AMD" 29K" Family

el

Technical
Bulletin

Using the HIF ioctl Service
for Nonblocking Reads

EPD Systems Engineering

March 20, 1995

Purpose

The Host Interface (HIF) kernel of Release 3.0 or
later of the MiniMONZ29K1 product adds support for
nonblocking read operations. This new feature allows
application programs to continue processing while
waiting for input data to be transferred. (To use this
feature, MiniMON29K Release 3.0 or later must be
loaded on both the target and the host.)

This bulletin shows example code that demonstrates
how a nonblocking read can be used to create an
interactive menu that allows subsequent processing to
continue while waiting for user input.

Affected Product

The information in this bulletin affects the following
product:

Product Release

MiniMON29K 3.0 or later

The Problem

The default input mode used by the HIF kernel of the
MiniMON29K product is COOKED (0x0000), which
blocks (suspends) the application program issuing a
read operation from the standard input device
(terminal) until the input data has been transferred.

While blocked mode may be effective for some
applications, it makes it difficult to implement and
debug interactive menu-driven applications that
require processing to continue while waiting for user
input.

The Solution

The HIF kernel of the MiniMON29K Release 3.0 (or
later) product implements nonblocking read support
for standard input devices (terminals). Using the HIF
ioctl service, the input mode of the standard input
device can be changed from COOKED to NBLOCK
mode, which allows the application program to

continue processing while waiting for input data to be
transferred.

The HIF ioctl Service

The HIFioctl service establishes the operation mode
of a specified file or device. It is intended to be
applied primarily to terminal-like devices; however,
certain modes apply to mass-storage files or to other
related input/output devices.

In COOKED (0x0000) mode (the default input
mode), when aead operation for a terminal-like
device is issued by the application program, the
kernel blocks (suspends) any further execution of the
application program until the data has been
transferred. Using the Hliéctl service, the input
mode of the standard input device can be set to
NBLOCK (0x0010) mode, which specifies that
subsequent read operations be executed without
suspending (blocking) the application program
issuing theead request.

The HIF read Service

After setting standard input to NBLOCK mode, a HIF
read operation on the standard input device returns
immediately to the application program. The return
value of theead service contains the number of
characters currently available, or -1 if none are
available. The application program examines the
return value from theead service to determine if any
input data is available. If the return value is -1, the
application program continues other processing while
waiting for the input data.

Example Code

Following is a short code example showing how the
technique explained above can be used for the
creation of an interactive menu. The code in boldface
highlights the use of the HiBctl service.

10f3

PID No. 184138

#include <stdio.h>
#include <hif.h>
#include <stdlib.h>

showmen() {

/

* * * *

*

*

/* HIF service was used rather than printf for the following reasons:

/*
/*
/*
/*
/*
/*

- To show the usage of the _write() HIF service
- When characters are sent to standard output using printf, the output is

*/

buffered and will not be displayed until a \n' is used. Therefore, the
"Enter your selection ->" line would not appear on standard output if
printf were used because there is no '\n' character at the end of the

string.

*/

/

}

_write(1,"\nMenu:\n",7);

_write(1,"\t1) Selection #1\n",17);
_write(1,"\t2) Selection #2\n",17);
_write(1,"\t3) Exit\n",9);
_write(1,"\nEnter your selection ->",25);

void main() {

/* Declare necessary variables */
int terminate=0, proc=0;

/* Create a 1-character buffer to hold input */

char *input=(char *) malloc(sizeof(char));

/* Set standard input to NBLOCK mode using the

_ioctl(0,0x0010);

showmen();

I'n

_ioctl() HIF service */

* * * * *

*

*

*

/

/
/* The following subroutine will display a menu to standard output. The _write() */
*/

*/
*/
*/

/* Following is the main loop where processing occurs. The exit condition is
*/

/* set by selecting the appropriate menu item.

/
while('terminate) {

/

/

/* Because standard input has been set to NBLOCK mode using the _ioctl() HIF */
_read() HIF service will return a negative number if there is */
/* no input available. If there is input available,
/* negative number and the character read will be contained in the input

/* service, the

* * * * * *

/* buffer.

*/

*

*

xxf

I' * * *
if(_read(0,input,1)>=0) {

* * *

/* React to the input received */
switch(input[0]) {

}
}

case '1"

printf("\n\nYou selected choice #1.\n");

showmen();
break;
case '2"

printf("\n\nYou selected choice #2.\n");

showmen();
break;
case '3"

/* Choice #3 is to exit, so set a flag to end the main loop */

terminate++;
break;
default:
printf("\n\ninvalid selection.\n");
showmen();
break;

*

*

xxf

_read() will return a non-*/

*/

*/

*/

20of3

PID No. 184138

/ /

/* This is where the processing should be placed that is to occur while */
[* awaiting user input. This program simply increments the variable "proc" to */
/* demonstrate that processing is not halted while awaiting input from */

/* standard input. */

[xH* * * * * * * x/

proc++;

/* We have left the main loop. Clean up and exit. */

printf("\n\nYou have selected exit\n");

printf("The proc variable was incremented %d times.\n",proc);

printf("** Note**\n");

printf("The increments took place while you were interacting with the menu.\n");
printf("This demonstrates processing was not halted while waiting user input.\n");

In the above example, the statement to read the user
input from the standard input device (STDIN) is
placed within a “while” loop, followed by the code
that should not be suspended.

Theread statement is placed in an "if" clause. The
return value frontead determines what action takes
place. If there is valid input from STDIN, the
appropriate “case” statement is executed. If no
information is available, a —1 is returned and the
“proc++" statement is executed.

Conclusion

The number of times that tipeoc variable is
incremented in the example should be substantially
higher than the sum of the number of times that
options #1 and #2 are selected. This demonstrates
that theproc variable is incremented during the time
that the interactive menu is presented.

If the value of theoroc variable displayed is equal to
the sum of the number of times that options #1 and #2
are selected, the most likely cause is that a version of
MiniMON29K prior to Release 3.0 is being used on
either the host or target system (see “Ordering
Information” below for how to order the current
release).

Suggested Reference
For more information, see théost Interface (HIF)
Specification, PID# 11539C

If You Need Assistance

Product support for the 29K Family processors is
available from our Embedded Processor Division
(EPD) Technical Support Hotlines located in the U.S.
and in the U.K.

Assistance is available in the U.S. from 920Q. to
6:00pP.M. central time, Monday through Friday
(except major holidays). In Europe assistance is
available during U.K. business hours. Contact us at
one of the following numbers.

To reach the U.S. hotline

From Call

u.s. 1-800-2929-AMD
Japan 0031-11-1163
Any other location +1-512-602-4118
BToll applies.

To reach the European hotline

From Call

U.K. (0)256-811101
France 0590-8621
Germany 0130-813875

Italy 1678-77224

Any other location +44-(0)256-811101
SToll applies.

Ordering Information

To purchase the current release of the MiniMON29K
product, contact your local sales office. Portions of
the code for this product are available on the
Advanced Micro Devices (AMD) Embedded
Processor Division (EPD) Bulletin Board Service
(BBS). To call the AMD EPD BBS, set your modem
to dial 18002929263,,,,,,INote that product support
and documentation are not included when using code
from the BBS.

AMD is a registered trademark, and 29K and MiniMON29K
are trademarks of Advanced Micro Devices, Inc.

3o0f3

PID No. 184138

