Processor Initialization
and Run-Time Services
OSBOOT

Processor Initialization and Run-Time Services: OSBOOT, Release 3.3

© 1991-1995 by Advanced Micro Devices, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Advanced
Micro Devices, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the Rights in
Technical Data and Computer Software clause at 252.227-7013. Advanced Micro Devices, Inc., 5204 E. Ben White Blvd.,
Austin, TX 78741-7399.

29K, Am29005, Am29030, Am29035, Am29040, Am29050, Am29200, Am29205, Am29240, Am29243, Am29245,
MiniMON29K and XRAY29K are trademarks of Advanced Micro Devices, Inc.

AMD and Am29000 are registered trademarks of Advanced Micro Devices, Inc.

High C is a registered trademark of MetaWare, Inc.

Other product or brand names are used solely for identification and may be the trademarks or registered trademarks of their
respective companies.

4% The text pages of this document have been printed on recycled paper consisting of 50% recycled fiber and 50%
w4 virgin fiber; the post-consumer waste content is 10%. These pages are recyclable.

Advanced Micro Devices, Inc.
5204 E. Ben White Blvd.
Austin, TX 78741-7399

Contents
About OSBOOT
OSBOOT Documentation......................ocococc o M
About This Manual ... viil..
Suggested Reference Material............................. X
Standards and Conventions. ... Xi
Standards. Xi....
CONVENLIONS. Xii...
Chapter 1
Overview of OSBOOT
The Bootstrap Module. 1-2
The Kernel. ... 1-2..
MinNIMON29K ™ and OSBOOT. ... 1-3
AbOUt DBG _CORE ... 1-3.
About MONTIP. 1-3..
The OSBOOT/DBG_CORE/MONTIP/DFE Environment.................. 1-4
Chapter 2
Using OSBOOT
OSBOOT/Simulator Model. ... 2-2
OSBOOT/DBG_CORE Model................oooo 2-3

Processor Initialization and Run-Time Services: OSBOOT [

Stand-Alone OSBOOT/Application Model ... 2-5

Stand-Alone OSBOOT/DBG_CORE/Application Model....................... 2-6
Chapter 3
OSBOQOT Directory and File Organization
The boot Subdirectory................ 3-4
The traps Subdirectory. ... 3-6
Chapter 4
OSBOOT Bootstrap Module
OSBOOT Global RegisterUsage. ... 4-2
OS Start-Upand WARN Trap Handler.. 4-4
OS Cold Start. ... 4-6..
Processor Initialization....................... 4-8
Memory Configuration ... 4-13
Data Segments Initialization............................ 4-16
System Initialization. ... 4-18
Communications Initialization ... 4:21
Chapter 5
OSBOOT Trap Handlers
Protection Violation Trap Handler.. 5-2
Unaligned Access Trap Handler... 5-4
Arithmetic Trap Handlers........................ 5-7
Chapter 6
HIF Run-Time Services
HIF Kernel Start-Up Module. ... 6-2
Run-Time Environment. ... 6-5

i Processor Initialization and Run-Time Services: OSBOOT

Register Stack and Memory Stack Arrangement 6-8

HIF Services. ... 6-9..
HosStHIF Services. ...] 6-11
Stand-Alone OSBOOT/Application Model 6-11
OSBOOT/Simulator Model. ... 6-11
OSBOOT/DBG_CORE Model and Stand-Alone
OSBOOT/DBG_CORE/ApplicationModel.......................................1 6-12
DBG_CORE Message System Interface...................................... 6-14
How the MiniMON29K MessagesareUsed.................................. 6-15
Implementation of os_V_msg Message Interrupt Handler............... 6-20
Implementation of Message Communications in HIF Kernel........... 6-21
Chapter 7
Building OSBOOT or OSBOOT/DBG_CORE
Building OSBOOT for Simulators.. 7-4
MS-DOS. 7-5...
UN DX 7-6.....
Building OSBOOT/DBG_CORE for Target Hardware Platforms........... 7-8
MS-DOS. 7-9. ..
UNDX 7-11 ..
Building OSBOOT for Stand-Alone Systems..................................... 7-14
Building a Relocatable Version of OSBOOT.................................. 7-14
Building a Relocatable Version of OSBOOT/DBG_CORE 7-16
Building a Stand-Alone System... 7-18
OSBOOT Configuration. ... 7-21
Sample Linker Command File........................... 7-25

Processor Initialization and Run-Time Services: OSBOOT iii

Appendix A

Examples

Building the Stand-Alone OSBOOT/Application Model for the SE29240
Evaluation Board........................ .. A-2
Building the Stand-Alone OSBOOT/DBG_CORE/ Application Model

for the SE29040 Evaluation Board.. A-4
Building the OSBOOT/Application Model to Transfer from

ROM IO SRAM. ... A-6..
Building the OSBOOT/Application Model to Transfer from

ROM 10 DRAM ... A-9..
Building OSBOOT/DBG_CORE for a System Without DRAM.......... .. A-11

Appendix B

Using the HIF IOCTL Service for Non-Blocking Reads

The Problem ... B-1.
The Solution ... B-2.
Suggested Reference ... B-5

Appendix C

Defining a Trap to Switch to Supervisor Mode

Switching to SupervisorMode. ... C-2
Remaining in Supervisor Mode....................... C-2
Example Code. ... C-2

Processor Initialization and Run-Time Services: OSBOOT

Figures and Tables

Figures
Figure 1-1. MiniMON29K Software Components........................... 1-1
Figure 2-1. OSBOOT/Simulator Model......................... 2-2
Figure 2-2. OSBOOT/DBG_COREModelo . 2-4
Figure 2-3. Stand-Alone OSBOOT/Application Model.................... 2-5
Figure 2-4. Stand-Alone OSBOOT/DBG_CORE/Application Madel 2-6
Figure 3-1. OSBOOT Directory and File Organization................... 3-3
Figure 4-1. OSBOOT Bootstrap Module....................................... 4-1
Figure 4-2. Processor Initialization...................................... 4-8
Figure 4-3. Memory Configuration..........................o 4-13
Figure 4-4. Data Segments Initialization.................................... 4-16
Figure 4-5. System Initialization.................................. 4-18
Figure 4-6. Communications Initialization.................................. 4-21
Figure 6-1. HIF Kernel Start-Up Module....................................... 6-2
Figure 6-2. Register Stack and Memory Stack Arrangement.......... 6-8
Figure 6-3. HIF Services Module ... 6-9
Figure 6-4. OSBOOT/DBG_CORE Model and MONTIP............... 6-13
Figure 7-1. OSBOOT Directory and File Organization................... 7-3
Figure 7-2. Subdirectory for Simulator Versions of OSBOOT.......... 7-4
Figure 7-3. Naming Conventions for OSBOOT/DBG_CORE Files .. 7-8

Tables
Table 0-1. Notational Conventions.................................co. Xiii
Table 3-1. OSBOOT Linker Command Files................................ 3-2
Table 3-2. OSBOOT Source Files under boot Subdirectory........... 3-4
Table 3-3. Arithmetic Trap Handler Source Files.......................... 3-7

Processor Initialization and Run-Time Services: OSBOOT Vv

Vi

Table 4-1.
Table 4-2.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 6-1.
Table 6-2.
Table 7-1.
Table 7-2.
Table 7-3.

Table 7-4.
Table 7-5.
Table 7-6.
Table 7-7.

Register Definitions ... 4-2
Processor PRLFields... 4-10
Special Virtual Registers.......................o 5-2
Unique Protection Violation Trap Handlers................... 5-3
Option (OPT) Bit Definitions..................................... 5-4
Unaligned Access Combinations................................. 5-4
Unaligned Access Unique Handlers............................ 5-6

Registers and Symbolic Names for Run-Time Information 6-5

Run-Time Setup Data....................ooooc 6-6
OSBOOT for Simulators.. 7-1
Sample OSBOOT Configurations................................ 7-2
Linker Command Files for Simulator Versions of
OSBOOT ... 7-5.
Linker Command Filenames for Supported Targets. ... 7-22
Configuration Parameters................................... 7-23
Configuration Parameters............................. 7-24
Configuration Parameters........................... 7-25

Processor Initialization and Run-Time Services: OSBOOT

&

About OSBOOT

The Advanced Micro Devices (AM®) osbootsoftware contains the bootstrap
module for the 29K’ Family of processors. The arithmetic instruction

emulation routines for certain 29K Family instructions are part of the bootstrap
module.osbootalso includes a small kernel, called the HIF kernel, that provides
the run-time support for application programs written in high-level languages. In
addition,osbootisolates the processor dependencies from the application
programs, offering a considerable decrease in design time for the developer.

osbootis ported to work with the AMD MiniMON29K' debugger core,
dbg_core This manual describes the interactions betvostootand
dbg_core

osbootis used as the bootstrap program by the architectural simsiat@e,
and the instruction set simulatastip, in the AMD High &® 29K™ and
MiniMON29K Software Development Kit.

This chapter provides an overview of the contents obsheotdocumentation
and describes the formatting conventions used within it.

Processor Initialization and Run-Time Services: OSBOOT Vii

OSBOOT Documentation

This documentation is written for advanced programmers @asingotto
develop applications for the 29K Family of microprocessors and
microcontrollers. For more information on these microprocessors and
microcontrollers, see the list of suggested reference malerials that follows.

About This Manual

viii

Chapter 1: “Overview of OSBOOT"” describes the major components of the
osbhootsoftware and how it can be used to debug application programs using
29K Family microprocessors.

Chapter 2: “Using OSBOOT" describes the different wastsootcan be used.
Models are used to show the various rolesdbhbotcan play.

Chapter 3: “OSBOOT Directory and File Organization” describes the files used
to makeosbootand the directories in which they reside.

Chapter 4: “OSBOOT Bootstrap Module” describes the steps performed by the
initialization module.

Chapter 5: “OSBOOT Trap Handlers” describes the Protection Violation,
Unaligned Access, and Floating-Point Arithmetic Trap Handlers.

Chapter 6: “HIF Run-Time Services” describes the functions provided by the
osbootHIF kernel, the run-time register and memory stack arrangements, and
the implementations of the HIF services. The implementation of the HIF
services is described in the context of the three modelsbaotusage.

Chapter 7: “Building OSBOOT or OSBOOT/DBG_CORE" describes the steps
involved in buildingosbootfor simulators and the MiniMON29K debugger
core,dbg_core Both MS-DOS and UNIX environments are discussed. The
chapter also describes the configurable link-time parametesbobt

Appendix A: “Examples” provides several examples of common test models
using theosbootsoftware, both with and withodbg_core

Processor Initialization and Run-Time Services: OSBOOT

Appendix B: “Using the HIF IOCTL Service for Non-Blocking Reads” provides
an example of how a non-blocking read can be used to create an interactive
menu that allows subsequent processing to continue while waiting for user input.

Appendix C: “Defining a Trap to Switch to Supervisor Mode” describes how to
place a 29K Family microprocessor or microcontroller in supervisor mode.

“Index” provides an index to the manual.

Processor Initialization and Run-Time Services: OSBOOT iX

Suggested Reference Material
The following reference documents may be of use tosheotuser:

Programming the 29K RISC Family
by Daniel Mann, P T R Prentice-Hall, Inc. 1994.

Am2900@ and Am29005' User’s Manualnd Data Sheet
Advanced Micro Devices, order number 16914,

Am29030" and Am29035 Microprocessors User’'s Manuahd Data Sheet
Advanced Micro Devices, order number 15723.

Am?29040" Microprocessor Data Sheet

Advanced Micro Devices, order number 18459.

Am29040" Microprocessor User’s Manual

Advanced Micro Devices, order number 18458.

Am29050" Microprocessor Data Sheet
Advanced Micro Devices, order number 15039.

Am29050" Microprocessor User's Manual
Advanced Micro Devices, order number 14778.

Am29200" and Am29205 RISC Microcontrollers Data Sheet
Advanced Micro Devices, order number 16361.

Am29200" and Am29205 RISC Microcontrollers User's Manual
Advanced Micro Devices, order number 16362.

Am29240", Am29245', and Am29243 RISC Microcontrollers Data Sheet
Advanced Micro Devices, order number 17787.

Am29240", Am29245’', and Am29243 RISC Microcontrollers User’s Manual
Advanced Micro Devices, order number 17741.

Harbison, Samuel P. and Guy L. Steele,ClirA Reference Manugbecond
Edition, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, 1987.

Host Interface (HIF) Specification
Advanced Micro Devices, order number 11539.

X Processor Initialization and Run-Time Services: OSBOOT

Standards and Conventions

Standards

This product complies with the following standards:

ANSI C: American National Standards Institute C

Conforms to the ANSI-approved document “Programming Language C,”
document X3.159, 1989.

COFF: AMD Common Object File Format

Conforms to the AMD-augmented version of AT&T COFF, as described in
the AMD Common Object File Format (COFF) Specification

HIF: AMD Host Interface
Conforms to the AMCHost Interface (HIF) Specification

IEEE 754, 1985

Conforms to the IEEE-approved standard for binary floating-point arithmetic.

UDI: AMD Universal Debugger Interface

Conforms to the AMDJniversal Debugger Interface (UDI) Specification

Processor Initialization and Run-Time Services: OSBOOT Xi

Conventions

¢ UNIX pathnames use a forward slash (/) to separate directories, while
MS-DOS pathnames use a backslash (\). For brevity, only the DOS backslash
is used when specifying pathnames. In some cases, code examples are
specified as either for UNIX or MS-DOS environments and the correct slash
is used.

¢ The following abbreviations may be used in this manual:

— LSB least significant bit
— LSW least significant word
— MSB most significant bit
- MSW most significant word
— NaN not a number

— QNaN quiet not a number

¢ In this manual, a data word signifies a 32-bit entity; a data halfword signifies
a 16-bit entity.

« This manual uses the notational conventions sholvn in Table 0-1 (unless
otherwise noted). These same conventions are used in all the 29K Family
support products manuals.

Xii Processor Initialization and Run-Time Services: OSBOOT

Table 0-1. Notational Conventions

Symbol Usage

Boldface Indicates that characters must be entered exactly as
shown. The alphabetic case is significant only when
indicated.

Italic Indicates a descriptive term to be replaced with a
user-specified term.

Typewriter face Indicates computer text input or output in an

example or listing.

[1 Encloses an optional argument. To include the
information described within the brackets, type
only the arguments, not the brackets themselves.

{1} Encloses a required argument. To include the
information described within the braces, type only
the arguments, not the braces themselves.

Indicates an inclusive range.
Indicates that a term can be repeated.

Separates alternate choices in a list—only one of
the choices can be entered.

= Indicates that the terms on either side of the sign
are equivalent.

Processor Initialization and Run-Time Services: OSBOOT Xiii

Chapter 1 &
Overview of OSBOOT

AMD'’s oshootsoftware, developed for the 29K Family of RISC

microprocessors and microcontrollers, is a bootstrap program that resides in the
ROM or instruction space of a 29K Family microprocessor target system.
oshoots main function is to control the execution states of the 29K Family
microprocessor or microcontroller based on different hardware configurations.
When a target system is reset, the microprocessor begins to fetch instructions
from theosbootmodule in order to perform the target’s initialization process.

There are two major components in dsbootmodule: a configurable bootstrap
module and a small kernel for application programs. Each is described in this
chapter. In addition, this chapter describes behootworks withdbg_coreand
montip. Figure 1-1 illustrates the role o$bootin the High C 29K and
MiniMON29K Software Development Kit.

|
Host Computer System(s) | 29K Target System
r—— - - |
\ UIZIJI | | User’s Application
| I A
PN > | L | MiniIMON29K
2 | 4» MiniMON29K [€{MiniMON29K @ Target Debugger
R|| | mondfe <_L, montip A DBG_CORE 41
| | | v
\ | OSBOOT (Bootstrap
\ || Module and Kernel)
L 1
I
MiniMON29K
Message
Communications
Interface

Figure 1-1. MiniMONZ29K Software Components

Processor Initialization and Run-Time Services: OSBOOT 1-1

The Bootstrap Module

The bootstrap module okbootprovides the processor start-up functions, the
optional floating-point emulation routines, the routines used to configure
external memory dynamically, and the routines that provide for the RESET of
any external or internal hardware that needs to be reset. These functions take
control of the processor upon reset and perform the necessary tasks to initialize
the target system to a defined state. The process of initializing the system at
processor reset is called theotstrapprocess or theold startprocess. The

bootstrap module must be loaded at offset 0x0 (zero) in the ROM address space
or at offset 0x0 (zero) in the instruction address space from which the processor
initiates its first instruction fetch.

Certain arithmetic instructions (mostly floating-point operations) of the 29K
Family instruction set are not supported directly in the hardware of some
members of the 29K Family. These instructions cause a trap when they are
executed, and are emulated by the software trap routines. For more information
on the trapped operations, see[the “OSBOOT Trap Harldlers” chapter.

The Kernel

The kernel takes control after the completion of the bootstrap process. It creates
a single-threaded operating system environment in which programs can execute.
It provides run-time support for application programs, especially for those

written in high-level languages. In providing this support, the kernel implements
the processor-specific services defined in AMBst Interface (HIF)
Specification(as opposed to file and I/O services). Processor-specific services
are those services with a task/request number oveHZ5ee, this kernel is

called the HIF kernel afsboot

1-2 Processor Initialization and Run-Time Services: OSBOOT

MiniIMONZ29K and OSBOOT

AMD’s MiniMON29K software provides a means of debugging and testing 29K
Family microprocessor application programs. The two major sections of the
MiniMON29K software discussed in this manual are the debug core module
(dbg_corg and the MiniMON29K target interface procesmoftip). osboot

provides a simple operating system that can be linkeddbigh coreto provide

an environment to develop, execute, and debug embedded applications based on
29K Family microcontroller or microprocessor targets. The following sections
provide an overview of this environment.

About DBG_CORE

dbg_coreis thetarget-residentiebugger module of the MiniMON29K product.
“Target-resident” means thdbg_coreresides on the target hardware. Linking
osbootwith dbg_corecreates an environment in which the programmer can
develop, execute, and debug 29K Family microprocessor embedded applications
on the target itself.

About MONTIP

montip is thehost-residentiebugger module of the MiniMON29K product.
“Host-resident” means thatontip resides on a PC or UNIX workstation (rather
than the target hardwarehontip anddbg_coreshare a common message
system and can understand each other’s communications. The communication
system used bmontip is media-independent, but has been implemented to
support serial ports and parallel ports.

montip is implemented according to AMD’s Universal Debugger Interface
(UDI) specification. To useontip for debugging, it must be connected to a
UDI-compliant Debugger Front End (DFE). DFEs provide the user interface for
the debugging process. Because of the UDI standard, the DFE is isolated from
the execution vehicle. In this way, the same debug tools can be used with a
software target, emulator, or monitor. UDI-compliant DFEs currently available
includemondfe (provided with the MiniMON29K product), XRAY29K,

UDB™, and gdb. Other DFEs are currently in development.

Processor Initialization and Run-Time Services: OSBOOT 1-3

The OSBOOT/DBG_CORE/MONTIP/DFE Environment

Within the MiniMONZ29K productpsbootis linked withdbg_coreto provide an
environment to develop, execute, and debug embedded applications on targets
based on 29K Family microprocessors. The following example (illustrated in

on page 1-1) provides a high-level overview of the interactions
betweernsboot dbg_core montip, and the DFE during the debugging process.
In Figure 1-1mondfe is used as the DFE. A more thorough example is provided

in the["Using OSBOOT” chapter.

Suppose a user wants to view the contents of a register on the target's 29K
Family microprocessor. Using a UDI-compliant DFE on the host computer
system, the user requests the contents of a register on the 29K Family target.
This request is passed via UDIrtmntip (still on the host computer system).

Upon receiving the request from the DIREQntip passes the request via
MiniMON29K messages on to tlibg _coremodule on the target. In turn, the
dbg_coremodule communicates wittsbootthrough the debug channel to

retrieve the results of the request. The results are passed back to the user’'s DFE
by reversing the process. Executing a program or setting a breakpoint from the
DFE is done in a similar manner.

The advantage of separating UDI and MiniMON29K messages is that UDI
messages can travel over (for example) an Ethernet network (local- or
wide-area), while MiniMON29K messages travel over a serial link (or parallel
link or shared memory) to the target board. This flexibility allows
communications to take place over the most convenient available media.

1-4 Processor Initialization and Run-Time Services: OSBOOT

Chapter 2 &
Using OSBOOT

Theosbootsoftware is used as the bootstrap program by the architectural
simulator,sim29, and the instruction set simulatistip, of AMD’s High C 29K
and MiniMON29K Software Development Kisbootis also a simple operating
system which is ported to the MiniMON29K debugger cdbg,_core The
design ofosbootis such that all or portions of it can be linked with application
programs to produce stand-alone systems.

The following sections briefly discuss several models usingsheotsoftware:
» |OSBOOT/Simulator Model on page 2-2
* |OSBOOT/DBG_CORE ModEl on page 2-3

* |Stand-Alone OSBOOT/Application Model on page 2-5
« [Stand-Alone OSBOOT/DBG_CORE/Application Madel on page 2-6

Processor Initialization and Run-Time Services: OSBOOT 2-1

OSBOOT/Simulator Model

The simplest implementation among those described in this chapter is the
OSBOOT/Simulator Model, shown in Figure 2-1. Because a simulator is a
software target (that is, no actual hardware is involhashpotuses a
stripped-down version of the bootstrap module. In the model shown in

Figure 2-10sbootneither implements routines to configure external memory
dynamically, nor does it initialize the external communications interface. In this
model, when the application program requests an I/O service, the simulator
intercepts the 1/O requests to the HIF kernel and performs the necessary
operations using the services of its host operating system.

AMD provides two different simulators: the 29K Family architectural simulator
(sim29, which provides timing and statistical information about the application),
and the target interface process instruction set simulagip(which runs the
program without timing or statistical informatiop
[Simulators]” on page 7-4, discusses how to buildg@otmodule for

simulators.
__0s_coldstart
H
hif_start
RESET—» o - HIF '
Cold Start Start-up F
A
P
' =
| /O R_elated L
Services
SIMULATOR 1 I __hif_kernel_trap I
C
HIF A
Services T
l I
(0]
Other HIF N
Services
Kernel User
Space | Space

Figure 2-1. OSBOOT/Simulator Model

2-2 Processor Initialization and Run-Time Services: OSBOOT

OSBOOT/DBG_CORE Model

In the OSBOOT/DBG_CORE model showrlin Figurd ®shootis linked with

the MiniMONZ29K debugger corelpg_core to provide an environment to
debug, develop, and execute embedded applications on targets based on the
29K Family microprocessors.

shows thesbootbootstrap module as modified to initialize the
dbg_coremessage system and to install the trap handlers providiabbygore
After the completion of the bootstrap process, the bootstrap module transfers
control temporarily talbg_coreto initialize the debug core by calling the
dbg_control() function insidedbg_core

The HIF kernel obsbootis invoked when the call to thlilbg_control() function
returns control t@sboot Thedbg_control() function returns the application
program information in general purpose regisge6 throughgr103. The HIF
kernel uses the return values and prepares an operating environment for the
application program.

As shown i2, the HIF kernel performs the 1/O operations requested by
the application program using tbbg_coremessage system. It sends a
UDI-compliant MiniMON29K message to the MiniMON29K target interface
processmontip, over a communication interface (such as a serial interface or
shared memory). The message is receivethdnytip and is processed on an
intelligent hostmontip sends a MiniMON29K message back to the HIF kernel
that contains the results of the 1/0O operation. Refer to the “HIF Run-Time
Services” chapter for a more detailed explanation.

In this model (shown M-Z), tbebootanddbg_coremodules reside in
the ROM units of the target. The program to be tested and debugged is
downloaded to the RAM units of the target. To test and debug an application
program in this manner requires that the target hardware meet the following
minimum requirements:

e There must be a communication channel betweemthrgip host and the
target. A PC-hostenhontip supports both serial and parallel interfaces. A
UNIX workstation-hosteanontip supports only serial interfaces.

¢ The ROM unit of the target must have at least 64 Kbyte of memory.

¢ The RAM units of the target must have at least 16 Kbyte of memory.

[“Building OSBOOT/DBG_CORE for Hardware Platforins” on page 7-8
describes how to build the OSBOOT/DBG_CORE model.

Processor Initialization and Run-Time Services: OSBOOT 2-3

2-4

__0s_coldstart __hif_startup H
dbg_control(int,0Sconfig_t*

RESET— 0s - (19 HIF > !

Cold Start Start_up F

_msg_init é

\ DBG_CORE Y p

Communications| | Message | [Debugger || Config Il‘

Drivers System Core Module c

! A

msg_send(char) hif_kernel_trap T

. — — |

MiniIMON29K /0 Related HIF 0

Message — | Services Services N
Communications

Interface
(UDI-compliant) Other HIF Kernel [User
Services Space | Space

Figure 2-2. OSBOOT/DBG_CORE Model

Processor Initialization and Run-Time Services: OSBOOT

Stand-Alone OSBOOT/Application Model

In the Stand-Alone OSBOOT/Application Model shown in Figure 2-3, the
application program is linked witbsbootand executed from the ROM memory
space on the target system. Program information such as entry point, stack
requirements, and execution mode must be provided at compile time. The HIF
kernel requires this information to establish an operating environment for the
application. In this model, the HIF kernel uses its own communications drivers
or those provided by the application program to perform the I/O operations. The
shaded boxes shown in Figure 2-3 represent the modules specific to the
stand-alon@sbootsoftware.

This model is usually used in the final stages of testing, when the target
hardware and the application software are fully debugged and ready to be

released.
__0s_coldstart

RESET oS _ _hif_startup . HIE . :'|
Cold Start Start-up E

A

| Communications Kernel 1/0 [= go Related |, E

E DriVerS Module ervices L

Ext. /F __intr_flag __kread _hif_kernel_trap |
__putchar_table __kwrite HIF g
__recvbuf_table Services T

|

(0]

Other HIF N

Services

Kernel| User
Space Space

Figure 2-3. Stand-Alone OSBOOT/Application Model

Processor Initialization and Run-Time Services: OSBOOT

Stand-Alone
OSBOOT/DBG_CORE/Application Model

The Stand-Alone OSBOOT/DBG_CORE/Application Model (shown in

2-6

Figure 2-4) provides the same functionality included in the Stand-Alone
0OSBOOT/Application Model (described previously), with the addition of the
debugging and testing capabilities provided by the MiniMON29K software’s

dbg_coremodule.

MiniMON29K
Message
Communications

montip

<— Interface (UDI-compliant)

DBG_CORE

Drivers System Core

Communications Message | | Debugger | |

Config
Module

A

1/0 Related

Services

HIF

m—=I

Services

Other HIF

Kernel

Services

Space

ZO0——=H>»0O0—rTovU>

User
Space

Figure 2-4. Stand-Alone OSBOOT/DBG _CORE/Application Model

In this model, the application program is linked with ¢esboot/dbg_core

module and executed from ROM memory space on the target hardware. As
shown in Figure 2-4, the HIF kernel performs the I/O operations requested by

the application program using tbbg_coremessage system. It sends a

UDI-compliant MiniMON29K message to the MiniMON29K target interface
processmontip, over a communication interface (such as a serial interface, or
shared memory). The message is receivethduytip and is processed on an
intelligent hostmontip sends a MiniMON29K message that contains the results
of the 1/0 operation back to the HIF kernel. Refer to the “HIF Run-Time

Services” chapter for a more detailed explanation.

Processor Initialization and Run-Time Services: OSBOOT

Chapter 3 &

OSBOOQOT Directory and File
Organization

The complet®@sbootsource code is provided for educational and customization
purposes. However, portirgggbootto new targets often only requires that
changes be made to the linker command file — no changes need to be made to
source files.

The sources adsbootare located in th29k\src\osbootdirectory of the AMD
tree structure. This is the top-level directory ofésbootsourcesd.-Figure 3-1 on
page 3-3 shows the files in thebootdirectory.

The 29k\src\osbootdirectory contains the following make files and MS-DOS
batch files:
e UNIX make files:

— makefile.osto buildosbootfor simulators or to build a relocatalusboot
module to link with a stand-alone debugged application

— makefile.monto buildosboot/dbg_corefor debugging applications

¢ MS-DOS batch files:

— makeosb.batto buildosbootfor simulators or to build a relocatable
osbootmodule to link with a debugged stand-alone application

— makemon.batto buildosboot/dbg_corgor debugging applications

The linker command files used by the make files and MS-DOS batch files to
produce relocatable objects and absolute imageshafotandosboot/dbg_core
for different targets are shown|in Table|3-1.

The linker command filename extensions have the following meanings:

e .inc files produce relocatabtisboot

¢ .monfiles produce a relocatable imageosbootfor linking with dbg_core

¢ .Ink files produce absolute objectsasbootor osboot/dbg_core

Processor Initialization and Run-Time Services: OSBOOT 3-1

The 29k\src\osbootdirectory contains two subdirectorilmol andiraps]
which are explained in the sections starting on pages 3-4 and 3-6, respectively.

Table 3-1. OSBOOT Linker Command Files

Target Name Linker Command File
Relocatable Absolute Relocatable
osboot osboot—
dbg_core
AMD’s EB29030 eb29030.inc eh29030.Ink eb29030.mon
AMD’s EB29K eb29k.inc eb29k.Ink eb29k.mon
AMD’s EZ030 €z030.inc €z030.Ink €z030.mon
Laser29K-030 board la29030.inc 1a29030.Ink 1a29030.mon
Laser29K-200 board [a29200.inc 1a29200.Ink 1a29200.mon
YARC's ATM sprinter Icb29k.inc Icb29k.Ink Icb29k.mon
Netrom netrom.inc netrom.Ink netrom.mon
AMD’s PCEB29K pceb.inc pceb.Ink pceb.mon
AMD’s SA29030 sa29030.inc sa29030.Ink sa29030.mon
AMD’s SA29200 sa29200.inc sa29200.Ink sa29200.mon
AMD’s SA29205 sa29200.inc sa29200.Ink sa29200.mon
AMD’s SE29240 sa29240.inc sa29240.Ink sa29240.mon
AMD'’s SE29040 se29040.inc se29040.Ink se29040.mon
STEP’s STEB29K steb.inc steb.Ink steb.mon
YARC’s Rev 8 yarcrev8.inc yarcrev8.Ink yarcrev8.mon
Instruction Set Simulator ~ sim.inc sim00x.Ink
(isstip) or Architectural Sim- sim245.inc simo3x.Ink
ulator(sim29
sim050.Ink
sim20x.Ink
sim24x.Ink

NOTE: Some of these boards are no longer available commercially, but are still

in use. Note also that the names of some boards’ linker command files do not

correspond directly to the board’s name.

Processor Initialization and Run-Time Services: OSBOOT

uoneziuebio ajiH pue A1030911d 1009SO 'I-€ ainbi4

oUrGrZWIS

e 2'wawWazIs U'SIOI9A S'MYQEOES
AKZUS g pegu - gufs - sjoouol
MU' XOZWIS . ALY y'siels S'Ia)Ss1bal
YUl oSoWIS oul wwﬂunuu o juidy y-ojuipd snuold
gso’'awpeal MUI'Xgowis oc_.gmuwu o'gusey yrarep m..gcgmma
AU XOOWIS — o°zeysey smyaol d
owrgAaJoIe u|'gAaIoIe urovo6zas 2's|Ind s olfsw
spuly 1 s “_H ! _cw. E« ouroreeees . sAlowaw
w._ﬂEQ e My ouroozezes SMUgAIA s muNEZal
snwpi—1 uourn. UL 50e06zeS ye-sden sdegen smugezel

AIDI uowrgeis RS oursolwoid ye'auorepls s'sdenap s'myggoe
s denen S'AIp} 1} uow'070629s NUI'0¥0629S ourgead ye'smels Sxpzan ;omm.w_ |
s’ppe} 1 uow-oyzezes NuIrovzezes SUI'WIoNAU ye'0£G800s SISAS . mo.v_
2 uiedy m.n_oxmlb uow’oozezes NUI'00Z62EeS oc._.v_mwn_o_ Ue'00Z22S m.>>.:g$m m.wﬁw _r_
S'|nwy m.._oE_olb uowoe06zes NUI'0E062ES oc_.oommmm_ e joawol odnueis w.,,_c
s’ nwpy S’INwp 1 uowaoiwo.d ujao1woid oc_.omommm_ yesaisibol sedenws sase amw:
s'|nwp m..v>_u|: uow-gaad Muj'gaad o.c_.OMONo ye'soloew m.mwNE_m w.wgmh cwm
.m>_c_o|b uow-woJsau Muj'wonsu oc_.v_mmnm yenul i o 1 o
ypep . S’Ppep_i uowr36zqo| NUI™6299] QU 0E06290 ye'niasyy SMUOP0BS w.>>como °

subsTn S'dwod n uowo0z6zel IuI'00Z62E . yey S 0eom0s emihieed
sudsnd™n S$IAUD_11 Jeq-odaxew uow'og06eel JUI0E06¢CEl 1eg uowadew ye-dnxydy 5002998 $'MYoE09s
sApw T S'SSEP TN apoew UOWr0EOZe MUIOE0ZS Jeqigsoaxew ye'sarenba mloeres o aspib
uow'}6zga NUIEZIS uowrajyaew 4ooc s's|une

/sden uowrpgoezae UI'0E0629d so-a|yexeW 71000
100QSs0

uoneziuebiQ a4 pue A1010aIQ

3-3

Processor Initialization and Run-Time Services: OSBOOT

The boot Subdirectory

Theboot subdirectory contains the source files that implement the bootstrap
module and the HIF kernel otboot

The filename extensions of the source files in2®le'src/osboot/bootdirectory
are explained below:

¢ .sindicates assembly language functions

¢ .ahindicates assembler header files

e .cindicates C functions

¢ .hindicates C header files

Table 3-2 lists the source files in theot subdirectory and the function(s) that
they implement.

Table 3-2. OSBOOT Source Files under boot Subdirectory

Source Function Name(s)

Filename

startup.s __0s_startup

sim.s, sim245.s __ o0s_coldstart, _0s_raminit, __0s_memset

coldstrt.s ___0s_coldstart, _os_raminit

procinit.s ___0s_procinit, __os_am29000_init, _os_am29005 init

___0s_am29050 init, os am29030 init,
__0S_am29035_init, __os_am29200 _init,
__0S_am29205_init, _0s_am?29240 init

init24x.c ___0S_am2924x_init

memory.s __0s_sizememory, __0S_memset

sizemem.c ___0s_sizemem29k

sysinit.s ___0s_sysinit

gentraps.s __0s_warn_mm_trap, __0s_unexpected_trap,
__os_illegal_op_trap, __os_trace_trap

simtraps.s __0s_warn_mm_trap, __0s_raminit, __0S_memset,

__os_illegal_op_trap, __o0s_unexpected_trap,
___os_trace_trap __hif_hosthif

uatrap.s __0s_ua_trap

3-4 Processor Initialization and Run-Time Services: OSBOOT

Source Function Name(s)

Filename

tibtraps.s ___0S_UiTLBmiss_trap, __os_udTLBmiss_trap

tib24x.s ___0S_UiTLBmiss24x_trap, __0os_udTLBmiss24x_trap

register.s defines the register mnemonics used

hif.s __hif_startup, __hif flushTLB, __hif reboot,
__hif_spillhandler, __hif_fillhandler

hifserv.s __hif_timer_trap, __hif_spill_trap, __hif fill_trap,
__hif_kernel_trap

hosthif.s ___hif_hosthif

msgio.s __hif_hosthif (usethg_coremessage system)

eb030hw.s ___0s_initcomm for EB29030 card

ez030hw.s ___0s_initcomm for EZ030 card

eb29khw.s ___0s_initcomm for EB29K card

[a030hw.s ___os_initcomm for Laser29K—-030 board

[a200hw.s __0s_initcomm for Laser29K—-200 board

Icb29khw.s __os_initcomm for YARC ATM Sprinter card

pcebhw.s ___0s_initcomm for PCEB29K card

sa030hw.s ___0s_initcomm for SA29030 board

sa200hw.s ___0s_initcomm for SA29200, SE29240, and SA29205
boards

se040hw.s __ 0s_initcomm for SE29040 board

stebhw.s ___0s_initcomm for STEB board

yrev8hw.s ___0s_initcomm for YARC Rev 8 card

kio.s __kread, __kwrite

scc200.s __scc200_init, _scc200_putchar, __scc200_getchar

scc8530.s _scc8530 _init, scc8530_putchar, scc8530_getchar,

__scc8530_intr

Processor Initialization and Run-Time Services: OSBOOT 3-5

The traps Subdirectory

Thetraps subdirectory contains the source files that implement the trap handlers
for arithmetic operations which the processor hardware does not support directly.
It also contains the sources for the Protection Violation trap handler, which are
used to access the virtual special-purpose registers.

The following files are also included in ttraps subdirectory to build a library
of trap routines:

¢ UNIX make file:makefile

e MS-DOS batch filemakepc.bat

The bootstrap module okbootis linked with the trap routine library. The
necessary trap handlers are installed during the bootstrap process.

The trap handler source files and floating-point trap routine(s) are listed in
Table 3-3. The filename extensions are explained below:

¢ .sindicates assembly language functions

¢ .hindicates assembler header files

3-6 Processor Initialization and Run-Time Services: OSBOOT

Table 3-3. Arithmetic Trap Handler Source Files

Files Routines

fpeinit.c Floating-point emulation handlers

tr_class.s CLASS instruction emulation routine

tr_cnvt.s CONVERT instruction emulation routine

tr_comp.s FEQ, FGE, FGT, DEQ, DGE and DGT instruction
emulation routines

tr_dadd.s DADD and DSUB instruction emulation routines

tr_ddiv.s DDIV instruction emulation routines

tr_divd.s DIVIDE and DIVIDU instruction emulation
routines using Am29240 processor INTE register

tr_dmul.s DMUL instruction emulation routines using 32x32 hit
multiplier

tr_drnd.s Double-precision round/range check routines

tr_excp.s Floating-point exception trap routine

tr_fadd.s FADD and FSUB instruction emulation

tr_fdiv.s FDIV instruction emulation routine

tr_fdmul.s FDMUL instruction emulation routine

tr_fmul.s FMUL instruction emulation routine

tr_frnd.s Single-precision round/range check routine

tr_mldv.s MULTIPLY, MULTIPLU, MULTM, MULTMU,
DIVIDE and DIVIDU instruction emulation
routines

tr_pvspr.s Protection violation trap handler,os_29kpv_trap

tr_sqrt.s SQRT instruction emulation

uatrap.s Unaligned access trap handler

NOTE: The register definitions of the mnemonics used in the files listed above
are inregister.sandregister.ahfiles in theboot subdirectory.

Processor Initialization and Run-Time Services: OSBOOT 3-7

Chapter 4 &
OSBOOQOT Bootstrap Module

When the target system is powered on (RESET), the processor begins to fetch
and execute instructions from offset 0x0 in ROM space or instruction space.
These instructions initialize the processor and the external target system to a
defined state. This process of bringing up the system from RESET to a defined
state is called thieootstrap proceser thecold startprocess. The tasks

performed during the bootstrap process are implemented ashio®tbootstrap
module.

Figure 4-1 illustrates in a left-to-right sequence the tasks performed by the
oshootbootstrap module. The implementation and the associated file(s) of each
task are described in the following sections, as listed in Figure 4-1.

(O
RESET—* Start-up |__os_startup (page 4-4)|
v
(O
Cold Start | os coldstart (page 4-6)
Processor Communications
Initialization Initialization
os_procinit (page 4-8) [—_os_initcomm (page 4-21)
Memory System
Configuration Initialization
| __os_sizememory (page 4-13) |_os_sysinit (page 4-18)|
Data Segments
Initialization
|_os_raminit (page 4-16)|

Figure 4-1. OSBOOT Bootstrap Module

Processor Initialization and Run-Time Services: OSBOOT 4-1

OSBOOT Global Register Usage

Table 4-1 shows the registers usedblgootto implement the floating-point
emulation routines and the HIF kernel services. Therigister.sand

register.ah define the symbolic register names and their associated physical
processor registers. Thegister.sfile, when assembled and linked with other
osbootfiles, provides a global linkage to the registers listed in Table 4-1. The
register.ahfile contains external references to each of the registers defined in
theregister.sfile, and is included imsbootsource files containing assembler

programs.

Table 4-1. Register Definitions

Register Symbols Used

Description

gre4
gré5
gré6
gre7

gres8
gré9
gr70
gr7l
gri72
gr73
gr7d
gr7s
gr7é
griv?
or78
or79
gr89
gro0

it0, TempReg0
itl, TempRegl
it2, TempReg2
it3, TempReg3

kt0, TempReg4
ktl, TempReg5
kt2, TempReg6
kt3, TempReg7
kt4, TempReg8
kt5, TempReg9
kt6, TempRegl10
kt7, TempReg11
kt8, TempReg12
kt9, TempReg13

ktl0, TempRegl4
ktll, TempRegl5

TimerExt
SpillAddrReg

Interrupt or trap handler temporary
register

Interrupt or trap handler temporary
register

Interrupt or trap handler temporary
register

Interrupt or trap handler temporary
register

Kernel temporary register
Kernel temporary register
Kernel temporary register
Kernel temporary register
Kernel temporary register
Kernel temporary register
Kernel temporary register
Kernel temporary register
Kernel temporary register
Kernel temporary register
Kernel temporary register
Kernel temporary register
Timer extension register

Spill trap handler address

Processor Initialization and Run-Time Services: OSBOOT

Register Symbols Used Description

grol FillAddrReg Fill trap handler address

gro2 FPStat3 Floating-point trap handler static register
gro3 FPStat2 Floating-point trap handler static register
gro4 FPStatl Floating-point trap handler static register
gros FPStat0 Floating-point trap handler static register

NOTE: Please refer to the comments in tbgister.ahfile in the
29k/src/osboot/bootdirectory for further information on register usage.

Processor Initialization and Run-Time Services: OSBOOT 4-3

OS Start-Up and WARN Trap Handler

File
startup.s

The file startup.s implements thesbootstart-up function that takes control of
the processor on RESET. It also contains the processor WARN trap handler,
which is also the Monitor Mode trap handler for the Am29050

microprocessor. The functions implemented instagtup.s file are contained in

a single text section calld®ieset. The code below shows the contents of the
Resetext section. This section must be loaded and ordered at offset Ox0 in the
ROM address space or in the instruction/data memory in the linker command
file.

Functions
___0s_startup, address16

External Functions
___0s_coldstart, _os_warn_mm_trap

Reset Text Section

.extern __os_coldstart
.extern __os_warn_mm_trap
.sect Reset, text
.use Reset
.global __os_startup
__0s_startup:
jmp __os_coldstart
nop
nop
nop
address16:
jmp __0s_warn_mm_trap
nop
nop
nop
text

4-4 Processor Initialization and Run-Time Services: OSBOOT

Description

The__os_startupfunctionis theosbootstart-up function. It is executed from
offset 0x0 when the processor is powered on. It invokes the coldstart

routine which controls the rest of the cold start process. Ths_startup

routine must contain no more than four instructions, because it is immediately
followed byaddress16which is the WARN trap handler or the Monitor Mode
trap handler of the Am29050 processor.

address16s the WARN trap handler or the Monitor Mode trap handler for the
Am29050 microprocessor and must be aligned at offset 0x10 in ROM address
space or in instruction/data memory address space. When a WARN trap or
Monitor Mode trap occurs, the os_warn_mm_traproutine is executed using

a direct jump (jmp) instruction.

Processor Initialization and Run-Time Services: OSBOOT 4-5

OS Cold Start

Files
sim.s, coldstrt.s, sim245.s

The filessim.s, sim245.andcoldstrt.s implement the__os_coldstart

function, which controls the cold start process for software targets (such as
simulators) and for hardware targets. Thes_coldstartfunction performs a

number of tasks to initialize the target system to a defined state. These tasks are
implemented as separate functions which are called during the cold start process.

Link-Time Constant
DMemStart

DMemStart is a link-time constant that must be defined in the linker command

file (with .Ink file extension). It defines the start of the external data memory
region of the specific target systeBMemStart is used as the starting address

for the dynamic memory sizing performed to configure the external memory
systems. It is used as the base address for the placement of the vector table. The
special-purpose register of the processor,Vector Area Base (VAB), is initialized
with this constant.

Function
___0s_coldstart

External Functions
___0s_procinit
___0s_sizememory
__0s_memset
___0s_sysinit
___0s_check027
__os_fpinit
___0S_initcomm

4-6 Processor Initialization and Run-Time Services: OSBOOT

Description

The function__os_coldstartcontrols the cold start process. It is executed by the
OS Start-Up module after processor RESET, as shre 4-1 on page
4-1. It sets up a pseudo register stack to avoid accidental spilling and filling of
registers before calling different functions. The functions supplied with the
oshootsoftware are designed such that spilling and filling of registers is not
required.

The special purpose register of the processor, VAB, is initialized with the value
of theDMemStart link time constant.

Several tasks are performed during the cold start process. The following list
outlines these tasks, appearing in the order in which they are executed. Each of
these tasks is described in detail in the following sections.

1. | Processor Initializatioh—Initializes the processor special registers and
peripheral registers to a defined state. Page 4-8.

2. |Memory Configuration—Dynamically sizes the available external DRAM
memory and programs the DRAM Controller accordingly. Page 4-13.

3. [Data Segments Initializatign—Initializes the data segments in memory,
clears the BSS sections, and, if in a standalone environment, transcribes
initialized data sections from ROM to data memory. Page 4-16.

4. [System Initialization—Initializes the vector table of the system and saves
target configuration information in memory. Page 4-18.

5. [Communications Initializatign—Initializes the communications interface
used by the target system. This initializesdhg_coremessage system in
the OSBOOT/DBG_CORE Model. Page 4-21.

The completion of the tasks listed above marks the end of the cold start process.
In the OSBOOT/DBG_CORE Model, control is temporarily transferred to the
dbg_coreby calling thedbg_control() function. Wherdbg_control() returns,

the HIF kernel is started up.

Processor Initialization and Run-Time Services: OSBOOT 4-7

Processor Initialization

4-8

Files
procinit.s, init20x.c, init24x.c

Theprocinit.s file implements the function that performs processor initialization
at cold start. During processor initialization, the timer of the processor is
disabled and some of the special registers of the processor are initialized to
defined values. In the case of the 29K Family microcontrollers, the peripheral
registers are also initialized and the devices are left disabled.

Processor
Initialization

__0s_procinit

Initialization

Am2900x

__0s_am?29005 _init
__0s_am?29000 _init

Am2924x
Initialization

__0s_amz29240 init
__0S_am?2924x_init

Am29050 Am29040
Initialization Initialization

0s_am29050_init o
-~ - __0s_am?29040_init

Am2903x Am2920x
Initialization Initialization
__0s_am?29035_init __0s_am?29200_init
__0s_am?29030_init __0s_am?29205 _init
___0s_am2920x_init

Figure 4-2. Processor Initialization

Function

___0s_procinit

Processor Initialization and Run-Time Services: OSBOOT

Auxiliary Functions
___0s_am29000_init
___0S_am29005 _init
__0S_am29030_init
___0s_am29035 _init
__0S_am29040 _init
__0S_am29050 _init
___0S_am29200_init
__0S_am29205 _init
__0S_am2920x_init
___0S_am29240 _init
__0S_am?2924x_init

Link-Time Constants

DRCT_VALUE
init. CPS

RMCF_VALUE
RMCT_VALUE

DRCT_VALUE contains the value to initialize the DRAM Controller peripheral
register of the 29K Family microcontrollers for the target system configuration.
init_CPS contains the value to initialize the processor’s Current Processor
Status (CPS) register for the cold start process.

RMCF_VALUE contains the value to initialize the ROM Configuration
peripheral register of the 29K Family microcontroller for the target system
configuration.

RMCT_VALUE contains the value to initialize the ROM Controller peripheral
register of the 29K Family microcontrollers for the target system configuration.

Description

The__os_procinitfunction is called from _os_coldstartduring the cold start
process. It initializes the contents of some processor special registers with
defined values. The special registers initialized are as follows:

e Current Processor Status (CPS) register

e Timer Reload (TMR) register

» Register Bank Protect (RBP) register

e Configuration (CFG) register

e Memory Management Unit (MMU) register

Processor Initialization and Run-Time Services: OSBOOT 4-9

4-10

The CPS register is initialized with tiét_ CPS value defined at link time. The
TMR register is cleared and the timer is disabled. The register bank protect
register is set to zero to protect no registers.

After initializing the CPS, TMR, and RBP registers,0s_procinitexamines the
PRL field of the CFG register to determine the processor type. The PRL field of
the CFG register is the eight most-significant bits of the register. Based on the
PRL value found, the appropriate routine to perform processor-specific
initialization is called. Table 4-2 lists processor PRL fields and their function
names.

Table 4-2. Processor PRL Fields

Processor PRL Values Function Name(s)
31-27 26-24

Am29000 0 X ___0s_am29000 init
Am29005 0 X ___0s_am29005 _init
Am29050 2 X __0s_am29050 init
Am29035 4 X __0s_am29035 _init
Am29030 4 X __0s_am29030 init
Am29200 5 X __0s_am29200 init
Am29205 58 X __0S_am?29205 _init
Am29240 6 X __0S_am29240 _init
Am29040 7 X __0S_am29040 _init

NOTE: x indicates these bit positions do not matter

__0Ss_am29000 init and __os_am29005 init
The__os_am29000_iniand__os_am29005 _inifunctions perform the
following tasks:

¢ Initialize the MMU register for 8K page size (Am29000 only).
e Set the process ID field to 0x1.

¢ Disable the BTC (branch target cache) for processor revisions A and B
(Am29000 only).

¢ Set the VF and DW bits of the CFG register.
¢ Determine if the external memory system supports byte accesses.
¢ Update the DW bit of the CFG register.

Processor Initialization and Run-Time Services: OSBOOT

___0S_am?29050 init
The__os_am29050_inifunction performs the following tasks:

« Initializes the MMU register for 8K page size.

e Sets the process ID field to Ox1.

e Sets the VF and DW bits of the CFG register.

* Determines the byte-writability of the external memory system.
» Updates the DW bit of the CFG register.

__0s_am?29030 init and __os_am29035 init
The__os_am29030_iniand__os_am29035 _inifunctions perform the
following tasks:

e Set the CFG register to disable the cache.

¢ Initialize the MMU register for 8K page size.

e Set the process ID field to 0x1.

NOTE: The__os_am29030_iniand__os_am?29035_inifunctions are

defined in a separate text section nafedt030so that they can be aligned on a
quad-word boundary at the time of linking.

___0s_am29040 init
The __os_am29040 _inifunction performs the following tasks:

* Sets the CFG register to disable both caches.
« Initializes the MMU register for 4K page size for both sets of TLBs.
» Sets the process ID field to Ox1.

__0s_am?29200 init , and __os_am29205 init
The__os_am29200_injtand__os_am29205 _inifunctions perform the
following tasks:

¢ Initialize the ROM Controller register with the value of RRICT VALUE
link-time constant.

¢ Initialize the ROM Configuration register with the value of the
RMCF_VALUE link-time constant.

Processor Initialization and Run-Time Services: OSBOOT 4-11

4-12

¢ Initialize the DRAM Controller register with tieBRCT_VALUE link-time
constant defined in the linker command file for the target system
configuration.

e Call__os am2920x_inito perform the rest of the initialization.

___0S_am?29240 init
The __os_am29240 _inifunction performs the following tasks:

¢ Sets the CFG register to disable both caches.
* Initializes the MMU register for 1K page size for both sets of TLBs.
¢ Sets the process ID field to Ox1.

« Initializes the ROM Controller register with the value of RMCT_VALUE
link-time constant.

¢ Initializes the DRAM Controller register with tigBRCT_VALUE link-time
constant defined in the linker command file for the target system
configuration.

e Calls__os_am2924x_inito perform the rest of the initialization.

Processor Initialization and Run-Time Services: OSBOOT

Memory Configuration

Files
memory.s, sizemem.c, size200.c

Thememory.sfile implements the function that dynamically sizes the external
DRAM memory region using a non-destructive memory sizing technique. It
programs the DRAM Configuration register on the 29K Family microcontrollers
according to the memory available and returns the total size of memory available
to the caller—in this case, the cold start process.

Memory 0s_sizememor’
Configuration - = y
PRL?
_0s_sizemem200
(base, start, end, size)
Size Size
Memory Memory

_0s_sizemem29k
(base, start, end, size)

Configure
DRAM Controller

Figure 4-3. Memory Configuration

Function
___0s_sizememory

Auxiliary Functions

_os_sizemem?29k(long *base, long *start, long *end, int size)
_0s_sizemem?200(long *base, long *start, long *end, int size)

Processor Initialization and Run-Time Services: OSBOOT 4-13

4-14

Link-Time Constants

DMemStart
DMemSize

DMemStart defines the base address of the external DRAM memory.
DMemSizeis the maximum size of memory on the target system.

Description

The___os_sizememoryunction, defined in thenemory.sfile, is called during

the cold-start process. Based upon the value of the PRL field in the configuration
register (CFG), the function calls eitheros_sizemem29kor the Am29000

Family of microprocessors, or 0s_sizemem20for the Am29000 Family of
microcontrollers and passes them the necessary input arguments.

The arguments passed to theos_sizemem29knd__0s_sizemem200
functions are derived from ti@MemStart andDMemSizelink-time constants
defined in the linker command file for the target system configuration.

The___os_sizemem29function is defined in theizemem.dile and is called
from__os_sizememonand from__os_sizemem20 size a segment of
external memory. The first parametease gives the base address of the data
memory being sized. The second paramstart, gives the memory address

from which to begin the sizing algorithm. The third parameted, gives the
memory address at which to terminate the sizing algorithm. The address is
computed by adding tHeMemSizevalue to thedDMemStart value. The fourth
parametersize gives the size of the unit memory chip. This value is used as an
increment in the sizing algorithm.

Processor Initialization and Run-Time Services: OSBOOT

Sizing Algorithm

This procedure is a loop that starts with the test address initialized to the address
contained in thetart parameter. It stores the test address at the test location,
writes thebaseaddress in thbaselocation, and reads back the value from the

test location. It then compares the value read with the test address. If the values
are the same, then the next test location is computed by adding the memory chip
size specified in theize parameter, and the loop is executed again. The total size
of memory found is incremented by the memory chip size. If the values are not
the same, the loop exits, and the total memory found thus far is returned.

The___os_sizemem?20function is defined in theizemem.dile and is called by
__0s_sizememoryo size the external memory and program the DRAM
configuration register of the 29K Family microcontrollers. The
___0s_sizemem20function takes the same input parameters as that of
___0s_sizemem?29MUt sizes each DRAM bank by calling os_sizemem29k

and computes the ASEL fields and AMASK fields for the bank sizes found. It
arranges the banks in descending order by size and programs the DRAM
configuration register.

Processor Initialization and Run-Time Services: OSBOOT 4-15

Data Segments Initialization

Files
coldstrt.s, sim.s, sim245.s

Global Symbol
RAMInit

Thesim.s sim245.sandcoldstrt.s files, which implement the _os_coldstar

routine that controls the cold start process, also implement the ramint

routine to transcribe program data segments from ROM to the external data
memory. This routine is inlined into the os_coldstar function and is excluded
when buildingosbootfor simulators. It can also be suppressed by controlling the
definition of theSTANDALONE manifest on the command-line of the
assembler or compiler.

Da“?‘.s‘?gmems 0s_raminit
Initialization - -
Clear '
BSS _os_memset($startof(.bss),$sizeof(.bss))
if RAMInit =0 ;
. . RAMInit, 4
call gro6, RAMInit| ~<OmT

Figure 4-4. Data Segments Initialization

Function
___0S_raminit

4-16 Processor Initialization and Run-Time Services: OSBOOT

Description

The__os_raminitfunctioninitializes the external data memory region as
necessary. It clears the BSS section and transcribes any initialized data section
from ROM to data memory by calling tRAMInit function produced by the
romcoff utility. It defines a BSS symbdRAMInit . At run-time, the content of
RAMInit is read. If the value read is zero, the variable is in BSS and is
initialized to zero. If the value read is non-zero, it assumes that the function
RAMInit is linked together, and executes it.

The RAMInit function generated by thremcoff utility requires two stages of
linking the application objects witbsboot. The first link produces a binary

image of the application program apsbootwith text and data sections ordered

in memory as they would be during program execution. From this binary image,
theRAMInit routine is generated using ttencoff utility on the sections to be
transcribed from ROM space to the external data memoryRAMINit routine
generated is then linked with all of the application program objectesiabt

as the second link phase. This produces a binary image from which the selected
sections (e.g., text and lit), can be used to program the EPROMSs on the target
system.

Processor Initialization and Run-Time Services: OSBOOT 4-17

System Initialization

4-18

File
sysinit.s

Thesysinit.sfile implements the function that performs system initialization.
During system initialization the default trap handlers and defined trap handlers
are installed into the vector table. Theos_targetcfgglobal data structure,

which stores the target system configuration, is also initialized with the
appropriate values.

L System
0s_sysinit STE
—05Y Initialization
Initialize / \ Save Target
Vector Table Configuration
Information
/ \ struct {
Install Install specific unsigned int IMemStart;
—_0s_default_trap trap handlers unsigned int IMemSize;
for all entries unsigned int DMemStart;
os default tra os illegal op tra unsigned int DMemSize;
- —ap __OS_ZQI?pV_trF;TJ P unsigned int RMemStart;
~os_trace_trap unsigned int RMemSize;
" “os_uiTLBmiss_trap unsigned int am027_prl;
" “os_udTLBmiss_trap unsigned int os_version;
::os:ua_trap - }_os_targetcfg;

Figure 4-5. System Initialization

Function
___0s_sysinit

Global Data Variable
___0s_targetcfg

Processor Initialization and Run-Time Services: OSBOOT

Link-Time Constants
DMemStart

IMemStart

IMemSize

RMemStart

RMemSize
TRAPINROM

DMemStart gives the base address of the data memory region.

IMemStart andIMemSize are the start address and maximum size of
instruction memory on the target system.

RMemStart andRMemSizeare the start address and maximum size of ROM
memory on the target system.

TRAPINROM specifies whether the trap handlers reside in ROM or in
instruction memory. A value of 0x2 specifies that the trap handlers reside in
ROM. A value of 0x0 specifies that the trap handlers reside in instruction
memory. Any other value may cause undefined behavior.

NOTE: Trap handlers should only be located in ROM space (that is,
TRAPINROM set to 0x2) for those 29K Family microprocessors using 3-bus
architecture. For other members of the 29K Family, trap handlers should be
located in instruction memory spaddRAPINROM set to 0x0).

Description
The__os_sysiniffunctionis called during cold-start process to do the following:

¢ Install the default trap handlers
« Install trap handlers supplied witisboot
* Initialize the__os_targetcfgdata structure according to the target system

configuration found

The first argument passed to theos_sysinifunction is the total size of data
memory found on the target (in regisie).

The default trap vectors for each handler are defined by the default_trap

function. The value 6fRAPINROM is OR’ed with the address of the trap
handler before it is installed into the vector table.

Processor Initialization and Run-Time Services: OSBOOT 4-19

The specific trap vectors that are installed are the following:
e os_illegal_op_trapas lllegal Opcode trap handler

e _0s_ua_trapas Unaligned Access trap handler

e 0s_29pv_trapas Protection Violation trap handler

e 0s_trace_trapas Trace trap handler

e _ 0S_UITLBmiss_trapor___os_uiTLBmiss24x_trapas User Mode
Instruction TLB Miss trap handler

e _0s_udTLBmiss_trapor___os_uiTLBmiss24x_trapas User Mode Data
TLB Miss trap handler

Theosbootdata structure _os_targetcfgs also initialized with defined
link-time constants. The structure of os_targetcfgs:

struct {
unsigned int IMemStart;
unsigned int IMemSize;
unsigned int DMemStart;
unsigned int DMemSize;
unsigned int RMemStart;
unsigned int RMemSize;
unsigned int am027_prl;
unsigned int os_version;

} __os_targetcfg;

ThelMemStart andIMemSize fields are initialized with values of the link-time
constant$MemStart andiIMemSize, respectively. Th®MemStart field is
initialized with the value of thBMemStart link-time constant. The field
DMemSizeis initialized with the value passed as incoming argument to
___0s_sysirti(in registedr2). TheRMemStart andRMemSizefields are
initialized with the values of the link-time constaRfslemStart and

RMemSize respectively. Tham027_prlfield is initialized to -1 (Oxffffff) to
indicate that no coprocessor is present (the default)o3 heersionfield is
initialized with the current version okboot

4-20 Processor Initialization and Run-Time Services: OSBOOT

Communications Ini

Files
eb030hw.s
eb29khw.s
ez030hw.s
1a030hw.s
la200hw.s
Ich29khw.s
pcebhw.s
sa030hw.s
sa200hw.s

se040hw.s
stebhw.s
yrev8hw.s

tialization

for AMD’s EB29030 PC plug-in card
for AMD’s EB29K PC plug-in card.

for AMD’s EZ030 stand-alone board
for AMD’s Laser29K—-030 board

for AMD’s Laser29K—200 board

for YARC ATM Sprinter PC plug-in card
for AMD’s PCEB29K PC plug-in card
for AMD’s SA29030 stand-alone board
for AMD’s SA29200, SA29205, and SE29240 stand-alone
boards

for AMD’s SE29040 stand-alone board
for STEP’s stand-alone board

for YARC Rev 8 PC plug-in card

NOTE: Some of these boards are no longer available commercially, but are still

in use.

The*hw.s files li

sted above implement the os_initcommfunction that

initializes the communications interface for the hardware platforms supported by
AMD. The communications interface can be either a shared memory interface

(i.e., PC plug-in

cards), or serial communications link (i.e., stand-alone boards).

Communications

__0s_initcomm T
Initialization

Install / \ Initialize
Communications

: Communications
Drivers Interface

stand-alone—osbo
_sce8530_intr
__am200_intr3

ot: osboot/dbgcore: stand-alone—osboot: osboot/dbg_core:
msg_intr __scc8530_init msg_init()
serial_int __scc200_init

Processor Initialization and

Figure 4-6. Communications Initialization

Run-Time Services: OSBOOT 4-21

4-22

Function
___0s_initcomm

Associated Functions
For the Stand-Alone OSBOOT/Application Model:

_sce8530_init, scc8530 _intr , __scc8530 putchar,
_scc200_init, __am200 _intr3,

__scc200_tx_intr,

__scc200_rx_intr

For the OSBOOT/DBG_CORE Model:

_msg_init
msg_intr
serial_int

Description
The__os_initcommfunction is called from the os_coldstartfunction during
cold start to initialize the communications interface of the target system.

Stand-Alone OSBOOT/Application Model

For serial-communications interfaces, theos_initcommfunction initializes
__putchar_tablewith the functions to write a character out of the serial port. It
then installs the interrupt vector for the serial device into the vector table and
calls the device-specific routine to initialize the device. The
serial-communications device functions and their interrupt handlers are defined
in thescc8530.@ndscc200.diles.

OSBOOT/DBG_CORE Model

In the OSBOOT/DBG_CORE Model, the os_initcommfunction installs the
interrupt vector for thelbg coremessage communications interface in the
vector table. The interrupt handlers installedrasg_intr for shared memory
interface, anderial_int for serial-communications interface. The offset into the
vector table is defined as a constant in the file corresponding to the target
system.

After installing the message interrupt vectoros_initcommtransfers control to
the_msg_initfunction inside thelbg_coremessage system. Thensg_init
function initializes the message system and then returtidvia the cold-start
process.

Processor Initialization and Run-Time Services: OSBOOT

Chapter 5 &
OSBOOT Trap Handlers

This chapter describes the followingboottrap handlers:

« [Protection Violation trap handler on page 5-2

« [Unaligned Access trap handler on page 5-4

« [Arithmetic trap handlefs on page 5-7

Trap handlers can reside either in the ROM space or the instruction memory
space of a 29K Family microprocessor. The link-time const&APINROM ,
specifies where trap handlers will resideTIRAPINROM s set to 0x2, trap
handlers are located in ROM spacel RAPINROM is set to 0x0, trap handlers
are located in instruction memory space.

NOTE: Trap handlers should only be located in ROM space (that is,
TRAPINROM set to 0x2) for those 29K Family microprocessors using 3-bus
architecture. For other members of the 29K Family, trap handlers should be
located in instruction memory space.

Processor Initialization and Run-Time Services: OSBOOT 5-1

Protection Violation Trap Handler

The protection violation trap handler, os_29kpv_trap is defined in the

tr_pvspr.s file. The protection violation trap handierinstalled on target

systems to emulate accesses to special CPU registers in thgrE@iegr164
Registers in this range are treated as virtual registers in support of floating-point
operations. Table 5-1 lists each of these registers and its contents.

NOTE: On the Am29050 processor, these registers are actually implemented
and do not trap. These registers will also be implemented in some future
processors.

Table 5-1. Special Virtual Registers

Register Mnemonic Description

grle0 fpe Floating-point environment
grlel inte Integer environment
gri62 fps Floating-point status
grle4d exop Exception opcode

Access to the virtual registers is provided by trappfigGRIM , MTSR, and
MFSR instructions that reference these registers. The protection violation trap
handler receives control when an instruction references an unimplemented
register at its entry point. The trap handler performs the following steps:

1. Accesses thepsregister to determine if the offending instruction is in RAM
or ROM. The trap handler accesses the instruction by loading the contents of
the address pointed to by tpel register.

2. Determines which of ttTSRIM , MTSR, or MFSR instructions caused
the trap. If none of these instructions caused the trap, the handler jumps to
the__os_unexpected_trapandler.

3. Jumps to the subhandler for each instruction type to decode the value to be
stored (in the case MTSRIM andMTSR instructions), and the register
being referenced. In the caseMfFSR instructions, only the register being
referenced is needed.

5-2 Processor Initialization and Run-Time Services: OSBOOT

4. Calls a unique handler for each case when the register number (and value, if
necessary) is determined, depending on whether the instruction intends to
move toor from the special register.

5. When the handler returns, it restoresgb@andpcl registers and returns to
the user program.

The unique handlers referenced byos 29kpv_trapare listed in Table 5-2.

Table 5-2. Unique Protection Violation Trap Handlers

Name Description

EXOP_read Loads from exception opcode
EXOP_write Stores to exception opcode

FPE_read Loads from floating-point environment
FPE_write Stores to floating-point environment
FPS read Loads from floating-point status
FPS_write Stores to floating-point status
INTE_read Loads from integer environment
INTE_write Stores to integer environment

Processor Initialization and Run-Time Services: OSBOOT 5-3

Unaligned Access Trap Handler

The 29K Family of microprocessors suppandy byte addressing of

information loaded from or stored to memory. In the case of word or half-word
accesses, the 29K Family microprocessor either ignores or forces alignment in
most cases. The low-order two bits of an address indicate the alignment of the
data being accessed. An unaligned access is determined by the value of the OPT
bits and the two least significant bits of the address for load and store
instructions. Only accesses to instruction or data memory are checked; alignment
is ignored for coprocessor transfers. Table 5-3 defines the various OPT bits, and
Table 5-4 lists the OPT bit and address bit combinations that result in an
unaligned access.

Table 5-3. Option (OPT) Bit Definitions

AS OPT2 OPT1 OPTO Definition

X 0 0 0 Word access

X 0 0 1 Byte access

X 0 1 0 Half-word access

0 1 0 0 Instruction ROM access
0 1 0 1 Cache control

The AS bit refers to the address space being referenced. For translated load and
store operations, the AS bit must be 0. If the AS bit is 1 for a translated load or
store operation, a protection violation occurs.

Table 5-4. Unaligned Access Combinations

OPT2 OPT1 OPTO A1l AO Description

0 0 0 1 0 Unaligned word access
0 0 0 0 1 Unaligned word access
0 0 0 1 1 Unaligned word access
0 1 0 0 1 Unaligned half-word
0 1 0 1 1 Unaligned half-word

5-4 Processor Initialization and Run-Time Services: OSBOOT

Whether a trap occurs when an unaligned access is detected depends on the
setting of the trap unaligned (TU) bit of tbesregister. If any of the conditions
indicated ifh Table 5}4 occur, and the TU bit is 1, the unaligned access trap
handler is invoked.

The unaligned accessp handler (in theatrap.s file) receives control at the
entry point__os_ua_trap The steps taken by this handler are listed below:

1. Accesses the channel contrchd) register to determine if the data being
accessed is needed and if tive register contents are valid. If the data is not

needed, or the contents are invalid, the trap handler returns to the interrupted

program; otherwise, the handler continues.

2. Saves the contents of the Old Processor Staps3register, the channel
addressdha), channel datachd), and channel contrgthc) registers to the
memory stack.

3. Determines if a multiple operation is in progress (L&ADM or
STOREM instruction). If a multiple operation is in progress, the contents of
pc0 andpcO+4are saved; otherwise, thel andpcO registers are saved.

4. Saves the contents of the arithmetic logic unit statu$ &nd indirect
pointer (pa, ipb, andipc) registers.

5. Leaves freeze mode by setting the FZ bit incfigeregister to 0.

6. Sets up thepsregister to reflect the contents of thgsregister and the
content of the Physical Address (PA) bit from the trapped load or store

instruction, and enables all subsequent interrupts and traps (by setting the DI

and DA bits of the status to 0). This allows traps to nest, if any occur while
the subsequent operations are in progress.

7. Jumps to the subhandler based on status concerning the interrupted
instruction: user or supervisor moadg register DW bit setting; anthc
register LS, ML, ST, and LA bits.

The remainder of theatrap.s file contains the unique handlers for each of the
possible offending instructions, according to the mode in which it was executed.
[Table 5-F lists the names of the unique handlers and the instruction types for
which unaligned accesses are resolved.

When each of the unique handlers completetotiek or store operation, a
common labelrestore, receives control. This section of code restores the
contents of the registers saved on entry to the handler, and setopp the
register prior to returning to the interrupted program.

Processor Initialization and Run-Time Services: OSBOOT 5-5

Table 5-5. Unaligned Access Unique Handlers

Name Instruction Type

load_u User-mode load

store_u User-mode store

loadl_u User-mode load and lock

storel_u User-mode store and lock

load_s Supervisor-mode load

store_s Supervisor-mode store

loadl_s Supervisor-mode load and lock

storel_s Supervisor-mode store and lock

loadm_u User-mode load multiple

storem_u User-mode store multiple

loadm_s Supervisor-mode load multiple

storem_s Supervisor-mode store multiple

load_hu User-mode load half-word, DW=0

store_hu User-mode store half-word, DW=0

loadl_hu User-mode load and lock half-word, DW=0
storel_hu User-mode store and lock half-word, DW=0
load_hs Supervisor-mode load half-word, DW=0
store_hs Supervisor-mode store half-word, DW=0
loadl_hs Supervisor-mode load and lock half-word, DW=0
storel_hs Supervisor-mode store and lock half-word, DW=0
load_hudw User-mode load half-word, DW=1

store_hudw User-mode store half-word, DW=1

loadl_hudw User-mode load and lock half-word, DW=1
storel_hudw User-mode store and lock half-word, DW=1
load_hsdw Supervisor-mode load half-word, DW=1
store_hsdw Supervisor-mode store half-word, DW=1
loadl_hsdw Supervisor-mode load and lock half-word, DW=1
storel_hsdw Supervisor-mode store and lock half-word, DW=1

Processor Initialization and Run-Time Services: OSBOOT

Arithmetic Trap Handlers

The arithmetic trap handlers provided witsbootperform floating-point and
long-integer arithmetic operations for the 29K Family of processors. The
arithmetic trap handlers emulate IEEE floating-point operations, including IEEE
integer operations. These trap handlers are not designed for optimum
floating-point performance. Instead, they provide complete object-code
compatibility with future generations of 29K Family processors. For optimum
floating-point performance, it is necessary to code in-line accelerator
instructions.

The integration of the floating-point trap handlers with an operating system

raises a number of key issues. The options available to the system integrator may
drastically affect the system performance, although no simple formula or
well-defined set of criteria exists.

The customizations required are limited to the following macros:

enter_trap_routine
exit_trap_routine

These macros perform environment control and register save/restore on entry
and/or exit to the trap handlers. The following notes are intended for those
familiar with system calling conventions and the 29K Family of microprocessors
at the register transfer level.

* Decide whether freeze mode should be turned ashdor an emulation trap.
The source code, as provided, turns off freeze mode.

» Typical operation may take 100 cycles or more. If the user’s system can
tolerate a few microseconds of frozen state, the entire operation can be done
with the freeze mode on. A freeze-mode handler is much simpler, a bit faster
(saves at least 10 cycles), and requires fewer dedicated registers.

» Decide which registers can be used by the arithmetic trap handlers. The
source code, as provided, uses a maximum number of registers for optimum
performance. However, if not enough registers are available, some registers
will have to be saved on the memory stack on entry to and restored on exit
from each trap handler.

Processor Initialization and Run-Time Services: OSBOOT 5-7

NOTE: The registers gr64—gr95 are reserved for the operating system and
normally are protected. These registers are not protected in systems that allow
arbitrary floating-point programs to run in supervisor mode. Therefore, since
protection of the registers is not available, code must be added to each
floating-point handler to ensure registers gr64—gr95 are not used as arguments.
Make sure that none of these registers are used elsewhere in the operating
systemIf the traps are running with freeze off and interrupt on, ensure that none
of the floating-point registers overlap with registers used in any other interrupt
handlers.

¢ Once registers are allocated, define their assignments iiedgister.ahfile. If
all trap handlers are to be run with freeze mode on, there is no need to save
thepcO, pcl, andopsregisters.

¢ The information necessary to write thiter_trap_routine,
exit_trap_routine, enter_29027_trap_routinge and
exit_29027_trap_routinemacros is located in the decl.h file.

Changes must be made to teer_trap_routine andexit_trap_routine
macros, depending on the system choices made. The sections below describe the
requirements for each choice.

Freeze on and all registers available
These macros are empty. The macros are shipped in thisdsbootfiles allow
a sufficient number of working registers.

Freeze on and not all registers free

Allocate an area of physical memory in which to save registers in the
enter_trap_routine macro and to restore the registers ingki¢_trap_routine
macro.

Freeze off and all registers free

In theenter_trap_routine macro, save theps pcl, andpcO registers and turn
off the freeze mode. In thexit_trap_routine macro, first turn on freeze mode
and then restore thaps pcl, andpcOregisters.

5-8 Processor Initialization and Run-Time Services: OSBOOT

Freeze off, not all registers free, and physical stack

In theenter_trap_routine macro, save theps pcl, andpcOregisters (and any
other required registers) on the physical stack, then turn off the freeze mode. In
theexit_trap_routine macro, first turn on freeze mode and then restore all
saved registers. Remember th@ADM/STOREM instructions cannot be used

in freeze mode. This is the likely case for embedded systems where everything
runs in physical memory.

Freeze off, not all registers free, and virtual stack

In theenter_trap_routine macro, saveps pcl, andpc0in either registers or
physical memory. Turn on freeze mode and virtual data mapping, but leave
interrupts off. Next, switch to the virtual stack, then save the copmssghc],
pcO, and the other registers. Finally, turn on the interrupts. Do the inverse
operations in the reverse order in &x@_trap_routine macro. This is the likely
case for systems such as UNIX in which a number of user processes run in
virtual memory.

When running UNIX or a time-sharing system with shared libraries (in which
the libraries’ data pages are copy-on-write), the floating-point handlers can be
implemented efficiently in user mode, similar to the way the spill/fill traps are
implemented.

In this case, the floating-point routines cannot be passed invalid arguments, and
the floating-point registers can be in static memory data areas (with respect to
the libraries).

This approach may cause more load and store instructions than the other

strategies, but there is no need to save and restore the floating-point state across
a context switch.

Processor Initialization and Run-Time Services: OSBOOT 5-9

Chapter 6 &
HIF Run-Time Services

Whenosbootis used with simulators or in stand-alone applications, the HIF
kernel is invoked immediately after completion of the cold-start process. In the
OSBOOT/DBG_CORE Model, thesboottemporarily transfers control to
dbg_coreby calling thedbg_control() function ofdbg_core When the
dbg_control() function returns control tosboot the HIF kernel is invoked. The
HIF kernel start-up function is_hif_startup.

The__hif_startup function starts up the HIF kernel by initializing its data
structures, and prepares an execution environment for the user application
program. The execution from the start up of the HIF kernel to the beginning of
the execution of the user application program is the warm-start process.

This chapter describes the functions provided bys#im®otHIF kernel and their
associated files.

Processor Initialization and Run-Time Services: OSBOOT 6-1

HIF Kernel Start-Up Module

Files
hif.s, hifvect.c

Thehif.s file implements the start-up program for the HIF kernel that is called
after the completion of the cold start process. It initializes the HIF services and
creates a run-time environment for the application program.

0S —_hif_startup HIF [start] _| Start Program
Cold Start Start-Up At Entry Point
Install / \ Set Up Run-Time
HIF Trap Vectors Environment
__hif_timer_trap = rfb, rsp, rab
~hif spill Trap Dlnltlahze HIF msp
~hif_fill_trap ata Structures pc0,pcl
__hif_kernel_trap & Registers ops

FillAddrReg struct {
SpillAddrReg unsigned int PgmTextStart;
TimerExtREg unsigned int PgmTextEnd;
unsigned int PgmDataStart;
__hif_regsighandler unsigned int PgmDataEnd;
__hif_heapptr unsigned int PgmEntryPoint;
__hif_argvptr unsigned int MemStackSize;
unsigned int RegStackSize;
unsigned int PgmArgvPtr;
unsigned int PgmExecMode;
unsigned int PgmRegStackStart;
}_os_targetcfg;

Figure 6-1. HIF Kernel Start-Up Module

Function
__hif_startup

Associated Function
_hif_vectinit(long *VAB, int trapinrom)

Link-Time Constant
TRAPINROM

6-2 Processor Initialization and Run-Time Services: OSBOOT

TRAPINROM indicates whether the trap handlers reside in ROM space or in
instruction memory space. BRAPINROM setting of Ox2 (two) indicates that
the trap handlers reside in ROM spacdRAPINROM setting of 0x0

indicates that the trap handlers reside in instruction memory space.

NOTE: Trap handlers should only be located in ROM space (that is,
TRAPINROM set to 0x2) for those 29K Family microprocessors using 3-bus
architecture. For other members of the 29K Family, trap handlers should be
located in instruction memory spadéRAPINROM set to 0x0).

Description

The_ _hif_startup function is invoked at the end of the cold start process. This
function calls__hif_vectinit to install the HIF vectors for Timer trap, Spill trap,
Fill trap, and the HIF kernel trap into the vector table. The vectors installed are:

__hif_timer_trap for Timer trap (OXE)
___hif_spill_trap for Spill trap (0x40)
__hif_fill_trap for Fill trap (0x41)
__hif_kernel_trap for HIF Kernel trap (0x45)

After installing the vectors, the hif startup function initializes the
SpillAddrReg andFillAddrReg kernel static registers defined in tlegister.s
file to the__hif_spillhandler and__hif fillhandler routines, respectively. It
also initializes the TMR and TMC special purpose registers andrnieExt
kernel static register before enabling the timer.

Next, __hif_startup initializes the data structures used by the HIF services,
including the program information contained in thehif _pgminfo structure.
The__ hif_pgminfo structure is as follows:

struct {
unsigned int PgmTextStart;
unsigned int PgmTextEnd,;
unsigned int PgmDataStart;
unsigned int PgmDataEnd;
unsigned int PgmEntryPoint;
unsigned int PgmMemStackSize;
unsigned int PgmRegStackSize;
unsigned int PgmArgvPtr;

unsigned int PgmExecMode;
unsigned int PgmRegStackStartAddr;
} __hif_pgminfo;

Processor Initialization and Run-Time Services: OSBOOT 6-3

6-4

Program information is provided by the external loader or hard coded in the
software at compile time. Ttstdalone.ahfile defines the constants used by the
software (when there is no external loader) and t#e initpgminfo macro,

which initializes the__hif _pgminfo structure at HIF start-up time.

The data structures used by the HIF services are:

unsigned int _hif_heapptr; /* Holds the heap base address */
unsigned int _hif_argvptr; /* Holds argv pointer address */
unsigned int _hif_regsighandler;/* Holds the registered signal */

/* handler address */

Using the target system configuration information in thes_targetcfg
structure and the application program information in thkif pgminfo data
structure, this function sets up the run-time environment for the program,
including:

e Setting up the register and memory stacks at the top of the memory (high
memory)

e Setting up the OPS register for the application program
¢ Flushing TLBs
e Setting up the PCO and PC1 registers to the program’s entry point

¢ Performing an IRETINV instruction to start program execution

Processor Initialization and Run-Time Services: OSBOOT

Run-Time Environment

The HIF kernel requires the information necessary to set up the run-time
environment to reside in the hif_pgminfo and the _os_targetcfgdata

structures. The _os_targetcfgdata structure is initialized by tlesboot

bootstrap module during cold start according to the target system configuration.
The__hif_pgminfo data structure is either initialized by the software with
predefined values or provided by the external loader that downloaded the
program. The external loader is required to provide the information to initialize
the__hif _pgminfo structure in registers gr@broughgr105.

Table 6-1 lists the registers used by the external loader to provide the program
information to the HIF kernel, and the symbolic names and addresses used by
the HIF kernel when no external loader is present. Table 6-1 explains run-time
setup data.

Table 6-1. Registers and Symbolic Names for Run-Time Information

Run-Time Setup Data External No External Loader
Loader

User text start address gro6 PgmTextStart

User text end address gro7 etext

User data start address gro8 DMemStart

User data end address or heap base gro9 Determined at run-time

Application program’s entry point grl00 Start

Memory stack size grl01 PgmMemStackSize

Register stack size grl02 PgmRegStackSize

Argv start address grl03 Determined at run-time

Program Execution mode grl04 PgmExecMode

Register Stack Start Address grl05 PgmRegStackStart

Processor Initialization and Run-Time Services: OSBOOT 6-5

Table 6-2. Run-Time Setup Data

Synopsis

Definition

User Text Start Address

User Text End Address

User Data Start Address

User Data End Address/
Base

Application Program’s
Entry Point

Memory Stack Size
Register Stack Size
Argv Start Address

Contains the lowest address of the text region of
the object. Not used in setting up run-time
environment. Used by TLB handlers when
running in protected mode.

Contains the highest address of the text
region. Not used in setting up run-time
environment. Used by TLB handlers when run-
ning in protected mode.

Contains the lowest address of the data
region (all nontext region). Not used in
setting up run-time environment. Used by TLB
handlers when running in protected mode.

Contains the highest address of the Heap data
region (all non-text region) and the first address
of the heap. Therefore, program arguments
(argv) are included as part of the data region.
Used during setup of the run-time environment.
Used to initialize__hif _heapptr, which stores
the heap base address.

Entry point of the program loaded. Used to ini-
tialize the program counterBCO, PC1) when
setting up the run-time environment. Control is
then transferred to the user program at the entry
point byiret.

Contains the memory stack size.
Contains the register stack size.

Contains the starting addressaogv. Used to
initialize __hif_argvptr, which stores the
pointer toargv.

6-6 Processor Initialization and Run-Time Services: OSBOOT

Synopsis Definition

Program Execution Mode Is a 32-bit value to specify the execution mode
for the application program. The following bits
are currently defined:

Bit 31 set User mode—no translation
Bit 30 set User mode—translate data
Bit 29 set User mode—translate
instruction
Bit 28 set Supervisor mode—no
translation
None set User mode—translate
instruction and data
Register Stack Start Gives the highest memory location available.
Address This must be set to either 0 or to the highest

memory location by the loader or by the
simulator. The register stack is set up at the top
of memory, which is also the register stack start
address.

After the run-time environment is set up, the control of the processor is
transferred to the application program at its entry point. At that time, the global
registergro6 and gr97 are initialized with coprocessor mode information. Local
registerdrO and Irl are initialized to execute axit() HIF system call if the
application program immediately returns control backsiooot.

Processor Initialization and Run-Time Services: OSBOOT 6-7

Register Stack and Memory Stack Arrangement

The memory stack resides directly below the register stack at the top of the data
memory (high memory).The register stack resM&RARG_SPAChBytes below
the highest addressable data memory location, and the register stack pointers

(rsp, rfb, andrab) are initialized. Both stacks grow from high to low memory
locations.

Figure 6-2 below shows the upper portion of the data memaory space.

VARARG_SPACE (16*4 i
b - _ (16*4) | High Memory
rsp ——
rab Register Stack Area
msp > ‘
i Memory
Stack Area
Heap
T Area
__hif_argvptr —*™ aIgv
hif_h t >
__hif_heapptr hss
data, lit
text Low Memory

Figure 6-2. Register Stack and Memory Stack Arrangement

Processor Initialization and Run-Time Services: OSBOOT

HIF Services
File
hifserv.s

Thehifserv.sfile implements the HIF trap routines for the Timer trap, Spill trap,
Fill trap, and the HIF kernel trap.

i i H
Communications | | K?;gel <| /O Related —_hif_hosthif |
E Driver Module Services F
__intf_ﬂag o __kwrite __hif_kernel_trap Q
__putchar_table kread]
Ext. IfF_ __recvbuf_table - HIF Trap E
struct { Handler |
char *front; c
char *rear; = A
char buffer[MAXSIZE]; Services T
: I
} recvbuf; 256 to 383 o
N
Kernel User
Space Space
Figure 6-3. HIF Services Module
Functions
__hif_timer_trap
___hif_spill_trap
__hif_fill_trap

__hif_kernel_trap

Associated Function
__hif_hosthif

Link-Time Constants

TicksPerMillisecond
ClockFrequency

TicksPerMillisecond andClockFrequencyare defined in thénk linker

command file, and specify the target processor’s clock frequency. These values
are used to implement certain operating-system services.

Processor Initialization and Run-Time Services: OSBOOT 6-9

6-10

Description

__hif_timer_trap implements the HIF kernel’s timer interrupt handler. It resets
the interrupt and increments the Timer extension kernel static register,
TimerExt, by 1, and returns from the interrupt.

__hif_spill_trap implements the register spill trap. It sets®@&0 and PC1
registers with the address contained inSp#lAddrReg kernel static register
and returns from the interrupt. The contents ofSp#AddrReg are initialized
at HIF start-up time and can also be initialized using addtiecservice.

__hif_fill_trap implements the register fill trap. It sets the R@@ PC1
registers with the address contained inRiidddrReg kernel static register and
returns from the interrupt. The contents of HiléAddrReg are initialized at

HIF start-up time and can also be initialized using ad¢iftvecservice.

__hif_kernel_trap implements the HIF kernel services that are invoked by the
HIF kernel trap 0x45. (The services provided are documented khoste
Interface (HIF) Specificatiodocument.) HIF service numbers below 256 are
implemented by a separate routinehif _hosthif, which may use the services

of a remote intelligent host to perform the operations. HIF services numbered
between 256 and 383 are implemented in_thikif _kernel_trap routine.

Processor Initialization and Run-Time Services: OSBOOT

Host HIF Services

File
hosthif.s, msgio.s, simtraps.s

Thehosthif.sfile implements the _hif_hostif routine for the Stand-Alone
OSBOOT/Application Model. Theimtraps.sfile implements the _hif hosthif
routine for the OSBOOT/Simulator Model. Thesgio.sfile implements the
__hif_hosthif routine for the OSBOOT/DBG_CORE Model.

Function
__hif_hosthif

Stand-Alone OSBOOT/Application Model

In the Stand-Alone OSBOOT/Application Model, where the application is
linked withosbootand programmed into EPROMS, the host HIF services are
handled by the kernel I/O moduleasboot(kio.s) or by the functions provided
by the application program itself.

OSBOOT/Simulator Model

The simulator intercepts all the host HIF service requests made by the
application program and processes them using its host operating system. It
writes the results back to the simulated memory and registers of the 29K Family
target program and resumes execution of the program.

Processor Initialization and Run-Time Services: OSBOOT 6-11

OSBOOT/DBG_CORE Model and
Stand-Alone
OSBOOT/DBG_CORE/Application Model

This section describes the OSBOOT/DBG_CORE Model or the stand-alone
OSBOOT/DBG_CORE/Application Model. The information in this section
applies to either model equally. In t&&BOOT/DBG_CORE Model shown in
[Figure 6-4 , some of the HIF kernel services are provided with the help of an
external HIF support module montip. Themontip runs on an intelligent host
computer system and communicates withdhg corés message system. It
receives requests from the HIF kernel, services them using the intelligent host
operating system, and sends the results back to the HIF kernel. The HIF kernel
uses the message system ofdhg coreto implement the host HIF services

from O through 255.

When the application program running in user mode issues a HIF system call, a
HIF kernel trap (0x45) is taken. The HIF kernel trap handldvif kernel_trap,
determines from the service number contained in gr121 if it requires the services
of the external HIF support modulerimontip. The service requests that require

the support ofmontip are processed by the hif_hosthif function, defined in
themsgio.sfile.

At the entry point of the _hif _hosthif function:

¢ Global register gr121 contains the HIF service number.

¢ Local registerdr2 through Irdcontain HIF service arguments.

Based on the requested service, the results are returned in register groé (and gr97
if necessary), and the error code is returned in gr121. A logical TRUE
(Ox80000000) is returned in gr121 if the service was completed successfully.
Otherwise, one of the defined HIF error codes is returngdli?l. The program

making the system call must check the value returned in grl121 before using the
results.

6-12 Processor Initialization and Run-Time Services: OSBOOT

__0s_coldstart _ _hif_startup
oS dbg_control(int,0Sconfig_t*) HIE
RESET. —
™| Cold Start Start-up
msg_init() |;|
DBG_CORE =
T — .
A Communications|| Message || Debugger Config A
R Drivers System Core Module p
G A IE
E |
T msg_send(char) __hif_kernel_trap g
I/0 Related T
MiniMON29K Services HIE (l)
c Messf”‘gf. SERVICES N
ommunications
Other HIF
Interfacz_e Services <—|
(UDI-compliant) Kernel |User
Space |Space
H CONVERT
0] Communications || MINMON29K ubI $ALLS MONTIP
Drivers Message 0
S System MONTIP
T \ SERVICES /‘
MiniMON29K e -
Message Host HIF Universal
Communications Support debugger
Interface (UDI-compliant) Module Interface

Figure 6-4.

OSBOOT/DBG_CORE Model and MONTIP

Processor Initialization and Run-Time Services: OSBOOT

6-13

DBG_CORE Message System Interface

6-14

The__hif_hosthif functionof the HIF kernel communicates with the external

HIF module inmontip, which is running on an intelligent host computer system,
using MiniMON29K messages. The message structure and semantics are defined
in theTarget Interface Process: MONTIRanual.The messages are transmitted

and received with the help of the services of the MiniMONZ8Y_core

message system. Thbg_coremessage system provides the following

interface:

msg_rbuf

msg_rbufis the receive buffer of thidbg_coremessage system. Incoming
messages fromnontip are received by the communications interface and placed
into this buffer. The message system is notified when a valid message is
received.

msg_send(msg_t *)

Themsg_send(function can be used to send a MiniMON29K message to
montip. It takes a pointer to the outgoing message as its first argument. It
returns a value of 0 (zero) in gr96 if the message was successfully sent, and a -1
(Oxffffffff) if the message communications channel is busy with a previous
request.

msg_wait_for()

Themsg_wait_for() function can be used to receive an incoming message. This
function waits and returns when a valid message has been received in the
message system’s receive buffies@_rbuf). A -1 (Oxffffffff) is returned to

indicate that the receive buffer has a valid message. However, when operating in
interrupt mode, it returns O (zero) immediately. When the message
communications interface is interrupt-driven, the kernel is interrupted when a
new message arrives.

The HIF kernel provides the following entry point for the message system:

os_V_msg

When a new message arrives, the message system examines the message code
andinterrupts the kernel if it was an OS message. The message system interrupts
by transferring control to thes_V_msgdabel inside the HIF kernel.

Processor Initialization and Run-Time Services: OSBOOT

How the MiniMON29K Messages are Used

The UDI-compliant MiniMONZ29K messages used by dsbootHIF kernel to
communicate wittmontip are described on the pages that follow.

channell and channell_ack message pair
struct channell_msg_t {

INT32 code; /%98 */
INT32 length; /* number of bytes to */
[* follow *
BYTE data; /* 1st data byte of the */
/* message */
%
struct channell_ack_msg_t{
INT32 code; /* 66 *
INT32 length; [* number of bytes to */
/* follow (equals 4) */
INT32 nbytes_written; /* num of bytes written */

%

A channellmessage (code 98) is sent by the HIF kerngldatip when an
application program makes a HIF system call to write to the standard output

device. The message includes the bytes to be printed on the standard output

device.

The kernel then waits forehannell_ackmessage response fronontip
before resuming the application program. Global registerigrét with the
value returned ithannell_ackby montip as the number of bytes successfully
written (thenbytes_written field), and global register gr121 is set to logical
TRUE if the message was successfully sentaatip.

Processor Initialization and Run-Time Services: OSBOOT 6-15

channel2 and channel2_ack message pair
struct channel2_msg_t{

INT32 code; %99 */
INT32 length; /* number of bytes to */
/* follow */
BYTE data; /* 1st data byte of the */
/* message */
h
struct channel2_ack_msg_t{
INT32 code; [*67 */
INT32 length; /* number of bytes to */
[* follow (equals 4) */
INT32 nbytes_written;/* number of bytes */
/* written */
b

A channel2message (code 99) is sent by the HIF kerneldntip when the
application program makes a HIF system call to write to the standard error
device. The message includes the bytes to be printed on the standard error
device. The kernel then waits for ttigannel2_ackmessage response from
montip before resuming the application program. Global register gr96 is set
with the value returned ichannel2_ackby montip as the number of bytes
successfully written (thebytes_written field), and global register gri21 is set
to logical TRUE if the message was successfully semiotatip.

stdin needed and stdin needed ack message pair
struct stdin_needed_msg_t{

INT32 code; /*100 */
INT32 length; /* number of bytes to */
/* follow (equals 4) */
INT32 nbytes_needed; /* maximum num.of bytes */
/* needed */
h
struct stdin_needed_ack_msg_t {
INT32 code; 68 */
INT32 length; /* number of bytes to */
/* follow */
BYTE data; [* 1st data byte of the */
/* message */
h

6-16 Processor Initialization and Run-Time Services: OSBOOT

A stdin neededmessage (code 100) is sent by the HIF kerneldotip when

the application program makes a HIF system call to read from the standard input
device. This message is sent only when the input mode is blocking and
synchronous. The default input mode of the HIF kernel is blocking and
synchronous. The application program can change the input mode using a HIF
ioctl system call.

In synchronous input mode, the HIF kernel sensislim neededmessage to
montip requesting data from the standard input device. It then waitsfdira
needed ackmessage response franontip, which includes the input data from
the standard input device. The kernel copies the input data into the application
program'’s input buffer. Global register gr96 is set to the number of input bytes
received, and global register grliglset to logical TRUE if the message was
successfully sent tmontip.

When operating in asynchronous mode, the HIF kerneitreomdip use the
channelO0andchannel0_ackmessage pair to send characters, possibly
interrupting the running application program. The characters received by the
kernel are returned to the application program when it makes a HIF system call
to read from standard input.

channel0 and channel0_ack message pair
struct channel0_msg_t {

INT32 code; /%65 */
INT32 length; /* number of bytes to */
/* follow (equals 1) */
BYTE data; [* the input byte */
h
struct channel0_ack_msg_t{
INT32 code; 1*97 *
INT32 length; I* number of bytes to */
/* follow (equals 0) */
h

During asynchronous input modapntip sends the characters received from the
standard input device to the HIF kernel usingdh@nnelOmessage. A
channelOmessage is used to send one input byte dbgecoremessage system
interrupts the HIF kernel whenchannelOmessage is received. The HIF kernel
stores the input data byte and saves it in a standard input device buffer. The HIF
kernel sends ehannel0_ackmessage tmontip to acknowledge the receipt,

and resumes the execution of the interrupted application program.

Processor Initialization and Run-Time Services: OSBOOT 6-17

6-18

stdin mode and stdin mode ack message pair
struct stdin_mode_msg_t {

INT32 code; /*101 */
INT32 length; I* number of bytesto */
/* follow (equals 4) */
INT32 input_mode; /* requested input mode */
h
struct stdin_mode_ack_msg_t {
INT32 code; *69 */
INT32 length; /* number of bytes to */
[* follow */
INT32 previous_mode; /* returns the previous */
[* input mode */
h

The HIF kernel sends tlsdin modemessage (code 101)rwontip to specify

the input mode or a change in the input mode for the standard input device. The
requested input mode is coded intoithgut_modefield of the message. It then
walits for astdin mode ackmessage response franontip, which includes the
previous mode of the standard input device. The HIF kernel saves the mode
values and resumes the execution of the application progratdirAmode

message is used when the application program issuesiadtliBystem call to
change the standard input mode.

Processor Initialization and Run-Time Services: OSBOOT

HIF call and HIF call return message pair
struct hif_call_msg_t{

INT32 code; %96 */
INT32 length; [* number of bytesto */

/* follow (equals 16) */
INT32 service_number;/* HIF service number */
INT32 Ir2; /* HIF service 1st input */

[* argument in Ir2 */
INT32 Ir3; /* HIF service 2nd input */

/* argument in Ir3 */
INT32 Ird; [* HIF service third */

/* input argument in Ir4 */

h
struct hif_call_rtn_msg_t {

INT32 code; /* 64 *
INT32 length; /* number of bytesto */

/* follow (equals 16) */
INT32 service_number;/* HIF service number */
INT32 grizi; /* HIF service completion*/

/*code(TRUE or errno) */
INT32 groe; /* HIF service 1st return*/

/* value */
INT32 grov; /* HIF service second */

/* return value */

k

When the application program issues a HIF system call to perform an 1/O
operation on the file system of the host computer runmioigtip, the HIF

kernel sends HIIF call message (code 96) taontip. The message includes the
HIF service number and up to three input arguments. The HIF services currently
defined do not take more than three input arguments. The kernel then waits for a
HIF call return message response franontip before resuming the application
program. Depending on the HIF service requesteshtip may invoke the

dbg_core which interrupts the kernel waiting for thigF call return message.
montip sends a GO message to switch the context dlogn coreto the

interrupted kernel. It then sends the results of the HIF service itiEheall

return message. The kernel sets global regmpte21to the completion code

sent bymontip. Depending on the HIF service requested (determined from the
service_numberfield), the kernel sets registegg@6and gr9with the values
returned bymontip.

Processor Initialization and Run-Time Services: OSBOOT 6-19

Implementation of os_V_msg Message Interrupt Handler

When thedbg_coremessage system receives a message for the HIF kernel, it
interrupts the kernel by transferring control atdseV_msdabel.os_V_msgis
avirtual interrupt vector and is defined in thesgio.sfile. The following code
sample shows thes_V_msginterrupt handler:

0s_V_msg:
pushreg gr96, msg ; PUSH gro6
; check for Channel0 message (asynchronous)
const gr96, _msg_rbuf
consth gr96, _msg_rbuf
load 0,0, gr96, gro6 ; get message code
cpeq gr96, gr96,CHANNELO _MSGCODE
jmpt gr96, process_channel0_msg ; restores
nop ; gr96 and msp

; not a channel0 message (synchronous message)
const gr96, __hif msgwaiting ; set the flag
; polled
consth gr96, __hif_msgwaiting ; by the kernel
; while waiting.
store 0, 0, gr96, gr96 ; Set to non-zero
; value
popreg gr96, msp ; POP gro6
iret

The HIF kernel waits by polling a flag (memory location) hif msgwaiting It

loops and waits as long as the flag is set to zero. When a message is received,
this flag is set to a non-zero value. The kernel exits the wait loop and processes
the incoming message. As the message systedimjotoreandmontip

communicate using synchronous message pairs, the kernel assumes the new
message received to be in response for its request and returns to the application
program.

6-20 Processor Initialization and Run-Time Services: OSBOOT

Implementation of Message Communications in HIF
Kernel

The HIF kernel uses macros to build and send UDI-compliant MiniMON29K
messages using tlkibg_coremessage system. TBeaildHIFCallMsg macro
shown in the code sample below builddl& Call message (code 96) in the
buffer, bufaddr.

.macro BuildHIFCallMsg, bufaddr, tmp1, tmp2
const tmpl, bufaddr

consth tmpl, bufaddr

const tmp2, HIF_CALL_MSGCODE

store 0, 0, tmp2, tmpl ; msg code
add tmp1l, tmpl, 4

const tmp2, HIF_CALL_MSGLEN

store 0, 0, tmp2, tmpl ; msg len
add tmp1l, tmpl, 4

store 0, 0, grl21, tmpl ; service number
add tmpl, tmpl, 4

store 0,0, Ir2, tmpl r2

add tmp1l, tmpl, 4

store 0, 0, Ir3, tmpl ; Ir3

add tmp1l, tmpl, 4

store 0, 0, Ir4, tmp1l ; Ird

.endm

The input parametetspl andtmp?2 to the macro are the temporary registers to
use to build the message. The HIF kernel uses the macro to IbliFdGall
message in its message bufferhif_msgbuf as follows:

BuildHIFCallMsg __hif _msgbuf,gr96,gro97

The kernel saves global registers gr96 and gr97 before invoking the macro.

Processor Initialization and Run-Time Services: OSBOOT 6-21

Another macroSendMessageToMontipis defined to send the message built in
__hif_msgbufto montip. The code below shows the definition of the
SendMessageToMontipmacro.

.macro SendMessageToMontip, bufaddr
const Ir2, bufaddr
$1:
call Ir0, _msg_send ; function of dbg_core
; message system
consth [Ir2, bufadd
cpeq groe, gr96, 0 ; successfully sent?

jmpf gr96, $1 ; no, try again.
const Ir2, bufaddr
.endm

Before invoking the macro to send a message that has been built with
BuildHIFCallMsg , the local registers Ir0, Irand Ir2 must be saved, and
restored later.

The example below illustrates the implementation of a HIF service routine that
uses &lIF Call message.

pushreg gr96, msp ; PUSH gro6
pushreg gr97, msp ; PUSH gr96

BuildHIFCallMsg __hif_msgbuf, gr96, gro7

pushreg Ir0, msp ; PUSH IrO
pushreg Irl, msp ; PUSH Ir1
pushreg Ir2, msp : PUSH Ir2

SendMessageToMontip __hif_msgbuf

popreg Ir2, msp ; POP Ir2

popreg Irl, msp ; POP Ir1

popreg Ir0, msp ; POP IrO

jmp _wait_for_ack ;jump to the wait routine
nop

As shown, &HIF Call message is built in the HIF message buffer,
__hif_msgbuf and sent tonontip using thedbg_coremessage system. After
successfully sending the message, it waits for the response message from
montip in the_wait_for_ack routine. The code sample on the following page
shows the wait_for_ack routine, which waits for a response fromontip.

6-22 Processor Initialization and Run-Time Services: OSBOOT

_wait_for_ack:

SaveFZState groe, gro7
mtsrim che, 0
pushreg Ir0, msp ; PUSH IrO
pushreg Irl, msp ; PUSH Ir1
const gr96, _msg_wait_for ; returns immediately
; interrupt mode
consth gr96, _msg_wait_for ; waits for message,
; polled mode
calli Ir0, gro6
nop
popreg Irl, msp ; POP Ir1
popreg Ir0, msp ; POP IrO
jmpt gr96, process_msg ; did _msg_wait_for
nop ; return a message
; enable interrupts
mfsr gro6, CPS
andn gr96, gr96, (DI|DA)
mtsr CPS, gro6
; wait for a message, poll flag
const gr96, __hif_msgwaiting
$6:
consth gr96, __hif_msgwaiting
load 0, 0, gr96, gro6 ; read flag
cpeq gro6, gro6, 0 ; compare with zero
jmpt groe, $6 ; yes, no message, loop
const gro6, __hif_msgwaiting

; message received
process_msg:
; clear __hif_msgwaiting flag
const gr96, __hif_msgwaiting
consth gr96, __hif_msgwaiting
const gr97,0
store 0, 0, gr97, gro6 ; clear flag

; code to process message follows

; the handlers restore Freeze state, gr96, gr97
; and memory stack

Processor Initialization and Run-Time Services: OSBOOT

6-23

6-24

The _wait_for_ack routine first calls the message system&y_wait_for()
function to receive a message. In polled modentbg wait_forfunction waits
until a valid message is received in the buffesg_rbuf, and returns a -1 in
gro6. In interrupt mode, thasg_wait_for() function returns immediately with
gro6 set to 0 (zero). The return value froreg_wait_for() is checked by the
_wait_for_ackroutine. If a -1 (OXffffff) is returned, then that indicates a valid
message in the receive buffer, and thwait_for_ack routine callgprocess_msg
to process the message received.

If a O (zero) is returned, then that indicates that the message interface interrupt
driver, and wait_for_ack routine waits for a message interrupt. This is done by
polling the__hif msgwaitingflag. When a message interrupt occurs, the
_wait_for_ack routine stops polling the flag and entersphecess_msg

routine.

Theprocess_msgoutine processes the incoming message by extracting the
information sent bynontip into gr96 and gr97, then restores the freeze mode
state earlier saved by thevait_for_ack routine, and repairs the memory stack
altered earlier. The kernel then resumes the execution of the application
program.

Processor Initialization and Run-Time Services: OSBOOT

Chapter 7 &

Building OSBOOT or
OSBOOT/DBG_CORE

AMD's osbootsoftware contains the bootstrap code for the 29K Family of
microprocessors, the HIF kernel, and the instruction emulation routines for
certain arithmetic instructions of the 29K Family that may cause a trap.

The architectural simulatosi(n29 and the instruction set simulat@sstip) use
osbootas the ROM bootstrap code. The following table gives the names of the
osbootbinary files and their intended target processor. The simulators find the
appropriateosbootto use based upon the command-line option that specifies
which processor to simulate.

Table 7-1. OSBOOT for Simulators

Filename Target Processor
0sb00x Am29000 and Am29005
0sb03x Am29030 and Am29035
0sb040 Am29040

0sb050 Am29050

0sb20x Am29200 and Am29205
0sb24x Am29240 and Am29243
0sb245 Am29245

osbootis also ported to operate with the MiniMON29K debugger core,
dbg_core The linked objects of OSBOOT/DBG_CORE can be built for
different target platforms, and can be programmed into EPROMS to provide an
environment to develop, debug, and execute embedded application programs.

The batch files for MS-DOS systems and make files for UNIX systems to build
osbootanddbg_coreare kept in th@sbootdirectory.

Processor Initialization and Run-Time Services: OSBOOT 7-1

MS-DOS Batch Files
makeosb.bat To build osboot
makemon.bat To buildosboot/dbg_core

UNIX Make Files

makefile.os To buildosboot
makefile.mon To buildosboot/dbg_core

Theosbootdirectory also contains the linker command files, each of which

possess a base name corresponding to the target system for which it is intended.

The linker command files’ extensions have the following meanings:
¢ .inc files load object modules to build a relocatadsboot

¢ .monfiles load object modules to build relocatabbootfor linking with
the MiniMON29K debugger corelpg_core

¢ .Ink files are used to produce an absolute imagesbotor
osboot/dbg_core

The sources dafsbootare contained in the two subdirectoriesot andtraps,
under theosbootdirectory (se Figure 7-1 on page 7-3).

Theminimon directory, which is at the same level asdbbootdirectory,
contains the sources of the MiniMONZ29K debugger atitg, core Thetarget
subdirectory under th@inimon directory contains the assembler and C
program source files.

This chapter describes how to budsbootin a number of different
configurations. Table 7-2 lists the various configurations described in each
section, along with the page number where their descriptions are found.

Table 7-2. Sample OSBOOT Configurations

This OSBOOT Configuration... Is Described Here...
|Building OSBOOT for Simulatofs page 7-4

Building OSBOOT/DBG_CORE for Targ
Hardware Platforms

[Building OSBOOT for Stand—Alone Systegms page 7-14

1%
—_

page 7-8

Processor Initialization and Run-Time Services: OSBOOT

uoneziueblio oji4 pue A1010911d 1009SO ‘T-/ 8inbiH

oc_.mvN.E_w 2'wawazIs U'sioloan s'myosoes
AIXPTWS oo ot X Wiuwiks s yoouol
AU XOZUNS \ Ay y'siers suesiBal
AU 0S0WIS S o yuid) y-opuiud s"putooud
qso-awpeal AUI'XEOWIS oc_.g&wu o'gusel werep smygaad
SUIXOOWIS ou J°zeysey s'myaol d
. . ouI'o06¢es 2'sINo s'olbsw
o UOW'gARIONEL MUI'BABIOIR} oo . s’iowsw
wm_ﬂﬁwlm uow @Hﬂ:b qu| @HUM% 2UI'00262S SMygAIA SMUNBZOD)
s nwipy 4 uourn. urni ouI'0E062es ye'sdes s desen s'Mmyoozel
INWpy_n uowrgals Jurgais ouraolwoid yerauorepis s'sdenqp S'M e
s desren S'AIp} 1} uow'070629s NUI'0¥0629S ourgead ye'smels Sxpzan ;omm.w_ |
s'ppe} 1 uowrgyeezes Ul'0vZeces oulwonau Ue’0€g82s snuIsAs s mo.v_
oyuedy S'doxe n uowr'oQzezes ulroozeces 2UINGZYo| ye'00z29s SMUgaIS m.&ww _;
sinwy - SPUP i Uourpeogees AUl 0g06cES our00Z62e ye-joowol s'dniels w.,,_c
snwp; SInwpn uowaowoid jupaoiwoid U 080628l e iaisiBal ssdenus sose amwc
s Inwp S'yAIP_N uow-gaod yur-gsod) ye'soloew S'GyZWIS w.wamh cwm
S'NIpp_1} uow-wonsu MIRVET 6200 ye nul S i w.icomon

ypep n S'PPeEp_4 uow629o| AUIH62Za9] ¢ EYNES] . y .
subsTy Sdwod n uowrQoz6Zel YuIroozezel ouroen6ege . :m.wu Mﬁmmmwwm SMUECYd
sudsad™ny SWAUS_ N jegodeew | | uowrogoezel MUr0E06ZEI TeqUOWSNewW ye-dnxiyd; SO0zo0s . aeloE0dS
SApw T S'SSEP TN apyoew UOWr0EQZe MUIOE0ZS Jeqigsoaxew ye'sarenba mloeres o aspiv
UowWH6Zo JAUPIEZAD UoWIBlyeeL Ho0< ssine

\wamhu uowroeo6cae JUI'0€06209 SO'3|axew nooq
/100gSO

uoneziuebiQ 8|4 pue A1010aIQ

7-3

Processor Initialization and Run-Time Services: OSBOOT

Building OSBOOT for Simulators

Each member of the 29K Family of processors uses a specific versishomft

as its bootstrap code. AMD provides a set of utilities that lets you build different
versions obsbootcorresponding to different members of the 29K Family of
processors. Depending on the value of a command-line parameter, versions of
osbootcan be built either separately or all at once. This section describes how to
build osbootfor simulators on MS-DOS and UNIX systems.

Location of OSBOOT Files Built for Simulators

Versions ofosbootbuilt for simulators are stored by the build program in a
subdirectory namesim under the paremsbootdirectory. If thesim
subdirectory does not already exist, the build program creates it. Figure 7-1
illustrates this directory structure. In this example sinesubdirectory contains
each possible version ogbootthat can be built for simulators.

osboot/

sim/ boot/ traps/

0sb00x
0sb03x
0sb050
0sh20x
osb24x
0sb245

Figure 7-1. Subdirectory for Simulator Versions of OSBOOT

Linker Command Files Used to Build OSBOOT

A different linker command file is used to buddbootdepending on the target
processor typE. Table 7-3 lists each linker command file with its corresponding
osbootfile and target processor type.

7-4 Processor Initialization and Run-Time Services: OSBOOT

Table 7-3. Linker Command Files for Simulator Versions of

OSBOOT

Linker Command File OSBOOT File Target Processor Type

sim00x.Ink 0sb00x Am29000, Am29005

sim03x.Ink 0sb03x Am29030, Am29035, Am29040

sim050.Ink 0sb050 Am29050

sim20x.Ink 0sb20x Am29200, Am29205

sim24x.Ink o0sb24x, osb25 Am29240, Am29243, Am29245
MS-DOS

The batch file to builddsbooton an MS-DOS system isakeosb.bat It is
invoked in theosboot\directory by specifying two arguments on the command
line. The first argument must be theard-nameand the second argument must
be theprocessor-nameThe linker command file corresponding to the
processor-namspecified is used for linking, as summarized in Table 7-3.

Theboard-nameo use when buildingsbootfor simulators isim.
Syntax: makeoskboard-name processor-name

where:
board-name
Must be:
sim For architectural and instruction set simulators

processor-name

Must be one of the following:

am2900x For Am29000 and Am29005 processors

am2903x For Am29030, Am29035, and Am29040 processors

am29050 For Am29050 processor

am2920x For Am29200 and Am29205 microcontrollers

am?2924x For Am29240, Am29243, and Am29245
microcontrollers

all To build a version ofsbootfor all members of the
29K Family

Processor Initialization and Run-Time Services: OSBOOT 7-5

Example 1
To build osbootsimulator files for all members of the 29K Family on an
MS-DOS system, do the following:

1. Use thecd (change directory) command to madgbootthe current
directory.

2. Type the following command:
makeosb sim all

A version ofosbootfor simulators is built for each different target processor and

placed in thesim directory (as if Figure 7-1 on page 7-4).

Example 2
Similarly, to buildosbootsimulator files for the Am29200 or Am29205 target
processordsb20y, do the following:

1. Use thecd (change directory) command to maidsbootthe current
directory.

2. Type the following command:
makeosb sim am2920x

UNIX

7-6

The make file to buildsbootunder UNIX systems isakefile.os It is invoked

in theosboot/directory by defining two variables on the command Iprec
andboard. The order of these definitions does not matter. The linker command
files corresponding to the definition of theoc variable are used during linking.

Theboard-nameo specify for simulators ism.

Syntax: make—f makefile.odoard-board-name
proG=processor-name

where:
board-name
Must be:
sim For architectural and instruction set simulators

Processor Initialization and Run-Time Services: OSBOOT

processor-name

Must be one of the following:

am2900x For Am29000 and Am29005 processors

am2903x For Am29030 and Am29035 processors

am29040 For Am29040 processors

am29050 For Am29050 processors

am2920x For Am29200 and Am29205 microcontrollers

am?2924x For Am29240, Am29243, and Am29245
microcontrollers

all To build a version ofsbootfor all members of the
29K Family

Example 1
To build osboot/simulator files for all members of the 29K Family on a UNIX
system, do the following:

1. Use theed (change directory) command to malsbootthe current
directory.

2. Type the following command:
make -f makefile.os board=sim proc=all

A version ofosbootfor simulators is built for each different target processor and

placed in thesim/ directory (as i-1 on page 7-4).

Example 2
To build osboofsimulator files for the Am29240 target processosb4xand
o0sb249, do the following:

1. Use theed (change directory) command to malgbootthe current
directory.

2. Type the following command:
make —f makefile.os board=sim proc=am2924x

Processor Initialization and Run-Time Services: OSBOOT 7-7

Building OSBOOT/DBG_CORE for Target
Hardware Platforms

AMD provides a set of utilities that lets you build different versions of
osbootdbg_corefor use as the control program for different members of the
29K Family of processors. This section describes the procedures to build
osbootdbg_coreon MS-DOS and UNIX systems.

Building OSBOOT/DBG_CORE—The General Procedure

The general build procedure fosboot/dbg_cords the same for all platforms.
When creatingsboot/dbg_coreyou specify two command-line arguments. The
first argument specifies the target for which this versiomsbbotdbg_core

will be created. The second argument specifies the 29K Family processor for
which this version obsboofdbg_corewill be created.

The board name defined on the command line indicates the linker command file
to be invoked at link time. Linker command files have the format
board_namenk. The build program uses the board-name specified on the
command line to establish naming conventions for the created files (and the
directories in which they are stored). When the build command is successfully
executed, the resultirmsboot/dbg_cordfile is namedoard_names and is

stored in a directory namdmbard_nameFor example, specifying the
board-namea2920n the command line causes the linker command file
$a29200.Inkto be invoked at link time. In turn, the resultmgboot/dbg_core

file, sa29200.0gsis stored in thea29200irectory. Figure 7-2 illustrates these
naming conventions. Note that the illustration uses UNIX notation to indicate
directories (forward slashes). The directory structure for an MS-DOS system is
the same, but would be indicated with leading backward slashes (V).

osboot/

sa29200/ $a29200.Ink boot/ traps/
sa29200.0s

Figure 7-2. Naming Conventions for OSBOOT/DBG_CORE Files

7-8 Processor Initialization and Run-Time Services: OSBOOT

Using OSBOOT/DBG_CORE
Once you have builisboot/dbg_coreyou can use it as follows:

e For plug-in targets, such as the EB29K PC plug-in board or the YARC Rev 8
PC plug-in boardgsboot/dbg_cordfiles are downloaded and run on the
writable ROM space of the target.

e For stand-alone targets (such as the EZ030 or SE29040 stand-alone boards),
osbhoot/dbg_cordfiles can be converted to a hexadecimal file that is then
programmed to ROM. For example, the command below usesffizdex
program to convert the text section of tsboot/dbg_corefile sa29200.0%0
the Motorola S-records filea29200.hex

coff2hex —t —c t sa29200.0s

The hexadecimal output fier29200.hexan be used with a PROM
programmer to create a MiniMON29K target PROM.

MS-DOS

The batch file used to builnsboot/dbg_coreon an MS-DOS system is
makemon.bat It is invoked in thesbootdirectory by specifying two
arguments on the invocation line. The first argument must deotird-name
and the second argument must bepttoeessor-nameThe linker command file
corresponding to thieoard-namespecified is used for linking.

The third argument, when specifigdyst follow the correct order. The third
argument can be used to specify the baud rate to use for serial communications.

Syntax: makemorboard-name processor-narf#600 | 38400]

Processor Initialization and Run-Time Services: OSBOOT 7-9

7-10

where:

board-name
Must be one of the following:
eb29k For AMD’s EB29K PC plug-in board
yarcrev8 For the YARC Rev 8 PC plug-in board
Icb29k For the YARC ATM (Sprinter) card
€b29030 For AMD’s EB29030 PC plug-in board

ez030 For AMD’s EZ030 stand-alone board

sa29200 For AMD’s SA29200 and SA29205 stand-alone
boards

steb For STEP’s STEB29K board

sa29240 For AMD’s SE29240 stand-alone board
se29040 For AMD’s SE29040 stand-alone board

processor-name
Must be one of the following:
am2900x For the Am29000 and Am29005 processors
am2903x For the Am29030 and Am29035 processors
am29040 For the Am29040 microprocessor
am29050 For the Am29050 processor
am2920x For the Am29200 and Am29205 microcontrollers
am2924x For Am29240, Am29243, and Am29245

microcontrollers

9600 | 38400
Must be the third argument, if specified. It specifies the baud rate
to be used for serial communications. The default is 9600.

Example 1
To buildosboot/dbg_coreon a PC host for the SA29200 stand-alone target
board, change directories to thebootdirectory and enter:

makemon sa29200 am2920x 38400

This builds a COFF image ogbootanddbg_corefor the SA29200 board and
stores it in a file calleda29200.0én the\sa2920directory. The subdirectory
\sa29200s created if it does not exist. The basename used for the final COFF
image file corresponds to the first argument given, which is the target board’s
name,sa29200

The third argument, 38400, specifies the baud rate to use for serial

communications. The baud rate specified here is 38400, which overrides the
default baud rate of 9600.

Processor Initialization and Run-Time Services: OSBOOT

The COFF imagesa29200\sa29200.psan be used to program EPROMs for
thesa2920Moard.

Example 2
To buildosboot/dbg_coreon a PC host for the AMD EB29030 plug-in board,
change directories to tlisbootdirectory and enter:

makemon eb29030 am2903x

This builds a COFF image oébootanddbg_corefor the EB29030 board and
stores it in a file calledb29030.0$n the\eb29030directory. The subdirectory
\eb29030is created if it does not exist. The name used for the final COFF image
file corresponds to the target board’s name, EB29030.

Because the EB29030 board is a plug-in target, no baud rate needs to be
specified. Before debugging begins, the outputeii29030.0$s downloaded
and run on the target.

UNIX

The make file used to build tlesboot/dbg_coreis makefile.mon. It is invoked

by defining two variables on the command lipeoc andboard. The order of

these definitions does not matter. The linker command files corresponding to the
definition of theboard variable are used during linking.

Syntax: make -fmakefile.motoard=board-name
proc=processor-name
[baudrate 38400 | baudrate=9600]

Processor Initialization and Run-Time Services: OSBOOT 7-11

7-12

where:

board-name
Must be one of the following:
eb29k For AMD’s EB29K PC plug-in board
yarcrev8 For the YARC Rev 8 PC plug-in board
Icb29k For the YARC ATM (Sprinter) card
€b29030 For AMD’s EB29030 PC plug-in board

ez030 For AMD’s EZ030 stand-alone board

sa29200 For AMD’s SA29200 and SA29205 stand-alone
boards

steb For STEP’s STEB29K board

sa29240 For AMD’s SE29240 stand-alone board
se29040 For AMD’s SE29040 stand-alone board

processor-name
Must be one of the following:
am2900x For Am29000 and Am29005 processor
am2903x For Am29030 and Am29035 processor
am29040 For Am29040 processor
am29050 For Am29050 processor
am2920x For Am29200 and Am29205 microcontrollers
am2924x For Am29240, Am29243, and Am29245

microcontrollers

baudrate=38400 | baudrate = 9600
Can be used to change the default baud rate to be used for serial
communications. The default value is 9600.

Example 1
To buildosboot/dbg_coreon a UNIX host for an SA29200 stand-alone target
board, change directories to th&bootdirectory, and enter:

make -f makefile.mon proc=am2920x board=sa29200 baudrate=9600

This builds a COFF image oéboot/dbg_coreand stores it in thea29200.0s

file. It resides in aisa292004directory, which is created if it does not exist.

Notice that the final image'’s filename corresponds to the board specified on the
command line. The baud rate is explicitly specified as 9600.

Next, you can use thmff2hexutility to convert selected sections (usually text
sections) of the COFF file to a hex file format used to program EPROMSs:

coff2hex -m -c t sa29200.0s

Processor Initialization and Run-Time Services: OSBOOT

Thesa29200.heile contains the Motorola S-records for the text sections of
s$a29200.o0émage to program EPROMSs.

Program EPROMSs on the SA29200 board w#R9200.hexand turn the power
on.

Example 2
To build osboot/dbg_coreon a UNIX host for the AMD EB29030 plug-in
board, change directories to th&bootdirectory and enter:

make -f makefile.mon board=eb29030 proc=am2903x

This builds a COFF image oébootanddbg_corefor the EB29030 board and
stores it in a file calledb29030.0$n theeb29030 directory. The subdirectory
eb29030/s created if it does not exist. The name of the final COFF image file
corresponds to the target board’s name, EB29030.

Because the EB29030 board is a plug-in target, no baud rate needs to be

specified. Before debugging begins, €29030.o0%utput file is downloaded
and run on the target.

Processor Initialization and Run-Time Services: OSBOOT 7-13

Building OSBOOT for Stand-Alone Systems

This section provides instructions for buildiogbootfor stand-alone systems.
This includes both the stand-alomsboot/applicationmodel and the
stand-alon®sboot/dbg_core/applicatiormodel.

Building osbootfor stand-alone systems consists of linking a relocatable version
of eitherosbootor osboot/dbg_coreto a relocatable application program. Thus,
before you can build the stand-alone system, you first need to build a relocatable
version of the application program and eitbsibootor osboot/dbg_core

This section is organized as follows:
¢ Building a Relocatable Version of OSBOOT
¢ Building a Relocatable Version of OSBOOT/DBG_CORE

¢ Building a Stand-Alone System — This section describes how to build a
stand-alone system using the relocatable versiostmfotor
osboot/dbg_corethat was built in the first two sections. The procedure is the
same for either.

The “Examples” appendix provides detailed examples of how t@mpbadotto
some sample stand-alone systems.

Building a Relocatable Version of OSBOOT

Building a relocatable version ofbootis almost exactly the same as building a
version ofosbootfor simulators. You use the same DOS batch file
(makeosb.baj or the same UNIX make filenakefile.09, and use the same
command-line arguments to specify botpracessor-namand aboard-name

for the version obsbootto be built. The concepts of linker command files and
file naming conventions are exactly the same as discussed in earlier sections.

The difference between building a relocatable versiasbbotand any other
version ofosbootis that a-DSTANDALONE argument must be specified at the
end of the command line. TR®OSTANDALONE argument tells the build
program to create an incrementally linkeesbootmodule board-nameo. This
module can be linked with an application to produce a stand-alone system.

7-14 Processor Initialization and Run-Time Services: OSBOOT

Build Syntax for MS-DOS and UNIX

The batch file used to builnsbooton an MS-DOS system isakeosb.bat The
make file used to build osboot on a UNIX systemmékefile.os Both are

invoked in theosboot\directory by specifying two arguments on the invocation
line.

DOS Syntax:
makeosthoard-name processor-namBSTANDALONE

For MS-DOS, the first argument must be bleard-nameand the second
argument must be throcessor-name

UNIX Syntax:
make —f makefile.os boardeard-nameprocsprocessor-name
standalone=—DSTANDALONE

where:
board-name
Must be one of the following:
ez030 For AMD’s EZ030 stand-alone board
sa29200 For AMD’s SA29200 and SA29205 stand-alone
boards
steb For STEP’s STEB29K board

sa29240 For AMD’s SE29240 stand-alone board
se29040 For AMD’s SE29040 stand-alone board

processor-name
Must be one of the following:
am2900x For the Am29000 and Am29005 processors
am2903x For the Am29030 and Am29035 processors
am29040 For the Am29040 microprocessor
am29050 For the Am29050 processor
am2920x For the Am29200 and Am29205 microcontrollers
am2924x For Am29240, Am29243, and Am29245

microcontrollers

Example 1
To build a relocatable version og§booton a PC host for the SA29200
stand-alone target board, change directories togheotdirectory and enter:

makeosb sa29200 am2920x —-DSTANDALONE

Themakeosbprogram builds the relocataldebootfile sa29200.@nd stores it
in the\sa29200directory.

Processor Initialization and Run-Time Services: OSBOOT 7-15

Example 2
To build a relocatable version o§booton a UNIX host for the AMD EZ030
board, change directories to thebootdirectory and enter:

make —f makefile.os board=ez030 proc=am2903x standalone=—DSTANDALONE

Themakefile program builds the relocataldsbootfile ez030.cand stores it in
the £z030directory.

Building a Relocatable Version of OSBOOT/DBG_CORE

7-16

Building a relocatable version osboot/dbg_cores almost exactly the same as
building a version obsboot/dbg_cordor a target hardware platform. You use
the same DOS batch filemgkemon.ba) or the same UNIX make file
(makefile.mon), and use the same command-line arguments to specify both a
processor namand aboard nameor the version obsboot/dbg_coreto be

built. The concepts of linker command files and file naming conventions are
exactly the same as discussed in earlier sections.

The difference between building a relocatable versiasbbot/dbg_coreand
any other version afsboot/dbg_cores that a-DSTANDALONE argument
must be specified at the end of the command line-D®TANDALONE
argument tells the build program to create an incrementally linked
osboot/dbg_coremodule,osbdbg.o This module can be linked with an
application to produce a stand-alone system.

Build Syntax for MS-DOS and UNIX

The batch file used to builusboot/dbg_coreon an MS-DOS system is
makemon.bat The make file used to build osboot on a UNIX system is
makefile.mon Both are invoked in thesboot\directory by specifying the
arguments summarized below on the command-line.

DOS Syntax:
makemorboard-name processor-nan@s00 | 38400] -DSTANDALONE

For MS-DOS, the order of the arguments must not change. The first argument
must be thdoard-namethe second argument must be phecessor-namehe

baud rate must be the third argument, aD&TANDALONE must be the last
argument

Processor Initialization and Run-Time Services: OSBOOT

UNIX Syntax:
make —f makefile.os boartbeard-nameprocgprocessor-name
[baudrate=38400 | baudrate=9600] standalone=—DSTANDALONE

On a UNIX system, the order of the arguments is not relevant. The variables
proc, board, andstandalonemust be defined. If the value bdudrate is not
defined, the default value of 9600 is used.

NOTE: The build command for both MS-DOS and UNIX may cause the
following error message, which can safely be ignored:

ERROR: (368) Unresolved external:

start
where:
board-name
Must be one of the following:
ez030 For AMD’s EZ030 stand-alone board
sa29200 For AMD’s SA29200 and SA29205 stand-alone
boards
steb For STEP’s STEB29K board

sa29240 For AMD’s SE29240 stand-alone board
se29040 For AMD’s SE29040 stand-alone board

processor-name
Must be one of the following:
am2900x For the Am29000 and Am29005 processors
am2903x For the Am29030 and Am29035 processors
am29040 For the Am29040 microprocessor
am29050 For the Am29050 processor
am2920x For the Am29200 and Am29205 microcontrollers
am2924x For Am29240, Am29243, and Am29245

microcontrollers

9600 | 38400
Specifies the baud rate for serial communications.

Example 1
To build a relocatable version o$boot/dbg_coreon a PC host for the SA29200
stand-alone target board, change directories tosheotdirectory and enter:

makemon sa29200 am2920x 9600 —-DSTANDALONE

Processor Initialization and Run-Time Services: OSBOOT 7-17

Themakeosbprogram builds the relocataldeboot/dbg_cordfile osdbg.oand
stores it in thésa2920directory. The baud rate for serial communications is set
to 9600.

Example 2
To build a relocatable version o$boot/dbg_coreon a UNIX host for the AMD
EZ030 board, change directories to dsbootdirectory and enter:

make —f makefile.mon board=ez030 proc=am2903x
baudrate=38400 standalone=—DSTANDALONE

Themakefile program builds the relocataldsboot/dbg_cordfile osdbg.oand
stores it in thegz030directory. The baud rate for serial communications is set to
38400.

Building a Stand-Alone System

7-18

The UNIX make files and MS-DOS batch files provided can be used to build a
relocatable object module ogboot which can be linked with your application
program modules to produce a stand-alone system ready for programming
EPROMSs. The source files contain conditional code which is included when the
manifestSTANDALONE is defined on the command-line when compiling or
assembling. The code is conditionally included for convenience. The code
assumes no external loader, and therefore performs the following functions:

1. Zeroes out the BSS section and initializes data regions.

2. Assumes thstart symbol to be defined as the entry point of the application
program.

3. Executes the program in user mode without any translation.
4. Uses the assembler ma@sizeofto determine the size of the data region
and sets up the heap base beyond that.

NOTE: Holes in the executable image could result in incorrect computation of
the end address of the data region.

Most of the code specific to stand-alone system development is confined to the

stdalone.ahheader file, which is included hif.s. In other places, code is
conditionally included using th&def STANDALONE construction.

Processor Initialization and Run-Time Services: OSBOOT

The procedure to develop stand-alone systems involves the following steps:

1. Using the instructions in the previous two sections, build a relocatable
version of eithebsbootor osboot/dbg_core This procedure uses the
example of a relocatabtesbootmodule built for the EZ030 target.
Accordingly, the name of the relocatabkbootfile is ez030.0In this
example, the working directory issboot

2. Compile your application program and make a relocatable object. For this
example, the object is nameagpl.o.

3. Edit the linker command file provided for your target to suit your particular
target application. Linker command files are named in the format
board-namdnk. So, for this example, the linker command file2©30.Ink
You may need to add different data sections to the ORDER statement
ordering the data sections. Otherwise, it should not require major editing for
already known targets.

NOTE: If you want to use theOAD command to load object modules in
the linker command file, you must specify those objects before the public
definitions of the symbols contained in the default linker command file
provided by AMD.

4. First Link: Using the edited linker command file for your target (in this
example, thez030.Inklinker command file), link thesbootmodule and
your application program module using the compiler driver as shown below:

hc29 -cmdez030.Ink ez030/ez030.0 appl.o -0 appl.out
whereappl.out contains the output.

5. Run theomcoff utility to produce th&k AMInit routine to initialize data
sections. In this example, for an EZ030 target, enter:

romcoff -t -r appl.out raminit.o

whereraminit.o is the relocatable output object file containing the
initialization routine. Ther option specifies that ROM space is readable; the
—t option specifies to ignore text sections of &pel.out file.

raminit.o contains routines that initialize DRAM and copy selected
information from ROM to DRAM at run time. In most cases, you will elect
to copy data sections (whose contents may be written during program
execution) from ROM to DRAM before the program executes.

Processor Initialization and Run-Time Services: OSBOOT 7-19

7-20

6. Second Link: Using the same edited linker command file generated for step

4 (above), relink thesbootand application modules with the newly created
raminit.o module. In this example, for an EZ030 target, enter:

hc29 -cmdez030.Ink ez030.0 appl.o raminit.o -0 appl.rom

whereappl.rom is the file containing the image. This linkage produces the
final COFF file.

NOTE: If you are loading the object modules in the linker command file,
you may need to add thaminit.o object before creating the above link.

. Use thecoff2hexutility to convert selected sections (usually text sections) of

the COFF file to a hex file format used to program EPROMs:

coff2hex -m -c t appl.rom

Theappl.hexfile contains the Motorola S-records for the text sections of
appl.rom image to program EPROMs.

8. Program EPROMs withppl.hexand turn the power on.

Processor Initialization and Run-Time Services: OSBOOT

OSBOOT Configuration

This section describes the configurable parameteyshafot. Configurable
parameters can be defined differently according to the target system. The
parameters are all defined as link-time constants and are defined in the linker
command file. Functions of these parameters include:

Defining the Current Processor Status Register (CPS) for the cold start
process and for user programs.

Defining a target system’s memory configuration.

Enabling and disabling dynamic memory sizing.

Defining the execution location ogboottrap handlers.

Defining the 29K Family processor’s clock frequency.

Defining ROM wait states, page mode DRAM, and SRAM memory.

Defining serial port characteristics.

Table 7-# lists the linker command filenames associated with each supported
target system.

Processor Initialization and Run-Time Services: OSBOOT 7-21

Table 7-4. Linker Command Filenames for Supported Targets

Target System

Linker Command Filename

EB29030 eb29030.Ink
EB29K eb29k.Ink
EZ030 €z030.Ink
Laser29K-030 1229030.Ink
Laser29K-200 1229200.Ink
YARC ATM Sprinter Icb29Kk.Ink
PCEB29K pceb.Ink
SA29030 $a29030.Ink
SE29040 $e29040.Ink
SA29200 $a29200.Ink
SE29240 $a29240.Ink
SA29205 $a29200.Ink
STEP’s STEB steb.Ink
YARC Rev 8 yarcrev8.Ink
Simulators sim00x.Ink, sim03x.Ink, sim050.Ink,

sim20x.Ink, sim24x.Ink

NOTE: Some of the boards in Table 7-4 are no longer available commercially,
but are still in use. Note also that the linker command filenames for some targets
do not correspond directly to the target's name.

The source files refer to these link-time parameters as external variables. To pass
the values defined in the command file to the source files, the linker command,
PUBLIC, must be used to define values for each parameter. The syntax of the
PUBLIC linker command is:

PUBLIC symbol=value

wheresymbolis a user-defined external definition symbol, aatlieis the value
of the symbol. The symbol names specified by the linkIIBLIC command
take precedence over symbol names defined during assembly.

The linker command files for the target hardware systems supported by AMD
are provided. They define the default values for those target systems.

7-22 Processor Initialization and Run-Time Services: OSBOOT

The list of configuration parameters that must be defined for all targets in the
linker command files is shown in Table 7-5. Some of these parameters are not
used in some target system configurations. However, they still need to be
defined to avoid getting an unresolved external link time error. The values of
symbols that are ignored or which do not apply to the target system can be zero.

Table 7-5. Configuration Parameters

Configuration Parameter Meaning

These parameters apply to both 2-bus and 3-bus microprocessors.

init CPS The value used to initialize the CPS
register at the beginning of the cold start
process.

DMemStart The starting address of the data memory

space. This is used to initialize the VAB
register. It is also the base address used
when dynamically sizing the external data
memory at run-time. It can be the same as
IMemStart in cases where there is a
single linear memory space.

DMemSize The maximum possible size of the data
memory region.
TicksPerMillisecond This must be defined to the processor

clock frequency in ticks per millisecond. It
is used by the HIF kernel services of
osboot

ClockFrequency This must be defined to the processor
clock frequency. It is used by the HIF
kernel services afsboot

These parameters only apply to 3-bus microprocessors.

IMemStart The starting address of the instruction
memory space.

IMemSize The maximum possible size of the
instruction memory region.

RMemStart The starting address of the ROM address
space.

RMemSize The maximum possible size of the ROM
region.

Processor Initialization and Run-Time Services: OSBOOT 7-23

7-24

Configuration Parameter

Meaning

TRAPINROM

Set to 0x2 (two) to specify that the trap
handlers reside in the ROM address
region, or 0x0 (zero) to specify that the
trap handlers reside in the instruction
memory region. Trap handlers should only
be located in ROM space (that is,
TRAPINROM set to 0x2) for those 29K
Family microprocessors using 3-bus
architecture. For other members of the
29K Family, trap handlers should be
located in instruction memory space
(TRAPINROM set to 0x0).

This parameter only applies to 2-bus microprocessors.

EnableDRAMSizing

If set to 1, DRAM memory range is deter-
mined at run time. The memory range
found is used to configure the DRAM
Controller. If set to 0, the value specified
by theDMemSizevariable is used.

Table 7-6 lists thesbootconfiguration parameters that must be defined if the
target contains an 85C30 (Serial Communications Controller) device. If these
parameters are defined in the command file of a target system that does not
require them, they will be ignored.

Table 7-6. Configuration Parameters

Configuration Parameter

Meaning

SCC8530_CHA_CONTROL

SCC8530_CHB_CONTROL

SCC8530_CHA_DATA

This value is used as the address to access
the control register of Channel A of the
85C30 device on the target system.

This value is used as the address to access
the control register of Channel B of the
85C30 device on the target system.

This value is used as the address to access
the data register of Channel A of the
85C30 device on the target system.

Processor Initialization and Run-Time Services: OSBOOT

Configuration Parameter Meaning

SCC8530_CHB_DATA This value is used as the address to access
the data register of Channel B of the
85C30 device on the target system.

SCC8530_BAUD_CLK_ENBL This value specifies the enabling/disabling
of the baud rate clock generator of the
85C30 device on the target system.

Table 7-7 lists those parameters that must be defined for acantroller target.
These parameters initialize ROM and DRAM controllers. Because
microprocessottargets do not have ROM or DRAM controllers, these

parameters do not apply to them. However, to avoid unresolved external link
time errors, you should be sure to set them even if your target is a 29K Family
microprocessor. The values of symbols that do not apply to the target system are
ignored. They can safely be set to zero.

Table 7-7. Configuration Parameters

Configuration Parameter Meaning

RMCT_VALUE The value used to initialize the ROM
Control register of the 29K Family
microcontrollers.

DRCT_VALUE The value used to initialize the DRAM
Control register of the 29K Family
microcontrollers.

RMCF_VALUE The value used to initialize the ROM
Configuration register of the 29K Family
microcontrollers.

UCLK Specifies the clock frequency controlling
the UART. Used to compute the Baud
Rate Divisor.

Sample Linker Command File

To demonstrate the implementation of the parameters described in the previous
tables, the following code sample is provided. It shows the contents of the
$a29200.Inkinker command file provided with thesbootsoftware. The

comment portions of this file have been removed to simplify reading. To see the
comment portions of this file, use a text editor to views#29200.Inkfile in
theosbootdirectory.

Processor Initialization and Run-Time Services: OSBOOT 7-25

ALIGN Proclnit=16

ORDER Reset=0x0

ORDER Proclnit,Osbtext,.text,!text

ORDER it it

ORDER vectable=0x40000000

ORDER msg_data=0x40000400

ORDER .data,!data

ORDER OsbBss,dbg_030,dbg_bss,cfg_bss,.bss,!bss
ORDER HeapBase

ORDER .comment

; Defines initial value of CPS register
public _init CPS=0x87F

; Defines target system’s memory configuration
public VectorBaseAddress=0x40000000
public IMemStart=0x40000000

public IMemSize=0xffffff

public DMemStart=0x40000000

public DMemSize=0xffffff

public RMemStart=0x0

public RMemSize=0xffffff

; Enables/Disables dynamic memory sizing
public EnableDRAMSizing=1

; Defines ROM wait states,page mode DRAM,SRAM memory
public RMCT_VALUE=0x03030303
public DRCT_VALUE=0x888800FF
public RMCF_VALUE=0x00f8f8f8

; Defines execution location of trap handlers
public _TRAPINROM=0

; Defines 29K Family processor clock frequency
public TicksPerMillisecond=16000
public ClockFrequency=16000000

; Defines serial port characteristics.
public UCLK=32000000
public INITBAUD=9600

public SCC8530_CHA_CONTROL=0xC0000007
public SCC8530_CHB_CONTROL=0xC0000003
public SCC8530_CHA_DATA=0xCO00000F
public SCC8530_CHB_DATA=0xC000000B
public SCC8530_BAUD_CLK_ENBL=3

7-26 Processor Initialization and Run-Time Services: OSBOOT

Appendix A &
Examples

This appendix provides examples of some comosfotconfiguration
models. Most of the examples in this appendix follow procedures detailed
elsewhere in this manual. The appendix provides the following examples:

¢ |Building the Stand-Alone OSBOOT/Application Model for AMD’s SE29R40
board on page A-2.

« |Building the Stand-Alone OSBOOT/DBG_CORE/Application Model for
AMD’s SE29040 board on page A-4.

e |Building the OSBOOT/Application Model to transfer from ROM to SRAM
for testing on page A-6.

e |Building the OSBOOT/Application Model to transfer from ROM to DRAM
for testing on page A-9.

e |Building the OSBOOT/DBG_CORE Model for a system without DRAM on
page A-11.

Processor Initialization and Run-Time Services: OSBOOT A-1

Building the Stand-Alone
OSBOOT/Application Model for the
SE29240

This example shows how to build the Stand-Alone OSBOOT/Application Model
for AMD’s SE29240 stand-alone board. This example follows the same
procedure detailed |n “Building OSBOOT for Stand-Alone Syst¢éms,” starting on
page 7-14.

In this example, the baud rate used for serial communications is 9600 baud.
1. Use theed command to change to tha29k\osbootdirectory.

2. Build a relocatable version osbootfor the SE29240 board. Use the
following command lines for MS-DOS and UNIX, respectively:

For MS-DOS:
makeosb sa29240 am2924x 9600 -DSTANDALONE

For UNIX:
make —f makefile.os board=sa29240 proc=am2924x
baudrate=9600 standalone=—DSTANDALONE

Regardless of the operating system, the build program creates the relocatable
osbootfile, sa29240.pand stores it in the directosp29240

3. Inthis example, the name of the application prograapjs.c. Use thehc29
program to build a relocatable versiorappl.c using the following
command:

hc29 —c —o appl.o appl.c
Thehc29program creates the relocatable applicationgipl.o.

4. Edit the linker command file. Because AMD provides a linker command file
to work with the SE29240 boarga29240.Ink, there is no need to edit the
linker command file in this case. When buildimgpootfor targets for which
AMD does not supply a custom linker command file, you will need to edit a
linker command file to work with your target.

5. Firstlink. Use thehc29program to link the relocatabtsbootmodule built
in Step 2 with the relocatable application module built in Step 3 using the
following command.

hc29 —cmdsa29240.Ink sa29240/sa29240.0 appl.o —o appl.out

Processor Initialization and Run-Time Services: OSBOOT

Thehc29program creates the COFF image éifpl.out. Theappl.out file
represents the linkage of the relocatatslbootfile, sa29240.pand the
relocatable application fil@ppl.o.

6. Use theomcoff utility to create theaminit.o module forappl.out. The
raminit.o module is used to initialize DRAM and copy selected sections of
theappl.out file from ROM to DRAM before program execution starts. In
this exampleraminit.o copies images of theata and.bsssections of the
appl.out file stored in ROM to DRAM at run time. Because th@rgument
is specified in the command line below, text sections are excluded from
raminit.o. The—r option specifies that ROM space is readable. Use the
following command:

romcoff —t —| —r appl.out raminit.o
7. Second link.Use thehc29 program to linkkaminit.o with the relocatable

version ofosbootand the relocatable version of the application program. Use
the same linker command as in Step 5, as follows:

hc29 —cmdsa29240.Ink sa29240/sa29240.0 appl.o raminit.o
—o appl.rom

Thehc29program creates tregpl.rom COFF file.

8. Use thecoff2Zhexcommand to convert the text section of the COFF file,
appl.rom, to a hex file that can be used to program EPROMSs on the target.
Use the following command syntax:

coff2hex —-m —c tl appl.rom

The coff2Zhexcommand creates the hex fippl.hex Use this file to
program EPROMSs. Then, install the EPROMSs on the target and turn on the
power.

Processor Initialization and Run-Time Services: OSBOOT A-3

Building the Stand-Alone
OSBOOT/DBG_CORE/ Application Model
for the SE29040

This example shows how to build the Stand-Alone OSBOOT/DBG_CORE/Application
Model for AMD’s SE29040 stand-alone board. This example follows the same procedure
described in, “Building OSBOOT for Stand-Alone Systems,” starting on page 7-14.

In this example, the baud rate used for serial communications is 38400 baud.

1. Use theed command to change to the29k/osbootdirectory.

2. Build a relocatable version ofboot/dbg_corefor the SE29040 board. Use
the following command lines for MS-DOS and UNIX, respectively:

For MS-DOS:
makemon se29040 am29040 38400 -DSTANDALONE

For UNIX:
make —f makefile.mon board=se29040 proc=am29040
baudrate=38400 standalone=—DSTANDALONE

Regardless of the operating system, the build program creates the relocatable
osboot/dbg_corefile, osbdbg.q and stores it in thee2904irectory.

NOTE: The build command for both MS-DOS and UNIX may cause the
following error message, which can safely be ignored:

ERROR: (368) Unresolved external:
start

3. Inthis example, the name of the application prograapj.c. Use thenc29
program to build a relocatable versiorappl.c using the following
command:

hc29 —c —o appl.o appl.c

Thehc29program creates the relocatable applicatiorgiipl.o.

A-4 Processor Initialization and Run-Time Services: OSBOOT

4. Edit the linker command file. Because AMD provides a linker command file
to work with the SE29040 boargdg29040.Ink, there is no need to edit the
linker command file in this case. When buildimgpootfor targets for which
AMD does not supply a custom linker command file, you will need to edit a
linker command file to work with your target.

5. Firstlink. Use thehc29program to link the relocatabésboot/dbg_core
module built in Step 2 with the relocatable application module built in Step 3
using the following command:

hc29 —cmdse29040.Ink se29040/osbdbg.o appl.o —o appl.out

Thehc29program creates the COFF image &jl.out. Theappl.out file
represents the linkage of the relocatadsboot/dbg_cordfile, osbdbg.q and
the relocatable application filappl.o.

6. Use theomcoff utility to create theaminit.o module forappl.out. The
raminit.o module is used to initialize DRAM and copy selected sections of
theappl.out file from ROM to DRAM before program execution starts. In
this exampleraminit.o copies images of theata and.bsssections of the
appl.out file stored in ROM to DRAM at run time. Because th@rgument
is specified in the command line below, text sections are excluded from
raminit.o. The—r option specifies that ROM space is readable.

Use the following command:

romcoff —t - —r appl.out raminit.o
7. Second link.Use thehc29 program to linkaminit.o with the relocatable

version ofosboot/dbg_coreand the relocatable version of the application
program. Use the same linker command as in Step 5, as follows:

hc29 —cmdse29040.Ink se29040/osbdbg.o appl.o raminit.o —o appl.rom
Thehc29program creates the COFF fdppl.rom.

8. Use thecoff2hexcommand to convert the text section of the COFF file,
appl.rom, to a hex file that can be used to program EPROMSs on the target.
Use the following command syntax:

coff2hex —m —c tl appl.rom
The coff2Zhexcommand creates the hex fippl.hex Use this file to

program EPROMSs. Then, install the EPROMSs on the target and turn on the
power.

Processor Initialization and Run-Time Services: OSBOOT A-5

Building the OSBOOT/Application Model to
Transfer from ROM to SRAM

This example shows how to build the OSBOOT/Application Model for AMD’s
SA29200 stand-alone board. In this example, however, instead of using the
linker command file as supplied for the SA29200 board, the linker command file
is edited so that the COFF file created by linking relocatable versiasbobt

and an application file can be executed from SRAM instead of ROM. Then, the
example uses thmondfe debugger front end to “yank” the COFF file to the
SRAM of the target SA29200 board for testing purposes.

This example is very similar to the procedure describgd in “Building OSBOOT
[for Stand-Alone Systems$,” starting on page 7-14.

1. Use theed command to change to thé29k/osbootdirectory.

2. Create a working directory to contain edited versions of master template files
provided by AMD. In this example, ttea2920s8&lirectory is created.

3. To link osbootwith an application, bothsbootand the application need to
be relocatable. Build a relocatable versioosiiootfor the SA29200 board.
Use the following command lines for MS-DOS and UNIX, respectively:

For MS-DOS:
makeosb sa29200 am29200x —-DSTANDALONE

For UNIX:
make —f makefile.os board=sa29200 proc=am29200x
standalone=—DSTANDALONE

Regardless of the operating system, the build program creates the relocatable
osbootfile, sa29200.pand stores it in thea2920irectory.

4. Edit the linker command file provided by AMD for the SA29200 board so
that the COFF application file created using this linker command file can be
run in SRAM instead of ROM. The linker command file provided by AMD
for the SA29200 board is callsd29200.Inkand is located in thesboot
directory

a. Make a copy of thea29200.Inkfile in the working directory created in
Step 1 6a2920s8

A-6 Processor Initialization and Run-Time Services: OSBOOT

b. Using a text editor, open tea29200.Inkfile and change the entry point

of theosbootmodule from “0x0” (ROM) to “0x80000” (SRAM). This is

done by changing the line that reads, “ORDER Reset=0x0," to

“ORDER Reset=0x80000.” Save the file. In this example, the file is saved as

5a2920s8.Ink You can see the contents of the unedseg2bB200.Inkfile in
[“Sample Linker Command Fil¢,” on page 7-25.

c. First link. Use thenc29program to build a relocatable version of the
application program to be linked with the relocatable versiasbbdotbuilt
in Step 3. In this example, the name of the application fégd.c. The
following hc29 command builds a relocatable versiorappl.c (called
appl.o) and then uses the linker command file we created in Step 4b
(sa2920sBto link appl.o with the relocatablesbootmodulesa29200.0

hc29 —cmd./sa2920s8.Ink ../sa29200/sa29200.0 appl.c —0 sa2920s8.out

Thehc29program creates the COFF image $ig2920s8.0utThe
sa2920s8.oufile is the linkage of the relocataldsbootfile, sa29200.pand
the relocatable application fikgppl.o.

5. Use theomcoff utility to create theaminit.o module forsa2920s8.out
Theraminit.o module is used to initialize DRAM and copy selected sections
of thesa2920s8.oufile from SRAM to DRAM before program execution
starts. In this exampleaminit.o copies images of theata and.bss
sections of thea2920s8.oufile stored in SRAM to DRAM at run time.
Because thet argument is specified in the command line below, text
sections are excluded fromminit.o. The—r option specifies that ROM
space is readable.

Use the following command:
romcoff —t | —r sa2920s8.out raminit.o
6. Second link.Use thehc29 program to linkaminit.o with the relocatable

version ofosbootand the relocatable version of the application program. Use
the same linker command as in Step 4

hc29 —cmdsa2920s8.Ink sa29200/sa29200.0 appl.o raminit.0 —0 sa2920s8.rom
Thehc29 program creates the COFF fda2920s8.rom

7. Startmondfe in Supervisor mode and “yank” the filea2920s8.ronto
SRAM. Use the following command:

mondfe —TIP serial96S sa2920s8.rom

Processor Initialization and Run-Time Services: OSBOOT A-7

For complete information on usimgondfe, see théVliniMON29K User
Interface: MONDFEmanual.

At this point, you can begin executing and debugging the program using

mondfe. When the program is fully debugged, the stand-alone
OSBOOT/Application program can be built and programmed to EPROMSs.

A-8 Processor Initialization and Run-Time Services: OSBOOT

Building the OSBOOT/Application Model to
Transfer from ROM to DRAM

This example shows how to build the Stand-Alone OSBOOT/Application Model
for AMD’s SA29200 stand-alone board. In this example, howeverathait.o
module is created so that the entire OSBOOT/Application module (including
both the text and data sections) is transferred from ROM to DRAM at power-on
(or whenRESET is asserted) and executed there.

This example follows the same procedure describgd in, “Building OSBOQT for
[Stand-Alone Systemk,” starting on page 7-14.

In this example, the baud rate used for serial communications is 9600 baud.
1. Use theed command to change to the29k/osbootdirectory.

2. Build a relocatable version osbootfor the SA29200 board. Use the
following command lines for MS-DOS and UNIX, respectively:

For MS-DOS:
makeosb sa29200 am2920x 9600 -DSTANDALONE

For UNIX:
make —f makefile.os board=sa29200 proc=am2920x
baudrate=9600 standalone=—DSTANDALONE

Regardless of the operating system, the build program creates the relocatable
osbootfile, sa29200.pand stores it in thea2920irectory.

3. Inthis example, the name of the application prograapj.c. Use thenc29
program to build a relocatable versionagpl.c using the following
command:

hc29 —c —o appl.o appl.c
Thehc29program creates the relocatable applicationgipl.o.

4. Edit the linker command file. Because AMD provides a linker command file
to work with the SA29200 boardd29200.Ink, there is no need to edit the
linker command file in this case. When buildimgpootfor targets for which
AMD does not supply a custom linker command file, you will need to edit a
linker command file to work with your target.

Processor Initialization and Run-Time Services: OSBOOT A-9

5. Firstlink. Use thehc29program to link the relocatabtsbootmodule built
in Step 2 with the relocatable application module built in Step 3 using the
following command:

hc29 —cmdsa29200.Ink sa29200/sa29200.0 appl.o —o appl.out

Thehc29 program creates the COFF image &ifpl.out. Theappl.out file
is the linkage of the relocatalidsbootfile, sa29200.pand the relocatable
application file,appl.o.

6. Use theomcoff utility to create theaminit.o module forappl.out. The
raminit.o module is used to initialize DRAM and copy selected sections of
theappl.out file from ROM to DRAM before program execution starts. In
previous examples, thremcoff utility was used with thet argument so that
text sections of the input file (in this caappl.out) were not included in the
output file faminit.0). In this example, we want the entire application to
execute from DRAM. Accordingly, we omit thé¢ argument from the
command line so that the entire input file is included in the output file and
will be executed from DRAM. Ther option specifies that ROM space is
readable.

Use the following command:
romcoff —r appl.out raminit.o

7. Second link.Use thenc29 program to linkkaminit.o with the relocatable
version ofosbootand the relocatable version of the application program. Use
the following command:

hc29 —nocrt0 —cmdsa29200.Ink sa29200/sa29200.0 appl.o raminit.o —o
appl.rom

Notice that this command line specifies the compiler option “—nocrt0.” This
is done to avoid compiler error messages that might occur because of the
presence of thertO in theraminit.o file. Because in this examplaminit.o
contains the text section appl.out, it also contains thertO from the first

link in Step 5. Thdac29 program creates the COFF fdppl.rom.

8. Use thecoff2Zhexcommand to convert the COFF filmpl.rom, to a hex file
that can be used to program EPROMSs on the target. Use the following
command syntax:

coff2hex -m —c t appl.rom

A-10 Processor Initialization and Run-Time Services: OSBOOT

The coff2Zhexcommand creates the hex fippl.hex Use this file to
program EPROMSs. Then, install the EPROMSs on the target and turn on the
power.

Building OSBOOT/DBG_CORE for a System
Without DRAM

This example shows how to buiddboot/dbg_corefor a system that does not

have any DRAM. In this example, we use an SA29200 target that has only ROM
and 512 Kbyte of byte-writable SRAM. The example demonstrates how to
customize the linker command file so that a versioostbot/dbg_corefor a

system without DRAM (SRAM only) is built.

In this example, the baud rate used for serial communications is 9600 baud (the
default).

1. Use theed command to change to the29k/osbootdirectory.

2. When the build program createsboot/dbg_coreor the SA29200 target, it
uses a linker command file that specifies the default values for configurable
parameters absboot AMD provides a default linker command file for the
SA29200 target callesh29200.Ink For this example, we edit29200.Ink
so that the configurable parameter®sibootare set to accommodate a
target that has SRAM but no DRAM.

The following code section shows tb&29200.Inkfile, as edited to support
an SRAM-only target. Each edited line is indicated by the comment field
reading ; SRAM.” A detailed explanation of each change (by line number)
follows the code section.

1 ALIGN Proclnit=16

2 ORDER Reset=0x0

3 ORDER Proclnit,Osbtext,.text, !text

4 ORDER it Mit

5 ORDER vectable=0x80000 ; SRAM
6 ORDER msg_data=0x80400 ;. SRAM
7 ORDER .data,!data

8 ORDER OsbBss,dbg_030,dbg_bss,cfg_bss,.bss,!bss
9 ORDER HeapBase

10 ORDER .comment

11 ; Defines initial value of CPS register

12 public _init CPS=0x87F

Processor Initialization and Run-Time Services: OSBOOT A-11

13 ; Defines target system’s memory configuration

14 public VectorBaseAddress=0x8000 ; SRAM

15 public IMemStart=0x40000000

16 public IMemSize=0xffffff

17 public DMemStart=0x80000 ; SRAM

18 public DMemSize=0x7ffff ; SRAM

19 public RMemStart=0x0

20 public RMemSize=0xffffff

11 ; Defines initial value of CPS register

12 public _init_ CPS=0x87F

13 ; Defines target system’s memory configuration

14 public VectorBaseAddress=0x0x80000 ; SRAM

15 public IMemStart=0x40000000

16 public IMemSize=0xffffff

17 public DMemStart=0x80000 ; SRAM

18 public DMemSize=0x7ffff ; SRAM

19 public RMemStart=0x0

20 public RMemSize=0xffffff

21 ; Enables/Disables dynamic memory sizing

22 public EnableDRAMSizing=0 ; SRAM

23 ; Defines ROM wait states, page mode DRAM, SRAM
memory

24 public RMCT_VALUE=0x0b030303 i SRAM

25 public DRCT_VALUE=0x88880000 ; SRAM

26 public RMCF_VALUE=0x0008f8f8 ; SRAM

27 ; Defines execution location of trap handlers

28 public _TRAPINROM=0

29 ; Defines 29K processor clock frequency

30 public TicksPerMillisecond=16000

31 public ClockFrequency=16000000

32 ; Defines serial port characteristics.

33 public UCLK=32000000

34 public INITBAUD=9600

35 public SCC8530_CHA_CONTROL=0xC0000007

36 public SCC8530_CHB_CONTROL=0xC0000003

37 public SCC8530_CHA_DATA=0xCO000000F

38 public SCC8530_CHB_DATA=0xC000000B

39 public SCC8530_BAUD_CLK_ENBL=3

Each change made to ts@29200.Inkfile to support an SRAM-only target is
described by line-number below.

a.Inlines 5, 6, 14, and 17, memory addresses are changed from DRAM-base
addresses to SRAM-base addresses.

A-12 Processor Initialization and Run-Time Services: OSBOOT

b. The value of thEnableDRAMSizing variable in line 22 determines
whether dynamic memory sizing is enabled. Because dynamic memory
sizing is only supported by a DRAM systeimableDRAMSizing is

changed td® (disabled). Without dynamic memory sizing available, the
system cannot determine available memory by itself. Therefore, the
DMemSizevariable in line 18 must be set to the exact memory size on the
target (512 Kbyte; Ox7ffff in hex).

c.On line 24, the BWE bit (bit 27) of the RMCT register needs to be setto 1
to support byte-writable SRAM. In hex, the value of RMCT_VALUE
variable is changed from 0x03030303 to 0x0b030303.

d. Because there is no DRAM on the target REERATE (refresh rate)

field of the DRCT register is disabled and set to 0. In hex, the value of the
DRCT_VALUE variable (line 25) is changed from 0x888800FF to
0x88880000.

e. On line 26, the value of tRMCF_VALUE variable is changed from
0x00f8f8f8 to 0x0008f8f8 to define the SRAM memory bank in the RMCF
register. The value 0x0008f8f8 indicates that the starting address of the
SRAM memory on the second bank is 0x80000 and the memory size is 512
Kbyte.

Detailed information on how to set the Am29200 microcontroller’s registers
can be found in th&m29200 and Am29205 RISC Microcontroller User’s
Manual

3. At this point, you are ready to buiddboot/dbg_corefor the target using the
linker command file we edited in the previous step. Use the following
command lines for MS-DOS and UNIX, respectively:

For MS-DOS:
makemon sa29200 am29200x

For UNIX:
make —f makefile.mon board=sa29200 proc=am29200x

Regardless of the operating system, the build program creates a COFF image
of osbootanddbg_corefor the SA29200 target using the customized

settings in thesa29200.Inklinker command file and stores it in a file called
5a29200.0n thesa2920irectory.

Processor Initialization and Run-Time Services: OSBOOT A-13

4. Use thecoff2hex utility to create the hex filsa29200.hexrom the COFF
file sa29200.0sas follows.

coff2hex —r —t sa29200/sa29200.0s —0 sa29200.hex

5. Program EPROMSs witba29200.hexand turn the power on.

A-14 Processor Initialization and Run-Time Services: OSBOOT

Appendix B a

Using the HIF IOCTL Service for
Non-Blocking Reads

The Host Interface (HIF) kernel of Release 3.0 or later of the MiniMON29K
product adds support for nonblocking read operations. This new feature allows
application programs to continue processing while waiting for input data to be
transferred. (To use this feature, MiniMON29K Release 3.0 or later must be
loaded on both the target and the host.)

This appendix shows example code that demonstrates how a nonblocking read
can be used to create an interactive menu that allows subsequent processing to
continue while waiting for user input.

The Problem

The default input mode used by the HIF kernel of the MiniMON29K product is
COOKED (0x0000), which blocks (suspends) the application program issuing a
read operation from the standard input device (terminal) until the input data has
been transferred.

While blocked mode may be effective for some applications, it makes it difficult
to implement and debug interactive menu-driven applications that require
processing to continue while waiting for user input.

Processor Initialization and Run-Time Services: OSBOOT B-1

The Solution

The HIF kernel of the MiniMON29K Release 3.0 (or later) product implements
nonblocking read support for standard input devices (terminals). Using the HIF
ioctl service, the input mode of the standard input device can be changed from
COOKED to NBLOCK mode, which allows the application program to continue
processing while waiting for input data to be transferred.

The HIF IOCTL Service

The HIFioctl service establishes the operation mode of a specified file or
device. Itis intended to be applied primarily to terminal-like devices; however,
certain modes apply to mass-storage files or to other related input/output
devices.

In COOKED (0x0000) mode (the default input mode), whezad operation

for a terminal-like device is issued by the application program, the kernel blocks
(suspends) any further execution of the application program until the data has
been transferred. Using the Hb€tl service, the input mode of the standard

input device can be set to NBLOCK (0x0010) mode, which specifies that
subsequent read operations be executed without suspending (blocking) the
application program issuing tihead request.

The HIF READ Service

After setting standard input to NBLOCK mode, a Rad operation on the

standard input device returns immediately to the application program. The return
value of theead service contains the number of characters currently available,
or -1 if none are available. The application program examines the return value
from theread service to determine if any input data is available. If the return
value is -1, the application program continues other processing while waiting for
the input data.

Example Code

Following is a short code example showing how the technique explained above
can be used for the creation of an interactive menu. The code in boldface
highlights the use of the HiiBctl service.

B-2 Processor Initialization and Run-Time Services: OSBOOT

#include <stdio.h>

#include <hif.h>

#include <stdlib.h>

showmen() {

/ /

/* The following subroutine will display a menu to standard output. The
/* _write() HIF service was used rather than printf for the following */

/* reasons: */

/* - To show the usage of the _write() HIF service */

/* - When characters are sent to standard output using printf, the output */
* is buffered and will not be displayed until a \n’ is used. */

/* Therefore, the "Enter your selection ->" line would not appear on */
[* standard output if printf were used because there is no '\n’ */

/¥ character at the end of the string */

/ /

_write(1,"\nMenu:\n",7);

_write(1,"\t1) Selection #1\n",17);
_write(1,"\t2) Selection #2\n",17);
_write(1,"\t3) Exit\n”,9);
_write(1,"\nEnter your selection -> ",25);

void main() {
/* Declare necessary variables */
int terminate=0, proc=0;
/* Create a 1-character buffer to hold input */
char *input=(char *) malloc(sizeof(char));

*

/* Set standard input to NBLOCK mode using the _ioctl() HIF service */

_ioctl(0,0x0010);

showmen();

/ /

/* Following is the main loop where processing occurs. The exit */
/* condition is set by selecting the appropriate menu item. */

/ /

while(lterminate) {

/ /

/* Because standard input has been set to NBLOCK mode using the
[* _ioctl() HIF service, the _read() HIF service will return a negative */
/* number if there is no input available. If there is input available, */

/* _read() will return a non-negative number and the character read
/* will be contained in the input buffer. */
/ /

if(_read(0,input,1)>=0) {
/* React to the input received */
switch(input[0]) {
case '1"
printf("\n\nYou selected choice #1.\n");
showmen();
break;

Processor Initialization and Run-Time Services: OSBOOT

*/

*/

B-3

case 2"
printf("\n\nYou selected choice #2.\n");
showmen();
break;

case '3"
/* Choice #3 is to exit, so set a flag to end the main loop */
terminate++;
break;

default:
printf("\n\ninvalid selection.\n");
showmen();
break;

}
}
/ /
/* This is where the processing should be placed that is to occur while */
/* awaiting user input. This program simply increments the variable */
/* "proc” to demonstrate that processing is not halted while awaiting */
/* input from standard input. */
/ /
proc++;
}
/* We have left the main loop. Clean up and exit. */
printf("\n\nYou have selected exit\n”);
printf("The proc variable was incremented %d times.\n",proc);
printf("** Note**\n");
printf("The increments took place while you were interacting with the menu.\n");
printf("This demonstrates processing was not halted while waiting user input.\n”);

In the above example, the statement to read the user input from the standard
input device (STDIN) is placed within a “while” loop, followed by the code that
should not be suspended.

Theread statement is placed in an “if” clause. The return value fiead
determines what action takes place. If there is valid input from STDIN, the
appropriate “case” statement is executed. If no information is available, a -1 is
returned and the “proc++" statement is executed.

Conclusion

The number of times that tipeoc variable is incremented in the example should
be substantially higher than the sum of the number of times that options #1 and
#2 are selected. This demonstrates thapthbevariable is incremented during

the time that the interactive menu is presented.

B-4 Processor Initialization and Run-Time Services: OSBOOT

If the value of theroc variable displayed is equal to the sum of the number of
times that options #1 and #2 are selected, the most likely cause is that a version
of MiniMON29K prior to Release 3.0 is being used on either the host or target

system.

Suggested Reference

For more information, see thost Interface Specification

Processor Initialization and Run-Time Services: OSBOOT B-5

Appendix C &

Defining a Trap to Switch to
Supervisor Mode

This appendix describes how to place a 29K Family microprocessor or
microcontroller in supervisor mode.

To switch a 29K Family processor to supervisor mode, the SM bit in the Current
Processor Status (CPS) register must be set. But because the CPS register is a
protected special-purpose register, it may not be modified when the processor is
running in user mode.

However, when a trap is taken in a 29K Family processor, the processor is
placed in supervisor mode. Because of this behavior, a user-defined trap can be
used to switch the processor to supervisor mode.

Processor Initialization and Run-Time Services: OSBOOT C-1

Switching to Supervisor Mode

Thesettrap() host interface (HIF) service can be used to define a trap. At this
point, you are in supervisor mode. However, you need the processor to remain in
supervisor mode when returning from the trap.

Remaining in Supervisor Mode

When a trap is taken, a 29K Family processor copies the contents of the CPS
register into the Old Processor Status (OPS) register. On return from this trap,
the processor copies the contents of the OPS register into the CPS register.

So, if the user-defined trap sets the SM bit in the OPS register, the contents of
OPS are copied into the CPS register on return from the trap. This keeps the
processor in supervisor mode after returning from the trap.

Example Code

The following example consists of two files, one written irtr@pjt.c) and the

other written in 29K Family assembly languag®/{rap.s). The file written in C
contains the call teettrap() used to install the trap handler that sets the SM bit.
Once the trap handler has been installed, an assembly language routine is called
that will cause the newly installed trap to be asserted. Any code that is executed
after this user-defined trap is asserted will execute in supervisor mode.

The 29K assembly language file contains the source code for the user-defined
trap handler as well as a function that, when called, will cause the user defined
trap to be asserted.

C-2 Processor Initialization and Run-Time Services: OSBOOT

trapit.c
#include <stdio.h>
#include <hif.h>
extern void super_mode(void);
extern void as70(void);
void howdy() {
inti;

for(i=0;i<=10;i++) printf("Hello\n");

main() {
_settrap(70,&super_mode);
as70();

howdy();

}

mytrap.s
.global _super_mode
_super_mode:
mfsr gr96, ops
or gr96, gr96, 0x10
mtsr ops, gr96
iret
.global _as70
_as70:
asneq 70,9r96,9r96
jmpi IrO
nop

Processor Initialization and Run-Time Services: OSBOOT

C-3

&

Index

Symbols

B

.inc files, 3-1, 7-2
Ink files, 3-1, 7-2
.mon files, 3-1, 7-2

Numbers

32x32 bit multiplier, 3-6

A

absolute objects, 3-1
ack message, 6-16
alignment, 5-4
alu register, 5-5
Am29027, 3-6, 5-2, 5-8
Am29050, 4-5
Am29240, 3-6
Am29243, 3-6
ANSI C, standard, xi
arithmetic
coprocessor, 3-6
operations, 3-6

arithmetic trap handlers, 5-7

batch files, 3-6, 7-1, 7-5, 7-6, 7-9, 7-10,
7-14, 7-15, 7-16, 7-17
boot subdirectory, 3-4
source files and functions, 3-4
bootstrap module, 1-1-1-2, 2-2, 2-3, 3-6,
4-1,6-5
bootstrap process, 4-1
Build HIF Call Msg, 6-22
building
osboot dbg_core model, 7-8
osboot simulators, 7-4
osboot/application for DRAM, A-9
osboot/application from ROM to SRAM,
A-6
osboot/dbg_core for no DRAM, A-11
stand-alone osboot/application for
SA29240, A-2
stand-alone osboot/dbg_core for
SE29040, A-4
stand-alone system, 7-18
byte addressing, 5-4

C

cfg register, 4-9, 4-14, 5-5

Processor Initialization and Run-Time Services: OSBOOT Index-1

cha register, 5-5
channel message, 6-15, 6-16, 6-17
chc register, 5-5
chd register, 5-5
ClockFrequency parameter, 7-23
code example, 4-4, 6-20, 6-21, 6-22
COFF, standard, xi
COFF image, 7-11
cold start, 4-9, 6-1, 6-2
process, 4-1, 4-6, 4-9, 4-14, 4-19
process tasks, 4-7
cold start process, 4-16
Common Object File FormabeeCOFF.
communications drivers, 2-5
communications initialization, 4-7,
4-21-4-22
compile time requirements, 2-5
configuration parameters, 7-23, 7-24, 7-25
Configuration register, 4-9
cps register, 4-9, 5-5, 7-23

D

DA bit, 5-5
data memory, 6-8
data segment initialization, 4-16-4-18
dbg_control, function, 2-3
dbg_core
definition. Seeosboot — debugger core
model
initializing message system, 2-3, 4-7
linking, 3-1
requirements with osboot, 2-3
debugger core
building osboot for use with, 7-8—-7-14
osboot model, 6-12
debugger front end, 1-3
DFE. Seedebugger front end
DI bit, 5-5
directory tree structure, 3-1
DMemSize parameter, 7-23

Index-2

DMemStart parameter, 7-23
documentation, conventions, Xii—xiv
DRAM
building osboot/application model for,
A-9
building osboot/dbg_core for systems
without, A-11
DRAM controller, 4-7
DRAM controller register, 4-9
initialization, 4-12
DRCT_VALUE parameter, 7-25
dstandalone, osboot argument, 7-14
DW bit, 5-5, 5-6
dynamic sizing, 4-13

E

EnableDRAMSizing parameter, 7-24

enter_trap_routine macro, 5-7

entry point, 2-5

environment, run-time, 6-2, 6-4

EPROMSs, 4-17, 6-11, 7-11, 7-12, 7-14,
7-20

examples of osboot, A-1

execution mode, 2-5, 6-7

exit_trap_routine macro, 5-7

exop register, 5-2

EXOPread function, 5-3

EXOPwrite function, 5-3

extensions, 3-4, 3-6

external, loader, 6-5

F

filename, extensions, 3-4, 3-6, 7-2
fill trap, 6-3, 6-9, 6-10

handler address, 4-3
floating-point

emulation, 3-6, 4-2, 5-2, 5-7, 5-8

Processor Initialization and Run-Time Services: OSBOOT

trap handler installation, 4-7
trap handler registers, 4-3, 5-8
fpe register, 5-2
FPEread function, 5-3
FPEwrite function, 5-3
fps register, 5-2
FPSread function, 5-3
FPSwrite function, 5-3
freeze mode, 5-7, 5-8, 6-24
functional block diagram (target kernel),
3-3,7-3
FZ bit, 5-5

HIF kernel.Seeosboot, kernel for target
systems

High C 29K and MiniMON29K software,
standards complying with, xi

Host InterfaceSeeHIF.

G

gdb, 1-3

global registers, 6-15, 6-16, 6-17, 6-19
definition of, 4-2
HIF services, 6-12

H

halfword, definition of, xii
HIF
See alskernel for target systems
call, 6-19
kernel, 2-2, 2-3, 6-12
kernel macros, 6-21, 6-22
kernel message, 6-24
kernel services, 4-2
kernel trap, 6-3, 6-9, 6-10
return, 6-19
service request, 6-19
services, 6-2, 6-10, 6-11
standard, xi
start-up, 4-7
trap routines, 6-9
using IOCTL service, B-1
HIF Call message, example, 6-22

Processor Initialization and Run-Time Services: OSBOOT

I/O, 2-2, 2-3, 2-5, 2-6, 6-11, 6-19

IEEE, standard, xi

lITrap trap handler, 5-2

IMemSize parameter, 7-23

IMemStart parameter, 7-23

init CPS parameter, 7-23

inte register, 5-2

INTEread function, 5-3

interrupt mode operation, 6-24

interrupt vector, 6-20

INTEwrite function, 5-3

IOCTL service, using for non—blocking
reads, B-1

ipa register, 5-5

ipc register, 5-5

isstip, 2-2

K

kernel, 6-11
communications, 6-14, 6-15
invocation, 6-1
overview, 1-2
register fill trap, 6-10
register spill trap, 6-10
registers, 4-2
run-time environment, 6-5
services trap, 6-10
startup, 6-2
timer interrupt handler, 6-10

Index-3

L

LA bit, 5-5
link-time parameters, 7-22
linker
command file, 7-19
command filename extensions, 3-1
command files, 3-1, 3-2, 7-4, 7-20, 7-22
commands, 7-19
sample command file, 7-25
load_hs handler, 5-6
load_hsdw handler, 5-6
load_hu handler, 5-6
load_hudw handler, 5-6
load_s handler, 5-6
load_u handler, 5-6
loader, 6-5
loadl_hs handler, 5-6
loadl_hsdw handler, 5-6
loadl_hu handler, 5-6
loadl_hudw handler, 5-6
loadl_s handler, 5-6
loadl_u handler, 5-6
LOADM instruction, 5-5, 5-9
loadm_s handler, 5-6
loadm_u handler, 5-6
local registers, HIF services, 6-12
LS bit, 5-5
LSB, definition of, xii
LSW, definition of, xii

M

macro example, 6-22
makefile.mon, 3-1, 7-11
makefile.os, 3-1, 7-6
makefiles, 3-1, 3-6, 7-1
UNIX, 3-6
makemon.bat, 3-1, 7-8
makeosb.bat, 3-1, 7-5

makepc.bat, 3-6
memory
configuration, 4-13, 7-25
high, 6-8
sizing, 4-13
stack arrangement, 6-8
memory management, register, 4-9
Memory Management Unit (MMU)
register, 4-9
memory stack, 5-7, 6-24
message interrupt vector, 4-22
MFSR instruction, 5-2
MiniMON29K
building osboot for use with, 7-8—-7-14
debugger core, 2-3
MS-DOS instructions, 7-9—-7-11,
7-15-7-18
UNIX instructions, 7-11-7-14
ML bit, 5-5
Models, stand-alone osboot, 4-22
models
osboot debugger core, 2-3-2-7, 4-22,
6-12
osboot-simulator, 2-2, 6-11
stand-alone dbg_core/application, 2-6
stand-alone osboot, 6-11
modes
execution, 2-5, 6-7
freeze, 5-7, 5-8
input, 6-17, 6-18
interrupt, 6-14, 6-24
monitor, 4-4
polled, 6-24
protected, 6-6
supervisor, 5-8
user, 6-12, 7-18
mondfe, 1-3
montip, 2-3, 2-6, 6-12, 6-13, 6-14, 6-15,
6-16, 6-17, 6-18, 6-19, 6-20, 6-22,
6-24
and DFEs, 1-3
MS-DOS
building osboot for debugger core, 7-8

Index-4 Processor Initialization and Run-Time Services: OSBOOT

building osboot for simulators, 7-5
building stand-alone osboot, 7-5
MSB, definition of, xii
MSW, definition of, xii
MTSR instruction, 5-2
MTSRIM instruction, 5-2

stand-alone model, 2-5, 6-11
standards complying with, xi
using with dbg_core, 7-9

with dbg_core and montip, 1-4

N

P

NaN, definition of, xii
non-blocking reads, using HIF IOCTL
service for, B-1

O

ops register, 5-2, 5-5, 5-8
OPT bits, 5-4
OS cold startSeecold start process
OS Start-up, 4-4
osboot
and MiniMON29K, 1-3
and montip, 1-3
bootstrap module, 4-1
building, 7-1
components, 1-1

PA bit, 5-5

pcO register, 5-3, 5-5, 5-8

pcl register, 5-2, 5-5, 5-8
peripheral registers, 4-8—4-10
physical stack, 5-9

polled mode operation, 6-24
PRL field, 4-10, 4-13, 4-14
processor initialization, 4-1, 4-8
processor registers, 4-2
protection violation, 3-6, 5-2

Q

QNaN, definition of, xii

R

configuration, 4-1, 5-1, 6-2, 7-21-7-26
debugger core model, 2-3, 4-22—-4-24, register

6-11, 6-12 fill trap, 6-10
directory and file organization, 3-1 Register Bank Protect (RBP), 4-9
documentation, viii—xi spill trap, 6-10

stack arrangement, 6-8
stack start address, 6-7
virtual, 5-2
register.ah, 4-2, 4-3
register.s, 4-2

examples, A-1

kernel for target systems, 1-1
relocatable, 3-1, 7-14
relocatable with dbg_core, 7-16
run-time environment setup, 6-5

simulator model, 2-2, 6-11 registers
sources, 3-1 See alsondividual register names
stand-alone dbg_core/application model, virtual, 3-6

2-6 relocatable object, building, 7-14

Processor Initialization and Run-Time Services: OSBOOT Index-5

relocatable object module, 7-18, 7-19
RESET code, 4-4
RESET text section, 4-4
restore entry point, 5-5
RMCF_VALUE parameter, 7-25
RMCT_VALUE parameter, 7-25
RMemSize parameter, 7-23
RMemStart parameter, 7-23
ROM
address space, 4-5
configuration register, 4-9
controller register, 4-9
ROM bootstrap modulé&eebootstrap
module
ROM Controller register, initialization, 4-12
run-time environment, 6-2, 6-4

S

SCC8530 BAUD CLK ENBL parameter,
7-25
SCC8530 CHA CONTROL parameter,
7-24

SCC8530 CHA DATA parameter, 7-24
SCC8530 CHB CONTROL parameter, 7-24
SCC9530 CHB DATA parameter, 7-25
serial communication interface, 4-22
sim29, 2-2
simulators

building, 3-1

building osboot for, 7-4-7-8

MS-DOS instructions, 7-5—-7-6

UNIX instructions for building osboot,

7-6-7-9

sizing algorithm, 4-14
source files, arithmetic trap handlers, 3-7
special, registers, 5-3
special virtual registers, 5-2
spill trap, 6-3, 6-9, 6-10

handler address, 4-2

Index-6

SRAM, building OSBOOT/Application
model for, A-6
ST bit, 5-5
stack
arrangement, 6-8
growth, 6-8
memory, 5-7, 6-24
physical, 5-9
requirements, 2-5
start address, 6-7
virtual, 5-9
stand-alone systems, building OSBOOT for,
7-14-7-21
stand-alone osboot model, 2-5, 4-22
standard error device, 6-16
standard input device, 6-17, 6-18
standard input mode, 6-18
standard output device, 6-15
standards, xi
start-up function, 4-5
Stdin Mode message, 6-18
Stdin Needed message, 6-16
store_hs handler, 5-6
store_hsdw handler, 5-6
store_hu handler, 5-6
store_hudw handler, 5-6
store_s handler, 5-6
store_u handler, 5-6
storel_hs handler, 5-6
storel_hsdw handler, 5-6
storel_hu handler, 5-6
storel_hudw handler, 5-6
storel_s handler, 5-6
storel_u handler, 5-6
STOREM instruction, 5-5, 5-9
storem_s handler, 5-6
storem_u handler, 5-6
supervisor mode, using a trap to switch to,
C-1
synchronous messages, 6-20
system initialization, 4-7, 4-18—4-21

Processor Initialization and Run-Time Services: OSBOOT

T

target system, 2-5
configuration, 4-18, 4-19
TicksPerMillisecond parameter, 7-23
timer
disabled, 4-8
extension register, 4-2
interrupt, 6-10
reload register, 4-9
timer trap, 6-3, 6-9, 6-10
trap, using to switch to supervisor mode,
C-1
trap handler
customization, 5-7-5-9
integration with OS, 5-7-5-9
protection violation, 5-2
unaligned, 5-5
unaligned access, 5-4-5-7
trap handlers, 2-3
arithmetic operations, 3-6, 5-7-5-10
default, 4-18, 4-19
defined, 4-18
monitor mode, 4-4
protection violation, 3-6
register usage, 4-2, 4-3
source files, 3-6-3-8
unaligned access, 5-5
WARN, 4-4
trap routines, floating-point, 3-6—3-8
TRAPINROM, 5-1, 7-24
traps subdirectory, 3-6
tree structure, 3-1
TU bit, 5-5

U

UCLK parameter, 7-25

Processor Initialization and Run-Time Services: OSBOOT

uDlI
and debugger front ends, 1-3
standard, xi

unaligned access, 5-4

unaligned trap, 5-5

Universal Debugger Interfac8eeUDI.

UNIX
building osboot, 7-6
building osboot for debugger core, 7-11
building osboot for simulators, 7-6
building stand-alone osboot, 7-6, 7-11
makefiles. Seemakefiles

V

VAB register, 4-6, 4-7, 7-23
vector, message interrupt, 4-22
vector table, 4-18, 4-19, 6-3
virtual interrupt vector, 6-20
virtual message, 6-20

virtual registers, 3-6, 5-2
virtual stack, 5-9

W

WARN trap, 4-4, 4-5
word, definition of, xii

X

XRAY29K, 1-3

Index-7

	Contents
	About OSBOOT
	OSBOOT Documentation
	About This Manual
	Suggested Reference Material

	Standards and Conventions
	Standards
	Conventions

	Overview of OSBOOT
	The Bootstrap Module
	The Kernel
	MiniMON29K and OSBOOT
	About DBG_CORE
	About MONTIP
	The OSBOOT/DBG_CORE/MONTIP/DFE Environment

	Using OSBOOT
	OSBOOT/Simulator Model
	OSBOOT/DBG_CORE Model
	Stand-Alone OSBOOT/Application Model
	Stand-Alone OSBOOT/DBG_CORE/Application Model

	OSBOOT Directory and File Organization
	The boot Subdirectory
	The traps Subdirectory

	OSBOOT Bootstrap Module
	OSBOOT Global Register Usage
	OS Start-Up and WARN Trap Handler
	OS Cold Start
	Processor Initialization
	Memory Configuration
	Data Segments Initialization
	System Initialization
	Communications Initialization

	OSBOOT Trap Handlers
	Protection Violation Trap Handler
	Unaligned Access Trap Handler
	Arithmetic Trap Handlers

	HIF Run-Time Services
	HIF Kernel Start-Up Module
	Run-Time Environment
	Register Stack and Memory Stack Arrangement

	HIF Services
	Host HIF Services
	Stand-Alone OSBOOT/Application Model
	OSBOOT/Simulator Model
	OSBOOT/DBG_CORE Model and Stand-Alone OSBOOT/DBG_CORE/Application Model
	DBG_CORE Message System Interface
	How the MiniMON29K Messages are Used
	Implementation of os_V_msg Message Interrupt Handler
	Implementation of Message Communications in HIF Kernel

	Building OSBOOT or OSBOOT/DBG_CORE
	Building OSBOOT for Simulators
	MS-DOS
	UNIX

	Building OSBOOT/DBG_CORE for Target Hardware Platforms
	MS-DOS
	UNIX

	Building OSBOOT for Stand-Alone Systems
	Building a Relocatable Version of OSBOOT
	Building a Relocatable Version of OSBOOT/DBG_CORE
	Building a Stand-Alone System

	OSBOOT Configuration
	Sample Linker Command File

	Examples
	Building the Stand-Alone OSBOOT/Application Model for the SE29240
	Building the Stand-Alone OSBOOT/DBG_CORE/ Application Model for the SE29040
	Building the OSBOOT/Application Model to Transfer from ROM to SRAM
	Building the OSBOOT/Application Model to Transfer from ROM to DRAM
	Building OSBOOT/DBG_CORE for a System Without DRAM

	Using the HIF IOCTL Service for Non-Blocking Reads
	The Problem
	The Solution
	Suggested Reference

	Defining a Trap to Switch to Supervisor Mode
	Switching to Supervisor Mode
	Remaining in Supervisor Mode
	Example Code

	Index

