MIinIMONZ29K

User Interface
MONDFE

MiniMON29K ™ User Interface: MONDFE, Release 3.0

© 1991, 1992, 1993 by Advanced Micro Devices, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
Advanced Micro Devices, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the
Rights in Technical Data and Computer Software clause at 252.227-7013. Advanced Micro Devices, Inc., 5204 E. Ben
White Blvd., Austin, TX 78741-7399.

29K, Am29000, Am29005, Am29030, Am29050, Am29200, Am29240, Am29243, Am29245, EB29K, and
MiniMON29K are trademarks of Advanced Micro Devices, Inc.

High C is a registered trademark of MetaWare, Inc.

Microsoft C and MS-DOS are registered trademarks of Microsoft, Inc.

UNIX is a registered trademark of AT&T

Other product or brand names are used solely for identification and may be the trademarks or registered trademarks of

their respective companies.

4% The text pages of this document have been printed on recycled paper consisting of 50% recycled fiber and
@ virgin fiber; the post-consumer waste content is 10%. These pages are recyclable.

Advanced Micro Devices, Inc.
5204 E. Ben White Blvd.
Austin, TX 78741

Contents

About MONDFE

MONDFE Documentation.....................ooooi Vi..
About ThisManual.............................. Vi...
Suggested Reference Material.. vii
MONDFE Software ...) viii..
MONDFE Features.............................. o L
MONDFE MOdUIES ... iX..
MONDFE Documentation Conventions..........................cocooiii . Xii
Chapter 1
MONDFE Command-Line Syntax
MONDFE Command-Line Syntax...................ooooii 1-2
UDI Configuration Files 1-5
MONDFE Command-File Format.. 1-7
Chapter 2
MONDFE Commands
Command LiSt ... 2-2.
29K Family Memory Address Format: 29K_MEM_ADDR 2-4
29K Family Register Name Format: 29K_REG_NAME...................... 2-5
A — Assemble Instruction............................. 2-6
B — Breakpoint Command ... 2-8
C — Display Target Configuratian... 2-10

MiniMON29K User Interface: MONDFE [

CAPS — Display DFE and TIP Capabilities..................................... 2-11

CHO — Transfer Terminal Controlto Target...................................... 2-12
CON — Connectto UDI Session.............................o.o... 2-13
CP — Create UDI ProCess. ... 2-14
D — Display Memory/Registers. ... 2-15
DISC — Disconnect from UDI Session......................cooooii 2-18
DP — Destroy UDI Process..... ... 2-19
EOFF/EON — Turn Off/On EchoMode.. 2-20
ESC — Escape to Host Operating System.........................oo 2-21
EX —EXit UDI SEeSSION 2-22
F—Fill Memory/Registers. 2-23
G G0, 2-27.
H—Help.. ... 2-28

IL — Disassemble Am2903x Processor Cache................................. 2-30
INIT — Initialize Downloaded Program..............................ocoo 2-31
IX — Display Am2903x Processor Cache.. 2-32
K — Kill Program Execution... 2-33

L — List (Disassemble) From Memory.................oooiiiii 2-34
LOGOFF/LOGON — Turn OfffOnLogMode................................. 2-36
M — Move Registers/IMemory.......................o 2-37
PID — Set UDI Process ID.............ooo 2-39
Q — QUIt. ... 2-40
QOFF/QON — Turn Off/On QuietMode. .. 2-41
R — Reset Target ProCesSSOr...............oo i 2-42
S —Set Memory/RegQISters. ... 2-43
SID —SetUDI Session ID......................... 2-45
T — Trace (Single/Multiple Step) Execution...................................... 2-46
TIP — MONTIP TransparentMode.....................coii 2-47
VER —Display DFE, TIP, and Target Version Numbers..................... 2-48
XP — Display Special Registers... 2-49
Y — Yank (Download) a COFF File .. 2-51
ZC —Execute Commands From Command File............................... 2-54
ZE — Specify Echo File for EchoMode 2-55
ZL — Specify Log File for LogMode... 2-56

MiniMON29K User Interface: MONDFE

Chapter 3
MONDFE Tutorial

Demo Directory for MS-DOS HOSIS ... 3-2
Preparing Batch Files for MS-DOS HoStSoco 3-3
Linker Command Files for the MONDFE Tutorial............................ 3-4
Demo Directory for UNIX Hosts...3-5
Preparing Shell Script Files for UNIX Hosts.................................. 3-6
Compiling the Tutorial Example.. 37
Loading and Running the Program...........................o 3-9
Debugging the Program.................................. ... 3-11
Appendix A
Error Messages
MONDFE Error MESSages ..o A2
UDI Error MESSages.oooviiiii e P =5

Index

MiniMON29K User Interface: MONDFE iii

Figures and Tables

Figures
Figure 0-1. MiniMON29K Debugger Front End, MONDFE............... iX
Figure 0-2. MiniMON29K MONDFE with
UDI-Conformant TIP, MONTIP.................................... Xi
Tables
Table 0-1. Notational Conventions... Xii
Table A-1. MONDFE Error Messages...............coooviiiiiiiiiii A-2
Table A-2. UDI Error MeSSages. ..o A-5
v MiniMON29K User Interface: MONDFE

&

About MONDFE

The Advanced Micro Devices (AMZ) MiniMON29K ™ user interface,
mondfe, provides a simple user interface to develop, debug, and execute
application programs on a 29K Family-based tamendfe is
UDI-conformant which means that the back-endwdndfe conforms to
AMD'’s Universal Debugger Interface (UDI) Specification

mondfe provides an interactive command interface, which is designed for
non-graphics terminalsondfe interactive commands provide the user with
the ability to download programs in AMD’s Common Object File Format
(COFF), set breakpoints, display and modify registers, assemble instructions,
and trace program execution.

This chapter first describes the MONDFE documentation, then discusses the

features and modules of the MONDFE software, and, finally, lists the
MONDFE documentation conventions.

MiniMON29K User Interface: MONDFE Vv

MONDFE Documentation

This documentation is written for programmers usimandfe to develop
applications based on the 29K Family of microprocessors and microcontrollers.
For more information on these microprocessors and microcontrollers, see the
|list of suggested reference matetials that follows.

About This Manual

Chapter 1: “MONDFE Command-Line Syntax” describes how to invoke
mondfe. The command-line syntax and descriptions of all the command-line
options are discussed, followed by a description of the UDI configuration file
and command-file format.

Chapter 2: “MONDFE Commands” describes eaxdndfe command in
alphabetical order.

Chapter 3: “MONDFE Tutorial” explains how to usmndfe to debug an
example program containing intentional errors. The tutorial presents a
methodical approach to compiling, linking, and debugging programs prepared
by the user.

Appendix A: “Error Messages” contains MONDFE and UDI error messages
and descriptions.

“Index” provides an index to the MONDFE manual.

Vi MiniMON29K User Interface: MONDFE

Suggested Reference Material

The following reference documents may be of use tonibredfe software
user:

¢ Am29000"and Am29005 User’'s Manualnd Data Sheet
Advanced Micro Devices, order number 16914A.

¢ Am29030" and Am29035 Microprocessors User’'s Manual and Data Sheet
Advanced Micro Devices, order number 15723B

¢ Am29050" Microprocessor User’'s Manual
Advanced Micro Devices, order number 14778A

¢ Am29050" Data Sheet
Advanced Micro Devices, order number 15039A.

¢ Am29200" RISC Microcontroller User’s Manual and Data Sheet
Advanced Micro Devices, order number 16362B

¢ Am29205" RISC Microcontroller Data Sheet
Advanced Micro Devices, order number 17198A

e Am29240", Am29245', and Am29243 RISC Microcontrollers
User’s Manual and Data Sheet
Advanced Micro Devices, order number 17741A

e High C® 29K™ User’s Manual
Advanced Micro Devices

e High C® 29K™ Reference Manual
Advanced Micro Devices

* Host Interface (HIF) Specificatioversion 2.0
Advanced Micro Devices, order number 11014B

e MiniMON29K™ Target Interface Process: MONTIP
Advanced Micro Devices

¢ Processor Initialization and Run-Time Services: OSBOOT
Advanced Micro Devices

e Programming the 29K RISC Family
by Daniel Mann, P T R Prentice-Hall, Inc. 1994

* RISC Design-Made-Eagypplication Guide
Advanced Micro Devices, order number 16693A

e Universal Debugger Interface (UDI) SpecificatiMgrsion 1.2
Advanced Micro Devices

MiniMON29K User Interface: MONDFE Vii

MONDFE Software

The features of thmondfe software are discussed below, followed by a
description of the three modules of the program.

MONDFE Features

The MiniMON29K Debugger Front Endhondfe, provides non-symbolic
debugging facilities to set breakpoints, display and modify registers, assemble
instructions, and trace execution. It has a line-oriented user interface that is
designed for a non-graphics termimabndfe downloads application programs

(in their entirety or selected portions) in COFF file format onto the target.

The log file capability ofnondfe can create a log file of all the commands of a
debug session. This log file can be directly given as an input command file at
invocation to execute the same sequence of commands. The echo file

capability ofmondfe can capture the screen displays into a file or capture a
history of what was done during a particular debug session. The echo file
created can be used for testing purposes or for comparing two automated debug
sessions.

mondfe can be invoked in quiet mode using #tpoption, which suppresses

all descriptive messages. The program also can be invoked in either interactive
or non-interactive mode with thd command-line option. When invoked in
non-interactive mode, an executable file must be specified on the command
line. This executable file is downloaded onto the target and executed until
completion.

mondfe provides a set of functions to display and modify memory and register
contents. Commands do not support symbolic references to program variable
names and addresses. The registers can be referenced using their standard
mnemonics.

Commands imondfe can display data in bytes, half-words, words,
floating-point values, or in double words. An ASCII representation of the data
displayed also is provided when the display format is in words. Commands in
mondfe can write to memory in bytes, half-words, words, floating-point
values, double words, or in character strings. Hlhé (F) command fills
memory with a string of characters.

mondfe can disassemble instructions in memory. Standard opcode mnemonics
are used for disassembly.

Viii MiniMON29K User Interface: MONDFE

MONDFE Modules

MONDFE is comprised of three modules: User Interface, MONDFE Command
Interpreter, and MONDFE Command-to-UDI Procedural Call Converter.
Figure 0—1 shows these modules.

uDI IPC
MONDFE

MONDFE
Command-

amwmncC

| To-UDI MONDFE User
| p dural Command Interf

| ro;::z”ura Interpreter nterface
| Converter

Debugger Display

|
|
: Universal Non-Graphics
[Interface

Figure 0—-1. MiniMON29K Debugger Front End, mondfe

User-Interface Module

The User-Interface Module is a non-symbolic user interface designed for
non-graphics terminals. This module provides an interactive command
interface, where it prompts the user to enter commands at the

MONDFE.EXE> prompt. The commands are passed to the Command
Interpreter Module. The status (error code) and results, if any, of the command
executed are displayed on the terminal. The interactive command interface can
be suppressed at invocation on the command line. This module also
implements the control functions to perform terminal input and output
operations of the application program running on the 29K Family-based target.

MiniMON29K User Interface: MONDFE iX

MONDFE Command Interpreter Module

The MONDFE Command Interpreter Module parses the input string entered by
the user and checks for a vatisbondfe command. For each user command,

this module executes the appropriate command handler. When the command is
completely executed, the module receives the next user command. The status
(error code) and any results from the executed command are then returned to
the User-Interface Module. The appendix of this manual describes the error
messages thatondfe generates.

MONDFE Command-to-UDI Procedural Call Converter

Module

The MONDFE Command-to-UDI Procedural Call Converter Module
implements each of the command handlers and sub-handlers called by the
MONDFE Command Interpreter Module. It initializes the UDI data structures
from mondfe data structures and calls the appropriate UDI procedure. The
actual implementation of the UDI procedure depends on the UDI interprocess
communication (IPC) mechanism. Any results returned by the UDI procedure
are converted and placed imtmndfe data structures. Thus, this module
allowsmondfe to operate with any UDI-conformant target interface process.
[Eigure 0—? shows homondfe can be used for debugging with the
UDI-conformant TIPmontip.

MiniMON29K User Interface: MONDFE

dnuow dj1 Juew.iojuod-|dn Yim ajpuowl Y6ZNOWIUIN 'Z—0 9inbid

wnipay

R
suoneIIUNWWOoD
abessay
MEZNOWIUIN

Ian

! IEYITe!

)

, uoneounwwo)
' [euas

.

' JEYITg]

)

X Alows
' pareys
.

SIaALd
uonediunwwo)

odl
|
“ a|Npon
uoddnsg
_ 4IH
|
|
‘l_ SERIVELS
3 s|led 1an o1 _ dILNOW
o) puBWWOD | 0} s|[eD
v y 1a101d181U] 34ANOW __ - 1an walsAs
M__ 3 pueWWOoD H8AUGD _ HaAUG)D obessa
3s 34ANOIN HN6ZNOWIUIN
Tn 1
N
| |
|
J4dNOIN | dILNOI

MiniMON29K User Interface: MONDFE

Xi

MONDFE Documentation Conventions

The Advanced Micro Devices maniiniMON29K User Interface:
MONDFEmanual uses the conventions shown in the following table (unless
otherwise noted). These same conventions are used in all the 29K Family
support product manuals.

Table 0-1. Notational Conventions

Symbol Usage

Boldface Indicates that characters must be entered
exactly as shown. The alphabetic case is
significant only when indicated.

Italic Indicates a descriptive term to be replaced with a

Typewriter face

(]

{}

user-specified term.

Indicates computer text input or output in an ex-
ample or listing.

Encloses an optional argument. To include the in-
formation described within the brackets, type only
the arguments, not the brackets themselves.

Encloses a required argument. To include the in-
formation described within the braces, type only
the arguments, not the braces themselves.

Indicates an inclusive range.
Indicates that a term can be repeated.

Separates alternate choices in a list — only one of
the choices can be entered.

Indicates that the terms on either side of the sign
are equivalent.

Xii MiniMON29K User Interface: MONDFE

Chapter 1 a

MONDFE Command-Line Syntax

The syntax for usinghondfe is described on the following pages, followed by
a description of the UDI configuration files and thendfe command-file
format.

MiniMON29K User Interface;: MONDFE 1-1

MONDFE Command-Line Syntax

Syntax:

where:

mondfe [-D] —TIRip_id_from_udi_config_fil§ —q]

[—eecho_filename_for_scriff —c input_cmd_filenamég
[-msmem_stack_size in_hgx

[—rsreg_stack_in_size_in_hé}le]

[-log logfile_name] [-w wait_time]

[pgm_namé¢pgm_args_lis] [<input_data_fil¢]

Specifies that aimteractivedebug session is requested. When
this option is not specified, a progranustbe specified on the
command line. The program is downloaded and executed. The
default isnon-interactivethat is, a program must be specified on
the invocation line. Botmondfe and the TIP exit after
completion of the program’s execution.

—TIPtip_id_from_udi_config_file

Specifies the ID of the TIP defined in the UDI configuration file
with which to establish connection for that debug session. (The
UDI configuration file isudiconfs.txt on MS-DO® systems, and
udi_socon UNIX® systems. See the “UDI Configuration Files”
section ofi page 1}-5 for more information.) This ID is matched
with the first field of the line entries in the UDI configuration file.
The TIP corresponding to the matched ID entry is started (if
necessary) and a connection is requested. This option must be
specified.

Indicates that downloading messages must be suppressed (quiet
mode). This is useful when a script of the session is being saved
in an echo file. The default is non-quiet mode. The quiet mode
can be turned on or off from tineondfe command prompt using
gon andgoff commands.

—eecho_filename_for_script

Turns on the echo mode and specifies the name of the echo file in
which to save the entire session that appears on the screen or
terminal. This option scripts a debug session. There is no default
filename. The echo mode can be turned on or off from the
mondfe command prompt using tlEEON andEOFF commands.

1-2 MiniMON29K User Interface: MONDFE

—cinput_cmd_filename
Specifies the name of the input command filendfe reads all
its input (commands and program input) from this file until the
end of file is reached. At that poimbondfe switches back to
reading from standard input, usually the terminal. There is no
default. The command file can be specified or changed at the
mondfe command prompt using tl®C command. For more
information on using a command file, 1-7.

—msmem_stack_size_in_hex
Specifies the memory stack size to be used for the debug session.
This information is passed to the TIP before a process begins
execution. The default is 0x6000 bytes.

—rsreg_stack_size_in_hex
Specifies the register stack size to be used for the debug session.
This information is passed to the TIP before a process begins
execution. The default value is 0x2000 bytes.

—le Specifies that the target system is little endian. The default is big
endian.

—log logfile_name
Turns on the log mode and specifies the name of the logfile. The
logfile contains almondfe commands entered by the user in that
particular session. This logfile can be used as the input command
file to reproduce a debug session. There is no default filename.
Log mode can be turned on or off from thendfe command
prompt using th€ OGON or LOGOFF command. The logfile
name can be specified or changed usingZtheommand.

—w wait_time
Specifies the length of time (in loop counts) tmandfe requires
the TIP to wait when expecting a response from the target. The
wait_timeparameter is an integer value. The default value is 10.
A value of minus 1 (-1) indicates wait forever.

MiniMON29K User Interface;: MONDFE 1-3

pgm_namégpgm_args_ligt] [<input_data_filg
Allows the user the option to specify the program to be executed
and its command-line arguments when invokimendfe. This
program is downloaded onto the target system. I[£iheption is
notused, the program executes immediately after download. If a
—D optionis usedmondfe enters interactive mode and prompts
the user for commands or reads from the input command file, if
one was specifieanondfe then waits for & command before
executing the program. If the input data is redirected using
<input_data_file, the program’s request for input is satisfied by
transmitting the contents of the specified input file. Otherwise,
input from the keyboard is expected.

NOTE: This standard input redirection is a new feature and
allows the separation of data input from the command file.

MiniMON29K User Interface: MONDFE

UDI Configuration Files

udiconfs.txt

This file is the UDI configuration file for MS-DOS systems. The UDICONF
environment variable can be set to the complete pathname of this file if the file
is not in the current working directory. When UDICONKh@ set, the

udiconfs.txt file mustbe present in the current working directory. The
UDICONF variable is checked before using the file in the current directory. If
the DFE does not find this file, an error is reported.

For more information about the UDI configuration and its related files, see the
Universal Debugger Interface (UDI) Specificatjfersion 1.2

udi_soc

This file is the UDI configuration file for UNIX systems. The UDICONF
environment variable can be set to the complete pathname of this file, if it is
not in the current working directory of the Debugger Front End (DFE). When
UDICONF isnot set, this filemustbe present in the current working directory.
The UDICONF variable is checked before using the file in the current
directory. If this file is not found, an error is reported.

Sample File Entries
The following set of sample entries in the UDI configuration file are used in
the examples below.

MS-DOS Host (udiconfs.txt file entries)
eb29k_id montip.exe —t eb29k —r eb29k.os
isstip_id isstip.exe — osboot

serial_38400 montip.exe —t serial —baud 38400

UNIX Host (udi_soc file entries)

isstip_id AF_UNIX sockiss isstip —r osboot
serial_38400 AF_UNIX sockser montip —t serial —baud 38400

MiniMON29K User Interface;: MONDFE 1-5

1-6

Example
mondfe —D —TIP isstip_id

In the example abovejondfe is invoked in interactive modeD option) and
isstip_id is used as the ID of the TIP. This ID is matched with the first field of
the line entries specified in the UDI configuration file, whichdé socon

UNIX hosts andudiconfs.txt on MS-DOS hosts.

Example
mondfe —D —TIP serial_38400 —ms 10000 —rs 3000

In the example abovejondfe is invoked in interactive mode and

serial_38400is specified as the ID of the TIP. This example also shows the
memory stack and the register stack sizes for that debug session specified using
the—msand the-rs options, respectively.

Example
mondfe —TIP eb29k_id hello.eb argl arg2

In this examplemondfeis invoked in non-interactive mode. The ID of the TIP
is given aeb29k_id(for MS-DOS hosts only). Sindeello.ebis an invalid
option,mondfe interprets it as the name of the program to be executed.
Anything followinghello.b is interpreted as program arguments. Therefore,
hello.ebis downloaded and executed until completion.

MiniMON29K User Interface: MONDFE

MONDFE Command-File Format

Command files contain sequences ofri@ndfe commands. Thec
command-line option specifies a single input file, whose commands are to be
executed immediately whemondfe is invoked.

Command files can improve efficiency when debugging a program. For
example, a command file can load and execute a program automatically when
mondfe is invoked. An example of the commands this file might contain is
shown below:

Y program.out
B 10020i
G

These commands (one per line) load the absolute COR#tdidgam.out into
memory, set a breakpoint at location 10020i, and begin execution.

If these commands are stored in a $if@rtup.cmd, the command line for
invoking mondfe would look like the following:

C:> mondfe —D —TIP eb29k_id —c startup.cmd
All the housekeeping chores associated with loading the program, setting

breakpoints, and displaying initial program or data information can be written
to a command file.

MiniMON29K User Interface;: MONDFE 1-7

Chapter 2 &
MONDFE Commands

This chapter provides a detailed description of @achdfe command,
including syntax, options, specific information on how to use each command,
and examples of command usage.

All commands are executed that are entered on the host computer’s keyboard
at themondfe prompt MONDFE.EXE>) or read from a command input file
specified on the command linerabndfe invocation are executed. The results,

if any, are displayed on the host computer’s screen. Commands are
case-insensitive and can be entered in either upper or lower case. For example,
BC andbc are identical commands for clearing one or more breakpoints. In

this manual, the command names appear in upper case for emphasis only.

MiniMON29K User Interface;: MONDFE 2-1

Command List

The commands, their abbreviations, and the pages on which they can be found
are listed below.

Command Abbreviation Page
29K Family Memory Address Format [29K_MEM_ADDR] 2-4
29K Family Register Name Format [29K REG NAME 2-5
Assemble Instruction A 2-6
Breakpoint Command B 2-8
Display Target Configuration ¢t 2-10
Display DFE & TIP Capabilities [CCcABs 2-11
Transfer Terminal Control to Target [chHo 2-12
Connect to UDI Session | CON 2-13
Create UDI Process [¢P 2-14
Display Memory / Registers H]> 2-15
Disconnect from UDI Session [Cbisc 2-18
Destroy UDI Process [DpP 2-19
Turn Off Echo Mode [EORF 2-20
Turn On Echo Mode [EAN 2-20
Escape to Host Operating System [Esc 2-21
Exit UDI Session 2-22
Fill Memory/Registers LF 2-23
Go [d 2-27
Help H 2-28
Disassemble Am2903x Processor Cache] w 2-30
Initialize Downloaded Program EIT 2-31
Display Am2903x Processor Cache Jix 2-32
Kill Program Execution D(2-33
List (Disassemble) From Memory L 2-34

Turn Off Log Mode 2-36
Turn On Log Mode LOGO 2-36

2-2 MiniMON29K User Interface: MONDFE

Command Abbreviation Page

Move Registers/Memory (M 2-37
Set UDI Process ID [PID 2-39
Quit 2-40
Turn Off Quiet Mode [COCHF 2-41
Turn On Quiet Mode [QdN 2-41
Reset Target Processor OrR 2-42
Set Memory/Registers Os 2-43
Set UDI Session ID [slp 2-45
Trace (Single/Multiple Step) Execution OrT 2-46
MONTIP Transparent Mode i]2 2-47
Display DFE, TIP and Target Version Num- [VER 2-48
bers

Display Special Registers D(P 2-49
Yank (Download) a COFF File Oy 2-51
Execute Commands From Command File []zc 2-54
Specify Echo File for Echo Mode [C¥Ee 2-55
Specify Log File for Log Mode 2-56

MiniMON29K User Interface;: MONDFE 2-3

29K Family Memory Address Format:
29K MEM_ADDR

The 29K Family memory address forn2&_MEM_ADDRrecognized by
mondfe commands is as follows:

address_valyespace_id_suffik

where:
address_value Is a numerical value interpreted as a hexadecimal humber.

space_id_suffixs an optional character suffix immediately following
address_valugvith no spaces in between. The suffix
character can be one of the following:

i Instruction RAM space
r Instruction ROM space
I/O port address

u Generic memory space, and to access 29K Family
microcontroller peripherals

m Data RAM space

All commands interpret the specified 29K Family memory address value as a
hexadecimal number. When an address space suffix is not given, a default
memory space is assumed. The default memory space differs amadée
commands. For exampleemoryspace defaults to the Instruction RAM space
for theDISASSEMBLE (L) command, whereas it defaults to Data RAM
space for the memoISPLAY (D) command.

2-4 MiniMON29K User Interface: MONDFE

29K Family Register Name Format:
29K REG_NAME

The 29K Family register name formagK_ REG_NAMErecognized by
mondfe commands is as follows:

LRnnn| ARnnn| GRnn| SRinn| TRinn| XRnnn

where:
nnn Is a decimal number within the valid range (0 to 255).
LRnnn Refers to processor’s LOCAL register numben

Valid entries arérO—Ir127.

ARNNN Refers to processor’'s ABSOLUTE register nunioan
Valid entries arearO—ar255

GRnnn Refers to processor’s GLOBAL register numben
Valid entries arg@rO—grl, gr64—grl27

SRInn Refers to processor’'s SPECIAL register nunrbex
Valid entries aresrO—sr25 sr128-sr135

TRnNn Refers to processor’s TLB register numben
Valid entries arérO—tr127.

XRnnn Refers to COPROCESSOR register number
For examplexrO.

Standard mnemonics also can be used to spepdyialregister names.

MiniMON29K User Interface;: MONDFE 2-5

A — Assemble Instruction

Syntax: A 29K_MEM_ADDR mnemoniparal [para2..]]
or
A 29K_MEM_ADDR

where:
29K_MEM_ADDR

Specifies the hexadecimal memory address value and the
associated memory space suffix as described earlier under the
29K_MEM_ADDRformat. If no suffix is given, the memory
space assumed is instruction RAM.

mnemonic Specifies a legal 29K Family of microprocessors alphabetic
instruction mnemonic.

paral, para2, etc.
Are the parameters required by the specific microprocessor
instruction being assembled.

The ASSEMBLE (A) command allows the user to assemble instructions in
memory, using the standard instruction mnemonics of the AMD 29K Family of
RISC processors. Ea&d6§SEMBLE (A) command assembles onstruction

in memory.

The parameterpéral, para2 etc.) to the instructions and their numbers

depend on the type of instruction being assembled. For exani@P a

instruction does not require any parameters, whil®AD instruction

requires four parameters. Parameters can be separated with commas or spaces.
However, parameters cannot be separated with semicolons. The semicolon (;),
which is the assembler comment character, is not recognized and it produces

an illegal syntax error.

2—6 MiniMON29K User Interface: MONDFE

Multiple instructions can also be assembled by invoking the assembler in
interactive mode. Whea 29K_MEM_ADDRSs entered, the assembler

displays the address and prompts for the instruction to be assembled. It
continues to prompt for instructions until a perigdg entered. Relative jumps

can be assembled by specifying the target as an offset from the address where
the instruction is being assembled. For example:

jmp i

where. (period) refers to the address where the instruction is being assembled.

Example

MONDFE.EXE> A 10004 SUB GR96 GR96 1
MONDFE.EXE> L 10004 10004

00010004 25606001 sub gr96,9r96,0x1

In the example above, an instruction to subtract constant 1 from global register
gro6 has been assembled into instruction RAM at location 0x10004. The
ASSEMBLE (A) command does not produce any output, but the
DISASSEMBLE (L) command in the example shows the assembled
instruction at location 0x10004.

MiniMON29K User Interface;: MONDFE 2—7

B — Breakpoint Command

Syntax: B [29K_MEM_ADDRpass_coutt
B050 29K _MEM_ADDRpass_count
BC [29K_MEM_ADDR

where:

B Sets or displays breakpoints.

B050 Sets a breakpoint using the Am29050 Instruction Breakpoint
Control Register.

BC Clears a specific breakpoint or all breakpoints.

29K_MEM_ADDR

Specifies the hexadecimal address value and the associated
memory space suffix where the breakpoint is to be set or cleared.
Instruction RAM is assumed when no suffix is used.

pass_count Specifies the number of times minus 1 that the instruction at the
breakpoint address should be executed before honoring the
breakpoint for the first time. Theass_counparameter is
interpreted as a decimal value. Tass_countalue can be
positive or negative. Positive values defatiekybreakpoints,
and negative values definen-stickybreakpoints. Non-sticky
breakpoints are immediately removed when they are hit. Sticky
breakpoints remain set even after they are hit. [§jass_counis
given, a default value of 1 is used.

To accomplish the following breakpoint tasks, use the indicated
BREAKPOINT command:

e Set a breakpoint

To set a breakpoint, use tBecommand and specify the address at which to set
the breakpoint. Specify arpass_counés required. Sticky breakpoints are set
by using a positive, non-zepass_counvalue. Non-sticky breakpoints are set
by using a negativpass_countalue.

2-8 MiniMON29K User Interface: MONDFE

e Clear a breakpoint

To clear a breakpoint, use tBE€ command and specify the address at which
the breakpoint is to be cleared.

 Display all valid breakpoints

To display all valid breakpoints, use tBecommand without any parameters.
All the current breakpoints will be displayed.

¢ Clear all breakpoints

To clearall breakpoints, use tH&C command without any parameters.

» Set a breakpoint using the Am29050 Instruction Breakpoint Control register

Using theBO50command instead of tliiecommand forces the MiniMON29K
debugger core to use an Am29050 processor’s Instruction Breakpoint Control
Register to implement the breakpoint. If none of these registers are available,
the breakpoint is not set and an error is returned. This command is recognized
only by the MiniMONZ29K target interface procesmntip. TheB050

command can be used to set breakpoints in ROM, where the ROM space is not
writable. This is useful in debugging freeze mode code.

Example

MONDFE.EXE>B 10004I
MONDFE.EXE>G

In the example above, a breakpoint is set at address 0x10004, in instruction
RAM. No output is produced by executing this command; however, upon
execution of the followingsO (G) command, the output that follows is
displayed when the program stops at the breakpoint:

MONDFE.EXE>Breakpoint hit at 00010004.
00010004 25010118 sub grl,grl,0x18

Notice that the location of the breakpoint hit, the hexadecimal value of the
instruction word at that location, and its disassembled value are displayed.
Further note that the instruction at the hit breakpoint has not been executed.
Resumption of the program byT®ACE (T) or GO (G) command resumes
with this instruction unless the PC registers have been changed.

MiniMON29K User Interface;: MONDFE 2-9

C — Display Target Configuration

Syntax: C

The C command displays the 29K Family-based target’s configuration,
including the following:

Processor type

Whether a coprocessor is present in the system

Instruction memory range

Data memory range

Instruction ROM range

Version of the MiniMON29K Debugger Front Entgndfe) being used

Example
MONDFE.EXE> C

MINIMON29K 3.0 User Front End
Copyright 1993 Advanced Micro Devices, Inc.
Version 3.0 — 0 (07/15/93)

Processor type: Am29000 (revision D)
Coprocessor: None

ROM range: 0x0 to Ox7ffff (512K)
Instruction memory range: 0x0 to Ox7ffff (512K)
Data memory range: 0x0 to Ox7ffff (512K)

(Enter ’h’ or ?’ for help)

2-10 MiniMON29K User Interface: MONDFE

CAPS — Display DFE and TIP Capabilities

Syntax: CAPS

The CAPS command displays the DFE version number, TIP version number,
and UDI version.

MiniMON29K User Interface;: MONDFE 2-11

CHO — Transfer Terminal Control to Target

Syntax: CHO
The CHO transfers control of the terminal to the 29K Family target program.

The characters entered by the user are sent to the underlying TIP for
processing. Control is transferrednimndfe whenCtrl-U is entered.

2-12 MiniMON29K User Interface: MONDFE

CON — Connect to UDI Session

Syntax: CONsession_id

where:
session_id |s a UDI session number.

The CON command requests connection to the UDI TIP corresponding to the
UDI debug session referred to dgssion_id

MiniMON29K User Interface;: MONDFE 2-13

CP — Create UDI Process

Syntax: CP

The CP command sends a request to the TIP to create a new UDI process.

2-14 MiniMON29K User Interface: MONDFE

D — Display Memory/Registers

Syntax:

D[W|H|B|F|D][starting_resourcg ending_resourc§
where:

w Formats the display in words (default).

H Formats the display in half-words.

B Formats the display in bytes.

F Formats the display in floating-point values.

D Formats the display in double-precision floating-point

format.

starting_resourc&pecifies the starting location of the data to be displayed.
This can be either a memory address specified in
29K_MEM_ADDRformat, or a register name specified in the
29K_REG_NAMHormat. When atarting_resourcés not
specified, the display begins at #eding_resourcealue of
the previously executddISPLAY (D) command. The
[29K_MEM_ADD#Rand thg29K_REG_NAMEormats are
described on pages 2—4 and 2-5. The default memory
space is data memory.

ending_resourceSpecifies the ending location of the data to be displayed. This
can be either a memory address specified in
29K_MEM_ADDRformat, or a register name specified in
29K_REG_NAMEHEormat. If anending_resourcés not
specified, a default value is assumed depending on the type
of the resource accessed (memory or registers). The
[29K MEM ADDRand th29K REG NAMEormats are
described on pages 2—4 and 2-5.

The DISPLAY (D) command displays 29K Family target memory contents or
register values. Thetarting_resourcendending_resourcéogether define the
range of data to be displayed. The display format is specified by the suffix
character of th®ISPLAY (D) command. All the format suffixes above can be
used to display either memory contents or register contents. When no suffix is
given, that is, wheD is used alone, the display format defaults to words.

MiniMON29K User Interface;: MONDFE 2-15

The ASCII representation of the data also is displayed when the display format
is either words® or DW), half-words DH), or bytegDB).

When arending_resourc&alue is not specified, a default range of values
applicable to the resource type (memory or registers) is used. The range
between thetarting_resourceand theending_resourcenust belong to the
same resource type when specified.

Display Formats

In the display formats shown below, the word, half-word, and byte displays
show the addresses and data in hexadecimal format. The single-precision and
double-precision displays show the data in floating-point format. The data also
is shown in ASCII format if the characters are printable ASCII characters.

Word

MONDFE.EXE>D 10000 1000F
00010000 7261643d 256c662c 2073696e 28726164 rad=%lf sin(rad

Half-Word
MONDFE.EXE>DH 10000 1000F
00010000 7261 643d 256c 662e 2073 696e 2872 6164 rad=%lf sin(rad

Byte

MONDFE.EXE>DB 10000 1000F

00010000 72 61 64 3d 25 6c 66 2e 20 73 69 6e 28 72 61 64 rad=%lf sin(rad
00010000 72 61 64 3d 25 6c 66 2e 20 73 69 6e 28 72 61 64 rad=%lf sin(rad

Single-Precision Floating-Point
MONDFE.EXE>DF 14000 1400F
00014000 +1.147944e-040 +1.148224e-040 +6.157305e-041 +6.166834e-041

Double-Precision Floating-Point
MONDFE.EXE>DD 14000 1400F
00014000 +9.338479079051290e—-310 +9.338479079054255e—-310

2-16 MiniMON29K User Interface: MONDFE

Example

MONDFE.EXE>D gr96 gro9
gr096 00002000 0000e5bc 00010000 000163ab c.

In the example above, the contents of global regigt&&throughgro9 are
dumped in word format.

Example
MONDFE.EXE>D Ir0 Ir3
Ir000 000010d0 0007dfb0 00000000 0007€000

In the example above, the contents of local regist@rhroughir3 are
dumped in word format.

MiniMON29K User Interface;: MONDFE 2-17

DISC — Disconnect from UDI Session

Syntax: DISC

TheDISC command temporarily disconnects the Debugger Front End (DFE)
from the current debug session. The TIP is not destroyed but continues running

for later reconnections.

2-18 MiniMON29K User Interface: MONDFE

DP — Destroy UDI Process

Syntax: DP

The DP command destroys a UDI process previously created usit@fthe
command.

MiniMON29K User Interface;: MONDFE 2-19

EOFF/EON — Turn Off/On Echo Mode

Syntax: EOFF
EON

The EOFF/EON commands turn echo mode off/on during the interactive
debug session. Echo mode is specified by-th@ommand-line option and a
filename. During echo mode, everything displayed on the screen is captured in
the file specified.

2-20 MiniMON29K User Interface: MONDFE

ESC — Escape to Host Operating System

Syntax: ESC

TheESC command temporarily exitrondfe to the host operating system.
The user can return to theondfe session by using tHeXIT command at the
host operating-system prompt.

Example

MONDFE.EXE>esc
Microsoft(R) MS-DOS(R) Version 3.30
(C)Copyright Microsoft Corp 1981-1987

C:\>exit
MONDFE.EXE>

In the example above, tlESC command temporarily exits the program to

MS-DOS, which then returns ti&\> prompt. Typingexit at that prompt takes
us back to the debug session, whereM@ENDFE.EXE> prompt returns.

MiniMON29K User Interface;: MONDFE 2-21

EX — Exit UDI Session

Syntax: EX

The EX command causesondfe to exit from a debug session when that
session is completenondfe looks for another debug session in progress and
connects to that session. If no more debug sessions are in progress, this
command causarnondfe to quit (i.e., it has the same effect asGhat
command).

2-22 MiniMON29K User Interface: MONDFE

F — Fill Memory/Registers

Syntax:

FIW|H|B]|F|D|S]starting_resource ending_resource fill_data

where:

w Specifiesfill_data format is a 32-bit integer (default).

H Specifiedill_data format is a 16-bit integer.

B Specifiedill_data format is an 8-bit integer.

F Specifiedill_data format is a floating-point number.

D Specifiedill_data format is a double-precision floating-point
number.

S Specifiedill_datais a string of characters.

starting_resource
Specifies the starting location of the fill. This location can be
either a memory address specifie@8K_MEM_ADDRformat,
or a register name specified in 2@k REG_NAMEHEormat. The
[29K MEM_ADDHRand th¢g29K REG_NAMEormats are
described on pages 2-4 and 2-5. The default memory space is
data memory.

ending_resource
Specifies the ending location of the fill. This location can be
either a memory address specifie@9K_MEM_ADDRformat,
or a register name specified in 2@ REG_NAMHormat. The
[29K MEM ADDRand th29K REG NAMEormats are
described on pages 2-4 and 2-5.

fill_data Specifies the data that is to be replicated into the range specified
by thestarting_resourcendending_resourcearameters. The
fill_data must be a valid data consistent with the fill format
specified. It is interpreted as a hexadecimal number, except when
the S format is specified.

TheFILL (F) command can be used to fill 29K Family target memory or

registers. The format of tH#él_datais specified by the suffix character of the
FILL (F) command.

MiniMON29K User Interface;: MONDFE 2-23

Thefill_data parameter is interpreted as a hexadecimal value and must
conform to the size of the data elements specified by the optional suffix (data
format letter) following thé- command, except in the caseR&, when

fill_datais interpreted as a character string. If the data format-letter is missing,
a default size of 32 bits (word) is assumed. All the format specifiers, except the
Sformat, can be used to fill either memory or register.

The format of thdill_data specified must be consistent with and representable

in the format specified. For example, a floating-point data must be supplied for
anFF command, whereas an integer that can be represented in 32-bits must be
supplied wherrW is used. Thus, “abcdef” would be an invdlld data for an

FB command. When no suffix is given, that is, wifeis used alone, the

fill_data is assumed to be representable as a 32-bit integer. When the resource
type is register, the format specified should be eliigF, or D, because the
registers are accessed as 32-bit quantities.

Fill Formats

In the fill formats shown below (word, half-word, byte, floating-point,

and double-precision), formats interpret the fill data as hexadecimal
values. The string format takes a string of characters as fill data.
TheDISPLAY (D) command following each fill command in the examples is
shown only to illustrate the fill command results.

Word (Default)
MONDFE.EXE>f 80005000 80005010 12345678
MONDFE.EXE>d 80005000 80005010

80005000 12345678 12345678 12345678 12345678 _4VX. 4VX. 4VX. 4VX.
80005010 12345678 _4Avx.

Half-Word

MONDFE.EXE>fh 80005000 80005010 abcd
MONDFE.EXE>d 80005000 80005010

80005000 abcdabcd abcdabced abcdabed abcdabed
80005010 abcd5678 VX

2-24 MiniMON29K User Interface: MONDFE

Byte
MONDFE.EXE>fb 80005000 80005010 a0
MONDFE.EXE>db 80005000 80005010

80005000 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 ao.....

80005010 a0

Single-Precision Floating-Point
MONDFE.EXE>ff 80005000 80005010 1.2
MONDFE.EXE>df 80005000 80005010

80005000 +1.200000e+000 +1.200000e+000 +1.200000e+000 +1.200000e+000
80005010 +1.200000e+000

Double-Precision Floating-Point

MONDFE.EXE>fd 80005000 80005010 2.3
MONDFE.EXE>dd 80005000 80005010

80005000 +2.300000000000000e+000 +2.300000000000000e+000
80005010 +2.300000000000000e+000

String of Characters
MONDFE.EXE>fs 80005000 80005010 minimon
MONDFE.EXE>d 80005000 80005010

80005000 6d696e69 6d6f6e6d 696e696d 6f6e6d69 minimonminimonmi
80005010 6e696d6f nimo

Example
MONDFE.EXE>F 103ClI 104FI 0

In the example above, tléLL command is instructed to fill instruction RAM
locations 0x103c through 0x104f with zeros. Instruction RAM is indicated in

the supplied addresses because the modifier sufitas been appended to the
addresses. If thelLL command was to be directed to instruction ROMRan

would be appended to each of the above addresses (for example, 103CR). Data
RAM addresses are entered without a suffix or witimasuffix.

MiniMON29K User Interface;: MONDFE 2-25

Example
MONDFE.EXE>FB 14000 140FF 20

In the example above, data memory locations 0x14000 through Ox140FF are
filled with byte-size values. The val2@ is the hexadecimal code for an

ASCII space character; therefore, 256 byte locations, beginning at address
0x14000, are filled with spaces.

2-26 MiniMON29K User Interface: MONDFE

G —Go
Syntax: G

The GO (G) command starts or resumes execution of a previously downloaded
program in target memory. (Refer to tH&NK (Y) command description for
downloading a program.) The execution always starts or resumes at the current
location contained in the 29K Family Program Counter regisgZ8,(PCJ),

unless they are changed explicitly by the user before issuing this command.

The firstG command after downloading a program (usingthABK (Y)
command) causes the execution of the downloaded program.

To restart a program without downloading it again, issuéNlie command
first, and then issue@O command. Thé&NIT command initializes the
process to the beginning (entry point).

When usingmontip, use the-R option ofmontip in the UDI configuration file
to run programs in real/physical mode. To run programs in protected mode
(one-to-one mapping of physical addresses to virtual addresses), 4Be the
option ofmontip.

To run the application program in protected mode, the application program
must be linked in alignment with the page size used by the target kernel. For
example, use th&LIGN=8192 linker directive to align the sections on an
8K-page boundary.

Example
MONDFE.EXE> G

This example starts execution from the current location given by the
processor’s PC registers.

Whenmondfe is used withmontip, application programs loaded into memory

using theYANK (Y) command are executed in the madeording to theR
or —P option given tanontip by default when th& command is issued.

MiniMON29K User Interface;: MONDFE 2-27

H — Help

Syntax: H [command
? [command

where:
command Is the first letter corresponding taveondfe command or a
mondfe command name.

TheHELP (H or?) command requests on-line help for any ofrttendfe
commands, or displays a brief description of each command’s syntax and
usage. On-line help is available formbndfe commands. Simply typing or

? without the optionatommandparameter causes a help screen containing a
list of mondfe commands to be displayed.

If the optionalcommandbarameter is given, it must be the first letter of one of
themondfe commands or mondfe command name. If no command exists for
that letter, the help screen is displayed.

Example

MONDFE.EXE>H

Use 'h <letter>’ for individual command help.

a— ASSEMBLE INSTRUCTION

¢ — PRINT CONFIGURATION

cp — CREATE UDI PROCESS

chO — 29K TERMINAL CONTROL

dp — DESTROY UDI PROCESS

ex — EXIT UDI PROCESS

eon — TURN ON ECHO MODE

g — START/RESUME EXECUTION

h — HELP COMMAND

ix,il — DISPLAY AM2903X CACHE
logon — TURN ON LOG MODE

| — LIST/DISASSEMBLE MEMORY
pid — SET UDI PROCESS ID

gon — TURN QUIET MODE ON

sid — SET UDI SESSION ID

t — TRACE/SINGLE STEP EXECUTION
ver — MONTIP VERSION COMMAND
y — YANK/DOWNLOAD COFF FILE
ze — ECHO FILE FOR ECHO MODE
zl - USE LOG FILE FOR LOG MODE

b,b050,bc — SET/CLEAR/DISPLAY BREAKPOINT
caps — DFE AND TIP CAPABILITY

con — CONNECT TO A UDI DEBUG SESSION
d,dw,dh,db,df,dd — DUMP MEMORY/REGISTERS
disc — TEMPORARILY DISOCNNECT UDI SESSION
esc — ESCAPE TO HOST OPERATING SYSTEM
eoff - TURN OFF ECHO MODE

f,fw,fh,ff,fd,fs — FILL MEMORY/REGISTERS

init — INITIALIZE CURRENT UDI PROCESS

k — KILL RUNNING PROGRAM ON 29K TARGET
logoff - TURN OFF LOG MODE

m — MOVE DATA TO MEMORY/REGISTERS

q - QUIT MONDFE

qgoff — TURN QUIET MODE OFF

r— RESET (SOFTWARE RESET) 29K TARGET
s,sw,sh,sb,sf,sd — SET MEMORY/REGISTERS

tip — MONTIP TRANSPARENT MODE COMMAND
xp — DISPLAY PROTECTED MODE COMMAND

zc — EXECUTE COMMANDS FROM COMMAND FILE
| - COMMAND CHARACTER (IN COMMAND FILE)

MONDFE.EXE>

2-28 MiniMON29K User Interface: MONDFE

Example
MONDFE.EXE>h f

The above command causaendfe to output a screen containing information
on the fill command, as shown below:

F[W|H|B|F|D] <start address>, <end address>, <value>

Fill memory or register contents.

FW or F-fill as 32-bit integers| FF — fill as floating point value.
FH —fill as 16-bit integers | FD —fill as double precision

FB —fill as 8-bit integers | floating point value.

FS —fill with the string/pattern given.

Register names:

GRO1, GR64-GR127 SR00-SR14, SR128-SR135
LROO-LR127 TROO-TR127

Memory addresses:
<hex>m — data memory <hex>i — instruction memory

<hex>r — rom memory <hex>u — unspecified (no addr check)
MONDFE.EXE>

MiniMON29K User Interface;: MONDFE 2-29

2-30

Disassemble Am2903x Processor
Cache

Syntax: IL

ThelL command disassembles the contents of the Am2903x processor cache
registers.

Example
MONDFE.EXE>il

Cache line 0x1, set 105.
IATAG V P US
00004 011

00004010 00004003 .word 0x00004003
00004014 ce000b60 mtsr pcl,gro6
00004018 1600607d load 0,0x0,gr96,gr125
0000401c 157d7d04 add grl25,gr125,0x4

Cache line 0x10001, set 105.

IATAG V P US
ce000 0 0 O

00000a10 00001000 .word 0x00001000
00000al4 fbfbfff7 .word Oxfbfbfff7
00000a18 dfbffrTb7 multmu Ir63,Ir119,Ir55
00000alc feefdf7f .word Oxfeefdf7f

MiniMON29K User Interface: MONDFE

INIT — Initialize Downloaded Program

Syntax: INIT

TheINIT command requests the underlying TIP to initialize the downloaded
program. This command restarts a program without downloading it again. An
INIT command, followed by &0 command, restarts the downloaded
application program.

MiniMON29K User Interface;: MONDFE 2-31

IX — Display Am2903x Processor Cache

Syntax: IX

ThelX command displays the contents of the Am2903x processor cache
registers.

Example
MONDFE.EXE>ix

Cache line 0x1, set 105.

IATAG V P US
00004 0 11

00004010 00004003 .word 0x00004003
00004014 ce000b60 mtsr pcl,gro6
00004018 1600607d load 0,0x0,gr96,g9r125
0000401c 157d7d04 add grl25,gr125,0x4

Cache line 0x10001, set 105.

IATAG V P US
ce000 0 0 O

00000a10 00001000 .word 0x00001000
00000al14 fbfbfff7 .word Oxfbfbfff7
00000a18 dfbff7b7 multmu [r63,Ir119,Ir55
00000alc feefdf7f .word Oxfeefdf7f

2-32 MiniMON29K User Interface: MONDFE

K — Kill Program Execution

Syntax: K

TheKILL (K)command halts (kills) program execution. KieL command
causesnondfe to call theUDIStop() procedure. This procedure is transmitted

to the underlying TIP, which processes the request. Program execution can be
resumed by issuing@O (G) command.

MiniMON29K User Interface;: MONDFE 2-33

L — List (Disassemble) From Memory

2-34

Syntax: L [29K_MEM_ADDR [29K_MEM_ADDR]]

where:

29K_MEM_ADDR
Specifies the initial address: the hexadecimal value (and the
associated memory space suffix of the memory address in
instruction ROM or RAM) at which to begin disassembling
instructions. If no suffix is given, instruction RAM memory is
assumed for disassembly. The forma{Z®K_MEM_ ADDRs
described on page 2-4.

29K_MEM_ADDR
Specifies the final address: the hexadecimal value (and the
associated memory space suffix of the memory address in
instruction ROM or RAM) of the last instruction to be
disassembled. If no suffix is given, the memory space of the
starting location is assumed. This parameter is optional. The
format forP9K_MEM_ADDIRs described on page 2-4.

TheLIST (L) command lists (disassembles) portions of a program stored in

the instruction memory of the target. Instruction opcodes are listed using their
assembly language mnemonics, and operands are listed in a format appropriate
to their individual types.

Instructions are disassembled beginning a8 MEM_ADDRand ending

with the29K_MEM_ADDR inclusive when specified. If no
29K_MEM_ADDRIs given, th&9K_MEM_ADDRalso must not be specified.

MiniMON29K User Interface: MONDFE

Example
MONDFE.EXE>L 100001 10014l
00010000 00000000 .word 0x00000000

00010004 25010118 sub grl.grl,0x18
00010008 5e40017e asgeu 64,0r1,gr126
0001000c 15810118 add Ir1,gr1,0x18

00010010 036162e8 const gr98,0x61e8
00010014 02006201 consth gr98,0x1

The example above illustrates the disassembly of five instruction words,
beginning at location 0x10000I, and ending at word location 0x10014I1 (20
bytes). Each line displays the location of the instruction, its contents in
hexadecimal, and its mnemonic translation.

MiniMON29K User Interface;: MONDFE 2-35

LOGOFF/LOGON — Turn Off/On Log Mode

2-36

Syntax: LOGOFF
LOGON

The LOGOFF/LOGON commands turn off/on the log mode from thendfe
command prompt. When log mode is on, every command entered by the user
is logged into the log file specified either at invocation or by usinglthe
command. When log mode is off, commands are not logged.

MiniMON29K User Interface: MONDFE

M — Move Registers/Memory

Syntax: M source_start source_end destination_start

where:

source_start Specifies the memory or register address from which the first
data item is to be moved. A memory address must be
specified using thB9K_MEM_ADDRormat explained on
page 2-4. A register name must be specified using the
[29K_REG NAMEormat explained on page 2-5. The
default memory space is data memory.

source_end Specifies the memory or register address from which the last
data item is to be moved. A memory address must be
specified using thB9K_MEM_ADDRormat explained on
page 2—-4. A register name must be specified using the
[29K_REG_NAMFEormat explained on page 2-5.

destination_startSpecifies the memory or register address to which the first
data item is to be moved. A memory address must be
specified using the9K_ MEM ADDRformat explained on
page 2-4. A register name must be specified using the
[29K_REG_NAMEormat explained on page 2-5.

TheMOVE (M) command moves data between registers or memory locations.
Thesource_startsource_endanddestination_starparameters are all

required. The source and destination parameters can be either register names or
memory addresses, or a combination of both. Howevesgailvee starand
thesource_engbarameters cannot be a mixture of register names and memory
addresses.

If the source parameters describe a series of memory locations that do not
encompass a whole number of words, only the inclusive range of bytes is
moved to the destination address. If a single register or memory location is to
be movedsource_starandsource_endnust be identical.

MiniMON29K User Interface;: MONDFE 2-37

Example
MONDFE.EXE> M 10000,1000f,20000

This example illustrates the use of Mecommand to move a block of

memory data from one location to another. In this case, 16 bytes (four
instructions) are moved from the data memory locations 0x10000-0x1000f to
locations 0x20000—0x2000f.

2-38 MiniMON29K User Interface: MONDFE

PID — Set UDI Process ID

Syntax: PID pid_number

where:
pid_number Specifies the UDI process ID number.

ThePID command sets the current UDI process tgptienumbeispecified.

A pid_numbeiof —1 represents the target system and can be used to access
physical addresses and to reset the target. CFheommand creates a process,
theDP command destroys a process, andii& command initializes a
process.)

MiniMON29K User Interface;: MONDFE 2-39

Q — Quit

2-40

Syntax: Q

TheQUIT (Q) command terminates the debug session and exits the
MiniMON29K Debugger Front End{ondfe). Any open log file or command
files are closed before returning control to the host operating system.

If more than one debug session is in progress, with one or more TIPs, the
QUIT (Q) command terminates all debug sessions. The associated TIP(s)
become inactive.

Use theEXIT (EX) command to terminate only the current debug session.
Use theDISCONNECT (DISC) session command to temporarily exit from

one debug session to another. At least one other debug session must be in
progress when using this command.

MiniMON29K User Interface: MONDFE

QOFF/QON — Turn Off/On Quiet Mode

Syntax: QOFF
QON

The QOFF/QON command turns off/on quiet modernbndfe. The—q

command line option invokesondfe in quiet mode. In quiet mode, debug
messages are suppressed. These messages can be turned on anytime during the
debug session using tREON command and turned off using IROFF

command.

MiniMON29K User Interface;: MONDFE 2-41

R — Reset Target Processor

Syntax: R

TheRESET (R) command performs a software reset of the target, resulting in
the starting up of the target.

TheR command requires a responsive target. When the target is hung or has
crashed, a hardware reset (power cycle) may be required.

2-42 MiniMON29K User Interface: MONDFE

S — Set Memory/Registers

Syntax: S[W/|H|B|F|D]target_resourcset_data

where:

SWorS Specifieset_datdormat is a 32-bit integer (default).

SH Specifieset_datadormat is a 16-bit integer.

SB Specifieset_datadormat is an 8-bit integer.

SF Specifieset_dataformat is a floating-point number.

SD Specifieset_datdormat is a double-precision floating-point

number.

target_resource Specifies a memory location or a register whose content is to
beset to theset_datavalue given. A memory location or a
register must be specified using g#8K MEM_ADDR
format of29K_REG_NAMEormat described on pages 2-4
and 2-5. The default memory space is data memory.

set_data Specifies the value to be written into the memory location or
register specified by the first parameter. This value is
interpreted as a hexadecimal value and according to the
format suffix specified, if any. Its size must be consistent
with the unit size of that format.

W, H, B, F, andD suffixes to theSET (S)command specify the format of
set_dataWhen no suffix is giverlV is assumed.

The SET (S) command sets a memory location or a register to a particular
value specified bget_dataThe format of theet_datas specified by the
suffix character of th& command.

All the format specifiers above can be used to set either a memory location or
a register. Theet_dataspecified is interpreted as a hexadecimal value. The
format ofset_datamust be consistent with and representable in the format
specified. For example, a floating-point data must be supplied 8Fan
command, whereas an integer that can be represented in 32 bits must be
supplied wher8W is used. Thus, “abcdef” would be an invaet_datafor an

SB command. When no suffix is given, that is, wisar used aloneset_data

is assumed to be representable as a 32-bit integer.

MiniMON29K User Interface;: MONDFE 2-43

The format specified should be eithgr F, or D, when the resource type is
register, because registers are accessed as 32-bit quantities.

Example
MONDFE.EXE>S 12000 03FC

In the example above, data memory locations 0x12000 through 0x12003 are
set to the hexadecimal word value 0x000003FC. Because a modifier character
was not given, 4 bytes are stored into the destination location.

Example
MONDFE.EXE>SB 12002 20

The example above sets the byte at data memory location 0x12002 to 0x20,
which is an ASCII space character. The contents of the remainder of the data
memory word remain unchanged by this substitution.

Example
MONDFE.EXE>SD GR96 3.1415926535

In the example above, global registgr86 andgr97 are set to a
double-precision floating-point value. Wh&D is used, an 8-byte value
(double) is always stored. Thisored valuewill occupy two consecutive
memory or register locations.

Example
MONDFE.EXE>S 100201 0300A165

This example illustrates using tB&T (S) command to patch an instruction
memory location to contain a different instruction. HoweverABSEMBLE
(A) command is preferable for this purpose. See the description of the
[ASSEMBLE (A) command for more details.

2-44 MiniMON29K User Interface: MONDFE

SID — Set UDI Session ID

Syntax: SID sid_number

where:
sid_number Specifies the UDI session ID.

The SID command sets the UDI session IDstd_numberThis command can

be used to set the current debug session when multiple debug sessions are
occurring.

MiniMON29K User Interface;: MONDFE 2-45

T — Trace (Single/Multiple Step) Execution

Syntax: T [count]

where:
count Specifies the number of instructions to trace. ddentvalue is
specified in decimal notation. The default is 1.

The TRACE (T) command traces or steps through the execution of a program.
Either single or multiple instructions can be executed by using the optional
countparameter.

If no optionalcountparameter is given, one instruction is executed from the
current location.

After the completion of th€ RACE (T) command, the instruction at the
stopped location is disassembled and displayed on the screen.

Example
MONDFE.EXE>T 20
00010058 15846000 add Ir4,9r96,0x0

In the example abovejondfe is asked to trace 20 instructions. Prior to entry
of the trace command, the next instruction to be executed was located at
address 0x10008I. After tracing 20 instructiomgndfe prints out the next
instruction to be executed, which is located at address 0x10058lI.

Example

MONDFE.EXE>T
0001005c 01ff82ff constn Ir2,0xffff

In this examplemondfe is asked to trace a single instruction, beginning with
the instruction at the memory location displayed by the previous example.
Only one instruction is traced because there isoumtparameter. After
executing the instruction at address 0x10058, the next instruction, located at
address 0x1005C, is displayed.

2-46 MiniMON29K User Interface: MONDFE

TIP — MONTIP Transparent Mode

Syntax: TIP command

where:
command Is a validmontip command.

TheTIP command sends tltemmandstring tomontip for execution. The
command uses UDI Transparent Mode to pass the command string. The
following TIP commands are supported:

« tip Ipt=0 requests thahontip stop using the parallel port for
communicating with 29K Family microcontroller targets.

* tip Ipt=1 requests thahontip resume using the parallel port for
communicating with 29K Family microcontroller targets.

TheTIP command can be used before issuif\BIK (Y) command to
download a program (COFF) file using the PC parallel port. The parallel port
download capability is applicable only for an MS-DOS system. The parallel
port to be usecthustbe specified asmontip command-line option in the UDI
configuration file using thepar command-line option ahontip. (The UDI
configuration file isudiconfs.txt on MS-DOS systems, andli_socon UNIX
systems.)

Because the parallel port communication is unidirectional only, the serial
communications porgomlor com2, also must be specified on tm@ntip
command line in the UDI configuration file.

TheTIP command is valid only with the MiniMON29#ontip.

MiniMON29K User Interface;: MONDFE 2-47

VER — Display DFE, TIP, and Target
Version Numbers

Syntax: VER

MONDFE.EXE>ver

MiniMON29K R2.0
Copyright 1992 Advanced Micro Devices, Inc.

Host code:
Version 2.3-11
Date: 4-Mar-92

Tip code:
Version 2.3-11
Date: 4-Mar-92

Target code:

Debug core version: 1.3
Configuration version: 0.5
Message system version: 1.0
Communication driver version: 0.0
OS system version: 0.4

Maximum message buffer size on target: 0x800
Maximum number of breakpoints on target: 30
MONDFE.EXE>

The VERSION (VER) command obtains the version numbers of the
individual components of the MiniMON29K produntpndfe, montip, and
the target system. It also prints the maximum message buffer size on the target.

This mondfe command can be executed only against the MiniMON29K target

interface processnontip. Executing this command on any other TIP may
cause unpredictable results.

2-48 MiniMON29K User Interface: MONDFE

XP — Display Special Registers
Syntax: XP
The XP command displays the contents of many of the special registers of the
target processor, including the following:
e Old and current processor stat@S andCPS)
e \ector area bas&/AB)
« Configuration registerGFG)
¢ Channel registersQHA, CHD, andCHC)
* Register bank protecRBP)
e Timer counter reloadlCR)
e Timer counter valueT(CV)
e Program counterd?C0 throughPC?2)
¢ Memory management unit registétiiU)

The XP command displays the appropriate values for the type of Axx29
processor installed.

MiniMON29K User Interface;: MONDFE 2-49

2-50

Example
MONDFE.EXE>Xxp
TD MM CA IP TE
CPS: 0000000
OPS: 0000000

| SM IM DI DA

VAB CFG: PRL DW V
80000000 03110

R LS ML ST LATF TR NN CV

CHA CHD CHC:CE CNT
0 0 0000f00O

80001d14 00000000

or
~ 0

RBP: BF BE BD BC BB BA B9 B8 B7 B6 B5 B4 B3 B2 B1 BO
0000000000111 111

TCVTR:OVINIE TRV PCO PCl1 PC2
fff3ef 0 O 1 ffffff 00001a54 00001a50 00002590

MMU: PS PID LRU
03 01 10

MONDFE.EXE>
The example output from th&? command is shown above. For special

registers that have multiple fields (e @RS, OPSandCFG), the value of
each field is shown.

MiniMON29K User Interface: MONDFE

Y — Yank (Download) a COFF File

Syntax:

where:
—noi|—i

Y [-noi|-i] [F-msmem_stack_size_in_Hex
[-rsreg_stack_size_in_hgek-section}
[Coff_Filenamdprogram_arg$]

Specifies initialization of a process for the downloaded program
(COFF file). When the-noi option is specified, no process is
initialized for the downloaded program. When theption is
specified, a process is initialized for the downloaded program and
is ready for execution (using tl&command). Thei option is

the default.

—msmem_stack_size _in_hex

Specifies the memory stack size to use at the time of process
initialization (warm start) for the downloaded program. The value
specified is interpreted as a hexadecimal value, which can
override the value specified on the command linmordfe at

the time of its invocation.

—rsreg_stack_size_in_hex

—sections

Specifies the register stack size to use at the time of process
initialization (warm start) for the downloaded program. The value
specified is interpreted as a hexadecimal value, which can
override the value specified on the command linmofdfe at

the time of its invocation.

Downloads specific COFF sections of the COFF file specified.
Thesectionsoption can be composed of one or more of the
following letters:

b Indicates BSS sections
Indicates DATA sections

I Indicates LIT sections

t Indicates TEXT sections

Only the sections specified using the above letters are
downloaded. The default is to download all sections. For
example—td downloads only the TEXT and the DATA sections
of the COFF file.

MiniMON29K User Interface;: MONDFE 2-51

2-52

Coff_Filenamdprogram_arg$
Specifies the relative pathname of the COFF file to be
downloaded. Only files in COFF format can be downloaded using
mondfe. program_argss the optional list of command-line
arguments for the downloaded program.

The Coff_Filenamepption is always the first element of this list.
When noCoff_Filenamas specified, the filename specified in
the previousrANK (Y) command is used. However, a
Coff_Filenameoption must precede the optiopabgram_args
parameter.

The—-i and—noi options can be used to download COFF files either for
execution or as an easy way to assemble a set of commands into memory. For
example, the following code downloads the TEXT sections of the COFF file
assemble.ouinto memory:

y —noi —t assemble.out

The—noi option does not cause a process to be initialized for execution.
Therefore, any previously stopped program can be resumed by issu@ the
(G) command.

Themondfe commandNIT initializes a process for a downloaded COFF file,
if none was initialized at the time of downloading.

The—msand-rs options to thé&rANK (Y) command specify the memory

stack and register stack requirements for the program being downloaded. The
underlying operating system uses these values during warm start to set up the
stack environment for the program.

The -sectionsoption selectively loads specific COFF sections onto the target.
This downloads only the DATA and BSS sections in cases when the TEXT and
LIT sections from the previous download are known to be undisturbed. The
—sectionsoption must be comprised of one or more of the letferd, andb,

as explained previously.

The execution mode (real or protected) of the program is controlled by the TIP.

In the case ofnontip, the TIP options-R and—P select real or protected
mode, respectively, for the program.

MiniMON29K User Interface: MONDFE

Example

MONDFE.EXE>Y test.out

Loading TEXT section at 0x10000 (17872 bytes) ...
Loading LIT section at 0x16000 (292 bytes) ...
Loading DATA section at 0x18000 (1504 bytes) ...
Loading DATA section at 0x1a000 (188 bytes) ...
Loading BSS section at 0x1c000 (924 bytes) ...

In the example abovejondfe loads a file nametest.out, which is taken from
the current directory. The output produced by loading that file is shown. The
TEXT section is the program code. The LIT section contains read-only data.
The DATA sections contain initialized constant and variable data. The BSS
section contains space for uninitialized variables. The default values for the
options not specified are used.

MiniMON29K User Interface;: MONDFE 2-53

ZC — Execute Commands From
Command File

Syntax: zC cmdfile_name

where:
cmdfile_name Is the filename of amondfe command file.

TheZC command executes a seriesrafndfe commands from the
cmdfile_nameommand file. Themdfile_namés the name of the file

containing the command input. TEE command can be executed at the
mondfe command prompt. When all commands from the file are executed, the
mondfe>prompt appears again.

Nesting of command files is not allowed.

2-54 MiniMON29K User Interface: MONDFE

ZE — Specify Echo File for Echo Mode

Syntax: ZE echofile_name

where:
echofile_name Is the name of the echo file.

TheZE command turns on echo mode and specifies the echo file. When echo

mode is on, everything that is displayed on the screen is written into the echo
file. Theechofile_namstring specifies the filename of the echo file.

MiniMON29K User Interface;: MONDFE 2-55

ZL — Specify Log File for Log Mode

2-56

Syntax: ZL logfile_name

where:
logfile_name Is the filename of the log file.

TheZL command turns on log mode and specifies the log file to use. When
log mode is on, evemnondfe command entered by the user is logged in the
log file. This log file can be used directly as an input command file for
subsequent debug sessions to repeat the same sequence of commands. Log
mode can be turned on or off by using libgon or logoff command.

MiniMON29K User Interface: MONDFE

Chapter 3 &
MONDFE Tutorial

This chapter provides a step-by-step approach for debugging an example
program that contains intentional bugs. Although the example program is

relatively simple, the methodology presented in the tutorial is applicable to
many of the debugging situations that a user may encounter.

This tutorial programiuggy.g is run on an Am29000 microprocessor,

compiled using AMD’s High C 29K compiler, and linked with the

High C 29K linker. In the tutorial, compiling and linking are accomplished

with a single command that compiles the source file, links it with the necessary
library routines, and produces a standard AMD COFF file that can be executed
on the AMD EB29K" board. The tutorial example uses a stand-alone board as
the target. This is used instead of a PC plug-in card because it can be
reproduced from either MS-DOS or UNIX hosts. Note that the MiniMON29K
software already is ported and running on a number of hardware platforms
supported by AMD.

Advance preparation for a debugging session is an important first step. In this
tutorial, instructions are provided for preparation of batch and shell script files,
and a linker command file, and instructions for entering commands that
illustrate the debugging features of the MiniMON29K debugger core.

NOTE: In the following tutorial, theC:> and theMONDFE.EXE> indicate
prompts by the computer, and should not be typed in.

MiniMON29K User Interface;: MONDFE 3-1

Demo Directory for MS-DOS Hosts

Thedemodirectory under th@9k\tutoriaminimon directory contains batch

files and 29K Family executables that can be run as is on an EB29K board or
on an Am29000 processor-based stand-alone board with a

MiniMONZ29K target in PROMSs. Note that tiRATH andUDICONF

environment variables must be set to locate the executables, the MiniMON29K
target to download, and the UDI configuration fildjconfs.txt. Refer to the

UDI man pages for a detailed description of the search rules.

ebdemo.bat

This batch file runs the demo on an EB29K target. diidemo.batfile uses
theebdemo.cmdfile as the input command file, and loads and executes
buggy.ebandbuggyfix.ebfiles, illustrating the bug in theuggy.ebprogram.
Theebdemo.outfile contains the complete session for reference. The files
buggy.mapandbuggyfix.map are the map files fdsuggy.eband
buggyfix.eb, respectively. The C source files are in $hedirectory.

run384.bat

This batch file runs the demo on an Am29000 processor-based stand-alone
board connected over a serial communications link. The assumed baud rate is
38400 bps. Theun384.bat file uses theun384.cmdfile as the input

command file, and loads and execuiaggy.stbandbuggyfix.stb files,

illustrating the bug ithebuggy.stbprogram. The fileun384.ou contains the
complete session for reference. The filaggystb.mapandbfixstb.map are

the map files corresponding boiggy.stbandbuggyfix.stb, respectively. The

C source files are in thexc directory.

3-2 MiniMON29K User Interface: MONDFE

Preparing Batch Files for MS-DOS Hosts

Thecompile.bat, runeb29k.bat, andrunsteb.bat batch files are located in the
29k\tutorial\minimon\src directory of the product installation tree. These files
can be modified to suit the user’s work environment.

Two linker command files used in the tutorial also are placed in this directory:
load.Ink andebload.Ink.

compile.bat
hc29 —v —cmdebload.Ink —0 %1.out —m %1.c > %1.map

This batch file compiles a C program using the High C 29K compit@g. It
invokes the compiler in verbose mode)(and specifies the linker command

file to use (e.g.ebload.Ink) by using the-cmd option ofhc29. A map file also

is generated and redirected to a file with.thap extension and the same base
name as that of the C source file. The output is placed in a file witbuhe
extension and the same base name as that of the C source file. This batch file
can be used by specifying the base name of the C source fild(ggy,for
buggy.g as the first argument.

runeb29k.bat
mondfe —D —TIP eb29k

This batch file expects tHeATH andUDICONF variables to be set
appropriately. Th&JDICONF variable should be set to use tliiconfs.txt
file for an MS-DOS host. ThBATH variable must be set to invoke the
mondfe.exeandmontip.exeexecutables. ThHRATH variable must be set to
use the target objeeb29k.osfile to download. This batch file invokes
mondfe andmontip for executing programs interactively on an EB29K PC
plug-in card target.

MiniMON29K User Interface;: MONDFE 3-3

runsteb.bat
mondfe —D —TIP serial384

This batch file expects tHRATH andUDICONF environment variable to be

set appropriately. ThHdDICONF should be set to use the corrediconfs.txt

file for an MS-DOS host. ThBATH variable must be set to invoke the
mondfe.exeandmontip.exeexecutables. This batch file can be used to invoke
mondfe andmontip to execute programs interactively on a stand-alone target
board connected over a serial communications link. The assumed baud rate is
38400 bps.

Linker Command Files for the MONDFE Tutorial

ebload.Ink

ALIGN=8192

RESNUM 0x0, 0x10000

ORDER .text=0x10000, !text

ORDER .data=0x80004000, .datal, !data, .lit, !lit, .bss,!bss

This linker command file produces a COFF file for an EB29K target. It orders
the TEXT section in the Instruction memory, reserving the first 0x10000 bytes
for the MiniMON29K debugger core and the optional kernel. The DATA
sections are ordered starting at 0x80004000, reserving the first 0x4000 bytes
for use by the MiniMON29K debugger core and the AMD example kernel,
osboot TheALIGN directive forces the alignment of sections on an 8K-page
boundary. This alignment must match the Page Size bits of the MMU register
to successfully run the user’s program in protected mode ogingp. The

default for the Page Size bits of the MMU register is 8K-page.

load.Ink

ALIGN=8192
RESNUM 0x0, 0x10000

This linker command file produces a COFF file for a target that has a joint |

and D memory space. The first 0x10000 bytes are reserved for the
MiniMON29K debugger core and the AMD example kernshoot

MiniMON29K User Interface: MONDFE

Demo Directory for UNIX Hosts

Thedemodirectory under th@9k/tutorial/minimon directory for UNIX hosts
consists of a C shell script that runs the demo programs on an Am29000
processor-based stand-alone board connected over a serial communications
link. The assumed baud rate is 38400 bps. Note th&AfkE andUDICONF
environment variables must be set to locate the executables and the UDI
configuration file,udi_soc Refer to th&JDI man pages for a detailed
description of the search rules.

run384 C Shell Script

This batch file runs the demo on an Am29000 processor-based stand-alone
board connected over a serial communications link. The assumed baud rate is
38400 bps. It usesin384.cmdas the input command file, and loads and
executebuggy.stbandbuggyfix.stb, illustrating the bug in theuggy.stb

program. The fileun384.out contains the complete session for reference. The
files buggystb.mapandbfixstb.map are the map files corresponding to
buggy.stbandbuggyfix.stb, respectively. The C source files are in she

directory.

MiniMON29K User Interface;: MONDFE 3-5

Preparing Shell Script Files for UNIX Hosts

Two C shell scripts are placed under 2&/tutorial/minimon/src directory:
compile andrunsteb. These C shell scripts can be modified to suit the user’s
work environment.

Two linker command files used in the tutorial also are placed in this directory:
load.Ink andebload.Ink.

compile
hc29 —v —cmdload.Ink —o $1.out —m $1.c > $1.map

This C shell script compiles a C source program for an Am29000
processor-based stand-alone board. It invokes the compiler in verapse (

mode and specifidead.Ink as the linker command file to use. The output is
placed in the file with theout extension and the base name as that of the input
C source file. A map file is generated and stored in a file wittntlae

extension and the same base as that of the input C source file. The base name
of the C source program is specified as the first argument to the shell script.

runsteb
mondfe —D —TIP serial384

This C shell script expects tiATH andUDICONF environment variable to
be set appropriately. TRéDICONF should be set to use the cornedt_soc
file on the UNIX host. Th€ATH variable must be set to usm®ndfe and
montip. This shell script invokesiondfe andmontip to execute programs
interactively on a stand-alone target board connected over a serial
communications link. The assumed baud rate is 38400 bps.

3-6 MiniMON29K User Interface: MONDFE

Compiling the Tutorial Example

Thesrc directory undethe 29k\tutorial\minimon directory contains the

tutorial program, which is written in C language and can be compiled with the
High C 29K compiler. The program is included with the product, so that the
user does not have to create it. The program namegigy.c indicating it
contains errors, but none that will be discovered by the compiler. The
buggyfix.c source file fixes the bugs that were purposely introduced into the
buggy.cprogram. The extensions @fiap and.out represent the linker map

and absolute COFF files associated with their respective source files.

Note that the examples throughout the remainder of this tutorial are shown in
MS-DOS; however, equivalent UNIX filenames are listed in parentheses where
appropriate.

A listing of buggy.cis shown below:

/*

** Program listing for buggy.c, a demonstration program
** for use with the mondfe tutorial.

*/

#include <stdio.h>

double Fahrenheit, Celsius;

main()
for(; ;)
{
printf("Enter a temperature (in Fahrenheit): ”);
if(scanf("%lf", Fahrenheit) < 1) exit(0);
Celsius = Fahrenheit — 32 * 0.555555556;
printf("’A temperature of %6.2If (Fahrenheit) = %6.2If
(Celsius)\n”,
Fahrenheit, Celsius);
}
}

The bugs in this program may be apparent, but follow along with the tutorial to
learn how to use the commands in the MiniMON29K software to discover
these problems. The methodology for discovering and fixing these bugs can be
applied to debugging more complex programs.

MiniMON29K User Interface;: MONDFE 3-7

The first step is to compile the program. Toepile.batfile (compile for

UNIX versions) provided can be used to produce an absolute COFF file for an
EB29K target. For this example, tbempile.batfile was edited to use

load.Ink instead okbload.Ink as the linker command file. You may have to

edit this file to suit your target system. To compile a C program, enter the
following command at your host computer’s operating-system prompt
(assuming that you are using the batch files discussed above).

Before entering the command, you must be in the directory containing the
buggy.csource file and the batch files.

C:> compile buggy

TheC:> shown above is the MS-DOS prompt for a command to be entered.
Type only the two wordsompile buggyfollowed by a carriage return. This
compiles and links thieuggy.cprogram, producing luggy.mapmap file and
abuggy.outabsolute COFF file.

Thebuggy.mapfile contains information that will be used in subsequent
debugging steps. In particular, the following lines (extracted from the
buggy.mapfile) are pertinent to the remaining tutorial steps:

__main text 00010120

_Fahrenheit bss 0001C0B8
_Celsius bss 0001C0A4

Note that these addresses may vary, depending on the compiler and library
Versions you use.

These three locations were taken from the global symbol table listing in the
buggy.mapfile. It is a common practice for C compilers to prefix symbols

with an underscore character. Thain function is located in the TEXT

section of the COFF file and is found at memory location 0x10120 in the
loaded program. The global variableahrenheit andCelsius are located in

the BSS section, at addresses Ox1COB8 and 0x1CO0A4, respectively. The TEXT
section identifies locations in instruction memory, and DATA and BSS sections
identify locations in data memory.

3-8 MiniMON29K User Interface: MONDFE

Loading and Running the Program

After the compilation obuggy.cis complete, the next step in the debugging
process is to invoke the MiniMON29K Debugger Front Brahdfe. (The

target is a stand-alone execution board based on an Am29000 microprocessor,
connected over a serial link transmitting at 9600 bps.) To invukelfe, enter

the following command:

C:> mondfe —D —TIP serial96

The batch fileunsteb.bat (runsteb for UNIX versions) invokesnondfe for

this tutorial. As indicated in the compilation step, €¢he characters are the
operating system prompt. Make sure that y@AFH environment variable is
set up to invoke thmondfe.exeandmontip.exeexecutables. Also, ensure that
the UDICONF environment variable is set to thdiconfs.txt file for

MS-DOS hosts or thedi_socfile for UNIX versions.

After mondfe establishes communications with the target, it outputs a prompt,
soliciting a command. The prompt is shown below:

MONDFE.EXE>

When this prompt is shown in the following narrative, it is not to be typed. It is
included only to define the context in which the command is being entered. To
load the absolute COFF file produced by the previous compilation step, enter
the following command:

MONDFE.EXE> Y buggy.out

This command causasondfe to read the COFF filb(uiggy.oui), load its
various sections into the memory locations specified during the linking
process, and prompt for the next command.

After the program has been loadethndfe reports the locations of the COFF
file sections. In the case bfiggy.out, these locations are shown below:

Loaded TEXT section at 0x10000 (22412 bytes)
Loaded LIT section at 0x16000 (356 hytes)
Loaded DATA section at 0x18000 (1632 bytes)
Loaded DATA section at 0x1a000 (52 bytes)
Cleared BSS section at 0x1c000 (620 bytes)

MiniMON29K User Interface;: MONDFE 3-9

3-10

In the above output, the TEXT section is the program’s code. The LIT section
contains read-only data. The two DATA sections contain initialized constants
and variables, and the BSS section contains uninitialized variables.

Referring back to the information from thaggy.mapfile, you see that the

main function of the program is located within the TEXT section, and the two
variables of interesHahrenheit andCelsiug are located in the BSS section.
The next step is to run the program. Enter the following command at the
mondfe prompt:

MONDFE.EXE> G

The G command starts execution at the point where execution was previously
halted.

When this command is entered, the following output is displayed on the
screen:

Enter a temperature (in Fahrenheit): _

The underscore character at the end represents the cursor position on the
terminal display. Respond by typing a numeric temperature value, such as

212.0, followed by a carriage return. The following output appears on the
display:

User-mode data TLB miss (trap 9).

This trap indicates that an attempt was made to access an illegal data location
while executing the program.

MiniMON29K User Interface: MONDFE

Debugging the Program

At this point, having discovered an error, it is time to enter the debugging
phase of our program development. Looking at the illegal access trap that just
occurred, attempt to isolate the location being accessed by displaying the
contents of the program counters at the time the exception occurred. To display
the contents of the program counters, enter the following command:

MONDFE.EXE> D PCO PC2

sr008 00012448 00012444
sr012 00012440

The output, shown below the command, indicates that the processor was
executing the instruction located at address 0x12440 when the exception
occurred. To list this instruction and the two that follow, enter the following
command:

MONDFE.EXE> L 124401 12448

00012440 1e006062 store 0,0x0,gr96,gro8
0000c444 a0ff00c8 jmp 0xc364
0000c448 1e00617a store 0,0x0,9r97,g9r122

This output indicates that the program is attempting to store the values
contained in global registegs96 andgr97 into the addresses contained in
global registergro8 andgrl22. To display the contents of these registers,
enter the following:

MONDFE.EXE> D GR96 GR122

groe 406a0000 00000000 00000000 00000000
grioo0 000124e8 00000002 00000000 00000000

gri20 deffSeee fffffff 00000004

In the output listed above, some lines were eliminated for the sake of brevity.
This output indicates that the addresses at which the vadu@6n

(0x406a0000) and the valuegr97 (0x00000000) are being stored are
0x00000000 and 00000004, respectively. Both of these are illegal data
addresses. Recall that the legal DATA sections indicated by the COFF file
began at 0x18000 (1632 bytes) and 0x1a000 (52 bytes).

MiniMON29K User Interface;: MONDFE 3-11

3-12

Further inspection of the contents of global regigje®$ andgr97 reveals
that they may contain a double-precision floating-point value. To display their
contents in that form, enter the following:

MONDFE.EXE> DD GR96 GR97
groé +2.120000000000000e+002

This output shows that the value entered (212.0) is the one being stored in an
illegal address.

Looking at thebuggy.mapfile, you can identify the function that was

executing at the time the exception occurred. The first part of the map file lists
the section summary. Remembering that the program counter held the

value 0x00012440, look for.gext section that spans that area of instruction
memory. The following entry is found:

text TEXT
00011A0C 00012453 ... (_doscan.o)

This indicates that the bug appears in the library modidscan.owhich is
probably associated with tiseanffunction. At this point, it is reasonable to
assume that something is wrong with the cadidanfin the program.

MiniMON29K User Interface: MONDFE

Because the call tscanfappears in the first part of the program just after the
prompt is displayed, list the program code, beginning at the start wiatine
routine. Referring to the map again, you can see thain is located

beginning at address 0x00010120. Enter the following command :

MONDFE.EXE> L 101201 1015CI

00010120 25010120 sub grl,grl,0x20
00010124 5e40017e asgeu 0x40,9r1,gr126
00010128 15810128 add Irl,gr1,0x28

0001012c 03608200 const [r2,0x6000
00010130 0303606¢c const gro6,0x36¢
00010134 02006001 consth gro6,0x1
00010138 ¢c8008060 calli Ir0,gr96
0001013c 02008201 consth Ir2,0x1
00010140 03608228 const Ir2,0x6028
00010144 02008201 consth Ir2,0x1
00010148 03c062b8 const gro98,0xc0b8
0001014c 02006201 consth gr98,0x1

00010150 16006462 load 0,0x0,gr100,9r98
00010154 157a6204 add gr122,gr98,0x4
00010158 1600657a load 0,0x0,gr101,gr122
0001015c 15836400 add Ir3,gr100,0x0

You can see from looking at theiggy.csource program thatintf is the first
routine called. Its location is shown in the map filpr{ntf) as 0001036C.
Noting in the above listing that this value is being loaded into global register
gro96 and that th€ALLI instruction calls the routine pointed to by the
contents 0fjr96, assume that this is the call to fhetf routine.

MiniMON29K User Interface;: MONDFE 3-13

3-14

List another set of instructions before the next call by entering the following
command:

MONDFE.EXE>L

00010160 0304607c const @gr96,0x47c
00010164 02006001 consth @gr96,0x1
00010168 ¢8008060 calli 1r0,gr96
0001016¢c 15846500 add Ir4,gr101,0x0
00010170 4d606001 cpge gr96,gr96,0x1
00010174 ac006005 jmpt gr96,0x10188
00010178 032b60a8 const @gr96,0x2ba8
0001017c 02006001 consth gr96,0x1
00010180 ¢8008060 calli 1r0,gro96
00010184 03008200 const [r2,0x0
00010188 03c7601c const gr96,0xc71lc
0001018c 02406031 consth gr96,0x4031
00010190 033161f1 const gr97,0x31f1
00010194 02726104 consth gr97,0x7204
00010198 036062b8 const gr98,0x60b8
0001019c 02006201 consth gr98,0x1

The first two instructions in the above code load the address 0x1047C into
global registegr96, and the third instruction calls the routine. You have

located the context of the call, but have gone too far into the program. Back up
to the previous list to see the code that immediately precedes this call. It is
shown below, for reference:

00010140 03608228 const 1r2,0x6028
00010144 02008201 consth Ir2,0x1
00010148 03c062b8 const gr98,0xcOb8
0001014c 02006201 consth gr98,0x1
00010150 16006462 load 0,0x0,gr100,gr98
00010154 157a6204 add gr122,gr98,0x4
00010158 1600657a load 0,0x0,gr101,g9r122
0001015c 15836400 add Ir3,gr100,0x0
00010160 0304607c const @gr96,0x47c
00010164 02006001 consth @gr96,0x1
00010168 ¢8008060 calli 1r0,gr96

0001016¢c 15846500 add Ir4,gr101,0x0

Note that local registdr2 is being loaded with the constant 0x16028, which is
the address of a value in the LIT section of the program. This is the address of
the format string, which is the first parameter togb@nffunction. The second
parameter should be the address of the Fahrenheit variable, and this should be
placed into local registér3 prior to making the call.

MiniMON29K User Interface: MONDFE

The address of the Fahrenheit variable is 0x160B8, so you should see it
referenced in the code above. What you see, however, is the following
sequence of instructions (with explanatory comments added):

00010148 const gro8,0xc0b8 ; put 0x1COBS8 into gr98
0001014c consth gr98,0x1 ; put 0x1COB8 into gr98
00010150 load 0,0x0,gr100,gr98 ; put 0x1COBS8 into gr100
00010154 add grl22,g9r98,0x4

00010158 load 0,0x0,gr101,gr122

0001015c add Ir3,gr100,0x0 ; putitinto Ir3

It seems clear at this point that the contents, rather than the address, of the
Fahrenheit value are being loaded int@. Going back to the source code,

you find that in the call tscanf an ampersand character (&) was not placed in
front of Fahrenheit. The correct source code line should appear as shown
below:

if(scanf("%If", &Fahrenheit) < 1) exit(0);

Exit mondfe by entering the following command:
MONDFE.EXE> Q

Make this correction to the source coddimggy.cand recompile, using the
same procedure indicated in the “Compiling the Tutorial Examnple” section on
page 3-7.. Next, invokaondfe, reload the COFF fileb{uggy.ouf) using the

Y command, and start program execution by enterin@tbemmand. This
sequence of operating system amohdfe commands is listed below:

C:> compile buggy
C:> mondfe —D —TIP serial384

MONDFE.EXE> Y buggy.out
MONDFE.EXE> G

When you are asked to enter a temperature, again enter 212. The output should
appear as shown below:
Enter a temperature (in Fahrenheit): 212.0

A Temperature of 212.00 (Fahrenheit) = 194.22 (Celsius)

Well, at least this time there is output. Unfortunately, a temperature of 212.0
degrees Fahrenheit should be 100.0 degrees Celsius. Something else is wrong.
It must be in the computation of the Celsius value.

MiniMON29K User Interface;: MONDFE 3-15

3-16

At this point terminate the program by entering any non-numeric value, such
as the following, and observe the output:

Enter a temperature (in Fahrenheit): end

Program exited (exit code 0)

The output indicates that the program has exited, because you indicated in the
if statement that if less than one numeric value is entered in response to the
scanfcall, the program should call tegit routine. The display reflects that

this has occurred. Because of the recompilation, the object code has changed,
so it is uncertain where the computation begins. In addition, the contents of the
buggy.mapfile has changed. The relevant entries in the new map file are
shown below:

_main text 00010120
_scanf text 00010468
_Fahrenheit bss 0001c0B8
_Celsius bss 0001c0A4

To locate the point at which the computation begins, execute the following
commands:

MONDFE.EXE> Y buggy.out

MONDFE.EXE> B 10468l

MONDFE.EXE> G

breakpoint hit at 00010468

00010468 25010118 sub grl,grl,0x18
MONDFE.EXE> D IrO IrO

Ir000 0001015c

MONDFE.EXE>

MiniMON29K User Interface: MONDFE

To summarize:
1. The first command reloads theggy.outfile.

2. The second command sets a breakpoint at the entry pointsafatiie
routine.

3. The third command tellmondfe to begin execution.

Immediatelymondfe reports that the breakpoint you set has been reached. You
can see from examining the code that@®#d_LI instruction that invokes the
scanfroutine stores the return address in local regiievhen the call is

made.

4. The fourth command then displays the register contei@.dy
displaying the contents of local regist€r immediately after the
breakpoint has been hit, you find the return address in the main program. In
this case, it is 0x1015C.

The next step is to set a breakpoint at the return location, so that the program
can run until the next breakpoint is reached. Enter the following commands,
and examine the output:

MONDFE.EXE> B 1015CI

MONDFE.EXE> G

Enter a temperature (in Fahrenheit): 212.0
breakpoint hit at 0001015c¢

0001015c 4d606001 cpge gr96,gr96,0x1
MONDFE.EXE>

After the new breakpoint is installed and the program continues execution
(when theG command has been entered), it immediately prompts for a
temperature value. Entering 212.0 again cassasfto store the value in the
Fahrenheit variable and return to the main program. At this point, the newly
installed breakpoint has been hit. TRBGE instruction displayed at the
breakpoint location is the comparison associated witff ttatement in the
source program.

Because you do not know how many instructions are associated with the
computation of the Celsius temperature, the best approach at this point is to
trace the program execution, one instruction at a time. Enter the following
command:

MONDFE.EXE> T

00010160 ac006005 jmpt gr96,0x10174

MiniMON29K User Interface;: MONDFE 3-17

3-18

Entering theT command with no options or parameters traces a single
instruction (in this case tHePGE instruction that was previously displayed),
and displays the next instruction to be executed.

The JMPT instruction should jump, because a valid numeric value was
entered at the prompt for a temperature vadaar{fshould return a value of 1,
indicating that one item has been successfully scanned); however, the
instruction immediately after a jump instructioraleraysexecuted. Therefore,
you should expect (in the following procedure) to see that the instruction at
address 0x10164 is being traced. At that point, the program should trace the
instruction located at the jump target location.

Continue entering th€ command until the following set of instructions has
been executed and tBSUB instruction is displayed as the next one to be
executed. (Most of th€ commands have been omitted for the sake of brevity.)

MONDFE.EXE>T

00010164 032b6094 const gro6,0x2b94
00010170 032b6094 const gr96,0x2b94
00010174 03c7601c const gro6,0xc71c
00010178 02406031 consth gr96,0x4031
0001017c 033161f1 const gr97,0x31f1
00010180 02726104 consth gr97,0x7204
00010184 03c083b8 const [r3,0xc0b8
00010188 02008301 consth Ir3,0x1

0001018c 16006483 load 0,0x0,9r100,Ir3
00010190 157a8304 add gri122,ir3,0x4
00010194 1600657a load 0,0x0,gr101,gr122
MONDFE.EXE> T

00010198 3626460 dsub gr98,gr100,g9r96

Ignore the first instruction (at location 0x10164, which immediately follows
the JMPT instruction). The first tw@€ONST/CONSTH instruction pairs load
a double-precision floating-point value into global registe®® andgr97.

You can display this value by entering the following command:

MONDFE.EXE> DD GR96 GR97
gro96 +1.777777779200000e+001

At this point, it is instructive to repeat the source program line that computes
the Celsius temperature, as shown below:

Celsius = Fahrenheit — 32 * 0.55555556;

MiniMON29K User Interface: MONDFE

Itis clear that a value of 17.777777792 does not appear anywhere in our
equation, so the equation must have been interpreted incorrectly. In fact, this is
exactly the case. If you multiply 32 by 0.55555556, the result is 17.77777792.
Clearly, the compiler is giving precedence to the multiplication, before the
subtraction is executed. To correct the program, put parenthesis around the
subtraction of 32.0 from the Fahrenheit variable, as shown below in the
corrected statement:

Celsius = (Fahrenheit — 32) * 0.55555556;

It is clear that a mistake has been found, so termimatelife by entering the
following command:

MONDFE.EXE> Q

Edit thebuggy.cprogram to correct this error, and recompile the program as
previously described.

Now that the program has been recompiled, you can re-iniokelfe, load
the program and execute it by entering the following series of commands:

C:> mondfe —D —-TIP eb29k

MONDFE.EXE> Y buggy.out
MONDFE.EXE> G

At the first prompt to enter a temperature, again enter the value 212.0. The
resulting output is shown below:

Enter a temperature (in Fahrenheit): 212.0
A temperature of 212.00 (Fahrenheit) = 100.00 (Celsius)
Enter a temperature (in Fahrenheit): _

As you can see, the result is correct and the program has prompted for another
temperature value. Try entering 32.0 (the Fahrenheit temperature at which
water freezes). The result is 0.00, the corresponding Celsius temperature. You
can continue entering different temperatures and verifying the results. To exit
the program, enter any non-numeric value at the temperature proomtfe

will acknowledge that the program has exited, and you camguitife by

entering th&Q command at th®IONDFE.EXE> prompt.

MiniMON29K User Interface;: MONDFE 3-19

3-20

The debugging technique just presented represents a combination of analysis
and action. This is common in the debugging process. You have to perform the
analysis, but the MiniMONZ29K debugger core can do a lot of work to help you
verify your assumptions. A common methodology for debugging C programs,
consists of editing, compiling, and testing; these steps are repeated as many
times as necessary to verify that the program is correctly performing its
intended task.

mondfe incorporates many features that have not been explored in this tutorial,
however, they are just as easy to use. Commands are provided for changing
and displaying the contents of registers or memory, setting both sticky and
non-sticky breakpoints, assembling and disassembling instructions using
standard AMD mnemonics, and more.

In addition to thenondfe command features, it is worthwhile to use the log
file as a source of commands for subsequent debugging sessions. Invoke
mondfe using the-log logfile_namecommand-line parameter and rename this
file immediately after quitting a debugging session. Use the file later as input
by including the-ccmd_fileoption on the command line when you invoke
mondfe. (Remember to delete tiigecommand at the end of the file before
using the file as input.)

MiniMON29K User Interface: MONDFE

Appendix A a

Error Messages

The following pages describe the error messages produced by a command
typed at the MONDFE prompt as well as those produced by the UDI layer.

MiniMON29K User Interface: MONDFE A-1

MONDFE Error Messages

Table A-1 describes error messages reported in response to a user command
typed at theWlONDFE.EXE> prompt. Error messages can be prefixed by a
warning or fatal error message.

Whenmondfe can recover from the error, it displays a warning message.
Warnings are prefixed by “DFEWARNING,” and they do not causadfe to
terminate.

Whenmondfe cannot recover from the error, it displays a fatal error message.

Fatal error messages are prefixed by “DFEERROR,” and they crrsdfe to
terminate.

Table A-1. MONDFE Error Messages

Error Code Error Message

2 EMFAIL: Unrecoverable error.

3 EMBADADDR: lllegal address.

4 EMBADREG: lllegal register.

5 EMSYNTAX: lllegal command syntax.

6 EMACCESS: Could not access memory.

7 EMALLOC: Could not allocate memory.

8 EMTARGET: Unknown target type.

9 EMHINIT: Could not initialize host.

10 EMCOMM: Could not open communication
channel.

11 EMBADMSG: Unknown message type.

12 EMMSG2BIG: Message too large for buffer.

13 EMRESET: Could not RESET target.

14 EMCONFIG: Could not get target CONFIG.

15 EMSTATUS: Could not get target STATUS.

16 EMREAD: Could not READ target memory.

17 EMWRITE: Could not WRITE target memory.

A-2 MiniMON29K User Interface: MONDFE

Error Code Error Message

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46

EMBKPTSET:
EMBKPTRM:
EMBKPTSTAT:

EMBKPTNONE:
EMBKPTUSED:

EMCOPY:
EMFILL:
EMINIT:
EMGO:
EMSTEP:
EMBREAK:
EMHIF:
EMCHANNELDO:
EMCHANNEL1:
EMOPEN:
EMHDR:
EMMAGIC:
EMAOUT:
EMSCNHDR:
EMSCN:
EMCLOSE:
EMLOGOPEN:
EMLOGREAD:

EMLOGWRITE:

EMLOGCLOSE:

EMCMDOPEN:
EMCMDREAD:

EMCMDWRITE:
EMCMDCLOSE:

Could not set breakpoint.

Could not remove breakpoint.
Could not get breakpoint status.
All breakpoints in use.
Breakpoint already in use.
Could not COPY target memory.
Could not FILL target memory.
Could not initialize target memory.
Could not start execution.

Could not single step.

Could not BREAK execution.
Could not perform HIF service.
Could not read CHANNELO.
Could not write CHANNEL1.
Could not open COFF file.
Could not read COFF header.
Bad COFF file magic number.

Could not read COFF a.out header.

Could not read COFF section header.

Could not read COFF section.
Could not close COFF file.
Could not open log file.

Could not read log file.

Could not write log file.

Could not close log file.
Could not open command file.
Could not read command file.
Could not write command file.
Could not close command file.

MiniMON29K User Interface: MONDFE

Error Code Error Message

47

48
49
50
51
52
53
54
55
56
57
58
59
60

61
62

63
64

65

66

EMTIMEOUT:

EMCOMMTYPE:
EMCOMMERR:
EMBAUD:
EMTIPINIT:
EMIOSETF:
EMIORESETF:
EMLOADF:
EMNOFILE:
EMECHOPEN:
EMCTRLC:
EMNOSUCHCMD:
EMNOPROCESS:
EMNOTCOMP:

EMFATAL:
EMNOINITP:

EMDOSERR:
EMSYSERR:

EMINCECHOFILE:

EMCMDFILENEST:

Host timed out waiting for a
message.

A-t flag must be specified.
Communication error.
Invalid baud rate specified.
TIP initialization failed. Exiting TIP.
Host I/O setup failure.

Host I/O reset failure.
Loading COFF file failure.

No program to run.

Could not open echo file.
Ctrl-C interrupt. Exiting.
Unrecognized command.

Failed creating process zero.

DFE and TIP versions not
compatible.

No session in progress.

(n) No process initialized for
downloaded program.

DOS error. Cannot escape to DOS.
System error. Cannot escape to host.

Invalid echo file. Cannot enable
echo.

Nesting of command files not
allowed.

A-4 MiniMON29K User Interface: MONDFE

UDI Error Messages

Error messages reported by the UDI layer and by the underlying TIP may also
be displayed bynondfe. UDI error messages are prefixed by “UDIERR” and a
number that corresponds to the error numbers defined in the UDI specification.
Table A-2 describes UDI error messages returnaddiydfe.

TIP error messages are prefixed by “TIPERROR.” See the error codes listed in
the appropriate TIP manual for TIP errors.

Table A-2. UDI Error Messages

Error Code Error Message

© 0 N O 0o~ WDN PP

e
P o

12
13
14
15

16
17

18
19

UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:

UDIERR:
UDIERR:
UDIERR:
UDIERR:

UDIERR:
UDIERR:

UDIERR:
UDIERR:

No Such Configuration in Config File.

Cannot Happen With Current Environment Setup.
Cannot Connect to TIP Specified.

No Such Connection Found.

No Connection Occurred.

Cannot Open UDI Config File.

Cannot Start TIP In Current Environment Setup.
Requested Connection Unavailable.

Try Another TIP For Connection.

TIP Specified in Config File Not An Executable.

Connection Failed Due To Invalid TIP Options in
Config File.

Cannot Disconnect TIP.

Unknown Error Number Specified.
TIP Cannot Create a New Process.
No Such Process in the Current TIP.

Unknown Resource Space Encountered By TIP.
Invalid Resource Specified To TIP.

Unsupported Step Type For This TIP Specified.
Could Not Set The Breakpoint.

MiniMON29K User Interface: MONDFE A-5

Error Code Error Message

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:
UDIERR:

Too Many Breakpoints Already In Use.
Breakpoint Does Not Exist For This Breakld.
No More Breakpoints. Breakld Too High.
TIP Does Not Support The Requested Service.
Error Occurred. Trying Again.

IPC Limitation Exceeded.

Service Incomplete. More Data Available.
Aborted Requested Service.

Transaction Completed.

Cannot Accept.

Transaction Input Needed.

Transaction ModeX.

Invalid Object Size Specified.

Bad Entry In UDI Config File Found.

Internal Error Occurred In IPC Layer.

MiniMON29K User Interface: MONDFE

Index

Symbols

.map extension, 3-7
.out extension, 3—7
? command, 2—28

Numbers

29K memory address format, 2—4
29K register name format, 2-5
29K_MEM_ADDR, 2-4
29K_REG_NAME, 2-5

A

breakpoint (B) command,
example, 2-9
using, 2-8
breakpoints
clearing, 2—-8
displaying, 2—8
nonsticky, 2—8
setting, 2-8, 3-16, 3-17
sticky, 2-8
BSS section, 3-10
buggy.c program, 3-1, 3—7
bytes
fill format in, 2-23, 2—-25
display format in, 2-15, 2-16
set format in, 2—43

A command, 2—-6

assemble instructions (A) command,
example, 2—7
using, 2—6

assembling instructions, 2—6

C

B

B command, 2-8

batch files, preparing for MS-DOS hosts,

3-3

MiniMON29K User Interface: MONDFE

C command, 2-10
cache
disassembling, 2—-30
displaying, 2—32
CAPS command, 2-11
case, significance in commands, 2-1
CHO command, 2-12
COFF file
creation, 3-8
loading, 2-51, 3-9, 3-15, 3-16, 3-19
sections, 3-9

Index—1

command file, viii

executing commands from, 2-54

using with mondfe, 1-7
command line, example, 3-9
Command-Interpreter Module, x
Command-to-UDI Procedural Call

Converter Module, x

command-line options, 1-2
commands

casein, 2-1

list of, 2-2-2-4

separator characters, 2—6
compile C shell script, 3—6
compile.bat batch file, 3—-3
compiling the tutorial, 3—7
CON command, 2-13
configuration files, for UDI, 1-5
connect to UDI session (CON) command,

2-13

conventions, documentation, Xxii
CP command, 2-14
create UDI process (CP) command, 2—-14
Ctrl-U key, 2—-12

D

D command, 2-15
data memory range, displaying, 2—-10
data section, 3—-10
demo directory
for MS-DOS hosts, 3-2
for UNIX hosts, 3-5
destroy UDI process (DP) command, 2-19
DFE, version, 2-48
DFEERROR, A-2
DFEWARNING, A-2
disassemble Am2903x processor cache
(IL) command, 2—-30
DISC command, 2-18
disconnect from UDI session (DISC)
command, 2-18

display Am2903x processor cache (1X)
command, 2—-32
display command
display global registers example, 2—-17
display local registers example, 2-17
display DFE, TIP, and target version
numbers (VER) command, 2—-48
display DFE/TIP capabilities (CAPS)
command, 2-11
display formats
bytes, 2-16
double-precision floating-point, 2—-16
half-words, 2-16
single-precision floating-point, 2—-16
words, 2-16
display memory/registers (D) command,
2-15
display memory/registers command,
display formats, 2—16
display special registers (XP) command
example output, 2-50
using, 2-49
display target configuration (C) command
example, 2-10
using, 2-10
displaying
Am2903x cache, 2—-32
data memory range, 2-10
DFE version, 2-48
instruction memory range, 2-10
instruction ROM range, 2-10
memory, 2-15
mondfe version, 2-10, 2-11
processor type, 2-10
registers, 2—15
special registers, 2—-49
target configuration, 2—-10
target version, 2-48
TIP version, 2-11, 2-48
UDI version, 2-11
DOS commands, invoking the monitor,
3-9, 3-19

Index—2 MiniMON29K User Interface;: MONDFE

double-precision floating-point
fill format in, 2-23
formatting display in, 2-15
set format, 2—43
double-precision floating-point display
format, 2-16
double-precision floating-point fill format,
2-25
DP command, 2-19

E

ebdemo.bat batch file, 3-2
ebload.Ink linker command file, 3—4
echo file, viii
specifying, 1-2
using quiet mode, 1-2
echo mode
turning on, 2-55
turning on/off, 2—-20
endian, specifying big or little, 1-3
EOFF/EON command, 2—-20
error handling and reporting, A—1-A—7
error messages
mondfe, A-2
UDI, A-5-A-7
ESC command, 2-21
escape to host operating system (ESC)
command, 2-21
EX command, 2-22
execute commands from command file
(ZC) command, 2-54
execution
starting, 2-27
tracing, 2—46
exit UDI session (EX) command, 2-22

MiniMON29K User Interface: MONDFE

F

F command, 2—-23
fill formats
bytes, 2—-25
double-precision floating-point, 2—-25
half-words, 2-24
single-precision floating-point, 2-25
string of characters, 2—-25
words, 2-24
fill memory/registers (F) command
display formats, 2—24
fill instruction memory example, 2—25
filling bytes example, 2—26
using, 2—-23
filling
memory, 2—-23
registers, 2—23
floating-point
fill format in, 2—23
formatting display in, 2-15
set format, 2—43
format
memory address, 2—4
register name, 2-5

G

G command, 2-27

example, 2-27
global registers, displaying, 3—11
go (G) command

in tutorial, 3—10

using, 2-27

Index—3

H L

H command, 2-28 L command, 2-34
half-words linker command files for tutorial, 3—4
display format, 2—16 linker map file, 3-8
fill format in, 2—23, 2—24 list (disassemble) from memory (L)
formatting display in, 2-15 command
set format, 2—43 example, 2-35
help (H) command in tutorial, 3-11, 3-13, 3-14
example, 2-29 using, 2-34
using, 2—28 listing code, with L command, 3-11, 3-13,
host, exiting to, 2—-21 3-14

LIT section, 3-10
load.Ink linker command file, 3—4
log file, viii, 1-3, 3-20

| log mode
turn off/on, 2—-36
IL command, 2-30 turning on, 2-56
INIT command, 2-31 LOGOFF/LOGON command, 2—36
initialize downloaded program (INIT)
command, 2-31
initializing, downloaded program, 2—-31
input command file, specifying, 1-3 M
instruction memory range, displaying,
2-10 M command, 2—-37
instruction ROM range, displaying, 2—-10 memory
instructions, assembling, 2—6 displaying, 2—15
interactive mode, viii filling, 2—23
invoking mondfe, 1-2 list from, 2—-34
IX command, 2—-32 moving, 2—-37-2-38
setting, 2—43
memory address format, 2—4
memory stack size, specifying, 1-3
K modules
Command-Interpreter, x
K command, 2-33 Command-to-UDI Procedural Call
kill program execution (K) command, Converter, X
2-33 figure of, ix

User-Interface, ix

Index—4 MiniMON29K User Interface;: MONDFE

mondfe, 3—-9

COFF file sections (in tutorial), 3—-9 O
command-file format, 1-7
commands, 2—1-2-56 osboot (in tutorial), 3—4

displaying double-precision
floating-point values (in
tutorial), 3-12

displaying registers (in tutorial), 3—11 P

documentation, vi—viii

documentation conventions, Xii PID command, 2-39

error messages, A—2 processor, displaying type, 2-10
exiting, 2-22 program counters, displaying, 3—-11
exiting temporarily, 2-21 programs

figure with montip, xi initializing, 2-31

invoking, 1-2 killing execution, 2-33

invoking (in tutorial), 3-9

loading a COFF file (in tutorial), 3-9
modules, ix—xi

modules figure, ix Q
quitting, 2—40, 3-15

setting breakpoints (in tutorial), 3—-17 Q command, 2-40
software overview, viii—xii QOFF/QON command, 2-41
syntax, 1-2 quiet mode, viii, 1-2
tutorial, 3—-1-3-20 turning off/on, 2—41
version, displaying, 2—-10 quit (Q) command (Q)
MONTIP transparent mode (TIP) example, 3-15
command, 2—-47 in tutorial, 3—19
move registers/memory (M) command using, 2-40

address conformity, 2—37

example, 2—-38

using, 2—37-2-38
moving R

memory, 2—-37

registers, 2—-37 R command, 2-42
MS-DOS, configuration file, 1-5 register name format, 2-5
register stack size, specifying, 1-3
registers

displaying, 2—15
N filling, 2-23
moving, 2—37-2-38
noninteractive mode, viii setting, 2-43

special, displaying, 2—49

MiniMON29K User Interface: MONDFE Index—5

reset target processor (R) command, 2—42
resetting, target processor, 2—42

run384 C shell script, 3-5

run384.bat batch file, 3-2

runeb29k.bat batch file, 3—-3

runsteb C shell script, 3—6

runsteb.bat batch file, 3—4

S

S command, 2—43
set memory/registers (S) command
example of instruction memory address,
2-44
format examples, 2—-44
using, 2—43
set UDI process ID (PID) command, 2—39
set UDI session ID (SID) command, 2—45
shell scripts for UNIX hosts, 3-6
SID command, 2—45
single-precision floating-point display
format, 2-16
single-precision floating-point fill format,
2-25
specify echo file for echo mode (ZE)
command, 2-55
specify log file for log mode (ZL)
command, 2-56
string of characters fill format, 2-23, 2-25
syntax, mondfe, 1-2

T

T command, 2-46, 3-18
target
resetting processor, 2—42
version, 2-48
target configuration, displaying, 2—10
terminals, transferring control to target,
2-12
terminating program, in tutorial, 3—-16
TIP
ID, 1-2
version, 2—48
TIP command, 2—47
TIPERROR, A-5
trace (single/multiple step) execution (T)
command
example, 2-46
single instruction example, 2—46
using, 2—-46
trace command, 3-17
tracing, execution, 2—46
transfer terminal control to target (CHO)
command, 2-12
transparent mode, 2—47
turn off/on echo mode (EOFF/EON)
command, 2-20
turn off/on log mode (LOGOFF/LOGON)
command, 2—36
turn off/on quiet mode (QOFF/QON)
command, 2-41
tutorial, 3—1-3-20
application prompt, 3—10
BSS section, 3-10
COFF file creation, 3-8
COFF file sections, 3-9
compiling the program, 3-7, 3-15
data section, 3-10
debugging the program, 3—-11

Index—6 MiniMON29K User Interface: MONDFE

displaying double-precision

floating-point values, 3-12, V
3-18
displaying global registers, 3—-11 VER command, 2—-48
displaying program counters, 3-11 versions
invoking the monitor, 3-9, 3-19 DFE, 2-48
listing generated code, 3-11, 3-13, 3-14 displaying, 2-11
LIT section, 3—-10 target, 2-48
loading COFF file, 3-9, 3-16 TIP, 2-48
loading the program, 3-9-3-10, 3-15,
3-19
map file, 3-8, 3-12, 3-16
monitor error trap, 3—10 W
quitting the monitor, 3—-15, 3-19
running the program, 3-9-3-10 word display format, 2-16
setting a breakpoint, 3—-16, 3-17 word fill format, 2-24
starting execution, 3-10, 3-19 words
terminating a program, 3—-16 fill format in, 2-23
tracing an instruction, 3-17, 3-18 display format in, 2-15

set format in, 2—-43

U X
uDI

configuration files, 1-5 XP command, 2-49
connecting to a session, 2-13
disconnecting from a session, 2-18
error messages, A-5
exiting session, 2—-22 Y
process, creating, 2—-14
process, destroying, 2—19 Y command, 2-51
process, setting, 2—39 yank (download) a COFF file (Y)
sample file entries, 1-5 command, 2-51
setting session ID, 2-45
UDIERR, A-5
UNIX, configuration file, 1-5 Z
User-Interface Module, ix

ZC command, 2-54
ZE command, 2-55
ZL command, 2-56

MiniMON29K User Interface: MONDFE Index—7

	Contents
	About MONDFE
	MONDFE Documentation
	About This Manual
	Suggested Reference Material

	MONDFE Software
	MONDFE Features
	MONDFE Modules

	MONDFE Documentation Conventions

	MONDFE Command-Line Syntax
	MONDFE Command-Line Syntax
	UDI Configuration Files
	MONDFE Command-File Format

	MONDFE Commands
	Command List
	29K Family Memory Address Format: 29K_MEM_ADDR
	29K Family Register Name Format: 29K_REG_NAME
	A — Assemble Instruction
	B — Breakpoint Command
	C — Display Target Configuration
	CAPS — Display DFE and TIP Capabilities
	CH0 — Transfer Terminal Control to Target
	CON — Connect to UDI Session
	CP — Create UDI Process
	D — Display Memory/Registers
	DISC — Disconnect from UDI Session
	DP — Destroy UDI Process
	EOFF/EON — Turn Off/On Echo Mode
	ESC — Escape to Host Operating System
	EX — Exit UDI Session
	F — Fill Memory/Registers
	G — Go
	H — Help
	IL — Disassemble Am2903x Processor Cache
	INIT — Initialize Downloaded Program
	IX — Display Am2903x Processor Cache
	K — Kill Program Execution
	L — List (Disassemble) From Memory
	LOGOFF/LOGON — Turn Off/On Log Mode
	M — Move Registers/Memory
	PID — Set UDI Process ID
	Q — Quit
	QOFF/QON — Turn Off/On Quiet Mode
	R — Reset Target Processor
	S — Set Memory/Registers
	SID — Set UDI Session ID
	T — Trace (Single/Multiple Step) Execution
	TIP — MONTIP Transparent Mode
	VER — Display DFE, TIP, and Target Version Numbers
	XP — Display Special Registers
	Y — Yank (Download) a COFF File
	ZC — Execute Commands From Command File
	ZE — Specify Echo File for Echo Mode
	ZL — Specify Log File for Log Mode

	MONDFE Tutorial
	Demo Directory for MS-DOS Hosts
	Preparing Batch Files for MS-DOS Hosts
	Linker Command Files for the MONDFE Tutorial

	Demo Directory for UNIX Hosts
	Preparing Shell Script Files for UNIX Hosts

	Compiling the Tutorial Example
	Loading and Running the Program
	Debugging the Program

	Error Messages
	MONDFE Error Messages
	UDI Error Messages

	Index

