
Publication# 17819 Rev. A Amendment /0

Issue Date: March 1993

Embedded RISC Processor Selection
February 1993 Benchmark

by Daniel Mann

Advanced
Micro

Devices

When selecting a processor for a new embedded product design, there are a range of factors to be
taken into consideration. A RISC processor is typically selected when performance is of concern. For
this reason processors are often compared with each other when performing synthetic benchmarks.

However, such benchmark comparisons are not sufficient for resolving the processor selection prob-
lem. Certainly compiler optimization technology is important, and most of the major RISC processors
have available highly optimized compilers, but other factors can weigh more heavily when dealing
with embedded product development.

This brief note compares aspects of the underlying 29KTM Family processor architecture relevant to
real-time systems; such as operating system support and interrupt response time. Additionally, sup-
port tools such as embedded debuggers and monitors which can greatly effect product development
times are described.

The topics discussed are more valuable to engineers than the widely touted synthetic benchmark
results and enable an engineer to better judge the performance of a processor in a real-time
application.

INTERRUPT RESPONSE TIME
The Am29000TM processor is free of microcode which
can greatly influence a systems interrupt architecture.
Typically, when an interrupt occurs on a CISC type proc-
essor, a context frame is saved on a memory stack. A
29K Family user is not constrained by built-in microcode
and is free to construct a scheme which reduces over-
heads and better suits real-time system requirements.

Table 1 shows interrupt response times. The 29K Fam-
ily of processors can commence a Freeze Mode inter-
rupt handler surprisingly quickly. Very few processor
cycles elapse before the processor is prepared to com-
mence interrupt processing.

Table 1. Interrupt Response Time

Am29000 µp 80960CACPU

33 MHz 33 MHzSpeed

0.21 µs 0.9 µsMinimum Latency

0.48 µs♦ 4.02 µsWorst-case Latency

♦ 3-cycle memory system assumed

TASK CONTEXT SWITCH
 A task context switch occurs when the operating system
decides that the currently running task is no longer the
highest priority task. When this occurs the processor
registers reflecting the current-task context are updated

to reflect the in-coming task context. The out-going task
context is saved to memory.

Context switching is an operating system overhead
which can burden real-time system performance. Proc-
essors such as the MC68020 should be able to perform
a relatively fast context switch due to their small number
of registers.

However, using techniques such as only restoring sin-
gle activation records and burst-mode memories, the
29K Family is able to perform fast context switching.
(Activation record refers to the group of registers allo-
cated to an individual procedure). Table 2 presents syn-
chronous context switch times. Synchronous context
switching is what happens in a preemtive operating sys-
tem (OS) when one task makes an operating system call
and the OS decides to let another task run instead. The
times shown are for the JMI C EXECUTIVE real-time
operating system.

Table 2. Synchronous Context Switch Times

Am29000 µp 80960CA MC68020CPU

33 MHz 33 MHz 25 MHzSpeed

6 µs 7 µs 17 µsTime

AMD

2 Embedded RISC Processor Selection

SYSTEM CALL SUPPORT
System calls are trusted library functions that execute
with Supervisor mode permissions to access resources
not normally available to the user. System calls can be
frequently used by real-time systems.

The 29K Family register stack and access protection
support enable a reduction in the system call overhead.
Table 3 presents a sample of system call times for the
JMI C EXECUTIVE real-time operating system.

Table 3. System Call Times

80960CACPU

33 MHz 33 MHz 25 MHzSpeed

4.5 µs 5 µs 29 µswrite()

12 µs 19 µs 91 µswrite to queue

12 µs 19 µs 87 µsread from queue

MC68020Am29000 µp

PROCEDURE CALLS
The instruction set of a RISC processor is optimized to
support compiler generated code for a high level lan-
guage such as C. The efficiency with which a processor
supports procedure calls and returns is crucial in deter-
mining overall C language performance.

The C function shown below produces the Fibonacci
number sequence. Though fib() cannot be considered
representative of a typical procedure, it does highlight a
number of issues. The function is recursive, and there-
fore extensively tests the efficiency of the procedure call
and return mechanism. Additionally, the method by
which processor registers are allocated for procedure
use is revealed.

int fib(n)
int n;
{ int result;

if (n <= 2) return 1;
result = fib(n–1) + fib(n–2);
return result;

}

Table 4 shows execution times for the fib() function with
five levels of nested procedure calls.

Table 4. Procedure Call-Stack Overhead

Am29000µp 80960CACPU

33 MHz 33 MHzSpeed

0.30 µs 0.61 µsfib(1)

3.21 µs 6.67 µsfib(5)

The 80960CA allocates fixed groups of registers (win-
dows) for each new procedure call’s use. The Am29000
processor allocates dynamically sized groups of regis-
ters (activation records). Both processors have a limited
amount of on-chip cache (or registers) for fast access to
procedure data. The efficient allocation of the cache re-
source is important in maintaining performance with
deeply nested procedures.

Table 5 indicates the number of words consumed by
fib(1) and fib(5) procedure calls. By allowing the register
allocation to be determined at compile-time, rather than
having hardwired fixed window sizes, the need to flush
and restore registers to external memory is reduced.

Table 5. Procedure Call-Stack Usage

4 words 20 wordsfib(1)

16 words 100 wordsfib(5)

80960CACPU Am29000 µp

BURST-MODE MEMORY ACCESS
An important activity for many real-time systems is mov-
ing blocks of data within memory. The C library routine
memcpy(dest, src, length) can be used to perform this
operation. In practice, data movement is frequently
required by assembly-level interrupt handlers that
cannot make use of support library routines. How-
ever, the memcpy() routine serves the purpose of
demonstrating the underlying processor’s data moving
characteristics.

The code sequence below was extracted from the
memcpy() code for the 80960CA processor. A basic
loop performs a load-store sequence; each trip round
the loop transfers four bytes of data.

L29:
ld (g1),g4 #read source
st g4,(g0) #write
addo g0,4,g0 #dest. pointer
lda 4(g1),g1 #src. pointer
subo 4,g2,g2 #length count
cmpobl 3,g2,L29 #test for end

The following code is the basic loop for memcpy()when
executing on an Am29000 processor. The processor
makes use of burst-mode to transfer blocks of 16 words
(each word = 4 bytes). Each trip round the loop transfers
64 bytes of data.

srl lr4,lr4,2 ;block of 16
sub lr4,lr4,2

L6:
mtsrim cr,15 ;read 16
loadm 0,0,gr96,lr3 ; words
mtsrim cr,15 ;write 16

AMD

3Embedded RISC Processor Selection

storem 0,0,gr96,lr2 ; words
add lr2,lr2,16*4 ;advance pointer
jmpfdec lr4,L6 ;test for end
 add lr3,lr3,16*4 ;advance pointer

Burst-mode is used with load- and store-multiple in-
structions (LOADM and STOREM above). These in-
structions differ from regular load and store instructions
in that consecutively addressed data is transferred be-
tween processor registers and off-chip memory.

In the memcpy() example, the LOADM instruction is
used to read 16 words of data into registers. When the
memory system is operating in burst-mode, address
values are not supplied for each memory access. New
address values are generated when a burst-mode ac-
cess commences. Once initiated, the memory system
supplies consecutive data values until the the burst is
complete.

The 80960CA instruction loop may be shorter (six in-
structions) compared to the Am29000 loop (seven in-
structions), but the 80960CA transfers four bytes per
loop iteration compared to the Am29000 processor’s 64
bytes. Certainly the LOADM and STOREM instructions
are multicycle but their efficiency when accessing data
blocks is much higher than the back-to-back load and
store operations used by the 80960CA code.

MICROCONTROLLERS INCORPORATING
SYSTEM INTERFACE LOGIC
The 29K Family includes three-bus Harvard processors,
two-bus processors with simplified memory system in-

terfaces, and microcontrollers. Many of the family mem-
bers are pin compatible, and User mode code is binary
compatible throughout the family.

The microcontroller members of the family, such as the
Am29200TM microcontroller, include DRAM, ROM, I/O
and other peripheral interface logic on-chip. (See Figure
1) Memory devices can be connected directly to the
chip; without the need for any external glue-circuitry.

Microcontroller devices such as the Am29200
microcontroller make the cost of designing with RISC
very low.

UNIVERSAL DEBUGGER INTERFACE
(UDI)
Code development for embedded processors is gener-
ally more costly than development of code of equivalent
complexity intended for execution on an engineering
workstation. The availability of debug tools and their
configurability is an important factor when selecting a
processor for an embedded project.

Developers of products containing embedded proces-
sors are looking to RISC for future products offering in-
creased capability. The greater performance relative to
RISC processor cost should make this possible. The
suitability, cost, and productivity of the tools available for
code development are likely to be the major factor in de-
ciding the direction ahead when preparing to tool-up for
RISC.

parallel
port

serial
port

video
interface

I/O
port

ROM
controller

DRAM
controller

DMA
controller

PIA

interrupt
controller

ROM or

SRAM

Memory

DRAM

Memory

Am29000
CPU

A I D

Figure 1. Am29200 Microcontroller Block Diagram

AMD

4 Embedded RISC Processor Selection

To meet these needs, AMD has developed a Universal
Debugger Interface (UDI) standard. Tools which comply
with the standard can be freely intermixed. This offers a
greater selection of tool configurations. Additionally, it
simplifies the debug tool development process, which
enables the tool manufacture to bring their product to
market sooner.

UDI divides the debugger task into two processes; the
Debugger Front End (DFE) and the Target Interface
Process (TIP). These two processes communicate via
an Inter-Process Communication (IPC) mechanism
which complies with the UDI protocol. On UNIX
platforms, sockets are used for IPC communication.
Figure 2 presents the UDI approach.

EMBEDDED DEBUG MONITOR AND
SUPPORT OPERATING SYSTEM
The MiniMON29KTM debug monitor assists in develop-
ing software for a 29K Family processor. The monitor is
not standalone. It requires the assistance of a support
module known as the TIP. The TIP executes on a sepa-
rate processor and connects the monitor to the UDI
backplane.

The monitor and the TIP typically are connected via an
RS232 connection or other hardware specific communi-
cation path. In the MiniMON29K monitor, messages
flow between the monitor debug core and the TIP and
enable the target processor operation to be observed
and controlled.

The MiniMON29K monitor is supplied along with a sim-
ple operating system known as OS-boot, see the 29K
Family target software modules in Figure 3. AMD sup-
plies these modules in source form.

The OS-boot code performs processor initialization and
configuration. It also supports a run-time system-call in-
terface called Host Interface (HIF). The 29K Family li-
brary routines typically make HIF service requests.

When developing software for a new 29K Family hard-
ware system, it is normally the case that the OS-boot
and the MiniMON29K monitor message system are first
retargeted to the new hardware. The modular construc-
tion of the MiniMON29K monitor and OS-boot simplifies
the task of getting application code running on new
hardware.

GDB source-level

debugger

 XRAY29KTM source-level
debugger

MiniMON29K interface

MonDFE

Debugger
Front-end Process

UDI-IPC
Layer

Remote-target
Interface Process

ISS instruction

ISSTIP

ICE in-circuit

Emulator

MiniMON29K target

MonTIP

Emulator Pod

Target Monitor
Debugcore

Emulator Cable

Private Link, may be rs232

SDB source-level

debugger

Figure 2. Available Debugging Tools that Conform to UDI Specification

AMD

5Embedded RISC Processor Selection

message system
MSG

MiniMON29K
monitor debugcore

DBG

debugcore
configuration

CFG

communications
drivers

OS-boot

HIF

Application

SER

MiniMON29K monitor

initilization

floating-point
trapware

run-time
support

memory
management

OS Monitor

Link to
MiniMON TIP

MonTIP

Figure 3. 29K Family Target Software Module Configuration

C++ SOFTWARE DEVELOPMENT
C++ is starting to be more frequently selected for use
with medium and large embedded projects. There are
no clear criteria or benchmarks established for selecting
a processor when C++ is the desired programming
language.

The 29K Family is particularly suited to C++ code execu-
tion for a number of reasons:

C++ makes frequent calls to object member-func-
tions. This is likely to place heavy demands on the
procedure call mechanism of the processor. The dy-
namically sized register-blocks (activation records)
allocated to each procedure by a 29K Family proces-
sor will prove efficient at keeping up with the de-
mands of C++ for procedure registers allocation.

Additionally, the Metaware High C 29K compiler is
able to pass objects in register in preference to mem-

ory when supplying object parameters to member
functions. Possibly more importantly, the 29K Family
High Level Language Calling Convention allows for
objects to be returned in registers by procedures.
This avoids the need to pass objects via memory
which is less efficiently accessed compared to on-
chip registers.

Inline functions are also frequently used by C++ pro-
grammers. The large number of registers available
to a 29K Family processor enable optimized inline
code to make efficient use of registers

During the introduction of C++ compilers, debuggers
have often lagged behind in their ability to offer an ef-
fective debug environment. The 29K Family tool-
chain is supported with UDI conforming debuggers
for both C and C++ code development.

