Am1860L and Am188L Family
Instruction Set Manual

February, 1997

AMDZ

© 1997 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchantability or fitness for
a particular application. AMD assumes no responsibility for the use of any circuitry other than the circuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice. AMD
assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the
information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

Trademarks
AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Am186, Am188, and E86 are trademarks of Advanced Micro Devices, Inc.
FusionE86 is a service mark of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

AMD 2\

INTRODUCTION AND OVERVIEW

AMD has a strong history in x86 architecture and its E86™ family meets customer
requirements of low system cost, high performance, quality vendor reputation, quick time
to market, and an easy upgrade strategy.

The 16-bit Am186™ and Am188™" family of microcontrollers is based on the architecture
of the original 8086 and 8088 microcontrollers, and currently includes the 80C186, 80C188,
80L186, 80L188, Am186EM, Am186EMLYV, Am186ER, AM186ES, Am186ESLV,
Am188EM, Am188EMLV, Am188ER, Am188ES, and Am188ESLYV. Throughout this
manual, the term Am186 and Am188 microcontrollersrefers to any of these microcontrollers
as well as future members based on the same core.

The Am186EM/ER/ES and Am188EM/ES/ER microcontrollers build on the 80C186/
80C188 microcontroller cores and offer 386-class performance while lowering system cost.
Designers can reduce the cost, size, and power consumption of embedded systems, while
increasing performance and functionality. This is achieved by integrating key system
peripherals onto the microcontroller. These low-cost, high-performance microcontrollers for
embedded systems provide a natural migration path for 80C186/80C188 designs that need
performance and cost enhancements.

PURPOSE OF THIS MANUAL

Each member of the Am186 and Am188 family of microcontrollers shares the standard 186
instruction set. This manual describes that instruction set. Details on technical features of
family members can be found in the user's manual for that specific device. Additional
information is available in the form of data sheets, application notes, and other
documentation provided with software products and hardware-development tools.

INTENDED AUDIENCE

This manual is intended for computer hardware and software engineers and system
architects who are designing or are considering designing systems based on the Am186
and Am188 family of microcontrollers.

MANUAL OVERVIEW
The information in this manual is organized into 4 chapters and 1 appendix.

B Chapter 1 provides a programming overview of the Am186 and Am188
microcontrollers, including the register set, instruction set, memory organization and
address generation, I/O space, segments, data types, and addressing modes.

B Chapter 2 offers an instruction set overview, detailing the format of the instructions.

B Chapter 3 contains aninstruction setlisting, both by functional type and in alphabetical
order.

B Chapter 4 describes in detail each instruction in the Am186 and Am188 microcontrollers
instruction set.

B Appendix A provides an instruction set summary table, as well as a guide to the
instruction set by hex and binary opcode.

Introduction and Overview iii

AMDA

AMD DOCU

E86 Family
ORDER NO.

19168

20732

20002

20071

19255

21058

MENTATION

DOCUMENT TITLE

Am186EM and Am188EM Microcontrollers Data Sheet

Hardware documentation for the Am186EM, Am186EMLYV, Am188EM, and
Am188EMLV microcontrollers: pin descriptions, functional descriptions, abso-
lute maximum ratings, operating ranges, switching characteristics and wave-
forms, connection diagrams and pinouts, and package physical dimensions.

Am186ER and Am188ER Microcontrollers Data Sheet

Hardware documentation for the Am186ER and Am188ER microcontrollers: pin
descriptions, functional descriptions, absolute maximum ratings, operating rang-
es, switching characteristics and waveforms, connection diagrams and pinouts,
and package physical dimensions.

Am186ES and Am188ES Microcontrollers Data Sheet

Hardware documentation for the Am186ES, Am186ESLV, Am188ES, and
Am18BESLYV microcontrollers: pin descriptions, functional descriptions, absolute
maximum ratings, operating ranges, switching characteristics and waveforms,
connection diagrams and pinouts, and package physical dimensions.

E86 Family Support Tools Brief
Lists available E86 family software and hardware development tools, as well as
contact information for suppliers.

FusionE86“ Catalog

Provides information on tools that speed an E86 family embedded product to
market. Includes products from expert suppliers of embedded development so-
lutions.

FusionE86 Development Tools Reference CD

Provides a single-source multimedia tool for customer evaluation of AMD prod-
ucts as well as Fusion partner tools and technologies that support the E86 family
of microcontrollers and microprocessors. Technical documentation for the E86
family is included on the CD in PDF format.

To order literature, contact the nearest AMD sales office or call 800-222-9323 (in the U.S.
and Canada) or direct dial from any location 512-602-5651. Literature is also available in
postscript and PDF formats on the AMD web site. To access the AMD home page, go to http:/
www.amd.com.

Introduction and Overview

TABLE OF CONTENTS

PREFACE

CHAPTER 1

CHAPTER 2

CHAPTER 3

INTRODUCTION AND OVERVIEW I
PURPOSE OF THIS MANUAL e e e 11
INTENDED AUDIENCE e e e e 11
MANUAL OVERVIEW e e e e 11
AMD DOCUMENTATIONiv
EB6 Family i iv
PROGRAMMING
1.1 REGISTER SET ...t e e e e 1-1
1.1.1 Processor Status Flags Register 1-2
1.2 INSTRUCTION SET . ..ottt e e e e e 1-3
1.3 MEMORY ORGANIZATION AND ADDRESS GENERATION. 1-3
14 1O SPACE e 1-5
1.5 SEGMENTS . . .o e e 1-5
1.6 DATA TYPES. .. o e e 1-5
1.7 ADDRESSING MODES e e 1-7
Register and Immediate Operands., 1-7
Memory Operandsttt e 1-7
INSTRUCTION SET OVERVIEW
2.1 OVERVIEW .. e e e 2-1
2.2 INSTRUCTION FORMATo e e 2-1
2.2.1 Instruction Prefixes 2-1
2.2.2 SegmentOverride Prefix 2-2
2.2.3 OPCOUE . ottt 2-2
224 Operand AdAress e 2-2
2.25 Displacement 2-3
226 Immediate 2-3
2.3 NOTATION. . oo e e e e e e 2-3
24 USINGTHISmManual e 2-4
241 Mnemonicsand Namesiiiiiiiiiinnnn... 2-4
2.4.2 Formsofthelnstruction 2-4
243 WhatltDoesSo e 2-6
244 SYNEAX . vt i 2-6
245 DesCription 2-6
2.4.6 OperationlItPerforms 2-7
2.4.7 Flag Settings After Instruction 2-7
24.8 Examples 2-7
2. 8.9 TIPS ot e 2-8
2.4.10 Related INStructionst 2-8
INSTRUCTION SET LISTING
3.1 INSTRUCTIONSETBY TYPE. e 3-1
3.1.1 Address Calculation and Translation 3-1
3.1.2 Binary Arithmetic 3-2

Table of Contents Y,

AMDA

3.1.4 ComMPariSon e 3-3
3.1.5 Control Transfer 3-3
3.1.6 DataMovement 3-5
3.1.7 Decimal Arithmetic 3-6
318 Flag ... oo 3-7
3.1.9 Input/Output e 3-8
3.1.10 Logical Operationc.uiiui i 3-8
3.1.11 Processor Controlt 3-9
3112 SHNG o e 3-9
3.2 INSTRUCTION SET in alphabeticalorder 3-11
CHAPTER 4 INSTRUCTION SET

4.1 INSTRUCTIONS ... e e 4-1
AAA ASCII Adjust AL After Additioncoovviiieeiiiiiiiee e, 4-2
AAD ASCII Adjust AX Before DiviSiON...........ccccvviiiiieieeee e 4-4
AAM ASCII Adjust AL After Multiplicationcccccvvvveeeeeeniiicciiieeee, 4-6
AAS ASCII Adjust AL After Subtraction...........cccccceveeeeeeiiiiiciciieeee, 4-8
ADC Add Numbers with Carryccccceveeeee e, 4-10
ADD Add NUMDETS .. 4-14
AND (oY [Tor= 1IN AN 5 4-17
BOUND Check Array Index Against Boundscoouvviivvveininiiinennenn, 4-19
CALL Call ProCEAUIE ...t 4-21
CBW Convert Byte Integer to Word............oovvvvvveiiiiiiiiiiiiiiiec e 4-24
CLC Clear Carry Flag ... 4-26
CLD Clear Direction Flagccoooviviiiiiiiee e 4-29
CLI Clear Interrupt-Enable Flag............ooovvvivieieiiiiiciciiiie e 4-31
CMC Complement Carry Flagcoooviviiieeeeiiccii e 4-33
CMP Compare COMPONENTSciiiiiiiiiie it 4-34
CMPS Compare String COMPONENES.........ovvveeiiiiiiiiiieeieie e eeeeeeeeeees 4-36
CWD Convert Word Integer to Doubleword.............cccccocviiiiieiinininnennn. 4-40
DAA Decimal Adjust AL After Additioneevviiiiiiiiiiiieeeeeeeeeee, 4-42
DAS Decimal Adjust AL After Subtractioncccceeeviviiiiiiiieeeennenn, 4-45
DEC Decrement Number by One ..., 4-48
DIV Divide Unsigned NUMDErScooriiiiiiiiei e 4-50
ENTER Enter High-Level Procedure............cccooiiiiiiiirieeee e, 4-53
ESC ESCAPE ... e 4-56
HLT HaIE . 4-57
IDIV DIVIAE INTEOEIS ...ttt 4-60
IMUL MUILIPIY INEEGEIS ...t 4-63
IN Input Component from POIM ... 4-67
INC Increment NUmber BY ONe.........coiiiiiiiiiiiiiiee e 4-69
INS Input String Component from Port ..., 4-71
INT Generate INTErmUPL ... 4-73
IRET INEEITUPE RETUIN ... e e eeeees 4-76
JA JUMP I ADOVE i 4-78
JAE Jump If Above or EQUal........eevevieeeeiiiiieeceeee e 4-80
JB JUMP I BEIOW..eieeiiiie et 4-82
JBE Jump If BElIoOW O EQUALvvveviiieeeeccieeeeee e 4-84
JC JUMP I CaAITY e 4-86
JCXZ Jump If CX ReQIStEr IS ZEer0......cccvie it 4-87
JE JUMP FEQUA ..o 4-89

Vi

Table of Contents

JG
JGE
JL
JLE
JMP
JNA
JNAE
JNB
JNBE
JNC
JNE
JING
JIJNGE
JNL
JNLE
JNO
JNP
JINS
JINZ
JO
JP
JPE
JPO
JS
Jz
LAHF
LDS
LEA
LEAVE
LES
LOCK
LODS
LOOP
LOOPE
LOOPNE
LOOPZ
MOV
MOVS
MUL
NEG
NOP
NOT
OR
ouT
OuTS
POP
POPA
POPF
PUSH

JUMP I GrEALET ...eeviiiieie e 4-91
Jump If Greater or EQuAl..........cooooiiiiiiiiiiii e, 4-93
JUMP I LESS it 4-95
Jump If LesS O EQUAloooiiiiiiiiieiee e 4-97
Jump Uncondition@llyccceeeeeiiiiiiii e 4-99
Jump If NOt ADOVE.......cc e 4-102
Jump If Not Above or Equalcccooovviiiiiiiiiiiiie e 4-103
Jump [NOt BEIOW ... 4-104
Jump If Not Below or Equal..........ccccoviiiiiiiiieiiiiieee e, 4-105
JUMP FNOt CaITY .o 4-106
Jump fNot EQUAaL.........cccoiieeee e 4-107
JUuMPp I NOt Greater......cccuvviiieiieie e 4-109
Jump If Not Greater or Equalcooovviiiiiiiriieee e 4-110
JUMP FNOL LESS coviieiee o 4-111
Jump If Not Less or EqQual........ceeveeeeiiiiiiiiiiiiececee e 4-112
Jump If Not OVEIlOW.........uviiieiieeeeee e 4-113
Jump I NOt Parity........ooocoiiieiee e 4-115
JUMP FNOE SIgN.coieeeie e 4-116
JUMP IFNOLZEIO ..o 4-118
JuMp I OVErfIOW ..cooeeec e 4-119
JUMP IF PANILY oo e e e 4-121
Jump If Parity EVENcooiiieeee i 4-122
Jump If Parity Oddoooviieeeeeeeee e 4-124
JUMP IF SIGN e 4-126
JUMP IF ZEIO e e 4-128
Load AH With FIagSueeeiiiiiii e 4-129
Load DS with Segment and Register with Offset.................... 4-131
Load Effective AdAreSSccoovviiiiiiiiiiiiiiee e 4-133
Leave High-Level Procedure..........cocueeeiiiiiiieiiiiiiiiee e 4-135
Load ES with Segment and Register with Offset...............cccceee. 4-138
LOCK the BUS ...ttt e e 4-140
Load String COMPONENTcccoiiiiiiieeiiiiiie e 4-141
Loop While CX Register IS NOt Zeroovcveveeiiiiieeeiiiiieeeens 4-146
LOOP If EQUA...coeiieieeee e 4-148
Loop If NOt EQUAIcooiiiiiiieiiiiee e 4-150
LOOP If ZEFO it 4-152
MOVE COMPONENT......eiiiieiieeiiiiiiiee et e e 4-153
Move String COMPONENTooiviiiieiiiiie et 4-156
Multiply Unsigned NUMDErScoooviiiiiiiiee e 4-160
Two’s Complement Negationcccoeveeeeeiiiiee e 4-163
NO OPEFALIONcciitiiiee ettt 4-165
One’s Complement Negationccooveevieiiiiieee e, 4-167
Logical INCIUSIVE ORuvviiiiiiiiiec e 4-169
Output Component to POrtccocvviiiiiiieeeeeeceee e 4-171
Output String Component t0 POrt..........cvvvvvveeiiiiviiiiiieireeeeeeeen 4-173
Pop Component from Stackcccccvveeeeii i 4-175
Pop All 16-Bit General Registers from Stack...........ccccccceeiiinnnes 4-178
Pop Flags from Stack...........ooooiiiiiiiiiiiieee e 4-180
Push Component onto Stack ..o, 4-181

Table of Contents Vii

AMDA

APPENDIX A
INDEX

PUSHA
PUSHF
RCL
RCR
REP
REPE
REPNE
REPZ
RET
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS
SHL
SHR
STC
STD
STI
STOS
SUB
TEST
WAIT
XCHG
XLAT
XOR

Push All 16-Bit General Registers onto StacK...............ccuveeeee. 4-184
Push Flags onto Stackcooccviviiiiiiie e 4-186
Rotate through Carry Left......cccvvvviiiieee e, 4-187
Rotate through Carry Rightcoevevieiiiiiiiieee e, 4-189
REPEAL. ... et e 4-191
Repeat While EQUAlcooooiiiiiiiiiceece e 4-193
Repeat While Not Equal...........cccciiiiiiieeee e 4-197
Repeat While ZEer0ccceeeiiiiiiieieeee e 4-201
Return from Procedure...........ccoeeiiiiiiieeiiiiiee e 4-202
ROtAtE Left. ... 4-205
Rotate Right.........uiiiiiiiiieece e 4-207
Store AH INFIagsSccoo oo 4-209
Shift Arithmetic Left......coee e 4-211
Shift Arithmetic Right..........cooiiii e, 4-214
Subtract Numbers wWith BOITOWc.eeeeeiiiiiiiiiiiiiieee e 4-216
Scan String for COMPONENT..........uveiiiiiiiiiee e 4-219
ShIft Left.eei it 4-224
ShiIft RIGNT....ii e e 4-225
St Carry FIag ...ooooiueiiiiiiiiie e 4-228
Set DIreCtion Flag.........ccoovueiiiiiniiiiie e 4-231
Set Interrupt-Enable Flag ... 4-235
Store String COMPONENT........cciiiiiiiiiiiiiiee e 4-237
Subtract NUMDEISuviiiiiiiieee e 4-240
Logical COMPATEcceiiiiiiiieiiiiiee et 4-243
Walt fOr COPrOCESSON . ..vvveeiiiiiiee ettt 4-245
Exchange COMPONENTS.......ccoiiiiiiiiiiiiiiee et 4-246
Translate Table Index to Component..........cccoevveeeeiniiieeennne 4-248
Logical EXCIUSIVE ORcooiiiiiiiiiiiiiieiee e 4-251

INSTRUCTION SET SUMMARY

Viii

Table of Contents

LIST OF FIGURES

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 2-1
Figure 2-2

REQISIEr Set . . o e 1-2
Processor Status Flags Register (FLAGS) e 1-2
Physical-Address Generationt 1-4
Memory and i/fO SPaCe i 1-4
Supported Data TYPeS . . v v vttt 1-6
Instruction Mnemonic and Name Sample, 2-4
Instruction Forms Table Sample 2-4

LIST OF TABLES

Table 1-1
Table 1-2
Table 2-1
Table 2-2
Table 2-3
Table 3-4

Segment Register Selection Rules i 1-5
Memory Addressing Mode Examples i 1-7
Mod field 2-2
aux field ... 2-3
I el . 2-3
INSErUCHION Seto 3-11

Table of Contents iX

AMDA

X Table of Contents

AMD 2\

1 PROGRAMMING

1.1

All members of the Am186 and Am188 family of microcontrollers contain the same basic
set of registers, instructions, and addressing modes, and are compatible with the original
industry-standard 186/188 parts.

REGISTER SET

The base architecture for Am186 and Am188 microcontrollers has 14 registers (see Figure
1-1), which are controlled by the instructions detailed in this manual. These registers are
grouped into the following categories.

B General Registers—Eight 16-bit general purpose registers can be used for arithmetic
and logical operands. Four of these (AX, BX, CX, and DX) can be used as 16-bitregisters
or split into pairs of separate 8-bit registers (AH, AL, BH, BL, CH, CL, DH, and DL). The
Destination Index (DI) and Source Index (Sl) general-purpose registers are used for
data movement and string instructions. The Base Pointer (BP) and Stack Pointer (SP)
general-purpose registers are used for the stack segment and point to the bottom and
top of the stack, respectively.

— Base and Index Registers—Four of the general-purpose registers (BP, BX, DI, and
Sl) can also be used to determine offset addresses of operands in memory. These
registers can contain base addresses or indexes to particular locations within a
segment. The addressing mode selects the specific registers for operand and address
calculations.

— Stack Pointer Register—All stack operations (POP, POPA, POPF, PUSH, PUSHA,
PUSHF) utilize the stack pointer. The Stack Pointer (SP) register is always offset
from the Stack Segment (SS) register, and no segment override is allowed.

B Segment Registers—Four 16-bit special-purpose registers (CS, DS, ES, and SS)
select, at any given time, the segments of memory that are immediately addressable
for code (CS), data (DS and ES), and stack (SS) memory.

B Status and Control Registers—Two 16-bit special-purpose registers record or alter certain
aspects of the processor state—the Instruction Pointer (IP) register contains the offset
address of the next sequential instruction to be executed and the Processor Status Flags
(FLAGS) register contains status and control flag bits (see Figure 1-2).

Note that all members of the Am186 and Am188 family of microcontrollers have additional
peripheral registers, which are external to the processor. These peripheral registers are
not directly accessible by the instruction set. However, because the processor treats these
peripheral registers like memory, instructions that have operands that access memory can
also access peripheral registers. The above processor registers, as well as the additional
peripheral registers, are described in the user’s manual for each specific part.

Programming 1-1

AMDA

Figure 1-1 Register Set
16-Bit Special 16-Bit
Register Register Register
Name 0 7 0 Functions Name 15 0
AddByte " AX AH AL Multiply/Divide CS Code Segment
ressablel nx DH DL I/O Instructions DS
(8-Bit Data Segment
Register [CX CH CL Loop/Shift/Repeat/Count SS
Stack Segment
Names | Bx BH BL ES
Shown) Base Registers Extra Segment
BP base pointer .
Segment Registers
S| source index .
Index Registers
DI destination index } 15 0
SP]' Stack Pointer FLAGS Processor Status Flags
15 General 0 P Instruction Pointer
Registers Status and Control
Registers
1.1.1 Processor Status Flags Register
The 16-bit processor status flags register (see Figure 1-2) records specific characteristics
of the result of logical and arithmetic instructions (bits 0, 2, 4, 6, 7, and 11) and controls the
operation of the microcontroller within a given operating mode (bits 8, 9, and 10).
After an instruction is executed, the value of a flag may be set (to 1), cleared/reset (to 0),
unchanged, or undefined. The term undefined means that the flag value prior to the execution
of the instruction is not preserved, and the value of the flag after the instruction is executed cannot
be predicted. The documentation for each instruction indicates how each flag bit is affected by
that instruction.
Figure 1-2 Processor Status Flags Register (FLAGS)
15 7 0
Reserved
L
[T | | |
OF:' 4y + , 1 1+ AF 1 PF I CF
DF | | | | Res Res Res
Ft !
cor !
TF-—° |
SF~— - C
ZF-— -~ ~*
Bits 15-12—Reserved.
Bit 11: Overflow Flag (OF)—Set if the signed result cannot be expressed within the number
of bits in the destination operand, cleared otherwise.
1-2 Programming

AMDA

1.2

1.3

Bit 10: Direction Flag (DF)—Causes string instructions to auto decrement the appropriate
index registers when set. Clearing DF causes auto-increment. See the CLD and STD
instructions, respectively, for how to clear and set the Direction Flag.

Bit 9: Interrupt-Enable Flag (IF)—When set, enables maskable interrupts to cause the
CPU to transfer control to a location specified by an interrupt vector. See the CLI and STI
instructions, respectively, for how to clear and set the Interrupt-Enable Flag.

Bit 8: Trace Flag (TF)—When set, a trace interrupt occurs after instructions execute. TF
is cleared by the trace interrupt after the processor status flags are pushed onto the stack.
The trace service routine can continue tracing by popping the flags back with an IRET
instruction.

Bit 7: Sign Flag (SF)—Set equal to high-order bit of result (set to O if O or positive, 1 if
negative).

Bit 6: Zero Flag (ZF)—Set if result is O; cleared otherwise.
Bit 5: Reserved

Bit 4: Auxiliary Carry (AF)—Set on carry from or borrow to the low-order 4 bits of the AL
general-purpose register; cleared otherwise.

Bit 3: Reserved

Bit 2: Parity Flag (PF)—Set if low-order 8 bits of result contain an even number of 1 bits;
cleared otherwise.

Bit 1: Reserved

Bit 0: Carry Flag (CF)—Set on high-order bit carry or borrow; cleared otherwise. See the
CLC, CMC, and STC instructions, respectively, for how to clear, toggle, and set the Carry
Flag. You can use CF to indicate the outcome of a procedure, such as when searching a
string for a character. For instance, if the character is found, you can use STC to set CF to
1; if the character is not found, you can use CLC to clear CF to 0. Then, subsequent
instructions that do not affect CF can use its value to determine the appropriate course of
action.

INSTRUCTION SET

Each member of the Am186 and Am188 family of microcontrollers shares the standard 186
instruction set. An instruction can reference from zero to several operands. An operand
can reside in a register, in the instruction itself, or in memory. Specific operand addressing
modes are discussed on page 1-7.

Chapter 2 provides an overview of the instruction set, describing the format of the
instructions. Chapter 3 lists all the instructions for the Am186 and Am188 microcontrollers
in both functional and alphabetical order. Chapter 4 details each instruction.

MEMORY ORGANIZATION AND ADDRESS GENERATION

The Am186 and Am188 microcontrollers organize memory in sets of segments. Memory
is addressed using a two-component address that consists of a 16-bit segment value and
a 16-bit offset. Each segment is a linear contiguous sequence of 64K (21°) 8-bit bytes of
memory in the processor’s address space. The offset is the number of bytes from the
beginning of the segment (the segment address) to the data or instruction which is being
accessed.

The processor forms the physical address of the target location by taking the segment
address, shifting it to the left 4 bits (multiplying by 16), and adding this to the 16-bit offset.

Programming 1-3

AMDA

Theresultis a 20-bit address of the target data or instruction. This allows for a 1-Mbyte physical
address size.

For example, if the segment register is loaded with 12A4h and the offset is 0022h, the
resultant address is 12A62h (see Figure 1-3). To find the result:

1. The segment register contains 12A4h.

2. The segment register is shifted 4 places and is now 12A40h.

3. The offset is 0022h.

4. The shifted segment address (12A40h) is added to the offset (00022h) to get 12A62h.
5. This address is placed on the address bus pins of the controller.

All instructions that address operands in memory must specify (implicitly or explicitly) a 16-
bit segment value and a 16-bit offset value. The 16-bit segment values are contained in one
of four internal segment registers (CS, DS, ES, and SS). See "Addressing Modes” on page
1-7 for more information on calculating the segment and offset values. See "Segments" on
page 1-5 for more information on the CS, DS, ES, and SS registers.

In addition to memory space, all Am186 and Am188 microcontrollers provide 64K of I/O space
(see Figure 1-4). The I/O space is described on page 1-5.

Figure 1-3 Physical-Address Generation
Shift Left
4 Bits
_ll 2 A 4|§egment
ase
15 0 Logical Address
|O 0 2 2 |Offset
v 15 0
A
1 2 A 4]0
_I
19 0
- Y
o| 0 0 2 2 |<_
L
15 0
Y
1 2 A 6 2 | Physical Address
19 * 0
To Memory
Figure 1-4 Memory and i/O Space
Memory
Space M
I/O 4
Space GiK
1-4 Programming

AMDA

1.4

1.5

1/0 SPACE

The 1/O space consists of 64K 8-bit or 32K 16-bit ports. The IN and OUT instructions address
the 1/0O space with either an 8-bit port address specified in the instruction, or a 16-bit port
address in the DX register. 8-bit port addresses are zero-extended so that A15-A8 are
Low. I/O port addresses 00F8h through O0FFh are reserved. The Am186 and Am188
microcontrollers provide specific instructions for addressing 1/0 space.

SEGMENTS
The Am186 and Am188 microcontrollers use four segment registers:

1. Data Segment (DS): The processor assumes that all accesses to the program’s
variables are from the 64K space pointed to by the DS register. The data segment holds
data, operands, etc.

2. Code Segment (CS): This 64K space is the default location for all instructions. All code
must be executed from the code segment.

3. Stack Segment (SS): The processor uses the SS register to perform operations that
involve the stack, such as pushes and pops. The stack segment is used for temporary
space.

4. Extra Segment (ES): Usually this segment is used for large string operations and for
large data structures. Certain string instructions assume the extra segment as the
segment portion of the address. The extra segment is also used (by using segment
override) as a spare data segment.

When a segment register is not specified for a data movement instruction, it's assumed to
be a data segment. An instruction prefix can be used to override the segment register (see
"Segment Override Prefix" on page 2-2).For speed and compact instruction encoding, the
segment register used for physical-address generation is implied by the addressing mode
used (see Table 1-1).

Table 1-1 Segment Register Selection Rules

Memory Reference Needed

Segment Register Used

Implicit Segment Selection Rule

Local Data

Data (DS)

All data references

Instructions

Code (CS)

Instructions (including immediate data)

Stack

Stack (SS)

All stack pushes and pops
Any memory references that use the BP register

External Data (Global)

Extra (ES)

All string instruction references that use the DI register as an index

1.6 DATA TYPES
The Am186 and Am188 microcontrollers directly support the following data types:

B Integer—A signed binary numeric value contained in an 8-bit byte or a 16-bit word. All

operations assume a two’s complement representation.

B Ordinal—An unsigned binary numeric value contained in an 8-bit byte or a 16-bit word.

B Double Word—A signed binary numeric value contained in two sequential 16-bit
addresses, or in a DX::AX register pair.

B Quad Word—A signed binary numeric value contained in four sequential 16-bit
addresses.

B BCD—AnN unpacked byte representation of the decimal digits 0-9.

Programming

AMDA

B ASCII—A byte representation of alphanumeric and control characters using the ASCI|
standard of character representation.

B Packed BCD—A packed byte representation of two decimal digits (0-9). One digit is
stored in each nibble (4 bits) of the byte.

B String—A contiguous sequence of bytes or words. A string can contain from 1 byte up
to 64 Kbyte.

B Pointer—A 16-bit or 32-bit quantity, composed of a 16-bit offset component or a 16-bit
segment base component plus a 16-bit offset component.

In general, individual data elements must fit within defined segment limits. Figure 1-5
graphically represents the data types supported by the Am186 and Am188 microcontrollers.

Figure 1-5 Supported Data Types

Signed 0
Byte [[TTT] Binary , N , 41 ,, 0 g
SignBit4__ qued|"'|"'| [T
Magnitude Decimal ~ BCD BCD BCD
(BCD) Digit N Digit 1 Digit 0
Unsigned 7 0 ; N 4 7 *1 o7 0 o
Byte m asci [T [T
L_MSB | ASCII ASCIl _ ASCIl
Magnitude Charactery ~ Character; Characterg
Signed _ | +1 o 0 0 ; N ;7 1 o7 0
Word [T e -]
. OL BCD L—1 [
SignBit-\=mMsB Most Least
Magnitude Significant Digit Significant Digit
Signed 5 +2 +1 0 ;N o S+l ., 0
Double 31 1615 0
word [T T [T T T String| IS IR R S A R
Sign Bit -~ MmsB | Byte/WordN Byte/Word 1 Byte/Word0
Magnitude +3 +2 +1 0
Signed +7 +6 +5 +4 +3 +2 +1 +0 Pointer h 1 l.
Quad &3 48 47 3231 16 15 0 S B off
word [T I T [T [T | egment Base set
Sign Bit-! - MSB |
Magnitude
+1 0
Unsigned i—srn-rrrrl-rn-rrn-(l)
Word -
- MSB |
Magnitude

1-6 Programming

AMDA

1.7

ADDRESSING MODES

The Am186 and Am188 microcontrollers use eight categories of addressing modes to
specify operands. Two addressing modes are provided for instructions that operate on
register or immediate operands; six modes are provided to specify the location of an
operand in a memory segment.

Register and Immediate Operands

1. Register Operand Mode—The operand is located in one of the 8- or 16-bit registers.

2. Immediate Operand Mode—The operand is included in the instruction.

Memory Operands

A memory-operand address consists of two 16-bit components: a segment value and an
offset. The segment value is supplied by a 16-bit segment register either implicitly chosen
by the addressing mode (described below) or explicitly chosen by a segment override prefix
(see "Segment Override Prefix" on page 2-2). The offset, also called the effective address,
is calculated by summing any combination of the following three address elements:

B Displacement—an 8-bit or 16-bit immediate value contained in the instruction
B Base—contents of either the BX or BP base registers

B Index—contents of either the Sl or DI index registers

Any carry from the 16-bit addition is ignored. Eight-bit displacements are sign-extended to
16-bit values.

Combinations of the above three address elements define the following six memory
addressing modes (see Table 1-2 for examples).

1. Direct Mode—The operand offset is contained in the instruction as an 8- or 16-bit
displacement element.

2. Register Indirect Mode—The operand offset is in one of the BP, BX, DI, or Sl registers.

3. Based Mode—The operand offsetis the sum of an 8- or 16-bit displacement and the contents
of a base register (BP or BX).

4. Indexed Mode—The operand offset is the sum of an 8- or 16-bit displacement and the
contents of an index register (DI or Sl).

5. Based Indexed Mode—The operand offset is the sum of the contents of a base register
(BP or BX) and an index register (DI or SI).

6. Based Indexed Mode with Displacement—The operand offset is the sum of a base
register’s contents, an index register's contents, and an 8-bit or 16-bit displacement.

Table 1-2

Memory Addressing Mode Examples

Addressing Mode Example

Direct nov ax, ds:4
Register Indirect mov ax, [si]

Based mov ax, [bx]4
Indexed mov ax, [si]4
Based Indexed mov ax, [si][bx]
Based Indexed with Displacement mov ax, [si][bx]4

Programming 1-7

AMDA

1-8 Programming

AMD 2\

2 INSTRUCTION SET OVERVIEW

2.1

2.2

2.2.1

OVERVIEW

The instruction set used by the Am186 and Am188 family of microcontrollers is identical to
the original 8086 and 8088 instruction set, with the addition of seven instructions (BOUND,
ENTER, INS, LEAVE, OUTS, POPA, and PUSHA), and the enhancement of nine
instructions (immediate operands were added to IMUL, PUSH, RCL, RCR, ROL, ROR,
SAL/SHL, SAR, and SHR). In addition, three valid instructions are not supported with the
necessary processor pinout (ESC, LOCK and WAIT). All of these instructions are marked
as such in their description.

INSTRUCTION FORMAT

When assembling code, an assembler replaces each instruction statement with its
machine-language equivalent. In machine language, all instructions conform to one basic
format. However, the length of an instruction in machine language varies depending on the
operands used in the instruction and the operation that the instruction performs.

An instruction can reference from zero to several operands. An operand can reside in a
register, in the instruction itself, or in memory.

The Am186 and Am188 microcontrollers use the following instruction format. The shortest
instructions consist of only a single opcode byte.

Instruction Prefixes

Segment Override Prefix

Opcode

Operand Address

Displacement

Immediate

Instruction Prefixes

The REP, REPE, REPZ, REPNE and REPNZ prefixes can be used to repeatedly execute
a single string instruction.

The LOCK prefix may be combined with the instruction and segment override prefixes, and
causes the processor to assert its bus LOCK signal while the instruction that follows
executes.

Instruction Set Overview 2-1

AMDA

2.2.2

2.2.3

2.2.4

Segment Override Prefix

To override the default segment register, place the following byte in front of the instruction,
where RR determines which register is used. Only one segment override prefix can be
used per instruction.

Segment Override 0 01 RR1
Prefix 4 3 2

00 = ES Register
01 = CS Register
10 = SS Register
11 = DS Register

Opcode

This specifies the machine-language opcode for an instruction. The format for the opcodes
is described on page 2-5. Although most instructions use only one opcode byte, the AAD
(D5 OA hex) and AAM (D4 0A hex) instructions use two opcodes.

Operand Address

The following illustration shows the structure of the operand address byte. The operand
address byte controls the addressing for an instruction.

Along withr/m, the Modifier field determines whether the Register/Memory field is

_interpreted as a register or the address of a memory operand. For a memory
operand, the Modifier field also indicates whether the operand is addressed directly
orindirectly. For indirectly addressed memory operands, the Modifier field specifies
the number of bytes of displacement that appear in the instruction. See Table 2-1
for mod values.

Along with mod, the Register/Memory field
specifies a general register or the address of a
memory operand. See Table 2-3 forr/m values.

Operand Address mod aux r/m

The Auxiliary field specifies an opcode extension or a register
that is used as a second operand. See Table 2-2 for aux values

Table 2-1

mod field

mod Description

11 r/mis treated as a reg field
00 DISP = 0, disp-low and disp-high are absent

01 DISP = disp-low sign-extended to 16-bits, disp-high
is absent

10 DISP = disp-high: disp-low

2-2

Instruction Set Overview

AMDA

Table 2-2 aux field
aux If mod=11 and w=0 If mod=11 and w=1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH Sl
111 BH DI
* —When mod#11, depends on instruction
Table 2-3 r/m field
r/m Description
000 EA* = (BX)+(SI)+DISP
001 EA = (BX)+(DI)+DISP
010 EA = (BP)+(SI)+DISP
011 EA = (BP)+(DI)+DISP
100 EA = (SI)+DISP
101 EA = (DI)+DISP
110 EA = (BP)+DISP (except if mod=00, then EA = disp-high:disp:low)
111 EA = (BX)+DISP
* — EA is the Effective Address
2.2.5 Displacement
The displacement is an 8- or 16-bit immediate value to be added to the offset portion of the
address.
2.2.6 Immediate
The immediate bytes contain up to 16 bits of immediate data.
2.3 NOTATION
This parameter Indicates that

The component on the left is the segment for a component located in
memory. The component on the right is the offset.

The component onthe leftis concatenated with the component on the right.

Instruction Set Overview 2-3

AMDA

2.4 USING THIS MANUAL
Each instruction is detailed in Chapter 4. The following sections explain the format used
when describing each instruction.
2.4.1 Mnemonics and Names
The primary assembly-language mnemonic and its name appear at the top of the first page
for an instruction (see Figure 2-1). Some instructions have additional mnemonics that
perform the same operation. These synonyms are listed below the primary mnemonic.
Figure 2-1 Instruction Mnemonic and Name Sample
MUL Multiply Unsigned Numbers
2.4.2 Forms of the Instruction
Many instructions have more than one form. The forms for each instruction are listed in a
table just below the mnemonics (see Figure 2-2).
Figure 2-2 Instruction Forms Table Sample
Clocks
Form Opcode Description Am186 Ami8s
MUL r/m8 F6 /4 AX=(r/m byte)*AL 26-28/32-34 26-28/32-34
MUL r/m16 F7 /4 DX::AX=(r/m word)AX 35-37/41-43 35-37/45-47
Form
The Form column specifies the syntax for the different forms of an instruction. Each form
includes an instruction mnemonic and zero or more operands. Items in italics are
placeholders for operands that must be provided. A placeholder indicates the size and type
of operand that is allowed.
This operand Is a placeholder for
imm8 An immediate byte: a signed number between —128 and 127
imm16 An immediate word: a signed number between —32768 and 32767
m An operand in memory
m8 A byte string in memory pointed to by DS:SI or ES:DI
mi16 A word string in memory pointed to by DS:SI or ES:DI
m16&16 A pair of words in memory
m16:16 A doubleword in memory that contains a full address (segment:offset)
moffs8 A byte in memory that contains a signed, relative offset displacement
moffs16 A word in memory that contains a signed, relative offset displacement
ptrl6:16 A full address (segment:offset)
r8 A general byte register: AL, BL, CL, DL, AH, BH, CH, or DH
ri6 A general word register: AX, BX, CX, DX, BP, SP, DI, or SI
r/m8 A general byte register or a byte in memory
r/m16 A general word register or a word in memory
rel8 A signed, relative offset displacement between —128 and 127
rel16 A signed, relative offset displacement between —32768 and 32767
sreg A segment register
2-4 Instruction Set Overview

AMDA

Opcode

The Opcode column specifies the machine-language opcodes for the different forms of an
instruction. (For instruction prefixes, this column also includes the prefix.) Each opcode
includes one or more numbers in hexadecimal format, and zero or more parameters, which
are shown in italics. A parameter provides information about the contents of the Operand
Address byte for that particular form of the instruction.

This parameter

Indicates that

1017

Ir

/sr

cb
cd

cw

w

/0
1
2
13
14
/5
16
17

The Auxiliary (aux) Field in the Operand Address byte specifies an
extension (from O to 7) to the opcode instead of a register. So for example,
the opcode for adding (ADD) an immediate byte to a general byte register
or a byte in memory is "80 /0 ib". So the second byte of the opcode is
"mod 000 r/m", where mod and r/m are as defined in "Operand Address"
on page 2-2.

The aux field is 0.
The aux field is 1.
The aux field is 2.
The aux field is 3.
The aux field is 4.
The aux field is 5.
The aux field is 6.
The aux field is 7.

The Auxiliary (aux) field in the Operand Address byte specifies a register
instead of an opcode extension. If the Opcode byte specifies a byte register,
the registers are assigned as follows: AL=0, CL=1, DL=2, BL=3, AH=4,
CH=5, DH=6, and BH=7. If the Opcode byte specifies a word register, the
registers are assigned as follows: AX=0, CX=1, DX=2, BX=3, SP=4, BP=5,
SI=6, and DI=7.

The Auxiliary (aux) field in the Operand Address byte specifies a segment
register as follows: ES=0, CS=1, SS=2, and DS=3.

The byte following the Opcode byte specifies an offset.

The doubleword following the Opcode byte specifies an offset and, in some
cases, a segment.

The word following the Opcode byte specifies an offset and, in some cases,
a segment.

The parameter is animmediate byte. The Opcode byte determines whether
it is interpreted as a signed or unsigned number.

The parameteris animmediate word. The Opcode byte determines whether
it is interpreted as a signed or unsigned number.

The byte register operand is specified in the Opcode byte. To determine
the Opcode byte for a particular register, add the hexadecimal value on the
left of the plus sign to the value of rb for that register, as follows:
AL=0,CL=1, DL=2, BL=3, AH=4, CH=5, DH=6, and BH=7. So for example,
the opcode for moving an immediate byte to a register (MOV) is "BO+rb".
So BO-B?7 are valid opcodes, and BO is "MOV AL,imm8&".

The word register operand is specified in the Opcode byte. To determine
the Opcode byte for a particular register, add the hexadecimal value on the
left of the plus sign to the value of rw for that register, as follows:

AX=0, CX=1, DX=2, BX=3, SP=4, BP=5, SI=6, DI=7.

Instruction Set Overview 2-5

AMDA

Description

The Description column contains a brief synopsis of each form of the instruction.
Clocks

The Clocks columns (one for the Am186 and one for the Am188 microcontrollers) specify
the number of clock cycles required for the different forms of an instruction.

This parameter Indicates that

/ The number of clocks required for a register operand is different than the
number required for an operand located in memory. The number to the
left corresponds with a register operand; the number to the right
corresponds with an operand located in memory.

, The number of clocks depends on the result of the condition tested. The
number to the left corresponds with a True or Pass result, and the number
to the right corresponds with a False or Fail result.

n The number of clocks depends on the number of times the instruction is
repeated. nis the number of repetitions.

2.4.3 What It Does
This section contains a brief description of the operation the instruction performs.
2.4.4 Syntax
This section shows the syntax for the instruction. Instructions with more than one mnemonic
show the syntax for each mnemonic.
2.4.5 Description
This section contains a more in-depth description of the instruction.
2-6 Instruction Set Overview

AMDA

2.4.6

2.4.7

2.4.8

Operation It Performs

This section uses a combination of C-language and assembler syntax to describe the
operation of the instruction in detail. In some cases, pseudo-code functions are used to
simplify the code. These functions and the actions they perform are as follows:

Pseudo-Code Function Action

cat(componenta,componentb) Component A is concatenated with component B.

execute(instruction) Execute the instruction.

interrupt(type) Issue an interrupt request to the microcontroller.

interruptRequest() Return True if the microcontroller receives a maskable
interrupt request.

leastSignificantBit(component) Return the least significant bit of the component.

mostSignificantBit(component) Return the most significant bit of the component.

nextMostSignificantBit(component) Return the next most significant bit of the component.

nmiRequest() Return True if the microcontroller receives a nonmaskable
interrupt request.

operands() Return the number of operands present in the instruction.

pop() Read a word from the top of the stack, increment SP, and
return the value.

pow(n,component) Raise component to the nth power.

push(component) Decrement SP and copy the component to the top of the
stack.

resetRequest() Return True ifa device resets the microcontroller by asserting
the RES signal.

servicelnterrupts() Service any pending interrupts.

size(component) Return the size of the component in bits.

stopExecuting() Suspend execution of current instruction sequence.

Flag Settings After Instruction

This section identifies the flags that are set, cleared, modified according to the result,
unchanged, or left undefined by the instruction. Each instruction has the graphic below,
and shows values for the flag bits after the instruction is performed. A "?" in the bit field
indicates the value is undefined; a "—" indicates the bit value is unchanged. See "Processor
Status Flags Register" on page 1-2 for more information on the flags.

OF DF IF TF SF ZF AF PF CF

| 4
Processor Status P — res res res

Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

? = undefined; — = unchanged

Examples
This section contains one or more examples that illustrate possible uses for the instruction.

The beginning of each example is marked with a printout icon; a summary of the example’s
function appears next to it. The example code follows the summary. Note that some of the
examples use assembler directives: CONST (define constant data), DB (define byte), DD
(define double), DW (define word), EQU (equate), LENGTH (length of array), PROC (begin
procedure), SEGMENT (define segment), SIZE (return integer size) and TYPE (return
integer type).

Instruction Set Overview 2-7

AMDA

2.4.9 Tips
This section contains hints and ideas about some of the ways in which the instruction can
be used.
17 Tips are marked with this icon.
2.4.10 Related Instructions
This section lists other instructions related to the described instruction.
2-8

Instruction Set Overview

3 INSTRUCTION SET LISTING

AMDZ

3.1

3.1.1

This chapter lists all the instructions for the Am186 and Am188 family of microcontrollers.
The instructions are first grouped by type (see page 3-1) and then listed in alphabetical

order (see page 3-11)
INSTRUCTION SET BY TYPE

The instructions can be classified into groups according to the type of operation they
perform. Instructions that are used for more than one purpose are listed under each category

to which they belong. The functional groups are:

B "Address Calculation and Translation" on page 3-1
"Binary Arithmetic" on page 3-2

"Block-Structured Language" on page 3-3
"Comparison" on page 3-3

"Control Transfer" on page 3-3

"Data Movement" on page 3-5

"Decimal Arithmetic" on page 3-6

"Flag" on page 3-7

"Input/Output” on page 3-8

"Logical Operation" on page 3-8

"Processor Control" on page 3-9

"String" on page 3-9

Address Calculation and Translation

Address Calculation Instructions

Mnemonic Name See Page
LDS Load DS with Segment and Register with Offset 4-131
LEA Load Effective Address 4-133
LES Load ES with Segment and Register with Offset 4-138
Address Translation Instructions

Mnemonic Name See Page
XLAT Translate Table Index to Component 4-248
XLATB Translate Table Index to Byte (Synonym for XLAT) 4-248

Instruction Set Listing

3-1

AMDA

3.1.2 Binary Arithmetic
The microcontroller supports binary arithmetic using numbers represented in the two’s
complement system. The two’s complement system uses the high bit of an integer (a signed
number) to determine the sign of the number. Unsigned numbers have no sign bit.
Binary Addition Instructions
Mnemonic Name See Page
ADC Add Numbers with Carry 4-10
ADD Add Numbers 4-14
INC Increment Number by One 4-69
Binary Subtraction Instructions
Mnemonic Name See Page
DEC Decrement Number by One 4-48
SBB Subtract Numbers with Borrow 4-216
SUB Subtract Numbers 4-240
Binary Multiplication Instructions
Mnemonic Name See Page
IMUL Multiply Integers 4-63
MUL Multiply Unsigned Numbers 4-160
SAL Shift Arithmetic Left 4-211
SHL Shift Left (Synonym for SAL) 4-211
Binary Division Instructions
Mnemonic Name See Page
DIV Divide Unsigned Numbers 4-50
IDIV Divide Integers 4-60
SAR Shift Arithmetic Right 4-214
SHR Shift Right 4-225
Binary Conversion Instructions
Mnemonic Name See Page
CBW Convert Byte Integer to Word 4-24
CWD Convert Word Integer to Doubleword ~ 4-40
NEG Two’s Complement Negation 4-163

3-2 Instruction Set Listing

AMDA

3.1.3

3.1.4

3.1.5

Block-Structured Language

Block-Structured Language Instructions

Mnemonic Name See Page
ENTER Enter High-Level Procedure 4-53
LEAVE Leave High-Level Procedure 4-135

Comparison

General Comparison Instructions

Mnemonic Name See Page
CMP Compare Components 4-34
TEST Logical Compare 4-243

String Comparison Instructions

Mnemonic Name See Page
CMPS Compare String Components 4-36
CMPSB Compare String Bytes (Synonym for CMPS) 4-36
CMPSW Compare String Words (Synonym for CMPS) 4-36
SCAS Scan String for Component 4-219
SCASB Scan String for Byte (Synonym for SCAS) 4-219
SCASW Scan String for Word (Synonym for SCAS) 4-219

Control Transfer

Conditional Jump Instructions to Use after Integer Comparisons

Mnemonic Name See Page
JG Jump If Greater 4-91
JGE Jump If Greater or Equal 4-93
JL Jump If Less 4-95
JLE Jump If Less or Equal 4-97
ING Jump If Not Greater (Synonym for JLE) 4-97
INGE Jump If Not Greater or Equal (Synonym for JL) 4-95
JNL Jump If Not Less (Synonym for JGE) 4-93
JNLE Jump If Not Less or Equal (Synonym for JG) 4-91

Instruction Set Listing 3-3

AMDA

Conditional Jump Instructions to Use after Unsigned Number Comparisons

Mnemonic Name See Page
JA Jump If Above 4-78
JAE Jump If Above or Equal 4-80
JB Jump If Below 4-82
JBE Jump If Below or Equal 4-84
JNA Jump If Not Above (Synonym for JBE) 4-84
JINAE Jump If Not Above or Equal (Synonym for JB) 4-82
JNB Jump If Not Below (Synonym for JAE) 4-80
JNBE Jump If Not Below or Equal (Synonym for JA) 4-78

Conditional Jump Instructions That Test for Equality

Mnemonic Name See Page
JE Jump If Equal 4-89
JNE Jump If Not Equal 4-107

Conditional Jump Instructions That Test Flags

Mnemonic Name See Page
JC Jump If Carry (Synonym for JB) 4-82
JNC Jump If Not Carry (Synonym for JAE) 4-80
JNO Jump If Not Overflow 4-113
JNP Jump If Not Parity (Synonym for JPO) 4-124
JINS Jump If Not Sign 4-116
INZ Jump If Not Zero (Synonym for INE) 4-107
JO Jump If Overflow 4-119
JP Jump If Parity (Synonym for JPE) 4-121
JPE Jump If Parity Even 4-122
JPO Jump If Parity Odd 4-124
JS Jump If Sign 4-126
JZ Jump If Zero (Synonym for JE) 4-89

Conditional Interrupt Instructions

Mnemonic Name See Page
BOUND Check Array Index Against Bounds 4-19
IDIV Divide Integers 4-60
INTO Generate Interrupt If Overflow (Conditional form of INT) 4-73

3-4 Instruction Set Listing

AMDA

Conditional Loop Instructions

Mnemonic Name See Page
JCXZ Jump If CX Register Is Zero 4-87
LOOP Loop While CX Register is Not Zero 4-146
LOOPE Loop If Equal 4-148
LOOPNE Loop If Not Equal 4-150
LOOPNZz Loop If Not Zero (Synonym for LOOPNE) 4-150
LOOPZ Loop If Zero (Synonym for LOOPE) 4-148

Unconditional Transfer Instructions

Mnemonic Name See Page
CALL Call Procedure 4-21
INT Generate Interrupt 4-73
IRET Interrupt Return 4-76
JMP Jump Unconditionally 4-99
RET Return from Procedure 4-202
3.1.6 Data Movement
General Movement Instructions
Mnemonic Name See Page
MOV Move Component 4-153
XCHG Exchange Components 4-246

String Movement Instructions

Mnemonic Name See Page
LODS Load String Component 4-141
LODSB Load String Byte (Synonym for LODS) 4-141
LODSW Load String Word (Synonym for LODS) 4-141
MOVS Move String Component 4-156
MOVSB Move String Byte (Synonym for MOVS) 4-156
MOVSW Move String Word (Synonym for MOVS) 4-156
STOS Store String Component 4-237
STOSB Store String Byte (Synonym for STOS) 4-237
STOSW Store String Word (Synonym for STOS) 4-237

Instruction Set Listing 3-5

AMDA

Stack Movement Instructions

Mnemonic Name See Page
POP Pop Component from Stack 4-175
POPA Pop All 16-Bit General Registers from Stack 4-178
POPF Pop Flags from Stack 4-180
PUSH Push Component onto Stack 4-181
PUSHA Push All 16-Bit General Registers onto Stack 4-184
PUSHF Push Flags onto Stack 4-186

General 1/O Movement Instructions

Mnemonic Name See Page
IN Input Component from Port 4-67
ouT Output Component to Port 4-171

String I/O Movement Instructions

Mnemonic Name See Page
INS Input String Component from Port 4-71
INSB Input String Byte from Port (Synonym for INS) 4-71
INSW Input String Word from Port (Synonym for INS) 4-71
OUTS Output String Component to Port 4-173
OuUTSB Output String Byte to Port (Synonym for OUTS) 4-173
OUTSW Output String Word to Port (Synonym for OUTS) 4-173

Flag Movement Instructions

Mnemonic Name See Page

LAHF Load AH with Flags 4-129

SAHF Store AH in Flags 4-209
3.1.7 Decimal Arithmetic

In addition to binary arithmetic, the microcontroller supports arithmetic using numbers
represented in the binary-coded decimal (BCD) system. The BCD system uses four bits to
represent a single decimal digit. When two decimal digits are stored in a byte, the number
is called a packed decimal number. When only one decimal digit is stored in a byte, the
number is called an unpacked decimal number.

To perform decimal arithmetic, the microcontroller uses a subset of the binary arithmetic
instructions and a special set of instructions that convert unsigned binary numbers to
decimal.

Arithmetic Instructions That Are Used with Decimal Numbers

Mnemonic Name See Page
ADD Add Numbers 4-14

DIV Divide Unsigned Numbers 4-50

MUL Multiply Unsigned Numbers 4-160
SUB Subtract Numbers 4-240

3-6 Instruction Set Listing

AMDA

3.1.8

Unpacked-Decimal Adjustment Instructions

Mnemonic Name See Page
AAA ASCII Adjust AL After Addition 4-2

AAD ASCII Adjust AX Before Division 4-4

AAM ASCII Adjust AL After Multiplication 4-6

AAS ASCII Adjust AL After Subtraction 4-8
Packed-Decimal Adjustment Instructions

Mnemonic Name See Page
DAA Decimal Adjust AL After Addition 4-42

DAS Decimal Adjust AL After Subtraction 4-45

Consider using decimal arithmetic instead of binary arithmetic under the following

circumstances:

B When the numbers you are using represent only decimal quantities.
Manipulating numbers in binary and converting them back and forth between binary and
decimal can introduce rounding errors.

B When you need to read or write many ASCII numbers.
Converting a number between ASCII and decimal is simpler than converting it between
ASCII and binary.

Flag

Single-Flag Instructions

Mnemonic Name See Page
CLC Clear Carry Flag 4-26

CLD Clear Direction Flag 4-29

CLI Clear Interrupt-Enable Flag 4-31
CMC Complement Carry Flag 4-33

RCL Rotate through Carry Left 4-187
RCR Rotate through Carry Right 4-189
STC Set Carry Flag 4-228
STD Set Direction Flag 4-231

STI Set Interrupt-Enable Flag 4-235
Multiple-Flag Instructions

Mnemonic Name See Page
POPF Pop Flags from Stack 4-180
SAHF Store AH in Flags 4-209

Instruction Set Listing

3-7

AMDA

3.1.9 Input/Output
General I/O Instructions
Mnemonic Name See Page
IN Input Component from Port 4-67
ouT Output Component to Port 4-171
String 1/0O Instructions
Mnemonic Name See Page
INS Input String Component from Port 4-71
INSB Input String Byte from Port (Synonym for INS) 4-71
INSW Input String Word from Port (Synonym for INS) 4-71
OUTS Output String Component to Port 4-173
OUTSB Output String Byte to Port (Synonym for OUTS) 4-173
OUTSW Output String Word to Port (Synonym for OUTS) 4-173
3.1.10 Logical Operation
Boolean Operation Instructions
Mnemonic Name See Page
AND Logical AND 4-17
NOT One’s Complement Negation 4-167
OR Logical Inclusive OR 4-169
XOR Logical Exclusive OR 4-251
Shift Instructions
Mnemonic Name See Page
SAL Shift Arithmetic Left 4-211
SAR Shift Arithmetic Right 4-214
SHL Shift Left (Synonym for SAL) 4-211
SHR Shift Right 4-225
Rotate Instructions
Mnemonic Name See Page
RCL Rotate through Carry Left 4-187
RCR Rotate through Carry Right 4-189
ROL Rotate Left 4-205
ROR Rotate Right 4-207
3-8 Instruction Set Listing

AMDA

3.1.11

3.1.12

Processor Control

Processor Control Instructions

Mnemonic Name See Page
HLT Halt 4-57
LOCK Lock the Bus 4-140
NOP No Operation 4-165

Coprocessor Interface Instructions

Mnemonic Name See Page
ESC Escape 4-56
WAIT Wait for Coprocessor 4-245
String

A string is a contiguous sequence of components stored in memory. For example, a string
might be composed of a list of ASCII characters or a table of numbers.

A string instruction operates on a single component in a string. To manipulate more than
one component in a string, the string instruction prefixes (REP/REPE/REPNE/REPNZ/
REPZ) can be used to repeatedly execute the same string instruction.

A string instruction uses an index register as the offset of a component in a string. Most
string instructions operate on only one string, in which case they use either the Source
Index (SI) register or the Destination Index (DI) register. String instructions that operate on
two strings use Sl as the offset of a component in one string and DI as the offset of the
corresponding component in the other string.

After executing a string instruction, the microcontroller automatically increments or
decrements Sl and DI so that they contain the offsets of the next components in their strings.
The microcontroller determines the amount by which the index registers must be
incremented or decremented based on the size of the components.

The microcontroller can process the components of a string in a forward direction (from
lower addresses to higher addresses), or in a backward direction (from higher addresses
to lower ones). The microcontroller uses the value of the Direction Flag (DF) to determine
whether to increment or decrement Sl and DI. If DF is cleared to 0, the microcontroller
increments the index registers; otherwise, it decrements them.

String-Instruction Prefixes

Mnemonic Name See Page
REP Repeat 4-191
REPE Repeat While Equal 4-193
REPNE Repeat While Not Equal 4-197
REPNZ Repeat While Not Zero (Synonym for REPNE) 4-197
REPZ Repeat While Zero (Synonym for REPE) 4-193

Instruction Set Listing 3-9

AMDA

String Direction Instructions

Mnemonic Name See Page
CLD Clear Direction Flag 4-29

STD Set Direction Flag 4-231
String Movement Instructions

Mnemonic Name See Page
LODS Load String Component 4-141
LODSB Load String Byte (Synonym for LODS) 4-141
LODSW Load String Word (Synonym for LODS) 4-141
MOVS Move String Component 4-156
MOVSB Move String Byte (Synonym for MOVS) 4-156
MOVSW Move String Word (Synonym for MOVS) 4-156
STOS Store String Component 4-237
STOSB Store String Byte (Synonym for STOS) 4-237
STOSW Store String Word (Synonym for STOS) 4-237
String Comparison Instructions

Mnemonic Name See Page
CMPS Compare String Components 4-36
CMPSB Compare String Bytes (Synonym for CMPS) 4-36
CMPSW Compare String Words (Synonym for CMPS) 4-36
SCAS Scan String for Component 4-219
SCASB Scan String for Byte (Synonym for SCAS) 4-219
SCASW Scan String for Word (Synonym for SCAS) 4-219
String I/O Instructions

Mnemonic Name See Page
INS Input String Component from Port 4-71
INSB Input String Byte from Port (Synonym for INS) 4-71
INSW Input String Word from Port (Synonym for INS) 4-71
OUTS Output String Component to Port 4-173
OuUTSB Output String Byte to Port (Synonym for OUTS) 4-173
OUTSW Output String Word to Port (Synonym for OUTS) 4-173

3-10

Instruction Set Listing

AMDA

3.2 INSTRUCTION SET IN ALPHABETICAL ORDER

Table 3-1 provides an alphabetical list of the instruction set for the Am186 and Am188
microcontrollers.

Table 3-1 Instruction Set

Mnemonic Instruction Name See Page
AAA ASCII Adjust AL After Addition 4-2
AAD ASCII Adjust AX Before Division 4-4
AAM ASCII Adjust AL After Multiplication 4-6
AAS ASCII Adjust AL After Subtraction 4-8
ADC Add Numbers with Carry 4-10
ADD Add Numbers 4-14
AND Logical AND 4-17
BOUND Check Array Index Against Bounds 4-19
CALL Call Procedure 4-21
CBW Convert Byte Integer to Word 4-24
CLC Clear Carry Flag 4-26
CLD Clear Direction Flag 4-29
CLI Clear Interrupt-Enable Flag 4-31
CMC Complement Carry Flag 4-33
CMP Compare Components 4-34
CMPS Compare String Components 4-36
CMPSB Compare String Bytes (Synonym for CMPS) 4-36
CMPSW Compare String Words (Synonym for CMPS) 4-36
CWD Convert Word Integer to Doubleword 4-40
DAA Decimal Adjust AL After Addition 4-42
DAS Decimal Adjust AL After Subtraction 4-45
DEC Decrement Number by One 4-48
DIV Divide Unsigned Numbers 4-50
ENTER Enter High-Level Procedure 4-53
ESC Escape 4-56
HLT Halt 4-57
IDIV Divide Integers 4-60
IMUL Multiply Integers 4-63
IN Input Component from Port 4-67
INC Increment Number by One 4-69
INS Input String Component from Port 4-71
INSB Input String Byte from Port (Synonym for INS) 4-71
INSW Input String Word from Port (Synonym for INS) 4-71
INT Generate Interrupt 4-73
INTO Generate Interrupt If Overflow (Conditional form of INT) 4-73
IRET Interrupt Return 4-76
JA Jump If Above 4-78
JAE Jump If Above or Equal 4-80
JB Jump If Below 4-82
JBE Jump If Below or Equal 4-84
JC Jump If Carry (Synonym for JB) 4-82
JCXZ Jump If CX Register Is Zero 4-87

Instruction Set Listing 3-11

AMDA

Table 3-1 Instruction Set (continued)
Mnemonic Instruction Name See Page
JE Jump If Equal 4-89
JG Jump If Greater 4-91
JGE Jump If Greater or Equal 4-93
JL Jump If Less 4-95
JLE Jump If Less or Equal 4-97
JMP Jump Unconditionally 4-99
JNA Jump If Not Above (Synonym for JBE) 4-84
JNAE Jump If Not Above or Equal (Synonym for JB) 4-82
JNB Jump If Not Below (Synonym for JAE) 4-80
JNBE Jump If Not Below or Equal (Synonym for JA) 4-78
JNC Jump If Not Carry (Synonym for JAE) 4-80
JNE Jump If Not Equal 4-107
ING Jump If Not Greater (Synonym for JLE) 4-97
INGE Jump If Not Greater or Equal (Synonym for JL) 4-95
JNL Jump If Not Less (Synonym for JGE) 4-93
JNLE Jump If Not Less or Equal (Synonym for JG) 4-91
JNO Jump If Not Overflow 4-113
JNP Jump If Not Parity (Synonym for JPO) 4-124
JINS Jump If Not Sign 4-116
INZ Jump If Not Zero (Synonym for INE) 4-107
JO Jump If Overflow 4-119
JP Jump If Parity (Synonym for JPE) 4-122
JPE Jump If Parity Even 4-122
JPO Jump If Parity Odd 4-124
JS Jump If Sign 4-126
JZ Jump If Zero (Synonym for JE) 4-89
LAHF Load AH with Flags 4-129
LDS Load DS with Segment and Register with Offset 4-131
LEA Load Effective Address 4-133
LEAVE Leave High-Level Procedure 4-135
LES Load ES with Segment and Register with Offset 4-138
LOCK Lock the Bus 4-140
LODS Load String Component 4-141
LODSB Load String Byte (Synonym for LODS) 4-141
LODSW Load String Word (Synonym for LODS) 4-141
LOOP Loop While CX Register Is Not Zero 4-146
LOOPE Loop If Equal 4-148
LOOPNE Loop If Not Equal 4-150
LOOPNZ Loop If Not Zero (Synonym for LOOPNE) 4-150
LOOPZ Loop If Zero (Synonym for LOOPE) 4-148
MOV Move Component 4-153
MOVS Move String Component 4-156
MOVSB Move String Byte (Synonym for MOVS) 4-156
MOVSW Move String Word (Synonym for MOVS) 4-156
MUL Multiply Unsigned Numbers 4-160
NEG Two’s Complement Negation 4-163
NOP No Operation 4-165
3-12 Instruction Set Listing

AMDA

Table 3-1 Instruction Set (continued)
Mnemonic Instruction Name See Page
NOT One’s Complement Negation 4-167
OR Logical Inclusive OR 4-169
ouT Output Component to Port 4-171
OuUTS Output String Component to Port 4-173
OUTSB Output String Byte to Port (Synonym for OUTS) 4-173
OUTSW Output String Word to Port (Synonym for OUTS) 4-173
POP Pop Component from Stack 4-175
POPA Pop All 16-Bit General Registers from Stack 4-178
POPF Pop Flags from Stack 4-180
PUSH Push Component onto Stack 4-181
PUSHA Push All 16-Bit General Registers onto Stack 4-184
PUSHF Push Flags onto Stack 4-186
RCL Rotate through Carry Left 4-187
RCR Rotate through Carry Right 4-189
REP Repeat 4-191
REPE Repeat While Equal 4-193
REPNE Repeat While Not Equal 4-197
REPNZ Repeat While Not Zero (Synonym for REPNE) 4-197
REPZ Repeat While Zero (Synonym for REPE) 4-193
RET Return from Procedure 4-202
ROL Rotate Left 4-205
ROR Rotate Right 4-207
SAHF Store AH in Flags 4-209
SAL Shift Arithmetic Left 4-211
SAR Shift Arithmetic Right 4-214
SBB Subtract Numbers with Borrow 4-216
SCAS Scan String for Component 4-219
SCASB Scan String for Byte (Synonym for SCAS) 4-219
SCASW Scan String for Word (Synonym for SCAS) 4-219
SHL Shift Left (Synonym for SAL) 4-211
SHR Shift Right 4-225
STC Set Carry Flag 4-228
STD Set Direction Flag 4-231
STI Set Interrupt-Enable Flag 4-235
STOS Store String Component 4-237
STOSB Store String Byte (Synonym for STOS) 4-237
STOSW Store String Word (Synonym for STOS) 4-237
SUB Subtract Numbers 4-240
TEST Logical Compare 4-243
WAIT Wait for Coprocessor 4-245
XCHG Exchange Components 4-246
XLAT Translate Table Index to Component 4-248
XLATB Translate Table Index to Byte (Synonym for XLAT) 4-248
XOR Logical Exclusive OR 4-251

Instruction Set Listing 3-13

AMDA

3-14 Instruction Set Listing

AMD 2\

4 INSTRUCTION SET

4.1 INSTRUCTIONS

This chapter contains a complete description of each instruction that is supported by the
Am186 and Am188 family of microcontrollers. For an explanation of the format of each
instruction, see Chapter 2.

Instruction Set 4-1

AMDA

AAA ASCII Adjust AL After Addition AAA
Clocks

Form Opcode Description Am186 Ami8s

AAA 37 ASCll-adjust AL after addition 8 8

What It Does

AAA converts an 8-bit unsigned binary number that is the sum of two unpacked decimal
(BCD) numbers to its unpacked decimal equivalent.

Syntax

AAA

Description

Use the AAA instruction after an ADD or ADC instruction that leaves a byte result in the
AL register. The lower nibbles of the operands of the ADD or ADC instruction should be in
the range 0-9 (BCD digits). The AAA instruction adjusts the AL register to contain the
correct decimal digit result. If the addition produced a decimal carry, AAA increments the
AH register and sets the Carry and Auxiliary-Carry Flags (CF and AF). If there is no decimal
carry, AAA clears CF and AF and leaves the AH register unchanged. AAA sets the top
nibble of the AL register to 0.

Operation It Performs

if (((AL = AL & OxOF) > 9) || (AF == 1))
/* AL is not yet in BCD format */
/* (note high nibble of AL is cleared either way) */
{
/* convert AL to decimal and unpack */
AL (AL + 6) & OxOF;
AH = AH + 1;

/* set carry flags */

CF = AF = 1;
}
el se
/* clear carry flags */
CF = AF = 0;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF

v
Processor.Status reserved ? - - = 2 7? res res ? res
Flags Register

15 14 13 12 11 10 9 8 7 65 4 3 2 1/0
? = undefined; — = unchanged

AF=1 if carry or borrow to low nibble CF=1 for carry or borrow to high-order bit
AF=0 otherwise CF=0 otherwise

4-2

Instruction Set

AMDA
AAA AAA

Examples
This example adds two unpacked decimal numbers.

UADDEND1 DB 05h ; 5 unpacked BCD
UADDEND2 DB 07h ; 7 unpacked BCD
add unpacked deci nal nunbers
XOR AX, AX ; clear AX
MOV AL, UADDEND1 ; AL = 05h = 5 unpacked BCD
ADD AL, UADDEND2 ; AX = 000Ch = 12
AAA ; AX = 0102h = 12 unpacked BCD

; the AF and CF flags will be set, indicating the carry into AH

Tips

7 Toconvertan unpacked decimal digit to its ASCII equivalent, use OR after AAA to add 30h
(ASCII 0) to the digit.

7 ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal

arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.

Related Instructions

If you want to See
Add two numbers and the value of CF ADC
Add two numbers ADD
Convert an 8-bit unsigned binary sum to its packed decimal equivalent DAA

Instruction Set 4-3

AMDA

AAD ASCII Adjust AX Before Division AAD
Clocks

Form Opcode Description Am186 Ami8s

AAD D5 0A ASCll-adjust AX before division 15 15

What It Does

AAD converts a two-digit unpacked decimal (BCD) number—ordinarily the dividend of an
unpacked decimal division—to its unsigned binary equivalent.

Syntax

AAD

Description

AAD prepares two unpacked BCD digits—the least significant digit in the AL register and
the most significant digit in the AH register—for division by an unpacked BCD digit. The

instruction sets the AL register to AL + (10+AH) and then clears the AH register. The AX
register then equals the binary equivalent of the original unpacked two-digit number.

Operation It Performs

/* convert AX to binary */
(AH * 10) + AL;
0;

AH

Flag Settings After Instruction

OF DF IF TF SF ZF AF PE__CF
Processor Status " 5

. reserved
Flags Register
15 14 13 12 11 10

? = undefined; — = unchanged

res ? res res ?
7/6 5 4 3 /2 1 0

SF=1 if result is O or positive ~~ ZF=1 if result equal to 0
SF=0 if result is negative ZF=0 if result not equal to 0

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

Examples

This example divides a two-digit unpacked decimal number by a one-digit unpacked
decimal number.

UDI VI DEND DW 0409h ; 49 unpacked BCD
uDI VI SOR DB 03h ; 3 unpacked BCD

di vi de unpacked deci mal nunbers (two digit by one digit)

MoV AX, UDI VI DEND AX = 0409h = 49 unpacked BCD
AAD ; AX = 0031h = 49
Dl V UDI VI SOR ; AL = 10h = 16, the quotient

: AH = 01h = 1, the remmi nder
MOV BL, AH ; save remai nder, BL = 01h = 1
AAM ; AX = 0106h = 16 unpacked BCD

4-4

Instruction Set

AMDA
AAD AAD
This_ example uses AAD to convert a two-digit unpacked decimal number to its binary
equivalent.
UBCD DW 0801h

81 unpacked BCD

convert unpacked deci mal nunmber to binary
MOV AX, UBCD ; AX = 0801h

AAD ; AX = 0051h

81 unpacked BCD
81

Tips

(G The microcontroller can only divide unpacked decimal numbers. To divide packed decimal
numbers, unpack them first.

Related Instructions

If you want to See

DIV

Divide an unsigned number by another unsigned number

Instruction Set 4-5

AMDA

AAM ASCII Adjust AL After Multiplication AAM
Clocks

Form Opcode Description Am186 Ami8s

AAM D4 0A ASCll-adjust AL after multiplication 19 19

What It Does

AAM converts an 8-bit unsigned binary number—ordinarily the product of two unpacked
decimal (BCD) numbers—to its unpacked decimal equivalent.

Syntax

AAM

Description

Use AAM only after executing the MUL instruction between two unpacked BCD operands
with the result in the AX register. Because the result is 99 or less, it resides entirely in the
AL register. AAM unpacks the AL result by dividing AL by 10, leaving the quotient (most
significant digit) in AH and the remainder (least significant digit) in AL.

Operation It Performs

/* convert AL to deciml */
AL / 10;
AL % 10;

AL

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor Status ”

. reserved ? - -
Flags Register
15 14 13 12 11 10

? = undefined; — = unchanged

res ? res res ?
7/6 5 4 3 /2 1 0

SF=1 if result is 0 or positive~ ZF=1 if result equal to 0
SF=0 if result is negative ZF=0 if result not equal to 0

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

Examples

This example multiplies two unpacked decimal digits.

UMULTI PLI CAND DB 07h ; 7 unpacked BCD
UMULTI PLI ER DB 06h ; 6 unpacked BCD

; multiply unpacked deci mal nunbers

MoV AL, UMILTI PLI CAND ; AL = 07h = 7 unpacked BCD
MJL UMULTI PLI ER ; AL = 2Ah = 42
AAM ; AX = 0402h = 42 unpacked BCD

4-6

Instruction Set

AMDA

AAM

&

5

AAM

This example uses AAM to divide an unsigned binary number by 10. (The binary number
must be 99 or less.) Note that the quotient occupies the high byte of the result, and the
remainder occupies the low byte of the result. If you use DIV to divide an unsigned number
by 10, the quotient and remainder occupy the opposite halves of the result.

UBI NARY DB 44h ; 68

; divide unsigned binary nunber by 10

MOV AL, UBI NARY AL = 44h = 68
AAM ; AH = 06h = 6, the quotient
: AL = 08h = 8, the remmi nder

Tips

The microcontroller can only multiply unpacked decimal numbers. To multiply packed
decimal numbers, unpack them first.

To convert an unpacked decimal digit to its ASCII equivalent, use OR after AAM to add
30h (ASCII 0) to the digit.

Related Instructions

If you want to See

Multiply two unsigned numbers MUL

Instruction Set 4-7

AMDA

AAS ASCII Adjust AL After Subtraction AAS
Clocks

Form Opcode Description Am186 Ami8s

AAS 3F ASCIll-adjust AL after subtraction 7 7

What It Does

AAS converts an 8-bit unsigned binary number that is the difference of two unpacked
decimal (BCD) numbers to its unpacked decimal equivalent.

Syntax

AAS

Description

Use AAS only after a SUB or SBB instruction that leaves the byte result in AL. The lower
nibbles of the operands of the SUB or SBB instruction must be in the range 0-9 (BCD).
AAS adjusts AL so that it contains the correct decimal result. If the subtraction produced a
decimal borrow, AAS decrements AH and sets CF and AF. If there is no decimal borrow,
AAS clears CF and AF and leaves AH unchanged. AAS sets the top nibble of AL to O.

Operation It Performs

if (((AL = AL & OXOF) > 9) || (AF == 1))
/* AL is not yet decimal */
/* (note high nibble of AL is cleared either way */
{
/* convert AL to decimal and unpack */
AL (AL - 6) & OxOF;
AH = AH - 1;

/* set carry flags */

CF = AF = 1;

}

el se
/* clear carry flags */
CF = AF = 0;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor Status ” "

. reserved
Flags Register
15 14 13 12 11 10 9 8 7 5 4 3 2 1/0

? = undefined; — = unchanged

- - = ? 7 res res ? res

AF=1 if carry or borrow to low nibble CF=1 for carry or borrow to high-order bit
AF=0 otherwise CF=0 otherwise

4-8

Instruction Set

AMDA
AAS AAS

Examples

This example subtracts one unpacked decimal number (the subtrahend) from another
unpacked decimal number (the minuend).

UM NUEND DW 0103h
USUBTRAHEND DB 05h

; 13 unpacked BCD
; 5 unpacked BCD

subtract unpacked deci mal nunbers

MoV AX, UM NUEND ; AX = 0103h = 13 unpacked BCD
SUB AL, USUBTRAHEND : AX = 01FEh
AAS ; AL = 08h = 8 unpacked BCD
Tips
7 Toconvertan unpacked decimal digit to its ASCII equivalent, use OR after AAS to add 30h
(ASCII 0) to the digit.
(G ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal

arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.

Related Instructions

If you want to See
Convert an 8-bit unsigned binary difference to its packed decimal equivalent DAS
Subtract a number and the value of CF from another number SBB
Subtract a number from another number SuUB

Instruction Set 4-9

AMDA

ADC Add Numbers with Carry ADC
Clocks

Form Opcode Description Am186 Ami8s
ADC AL,imm8 14 ib Add immediate byte to AL with carry 3 3

ADC AX,imm16 15 iw Add immediate word to AX with carry 4 4

ADC 1/m8,imm8 80 /2ib Add immediate byte to r/m byte with carry 4/16 4/16
ADC r/mi16,immi16 81 /2iw Add immediate word to r/m word with carry 4/16 4/20
ADC r/m16,imm8 83 /2ib Add sign-extended immediate byte to r/m word with carry 4/16 4/20
ADC r/m8,r8 10 /r Add byte register to r/m byte with carry 3/10 3/10
ADC r/m16,r16 11 /r Add word register to r/m word with carry 3/10 3/14
ADC r8,r/m8 12 /r Add r/m byte to byte register with carry 3/10 3/10
ADC r16,r/mi16 13 /r Add r/m word to word register with carry 3/10 3/14

What It Does

ADC adds two integers or unsigned numbers and the value of the Carry Flag (CF).

Syntax

Description

ADC sum,addend

ADC performs an integer addition of the two operands and the value of CF. ADC assigns
the result to sum and sets CF as required. ADC is typically part of a multibyte or multiword
addition operation. ADC sign-extends immediate-byte values to the appropriate size before
adding to a word operand.

Operation It Performs

if (addend == i nmB)
if (size(sum > 8)
/* extend sign of addend */
if (addend < 0)
addend = OxFFOO | addend,

el se

addend = 0xO0FF & addend,

/* add with carry */
sum = sum+ addend + CF;

4-10

Instruction Set

AMDA

ADC

ADC

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF_ CF
4
Processor Status res res - res

. reserved - =1-
Flags Register
15 14 13 12 /11 10 9

? = undefined; — = unchanged

CF=1 for carry or borrow to high-order bit

OF=1 if result larger than destination operand
CF=0 otherwise

OF=0 otherwise

PF=1 if low byte of result has even number of set bits

SF=1 if result is 0 or positive
PF=0 otherwise

SF=0 if result is negative

AF=1 if carry or borrow to low nibble

ZF=1 if result equal to 0
AF=0 otherwise

ZF=0 if result not equal to 0

Examples
This example adds two 32-bit unsigned numbers.

UADDEND1 DD 592535620 ; 23516044h
UADDEND2 DD 3352720 ; 00332890h

; 32-bit unsigned addition: UADDEND1 = UADDEND1 + UADDEND2
; add left words (bytes and words reversed in menory)
MOV AX, WORD PTR UADDEND2
ADD WORD PTR UADDEND1, AX

; add right words

MoV AX, WORD PTR UADDEND2+2

ADC WORD PTR UADDEND1+2, AX ; UADDEND1 = 238488D4h
= 595888340

1

Instruction Set 4-11

AMDA

ADC ADC
This example adds two 3-byte packed decimal numbers.

PADDEND1 DB 00h, 25h, 86h, 17h ; 258617 packed BCD
PADDEND2 DB 00h, 04h, 21h, 45h ;42145 packed BCD

; multibyte packed deci mal addition: PADDENDL = PADDEND1 + PADDEND2

add right bytes

MoV AL, PADDENDL + 3
ADD AL, PADDEND2 + 3
DAA

MoV PADDEND1 + 3, AL

add next bytes

MoV AL, PADDENDL + 2
ADC AL, PADDEND2 + 2
DAA

MoV PADDEND1 + 2, AL

add next bytes

MoV AL, PADDEND1 + 1
ADC AL, PADDEND2 + 1
DAA

MoV PADDEND1 + 1, AL

if CFis 1, propagate carry into |left byte

JC ADD_CARRY
IVP CONTI NUE
ADD_CARRY:
MOV PADDENDL, 1
CONTI NUE:

Tips

To add two integers or two unsigned numbers that are both stored in memory, copy one
of them to a register before using ADC.

ADC requires both operands to be the same size. Before adding an 8-bit integer to a 16-
bit integer, convert the 8-bit integer to its 16-bit equivalent using CBW. To convert an 8-bit
unsigned number to its 16-bit equivalent, use MOV to copy 0 to AH.

To add numbers larger than 16 bits, use ADD to add the low words, and then use ADC to
add each of the subsequently higher words.

The microcontroller does not provide an instruction that performs decimal addition. To add
decimal numbers, use ADD to perform binary addition, and then convert the resultto decimal
using AAA or DAA.

A

ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal
arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.

4-12 Instruction Set

AMDA

ADC

Related Instructions

If you want to

ADC

See

Convert an 8-bit unsigned binary sum to its unpacked decimal equivalent

Add two numbers

Convert an 8-bit integer to its 16-bit equivalent
Convert an 8-bit unsigned binary sum to its packed decimal equivalent

Change the sign of an integer

AAA
ADD
CBW
DAA
NEG

Instruction Set

4-13

AMDA

ADD Add Numbers ADD
Clocks

Form Opcode Description Am186 Ami8s
ADD AL,imm8 04 ib Add immediate byte to AL 3 3

ADD AX,imm16 05 iw Add immediate word to AX 4 4

ADD 1/m8,imm8 80/0ib Add immediate byte to r/m byte 4/16 4/16
ADD r/mi16,immi16 81 /0 iw Add immediate word to r/m word 4/16 4/20
ADD r/m16,imm8 83/0ib Add sign-extended immediate byte to r/m word 4/16 4/20
ADD r/m8,r8 00 /r Add byte register to r/m byte 3/10 3/10
ADD r/mi16,r16 o1 /r Add word register to r/m word 3/10 3/14
ADD r8,r/m8 02/ Add r/m byte to byte register 3/10 3/10
ADD r16,r/m16 03/ Add r/m word to word register 3/10 3/14

What It Does

ADD adds two integers or unsigned numbers.

Syntax

Description

ADD sum,addend

ADD performs an integer addition of the two operands. ADD assigns the result to sum and
sets the flags accordingly. ADD sign-extends immediate byte values to the appropriate size
before adding to a word operand.

Operation It Performs

if (addend == | nmB)
if (size(sum > 8)
/* extend sign of addend */
if (addend < 0)
addend = OxFFOO | addend,

el se

addend = 0xO00FF & addend,

/* add */

sum= sum + addend,

4-14

Instruction Set

AMDA
ADD ADD

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
reserved - i e res res res

15 14 13 12 /11 10 9
? = undefined; — = unchanged

Processor Status ”
Flags Register

CF=1 for carry or borrow to high-order bit

OF=1 if result larger than destination operand
CF=0 otherwise

OF=0 otherwise

PF=1 if low byte of result has even number of set bits

SF=1 if result is 0 or positive
PF=0 otherwise

SF=0 if result is negative

AF=1 if carry or borrow to low nibble
AF=0 otherwise

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

Examples
This example adds two 16-bit integers.

SADDEND1 DwW - 6360 ; E6ECh
SADDEND2 DwW 723 ; 02D3h
add si gned nunbers
MoV AX, SADDEND2 ;o AX = 723
ADD SADDEND1, AX ; SADDEND1 = -5637

This example adds two 32-bit unsigned numbers.

UADDEND1 DD 592535620 ; 23516044h
UADDEND2 DD 3352720 ; 00332890h

; 32-bit unsigned addition: UADDEND1 = UADDEND1 + UADDEND2

add |l eft words (bytes and words reversed in nenory)

MOV AX, WORD PTR UADDEND2 ;. AX=2890h

ADD WORD PTR UADDEND1, AX ; UADEND1=2351h: : (2890h+6044h)
=235188D4h

; add right words

MoV AX, WORD PTR UADDEND2+2 ; AX=0033h

ADC WORD PTR UADDEND1+2, AX ; UADDEND1=(2351h+0033h)::88D4h

; =238488D4h

=595888340

Tips
To add two integers or two unsigned numbers that are both stored in memory, copy one
of them to a register before using ADD.

ADD requires both operands to be the same size. Before adding an 8-bit integer to a 16-
bit integer, convert the 8-bit integer to its 16-bit equivalent using CBW. To convert an 8-bit
unsigned number to its 16-bit equivalent, use MOV to copy O to AH.

To add numbers larger than 16 bits, use ADD to add the low words, and then use ADC to
add each of the subsequently higher words.

Use INC instead of ADD within a loop when you want to increase a value by 1 each time
the loop is executed.

L 66

Instruction Set 4-15

AMDA

ADD ADD
(G The microcontroller does not provide an instruction that performs decimal addition. To add
decimal numbers, use ADD to perform binary addition, and then convert the result to decimal

using AAA or DAA.

1“7 ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal
arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.

Related Instructions

If you want to See
Convert an 8-bit unsigned binary sum to its unpacked decimal equivalent AAA
Add two numbers and the value of CF ADC
Convert an 8-bit integer to its 16-bit equivalent cBwW
Convert an 8-bit unsigned binary sum to its packed decimal equivalent DAA
Add 1 to a number INC
Change the sign of an integer NEG

4-16 Instruction Set

AMDA

AND Logical AND AND
Form Opcode Description Am186 Ami8s
AND AL,imm8 24 ib AND immediate byte with AL 3 3
AND AX,imm16 25 iw AND immediate word with AX 4 4
AND r/m8,imm8 80/4ib AND immediate byte with r/m byte 4/16 4/16
AND r/mi16,immil6 81 /4 iw AND immediate word with r/m word 4/16 4/20
AND r/m16,imm8 83 /4ib AND sign-extended immediate byte with r/m word 4/16 4/20
AND r/m8,r8 20 /r AND byte register with r/m byte 3/10 3/10
AND r/mi16,r16 21 /r AND word register with r/m word 3/10 3/14
AND r8,r/m8 22 /r AND r/m byte with byte register 3/10 3/10
AND r16,r/m16 23 /r AND r/m word with word register 3/10 3/14

What It Does

AND clears patrticular bits of a component to 0 according to a mask.

Syntax

AND component,mask

Description

AND computes the logical AND of the two operands. If corresponding bits of the operands
are 1, the resulting bit is 1. If either bit or both are 0, the result is 0. The answer replaces

component.

Operation It Performs

/* AND conponent w th mask */
conponent = conponent & mask;

/* clear overflow and carry flags */
OF = CF = 0;

Flag Settings After Instruction

OF DF IF TF SF ZF

Processor Status ”

. d o - -
Flags Register reserve

15 14 13 12 11 10

? = undefined; — = unchanged

SF=1 if result is O or positive

AF PF CF

res ? res res 0

5 4 3 /2 1 O

ZF=1 if result equal to O

SF=0 if result is negative ZF=0 if result not equal to O

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

Instruction Set

4-17

AMDA

AND AND

Examples

This example converts an ASCII number to its unpacked decimal equivalent.

BCD_MASK EQU OFh ; ASCl| -t o-deci mal mask
ASCI | _NUM DB 36h ; ASCII '6’
; convert ASCII number to decimal

MOV AL,ASCIl_NUM : AL = 36h = ASCII "6”

AND AL,BCD_MASK : AL = 06h = decimal 6

This example extracts the middle byte of a word so it can be used by another instruction.

SETTI NGS DwW 1234h

; extract middle byte of AX and place in AH

MoV AX, SETTINGS ; AX = 1234h
AND AX, OFFOh ; mask mddle byte: AX = 0230h
SHL AX, 4 ; shift mddle byte into AH: AX = 2300h

Tips

7 Toconvertan ASCII number (30-39h) to its unpacked decimal equivalent, use AND with
a mask of OFh to clear the bits in the high nibble of the byte.

Related Instructions

If you want to

See
Toggle all bits of a component NOT
Set particular bits of a component to 1 OR
Toggle particular bits of a component XOR

4-18 Instruction Set

AMDA

BOUND*Check Array Index Against Bounds BOUND
Clocks

Form Opcode Description Am186 Ami8s

BOUND ri6,m16&16 62 /r Check to see if word register is within bounds 33-35 33-35

What It Does

BOUND determines whether an integer falls between two boundaries.

Syntax

BOUND index,bounds

Description

BOUND ensures that a signed array index is within the limits specified by a block of memory
between an upper and lower bound. The first operand (from the specified register) must

be greater than or equal to the lower bound value, but not greater than the upper bound.
The lower bound value is stored at the address specified by the second operand. The upper
bound value is stored at a consecutive higher memory address (+2). If the first operand is
out of the specified bounds, BOUND issues an Interrupt 5 Request. The saved IP points
to the BOUND instruction.

Operation It Performs

if ((index < [bounds]) || (index > [bounds + 2]))
/* integer is outside of boundaries */
interrupt(5);

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor Status ” res — res — res —

. reserved 1= 1-1-1-| -
Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

? = undefined; — = unchanged

* — This instruction was not available on the original 8086/8088 systems.

Instruction Set 4-19

AMDA
BOUND

Examples
This example compares aword in a table to the value in AX. Before the comparison, BOUND

checks to see if the table index is within the range of the table. If it is not, the microcontroller
generates Interrupt 5.

BOUND

BOUNDARI ES DwW 0, 256
TABLE DwW 4096 DUP (?)

search table for value in AX

fill table with values and | oad AX with search key
CALL FI LL_TABLE

CALL GET_KEY

load SI with index

; check index before conparison
BOUND S| , BOUNDARI ES ; if out of bounds, call interrupt 5
CwP TABLE[Sl], AX ; conpare components

Tips
7 Use BOUND to check a signed index value to see if it falls within the range of an array.

Related Instructions

If you want to

See
Compare two components using subtraction and set the flags accordingly CMP
Generate an interrupt INT

4-20 Instruction Set

AMDA

CALL Call Procedure CALL
Clocks
Form Opcode Description Am186 Ami8s
CALL rel16 E8 cw Call near, displacement relative to next instruction 15 19
CALL r/m16 FF /2 Call near, register indirect/memory indirect 13/19 17/27
CALL ptr16:16 9A cd Call far to full address given 23 31
CALL m16:16 FF /3 Call far to address at m16:16 word 38 54

What It Does

CALL calls a procedure.

Syntax

CALL procedure

Description

CALL suspends execution of the current instruction sequence, saves the segment (if
necessary) and offset addresses of the nextinstruction, and begins executing the procedure
named by the operand. A return at the end of the called procedure exits the procedure and
starts execution at the instruction following the CALL instruction.

CALL rel16 and CALL r/m16 are near calls. They use the current Code Segment register
value. Near calls push the offset of the next instruction (IP) onto the stack. The near RET
instruction in the procedure pops the instruction offset when it returns control.

B Near direct calls (relative): CALL rel16 adds a signed offset to the address of the next
instruction to determine the destination. CALL stores the result in the IP register.

B Near indirect calls (absolute): CALL r/m16 specifies a register or memory location
from which the 16-bit absolute segment offset is fetched. CALL stores the result in the
IP register.

CALL ptr16:16 and CALL m16:16 are far calls. They use a long pointer to the called
procedure. The long pointer provides 16 bits for the CS register and 16 for the IP register.
Far calls push both the CS and IP registers as a return address. A far return must be used
to pop both CS and IP from the stack.

B Far direct calls: CALL ptr16:16 uses a 4-byte operand as a long pointer to the called
procedure.

B Far indirect calls: CALL m16:16 fetches the long pointer from the memory location
specified (indirection).

A CALL-indirect-through-memory, using the stack pointer (SP) as a base register,
references memory before the call. The base is the value of SP before the instruction
executes.

Instruction Set 4-21

AMDA
CALL CALL

Operation It Performs

/* save return of fset */
push(IP);

if (procedure == rel 16)
/* near direct call */
IP=1P + rel 16;

if (procedure == r/ni6)
/* near indirect call */
IP = [r/m6];

if ((procedure == ptr16:16) || (procedure == mil6: 16))
/* far call */

{
/* save return segnent */
push(CS);
if (procedure == ptr16:16)
/* far direct call */
CS:.IP = ptrlié6: 16;
el se
[* far indirect call */
CS:IP = [nl6: 16] ;
}

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor Status ” —res — res — res —

. reserved -|1=-1-1-|-
Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

? = undefined; — = unchanged
Examples
This example calls a procedure whose address is stored in a doubleword in memory.
PROC_ADDR DD ? ; full address of current procedure

store address of current procedure in PROC_ADDR

1

LDS S|, PROC_ADDR ; | oad segnment of procedure into DS
and of fset of procedure into Sl

call procedure at address stored in doubleword in nenory
CALL DWORD PTR [SI]

4-22 Instruction Set

AMDA
CALL CALL
Tips
(& The assembler generates the correct call (near or far) based on the declaration of the called

procedure.

Related Instructions

If you want to See

Stop executing the current sequence of instructions and begin executing another JMP

End a procedure and return to the calling procedure RET

Instruction Set 4-23

AMDA

CBW Convert Byte Integer to Word CBW
Clocks

Form Opcode Description Am186 Ami8s

cBW 98 Put signed extension of AL in AX 2 2

What It Does
CBW converts an 8-bit integer to a sign-extended 16-bit integer.

Syntax

CBW

Description

CBW converts the signed byte in the AL register to a signed word in the AX register by
extending the most significant bit of the AL register (the sign bit) into all of the bits of the
AH register.

Operation It Performs

/* extend sign of AL to AX */

if (AL < 0)
AH = OxFF;
el se
AH = 0xO00;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor Status ” _ _ _ _ _ _vres — res — res —

. reserved
Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
? = undefined; — = unchanged
Examples

This example converts an 8-bit integer to its 16-bit equivalent before adding it to another
16-bit integer.

SADDEND1 DB -106 ;. 96h
SADDEND2 DW 25000 ; 61A8h
add word integer to byte integer
MOV AL, SADDEND1 ; AL = 96h = -106
CBW ; AX = FF96h = -106
ADD AX, SADDEND2 ; AX = 613Eh = 24894

4-24

Instruction Set

AMDA

This example converts an 8-bit integer to its 16-bit equivalent before dividing it by an 8-bit
integer.

SDI VI DEND DB 101 ; 65h

SDI VI SOR DB -3 ; FDh

; divide byte integers
MOV AL, SDI VI DEND : AL = 65h = 101
CBW : AX = 0065h = 101
I DIV SDI VI SOR ; AL = DFh -33, the quotient

2, the renmainder

Tips
7 Toconvertan 8-bit unsigned number in AL to its 16-bit equivalent, use MOV to copy 0 to AH.

Related Instructions

If you want to See
Add two numbers with the value of CF ADC
Add two numbers ADD
Convert a 16-bit integer to its 32-bit equivalent CWD
Divide an integer by another integer IDIV
Subtract a number and the value of CF from another number SBB
Subtract a number from another number SUB

Instruction Set 4-25

AMDA

CLC Clear Carry Flag CLC
Clocks

Form Opcode Description Am186 Ami8s

CLC F8 Clear Carry Flag 2 2

What It Does
CLC clears the Carry Flag (CF) to 0.

Syntax

CLC

Description
CLC clears CF.

Operation It Performs

/* clear carry flag */
CF = 0O;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF

4
Sliocesey SRS reserved - — —-— — — —res — res—resO

Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

? = undefined; — = unchanged

Examples

This example rotates the bits of a byte to the left, making sure that the high bit remains 0.

; rotate byte, maintaining O in high bit

MoV AL, 01101011b ; AL = 01101011b
CLC ; CF=0
RCR AL, 1 ; AL = 00110101b, CF =1

4-26

Instruction Set

AMDA

CLC

CLC

This example scans a string in memory until it finds a character or until the entire string is
scanned. The microcontroller scans the bytes, one by one, from first to last. If the string
contains the character, the microcontroller sets the Carry Flag (CF) to 1; otherwise, it clears

CFto 0.
STRI NG DB 10 DUP (?)
NULL EQU 0
notify assenbler that DS and ES specify
the sane segnent of nenory
ASSUVE DS: DATASEG ES: DATASEG
; set up segment registers with same segnent
MoV AX, DATASEG ; copy data segnment to AX
MoV DS, AX ; copy AX to DS
MoV ES, AX ; copy AX to ES
; Initialize and use string
set up registers and flags
MoV AL, NULL ; copy character to AL
LEA Dl , STRI NG ; load offset (segnent = ES)
MoV CX, LENGTH STRING ; set up counter
CLD ; process string low to high
scan string for character
REPNE SCASB
; If string contains character
JE FOUND
el se
JWP NOT_FOUND
FOUND:
STC ; indicate found
JMP CONTI NUE
NOT_FOUND:
CLC ; indicate not found
CONTI NUE:

Instruction Set 4-27

AMDA

CLC CLC

Tips

"7 Youcanuse CF to indicate the outcome of a procedure, such as when searching a string
for a character. For instance, if the character is found, you can use STC to set CF to 1; if
the character is not found, you can use CLC to clear CF to 0. Then, subsequent instructions
that do not affect CF can use its value to determine the appropriate course of action.

1“7 TorotateaO into a component, use CLC to clear CF to 0 before using RCL or RCR.
Related Instructions
If you want to See
Toggle the value of CF CMC
Rotate the bits of a component and CF to the left RCL
Rotate the bits of a component and CF to the right RCR
SetCFto1l STC

4-28

Instruction Set

AMDA

CLD Clear Direction Flag CLD
Clocks

Form Opcode Description Am186 Ami8s

CLD FC Clear Direction Flag so the Source Index (SI) and/or the 2 2

Destination Index (DI) registers will increment during
string instructions

What It Does

CLD clears the Direction Flag (DF) to 0, causing subsequent repeated string instructions
to process the components of a string from a lower address to a higher address.

Syntax

CLD

Description

CLD clears DF, causing subsequent string operations to increment the index registers on
which they operate: Sl and/or DI.

Operation It Performs

/* process string conmponents fromlower to higher addresses */
DF = 0;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor Status ” 0

. reserved -
Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

? = undefined; — = unchanged

- - — —Ies — res — res —

Examples
This example fills a string in memory with a character. Because the Direction Flag (DF) is
cleared to 0 using CLD, the bytes are filled, one by one, from first to last.

STRI NG DB 128 DUP (?)
POUND DB £y : 2Ah

; fill string with character
; set up registers and flags

MOV AX,SEG STRING
MOV ES,AX

MOV AL,POUND ; copy character to AL
LEA DI,STRING ; load offset (segment = ES)
MOV CX,LENGTH STRING ; set up counter
CLD ; process string going forward
; fill string

REP STOSB

Instruction Set 4-29

AMDA
CLD CLD

This example copies one string of 16-bit integers in memory to another string in the same
segment. Because the Direction Flag (DF) is cleared to 0 using CLD, the microcontroller
copies the words, one by one, from first to last.

; defined in SEG 1 segnent
SOURCE DW 350, - 4821, - 276, 449, 10578
DEST DW 5 DUP (?)

; direct assenbler that DS and ES point to
; the sanme segnent of nenory
ASSUME DS: SEG 1, ES: SEG 1

set up DS and ES with sane segnent address
MoV AX, SEG 1 ; copy data segnment to AX
MoV DS, AX ; copy AX to DS
MoV ES, AX ; copy AX to ES

set up registers and fl ags

LEA SI SOURCE ; load source offset (segnent = DS)
LEA Dl , DEST ; load dest. offset (segnent = ES)
MoV CX, 5 ; set up counter

CLD ; process string low to high

copy source string to destination string
REP MOVSW
Tips

(G Before using one of the string instructions (CMPS, INS, LODS, MOVS, OUTS, SCAS, or
STOS), always set up CX with the length of the string, and use CLD (forward) or STD
(backward) to establish the direction for string processing.

(G The string instructions always advance Sl and/or DI, regardless of the use of the REP prefix.
Be sure to set or clear DF before any string instruction.

Related Instructions

If you want to See
Compare a component in one string with a component in another string CMPS
Copy a component from a port in I/O memory to a string in main memory INS
Copy a component from a string in memory to a register LODS
Copy a component from one string in memory to another string in memory MOVS
Copy a component from a string in main memory to a port in I/O memory OUTS
Compare a string component located in memory to a register SCAS
Process string components from higher to lower addresses STD
Copy a component from a register to a string in memory STOS

4-30 Instruction Set

AMDA

CLI Clear Interrupt-Enable Flag CLI
Clocks

Form Opcode Description Am186 Ami8s

CLI FA Clear Interrupt-Enable Flag (IF) 2 2

What It Does
CLI clears the Interrupt-Enable Flag (IF), disabling all maskable interrupts.

Syntax

CLI

Description

CLlI clears IF. Maskable external interrupts are not recognized at the end of the CLI
instruction—or from that point on—until IF is set.

Operation It Performs

/* disabl e nmaskabl e interrupts */
IF = 0;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor Status ”

. reserved -1 - 0 — — — res — res — res —
Flags Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
? = undefined; — = unchanged

Instruction Set 4-31

AMDA

CLI

L 44§

CLI

Examples

This example of an interrupt-service routine: enables interrupts so that interrupt nesting
can occur, resets a device, disables interrupts until the interrupted procedure is resumed,
and then clears the in-service bits in the In-Service (INSERV) register by writing to the End-
Of-Interrupt (EOI) register.

the mcrocontroll er pushes the flags onto
; the stack before executing this routine

; enable interrupt nesting during routine
| SR1 PRCC FAR

PUSHA ; save general registers

STI ; enabl e unmasked naskabl e interrupts
MRESET_DEVI CE1 ; perform operation (macro)

CLI ; disable maskable interrupts until |RET

reset in-service bits by witing to EQ register

MOV DX, | NT_EQ _ADDR ; address of EQ register
MOV AX, 8000h ; non-specific EO
ouT DX, AX ; Wite to EO register
POPA ; restore general registers
| RET

| SR1 ENDP

the mcrocontroller pops the flags fromthe stack
before returning to the interrupted procedure

Tips

When the Interrupt-Enable Flag (IF) is cleared to 0 so that all maskable interrupts are
disabled, you can still use INT to generate an interrupt, even if it is masked by its interrupt
control register.

Software interrupts and traps, and nonmaskable interrupts are not affected by the IF flag.

The IRET instruction restores the value of the Processor Status Flags register from the
value pushed onto the stack when the interrupt was taken. Modifying the Processor Status
Flags register via the STI, CLI or other instruction will not affect the flags after the IRET.

If you disable maskable interrupts using CLI, the microcontroller does not recognize
maskable interrupt requests until the instruction that follows STl is executed.

After using CLI to disable maskable interrupts, use STI to enable them as soon as possible
to reduce the possibility of missing maskable interrupt requests.

Related Instructions

If you want to See

Enable maskable interrupts that are not masked by their interrupt control registers STI

4-32

Instruction Set

AMDA

CMC Complement Carry Flag CMC
Clocks

Form Opcode Description Am186 Ami8s

CMC F5 Complement Carry Flag 2 2

What It Does
CMC toggles the value of the Carry Flag (CF).
Syntax

CMC

Description
CMC reverses the setting of CF.

Operation It Performs

/* toggle value of carry flag */
CF = ~ CF;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF

4
Processor Status reserved _ _ _ _ _ _ res — res — res

Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1/0
? = undefined; — = unchanged

CF contains the complement of its original value

Related Instructions

If you want to See
Clear the value of CF to 0 CLC
Rotate the bits of a component and CF to the left RCL
Rotate the bits of a component and CF to the right RCR
Set the value of CF to 1 STC

Instruction Set 4-33

AMDA

CMP Compare Components CMP
Clocks

Form Opcode Description Am186 Ami8s
CMP AL,imm8 3Cib Compare immediate byte to AL 3 3

CMP AX,imm16 3D iw Compare immediate word to AX 4 4

CMP r/m8,imm8 80 /7ib Compare immediate byte to r/m byte 3/10 3/10
CMP r/mi16,imml16 81 /7 iw Compare immediate word to r/m word 3/10 3/14
CMP r/m16,imm8 83 /7ib Compare sign-extended immediate byte to r/m word 3/10 3/14
CMP r/m8,r8 38 /r Compare byte register to r/m byte 3/10 3/10
CMP r/m16,r16 39 /r Compare word register to r/m word 3/10 3/14
CMP r8,r/m8 A Compare r/m byte to byte register 3/10 3/10
CMP r16,r/m16 3B/ Compare r/m word to word register 3/10 3/14

What It Does

CMP compares two components using subtraction and sets the flags accordingly.

Syntax

Description

CMP valuel,value2

CMP subtracts the second operand from the first, but does not store the result. CMP only
changes the flag settings. The CMP instruction is typically used in conjunction with

conditional jumps. If an operand greater than one byte is compared to an immediate byte,
the byte value is first sign-extended.

Operation It Performs

if (value2

== | nm®B)

if (size(valuel) > 8)
/* extend sign of value2 */
if (value2 < 0)
val ue2 = OxFFOO | val ue2;

el se

val ue2 = OxO00FF & val ue2;

/* conpare val ues */
temp = valuel - val ue2;

[* don’t store result, but set appropriate flags */

4-34

Instruction Set

AMDA

CMP

CMP

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
reserved - i e res res res

15 14 13 12 /11 10 9
? = undefined; — = unchanged

Processor Status ”
Flags Register

OF=1 if result larger than destination operand
OF=0 otherwise

CF=1 for carry or borrow to high-order bit
CF=0 otherwise

SF=1 if result is 0 or positive
SF=0 if result is negative

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

AF=1 if carry or borrow to low nibble
AF=0 otherwise

Examples

This example waits for a character from the serial port. DEC, JCXZ, and JMP implement
a construct equivalent to the C-language do-while loop. CMP and JNE implement an
if statement within the loop.

|l oop for a maxi mum nunber of tines or until a
; serial-port character is ready

MOV CX, 100h ; set up counter
LOOP_TOP:
CHAR_READY ; read character into AH (nacro)
CWP AH, O ; 1s a character ready?
JNE GOT_CHAR ; If so, then junp out with character
DEC CX ; subtract 1 from counter
JCXZ NO_CHAR ; if CXis 0, junp out without character
JVP LOOP_TOP ; if not, junp to top of |oop
GOT_CHAR:
NO_CHAR:
Tips

Don’t compare signed values with unsigned values. Compare either two integers or two
unsigned numbers.

Related Instructions

If you want to See

Determine whether particular bits of a component are set to 1 TEST

Instruction Set 4-35

AMDA

CMPS Compare String Components CMPS
CMPSB Compare String Bytes
CMPSW Compare String Words
Clocks
Form Opcode Description Am186 Am188
CMPS m8,m8 A6 Compare byte ES:[DI] to byte segment:[Sl] 22 22
CMPS m16,m16 A7 Compare word ES:[DI] to word segment:[Sl] 22 26
CMPSB A6 Compare byte ES:[DI] to byte DS:[SI] 22 22
CMPSW A7 Compare word ES:[DI] to word DS:[SI] 22 26

What It Does

CMPS compares a component in one string to a component in another string.

Syntax

To override the default source
segment (DS) and to have the
assembler type-check your operands,
CMPSB use this form. In this form, source is

segment:[Sl]. The assembler uses the
Sl segment in DS unless you specify a
different segment register as part of Regardless of the form of CMPS
the source string component. The you use, destination is always
assembler uses the definitions of the ES:[DI]. Before using any form of
string components to determine their CMPS, make sure that: ES

CMPS source,destination

sizes. contains the segment of the
.) destination string, DI contains
To compare a byte within a string the offset of the destination

located in the destination segment string, and Sl contains the offset
specified in ES to a byte within astring of the source string.

located in the source segment

specified in DS, use this form.

To compare a word within a string
located in the destination segment

— specifiedin ES to a word within a string
located in the source segment
specified in DS, use this form.

Description

CMPS compares the byte or word pointed to by the Sl register with the byte or word pointed
to by the DI register. You must preload the registers before executing CMPS.

CMPS subtracts the DI indexed operand from the Sl indexed operand. No result is stored,;
only the flags reflect the change. The operand size determines whether bytes or words are
compared. The first operand (Sl) uses the DS register unless a segment override byte is
present. The second operand (DI) must be addressable from the ES register; no segment
override is possible. After the comparison, both the source-index register and the
destination-index register are automatically advanced. If DF is 0, the registers increment
according to the operand size (byte=1; word=2); if DF is 1, the registers decrement.

CMPSB and CMPSW are synonymous with the byte and word CMPS instructions,
respectively.

4-36

Instruction Set

AMDA

CMPS

CMPS

Operation It Performs

i f (size(destination) == 8)
/* conpare bytes */
{
tenp = DS:[SI] - ES:[DI]; /* conpare */
if (DF == 0) /* forward */
increment = 1;
el se /* backward */
increment = -1;
}
if (size(destination) == 16)
/* conpare words */
{
tenp = DS:[SI] - ES:[D];
if (DF == 0) [* forward */
increment = 2;
el se /* backward */
increment = -2;
}

/* point to next string conponent */
S| S| + increnent;
DI DI + increnent;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF

| 4
Processor Status reserved I res res res

Flags Register

15 14 13 12 /11 10 9
? = undefined; — = unchanged

CF=1 for carry or borrow to high-order bit

OF=1 if result larger than destination operand
CF=0 otherwise

OF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to O
ZF=0 if result not equal to 0

AF=1 if carry or borrow to low nibble
AF=0 otherwise

Instruction Set 4-37

AMDA

CMPS CMPS

Examples

This example compares for equality one string of nonzero words stored in the segment
specified in ES to another string of nonzero words located in the same segment. The
microcontroller compares the words, one by one, from first to last, unless any two words
being compared don’t match. If both strings are the same, the microcontroller loads 0 into
AX; otherwise, it loads the word that was different in the second string into AX.

defined in SEG E segnent
STRI NGL DW 64 DUP (?)
STRI N& DwW LENGTH STRI NGL DUP (?)

; conpare strings for equality
notify assenbler: DS and ES point to
di fferent segnents of nenory

ASSUME DS: SEG D, ES: SEG E

; set up DS and ES with different segnent addresses

MoV AX, SEG D ; load one segnent into DS
MoV DS, AX ; DS points to SEG D

MoV AX, SEG E ; load anot her segnent into ES
MOV ES, AX ; ES points to SEG E

; initialize and use strings

set up registers and flags

LEA Sl , ES: STRI NGL ; 1 oad source of f set (segnent = ES)
LEA Dl , STRI NG ; load dest. offset (segnent = ES)
MoV CX, LENGTH STRINGL ; set up counter

CLD ; process string low to high

conpare strings for equality using segnent override
; for source
REPE CWPS ES: STRI NGL, STRI N&2

if both strings are the sane, then junp
JE SAME

; else, load unequal word into AX

MOV AX, STRING2[DI]
JMP CONTI NUE
SAME:
i ndicate both strings are the sane
MoV AX 0
CONTI NUE:

4-38 Instruction Set

AMDA

CMPS

5

L 6

CMPS
Tips

Before using CMPS, always set up CX with the length of the string, and use CLD (forward)
or STD (backward) to establish the direction for string processing.

To determine whether one string is the same as another, use the REPE (or REPZ) prefix
to execute CMPS repeatedly. If all the corresponding components match, ZF is set to 1.

To determine whether one string is different from another, use the REPNE (or REPNZ)

prefix to execute CMPS repeatedly. If no corresponding components match, ZF is cleared
to 0.

The string instructions always advance Sl and/or DI, regardless of the use of the REP prefix.
Be sure to set or clear DF before any string instruction.

Related Instructions

If you want to See

Process string components from lower to higher addresses CLD
Repeat one string comparison instruction while the components are the same REPE
Repeat one string comparison instruction while the components are not the same REPNE
Compare a component in a string to a register SCAS
Process string components from higher to lower addresses STD

Instruction Set 4-39

AMDA

CWD Convert Word Integer to Doubleword CWD
Clocks

Form Opcode Description Am186 Ami8s

CWD 99 Put signed extension of AX in DX::AX 4 4

What It Does

CWD converts a 16-bit integer to a sign-extended 32-bit integer.

Syntax

CwWD

Description

CWD converts the signed word in the AX register to a signed doubleword in the DX::AX
register pair by extending the most significant bit of the AX register into all the bits of the
DX register.

Operation It Performs

/* extend sign of AX into DX */

if (AX < 0)

DX = OxFFFF;
el se

DX = 0x0000;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor Status ” res — res — res —

. reserved -1 -1-1-1-
Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

? = undefined; — = unchanged

Examples
This example divides one 16-bit integer by another 16-bit integer.

SDI VI DEND DwW 5800 ; 16A8h
SDI VI SOR Dw -45 ; FFD3h

di vi de word integers

MOV AX, SDI VI DEND ; AX = 16A8h = 5800
C\D ; DX:: AX = 000016A8h = 5800
1 DIV SDI VI SOR ; AX = FF80h = -128, the quoti ent

DX = 0028h = -40, the renainder

4-40 Instruction Set

AMDA

CWD

CWD
This example divides one 16-bit integer by another 16-bit integer.
SDI VI DEND DW - 1675 ; F975h
SDI VI SCR DW 200 ; 00C8h

; divide word integers

MoV AX, SDI VI DEND ; AX = F975h = -1675
QWD ; DX:: AX = FFFFF975h = -1675
1 DIV SDI VI SOR ; AX = FFF8h = -8, the quotient

DX = FFB5h -75, the renmai nder

Tips

If you want to divide a 16-bit integer (the dividend) by another 16-bit integer (the divisor):
use MOV to copy the dividend to AX, use CWD to convert the dividend into its 32-bit
equivalent, and then use IDIV to perform the division.

Related Instructions

If you want to

See
Convert an 8-bit integer to its 16-bit equivalent CcBW
Divide an integer by another integer IDIV

Instruction Set 4-41

AMDA

DAA Decimal Adjust AL After Addition DAA
Clocks

Form Opcode Description Am186 Ami8s

DAA 27 Decimal-adjust AL after addition 4 4

What It Does

DAA converts an 8-bit unsigned binary number that is the sum of two single-byte packed
decimal (BCD) numbers to its packed decimal equivalent.

Syntax

DAA

Description

Execute DAA only after executing an ADD or ADC instruction that leaves a two-BCD-digit
byte result in the AL register. The ADD or ADC operands should consist of two packed
BCD digits. DAA adjusts the AL register to contain the correct two-digit packed decimal
result.

Operation It Performs

if (((AL & OxOF) > 9) || (AF == 1))
/* low nibble of AL is not yet in BCD format */

{

/* convert |ow nibble of AL to decimal */
AL = AL + 6;

/* set auxiliary (decimal) carry flag */

AF = 1;

}

el se
/* clear auxiliary (decimal) carry flag */
AF = 0;

if ((AL > Ox9F) || (CF == 1))
/* high nibble of AL is not yet in BCD format */
{

/* convert high nibble of AL to decimal */
AL = AL + 0x60;

/* set carry flag */

CF = 1;

}

el se
/* clear carry flag */
CF = 0;

4-42

Instruction Set

AMDA

DAA

DAA

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor Status ” "

. reserved
Flags Register
15 14 13 12 11 10

? = undefined; — = unchanged

- —-1- res res res

CF=1 for carry or borrow to high-order bit
CF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

SF=1 if result is 0 or positive
SF=0 if result is negative

AF=1 if carry or borrow to low nibble

ZF=1 if result equal to 0
AF=0 otherwise

ZF=0 if result not equal to 0

Examples

This example adds two 3-byte packed decimal numbers.

PADDEND1 DB 00h, 24h, 17h, 08h ; 241708 packed BCD
PADDEND2 DB 00h, 19h, 30h, 11h ; 193011 packed BCD

; multibyte packed deci mal addition: PADDENDL = PADDENDL + PADDEND2

; add right bytes

MoV AL, PADDENDL + 3
ADD AL, PADDEND2 + 3
DAA

MoV PADDEND1 + 3, AL

; add next bytes

MoV AL, PADDENDL + 2
ADC AL, PADDEND2 + 2
DAA

MoV PADDEND1 + 2, AL

; add next bytes

MoV AL, PADDENDL + 1
ADC AL, PADDEND2 + 1
DAA

MoV PADDEND1 + 1, AL

; if CFis 1, propagate carry into |left byte

JC ADD_CARRY

IVP CONTI NUE
ADD_CARRY:

MOV PADDENDL, 1
CONTI NUE:

Instruction Set 4-43

AMDA

DAA DAA

Tips

(& ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal
arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.
Related Instructions
If you want to See
Convert an 8-bit unsigned binary sum to its unpacked decimal equivalent AAA
Add two numbers and the value of CF ADC
Add two numbers ADD
Convert an 8-bit unsigned binary difference to its packed decimal equivalent DAS

4-44

Instruction Set

AMDA

DAS Decimal Adjust AL After Subtraction DAS
Clocks

Form Opcode Description Am186 Ami8s

DAS 2F Decimal-adjust AL after subtraction 4 4

What It Does

DAS converts an 8-bit unsigned binary number that is the difference of two single-byte
packed decimal (BCD) numbers to its packed decimal equivalent.

Syntax

DAS

Description

Execute DAS only after a SUB or SBB instruction that leaves a two-BCD-digit byte result
in the AL register. The SUB or SBB operands should consist of two packed BCD digits.
DAS adjusts the AL register to contain the correct packed two-digit decimal result.

Operation It Performs

if (((AL & OxOF) > 9) || (AF == 1))
/* low nibble of AL is not yet in BCD format */

{
/* convert |ow nibble of AL to decimal */
AL = AL - 6;
/* set auxiliary (decimal) carry flag */
AF = 1;

}

el se
/* clear auxiliary (decimal) carry flag */
AF = 0;

if ((AL > Ox9F) || (CF == 1))
/* high nibble of AL is not yet in BCD format */

{
/* convert high nibble of AL to decimal */
AL = AL - 0x60;
/* set carry flag */
CF = 1;
}
el se
/* clear carry flag */
CF = 0;

Instruction Set 4-45

AMDA

DAS

DAS

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor Status ” "

. reserved
Flags Register
15 14 13 12 11 10

? = undefined; — = unchanged

- —-1- res res res

CF=1 for carry or borrow to high-order bit
CF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

SF=1 if result is 0 or positive
SF=0 if result is negative

AF=1 if carry or borrow to low nibble
AF=0 otherwise

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

Examples

This example subtracts two 3-byte packed decimal nhumbers.

PBCD1 DB 24h, 17h, 08h ; 241708 packed BCD
PBCD2 DB 19h, 30h, 11h ; 193011 packed BCD

; multibyte packed deci mal subtraction: PBCDL = PBCDl1 - PBCD2

; subtract right bytes

MoV AL, PBCD1 + 2
SBB AL, PBCD2 + 2
DAS

MoV PBCD1 + 2, AL

; subtract next bytes

MoV AL, PBCD1 + 1
SBB AL, PBCD2 + 1
DAS

MoV PBCD1 + 1, AL

; subtract left bytes

MoV AL, PBCD1
SBB AL, PBCD2
DAS

MoV PBCD1, AL

; if CFis 1, the |ast subtracti on generated a borrow
JC | NVALI D ; result is an error
JVP CONTI NUE

I NVALI D:

CONTI NUE:

4-46

Instruction Set

AMDA

DAS

Tips

DAS

ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal
arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is

needed. This is the only use for AF.

Related Instructions

If you want to

See
Convert an 8-bit unsigned binary difference to its unpacked decimal equivalent AAS
Convert an 8-bit unsigned binary sum to its packed decimal equivalent DAA
Subtract a number and the value of CF from another number SBB
Subtract a number from another number SUB

Instruction Set

4-47

AMDA

DEC Decrement Number by One DEC
Clocks
Form Opcode Description Am186 Ami8s
DEC r/m8 FE /1 Subtract 1 from r/m byte 3/15 3/15
DEC r/mi16 FF /1 Subtract 1 from r/m word 3/15 3/19
DEC r16 48+rw Subtract 1 from word register 3 3

What It Does

DEC subtracts 1 from an integer or an unsigned number.

Syntax

DEC minuend

Description
DEC subtracts 1 from the operand.

Operation It Performs

/* decrenent m nuend */
m nuend = m nuend - 1;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
v
Processor Status res res —

. reserved - - = res
Flags Register
15 14 13 12 /11 10 9

? = undefined; — = unchanged

OF=1 if result larger than destination operand
OF=0 otherwise

PF=1 if low byte of result has even number of set bits

SF=1 if result is 0 or positive
PF=0 otherwise

SF=0 if result is negative

AF=1 if carry or borrow to low nibble

ZF=1 if result equal to O
AF=0 otherwise

ZF=0 if result not equal to 0

4-48 Instruction Set

AMDA

DEC

5

5

G

DEC

Examples

This example sends events to another device. CMP, JE, DEC, and JMP implement a
construct equivalent to the C-language while loop.

COUNT DW 1048 ;. nunber of events to send

send events to anot her device

SEND:
CWVP COUNT, 0 ; is count 07?
JE DONE ; If so, then junp out of |oop
CALL SEND_EVENT ;. send an event
DEC COUNT ; subtract 1 from counter
JVP SEND ; junp to top of | oop

DONE:

Tips

Use SUB instead of DEC when you need to detect either a borrow to the highest bit of an
unsigned result, or an integer result that is too large to fit in the destination.

Use DEC within a loop when you want to decrease a value by 1 each time the loop is
executed.

The LOOP instruction can be used to combine the decrement (DEC CX only) and conditional
jump into one instruction.

Related Instructions

If you want to

See
Add 1 to a number INC
Set CF to 1 if there is a borrow to the highest bit of the unsigned result, SUB

or set OF to 1 if the integer result is too large to fit in the destination

Instruction Set 4-49

AMDA

DIV Divide Unsigned Numbers DIV
Clocks
Form Opcode Description Am186 Ami8s
DIV r/m8 F6 /6 AL=AX/(r/m byte); AH=remainder 29/35 29/35
DIV r/m16 F7 /6 AX=DX::AX/(r/m word); DX=remainder 38/44 38/48

What It Does

DIV divides one unsigned number by another unsigned number.

Syntax

DIV divisor

Description

DIV operates on unsigned numbers. The operand you specify is the divisor. DIV assumes
that the number to be divided—the dividend—is in AX or DX::AX. (DIV uses a dividend that
is twice the size of the divisor.)

DIV replaces the high half of the dividend with the remainder and the low half of the dividend
with the quotient. If the quotient is too large to fit in the low half of the dividend (such as
when dividing by 0), DIV generates Interrupt O instead of setting CF. DIV truncates
nonintegral quotients toward 0.

Operation It Performs

if (size(divisor) == 8)
/* unsi gned byte division */

{
temp = AX / divisor;
if (size(tenp) > size(AL))
/* quotient too |arge */
interrupt(0);
el se
{
AH = AX % di vi sor; /* remai nder */
AL = tenp; /* quotient */
}
}

if (size(divisor) == 16)
/* unsi gned word division */

temp = DX : AX / divisor;
if (size(tenmp) > size(AX))

/* quotient too | arge */
interrupt(0);

el se
{
DX = DX:: AX % di vi sor; /* remai nder */
AX = tenp; /* quotient */
}
}

4-50

Instruction Set

AMDA

DIV DIV
Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF

4
Processor_Status reserved ? ? ? res ? res ? res ?
Flags Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
? = undefined; — = unchanged

Examples
This example divides an 8-bit unsigned number by another 8-bit unsigned number.

UDI VI DEND DB 97 ; 61h
ubDl VI SCR DB 6 ; 06h

; divide byte by byte

MOV AL, UDI VI DEND ; AL = 61h = 97

MOV AH, 0 ;. AX = 0061h = 97

Dl VvV UDI VI SOR ; AL = 10h = 16, the quoti ent
AH = 01h = 1, the renmi nder

This example divides a 32-bit unsigned number by a 16-bit unsigned number. Before
dividing, the example checks the divisor to make sure itis not 0. This practice avoids division
by 0, thereby preventing DIV from generating Interrupt O.

UDI VI DEND DD 875600 ; 000D5C50h
ubDl VI SCR Dw 57344 ; EO0Oh

di vi de doubl eword by word
; test for O divisor
CWP UDI VI SOR, 0 ; is divisor 0?
JE Dl V_ZERO ; if so, then junp

copy dividend to registers
; (bytes in menory are store in reverse order)

MOV DX, WORD PTR UDI VI DEND+2
MoV AX, WORD PTR UDI VIDEND ; DX::AX = 000D5C50h
DV UDI VI SOCR ; AX = 000Fh = 15,
the quoti ent
DX = 3C50h = 15440,
; the remmi nder

DI V_ZERO.

Instruction Set 4-51

AMDA

DIV DIV

Tips

7 DIV requires the dividend to be twice the size of the divisor. To convert an 8-bit unsigned
dividend to its 16-bit equivalent (or a 16-bit dividend to its 32-bit equivalent), use MOV to
load the high half with 0.

(& If the unsigned dividend will fit in a 16-bit register and you don’'t need the remainder, use
SHR to divide unsigned numbers by powers of 2. When dividing an unsigned number by
a power of 2, it is faster to use SHR than DIV.

F The Am186 and Am188 microcontrollers do not provide an instruction that performs decimal
division. To divide a decimal number by another decimal number, use AAD to convert the
dividend to binary and then perform binary division using DIV.
Related Instructions
If you want to See
Convert a two-digit unpacked decimal dividend to its unsigned binary equivalent AAD
Divide an integer by another integer IDIV
Divide an unsigned number by a power of 2 SHR

4-52

Instruction Set

AMDA

ENTER* Enter High-Level Procedure ENTER
Clocks
Form Opcode Description Am186 Ami8s
ENTER imm16,imm8 C8iwib Create stack frame for nested procedure 22+16(n-1) 26+20(n-1)
ENTER imm16,0 C8 w00 Create stack frame for non-nested procedure 15 19
ENTER imm16,1 C8iw0l1 Create stack frame for nested procedure 25 29

What It Does

ENTER reserves storage on the stack for the local variables of a procedure.

Syntax

ENTER bytes,level

Description

ENTER creates the stack frame required by most block-structured high-level languages.
The microcontroller uses BP as a pointer to the stack frame and SP as a pointer to the top
of the stack.

The first operand (bytes) specifies the number of stack bytes to allocate for the local
variables of the procedure.

The second operand (/evel) specifies the lexical nesting level (0-31) of the procedure within
the high-level-language source code. The nesting level determines the number of stack-
frame pointers that are copied to the new stack frame from the preceding frame.

If levelis 0, ENTER pushes BP onto the stack, sets BP to the current value of SP, and
subtracts bytes from SP.

* — This inst

ruction was not available on the original 8086/8088 systems.

Instruction Set 4-53

AMDA

ENTER

ENTER

Operation It Performs

/* convert level to a nunber between 0 and 31 */
I evel = [|evel % 32;

/* save base and frame pointers */
push(BP) ;
framePoi nter = SP;

if (/level > 0)
/* reserve storage for each nesting |level */

{
for (i = 1;i < level;i++)
{
BP = BP - 2;
push(BP) ;
}
push(framePoi nter);
}

/* update base and frane pointers */
BP = franePoi nter;
SP = SP - bytes;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF

Processor Status ” reserved _ _ _ _ _ _vres — res — res —

Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

? = undefined; — = unchanged

Examples

This example procedure uses ENTER to: push the current frame pointer (BP) onto the
stack, setup BP to point to its stack frame, reserve 4 bytes on the stack for its local variables,
and indicate that it is not called by another procedure.

procedure that is not called by another
Mai n PROC FAR
ENTER 4,0 ; reserve 4 bytes for variables
; procedure is not called by another

per f orm oper ati ons

;. save AX
PUSH AX

per f orm oper ati ons

LEAVE
RET 2

: renove vari abl es from st ack
; renove saved AX from st ack

Mai n ENDP

4-54

Instruction Set

AMDA

ENTER

5

GG

ENTER

This example includes two procedures, each of which uses ENTER to create its own stack
frame. Each procedure uses LEAVE to destroy its stack frame before returning to the
procedure that called it.

; top-level procedure
Mai n PRCC FAR
ENTER 6,1 ; reserve 6 bytes for variables
; level 1 procedure

; perform operations

LEAVE ; renove variables from stack
RET
Mai n ENDP

second- | evel procedure
Sub?2 PRCC FAR
ENTER 20, 2 ; reserve 20 bytes for variabl es
; level 2 procedure

; perform operations
LEAVE ; renove vari abl es from stack

RET
Sub2 ENDP

Tips

Before you use ENTER, use MOV to copy the stack segment to SS and the stack offset to
SP.

If a procedure is not called by another, then use ENTER with a level of 0.

If a procedure is called by another, then use ENTER with a level of 1 for the main procedure,
use ENTER with a level of 2 for the procedure it calls, and so on.

Related Instructions

If you want to See

Remove the local variables of a procedure from the stack LEAVE

Instruction Set 4-55

AMDA

ESC* Escape ESC
Clocks
Form Opcode Description Am186 Ami8s
ESC m D8 /0 Takes trap 7. N/A N/A
ESC m D9 /1 Takes trap 7. N/A N/A
ESC m DA /2 Takes trap 7. N/A N/A
ESC m DB /3 Takes trap 7. N/A N/A
ESC m DC /4 Takes trap 7. N/A N/A
ESC m DD /5 Takes trap 7. N/A N/A
ESC m DE /6 Takes trap 7. N/A N/A
ESC m DF /7 Takes trap 7. N/A N/A

What It Does

ESC is unimplemented and takes a trap 7.

Syntax

ESC opcode,source

Description

The Am186 and Am188 family of microcontrollers do not support a coprocessor interface.

Operation It Performs

I NT 7 ; take trap 7

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor Status ” 0 0

. reserved - | - — —1r1es — res — res —
Flags Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
? = undefined; — = unchanged

*_

This instruction is not supported with the necessary pinout.

4-56

Instruction Set

AMDA

HLT Halt HLT
Clocks

Form Opcode Description Am186 Ami8s

HLT F4 Suspend instruction execution 2 2

What It Does

HLT causes the microcontroller to suspend instruction execution until it receives an interrupt
request or it is reset.

Syntax

HLT

Description

HLT places the microcontroller in a suspended state, leaving the CS and IP registers
pointing to the instruction following HLT. The microcontroller remains in the suspended
state until one of the following events occurs:

B An external device resets the microcontroller by asserting the RES signal.

The microcontroller immediately clears its internal logic and enters a dormant state.
Several clock periods after the external device de-asserts RES, the microcontroller
begins fetching instructions.

B The Interrupt-Enable Flag (IF) is 1 and an external device or peripheral asserts one of
the microcontroller's maskable interrupt requests that is not masked off by its interrupt
control register (or an external device issues a nhonmaskable interrupt request by
asserting the microcontroller's nonmaskable interrupt signal).

The microcontroller resumes executing instructions at the location specified by the
corresponding pointer in the microcontroller’s interrupt vector table. After the interrupt
procedure is done, the microcontroller begins executing the sequence of instructions
following HLT.

Operation It Performs

st opExecut i ng();
/* CS:IP points to the followi ng instruction */

/[* wait for interrupt or reset */
do {
} while (!(interruptRequest() || nm Request() || resetRequest()))

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor_Status " reserved _ _ _ _ _ _vres — res — res —
Flags Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
? = undefined; — = unchanged

Instruction Set 4-57

AMDA

HLT

HLT

Examples

This example interrupt-service routine (ISR) flashes the LEDs that are mapped to eight of
the microcontroller’'s programmable input/output (PIO) pins and then suspends instruction
execution.

flash the LEDs a few tines and stop executing instructions
| SR_DEFAULT:

PUSHA ; save general registers

; turn the PIGs on as outputs to the LEDs in case
; this has not already been done

| SR D_LOOP:

MOV DX, PI O_MODEO_ADDR

MOV AX, 0CO7Fh

out DX, AX

MoV DX, PI O_DI RO_ADDR

MoV AX, 0

out DX, AX

MOV CX, OFFh

MoV AX, OFh ; bottom 4 LEDs
nLED_OUTPUT ; turn themon (nacro)
MoV AX, OFOh ; top 4 LEDs

nmLED_OUTPUT ; turn them on (macro)
DEC CX ; subtract 1 from counter
JNZ I SR D LOOP ; if counter is not zero, then junp

; suspend instruction execution
HLT

; return never expected, but just in case
POPA ; restore general registers
| RET ; return to interrupted procedure

This example implements a polling of a PIO-based request, which is done based on a timer
or any other interrupt.

set up tiner for periodic interrupts
this specifies the maxi numtine between polls
LOOP_START:

HLT ; wait for an interrupt, then poll
; after ISR returns

MOV AX; Pl O_DATAO

TEST AX, Pl O_ACTI ON_| NDI CATOR

JNzZ DO_ACTI ON

JMWP LOOP_START

DO_ACTI ON:

; do whatever action needs to be taken
JWVP LOOP_START ;return to idle state

4-58

Instruction Set

AMDA
HLT HLT
Tips
(& If you want a procedure to wait for an interrupt request, use HLT instead of an endless loop.
(O On-board peripherals including timers, serial ports, and DMA continue to operate in HLT.

These devices may issue interrupts which bring the processor out of HLT.
Related Instructions

If you want to See

Disable all maskable interrupts CLI

Enable maskable interrupts that are not masked by their interrupt control registers STI

Instruction Set 4-59

AMDA

IDIV Divide Integers IDIV
Clocks

Form Opcode Description Am186 Ami8s

IDIV r/m8 F6 /7 AL=AX/(r/m byte); AH=remainder 44-52/50-58 44-52/50-58

IDIV r/m16 F7/7 AX=DX::AX/(r/m word); DX=remainder 53-61/59-67 53-61/63-71

What It Does

IDIV divides one integer by another integer.

Syntax

IDIV divisor

Description

IDIV operates on signed numbers (integers). The operand you specify is the divisor. IDIV
assumes that the number to be divided (the dividend) is in AX or DX::AX. (IDIV uses the

dividend that is twice the size of the divisor.)

IDIV replaces the high half of the dividend with the remainder and the low half of the dividend
with the quotient. As in traditional mathematics, the sign of the remainder is always the

same as the sign of the dividend.

If the quotient is too large to fit in the low half of the dividend (such as when dividing by 0),
IDIV generates Interrupt O instead of setting OF. IDIV truncates nonintegral quotients

toward O.

4-60

Instruction Set

AMDA

IDIV IDIV

Operation It Performs

if (size(divisor) == 8)
/* signed byte division */
{

temp = AX / divisor;

if (size(tenp) > size(AL))
/* quotient too |arge */
interrupt(0);

el se
{
AH = AX % di vi sor; /* remai nder */
AL = tenp; /* quotient */
}

if (size(divisor) == 16)
/* signed word division */

{
tenp = DX:: AX / divisor;
if (size(tenmp) > size(AX))
/* quotient too | arge */
interrupt(0);
el se
{
DX = DX:: AX % di vi sor; [* remai nder */
AX = tenp; /* quotient */
}
}

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
Processor Status ” ” ” 2

. reserved o el res ? res ? res ?
Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
? = undefined; — = unchanged
Examples

This example divides one 16-bit integer by an 8-bit integer.

SDI VI DEND DwW - 14500 ; C75Ch
SDI VI SOR DB 123 ; 7Bh

divide word integer by byte integer
MoV AX, SDI VI DEND ;
I DIV SDI VI SOR

C75Ch = -14500
8Bh = -117, the quoti ent
93h = -109, the renni nder

ZEX

Instruction Set 4-61

AMDA

IDIV

5

IDIV

This example divides one 16-bit integer by another.

SDI VI DEND DW 4800
SDI VI SOR DW -321
di vide word integers
MOV AX, SDI VI DEND
D

I DIV SDI VI SOR

Tips

12C0h
FEBFh

; AX = 1200h = 4800

DX: : AX = 000012C0h = 4800
= 00F2h = -14, the quotient
DX = 0132h = -306, the remmai nder

IDIV requires the dividend to be twice the size of the divisor. To convert an 8-bit integer
dividend to its 16-bit equivalent, use CBW. To convert a 16-bit dividend to its 32-bit

equivalent, use CWD.

If the integer dividend will fit in a 16-bit register and you don’t need the remainder, use SAR
to divide integers by powers of 2. When dividing an integer by a power of 2, it is faster to

use SAR than IDIV.

When dividing unsigned numbers, use DIV instead of IDIV to make it obvious to someone
who reads your code that you are operating on unsigned numbers.

Related Instructions

If you want to See
Convert an 8-bit integer dividend to its 16-bit equivalent cCBwW
Convert a 16-bit integer dividend to its 32-bit equivalent CWD
Divide an unsigned number by another unsigned number DIV
Change the sign of an integer NEG
Divide an integer by a power of 2 SAR

4-62

Instruction Set

AMDA

IMUL* Multiply Integers IMUL
Clocks

Form Opcode Description Am186 Ami8s
IMUL r/m8 F6 /5 AX=(r/m byte)*AL 25-28/31-34 25-28/31-34
IMUL r/m16 F7 /5 DX::AX=(r/m word)*AX 34-37/40-43 34-37/44-47
IMUL r16,r/m16,imm8 6B /rib (word register)=(r/m word)+(sign-ext. byte integer) 22-25 22-25
IMUL r16,imm8 6B /rib (word register)=(word register)+(sign-ext. byte integer) 22-25 22-25
IMUL r16,//m16,imm16 69 /riw (word register)=(r/m word)e(sign-ext. word integer) 29-32 29-32

IMUL r16,imm16

69 /riw (word register)=(word register)+(sign-ext. word integer) 29-32 29-32

What It Does
IMUL multiplies two integers.

Syntax

IMUL multiplicand Use this form to multiply an integer in
memory or in a register by AL or AX,
and store the result in AX or DX::AX.

IMUL product, multiplicand, multiplier

IMUL product,multiplier

Use this form to multiply an integer in
memory or in a register by an
immediate integer, and specify the

Use this form to multiply an integer register in which to place the result.
in a register by an immediate

integer, and overwrite the register
with the result.

Description

IMUL operates on signed numbers (integers). The operation it performs depends on the
number of operands you specify. For example:

One operand: The operand you specify is the multiplicand. IMUL assumes that the
integer by which it is to be multiplied (the multiplier) is in AL or AX. (IMUL uses the
multiplier that is the same size as the multiplicand.)

IMUL places the product in AX or DX::AX. (The destination is always twice the size of
the multiplicand.)

Two operands: You specify the destination register for the product and the immediate
integer by which the multiplicand is to be multiplied (the multiplier). IMUL uses the
destination register as the multiplicand and then overwrites it with the product.

Three operands: This form of IMUL is the same as the two-operand form, except that
IMUL preserves the multiplicand. You specify the destination register for the product,
the multiplicand, and the immediate integer by which the multiplicand is to be multiplied
(the multiplier). IMUL preserves the multiplicand.

* — Integer immediate multiplies were not available on the original 8086/8088 systems.

Instruction Set 4-63

AMDA
IMUL IMUL

Operation It Performs

if (operands() == 1)
/* multiply multiplicand with accunul ator */
{

if (size(nultiplicand) == 8)

/* signed byte nultiplication */

{
temp = nultiplicand * AL;
if (size(temp) == size(AL))
/* byte result */
{
/[* store result */
AL = tenp;
if (AL < 0)
/* extend sign into AX */
AH = OxFF;
el se
AH = 0xO00;
/* clear overflow and carry flags */
OF = CF = 0;
}
el se
/* word result */
{
/* store result */
AX = tenp;
/* set overflow and carry flags */
OF = CF = 1;
}
}
if (size(nultiplicand) == 16)

/* signed word nultiplication */

temp = nultiplicand * AX;
if (size(temp) == size(AX))
/* word result */

{
/* store result */
AX = tenp;
if (AX < 0)
/* extend sign into DX */
DX = OxFF;
el se
DX = 0x00;
/* clear overflow and carry flags */
OF = CF = 0;
}
el se
/* doubl eword result */
{

/* store result */

DX:: AX = tenp;

/* set overflow and carry flags */
OF = CF = 1;

4-64 Instruction Set

AMDA

IMUL

IMUL

/* (continued) */

if (operands() == 2)
[* substitute "product” for multiplicand */
mul tiplicand= product;

if (operands() >= 2)
{
temp= nultiplicand* multiplier;

if (size(temp) == size(product))
[* product will fit */
{

/* store result */
product =temp;

[* clear overflow and carry flags */
OF =CF =0;
}

else
/* product won't fit */

{

[* store only lower half of result */
product = 0x00FF & temp;

/* set overflow and carry flags */
OF=CF=1;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF
- - = ? ? res ? res ? re
8 7 1 0

Processor Status ”
Flags Register

reserved

15 14 13 12 11
? = undefined; — = unchanged

For the single-operand form: For the two- and three-operand forms: ,

CF and OF =1 if the product is large enough to CF and OF =1 if the product is too large to fit in the
require the full destination. destination.

CF and OF = 0 if the product is small enough to fit ~ CF and OF = 0 if the product is small enough to fit
in the low half of the destination. in the destination.
Examples

This example uses the single-operand form of IMUL to multiply an 8-bit integer in memory
by an integer in AL.

BMULTI PLI CAND DB -10 ; F6h
8-bit integer multiplication: AX = BMULTIPLI CAND * AL
MoV AL, 7 ; AL = 07h = 7
I MUL BMULTI PLI CAND ; AX = FFBAh = -70

Instruction Set 4-65

AMDA

IMUL IMUL
Tips

7 Use SAL instead of IMUL to multiply integers by powers of 2. When multiplying an integer
by a power of 2, it is faster to use SAL than IMUL.

(G When using the single-operand form of IMUL, you can often ignore the high half of the
destination because the product is small enough to fit in only the low half of the destination.
If it is, IMUL clears CF and OF to O; otherwise, IMUL sets CF and OF to 1.

7 When using the two- or three-operand forms of IMUL, the product can easily be large
enough so that it does not fit in the destination. Before using the result of either of these
forms, make sure that the destination contains the entire product. If it does, IMUL clears
CF and OF to O; otherwise, IMUL sets CF and OF to 1.

Related Instructions

If you want to

See
Convert an 8-bit integer to its 16-bit equivalent CcBW
Multiply two unsigned numbers MUL
Change the sign of an integer NEG
Multiply an integer by a power of 2 SAL

4-66 Instruction Set

AMDA

IN Input Component from Port IN
Clocks

Form Opcode Description Am186 Ami8s

IN AL,imm8 E4 ib Input byte from immediate port to AL 10 10

IN AX,imm8 E5 ib Input word from immediate port to AX 10 14

IN AL,DX EC Input byte from port in DX to AL 8 8

IN AX,DX ED Input word from port in DX to AX 8 12

What It Does

IN copies a component from a port in I/O space to a register.

Syntax

IN destination,port

Description

IN transfers a data byte or word from the port numbered by the second operand (port) into
the register (AL or AX) specified by the first operand (destination). Access any port from 0
to 65535 by placing the port number in the DX register and using an IN instruction with the
DX register as the second operand. The upper eight bits of the port address will be 0 when
an 8-bit port number is used.

Operation It Performs

if (size(port) == 8)
/* extend port address */
port = OxOOFF & port;

/* nove conponent */
destination = [port];

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF

Processor Status ” reserved _ _ _ _ _ _vres — res — res —

Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

? = undefined; — = unchanged

Instruction Set 4-67

AMDA

Examples
This example reads ASCII characters from a port in I/O space to a string in memory. The
microcontroller copies the bytes and stores them, one by one, from first to last.
STRING DB 128 DUP (?)
read characters froml/O port to string
set up registers and flags
LEA Dl , STRI NG ; load offset into DI (segnent = ES)
MoV CX, LENGTH STRING ; set up counter
CLD ; process string low to high
READ CHAR:
I'N AL, 51h ; copy character froml/O port to AL
STCSB ; copy character fromAL to string
LOOP READ CHAR ; While CXis not O, junp to top of | oop
Tips
"7 UselNto talk to the peripheral registers, since they are initially set to I/O space (and not
memory-mapped).
Related Instructions
If you want to See
Copy a component from a port in I/O memory to a string in main memory INS
Copy a component from a register to a port in /O memory ouT
Copy a component from a string in main memory to a port in I/O memory OUTS
4-68

Instruction Set

AMDA

INC Increment Number by One INC
Clocks

Form Opcode Description Am186 Ami8s

INC r/m8 FE /0 Increment r/m byte by 1 3/15 3/15

INC r/m16 FF /0 Increment r/m word by 1 3/15 3/19

INC r16 40+rw Increment word register by 1 3 3

What It Does

INC adds 1 to an integer or an unsigned number.

Syntax

INC addend

Description
INC adds 1 to the operand.

Operation It Performs

/* increnment addend */
addend = addend + 1;

Flag Settings After Instruction

OF DF IF TF SF ZF AF PF CF

4
Processor Status reserved 1. - ol

Flags Register

15 14 13 12 /11 10 9
? = undefined; — = unchanged

OF=1 if result larger than destination operand
OF=0 otherwise

PF=1 if low byte of result has even number of set bits

SF=1 if result is 0 or positive
PF=0 otherwise

SF=0 if result is negative

AF=1 if carry or borrow to low nibble

ZF=1if result equal to O
AF=0 otherwise

ZF=0 if result not equal to 0

Instruction Set 4-69

AMDA

INC

5

5

INC

Examples

This example writes pixel values to a buffer. INC, CMP, and JL implement a construct
equivalent to the C-language do-while loop.

COUNT DB 128

wite pixel values to buffer

MoV CL, 0 ; set up counter
VWRI TE:
; Wwite a pixel
CALL VWRI TE_PI XEL
I NC CL ; add 1 to counter
CWP CL, COUNT ; have all pixels been witten?
JL WRI TE ; if not, then junp to top of |oop
Tips

Use ADD instead of INC when you need to detect a carry from the highest bit of an unsigned
result, or detect a signed result that is too large to fit in the destination.

Use INC within aloop when you want to increase a value by 1 each time the loop is executed.

Related Instructions

If you want to See
Add two numbers ADD
Subtract 1 from a number DEC

4-70

Instruction Set

AMDA

INS* Input String Component from Port INS
INSB Input String Byte from Port
INSW Input String Word from Port
Clocks
Form Opcode Description Am186 Am188
INS m8,DX 6C Input byte from port in DX to ES:[DI] 14 14
INS m16,DX 6D Input word from port in DX to ES:[DI] 14 14
INSB 6C Input byte from port in DX to ES:[DI] 14 14
INSW 6D Input word from port in DX to ES:[DI] 14 14

What It Does

INS copies a component from a port in I/O space to a string in memory.

Syntax

To have the assembler type-check

your operands, use this form. The

assembler uses the definition of the

string component to determine its

INSW size. Regardless of the form of INS you
use, destination s always ES:[DI],
and port is always DX. Before using

To copy a byte from the I/O port — any form of INS, make sure that: ES

specified in DXto abytewithinastring - contains the segment of the string, DI

located in the segment specified in contains the offset of the string, and

ES, use this form. DX contains the number of the port.

INS destination,port
INSB

| To copy a word from the I/O port
specified in DX to a word within a
string located in the segment
specified in ES, use this form.

Description

INS transfers data from the input port numbered by the DX register to the memory byte or
word at ES:DI. The memory operand must be addressable from the ES register; no segment
override is possible.

The INS instruction does not allow the specification of the port number as an immediate
value. You must address the port through the DX register value. Similarly, the destination
index register determines the destination address. Before executing the INS instruction,
you must preload the DX register value into the DX register and the correct index into the
destination index register.

After the transfer is made, the DI register advances automatically. If DF is 0 (a CLD
instruction was executed), the DI register increments; if DF is 1 (an STD instruction was
executed), the DI register decrements. The DI register increments or decrements by 1 if
the input is a byte, or by 2 if it is a word.

The INSB and INSW instructions are synonyms for the byte and word INS instructions,
respectively.

* — This instruction was not available on the original 8086/8088 systems.

Instruction Set 4-71

AMDA

INS INS
Operation It Performs
if (size(destination) == 8)
/* input bytes */
{
ES: D = [DX]; /* byte in I/O nenory */
if DF == /* forward */
increnment = 1;
el se /* backward */
increment = -1;
}
if (size(destination) == 16)
/* input words */
{
ES:D = [DX]; /[* word in |I/O nenory */
if DF == /[* forward */
increnent = 2;
el se /* backward */
increnent = -2;
}
/* point to location for next string conponent */
DI = D + increnent;
Flag Settings After Instruction
OF DF IF TF SF ZF AF PF CF
Processor.Status r reserved = =1=1=] — = - = — = _
Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
? = undefined; — = unchanged
Tips
(G Before using INS, always be sure to: set up ES:[DI] with the offset of the string, set up CX
with the length of the string, and use CLD (forward) or STD (backward) to establish the
direction for string processing.
(S The string instructions always advance Sl and/or DI, regardless of the use of the REP prefix.
Be sure to set or clear DF before any string instruction.
Related Instructions
If you want to See
Process string components from lower to higher addresses CLD
Copy a component from a port in I/O memory to a register IN
Copy a component from a register to a port in /O memory ouT
Copy a component from a string in main memory to a port in I/O memory OUTS
Repeat one string instruction REP
Process string components from higher to lower addresses STD
4-72 Instruction Set

AMDA

INT Generate Interrupt INT
INTO Generate Interrupt If Overflow
Clocks
Form Opcode Description Am186 Am188
INT 3 CcC Generate interrupt 3 (trap to debugger) 45 45
INT imm8 CDib Generate type of interrupt specified by immediate byte a7 a7
INTO CE Generate interrupt 4 if Overflow Flag (OF) is 1 48,4 48,4
What It Does
INT generates an interrupt via software.
Syntax
INT type To generate an unconditional interrupt, use this form
INTO To generate an interrupt only if OF is set to 1, use this

form. When OF is 1, this form is the same as INT 4.

Description

INT suspends execution of the current procedure, pushes the Processor Status Flags
(FLAGS) register and the segment (CS) and offset (IP) addresses of the next instruction
onto the stack, and begins executing an interrupt handler (also known as an interrupt service
routine).

The operand you specify is the interrupt type, which can range from 0 to 255. The
microcontroller computes the address of the appropriate vector in the interrupt vector table
by shifting type left two times (in effect, multiplying it by 4). Then the microcontroller jumps
to the interrupt handler pointed to by that vector.

INTO is a conditional form of INT that is specifically used to handle arithmetic overflow
conditions. If the Overflow Flag (OF) is set to 1 when the microcontroller executes INTO,
then INTO generates a type 4 interrupt. This is equivalent to executing INT 4. If OF is
cleared to 0, INTO does nothing, and the microcontroller begins executing the instruction
following