISOR MODE

A user program may be in the process of executing a system call when an
interrupt occurs. This interrupt may require C level handler processing. In some
respects this is similar to a user program dealing with a C level signal handler;
however, there are some important differences. A User mode signal handlers may
chose not to run to completion by doing a longjmp out of the signal handler. Also,
signal handlers process User mode data. Supervisor mode interrupt handlers always
run to completion and process data relevant to the Supervisor’s support task rather
than the current User mode task.

Because a user task is being interrupted whilst operating in Supervisor mode,
the complete processor state must be saved in a similar way to an asynchronous
context switch. The context information can not be stored  in the  current user’s PCB
because it is used to hold the User mode status when Supervisor mode is entered via a
system call.

User programs usually switch stacks when executing system calls (see section
5.7). The user’s system stack is not accessible to the User mode program. This keeps
Supervisor information that appears on the stack during system call execution hidden
from the user. The user’s system stack can be used to support C function calls during
interrupt handler processing. Alternatively, an interrupt processing stack can be
used. Keeping a separate interrupt stack for Supervisor mode interrupt processing
enables a smaller system mode User stack to be supported, as the interrupt processing
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does not cause the system stack to grow further. Remember, the per–user system
stack is already in use because the user was processing a system call when the
interrupt occurred.

The interrupt_common entry point to the interrupt handler shown in
Asynchronous Context Switch  (section 5.3) needs to be expanded to distinguish
between interrupting User mode and interrupting Supervisor mode. The appropriate
processing requirement is determined by examining the OPS register in the interrupt
handler. The label user_interrupt should be used to select the code for an interrupt of
User mode code.

interrupt_common: ;examine processor mode interrupted
mfsr it1,ops ;get OPS special
sll it1,it1,27 ;check SM bit
jmpf user_interrupt ;User mode inter.
 nop

The following code assumes Supervisor mode interrupts are not nested, because
the current context is pushed onto the interrupt processing stack which is assumed
empty. If interrupts are to be nested, then the context should be pushed on the current
memory stack once it has been determined that the msp has already been assigned to
the interrupt memory stack. IM_STACK and IR_STACK are the addresses of the
bottom of the interrupt memory and register stacks respectively.

.equ WS,512 ;Window Size

.macro const32,reg,data
const reg,data ;zero high, set low
consth reg,data ;high 16–bits
.endm

supervisor_interrupt : ;process Supervisor mode interrupt
const32 it1,IM_STACK ;interrupt M–stack
push it1,it0 ;stack signal id
push it1,gr1
const it0,WS
sub rab,rfb,it0 ;set rab=rfb–512

;
pushsr it1,it0,pc0 ;push specials
pushsr it1,it0,pc1
pushsr it1,it0,pc2
pushsr it1,it0,cha
pushsr it1,it0,chd
pushsr it1,it0,chc
pushsr it1,it0,alu
pushsr it1,it0,ops
mtsrim cps,DISABLE ;remove freeze
push it1,tav

;
mtsrim chc,0 ;clear CHC

;



260 Evaluating and Programming the 29K RISC Family

push it1,lr1 ;push R–stack
push it1,rfb ; support
push pcb,msp ;push M–stack pntr.
add msp,it1,0 ;use msp pointer

;
mtsrim cps,ENABLE ;enable interrupts

;
push msp,FPStat0 ;floating point
push msp,FPStat1
push msp,FPStat2

;
pushsr msp,kt0,ipa ;more specials
pushsr msp,kt0,ipb
pushsr msp,kt0,ipc
pushsr msp,kt0,q

;
sub msp,msp,29*4 ;push gr96–gr124
mtsrim cr,29–1 ;including optional save of 
storem 0,0,gr96,msp ; gr112–gr115

There is no need to save any of the register cache data. In the following code, the
register stack support registers are updated with the initial values of the supervisor
interrupt stack. If nested high level handler interrupts are to be supported, see the
following Optimizations section. The gr1 register stack pointer is then set to the top
(rab) of the cache, indicating the cache is fully in use. The new activation record size
pointer, lr1, is then set to the bottom of the cache (rfb).This ensures that when the
interrupted C level service function returns, the cache will be repaired to exactly the
position at which the interrupt occurred. This is particularly important if a Supervisor
mode FILL  was interrupted. The user’s system mode register data will be spilled
onto the interrupt stack, but this creates no problem.

const32 rab,IR_STACK–WS
add gr1,rab,0 ;prepare interrupt
const32 rfb,IR_STACK ; R–stack support
add lr1,rfb ; registers

;
;call appropriate C–level interrupt handler

5.6.1 Optimizations

The code shown above does not attempt to determine the region of cache
registers currently in use. This means that the first C level procedure call in the
interrupt handler will result if a cache spill trap occurs.

By determining the region of the cache currently in use and by bringing the
register stack into a valid condition, any available cache registers can be made
immediately available to the interrupt handler C routines. The code following the
label R_fixup:  in the previous User Mode Signals section (section5.5) does bring the
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stack into a valid condition and can be used to replace the code shown above. Once
the stack support registers are restored to a valid state, the stack–cut–across method
described in the User System Calls section (section 5.7) can  attach the cache to the
interrupt register stack.

It is possible that while processing  an interrupt (which means the processor is
already in Supervisor mode) an additional interrupt occurs. If an operating system
supports nested interrupts, then the code in the Interrupting Supervisor Mode section
(section 5.6) will be executed again. This overhead can be avoided by following the
Interrupt Queuing Model method described in section 4.3.12 of the Interrupts and
Traps chapter.

The method  relies on supporting only lightweight interrupt nesting. The code in
this section is entered only once to start the execution of a C level interrupt processing
Dispatcher. Each interrupt adds a interrupt request descriptor (bead) on to a  queue of
descriptors (string of beads). The dispatcher removes the requests and processes the
interrupt until the list becomes empty. Lightweight interrupts enable the external
device to be quickly responded to, although the dispatcher may not complete the
processing till some time later.

5.7 USER SYSTEM CALLS

User programs usually switch stacks when executing system calls. The user’s
system stack is not accessible to the User mode program. This keeps Supervisor
information which appears on the stack during system call execution hidden from the
user.

Synchronous context  switching generally happens as a result of a system call.
However, system calls are also used to request the operating system to obtain
information for a user which is only directly obtainable with Supervisor access
privileges. The user’s state must be saved to the PCB structure in a similar way to a
synchronous context save. This makes the global and special registers available for
Supervisor mode C function use. There is no need to save the register cache until a
full context switch is known to be required.

.equ SIG_SYNC, –1

.equ ENABLE,(SM|PD|PI)

.equ DISABLE,(ENABLE|DI|DA)

syscall: ;V_SYSCALL trap handler
constn it0,SIG_SYNC ; assumes no
push pcb,it0 ; outstanding DERR
push pcb,gr1 ;push gr1
push pcb,rab ;push rab
pushsr pcb,it0,pc0 ;push specials
pushsr pcb,it0,pc1
sub pcb,pcb,3*4 ;space pc2,cha,chd
const it0,0
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push pcb,it0 ;push CHC=0
sub pcb,pcb,1*4 ;space for alu
pushsr pcb,ops ;push OPS
mtsrim cps,DISABLE ;remove freeze
sub pcb,pcb,1*4 ;space for tav

;
push pcb,lr1 ;stack support
push pcb,rfb ;push rfb
push pcb,msp ;push M–stack pnt.

;
mtsrim cps,ENABLE ;enable interrupts

;
push pcb,FPStat0 ;floating point
push pcb,FPStat1
push pcb,FPStat2

;
;Assume the same gr112–gr115 data is shared
;by all users and the supervisor, and 
;therefor will not push gr112–gr115.
;
;Align pcb for system call return

sub pcb,pcb,(4+(124–96+1))*4

The system call code can continue to use the cache attached to the user’s system
mode registers stack. To do this the current top of stack position, gr1, must be
maintained. The register stack support registers are relocated to the system stack,
maintaining the existing stack position offset. The following code performs this stack
cut–across operation. It assumes the system call is made from a valid stack condition.
However, it includes bounds protection because operating systems can never
completely rely on users always maintaining valid stack support registers.

sub gr96,rfb,gr1 ;determine rfb–gr1
andn gr96,gr96,3 ;stack is double word aligned
const gr97,(128*4) ;max allowed value for 
cpleu gr97,gr96,gr97 ; rfb–gr1 is 128*4
jmpt gr97,$1 ;jump if normal register usage
 const gr97,0x1fc ;mask for page displacement math
const gr96,512 ;limit register use to max (512)

$1: and gr1,gr1,gr97 ;determine gr1 displacement within
const gr97,SR_STACK–1024; 512–byte page
consth gr97,SR_STACK–1024;
add gr1,gr1,gr97 ;gr1=SR_STACK–1024+displacement
add rfb,gr1,gr96 ;rfb=(new gr1)+
const gr97,(128*4) ; min(512,rfb–gr1))
sub rab,rfb,gr97 ;set rab=rfb–512
add lr1,rfb,0 ;ensure all User mode registers

; restored

The technique relies on keeping bits 8–2 of the stack pointer, gr1, unchanged. In
other words, the lr0 register has the same position in the cache after the memory
resident stack portion has been exchanged. This is achieved by calculating the
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address displacement of gr1 within a 512–byte page size. The gr1 displacement
remains the same if the memory resident portion of the register stack has been
exchanged.  SM_STACK and SR_STACK are the addresses of the bottom of the
per–user system memory and register stacks respectively (see Figure 5-5).

Figure 5-5. Register Stack Cut–Across
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Once stack cut–across has been completed, a call to the C level system call
handler can be issued. The C code may get its incoming parameters from the register
stack, or the  system call trap handler code may copy the parameters from the local
registers to memory locations accessible by the Supervisor mode C handler.

;copy lr2,... arguments to memory locations
add gr96,tav,0 ;save service numb.
sub gr1,gr1,4*4 ;new stack frame
asgeu V_SPILL,gr1,rab
add lr1,gr1,4*2 ;ensure lr1 restore
const32 lr0,_syscall ;C handler
calli lr0,lr0 ; call
 add lr2,gr96,0 ;pass service numb.

The C system call handler may place its return values in known memory
locations, rather than global registers gr96–gr111. If this is the case, then the values
shall have to be copied to the  normal return registers. System calls indicate their
successful or unsuccessful completion to their callers by setting register tav (gr121)
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to TRUE or FALSE; the high level handler achieves this by modifying the gr121
register location in the PCB before the system call return code is executed. A FILL
assertion is used to repair the cache to the position at which the system call was
issued.

add gr1,gr1,16 ;restore system
nop ; call frame lr1
asleu V_FILL,lr1,rfb ;restore all cache

;copy return values from memory to gr96,...
jmp resume ;restore context
 nop

Because a User mode signal handler may use the system call mechanism to issue
a sigreturn, it is possible an asynchronous context restore may be required in place of
the normal synchronous context restore associated with a system call. Label resume
is jumped to and is described in the Restore Context section (section 5.10). If an
asynchronous context  is being restored, then a pointer to the context being restored
will have been passed to the sigreturn system call. The high level C handler will have
copied this data over the PCB data stored at the time of the system call trap entry. The
C handler must change the SIG_SYNC value stored in the PCB by the system call
trap handler. This will cause the resume code to perform an asynchronous rather than
synchronous context  restore.

5.8 FLOATING–POINT ISSUES

The example code presented saves only three supervisor accessible global
registers under the heading floating–point support. These registers are typically
ks13–ks15. This is sufficient to save and restore floating–point  context when an
Am29000 processor is being used with trapware emulation. This is only true if
interrupts are turned off during floating–point  trapware execution. If  floating–point
trapware is interruptible, then the Am29000 trapware support registers (typically
it0–it3 and kt0–kt11)  would have to be saved.

When an Am29027 floating–point coprocessor is used, either inline or via
trapware support, the complete state of the coprocessor must be saved. This requires
an additional 35 words space in addition to the three  Am29000 global support
registers.

Some real–time operating systems may run floating–point trapware with
interrupts  off  and chose to save no floating support registers at all. This will improve
context switch times. User programs typically only change the rounding mode
information in the support registers. If all user tasks run with the same rounding
information, then there is no need to save and restore the three floating–point support
registers.

The Am29050 directly executes floating point instructions without the need for
trapware. It has four floating point support registers, special registers sr160–162 and
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sr164. In fact, the  three support registers required by the Am29000 are used to
virtualize these Am29050 registers. Saving Am29050 floating point context  would
be achieved by saving these four registers and the four double word accumulator
values. However, the Am29050 does not directly support integer DIVIDE  and
DIVIDU  instructions. The trapware which implements these instructions requires
six support registers (typically kt0–kt5). If this trapware is interruptable, then these
registers would also have to be saved.

5.9 DEBUGGER ISSUES

Debuggers such as AMD’s MiniMON29K monitor have a special context
switch requirement. They need to be able to switch context to the debugger from a
running application or operating system without losing the contents of any processor
register. One possibility is to reserve a global register in the range gr64–gr95,
specifically for debugger support. But, most operating system developers are
unwilling to give up a register.

A technique  which avoids losing a register for operating system use is to use gr4
to first store a single operating system register, and then use this register to start
saving the rest of the processor context.  The Am29000 does not have a gr4 register
but the ALU forwarding logic enables this technique to work. The code example
below, taken from MiniMON29K, shows how the processor context save gets
started. Note, _dbg_glob_reg is the memory address used by the debugger to save
global registers.

.macro const32,reg,data
const reg,data ;zero high, set low
consth reg,data ;high 16–bits
.endm

dbg_V_bkpt:
const32 gr4,_dbg_glob_reg+96*4
store 0,0,gr96,gr4 ;save gr96
const32 gr96,_dbg_glob_reg+97*4
store 0,0,gr97,gr96 ;save gr97
add gr96,gr96,4
store 0,0,gr98,gr96 ;save gr98

;
call gr96,store_state
 const gr97,V_BKPT

Label dbg_V_bkpt is the address vectored to by an illegal opcode
(MiniMON29K uses these to implement breakpoints on the Am29000). When
function store_state is reached, global registers gr96–gr98 have already been saved.

The gr4 user should be careful to remember that the Am29000 ALU forwarding
logic only keeps the gr4  register value alive for 1–cycle following its modification.
Additionally, because emulators also make use of gr4 in analyzing processor
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registers, it is not possible to use an emulator to debug the monitor entry code shown
above.

5.10 RESTORING CONTEXT

The supervisor register pcb must point to the top of the process control block
stack describing the previously saved context.  A test of the signal number data
located at the bottom of the  PCB stack enables us to determine if the stack was saved
synchronously or asynchronously. Restoring synchronously saved tasks can be
achieved more quickly because there is less relevant data in the PCB stack.

resume:
add kt0,pcb,CTX_SIGNUMB
load 0,0,kt0,kt0 ;sync/async save ?
jmpt kt0,sync_resume
 nop

Asynchronously saved states have a greater number of global registers to be
restored. There are also additional special register values.

async_resume :
mtsrim cr,29–1 ;restore gr96–124
sub pcb,pcb,29*4
loadm 0,0,gr96,pcb

;
popsr q,it0,pcb ;restore specials
popsr ipc,it0,pcb
popsr ipb,it0,pcb
popsr ipa,it0,pcb

;
jmp fp_resume
 nop

Now that the context information, unique to  an  asynchronously saved state, has
been restored, the context  which is common between asynchronous and
synchronous save states can be restored via a jump to fp_resume.

sync_resume :
add pcb,pcb,16*4 ;space for gr96–111

;
mtsrim cr,4–1 ;optional restore of gr112–115
loadm 0,0,gr112,pcb
add pcb,pcb,4*4

;
add pcb,pcb,9*4 ;space for gr116–124
add pcb,pcb,4*4 ;space for IPA–Q

fp_resume:
pop FPStat2,pcb ;floating point
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pop FPStat1,pcb
pop FPStat0,pcb

Now that most of the global and User mode accessible special registers have
been restored, it is time to restore the register cache.  In the case where they were
saved due to an asynchronous event, this requires care. First the register stack support
registers must be restored.

.equ DISABLE,(SM|PD|PI|DI|DA)

mtsrim cps,DISABLE
pop msp,pcb ;M–stack support
pop rfb,pcb ;R–stack support
pop lr1,pcb
add kt1,pcb,9*4
pop rab,kt1
pop gr1,kt1
add gr1,gr1,0 ;alu operation

By examining the register stack support pointers it is possible to determine if the
process state was stored during a SPILL  interrupt. In this case the saved  gr1 will  be
more than a window distance below rfb, this means [gr1]–[rfb] should  not be
restored. In the case of restoring an interrupted  far–longjmp, the cache need not be
restored.

.equ WS,512 ;Window Size

;If User mode uses virtual addressing,
;restore PID field in MMU register
;to PID of incoming task.

sub kt0,rfb,rab ;window size
srl kt0,kt0,2 ;convert to words
cpleu kt1,kt0,WS>>2 ;test for normal
jmpt kt1,rnorm ; or FILL interrupt
 cpgtu kt1,gr1,rfb ;test for far–
jmpt kt1,rlljmp ; longjmp interrupt
 nop

;
rspill: ;restore interrupted spill

const kt0,WS
sub kt1,rfb,kt0 ;determine rab

add kt0,gr1,0 ;save interrupted gr1
add gr1,kt1,0 ;set gr1=rfb–(window size)
mtsrim CR,(512>>2)–1
mtsrim cps,ENABLE&~PD ;virtual data
loadm 0,UA,lr0,kt1 ;load all of cache
mtsrim cps,ENABLE ;physical data
jmp rlljmp
 add gr1,kt0,0 ;restore interrupted gr1
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When synchronously saved tasks are restored, or asynchronously saved tasks
which were interrupted during either a normal register stack condition or an
interrupted FILL,  local registers [gr1]–[rfb]  are restored to the cache.

rnorm: sub kt0,rfb,gr1 ;determine number of bytes
srl kt0,kt0,2 ;adjust to words
sub kt0,kt0,1
mtsr CR,kt0
mtsrim cps,ENABLE&~PD ;virtual data
loadm 0,UA,lr0,gr1 ;restore R–stack cache
mtsrim cps,ENABLE ;physical data

Now that the local registers have been restored, all that remains to do is restore
the remaining special registers. This requires applying Freeze mode with interrupts
disabled during this critical stage.

rlljmp:
pop tav,pcb
mtsrim cps,FREEZE
popsr ops,it0,pcb ;frozen specials
popsr alu,it0,pcb
popsr chc,it0,pcb
popsr chd,it0,pcb
popsr cha,it0,pcb
popsr pc2,it0,pcb
popsr pc1,it0,pcb
popsr pc0,it0,pcb
iret

5.11 INTERRUPT LATENCY

Interrupt latency is an important issue for many real–time applications. I
defined it as the time which elapses between identifying the interrupting device’s
request and performing the necessary processing to remove the request. Latency is
increased by having interrupts disabled for long periods of time. Unfortunately it is
desirable to have operating system code perform context switching with interrupts
disabled.

Consider the case where a User mode process is interrupted and a signal is to be
sent to the process. The operating system starts saving the interrupted process context
on the user’s memory stack. However, in the process of doing this an interrupt is
generated by a peripheral device requiring Supervisor mode C level interrupt handler
support. This second interrupt requires a context switch to the Supervisor mode
interrupt stack.  In the process of preparing the processor to run the C level handler,
the context switch code may become confused about the state of the stack support
registers as a result of  partial changes made by the interrupted signal handler
operating system code. Additionally, there is likely to be register usage conflict
between the different operating system code support routines.
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The status confusion and register conflict is avoided  by disabling interrupts
during  the critical portions of the operating system code. The code shown in this
chapter enables interrupts after the frozen special registers and stack support
registers have been saved. This is insufficient to deal with the nested interrupt
situation described above. However, this does reduce interrupt latency, which is a
concern to real–time 29K users. Some implementors may chose to move the enabling
of interrupts to a later stage in the operating system support code — more
specifically, to a point after register stack support registers have been assigned their
new values. Register usage changes will also be required to avoid conflict.

Within the example code used throughout this chapter, interrupts can be enabled
just after special register CHC has been saved (before lr1 is pushed on the PCB). This
low latency technique enables lightweight interrupt handlers to  be supported during
the operation of normally critical operating system code. Lightweight handlers
typically only run in Freeze mode and can easily avoid register conflict if they are
restricted to global registers it0–it3. Using the  Interrupt Queuing Model described  in
section 4.3.12, or the Signal Dispatcher described in section 2.5.6, a lightweight
handler responds to the peripheral device interrupt. It transfers any critical peripheral
device data and clears the interrupt request. In doing so, it inserts an
interrupt–descriptor, or signal number, into  a queue for later processing.

A Supervisor C level interrupt handler known as the Dispatcher removes queue
entries and calls the appropriate  handler to process them.  If the operating system is
interrupted in a non–critical region by a device requiring a Supervisor mode C level
handler, then the dispatcher is immediately started. If the interrupt is in a critical
region then the Dispatcher  shall be started later when the current critical tasks have
been completed. If the Dispatcher is already running when the interrupt occurred,
then the associated interrupt descriptor shall wait in the queue until the Dispatcher
removes it for processing.

The use of a Dispatcher and interrupt queuing helps to reduce interrupt latency
via the use of lightweight interrupts when building queue entries. However, the
method has some restrictions. It works where troublesome nested interrupt servicing
can be partially delayed for later high level handler completion. But some interrupts
can not be delayed. For example an operating system may be running with address
translation turned on, and a TLB miss may occur for an operating system memory
page which needs the support of a high level handler to page–in the data from a
secondary disk device. In this case the interrupt must be completely serviced
immediately. This is not a typical environment for 29K users in real–time
applications. And even in many non–real–time operating system cases the operating
system runs in physical mode or all instruction and data are known to be currently in
physical memory. The trade–offs required in deciding when to enable interrupts and
resolving register conflict are specific to each operating system implementation.
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5.12 ON–CHIP CACHE SUPPORT

First level caches are small on–chip memories which can respond on behalf of
off–chip memory when a processor attempts a memory access. When the required
access is satisfied by the cache, known as a cache hit, a performance advantage is
obtained when compared to accessing slower off–chip memory. Caches enable high
performance systems to be constructed without the expense and complexity of fast
system memory.

The 29K family supports a mixture of different cache schemes, see Table 5-1.
Some of the inexpensive devices such as the Am29005 processor and the Am29200
microcontroller have no on–chip cache. Other family members generally have some
kind of instruction memory cache; and in some of the top performing processors, data
cache is provided. The individual processor User’s Manual describes the operation of
the available cache in detail.  Chapter 1 outlined the basic cache capabilities of the
family (see sections 1.3–1.9). This section deals with the support code needed to
maintain cache operation. Some cache operations are described in more detail for the
purpose of showing how cache maintenance affects system performance.

When a cache is provided, the 29K family supports two–way set associative
caching. The two–way cache associativity (see section 6.2) provides two possible
locations (blocks or cache entries) for caching any selected memory location. A
block contains four contiguous words from memory and associated tag and status
bit–fields. When a cache miss occurs, and both associated blocks are valid but not
locked (can be displaced), a block is chosen at random for replacement (known as
reload). Investigations have shown that random replacement can be more successful
than a Least Recently Used (LRU) replacement scheme.

When a 29K processor is reset, the processor disables all caches by setting the
cache disable bit–fields in the CFG configuration register. Cache entries must first be
invalidated before the cache is enabled. Supervisor mode code can perform most
operating system cache maintenance services by simply manipulating the bit–fields
of the CFG register. In addition Supervisor mode privileged instructions are provided
for cache invalidation.

5.13 INSTRUCTION CACHE MAINTENANCE

Instruction cache memory has typically a larger impact on performance than
data cache with the 29k family. This is due to the reduced number of data accesses
required by application code. The reduction is relative to other processors, generally
CISC, which have a small number of on–chip registers. Application data is normally
held in the 128–word register file which is a cache of the top of the application
register stack.

The potentially higher performance of a RISC chip is only achieved if the
instruction pipeline is kept effectively busy. The RISC engine is instruction hungry
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Table 5-1. 29K Family Instruction and Date Cache Support

Am29035Am29005

Am29200

Am29205

Am29040

Am29030

Am29050

Am29000

Am29245

Am29243

Am29240

–

BTC 64x16
or 128x8

BTC 32x16

4k

8k

8k

–

4k

–

–

4k

–

–

–

–

–

–

–

4k

4k

2k

2k

I–cache D–cache

I–cache D–cache

I–cache D–cache

3–bus Microprocessors 2–bus Microprocessors

Microcontrollers

All cache sizes in bytes

and to prevent stalling it must be kept fed with instructions from cache memory or a
high bandwidth off–chip memory system (see section 1.10). On–chip cache can
supply instruction sequences at a rate of one per cycle without any initial access
penalties. Thus they can keep the pipeline fed without any stalling due to lack of
available instructions to process.

The original 3–bus family members have a Branch Target cache due to the
improved access to off–chip memory made possible with three busses. Later 2–bus
and microcontroller family members have a more conventional, bandwidth
improving, instruction cache. It is interesting to consider the benefits of an
instruction cache when the memory system is able to support single cycle memory
access. For example, the buit–in DRAM controller used in the Am29240
microcontroller is able to support single cycle burst–mode access. An instruction
cache can not improve on the 1–cycle memory access. However, the cache still hides
the initial access penalties incurred when starting a new burst sequence. It also
enables parallel LOAD and STORE instruction execution, the processor pipeline
being supplied by the instruction cache while the data bus is free to perform a data
access (see section1.7.2).

The required cache maintenance software does not present much of an
overhead. Because the address in the program counter is presented to the instruction
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cache at the same time it is presented to the MMU, the instruction cache does not
operate with physical addresses if the MMU is in use. Thus, the 29K family
instruction caches operate with virtual addresses when testing for a cache hit.
Because cache entries are not tagged with a per–process identifier the cache must be
flushed when a process (or task) context switch occurs. This is to prevent a previous
process’s virtual address appearing to match with the current task’s virtual address.
Only systems which operate with multiple tasks using virtual addressing must
invalidate the cache when a user–task context switch occurs. Using the IRETINV
(interrupt return and invalidate) instruction is one convenient way of doing this.
However, if the processor runs tasks with physical addressing, there is no need to
flush the cache on a process (task) context switch. With physical addressing, each
task is restricted to execution within a limited and possibly unique range of the
available address space.

The instruction cache is enabled by clearing the Instruction Cache Disable (ID)
bit of the CFG configuration register (the CD bit is used with 3–bus processors).
Cache entries are built around blocks of four consecutive instructions. Each block
has some associated tag and status information. This information, shown on
Figure 5-6, is the same for each processor. However, the exact layout of the bit–fields
may vary among family members.

Figure 5-6. Instruction Cache Tag and Status bits

Address Tag V P US

The Valid (V) bit–field indicates if the cache entry is valid. For processors which
have a 1–bit field, setting this bit means all four instructions are valid cache entries.
When a family member supports a 4–bit field, a separate bit is used to indicate a valid
entry for each of the four cached instructions.

Each block has a P bit–field. This bit indicates that the tagged address relates to a
physical address value. The P bit becomes set when the cache is reloaded while the PI
(Physical Instruction) bit in the CPS register is set. This allows cache entries to hold
interrupt handlers which typically run with physical addressing. The interrupt
handler code can be distinguished from User mode and Supervisor mode virtually
addressed code.

When the cache is invalidated using an INV type instruction all valid bits are
reset, even entries which were valid and had their P bit set. In some cases there may be
a performance gain to be had by not invalidating physical cache entries but only
virtual addresses entries. However, the performance gain is small and the on–chip
silicon overhead for this feature would be relatively high.
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The US bit–field of each cache block tag indicates if the address relates to User
mode or Supervisor mode code. The US bit becomes set when the cache is reloaded
while the SM bit is set in the CPS register. This allows cache entries to be used for
both User mode and Supervisor mode code at the same time, and entries can remain
valid during application system calls and system interrupt handlers which execute in
Supervisor mode.

Following sections present further detail about instruction caching for
individual 29K family members. Table 5-2 summarizes this information.

Processor

Addressing

Valid bits per block

Per–process identifiers

Replacement selection

Am29030Am29000

Virtual

1 bit

No

Random

Virtual

4 bit

No

Random

Table 5-2. Instruction Cache Comparison

Reload blocking YesNo

Direct cache access via CIR and CDRNo

Target word first reload NoYes

Am29050

Cache locking Per–columnNo

Am29240

Virtual

4 bit

No

Random

No

via CIR and CDR

Yes

Am29040

Per–column

Cache associativity 2–way set2–way set 2–way set

5.13.1 Cache Locking and Invalidating

Cache locking is an issue when addressing techniques other than physical are
used by an application or operating system. There is often an expressed desire to lock
critical data into the cache and prevent its displacement when User mode address
translation changes. The objective is to improve performance by out–smarting the
random replacement algorithm used for cache reload. In practice this objective is
difficult to achieve. If code is frequently executed, and thus critical to overall
performance, it will naturally be placed in the cache. The random replacement
technique is effective at finding the critical code. It would be difficult and possibly
over ambitious to consider that a programmer, unless supported with sophisticated
tools, could achieve a better result.
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The cache can be invalidated in a single cycle using an INV or IRETINV type
instruction. However this invalidates all User and Supervisor mode entries. It might
be possible to improve the execution speeds of Supervisor mode code and interrupt
handlers by keeping them locked in the cache. This may also reduce interrupt latency
times but is no doubt at the cost of reduced User mode code execution. The non BTC
processors, that is, the 2–bus processors and microcontroller, provide a means of
locking the cache.

Locking valid blocks (or entries) into the cache is not provided for on a
per–block basis but in terms of the complete cache or one set of the two columns.
When a column is locked, valid blocks are not replaced; invalid blocks will be
replaced and marked valid and locked. Cache locking can be applied before
preloading the cache with instruction sequences critical to performance. Instruction
cache locking is achieved by setting the IL field of the CFG configuration register.
When the cache is locked, an INV type instruction will not cause block invalidation
unless the cache is also disabled. Column 0 and column 1 of each set can be locked or
only column 0 locked. When only column 0 is locked, replacement of blocks in
column 1 continues on a direct mapping basis. That is, there is only one location in the
cache which can cache any particular memory address. This results in increased
cache reload activity which reduces the effectiveness of cache.

As an illustrative exercise, consider the code necessary to invalidate only User
mode cache entries. For a 4K byte Instruction cache there are 1K instructions cached
in 256 blocks of four instructions. Given the two–way–set approach, there are 128
sets; each set containing one block in each of the two columns. The following code
scans the 128 blocks of column 0, and invalidates the block only if the entry is found
to cache User mode code. Note, the cache must be disabled while being accessed via
the Cache Interface (CIR) and Cache Data (CDR) registers. These registers enable
cache tags and data to be directly read and written.

const gr64, 0x100 ; set the ID–bit
mfsr gr65, cfg ; read CFG register
or gr65, gr65, gr64; disbable cache
mtsr cfg, gr65 ; write CFG config.

;
const gr64, 128–2 ; scan 128 blocks
const32 gr65, 0x10000000; FSEL=01, tag read
const32 gr67, 0x01000000; R/W OR mask
const gr68, 0 ; zero value

next:
mtsr cir, gr65 ; prepare to read tag
mfsr gr66, cdr ; read tag–status word
sll gr66, gr66, 31 ; test US–bit
jmpt gr66, keep ; jump if Super. mode
 or gr66, gr65, gr67; set the RW–bit to write
mtsr cir, gr66 ; prepare to write tag
mtsr cdr, gr68 ; write zero into status

keep:
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jmpfdec gr64, next ; test if all blocks tested
 add gr65, gr65, 1*16; point to next block

;
const gr64, 0x100 ; set the ID–bit
mfsr gr65, cfg ; read CFG register
nand gr65, gr65, gr64; enable cache
mtsr cfg, gr65 ; write CFG register

With a 2/1 memory system, testing and invalidating each block takes 10 cycles
(2/1 refers to the memory system access times –– 2–cycle first, 1–cycle for
subsequent). This amounts to 1280 cycles for all blocks in column 0; or, 51.2 micro
seconds for a 25 MHz processor. Actual use of the example code presents a
considerable overhead and is unlikely to achieve an overall system benefit over
simply invalidating the whole cache in a single cycle.

5.13.2 Instruction Cache Coherence

The 29K family does not contain unified instruction and data caches. Unified
caches can give a higher hit rate than split caches of the same total size. However,
separate instruction and data caches enable a higher performance due to
simultaneous accesses during the same processor cycle. There are less problems with
instruction cache coherence than data cache coherence. This is because a memory
supplying instructions is unlikely to be modified by another processor or external
DMA controller. Yet, a processor can use store instructions to place new instructions
in memory (assuming a write–through policy described in the following Data Cache
Maintenance section). When this occurs it is possible that the affected memory may
be already located in instruction cache. It is important that the instruction cache be
invalidated after self modifying code has changed memory which will later be
accessed for instructions. Because cache invalidation can only be performed by
Supervisor mode code, a system call service may be required to invalidate the cache.

The Instruction cache operates with virtual address tags when address
translation is in use (physical instruction (PI) bit clear in CPS register). The cache
tags do not contain any per–process identifiers, but can distinguish between User  or
Supervisor mode access. When address translation is used, it is possible that a User
mode virtual address maps to the same physical address as a Supervisor mode virtual
address. However, the cache would assign separate blocks to each of the virtual
addresses. Hence, the instructions on shared instruction pages could be cached twice.
This results in inefficient use of the cache but is unlikely to lead to any problems
unless the instructions on the shared physical page are modified. Note, two User
mode processes can not map their virtual address to the same physical page, as the
cache must be invalidated when a process context switch occurs.

5.13.3 Branch Target Cache

The Am29000 and Am29050 3–bus processors have a Branch Target Cache
(BTC) which can supply the first four instructions of a previously taken branch.
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The Am29000 processor can cache 32 branch targets. The arrangement is the
usual two sets with 16 blocks (or entries) in each set. The Am29050 processors is
configurable to cache 64 branch targets, each block containing four instructions.
Alternatively, 128 blocks, still arranged in two sets, can be used to contain only two
instructions. The smaller block size makes more effective use of the cache when the
BTC is required to hide a smaller instruction memory access latency (see section
1.9).

The programmer has little control over BTC operation; it is maintained
internally by processor hardware. There is no means of accessing or preloading the
cache via the cache interface registers provided on other 29K family members.
Additionally, there are no cache lock bits provided for in the CFG register. The cache
can be disabled by setting the CD bit in the CFG register; and invalidated by
executing an INV or IRETINV instruction.

5.13.4 Am29030 2–bus Microprocessor

The Am29030 has an 8K byte instruction cache; 4K bytes being provided by
each of the two columns. The Am29035 only provides column 0 and hence has 4K of
cache (this results in the Am29030 having typically a 20% performance advantage
for large programs). These processors were the first 29K family members to have non
BTC–type instruction cache. When a branch instruction is executed and the block
(cache entry) containing the target instruction sequence is not found in the cache, the
processor fetches the missing block and marks it valid. Complete blocks are always
fetched, even if the target instruction lies at the end of the block. However, the cache
forwards instructions to the decoder without waiting for the block to be reloaded. If
the cache is enabled and the block to be replaced in the cache is invalid and locked,
then the fetched block is placed in the cache. Note, complete blocks are fetched even
when the cache is disabled. This is a little wasteful if the target of a jump or branch is
not the first address in a block.

Blocks are tagged on a per–block basis. There is only one Valid bit in the block
status information. This bit is not set until the processor has fetched an entire block
with no errors. Blocks which are fetched ahead during prefetch buffer filling are not
marked valid if execution does not continue into the block. Filling the prefetch buffer
in this way enables burst–mode access to be maintained for longer intervals; and
hence reduce overall access delays. LOAD or STORE instructions can occur at any
time; however, the Am29030 processor completes the fetch of the current block
before starting the data access. This is because it is probably more efficient to
complete the instruction fetch, which is likely in single–cycle burst–mode.  The
cache reload characteristics of the Am29030 processor (reload blocking) further
emphasise the importance of scheduling LOAD instructions ahead of the time the
data is required for further operations. The current tools for the 29K family do not
support code positioning such that the target of call and jump instructions begin on a
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block boundary. This would lead to an expansion of code space requirements and is
likely to produce little performance improvement.

5.13.5 Am29240 and Am29040 Processors

The Am29240 microcontroller has a 4K byte instruction cache. The Am29040
2–bus microprocessor has an 8K byte instruction cache. The caches are implemented
using a similar two–way set associative architecture. The major difference from the
earlier Am29030 processor cache is that the block status information has a valid bit
per instruction. The resulting four bits enable partially filled cache blocks to be
supported. This has been shown to produce an average performance gain of 4% over
the valid bit per block method. However, the performance difference may be larger
for code which contains an unusually large number of branch instructions. Note, the
Am29240 microcontroller only caches instructions held in DRAM or SRAM
address regions.

Because cache blocks are not tagged per block, it is possible to interrupt cache
reload with a higher priority operation. This means LOAD instructions need not wait
till the end of the current block reload before they can gain access to the processor
busses. Unlike the block oriented cache of the Am29030, cache reload begins with
the target instruction of a branch, not the first instruction of the block. As with the
Am29030, instructions are forwarded for execution in parallel with cache block
reload. During instruction prefetch, the next block is fetched ahead if it is not already
in the cache or if any of its valid bits are clear.

The instruction cache can be invalidated in a single cycle using an INV or
IRETINV instruction. These instructions also simultaneously invalidate the data
cache. To invalidate only the instruction cache, instructions INVI and IRETINVI are
provided.

5.14 DATA CACHE MAINTENANCE

Newer members of the 29K family can operate with internal processor speeds
which are higher than the off–chip memory system speeds. This ability is known as
Scalable Clocking. To obtain the processing benefits of the higher internal pipeline
speed, it becomes important to prevent pipeline stalling due to accesses to any
off–chip data memory. For this reason, on–chip data cache has been incorporated into
the 29K family. When a cache hit occurs, the accessed data is supplied by the cache
rather than off–chip memory. If the number of cache hits can be kept high, the
potential pipeline stalling which results from a cache miss can be minimized.

As with instruction caches, two–way set associative addressing is used (see
section 6.2). However, unlike instruction caches, 29K family data caches are always
accessed with physical rather than potentially virtual addresses. Physically
addressed caches have advantages over virtually addressed caches. For example,
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they do not need to be invalidated on a task context switch; they do not need extra  tag
information to distinguish virtual from physical access and Supervisor from User
mode access; and importantly, cache coherence problems are more easily solved with
a physically addressed cache. It is somewhat more difficult to implement a physically
addressed data cache. Virtual data addresses must first be converted to physical
addresses before cache access can be attempted. The required address translation
followed by the cache access overhead can introduce a delay before the cache can
respond with the requested data. As internal processor speeds increase, the cache
may not be able to respond within a single–cycle, thus introducing the potential for
pipeline stalling  if load instruction scheduling is not performed.

The data cache is enabled by clearing the Data Cache Disable (DD) bit in the
CFG configuration register. Data caches support accesses to byte and half–word
sized objects within a cached word. Cache tag information is associated with each
block (or cache entry), and the block size is four words (16 bytes). A 2K byte data
cache would have 64 sets, each containing two blocks (a total of 128 blocks given
there is a block for each of the two columns in a set). Individual cache entries can be
accessed via the Cache interface (CIR) and Cache Data (CDR) registers. These
registers enable the data and tags of a cache block to be directly read and written.

There is only one Valid (V) bit for each block. This means blocks are never
partially filled and marked valid. A 29K data cache only allocates cache blocks to
data when a miss occurs during a data load operation. This is known as a
“read–allocate” policy. When performing a data store and an address match is not
found in the cache, no cache block will be allocated. This “no write–allocation”
policy has some advantages. It simplifies the cache design, as an “allocate on write”
policy may require a currently valid block to be written–back to memory before the
block is reallocated to cache the data block causing the cache miss. This would be a
complicated process as the reload and write–back activities both require access to the
system busses. Additionally, the instructions following the load instruction may also
require access to the system bus if they are not being provided by the instruction
cache. To implement an “allocate on write” policy, which avoided the potentially
severe pipeline stalling, would be expensive in terms of on–chip (silicon) resources.
Typically, when data is written–out to memory it is no longer required, as compilers
prefer to keep critical data in registers. Thus, typical patterns of data access indicate
that data written–out should not cause block allocation as the data is somewhat less
likely to be accessed again in the near future.

When stores are performed on data which is not currently in the cache, or to data
which is supported with a “write–through” policy, a write–through buffer is used to
assist the operation. The buffer is two words deep and holds store–data which is
waiting for access to the memory bus. This enables the processor to continue
executing new instructions and not wait till the store is complete. The pipeline only
stalls when there are more than two outstanding stores waiting to be written into
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memory. This seldom happens, but when it does, the write–buffer which normally
has the lowest priority is given a higher priority for accessing the system busses.

Because load instructions have a bigger impact on performance than store
instructions, cache reload may be performed before the write–buffer is emptied. The
Am29240 has dependency logic to detect if a load is performed on a data address
which is currently pending in the write–buffer. The data is forwarded from the
write–buffer when necessary. Because the Am29040 has a copy–back rather than
write–through policy, the write–buffer is first flushed before loads that miss in the
cache are performed –– this is explained in the later Am29040 Microprocessor
section.

The write–buffer is disabled when the data cache is disabled. In this case the
processor is not decoupled from the performance of memory writes. Before interrupt
processing commences or when a serializing instruction is executed, the write buffer
is flushed. Additionally, execution of LOADL or LOADSET instructions (which
bypass the data cached) is preceded by write–buffer flushing. Store instructions are
properly ordered, and since the STOREM instruction bypasses the write–buffer, the
buffer is emptied before the STOREM commences.

Data cache reload, resulting from a load access which missed, always fills a
complete block.  The process of reloading the cache is assisted with a reload buffer
which temporarily holds the data fetched from memory. The cache reload buffer is
four words deep. When the buffer is full it is transferred into the cache in a single
cycle when the cache is currently not being accessed. Code continues to execute
during cache reload; and the cache will continue to service cache accesses which hit.
However, if a further data load operation is performed on data not found in the cache,
the processor pipeline will stall until the current reload operation is complete. When
the reload buffer becomes available the second reload operation will commence (if
necessary) and the pipeline will restart instruction processing.

The following sections present further detail about data caching for individual
29K family members. Table 5-3 summarizes this information.

5.14.1 Am29240 Microcontroller

A block diagram of the Am29240 cache architecture is shown on Figure 5-7.
The precise cache implementation may differ from the diagram but the data flow
paths can be seen.

A buffered “write–through” policy is implemented for all data stores. If write
data matches with a cached entry, then the cache is updated during the same cycle as
the store. All stores cause writes to off–chip memory, but the write–through buffer
enables the processor to continue code execution while the stores are completed in
parallel.

The cache is accessed in the execute stage of the pipeline even if address
translation is in use. This makes data that hits in the cache available for the instruction
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Processor

Addressing

Valid bits per block

Write–through buffer

Reload buffer

Copy–back policy

Am29040 Am29240

Physical

1 bit

2 words

4 words

Selectable

Physical

1 bit

2 words

4 words

No

Table 5-3. Data Cache Comparison

Write–through policy

Non cachable regions

Selectable

On per–page bases

Always

For PIA space

Copy–back buffer 4 words –

Critical word first reload No Yes

Reload memory access

Bus snooping

Burst mode

Yes

Page mode

No

Am29243

LOADM causes reload No Yes

Cache locking Per–column Per–column

Cache block allocation Only on LOAD Only on LOAD[M]

LOAD hit latency 2–cycles 1–cycle

Replacement selection RandomRandom

Cache associativity 2–way set2–way set

following the load without any pipeline stalling. However, scheduling of load
instructions is still required in case of data misses which are still subjected to the
access latencies of the external memory.

Data cache reload always fills a complete block. The format of the cache tag and
status information is very simple, as shown in Figure 5-8. Reload always begins with
the “critical word first”. The critical word is the word containing the requested data.
The critical word is fetched and forwarded to the appropriate execution unit and to
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Figure 5-7. Am29240 Microcontroller Cache Data Flow

Instruction
Prefetch

Buffer

PC–Bus

IR
I–Bus

Data
cache

32 bits

buffer
reload

write–through
buffer

Instruction/Data Bus
32 bits

tag
adds.

DI

DO

Address Bus

4x32 bits

tag
adds.

out

in

LOAD (miss)
LOADL

LOAD (hit)

STORE (hit)

STORE

STOREM

STORE (miss)
block reload

the cache reload buffer. Reload continues with the remaining words in the block and
if necessary wraps at the end of the block to fill the remainder of the block. To
increase the cache reload speeds, the processor attempts to use page–mode accesses
when loading from DRAM. Note, burst–mode addressing can not be used as the
block may not be accessed with consecutive addresses due to critical word first
reload.

Figure 5-8. Am29240 Data Cache Tag and Status bits

Address Tag V

The processor only caches accesses made to DRAM or ROM address regions.
The write–through policy ensures that data in external memory is always consistent
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with data held in cache. Accesses to other address regions or on–chip peripherals are
not cached. When polling the status of a peripheral device, it is important that status
data not be cached. This means that off–chip peripherals should be placed in PIA
space or other non cached space.

When developing code in the C programming language, the key word volatile
can be used to indicate that data should not be held in internal registers. However, this
data may still be cached. Hence, marking data volatile is insufficient to ensure that it
is always accessed from off–chip memory. If memory can be modified by some other
device, either via dual–port memory or external DMA controller, it is important that
the cache be kept coherent with memory. This can be accomplished by signaling the
processor when a DMA type transfer is complete. The processor can then invalidate
the cache. Because the cache normally contains a copy of the memory data (due to the
write–through policy), all modifications to cached data are already reflected in the
memory state. Note that marking data volatile may reduce the compilers ability to
produce highly optimized code, as load scheduling is restricted across the boundary
created by a volatile memory access.

Cache invalidation due to DMA type access can be avoided if the data
concerned is never cached. There is no way with the Am29240 microcontroller of
marking the data as non–cacheable. However, data which is accessed via LOADL
(load and lock) instructions is never allocated for cache use. A convenient way of
ensuring that the compiler only generates code which accesses the critical data with
LOADL and STOREL instructions has been added to newer versions of the High C
compiler. When the key word _LOCK is used (along with volatile) to define the data
type of a variable, LOADL instructions are used in place of LOAD when accessing
the associated data. Consider the example below:

typedef _LOCK volatile unsigned char UINT_8;

unsigned char uart_data; /* cacheable copy of UART data */
UINT_8 *uart_p; /* uart_p must hold uart address */

uart_data = *uart_p; /* access the UART */

If the _LOCK volatile approach is not available, it may be possible to take an
object–orientated approach to DMA affected data. The critical data could be only
modified with an object member function. The member function (probably a leaf)
could be written in assembler and use the LOADL instruction. Of course using such a
simple function to perform a task which would normally be accomplished with
in–line code, would have a performance impact. However, this may be better than
invalidating the whole cache with each DMA occurrence. Note that directly setting
the Lock (LK) bit in the Current Processor Status (CPS) register will ensure that the
Lock pin is asserted during load and store operations, but does not result in data cache
bypassing.
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When register stack filling occurs, a LOADM instruction is used to restore local
registers which were previously spilled. The data loaded during the filling will be
allocated in the cache and possibly displace other cached data. However, the filled
data is intended for the register file only, and will never be accessed by load and store
instructions. This somewhat reduces the effectiveness of the cache; but, since
register stack filling is a very infrequent occurrence it is unlikely to have any serious
impact on performance.

If filling always occurred in Supervisor mode, it would be very easy to add code
to the fill_handler  (see section 4.4.5) which disabled the data cache on entry and
reenabled the cache after the LOADM instruction. Valid data is retained in the cache
while it is disabled. The cache is disabled and enabled in Supervisor mode by
respectively setting and clearing the DD bit in the CFG configuration register. This
would prevent any cached data being replaced by the fill operation. However, filling
is normally accomplished by trampolining from a Supervisor mode trap handler,
FillTrap  (see section 4.4.3), to the User mode fill_handler . This introduces a
difficulty. It would be simple to disable the cache in the FillTrap  code, but after
returning to User mode, access to the CFG register is not directly permitted. It would
be possible to take a trap at the end of fill_handler  to reenter Supervisor mode,
enable the data cache and then IRET back, but it seems unlikely that the additional
overhead (although small) would produce a noticeable performance gain. Another
difficulty with temporarily disabling the cache is that an interrupt may occur. The
interrupt handler or operating system support code would then have the burden of
reenabling the cache. However, it may be worthwhile for operating system code to
disable the data cache while reloading the local register file during a task context
restore.

5.14.2 Am29040 2–bus Microprocessor

A block diagram of the Am29040 cache architecture is shown on Figure 5-9.
The precise silicon implementation may differ from the diagram but the data flow
paths can be seen.

The default policy of the cache is “copy–back” rather than “write–through”.
Stores do not always cause writes to off–chip memory, as is the case with a
write–through policy. Consider when a currently valid cache block is to be
reassigned to a new memory location. The write–through policy enables the block to
be simply reallocated without having to copy its contents to memory. The copy–back
policy eliminates the need to write all stores to memory, but requires that reallocated
blocks be copied–back to memory before they can be used for higher priority data.

To improve the performance of the copy–back policy, the processor has a four
word copy–back buffer which is loaded in a single cycle. This makes the selected
block immediately available for reload. The copy–back buffer data is transferred to
memory when the system bus becomes available –– certainly after reload is
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Figure 5-9. Am29040 2–bus Microprocessor Cache Data Flow
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complete. Thus, loads that miss in the cache do not need to wait for a block to be
written to memory before the data memory can be read.

The cache is accessed in the write–back stage of the pipeline. Tag comparison
and any required address translation is performed during the execute stage. This
makes data that hits in the cache available for the second instruction following the
load without any pipeline stalling. Compared to the Am29240 microcontroller, this is
an extra cycle of latency. The reason is the higher internal clock speeds of the
Am29040 processor. Scheduling of load instructions is always required. Particularly
in case of a data miss, which will stall the pipeline by an amount increasing with the
access latencies of the external memory.

Store operations that hit in the cache also require two cycles to complete. To
enable the cache to satisfy a load instruction which follows a store, the second cycle
needed for cache access can be postponed. Stores that hit in the cache make use of the
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write–through buffer just like stores that miss. The write–through buffer completes
the second required cycle of a store when the cache is free.

Because the write–through buffer can contain data for a store that hit in the
cache, the write–buffer must be flushed before cache reload can be performed. To
understand this, consider that the write–buffer may contain data for a modified block
which must be written back before the block can be reallocated. The write–buffer can
not forward the store data to the cache block after it has been assigned to a new
memory address.

Not all cache blocks need to be written back to the system memory. The format
of the cache tag and status information is shown on Figure 5-10. The tag information
contains a Modify (M) bit. When a block is first reloaded the valid bit is set and the M
bit is cleared. If a store (which is not write–through) is performed to an address in the
block, a hit occurs and the cache satisfies the access. At the same time the M bit is set
indicating the block has been modified. If the block is reallocated, it will be copied
back only if the M bit is set. Otherwise the block can be reloaded without the
copy–back being performed.

Figure 5-10. Am29040 Data Cache Tag and Status bits

Address Tag V S M

Data cache reload always fills a complete block. Unlike the Am29240
microcontroller, reload with critical word first is not performed. The processor will
use burst mode when reloading a block and will start with the first word in the block.
When the critical word is accessed during reload it is forwarded to the execute unit.
This enables reload to continue in parallel with code execution. If the critical word
had been accessed first, and it was not the first word in the block, burst mode access to
the memory block would have to be disrupted. This would increase the overall reload
time and would be particularly noticeable for back–to–back loads which miss in the
cache. Data cache reload is given priority over instruction cache for access to the
system busses. Loads issued while the cache is disabled, or to non cachable data, only
fetch the critical word from memory.

There is a minimum access latency of 3–cycles for the first word in a reloaded
cache block. This is true even if the off–chip memory system has the minimum access
latency of 2–cycles. When a block is reloaded it is possible the block will be supplied
by another Am29040 processor (via data intervention) rather than the memory
system. Data intervention is not asserted until the third cycle after the address of the
first word in the block appears on the address bus. The memory system may supply
the data in two cycles, but the processor holds the data internally for one cycle in case
data intervention occurs. Because cache reload is always block orientated,
intervention only occurs with the first word of the block. If the memory system
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latency is 3–cycle or more, the processor does not delay the forwarding of the first
data word. For single–cycle burst–mode memories, the remaining data words are not
delayed internally by an additional cycle (given 2–cycle first access) unless a
load–multiple is being performed. Only accessed data, rather than reloaded data
values, are sent to the 29K data channel.

Peripheral devices such as a UART can be accessed at physical memory
locations determined by specific system hardware. Because the status and data of an
external device can change at any time, it is undesirable to cache their contents.
Access to these devices is normally accomplished in Supervisor mode. On entering
Supervisor mode the data cache could be disabled by setting the DD bit in the CFG
configuration register (this happens automatically if the FPD bit is not set in the CFG
register). This may be convenient for assembly level code as the cache may only be
disabled for a short time. Alternatively, assembly code could use LOADL
instructions (which, unlike the Am29240, may cause block allocation) when
accessing peripherals. The LOADL instruction always accesses off–chip memory.
However, if operating system code is implemented in C then it is desirable, for
performance reasons, that the operating system data also be cached. A note of
caution, when the cache is disabled its contents are retained. Consequently, if
memory locations, currently cached, are modified while the cache is disabled, the
cache will supply out–of–date data when it is reenabled. This must be avoided.

The key word volatile can be used in C to indicate that data should not be held in
internal registers. However, this data may still be cached. Hence, marking data
volatile is insufficient to ensure that it is always accessed from off–chip memory. As
described in the previous Am29240 section, defining the data type to be _LOCK
volatile is one way of instructing the compiler to use only LOADL instructions when
accessing peripherals. The Am29040 has an alternative; the MMU can be configured
to disable caching of selected memory pages. This means the operating system code
(or for that mater User mode code) must run with address translation turned on. When
TLB reload occurs, the memory management software must ensure the two–bit field
(PGM) of the TLB registers is set to “non cachable” for memory addresses
containing mapped peripherals. The PGM field format is shown on Table 5-4.

Table 5-4. PGM Field of the Am29040 Microprocessor TLB

PGM1 PGM0 Effect

0 0 normal (copy–back)

0 1 write–through

1 0 reserved

1 1 non cachable
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Data loads performed to memory locations which are marked non cachable are
not subject to data intervention. There is never any internal delaying of data in case
data intervention occurs late in the access. Hence, the critical word can be accessed in
a minimum of 2–cycles –– given a 2–cycle memory system. This requires that a data
region which is not cached by a processors, also not be cached by any other processor
(in a multiprocessor system).

With virtual addressing in use, the MMU can be configured to select a
write–through policy on a per–page bases. The write–through policy ensures that
data in external memory is always consistent with data held in cache as all load
instructions are applied to memory (and to the cache if they hit). Selecting this policy
for all memory pages would result in a poorer overall performance compared to the
default copy–back policy. However, regions of address space may be allocated to
peripherals which require immediate update. For example, video memory should be
marked as write–through rather than cachable. There is a definite advantage to
accessing video frame information from the cache when manipulating images.
Additionally, system implementations which fail to deal with the additional
hardware signals needed to support bus snooping may use write–through access to
assist with cache coherence problems. A write–through policy would only enable an
external agent to read shared data, it would not be able to modify the data.

To achieve the best performance, application code will likely use the data cache
with copy–back operation selected. However, there are situations when an
application will prefer write–through cache operation –– at least for portions  of the
memory space. Memory locations are frequently used to pass data between operating
system and application code. If the operating system where to use copy–back  data
cache operation (the default), there would be a danger that some data blocks
(accessed by the operating system) would be cached and their M bit set; later when
returning to the application, the block may be within a memory page which is marked
write–through, this would prevent the block being copied–back should the block be
reallocated. It is best to run the operating system with address translation turned on.
This enables the MMU to control the cache operation for memory pages which are
jointly accessed by the operating system and application code. To simplify this task,
the configuration register has an Freeze–PD (FPD) bit. When this bit is set the
Physical Data (PD) bit in the CPS registers is not set when the operating system is
entered via a trap or interrupt. The FPD bit enables the PD bit to remain unchanged.
Thus, if address translation was enabled in the application, it will remain enabled
after a trap or interrupt. The data cache need not be disabled when the operating
system is entered. However, the MMU must ensure a consistent cache policy for
memory pages which are jointly accessed by operating system and application code.

The Am29040 processor deals with other agents, such as a DMA controller,
accessing the same memory by performing bus snooping. Multiprocessor designs,
with on–chip caches, are also supported by the snooping protocol. The Shared (S) bit
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in the cache tag is used to support the protocol. The S bit becomes set when a write is
performed to an address which causes block reload, and the block is supplied by
another cache –– more on this in the following Cache Consistency section.

The Am29040 processor, unlike the Am29240, does not allocate cache blocks
for data fetched with a LOADM instruction. This prevents needless displacement of
valid cache blocks when a register stack fill is performed. Block allocation during a
LOADM in conjunction with a copy–back policy would have poor performance
given that the copy–back buffer is only four words deep. The copy–back buffer and
the LOADM instruction would both be competing for access to the system bus.

5.14.3 Cache Locking and Invalidating

Valid data cache blocks can be locked by  appropriately setting the DL field of
the CFG configuration register. The entire cache can be locked or only column 0. If a
block is locked but still invalid, it can be allocated for caching. Critical data can be
placed in the cache by first locking the cache and then loading the required data. This
effectively turns the cache into a small fast RAM for critical data. (However, a
write–through policy, if used, will still cause all writes to be duplicated in off–chip
memory). If only column 0 is locked the remaining column 1 will still cache entries
with a direct–mapping replacement scheme. Typical applications show best
performance when the cache is not locked but left to the default scheme of caching
the most recently accessed data.

The cache can be invalidated in a single cycle by issuing an INV or IRETINV
type instruction. All blocks are marked invalid during this process unless the cache is
locked. A locked cache can only be marked invalid if it is first disabled before
invalidating.

The copy–back policy of the Am29040 makes cache invalidation more difficult.
Valid cache blocks which have been modified can not be simply marked invalid.
Failure to write–back modified blocks would leave the memory in an out–of–date
state. Because the data cache operates with physical address tags and performs bus
snooping, there is very little reason to invalidate the cache. Cache invalidation can be
safely performed by using the cache interface registers (CIR and CDR) to examine
each block to determine if the block is valid and if the modified bit (M bit) is set.
When set, the block must be written out to memory before an INV type instruction is
used.

5.14.4 Cache Consistency

The Am29040 is currently the only processor in the 29K family which contains
on–chip data cache consistency hardware. Cache consistency becomes an issue
when there is more than one cache in a multiprocessor system or when a DMA type
device is also accessing data regions which are cached. When there is more than one
agent trying to access data, it is important that all agents agree upon a single (and
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most recent) value. A solution to this problem is for each processor to make virtual
address access to the shared memory pages and mark the pages as non cachable.
However, unless all memory is marked non cachable the plan would require that
software arrange for data intended for shared memory to appear in a range of
contiguous non cached memory. There would need to be an agreement with the
operating system that the selected address range was not to be cached. Such a
mechanism would be undesirable, inflexible, and difficult to retrofit to existing
software.

With systems incorporating multiple Am29040 processors, each processor may
cache the same memory location. This is desirable, as access to the cache is much
faster than  off–chip access. The processor supports three interface signal pins which
facilitate “bus watching” for data reads with cache block granularity. The technique
requires little software support, and existing programs can benefit without any
modifications. The on–chip protocol supporting the interface signals ensures that
each memory access is consistent.

When a load is performed, all processors watching the bus determine if they
have a currently cached copy of the requested data. If they do, they assert the HIT
signal pin. The protocol will enable one cache to identify itself as the owner of the
data. This cache will assert both the HIT and the DI (“data intervention”) signals. The
processor requesting the load is satisfied by the intervening cache. The load will
cause a block to be allocated with the S bit set in the tag. This indicates the data is
shared. The processor can continue to access the data from the cache. Additionally,
all processors asserting the HIT signal will realize that another processor is sharing
the data and will set the S bit in their cached copy. If any processor modifies a block
tagged with the same address, that processor will perform a “write broadcast” as a
result of the S bit being set. This does not cause the system memory to be updated, but
enables the snooping processors to update their cached copies. A processor asserts
the WBC signal pin during the write broadcast and becomes the owner of the shared
block. The processor will remain the owner of the block until another processor gains
ownership by performing a write broadcast itself. When a processor performs a write
broadcast it checks to see if another processor is asserting the HIT signal, if not then
the processor realizes it is now the only processor caching the data and therefor clears
the S bit.

To summarize, bus watching of reloads is used to detect sharing of data. When
data is shared all caches set the S bit in the cached block. The processor which
satisfied the block reload (in place of the memory) is the owner of the block and has
the S and M (modified) bits set in the block tag. Writes to shared data create write
broadcasts on the bus to inform other caches of the change of value. Ownership of a
block is transferred to the processor performing the write broadcast. Cache to cache
communications via write broadcasts is a lot faster than accessing slower system
memory.
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Bus watching monitors write–through and copy–back of cached data. Memory
regions which are accessed as write–through never have cache blocks which are
modified (that is, their tag M bit is never set). All writes to such regions are performed
to the system memory. Caches with matching blocks will update their data when the
write–through takes place. Only blocks which have been modified get copied back
when the block is reallocated. When a block is copied–back, other caches will retain
their clean copies of the shared data. There will now be no owner of the data. If
another cache performs a load for the data, no processor will intervene and the data
block will be fetched from memory. The data  consistency protocol is some times
referred to as a “MOESI” protocol (reflecting the five states: Modified, Owned,
Exclusive, Shared, and Invalid).

The Am29040 processor supports an optimization for use with binary
semaphores. They are frequently used to enable or disable access to shared resources.
A processor can gain exclusive access to a resource via the LOADSET instruction.
The instruction atomically loads the value from the semaphore memory location and
then writes the set–value (0xffff,ffff) to the location. The loaded value can then be
tested; if it was already set, access is disallowed. Access to a shared resource is
granted when a zero semaphore is read. The process of accessing the semaphore with
a LOADSET instruction disables allocation of the resource to other requesting
agents. When acquiring unset semaphores, the processor maintains exclusive control
of the system bus.

When access is not granted, a processor will, typically, repeatedly access the
semaphore waiting for it to become unset. However, continually polling a memory
location which is held in shared memory can be a serious performance problem. To
prevent the associated bus activity, the Am29040 can cache binary semaphores. If a
processor busy–waits, the semaphore traffic is isolated to the processors data cache.
Additionally, when a semaphore value is found to be set, further LOADSET
instructions are not granted access to the external bus until the semaphore is cleared.
The processor knows the semaphore is set by testing bit–31 of the cached value; in
such case there is no need to perform the SET portion of the LOADSET as the
semaphore is already set. The processor currently holding access to the semaphore
will perform a write broadcast when it releases the shared semaphore. A STOREL
atomic instruction is used to clear the semaphore value. The STOREL instruction,
like a LOADSET to an unset semaphore, has exclusive control of the bus during its
execution. The mechanism ensures that at any time only one processor can gain
access to a shared resource.

5.15 SELECTING AN OPERATING SYSTEM

 I am often asked by engineers about to start a 29K project, what they should
look for when selecting an operating system. There are a number of companies
offering operating systems with a range of different capabilities; alternatively a
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home–grown system could be constructed. The material covered in this chapter and
others should help in either constructing or selecting a suitable operating system. I
would certainly advice seriously considering purchasing rather than constructing.
The task may be enjoyable but probably more lengthy than most project time tables
will allow. However, for those who insist on building their own operating system,
AMD has a collection of useful routines which make a good starting point. Contact
AMD 29K customer support for a copy of the code.

There is usually no one right operating system. The choice depends on a number
of criteria which may vary from project to project. The following list presents several
questions which you need to ask yourself and possibly operating system vendors.
You can decide the importance of each item with regard your project requirements.

Are 3–bus family members as well as 2–bus members supported? If the
Am29000 or Am29050 processors are to be used, and the data bus and
instruction bus are not to be tied together, then the operating system must be
clear about maintaining code and data in separate regions. The Harvard
architecture, supported by 3–bus memory systems, typically achieves a 20%
performance gain over 2–bus memory systems. Additionally, when 3–bus
systems are supported, the operating system may require the support of a
hardware bridge allowing the instruction memory to be reached (usually with
access delays) via a data memory access.

Are interruptible SPILL  and FILL  code supported? By running them with
interrupts disabled the difficulties of performing repair of the register stack
support registers can be avoided, should they be interrupted. However, they
require the support of multi–cycle LOADM and STOREM instructions, which
results in increased interrupt latency. Additionally, SPILL  and FILL  support
with interrupts disabled, results in a larger overhead compared with
trampolining to support routines; thus it is non–optimal as SPILL ing and
FILL ing occur a lot more often then their interruption.

Given that SPILL  and FILL  are interruptible, their operation is interdependent
with the longjmp() library routine and the signal trampoline code. All four of
these  services must coordinate their manipulation of register stack support
registers if interrupts are to be reliably supported.

Some operating systems support nested interrupts, others do not; without nested
interrupt support, interrupt latency can be  increased. The use of kernel threads
to complete interrupt processing is one way to keep down latency. If interrupt
handlers are to be written in a high level language such as C, it may be desirable
to support Freeze mode handlers in C. This greatly reduces the interrupt support
overhead, because the overhead of preparing the register stack for use by
non–leaf procedures is relatively high. Does the operating system under



292 Evaluating and Programming the 29K RISC Family

consideration use interrupt tagwords to support interrupt context caching for
Freeze mode handlers?

An interrupt can be configured to generate a task context switch, the new task
being responsible for completing interrupt processing. This method has a
greater overhead associated with it than processing the interrupt in the context
of the interrupted task. Task context switching requires the register cache to be
flushed and reloaded with the incoming task’s register data. A C–level interrupt
handler can use the stack cut–across technique to avoid flushing the register
cache. Certainly some interrupts must cause task context switching to occur, but
it is best to avoid this approach as a general mechanism for dealing with
interrupts. Additionally, if tasks run in User mode, the instruction cache must be
flushed on a task context switch. It is best to reduce the number of cache flushes
due to interrupt support.

If the system is to support a high interrupt throughput, then processing interrupts
with a Dispatcher will be more efficient. The Dispatcher can execute in
assembly level or C level. If C, then the interrupted register stack condition need
only be repaired once before entering the Dispatcher, rather than for every
interrupt (see section 2.5.6).

Interrupt latency can be reduced if Freeze mode interrupt processing is never
disabled. For a HIF conforming operating system, the technique was described
in section 2.5.7 (Minimizing Interrupt Latency).

Synchronous context switching times are greatly improved by only restoring
the activation record of the procedure about to start execution. This can only be
done for tasks which were synchronously switched out; but is a better method
than restoring the register stack to the exact position in use at the time of the task
context  save.

Many embedded operating systems run tasks in Supervisor mode rather than
User mode. This gives each task direct access to critical resources, there is no
need to use system calls (which use a trap instruction to enter Supervisor mode)
to gain access to restricted resources. Always running in Supervisor mode has
the additional advantage that the Instruction cache need not be flushed on a task
context switch. However, the benefits of memory access protection are typically
reduced or unavailable with such systems.

Operating systems each have their own system call interface which is usually a
little different from HIF (see Appendix C). However, it may be still useful to
have HIF services available. The HIF services can often be supported by
translating them into the underlying operating system serves. The High C 29K
and GNU library services generate HIF service calls. These libraries can be used
with a non–HIF operating system; but care must be taken as library routines
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such as printf() are not reentrant. The OS–boot operating system, most often
used with HIF conforming library services, does not support task switching, but
other operating systems will, and the reentrant library procedure limitations will
become a problem.

Not all members of the 29K family support floating–point instructions directly
in hardware. It is the operating system’s responsibility to ensure that the desired
floating–point emulation routines (trapware) are installed. The operating
system vendor should also supply the appropriate transcendental library
services (sin(), cos(), etc.) for the chosen processor.

Floating–point instruction emulation is typically configured to operate with
interrupts not enabled. This avoids the need to save interrupted  floating–point
context. However, the addition of floating–point environment saving during
application context switching is a requirement for some systems and an
unwanted burden for other systems. It is worth knowing the options an
operating system supports in this area.

It is often desirable and less expensive to purchase an operating system in
linkable or binary form, rather than source. This makes it more difficult to make
changes to the operating system code; this can be required to incorporate
support for specialized peripheral devices. It is best that the operating system
not consume all of the 32 global registers assigned for operating systems use
(gr64–gr95). Additionally, linkable operating system images can use link–time
register assignment rather than compile time. This enables the user to rearrange
the global register usage and utilize unassigned registers for peripheral support
tasks.

The 29K family has no hierarchical memory management unit policy built into
the hardware. Support of the translation look–aside buffers is left to software.
This offers great flexibility, but generates questions about the  MMU support
policy adopted by the operating system. Even if address translation is not
supported by an operating system, it is still desirable to use the MMU hardware
(where available) to support address access protection with one–to–one address
translation.

There is a movement in the operating system business, which includes real–time
variants, to support POSIX conforming system calls. It may be worth knowing
how, and to what extent, the operating system vendor plans to support POSIX.

Support for debugging operating system activity and application code is very
important. Often operating systems have weaknesses in this area. The
Universal Debug Interface (UDI) has been influential in the 29K debug tool
business. It offers flexibility in debug tool configuration, flexibility and
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selection. Debug tools are generally more available for DOS and UNIX based
cross development environments.

5.16 SUMMARY

Typical RISC processors, including the 29K, require more complex system
software. The manageability of such software development is very much a  function
of the particular RISC processor implementation. Increased knowledge of how the
compiler utilizes the processor registers is required to achieve best performance. The
availability of a large number of internal registers leads to improved operation
speeds; although the performance gains are at the cost of a somewhat more complex
application task context switch.

The use of interrupt processing via lightweight interrupts and signal handling
methods, along with the relative infrequency of context switching, enable the system
designer to implement a supervisor of generally much improved performance,
vis–a–vis CISC processors. Fortunately, application developers can make use of
RISC technology without having to solve the supervisor design problems
themselves, as there are a number of operating system products available.
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Chapter 6

Memory Management Unit

Address values generated by the program counter and data load and store opera-
tions appear on the Am29000 processor address bus. Certain members of the 29K
family contain instruction caches, which eliminates the need for the processor to re-
quest instructions from external memory when the required instruction can be ob-
tained from the cache. However, unless the Memory Management Unit (MMU)  is in
operation, address values will flow directly on to the pins assigned to the address bus.

The MMU enables address values to be translated, to some extent, into a differ-
ent physical address. This means that the address values generated by a program need
not directly correspond to the physical address values which appear on the chips ad-
dress pins. The program generates virtual  addresses for data and instructions which
are located  in physical memory at  addresses determined by the MMU address
translation hardware.

With the Am29000 processor, virtual address space is broken into pages of 1K
byte, 2K byte, 4K byte or 8K byte size. The first page begins at address 0 and subse-
quent pages are aligned to page boundaries. The MMU does not modify the lower
address bits used to address data within a page. For example, with a 4K page size, the
lower 12 address bits are never modified. However, the MMU translates the upper 20
virtual address bits into  a new 20–bit value. The translated upper 20–bits and the
original lower 12–bits are combined to produce a 32–bit physical address value.

The use of an MMU enables a program to appear to have memory located over
the complete 32–bit virtual address space (4G bytes). The physical memory system
is, of course, much smaller. Virtually addressed pages are mapped (via address
translation) into physical pages located in the available memory, typically 1M to 4M
bytes. A secondary memory is used to store virtually address pages which are not cur-
rently located in the physical memory due to its limited size.
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The secondary memory is typically a disk. When the MMU identifies the pro-
gram’s need to access data stored on a page currently out on disk, it must instruct the
operating system to page–in the required page into the physical memory. The page
may be located almost anywhere in physical memory, but the address translation ca-
pability of the MMU will make the page appear at the desired virtual address ac-
cessed by the program. In the process of paging–in from disk, the operating system
may have to page–out to disk a page currently located in physical memory. In this
way memory space is made available for the in–coming page.

Within the 29K family, the MMU unit is located on–chip, and is constructed us-
ing Translation Look–Aside Buffers (TLBs). This chapter describes in detail how the
TLB hardware operates, and how it can be used to implement a virtual address capa-
bility. The TLBs provide other functions in addition to address translation, such as
separate access permissions for data read, write and instruction execution. These im-
portant functions will be explained and highlighted in example code.

6.1 SRAM VERSUS DRAM PERFORMANCE

As already stated, secondary memory is typically disk. However, it is difficult to
show example code relying on disk controller operation. The example code would be
too large and too much time would be spent dealing with disk controller operation.
This is not our intention. I  have chosen to use SRAM devices for physical memory
and DRAM and EPROM devices have been chosen to play the role of secondary
memory.

SRAM devices are much faster than most DRAM memory system arrange-
ments. Thus, by paging the program into SRAM, a very desirable speed gain should
be obtained. Certainly the secondary memory capacity is limited to the typically  1M
to 4M bytes made available by the DRAM and EPROM combination. But programs
will execute from SRAM alone, which may be limited to as little as 128K bytes. For
large programs this is likely to result in SRAM pages being paged out to secondary
DRAM to make space available for incoming pages.

The SRAM will effectively be a memory cache for the secondary DRAM; the
Am29000 processor MMU being used to implement a software controlled cache
mechanism. The performance difference shown by programs executing from SRAM
versus DRAM is large. Figure 6-1 shows the average cycles required per instruction
execution for four well know UNIX utility programs. The influence of memory per-
formance on these benchmarks is likely to be similar to that experienced by large em-
bedded application programs. The DRAM  memory system used is termed 4–1. This
terminology is used throughout  this chapter. In this case it means the memory system
requires four cycles for a random access and one cycle for a burst–mode access.

Burst–mode enables multiple instructions and data to be accessed consecutively
after a single start address has been supplied. The first data or instruction word in the
burst suffers the access penalties of a random access, but subsequent accesses are
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much less expensive in terms of access delay cycles. The external memory system is
responsible for generating access addresses after the processor has supplied the start
address for the burst. This can be simply achieved with an address latch and counter.
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compress diff nroff assembler

Average cycles per instruction

Joint  I/D      4–1 DRAM memory system

Separate  I/D

Figure 6-1. Average Cycles per Instruction Using DRAM

The Am29000 processor can execute a new instruction every cycle if supported
by the memory system.  Figure 6-1 shows that the desired 1 cycle per instruction is far
from achievable by the utility programs using a 4–1 memory system. Certain mem-
bers of the 29K family (the Am29000 and the Am29050 processors) support a 3–bus
architecture. One bus is used for physical address values, and there are separate
busses for instruction and data  information. This bus structure allows simultaneous
instruction and data transfer. Once the address bus has been used to supply the start
address of an instruction burst, the address bus is free for use in random or burst–
mode data accesses. Figure 6-1  shows performance values for both separate (sepa-
rate I/D), and joint instruction and data (joint I/D) busses. It can be clearly seen that
separate busses offer a significant performance gain. Figure 6-2 shows the average
cycles per instruction for the same  four benchmarks executing on a 2–1 memory sys-
tem.

Implementing a 2–1 memory system at 25M Hz processor speeds, in particular
obtaining a 2–cycle first access, requires SRAM memory devices. The results on
Figure 6-2 show that 1–cycle per instruction is almost achieved when a separate
instruction and data bus is used with 2–1 memory.

29K family members supporting separate busses do not have any means within
the chip of reading data which is located in instruction memory.  If instructions and
data are to be located in the same memory pages, then an off–chip bridge must be
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Figure 6-2.  Average Cycles per Instruction Using SRAM

constructed between the the data and instruction busses. Accessing data located in
the instruction memory system via the bridge connected to the data bus, will require
more access cycles than accessing data located in the data memory system connected
to the data bus directly. The bridge could support accessing instructions located in
data memory, but the performance penalties seem too great to implement. The bridge
mechanism is acceptable if used for the occasional read of data located in EPROM
attached to the instruction bus.  It can also be used for reading, as data, an instruction
which has caused an execute exception violation.

The construction of two memory systems, one for data and a second for instruc-
tions, is undesirable. But it does allow a performance gain. This chapter shall deal
with an example system with a joint I/D. This is because the code example is simpli-
fied. A separate I/D memory system would require separate instruction and data
memory caches and associated support data structures. A block diagram of the exam-
ple system is shown in Figure 6-3.

Even with a joint I/D memory system it may still be necessary to build two
memory systems to achieve a low number of cycles per instruction. This is because it
is difficult to achieve single cycle burst–mode access with current memory devices at
25M Hz processor rates. Two memory systems are required and are used alternative-
ly. This technique is often called memory system interleaving. One memory system
supplies words lying on even word boundaries and the second memory system sup-
plies words lying on odd word boundaries. In this way each memory system has twice
as many cycles to respond to consecutive memory accesses compared to a single
memory system acting alone.
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address bus data/instruction bus

Am29000
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SRAM
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ROM

Figure 6-3. Block Diagram of Example Joint I/D System

Interleaving can not guarantee a faster random or burst–mode first access, be-
cause the first access can not be overlapped with an another access in the way achiev-
able by consecutive burst–mode accesses. However, some implementations may
achieve some savings if the first access happens to fall to the memory system which
did not provide the previous access.

With joint I/D systems, 4 cycle first access is very punishing on performance.
This is because instruction bursts must be suspended when a data access occurs. To
start a data access costs 4 cycles. After it has completed, the joint I/D bus can restart
the instruction burst at a cost of 4 cycles. Thus accessing a single data word will effec-
tively cost 8 cycles. The 4 cycle memory response latency is hidden by the branch
target cache (BTC) for branches and calls but not  interruption of contagious instruc-
tion execution. Separate I/D systems do not suffer to the same extent from memory
latency effects, as the instruction bus can continue to supply instructions in parallel
with the data bus operation. Members of the 29K family, such as the Am29030 pro-
cessor, which only support joint I/D systems, have instruction cache memory on–
chip rather than BTC memory. This will enable the effects of instruction stream inter-
ruption to be better hidden, as the on–chip cache can be used to restart the instruction
stream after data access has occurred.

Figure 6-4 shows average cycles per instruction for the four benchmark pro-
grams running on various joint I/D memory systems. The 4–2 DRAM system does
not support single cycle burst–mode (2–cycle burst), and the performance reduction
from a 4–1 DRAM system is apparent. The MMU and associated software will be
used in the example system to construct a software controlled cache. The TLB sup-
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Figure 6-4. Average Cycles per Instruction

port software is based on an Am29000 TLB register format. Members of 29K Family
supporting two TLBs will require some small changes to the example code. The sec-
ondary memory shall be a 4–2 or 4–1 DRAM memory system. Programs shall be
paged into  a small 2–1 SRAM memory. If the paging activity can be kept to a mini-
mum, it is possible that the effective average cycle per instruction will approach that
of SRAM acting alone.

Current costs for DRAM devices are about $5 for 256kx4 DRAMs and $10.50
for 32Kx8 SRAMs. At these prices 1M byte of DRAM would cost $40 and 1M byte
of SRAM  $336. Prices will of course continue to fall on a per–byte basis. However, a
large difference between SRAM and DRAM prices will remain, and SRAM memory
system costs will remain an obstacle in obtaining the highest system performances. A
128K byte SRAM memory cache would cost $42. Using such a cache in conjunction
with a secondary DRAM memory is a cost effective way of achieving high perfor-
mance. Because the Am29000 processor implements TLBs and lightweight inter-
rupts (see section 4.3.3) on–chip, it is an ideal processor to implement a software
cache mechanism.

6.2 TRANSLATION LOOK–ASIDE BUFFER (TLB) OPERATION

The Am29000 processor has a number of special purpose support registers ac-
cessible only by the processor operating in Supervisor mode. Special register 2,
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know as the Current Processor Status  (CPS)  register has two bits which are used to
enable or disable the MMU operation. Bit PI, if set, disables the MMU for all instruc-
tion accesses. Bit PD, if set, disables the MMU for all data accesses. When these bit
fields are both set, program address values flow directly to the address unit unmodi-
fied. This is simply known as physical addressing.

By clearing both bits PI and PD, program instruction address values and data
address values are presented to the MMU for translation and other checking.  The
Am29000 generates addresses early. This means addresses are presented to the
MMU during instruction execution. The MMU completes the translation during the
execution cycle, making the translated address available at the start of the next pro-
cessor cycle. The MMU does not need to check every address value; all data access
LOAD and STORE instruction addresses are translated. For instruction accesses,
only JMP and CALL type instructions are translated, as well as whenever the current
execution address crosses a page boundary. Figure 6-5 shows the probability of an
instruction requiring an address translation for the four utility programs previously
studied. Typically about 30% of instructions are shown to require address transla-
tions.
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Figure 6-5. Probability  of a TLB Access per Instruction
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Joint  I/D  2–1 SRAM memory system

The MMU is constructed using a 64 entry Translation Look–Aside buffer
(TLB). Let’s first deal with how the TLB registers are configured, and how address
translation is performed. Later, the additional functions supported by the TLB regis-
ters will be studied. TLB registers are arranged in pairs which form a single TLB
entry.

The Am29000 processor can support 1K, 2K, 4K, and 8K byte page sizes. Spe-
cial register 13, the Memory Management Unit configuration register (MMU regis-
ter), has a  two bit field  (PS) which is used to select the page size. For the following
discussion let’s assume the PS bits are set to give a page size of 4K bytes.
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The lower 12 address bits will be unmodified by the MMU translation, they will
flow directly to the address pins. The next  five address bits (bits 12 to 16) will be used
to select a TLB set. See Figure 6-6 for address field composition. If the page size had
been 2K bytes then address bits 11–15 would be used to obtain five bits for TLB set
selection. Whatever the page size, five bits are required to select from one of 32 TLB
sets. The Am29000 processor has actually 64 TLB entries arranged as two per TLB
set.

07152331

Virtual Address Tag Comparison Address offset within  Page

11

TLB set

Figure 6-6. TLB Field Composition for 4K Byte Page Size

Each TLB entry contains an address translation for a single page. Therefore the
MMU contains translations for a maximum 64 pages. It is possible the address re-
quiring translation does not have a match with  any of the current TLB entries, but this
will be discussed later.  The virtual address space is divided into 32 sets  of equal sized
pages (known as sets 0 to 31). Page 0 starting at address 0 belongs to set 0. Page 1
belongs to set 1 and so on. Pages 32,  64 and many more also belong to set 0. And
likewise page 31, 63 and more belong to set 31. All addresses falling on pages which
are members of the set must obtain an address translation from the TLB entrees
which are associated with the set.  This is know as Set Associative Translation. If a
page address could be translated by an entry in any TLB, then the translation tech-
nique is known as Fully Associative.

Compared to full associative mechanisms, set associative translation requires
less chip area to implement than full associative mechanisms, and can more easily
operate at higher speeds. However, there are still many pages which compete with
each other to get their address translation stored in a TLB assigned to the associated
TLB set. For this reason the Am29000 processor supports two TLB entries per set.
This is often expressed as “two columns per set”. A page associated with a  particular
set can have its address translation located in any of the two possible TLB entries.
This leads to the title: Two–way Set Associative Translation.

To determine which TLB entry has a valid entry for the page currently being
translated, the upper address bits, 17–31 in our 4K byte page example, are compared
with the the VTAG filed in the TLB entry. The VTAG contains the corresponding
upper bits for the TLB entries current translation. If a mach occurs, and other TLB
permission bit field requirements are also satisfied, then the TLB RPN field supplies
the upper address bits for the now translated physical address. In our 4K page exam-
ple the RPN (Real Page Number) field would supply upper address bits 12 to 31,
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which when combined with the page, offset bits 0 to 11, produce a 32–bit physical
address. See Figure 6-7 for a block diagram of the TLB layout.

Figure 6-7. Block Diagram of Am29000 processor TLB Layout

this entry a member of set 0

this entry a member of set 1

this entry a member of set 31

TLB Column 0 TLB Column 1

this entry a member of set 0

this entry a member of set 1

this entry a member of set 31

TLB entries are constructed from fields requiring 64–bit storage. This results in
128 TLB registers supporting the 64 TLB entries (32 sets 2–ways per set). Two TLB
registers are required to describe a TLB entry. The first TLB register holds entry word
0 and a second register holds entry word 1. Figure 6-8 shows the TLB register layout.

Now that the address translation mechanism has been discussed, the TLB entry
fields can be examined in more detail. The VTAG and RPN fields have already been
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Figure 6-8. Am29000 Processor TLB Register Format
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described. Word 0 contains access permission fields. First look at the TID field of
word 0. For a TLB entry to match with the current translation, not only must the
VTAG match with the upper virtual address bits, but the current  process identifier
(PID) must match with the task identifier in the TID field. The PID is located in an
8–bit field in the MMU  configuration register.

Multi–tasking operating systems assign a unique PID to each task. Whenever a
context switch occurs to a new task the MMU register is updated with the PID for the
currently executing task. This enables the MMU to support multi–tasking without
having to flush the TLB registers at every context switch. TLB entries are likely to
remain until a task is again restored and the TLB entries reused. TLB entries are only
valid if the VE bit is set, the VE bit for each TLB entry should be cleared before ad-
dress translation is enabled.

When the processor is running in Supervisor Mode (the SM bit in the CPS regis-
ter is set), then the current PID value is zero, regardless of the PID value located in the
MMU register. Each TLB entry can separately enable read, write and execute per-
missions for accesses to the mapped page. The SE, SR and SW bits control access
permissions for Supervisor accesses to the page. The UR, UW and UE bits control
access permissions for the TID identified user.

If no currently valid mapping can be found in the two associated TLB entries,
then a TLB miss trap occurs. There are four traps assigned to support address transla-
tion misses, two are reserved for the processor operating in Supervisor mode, and a
additional two can be taken when a translation is not found when the processor is op-
erating in User mode. Each mode has separate traps for instruction address transla-
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tion  and data  address translation. A subsequent section describes the process of tak-
ing a trap.

Two additional traps are assigned to Supervisor and User mode protection
violations. These occur when a TLB entry has a valid entry but the permission fields
do not allow the type of access being attempted. For example unless the UW bit is set
a User mode process can not write to the mapped page, even if all other TLB entry
fields indicate a match with the translation address.

Now examine the bit fields of word 1. The IO bit is little used, it enables a virtual
address to be associated with a physical page in I/O space. The U bit is maintained by
the Am29000 processor. Whenever a TLB set is used in a valid translation the U bit
associated with the set is updated to indicate which of the two TLB entries was used.
In other words, the U bit selects the column within the set. The U bit is used to supply
the most significant bit in the least–recently used  (LRU) register. Special register 14
has a 6–bit field which is updated whenever an address translation fails and a TLB
access trap occurs. The lower 5–bits of the LRU register are loaded with the TLB set
number. Thus the LRU register supplies to the trap handler a recommendation for
TLB entry replacement. The trap handler typically builds a new valid TLB entry at
the recommended location before execution of the interrupted program is continued.

The 2–bit PGM field is not assigned a task by the Am29000 processor,  these bits
are placed on the PGM[1:0] out put pins when a translation occurs.  Developers can
place any information they wish in the PGM bits. These bits are particularly useful
for multiprocessor applications when one processor wishes to signal other processors
about page cache–ability information.

All data accesses have their translated address and corresponding  PGM value
presented on the the chip pins in the cycle following the cycle executing the LOAD or
STORE instruction. Pages containing instructions have their corresponding PGM
bits presented to the chip bins when a jump or call to an address within the page first
occurred. However, if the target of the jump or call is found in the on–chip instruction
cache and the address bus is currently in use when jump or call instruction is in
execute, the PGM bits for the target instruction page will not be presented to the chip
PGM[1:0] bins.

In this chapter, the software controlled cache code example shall use the PGM
bits to store page–lock and page–dirty information in bits PGM[0] and PGM[1], re-
spectively.

6.2.1 Dual TLB Processors

Newer microprocessor and microcontroller members of the 29K family do not
have the full complement of 64 address translations cached in their TLB. A smaller
TLB size of 16 entries enables valuable silicon space to be used for on–chip func-
tions; such as peripherals. To support the smaller number of TLB entries, the maxi-
mum page size has been increased from 8k bytes to 16M bytes. This enables a large
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amount of virtual memory to be mapped with the reduced number of translation en-
tries. Note, the Page Size (PS) field in the MMU configuration register is increased
from 2–bits to 3–bits to support wider page–size selection.

A consequence of the smaller number of TLB sets (8 for 16 two–way entries) is
a larger VTAG field. The Am29000 processor uses 5–bits to select from its 32 sets
(64 entries). The Am29240 only requires 3–bits to select the correct set. The loss of
2–bits for set selection causes a corresponding increase in the VTAG field. With a
minimum page size of 1k bytes (10 address bits), a maximum VTAG field of 19–bits
is required. To enable the VTAG field to fit within the TLB Entry Word 0, two per-
mission bits are omitted. The Supervisor Read (SR) and Supervisor Execute (SE) ac-
cess protection is not available with processors supporting larger page sizes. Conse-
quently, Supervisor mode programs can always read and execute code/data from
pages which have a currently valid mapping. The TLB register format is shown on
Figure 6-9. 
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Figure 6-9. TLB Register Format for Processor with Two TLBs
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The Am29243 microcontroller supports two TLBs. This enables valid transla-
tions for a larger virtual address space to be maintained at any time. Each TLB oper-
ates independently and they can be programmed with different page sizes. The MMU
configuration register has two Page Size (PS) fields; one for each TLB. Dividing the
TLB register space (128 registers) into two TLBs enables up to 32 translations to be
held in each TLB. Each Am29243 TLB implements 16 of the possible 32 transla-
tions. The Least Recently Used (LRU) register has two LRU–recommendation
fields, one for each TLB. The fields are arranged such that future processors can im-
plement the complete complement of 16 sets (32 translations) per TLB. When a TLB
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miss occurs both LRU fields are update. Support software must decide which LRU
field to use and consequently which TLB to update. If the TLBs are allocated to dif-
ferent address regions, the miss address can be used to select the appropriate field.

TLB Entry Word 1 has an additional entry compared with the Am29000 register
format –– the Global Page (GLB) bit; when set, the mapped page can be accessed by
any processes regardless of its process identifier (PID). This can be very useful when
dealing with regions of shared code or data. Multiple processes can accessed, say, a
shared library, without each process having to have valid translation entries for the
memory pages containing the shared information

The Am29040 2–bus processor also supports two TLBs. The TLB register for-
mat is the same as used with the Am29240 microcontroller. However, there are a
number of additional fields implemented in Entry Word 1. The width of data bus used
for external memory accesses can be reduced to 16–bits if the D16 bit is set. When
set, a 32–bit data object is accessed via two 16–bit accesses. The D16 bit simplifies
access to  memory or other device which must be accessed with a 16–bit width for-
mat. The PCE bit enables parity checking for the mapped page. Parity is odd or even
depending in the POE bit in the Configuration Register (CFG).

Table 6-1. PGM Field of the Am29040 Microprocessor TLB

PGM1 PGM0 Effect

0 0 normal (copy–back)

0 1 write–through

1 0 reserved

1 1 none cachable

With virtual addressing in use, the Am29040 TLB entries enable a data cache
maintenance policy to be selected on a perpage bases (see Table 6-1). The default
copy–back policy generaly achieves the highest performance. When the MMU is not
in use (physical addressing) a copy–back policy is applied for cached data. See sec-
tion 5.14.2 for more details about Am29040 data cache policy. Note, when the D16
bit is set, the access is considerd non cacheable.

The example code presented in this chapter for a software controlled cache is
based on the Am29000–type TLB register format. To make the code work with an
Am2924x or Am29040 processor would require some small changes. The code se-
quences requiring modification would be in the construction of TLB entry Word 0
and Word 1. This does not detract from the value of the example code.

6.2.2 Taking a TLB Trap

The address translation performed by the MMU is determined by the trap han-
dler routines which  are used to update the TLB registers. When the current processor
status register bits PD and PI are both clear, enabling the MMU hardware for both
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data and instruction address translation, the DA and FZ bits in the CPS register must
also be cleared. Clearing these bits disables Am29000 special register freezing and
enables traps to be taken.

When the MMU does not contain a match for the current address translation, a
trap is taken by the processor. This also happens for valid translations  not meeting
permission requirements. The software executed by the trap handler must construct a
TLB entry for the failing address from page table entries (PTEs) stored in memory.
The TLB registers simply act as a cache for the currently–needed translations stored
in off–chip data memory.

Many CISC–type processors have algorithms in the chip microcode for auto-
matically updating the MMU hardware from more extensive data located in external
data memory. Because the Am29000 does not implement this function in hardware,
the user is free to construct a software algorithm for TLB reloading which best suits
the memory management architecture. This increased flexibility outweighs any re-
duction in TLB register reload time that may occur for some configurations. The
flexibility is what makes possible the software controlled  cached described later.

When the Am29000 takes a trap the processor enters Supervisor mode with fro-
zen critical support registers. This is known as Freeze mode. A more complete ex-
planation  is given in Chapter 4 (Interrupts and Traps). The frozen special registers
describe the state of the processor at the time of the address translation failure. Ex-
amining these registers enables the trap handler software to determine the necessary
action and eventually restart the instruction  in execute when the trap occurred. After
the trapware routines have constructed the required TLB entry, the faulting instruc-
tion will be able to complete execution.

Later sections will deal with the trapware in detail for the example software con-
trolled cache system. The interesting details of the trapware will be covered then.
Since the code is memory architecture specific, the operation of the software con-
trolled cache needs to be discussed first. This discussion is in the later section entitled
Software Controlled Cache Memory Architecture (section 6.4).

6.3 PERFORMANCE EQUATION

Performance has been considered in terms of average number of cycles per
instruction execution. This is a useful metric when considering memory system ar-
chitectures. Figure 6-1, Figure 6-2 and Figure 6-4 give average cycles per user
instruction execution (AC/I). However, if a TLB miss occurs during instruction
execution, a number of Supervisor mode trapware instructions will be required to
prepare the TLB registers before the user’s code can continue. If TLB trapware is ac-
tivated in  support of too many instructions, then the effective number of cycles re-
quired per application instruction will increase.

The effective average cycles per instruction is given by: Aeffective = P AC/I where
AC/I is the average number of cycles per instruction for the program running in physi-
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cal mode, without the MMU in operation. The multiplying factor, P, determines how
much performance is reduced by the use of the MMU hardware. The value of P is
given by:

Pmiss Tcycles1 +

AC/I

P =
PTLB/I

We shall look at the terms of this equation individually to determine their effect.
Term PTLB/I  is the probability an instruction shall cause a TLB access. Figure 6-5
showed average figures for PTLB/I  observed with the four benchmark programs  ex-
amined. Given that a TLB access occurs, we are then interested in the probability that
an entry is not found and a miss trap is taken. This conditional probability is given by
term  Pmiss, and Figure 6-10 shows average Pmiss values for the four benchmark pro-
grams running on the software controlled  cache system .
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Figure 6-10. TLB Miss Ratio for Joint I/D 2–1 SRAM
System

What matters at present is we observe that TLB miss rates increase as we de-
crease page size. This is expected because smaller page sizes mean a smaller portion
of the program’s pages have mappings currently cached in the TLB registers. Given
that the Am29000 processor has a fixed number of TLB entries, it is best to have large
page sizes if TLB misses are to be reduced. However,  the better granularity of small
page sizes may lead to better physical memory utilization. An additional consider-
ation is the size of pages transported from secondary memory such as disk or network
connections. Secondary memory communication may be improved by  better com-
munication efficiencies. These efficiencies may be achieved with larger page sizes.
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The final term of the Tcycles equation is the average number of cycles required to
process a TLB miss. Figure 6-11 shows values for the four benchmark programs run-
ning on the cache system. When a TLB miss occurs for a  page which is not currently
located in the physical memory but in secondary memory, a large number of proces-
sor cycles is required to first transfer the page from secondary memory to physical
memory and then build a valid TLB entry.  As the page size increases the TLB miss
trap handler execution time increases substantially.

The product, PTLB/I  Pmiss Tcycles gives the average number of cycles overhead
added to each application instruction in order to support the MMU operation. After
studying the software cache memory architecture, the effective number of cycles per
instruction achieved will be reexamined and compared with the non–cache memory
architecture performance.

6.4 SOFTWARE CONTROLLED CACHE MEMORY ARCHITECTURE

By studying a software controlled cache mechanism we can achieve three ob-
jectives: First, a better understanding of the non–TLB–cached page–table layout. Se-
cond, further understanding of TLB trapware implementation detail.Thirdly, an
awareness of software controlled cache benefits.

When a TLB miss occurs, the trap handler must determine the replacement TLB
entry data. It does this by indexing a table of Page Table Entries (PTEs). Each PTE
contains information on how to map a physical page into its corresponding secondary
memory page. In our example system, the physical memory is SRAM and the sec-
ondary memory is DRAM. In fact, the secondary memory is physically addressable,
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but the execution of all programs from within the limited sized SRAM cache will be
attempted, and the DRAM will only be accessed when a page–to or page–from sec-
ondary memory needs copying.

There are many different PTE table arrangements. Some systems have multiple
layers of PTEs, where a higher level PTE points to tables of lower level PTEs. In mul-
ti–tasking systems, each task may have its own table of PTEs. And if the Supervisor
code also executes with address translation, then it may also have a table of PTEs. To
simplify our example system, we will assume the supervisor always runs in physical
mode, and there is a single table of PTEs shared by all User mode programs. To evalu-
ate the system performance, only single User mode tasks will be run, in particular the
nroff and assembler utility programs.

PTEs need not have the same structure as TLB entries. They typically do not.
This enables the memory management system to keep additional page information in
memory and only cache critical data in the TLB registers. In addition it may be pos-
sible to compact information into a smaller PTE structure, which results in a substan-
tial space saving in systems which keep extensive PTE tables permanently in physi-
cal memory (in our case SRAM). For the example system, PTEs shall have exactly
the same format as TLB entries. The method has the benefit that TLB entries can be
loaded from PTE memory location directly without additional processor cycles be-
ing expended in reformatting.

The PTE format will be 4–way set associative. The number of sets shall be lim-
ited by the amount of available SRAM cache memory, but a lower limit of 32, estab-
lished by the Am29000,  is required. Given a minimum page size of 1K bytes, the
SRAM can not be smaller that 128K bytes (1K x 4 x 32). If the number of PTE sets is
greater than 32, then the cache has more set resolution than the TLBs. In this case a
TLB set caches entries for more than one PTE set, and the TLB VTAG field has more
address resolution than the PTE VTAG field requires.

Each TLB entry indicates how the user’s virtual address is mapped into an
SRAM  page number (given by the TLB RPN entry). The PTE entries must have a
mapping relationship with DRAM memory pages and SRAM memory pages. The
entries use the PTE RPN field to store the DRAM page number. PTEs also have a
mapping relationship with SRAM pages. This enables the memory page maintained
by the PTE to be moved between SRAM and DRAM. The PTE SRAM mapping is
simple. PTEs and SRAM pages are stored consecutively in memory, as are SRAM
pages. Given the  PTE address, the corresponding SRAM page address can be found
by determining the PTE address displacement from the PTE table base. The PTE dis-
placement, multiplied by the page size, will locate the SRAM page relative to the
base address of SRAM pages. Figure 6-12 outlines the system.
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Because the PTE entries are not an exact cache of PTE entries, due to the RPN
field differences, TLB register word 1 must be adjusted accordingly before the TLB
register can be updated form the PTE entry.

The Am29000 C language calling convention reserves processor registers
gr64–gr95 for operating system  use. To improve trap handler performance a number
of these registers are used by these critical routines. For temporary use, six  registers
are required, and for static information caching two registers are used. The particular
registers used are described later along with the example code. The two static regis-
ters are of particular interest; they will give them synonyms upte and kmsp.

It is desirable to keep critical data and routines in SRAM memory. For example,
the TLB miss handler routines should be stored in cache memory. Cached pages can
be marked as locked–in, this will prevent them from being paged–out to DRAM.
However, the SRAM is only intended to hold User mode application pages. Trap han-
dlers and other critical operating system routines run in Supervisor mode, and in our
example system, without address translation. In practice, a larger SRAM could be
implemented and, say, half allocated for cache use; the other half being reserved for
operating system code and data. This may not lead to the most efficient use of such an
effective resource as SRAM. The problem can be overcome by marking certain PTE
entries as invalid but locked. The SRAM pages corresponding to these PTE can then
be accessed in non–translated address mode by Supervisor mode code.
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Since the PTE table is frequently accessed by TLB trapware, it is important that
quick access to the table is supported. For this reason register upte is initialized to
point to the base of the PTE table, and the table is located in the first SRAM page. One
SRAM page can contain 32 sets of PTE data. In multi–tasking systems, with each
task having its own PTE table, the upte value is normally stored in a per–task data
structure know as the Process Control Block (PCB), and the upte register is updated
from the PCB data at each context switch.

The Am29000 takes traps very quickly, without expending a number of internal
processor cycles preparing an interrupt processing context for the processor. This ad-
vantage over typical CISC processor operation enables the Am29000 to process the
trap quickly in Freeze mode and return to the user’s program. It is the Freeze mode
processing capability of the Am29000 that makes a soft cache mechanism attractive.
However, TLB miss handlers can not always complete their handling quickly in
Freeze mode code. In such cases they must signal the operating system to continue
with further processing, Freeze mode is departed, and Supervisor mode with freeze
disabled is entered. Before Freeze mode can be exited, the frozen special registers
must be stored on a Supervisor mode memory stack. They will have to be restored
from this stack once the operating system completes the TLB miss processing. The
operating system stack is located on page 4, which is in a different set from the PTE
table. Operating system accessible register kmsp is used as a stack pointer.

Using the cache architecture described, the nroff and assembler utilities were
observed running in a 128 page SRAM based system. The page–in activity is shown
on Figure 6-13. It appears the two programs were too large to execute in 128K  byte
SRAM (1K  byte page size). The paging activity is at a minimum with a 256K byte
cache (2K byte page size). It is possible the increased paging activity is due to cache
sets being only 4–way. In the case of nroff, it is more likely the page replacement al-
gorithm was having difficulty in keeping the desired pages in the cache for such a
large program.

As page sizes get larger, the probability of a TLB miss diminishes. Since the
cache gets larger for a given  SRAM of fixed number of pages,  expect the probability
of a page–in to increase as page size increases. Reflecting the fact that with large
caches, a TLB miss causes a page–in and the TLB maintains a cached entry for the
permanently resident page. Figure 6-14 gives the probability of a page–in given a
TLB miss has occurred.

With the nroff utility, the probability actually reduces when the page size is in-
creased from 1K byte to 2K byte. This is because of the cache–thrashing occurring
with the 128K byte cache used with the 1K  byte page size.

6.4.1 Cache Page Maintenance

The example software controlled cache system only supports User mode ad-
dress translation. This means Supervisor mode TLB miss handlers will not be consid-
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ered. TLB entries shall always enable instruction execution for each page, this elimi-
nates support for the TLB instruction access protection violation trap. Pages will be
initially marked as non–writeable, as will be seen this supports maintenance of the
page–dirty bit. So in total, we need only deal with three traps: Instruction access miss,
data access miss, and data access protection violation.
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The Am29000 has 65 global registers (gr1, gr64–gr127), of these 32 are re-
served for operating system  use only (gr64–gr95).  To improve the performance of
the trapware, several of the operating system registers have been assigned TLB han-
dler support functions. The following code uses register synonyms, so the actual reg-
ister assignments can be easily changed.

.reg it0,gr64 ;Freeze mode

.reg it1,gr65 ;temporary regs

.reg it2,gr66

.reg it3,gr67

.reg kt0,gr68 ;temporary regs

.reg kt1,gr69

.reg kmsp,gr93 ;supervisor M–stack

.reg upte,gr95

The code shown within this chapter makes use of a number of macros for push-
ing and popping special registers to an external memory stack. These macros, push ,
pushsr, pop and  popsr, were described in section 3.3.1 (Useful Macro–Instructions).

The example code can be used to construct a cache of various number of PTE
entries (ways or columns) per set, and total number of sets. The constant definitions
shown below are used to control the cache size.

.equ PGSIZE,10 ;Page size

.equ C_SETS,6 ;cache sets

.equ C_COLUMNS,2 ;columns per sets

.equ WSIZE,512 ;window size

.equ SIG_ICMISS,1 ;signal I–miss

.equ SIG_DCMISS,3 ;signal D–miss

.equ SIG_PROTECT,5 ;signal W–protect

.equ CTX_CHC,3*4 ;context offset

.sect cache,bss

.use cache
cache_adds:

.block (1<<PGSIZE)*(1<<C_SETS)*(1<<C_COLUMNS)

The operating system code, which is not shown, is responsible of initializing
support registers, kmsp, and upte. It must also mark the PTEs locked and invalid for
any SRAM pages which are not to be used for caching, but by the operating system.
The example code uses pages 0 and 4 to store performance critical support data.

6.4.2 Data Access TLB Miss

When a read or write data access occurs for a page whose  translation from virtu-
al to physical address is currently not in the TLB registers, a TLB miss is taken. This
causes execution to vector to trap number 9. The address of the trapware handler,
UDTLBMiss , is at location 9 in the vector table. A miss may occur because the ac-
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cessed page is currently not in the cache, or, more importantly, because the PTE map-
ping the cached page is currently not cached by the TLB registers. The PTEs for the
appropriate set must be scanned to determine if the page is in the cache.

When a trap is taken, the Am29000 processor special support registers are fro-
zen, their contents report the state of the processor at the time of the trap. Special reg-
ister CHA contains the virtual address for the failing data access. Using the CHA val-
ue, the cache set is determined and the 4 PTE columns assigned to the set are scanned.
The PTE valid bit must be set and the PTE VTAG field must match with the upper bits
of the CHA  address for a  match to be found. Note, the example code does not
compare the TID field; this would be necessary if the cache were supporting a multi–
tasking operating system.

UDTLBmiss:
mfsr it0,cha
const kt1,SIG_DCMISS ;signal number
srl it2,it0,PGSIZE ;select cache set
and it2,it2,(1<<C_SETS)–1
sll it2,it2,3+C_COLUMNS
add it2,it2,upte ;adds of 1st PTE

;
scan_columns:

srl it0,it0,PGSIZE+5
sll it0,it0,PGSIZE+5
const kt0,(1<<C_COLUMNS)–1

next_column:
jmpt kt0,not_cached
 sub kt0,kt0,1 ;dec column count
load 0,0,it1,it2 ;load word 0
add it2,it2,8 ;next PTE entry
sll it3,it1,31–14 ;test VE–bit
jmpf it3,next_column
 srl it3,it1,PGSIZE+5;mask PTE VTAG
sll it3,it3,PGSIZE+5
cpeq it3,it0,it3 ;compare VTAG
jmpf it3,next_column
 mfsr it3,LRU
sub it2,it2,4 ;adds word 1

If a PTE is found in the set which matches with the CHA address, then the TLB
entry of the associated set, selected by the LRU register, is updated with the contents
of the matching PTE. Field RPN of word 1 of the PTE is not filled with the secondary
memory (DRAM) page number taken from the PTE, but with the page number of the
SRAM cache page.

in_cache:
;Word 0 in it1,it2 points to PTE word 1

load 0,0,it0,it2 ;load word 1
mttlb it3,it1 ;assign Word 0
add it3,it3,1
and it0,it0,0xc1 ;mask out RPN
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sub it1,it2,upte ;set offset;
srl it1,it1,3 ;set index;
sll it1,it1,PGSIZE ;cache page offset
add it1,it1,upte ;cache RPN
or it0,it1,it0 ;or in cache RPN
mttlb it3,it0 ;assign Word 1
iret

When the required page is found in the cache, the TLB handler executes very
quickly without ever leaving Freeze mode. After the TLB entry has been updated an
IRET instruction causes execution to be restarted from the state defined by the frozen
special registers. The trapware is arranged so the most frequently occurring  events
are processed first and suffer the lowest support overhead. However, if the page is not
found in the cache (no matching PTE) then the trapware must call on the operating
system to complete the necessary processing. It does this by sending a signal. The
code following label not_cached pushes the contents of the special registers as well
as other signal information onto a signal frame on the Supervisor memory stack.
Execution is then forced to continue in Supervisor mode with non–translated addres-
sing at tlb_sig_handler. The signal frame shall be used to repair the special registers
after the higher level operating system support code has completed.

not_cached:
;Send a signal to the operating system

push kmsp,kt1 ;push signal number
push kmsp,gr1 ;push gr1
push kmsp,rab ;push rab
const it0,WSIZE
sub gr1,rfb,it0 ;set gr1=rfb–WSIZE
sub rab,rfb,it0 ;set rab=rfb–WSIZE
pushsr kmsp,it0,pc0 ;push pc0
pushsr kmsp,it0,pc1
pushsr kmsp,it0,pc2
pushsr kmsp,it0,cha
pushsr kmsp,it0,chd
pushsr kmsp,it0,chc
pushsr kmsp,it0,alu
pushsr kmsp,it0,ops ;push ops

;
push kmsp,tav ;push tav
cpeq tav,kt1,SIG_ICMISS
jmpt tav,i_miss
 mfsr tav,pc1 ;pass address 
mfsr tav,cha

;
i_miss:

mtsrim chc,0 ;cancel load/store
mtsrim ops,0x70 ;set PD|PI|SM

;
const it1,tlb_sig_handler
consth it1,tlb_sig_handler
add it0,it1,4 ;trampoline signal
mtsr pc1,it1 ; handler
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mtsr pc0,it0
iret

The signal frame has a signal number field which is used to report the type of
TLB trap which occurred. The layout of the frame is given in Figure 6-15. Global
register tav (gr121)  is used to pass the address causing the trap to occur. For a TLB
data miss, the address is already contained in the CHA register, but copying it to tav is
convenient because the signal handler code is also shared by other routines.

signal number

PC0

PC1

PC2

CHA

CHD

CHC

ALU

OPS

tav

gr1

rab

TLB signal Frame

kmsp

supervisor
memory
stack, higher ad-
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figure

Figure 6-15. TLB Signal Frame

6.4.3 Instruction Access TLB Miss

Instruction access TLB misses are dealt with in the same way as data access mis-
ses. Only the signal number is different and the faulting address is contained in spe-
cial register PC1 rather than CHA. Register PC1 contains the address of the instruc-
tion in execute at the time of the failing address translation.  Since cache pages con-
tain both instructions and data, the same set of PTE apply for data and instruction ad-
dress values. Via the interrupt vector table, the User mode instruction access trap
number 8 causes execution to continue at address label UITLBmiss .

UITLBmiss:
mfsr it0,pc1
const kt1,SIG_ICMISS ;signal number
srl it2,it0,PGSIZE ;select cache set
and it2,it2,(1<<C_SETS)–1
sll it2,it2,3+C_COLUMNS;PTE set offset
jmp scan_columns
 add it2,it2,upte ;adds of 1st PTE
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6.4.4 Data Write TLB Protection

The following signal handler code is responsible for moving pages from sec-
ondary DRAM to SRAM cache memory (paging–in). When pages are first paged–in
they are given read and execute permissions only, unless the initial faulting access is
due to a data write. At some time later during program execution, a write to the
cached page may occur. When this happens, a data write protection trap is taken, and
execution is vectored to address label tlb_data_prot.

In the same way as a data TLB miss, the associated PTE entries are scanned to
find the matching entry. There must be a matching entry and, in addition, a cached
TLB entry which is disallowing write access. Once the PTE has been found, the CHA
address value is again used to find the associated TLB entry. Note, the LRU register
can not be used because it is only updated on TLB misses. To find the TLB entry, the
VTAG portion of the CHA address is compared with the only two possible TLB en-
tries associated with the set.

;A write request to a read–only page has occurred.

tlb_data_prot:
mfsr it0,cha
const kt1,SIG_PROTECT ;signal
srl it2,it0,PGSIZE ;select cache line
and it2,it2,(1<<C_SETS)–1
sll it2,it2,3+C_COLUMNS;PTE set offset
add it2,it2,upte ;adds of 1st PTE

;
scan:

srl it0,it0,PGSIZE+5;adds VTAG
sll it0,it0,PGSIZE+5
const kt0,(1<<C_COLUMNS)–1

nxt_column:
jmpt kt0,not_cached
 sub kt0,kt0,1 ;dec column count
load 0,0,it1,it2 ;load word 0
add it2,it2,8 ;next PTE entry
sll it3,it1,31–14 ;test VE–bit
jmpf it3,nxt_column
 srl it3,it1,PGSIZE+5 ;mask PTE VTAG
sll it3,it3,PGSIZE+5
cpeq it3,it0,it3 ;compare VTAG
jmpf it3,nxt_column

;
 mfsr it3,cha ;find TLB entry
srl it3,it3,PGSIZE–1;get TLB set
and it3,it3,0x3e
mfsr kt0,cha
srl kt0,kt0,PGSIZE+5;form adds VTAG
sll kt0,kt0,PGSIZE+5
mftlb it0,it3 ;read Word 0
srl it0,it0,PGSIZE+5;form TLB VTAG
sll it0,it0,PGSIZE+5
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cpeq it0,it0,kt0
jmpt it0,entry_found
 sub it2,it2,8 ;PTE adds word 0
add it3,it3,64 ;Word 0 in set 1

Once the PTE and TLB entries have been found execution continues at label
entry_found. Both entries must now be updated to set the UW bit enabling User
mode write access. In addition, the PGM[1] bit used to keep a record of any data
writes to the SRAM page is also set. This bit, known as the dirty–bit,  will be used in
the page–out algorithm. Once the TLB register reporting the access permission fault
has been updated, an IRET instruction is used to restart the program using the con-
tents of the still frozen special registers.

entry_found:
;Word 0 in it1, it2 points to PTE word 0

const kt1,0x200 ;UW–bit
or it1,it1,kt1
store 0,0,it1,it2 ;store new word 0
mttlb it3,it1 ;assign Word 0

;
add it2,it2,4
load 0,0,it0,it2 ;load  word 1
add it3,it3,1
or it0,it0,0x80 ;set PGM[1] dirty
store 0,0,it0,it2 ;store new word 1
and it0,it0,0xc1 ;mask out RPN
sub it1,it2,upte ;set offset
srl it1,it1,3 ;set index
sll it1,it1,PGSIZE ;cache page offset
add it1,it1,upte ;cahe RPN
or it0,it1,it0 ;or in cache RPN
mttlb it3,it0 ;assign Word 1
iret

6.4.5 Supervisor TLB Signal Handler

When trapware code is unable to complete the necessary TLB update, for exam-
ple, if the corresponding address is for a page not currently in the cache, the operating
system receives a signal and information on its memory stack required to continue
the TLB update process. An IRET instruction is used to trampoline to the signal han-
dler address tlb_sig_handler. The IRET does not cause the faulting User mode
instruction to restart, because after the frozen special registers are saved on the stack,
the PC registers are loaded with the address of the signal handler. Additionally, the
OPS status register is modified to cause Supervisor mode with non–translated ad-
dress to commence after the IRET, rather than the interrupted User mode with ad-
dress translation on.

A small number of support registers were required to support the trapware rou-
tines. The higher level signal handler code requires registers for its own operation. It
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is undesirable to use some of the remaining operating system registers in the
gr64–gr95 range to support this code. Global registers are a scarce resource and like-
ly needed by other critical operating system tasks. The registers used by the trap han-
dlers (it0–it3) are by convention  used by all Freeze mode handlers, since during
Freeze mode, interrupts are disabled and therefore there are no register access con-
flicts. However, the signal handler code runs with interrupts turned on. An interrupt
occurring during signal processing would likely use the interrupt temporary registers
(it0–it3), and therefor the signal handler must acquire additional registers for its op-
eration. It does this by pushing some of the User mode assigned global registers
(gr96–gr127) onto the Supervisor stack, just below the signal frame.

;Try and find an empty PTE entry in the column.
;Register tav has the offending address.

tlb_sig_handler:
push kmsp, gr96 ;get some registers
push kmsp, gr97
push kmsp, gr98
push kmsp, gr99
push kmsp, gr100

;
mfsr gr96,tmc ;get random value

;
srl gr98,tav,PGSIZE ;select cache set
and gr98,gr98,(1<<C_SETS)–1
sll gr98,gr98,3+C_COLUMNS;PTE set offset
add gr98,gr98,upte ;PTE column 0 address

;
const gr100,(1<<C_COLUMNS)–1

column_loop:
jmpt gr100,page_out
 and gr96,gr96,((1<<C_COLUMNS)–1)<<3
add gr99,gr98,gr96 ;column wrap–around
load 0,0,gr97,gr99 ;load word 0
add gr96,gr96,8 ;next PTE entry
sll gr99,gr97,31–14 ;test VE–bit
jmpt gr99,column_loop
 sub gr100,gr100,1 ;dec column count

;
sub gr96,gr96,8
call gr100,store_locals;destroys gr96
 add gr98,gr98,gr96 ;PTE adds of Word 0

page_in: ;Page–in code follows . . .

The four PTE entries associated with the set are then scanned to find an unused
entry (i.e., the VE bit is not set). If all PTEs are marked valid, then execution contin-
ues at page_out. Once a empty entry is found a call to routine store_locals is made.
This call causes all 128 local registers within the Am29000 processor to be copied
onto the Supervisor memory stack just below the user’s saved  global registers. Note,
when the set of four PTEs are scanned, a random column in the set is initially se-
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lected. This may initially reduce column scan times. After the local registers have
been made available for signal handler use, execution continues at label page_in.

6.4.6 Copying a Page into the Cache

Once a PTE for the in–coming page has been selected the corresponding SRAM
cache page can be easily determined with a little address–based calculation. Words 0
and 1 for the TLB entry are now formed and stored in the TLB selected by the LRU
register. The TLB entry is also copied to the PTE location, with the one difference
that PTEs have the DRAM page number in the RPN filed rather than the SRAM page
number.

The Dirty bit, PGM[0] , is cleared and the page is marked for read and execute
permissions, unless the signal is from a failing data write access; in this case, the page
is marked dirty and write permission is granted. To determine if a write access failed,
the channel control register CHC is checked for a valid data write access in progress.
The CHC register is obtained by referencing the signal frame stored on the Supervi-
sor memory stack. Fortunately, the LRU register did not need to be saved on the
memory stack, because the LRU will remain unchanged during signal code execu-
tion. The LRU register is only updated when an address translation fails, this can not
happen when the operating system is running in physical address mode.

The DRAM page is copied into SRAM memory in bursts of 128 words. Bursting
is repeated several  times depending on page size. Using long data bursts to transfer
data is most efficient. The LOADM and STOREM instructions remain in execute un-
til all their data has been transferred, which is only dependent on the access delay of
the memory. Once the SRAM page has been filled, the user’s local registers are re-
paired via a call to load_locals and a jump to ret_usr starts the process of restoring
the processor to its  state at the time of the trap.

page_in:
srl gr96,tav,PGSIZE+5;form VTAG
sll gr96,gr96,PGSIZE+5
mfsr gr97,mmu ;get TID
and gr97,gr97,0xff
or gr96,gr96,gr97 ;or in TID

;
const gr100,0x00 ;PGM[1]=0 clean
const gr97,512 + 5*4 + CTX_CHC
add gr97,kmsp,gr97 ;get chc
load 0,0,gr97,gr97
mtsrim fc,31–0
extract gr97,gr97,gr97 ;rotate
jmpf gr97,i_page ;test CV–bit
 const gr99,0x4500 ;VE|UR|UE
mtsrim fc,1+31–15
extract gr97,gr97,gr97 ;rotate LS–bit
jmpt gr97,i_page ;jump for
 nop ;data load
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const gr99,0x4700 ;VE|UR|UW|UE
const gr100,0x80 ;PGM[1]=1 dirty

i_page:
or gr97,gr96,gr99 ;or in permissions
store 0,0,gr97,gr98 ;store Word 0
mfsr gr96,lru
mttlb gr96,gr97 ;assign TLB word 0

;
add gr96,gr96,1
add gr98,gr98,4 ;PTE adds Word 1
srl gr97,tav,PGSIZE;
sll gr97,gr97,PGSIZE
or gr97,gr97,gr100;assign PGM[1]
store 0,0,gr97,gr98 ;store Word 1
sub gr99,gr98,upte ;set offset
srl gr99,gr99,3 ;set index
sll gr99,gr99,PGSIZE;cahe page offset
add gr99,gr99,upte ;cache RPN
mttlb gr96,gr99 ;assign TLB word 1

;
mtsrim cr,128–1
const gr96,(1<<PGSIZE)/512;busrt count
sub gr96,gr96,2
const gr100,512
srl gr97,tav,PGSIZE ;get page address
sll gr97,gr97,PGSIZE

more_in:
loadm 0,0,lr0,gr97 ;read in a block
storem 0,0,lr0,gr99 ;copy out a block
add gr97,gr97,gr100 ;advance pointer
jmpfdec gr96,more_in
 add gr99,gr99,gr100 ;advance pointer

;
call gr100,load_locals;destroys gr96
 nop
jmp ret_user
 nop

6.4.7 Copying a Page Out of the Cache

If a TLB miss occurs and all PTE entries for the associated set are marked valid,
then a PTE must be selected and the corresponding SRAM page copied back to
DRAM. This makes room for the page containing the miss addresses to be copied
into the space made available by the out–going page. The PTEs for the set are
scanned and if a non–dirty page is found, it is selected for paging–out. If all pages are
marked dirty, then a jump to label all_dirty is taken, as further column scanning is
required to determine if a page can be paged–out.

;All columns are in use. Select a column which is not locked and
not ;dirty for paging out.
;Register gr98 points to a random column in current set.
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page_out:
call gr100,store_locals;destroys gr96
 add gr98,gr98,4 ;pnts to PTE word 1
mfsr gr96,tmc ;get random number
const gr100,(1<<C_COLUMNS)–1;column counter

dirty_loop:
jmpt gr100,all_dirty
 and gr96,gr96,((1<<C_COLUMNS)–1)<<3
add gr99,gr98,gr96 ;column wrap
load 0,0,gr97,gr99 ;load PTE word 1
add gr96,gr96,8 ;next TLBT entry
sll gr99,gr97,31–7 ;test PGM[1] dirty
jmpt gr99,dirty_loop
 sll gr99,gr97,31–6 ;test PGM[0] locked
jmpt gr99,dirty_loop
 sub gr100,gr100,1 ;dec column count

Once a PTE for the out–going page is selected, the two TLB entries for the
associated set must be checked to determine if they are caching an entry for the se-
lected PTE. If there is a valid TLB entry, then it must be marked invalid as the
associated SRAM page is about to be assigned to a different virtual page address.

page_selected:
;Must first page–out selected cache page before filling the cache
;with the new selected page.

sub gr96,gr96,8
add gr98,gr98,gr96 ;adds of PTE Word 1

;
;Invalidate any processor TLB entries for the outgoing page.
;Could check VE bit in each TLB entry first.

srl gr96,gr97,PGSIZE+5;form VTAG
sll gr96,gr96,PGSIZE+5
srl gr100,gr97,PGSIZE–1;get TLB set
and gr100,gr100,0x3e
mftlb gr99,gr100 ;read Word 0
srl gr99,gr99,PGSIZE+5;form VTAG
sll gr99,gr99,PGSIZE+5
cpeq gr99,gr99,gr96
jmpf gr99,test_column_1

invalidate_tlb:
 const gr99,0 ;clear TLB VE–bit 
jmp tlb_clear
 mttlb gr100,gr99

test_column_1:
add gr100,gr100,64 ;Word 0 in column 1
mftlb gr99,gr100
srl gr99,gr99,PGSIZE+5;form VTAG
sll gr99,gr99,PGSIZE+5
cpeq gr99,gr99,gr96
jmpt gr99,invalidate_tlb
 nop
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It is during the page–out routine that the maintenance of a dirty–bit pays back its
dividend. If the page is not dirty then there is no need to copy it back to DRAM, be-
cause the DRAM copy is exactly the same as the SRAM copy. If no writes have oc-
curred to the page then the copy–out is avoided.

tlb_clear:
sll gr96,gr97,31–7 ;test dirty bit
jmpf gr96,page_in
 sub gr98,gr98,4 ;gr98  pnts. word 0
srl gr97,gr97,PGSIZE;secondary mem RPN
sll gr97,gr97,PGSIZE
sub gr99,gr98,upte ;set offset
srl gr99,gr99,3 ;set index
sll gr99,gr99,PGSIZE;cache page offset
add gr99,gr99,upte ;cache RPN

;
mtsrim cr,128–1
const gr96,(1<<PGSIZE)/512;burst count
sub gr96,gr96,2
const gr100,512

The page–out routine, like the page–in routine makes use of burst–mode data
copying to greatly speed up the processes of data moves.

more_out:
loadm 0,0,lr0,gr99 ;read in a block
storem 0,0,lr0,gr97 ;copy out a block
add gr97,gr97,gr100 ;advance pointer
jmpfdec gr96,more_out
 add gr99,gr99,gr100 ;advance pointer
jmp page_in ;gr98 pnts word 0
 nop

6.4.8 Cache Set Locked

The signal processing software, like the trapware, has its code ordered to deal
with the most frequently occurring events first.  This results in shorter processing
times. There is no need to burden the simpler tasks with overheads supporting the
operation of less frequently occurring events. However, this does lead to some repeti-
tion in code for the most infrequent signal processing events. For example, if a page
must be copied–out and all the pages are marked dirty, then the PTEs in the set must
be scanned again to find a unlocked page. The selected page is then paged–out.

;All pages are dirty, page–out a non locked page

all_dirty:
const gr100,(1<<C_COLUMNS)–1;column counter

lock_loop:
jmpt gr100,cache_locked
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 and gr96,gr96,((1<<C_COLUMNS)–1)<<3
add gr99,gr98,gr96 ;column wrap
load 0,0,gr97,gr99 ;load word 1
add gr96,gr96,8 ;next PTE entry
sll gr99,gr97,31–6 ;test PGM[0] lock
jmpt gr99,lock_loop
 sub gr100,gr100,1 ;dec column count

;
jmp page_selected:
 nop

If all pages associated with the current set are marked locked, then the signal
handler arranges to have the DRAM page mapped directly to the faulting virtual ad-
dress. This reduces the access times for all data and instructions contained in the
page. The algorithm does not try and restore the page to SRAM at a later date

;All columns for the current set are locked.
;Map the virtual address to non–cache secondary memory.

cache_locked:
srl gr96,tav,PGSIZE+5;form VTAG
sll gr96,gr96,PGSIZE+5
mfsr gr97,mmu ;get TID
and gr97,gr97,0xff
or gr96,gr96,gr97 ;or in TID
const gr97,0x4700 ;VE|UR|UW|UE
or gr97,gr96,gr97 ;or in permissions
mfsr gr98,lru
mttlb gr98,gr97 ;assign Word 0

;
add gr98,gr98,1
srl gr96,tav,PGSIZE ;form RPN
sll gr96,gr96,PGSIZE
mttlb gr98,gr96 ;assign Word 1

6.4.9 Returning from Signal Handler

When the signal handler has completed its processing, the context of the proces-
sor at the time of the original TLB trap must be restored and execution continued.
First, the user’s global registers, temporarily made use of by the operating system,
must be restored from the Supervisor memory stack. Interrupts must be disabled and
the processor state frozen while the special support registers are restored from the
signal frame. Once this has been accomplished and the memory stack is restored to its
pre–trap value, an IRET instruction is used to restart the instruction in execute at the
time the translation trap was taken.

;Pop registers of supervisor mode stack and
;return to program causing the TLB miss.

ret_user:
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pop gr100,kmsp
pop gr99,kmsp
pop gr98,kmsp
pop gr97,kmsp
pop gr96,kmsp

;
mtsrim cps,0x73 ;disable interrupts
pop tav,kmsp ;restore tav
mtsrim cps,0x473 ;turn on FREEZE
popsr ops,it0,kmsp
popsr alu,it0,kmsp
popsr chc,it0,kmsp
popsr chd,it0,kmsp
popsr cha,it0,kmsp
popsr pc2,it0,kmsp
popsr pc1,it0,kmsp
popsr pc0,it0,kmsp
pop rab,kmsp ;pop rab
pop it1,kmsp ;pop rsp
add gr1,it1,0 ;alu operation
add kmsp,kmsp,4 ;discount signal
iret

6.4.10 Support Routines

The example code used two support routines to copy the 128 32–bit local regis-
ters to and from the Supervisor memory stack. Most operating systems assign all of
the local registers for use by the user’s application code. The large number of regis-
ters effectively implements a data cache. The advantage to having several registers is
that, unlike data memory, the register file supports simultaneous read and write ac-
cess. In order to support maximum length data bursts on page transfers, the register
file is made available to the signal processing routine.

;Push local registers onto Supervisor M–stack

store_locals:
const gr96,512 ;Window Size
sub kmsp,kmsp,gr96
mtsrim cr,128–1 ;save 128 registers
jmpi gr100 ;return
 storem 0,0,lr0,kmsp

;Pop local registers off Supervisor M–stack

load_locals:
const gr96,512 ;Window Size
mtsrim cr,128–1 ;load 128 registers
loadm 0,0,lr0,kmsp
jmpi gr100 ;return
 add kmsp,kmsp,gr96
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6.4.11 Performance Gain

The benefits of using a software controlled cache to take advantage of limited
SRAM availability should be seen in reduced average number of cycles per applica-
tion instruction. Ideally the cache performance should approach that of a single large
SRAM memory system. However, the cost of TLB and cache maintenance is not in-
significant, especially when small page sizes are used. Figure 6-16 and Figure 6-17
show the effective average cycle times per instruction  observed for a 128 page cache
system. The cache memory was 2–1 and the secondary memory 4–1.
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  Figure 6-16. Cache Performance Gains with the Assembly Utility
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Instruction

Compare results for the smallest cache system of 128 1K byte cache pages. The
effective performance is more divergent from the maximum achievable SRAM per-
formance with this cache size. When the page size is 2K bytes or greater, the cache
overhead reduces noticeably. With a DRAM–only system, an 8K byte page size
would be selected to reduce TLB handler support overheads. This means the 128K
byte cache model should really be compared with the 8K byte DRAM only model. In
this case, the cache achieved an average performance gain of 28% for the two utility
programs tested.

Using a cache has some additional benefits for embedded systems. Often initial-
ization code and data are placed in EPROM, which can be slow to access. When the
EPROM is accessed, the associated page would be automatically copied to SRAM.
Additionally, application read/write data which is not located in a uninitialized data
(BSS) section,  and therefore requires initialization before the application program
commences, would be automatically initialized from the EPROM data pages. This
will remove the burden from the operating system routines responsible for applica-
tion environment initialization.
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The software controlled cache benefits become larger when the secondary
DRAM memory becomes relatively slower. Figure 6-18 shows a comparison of a
4–2 DRAM system with a 128 1K byte page SRAM. The benchmark programs show
an average performance gain of 39.4%.
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Chapter 7

Software Debugging

This chapter supports software engineers wishing to develop application code
or operating system code for execution on a 29K RISC microprocessor.

Debugging tools which can be used in both a hardware and software debugging
role, such as in–circuit emulators and logic analyzers, are not described; that is left to
the individual tool manufacturer. The material presented concentrates on describing
the operation of inexpensive tools based on the MiniMON29K debug monitor and
Universal Debug Interface  (UDI). Figure 7-1 shows the various tools used during
the different stages of an embedded processor–based project. Debug monitors are
typically used during the initial processor evaluation and selection stage, and later
when software is debugged with a working hardware system.

Also described are processor features which were specifically included in the
design for the purpose of debugging. The precise details of how these features are
configured to build a debug monitor such as MiniMON29K will not be described in
detail. This chapter is not intended to show how debug  tools are constructed, but rath-
er to show how existing tools can be utilized and describe their inherent limitations.
However, readers wishing to build their own tools will be able to glean the informa-
tion required.

7.1 REGISTER ASSIGNMENT CONVENTION

The 29K processor calling convention divides the processor registers into two
groups: those available to the run–time application, and hence used by compiler gen-
erated code, and those reserved for operating system use.

All the 29K processor’s 128  local registers, used to implement the register stack
cache, are allocated to application code use. In addition, 32 (gr96–gr127) of the 64
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global registers are assigned to application use, and the remaining group of 32
(gr64–gr95) are for operating system use.

The processor does not assign any particular task to  the global registers in the
operating system group. However, over time a convention has evolved among 29K
processor users. The subdivision of global registers gr64–gr95 into sub groups was
described in section 3.3, and is widely adhered to; the methods presented in this chap-
ter shall continue with the convention.

The subgroups are known as: The interrupt Freeze mode temporaries (given
synonyms it0–it3); the operating system temporaries (kt0–kt11); and the operating
system static support registers (ks0–ks15).

7.2 PROCESSOR DEBUG SUPPORT

7.2.1 Execution Mode

The processor is in Supervisor mode whenever the SM–bit in the Current pro-
cessor Status register (CPS) is 1. If the SM bit is 0, the processor is executing in User
mode.  When operating in User mode the processor cannot access protected re-
sources or execute privileged instructions.

Generally a processor maintains context information which refers to operating
system status and various user processes. Operating in User mode is a means of pre-
venting a User mode process from accessing information which belongs to another
task or information that the operating system wishes to keep hidden.

If a  User mode task breaks any of the privilege rules described in the processor’s
User Manual, then a protection violation trap is taken. Traps cause the operating sys-
tem to regain control of execution. Typically the operating system will then send a
software signal to the User mode process reporting its violation and possibly stop-
ping its execution. The exact action which takes place is particular to each operating
system implementation.

Besides preventing User mode programs from using processor instructions
which are reserved for operating use only, an operating system can precisely control a
processes access to memory and registers. This can be very useful when debugging
User mode software. The following section describes the processor’s memory man-
agement support. The register protection scheme is very simple. Special register
RBP is used to restrict banks of global registers to Supervisor mode access only. Each
bank consists of 16 registers and a 1 in each RBP bit position restricts the correspond-
ing bank to Supervisor mode access only. Thus, it is normal to set RBP=0x3F, which
allows User mode processes to access global registers gr96 and higher. These are the
only registers which can be affected by compiler generated code. Note however,
global registers gr0 and gr1 which perform special support tasks are effected by com-
piler generated code and their access is not restricted by the RBP protection scheme.
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7.2.2 Memory Access Protection

A number of the 29K processor family members are equipped with a Transla-
tion Look–aside buffer (TLB). It is intended for construction of a Memory Manage-
ment Unit (MMU) scheme.  A complete description of the TLB operation is given in
Memory Management Unit (Chapter 6).

An MMU is normally used to provide virtual memory support. However, it can
also play an important debugging role, even in embedded applications. Note, this
function is not intended to  be performed by the Region Mapping facility provided on
some family members. The Region Mapping facility does not support the address
space granularity supported by the TLB hardware. In addition,  Region Mapping in
some cases only allows address mapping to a limited region of physical memory. For
example, on the Am29200 microcontroller, only the DRAM memory and not the
ROM memory can be accessed in virtual address space.

When code is being developed, often an erroneous data reference will occur. If
no memory is located at the particular address then the target memory system should
generate a hardware access error (such as DERR or IERR on some family members).
However, address aliasing often results in the access being performed on some other
address location for which address decoding determines physical memory has been
assigned. This kind of programming bug can be difficult to detect. Using the TLB,
address access errors can be immediately detected and reported to the operating sys-
tems via access protection violations.

The OS–boot operating system, used by many customers, can provide memory
access protection by mapping virtual address to physical addresses in a one–to–one
format. This is adequate for many embedded applications where memory paging
does not occur and application programs can be completely located in available
memory. When an access violation occurs OS–boot informs  the MiniMON29K
monitor who reports the violation to the process controlling debugging. The details
of this mechanism are described in later sections.

Whether you intend using OS–boot or some other operating system, it is likely
you would benefit from using the on–chip TLB hardware to support  a more powerful
debug environment, via the detection of invalid memory references.

7.2.3 Trace Facility

Using the Trace Facility, a program can be executed one instruction at a time.
This allows the execution of a program to be followed  and the state of the processor
to be examined and modified after each instruction has executed.

The 29K family has a four stage pipeline: Fetch, Decode, Execute and Write–
back. Tracing is enabled by setting the Trace enable (TE) bit in the CPS register.
When an instruction passes from the execute stage of the pipeline into the write–back
stage, the TE bit is copied into the TP bit. The Trap Pending (TP) bit is also located in
the CPS register, and when it becomes set the processor takes a trace trap. The Super-
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visor mode code normally arranges for the vector table entry for the trace trap to
cause the debug monitor to gain control of the processor.

The debug monitor, normally MiniMON29K, uses the IRET instruction to re-
start program execution after the Trace trap handler has completed. Execution of an
IRET causes the Old Processor Status register (OPS) to be copied into the CPS regis-
ter before the next program instruction is executed. The TP bit in the OPS is normally
cleared by the debug monitor before the IRET is executed. If the TE bit in the OPS is
set then tracing of the restarted instruction sequence shall continue after executing
the IRET.

Note, when the disable all (DA) bit in the CPS register is set the trace trap cannot
be taken unless the processor supports Monitor mode (described below). Should the
program being debugged issue an instruction such as ASNEQ, it will then take a trap
and the DA bit will become set. The OPS and CPS registers will have the TP bit set
but a trace trap will not be taken. This means that Freeze mode code (trap handlers
which execute with the DA bit set) cannot be debugged by a software debug monitor
unless the processor supports Monitor mode. Most members of the 29K processor
family do not support Monitor mode.

7.2.4 Program Counter register PC2

The instruction following a branch instruction, known as the delay instruction,
is executed regardless of the outcome of the branch. This performance improving
technique requires that two registers be used to record the addresses of the instruc-
tions currently in the execute and decode stages of the processor pipeline. When a
branch is taken the PC0 register contains the address of the target instruction as it en-
ters the decode stage of the pipeline. Register PC1 always contains the address of the
instruction in execute. When the target instruction of a branch enters decode the
instruction in execute is the delay slot instruction following the branch.

Program counter registers PC0 and PC1 are required to restart the processor
pipe–line in the event of a trap or an interrupt occurring. Many of the synchronous
traps, such as a register access privilege violation, cause execution to be stopped with
the address of instruction causing the violation held in PC1 (execute address).
Asynchronous traps, such as an external interrupt, and instruction traps, such as AS-
SERT instructions, cause the address of the instruction  following the one in execute
at the time of the interrupt to be held in the PC1 register. In fact when a trap or inter-
rupt is taken the PC register values are frozen and used to restart program execution
later. The frozen PC values are held in a 3 register PC–buffer. Of course, the actual PC
registers continue to be used. Instructions such as MTSR and MFSR (move–to and
move–from special register) can be used to modify the PC–buffer register values.

The address of the instruction previously in execute and now in write–back is
held in the PC2 register. This is very convenient because a debugger can determine
the instruction which was in execute at the time the interrupt or trap occurred. The
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trace trap is an asynchronous trap, and thus after the trap is taken the next instruction
about to execute is addressed by PC1. Some family members support Instruction
Breakpoint registers, which can be used to stop execution when a certain address
reaches execute. When this occurs a synchronous trap is taken and the instruction is
stopped before execution is completed.

Debug monitors, such as MiniMON29K, understand the operation of the PC
registers and can use them to control program execution. When MiniMON29K is
used with a processor which has no Breakpoint registers, a technique relying on tem-
porarily replacing instructions with illegal opcode instructions is used to implement
breakpoints. Illegal opcode instructions are used in preference to trap instructions be-
cause execution is stopped with the PC–buffer recording execution a cycle earlier.
That is, the breakpoint address is in PC1 rather than PC2, as would happen with a trap
instruction.

One further useful feature of the PC2 register occurs when breakpoints are set to
the first instruction of a new instruction sequence — typically the first instruction of a
procedure. When the breakpoint is taken and program execution is stopped, the PC2
register contains the address of the  delay slot instruction executed before the new
instruction sequence started. This is very useful in determining where a program was
previously executing.

7.2.5 Monitor Mode

Monitor Mode currently only applies to a limited numbr of 29K processors, see
Table 7-1. If a trap occurs when the DA bit in the CPS register is a 1, the processor
starts executing at address 16 in instruction ROM space. Monitor Mode is not entered
as a result of asynchronous events such as timer interrupts or activation of the
TRAP(1–0) or INTR(3–0) lines.

On taking a Monitor Mode trap the Reason Vector register (RSN) is set by the
processor to indicate the cause of the trap. Additionally, the MM bit in the CPS regis-
ter is set to 1. When the MM bit is set, the shadow program counters (SPC0, SPC1,
and SPC2) are frozen, in a similar way to the FZ bit freezing the PC0–PC2  buffer
registers. Because the shadow program counters continue to record PC-BUS activity
when the FZ bit is set, they can be used to restart Freeze Mode execution. This is
achieved by an IRET or IRETINV instruction being executed while in Monitor
Mode.

Monitor mode traps are used by monitors in the debugging of trap and interrupt
handlers and are not intended for operating system use.

7.2.6 Instruction Breakpoints

Some members of the 29K processor family support Instruction Breakpoint reg-
isters, see Table 7-1. These registers can be used to stop a program’s execution when
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Table 7-1. 29K Family On–chip Debug Support

Processor virtual
memory

yesno –

instruction
breakpoints

Am29000

Monitor mode data
breakpoints

– –

data breakpoints
value ranges

yesno –Am2903x – –

yesno 2Am29040 1 no

yesyes 2Am29050 – –

nono –Am2920x – –

yesno –Am2924x – –

yesyes 2Am29460 1 yes

nono –Am29005 – –

an instruction at a specified address enters execute.  The control mechanism for
Breakpoints is flexible, allowing a User process ID to be specified.

With 3–bus processors, breakpoints can be assigned to Instruction space or
ROM space. Both of these spaces normally contain instructions but the ROM space
typically contains ROM rather than RAM memory devices. No matter which kind of
memory device is utilized the Breakpoint registers can be used.

When a processor does not support Breakpoint registers, illegal instructions or
traps are used to stop execution at desired address locations. Debug monitors are,
however, unable to manipulate instructions which are located in ROM devices. Thus
the main uses of the Breakpoint register is to support breakpoints when ROM devices
are in use. Additionally, they are used in the rare case where a 3–bus Harvard archi-
tecture memory system is constructed without providing a means for the processor to
read and write instruction space. In this case the processor will not be able to replace
instructions at a breakpoint addresses with temporary illegal instructions.

The MiniMON29K debug monitor, described in detail later, must make some
decision about the values to put in the breakpoint register fields: BTE (break on
translation enable) and BPID.  The debug tool user (Debugger Front End user) nor-
mally selects the process identifier (PID) of the application process containing the
breakpoint. However,  the DFE often does not know if the 29K operating system is
running with address translation turned on. The DebugCore accesses a data structure
shared with the operating system to determine the value for the BTE field, see section
D.3.4. The operating system is required to fill in the appropriate sections of the shared
data structure, informing the DebugCore of the CPS register value to be used during
program execution. When the PI (physical instruction) bit in the CPS register is clear
the BTE bit is set.



October 13 1995, Draft 1

338 Addendum to –– Evaluating and Programming the 29K RISC Family

7.2.7 Data Breakpoints

Currently only the Am29040 processor supports Data Breakpoint registers, see
Table 7-1. These registers can be used to stop a program’s execution when data is ei-
ther read or written from an address which lies within a specified range.  The control
mechanism is flexible and shares much of the characteristics provided by the Instruc-
tion Breakpoints Control registers described in the previous section.

When an address match is detected, a trace trap is taken after the load or store
instruction is completed (this is also true for loadm and storem instructions). When a
trap is taken, the PC1 registers points to the instruction following the load or store and
the data transfer has occurred.

To make effective use of data breakpoints it is important that the selected debug-
ger has support for controlling the operation of the on–chip support registers. Data
Breakpoint Control registers are a relatively new feature and many debuggers have
not yet been extended to incorporate the necessary command and control functions.

7.3 THE MiniMON29K DEBUGGER

Developers of software for embedded applications are used to working with
emulators. They enable code to be down–loaded to application memory or installed
in substitute overlay memory. This avoids having the development delays associated
with running code from EPROM. The use of emulators may be a necessary stage in
first getting the target hardware functional; for this task their ability to work with par-
tially functioning hardware makes them indispensable. However, once the processor
is able to execute out of target system memory and a communications channel such as

Figure 7-2. MinMON29k Debugger Components
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a serial link is available, the need for an emulator is reduced. Emulators are expen-
sive, and it is not always possible to make one available to each team member. The
use of a debug monitor such as the MiniMON29K monitor during the software debug
stage of a project is an economical alternative to an emulator.

The MiniMON29K monitor is not intended to be a standalone monitor. That is,
it requires the support of a software module known as the Target Interface Process
(TIP). The TIP executes on a separate host processor. The embedded 29K target pro-
cessor communicates with the TIP via a serial link or other higher performance chan-
nel (see Figure 7-2). The User–Interface process, known as the Debugger Front End
(DFE), communicates with the TIP via the inter–process communication mechanism
known as UDI which is described later.

Most monitors do not offer high level language support. Assembly code instruc-
tions must be debugged rather than the original, say C, code. Using GDB in conjunc-
tion with the MiniMON29K monitor enables source level code to be debugged,
which is far more productive and necessary for large software projects. (More on this
in the UDI section).

MiniMON29K has a small memory requirement, for both instruction memory
and data memory of the target 29K system. The size is reduced by implementing
much of the support code in the TIP host machine, and communicating with the target
via high–level messages. The amount of communication required is reduced by in-
corporating sophisticated control mechanisms in the target DebugCore.

Much of the following discussion in this section, is concerned with describing
the operating principles of target hardware software components. Other Mini-
MON29K components such as MonTIP and  MonDFE are described in the later UDI
sections.

7.3.1 The Target MiniMON29K Component

The embedded portion of the MiniMON29K monitor  must be installed in target
system ROM or down–loaded by the host via a shared memory interface. The target
application code and additional operating system code can then be down–loaded via
the message system. If changes to the code are required, then the message system can
be used to quickly down–load new code without changing any ROM devices.

The software installed in the target hardware consists of a number of modules,
described in Figure 7-3. When the embedded Am29000 processor is reset, the initial
operating system module, OS, takes control. This module initializes the processor
and the other support modules. The monitor components are required to implement a
message communications driver and a debug control core (DebugCore). 

The operating system module is not part of the MiniMON29K monitor. This al-
lows developers to build their own operating system or make use of a 3rd–party real–
time executive product. However, AMD does supply processor initialization code
and HIF system call support routines. HIF is an embedded system call interface spec-
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Figure 7-3. 29K Target Software Module Configuration

message system
MSG

MiniMON29K
DebugCcore 2.0

DBG

DebugCore
configuration

CFG

communica-
tion drivers

OS–boot

HIF

Application

SER

MiniMON29K

initialization

floating–point
trapware

run–time
support

memory
management

OS Monitor

link to
MonTIP

ification, which many of the 29K processor support library services make use of.  The
AMD supplied operating system code is known as OS–boot, and it is normally sup-
plied in the same ROM containing the MiniMON29K target component software.
(All of the OS–boot and MiniMON29K 29K source code is freely available from
AMD).

7.3.2 Register Usage

The DebugCore, message driver and other MiniMON29K monitor modules do
not require any  processor registers to be reserved for their use. This means that all the
processor registers are available for use by the operating system and application
code.

What this really means is that any registers temporarily used by MiniMON29K
code are always restored. The only exception to this occurs with global register gr4
and the TE and TP bits of the CPS special register.

Global register gr4 is implemented in some members of the 29K family but not
reported in the relevant User Manual, as it is never used by application or operating
system code. With family members which have no gr4 register, the ALU forwarding
logic can be used to keep a temporary register alive for 1 processor cycle following its
modification. The gr4 data is lost during the write–back stage when there is no real
gr4 register in the global register file. Note, software such as the MiniMON29K De-
bugCore can be difficult to debug because emulators also make use of gr4 in analyz-
ing processor registers.
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The TE and TP bits, located in the Current Processor Status register, belong to
the MiniMON29K DebugCore. However, the CPS register really belongs to the op-
erating system and the OS should not modify the TE and TP bits which are main-
tained by the DebugCore. When the operating system issues an IRET instruction it
updates the CPS register with the contents of the OPS register. Normally the Debug-
Core will set the  TE bit in the OPS before the operating system performs an IRET.
However, initially the operating system must call the support routine dbg_iret() to
perform the IRET on behalf of the operating system. This gives the DebugCore an
opportunity to gain control of the TE bit.

7.3.3 The DebugCore

The TIP host processor controlling the target 29K processor sends messages via
the available link to the DebugCore module. The message system enables the host to
examine and change registers  and memory in the target hardware. Program execu-
tion can also be controlled via instruction breakpoints and single stepping instruc-
tions. Messages are provided specifically for controlling processor execution.

The DebugCore decodes the messages, giving access to the 29K processor reg-
isters and the target system memory. However, it does not access the non–processor
resources directly. The Configuration Control Module supports the peek and poke
functions shown below. These functions are used for all non–register space target
hardware access. Note, all functions and data variables defined in the configuration
MiniMON29K module begin with the cfg_ prefix.

void cfg_peek(to, from, count, space, size)

void cfg_poke(to, from, count, space, size)

The peek function is used to read from target space into temporary debug core
BSS memory space. The poke function is used when writing to target space. The
‘space’ parameter is used to indicate the target address space, according to the re-
ceived message parameters. Typical space field values would enable instruction
space, data space or I/O space access. The ‘size’ field is used to indicate the size, in
bytes, of the objects being transferred. The CFG module normally tries to make
memory accesses in the size indicated. However, if a memory system does not sup-
port, say, byte–write access to ROM–space, then the CFG access functions can be
configured to perform byte manipulation via word–sized memory accesses. By keep-
ing the access functions separate, a user can configure the peek and poke functions
for any special requirements without having to understand the DebugCore module.
Peek and poke functions are supplied for typical existing target hardware.

For example, if a system uses Flash memory devices, the erase and program-
ming sequences required to write to Flash should be built into the cfg_poke() proce-
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dure. If Flash and other device types, such as DRAM, are used in the same memory
space, then the cfg_poke() procedure can examine the address value in the ‘to’ pa-
rameter to determine the correct operation. Recent versions of MiniMON29K have
included CFG module support for Flash memory devices.

When the target processor stops executing operating system or application
code, a context switch occurs into the DebugCore context. The state of the processor
is recorded when switching context, thus enabling execution to be resumed without
any apparent interruption. The DebugCore context may be entered for a number of
reasons, such as: a message was received from the TIP host, an instruction breakpoint
was encountered, a memory access violation occurred. Whenever the DebugCore
gains control a ‘halt’ message is sent to the TIP host processor. The TIP host and tar-
get can then exchange messages as necessary to analyse or change the state of the
processor or memory.

DebugCore 2.0 shares a data structure with the operating system (OS). Vector
table entry 71 is initializes by the OS to point to the data structure. Appendix D de-
scribes the DebugCore and OS interface in detail. The data structure is mainly used to
pass the address of entry points within the two software modules. Address labels can
be determined at link time. However, when, say, a new OS is loaded at run time it
must reconnect with the DebugCore. This requires address labels be available at run
time. In addition to address labels are various fields which support the DebugCore
installing per process breakpoints and requesting OS supplied service functions.

7.3.4 DebugCore installation

It is very simple to install the DebugCore with any operating system. Mainly,
what is required is use of a number of Vector Table entries which are not normally
required for operating system operation. And to call the DebugCore initialization
routine dbg_control(). Figure 7-4 shows the vector table entries required. The two
most obvious entries are for trap number 0 (illegal opcode) and number 15 (trace
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trap). These table entries point to the DebugCore entry labels dbg_V_bkpt and
dbg_V_trace, respectively. Note, all the DBG module functions and data structure
names begin with the dbg_ prefix.
OS Cold–Start

The operating system is responsible for inserting the necessary address labels
into the vector table. Any vector table entries which are not required by the operating
system can be defaulted to the DebugCore, via the dbg_trap entry. When this entry is
used, register gr64 should contain the original trap number (see section D.4.1 for al-
ternatives). It can be very useful to direct traps such as protection violation (number
5) and Data TLB protection Violation (number 13) into the DebugCore. This is much
better than just issuing a HALT instruction in the operating system. When a trap is
taken into the DebugCore a message is sent to the MonTIP process which will inform
the DFE process when execution has halted. DFEs such as MonDFE and GDB under-
stand the 29K trap number assignment and can report a trap number 13 as a User
mode data protection violation (Segmentation fault in Unix language).

Initializing the vector table is  part of what is known as the operating system
cold–start code. The operating system start–up sequence is shown in Figure 7-5.

When the processor’s power is applied, or when the *RESET pin is asserted, the
CPU begins executing instructions at location 0 in ROM instruction space (ROM
space and instruction space are the same in many 29K family members). Control is
usually passed directly to the operating system cold–start code. To save the contents
of all the processor’s registers before the system is initialized, the user may modify

V_BKPT

Figure 7-4. Vector Table Assignment for DebugCore 2.0
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the code in the operating system to jump to the debugger core–dump facility. Once
the registers have been saved, then the cold–start code is executed by passing control
to the os_cold_start label in ROM space.

Normally an operating system will begin cold–start code immediately at ad-
dress 0. However, certain software bugs may cause program execution to become
out–of–control, and the only way to regain control is to activate the processor reset
pin. This is particularly the case when the TLB registers are not used by the operating
system to implement address access protection. A jump to dbg_coredump at address
0, enables the processor states to be recorded at the time reset was asserted. By ex-
amining the PC and channel special registers some understanding of the cause of the
loss of proper program execution may be observed. To restart execution  after the
core–dump data has been examined, a MiniMON29K RESET message must be is-
sued by MonTIP. This causes the dbg_trap_num variable to be cleared and the pro-
cessor state  to be restored to the hardware reset condition before execution is started
at address os_cold_start.

DebugCore 2.0 requires that vector table entry 71 point to a memory region
shared by the DebugCore and the operating system. The operating system must ini-
tialized several fields of the shared data structure, see section D.3. For, DebugCore
1.0 comparability, the data structure can be initialized to zero. After the interrupt and
trap handler vectors are installed,  the cold–start code performs one–time initializa-
tion of target system hardware, then calls msg_init() to initialize the message system
and and underlying communication drivers. The precise action taken by msg_init() is
dependant on the communications hardware used to support message sending.

When the cold–start sequence is complete, a call is made to dbg_control()
which initializes the DebugCore. The point at which the entry point to the Debug-

Figure 7-5. Processor Initialization Code Sequence
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Core is made actually defines the boundary between operating system cold–start  and
warm–start code.  The parameters passed to the function are shown below:

return_struct dbg_control(
int dbg_trap_num, /* lr2 value */
int* os_info_p) /* lr3 value */

It is called just like a C language routine. Local register lr2 contains a copy of the
value held at memory location dbg_trap_num. Register lr3 contains the address of a
data structure which describes the memory layout of the target system. The operating
system is responsible for determining the amount and address range of available
memory. Although this information is passed to the DebugCore, it does not itself re-
quire this information. It merely keeps a record of the relevant data structure address
so it can pass the information to the DFE process. Debug tool users interact with the
DFE and generally like to know about the target memory availability. Figure 7-6
shows the layout of the structure passed to the DebugCore. Note, where a 29K system
is based on a single memory space containing both instructions and data, the d_mem,
i_mem and r_mem parameters are the same.

The lr2 parameter is required to know if a call to dbg_coredump has already
been performed. Whenever the DebugCore is entered the variable dbg_trap_num
takes on the trap number causing DebugCore invocation; for example number 15
when a trace trap occurs. When a core dump has been performed then trap number
255 is recorded. And when the DebugCore is reentered with this number the state of
the processor is not recorded again.

This is necessary because the call to dbg_control() appears as a built–in break-
point. Whenever a breakpoint is taken the complete state of the processor is recorded,
in effect a context switch into the DebugCore occurs. The original context is restored
when the DebugCore receives a GO or STEP message from the MonTIP process.
Whenever the DebugCore gains control a HALT message is sent to MonTIP. Under

i_mem_start
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d_mem_size
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r_mem_size
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Figure 7-6. Operating System Information Passed to dbg_control()
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DFE direction, MonTIP can then send messages to the DebugCore to examine and
change the saved processor status.
OS Warm–Start

The DebugCore records the return address for dbg_control() when it is first
called. The address is important because it is the start of the operating system warm–
start code. When an application program is down–loaded to the target hardware, an
INIT message is normally sent. The message contains information extracted from the
application COFF file. This information along with other operating system run–time
support data is passed to the operating system when the dbg_control()  function re-
turns. As is normal for C procedures, the return information is placed in global regis-
ters starting with gr96. Figure 7-7 shows the format of the operating system warm–
start data.

After the DFE (MonDFE for example) has been instructed to load a new pro-
gram into memory, the return registers can be examined to verify their contents.
Note, with some DFEs it is possible to load a COFF file without sending an INIT mes-
sage. In this case the return registers are not affected and the PCs are not forced to the
dbg_control() return address.

After loading a program a user will normally start execution, which causes the
DebugCore to switch out of context  and restore the context described in the register
shadow memory. If an INIT message was received then execution will commence in
the operating system warm–start code. Otherwise, it continues from wherever the re-
stored PC registers are located. Warm–start code normally examines the return struc-
ture values and prepares the operating system run–time support accordingly. For ex-
ample, register gr100 contains the start address of the down–loaded application pro-
gram. The address value may be loaded in the PC–buffer registers before an IRET
instruction is used to start program execution. However, it is important to note that
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Figure 7-7. Return Structure from dbg_control()
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the warm–start operation is entirely operating system dependent, and the code need
pay no attention to the return structure information. The operation of OS–boot, nor-
mally supplied along with MiniMON29K, is described in a later section.

7.3.5 Advanced DBG and CFG Module Features

Normally the call to dbg_control()  implies that a built–in breakpoint should be
taken. This gives the user an opportunity to down–load an application program be-
fore execution is continued. However, by setting the call lr2 parameter to V_NOBRK
(254), no breakpoint will be taken and the call will return with no need for a GO mes-
sage from MonTIP. This enables the DebugCore to be initialized for operation, and is
useful where there is no requirement to download an  application program.  Of course
there are no call return values for the operating system warm–start to examine.  The
facility enables the DebugCore to remain in a final system and only be called upon in
a emergency such as memory access violation.

The CFG module is used to configure the operation of the DBG module. There
is really no need to have the source code for the DBG module, only the CFG module.
After configuring the CFG, it can be assembled and linked with the .o debug core
modules (dbg_core.o and dbg.o). The CFG supplies the cfg_peek() and cfg_poke() 
functions, as well as defining the number of breakpoints supported and the size of the
DebugCore message send buffer. Note, however, that there is conditional assembly
code in the CFG module for a wide range of target hardware systems. In practice con-
figuring CFG normally means defining the correct symbol value during assembly.

Whenever the DebugCore is entered, the routine cfg_core_enter() is called.
This gives the DebugCore user an opportunity to control the state of the processor
during DebugCore operation. For example, normally the DebugCore runs with the
on–chip timer turned off. This means no timer progress is made and no timer inter-
rupts will occur while the DebugCore is in context. The timer can be re–enabled by
changing the code in cfg_core_enter(). The supplied code also locks the processor
cache (only with processor members supporting cache). This prevents application
and operating system relevant data being displaced with DebugCore information.

The DebugCore is mainly written in the C language and makes use of applica-
tion space processor registers during its operation. On taking, say, a breakpoint and
entering the DebugCore, all the processor registers are copied to shadow memory
locations. Users examine and change the shadow values before they are returned to
registers when the DebugCore context is exited. It is possible that an external hard-
ware device could generate an interrupt when the DebugCore is in–context (inter-
rupts may be enabled in the cfg_core_enter() procedure). This could cause some
confusion as the interrupt handler may wish to modify some operating system as-
signed registers to record a change in the interrupting device status. The change
would be lost when the DebugCore exited. To overcome this problem, global regis-
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ters gr64–gr95 are not shadowed if memory location dbg_shadow_os contains a 0
(normally set to –1). This can be done in the cfg_core_enter() procedure.

When dbg_shadow_os is cleared, physical registers gr64–gr95 are always ac-
cessed with MiniMON29K READ and WRITE messages. However, messages such
as FIND and COPY operate on the shadow copies only, and  this creates some minor
restrictions in DebugCore operation.

If cfg_core_enter() is modified to enable the on–chip timer to continue inter-
rupting during DebugCore operation, then memory location dbg_shadow_timer
should also be set to 0 (normally –1). This prevents the TMR and TMC timer special
registers from being restored from their corresponding shadow memory locations
when the DebugCore context is exited.

Interrupts must be enabled during DebugCore operation if, say, an interrupt
driven UART is being used for MiniMON29K message communication.  It is some-
times possible to use the message system in a poll–mode (described in the following
section), in this case interrupts can be disabled. Additionally, it may be possible to
selectively enable device interrupts in cfg_core_enter(). However, care should be
taken if any of the interrupts require C level context for interrupt processing. The De-
bugCore continues to use the register stack in place at the time the DebugCore was
entered. The DebugCore will not need to lower the stack support registers, but any C
level interrupt handler may make temporary use of the stack (this is very much oper-
ating system dependent). Further,  it is important that no attempt is made to reenter
the DebugCore, via, say, a memory access error during an interrupt service routine
which interrupted the DebugCore operation.

Breakpoints located at both physical and virtual addresses are supported if the
processors has on–chip breakpoint control registers. Without breakpoint registers,
breakpoints are always located at physical addresses. However, per–process break-
points are supported even if the processor has no on–chip MMU support; or if the
MMU is not in use because separate processes are each running is Supervisor mode.
Breakpoint capabilities are presented in detail in section D.3.

7.3.6 The Message System

After the message system has been initialized with a call to msg_init(), the De-
bugCore responds to MonTIP host messages appropriately and sends acknowledge
messages to the host containing any requested data. The operating system can also
make use of the message system to support application services such as access to the
file system on  the TIP host machine. The msg_send() function is used to request a
single message be sent. A similar function is made available by the message system
module on the TIP host processor.

int  msg_send(struct message *msg_pointer);
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The function returns 0 if the message was accepted for sending and –1 if the
message system is currently too busy. Variable msg_sbuf_p is maintained by MSG
to point to the message buffer currently being sent. When this variable becomes 0, the
message system is ready to send another message. The message buffer pointer passed
to msg_send() is copied into msg_sbuf_p the contents of the buffer are not copied.
Thus the user must be careful not to modify the buffer data until the message has been
completely sent.

Messages are received by asking the message system to poll the message driver
hardware until a message is available. Function msg_wait_for() is provided for this
task. Alternatively, the message system can interrupt the operating system or the De-
bugCore when a message is received from the TIP host processor. Received mes-
sages are normally located at address msg_rbuf. There is no danger of the receive
buffer being over written by a new in–coming message, as the MonTIP always ex-
pects to receive a message before it will reply with a new message to the target.

7.3.7 MSG Operation

The MSG module may require the support of communications port specific
driver modules, most notably the SER module. This module contains the code neces-
sary to talk to serial communication UARTs which  support  target and MonTIP con-
nection. The MSG contains a number of shared memory communication drivers for
IBM PC–AT plug–in cards, such as, the PCEB,  EB29K, YARC and others.

Messages all have the same format, a 32–bit message number then a 32–bit
length field, followed by any message related data. When the MSG determines that a
new message has been received, and its message number is greater than 64, the oper-
ating system is interrupted (if interrupts are enabled), and execution  continues at the
address given in the vector table for entry number V_OS_MSG (76). In OS–boot this
is address os_V_msg. This means that the operating system does not have to poll the
message interface for service request completion. Polling is required when the mes-
sage system can continue to operate with interrupts turned off. The message system
can be used to support HIF services (see the later OS–boot section).

Received messages with identification numbers less than 64 are intended for the
DebugCore.  The MSG causes the DebugCore to be interrupted via vector table entry
V_DBG_MSG (75). This causes execution to continue at address dbg_V_msg.
When execution begins at this address, the processor state appears as if a hardware
interrupt has just occurred while executing User mode code or an operating system
service. The virtual interrupt mechanism is used to support this technique and is de-
scribed below.

7.3.8 MSG Virtual Interrupt Mechanism

Consider what happens when a UART receives a character and an interrupt is
generated:
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1 The UART serial driver enters Freeze mode and execution continues at the
address given in the vector table for the interrupt handler. (Note, it is the
operating system cold–start code’s responsibility to install the trap handler for
this interrupt, even if a MiniMON29K SER module driver is used).

2 Next the SER driver saves some global registers to memory.

3 The driver talks to the UART, receives the character and places the new data into
the msg_rbuf buffer at the location given by the pointer msg_next_p. The
registers are  restored and the pointer incremented.

4 The SER driver then jumps (virtual vectors) to address msg_V_arrive in the
MSG module. This whole procedure appears to the message system as if the
interrupt had been directed to msg_V_arrive when a character arrived in its
buffer.

5 The MSG saves its own working register space and examines the size of the
incoming message and decides if it is complete or if more data is required. If
incomplete the registers are repaired and an IRET is issued. When complete,
working registers are repaired and the PC–buffer registers are updated with
address of the operating system handler or DebugCore handler accessed from
the vector table.
Using the sequence described above, messages arrive via a V_DBG_MSG or

V_OS_MSG virtual interrupt directly to the appropriate message processing han-
dler. The operating system and the DebugCore need never be concerned about any
registers used by the MSG or SER modules in the process of preparing the received
message, as their temporary register usage is kept hidden.

When interrupts are being used, rather than polling for a new message to arrive,
the msg_wait_for() function simply returns 0 indicating that no message is avail-
able. If the SER module is making use of polling and interrupts are turned off, then
the msg_wait_for() function returns –1 when a complete new message is available in
the msg_rbuf. In fact the MSG sets variable msg_rbuf_p to point to the just–re-
ceived message buffer. The DebugCore interrupt handler dereferences this pointer
when accessing any received messages.

7.4 THE OS–BOOT OPERATING SYSTEM

MiniMON29K is a debugger. It does not initialize the processor, service inter-
rupts, support HIF system calls or even install itself into the target system. All these
tasks must be performed by an operating system. It does seem a rather grand title but
OS–boot does perform these tasks. If a user does not build an operating system or buy
an operating system from a third party then OS–boot may be adequate for their proj-
ect needs.
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AMD generally supplies OS–boot along with MiniMON29K for each 29K
evaluation system. Because OS–boot supports the HIF system call services it is use-
ful for running evaluation software. However, OS–boot is a simple operating system,
it does not support multi–tasking or other grander operating system concepts. As well
as supplying MiniMON29K and OS–boot in EPROM, users get the source to OS–
boot, enabling them to make any necessary changes.

Typically, users will add operating system code to support additional peripheral
devices. Or, use OS–boot as a means of launching into  another more sophisticated
operating system. This is described in more detail later. The technique is useful be-
cause it avoids the need to install MiniMON29K with the new operating system in
EPROM. The new operating system need merely be down–loaded via Mini-
MON29K debugger messages into available target memory.

This section does not describe OS–boot in detail. It is mainly an overview of its
operation. Hopefully users will gain an understanding of its relevance in the debug
processes.

7.4.1 Register Usage

According to the register usage convention, an operating system is free to use
global registers in the range gr64–gr95. OS–boot uses a good number of these regis-
ters. Many of the floating–point instructions and some integer instructions are not
implemented directly by hardware with some members of the 29K family. This re-
quires that trapware be used to support the non–existing instructions. The floating–
point trapware included with OS–boot requires as much as 15 temporary registers
and three static registers to support the trapware code. OS–boot is typically config-
ured to assign registers it0–kt11 (gr64–gr79)  for temporary use and ks13–ks15
(gr93–gr95)  for static use.

The exact register assignment for OS–boot is determined by file register.s in the
osboot directory. Other than trapware support, registers are required for run–time
management and HIF services. These registers are typically allocated from the range
ks0–ks12 (gr80–gr92). There are a number of free registers for those requiring to add
operating system support code.

7.4.2 OS–boot Operation

Operation begins at address label os_cold_start.  The processor special regis-
ters, such as CPS and CFG, are initialized to enable the processor start–up sequence
to commence. OS–boot does not contain very much cold–start code. However, the
code is complicated by the incorporation of options enabling any member of the 29K
family to be dealt with.

The vector table entries are constructed. Most of the unused entries are set to
cause DebugCore entry. Thus, should any unexpected trap or interrupt happen the
DebugCore will be able to report it. The vector table is normally placed at the start of
data memory.
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The memory system is then analyzed in the process of building the data struc-
ture passed to dbg_control(). In some cases this involves the operation of dynamic
memory sizing code. The floating–point trap  handlers are then prepared for opera-
tion. Initialization of floating–point support is a one–time operation, so it occurs be-
fore dbg_control()  is called.

Before the cold–start operation is complete, additional vector table entries are
made to support DebugCore operation, entries such as V_TRACE. The DebugCore/
OS shared data structure is then initialized and vector table entry 71 is set to point to
the base of the data structure. The message system is then initialized with a call to
msg_init() and dbg_control() is called, indicating the completion of operating sys-
tem cold–start code.

The return from dbg_control() causes execution of the operating system
warm–start code to commence at address warm_start. The run time environment is
now prepared. Much of this is concerned with memory management. The memory
and register stack support registers are assigned values before any loaded application
code starts. The warm–start code examines the return parameters from dbg_con-
trol()  in preparing the run–time environment.

With 29K family members which have TLB hardware, OS–boot is normally
configured to start application code execution in User mode with address translation
turned on. Warm–start code gets the application code start address from return regis-
ters gr100. This address is loaded into the frozen PC–buffer registers and an IRET
used to depart the operating system supervisor mode code and enter the application
code in User mode. Register gr104 is used to select operating system warm–start op-
tions. If bit 31 is set then application code is started with no address translation en-
abled. (To use this feature set gr104 to –1 after using the MonDFE y command to
yank–in application code into target system memory.) Note, warm–start code does
not issue an IRET instruction directly, it jumps to the DebugCore service dbg_iret.
This enables the DebugCore to set the TE bit in the OPS register and so enable single
stepping of the first application code instruction.  Additionally the BTE and BPID
fields of any breakpoint registers in use are also set by dbg_iret.

7.4.3 HIF Services

Once application code has started, operating system code will only be again
called into play when: a floating–point trap occurs; a peripheral generates an inter-
rupt; or when a HIF service is requested. HIF is a system call interface specification.
OS–boot supplies the necessary support code which is accessed by a system call trap
instruction. Many of the library calls, such as printf() , result in HIF trapware being
called. HIF trapware support starts at address label HIFTrap .

HIF services are divided into two groups, those that can be satisfied by the 29K
itself (such as the sysalloc service), and those that need MonTIP support (such as
open). The HIF specification states that the service request number be placed in reg-
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ister gr121, if this number is less than 256 then MonTIP must assist. A request for
MonTIP assistance, to say, open a file for writing, is accomplished by the operating
system sending a MiniMON29K message to the TIP process. There are currently
three types of messages used by the OS: HIF–request, CHANNEL1 (used when
printing to stdout), and CHANNEL0_ACK (used when acknowledging data from
stdin).  Note, it is easy to extend the operating system message system usage and
create new operating system message types. This may be useful if virtual memory
paging was being supported by an operating system, where the MonTIP was acting as
the secondary memory controller.

MonTIP replies to HIF MiniMON29K messages by sending messages to the
DebugCore to accomplish the requested task. It then sends a HIF_ACK message to
the operating system acknowledging the completion of the requested service.

CHANNEL1 and CHANNEL0  messages are used by the operating system to
support display and keyboard data passing between the application program and the
user. Note these are the only operating system messages which the MonTIP passes
via UDI to the MonDFE process. MonTIP responds to stdout service requests with
CHANNEL1_ACK message, and supplies new keyboard input characters with a
CHANNEL0 message sent to the operating system. (Note, some early versions of
MonTIP did not make use of the operating system *_ACK messages, they used the
DebugCore instead. This created difficulties for multitasking operating systems. If
you have this problem, you need to update your MonTIP program.)

Previously, the OS–boot implementation entered Wait mode after issuing a
MiniMON29K message. This is accomplished by setting the WM bit in the OPS reg-
ister before using an IRET to return to application code from the HIF trap handler.
Wait mode is exited when the message system interrupts the operating system in re-
sponse to a MonTIP reply–message to the operating system. Because Wait mode is
used OS–boot must run with interrupts turned on. However, the MiniMON29K De-
bugCore has no such restriction and can operate in a poll–mode fashion. Recent ver-
sions of OS–boot can also operate the message system in poll–mode and need not
have interrupts permanently enabled. The latest OS–boot code no longer uses Wait
mode while waiting for a message system interrupt. Either the message system or a
flag variable is continually polled. The flag being set by the message system interrupt
handler which previously cleared the WM bit.

7.4.4 Adding New Device Drivers

OS–boot is a very simple operating system and it does not offer support for addi-
tional I/O devices. However, the HIF specification states that file descriptors 0,1 and
2 are assigned to: standard in, standard out and standard error. Normally any open()
library calls issued by an application program will result in the HIF open service re-
turning a new file descriptor for a file maintained on the TIP host by MonTIP.
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Target hardware can often have additional UART or parallel port hardware
available for communication. If OS–boot is not completely replaced with a new OS,
then these devices should be accessed via the normal  library/HIF interface. OS–boot
can be extended to include a driver to support any new peripheral device. Each device
should be pre–allocated a file descriptor value starting  with number 3. All access to
peripherals can then be to the pre–allocated file descriptors. If the application code
calls open() then the HIF open service should initially return 4, or some larger num-
ber depending on the number of peripheral devices added.

The Metaware libraries, supplied with the High C 29K compiler package, pre–
allocate buffer and MODE settings for file descriptors 0, 1 and 2. Assuming no access
to the library source file _iob.c, then calls to open() should be placed inside the crt0.s
file. These open() calls should be for each of the pre–allocated file descriptors and
will result in library initialization. The code inside crt0.o runs before the application
main() code. Note, the MODE value for the open() calls may be restricted due to driv-
er or peripheral limitations. And communication with the devices may be required in
RAW mode rather than any buffered mode supported by the library when a device is
opened in COOKED mode.

When library calls, or HIF calls such as  _read() or _write(), are issued for the
file descriptor associated with a  peripheral  the OS–boot trapware for the HIF ser-
vices shall call upon the required device driver to perform the requested task.

7.4.5 Memory Access Protection

The OS–boot operating system includes an optional memory access protection
scheme which is useful with embedded system debugging. It only functions with
29K family members which contain TLB hardware. When used, the operating sys-
tem runs application programs in User mode with address translation turned on.
Thus, all application addresses are virtual, but the memory management hardware is
configured to map virtual to physical addresses with a one–to–one scheme. No
memory paging takes place and the entire program is at all times located in the avail-
able target system memory.

The benefit of the system is that bad addresses, generated by unexpected pro-
gram execution, can be detected immediately. The operation of the 29K Translation
Look–aside Buffer (TLB) used to construct the management scheme was briefly de-
scribed in previous section 7.2.2 entitled Memory Access Protection. This section
deals with the OS–boot code  implementation. For more information about  operation
of TLB hardware see Chapter 6 (Memory Management Unit)
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First consider the typical OS–boot memory configuration shown  in Figure 7-8.
Some 29K family members have a 3–bus architecture. This enables two memory
systems to be utilized, one for instruction memory and the second for data memory. If
instructions are to be accessed from data memory devices, or data placed in
instruction memory, then a bridge must be built between the data and instruction
memory busses. Note, a single address bus is shared by both memory systems.
Typically, designers will build a bridge enabling instruction memory to be accessed
from data memory address space. In such case the two addresses spaces do not
overlap. However, without a  bridge it is possible to have physical memory located in
the different address spaces but the same address offset  location.

Most of the newer 29K family members have a conventional 2–bus architecture,
which results in instructions and data being located in the same memory devices lo-

Figure 7-8. Typical OS–boot Memory Layout
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cated in a single address space. OS–boot caters for all the different memory configu-
ration options, and this is reflected in the layout shown in Figure 7-8.

Operating system warm–start code knows the address regions allocated to a
loaded application program by examining the data structure returned from the
dbg_control() call. OS–boot actually saves the data to memory locations for future
use, as we will see. Applications can be expected to access a limited number of re-
gions out–with the data region loaded from the application COFF file. This is re-
quired to support the memory allocation heap and the register and memory stacks.
The allocated access regions are shown shaded in Figure 7-8. An attempt to access an
address out–with  allowed regions will cause the DebugCore to gain control of pro-
gram execution.

During normal code execution, instruction and data TLB misses will occur. This
requires that the TLB registers be refreshed with a valid address translation. OS–boot
trap handlers are used to perform this task. If a bad address is generated the trap han-
dlers must detect it.

Two kinds of traps are expected: Instruction TLB misses and data TLB misses.
The trap handler for instruction misses is shown below. The return values from the
dbg_control(), shown in Figure 7-7, are stored by OS–boot in a structure at address
ret_struct. The PC1 value is compared with the start and end addresses of the loaded
program. If the PC1 address is within this range then a new valid TLB entry is built
and program execution restarted. If the address is out of the allowed range then a
jump to the DebugCore entry point, dbg_trap, is taken.

UITLBmiss :
mfsr it0,pc1 ;PC address
const it1,ret_struct
consth it1,ret_struct
load 0,0,it2,it1 ;TEXT start
cpltu it2,it0,it2 ;jump if
jmpt it2,UIinvalid ;PC < start
 add it1,it1,4
load 0,0,it2,it1 ;TEXT end
cpgtu it2,it0,it2 ;jump if
jmpt it2,UIinvalid ;PC > end
 const it2,(VE|UE)

one_to_one:

TLB register Word 0 has access control bits which separately enable Read,
Write and Execution of data for the addressed page. The example code assumes that
data and instructions are not located on the same page as pages containing instruc-
tions are marked for execution only.

one_to_one: ;it2 has RWE bits
mfsr it3,mmu ;need page size
srl it3,it3,8 ;get PS bits.
and it3,it3,3 ;1k page min
add it3,it3,10+5 ;32–sets
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srl it1,it0,it3 ;form
sll it1,it1,it3 ; VTAG
or it1,it1,it2 ;add RWE bits
mfsr it2,mmu ;get PID
and it2,it2,0xFF
or it1,it1,it2 ;add PID bits

;
sub it3,it3,5 ;page size
srl it2,it0,it3 ;form 
sll it2,it2,it3 ; RPN

;
mfsr it0,lru ;select column
mttlb it0,it1 ;word 0
add it0,it0,1
mttlb it0,it2 ;word 1
iret

;
UIinvalid:

jmp dbg_trap ;enter DebugCore
 const gr64,8

The data–miss trap handler is a little more complicated. The address under con-
sideration appears in channel register CHA. The address is first tested to see if it is
greater than the data region  start address and less than the current heap pointer. The
operating system maintained heap was initialized just above the end of the loaded
program data region. If the address is not within this range then it is tested to deter-
mine if it is within the memory or register stack regions. The stacks are located at the
very top of physical data memory.

UDTLBmiss:
mfsr it0,cha ;data address
const it1,ret_struct+8
consth it1,ret_struct+8
load 0,0,it2,it1 ;DATA start
cpltu it2,it0,it2 ;jump if
jmpt it2,UDinvalid ;adds < start
 cpltu it2,it0,heapptr;adds < heapptr
jmpt it2,one_to_one
 const it2,(VE|UR|UW)

stacks:
const it2,HIGHMEM
consth it2,HIGHMEM
load 0,0,it2,it2 ;DATA end
cpgeu it2,it0,it2 ;jump if
jmpt it2,UDinvalid ;adds >= end
 cpgeu it2,it0,msp ;jump if
jmpt it2,one_to_one ;adds>=msp
 const it2,(VE|UR|UW)

;
UDinvalid:

jmp dbg_trap ;enter DebugCore
 const gr64,9
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The example trap handler marks data pages for read and write access only. If the
CHA  address does not fall within the allowed region, then a TLB entry is not built,
and, normally, program execution not restarted. Instead, the DebugCore is entered
and the trap number passed.

7.4.6 Down Loading a New OS

One way to replace OS–boot with another operating system is to simply link the
new operating system with the MiniMON29K modules and, if necessary, place the
result in EPROM memory. Or alternatively down–load the linked image to the target
29K system using MiniMON29K messages. However, many users like to keep the
existing OS–boot/MiniMON29K  combination in place and down–load only the new
operating system (or a portion of it) –– this can create complications. Assuming no
changes are made to the supplied OS–boot, then, when the loaded OS’s execution is
started, with say a MonDFE ‘g’ command, warm–start code will prepare for execu-
tion to begin at the first instruction of the new operating system. Generally a HIF se-
trap service call is made followed by an assertion of the assigned trap number. This
allows Supervisor mode to be entered.

The new operating system must initially run in Supervisor mode to take over
processor resources initially under OS–boot control. If the floating–point trap han-
dlers are to remain installed, then the new operating system must be careful to re-
member their global register support requirement.  If the new operating system is still
supporting HIF services then it must also pay attention to the HIF trapware register
usage. HIF traps will occur if any application code run by the new OS is linked with
libraries intended for use with a HIF conforming operating system. However, often a
new operating system will replace the HIF libraries with new libraries which do not
call HIF, but make use of the system call services of the new operating system.

The HIF trapware code can be replaced with new code, whose register usage is
better integrated with the new operating system, by the new system taking over  the
HIF vector table entry. If this is done, then it is likely that the operating system mes-
sage interrupt handler will also be taken over. Unless the os_V_msg trap handler ad-
dress is replaced, the message system will continue to call the OS–boot interrupt han-
dler. And the associated operating system register usage should be taken into ac-
count. Alternatively, AMD supplies driver routines which make it easy for a new op-
erating system to use the original message system for standard input and output com-
munication. This eliminates the need for the new OS to to takeover the message sys-
tem interrupt handlers.

The MiniMON29K message system is typically supported by low level driver
code which is often interrupt driven. Most often this is a UART interrupt handler. The
message system will not generate virtual interrupts if the low level handler vector
table entry is taken over. This can be necessary because of interrupt overloading. For
example, the Am29200 interrupt INTR3 is used for all peripheral devices including
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the on–chip UART. A new operating system may wish to add support, for say, DMA
activity, which was not supported by OS–boot. This may require an interrupt handler
activated by INTR3. If the MiniMON29K message system is to continue operation,
then the new operating system must take over the INTR3 vector table entry. But, after
the new operating system handler is complete it must jump to the original vector han-
dler address rather than IRETing. This gives the message system low level interrupt
handler an opportunity to run. A better alternative is to use the technique described in
section 2.5.5 to deal with INTR3 overloading.

7.5 UNIVERSAL DEBUG INTERFACE (UDI)

Code development for an embedded processor is generally more costly than de-
velopment of code of equivalent complexity intended for execution on a engineering
workstation. The embedded application code can not benefit from an underlying sup-
port operating system such as UNIX. In some cases, developers may chose to first
install a small debug support monitor, such as MiniMON29K, or third–party execu-
tive which can offer a somewhat improved development environment. In the process
of getting an embedded support monitor running or developing application code to
run directly on the processor, emulation hardware may be employed. The availability
of debug tools and their configurability is an important factor when selecting a pro-
cessor for an embedded project.

The architecture of the latest RISC processors may be simplified compared to
their CISC predecessors, but the complexity of controlling the processor operation
has not been reduced. The use of register stacks and instruction delay slots and other
performance enhancing techniques has lead to increased use of high level program-
ming languages such as C. The compiler has been given the responsibility of produc-
ing efficient assembly code, and the developer rarely deals with code which manipu-
lates data at the processor register level. The increased productivity achievable by
this approach is dependent on high level debug support tools.

Developers of products containing embedded processors are looking to RISC
for future products offering increased capability. The greater performance relative to
RISC processor cost should make this possible. The suitability, cost and productivity
of the tools available for code development are likely to be the major factor in decid-
ing the direction ahead in preparing to tool–up for RISC.

The following sections describe the Universal Debug Interface (UDI), which is
processor independent and enables greater debug tool configurability. A number of
emulator and  embedded monitor suppliers, as well as high level language debug
tools suppliers, are currently configuring their tools to comply with the proposed
UDI standard. Current implementations are targeted for RISC processor code devel-
opment. UDI should ease the choice in selecting tools and, consequently, selecting
RISC. This section shall concentrate on describing the Free Software Foundation’s
GDB C language source debugger’s integration with UDI.
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7.5.1 Debug Tool Developers

 A debug tool developer typically arranges for their product to be available for a
range of popular processors. This normally means rebuilding the tool with the knowl-
edge required to understand the peculiarities of each processor. If an enhancement is
made to the debugger user–interface, then normally the debugger source and the pro-
cessor specific information must be recompiled and tested before customers are up-
dated.

 When developing code to run on an engineering workstation, the processor sup-
porting the debugger execution is the same processor running the program being de-
veloped. This means the debugger can make use of operating system services such as
ptrace() (see section 7.5.3), to examine and control the program being debugged.
When developing code for an embedded application, the program being developed is
known as the Target Program and executes on the Target Processor which is usually a
different processor than the one supporting the debugger, known as the Host Proces-
sor. The host processor and target processor do not communicate via the ptrace() sys-
tem call, but via whatever hardware communication path links the two processors.
The portion of the debugger which controls communication with the target processor
is known as the target interface module, and whenever a change or addition is re-
quired in the communications mechanism, the debugger must be once again recom-
piled to produce a binary executable which is specific to the target–processor and tar-
get–communications requirements.

When the chipmakers turn out their latest whiz–bang RISC processor, the tool
developer companies are faced with considerable development costs in ensuring
their tools function with the new architecture. It is not uncommon for the availability
of debug tools to lag behind RISC chip introduction. Often tools are introduced with
limited configuration options. For example, target processor communication may be
according to a low level debug monitor protocol, or an in–circuit emulator (ICE) pro-
tocol. Each debugger product has its own target interface module; this module must
be developed for each debugger in order to communicate with the new target RISC
processor.

An embedded application developer may have prior experience or a preference
for a particular debug tool, but the only available communications path to the target
may not be currently supported. This incompatibility may discourage the developer
from choosing to use a new processor. It is desirable that debuggers share commu-
nication modules and be more adaptable to available target processor interfaces.

Ideally a debugger from one company should be able to operate with, say, an
emulator from another company. This would make it possible for a customer to select
a little used debugger with a popular target monitor or vice versa.

The goal of the Universal Debug Interface (UDI) is to provide a standard inter-
face between the debugger developer and the target communications module, so the
two can be developed and supplied separately. In fact, an applications developer
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could construct their own communications module, for some special hardware com-
munications link, as long as it complied with the standard.

7.5.2 UDI Specification

If UDI were a specification at procedural level, then debugger developers and
communication module developers would have to supply linkable images of their
code so the debug tool combination could be linked by the intended user. This is un-
desirable because it would require a linked image for every tool combination. Addi-
tionally, the final linked program would be required to run on an single debug host.
UDI actually relies on an interprocess communication (IPC) mechanism to connect
two different processes. The debugger is linked into an executable program to run on
the host processor, this process is known as the Debugger Front End (DFE). The com-
munications module is linked as a separate process which runs on the same or a dif-
ferent host processor, this process is known as the Target interface Process(TIP). The
two processes communicate via the UDI interprocess communication specification.

Two IPC mechanisms have so far been specified: one uses shared memory and is
intended for DOS developers, the second uses sockets and is intended for UNIX and
VMS developers.  Of course, when the shared memory IPC implementation is used
the DFE and TIP processes must both execute on the same host processor. Using
sockets with Internet domain communication enables the DFE and TIP to each
execute on separate hosts on a computer network. Thus an applications developer
can, from the workstation on his desk, debug a target processor which is connected to
a network node located in a remote hardware lab. Using sockets with UNIX domain
addresses (the method used to implement UNIX pipes) enables both processes to run
on the same host.

Some of the currently available UDI conforming debug tools are presented in
Figure 7-9. The interprocess communications layer defined by UDI enables the ap-
plications developer to select any front end tool (DFE) with any of the target control
tools (TIP).

Because developers of UDI conforming tools must each have code which inter-
faces with the IPC mechanism according to the UDI protocol, the UDI community
freely shares a library of code know as the  UDI–p library. This code presents a proce-
dural layer which hides the IPC implementation. For example, consider the follow-
ing  procedure:

The DFE code calls the UDIRead function which transports the function call to
the TIP process. The TIP code developer must resolve the function request, by adding
code which is specific to controlling the particular target. The IPC layer is effectively
transparent, the TIP developer is unaware that the procedure caller is from a different
process, possibly on a different host machine. Table 7-2 lists most of the UDI–p pro-
cedures available.
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Figure 7-9. Currently Available Debugging Tools that Conform to UDI Specification
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Because the DFE and TIP processes may be running on different machines, care
must be taken when moving data objects between hosts. An “int” sized object on the
DFE supporting machine may be a different size from an “int” on the TIP supporting
machine. Further, the machines may be of different endian. The UDI–p procedures
make use of a machine independent data description technique similar to the XDR
library available with UNIX. Data is converted into a universal data representation
(UDR) format before being transferred via sockets. On being received, the data is
converted from UDR format into data structures which are appropriate for the receiv-
ing machine. The UDI–p procedures keep the UDR activity hidden from the UDI
user.
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Table 7-2. UDI–p Procedures (Version 1.2)

Procedure Operation

UDIConnect Connect to selected TIP
UDIDisconnect Disconnect from TIP
UDISetCurrentConnection For multiple TIP selection
UDICapabilities Obtain DFE and TIP capability information
UDIEnumerateTIPs List multiple TIPs available
UDICreateProcess Load a program for debugging
UDISetCurrentProces Select from multiple loaded programs
UDIDestroyProcess Discontinue program debugging
UDIInitializeProcess Prepare runtime environment
UDIRead Read data from target–processor memory
UDIWrite Write data to target–processor memory
UDICopy Duplicate a block of data in target memory
UDIExecute Start/continue target–processor execution
UDIStep Execute the next instruction
UDIStop Request the target to stop execution
UDIWait Inquire about target status
UDISetBreakpoint Insert a breakpoint
UDIQueryBreakpoint Inquire about a breakpoint
UDIClearBreakpoint Remove a breakpoint

In later sections of this chapter, the development of a UDI  conforming GDB, a
source level debugger from the Free Software Foundation and Cygnus Support, is
discussed in more detail. GDB is an example of a DFE process. As an example of a
TIP process, we shall look at the MiniMON29K  monitor and the Instruction Set Sim-
ulator from AMD. Most users of GDB will have some knowledge of the ptrace()
system call which enables GDB to examine the state of the process being debugged.
A brief description of ptrace() is beneficial along with further explanation of its un-
suitability for embedded application software development.

7.5.3 P–trace

UNIX system call, ptrace(), provides a means by which a process may control
the execution of another process executing on the same processor. The process being
debugged is said to be “traced”. However, this does not mean that the execution path
of a process is recorded in a “trace buffer” as is the case with many processor emula-
tors. Debugging with ptrace() relies on the use of instruction breakpoints and other
hardware or processor generated signals causing execution to stop.

ptrace(request, pid, addr, data)

There are four arguments whose interpretation depends on the request argu-
ment. Generally, pid is the process ID of the traced process. A process being de-
bugged behaves normally until it encounters some signal whether internally (proces-
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sor) generated, like illegal instruction, or externally generated, like interrupt. Then
the traced process enters a stopped state and the tracing process is notified using the
wait() system call. When the traced process is in the stopped state, its core image can
be examined and modified using the ptrace() service. If desired, another ptrace() re-
quest can then cause the traced process either to terminate or to continue. Table 7-3
lists the ptrace() request services available.

Table 7-3. ptrace() Services

Request Operation

TraceMe Declare that the process is being traced
PeekText Read one word in the process’s instruction space
PeekData Read one word in the proceses’s data space
PeekUser Examine the processes–control data structure
PokeText Write one word in process’s text space
PokeDate Write one word in process’s data space
PokeUser Write one word in process–control data structure
Cont Startup process execution
Kill Terminate the process being debugged
SingleStep Execute the next instruction
GetRegs Read processor register
SetRegs Write processor register
ReadText Read data from process’s instruction space
ReadData Read data from process’s data space
WriteText Write data into process’s instruction space
WriteData Write data into process’s data space
SysCall Continue execution until system call

Because both the process with the user–interface controlling the debugging, and
the application process being debugged, may not be executing on the same processor,
it is not possible to use the ptrace() system call mechanism to debug embedded ap-
plication software. The debugger process (DFE) must run on a separate processor
and communicate with the processor supporting execution of the application code.

The Free Software Foundation’s source level debugger, GDB, makes use of the
ptrace() system call. However, it can alternatively use a collection of procedures
which support communication to a remote processor. These procedures implement
the necessary protocols to control the hardware connecting the remote processor to
the “host” debug processor. By this means, GDB can be used to debug embedded ap-
plication software running on application specific hardware. The following section
discusses the method in more detail.

7.5.4 The GDB–UDI Connection

GDB can, in place of ptrace(), make use of a procedural interface which allows
communication with a remote target processor. Newer versions of GDB (version
3.98 and later) achieve this via procedure pointers which are members of a target_ops
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structure. The procedures currently available are listed in Table 7-4. According to
GDB configuration convention, the file remote–udi.c must be used to implement the
remote interface procedures. In the case of interfacing to the IPC mechanism used by
UDI, the  procedures in Table 7-4 are mapped into the UDI–p procedures given in
Table 7-2. With the availability of the UDI–p library, it is a simple task to map the
GDB remote interface procedures for socket communication with a remote target
processor.

Table 7-4. GDB Remote–Target Operations

Function Operation

to_open() Open communication connection to remote target
to_close() Close connection to remote target
to_attach() Attach to a loaded and running program
to_detach() Detach for multitarget debugging
to_start() Load program into target–system memory
to_wait() Wait until target–system execution stops
to_resume() Startup/Continue target–system execution
to_fetch_register() Read target–system processor register(s)
to_store_register() Write register(s) in target–system processor
to_xfer_memory() Read/Write data to target–system memory
to_insert_breakpoint() Establish an instruction break address
to_remove_breakpoint() Remove a breakpoint
to_load() Load a program into target–processor memory

7.5.5 The UDI–MiniMON29K Monitor Connection, MonTIP

MiniMON29K monitor code can not function without the support of a software
module located in a support processor; the software module is known as the target
interface process (TIP). The 29K target processor communicates with the  processor
running the TIP process via a serial link or other higher performance channel. This
link supports a message system which is private to the MiniMON29K monitor, by
that I mean it is completely independent of the UDI protocol. (See Figure 7-2.)

MiniMON29K must be installed in target system ROM memory or down–
loaded by the TIP host via a shared memory interface. The target application code,
and additional operating system code, can then be down–loaded via the message sys-
tem. If changes to the code are required, then the message system can be used to
quickly down–load new code without changing any ROM devices.

The MiniMON29K TIP process, montip, converts UDI service requests into
MiniMON29K messages. The montip program which runs on UNIX machines, typ-
ically communicates with the target using an rs232 link. When run on DOS ma-
chines, it may communicate using an rs232  connection or a PC plug–in board shared
memory scheme. Note, UNIX machines can be also used to debug PC plug–in cards;
the pcserver program, run on DOS machines, enables the PC serial port to be con-
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nected to a UNIX machine. The MiniMON29K messages, transferred to the DOS
host via plug–in card shared memory, are sent to the TIP host via the rs232 connec-
tion. The montip program  supports several command–line options, as shown below.
Not all are applicable to both DOS and UNIX host machines.
montip –t target [–r OS–boot]  [–m msg_log]  [–com serial_port]

[–re msg_retries]  [–mbuf msg_bufsize]  [–bl msg_loopcount]
[–to timeout]  [–seg PC_seg_addr]  [–port PC_port_base]
[–baud baudrate]  [–le]  [–R|P]

A explanation of the command line options can be obtained by just entering
montip on your TIP host machine. When the montip process is started it advertises
its readiness to service UDI requests.  A DFE process will typically connect to the
TIP process and a debug session will commence. Alternatively, there is no need to
first start the TIP process. When a DFE process is started, such as mondfe, it will look
for the advertised TIP; if the TIP process is not found the DFE will automatically start
the TIP. This is how montip is normally started. The start–up montip parameters are
taken from the “UDI Configuration File”. The format of this file is explained in the
following section discussing mondfe.

7.5.6 The MiniMON29K User–Interface,  MonDFE

The MiniMON29K DFE process, mondfe, is a primitive 29K debugger. It pro-
vides a basic user–interface for the MiniMON29K product. It is fully UDI compliant
(at least UDI version 1.2 ); and it can be used with any of the available TIP processes
such as  isstip, mtip , montip, etc. It is very easy to operate but has less debugging
capability compared to other DFEs, such as gdb, xray29u or UDB (see section 7.7)
etc.; for example it does not support symbolic debugging.

It is very useful for simply loading application programs and starting their
execution where no debugging support is required. Its simple command set also
makes it easy to learn; when running, simply type the h command to obtain a com-
plete list of available commands. The h command can also be used to explain each
command’s operation; for example, “h s” will explain the operation of the set com-
mand. Several command–line options are supported.

mondfe [–D]  –TIP tip_id  [–q]  [–e echo_file]  [–c command_file]
[–ms mem_stack_size]  [–rs reg_stack_size]  [–le] 
[–log logfile]  [pgm_name [arg_list]]

A list of command line options can be had by entering mondfe on your DFE host
processor.  The process is typically started  by entering  a command such as “modfe
–D –TIP serial”. The “–D” option causes an interactive debug session to commence.
The UDI conforming TIP process communicating with mondfe is identified by the
“–TIP serial” command line option.

DFEs and TIPs establish communication via a UDI Configuration File. On
UNIX machines this file is called udi_soc; on DOS machines it is called udiconfs.txt.
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The Configuration File is found by first looking in the current working directory. If
not found, the file given by environment variable UDICONF is searched for. Lastly,
the executable PATH is searched. The format of these files is very similar, on UNIX:

session_id AF_UNIX socket_name tip_exe tip_parameters
session_id AF_INET host_name port <not required>

The first column gives the session_id, which is used to select the appropriate
line. The serial key–word used with the “–TIP” option in the example, is compared
with the session_id for each line in the Configuration File. The first matching line
provides all the necessary data for connecting to a TIP process which is already run-
ning; or, if necessary, starting TIP process execution.

The second column gives the socket domain used by the socket IPC mechanism
connecting the two processes.  Two domains are supported. The AF_UNIX domain
indicates both processes reside on the same host processor. Use of the AF_INET do-
main indicates the TIP process is on another networked host machine. In such a case,
the host name and socket port number are supplied in the following columns. The
UDI specification does not support DFEs starting TIP processes on remote hosts.
When the AF_INET domain is used to connect to the TIP, the TIP process must be
first up and running before connection is attempted.

When the AF_UNIX domain is used, the third column gives the name of the
socket used by the TIP to advertise its UDI services. If the DFE is unable to connect to
the named socket, it will assume the TIP is not running. In such a case the remaining
line information gives the name of the TIP executable and the start–up parameters.
Below is example udi_soc file contents.

mon AF_UNIX mon_soc montip –t serial –baud 38400 –com /dev/ttya
serial AF_UNIX * montip –t serial –baud 9600 –com /dev/ttya
iss AF_UNIX iss_soc iss –r ../../src/osboot/sim/osboot
pcserver AF_UNIX pc_soc pcserver –t serial –baud 9600 –com /dev/ttya
cruncher AF_INET hotbox 7000
netrom AF_UNIX net_soc montip –t netrom –netaddr 163.181.22.41 ...

The relative path names given with montip start–up parameters, are relative to:
<montip executable directory>/../lib . The path given with the “–r” option is required
to find the OS–boot code for 29K start–up. When the DFE is always used to automati-
cally start the TIP process, a “*” can be used for the socket name field. This causes the
DFE  to generate a random name for the socket file. This file will be removed when
the DFE and TIP discontinue execution at the end of the debug session.

The DOS Configuration File (udiconfs.txt) format is a little simpler. There are
only three entry fields, as shown by the example below:
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mon montip.exe –t serial –baud 38400
serial montip.exe –t serial –baud 9600
sim iss.exe –r ..\..\src\osboot\sim\osboot
eb29K montip.exe –t eb29K –r ..\..\src\minimon\eb29K\mon.o
yarcrev8 montip.exe –t yarcrev8 –r ..\..\src\minimon\yarcrev8\mon.os

The first field is again the session identifier.  The second and third fields contain
the TIP executable file name and its start–up option switches. All DFEs have some
kind of command–line or interactive command which allows the session_id value to
be entered. The DFE then reads the UDI Configuration File to determine the TIP with
which communication is to be established. Most DFEs (mondfe has the disc com-
mand) have a command which enables the DFE to disconnect from the TIP, cease to
execute but leave the TIP running. Because the TIP is still alive and ready to service
UDI requests, a DFE can start–up later and  reconnect with the TIP. However, typical-
ly the DFE and TIP processes are terminated at the same time.

7.5.7 The UDI – Instruction Set Simulator Connection,  ISSTIP

An Instruction Set Simulator, isstip, is available for DOS and UNIX type hosts.
The isstip process is fully UDI conforming and can be used by any DFE. Because of
existing contract limitations, AMD normally ships isstip in binary rather than source
form. Using the simulator along with, say the gdb DFE, is a convenient and powerful
way of exercising 29K code without ever having to build hardware. Thus, software
engineers can use the simulator while a project’s hardware is still being debugged.

The Instruction Set Simulator can not be used for accurate application bench-
marking, as the system memory model can not be incorporated into the simulation.
AMD supplies the architectural simulator, sim29, for that purpose (see Chapter 1).
The simulator supports several command line options, as shown below. For an ex-
planation of these options, enter isstip or man isstip, on your TIP host machine.

isstip [–r osboot_file] [–29000|–29050|–29030|–29200] [–t] [–tm]
[–id <0|1>] [–sp <0|1>] [–st  <hexaddr>] [–ww] [–le] [–p|v]

With  the –r option, the  osboot_file is loaded into memory at address 0. This is
useful for installing operating systems like OS–boot before application code starts
executing. With processors which support separate Instruction and ROM memory
spaces, the osboot_file is loaded into ROM space. If the –r option is not used, the sim-
ulator will intercept HIF service calls and perform the necessary operating system
support service. The simulator always intercepts HIF services with service numbers
255 and less regardless of the –r option. These HIF services are provided directly by
the simulator.

The simulator is very useful for debugging Freeze mode code. It will allow
single stepping through Freeze mode code which is not possible with a real processor
unless it supports Monitor mode. Freeze mode code is normally supplied in the op-
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tional osboot_file. Thus, the –r option must be used to enable Freeze mode debug-
ging. Additionally, to enable debugging of Freeze mode timer interrupts the –tm op-
tion must also be selected to enable timer interrupt simulation. The simulator normal-
ly intercepts floating–point traps and performs the necessary calculation directly.
Simulation speeds are reduced if floating–point trapware is simulated. However, if
the trapware is to be debugged the –t option must be used to enable trapware simula-
tion.

When the isstip process is started it advertises its readiness to service UDI re-
quests.  A DFE process will typically connect to the TIP process and a debug session
will commence. However, it is more typical to get the DFE to start the TIP.  The
mondfe process starts the TIP during the DFE start–up process. The gdb DFE starts
the TIP after the target gdb command is used. The start–up isstip parameters are tak-
en from the “UDI Configuration File”. The format of this file is explained in the pre-
vious section discussing mondfe.

7.5.8 UDI Benefits

A number of debug tool developers are currently, or will be shortly, offering
tools which are UDI compliant. Typically the DFEs are C source level debuggers.
This is not surprising, as the increased use of RISC processor designs has resulted in a
corresponding increase in software complexity. The use of a high level language,
such as C, is more productive than developing code at machine instruction level. And
further, the use of C enables much greater portability of code among current and
future projects. The low cost of GDB makes it an attractive choice for developers.

Target processors and their control mechanisms are much more varied than
Debugger Front Ends (DFEs). I have briefly described the MiniMON29K TIP, which
is a process which controls the execution of a 29K processor.  A small amount of code
known as the DebugCore is placed in  processor ROM memory and enables
examination of the processor state. The MiniMON29K TIP communicates with the
DebugCore via a hardware link which is specific to the embedded application
hardware.

Other TIPs already exist and more are under development.  There is a 29K
simulator (ISS) which runs on UNIX  and DOS hosts. The DFE communicating with
the simulator TIP is unaware that the 29K processor is not present, but being
simulated by a process, executing on, say, a UNIX workstation. There are also tool
developers constructing TIP programs to control processor emulators. This will
make possible a top–of–the–line debug environment.

UDI makes possible a wider tool choice for application code developers.
Debugger front end tools are supplied separately from target control programs. The
user can consider cost, availability and functionality when selecting the debug
environment. This level of debug tool configurability has not been available to the
embedded application development community in the past.
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Because debuggers like GDB are available in source form, developers can add
additional debug commands, such as examination of real–time operating system
performance. This would require adding operating system structural information
into GDB. When the debugger front end and, for example, an emulator interface
module, are supplied as a single executable, adding new commands is not possible.
Via the use of Internet sockets the debugger may execute on a different networked
host than the node supporting the emulator control process.

7.5.9 Getting Started with GDB

To demonstrate the operation of GDB debugging a program running on an
Am29000 processor, the program below was compiled using the Free Software
Foundation’s GCC compiler. The example is simple, but it does help to understand
the GDB–MiniMON29K monitor debug mechanism. A stand–alone Am29000
processor development card was used. It contains a UART and space for RAM and
EPROM devices. The MiniMON29K monitor modules were linked with a HIF
operating system support module (OS–boot) and an Am85C30 UART message
driver module [AMD 1988]. The linked image was installed in EPROM devices in
the target hardware. A serial cable was then used to connected the UART to a port on a
SUN–3/80 workstation.

The demonstration could have been equally as well been performed on a
386–based IBM–PC; the target hardware being connected via a PC serial port.
Alternatively, there are a number of manufactures building evaluation cards which
support a dual–ported memory located on a PC plug–in card containing the RISC
processor. The 386 communicates with the target processor via a shared memory
interface. This requires a TIP which can communicate via shared memory with the
DebugCore running on the target hardware. A number of such TIP control processes
have been built. A board developer has only to implement the TIP portion of the
debug mechanism to gain access to a number of debuggers such as GDB which are
UDI conforming. Note, due to an implementation limitation of the current DOS
version of GDB, it is necessary to start the TIP process manually. GDB is unable to
automatically start the montip or isstip. The command shown below most be used to
start montip on a DOS host before GDB can communicate with the target 29K
system.

montip montip.exe

The demonstration program, listed below, simply measures the number of char-
acters in the string supplied as a parameter to the main() function.

main(argc, argv) /* program measure.c */
int argc;
char *argv[];
{
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    int len;
if(argc < 2) return;
len = strlen(argv[1]);

    printf(”length=%d\en”, len);
}

int strlen(s)
char *s;
{

int n;
for (n = 0; *s != ’\0’; s++)
n++;
return(n);

}

GDB was started running on the UNIX machine. The target command was used
to establish communication with the DebugCore running in the standalone develop-
ment card. The UDI Configuration file was used to establish DFE and TIP commu-
nication. The format of the Configuration File was described in section 7.5.6. The
UDI session_id for the example shown is monitor. The list below presents the re-
sponse seen by the user. The keyboard entries made by the user are shown in bold
type.

gdb
GDB is free software and you are welcome to distribute copies of
it  under certain conditions; type ”show copying” to see the
conditions. There is absolutely no warranty for GDB; type ”show
warranty” for details. GDB 4.5.2, Copyright 1992 Free Software
Foundation, Inc.

(gdb) target udi monitor measure
Remote debugging Am29000 rev D Remote debugging an Am29000
connected via UDI socket,  DFE–IPC version 1.2.1  TIP–IPC version
1.2.1  TIP version 2.5.1  MONTIP UDI 1.2 Conformant

Once communication had been established, a breakpoint was set at the entry to
the strlen() function. Execution was then started using the run  command. GDB in-
forms the user that the program is being loaded. This is accomplished by the TIP
sending messages to the debug core, which transfers the accompanying message data
into Am29000 processor memory before Am29000 processor execution com-
mences.

(gdb) symbol measure
Reading in symbols for measure.c...done.

(gdb) break strlen
Breakpoint 1 at 0x10200: file measure.c, line 14.
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(gdb) run measure_my_length
Loading TEXT section at 0x10000 (24408 bytes) ...
Loading DATA section at 0x80003000 (4096 bytes) ...
Clearing BSS section at 0x80004000 (0 bytes) ...
Breakpoint 1, strlen(s=0x80004013 ”measure_my_length”)

(measure.c line 17
17     for (n = 0; *s != ’\0’; s++)

The program runs until the requested breakpoint is encountered. At this point a
source code listing was requested. Typically, debug monitors do not allow source
code to be viewed. The use of GDB makes this important advantage available to the
embedded software developer.

(gdb) list
11
12 int  strlen(s)
13 char *s;
14 {
15 int n;
16
17 for (n = 0; *s != ’\0’; s++)
18 n++;
19 return (n);
20 }

The user then examined the call–stack history using the info stack command.
This is currently inefficiently implemented. GDB uses the to_xfer_memory() proce-
dure to send read messages to the target DebugCore. Examining the instruction
memory in this way is much less efficient than  requesting the DebugCore to search
back through its own memory for procedural tag words. Each procedure has a non–
executable trace–back tag word, or two, placed before the first instruction of the pro-
cedure (see Chapter 3). Tag words enable debuggers to quickly gain information
about a procedure frame, and hence variable values. Adding the procedural “hook” to
GDB to make use of the MiniMON29K monitor FIND service would greatly reduce
message traffic, and improve the users response time for the info stack command.

(gdb) info stack
#0  strlen (s=0x80004013 ”measure_my_length”) (measure.c line 17)
#1  0x101ac in main (argc=2, argv=0x80004000) (measure.c line 8)

GDB enables single stepping of source code with the step or next commands.
The listing shows a source–level step request followed by the printing of procedural
variables “n” and “s”. With large embedded programs it is important to be able to de-
bug at source–level, and examine variables without having to look at cross–listing
mapping tables to find the address associated with a variables memory location. Typ-
ically small embedded debug monitors do not support this kind of debugging.

(gdb) step
17     for (n = 0; *s != ’\0’; s++)
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(gdb) print n
$1 = 0

(gdb) print s
$2 = (unsigned char *) 0x80004013 ”measure_my_length”

Embedded applications often deal with controlling special purpose hardware
devices. This may involve interrupt handlers and assembly–level code which oper-
ates with processor registers reserved for the task. GDB does support examination of
assembly code and registers by name. The listing below shows disassembly from the
current PC location (PC1 on  the Am29000 processor). The si command was then
used to single step at machine instruction level. The cont command caused execution
to continue to completion, as no further breakpoints were encountered.

The result of the printf() function call can finally be seen. This function relies on
the operating system making use of MiniMON29K monitor messages. The HIF–OS
write() system call, like the DebugCore, sends the required message to the host pro-
cessor. However, in the case of operating system messages, the message is not nor-
mally sent to the GDB module but to the HIF–OS support module. An exception is
made in the case of a read() or write() to the standard–in  or –out channel. Related
messages are relayed via UDI to GDB which must control both the displaying of re-
ceived data on the screen and sharing the keyboard between the application and the
debugger itself.

(gdb x/4i $pc
0x10228 <strlen+64>: sub gr117,lr1,8
0x1022c <strlen+68>: load 0,0x0,gr118,gr117
0x10230 <strlen+72>: add gr118,gr118,1
0x10234 <strlen+76>: store 0,0x0,gr118,gr117

(gdb) si
0x1022c

18 n++;

(gdb) p/x $pc
$3 = 0x0001022c

(gdb) p/cont
Continuing.
length=17

7.5.10 GDB and MiniMON29K Summary

GDB is a powerful debug tool which can be applied to the problem of develop-
ing software for embedded applications. The MiniMON29K monitor DebugCore
and message handling modules enable GDB to be simply incorporated in a wide
range of embedded systems. The MiniMON29K monitor has only a small memory
requirement and does not require processor registers to be reserved for its use.
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Users are free to incorporate their own real–time operating system, or alterna-
tively make use of the HIF operating system module. Because GDB is available in
source form, it can be extended to understand real–time operating system support
data structures. Purchasers of third party executives, or those who choose to build
their own, should not find it difficult to extend GDB to analyze the real–time operat-
ing system control parameters, via the Universal Debugger Interface standard.

The increased complexity of many applications being solved by RISC proces-
sor designs have a corresponding increase in software complexity. The low cost of
GDB and its associated productivity make it an attractive choice for developers.

7.6 SIMPLIFYING ASSEMBLY CODE DEBUG

It would be ideal to have a whole chapter dedicated to the subject of Designing
for Debug. However, size constraints have restricted this section to a few hints about
how to better develop assembly code. Certainly those developing 29K based systems
should first consider the difficulties (if any) of connecting logic analyzers, ROM
emulators or  in–circuit emulators to their designs before constructing any circuitry.
Tool suppliers as well as AMD support services and literature provide useful in-
formation with regard to planning for debug. This information should be obtained
and studied at the early stages of a project.

When developing a program in a high level language such as C, the compiler can
be direct to provide the necessary debug information in the output object file (COFF
file). With the High C 29K compiler, as with most C compilers, the “–g” switch in-
forms the compiler that additional debug information should be provided by the com-
piler. Source level debuggers, such as UDB or GDB, need the additional information
in order to correctly perform their task. Using High C, it is possible to examine the
assembly level directives which result from the use of the “–g” compiler switch. For
example, use the command “hc29 –S –Hanno –g file.c” to produce a file called
“file.s” which has high level language debug directives embedded among the 29K
assembly code.

When developing programs at assembly level it is best to include the high level
debug directives –– too frequently assembly language developers omit this task. Di-
rectives can be added to provide symbol–table and line number information for the
assembly files. This simplifies the task of later debugging the assembly code. For ex-
ample, the swaf utility can be used to read COFF files and produce an information file
in Hewlett Packard’s General Purpose Ascii (GPA) format. The GPA file can be
loaded into an HP16500B logic analyzer, enabling the analyzer to display symbol in-
formation rather than, say, hex address values. Further, using HP’s B3740A Software
Analyzer product in conjunction with their logic analyzer, trace of source line execu-
tion is possible if line number information has been provided.
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It is best to use macro instructions to embedded the required symbol–table and
line number information. The FUNC maco is used in the following example to pro-
vide information about function dbg_w_glob() which is written in 29K assembler.

;Write absolute global registers with memory resident data.
;dbg_w_glob(dest_p, src_p);

 FUNC _dbg_w_glob, __LINE__
mtsr IPA, lr2 ;IPA set to destination
jmpi lr0 ;return
 load 0,0,gr0,lr3 ;read memory

 ENDFUNC _dbg_w_glob, __LINE__

Macro instruction ENDFUNC is used to mark the end of the function. Both
macros receive two parameters; the first is the name of the function, the second pro-
vides line number information. Symbol __LINE__  is expanded by the C pre–pro-
cessor utility, cpp, which is available with most systems supporting Unix. Note, user
of High C 29K version 3.3 or newer will not need to use cpp as the assembler directly
supports the use of the __LINE__ symbol. When a file is processed by cpp, the
__LINE__ symbol is replaced by the current line number. Unfortunately, cpp adds a
line at the start of its output file which does not comply with 29K assembler syntax.
This line is simply removed using the tail  Unix utility. In general, to support line
number expansion, command lines similar to the following three must be added to a
Unix makefile for each assembly source file.

cpp file.s > tmp.s # run C pre–processor
tail +2 tmp.s > _file.s # Use Unix “tail” utility
as29 _file.s # assemble file

The listing below shows the code used to implement the FUNC macro. The re-
turn type of the function is “int” (T_INT). A tagword is provided but the field details
are not constructed.

  .macro FUNC, fname, fline
.def fname ;start symbol–table entry
  .val fname ;value of symbol = address
  .scl 2 ;storage class = C_EXT
  .type 0x24 ;type of symbol = T_INT()DT_FCN
  .endef ;end of symbol–table entry
.word 0x0 ;Tag word
.global fname

fname:
.def .bf ;start symbol–table entry
  .val . ;value of symbol = PC address
  .scl 101 ;storage class = C_FCN
  .line fline ;source line number
.endef ;end of symbol–table entry
.ln 1 ;line number within new section

  .endm
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The listing below shows the code used to implement the ENFFUNC macro.
There are a number of high level language support directives required to specify an
end of function. The comment fields explain the symbol–table definition used.

  .macro ENDFUNC, fname, fline
.def .ef ;start symbol–table entry
  .val . ;value of symbol = address
  .scl 101 ;storage class = C_FCN
  .line fline ;source line number
.endef ;end of symbol–table entry
.def fname ;start symbol–table entry
  .val . ;value of symbol = PC address
  .scl –1 ;class= C_EFCN (func. end)
.endef ;end of symbol–table entry

  .endm

Assembly macros can also be used to provide type information for data which is
defined in assembly level modules. Symbol–table information for data variables is
usually less useful than information about functions. However, if assembly level di-
rectives are not used, then all data will appear to be of type “char” (T_CHAR). Some
debuggers may be confused by this and will not be able to correctly report which sim-
ple has been accessed during a load or store operation. The example below shows
how the INT_32 and INT_32_ARY macros can be used to define variables. In the
example, the variables are located in a BSS (un–initialized data) region. The macros
provide the high level language directives which result in the correct symbol–table
information.

.sect   dbg_bss,bss

.use dbg_bss

.align 4
 INT_32 _dbg_tmp_reg ;32–bit uninitialised data
 INT_32 _dbg_tmp_p ;4–byte data
 INT_32_ARY _dbg_return,8 ;8 * 4–byte array

The listing below shows the code used to implement the INT_32 macro. The
symbol if of type “int” (T_INT). The enumeration (4) used for this type can be found
in the documentation supporting COFF. Alternatively, the C compiler can be run with
the “–g” switch and the output examined.

  .macro INT_32, name
name: .block 4

.def name ;start symbol–table entry
  .val name ;value of symbol, address
  .scl 2 ;storage class, C_EXT
  .type 0x4 ;type of symbol, T_INT
.endef ;end of symbol–table entry

  .endm

The INT_32_ARY macro is shown below. This macro is a little more complex
as it declares an array. The two macros shown here are useful but do not represent the
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complete range of macros which would be required to describe all data types. How-
ever, given these examples, it should not be difficult to construct any other macros
required.

  .macro INT_32_ARY, name, size
name: .block 4 * size

.def name ;start symbol–table entry
  .val name ;value of symbol, address
  .scl 2 ;storage class, C_EXT
  .dim size ;dimension of array
  .type 0x34 ;symbol type = T_INT and DT_ARY
.endef ;end of symbol–table entry

  .endm

7.7 SOURCE LEVEL DEBUGGING USING A WINDOW INTERFACE

There are a number of source level debuggers available for the 29K family
which support a windowed user interface; primarily windowed–gdb, xray29u and
UDB. A windowed debugger is appealing to many development engineers because
of its convenient interface and potentially greater productivity. For the benefit of
those engineers involved in embedded processor development who have not yet had
the opportunity to experience a windowed debugger, this section gives a brief
introduction to the topic. For illustration purposes, the UDB universal source level
debugger is used.

UDB was specifically designed for embedded software development.
Consequently, UDB provides a Generic I/O (GIO) interface alternative to ptrace()
for communicating with the target 29K system. The GIO code runs as a separate
process from the UDB process. The two processes communicate via a socket
connection on Unix hosts. This enables the GIO process to be provided in source
form without having to make UDB source code available. A UDI conformant version
of UDB is available for Unix hosts. This was achieved by interfacing the GIO
interface to the UDI–p library, see Figure 7-10. Currently, a UDI interface for PC
Windows is under development, and this will lead to a UDI conformant version of
UDB for PC Windows. CaseTools Inc., the developer of UDB, has a GIO
implementation available which is not interfaced to the UDI standard, but
communicates directly with a CaseTools maintained monitor known as UMON.
Currently, UDB for Windows operates with UMON rather than the DebugCore
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which is supplied as part of the MiniMON29K bundle. This will be the position until
the UDI for PC Windows specification has been completed.

When a UDI conformant version of UDB is used with a 29K evaluation board,
establishing UDB operation is very simple. The mktarget command in the udb.rc
start–up file is used to start a GIO processes which supports the UDI interface. The
GIO process uses the assigned mktarget parameters to select the entry in the udi_soc
file which is then used to establish the DFE–TIP connection (see section 7.9.2). In
this way, it is particularly convenient to use UDB with the instruction set simulator
ISSTIP. Similarly, UDB can be configured to connect to MonTIP which itself
communicates, for example, via a serial link or NetROM (ROM emulator), to the
DebugCore running in the 29K system.

Using UDB with UMON rather than MiniMON29K, is also simple when the
29K evaluation board has UMON installed and running. CaseTools recommends that
UMON first be linked with 29K boot–up code know as boot–crt0 and  then installed
in, say, ROM on the target 29K system. A CaseTools customer is required to
construct their own boot–crt0 code. This could be accomplished using the OS–boot
code provided by AMD.

However, because AMD provides 29K evaluation boards with MiniMON29K
already installed, some developers and evaluators may wish to run UMON without
first constructing a boot–crt0. The UMON monitor can be run on–top of the
MiniMON29K DebugCore, and where necessary the application can make use of
services provided by OS–boot in place of the missing boot–crt0. A number of
preparation steps must be taken to make this tool combination operate correctly.
These steps are explained below. It is important to remember these steps only apply
when launching UMON from MiniMON29K. No special linking and loading steps
are required if UDB is used directly with MiniMON29K or directly with UMON
combined with an appropriate boot–crt0.

Figure 7-10. The UDB to 29K Connection via the GIO Process
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MiniMON29K – UMON Differences

When using UMON rather than MiniMON29K components, a different crt0 file
must be linked with application code (the crt0 file linked with application code
should not be confused with the boot–crt0 file linked with UMON). There are a num-
ber of reasons for this; for example, MiniMON29K normally clears the application
BSS data region when a new program is prepared for execution. UMON does not
clear the BSS region and hence this task must now be performed by the crt0 file
linked with the application. Normally the default crt0 file provided with the compiler
is linked ahead of any application code.

UMON expects OS–boot to satisfy HIF service requests –– at least for service
numbers 256 and greater. However, service numbers 255 and lower require OS–boot
to request help from MonTIP. For this purpose, OS–boot exchanges MiniMON29K
messages with MonTIP. When the DebugCore is replaced by UMON, the
MiniMON29K message system is also replaced by the UMON communication
mechanism. Hence, OS–boot can not be used to perform HIF services with service
number 255 or lower.

To support HIF services such as write (service number 20) which is used by the
printf()  library routine, UDB is provided with a library which supplies routines, such
as _write(), which interface to the UMON communication mechanism. This library,
libudb.lib, must be linked with application code. The libudb.lib library must be
linked ahead of the default libraries supplied with the compiler, as the default li-
braries also contain system call glue–routines such as _write(); but these now un-
wanted routines request HIF services supported by OS–boot.
Compiling a Program for UMON Debugging

When UMON is launched from MiniMON29K, care must be taken when
building application programs for debug. A makefile for driving the High C 29K
compiler is provided with UMON as a template for building application programs.
The makefile builds a link–command–file and ensures the correct files are linked in
the correct order. The “APP=fib” line at the top of the makefile must be modified to
change the application program being build.

Alternatively, the compiler can be driven directly from the command line. First,
alternative files must be copied from the UMON installation to the High C 29K
installation directories. Copy the file /udb/apps/crt0.o to /29k/lib/udb_crt0.o and file
/udb/apps/libudb.lib to /29k/lib/libudb.lib. These files are referenced by the com-
mand file /udb/apps/udb.cmd which should also be copied to /29k/lib/udb.cmd. File
fib.c can then be compiled with the command:

hc29 –g –o fib.abs –nocrt0 –cmdudb.cmd fib.c

The “–nocrt0” option supresses linking of the default /29k/lib/crt0.o file. The
udb.cmd file is configured to link programs starting at memory location
0x40040000. This is suitable for use with an SA29200 evaluation board. The address
is higher than usual because UMON is also installed in the 29K’s program memory.
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Figure 7-11. UDB Main Window Showing Source Code Frame
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UDB does not load symbol information directly from 29K COFF files. The
utility mksym (see section 2.6.1) must be used to build a symbol file in a format
understood by UDB. The command below builds a symbol file for the fib.abs COFF
file compiled earlier. It is convenient to place the mksym command in the build
makefile.

mksym fib.abs fib.sym

Preparing for UMON Debugging

When MiniMON29K is used to launch UMON, the UMON monitor must first
be installed in the target system memory. Once installed, control of the processor is
passed from the DebugCore to UMON. MonDFE can be used to install UMON. As-
suming the udi_soc file (udiconfs.txt for PC hosts) has an entry “serial” for establish-
ing operation with a 29K target board, MonDFE can be started with the command:

mondfe –D –TIP serial.

Once MonDFE is started, the UMON program can be loaded and execution
started. At this stage MiniMON29K including MonTIP is no longer needed. The
MonDFE command sequence below is all that is needed to get UMON running.

y /udb/umon/sa200/sa200x.abs
g
q

Debugging a program

As noted previously, if MiniMON29K is running on the target 29K system, a
UDB  can be started which utilizes a UDI conformant GIO. If UMON is running on
the 29K target system, a non–UDI conformant UDB should be started. Double click-
ing on the UDB29K icon or starting UDB program execution from the command line
will establish a connection with the debug monitor (assuming the udb.rc command
file contains a mktarget command). The file udb.rc is read by UDB during the start-
up sequence. It can be used to customize UDB operation.

Once UDB has started, a 29K application  program can be loaded. This is done
by using the upper left menu item File–load–Symbols & Executable. Then use the
menu item Execute–Run until. and enter the label “main” when prompted for an
address; displayed in the window will be the source file,  for example see
Figure 7-11. Once a window has been created it can be used to display different
display frames. In Figure 7-11 a source code frame is displayed in the newly created
window. In general, any window can display any frame type. The following
discussion does not strictly adhere to the correct terminology for frames and
windows. In particular, where it is convenient, the term “window” may be used to
refer to a “frame” within a given window.

It is usually necessary to pop–up a window displaying a Console frame to enable
program input/output. This can be done by clicking on the Con button (lower right)
while holding down the shift key. A Console window will appear which enables ap-
plication input/output information to be displayed. The keyboard echo option must
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Figure 7-12. UDB Window Showing the Assembly Code Associated with the Previous
Source Code Frame
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be enabled by first clicking the right mouse button while in the Console window. The
left button can then be used to select “echo on” from the provided menu. Program
execution will continue when the Go button (top middle) is pressed.

The method used to pop–up a Console window can also be used to pop–up a
range of other debug support windows. The Asm button produces a window display-
ing assembly level code. The assembly code window shown in Figure 7-12 was pro-
duced by clicking the Asm button. The high–lighted code line (with arrow) corre-
sponds to the current Program Counter (PC) position. The corresponding source line
was high–lighted in the source code window (Figure 7-11). All windows which have
a mode setting (Source or Code mode) such as to display the current code position,
are updated automatically when the PC changes. A new PC value is reported when-
ever program execution stops due to, say, single–stepping a source or assembly code
line, or hitting a breakpoint. The example windows have a breakpoint set at the first
line of the fib() function. The right mouse button can be used to select the current dis-
play mode for a window.

This section is too brief to fully describe the capabilities of UDB. Developers
typically pop–up a number of windows displaying code, memory and register con-
tents. Windows can be selected and arranged in a way suited to an individual develop-
er or project’s requirements. As a further example, Figure 7-13 shows a window dis-
playing global register contents. The window is updated whenever a register value
changes. A new value can be entered into a register by placing the cursor over the
selected register data value and typing in the new value. The right mouse button can
be used to select other types of registers for displaying. For more information about
UDB commands, consult the UDB User’s Guide.

7.8 TRACING PROGRAM EXECUTION

Tracing program execution refers to recording the instruction execution and
data accesses performed by a processor. Programs are normally traced up to a break-
point or other event causing normal instruction execution to halt. A software engi-
neer can examine the trace information and determine the program’s operation prior
to the event. The technique provides the software developer with a powerful tool for
eliminating software bugs.

A tracing capability is normally provided by an In–Circuit Emulator (ICE) or
logic analyzer. The task of tracing is complicated by on–chip instruction and data
caches. Without caches, processor activity is fully visible from the memory interface.
When an access is performed to on–chip cache, it is not normally possible to deter-
mine the address or the data accessed. ICE developers can overcome this problem,
but often at increased tool cost. Those using a logic analyzer to perform tracing are
traditionally limited to debugging with caches turned off; or if caches are enabled, not
being able to observe all of a program’s execution. Embedded systems typically have
to meet stringent timing requirements and consequently it is not usually possible to
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Figure 7-13. UDB Window Showing Global Registers

turn off caches. It is unfortunate that the use of a logic analyzer is restricted. Logic
analyzers are not processor specific and are universally used by hardware develop-
ment engineers; they are frequently available to the software engineer working on
embedded product development.

The 29K family helps overcome the problem of tracing while caches are turned
on by employing Traceable Cache technology. The 2–bus microprocessors and the
high–end microcontrollers support traceable caching. Later in this section, traceable
cache operation is described in detail for the Am29040 processor.

This section deals with the use of a logic analyzer as a software debugging tool.
As well as describing the problem in general terms, specific material is included re-
lating to the use of Hewlett–Packard (HP) logic analyzers. HP was chosen because
their logic analyzers are popular, and many of the accompanying support tools have
been adapted to operate with HP analyzers. Other logic analyzer manufactures and
their partners have also developed tool combinations which support source level
software debugging.
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Logic Analyzer Connection

 Many of the evaluation boards offered by AMD contain sockets suitable for
quick connection of a Hewlett–Packard logic analyzer. This simplifies the process of
connecting the analyzer to the processor’s signal pins. Certain other logic analyzer
manufacturers support a compatible termination adapter (pod) format. Logic analyz-
ers such as the HP16500B (system) and the HP166x series connect directly to the
evaluation board connectors. This is convenient, as connecting to devices in pack-
ages other than PGA can be cumbersome and unreliable. Connection to your own
board can be achieved via a logic analyzer preprocessor: a preprocessor consist of a
small circuit board which connects directly into the processor socket (possibly with
the aid of a socket extender).  A replacement processor is located on the board along
with an array of analyzer connection sockets. Corelis Inc. supply preprocessors for
microprocessors and microcontrollers in the 29K family.

Microcontroller members of the 29K family incorporate on–chip memory inter-
face controllers. This results in the microcontroller providing RAS and CAS address
information separately (multiplexed on the same address pins) rather than a complete
DRAM address value. Consequently, it is necessary to latch the RAS address in-
formation and later combine the CAS address bits to produce a complete DRAM ad-
dress. If the address latching technique is not used, then the logic analyzer can not
display the complete address used for a DRAM access. This is very inconvenient. For
this reason, AMD provide address latching circuitry on their more recent microcon-
troller evaluation boards. Corelis also provide address latches on their preprocessors.
The active components on the preprocessor draw power from the pins supplying
power to the processor.
A Logic Analyzer as a Software Development Tool

Logic analyzers can be used to study a circuit’s state and timing information.
Hardware engineers typically display state information in hexadecimal or binary
format (see Figure 7-14). Software developers need a format which is more relevant
to their task. To this end, Corelis provide a tool which runs on the logic analyzer and
enables the processor bus signals to be displayed in assembly instruction format. The
tool is used in conjunction with a configuration file which formats the analyzer to the
assigned preprocessor signals. (For example, file POD_040._D for the Am29040
preprocessor.) When the configuration file is used, the task of first assigning labels to
the termination connector signals is eliminated. When the inverse assembler tool is
used, the DATA label shown on Figure 7-14 can optionally be displayed in terms of
29K assembly instructions rather than the hexadecimal equivalent.
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Figure 7-14. HP16500B Logic Analyzer Window Showing State Listing
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Using the swaf utility described in section 2.6.1, it is possible to display the
ADDR label shown on Figure 7-14 in terms of program address labels. The utility
builds a GPA formatted symbol file from information extracted from a linked COFF
file. The GPA file must be transferred to the analyzer, this is best done using a LAN
connection.

Hewlett–Packard has further extended the ability of their analyzers to support
source level debugging. Their B3740A Software Analyzer tool enables trace in-
formation to be displayed at source level. The tool runs on a Unix workstation or on a
PC running Windows. An HP16500B logic analyzer must be connected to a comput-
er system via an HP16500L LAN card. Once the analyzer is connected to the LAN, it
can be controlled from the workstation or PC. For example, an X–terminal connected
to a computer running Unix can use the Software Analyzer tool to display program
trace information in terms of the original C code. For convenience it is also possible
to display the equivalent assembly level trace normally presented on the dedicated
analyzer display. Analyzer trigger logic can be set from the X–terminal and is pres-
ented in terms of address symbols rather than hexadecimal values. The Software
Analyzer tool currently runs with HP16550A (6–pod, 102 channel) and HP16555A
(4–pod, 68 channel) analyzer cards which can be installed in the HP16500B logic
analyzer system.

Hewlett–Packard’s Software Analyzer tool is very useful, however, it does suf-
fer from displaying trace information corresponding to instruction fetch activity
rather than instruction execution. Not all fetched instructions which are observed on
the system bus, flow through the processor pipeline and are executed. Instructions
can be fetched due to cache block reload or instruction fetch–ahead. The Software
Analyzer indicates that these instructions have been fetched for execution in the same
way as instructions which really are executed –– they are indistinguishable. This
problem is overcome when the logic analyzer is driven by the MonTIP program. The
UDI conformant MonTIP has been extended to include support for the HP16500B
logic analyzer. Algorithms have been incorporated within MonTIP for processing
trace information. These algorithms, described in more detail later, are able to elimi-
nate unwanted trace information and consequently produce trace data which corre-
sponds to the execution path taken by the processor.

Traceable Caching

Traceable Caching is accomplished using two processors in tandem: a main pro-
cessor and a slave processor. The two processors are connected together, pin–to–pin,
except the slave uses its address bus and a few other signal pins to indicate cache hit
activity. The main processor performs all the required operations, and the tracing
processor duplicates the operation of the main processor except that the output pins
connected in parallel are disabled. All processor outputs to the system are driven by
the main processor. The slave processor simply latches the results of the accesses per-
formed by the main processor.



October 13 1995, Draft 1

388 Addendum to –– Evaluating and Programming the 29K RISC Family

With the Am29040 processor, the address bus A31–A0 of the slave (the tracing
processor) along with output pins REQ, R/W and I/D report physical branch address-
es even if the target instruction is provided by the on–chip instruction cache. By trac-
ing the slave processor signals along with the master, it is possible to exactly recon-
struct the sequence of instructions executed. Instruction execution is considered con-
secutive until a further nonsequential event (such as a branch or an interrupt) is re-
ported by the slave processor.

When a load or store hits in the data cache, the Am29040 slave processor pro-
vides the corresponding physical address on its address bus. The slave also indicates
when a data access results in cache block allocation. When an instruction executes,
the corresponding processor status (signals STAT2–STAT0) are reported on the fol-
lowing cycle –– when the instruction is in the write–back pipeline stage. Load and
store instructions are reported in the same way as other instructions, at the write–back
stage, rather than when the actual data transfer is accomplished.

The Am29040 and Am29030 processors perform traceable caching at the inter-
nal speed of the processor, this may be twice the speed of the off–chip memory sys-
tem. This ensures that the processor operation can always be fully reported. The
Am29240 microcontroller performs traceable caching at the off–chip memory sys-
tem speed. This can lead to difficulties when the processor is running internally at
twice the memory system speed. For example, it is not possible to report the target
address of the first jump in a back–to–back sequence of jump instructions (instruc-
tion visiting). Only the target of the second jump is reported by the Am29240 slave
processor. Additionally, if a branch instruction executes in the same memory cycle as
a load or store instruction, the slave only reports the address of the branch instruction.

Traceable caching is enabled via the JTAG interface. A boundary–scan instruc-
tions for enabling or disabling tracing can be entered via the JTAG port. Corelis Inc.
manufacture preprocessor boards supporting traceable caching. The preprocessor
contains two processors: a master and a slave. The second processor is switched into
slave–type operation during reset Active components on the preprocessor board
drive a TRACECACHE instruction into the slave processor. Around the perimeter of
the Am29040 preprocessor are nine logic analyzer connectors. An unusually large
number of analyzer pods is required due to the need to trace both master and slave
operation. In the Am29040 case, it is possible to operate with a minimum of eight
pods if the optional connector J7 is eliminated. This enables tracing to be accom-
plished with a minimum of two HP16550A or two HP16555A logic analyzer cards
inserted into an HP16500B analyzer system.

The analyzer cards cards should be connected together in master and slave
mode. This requires physically connecting ribbon cables on the cards. The cards can
be placed anywhere in the HP16500B card cage, as MonTIP scans for their actual
location. Assuming two HP16550A cards are located in slots D and E, pod E1 (slot E)
should be connected to position J1 on the Corelis preprocessor, and pod E2 to J2, and
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so on. Pods D1–D3  must be connected to J7–J9. The POD_040._D file formats the D
and E analyzer cards for this configuration. The file, supplied by AMD or Corelis, is
normally located on the HP16500B directory /AMD/CONFIG/POD_040._D. Note,
a different POD_040._D file is required if HP16555A cards are used rather than the
lower cost HP16550A cards. The HP16550A card has a 4K sample memory depth (at
full channel width), the HP16555A can store 1024K samples.
Processing Trace Information

Enhancing MonTIP to control operation of the HP16500B logic analyzer offers
a number of advantages to the software engineer. It enables a UDI conformant debug-
ger to access the analyzer. This makes the analyzer usable with a range of different
Debugger Front Ends (DFEs), such as UDB or xray29u. It also enables trace in-
formation to be processed before it is presented to the DFE. It is desirable that only
the execution instruction path be included in the trace data. This, after all, is what
software developers expect, given their previous experience using In–Circuit Emu-
lators (ICE). A further advantage is that an analyzer can be combined with other UDI
conformant debug tools to produce a debug environment similar to that achieved
with an ICE.

The MonTIP program controls the logic analyzer and processes trace informa-
tion. The same MonTIP can also control the target 29K system via commands sent to
a MiniMON29K DebugCore. The operation of MonTIP is directed by the chosen
DFE. The user enters commands to the executing DFE program. When the DFE is
started it typically initiates the operation of MonTIP. When started, MonTIP esta-
blishes communication with the DebugCore and, via a LAN, the HP16500B logic
analyzer. The DFE user interface will appear on the display, along with the
HP16500B user interface which is requested by MonTIP. In addition to entering DFE
commands, it is possible to enter HP16500B commands directly into the logic ana-
lyzer window. Note, a colour terminal simplifies the process of entering analyzer
commands.

Using the logic analyzer window, unprocessed analyzer trace can be viewed.
This is a tedious task, particularity when the 29K processor is operating with its on–
chip caches turned on. The DFE can also be used to display analyzer trace informa-
tion, but this time in a fully processed format. Only instructions which actually
execute are reported in the trace listing.

The format of the displayed processed trace is dependent on whether the DFE
has been extended to display trace information. If a DFE has not been enhanced to
display trace in, say, source format, then the DFE must rely on MonTIP’s ability to
prepare trace information for display; this is achieved using a transparent–mode of
operation, which is described shortly. Bus signals selected for display in the pro-
cessed trace must be included in the format for unprocessed (raw) trace.  However,
they need not actually appear in the analyzer state listing window.
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A processed trace line contains the instruction which was in write–back during
the captured trace cycle, or data which was transferred during the cycle. Put another
way, if an instruction is fetched from memory, then during its write–back cycle (if it
reaches execute) the op–code is reported in the processed trace. Let’s look at the algo-
rithm used with the Am29040 Traceable Cache preprocessor. The DATA and ADDR
labels have their values changed by the algorithm to reflect the instruction which was
executed during the traced cycle. The DATA and ADDR labels in the raw trace indi-
cate the instruction which was fetched during the traced cycle or data which was ac-
cessed during the cycle. If no data access or instruction execution occurs in a cycle,
then there is no processed trace line corresponding to the raw trace line. MonTIP only
reports lines which are considered valid.

The algorithm operates in two stages; first data accesses are processed, then
instruction flow is determined. Data accesses are examined to determine if there are
any repeat accesses reported due to the use of Scalable Clocking. Trace information
is captured at the internal processors speed. The memory system may be running at
half this speed. Consequently, accesses to memory are captured twice in adjacent
trace cycles. Only the final access is considered valid.

Data transfer, due to a load or store instruction, can occur during the same cycle
another instruction is executed. When this happens, the algorithm moves the report-
ing of the data access to a future trace cycle which contains no valid trace informa-
tion. If another data transfer occurs before the previous is reported, then the previous
data value will not be reported. The R/_W, and I/_D information is repositioned
where necessary and possible, so as to report data accesses which occurred. Note,
LOADM and STOREM data transfers are reported before the instruction execution
is reported; this reflects the correct operation of a 29K processor. Currently, the algo-
rithm is being enhanced to enable multiple instruction execution or data accesses to
be reported occurring on different processed trace lines which correspond to the same
captured trace cycle. This eliminates the need to reposition or drop data accesses
reporting. These algorithm enhancements are required by superscalar processors.

Figure 7-15. Path Taken By Am29040 Recursive Trace Processing Algorithm
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Data accesses which generate a cache hit are given the same treatment applied to
memory–resident data accesses. When a data transfer occurs, it will be reported in the
next available cycle (could be the current) which is not being used to report an
instruction’s execution or other valid data access. When the data cache is turned on, it
will not always be possible to report the value of the data transferred. The slave pro-
cessor does not provide the cached data value, only the address.

For vector fetches, the vector fetch and the address of the first instruction as well
as the  VECT status are reported on the same processed trace line.

The second stage of the algorithm is a little more complicated; it produces the
complete address–flow for executed code. It currently only operates with 32–bit
memory accesses. Programs should not be traced when executing from 8–bit
memory devices. A recursive algorithm determines consecutive instruction execu-
tion sequences, as shown on Figure 7-15. The algorithm starts with a branch instruc-
tion and stops when it reaches a delay–slot instruction. Branch instructions initiate
new instruction sequences for the algorithm to recursively process.

Once the address flow is determined, a second recursive routine determines the
instructions which correspond to the address flow. Often  these instructions are
fetched from memory and can be found in the DATA field of a previous trace cycle.
However, if the instruction is supplied by the instruction cache then XXXXXXXX is
entered into the DATA column. If an address value lies in the loaded TEXT region
and the DATA column is marked XXXXXXXX, then the op–code is obtained from
the loaded COFF file and placed in the DATA field.

MonTIP Commands

Strictly speaking, commands should be processed by the Debugger Front End
(DFE), such as MonDFE. However,  MonTIP has the capability of also processing
commands. The range of commands dealt with by MonTIP is greatly limited. Each
DFE has a mechanism by which its command processing can be placed in
transparent–mode. This causes commands to be passed to the TIP. With MonDFE,
commands begining with the key word “tip” are passed to MonTIP. A number of
commands have been added to MonTIP to support analyzer operation. By typing the
MonDFE command “tip lahelp” a list of the commands will be displayed. The
MonTIP man–page describes the commands in more detail.

The MonTIP command “latadd  label, width” is used to add a column to the trace
listing produced by MonTIP.  An “latadd” should be used for each column in the
processed trace listing. Acceptable values for “name” are defined by the labels which
appear in the raw trace listing. The only exception to this rule is for labels
SYMADDR and ASMDATA. These are pseudo labels derived from the raw labels
ADDR and DATA respectively. The use of the SYMADDR label causes the
hexadecimal address value to be replaced by an address symbol. For this to work the
“lacoff file” command must be used to specify the file to be used during symbol table
look–up. Addresses which are not found in the COFF file are presented in
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hexadecimal format. Use of the ASMDATA  label indicates that the DATA label
information should be disassembled –– when the corresponding address is known to
lie in a TEXT region.

The “latd start, end” command is used to display processed trace information
based on stored lines. Processed line and raw line numbers are the same with regard
to the processor status during the traced processor cycle, but only valid lines appear in
the processed trace listing.  A valid line is one in which useful processor activity was
performed. For valid lines, the ADDR,  DATA,  R/_W and I/_D labels are reevaluated
to correspond with the associated processor status value.

MonDFE Trace Access Commands

This section briefly describes MonDFE commands relating to displaying trace
information. A complete list of MonDFE commands is obtained by entering the
command “?”. MonDFE supports command files with the “zc file” command. It is
useful to place a list of “tip latadd  SYMADD”–type commands in a command file
such as la.rc. This enables the “zc la.rc” command to initialize MonTIP trace
processing. The MonDFE command “ze file” can be used to record displayed
information into a log file.

Before a trigger can occur, trigger conditions must be installed in the analyzer.
The command “latrig term, label=pattern” can be used when  setting trigger patterns
in the logic analyzer. Specifying trigger logic and sequence control must be specified
using the analyzer window. Once the trigger has been established (and the
POD_040._D setup may be adequate) it is usually only necessary to use “latrig”
commands such as “tip latrig a, ADDR=10004”. Trigger patterns can be entered
directly using the analyzer window, this also requires the hexadecimal patten (rather
than symbol) value be known. If the swaf program is used to build symbol table
information in Hewlett–Packard’s GPA format, it can be directly loaded into the
analyzer. This enables trigger labels to be set using symbols when directly using the
analyzer window.

The Analyzer can be triggered at each breakpoint by setting the break–address
to the illegal op–code vector address (vector 0). This technique is useful when
breakpoints are implemented by temporarily replacing instructions with illegal
op–code instructions. The MiniMON29K DebugCore uses this technique when
on–chip breakpoint registers are not available.

UDB Commands

UDB has been enhanced by CaseTools to support displaying trace information
in source format. This makes UDB a preferred tool for use with a logic analyzer.
Additionally, UDB, like other non enhanced source level debuggers, can also be used
in transparent–mode. With transparent–mode operation, it is possible to issue
commands for MonTIP processing. Given that UDB supports source level tracing, it
is unlikely that transparent–mode operation would be selected for use with UDB.
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However, it is described here to aid users of other source level debuggers which only
have access to transparent–mode commands.

UDB is a window based debugger; however, command line processing is
supported. When in the Main window or the Console window, a command line
sequence begins with an <ESC> character. For example, to issue a “latadd” MonTIP
command, use the command sequence “<ESC>ioctl tip latadd label”.

Alternatively, the “latadd label” command can be directly entered at the
Console window. If the console is not currently gathering input for an out–standing
standard input request (such as a scanf()), the keyboard input is sent to MonTIP for
processing rather than the application or target operating system. It is useful to place a
list of “ioctl tip latadd  SYMADD”–type commands in a command file such as la.rc.
The “<ESC>ioctl tip exec la.rc” command can then be used to process the MonTIP
command file. An example la.rc file for use with UDB is shown below:

ioctl tip latclr;
ioctl tip latadd LINE;
ioctl tip latadd ADDR;
ioctl tip latadd SYMADDR;
ioctl tip latadd ASMDATA;
ioctl tip latadd R/_W,6;
ioctl tip latadd *STAT_,6;
ioctl tip lamore 20;

The trace listing produced by commands such as “<ESC>ioctl latd 0, 20” will
appear in the console window along with any other console output information such
as printf()  output. It is also convenient to use UDB’s macro instruction capability to
bind macros to buttons associated with the console frame. This allows user defined
buttons (left side of frame) to be simply clicked to issue the required MonTIP
command. The macro instructions shown below can be placed in the udb.rc startup
file.

macro m=mcon –f –”echo” {lb6}  ”{com}stty +echo\r”
macro m=mcon –f –”trig”  {lb7}  ”{com}ioctl tip latrig a, ADDR=”
macro m=mcon –f –”sync”  {lb8}  ”{com}ioctl tip lasync\r”
macro m=mcon –f –”la.rc” {lb9}  ”{com}exec la.rc\r”
macro m=mcon –f –”coff”  {lb10} ”{com}ioctl tip lacoff ”
macro m=mcon –f –”help”  {lb11} ”{com}ioctl tip lahelp\r”
macro m=mcon –f –”latd”  {lb12} ”{com}ioctl tip latd ”

Unprocessed analyzer trace was shown on Figure 7-14. The corresponding pro-
cessed trace is shown on Figure 7-16. Trace information is presented in the console
frame using UDB in a transparent–mode of operation. Although the Console window
is adequate, it is easier to study program execution from the enhanced trace window.

The enhanced trace window is shown on Figure 7-17. This window appears
when the trace view–toolbar button (bottom right of window) is selected. The trace
listing window is formatted via the “trcol” command. This command, along with a
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number of other trace modifying commands, can be interactively entered at the UDB
command line. However, it is much more typical to arrange for “trcol” commands to
be processed during UDB start–up. This is accomplished  by entering a “trcol” com-
mand sequence, such as the following example, into the udb.rc file.

trcol –d –w 8 ADDR
trcol –d –w 15 SYM
trcol –d  –w 8 DATA
trcol –d –w 27 DASM
trcol –d –w 6 TYPE
trcol –d –w 6 STAT_

UDB fetches new trace information when the Fetch button is pressed. This
button should be used whenever the analyzer has acquired new trace data. The Start
and Stop buttons are provided for remote Running and Halting of the analyzer data
acquisition. This is equivalent to using the top–right–hand corner button on the
analyzer display. The Line button is used for displaying a desired line number ––
entered via a dialog box. The Top button moves the current line (indicated by the
cursor position) to the top of the display.

The Set button is particularly useful. The selected line is highlighted in red and
the raw analyzer display is adjusted as necessary to show the corresponding raw trace
line. If any source–display windows are opened (in up–date mode rather than edit
mode), they are adjusted to show and highlight (in red) the corresponding C source
line.  The Loc button can be used to relocate the current highlighted line.

After a trace line has been selected and the Set button applied, the Next and Prev
buttons can be used to single step through source level trace. Using the Next button,
all three displays (if in use) will be updated with the next line corresponding to the
recorded source execution. If the shift key is held down while using the Next or Prev
button, assembly level stepping rather than source level stepping is performed.

Trace column SYM is a synonym for column ADDR formatted symbolically.
The address symbols are taken from the loaded symbol file. Hence the need to load a
UDB symbol file produced by the mksym utility. The DASM column is a synonym
for DATA presented in disassembly format. When an instruction is supplied by the
on–chip cache, XXXXXXXX is placed in the DATA column. However, the Xs will
be replaced with the actual instruction if an executable program has been loaded. For
more information on preparing the trace display see section 7.9.3.
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Figure 7-16. UDB Console Window Showing Processed Trace Information
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Figure 7-17. UDB Trace Window Showing Processed Trace Information
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7.9 Fusion3D TOOLS

Shortened development times and increased product complexity has
necessitated the use of powerful software development tools. Unfortunately
however, the higher processor speeds and on–chip integration provided by many of
the newer embedded RISC processors has led to an increased cost associated with
traditional debug tools such as In–Circuit Emulators (ICE). Additionally, the rapid
changes occurring in the embedded processor market and the frequent introduction
of processor variations has placed emphasis on the need for tool reusability.
Reusable and low cost  tools have a broad appeal among software designers.

The term Fusion3D refers to a Distributed Design and Debug environment. The
purpose behind Fusion3D is to provide cost effective design and debug tool
alternatives selectable from a range of compatible products. This is achieved by
distributing the primary tool functions. For example, traditionally a full–function
ICE has been chosen as the primary debug tool. However, the overlay or substitute
target memory provided by an ICE is alternatively available with a ROM emulator;
the ICE’s tracing capability can be effectively achieved with a logic analyzer; and
controlling program execution can be accomplished with a debug monitor and
on–chip debug support hardware. The capabilities inherent in a full–function ICE are
distributed among the selected Fusion3D components. AMD has identified and
worked with key Fusion3D partners to bring together the necessary components of
the Fusion3D environment.

The Fusion3D approach is flexible. The scalable nature of Fusion3D enables the
software developer to construct a debug environment which is adequate for the task
to be undertaken, yet does not incur the high costs typically associated with a
full–function ICE. At a later stage, if a project requires an additional debug
capability, the chosen tool combination can be enhanced.

Many of the tools provided by the Fusion3D program are useable with any
member of the 29K family or other processor family such as the X86. This helps
reduce the cost associated with tooling–up for a new project. For example, the
HP16500B logic analyzer is widely used within the industry. Traditionally it has been
used by hardware development engineers. Extending its utility as a software
development tool, useable across a wide range of processors, is very cost effective.

7.9.1 NetROM ROM Emulator

A ROM emulator is used to replace a system’s ROM or SRAM type memory
devices with substitute memory. Typically, ROM devices are removed from socket
locations on the target system and a cable used to connect the ROM emulator to the
vacated sockets. The processor can read the emulated memory as if it were real
ROM. Occasionally there may be differences in memory access times due to
different memory access wait states; but essentially the system runs as normal.
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ROM emulators always provide a second access port to the emulated memory.
Via this second port, the contents of the memory can be read or written. This is
generally accomplished by a host computer to which the ROM emulator is attached.
The technique enables programs to be installed in system memory without the need
to prepare (often termed burn) new ROM devices. During the process of developing
and debugging software, modification of the program code frequently occurs.
Consequently, an updated program must be reinstalled in the target system’s
memory. The process of preparing new ROMs is slow, and a ROM emulator with a
fast computer link provides an alternative means of updating the system memory.

NetROM is a ROM emulator product provided by a Fusion29K tool
development partner. It can emulate 8–bit, 16–bit or 32–bit wide memory devices as
required. Depending on the width (number of bits) of the memory being emulated,
between one and four cables are required to connect the NetROM to the target system
memory. Up to 1M byte of memory can be emulated, depending on the pin layout of
the memory devices in use. The 1M byte limitation does not restrict NetROM’s use
for developing programs which are larger than 1M byte –– this is achieved via the
on–board UART. The UART is mapped into a location within the emulated memory
space. The 29K processor can exchange data with the UART. The host computer can
also access the UART and hence exchange information with the 29K processor.

The MiniMON29K bundle contains a driver for the NetROM UART (often
referred to as a virtual UART). This enables the TIP program (MonTIP) running on
the host computer to communicate with the DebugCore software running on the 29K
target system. The method enables programs to be downloaded into the target
systems DRAM memory. Typically, OS–boot, the DebugCore and support drivers
are placed in emulation memory; then, via MonTIP support, programs are loaded and
executed out of  the target system’s DRAM memory.

The NetROM equipment connects to the host computer via an Ethernet
connection. A NetROM can be used with an IBM PC compatible machine running
Windows; however, because of their Ethernet connection, they are much more
frequently used with networked Unix based systems. The Unix machine serving the
NetROM will have an entry in (typically) its /etc/bootptab file, specifying  the IP and
Ethernet addresses allocated to the NetROM. Also specified in the bootptab file is the
the path to the NetROM configuration file. An example bootptab file entry for a
CMU type server is shown below. The actual NetROM configuration file is
/tftpboot/netrom/startup2.bat. Note, for servers running in “secure” mode, the
/tftpboot directory must be at the root of the path to the NetROM configuration file.
The NetROM (client) Ethernet hardware address is given by the “:ha= ” field.

netrom2:hd=/tftpboot/netrom:bf=startup2.bat:sm=255.255.255.255:
ht=1:ha=00402f008444:ip=163.181.22.60

When the host server connects to the NetROM client, the configuration file is
downloaded into the NetROM. A portion of the /tftpboot/netrom/startup2.bat is
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shown below. The loadfile and loadpath variables are used to specify the default
image file to load into emulation memory. In the example below, the default image
file is /tftpboot/netrom/target/sa29040.hex. The key parameters in the configuration
file should be arranged to describe the type of memory being emulated. The example
below shows four 27c020 memory devices combined to produce a 32–bit memory
system. This will require four NetROM cables. It is possible (and common) to
emulate only an 8–bit wide memory system.

;part of the startup2.bat NetROM configuration file
setenv host 163.181.22.9 ;server IP address
setenv loadfile sa29040.hex ;29K program (image file)
setenv loadpath /netrom/target ;path to 29k program
setenv romtype 27c020 ;ROM type
setenv romcount 4 ;number of ROMs
setenv podorder 0:1:2:3 ;pod order
setenv wordsize 32 ;memory width

A NetROM can support TELNET and direct TCP connections simultaneously.
The MonTIP program forms a direct connection to the NetROM via the parameter
information located in the udi_soc file (see section 7.5.6). An example udi_soc entry
is shown below.

# udi_soc file entry to support NetROM
netrom2 AF_UNIX soc montip –t netrom –netaddr 163.181.22.60 –netport 1234

It is possible to have a TELNET session active with a NetROM while also
running MonTIP. Of course, the user controls the NetROM via a front–end debug
tool such as UDB which directs the operation of MonTIP via the UDI interface. From
a window running the TELNET command “telnet netrom2” (for example),  the
“newimage”  NetROM command can be used to download a file (usually the default)
into emulation memory. The sa29040.hex image file contains OS–boot, the
DebugCore, and support driver code for an SA29040 evaluation board. Once
installed it enables DebugCore messages to be exchanged between the 29K target
and the host computer running MonTIP.

A software reset can be performed by issuing a reset command from UDB.
Normally the DebugCore is successfully running and will perform the reset. Under
extreme conditions the DebugCore may no longer be in control of the 29K processor.
In this case a hardware reset can be performed. This requires that the 29K reset pin be
asserted. From the TELNET session this is accomplished via the “tgtreset”
command. The technique requires that a reset wire be used to connect the reset output
pin on the back of the NetROM (marked R) to a connection post on the target system.
The connection post must be wired to the processor reset pin. For this reason, it is best
to incorporate a reset connection post on each 29K target system for use by the
NetROM.

Once a NetROM has been added to a network, a TELNET connection can be
used to confirm its correct installation. After issuing a “newimage” command, and
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possibly a “tgtrest” command, the 29K target system is ready for operation. The
chosen debug tool (UDB, GDB, etc.) can then be invoked and used to examine,
modify and control the target 29K processor in the normal way. Once correct
installation has been confirmed, there is no need to first establish a TELENT
connection before initiating normal program debug. All that is necessary is to start
execution of the chosen debugger.

The NetROM driver (for the 29K side of the virtual UART) that is built into the
image file, typically operates in poll–mode. This refers to the 29K processor on
occasion polling the UART to determine if it is receiving a message from MonTIP.
The image file can be built with an interrupt–mode driver. This enables MonTIP to
interrupt the 29K at any time (if interrupts are enabled) when it wishes to send a
message (such as halt) to the DebugCore. To enable operation of this technique, an
interrupt wire must be used to connect the interrupt output pin on the back of the
NetROM to an interrupt input post on the 29K system. Once again, the post should be
incorporated into any design which wishes to make sue of a NetROM.

7.9.2 HP16500B Logic Analyzer

Network Installation

The use of logic analyzers for tracing program execution was previously
presented in section 7.8. This section briefly deals with the details of configuring the
logic analyzer’s operation for use in the Fusion3D environment. A high speed
connection to the analyzer is achieved via the optional Ethernet link. This requires
that the analyzer be allocated a unique IP address. Using the analyzer’s
communications set–up window, the IP address is recorded for future use. With Unix
networks, the IP address and chosen name are entered into the network database file
/etc/hosts. The following example allocates an IP address for an analyzer called
“hpla”.

#entries in /etc/hosts file allocating IP addresses
163.181.22.117 hpla # logic analyzer
163.181.22.121 ginger # X–terminal

The analyzer connection can be confirmed by establishing a telnet connection.
This is accomplished with a “telnet hpla 5025” command. Port number 5025 enables
access to the analyzer command parser. Commands can then be directly issued to the
analyzer. One very useful command: “xwin on, ’163.181.22.121:0.0’”, establishes a
remote window interface to the analyzer. The example command shown causes an
analyzer front panel interface to be presented on the display determined by the IP
address 163.181.22.121. Checking the example /etc/hosts file, it appears to be an
X–terminal known to the network by the name ginger. It is important that the X server
allow the analyzer to make connection to the server. The “xhost + hpla” command
can be used to add hpla to the list of machines that are allowed to make connection to
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the X server. To obtain the name of your terminal’s display, print the environment
variable DISPLAY as shown below.

echo $DISPLAY #Unix shell command
ginger:0.0 #response

It is important for the successful operation of MonTIP that the environment
variable DISPLAY be correctly initialized. Note that some HP workstations set the
variable to the value “local:0.0”, this does not create any difficulty for MonTIP.
UDI Installation

The udi_soc file (for Unix based systems) must contain an entry for
establishing, via UDI, the MonTIP to analyzer connection. The MonTIP option “–la
name” is provided for this purpose. The example below shows a udi_soc entry for a
session identified by the name “trace”. Note that the udi_soc file format was
described in detail in section 7.5.6. If a logic analyzer were being used alone, the
example udi_soc entry would be adequate. However, a NetROM is typically
combined with an analyzer. In this case the two entries shown below would be
combined to produce a single entry with a unique session identifier.

# udi_soc file entry to support logic analyzer1
trace AF_UNIX soc montip –la hpla
rom AF_UNIX soc montip –t netrom –netaddr 163.181.22.60 –netport 1234

When using the UDB source level debugger to control a logic analyzer, a
mktarget command must be placed in the udb.rc start–up command file. As
explained in section 7.7, a GIO process, controlled by UDB, uses the assigned
mktarget parameters to connect to a 29K target (in this case via MonTIP). An
example udb.rc entry is shown below.

# udb.rc, UDB startup command file
#driver args (GIO ID, GIO executable, exec. flags, udi_soc session ID)
#mktarget name id type driver (args....)
mktarget LA 1 29040 dr_gio 0 ios_udi –be trace

Note that normally the GIO and UDB processes determine the endian of the 29K
target via examining the processor’s CFG special register. When an analyzer is used
alone, there is no connection to the 29K processor and the CFG register can not be
accessed. This necessitates that the mktarget command specify the target endian.
The “–be” switch is used in the example to select big–endian operation. The “–le”
switch is available for selecting little–endian. The following section 7.9.3 describes
how user defined buttons can be used to issue mktarget commands.
Accessing the Analyzer File System

It is very convenient to be able to drive the logic analyzer remotely from, say, the
X–terminal on your desk. Note that a colour monitor is required to achieve full
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control of the analyzer. As described above, remote control of the analyzer is enabled
via the “xwin on” command. When remote control of the analyzer is no longer
required, the command “xwin off”, entered via the telnet connection to the analyzer,
discontinues the remote display. Connection to the analyzer command parser is
broken when the TELNET session is terminated.

Only one user can be in control of the analyzer at any time. This means the
analyzer can not be driven from the front panel when a remote window is active.
When MonTIP controls the analyzer, it requests a remote window be presented on the
MonTIP host computer (actually, the DISPLAY variable identifies the screen).
Consequently, it is not possible for another user to establish a second remote window
connection. However, it is possible to simultaneously have an FTP connection active
when remotely controlling the analyzer. The example command sequence below
demonstrates how this is achieved.

1% ftp hpla #Unix shell command
Connected to hpla.
220 HP16500B V01.00 FUSION FTP server (Version 3.3) ready.
Name (hpla:danm): data
230 User DATA logged in.
ftp> cd system/disk/hard/amd/danm
200 Remote Directory changed to ”/system/disk/hard/amd/danm”.
ftp>

When entering a login name, the identifier “data” was used in the above
example. This enables read access to files located on the analyzer disk system.
Entering the identifier “control” enables read–write access to the file system.
However, logging in as “control” is not permitted if another user is identified as
already controlling the analyzer. Files can be transferred from/to the analyzer using
the FTP commands get/put; remember you may have to first use the binary command
to enable transfer of binary data files.
Triggering the Analyzer for Trace Capture

The HP16500B logic analyzer is equipped with a very sophisticated triggering
capability. Hence, debuggers controlling the logic analyzer tend to rely on the
analyzer’s triggering logic. When using the PI–Am29040 preprocessor, the
POD_040 configuration file prepares the analyzer for triggering on access to the
memory location described by analyzer trigger term A. This may, or may not, be
adequate for your triggering requirements. All changes to trigger logic must be
entered using the logic analyzer front panel display (remotely if desired). If using the
POD_040 file, all that is necessary is to supply the trigger address in the ADDR field
of term A. Of course the address must be entered in hexadecimal format unless a
symbol file has been loaded into the analyzer.

When on–chip caches are used, instruction and data accesses may not always
appear on the processor bus. This complicates the task of triggering the analyzer. It is
also not possibly to simply use the ADDR field of term A when a  microcontroller is
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being used and hence the full 32–bit address value is not observable, even if an
off–chip memory access is performed. (Microcontrollers divide the address space
into regions, only the lower address bits for any particular region may appear on the
microcontroller address bus.) Dealing with these problems can require the user to be
creative when developing alternative triggering logic.

With processors which have on–chip breakpoint control registers, a SYNC
pulse can be generated when a specified data or instruction access occurs. The
analyzer trigger logic can be configured to trigger on the occurrence of the SYNC
pulse. Alternatively, for processors without breakpoint control registers, a simple
arrangement can be used to trigger the analyzer when any execution breakpoint is
taken: When a breakpoint is taken, the illegal opcode trap is taken (trap number zero).
The analyzer should be set to trigger on a read of the first entry in the vector table. The
address is specified by the contents of special register VAB (Vector Area Base).

For convenience, UDB provides a remote method of entering data into the logic
analyzer trigger setup. Using the “trigterm” command shown below, trigger patterns
can be specified for different labels and patterns.

trigterm <term> <label> {<pattern> | <address>}

Normally, one simply specifies a <pattern> for a label. The format of the pattern
is assumed to be hexadecimal unless a base is explicitly specified. However, in the
case where the <label> is ADDR, then an <address> should be provided instead; and
UDB will convert the address, which may be specified as a symbol, into a
hexadecimal string of eight characters.

To further simplify issuing “trigterm” commands, a Trig  button has been added
to the View, Var and Dasm frames. In the View frame, clicking on a line and then
clicking the Trig  button will set term A of the ADDR column to the address of the
source line the cursor is currently on.  Clicking on a variable and then shift–clicking
the Trig  button will set term A of the ADDR column to the address of the variable the
cursor is currently on.  This only works in the case where the variable is allocated to a
memory location and not held in an on–chip register.

In the Dasm frame, clicking on a line and then clicking the Trig  button will set
term A of the ADDR column to the address of the disassembly line the cursor is
currently on.

Searching Through Trace Data

The HP16500B logic analyzer provides, via the front panel display, a means of
searching for patterns in the captured trace data. However, without symbolic address
support, and given the fact that raw trace data is not limited to just the execution
stream, it is often more convenient to search for patterns in the processed trace data.
UDB provides support for trace searching with the “trsearchnext” and
“trsearchprev” commands. The command format is shown below:
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trsearchnext [<label> {<pattern> | <address>}]
trsearchprev [<label> {<pattern> | <address>}]

Normally, one specifies a search  <pattern> for a selected <label>.  However, in
the case where the <label> is ADDR, then an <address> should be provided instead.
In such case, UDB will convert the address, which may be specified as a symbol, into
a hexadecimal string of eight characters.

After a <label> and <pattern> have been specified, UDB remembers them to
allow for further searching without having to specify the <label> and <pattern>
again.  In particular, the Next and Prev keys in the trace frame have been overloaded,
such that Ctrl–Shift–Clicking them will issue these commands with no parameters.

UDB supports the binding of buttons to macro commands. This is a convenient
means of issuing “trsearchnext” commands.  The following udb.rc command
sequence assigns buttons to the macro table associated with the Trace frame. Note
that user programmed buttons should be restricted to the left hand side of the window.
The example command creates two buttons. The next button can be used initiate a
“trsearchnext” command. Because the command–string does not finish with a “\r”
character, the user can enter the <pattern> from the command line interface.

#  macro table button position   command
# –––––– –––– ––––– ––––––––––––––––– . . .
macro m=mtrace –f “next” {lb1} “{com}trsearchnext ADDR ”
macro m=mtrace –f “prev” {lb2} “{com}trsearchprev ADDR ”

7.9.3 Selecting Trace Signals

In section 7.8 under the headings MonTIP Commands and UDB Commands,
techniques for formatting the trace display were presented. Groups of processor sig-
nals, such as the address bus, are grouped together and assigned labels. The user can
always rely on the following four labels being available for display: ADDR, DATA,
LINE, TYPE. Different 29K family members, and different system configurations,
will provide a number of other useful labels, such as R/_W. Given the limited size of
the trace display, it is necessary to limit the number of trace labels.

Depending on the source level debugger selected, or if MonTIP is being used to
format the trace display, there may be synonyms for the main trace labels. For exam-
ple: ADDR is also known as SYM by UDB, and as SYMADDR by MonTIP. These
alternatives to ADDR, enable the traced address values to be presented symbolically,
even if the logic analyzer is configured to display them in, say, hexadecimal. An alter-
native implementation would have been to support a format parameter for control-
ling the displaying of selected labels. But, so far, this has not been the route taken by
source level debugger implementors.  Note that if the SYM label is selected, it is nec-
essary to  load a UDB symbol file. This file is produced by the mksym utility.

 The DASM column is a synonym for DATA presented in disassembly format.
The trace processing algorithms used with the Am29040 processor place
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XXXXXXXX in the DATA column when an instruction is supplied by the on–chip
cache. However, the Xs will be replaced with the actual instruction if an executable
program has been loaded. For replacement to be successful, the Am29040 target
processor must be executing with physical addressing or with a one–to–one virtual to
physical address translation scheme. This is because the Am29040 slave processor
produces physical address values. The virtual addresses inherent in the loaded
program must correspond to the physical addresses appearing on the processor
address bus. The Am29460 slave processor produces virtual addresses, but this does
not entirely solve the problems created by the use of address translation. I will say
more about this in section 7.9.5.

As explained in section 7.8, the trace listing frame is formatted  with the “trcol”
command. This is accomplished  by entering a “trcol” command sequence, such as
the following example, into the start–up udb.rc file. The “–w” parameter specifies the
maximum display width (in characters) for a label. The udb.rc file is accessed from
the current working directory or from your home directory.

trcol –d –w 8 ADDR #general trace labels
trcol –d –w 15 SYM #symbolic adress
trcol –d –w 8 DATA #data bus value
trcol –d –w 27 DASM #disassembled DATA label
trcol –d –w 6 TYPE #type of operation

trcol –d –w 6 STAT_ #additional Am29040 trace label

Displaying a large number of labels will require a wide trace frame. It is useful to
initially define a large View frame, which can later be switched to displaying trace.
When UDB is invoked, a fixed sized null frame is randomly positioned on the dis-
play. Using the following udb.rc command sequence, the null frame can be replaced
with a user specified window size positioned at the top left hand corner of the screen.
After creating the View frame, the null window is deleted.

#create X Y rows columns type udb.rc command 
wcreate 0 0 –g 24 90 view #create new View  frame
wdelete 0 #delete original null window

UDB supports the binding of buttons to macro commands. This is a convenient
means of issuing mktarget commands, rather than hard–wiring them into udb.rc.
This simplifies the task of selecting from a number of different mktarget options.
Given that the View frame is established during UDB start–up (as described above),
the following udb.rc commands assign buttons to the macro table associated with the
View frame. Note that user programmed buttons should be restricted to the left hand
side of the window. The example command sequence creates two buttons. The button
marked “LA” can be used to establish a connection to a logic analyzer. The “view –u”
command causes a source frame to be invoked. If the 29K program counter is
currently not in source but in disassembly, the disassembly view will be invoked.
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#  macro table button position   command
# –––––– –––– ––––– ––––––––––––––––– . . .
macro m=mview –f “iss” {lb1} “mktarget ISS 1 29040 dr_gio 0 ios_udi
                                     simulator; view –u\r”
macro m=mview –f “LA” {lb2} “mktarget LA 1 29040 dr_gio 0 ios_udi –be
                                     trace; view –u\r”

7.9.4 Corelis PI–Am29040 Preprocessor

A logic analyzer preprocessor simplifies the connection of the analyzer to the
target system. The principles behind its operation were discussed in section 7.8. This
section briefly deals with the operating details encountered with the Am29040 pre-
processor. To prepare the preprocessor based system, a number of steps must be take:

1. The PI–Am29040 Preprocessor hardware unit replaces the Am29040
processor in the target system. The preprocessor contains two Am29040
processors, one operating in master mode, the other in slave mode. Earlier
version of the preprocessor required that certain pins such as MEMCLK
(H–14) on the slave processor be removed. Later versions do not require pin
removal. There is a jumper option for removing  the slave MEMCLK signal if
it is configured as an output. If MEMCLK is configured as an input, the slave
and master MEMCLKs must be tied together. Because of the high speed
operation of Am29040 based systems, the use of PGA socket extenders
should be limited as they add to signal propagation delays. It is often
desirable to add extenders to the preprocessor connection pins to protect them
from damage. If a pin gets broken, it is less expensive to replace a socket than
to replace the preprocessor. Zero ohm resistors have been incorporated in
series with a number of signal pins, such as MEMCLK and INCLK.
Impedance matching, and hence better signal conditioning, can be achieved
by replacing these resistors with an appropriate value resistor.

2. If HP16550A logic analyzer cards are being used with the HP16500B system,
then two cards should be wired together in accordance with the HP
Installation Manual. Two analyzer cards provide a total of 12 trace pods.
Assuming the cards are located in slots D and E, pod E1 (slot E – master)
should be connected to position J1 on the preprocessor. Pod E2 to position J2,
and so on. Pods D1–D3  should be connected to J7–J9 (see Table 7-5). The
analyzer configuration file POD_040._D will format the analyzer cards for
this configuration. (The ._D file name postfix, is because the master analyzer
card is located in card cage slot D.) The POD_040 configuration file is
available from AMD or Corelis. It is important to obtain a copy of the
configuration file, as it is much too time consuming to reassign the
pod–to–label mapping by hand.
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Table 7-5. PI–Am29040 Logic Analyzer Pod Assignment

Analyzer podPreprocessor connector Analyzer pod

expander 1J1 master 1

HP16550A HP16555A

expander 2J2 master 2
expander 3J3 master 3
expander 4J4 master 4
master 1J5 master 5
master 2J6 master 6

J7 expander 1
master 3J8 expander 2

PI–Am29040

master 4J9 expander 3

pods for
capturing
clock signals

3. If the more expensive HP16555A logic analyzer cards are selected, two cards
are still required. Once again they should be wired together in accordance
with the HP Installation Manual. Note that even if a pair of cards are
purchased together, they may not be interconnected in accordance with HP’s
manual recommendations. Two HP16555A analyzer cards provide a total of
6 trace pods. Assuming the cards are located in slots A and B, pod B1 (slot B –
expander) should be connected to position J1 on the preprocessor. Pod B2 to
position J2, and so on. Pods A1–A2  should be connected to J5–J6, and pods
A3–A4 to connections J8–J9 (skipping J7), see Table 7-5. The analyzer
configuration file POD_040._A will format the analyzer cards for this
configuration. Note that the configuration file required for HP16555A cards,
although the same name, is not the same file required to configure HP16550A
cards. The reason B–pods are allocated before the A–pods is because the card
in the B slot is wired as an expander card and all clock signals must be
acquired by the master card in slot A. The configuration file specifies that
trace signals are captured on MEMCLK signal edges, and MEMCLK is
provided on connector J5.

4. If the 29K target system is operating with 1x clocking, then the master clock
should be configured to acquire trace data on the rising edge of MEMCLK. If
2x Scalable Clocking is being used, the master clock should acquire trace
data on both the rising and falling edge of MEMCLK. The appropriate
selection can be made from the analyzer control panel (remotely if desired).
With newer versions of the preprocessor (those that provide access to the
processor’s DIV2 pin), the MonTIP software warns the user that the wrong
edge–selection has been made.

5. There is no need to install the Corelis preprocessor support software supplied
with the PI–AM29040. However, if it is installed then is will be possible to
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present disassembled instructions on the analyzer display. Using the Corelis
software, trace label DATA can be displayed in Invasm (inverse assembler)
format without resulting in any conflicts with MonTIP’s access to DATA.
There is no advantage to using the disassemby software, as the analyzer
display shows instructions which are fetched but not necessarily executed.

6. There are a number of limitations imposed by the Am29040 Traceable Cache
architecture. These where previously discussed in section 7.8 under the
heading Processing Trace Information. Very briefly, the complete instruction
flow is reported: Labels, DATA, ADDR, R/_W and I/_D have their values
manipulated to report the instruction which was executed during the traced
cycle.

7. The trace data processing algorithms built into MonTIP need to know the
endian–ness of the 29K target processor. When connection to the analyzer is
established, a window displaying the analyzer control panel will appear.
MonTIP prints a message in this window indicating the endian–ness of the
target processor. If the endian–ness is unknown, MonTIP will continue
operating; but sub word–sized  data accesses will only be partially processed.
To fully process data accesses, the “Analyzer 1:Name” field provided under
the  logic analyzer “Configuration” window should be set to AM29040B or
AM29040L, respectively for big or little endian operation.

8. The MonTIP algorithms are currently restricted to operating with systems
which fetch instructions from 32–bit memory. This does not necessitate that
32–bit ROM emulation be used with NetROM. If application programs are
loaded and execute from 32–bit memory, they can be successfully traced.
However, if interrupt handlers or other support code is run from 8–bit
memory, tracing will not be possible.

9. can’t reduce capture rules

7.9.5 Corelis PI–Am29460 Preprocessor

A logic analyzer preprocessor simplifies the connection of the analyzer to the
target system. The principles behind its operation were discussed in section 7.8. This
section briefly deals with the operating details encountered with the Am29460
preprocessor. For those simply interesting in getting their preprocessor working, and
not at this stage needing to understand the background behind its operation, proceed
to the section with the subheading PI–Am29460 Setup and Limitation.

The Traceable Cache information provided by the Am29040 slave processor is
synchronous with program execution. If this approach were taken with the Am29460
microcontroller, the superscalar execution capability would necessitate very high
speed trace reporting. To reduce the slave processor’s information bandwidth
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requirements, the Am29460 does not synchronize trace reporting with program
execution. The Am29460 trace information is compressed, relative to the Am29040
trace data, and held in an output queue before being transferred off–chip.
PI–Am29460 Preprocessor Operation

The main processor operation is driven by the PCI  INCLK signal pin. However,
for data capturing purposes, the logic analyzer master clock is the slave trace clock
(TRACECLK). It runs at half the internal clock speed.  Note that the internal clock
(not available on a pin) runs at 2x, 3x or 4x the INCLK speed. With 2x clocking and
single–cycle MCU transfer rates, the MCU access speed would equal the
TRACECLK speed. With 2x, or higher scaling ratios, the PCI and MCU data transfer
rates can not exceed the frequency of TRACECLK. This enables TRACECLK to be
used as the master clock by the logic analyzer.

The analyzer captures signal values when the master clock is active. There also
has to be at least one of the following conditions: valid trace information, a valid PCI
access, a valid MCU access. PCI accesses are first captured by the analyzer slave
clock. The PCI   INCLK is used to capture logic analyzer slave information. Analyzer
slave signals are transferred into the logic analyzer trace buffer on the next master
clock signal. If more than one slave value is captured before the next master clock,
then only the most recent slave values are stored in the analyzer trace buffer. For this
reason it is important that the master clock operate at a higher frequency than the
slave clock.

The HP16500B analyzer only supports one slave clock. For this reason, MCU
access are latched and held until the next master clock edge; during which any PCI
access captured by the slave clock are recorded by the analyzer, see Figure 7-18. It is
impossible for two MCU accesses to occur before the next TRACECLK, even if
another agent uses the PCI to access an MCU. Anyway, the trace processing
algorithms are only interested in MCU accesses initiated by the processor, not the
PCI. The preprocessor and its supporting software are not intended to form a general
purpose PCI probe.

Logic analyzer trace buffer

MCU latched signals PCI signals

Master clock
TRACECLK
(delayed)

Slave clock
INCLK (and other

conditions)
_STROBE

CAS, RAS

Figure 7-18. PI–Am29460 Preprocessor Trace Capture Scheme
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The HP logic analyzer specification states that there must be 4nS separating the
active edge of the slave clock and the active edge of the master clock. Master clock to
slave clock separation is specified as 0nS. The delay is required to ensure that the
slave information is valid before it is entered into the logic analyzer trace buffer at the
active master clock signal. Signals captured directly by the master clock have a 4nS
set–up time and a 0nS hold time. Consequently, the active edge of the master clock
must not be allowed to arrive within 4nS of an active slave clock’s arrival. The
preprocessor achieves this by delaying the TRACECLK signal used to generate the
analyzer master clock. A example timing sequence is presented in Figure 7-19.

INCLK

MCU access

PCI access analyzer latched

preprocessor latched

Internal CLK 2x

TRACECLK
LA master

sample clock

MCU CLK

example

Figure 7-19. PI–Am29460 Preprocessor Trace Capture Timing

There is an additional reason for delaying the TRACECLK; the slave processor
output signals, including TRACECLK, are actively driven at the same time. Conse-
quently, slave signals which are to be sampled using the TRACECLK may be chang-
ing at the same time as TRACECLK.

A benefit is obtained as a result of using MCU latching and a PCI slave clocking.
That benefit is the better utilization of analyzer trace depth. When a trace buffer entry
is recorded during an active TRACECLK edge, trace information as well as PCI and
MCU information is captured in a single trace line. This results in more efficient use
of the trace buffer than if each of these three asynchronous events where separately
captured by the logic analyzer.

RLE Data Pairs

As with the Am29040 processor, the second Am29460 slave processor is
entirely responsible for providing the data required to reconstruct the instruction
execution stream. The second processor, the slave, provides three types of trace data:
information about MCU accesses, information about PCI accesses, and instruction
execution flow. Unlike the Am29040, the slave does not provide any information
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about data cache hit activity. Data about Instruction flow is provided in the form of
address–length pairs, known as Run Length Encoding (RLE).

The Am29040 slave processors does not need to provide access type
information about data accesses, as they can be fully observed by monitoring the
main processors data busses. However, many of the bus signals available with a
2–bus processors are not available with a 29K microcontroller. For example, the I/_D
pin is not available. This means when a memory read access is performed, it is not
possible to determine if data or an instruction is being fetched. With the Am29460
processor, the slave provides this type of information. This explains why the slave
provides trace data for both MCU and PCI accesses performed by the master
processor.

Before describing the RLE technique in more detail, we must first remind
ourselves of the speculative execution nature of the Am29460 processor. As
explained in section 1.7, instructions are fetched and speculatively executed.
However, instruction are not truly consider to have executed until they have been
retired. This introduce the notion of a Retire Program Counter (R–PC). At any time,
instructions who’s addresses are ahead of the R–PC may be held in  the reorder buffer
waiting for potential retirement. Special register PC1 contains the address of the
instruction currently in execution. Because the processor supports precise interrupts,
the PC1 register can never get ahead of the R–PC address. When a trap or interrupt is
taken, the R–PC value will appear in register PC1 or PC0 (decode address)
depending on the stage at which the processor pipeline is interrupted.

Each RLE (TRACEADDR, TRACERUN) data pair specifies that
TRACERUN instructions, starting from the current R–PC, have been retired, and
subsequent retirement is to continue from an R–PC value of TRACEADDR. A
TRACERUN value of zero is permitted; it is used to redirect trace flow without
recording any instruction execution (retirement). In such case a TRACEADDR
value change accompanies the TRACERUN zero value. A value of zero is also used
to indicate that no instructions are available for retiring. In such case the
TRACEADDR value does not change. An example RLE trace sequence is shown on
Figure 7-20.

An RLE data pair can be output by the slave processor during the rising edge of
each TRACECLK. The RLE data is not provided directly by the reorder buffer, but
by a buffer queue which receives its input from the reorder buffer, see Figure 7-21.
This is necessary as very short run lengths produce RLE data at a rate faster than the
TRACECLK can report them. Using a queue reduces the need to stop instruction
retirement until the RLE data has been presented on the slave output pins. However,
the queue is limited in size and consequently, under rare circumstances, it can
become full. This results in the master processor postponing instruction retirement
until a queue entry is available. Without this throttling back approach, uninterrupted
reporting of instruction flow could not be guaranteed.
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Figure 7-20. Slave Data Supporting Am29460 Traceable Cache

sequential
instruction
retirement

TRACEADDR

TRACERUN

TRACEADDR

TRACEADDR

branch instruction
delay–slot

t arget instructionTRACEADDR

address–length pair

program flow

consecutive group of
retired instructions of
length TRACERUN

Figure 7-21. RLE Output Queue From Reorder Buffer

TRACERUN

 . . .
RLE entry
RLE entry
RLE entry

TRACEADDR

Reorder buffer retirement

Slave processor output pins
clocked at TRACECLK speed

Run–Length Encoding
output queue

Given that the TRACECLK runs at half the internal speed of the processor, as
many as 8 instructions could be retired at each TRACECLK interval. However, as a
means of reducing RLE queue entries, an entry is not placed in the queue if the current
sequence of instructions being retired does not contain a branch instruction. In such
case, the TRACRUN is allowed to accumulate to a maximum of 31, the largest value
which can be reported on the 5–pins allocated to TRACERUN. Research (see section
1.7.4, [Johnson 1991]) has shown that instruction sequences typically contain five or
six instructions before branching. This would indicate that TRACERUN values near
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31 will not be a frequent occurrence, and values in the range five or six are to be
expected.
PI–Am29460 Setup and Limitations

As with the PI–Am29040 preprocessor, a number of restrictions and
preparation steps apply when using the PI–Am29460 preprocessor:
1. The trace processing algorithm places the value X_SLAVE_ in the DATA

column for all instruction accesses. It is necessary to have access to the COFF
file(s) for the loaded program to ensure the X_SLAVE_ value is replaced with
the actual 29K instruction executed. Debuggers such as UDB can retain
multiple COFF file images at the same time. This enables simultaneous
tracing of application space and operating system space (say, interrupt
handlers).

2. Considering MCU performed memory accesses, only data accesses are
reported. Data transfer is shown at the time it appears on the system busses;
which, for data stores, may be several cycles after the corresponding STORE
instruction.

Two bus 29K processors have OPT pins and lower (A1–A0) address pins
which indicate the size and alignment of the object currently being accessed.
The Am29460 microcontroller does not have these pins. Consequently it is
not possible to determine the alignment and size for reads of sub word–sized
objects. Fortunately, the microcontroller has four byte enable pins which are
used for data writes. This enables the alignment and size of objects which are
written to be determined, and improves the trace reporting for data writes.

Only MCU accesses performed on behalf of the Am29460 processor are
reported. Accesses initiated by another processor via the PCI interface will
not appear in the trace.

3. Considering accesses to the PCI bus, as with MCU accesses, only data
transfers are reported. By monitoring the PCI command provided during the
address–phase of a PCI access, it is possible to determine the object size for
sub word–sized objects.

4. The PI–Am29460 preprocessor does not reconstruct 32–bit MCU addresses.
This can complicate logic analyzer triggering. One solution is to use the
on–chip breakpoint control registers to generate a _SYNC pulse which is
then used to trigger the analyzer. The UDB debugger has a convenient user
interface for specifying breakpoint control register operation. Unfortunately,
however, breakpoint control registers are a limited resource, and they are also
used to control program execution.

5. Unlike a scalar processor, processed trace lines with the Am29460, indicate
multiple instruction execution per trace line. The number of instructions
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reported executed by a trace line has less to do with the instruction retirement
rate and more to do with the run–length between branch instructions. When
an MCU or PCI access occurs at the same time as RLE reporting, the
processed trace indicates all activity on the same processed trace line.

6. The trace data processing algorithms built into MonTIP need to know the
endian–ness of the 29K target processor. When connection to the analyzer is
established, a window displaying the analyzer control panel will appear.
MonTIP prints a message in this window indicating the endian–ness of the
target processor. If the endian–ness is unknown, MonTIP will continue
operating; but sub word–sized  data accesses will only be partially processed.
To fully process data accesses the “Analyzer 1:Name” field provided under
the  logic analyzer “Configuration” window should be set to AM29460B or
AM29460L, respectively for big or little endian operation.

7. If HP16550A logic analyzer cards are being used with the HP16500B system,
then two cards should be wired together in accordance with the HP
Installation Manual. Two analyzer cards provide a total of 12 trace pods. If
the more expensive HP16555A logic analyzer cards are selected, three cards
are required. Once again they should be wired together in accordance with the
HP Installation Manual. Note that even if cards are purchased together, they
may not be interconnected in accordance with HP’s manual
recommendations.

Table 7-6 shows the assignment of analyzer pods to preprocessor connectors.
The analyzer configuration file POD_460._A will format the analyzer cards
for this configuration. (The ._A file name postfix, is because the master
analyzer card is located in card cage slot A.) The POD_460 configuration file
is available from AMD or Corelis. It is important to obtain a copy of the
configuration file, as it is much too time consuming to reassign the
pod–to–label mapping by hand.

Note that the configuration file required for HP16555A cards, although the
same name, is not the same file required to configure HP16550A cards.

8. A logic analyzer, controlled by UDB, may be attached to a 29K target system
which is not under UDB control. This is the case where a logic analyzer is
used alone, without the utilization of, say, a NetROM. It is also the case when
previously captured trace data is reexamined. To enable 32–bit address
reconstruction, the algorithms built into MonTIP need to know the
processor’s bank profile register (BPR) settings. MonTIP normally
accomplishes this by accessing the DebugCore each time trace data is
fetched. When no DebugCore is present, MonTIP is provided the BPR values
from the udb.rc initialization file.
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Table 7-6. PI–Am29460 Logic Analyzer Pod Assignment

Analyzer podPreprocessor connector Analyzer pod

master 1J1 master 1

HP16550A HP16555A

master 2J2 master 2
master 3J3 master 3
master 4J4 master 4

first expander 1J5 master 5
first expander 2J6 master 6
first  expander 3J7 expander 1
first expander 4J8 expander 2

PI–Am29460

second expander 1J9 expander 3
second expander 2J10 expander 4
second expander 3J11 expander 5
second expander 4J12 expander 6

pods for
capturing
clock signals

The BPR registers are mapped into the processors I/O address space. The
UDB “outl <address> <value>” command can be used to write a 32–bit value
to an I/O location. Note that the command can also be used to write to a
memory location, but this first requires an “<ESC> ioctl space d” command
be first used to switch output to memory space (“d”) rather than the default
I/O space (“i”). After connection to the analyzer has been established, “outl”
commands can be used to set BPR values for use by MonTIP. This is best done
by binding a user defined button to the Trace frame. When MonTIP has no
connection to a 29K target, it does not try and set the real BPR registers, but
retains the values for future use. The following udb.rc command sequence
defines a BPR button for an example register initialization. Before analyzer
data is fetched, the BPR button should first be clicked. This enables the
algorithms to correctly build address values.

#ioctl space i
macro m=mtrace –f –”BPR” {lb3} ”{.com}outl ffffff80 00001003H;
outl ffffffa0 800c6005H; outl ffffffb0 900c6105H; outl ffffffc0
a00c6205H; outl ffffffd0 b00c6305H;\r”

9. The TRACEADDR addresses provided by the slave processor are virtual ––
assuming address translation is in use. However, the address values observed
for MCU and PCI accesses are always physical. This creates difficulty when
looking–up the MCU and PCI addresses in the loaded COFF file. A program
must run with physical addressing, or with one–to–one virtual to physical
address translation,  if MCU and PCI address symbols are to be correctly
reported.
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10. The PI–Am29460 preprocessor contains additional analyzer connections
(J13–J16). These are for use by hardware development engineers. They are
not required for program tracing. They are provided to enable capturing of
unlatched processor signals. A number of the connectors used for software
tracing latch their signal values, and this disrupts the analyzers visibility of
timing relationship. A hardware engineer can use the alternative connectors
to view unlatched versions of the main processor signal pins.
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Chapter 8

Selecting a Processor

This chapter helps with the sometimes difficult task of processor selection.
Processors are considered in terms of their performance and software programming
requirements. There is little attempt to review, say, development tools or bus timing
for alternative processors. Consequently the chapter is of most interest to software
engineers and computer scientists. In undertaking comparative processor evaluation,
the often confusing task of performance benchmarking is studied for dissimilar
processors. This chapter will enable you to better understand the methodologies used
by manufacturers trying to win the benchmark race, and presents an approach which
will enable you to more accurately determine a processor’s performance for your
own application.

Processor execution speeds are restricted to integer performance evaluation. No
attention is given to floating–point performance. This should not be disappointing, as
the selection of a processor is greatly limited if floating–point performance is critical.
Most manufacturers have processors (such as the Am29050) which are specifically
intended for floating–point use. Additionally, the large majority of systems are not
concerned with floating–point operations.

The well known Stanford benchmark developed at Stanford University is used
for performance comparisons. It is easy to criticize the choice of a synthetic
benchmark. However, it is difficult to come up with with a more acceptable
alternative which everyone will agree upon. At least the Stanford benchmark is more
revealing than the over used (and often unreliable) Dhrystone benchmark. Separate
results for six of the integer routines taken from the integer–part of the Stanford code
will be shown. The six were chosen because of their diversity in function and
similarity in execution times. This similarity made for clearer scaling and hence
easier comparison of the results.
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 The Stanford benchmark is relatively small and can have high instruction cache
hit ratios. It also does not exhibit the large data movement activities typical of
communications applications. For this reason a LAPD benchmark, which is larger
and more representative of communication applications is also used. The LAPD
acronym stands for Link Access Protocol–D. It is an ISDN protocol used by the
communications industry when sending packet information between a caller and
callee. The benchmark is intended to measure a processor’s ability to crunch a
typical layered protocol stack.  The LAPD code used is based on a prior AMD,
“AmLink”, software product. The benchmark is in three parts: Send an information
package and receive an un–numbered acknowledge; Receive an information
package and respond with an un–numbered acknowledge; And send an information
package and receive an information package. Results are presented in terms of
geometric mean  values for packet switching speeds for the three parts (the geometric
mean is found by multiplying the three results and taking the cube–root of the
product).

The performance results presented can act as a guideline for your own
application. However, the only certain way to know a processor’s performance for
any particular processor/memory configuration is to benchmark your own code on
the system or an Architectural Simulator.

8.1 THE 29K FAMILY

Chapter 1 described the features of the 29K family members in detail. The
family is divided into three main groupings: three–bus microprocessors, two–bus
microprocessors, and microcontrollers. This section will concentrate on the
sometimes difficult task of selecting a particular family member. When designing a
new microprocessor system, price and performance expectations restrict the choice
of available processors. It is not acceptable to select a high–end processor with a fast
memory system when the budget requires a low system cost. It is equally important to
be aware that a low–end processor with inexpensive memory system may not have
the required performance. There can also be other design restrictions, such as low
power consumption or short development time, that further influence the processor
selection. The problem of selecting a processor is dominated by the difficulty of
evaluating relative performance of different processor and memory combinations.
To help resolve this problem, I have simulated a wide range of potential systems and
determined their relative performance. The results are presented in the following
sections.

The review is divided into two sections: first, microcontrollers; and second, all
types of microprocessors. The division is natural. One of the first decisions to be
made is whether to use a microcontroller or a microprocessor.
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They each have advantages and disadvantages, summarized below:
Performance The 29K microcontrollers make available a wide range of system

performance. However, they do not enable construction of the
fastest systems. The 29K 2–bus microprocessors have the
advantage of higher processor clock speeds and larger on–chip
cache. They can also operate with faster memory systems,
although the construction of these fast memory systems is not as
simple as attaching a memory system to a microcontroller.

Design Time The hardware design time is less with a microcontroller. This is
mainly because the microcontroller contains memory interface
controllers on–chip. There is no need to build any DRAM refresh
circuitry or memory interface logic. A number of frequently
required peripheral devices, such as UARTs and Input/Output
(I/O) ports are also incorporated into the microcontrollers,
eliminating the need to select, integrate, and debug these
peripherals when they are required by the system is an advantage.

System Cost Microcontroller systems generally cost less to design and
construct; they offer good value. The higher price of 2–bus
microprocessors is justifiable if higher system performance is
required. Additionally, the higher cost of the associated high
performance memory system makes the higher microprocessor
cost more acceptable.

Future Expansion  Frequently systems are required to be built at different
price/performance combination. Both types of processor have
something to offer in this area. The 2–bus processors are all pin
and bus compatible. It is possible to initially design with an
Am39035 processor using a 2/1 DRAM memory at 16 MHz. The
processor can be directly replaced with an Am29030 or Am29040,
each offering additional performance. Additionally, the faster
processors could be used at 33 MHz using Scalable Clocking to
achieve the highest performance system. Each processor has a
different cost. But, without redesigning the system, a simple
performance upgrade (or alternatively down grade) path is
available.

The upgrade path is not as simple with microcontrollers. However,
it is possible (and frequently done) to build a system with a
multiple microcontroller foot print. The Am29240 device is
bigger than the Am29200, which in turn is bigger than the
Am29205. The difference in the physical size of the devices (the
foot prints) enables a board layout with a concentric pad site for all
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three microcontrollers. Hence, the same board can be utilized with
different processors. However, because of the different access
timing of DRAMs used by microcontrollers, it would be necessary
to also upgrade the memory devices. This does not generally
present much of a problem. As a single board layout can easily
accommodate different memory device speeds.

Peripherals Microcontrollers have the advantage of on–chip peripherals. As
well as simplifying the design process, they enable a smaller board
layout area and reduced system power consumption. The close
coupling of the on–chip peripherals to the processor, enables fast
communication between the two, even at high clock speeds. There
is also no extra cost for the peripherals.

Memory Choice When DRAM is used, microprocessors enable a wider range of
memory systems to be constructed. The Am2920x
microcontrollers only support 3/2 DRAM access (3–cycle first
access, thereafter 2–cycle burst). The higher performance
Am2924x microcontrollers only support 2/1 DRAM access.
Burst–mode can be disabled resulting in slower 3/3 and 2/2
memory access respectively, but there is little else that can be
modified. However, for many systems, the restrictions inherent in
the built–in microcontroller DRAM interface will present no
problem.

Board Size Microcontrollers are much more likely to enable a smaller board
layout area. They have less need for peripheral support circuitry,
particularly because of their built–in memory interfaces.

Power Consumption  The Am2924x microcontrollers can operate at 3.3 volts and
support power saving operating modes. Additionally,
microcontroller based systems have less need for power
consuming peripherals. This gives the microcontrollers the
advantage when constructing a low power system. However, the
Am2920x low cost microcontrollers do not have the power saving
features. The only microprocessor particularly suited to low
power systems is the Am29040. Because of its higher cost and
higher clock rate, its use is restricted higher performance systems.

Tool Selection User mode code is compatible across the entire 29K family. This
means, for instance, a C compiler can produce code for any of the
processors. However, there are optimizations, such as the use of
integer multiply with the Am29240 and Am29040 processors,
which can improve a particular processor’s performance. Tool
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selection, with the exception of certain debuggers, is likely to be
equally available, priced, and effective across the 29K family.

Multiprocessor The bus snooping capability of the Am29040 makes this
microprocessor the clear choice for a complex multiprocessor
design. For less complex systems, where a 29K may be used as a
coprocessor for a peripheral task, the microcontrollers have an
on–chip parallel port which can be used to communicate with the
main processor. When a processor is used in conjunction with an
off–chip DMA controller, or other agent accessing shared
memory, it is important that a data cache (if used) support a
write–through or copy–back (with snooping) policy. However, a
write–through data cache still has problems with data consistency
when another agent wishes to write shared memory (see section
5.14). The techniques supported by the 29K members are superior,
in terms of data consistency, to simply using on–chip SRAM.

Debug Support Processors are equally supported with software simulators and
low cost debug tools such as ROM emulators. The effectiveness of
low cost software debug tools, such as ROM emulators and debug
monitors, is enhanced with on–chip debug features such as
Monitor node and breakpoint control registers. It is mainly the
higher performance processors which have these on–chip debug
features. The most popular processors are supported with In
Circuit Emulators (ICE) supplied by AMD partners. There are
also hardware and software personality modules which enable
logic analyzers to be used across the family for hardware and
low–level software debugging.

The simulation results presented in the following sections were obtained using
the Architectural Simulator. This simulator accurately models processor operation,
and can be used to evaluate any potential 29K system. Use of the simulator was
described in detail in sections 1.14. An event file is required to describe the system’s
characteristics. For example, the file below, 200_3232_2232.evt, was used to
describe an Am29200 microcontroller which had a 32–bit ROM and DRAM
memory system (the 3232 part of the file name), with 2/2 ROM access and 3/2
DRAM access (the 2232 part of the file name).

;Architectural Simulator event file, 200_3232_2232.evt
romread 2 ;ROM space, 2/2 access
romwrite 2
romburst false ;burst off
rombread 2
romwidth 32 ;32–bit ROM–space

ramread 3 DRAM space, 3/2 access
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ramwrite 3
rampage true ;pagemode on
rampread 2
rampwrite 2
ramwidth 32 ;32–bit DRAM space

 By building new event files, it is possible to re–run simulations and evaluate the
effect on the system’s performance. The simulator was run using the command
below:

sim29 –29200 –e 200_3232_2232.evt a.out

 The program being simulated, shown as a.out above, was the LAPD
benchmark. I chose to use LAPD rather than Stanford because of the high instruction
cache hit ratio of the Stanford benchmark –– above 90% with even very small caches.
I believe modeling the performance of LAPD is more likely to reflect the actual
performance most users will experience with their own application code. However,
as always, I urge you to use your own code when benchmarking various processors.
The LAPD benchmark is good at testing data movement and bit field (packet header)
operations, but this may not be your requirement. Additionally, the Metaware
compiler was used with a high level of optimization (–07) when compiling the
benchmark. This produces the best performance but may require additional memory
to hold the expanded code which results from such optimizations as loop unrolling.

8.1.1 Selecting a Microcontroller

Microcontrollers are studied and grouped in this section according to their
memory system speed. Initially, systems based on 16 MHz memory are analyzed.
The performance of both 16– and 32–bit wide memories is presented. However, no
8–bit systems are included. Very small systems based on 8–bit memories and using
the Am2920x microcontrollers are evaluated in a separate section (section 8.1.2,
Moving up to an Am2920x Microcontroller). Memory systems operating at 12.5
MHz are also dealt with in the section dealing with very small systems.

16 MHz Memory Systems
Setting 12.5 MHz systems aside, 16 MHz is the entry level system speed. This

can be achieved using a 16 MHz Am29200, Am29205 or Am29245 processor, or an
Am29240 using Scalable Clocking. When Scalable Clocking technology is used, a
33 MHz Processor would be combined with a 16 MHz memory system. Both
instruction and data accesses are satisfied by the slower 16 MHz memory.  The
simulation results for various systems running the LAPD benchmark are shown in
Figure 8-1. Memory access times for the evaluated systems are shown in the
notation: (initial/subsequent), for example 2/1.

Programmable Data width was used to model 16–bit and 32–bit memories. As
expected and supported by the results, the 16–bit memory systems offer less



424 Evaluating and Programming the 29K RISC Family

Figure 8-1. 29K Microcontrollers Running the LAPD Benchmark
With 16 MHz Memory Systems
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performance. Not all of the modeled systems are likely candidates for construction.
They are shown merely to report their relative performance. Some of the most
interesting systems are highlighted. For example, the second from the top entry
shows an Am29205 system with 16–bit 2/2 ROM and 3/2 DRAM. This is an entry
level system. The first entry shows an Am29205 operating from 16–bit DRAM
alone. The notation “*/*” in the ROM/SRAM column indicates that no ROM
memory was used. Such a system would require initialization of the DRAM memory.
This could be achieved with an 8–bit ROM which transferred its contents to DRAM
before application code execution commenced. Note, it is not possible to build a
DRAM–only system where a dual–ported DRAM is initialized by another processor.
This is because after reset, program execution commences from ROM region 0. This
does mean an SRAM–only system could be constructed; assuming that the SRAM is
located in ROM region 0, and is somehow initialized before processor reset.

The second entry, the 2/2–3/2 system, was linked such that instructions were
fetched from the 2/2 ROM space; all data was accessed from the 3/2 DRAM. The
combined ROM–DRAM system is faster than the 3/2 DRAM–only system. The
DRAM–only system has 81% of the faster system’s performance. This is due to
instruction accesses being directed to the faster 2/2 memory and the frequent
occurrence of DRAM precharge cycles. The Am29200 DRAM is frequently referred
to as 3/2, this assumes the 1–cycle of RAS–precharge is hidden. When DRAM–only
systems are used, the precharge is not likely to be hidden, and the access is truly 4/2
rather than 3/2. This is explained in section 1.14.1 under the Am29200 and Am29205
subheading. Given that even inexpensive EPROM devices can be 1.5 to 2–times the
cost of DRAM (per byte), it is less expensive to use a single 8–bit EPROM to
initialize the DRAM, and then execute the program from DRAM. However, there is a
loss of performance with this technique.

The sixth entry shows an Am29205 system with 1/1 ROM and 3/2 DRAM. The
system has substantially increased performance over the 2/2 ROM system (66%
faster). The notation 1/1 is used here to indicate instruction read access times only.
The microcontroller family requires one wait state when writing to ROM space. This
results in a minimum write access time of 2–cycles for ROM space. Although this is
important to note, it has no impact here as the system performs all data writes to
DRAM. However, the system is unbuildable due to the unavailability of ROM
devices which can deal with the very fast access times.

The access times for ROM space are determined by three parameters. First, the
period of the memory system clock (CP) –– all memory accesses are synchronized to
the system clock. Second, the delay before synchronous outputs become valid (OV).
Third, the input setup time (IS) for synchronous input signals. When performing
single–cycle memory access, the access time is determined from the ROMOE signal
becoming valid after the falling edge of MEMCLCK (OVF). When wait states (WS)
are used, the access time is determined from the address outputs becoming valid after
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Memory Bus Clock Period Output Valid Input Setup     Memory Access Times (ns)
Speed (MHz)    (CP ns) (OVR, OVF ns)   (IS ns) 0–Wait 1–Wait 2–Wait

12.5 80 15, 15 12 13 133 213
16 62.5 11, 10 10 11.25 105 167.5
20 50 11, 10 10   5  79 129

Table 8-1. Memory Access Times for Am2920x Microcontroller ROM Space

the rising edge of MEMCLK (OVR). The equations below can be used to calculate
the required minimum memory access times.

Memory Access Time =(Clock Period)/2 –(Output Valid) –(Input Setup)
=(CP/2) – OV F – IS                ,WS=0

Memory Access Time =(Period)*(1+Wait States)–(Output Valid)–(Input Setup)
=(CP * (1 + WS)) – OV R – IS      ,WS > 0

Shown  on Table 8-1 are the required memory access times for Am2920x ROM
space memory. The 1/1 access times are given under the  zero wait state column. At
16 MHz, an 11.25 ns access time must be supported. ROM devices at this speed are
not available. However, the access times for 2/2 ROM (1–wait) are reasonable, and
can be achieved with readily available 90 ns ROM devices.

It is not until a 20 MHz memory system is required that particularly fast ROM
need be used. At this stage an interleaved ROM system could be built or faster ROM
purchased for a higher cost. Alternatively, FLASH memory could be used. FLASH is
generally available with faster access times than EPROM. Table 8-2 lists a number of
current AMD memory devices and their access times. Faster and larger devices are
always being developed by AMD and other manufactures. It is likely that before long
new memory devices will become available and enable faster systems to be
constructed at lower cost.

The ninth entry shows a 32–bit Am29200 based system using 2/2 ROM and 3/2
DRAM. This may be a popular system for construction. The 32–bit DRAM–only
system has only 71% of the combined ROM–DRAM system. Thus, the addition of
32–bit wide ROM will be justifiable for those systems requiring extra performance.

Faster DRAM–based systems can be constructed using the 2/1 DRAM
controller incorporated into the more expensive Am2924x microcontrollers. The
Am29245 is the least expensive, and it is shown with a 32–bit DRAM–only system
(*/* 2/1) in entry thirteen of the table. The previous Am29200 system based on
ROM–DRAM, has only 71% of the performance of the DRAM–only Am29245
system. Interestingly, the Am29240 system using 16–bit DRAM and Scalable
Clocking is shown to be faster than the Am29245 using 32–bit DRAM. This is due to
the higher internal clock rate and data cache of the Am29240.
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AMD Device Speeds (ns) Capacity Memory Type

Am27C010 90, 120, 150 128k x 8 EPROM
Am27C020 80, 120, 150 256k x 8 EPROM
Am27C040 90, 120, 150 512k x 8 EPROM
Am27C080 90, 120, 150 1M x 8 EPROM

Am28F010 90, 120, 150 128k x 8 FLASH
Am28F020 90, 120, 150 256k x 8 FLASH
Am29F010 45, 55, 70 128k x 8 FLASH
Am29F040 70, 90, 120 512k x 8 FLASH

Table 8-2. ROM and FLASH Memory Device Access Times

The fastest DRAM–only system, third from the bottom, is an Am29240 using
Scalable Clocking and 32–bit DRAM. This system is 130% faster than the examined
Am29200 using ROM–DRAM. However, it is more expensive due to the premium
speed microcontroller. An alternative is to use a less expensive Am29200 with
SRAM. Shown on Figure 8-1 is a 32–bit 1/1 SRAM based system which is 100%
faster than the studied ROM–DRAM system. When examining SRAM–only
systems (such as the 1/1 */* example), the benchmark program was linked such that
both instructions and data where accessed from SRAM. In practice this would likely
require programs to be located in 8–bit ROM, and transferred to SRAM during the
initialization stage. Unfortunately, SRAM is about eight times the cost of DRAM on
a per–byte basis. However, if only a small amount of SRAM is required, the system
may be cost effective, given the lower processor cost. At 12.5 MHz, zero wait state
access requires 13 ns SRAM. Such devices are readily available.

Table 8-3. Memory Access Times for Am2924x Microcontroller ROM Space

Memory Bus Clock Period Output Valid Input Setup Memory Access Times (ns)
Speed (MHz)    (CP ns) (OVR, OVF ns)   (IS ns) 0–Wait 1–Wait 2–Wait

16 62.5 10, 9 7 15.25 108 170.5
20 50 10, 9 7   9 83 133
25 40 10, 9 7   4 63 103
33 31.25 10, 9 7   – 45.5 76.75

20 MHz Memory Systems

Microcontroller based systems using 20 MHz memory systems are shown in
Figure 8-2 When using DRAM, these systems are always faster than 16 MHz
systems. However, a 20 MHz Am29200 system using 2/2 ROM and 3/2 DRAM has
only 62% of the performance of a 16 MHz SRAM system. 
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Figure 8-2. 29K Microcontrollers Running the LAPD Benchmark
With 20 MHz Memory Systems
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Building an Am29200 system with 1/1 SRAM at 20 MHz requires 5 ns memory
access times. These are much more expensive than the 11.25 ns memories required at
16 MHz. To reduce cost, an interleaved SRAM system could be constructed. This
would result in 2/1 SRAM access. However, this achieves only 90% of the
performance on an 1/1 SRAM system operating at 16 MHz. It would be better to
build the slower, less expensive, yet higher performing 16 MHz system.

With 20 MHz memory systems, the Am2920x microcontrollers are operating at
their maximum frequency. As more performance is required, the likelihood of
selecting an Am29240 processor increases. This is particularly true if DRAM–only is
to be used. An Am29240 using 32–bit DRAM–only (2/1) is 151% faster than an
Am29200 using a 3/2 DRAM–only system.

It is possible to build SRAM based systems using an Am29240 processor.
Shown  in Table 8-3 are the required memory access times for Am2924x ROM space
memory. The table is based on preliminary AMD data which may change in the
future. The 1/1 access times are given under the 0–Wait column. At 20 MHz a 9 ns
access time must be supported. This is difficult to achieve, and probably not
worthwhile economically. In practice, it would be better to slow the clock speed
down to 19.2 MHz and use 10 ns SRAM devices.

However, the Am29240 system using 32–bit 2/1 DRAM–only has 76% of the
performance of a 32–bit 1/1 SRAM system. The performance benefit of SRAM,
relative to DRAM, is diminished when used with an Am2924x microcontroller. This
is partly due to the 2–cycle requirement for all data writes performed to ROM space.
The 1/1 access is only achieved with instruction fetching and data reading. All data
writes are performed with, at best, 2/2 access times. Conversely, DRAM supports 2/1
for all types of access.

25 MHz Memory Systems

The performance of 25 MHz memory systems is shown in Figure 8-3. These
systems can only be built using Am29240 and Am29243 microcontrollers. At this
speed it is not possible to use 1–cycle first access memory. And, 2/1 SRAM has
poorer performance than 2/1 DRAM due to the 2–cycle data–write limitation.

Scalable Clocking is not available at 20 MHz and above. Hence, all memory
systems must run at the speed of the processor. The fast (2/1) DRAM controller
incorporated into the Am2924x microcontrollers makes DRAM the correct memory
choice with these processors. Additionally, the 2/2 ROM which could be used with
such systems would degrade performance from a DRAM–only system. Hence, it
makes sense to use only a slow 8–bit ROM to initialize the DRAM. Program code,
and initialized data, should be transferred from narrow ROM to DRAM during
program initialization. If a program is too large to fit within a single 8–bit ROM, it
would then make sense to use 16–bit ROM for additional capacity.
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Figure 8-3. 29K Microcontrollers Running the LAPD Benchmark
With 25 MHz Memory Systems
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When executing from DRAM there is always the danger of accidentally writing
to memory holding instructions and damaging the program. This can be avoided by
using the on–chip MMU to protect the relevant memory regions (see section 7.4.5).

33 MHz Memory Systems

The performance of systems operating at 33 MHz is shown in Figure 8-4. As
with 25 MHz systems, 2/1 DRAM–only memory is most practical. At 25 and 33 MHz
the choice of systems which are practical is limited compared to the selection at 16 or
even 20 MHz. In fact the word “practical” should not be interpreted to mean easy or
readily available. At 33 MHz a DRAM system is challenged to meet the 2–1 timing
specification. Currently only the fastest DRAM devices are usable. For example,
DRAM with 60 ns access times is required by 25 MHz systems. The most practical
way to use 33 MHz processors is with Scalable Clocking which reduces the memory
system speed to 16 MHz. At these higher clock rates, the Am29240 microcontroller
is able to perform as well as many systems build around a 2–bus microprocessor.

Further Observations

Memory system requirement is not likely to be the only influence on processor
selection. The Am2924x microcontrollers offer additional on–chip peripherals
compared to the Am2920x processors. This may direct processor selection towards
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Figure 8-4. 29K Microcontrollers Running the LAPD Benchmark
With 33 MHz Memory Systems
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the more expensive Am2924x grouping. Additionally the Am2924x processors have
additional power saving features. Note, as a means of saving power, the Am2920x
can be temporarily clocked down to 8 MHz, and when necessary the clock returned to
the normal (higher) operating speed.

All microcontrollers are able to use interrupt context caching (see section 2.5.4).
This improves interrupt processing and is somewhat independent of the off–chip
memory system performance. With interrupt context caching, the processor state is
saved and restored from on–chip registers rather than external memory stack. Hence,
even the least expensive system can support interrupts with a performance matching
that of the more expensive systems.

8.1.2 Moving up to an Am2920x Microcontroller

This section presents the performance of Am2920x microcontrollers operating
at 12.5 and 16 MHz. The intention is to evaluate the smallest, least expensive systems
possible. This section should be of interest to the designer looking to use a RISC
microcontroller to upgrade a system which would have previously used an
inexpensive CISC processor. The performance of various 8–bit and 16–bit memory
systems is shown on Figure 8-5.

Much of the information presented in the previous 16 MHz microcontroller
section is applicable to the low cost systems studied here. There are three systems of
primary interest. These systems can be constructed at both frequencies of interest.
First, systems which operate with 16–bit DRAM–only including all systems which
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Figure 8-5. Am2920x Microcontrollers Running the LAPD Benchmark with 8–bit and 16–bit
Memory Systems Operating at 12 and 16 MHz
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have slow ROM, or ROMs which are only 8–bits wide. Having slow or narrow ROM
can help to keep the system cost down. The program must be copied from ROM to
DRAM after processor power up. Hence, the DRAM is the only memory which
influences program execution speeds. Unlike Am2924x microcontrollers the
Am2920x processors have no Translation Look–Aside Buffers (TLBs).
Consequently, they can not protect the DRAM from accidental damage during
program execution This may be more of an issue during code development than in a
final production product.

It is important to note here that the Am29205 processor does not have a
BOOTW (boot width) pin, and hence must initially operate from 16–bit wide
memory. Only the Am29200 processor operation can be initiated from 8–bit ROM.
Consequently, DRAM–only systems are more applicable to the Am29200. This is a
little unfortunate as only the Am29205 is available at the lower cost 12.5 MHz
frequency. Highlighted on Figure 8-5 are the simulation results for an Am29200
processor operating at 16 MHz using DRAM–only (16 R=*/* D=3/2).

The second type of system of interest uses 16–bit ROM (2/2) with 16–bit
DRAM (3/2). This is faster than operating from DRAM–only. If ROM is to be used it
must at least support 2/2 access or faster. Additionally, it must be 16–bits wide. If it is
slower or narrower it is best to execute from DRAM–only. A 12.5 MHz Am29205
with ROM (2/2) and DRAM (3/2) has 97% of the performance of a 16 MHz
Am29200 operating at 16 MHz with DRAM–only.

The third type of system of interest uses 1/1 SRAM. Given the higher cost of
SRAM compared to DRAM, this configuration is only applicable when extra
performance is required. The SRAM–only systems shown in Figure 8-5 would
require an 8–bit ROM for program initialization –– much the same as DRAM–only
systems. The simulation results show that a 16–bit DRAM–only system has only
79% of the performance of an 8–bit 1/1 SRAM system. The 8–bit SRAM system has
2% more performance than the 16–bit 2/2–3/2 system (ROM–DRAM). The reason
for the higher performance can be understood by examining the number of cycles
required to fetch a single 32–bit instruction. With a 16–bit 3/2 DRAM–only system,
6–cycles are required to fetch the first instruction; 4–cycles for burst–mode fetched
instructions. With 8–bit 1/1 SRAM, 4–cycles are required to fetch instructions. The
8–bit SRAM has the advantage.

Building a 16–bit SRAM system which is 1/1 produces a system which has
140% of the performance of a 16–bit DRAM–only system. At 12.5 MHz,
single–cycle access requires 13 ns SRAM, which is readily available. Simple SRAM
based designs can offer surprisingly good performance but the small size of SRAM
devices results in the systems only being suitable for applications requiring small
amounts of memory. Otherwise the cost of the SRAM is likely to be prohibitively
high.
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8.1.3 Selecting a Microprocessor

The highest performance systems are constructed around 2–bus 29K
processors. The following subsections present the performances obtained for a
complete range of 29K processors running the LAPD benchmark. Systems are
studied and grouped in subsections according to their memory system speed. All
values were obtained using 32–bit DRAM or SRAM memory systems. Processors
ran, as indicated, at the same speed as the system memory or at two–times using
Scalable Clocking technology. Comparing the fastest and slowest systems, there is a
performance difference of more than 6–to–1. There is also a range of inbetween
systems which offer a wide selection of performance configurations.

DRAM is frequently referred to as, say, 2/1. This assumes the often required
1–cycle of precharge (RAS precharge) is hidden. When DRAM–only systems are
constructed, the precharge encountered when accessing a new memory page can not
always be hidden, and the access is thus 3/1 rather than 2/1. This is explained in
section 1.14.1 under the Am29200 and Am29205 subheading. The previous section
on selecting a microcontroller also referred to DRAM memory speeds without
including the necessary precharge time. The terminology is acceptable because the
precharge can frequently be hidden when the ROM region is used in conjunction with
the DRAM region. Consequently precharge has little effect on performance.
However, when DRAM–only systems are constructed, the effect precharge has on
system performance is more noticeable. Even if a 2/1 DRAM–only system suffers a
1–cycle precharge on all new page accesses, thus resulting in a 3/1 access, it shall still
be termed 2/1. Consistently maintaining the same notation for memory access
throughout this book helps with system comparisons. In summary, a 2/1 DRAM has
2–cycle initial access followed by 1–cycle for same–page accesses. With
DRAM–only systems a 2/1 system equates to a 3/1 system for all new page accesses.

With microcontrollers, the access times for the DRAM memory region
controller are built into the Architectural Simulator. Constructing an event file for
2–bus processors is a little more difficult. The event file shown below describes a 2/1
DRAM system used with a 2–bus processor. The required precharge and refresh
times are included. These parameters are also built into the simulation model for
microcontrollers. If a 2/1 SRAM system was being modeled, the precharge and
refresh parameters would be omitted. Note, in the example, Scalable Clocking is not
selected.

;Architectural Simulator event file
spacerambank 80000000 100000 ;memory location
ramwidth 32 ;32–bit DRAM
ramread 2 ;2/1 access
ramwrite 2
ramburst true ;burst enable
rambread 1
rambwrite 1
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halfspeedbus false ;no Scalable Clocking
ramprecharge 1 ;DRAM precharge
rampprecharge 2
ramrefresh 255 ;DRAM refresh

The LAPD program was linked and then simulated  operating from DRAM– or
SRAM–only memory. Systems using mixed DRAM and SRAM were not modeled.
It is certainly possible to use SRAM; although the cost is likely to be relatively high,
given the generally large memory systems attached to 2–bus processors. However,
ROM devices are likely to be used with 2–bus processors; but since it is difficult to
achieve 1–cycle access with ROM, it is likely that data and code held in ROM would
be transferred to DRAM for faster access. Alternatively, an interleaved ROM system
may be constructed. This would enable 2/2 ROM to achieve 2/1 memory access;
resulting in much the same performance as 2/1 DRAM. In fact faster, as there is no
need to perform precharge when changing access to a new memory page.

The Am29050 3–bus processor results have been included with the 2–bus
results. The Am29050 is the only member of the 3–bus processor group which is
likely to be selected for a new design. A 2–bus processor such as the Am29030 offers
as much performance as a 3–bus Am29000; and also offers a simpler system design,
as well as an easier upgrade path. The inclusion of a floating–point execution unit
within the Am29050 makes it an attractive choice for floating–point intensive
operations. Two–bus processors perform floating–point operations using emulation
routines generally accessed via traps. This is slower than the direct execution
achieved with the Am29050. However, the Am29040 can perform  integer multiply
directly in hardware (other 2–bus processors use emulation), this assists the task of
emulating missing floating–point operations. Consequently, the Am29040 processor
is an alternative to the Am29050 when an application requires fast floating–point
support. The LAPD benchmark does not contain any floating–point operations.
Hence, it is not a suitable benchmark for evaluating processors for floating–point
operation.

16 MHz Memory Systems

This is the entry level system speed for 2–bus processors. The Am29035 is the
only processor offered at this speed. However, using Scalable Clocking an Am29030
or Am29040 operating at 33 MHz internally, can be combined with a 16 MHz
memory system. When Scalable Clocking is used, off–chip instruction and data
access is performed at the slower 16 MHz memory system speed. The higher cost of
the faster processors makes these systems more expensive, but a considerably more
powerful systems is achieved. Figure 8-6 shows performance results for various
systems based on 16 MHz memory systems.

The performance of the systems improve in accordance with the availability of
faster memory. Given that all 2–bus 29K processors contain instruction cache,
off–chip access is mainly required for instruction cache reload. Caches which
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support only one valid–bit per block, always fetch a complete block before marking
the block valid. The Am29040 which has a valid–bit for each entry in the block,
fetches only the instructions required for execution. Table 8-4 gives the cache reload
time for various memory systems, assuming a complete block is fetched. DRAM
access times include precharge time.

Relative system performance is ordered in accordance with the cache block
reload times shown in Table 8-4. Using an Am29035, the slowest 3/2 DRAM system
has 70% of the performance of the fastest 2/1 DRAM system. However, Scalable
Clocking enables the Am29035, to be replaced with an Am29030 which improves
the performance of the 2/1 system by 93%. Selecting an Am29040 improves the
performance by 192%. The 33 MHz processors cost more but they enable three
price–performance combinations by merely replacing the pin–compatible
processors and doubling the clock frequency.

At 16 MHz the 62.5 ns clock period makes a 2/1 DRAM design feasible using
readily available 80 ns DRAMs. During a page mode access RAS is held active, and
the access time after asserting the CAS is typically 30 ns. Assuming CAS precharge
times of 15 ns (the interval CAS is held high between consecutive accesses), the time
required to complete an access within the page is 45 ns. In practice it is likely to be a
little more due to support circuity such as PAL devices. This adds an additional 5 to
10 ns to the access time. Hence, the total access time for the current page is about 55
ns, under the 62.5 ns necessary for 1–cycle burst access. Allowing  2–cycle first
access provides 125 ns, which exceeds the typical 80 ns access time for DRAM. Of
course, if precharge is required the RAS must be held high for an additional 60 ns
(typically) before a new page address is established and RAS brought low. More
sophisticated systems can bring the RAS signal high while CAS is still asserted. This
enables RAS precharge to start early and can help eliminate all or some of the RAS
precharge time. The results for a 2/1 DRAM–only system are highlighted in
Figure 8-6.

Memory Device Access Time
(cycles)

Time to reload a
cache block (cycles)

DRAM 3/2 (3+1)+2+2+2 = 10

Table 8-4. Cache Block Reload Times for Various Memory Types

DRAM 3/1 (3+1)+1+1+1 = 7

DRAM 2/1 (2+1)+1+1+1 = 6

SRAM 3/2 (3)+2+2+2 = 9

SRAM 2/1 (2)+1+1+1 = 5

DRAM 2/2 (2+1)+2+2+2 = 9



437Chapter 8       Selecting a Processor

Figure 8-6. 29K Microprocessors Running the LAPD Benchmark
with 16 MHz Memory systems
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The instruction cache hit–ratio is  47.7% for the Am29035 using a 2/1 DRAM
system. The Am29035 has the smallest instruction cache, 4k bytes. The Am29030
and Am29040 have an instruction cache hit–ration of 95.1%. This is due to their
larger 8K byte cache.

20 MHz Memory Systems

The performance of processors operating with 20 MHz memory systems is
shown in Figure 8-7. The relatively inexpensive Am29035 processor is not available
at this or higher frequencies. With the Am29030 processor, the 3/2 SRAM system is
faster than the 3/1 DRAM. This is due to the higher cache hit–ratio of the Am29030
compared to the Am29035. The larger cache reduces the impact cache reload has on
performance. However, it reveals the cost of data memory access which frequently
occurs with the LAPD benchmark. To access a single 32–bit data object costs
4–cycles (1–cycle precharge plus 3–cycle access). The SRAM only requires
3–cycles for the same task. Consequently, the SRAM, although it can not sustain
1–cycle burst, is faster. Using the Am29040 processor, the 3/1 DRAM is again a
better choice than 3/2 SRAM. This is a result of the on–chip data cache reducing the
effects of memory precharge for data accesses.

The 50 ns period of a 20 MHz system clock makes 1–cycle burst–mode access
possible using slightly faster DRAM. Additionally, 2–cycle first access (100 ns) is
possible with 80 ns DRAM. The 60 ns RAS precharge can be hidden if DRAM is
combined with ROM –– the precharge occurring during ROM access. Alternatively,
DRAM access, including RAS precharge, is 140 ns (80+60) which is a  really 3–cycle
for an initial new page access (150 ns).

The results for 2/1 and 2/2 DRAM–only systems are highlighted on Figure 8-7.
Using an Am29030 processor, a 2/1 system has 15% more performance than the 2/2
system. The difference is 24% when using an Am29040 processors. Scalable
Clocking enables the Am29030 to be replaced with an Am29040 which improves the
performance of the 2/2 system by 96%. With a 2/1 system, the performance is
improved by 112%.

25 MHz Memory Systems

The performance of processors operating with 25 MHz memory systems is
shown in  Figure 8-8. At 25 Mhz the cycle time is reduced to 40 ns. This makes
1–cycle burst–mode access difficult to achieve. Lets look at the arithmetic; fast
DRAMs have an access time of, say, 20 ns from CAS assertion, and 10 ns CAS
precharge. Let’s also assume fast 5 ns PAL logic, and a best–case input setup time of 6
ns (Am29040, 12 ns for the Am29030). This results in a total access time of 41 ns (47
ns for the Am29030). This makes 1–cycle burst–mode  impossible at 25 MHz
without an interleaved memory system. However, an Am29040 could be operated at
24 MHz and just achieve the timing requirements for 1–cycle burst–mode access. An
initial 2–cycle access time can not be achieved with 80 ns DRAM. This would require
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Figure 8-7. 29K Microprocessors Running the LAPD Benchmark
with 20 MHz Memory Systems
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Figure 8-8. 29K Microprocessors Running the LAPD Benchmark
with 25 MHz Memory Systems
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60 ns DRAM. Concluding, a fast  (and relatively expensive) DRAM may achieve 2/1
access using an Am29040. However, to improve timing margins the operating
frequency may have to be dropped a little below 25 MHz. If fast DRAM can not be
supported by the allocated system budget, then a 3/2 DRAM system or an  interleaved
3/1 DRAM system is more appropriate.
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The LAPD benchmark results indicate that a 2/1 DRAM–only system is 27%
faster than a 3/2 DRAM–only system. The interleaved 3/1 DRAM–only system is
14% faster than the non–interleaved 3/2 DRAM–only system, and 23% faster for the
clock scaled systems based on the Am29040. The results for 3/1 and 3/2
DRAM–only systems are highlighted on Figure 8-8. Scalable Clocking enables the
Am29030 to be replaced with an Am29040 which improves the performance of the
3/2 system by 110%. With a 3/1 system, the performance is improved by 128%.

Note also that a system based on an Am29030 using 3/2 DRAM–only at 25
MHz, has 2% lower performance than an Am29030 using 2/1 DRAM–only at 20
MHz. Consequently, in this case, there is a performance advantage obtainable by
reducing the memory system operating frequency.

33 MHz Memory Systems

The performance of processors operating with 33 MHz memory systems is
shown in  Figure 8-9. Scalable Clocking is no longer available with 33 MHz memory
systems. This places 33 MHz systems in competition with slower memory systems
using clock scaled processors. It is not likely that construction of a memory system
faster than 33 MHz would be practical. Clock rates such as 40 MHz would require
additional memory wait states. Consequently, the system performance would be no
faster than a slower memory system operating with fewer memory access wait states.

Only the very fastest DRAMs and support circuitry could achieve 1–cycle
burst–mode access without using an interleaved DRAM design. Achieving 2–cycle
initial access is also unlikely given the 31.25 ns Clock period. A 3–cycle (93.75 ns)
first access seems more likely. The results for 3/1 and 3/2 DRAM–only systems are
highlighted on Figure 8-9.

The complexity of building a 3/1 rather than a 3/2 memory system at 33 Mhz
must be justified by a sufficient performance gain. Using an Am29030 processor a
performance gain of 13.6% is shown. With an Am29040, the performance gain is
17.2%. However, using Scalable Clocking, an Am29040 (50 MHz) using 3/1 DRAM
at 25 MHz is 41% faster than an Am29040 using 3/2 DRAM at 33 MHz; and 20%
faster than an Am29040 using faster 3/1 DRAM at 33 MHz. An Am29040 operating
at 50 MHz with a 2/1 DRAM system operating at 25 MHz is the fastest DRAM–only
system benchmarked.

Additional Observations.

Setting the Am29050 aside due to its enhanced floating–point processing
capability, system performance is likely to be the main influence on processor
selection. However, if low power consumption, 3.3–volt operation, or
multi–processor cache consistency are important issues, then the Am29040
processor is the clear choice. Scalable Clocking technology clearly offers a major
performance enhancement, but it does require the purchase of a more expensive
processor. This may be offset by a simpler memory system design which uses less
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Figure 8-9. 29K Microprocessors Running the LAPD Benchmark
with 33 MHz Memory Systems

0 2000 4000 6000 8000 10000 12000 14000 16000

Am29050 D=3/2

Am29030 D=3/2

Am29030 D=3/1

Am29030 S=3/2

Am29050 D=3/1

Am29030 D=2/1

Am29040 D=3/2

Am29030 S=2/1

Am29040 S=3/2

Am29040 D=3/1

Am29040 D=2/1

Am29040 S=2/1

32–bit memory

Packets per second

I–space 3/2,
D–space 3/2

I–space 3/1, 
D–space 3/1

upgrade path

S=SRAM
D=DRAM Memory access

expensive DRAM components. Scalable Clocking and processor pin–compatibility
does simplify the task of creating multiple price–performance system configurations
–– using a single board design.

All 29K processors are able to use interrupt context caching (see section 2.5.4).
This improves interrupt processing and is somewhat independent of the off–chip
memory system performance. As with microcontrollers, even the least expensive
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2–bus microprocessor can support interrupts with a performance matching that of the
more expensive systems.

The LAPD benchmark does not evaluate all of the performance parameters
which are important to a real–time system. Performance parameters such as task
context switch time may also be important. Many non–application benchmarks are
concerned with movement of large amounts of data –– such as context saving and
restoring. Achieving single–cycle burst–mode for data access will greatly improve
data move operations which use store– and load–multiple operations.

8.1.4 Reducing the Register Window Size

As explained in section 2.3.2, the “lregs=n” switch can be used with the High C
29K compiler to reduce the size of the register stack cache. That is, not all of the 128
local register file need be allocated to caching the top of the run–time register stack. 

The register cache is often referred to as the register window (window size = rfb
– rab, see section 2.1.1). A reduced window size would increase the frequency of
stack spilling and filling, and consequently reduce the processors effectiveness at

Figure 8-10. Am29040 Microprocessors Running the LAPD Benchmark
with Various Register Stack Window Sizes
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executing application code. However,  in certain circumstances, task context switch
times are reduced when operating with a smaller window size.

First, let’s look at the loss of performance resulting from adjusting the window
size. The maximum window size is 128, and the minimum is 36 (a restriction set by
the “lregs” compiler option). Figure 8-10 shows performance results for an
Am29040 microprocessor operating at 50 MHz with a 25 MHz 2/1 DRAM–only
memory system. With the window reduced to 64, which is half its normal size of 128
registers, a performance reduction of 9.2% was measured. With a window size of
only 48, the performance is reduced by 15%.

The same LAPD performance measurements were acquired with an Am29200
microcontroller operating with 3/2 DRAM. The results are shown  on Figure 8-11.
The performance drop–off with reduced window size is even less pronounced. With a
window size of 64, the reduction is only 5.2%, and 10% with a window size of 48.

The load– and store–multiple operations used by spill and fill handlers are
performed directly to memory. On–chip data cache has no effect on spill/fill data

Figure 8-11. Am29200 Microcontroller Running the LAPD Benchmark
with Various Register Stack Window Sizes
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movement (at least with these two processors). Assuming an adequate cache hit ratio,
the Am29040 processor frequently executes instructions at the processor speed of 50
MHz. However, the load and store data transfers which occur during spilling and
filling are performed at the memory system speed of 25 MHz. Hence, as spilling and
filling become more frequent, the effective operating frequency is reduced. This
explains why the Am29040 performance, using 2x scalable clocking, suffers a more
marked reduction than observed with the Am29200 microcontroller.

Figure 8-12. Am29040 Microprocessors Running the Stanford Benchmark
with Various Register Stack Window Sizes
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Some applications may be more, or less, affected by changes in the window size;
it very much depends on the procedure’s register requirements and on the level of
procedure nesting. To study these effects further, the Am29040 based system was
used to run the Stanford benchmark.  Separate results for six of the integer routines
taken from the integer–part of the Stanford code are shown on Figure 8-12. The
routines were chosen because of their diversity in function and similarity in
execution times. This similarity made for clearer scaling and hence easier
comparison of the results.

Routines which have a small register requirement are unaffected by the
reduction in window size. The Towers and Queens tests are supported by recursive
procedure calls. Consequently, these routines show a marked loss of performance
when operating with reduced window sizes. The reduction in performance is less
than one might expect. Applications which have a small dynamic register–stack
requirement, experience moderate loss of performance when operating with a
reduced window size.  However, future 29K processors which use 3x or 4x scalable
clocking technology and superscalar execution are likely to show a relatively greater
loss of performance with reduced window sizes. At higher execution speeds, the cost
of going off–chip is increased.

We have looked at the loss of performance associated with reduced window
sizes but what, if any, are the benefits?  It was already stated that task context
switching can be improved. This is true, but needs further explanation. Most
operating system manufacturers provide basic context switch times for benchmarks
run on their product. These benchmarks typically indicate a raw context switch time
of 10 to 20 micro seconds. Longer or shorter times are possible depending on the
implementation and the speed of the system memory. Benchmark programs usually
measure synchronous context switch times; these are shorter than asynchronous
switch times. When a synchronously saved context is switched–in, only the current
activation record need be restored in the register cache (typically 12 registers). With
an asynchronously saved context, the register cache must be restored to the position
at which the context was saved (several activation records). Hence, asynchronous
switches take longer than synchronous switches. How much longer depends on a
number of factors.

An operating system may be written in C, and the context switch code may
occur at a depth of several levels of procedure nesting. As well as these operating
system related activation records, the register cache will contain activation records
relating to the application task. It is not possible to state, in general, just how much of
the register cache is in use at the point the context switch occurs; but certainly the
worst–case condition is known. The maximum number of local registers which
would require saving or restoring is limited to the window size. Consequently,
reducing the window size, reduces the worst–case context switch time. It will have
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less of an effect on average context switch times; and little, if any, on synchronous
context switch times.

Task context switching is not a frequently occurring activity, compared to
procedure call and returns. Reducing the window size may improve context switch
times, but at the cost of increasing the overhead associated with a more frequently
occurring event –– spilling and filling. However, for those systems which perform an
unusually high number of task context switches, say 20,000 per second (one every 50
micro seconds), it may make sense to operate with a reduced window size.
Figure 8-13 shows the amount of time removed from the worst–case (save and
restore) task context switch times for various window sizes. Two memory systems
are presented; a 1–cycle memory at 25 MHz, and a 2–cycle memory at 16 MHz. As
the window size is reduced, the savings increase.
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Figure 8-13. Reduction In Worst–Case Asynchronous Task Context Switch Times
with Various Register Stack Window Sizes
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Reducing the window size can be a benefit when interrupt processing. When a
User mode program is interrupted, it is normal to save the interrupted program’s
context in the Process Control Block (PCB), (see section 5.4). However, if no task
context switch will occur as a result of the interrupt, then it is faster to save the context
in the available register cache space.

Similarly, when a Supervisor mode program is interrupted, context is saved on a
memory stack. This is the approach taken by the non–multitasking OS–boot
operating system supplied by AMD. Appendix B presents the interrupt context save
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code which can be used by a HIF conforming operating systems to prepare for signal
processing. The example code saves context at the current memory stack position. A
total of 51 32–bit words are required to save the complete context. If the cache
window were reduced to 128–52=76 registers, there would be sufficient space to
save the interrupted context in the register file. The registers in the space (rfb–128) to
rab are not part of the window. In fact, registers below rsp (rsp to rfb–128) are always
available for interrupt handler use.
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Appendix A

HIF Service Calls

A.1 Service Call Numbers And Parameters

This section describes in detail each HIF 2.0 service. Service calls use local reg-
isters  to pass parameters to the operating system, global registers are used to return
results. Example code sequences are given for each service. However, user code does
not normally invoke HIF services directly. It is more likely an assembly language
glue routine or other library routine will be used to access the service. AMD supplies
libraries of the necessary glue code. Chapter 2 introduced the HIF concepts and has
an overview of its services.
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Service 1 – exit Terminate a Program

Description

This service terminates the current program and returns a value to the system
kernel, indicating the reason for termination. By convention, a zero passed in lr2 in-
dicates normal termination, while any non-zero value indicates an abnormal termina-
tion condition. There are no returned values in registers gr96 and gr121 since this
service does not return.

Register Usage

Type Regs Contents Description

Calling: gr121 1 (0x1) Service number
lr2 exitcode User-supplied exit code

Returns: gr96 undefined This service call does not return
gr121 undefined This service call does not return

Example Call

const lr2, 1 ;exit code = 1
const gr121,1 ;service = 1
asneq 69,gr1,gr1 ;call the operating system

In the above example, the operating system kernel is being called with service
code 1 and an exit code of 1, which is interpreted according to the specifications of the
individual operating system. The value of the exit code is not defined as part of the
HIF specification.

In general, however, an exit code of zero (0) specifies a normal program ter-
mination condition, while a non-zero code specifies an abnormal termination result-
ing from detection of an error condition within the program.

Programs can terminate normally by falling through the curly brace at the end of
the main function in a C language program. Other languages may require an explicit
call to the kernel’s exit service.
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Service 17 – open Open a File

Description

This service opens a named file in a requested mode. Files must be explicitly
opened before any read, write , close, or other file positioning accesses can be ac-
complished. The open service, if successful, returns an integer token that is used to
refer to the file in all subsequent service requests. In many high-level languages the
returned token is referred to as a file descriptor. File names are generally not portable
from one implementation to another. In some cases, names can be made more porta-
ble by limiting them to six or fewer upper-case alphabetic characters, or by using the
tmpnam HIF service (33) to create names that conform to the current implementa-
tion’s file system requirements.

Environment variables can also be used to specify legal file names for applica-
tion programs wishing to conform to the requirements of a particular HIF imple-
mentation. The getenv service (65) provides the means to associate a file name or
pathname with a mnemonic reference. This is the most portable means to specify
pathnames for implementations that incorporate the getenv service.

The HIF specification intentionally refrains from defining the constituents of a
legal pathname, or any intrinsic characteristics of the implemented file system. In
this regard, the only requirement of a HIF-conforming kernel is that when the open
service is successfully performed, that the routine returns a small integer value that
can be used in subsequent input/output service calls to refer to the opened file.

Register Usage

Type Regs Contents Description

Calling: gr121 17 (0x11) Service number
lr2 pathname A pointer to a filename
lr3 mode See parameter descriptions below.
lr4 pflag See parameter descriptions below.

Returns: gr96 fileno Success:≥  0 (file descriptor) 
Failure: <  0

gr121 0x80000000 Logical TRUE, service successful 
errcode Error number, service not successful 

(implementation dependent)

Parameter Descriptions

Pathname is a pointer to a zero-terminated string that contains the full path and
name of the file being opened. Individual operating systems have different means to
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specify this information. With hierarchical file systems, individual directory levels
are separated with special characters that can not be part of a valid filename or direc-
tory name. In UNIX-compatible file systems, directory names are separated by for-
ward slash characters, / (e.g., /usr /jack /files /myfile); where usr, jack, and files are
succeedingly lower directory levels, beginning at the root directory of the file sys-
tem. The name myfile is the filename to be opened at the specified level. The individ-
ual characteristics of files and pathnames are determined by the specifications of a
particular operating system implementation.

The mode parameter is composed of a set of flags, whose mnemonics and
associated values are listed in Table A-1.

Table A-1. HIF Open Service Mode Parameters

Name Value Description

O_RDONLY 0x0000 Open for read only access
O_WRONLY 0x0001 Open for write only access
O_RDWR 0x0002 Open for read and write access
O_APPEND 0x0008 Always append when writing
O_NDELAY 0x0010 No delay
O_CREAT 0x0200 Create file if it does not exist
O_TRUNC 0x0400 If the file exists, truncate it to zero length
O_EXCL 0x0800 Fail if writing and the file exists
O_FORM 0x4000 Open in text format

The O_RDONLY mode provides the means to open a file and guarantee that
subsequent accesses to that file will be limited to read operations. The operating sys-
tem implementation will determine how errors are reported for unauthorized opera-
tions. The file pointer is positioned at the beginning of the file, unless the O_AP-
PEND mode is also selected.

The O_WRONLY mode provides the means to open a file and guarantee that
subsequent accesses to that file will be limited to write  operations. The operating
system implementation will determine how errors are reported for unauthorized op-
erations. The file pointer is positioned at the beginning of the file, unless the O_AP-
PEND mode is also selected.

The O_RDWR mode provides the means to open a file for subsequent read and
write  accesses. The file pointer is positioned at the beginning of the file, unless the
O_APPEND mode is also selected.

If O_APPEND mode is selected, the file pointer is positioned to the end of the
file at the conclusion of a successful open operation, so that data written to the file is
added following the existing file contents.
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Ordinarily, a file must already exist in order to be opened. If the O_CREAT
mode is selected, files that do not currently exist are created; otherwise, the open
function will return an error condition in gr121.

If a file being opened already exists and the O_TRUNC mode is selected, the
original contents of the file are discarded and the file pointer is placed at the begin-
ning of the (empty) file. If the file does not already exist, the HIF service routine
should return an error value in gr121, unless O_CREAT mode is also selected.

The O_EXCL mode provides a method for refusing to open the file if the
O_WRONLY or O_RDWR modes are selected and the file already exists. In this
case, the kernel service routine should return an error code in gr121.

O_FORM mode indicates that the file is to be opened as a text file, rather than a
binary file. The nominal standard input, output, and error files (file descriptors 0, 1,
and 2) are assumed to be open in text mode prior to commencing execution of the
user’s program.

When opening a FIFO (interprocess communication file) with O_RDONLY or
O_WRONLY set, the following conditions apply:

• If O_NDELAY is set (i.e., equal to 0x0010):

—A read-only open will return without delay.

—A write-only open will return an error if no process currently has the file open for
reading.

• If O_NDELAY is clear (i.e., equal to 0x0000):

—A read-only open will block until a process opens a file for writing.

—A write-only open will block until a process opens a file for reading.

When opening a file associated with a communication line (e.g., a remote mo-
dem or terminal connection), the following conditions apply:

• If O_NDELAY is set, the open will return without waiting for the carrier detect
condition to be TRUE.

• If O_NDELAY is clear, the open will block until the carrier is found to be present.

The optional pflag parameter specifies the access permissions associated with a
file; it is only required when O_CREAT is also specified (i.e., create a new file if it
does not already exist). If the file already exists, pflag is ignored. This parameter
specifies UNIX-style file access permission codes (r, w, and x for read, write, and
execute respectively) for the file’s owner, the work group, and other users. If  pflag is
–1, then all accesses are allowed. See the UNIX operating system documentation for
additional information on this topic.
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Example Call

path: .ascii ”/usr/jack/files/myfile\0”
.set mode,O_RDWR|O_CREAT|O_FORM
.set permit,0x180

fd: .word 0 ;
const lr2,path ;address of pathname
consth lr2,path ;
const lr3,mode ;open mode settings
const lr4,permit ;permissions
const gr121,17 ;service = 17 (open)
asneq 69,gr1,gr1 ;perform OS call
jmpf gr121,open_err ;jump if error on open
 const gr120,fd ;set address of
consth gr120,fd ;file descriptor
store 0,0,gr96,gr120 ;store file descriptor

In the above example, the file is being opened in read/write text mode. The
UNIX permissions of the owner are set to allow reading and writing, but not execu-
tion, and all other permissions are denied. As indicated above in the parameter de-
scriptions, the file permissions are only used if the file does not already exist. When
the open service returns, the program jumps to the open_err error handler if the open
was not successful; otherwise, the file descriptor returned by the service is stored for
future use in read, write , lseek, remove, rename, or close service calls.

As described in the introduction to these services, the HIF can be implemented
to several degrees of elaboration, depending on the underlying system hardware, and
whether the operating system is able to provide the full set of kernel services. In the
least capable instance (i.e., a standalone board with a serial port), it is likely that only
the O_RDONLY, O_WRONLY and O_RDWR modes will be supported. In more ca-
pable systems, the additional modes should be implemented, if possible.

If an error is encountered during the execution of an open call, no file descriptor
will be allocated.
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Service 18 – close Close a File

Description

This service closes the open file associated with the file descriptor passed in lr2.
Closing all files is automatic on program exit (see exit), but since there is an imple-
mentation-defined limit on the number of open files per process, an explicit close ser-
vice call is necessary for programs that deal with many files.

Register Usage

Type Regs Contents Description

Calling: gr121 18 (0x12) Service number

lr2 fileno File descriptor
 
Returns: gr96 retval Success: =  0 

Failure: <  0

gr121 0x80000000 Logical TRUE, service successful 
errcode Error number, service not successful 

(implementation dependent)

Example Call

fd: .word 0
 

const gr96,fd ;set address of
consth gr96,fd ;file descriptor
load 0,0,lr2,gr96 ;get file descriptor
const gr121,18 ;service = 18
asneq 69,gr1,gr1 ;and call the OS
jmpf gr121,clos_err ;handle close error
 nop ;

The above example illustrates loading a previously stored file descriptor (fd, in
this case) and calling the kernel’s close service to close the file associated with that
descriptor. If an error occurs when attempting to close the file, the kernel will return
an error code in gr121 (the content of that register will not be TRUE) and the program
will jump to an error handler; otherwise, program execution will continue. The file
will be closed and the file descriptor deallocated, even when an error is encountered.
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Service 19 – read Read a Buffer of Data from a File

Description

This service reads a number of bytes from a previously opened file (identified
by a small integer file descriptor in lr2 that was returned by the open service) into
memory starting at the address given by the buffer pointer in lr3. Register lr4 con-
tains the number of bytes to be read. The number of bytes actually read is returned in
gr96. Zero is returned in gr96 if the file is already positioned at its end-of-file. If an
error is detected, a small positive integer is returned in gr121, indicating the nature of
the error.

Register Usage

Type Regs Contents Description

Calling: gr121 19 (0x13) Service number
lr2 fileno File descriptor
lr3 buffptr A pointer to buffer area
lr4 nbytes Number of bytes to be read

 
Returns: gr96 count* *See Return Value table, below.

gr121 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)
The value returned in register gr96 can be interpreted differently, depending on

the current operating mode of the file identified by the fileno parameter. The operat-
ing mode is established or changed by invoking the ioctl service (24). The Return
Value table shows how the Return Value in gr96 should be interpreted for various
operating modes.

Return Value

Count Non-ASYNC ASYNC NBLOCK

gr96 > 0 count n/a count
gr96 = 0 EOF success EOF
gr96 < 0 fail fail if = –1 & gr121 = EAGAIN,

no data is available.
Otherwise, fail.

In the Return Value table, for normal synchronous read service requests, the re-
turn value contains a count of the number of bytes read (if gr96 > 0), end-of-file (if
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gr96 = 0), or an indication that the operation failed (gr96 < 0). For ASYNC mode,
the operation is only scheduled by invoking the read service, so the return value in
gr96 merely indicates that the request succeeded or failed. Non-blocking read re-
quests indicate that data is to be returned if available; otherwise, the service is to re-
turn control to the user process with an indication that the operation would block if
allowed to continue. When gr96 contains the value –1, and the errcode value in regis-
ter gr121 is EAGAIN, then no data is available to be read. If gr96 contains any other
negative value, or if register gr121 contains any other error code, the service request
was not accepted.

If the operating mode of the file descriptor referenced by the read service has
previously been set to ASYNC using the ioctl service, the iowait service should be
used to test the completion status of this operation, and to access the number of bytes
that have been transferred. If a previously issued asynchronous read, write , or lseek
operation is not complete, the current read request will return a failure status. Only
one outstanding request is allowed.

If the operating mode has previously been set to NBLOCK (non-blocking), the
count value returned in gr96 will only reflect the number of bytes currently available
in the buffer. NBLOCK mode only applies to terminal-like devices.

Example Call

fd: .word 0
buf: .block 256

const gr119,fd
consth gr119,fd
load 0,0,lr2,gr119 ;get file descriptor
const lr3,buf ;set buffer address
consth lr3,buf ;
const lr4,256 ;specify buffer size
const gr121,19 ;service = 19
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,rd_err ;handle read errors
 nop

 
The example call requests the HIF to return 256 bytes from the file descriptor

contained in the variable: fd. If the call is successful, gr121 will contain a TRUE val-
ue and gr96 will contain the number of bytes actually read. If the service fails, gr121
will contain the error code.
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Service 20 – write Write a Buffer of Data to a File

Description

This service writes a number of bytes from memory (starting at the address giv-
en by the pointer in lr3) into the file specified by the small positive integer file des-
criptor that was returned by the open service when the file was opened for writing.
Register lr4 contains the number of bytes to be written. The number of bytes actually
written is returned in gr96. If an error is detected, gr121 will contain a small positive
integer on return from the service, indicating the nature of the error.

Register Usage

Type Regs Contents Description

Calling: gr121 20 (0x14) Service number
lr2 fileno File descriptor
lr3 buffptr A pointer to the buffer area
lr4 nbytes Number of bytes to be written

 Returns: gr96 count* *See Return Value table, below.
gr121 0x80000000 Logical TRUE, service successful 

errcode Error number, service not successful 
(implementation dependent)

The value returned in register gr96 can be interpreted differently, depending on
the current operating mode of the file identified by the fileno parameter. The operat-
ing mode is established or changed by invoking the ioctl service (24). The following
table shows how the Return Value in gr96 should be interpreted for various operating
modes.

Return Value

Count Non-ASYNC ASYNC NBLOCK

gr96 = lr4 success n/a (NBLOCK mode is not illegal for
write  requests, but 

0 ≤ gr96 < lr4 fail =0, success requests are performed in either
synchronous or

gr96 < 0 extreme fail ASYNC mode. Return values 
are interprete accordingly.)

In the Return Value table, for normal synchronous write  service requests, the
return value contains a count of the number of bytes written. If the value returned in
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gr96 is equal to the nbytes argument passed to the service in lr4, the write operation
was successful. Any other return value indicates that an error occurred. If gr96 con-
tains a value between 0 and the value of nbytes, the failure is not catastrophic. Nega-
tive values returned in gr96 indicate extreme errors.

For ASYNC mode, the operation is only scheduled by invoking the write  ser-
vice, so the return value in gr96 merely indicates that the request succeeded or failed.
A return value of 0 in gr96 indicates that the asynchronous write operation was suc-
cessfully scheduled.

Non-blocking write  requests are performed in either synchronous or asynchro-
nous mode, depending on whether the ASYNC operating mode was selected.
NBLOCK mode is ignored, the return value in gr96 is interpreted according to the
values shown for Non-ASYNC and ASYNC modes in the table.

Example Call

fd: .word 0
buf: .block 256

const gr96,fd ;set address of
consth gr96,fd ;file descriptor
load 0,0,lr2,gr96 ;get file descriptor
const lr3,buf ;set buffer address
consth lr3,buf ;
const lr4,256 ;specify buffer size
const gr121,20 ;service = 20
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,wr_err ;handle write errors
 const gr120,num ;set address of
consth gr120,num ;“num” variable
store 0,0,gr96,gr120 ;store bytes written

The example call writes 256 bytes from the buffer located at buf to the file
associated with the descriptor stored in fd. If errors are detected during execution of
the service, the value returned in gr121 will be FALSE. In this case, the wr_err  error
handler will be invoked. The number of bytes actually written is stored in the variable
num.
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Service 21 – lseek Seek a File Byte

Description

This service positions the file associated with the file descriptor in lr2, offset
number of bytes from the position of the file referred to by the orig parameter. Regis-
ter lr3 contains the number of bytes offset and lr4 contains the value for orig. The
parameter orig is defined as:

0 = Beginning of the file
1 = Current position of the file
2 = End of the file

The lseek service can be used to reposition the file pointer anywhere in a file.
The offset parameter may either be positive or negative. However, it is considered an
error to attempt to seek in front of the beginning of the file. Any attempt to seek past
the end of the file is undefined, and is dependent on the restrictions of each imple-
mentation.

Register Usage

Type Regs Contents Description

Calling: gr121 21 (0x15) Service number
lr2 fileno File descriptor
lr3 offset Number of bytes offset from orig
lr4 orig A code number indicating the point

within the file from which the offset 
is measured

Returns: gr96 where* *See Return Value table, 
gr121 0x80000000 Logical TRUE, service successful 

errcode Error number, service not successful
(implementation dependent)

The value returned in register gr96 can be interpreted differently, depending on
the current operating mode of the file identified by the fileno parameter. The operat-
ing mode is established or changed by invoking the ioctl service (24). The Return
Value table shows how the Return Value in gr96 should be interpreted for various
operating modes.
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Return Value

Count Non-ASYNC ASYNC NBLOCK

gr96 ≥ 0 where n/a (NBLOCK mode is not illegal for
lseek  requests, but 

gr96 < 0 fail fail requests are performed in either
synchronous or ASYNC mode. 
Return values are interpreted
accordingly.)

In the Return Value table, for normal synchronous lseek service requests, the
return value contains the current position in the file, if the value is greater than or
equal to 0. Negative values returned in gr96 indicate that the request was not ac-
cepted.

The file position returned by the lseek service in gr96 (where) is always mea-
sured from the beginning of the file. A value of 0 refers to the beginning, and any
other positive non-zero value refers to the current position in the file. To determine
the size in bytes for a particular file, an lseek request with an offset value of 0 and an
orig value of 2 will position the file to its end and return the byte position of the end-
of-file, which is an accurate measure of the size of the file.

Asynchronous lseek requests are allowed if the operating mode for the file des-
criptor associated with the request has been set to ASYNC. In this case, the file posi-
tion returned in gr96 (where) will not be relevant. The iowait service call should be
used to determine the final file position when the seek operation is complete.

If a previously issued read or write  request is still in progress when an lseek is
issued, a failure status will be returned for the lseek request. Only one request can be
pending at a time. To properly handle this situation, the iowait service should be used
to ensure the completion of an outstanding read or write  before issuing the lseek ser-
vice request.

Example Call

fd: .word 6 ;file descriptor = 6

const gr96,fd ;set address of
consth gr96,fd ;file descriptor
load 0,0,lr2,gr96 ;get file descriptor
consth lr3,23 ;offset argument = 23
consth lr4,0 ;origin argument = 0
const gr121,21 ;service = 21
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,seek_err ;seek error if false
 nop

The call example shows how a file can be positioned to a particular byte address
by specifying the orig, which is the starting point from which the file position is ad-
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justed, and the offset, which is the number of bytes from the orig, to move the file
pointer. In this case, the file identified by file descriptor 6 is being repositioned to byte
23, measured from the beginning of the file (origin = 0).

The file descriptor, offset, and orig values are loaded and lseek is called to per-
form the file positioning operation. If an error occurs when attempting to reposition
the file, the value returned in gr121 is FALSE, and contains an error code that indi-
cates the reason for the error. Upon return, gr96 also contains the file position mea-
sured from the beginning of the file.



464 Evaluating and Programming the 29K RISC Family

Service 22 – remove Remove a File

Description

This service deletes a file from the file system. Register lr2 contains a pointer to
the pathname of the file. The path must point to an existing file, and the referenced
file should not be currently open. The behavior of the remove service is undefined if
the file is open. Any attempt to remove a currently open file will have an implementa-
tion-dependent result.

Register Usage

Type Regs Contents Description

Calling: gr121 22 (0x16) Service number
lr2 pathname A pointer to string that contains the 

pathname of the file
 
Returns: gr96 retval Success: =  0 

Failure: <  0
gr121 0x80000000 Logical TRUE, service successful 

errcode Error number, service not successful 
(implementation dependent)

Example Call

path: .ascii ”/usr/jack/files/myfile\0”
 

const lr2,path ;set address of file
consth lr2,path ;pathname.
const gr121,22 ;service = 22
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,rem_err ;jump if error
 nop

In the example call, a file with a UNIX-style pathname stored in the string
named path is being removed. The address (pointer) to the string is put into lr2 and
the kernel service 22 is called to remove the file. If the file does not exist, or if it has
not previously been closed, an error code will be returned in gr121; otherwise, the
value in gr121 will be TRUE.
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Service 23 – rename Rename a File

Description

This service moves a file to a new location within the file system. Register lr2
contains a pointer to the file’s old pathname and lr3 contains a pointer to the file’s new
pathname. When all components of the old and new pathnames are the same, except
for the filename, the file is said to have been renamed. The file identified by the old
pathname must already exist, or an error code will be returned and the rename opera-
tion will not be performed.

Register Usage

Type Regs Contents Description

Calling: gr121 23 (0x17) Service number
lr2 oldfile A pointer to string containing the old

pathname of the file
lr3 newfile A pointer to string containing the 

new pathname of the file
 
Returns: gr96 retval Success: =  0 

Failure: <  0
gr121 0x80000000 Logical TRUE, service successful 

errcode Error number, service not successful 
(implementation dependent)

Example Call

old: .ascii ”/usr/fred/payroll/report\0”
new: .ascii ”/usr/fred/history/june89\0”
 

const lr2,old ;set address of old pathname
consth lr2,old
const lr3,new ;set address of new pathname
consth lr3,new
const gr121,23 ;service = 23 (rename)
asneq 69,gr1,gr1 ;call the OS 
jmpf gr121,ren_err ;jump if rename error
 nop

The example call moves a file from its old path (renaming it in the process) to its
new pathname location. The file will no longer be found at the old location.
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Service 24 – ioctl Input/Output Control

Description

This service establishes the operating mode of the specified file or device. It is
intended primarily to be applied to terminal-like devices; however, certain modes ap-
ply to mass-storage files, or to other related input/output devices.

Register Usage

Type Regs Contents Description

Calling: gr121 24 (0x18) Service number
lr2 fileno File descriptor number to be tested
lr3 mode Operating mode.

Returns: gr121 0x80000000 Logical TRUE, service successful
errcode error number, service not successful

EHIFNOTAVAIL if service not
 implemented 

(implementation dependent)

Parameter Descriptions

In the above interface, local register lr2 is expected to contain a legal file des-
criptor, fileno, assigned by the HIF open service (HIF service number 17). The mode
parameter establishes the desired operating mode, which is selected from one or
more of the following:

0x0000 COOKED Process I/O data characters

0x0001 RAW Do not process I/O data characters

0x0002 CBREAK Process only I/O signals

0x0004 ECHO Echo read data

0x0008 ASYNC Asynchronous data read

0x0010 NBLOCK Non-blocking data read

Multiple mode values are possible; however, COOKED, RAW, and CBREAK
modes are mutually exclusive. Other mode values can be combined with these by
logically ORing them to form a composite mode value. Certain of these mode values
do not apply to every open file descriptor. For example, the ASYNC mode is used to
establish a data input mode that will cause a read, write , or lseek operation, once
initiated, to complete at a later time. With the ASYNC mode set, a read or write  re-
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quest will immediately return after passing the buffer address and file descriptor to
the operating system, leaving the scheduling of the operation up to the HIF imple-
mentation. lseek operations can also be serviced in ASYNC mode. The completion
status of these operations can be tested by issuing an iowait service request (HIF ser-
vice number 25). When a read or write operation is issued for a file descriptor whose
operating mode is ASYNC, the count  returned in gr96 will be 0 if the operation was
accepted, or less than 0 if the operation was rejected. An iowait service should be
issued to ascertain the number of bytes that have been transferred upon completion of
the operation.

The default I/O processing mode is COOKED (0x0000), which implies that the
HIF implementation examines input and output data characters as they are received,
or before they are sent, and may perform some alteration of the data. Specific alter-
ations are not explicitly indicated in this specification; however, it is common to per-
form end-of-line processing for files whose operating mode is COOKED. ASCII car-
riage-return and line-feed translations are common, as may be the translation of
ASCII TAB characters to a number of equivalent spaces. When RAW mode is se-
lected, no translation of input or output characters will be performed by HIF-con-
forming implementations.

Normally, when a read operation is issued for a terminal-like device by the ap-
plication program, the processor will block any further execution of the subject pro-
gram until the data has been transferred. The NBLOCK mode is intended to specify
for terminal-like devices that subsequent read operations be executed without sus-
pending (blocking) further CPU operation. This is particularly relevant to read op-
erations when RAW mode is also selected. If NBLOCK mode has been specified, a
subsequent read operation will return (in gr96) the number of characters currently
available, or –1 if none are available. NBLOCK mode is not meaningful for write
operations, but they are handled in the same fashion as synchronous or asynchronous
operations, depending on whether ASYNC mode was specified.

RAW mode delivers the characters to/from the I/O device without conversion or
interpretation of any kind.

If COOKED mode has been selected, line-buffering is implied. If NBLOCK is
also selected, a subsequent read operation will return –1 for the count, unless an en-
tire line of input is available.

The ECHO mode applies only to the standard input device (file descriptor = 0),
and makes provision to automatically echo data received from that device to the stan-
dard output device (file descriptor = 1). ECHO mode is undefined for any other file
descriptor.

The CBREAK mode is intended for file descriptors that refer to serial commu-
nication channels. CBREAK mode specifies that I/O signal inputs will be processed,
which could alter the data stream.
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The NBLOCK and ASYNC settings are not necessarily mutually exclusive.
There may be occasions where this is a legal mode. NBLOCK specifies that subse-
quent read, write , or lseek operations not block until completion. If a read is re-
quested, for example, and no data is currently available, the read service will return
–1 (with an errcode value in gr121 of EAGAIN), rather than blocking further execu-
tion until data becomes available. ASYNC mode simply allows an operation, once
invoked, to proceed asynchronously with other operations, if the HIF implementa-
tion provides this capability.

If the above mode settings are not implemented, the EHIFNOTAVAIL error
code should be returned to the user if the ioctl service is invoked.

Although the mode parameter occupies a 32-bit word, only the low-order
16-bits are reserved. The upper 16-bits are available for implementation-dependent
mode settings, and are not part of this specification.

Example Call

fd: word 0 ;variable to contain the file 
;descriptor

const gr120, fd ;Get fd address
consth gr120, fd
load 0,0,lr2,gr120 ;load file descriptor
const lr3,0x0010 ;NBLOCK mode
const gr121,24 ;service = 24
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,io_err ;jump if failure
 nop

In the example call, a previously assigned file descriptor is passed to the service,
in order to specify that subsequent read requests not block if data is not available. If an
error occurs when servicing this request, gr121 will be set to FALSE and the program
will jump to an error handling routine (io_err) when the service returns.
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Service 25 – iowait Test & Wait I/O Complete

Description

This service is used in conjunction with the ioctl (ASYNC mode) and read,
write , or lseek services to test the completion of an asynchronous input/output opera-
tion and, optionally, to wait until the operation is complete. The iowait service is
called with the file descriptor returned by the open service when the file was original-
ly opened. The mode parameter specifies whether the iowait will block until the op-
eration is complete, or immediately return the completion status in the result register
(gr96). If the operation was complete, gr96 will contain the number of bytes trans-
ferred for read or write  service requests (count), or the ending file position (mea-
sured from the beginning of the file) for lseek service requests (where).

If no previous asynchronous (ioctl ASYNC mode) read, write , or lseek service
is pending for the specified file descriptor, or if an unrecognized mode value is pro-
vided, the iowait service will return an error status in gr121.

Register Usage

Type Regs Contents Description

Calling: gr121 25 (0x19) Service number
lr2 fileno file descriptor, as returned by open 

(17).
lr3 mode 1 = non-blocking completion test

2 = wait until read operation 
      complete

Returns: gr96 count * * See Return Value table
gr121 0x80000000 Logical TRUE, service successful

errcode error number, service not successful
(implementation dependent)

The value returned in register gr96 can be interpreted differently, depending on
the value specified in the mode parameter (in register lr3) of the service request. The
Return Value table shows how the return value in gr96 should be interpreted for non-
blocking and blocking completion tests.
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Return Value

Count Blocking Tests Non-blocking Tests
read/write lseek read/write lseek

gr96 > 0 count where count where
gr96 = 0 EOF where EOF where
gr96 < 0 fail fail If = –1 & gr121 = EAGAIN, 

there is no data available;
otherwise, fail.

In the Return Value table, for blocking completion tests, the return value speci-
fies the status of the completed operation. If the operation was a read or write  service
request, the count value specifies the number of bytes actually transferred (gr96 > 0),
an end-of-file condition was reached (gr96 = 0), or that a failure occurred (gr96 < 0).
For lseek requests, the return value specifies the current position of the file, unless the
value is negative, in which case a failure occurred.

The return value for non-blocking completion tests of read and write  service
requests is interpreted the same as for blocking completion tests, except for the case
where the value in gr96 is equal to –1. In this case, and if the errcode in register gr121
is EAGAIN, then no data is currently available. Any other negative return value or
error code signals a failure condition.

The iowait service reports errors that may have occurred in the outstanding
asynchronous operation— subsequent to its original issue—as well as errors in the
iowait call itself.

Example Call

fd: .word 0 ;file descriptor
const lr3,1 ;non–blocking completion
const gr121,25 ;service = 25 (iowait)

loop: const gr120,fd ;load file descriptor adds.
consth gr120,fd ;
load 0,0,lr2,gr120 ;get file descriptor
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,wait_err ;handle wait error
 const lr3,1 ;non–blocking completion
jmpt gr96,loop ;wait until op. complete
 const gr121,25 ;service = 25 (iowait)

In the example call, the file descriptor (fileno) is loaded into lr2, non-blocking
mode is selected, and the iowait service is invoked. If the service returns an error sta-
tus in gr121, the program will jump to the wait_err  label. If the operation is accepted,
gr96 will contain the completion status upon return from the service. This example
jumps to reinvoke the service if the operation is not yet complete. This is equivalent
to issuing a iowait service with a mode value of 2, specifying that the operation
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should block until the operation is complete. A more complex program might per-
form some useful work before re-trying the operation.
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Service 26 – iostat Input/Output Status

Description

This service returns the status corresponding to a file descriptor assigned by the
open service. If the specified file descriptor is not legal, an error code will be returned
in gr121; otherwise, gr121 will contain a TRUE result, and gr96 will contain the re-
quested status. Two status values are defined:

0x0001 RDREADY Input device ready and data available
0x0002 ISATTY File descriptor refers to terminal-like device (TTY)

Application programs frequently need to determine if data is currently available
to be read for a terminal-like device. If the RDREADY status is returned, at least one
byte of data is available to be read from the device.

The ISATTY status indicates that the device associated with the file descriptor
refers to a terminal-like peripheral, rather than a mass-storage file or other peripheral
device. The iostat service can be used to determine if a standard output device (file
descriptors 1 or 2) refers to a terminal, or if output is being redirected to a mass-stor-
age file.

The RDREADY and ISATTY status values are not mutually exclusive; either or
both results may be present. Although the status is returned in a 32-bit word, only the
lower 16 bits are reserved for HIF-conforming reply values. The upper 16 bits are
available for implementation-specific status results.

Register Usage

Type Regs Contents Description

Calling: gr121 26 (0x19) Service number
lr2 fileno File descriptor number

Returns: gr96 iostat Input status
0x0001= RDREADY
0x0002= ISATTY

gr121 0x80000000 Logical TRUE, service successful
errcode error number, service not successful

(implementation dependent)
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Example Call

const lr2,0 ;set file descriptor = 0
const gr121,26 ;service = 26
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,fail ;handle failure
sll gr120,gr96,30 ;test ISATTY status bit
jmpf gr120,not_tty ;jump if not a tty
 nop

In the example call, the program calls the iostat service to determine if the de-
vice associated with file descriptor 0 is a tty-like  device. If the service returns an er-
ror indication in gr121, the program jumps to the fail  label; otherwise, the iostat val-
ue returned in gr96 is shifted to put bit-1 of the result into the sign-bit of gr120, which
is tested to determine if the file descriptor refers to a tty-like  device. If not, the pro-
gram jumps to the not_tty label.
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Service 33 – tmpnam Return Temporary Name

Description

This service generates a string that can be used as a temporary file pathname. A
different name is generated each time it is called. The name is guaranteed not to dupli-
cate any existing filename. The argument passed in lr2 should be a valid pointer to a
buffer that is large enough to contain the constructed file name. User programs are
required to allocate a minimum of 128 bytes for this purpose.

If the argument in lr2 contains a NULL pointer, the HIF service routine should
treat this as an error condition and return a non-zero error number in global register
gr121.

The HIF specification sets no standards for the format or content of legal path-
names; these are determined by individual operating system requirements. Each im-
plementation must undertake to construct a valid filename that is also unique.

Register Usage

Type Regs Contents Description

Calling: gr121 33 (0x21) Service number
lr2 addrptr A pointer to buffer into which the 

filename is to be stored
 
Returns: gr96 filename Success: pointer to the temporary 

filename string.
Failure: =  0 ( NULL pointer)

gr121 0x80000000 Logical TRUE, service successful 
errcode Error number, service not successful 

(implementation dependent)

Example Call

fbuf: .block 21 ;buffer size = 21 bytes
 

const lr2,fbuf ;set buffer pointer
consth lr2,fbuf ;
const gr121,33 ;service = 33
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,tmp_err ;jump if error
 nop

In the example call, the tmpnam service is called with a pointer to fbuf, which
has been allocated to hold a name that is up to 21 bytes in length. If the service is able



475Appendix A       HIF Service Calls

to construct a valid name, the filename will be stored in fbuf when the service returns.
If the content of gr121 on return is not TRUE, the program fragment jumps to
tmp_err  to handle the error condition.
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Service 49 – time Return Seconds Since 1970

Description

This service returns, in register gr96, the number of seconds elapsed since mid-
night, January 1, 1970, as an integer 32-bit value. It is assumed that the kernel service
will have access to a counter, whose contents can be preloaded, that measures time
with at least a one-second resolution, for this purpose.

The time value returned by this service is Greenwich Mean Time (GMT). The
conversion to local time should be accomplished by a separate function that uses the
value returned by the time service and the time-zone information from the gettz (Get
time zone) service call to compute the correct local time.

Register Usage

Type Regs Contents Description

Calling: gr121 49 (0x31) Service number
 
Returns: gr96 secs Success:≠ 0 (time in seconds)

Failure: =  0
gr121 0x80000000 Logical TRUE, service successful

 errcode Error number, service not successful
(implementation dependent)

Example Call

secs: .word 0
 

const gr121,49 ;service = 49
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,tim_err ;jump if error
 const gr120,secs ;set the address
consth gr120,secs ;for storing ‘secs’
store 0,0,gr96,gr120 ;store the seconds

In the example call, the kernel service time is being called. If the value returned
in gr121 is TRUE, the number of seconds returned in gr96 is stored in the secs vari-
able; otherwise, the program jumps to tim_err  to determine the cause of the error.
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Service 65 – getenv Get Environment

Description

This service searches the system environment for a string associated with a spe-
cified symbol. Register lr2 contains a pointer to the symbol name. If the symbol name
is found, a pointer to the string associated with it is returned in gr96; otherwise, a
NULL pointer is returned.

In UNIX-hosted systems, the setenv command allows a user to associate a sym-
bol with an arbitrary string. For example, the command setenv TERM vt100 defines
the string vt100 to be associated with the symbol named TERM. Application pro-
grams can use this association to determine the type of terminal connected to the sys-
tem, and, therefore, use the correct set of codes when outputting information to the
user’s screen. To access the string, getenv should be called with lr2 pointing to a
string containing the TERM symbol name. The address returned in gr96 will point to
the corresponding vt100 string if TERM is found. In UNIX-hosted systems, entering
a different setenv command lets the user select a different terminal name without
requiring recompilation of the application program.

Operating system implementations that do not include provisions for environ-
ment variables should always return a NULL value in gr96 when this service is re-
quested.

Register Usage

Type Regs Contents Description

Calling: gr121 65 (0x41) Service number
lr2 name A pointer to the symbol name

 
Returns: gr96 addrptr Success: pointer to the symbol name

string 
Failure: =  0 ( NULL pointer)

gr121 0x80000000 Logical TRUE, service successful 
errcode Error number, service not successful 

(implementation dependent)
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Example Call

mysym: .ascii ”MYSYMBOL\0”
strptr: .word 0
 

const lr2,mysym ;set address of symbol to
consth lr2,mysym ;be located in environment
const gr121,65 ;service = 65
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,env_err ;jump if error
 const gr120,strptr ;set address of
consth gr120,strptr ;string pointer
store 0,0,gr96,gr120 ;store string pointer

The example call program calls the operating system getenv service to access a
string associated with the environment variable MYSYMBOL. If the symbol is found,
a pointer to the string associated with the symbol is returned in gr96. If the call is not
successful (i.e., gr121 holds a FALSE boolean value upon return), the program jumps
to env_err to handle the error condition.
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Service 67 – gettz Get Time Zone

Description

This service obtains time zone information from the operating system. No argu-
ments are required. The service returns in gr96 an integer number of minutes of time,
specifying the correction to Greenwich Mean Time (GMT) for localities west of
Greenwich, England. A negative return value in gr96 indicates a failure, or that time
zone information is unavailable. A value is also returned in gr97. If Daylight Savings
Time is currently in effect, gr97 will contain the value 1 when the service returns; if it
is not in effect, gr97 will contain the value 0. If this information is not available, or if
the service fails, gr97 will contain a negative value.

Register Usage

Type Regs Contents Description

Calling: gr121 67(0x42) Service number

Returns: gr96 zonecode Success:≥ 0 (minutes west of GMT)
Failure: < 0 (or information 
unavailable)

gr97 dstcode Success: = 1 (Daylight Savings 
Time in effect)
= 0 (Daylight Savings 
Time not in effect)

gr121 0x80000000 Logical TRUE, service successful
error number, service not successful
(implementation dependent)

If the result returned in gr96 (zonecode) contains a value greater than 1,440 (60
minutes x 24 hours), then 1,440 should be subtracted from the result, which relates to
minutes east of Greenwich.
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Example Call

timzone: .word 0
dstflag: .word 0

const gr121,67 ;service = 67
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,tz_err ;jump if error
const lr2,timzone ;the adds. to storetimezone
consth lr2,timzone
store 0,0,gr96,lr2 ;store the timezone correction
const lr2,dstflag ;the addres to store daylight
consth lr2,dstflag ;savings
store 0,0,gr97,lr2 ;store daylight savings flag

In the example call, the gettz service is called to access the current time zone
correction value. Upon return, gr121 is tested to determine if the service was success-
ful. If not, the program jumps to an error handling routine called tz_err. If the service
was successful, the values returned in gr96 and gr97 are stored in local variables
called timzone and dstflag, respectively.
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Service 257 – sysalloc Allocate Memory Space

Description

This service allocates a specified number of contiguous bytes from the operat-
ing-system-maintained heap and returns a pointer to the base of the allocated block.
Register lr2 contains the number of bytes requested. If the storage is successfully al-
located, gr96 contains a pointer to the block; otherwise, gr121 contains an error code
indicating the reason for failure of the call.

Register Usage

Type Regs Contents Description

Calling: gr121 257 (0x101) Service number
lr2 nbytes Number of bytes requested

 
Returns: gr96 addrptr Success: pointer to allocated bytes, 

Failure: =  0 ( NULL pointer)
gr121 0x80000000 Logical TRUE, service successful 

errcode Error number, service not successful 
(implementation dependent)

Example Call

blkptr: .word 0
 

const lr2, 1200 ;request 1200 bytes
const gr121,257 ;service = 257
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,alloc_err ;jump if error
 const gr120,blkptr ;set address to store
consth gr120,blkptr ;pointer
store 0,0,gr96,gr120 ;store the pointer

The example call requests a block of 1200 contiguous bytes from the system
heap. If the call is successful, the program stores the pointer returned in gr96 into a
local variable called blkptr. If gr121 contains a boolean FALSE value when the ser-
vice returns, the program jumps to alloc_err to handle the error condition.
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Service 258 – sysfree Free Memory Space

Description

This service returns memory to the system starting at the address specified in
lr2. Register lr3 contains the number of bytes to be released. The pointer passed to the
sysfree service in lr2 and the byte count passed in lr3 must match the address re-
turned by a previous sysalloc service request for the identical number of bytes. No
dynamic memory allocation structure is implied by this service. High-level language
library functions such as malloc() and free() for the C language are required to man-
age random dynamic memory block allocation and deallocation, using the sysalloc
and sysfree kernel functions as their basis.

Register Usage

Type Regs Contents Description

Calling: gr121 258 (0x102) Service number
lr2 addrptr Starting address of area returned
lr3 nbytes Number of bytes to release

 
Returns: gr96 retval Success: =  0 

Failure: <  0
gr121 0x80000000 Logical TRUE, service successful 

errcode Error number, service not successful 
(implementation dependent)

Example Call

blkptr: .word 0
const gr120,blkptr ;set address of previously
consth gr120,blkptr ;block pointer
load 0,0,lr2,gr120 ;fetch pointer to block
const lr3,1200 ;set number of bytes to release
const gr121,258 ;service = 258
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,free_err ;jump if error
 nop ;

The example calls sysfree to deallocate 1200 bytes of contiguous memory, be-
ginning at the address stored in the blkptr variable. If the call is successful, the pro-
gram continues; otherwise, if the return value in gr121 is FALSE, the program jumps
to free_err to handle the error condition.
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Service 259 – getpsize Return Memory Page Size

Description

This service returns, in register gr96, the page size, in bytes, used by the memory
system of the HIF implementation.

Register Usage

Type Regs Contents Description

Calling: gr121 259 (0x103) Service number
 
Returns: gr96 pagesize Success: memory page size, one of 

the following: 1024,2048,4096,8192
Failure: <  0

gr121 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful 

(implementation dependent)

Example Call

pagsiz: .word 0
 

const gr121,259 ;service = 259
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,pag_err ;jump if error
 const gr120,pagsiz ;set address to
consth gr120,pagsiz ;store the page size
store 0,0,gr96,gr120 ;store it!

The example calls the operating system kernel to return the page size used by the
virtual memory system. If the call was successful, gr121 will contain a boolean
TRUE result and the program will store the value in gr96 into the pagsiz variable;
otherwise, a boolean FALSE is returned in gr121. In this case, the program will jump
to pag_err to handle the error condition.
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Service 260 – getargs Return Base Address

Description

This service returns the base address of the command-line-argument vector,
argv, in register gr96, as constructed by the operating system kernel when an applica-
tion program is invoked.

Arguments are stored by the operating system as a series of NULL-terminated
character strings. A pointer containing the address of each string is stored in an array
whose base address (referred to as argv) is returned by the getargs HIF service. The
last entry in the array contains a NULL pointer (an address consisting of all zero bits).
The number of arguments can be computed by counting the number of pointers in the
array, using the fact that the NULL pointer terminates the list.

Register Usage

Type Regs Contents Description

Calling: gr121 260 (0x104) Service number
 
Returns: gr96 baseaddr Success: base address of argv 

Failure: =  0 ( NULL pointer)
gr121 0x80000000 Logical TRUE, service successful 

errcode Error number, service not successful 
(implementation dependent)

Example Call

argptr: .word 0
const gr121,260 ;service = 260
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,bas_err ;jump if error
 const gr120,argptr ;set address where base
consth gr120,argptr ;pointer is to be stored
store 0,0,gr96,gr120 ;store the pointer

The example calls operating system service 260 to access the command-line-ar-
gument vector address. If the service executes without error, the program continues
by storing the argument vector address in the variable basptr. If gr121 contains a
boolean FALSE value upon return, the program jumps to bas_err to handle the error
condition.
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Service 273 – clock Return Time in Milliseconds

Description

This service returns the elapsed processor time in milliseconds. Operating sys-
tem initialization procedures set this value to zero on startup. Successive calls to this
service return times that can be arithmetically subtracted to accurately measure time
intervals.

Register Usage

Type Regs Contents Description

Calling: gr121 273 (0x111) Service number
 
Returns: gr96 msecs Success:≠ 0 (time in milliseconds) 

Failure: =  0
gr121 0x80000000 Logical TRUE, service successful 

errcode Error number, service not successful 
(implementation dependent)

Example Call

time: .word 0
 

const gr121,273 ;service = 273
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,clk_err ;jump if error
 const gr120,time ;set the address where
consth gr120,time ;time is to be stored
store 0,0,gr96,gr120 ;store the time in ms.

The example calls the operating system kernel to get the current value of the sys-
tem clock in milliseconds. On return, if gr121 contains a boolean FALSE value, the
program jumps to clk_err  to handle the error; otherwise, the time in milliseconds is
stored in the variable time.

The return value from the clock service does not include system I/O data trans-
fer time incurred by HIF services with service numbers less than 256. The return val-
ue is related to the value returned by the cycles service, in that it is derived from the
processor cycles counter, but scaled by the processor frequency and resolved to ms.
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Service 274 – cycles Return Processor Cycles

Description

This service returns an ascending positive number in registers gr96 and gr97,
that is, the number of processor cycles that have elapsed since the last processor ini-
tialization was applied to the CPU. It provides a mechanism for user programs to ac-
cess the contents of the internal Am29000 processor timer counter register. The cycle
count can be multiplied by the speed of the processor clock to convert it to a time val-
ue. Gr97 will contain the most significant bits of the cycle count, while gr96 will con-
tain the least significant bits. HIF implementations of this service are required to pro-
vide a cycle count with a minimum of 42 bits of precision.

The implementor of this HIF service must, as best possible, eliminate system
I/O data transfer time incurred by HIF services with service numbers less than 256.
This will benefit the user when using this service to perform benchmarks across dif-
ferent hardware platforms. The user of this service should be aware that the return
value may stick contain cycles used in support of operating system tasks.

Register Usage

Type Regs Contents Description

Calling: gr121 274 (0x112) Service number
 
Returns: gr96 cycles Success: Bits 0–31 of processor 

cycles 
Failure:=  0 (in both gr96 and gr97)

gr97 cycles Success: Bits 32 and higher of 
processor cycles 
Failure:=  0 (in both gr96 and gr97)

gr121 0x80000000 Logical TRUE, service successful 
errcode Error number, service not successful 

(implementation dependent)
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Example Call

cycles: .word 0 ;MSb of cycles
.word 0 ;LSb of cycles

 
const gr121,274 ;service = 274
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,cyc_err ;jump if error
 const gr120,cycles ;set the address where the
consth gr120,cycles ;count is to be stored
store 0,0,gr97,gr120 ;store the MSb,
add gr120,gr120,4 ;increment the address,
store 0,0,gr96,gr120 ;then store the LSb of cycles.

The example call program fragment calls the operating system service 274 to
access the number of CPU cycles that have elapsed since processor initialization. The
cycle count (in gr96 and gr97) is stored in the two words addressed by the variable
cycles if the service call is successful. If gr121 contains a boolean FALSE value on
exit, the program jumps to cyc_err to handle the error condition.
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Service 289 – setvec Set Trap Address

Description

This service sets the address for user-level trap handler services that implement
the local register stack spill and fill traps. In addition, if the current HIF implementa-
tion supports program calls to set other trap vectors, this service provides that capa-
bility. It returns an indication of success or failure in register gr121. The method used
to invoke these traps in user mode is described on page NO TAG of this specification,
in the User-Mode Traps section.

The only vectors supported by this specification are 64 (spill) and 65 (fill).
These vectors are invoked by operating system software, using the trampoline prin-
ciples described in the section User-Mode Traps, and are not supported by the
Am29000 processor hardware.

Extensions to this service, in implementations that support setting traps other
than spill and fill, will return the previously installed trap address in register gr96, if
the service is successful. For User Mode Traps, register gr96 reports only the success
or failure of the service. In HIF implementations where the extended setvec service is
available, programs can use the returned (previous) vector address to implement vec-
tor chaining.

Register Usage

Type Regs Contents Description

Calling: gr121 289 (0x121) Service number
lr2 trapno trap number
lr3 funaddr address of trap handler

 
Returns: gr96 trapaddr For user mode traps:

  Success:=  0 
  Failure: <  0 
For extended trap vectors:
Success:previous trap address
  Failure: = 0

gr121 0x80000000 Logical TRUE, service successful 
errcode Error number, service not successful 

(implementation dependent)
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Example Call

trpadr: .word 0
const lr2,64 ;trap number = 64
const lr3,t64_hnd ;set address of
consth lr3,t64_hnd ;trap-64 handler
const gr121,289 ;service = 289
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,vec_err ;jump if error
 const gr120,trpadr ;set address where to
consth gr120,trpadr ;store the trap address
store 0,0,gr96,gr120 ;and store it!

The example calls the setvec service to pass the address to be used for the trap 64
trap handler routine. If the service returns with gr121 containing a boolean TRUE
result, the program continues by storing the trap address returned in gr96; otherwise,
the program jumps to vec_err to handle the error condition.
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Service 290 – settrap Set Trap Vector

Description

This service provides the means to install trap handler addresses directly into the
vector table whose base address is pointed to by the Vector Area Base Address spe-
cial-purpose register (VAB). The vector numbers that may legally be modified by
this service are implementation dependent.

Implementations that do not intend to provide the ability to set trap addresses
with this service should return the EHIFNOTAVAIL error code when this service is
invoked. If certain vectors are restricted from being set by this service, the imple-
mentation should check the trapno parameter and return the EHIFNOTAVAIL error
code for references to restricted trap vectors.

Register Usage

Type Regs Contents Description

Calling: gr121 290 (0x122) Service number
lr2 trapno Vector number
lr3 trapaddr Address of trap handler

 
Returns: gr96 trapaddr Address of previous trap handler

gr121 0x80000000 Logical TRUE, service successful 
errcode Error number: EHIFNOTAVAIL if 

service not available
(implementation dependent)

Example Call

oldtrap: .word 0 ;placeholder for old address

const lr2,54 ;floating divide trap vector
const lr3,new_div ;set new_div as the
consth lr3,new_div ;trap handler address
const gr121,290 ;service number 290
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,trap_err ;jump if error
 const gr120,oldtrap ;set address for saving
consth gr120,oldtrap ;the old trap handler address
store 0,0,gr96,gr120 ;save the old handler address

In the example call, a new handler for the floating-point division operation is
being installed. If the implementation returns an error, the program jumps to the
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trap_err  label. If the service was successful and a new trap handler was installed, the
previous handler address (if any) is stored into the oldtrap  variable.

There is often a need for programs operating on dedicated hardware to enter su-
pervisor mode. This can be accomplished by reserving a trap vector for that purpose
and installing a trap handler routine to return control to the user in supervisor mode.
The operation is effected by issuing an assert instruction that invokes the specified
trap. User mode can be restored by clearing (setting to 0) the Supervisor Mode bit (4)
of the Current Processor Status register (CPS).
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Service 291 – setim Set Interrupt Mask

Description

This service provides the means to set the interrupt mask (IM) field and the dis-
able interrupts (DI) field of the current processor status register (CPS). This field en-
ables the external interrupt pins INTR0–INTR3, according to the following encod-
ing:

00 INTR0 enabled
01 INTR1–INTR0 enabled
10 INTR2–INTR0 enabled
11 INTR3–INTR0 enabled

These two bits provide for a priority-oriented enabling capability; however, the
INTR0 interrupt can not be disabled through the IM field alone. The disable inter-
rupts (di ) parameter must be set to 1 to produce this effect. A di value of 0 will en-
able the selected interrupts, and a value of 2 will leave the DI-bit of the CPS un-
changed. If this service is not implemented, an error code of EHIFNOTAVAIL
should be returned by the software. The error code for an illegal value in registers lr2
or lr3  is implementation dependent.

Register Usage

Type Regs Contents Description

Calling: gr121 291 (0x123) Service number
lr2 mask New mask field value
lr3 di 0= Enable interrupts

1= Disable interrupts
2= Leave interrupt enable unchanged

 
Returns: gr96 mask Old mask field value

gr121 0x80000000 Logical TRUE, service successful 
errcode Error number: EHIFNOTAVAIL if 

service not available
(implementation dependent)
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Example Call

oldmask: .word 0 ;placeholder for old mask value
const lr2,0x10 ;mask = 10 (*INTR(2:0) enable)
const lr3,0x0 ;enable interrupts (di = 0)
const gr121,291 ;service number 291
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,mask_err ;jump if error
 const gr120,oldmask ;set address for saving
consth gr120,oldmask ;the old IM field value
store 0,0,gr96,gr120 ;save the old IM field value

In the example call, the IM-field of the current processor status register is to be
set to 10, enabling external interrupt pins INTR0, INTR1, and INTR2. If this service
is not available, or if the value in lr2 is illegal, the service will return an error code, in
which case the program jumps to the mask_err label. If the service execution is suc-
cessful, the previous contents of the IM field is stored in the oldmask variable.
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Service 305 – query Return Version Information

Description

This service returns version information, or capabilities of the HIF implementa-
tion, as requested. On entry, the requested capability is passed as an argument in lr2.
The service returns the requested information, or indicates that it is unavailable, in
gr96.

Register Usage

Type Regs Contents Description

Calling: gr121 305 (0x131) Service number
lr2 capcode Capabilities code

0 = Request HIF version
1 = Request CPU version & family 
      code
2 = Request Am29027 arithmetic 
      accelerator version
3 = Request CPU clock frequency
4 = Request memory environment

For lr2 = 0 (HIF version)
Returns: gr96 hifvers Success:≥ 0 (encoded version 

information). The version number
is returned as two 4-bit fields in the 
low-order 8 bits of the return value. 
The two fields are separated by an
implied decimal point (e.g., 0x20 
means HIF V2.0).
Failure: < 0 (or unavailable)

For lr2 = 1 (CPU version and family code)
Returns: gr96 cpuvers Success:≥ 0 (encoded 

version/family).The high-order 8 bits
of the configuration register (CFG), 
known as the processor release level 
(PRL) are moved to the low-order 8 
bits of gr96, as two 4-bit fields.
Failure: < 0 (or unavailable)

For lr2 = 2 (Am29027 coprocessor version)
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Returns: gr96 027vers Success:≥ 0 (encoded version 
information). The high-order 8 bits
of the accelerator’s precision register
form the arithmetic accelerator 
release level (ARL) and are moved 
to the low-order 8 bits of gr96, as 
two 4-bit fields.
Failure: < 0 (or unavailable)

For lr2 = 3 (CPU clock frequency)
Returns: gr96 clkfreq Success: > 0 (frequency in Hertz)

Failure: = 0 (or unavailable)
For lr2 = 4 (Memory environment)

gr96 memenv Success: > 0 (memory environment)
BYTEW 0x1 byte-write available
DWSET 0x2DW-bit set
IREAD 0x4 Instruction memory 
readable
Failure: ≤ 0 (or unavailable)

For all requests
Returns: gr121 0x80000000 Logical TRUE, service successful

errcode error number, service not successful
(implementation dependent)

In addition to the Return Usage table requests, negative capcode values in regis-
ter lr2 are available for implementation-dependent encoding of query requests. All
positive values in register lr2 are reserved for future expansion of the HIF query ser-
vice.

Example Call

vers: .word 0
const lr2,0 ;request HIF version
const gr121,305 ;service = 305
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,qry_err ;handle query error
 const lr2,vers ;address to store version info
consth lr2,vers
store 0,0,gr96,lr2 ;store the HIF version number

In the example call, a request code of 0 is loaded into lr2 and the service is called.
Upon return, if the value in gr121 is FALSE, indicating failure, the program jumps to
an error routine. If gr121 is TRUE, then the program stores the returned HIF version
information into the variable called vers.
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Service 321 – signal Register Signal Handler

Description

This service provides the means to register (or un-register) a specified user sig-
nal handler. Local register lr2 contains the address of the user signal handler routine
on entry. This routine is expected to handle the signals shown in Table A-2, below.
Sections 2.5, 4.4 and Appendix B, contain additional information on writing signal
handlers for complex environments.

The HIF service returns the address of the previously installed handler in gr96.
If no previous handler was installed, gr96 will contain a NULL pointer (gr96 = 0).
Signal handlers may perform any appropriate processing, but only the services with
service numbers above 256 are guaranteed to be available. Calls to services with
numbers below 256 may result in unpredictable behavior when returning to the inter-
rupted program—unless the service executes a longjump(), which avoids execution
of the interrupt return service (see Table A-3).

To un-register a signal handler, local register lr2 must contain a value of 0
(NULL) on entry. When a handler is un-registered in this manner, signal handling
will revert to the default behavior established by the operating system.

When one of the (SIGINT or SIGFPE) signals occurs, the HIF implementation
must preserve: the signal number that occurred; the register stack pointer (gr1); the
register allocate bounds (gr126); the program counters, PC0–PC2; the channel regis-
ters (CHA, CHD, and CHC ); the ALU register; the old processor status, OPS; and the
contents of gr121. These registers are saved in the user memory stack. The HIF im-
plementation must be careful not to disturb values in registers that have not been
saved on the user’s stack. Global register gr125 should contain the address of the last
saved value in the HIF Signal Stack (e.g., gr121) at the conclusion of this phase.
Figure A-1  illustrates the required user stack format for saved registers.

Table A-2. Default Signals Handled by HIF

Mnemonic Value Description

SIGINT 2 User interrupt (e.g., from keyboard)
SIGFPE 8 Floating–point exception
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gr125 points to the
last register saved
by the HIF in the 
user’s stack.

Figure A-1. HIF Register Preservation for Signals
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It is at this point that execution of the HIF invokes the handler specified by the
newsig parameter to the signal service. The handler is invoked with the processor
mode set to the mode of the interrupted program (either user or supervisor). Depend-
ing on the nature of the interrupt (SIGINT or SIGFPE) and the complexity of the han-
dler, additional registers may need to be saved. In this case, the handler must pre-
serve: the values in the indirect pointers IPA, IPB, and IPC; the contents of the Q reg-
ister; the stack frame pointer, lr1; and the local register stack free bounds in rfb
(gr127). In addition, because high-level languages use global registers gr96–gr124
as temporaries, the user signal handler may have to save these as well.

User signal handlers can be grouped into three levels of complexity, depending
on the implementation:

1. The least complex are handlers which have no intention of returning control
to the user. In this case, only a few additional registers may need to be saved
(if any).

2. Floating-point error handlers are often more complex, where some of the
user’s context needs to be saved. In this case, probably only the indirect point-
ers (IPA–IPC), the Q register, and gr125  need be preserved. After the error
has been handled, the handler will issue one of the signal return services listed
in Table A-3 to return control to the user’s program.

3. The most complex handlers will be those that need to return to the user pro-
gram at the C-level of context. If the handler intends to pass control to a user-
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provided signal routine (e.g., to handle SIGINT), then it may be necessary to
preserve all of the registers indicated in the figure above. In addition, han-
dlers that intend to return control at the C-level of context will need to make
provision for completing any interrupted SPILL or FILL operations or com-
plete a long-jump that may be in progress. Fortunately, AMD supplies the
necessary code in library routines supplied with most tool products (see Ap-
pendix B).

Before execution of the signal handler, the HIF conforming operating system is
responsible for clearing the Channel Control (CHC) register (setting it to 0), to pre-
vent restarting a load or store multiple operation that may have been interrupted. The
proper contents of this register will be restored by the HIF when the handler issues
one of the service requests listed in Table A-3.

Once a signal handler is invoked by one of the signals listed in Table A-2, and
when it has finished, it will usually return to the operating system by invoking one of
the signal return services shown in Table A-3, below, with register gr125 pointing to
the last saved register in the HIF-saved-registers (i.e., gr121), as shown in Fig-
ure A–1. More complex implementations may make other arrangements for return-
ing to the user program’s context. Sample code for saving and restoring the necessary
registers is shown in section 4.4 and Appendix B.

The handler is responsible for determining the appropriate action for each type
of interrupt (SIGINT or SIGFPE), and must return control to the operating system
using one of the services listed in Table A-3, after first restoring the indirect pointers
(IPA–IPC), the Q register, and with gr125 pointing to the last saved register in the
user’s stack (assuming the suggested approach for preserving registers is followed).

Table A-3. HIF Signal Return Services

Service Name Description

322 sigdfl Perform default signal handling
323 sigret Return to location indicated by PC1
324 sigrep Return to location indicated by PC2
325 sigskp Return to location indicated by PC0
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Register Usage

Type Regs Contents Description

Calling: gr121 321 (0x141) Service number
lr2 newsig Address of signal handler, or NULL 

pointer

Returns: gr96 oldsig Old handler address
gr121 0x80000000 Logical TRUE, service successful

errcode Error number, service not successful
(implementation dependent)

Example Call

oldhdlr: .word 0

const lr2,user_sigs ;address of user signal handler
consth lr2,user_sigs
const gr121,321 ;service = 321
asneq 69,gr1,gr1 ;call the OS to install handler
jmpf gr121,sig_err ;jump to handle error
 const gr120,oldhdlr ;setup address to store old
consth gr120,oldhdlr ;handler address
store 0,0,gr96,gr120 ;store the old handler address

In the example call, a user signal handler whose entry point name is user_sigs is
installed. When the service returns, if gr121 contains a FALSE value, the program
jumps to an error routine; otherwise, the address of the previously installed handler
returned in gr96 is stored in the local variable oldhdlr .
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Service 322 – sigdfl Perform Default Signal Action

Description

This service is called only from within a user signal handler installed using the
signal (321) service. The function of this service is to instruct the HIF to perform the
predetermined default action for the specified signal. The operating system is re-
sponsible for establishing the appropriate default action.

Register Usage

Type Regs Contents Description

Calling: gr121 322 (0x142) Service number
gr125 sigptr Pointer to HIF Signal Stack 

containing preserved  registers
(See signal (321) for further 
information.)

Returns: Does not return

Example Call

const gr121,322 ;service = 322
asneq 69,gr1,gr1 ;call the OS

Since this service does not return, no attempt is made to test returned values or
store results.
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Service 323 – sigret Return From Signal Interrupt

Description

This service is called only from within a user signal handler installed using the
signal (321) service. The function of this service is to return from the latest signal
interrupt, to the location specified by the value in program counter PC1 at the time the
signal occurred. Once invoked, this service does not return to the user signal handler.

Register Usage

Type Regs Contents Description

Calling: gr121 323 (0x143) Service number
gr125 sigptr Pointer to HIF Signal Stack 

containing preserved registers
(See signal (321) for further 
information.)

Returns: Does not return

Example Call

const gr121,323 ;service = 323
asneq 69,gr1,gr1 ;call the OS

Since this service does not return, no attempt is made to test returned values or
store results.
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Service 324 – sigrep Return From Signal Interrupt

Description

This service is called only from within a user signal handler installed using the
signal (321) service. The function of this service is to return from the latest signal
interrupt to the location specified by the value in program counter PC2 at the time the
signal occurred. Once invoked, this service does not return to the user signal handler.

Register Usage

Type Regs Contents Description

Calling: gr121 324 (0x144) Service number
gr125 sigptr Pointer to HIF Signal Stack 

containing preserved registers
(See signal (321) for further 
information.)

Returns: Does not return

Example Call

const gr121,324 ;service = 324
asneq 69,gr1,gr1 ;call the OS

Since this service does not return, no attempt is made to test returned values or
store  results.
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Service 325 – sigskp Return From Signal Interrupt

Description

This service is called only from within a user signal handler installed using the
signal (321) service. The function of this service is to return from the latest signal
interrupt to the location specified by the value in program counter PC0 at the time the
signal occurred. Once invoked, this service does not return to the user signal handler.

Register Usage

Type Regs Contents Description

Calling: gr121 325 (0x145) Service number
gr125 sigptr Pointer to HIF Signal Stack 

containing preserved registers
(See signal (321) for further 
information.)

Returns: Does not return

Example Call

const gr121,325 ;service = 325
asneq 69,gr1,gr1 ;call the OS

Since this service does not return, no attempt is made to test returned values or
store results.
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Service 326 – sendsig Send Signal

Description

This service provides the means to send a signal to the current process, to sup-
port signal testing. A single parameter, sig, specifies the signal number to be sent.

Register Usage

Type Regs Contents Description

Calling: gr121 326 (0x141) Service number
lr2 sig Signal number to be sent to current

process

Returns: gr121 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful

EHIFNOTAVAIL if service not 
implemented.
(implementation dependent)

Example Call

const lr2,SIGFPE ;floating-point exception
const gr121,326 ;service = 326
asneq 69,gr1,gr1 ;call the OS
jmpf gr121,send_err ;handle signaling error
 nop

In the above example, a floating-point exception error signal is being sent to the
current process. It is presumed that a signal handler for the SIGFPE (floating-point
exception) error has been previously installed (see signal service) and is being tested.
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A.2 Error Numbers

HIF implementations are required to return error codes when a requested opera-
tion is not possible. The codes from 0–10,000 are reserved for compatibility with
current and future error return standards. The currently assigned codes and their
meanings are shown in Tables A–4 through A–9. If a HIF implementation returns an
error code in the range of 0–10,000, it must carry the identical meaning to the corre-
sponding error code in this table. Error code values larger than 10,000 are available
for implementation-specific errors.

Table A-4. HIF Error Numbers Assigned

Number   Name Description

0 Not used.

1 EPERM Not owner

This error indicates an attempt to modify a file in some way forbidden
except to its owner.

2 ENOENT No such file or directory

This error occurs when a file name is specified and the file should exist but 
does not, or when one of the directories in a pathname does not exist.

3 ESRCH No such process

The process or process group whose number was given does not exist, or 
any such process is already dead.

4 EINTR Interrupted system call

This error indicates that an asynchronous signal (such as interrupt or quit) 
that the user has elected to catch occurred during a system call.

5 EIO I/O error

Some physical I/O error occurred during a read or write. This error may in 
some cases occur on a call following the one to which it actually applies.

6 ENXIO No such device or address

I/O on a special file refers to a sub-device that does not exist or is beyond 
the limits of the device.

7 E2BIG Arg list is too long

An argument list longer than 5120 bytes is presented to executive.

8 ENOEXEC Exec format error

A request is made to execute a file that, although it has the appropriate 
permissions, does not start with a valid magic number.

9 EBADF Bad file number

Either a file descriptor refers to no open file, or a read (write) request is 
made to a file that is open only for writing (reading).
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Table A-5. HIF Error Numbers Assigned (continued)

Number   Name Description

10 ECHILD No children

Wait and the process has no living or unwaited for children.

11 EAGAIN No more processes

In a fork, the system’s process table is full, or the user is not allowed to 
create any more processes.

12 ENOMEM Not enough memory

During an executive or break, a program asks for more memory than the
system is able to supply or else a process size limit would be exceeded.

13 EACCESS Permission denied

An attempt was made to access a file in a way forbidden by the protection
system.

14 EFAULT Bad address

The system encountered a hardware fault in attempting to access the
arguments of a system call.

15 ENOTBLK Block device required

A plain file was mentioned where a block device was required, such as in 
mount.

16 EBUSY Device busy

An attempt was made to mount a device that was already mounted, or an 
attempt was made to dismount a device on which there is an active file 
(open file, current directory, mounted-on file, or active text segment).

17 EEXIST File exists

An existing file was mentioned in an inappropriate context (e.g., link).

18 EXDEV Cross-device link

A hard link to a file on another device was attempted.

19 ENODEV No such device

An attempt was made to apply an inappropriate system call to a device, for 
example, to read a write-only device, or the device is not configured by the 
system.

20 ENOTDIR Not a directory

A non-directory was specified where a directory is required, for example, in 
a path name or as an argument to chdir.

21 EISDIR Is a directory

An attempt to write on a directory.
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Table A-6. HIF Error Numbers Assigned (continued)

Number   Name Description

22 EINVAL Invalid argument

This error occurs when some invalid argument for the call is specified. For 
example, dismounting a non-mounted device, mentioning an unknown 
signal in signal, or specifying some other argument that is inappropriate for
the call.

23 ENFILE File table overflow

The system’s table of open files is full, and temporarily no more open 
requests can be accepted.

24 EMFILE Too many open files

The configuration limit on the number of simultaneously open files has 
been exceeded.

25 ENOTTY Not a typewriter

The file mentioned in stty  or gtty  is not a terminal or one of the other
devices to which these calls apply.

26 ETXTBSY Text file busy

The referenced text file is busy and the current request can not be honored.

27 EFBIG File too large

The size of a file exceeded the maximum limit.

28 ENOSPC No space left on device

A write to an ordinary file, the creation of a directory or symbolic link, or the 
creation of a directory entry failed because no more disk blocks are 
available on the file system.

29 ESPIPE Illegal seek

A seek was issued to a socket or pipe. This error may also be issued for 
other non-seekable devices.

30 EROFS Read-only file system

An attempt to modify a file or directory was made on a device mounted 
read-only.

31 EMLINK Too many links

An attempt was made to establish a new link to the requested file and the 
limit of simultaneous links has been exceeded.

32 EPIPE Broken pipe

A write on a pipe or socket was attempted for which there is no process to 
read the data. This condition normally generates a signal; the error is 
returned if the signal is caught or ignored.

33 EDOM Argument too large

The argument of a function in the math package is out of the domain of the 
function.
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Table A-7. HIF Error Numbers Assigned (continued)

Number   Name Description

34 ERANGE Result too large

The value of a function in the math package is unrepresentable within
machine precision.

35 EWOULDBLOCK Operation would block

An operation that would cause a process to block was attempted on an 
object in non-blocking mode.

36 EINPROGRESS Operation now in progress

An operation that takes a long time to complete was attempted on a non-
blocking object.

37 EALREADY Operation already in progress

An operation was attempted on a non-blocking object that already had an
operation in progress.

38 ENOTSOCK Socket-operation on non-socket

A socket oriented operation was attempted on a non-socket device.

39 EDESTADDRREQ
Destination address required

A required address was omitted from an operation on a socket.

40 EMSGSIZE Message too long

A message sent on a socket was larger than the internal message buffer or 
some other network limit.

41 EPROTOTYPE Protocol wrong type for socket

A protocol was specified that does not support the semantics of the socket 
type requested.

42 ENOPROTOOPT Option not supported by protocol

A bad option or level was specified when accessing socket options.

43 EPROTONOSUPPORT
Protocol not supported

The protocol has not been configured into the system, or no 
implementation for it exists.

44 ESOCKTNOSUPPORT
Socket type not supported

The support for the socket type has not been configured into the system, or 
no implementation for it exists.

45 EOPNOTSUPP Operation not supported on socket

For example, trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT
Protocol family not supported

The protocol family has not been configured into the system or no 
implementation for it exists.
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Table A-8. HIF Error Numbers Assigned (continued)

Number   Name Description

47 EAFNOSUPPORT
Address family not supported by protocol family

An address was used that is incompatible with the requested protocol.

48 EADDRINUSE Address already in use

Only one usage of each address is normally permitted.

49 EADDRNOTAVAIL
Cannot assign requested address

This normally results from an attempt to create a socket with an address 
not on this machine.

50 ENETDOWN Network is down

A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable

A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset

The host you were connected to crashed and rebooted.

53 ECONNABORTED
Software caused connection abort

A connection abort was caused internal to your host machine.

54 ECONNRESET Connection reset by peer

A connection was forcibly closed by a peer. This normally results from a 
loss of the connection on the remote socket due to a timeout or a reboot.

55 ENOBUFS No buffer space available

An operation on a socket or pipe was not performed because the system 
lacked sufficient buffer space or because a queue was full.

56 EISCONN Socket is already connected

A connect request was made on an already connected socket; or a sendto 
or sendmsg request on a connected socket specified a destination when 
already connected.

57 ENOTCONN Socket is not connected

A request to send or receive data was disallowed because the socket was 
not connected and (when sending on a datagram socket) no address was 
supplied.

58 ESHUTDOWN Cannot send after socket shutdown

A request to send data was disallowed because the socket had already 
been shut down with a previous shutdown call.

59 ETOOMANYREFS
Too many references; cannot splice.
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Table A-9. HIF Error Numbers Assigned (concluded)

Number     Name Description

60 ETIMEDOUT Connection timed out
A connect or send request failed because the connected party did not
properly respond after a period of time. (The timeout period is dependen 
on the communication protocol.)

61 ECONNREFUSED
Connection refused
No connection could be made because the target machine actively 
refused it. This usually results from trying to connect to a service that is 
inactive on the foreign host.

62 ELOOP Too many levels of symbolic links
A pathname lookup involved more than the maximum limit of symbolic 
links.

63 ENAMETOOLONG
File name too long
A component of a pathname exceeded the maximum name length, or an 
entire pathname exceeded the maximum path length.

64 EHOSTDOWN Host is down
A socket operation failed because the destination host was down.

65 EHOSTUNREACH
Host is unreachable
A socket operation was attempted to an unreachable host.

66 ENOTEMPTY Directory not empty
A non-empty directory was supplied to a remove directory or rename  call.

67 EPROCLIM Too many processes
The limit of the total number of processes has been reached. No new 
processes can be created.

68 EUSERS Too many users
The limit of the total number of users has been reached. No new users may 
access the system.

69 EDQUOT Disk quota exceeded
A write to an ordinary file, the creation of a directory or symbolic link, or the 
creation of a directory entry failed because the user’s quota of disk blocks 
was exhausted; or the allocation of an inode for a newly created file failed 
because the user’s quota of inodes was exhausted.

70 EVDBAD RVD related disk error

1001 EHIFNOTAVAIL HIF service not available.
The requested HIF service is not implemented or is not available to the 
user program making the request.

1002 EHIFUNDEF HIF service is undefined
The HIF service referenced by the program is undefined. No valid HIF 
service with that service number exists.
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Appendix B

HIF Signal Processing

B.1 User Trampoline Code

The following 29K assembly language code is a listing of the User mode code
required to complete signal handler preparation tasks necessary for an HIF compliant
operating system. When address sigcode is reached, the operating system has already
saved the portion of the interrupt context frame down to the tav register onto the
user’s memory stack (see section 4.4).  This source code is contained in library files
delivered with the High C 29K product, and is listed here for reference and to aid
comprehension of the way different code fragments fit together in a real implementa-
tion.

Implementors who do not wish to use an array of signal handlers, but a single
C–level handler function, can change the code in the call C–level section. They need
not access the SigEntry array to obtain the address of their handler function.

.file ”signal.s”
; SigEntry is the address of an array of C–level user code signal
; handlers. They must return to the top–level before doing a
; sigret() return function. Nested signals are supported.

.externV_SPILL,V_FILL

.extern fill_handler ;In crt0.s

.align 4

.comm WindowSize,4

.data
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.global__SigEntry
__SigEntry
SigEntry:

.word 0 ;reserved

.word 0 ;adds. of #2 SIGINT handler

.word 0 ;reserved

.word 0 ;reserved

.word 0 ;reserved

.word 0 ;reserved

.word 0 ;reserved

.word 0 ;adds. of #8 SIGFPE handler

.word 0 ;reserved

.word 0 ;reserved

.word 0 ;reserved

.word 0 ;reserved

.word 0 ;reserved

.word 0 ;reserved #14 SIGALARM
 .rep 29 –14

.word 0 ;reserved
 .endr

.word 0 ;reserved #30 SIGUSR1

.word 0 ;reserved #31 SIGUSR2

.word 0

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Macros
 .macro push,sp,reg

sub sp,sp,4 ;decrement pointer
store 0,0,reg,sp ;store on stack

 .endm
;
 .macro pushsr,sp,reg,sreg

mfsr reg,sreg ;copy from special register
sub sp,sp,4 ;decrement pointer
store 0,0,reg,sp ;store on stack

 .endm
;
 .macro pop,reg,sp

load 0,0,reg,sp ;get from stack
add sp,sp,4 ;increment pointer

 .endm
;
 .macro popsr,sreg,reg,sp

load 0,0,reg,sp ;get from stack
add sp,sp,4 ;increment pointer
mtsr sreg,reg ;move to special register

 .endm

.reg v0,gr96

.reg v1,gr97
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.reg v2,gr98

.reg v3,gr99

;================================================= Process Signal
; About to deliver a signal to a user mode signal handler.
; The state of all the registers (except for msp,chc and rab)
; is the same as when the process was interrupted.
;
; We must make the stack and window consistent before calling the
; handler. The orignal rab value is on the stack. The interrupt 
; handler placed rfb–Windowsize in rab. This is required to 
; support nested interrupts.
;
; Note that the window becomes inconsistent only during certain
; critical sections in spill,fill,longjmp and sigcode.
; rfb – rab > windowsize => we are in spill
; rfb – rab < windowsize => we are in fill
; gr1 + 8   > rfb        => we are in long–longjmp case
; In case of spill,fill and lonjmp; rab is modified first,
; so if we are in one of these critical sections,
; we set rab to rfb – WINDOWSIZE.
;

.equ SIGCTX_UM_SIZE, 39*4 

.equ SIGCTX_RFB,(37)*4        ;User–Mode save
;

.equ SIGCTX_SM_SIZE, 12*4   ;Supervisor–Mode saved

.equ SIGCTX_SIG,(11)*4 + SIGCTX_UM_SIZE

.equ SIGCTX_GR1,(10)*4 + SIGCTX_UM_SIZE

.equ SIGCTX_RAB,(9)*4 + SIGCTX_UM_SIZE

.equ SIGCTX_PC0,(8)*4 + SIGCTX_UM_SIZE

.equ SIGCTX_PC1,(7)*4 + SIGCTX_UM_SIZE

.equ SIGCTX_PC2,(6)*4 + SIGCTX_UM_SIZE

.equ SIGCTX_CHC,(3)*4 + SIGCTX_UM_SIZE

.equ SIGCTX_OPS,(1)*4 + SIGCTX_UM_SIZE

.equ SIGCTX_TAV,(0)*4 + SIGCTX_UM_SIZE
;

.globalsigcode
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––– sigcode
sigcode:

push msp,lr1 ;push R–stack support
push msp,rfb
push msp,msp ;M–stack support
sub msp,msp,3*4 ;space for Floating Point

;
pushsr msp,tav,IPA ;User mode specials
pushsr msp,tav,IPB
pushsr msp,tav,IPC
pushsr msp,tav,Q

;
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sub msp,msp,29*4 ;push gr96–gr124
mtsrim cr,29–1
storem  0,0,gr96,msp

;–––––––––––––––––––––––––––––––––––––––––––––––––  R–Stack fixup
R_fixup:

const v0,WindowSize ;get register cache size
consth v0,WindowSize
load 0,0,v0,v0
add v2,msp,SIGCTX_RAB
load 0,0,v2,v2 ;get interrupted rab value
sub v1,rfb,v2 ;determine rfb–rab<=WINDOW_SIZE
cpgeu v1,v1,v0 ;
jmpt v1,nfill ;jmp if spill or normal  interrupt
add v1,gr1,8
 cpgtu v1,v1,rfb ;interrupted longjmp can look like
jmpt v1,nfill ;fill, test for long–longjmp 
 nop ;interruption, jmp if gr1+8 > rfb

; Fixup signal stack to re–start interrupted fill
; backup pc1 –– this is needed for the partial fill case.
; Clear chc so an interrupted load/store does not restart.
; Reset rab to a window distance below rfb,rab shall be
; decremented again on re–starting the interrupted fill.
; The interrupt handler set rab=rfb–WindowSize.
;
ifill:

add v0,msp,SIGCTX_RAB + 4
push v0,rab ;resave rab=rfb–WindowSize
const v2,fill +4
consth v2,fill +4
push v0,v2 ;resave PC0
sub v2,v2,4
push v0,v2 ;resave PC1
const v2,0
sub v0,v0,3*4 ;point to CHC
push v0,v2 ;resave CHC=0

;
nfill:

cpgtu v0,gr1,rfb ;if gr1 > rfb then gr1 = rfb
jmpt v0,lower
 cpltu v0,gr1,rab ;if gr1 < rab then gr1 = rab
jmpt v0,raise
 nop

;––––––––––––––––––––––––––––––––––––––––––––––––––––– Dummy Call
sendsig:

.equ RALLOC,4*4 ;make space for function calls
sub gr1,gr1,RALLOC
asgeu V_SPILL,gr1,rab
add lr1,rfb,0 ;set lr1 = rfb
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add v1,msp, SIGCTX_SIG
load 0,0,lr2,v1 ;restore signal number
sub v1,lr2,1 ;get handler index
sll v1,v1,2 ;point to addresses

;––––––––––––––––––––––––––––––––––––––––––––––––––– call C–level
;Handler must not use HIF services other than the _sigret() type.

const v0,SigEntry
consth v0,SigEntry
add v0,v0,v1
load 0,0,v0,v0 ;determine if handler registered
cpeq v1,v0,0
jmpt v1,NoHandler
 nop
calli lr0,v0 ;call C–level signal handler
 nop

;
;––––––––––––––––––––––––––––––––––––––––––––––––– default return
NoHandler:

jmp __sigdfl
 nop

;––––––––––––––––––––––––––––––––––––––––––––––––––– support code
raise:jmp sendsig

 add gr1,rab,0
lower:jmp sendsig

 add gr1,rfb,0
;
;–––––––––––––––––––––––––––––––––––––––––––––––––––– repair_regs

.macro  repair_regs
mtsrim cr,29–1 ;restore gr96–gr124
loadm 0,0,gr96,msp
add msp,msp,29*4

;
popsr Q,tav,msp ;restore special registers
popsr IPC,tav,msp
popsr IPB,tav,msp
popsr IPA,tav,msp

;
add msp,msp,3*4 ;space for Floating Point

;R–stack already repaired
add msp,msp,2*4 ;repair msp to User mode
pop lr1,msp ;signal entry value

 .endm
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;––––––––––––––––––––––––––––––––––––––––––––––––– repair_R_stack
; The handler function may request a signal return OS
; service,therefor avoiding the FILL in the prologue of
; the handler function. The code below replaces the possibly
; omitted prologue,required to return the register stack to
; the position at which it was interrupted (’gr1 the 
; is interrupted register stack pointer.)
; A single FILL may not be able to restore the complete stack
; as a FILL can only restore 126 registers.
;
; if ’gr1 < ’rfb–WindowSize 

Yes LB = ’rfb–WindowSize,(signaled during a SPILL)
; No  LB = ’gr1,(interrupted cache < 126 regs)
;
; if LB =< rfb Yes FILL from  rfb to ’rfb (partial cache FILL)
;              No  FILL from  LB  to ’rfb (complete cache FILL)
;
; If this *FILL* where interrupted we have no means of restarting
; it like an ordinary FILL. So we make sure no registers are
; damaged by an interrupt by setting gr1=rab for the duration
; of the *FILL*. this marks the cache as fully in use. A SPILL
; would be generated by an Interrupt of the *FILL*.
;
 .macro  repair_R_stack

add     gr96,msp,SIGCTX_GR1
load    0,0,gr98,gr96        ;gr98 = interrupted ’gr1
add     gr96,msp,SIGCTX_RFB
load    0,0,gr99,gr96        ;gr99 = interrupted ’rfb

;
; if ’gr1 < ’rfb–WindowSize 

Yes LB = ’rfb–WindowSize,(signaled during a SPILL)
; No  LB = ’gr1,(interrupted cache < 126 regs)

const gr97, 512
sub gr97,gr99,gr97 ;’rfb–WindowSize
cpltu gr96,gr98,gr97 ;test ’gr1 < ’rfb–WindowSize
jmpf gr96,$1 ;initialise LB=’gr1
 add gr1,rab,0 ;mark cache all in use
add gr98,gr97,0 ;set LB=’rfb–WindowSize

$1: ;LB in gr98
; if LB =< rfb Yes FILL from  rfb to ’rfb (partial cache FILL)
;              No  FILL from  LB  to ’rfb (complete cache FILL)

cpleu gr96,gr98,rfb ;test LB =< rfb
jmpf gr96,$2 ;default complete fill LB–>’rfb
 nop
add gr98,rfb,0 ;fill rfb–>’rfb (partial)

$2: ;lower fill adds.(LA) in gr98
cpeq gr96,gr99,rfb ;test if ’rfb==rfb, jump if
jmpt gr96,$3 ; partial fill is zero in size
 const tav,(0x80<<2) ;prepare for *FILL*
or tav,tav,gr98
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mtsr IPA,tav ;ipa= LA<<2
sub     tav,gr99,gr98 ;cache fill LA–>’rfb
srl     tav,tav,2 ;convert to words
sub tav,tav,1
mtsr    cr,tav
loadm   0,0,gr0,gr98 ;fill from LA–>’rfb

;
$3: add     rfb,gr99,0 ;move rfb up to ’rfb

sub     rab,gr97,0 ;assign rab to ’rfb–WindowSize
add     gr96,msp,SIGCTX_GR1
load    0,0,gr98,gr96 ;gr98 = interrupted ’gr1
add     gr1,gr98,0 ;move gr1 up to ’gr1
nop

  .endm

B.2 Library Glue Routines to HIF Signal Services

The following five assembly level routines are used by  C language application
programs to request HIF services supporting signals. The first four services are used
to cause signal handler termination. Except for _sigdfl(), the difference between
these services is in how the processor PC buffer registers will be restored. It is pos-
sible to restart an instruction or skip the instruction being executed at the time signal
processing started (see Appendix A). The _sigdfl() routine is used to request the de-
fault HIF operating service return service. The action taken is operating system im-
plementation dependent. The _sigsend() service can be used request a signal be sent
to the HIF application. This is useful, as it enables a software generated signal to test–
out the signal handling system.

;====================================================== _sigret()
.global__sigret

__sigret:
repair_R_stack
repair_regs
const tav,323 ;HIF _sigret
asneq 69,gr1,gr1
halt ;commit suicide if returns

;====================================================== _sigdfl()
.global__sigdfl

__sigdfl:
repair_R_stack
repair_regs
const tav,322 ;HIF _sigdfl
asneq 69,gr1,gr1
halt ;commit suicide if returns
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;====================================================== _sigrep()
__sigrep:

.global__sigrep
repair_R_stack
repair_regs
const tav,324 ;HIF _sigrep
asneq 69,gr1,gr1
halt ;commit suicide if returns

;====================================================== _sigskp()
.global__sigskp

__sigskp:
repair_R_stack
repair_regs
const tav,325 ;HIF _sigskp
asneq 69,gr1,gr1
halt ;commit suicide if returns

;===================================================== _sendsig()
; lr2 = signal number

.global _raise

.global__sendsig
_raise:
__sendsig:

const tav,326 ;HIF sendsig
asneq 69,gr1,gr1
jmpi lr0
 nop

B.3 The Library signal() Routine for Registering a Handler

The following code signal() routine is part of the HIF signal support library. It is
used to enter the address of a handler routine which is called when the indicated sig-
nal occurs. Handler addresses are stored in an array, indexed by signal number. The
signal trampoline code (see section B.1) looks–up the table when a signal occurs and
calls the registered handler. The second routine, _signal(), is the assembly language
glue routine used to request the HIF signal service.

;======================================================= signal()
; signal(sig_number, handler);
;
; lr2 = signal number
; lr3 = handler address

.global_signal
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_signal:
; the memory variable WindowSize must be initalised at the
; start when rfb and rab are a window size apart.

const v0,WindowSize ;get register cache size
consth v0,WindowSize
load 0,0,v1,v0
cpeq v1,v1,0
jmpf v1,WindowSizeOK
 sub v1,rfb,rab ;rfb–rab = WINDOW_SIZE
store 0,0,v1,v0

WindowSizeOK:
const v1,SigEntry
consth v1,SigEntry
sub v3,lr2,1 ;get handler index
sll v3,v3,2 ;pointer to addresses
add v1,v1,v3
store 0,0,lr3,v1 ;save new handler
const lr2,sigcode
consth lr2,sigcode
;Fall through to __signal

;====================================================== _signal()
.global__signal

__signal:
const gr96,RegSigHand ;User mode accessible copy
consth gr96,RegSigHand ; of handler address
store 0,0,lr2,gr96
const tav,321 ;HIF signal
asneq 69,gr1,gr1
jmpi lr0
 nop

.data

.global RegSigHand
RegSigHand .word 0



521Appendix B       HIF Signal Processing



522

Appendix C

Software Assigned Trap Numbers

The 29K processor hardware assigns tasks to most traps below number 64. De-
buggers and operating systems assign tasks to trap numbers 64 and above. Over time,
a number of the available trap numbers have been utilized by various tools and prod-
ucts. Table C-1 below lists the widely known trap number assignments. Of course it
is possible that a company may make changes to a product in this area.

When a trap number is required for a new operating system or support service, it
is best to avoid current trap number usage. This may enable virtualizing the new ser-
vice on top of existing operating systems. For example, the HIF system call number
(69) is different from the 4.3bsd UNIX system call number (66); this enables the
UNIX operating system to distinguish HIF service calls and support them along with
native UNIX system calls.

Table C-1. Software Assigned Trap Numbers

Trap Name Number Description

V_BKPT 0 MiniMON29K instruction breakpoint
trap, processor illegal opcode trap.

V_TRACE 15 Processor trace trap defined by
  hardware..

V_SPILL 64 Spill and fill support for high level
V_FILL 65  language calling convention.

continued
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Table C-2. Software Assigned Trap Numbers (continued)

Trap Name Number Description

V_BSDCALL 66 4.3bsd UNIX system call.
V_SYSVCALL 67 System V UNIX system call

V_MINIXCALL 68 Minix system call.
V_HIFCALL 69 HIF system call.
V_BRKCALL 70 BitBlocks Inc. realtime kernel support.
V_TRAP_71 71 DebugCore 2.0
V_KSPILL 72 Reserved for Supervisor mode
V_KFILL 73  spill and fill support.
V_DELAYED_TIMER 74 JMI Inc. C EXECUTIVE support
V_DBG_MSG 75 MiniMON29K debug message trap.
V_OS_MSG 76 MiniMON29K OS message trap.
V_GDB_BKPT 77 GDB breakpoint.

 ADA_RTS_TRAP 80 Ada run–time system call
                                    (function code in gr116).

ADA_TDM_TRAP 81 Ada Target Debug Monitor (TDM)
                                    service request.

ADA_RAISE_TRAP 82 Used to raise an exception
                                    (raise code is in gr90).

ADA_CONSTRAINT_TRAP 83 Raise constraint error.
ADA_NUMERIC_TRAP 84 Raise numeric error.
ADA_PROGRAM_TRAP 85 Raise program error.
ADA_STORAGE_TRAP 86 Raise storage error.
ADA_TASKING_TRAP 87 Raise tasking error.

V_SVSCTRAP 80 Multiprocessor Toolsmiths Inc.
V_IOTRAP 81  pSOS operating system support.
V_IRETTRAP 82
V_DEBUG 83

V_AMD_BIOS 88–89 AMD Laser printer support software

continued
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Table C-3. Software Assigned Trap Numbers (concluded)

Trap Name Number Description

V_PCL5_TASKER 90–93 PCL5 operating system
V_OSE 94–97 OSE RTOS system support
V_OSBOOT 98 Export OS–boot information

V_EMUALTE 140–159 Instruction emulation support

V_INTR3_SUPPORT 220–252 Used for INTR3 overload support.
V_RESET 255 Used by MiniMON29K to indicate

 processor reset.



525Appendix B       HIF Signal Processing



526

Appendix D

DebugCore 2.0 Specification

D.1 INTRODUCTION

MiniMON29K is a collection of software components which can be used to de-
bug embedded 29K code. MiniMON29k is not intended to be a standalone monitor
but requires the support of an intelligent host computer. Running on the host, the
MonTIP program communicates with the DebugCore software running on the target
29K processor. Figure D-1 shows the 29K code modules of an example system using
the DebugCore in conjunction with the OS–boot operating system. The DebugCore
can operate in conjunction with any 29K operating system. This appendix explains
the operation of the DebugCore and its attended Message System and Configuration
modules.

The use of the DebugCore is an inexpensive way to develop application or oper-
ating system software. Most AMD demonstration and evaluation boards contain a
version of MiniMON29K modules and OS–boot in on–board ROM. OS–boot is a
simple operating system which satisfies the HIF system calls made by application
code linked to the standard libraries.

There is no ASCII interface to the DebugCore. All communication is via binary
formatted message packets which are sent between MonTIP and the DebugCore.

MonTIP is a UDI conformant Target Interface Process (TIP) which runs on a
host processor such as a SUN workstation or IBM PC. The TIP operation is directed
by the Debugger Front End (DFE) process which communicates with the actual user.
The DFE and TIP processes communicate via an Inter–Process Communication
(IPC) mechanism which implements the Universal Debugger Interface (UDI) proto-
col.
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Figure D-1. 29K Target Software Module configuration
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The MiniMON29K tool bundle includes the MonDFE user interface. Other
popular DFEs are XRAY, GDB, SDB and CDB. The MonDFE user command “ ver”
can be used to determine the version numbers of all the MiniMON29K components
in use.

D.2 REGISTER USAGE

The DebugCore does not require any processor registers to be reserved for its
use. Any registers temporarily used by the DebugCore or the message system will be
restored. This means debugging operating system or application code does not im-
pact on register availability.

The approach taken with the DebugCore is to not acquire or reserve processor
resources unless directed to by the user. For this reason the DebugCore does not
install its own interrupt and trap handler entry points into the Vector Table. The ini-
tializing operating system is required to do this.

D.3 DEBUGCORE 1.0 ENHANCEMENTS

The DebugCore 1.0 offered limited instruction breakpoint capabilities. Break-
points could not be set on a per–task bases unless on–chip Instruction Break Control
(IBC) registers were used. The DebugCore 2.0 has been enhanced to improve its op-
eration when used in conjunction with a complex operating system.
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 The DebugCore 2.0 became available after August 1993, previously the origi-
nal DebugCore 1.0 was widely used. The new DebugCore will work with all versions
of MonTIP which where intended to operate with DebugCore 1.0.  When linking the
new DebugCore 2.0 with an operating system, such as OS–boot 1.0 it will be neces-
sary to add code to operating system to correctly initialize vector table entry 71.
When this is done, the operating system previously integrated with DebugCore 1.0
will operate with the new DebugCore 2.0. Note, only the latest version of OS–boot
performs the necessary Vector Table initialization (see section 7.3.4).

There were two major additions made to DebugCore 2.0. The first enables Mon-
TIP to request an Operating System (OS) service function to be run. The second ex-
tends the breakpoint capability. These additions were achieved by using Vector Table
entry 71 to point to a data structure shared by the OS and the DebugCore 2.0, see
Figure D-2 below.

To make use of the new DebugCore 2.0 services, MonTIP has been enhanced to
create version 3.0. MonTIP versions prior to this release will work with DebugCore
2.0 only if the OS data fields of the shared data structure are initialized to zero by the
29K operating system.

D.3.1 Executing OS Service Functions

It is the 29K operating system’s responsibility to initialize it’s members of the
shared data structure pointed to by Vector Table entry 71. The DebugCore fills in the
remaining fields of the data structure when dbg_control() is called. The first entry in
the table is the address of the message system function, msg_send(). This is useful
when the OS–boot operating system is overlaid with a new operating system. The
replacement OS being down loaded via the message system. The address of the mes-
sage send function was linked with the original OS–boot code. The new OS can ob-
tain the address by examining the shared memory structure. This enables the OS to
continue using the message system.

DebugCore 2.0 supports a command known as IEXEC. The IEXEC message
sent by MonTIP provides an index and five parameters to the DebugCore. The index
is an offset into the shared data structure. It is used to obtain the address of a function
which will be called and passed the five related parameters. The minimum value for
the index, when accessing OS specific functions, is 21. Lower index values can be
used, but they relate to shared data structure addresses whose function has been pre-
defined by the DebugCore.

Functions called by the IEXEC or EXEC message need not always have five
in–coming parameters, they may be defined to have less without any difficulties. The
first 16–words of return information generated by the function invoked by the IEX-
EC command are returned to MonTIP. Most functions are likely to have a single word
or no return data.



529Appendix D       DebugCore Specification

17

21

&msg_send()

&msg_ser_baud()

data structure in memory

vector table
        VAB[0]

       VAB[71]

. . .optional
OS specific
data

Figure D-2. Data Structure Shared by Operating System and DebugCore 2.0
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0
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6
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D.3.2 Per–Process Breakpoints

The DebugCore 1.0 set instruction breakpoints at physical memory addresses.
The memory must be writable as the original instruction is temporarily replaced with
an illegal opcode instruction. When a processor with Breakpoint Control (IBC) reg-
isters is used, breakpoints can be at physical or virtual addresses. The IBC registers
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are set for physical or virtual operation depending on operating system supplied in-
formation –– this is explained in detail below. DebugCore 2.0 allows the  Break–PID
(BPID) to be specified when the breakpoint is requested by MonTIP.

D.3.3 Current PID

The 29K assumes the current PID is zero whenever the process is operating in
Supervisor mode. However, many operating systems run separate tasks in Supervi-
sor mode and still wish to support per–process breakpoints. When using virtual
memory addressing, the 29K maintains the current PID in a field of the Memory
Management Unit (MMU) register. However some processors, such as the
Am29200, do not support an MMU and have no control register.

DebugCore 2.0 takes the current PID from the PID_p field of the shared data
structure. Field PID_p contains the physical address of a 32–bit memory location
which identifies the current PID. If the field is zero then the MMU register is used to
obtain the current PID. When the PID_p option is used, it is likely that breakpoints
will be located at physical addresses. However, this restriction is not imposed by the
DebugCore.

An operating system can now run multiple tasks each executing in Supervisor
mode. When a task switch occurs, the OS must update the 32–bit memory location
used to maintain the current PID.

D.3.4 Virtual or Physical Breakpoints

OS–Boot typically runs application programs in User mode with address
translation turned on. This is supported by DebugCore 1.0 because the virtual to
physical address translation is one–to–one.

When instruction breakpoints are established with DebugCore 2.0 the shared
data structure is used to determine if the breakpoint is at a physical or virtual address.
If the BPID is greater than 0 (User mode) then field user_CPS is tested. This field
should be initialized by the OS to contain a copy of the CPS register value in use when
execution is in User mode. If the specified BPID is 0 then field super_CPS is tested.
These fields are tested to determine the equivalent PI–bit setting. When the PI–bit is
set in the CPS register, physical addressing is used. Virtual breakpoints are rejected if
there are no available IBC or DBC registers.

Some regions of operating system code may run Supervisor mode with alter-
nately virtual and physical addressing. For example, Freeze mode code always runs
with physical addressing. In this case DebugCore 1.0 type set–breakpoint messages
must be used to establish breakpoints at physically addressed locations.

There is always some danger in mixing DebugCore 1.0 breakpoints with De-
bugCore 2.0 breakpoints. As 1.0 type breakpoints will match against any identical
address value, regardless of the current PID and the PI–bit values.
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D.3.5 Breakpoint Functions

The set–breakpoint message can specify the physical address of a function to
call when the ‘other’ breakpoint conditions have been met. If no function is selected
by the set–breakpoint message then the break_func field of the shared data structure
supplies the break function address. If the function address supplied by the set–
breakpoint message is zero, or if the break_func field is zero then no function will be
called.

The break function is called with two parameters: break_func(address, PID). If
the function returns a none–zero value then the breakpoint is taken, otherwise the
‘other’ qualifying conditions are updated and execution continues.

With multi–tasking operating systems the break_func is a useful way for the
DebugCore to inform the OS that a task has hit a breakpoint. The OS may then decide
to block the task from further execution.

D.4 MODULE INTERCONNECTION

The following sections describe the mechanisms used to connect the various
29K modules. The methods and symbols used with the DebugCore 1.0 are main-
tained with DebugCore 2.0. The only addition being the introduction of the shared
data structure pointed to by Vector Table entry 71.

Procedure calls made between modules comply with the AMD 29K calling con-
vention. Briefly this means parameters are passed in local registers starting with lr2,
lr3, etc; and return values are passed in global registers gr96–gr111. Where a proce-
dure deviates from this rule the difference are described.

A symbol such as dbg_errno will appear as _dbg_errno in the module symbol
table and must be accessed as _dbg_errno is assembly level code modules. Symbols
which are only ever accessed by assembly level code, such as vector table entry
dbg_V_msg, are not preceded by the ‘_’ character.
The symbols in each module are preceded by a 2 or 3 character prefix which identifies
their source module. For example all symbols in the DBG module are prefixed by
dbg_.

D.4.1 The DebugCore 2.0

During the design of the DebugCore it was intended that the code module would
be supplied in a linkable form. There would be no requirement to compile the source
code for the DebugCore module. Linkable image files dbg.o and dbg_core.o imple-
ment the DebugCore services. Most of the code was written in C for file dbg_core.o;
with file dbg.o supplying the necessary assembly code glue routines. Figure D-3
shows the module interconnection symbols.
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Figure D-3. DebugCore 2.0 Module

DebugCore

DBG

msg_send()
msg_sbuf_p

dbg_V_msg
msg_wait_for()
msg_rbuf_p

cfg_peek()
cfg_poke()
cfg_core_enter()
dbg_errno

dbg_control()
dbg_iret
dbg_coredump

dbg_shadow_os
dbg_shadow_timer

dbg_V_bkpt
dbg_V_trace
dbg_trap
dbg_m_trap

os_cold_start
os_warn
os_V_illop
VAB[71]

The following subsections describe the operation of each of the interface sym-
bols. There is no change from the DebugCore 1.0 operation.

return_struct dbg_control (int  dbg_trap_num,  int* os–info_p)

This is the only function entry point to the DebugCore. The operating system
calls this function after it has called msg_init() and completed cold–start initializing
of the processor. Cold–start initialization is defined to be the one–time preparations
performed from processor reset until dbg_control() is called.

The function is passed two parameters. The first is a copy of the value held in
memory location dbg_trap_num. This is required to prevent context saving when a
coredump had already been performed. When dbg_control() is called, the current
processor context is saved just as if a breakpoint had occurred. For this reason,
dbg_control() should be called with traps enabled. The context is restored when an
INIT message is received by the DebugCore. The return address of dbg_control() is
known as the beginning of OS warm–start code. This code performs the OS initial-
izations required before each new program’s execution. An INIT message is normal-
ly received after a new program has been installed in 29K memory.

When dbg_control() is called, execution of 29K OS or application code is
halted and a HALT message is sent to MonTIP. This can be prevented If the first pa-
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rameter passed to dbg_control() is set to V_NOBRK (254); in such case dbg_con-
trol()  returns immediately after initializing DebugCore operation.

The second parameter passed is a pointer to a data structure prepared by the OS.
The structure is shown in Figure D-4 below and describes available board resources.
The DebugCore does not require this information but usually passes it to MonTIP
which makes it available to the debug tool user. The prefixes ‘r_’, ‘d_’ and ‘i_’ refer
to ROM, data and instruction memory spaces. With 3–bus 29K processors, they can
all be different. With 2–bus processors, they are the same, and the data values should
be repeated. Similarly, microcontrollers have only one off–chip address space. How-
ever, the memory–space fields can be used to define the separate region sizes (‘d_’
and ‘i_’ used together for DRAM, and ‘r_’ for the ROM region).

i_mem_size
i_mem_start

d_mem_size
d_mem_start

r_mem_size
r_mem_start

OS_version
Am29027_prl

higher address

Figure D-4. OS Information Passed to dbg_control()

lr2

When dbg_control() returns it provides the OS with information taken from the
INIT message about the loaded program. Figure D-5 shows the format of the return
data.

The operating system can use the return information to prepare for program
execution. This processes is known as OS warm–start code execution.

register stack size
start of command line args (argv)

this register always 0
Operating System control info.

gr105
gr104

gr103
gr102

start address of program data
end address of program data

memory stack size
first instruction of user loaded code

gr101
gr100

gr99
gr98

start address of program text
end address of program textgr97

gr96

Figure D-5. Return Structure from dbg_control()
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dbg_iret

When a 29K processor issues an IRET instruction the Old Processor Status
(OPS) register is copied to the Current Processor Status (CPS) register. Controlling
of single stepping is achieved with the Trace Enable (TE) and Trace Pending (TP)
bits in the CPS register. These two bits are maintained by the DebugCore and not the
operating system. When the OS initially wishes to issue an IRET it must make a jump
to address dbg_iret instead. The Debugcore will then update the trace control bits
and issue an IRET on behalf of the OS. Note, it is only the initial IRET from the oper-
ating system to application code which need to be replaced by a jump to dbg_iret.

dbg_coredump

The DebugCore supports coredumping on processor reset as an option. When a
reset occurs execution continues from address 0. A jump to dbg_coredump can be
placed at this location. When the DebugCore is entered in this way the context of the
processor is saved and variable dbg_trap_num is set to V_RESET (255) and execu-
tion is continued at label os_cold_start.

Execution of OS cold–start code causes dbg_control() to be called; but, due to
selecting the V_RESET option, the context is not saved again when reentering the
DebugCore. A HALT message will be sent to MonTIP and the user can examine the
saved coredump state. Normal operation is  restarted by sending a RESET message to
the DebugCore. This causes the dbg_trap_num variable to be set to zero, and execu-
tion to start at address os_cold_start.

_dbg_shadow_os

When the DebugCore gains control of the processor it copies the register values
to shadow memory locations. All access to registers is then normally performed to
corresponding memory locations. When 32–bit memory location dbg_shadow_os is
set to zero, global registers gr64–gr95 are not shadowed but accessed directly. This
enables interrupt handlers, which run in the context of the DebugCore, to make
changes to OS–space registers which will not be over–written when the DebugCore
restores context.

The DebugCore initializes dbg_shadow_os to –1 and the alternative option is
very little used. However, setting it to zero would be best accomplished in function
cfg_core_enter().

_dbg_shadow_timer

The DebugCore will not shadow the timer control registers TMR and TMC if
this 32–bit variable is set to zero. It is initialized to –1 by the DebugCore and typicaly
never modified. The timer is normally disabled by code in the cfg_core_enter()
function. If the timer were enabled it would be necessary to clear dbg_shadow_tim-
er to prevent the timer control registers being wrongly updated when the DebugCore
restores context.
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dbg_V_bkpt

Most 29K processors do not have Instruction Break Control (IBC) registers.
Consequently the DebugCore implements breakpoints by temporarily placing illegal
opcode instructions at the corresponding RAM memory locations. Note, when IBC
are available they are used–up first before illegal opcode instructions are attempted.
The operating system must place the DebugCore entry address dbg_V_bkpt into
vector number 0 of the processor vector table.

dbg_V_trace

The DebugCore utilizes the processor Trace mechanism to control single step-
ping of instructions. The Operating system must place the DebugCore address
dbg_V_trace in vector number 15 of the processor vector table.

dbg_trap

There are many entries in the processor vector table which the operating system
has no appropriate action. For example, trap number 5 (Protection Violation), could
result in the OS generating a HALT instruction. It is much better to direct these vec-
tors to the DebugCore entry dbg_trap. When this happens a HALT message with the
associated trap number is sent to MonTIP. The DFE can then report an access viola-
tion to the user.

When the jump to dbg_trap is taken the OS must first place the trap number in
register gr64 or memory location dbg_trap_num.

The DebugCore 1.0 offered limited instruction breakpoint capabilities. Break-
points could not be set on a per–task basis unless Instruction Break Control (IBC)
registers were used. The DebugCore 2.0 has been enhanced to improve its operation
when used in conjunction with a multi–tasking operating system.

dbg_m_trap

Certain 29K processors support IBC registers and Monitor mode debugging.
Monitor mode is entered when a trap is taken while the DA bit is set. When the pro-
cessor enters Monitor mode its starts execution at address 16. The OS must place at
this address a jump to DebugCore entry dbg_m_trap.

When a 29K processor takes a Warn trap it also starts execution at address 16.
For this reason the DebugCore returns control to the OS at label os_warn if
dbg_m_trap is wrongly entered as a result of a WARN trap.

dbg_V_msg

A new message may arrive at any time and if it is for the DebugCore then vector
V_DBG_MSG (75) is taken. The OS is required to install the handler address
dbg_V_msg in the processor vector table. The message system identifies Debug-
Core messages by their class number, less than 64 identifies the DebugCore. Mes-
sage classes 64 and greater are sent to the operating system.
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os_cold_start
This is the starting address of operating system cold–start code. For processors

which do not use the dbg_coredump option it is likely placed at address 0. Addition-
ally, if the processor supports Monitor mode then cold–start code is likely to be
placed at address 24, just after the jump to dbg_m_trap. The DebugCore causes
execution to start at the address given by the os_cold_start field of the shared
memory structure when a RESET message is received. However, if this field value is
zero then execution continues at linked address label os_cold_start.

os_warn
This is the label at the start of OS code dealing with a Warn trap. For processors

without Monitor mode it should be at address 16, otherwise some higher address. The
DebugCore causes execution to start at the address given by the os_warn field of the
shared memory structure when the processor warn ipin is activated. However, if this
field value is zero then execution continues at linked address label os_warn.

os_V_illop
The DebugCore is given control of the illegal opcode trap by the operating sys-

tem. However, a real illegal opcode trap may occur and the DebugCore must return
control to the OS. This is achieved by entering the OS at address os_V_illop supplied
by the shared memory structure. The OS may at this point return control to the De-
bugCore at label dbg_trap. If this is done then gr64 should not be set to zero as this
will cause the DebugCore and OS to enter an endless loop. However, if this field val-
ue is zero then execution continues at linked address label os_V_illop.

D.4.2 The Message System 1.0

The message system provides a means by which the operating system and the
DebugCore can communicate with MonTIP and ultimately the DFE. Communica-
tion with MonTIP is via message packets. Each packet has a two 32–bit word header.
The first word specifies the message Class and the second the message Length in by-
tes. Note, the length does not include the 8–bytes of the header. File dbg_core.h  de-
fines the AMD reserved message Class numbers (numbers less than 128). Figure D-6
lists the messages received by the DebugCore. There are corresponding messages
sent by the DebugCore.

The operating system uses the message system to request HIF services (for ser-
vice numbers less than 256) and for standard input and output channel data.

Figure D-7 shows the module interconnection symbols. The module interacts
with the DebugCore, the OS and any additional communications module; such as the
serial driver module (SER). When the message system is used with hardware such as
PC plug–in boards, which have shared memory, there is no need for an additional
communications driver module.
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RESET

STATUS_REQ
READ_REQ

CONFIG_REQ

WRITE_REQ
SET_BKPT

BKPT_STAT
COPY
FILL
INIT
GO

STEP
BREAK

FIND_REQ
CRC_REQ

EXEC_REQ
IEXEC_REQ

RM_BKPT

Reset processor
Request configuration info.
Request status info.
Read memory or registers
Write memory or registers
Set a breakpoint
Remove a breakpoint
Enquire breakpoint status
Copy data between mem./reg.
Fill mem./reg. with pattern
Prepare to execute a program
Start or continue execution
Single or multi–step execution
Step execution
Find patern in mem./reg.
Check range of memory
Execute a function
Execute a function from table

Figure D-6. DebugCore 2.0 Receive Messages

Figure D-7. Message System 1.0 Module

message system
MSG

msg_send()
msg_sbuf_p

msg_wait_for()
msg_rbuf_p

msg_init()
msg_V_msg
os_V_msg

ser_init()
ser_send()
ser_wait_for()

msg_V_arrive
msg_next_p

void msg_init ()

The operating system must call msg_init() before sending any messages to
MonTip. This is normally done during OS cold–start. Additionally, the OS must call
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msg_init() before it calls dbg_control(). This enables the DebugCore to start using
the message system.

msg_V_msg
This label (called msg_intr in older code versions) is the entry address for the

interrupt handler dealing with message reception. If the 29K can be interrupted when
a complete message is available, such as when a message is placed in shared memory
by another processor, the OS should place address msg_V_msg in the appropriate
vector table entry.

struct message *msg_rbuf_p
The message system passes received messages via this pointer. For example,

when the DebugCore accesses a new incoming message it uses msg_rbuf_p to point
to the start of the message.

struct message *msg_sbuf_p
The msg_send() function sets the msg_sbuf_p variable to point to the start of

the buffer currently being sent by the 29K processor. The message support mecha-
nism must ensure that this pointer is set to zero after the current message has been
received by the TIP on the host processor. For message systems which rely on
UARTs, the UART driver must ensure that msg_sbuf_p is set to zero when the last
character of the current message has been sent.

int msg_send (struct message *message_pointer)
This function is used to send all messages to MonTIP. Both the OS and Debug-

Core use this function. It is passed a pointer to the start of the message and returns the
number of characters accepted for transmission. If the message system is currently to
busy to accepted the message, the function returns –1.

int msg_wait_for ()
The DebugCore can receive a message at any time if interrupts are enabled.

However when the DebugCore is waiting for a message it calls msg_wait_for(). This
function returns zero immediately if no message is available and the DebugCore
must wait for a message system interrupt. If the message system is controlling the
communications hardware via polling (with interrupts turned off), then
msg_wait_for() will return –1 when a complete new message is received.

os_V_msg
When the message system operates with interrupts enabled a message may be

received at any time from MonTIP. If the message class is 64 or greater the operating
system will be interrupted. The OS must install the entry address os_V_msg for vec-
tor number V_OS_MSG (76) in the processor vector table.

void ser_init ()
When the message system is initialized with a call to msg_init(), it will call the

initialization function for any hardware driver module. In the case of the serial driver
module the function ser_init() is called.
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ser_send (char* buf_p,  int nchar)
When the message system is not supported by hardware which can communi-

cate whole messages, such as a dual port memory system; it calls a hardware driver
such as ser_send() to send a message via the selected hardware.

int ser_wait_for ()
This function operates in conjunction with msg_wait_for(). The return value is

–1 if a message is available. With a poll mode driver, this function should not return
until  a new message has been received.

msg_V_arrive
When communications hardware is receiving a message character–at–a–time,

each new character causes the message module to be interrupted by entry point
msg_V_arrive. For example, the serial driver jumps to this label after completing
any hardware support tasks and restoring any saved interrupt context. The code at
label msg_V_arrive determines if a complete message has arrived and generates an
os_V_msg or dbg_V_msg interrupt if required; otherwise it issues an IRET instruc-
tion.

char* msg_next_p
This pointer records the current position in the message receive buffer. As each

character is received by the communications hardware, and an interrupt results in the
hardware driver passing control to msg_V_arrive, msg_next_p identifies the char-
acter position to save the received character. It is incremeneted each time msg_V_ar-
rive is entered.

D.4.3 The DebugCore 2.0 Configuration

Although AMD makes the source to the DebugCore module available, it is in-
tended that users only require the DebugCore in a linkable form. The DebugCore
does not access off–chip resources directly, it is left to the configuration module. This
module is supplied in source and enables simple configuration of off–chip accesses
made by the DebugCore. Figure D-8 shows the symbol interface to the module.

The configuration module contains code for all the popular 29K configurations.
It is usually only necessary to assembly the module with the correct assembler direc-

Figure D-8. Configuration Module

DebugCore
configuration

CFG

cfg_peek()
cfg_poke()
cfg_core_enter()
dbg_errno
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tive to produce a configuration for most 29K platforms. In a rare case it may be neces-
sary to modify the source code.

For example, if a 29K system had some special FIFO hardware which had to be
accessed is a restricted way, the peek and poke functions would need modification to
deal with the necessary protocol.

void cfg_peek (to, from,count,space,size)
All reads of off–chip resources are performed by this function. The from address

identifies a DebugCore data region which is to receive the data. The count parameter
refers to the number of objects of size size  (measured in characters). The space pa-
rameter identifies the address space for the source data at address from; this parame-
ter is mostly iused by 3–bus procesors.

void cfg_poke (to, from,count,space,size)
All writes to off–chip resources are performed by this function. The data is sup-

plied from a DebugCore data region pointed to by the from parameter.

void cfg_core_enter ()
This function is called when the DebugCore gains control for any reason (other

than the call to dbg_control()). It is called after the DebugCore has saved context and
requested a HALT message be sent to MonTIP. It is called before the DebugCore
starts processing any received message from MonTIP.

It enables the environment in which the DebugCore runs to be modified. For ex-
ample, cfg_core_enter() normally turns interrupts on. If it is desired that interrupts
should remain off during DebugCore operation, then the TD and DI bits should be set
in this function.

int dbg_errno
This 32–bit memory location is used by the configuration module to indicate an

error with a requested peek or poke operation.
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