
Using 16-Bit ROMCS Designs in Élan SC300
andÉlanSC310 Microcontrollers

TM
Application Note
This application note describes how to assert MCS16 for ROMCS accesses and IOCS16 for I/O
accesses without performing an external address decode.

MCS16 AND IOCS16 SIGNAL DEFINITIONS
MCS16 (memory size 16) is generated by a 16-bit
memory expansion card when the card recognizes it is
being addressed. This signal tells the data bus steering
logic that the addressed memory device is capable of
communicating over both data paths. When accessing
an 8-bit memory device, the MCS16 line remains
deasserted, indicating to the data bus steering logic
that the currently addressed device is an 8-bit memory
device capable of communicating only over the lower
data path.

IOCS16 (I/O size 16) is generated by a 16-bit ISA I/O
expansion board when the board recognizes it is being
addressed. IOCS16 provides the same function for
16-bit I/O expansion devices as the MCS16 signal
provides for 16-bit memory devices.

Note: The ÉlanTMSC300 and ÉlanSC310 micro-
controllers internally OR together MCS16 and IOCS16.
The ORed signal is looked at by the microcontrollers on
both memory and I/O accesses (including I/O accesses
that are internal to the microcontroller).

ASSERTING MCS16 FOR ROMCS
ACCESSES WITHOUT ADDRESS DECODE
The ÉlanSC300 and ÉlanSC310 microcontrollers
support 16-bit wide memory in the ROMCS space. On
reset, these microcontrollers begin fetching from this
memory. The width of the ROMCS memory is
controlled by the MCS16 input. If the MCS16 signal is
asserted, ROMCS memory is treated as 16 bits wide;
otherwise, this memory will be treated as 8 bits wide.

Is there a way for a system designer to assert MCS16
for ROMCS accesses without doing an address
decode? First, note that you cannot simply tie MCS16
Low, even in a system where all memory is 16 bits
wide. This does not work because the ÉlanSC300 and
ÉlanSC310 microcontrollers internally OR together
MCS16 and IOCS16. Thus, tying MCS16 Low will

result in all I/O accesses being incorrectly treated as 16
bits.

A better approach would be to tie ROMCS to MCS16.
MCS16 is then correctly asserted only during ROMCS
cycles. The problem with this approach is that, on
power-up, the ROMCS signal is internally gated with
MEMR and MEMW. This means that MCS16 will not be
valid until the MEMR or MEMW signal is asserted. The
timing requirements for the assertion of MCS16 during
a ROMCS cycle are basically the same as for an ISA
cycle. MCS16 must be valid 35 ns after LA is stable. If
MCS16 is gated with the MEMR or MEMW command,
it will not be valid until about 90 ns after LA.

The ÉlanSC300 and ÉlanSC310 microcontrollers have
a programmable option in index register B3h that
allows ROMCS to be enabled as a simple address
decode and not gated with MEMR or MEMW. Using
this option, ROMCS (and, hence, MCS16) will be
stable when SA is stable, which is 20 ns after LA is
stable, thus meeting MCS16 timing requirements.

Unfortunately, as previously noted, the ÉlanSC300 and
ÉlanSC310 microcontrollers power up with ROMCS
gated with MEMR, and therefore the initial code
fetches treat ROMCS as 8 bits wide. In this mode,
when fetching from a 16-bit wide memory, the
ÉlanSC300 and ÉlanSC310 microcontrollers will fetch
the same byte on both even and odd memory
accesses. Executing the reset code under this
restriction requires you to program index register B3h,
so that the MEMR gating can be turned off, allowing
proper 16-bit reads to occur. The code example on the
next page shows a reset code stub that meets this
requirement. In the example, all of the code fetched
before the jump to the label “fetching16” has the same
byte in the even and odd addresses. Execution starts
at the label reset_vector, which would be located at
FFFFF0.
Publication# 21825 Rev: A Amendment/0
Issue Date: July 1997

This document contains information on a product under development at Advanced Micro Devices. The information
is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed
product without notice.

Reset Code Example

code segment

assume cs: code

org 0ffd7h

fetching 16:

;when we reach here, we’re fetching 16 bits,
;so we can use normal instructions to jump to
;the real boot code

db
dw

0eah
0, 0f000h

;jmp to real start of code
;wherever that may be

org 0ffdch ;must be located at 0ffdch

;this code is set up so the even and odd bytes are duplicates
;this code just puts 04B3 in ax and outputs ax to port 22h
;this sets bit 2 of index register B3, enabling ROMCS
;to be an address decode and not gated with MEMR/MEMW

 ;ODD EVEN

db 0b4h ;B4 duplicate of mov ah opcode

fetching8: ; this location must be at FFDD

mov ah, 004h ;B4 04

add al, 0b0h ;B4 B0 harmless, sets up next instruction

mov al, 0b3h ;B0 B3

mov bl, 0e7h ;B3 E7 harmless, sets up next instruction

out 022h, ax ;E7 22

and ch, bl ;22 EB harmless, sets up jump short instruction

jmp short fetching 16 ;EB EC the fetches done at the target of this
jump will be 16 bits

db EC ;EC this code never gets executed so its
contents do not matter

nop

nop

nop

nop

org 0fff0h ; reset vector

reset_vector:

jmp short fetching8 ;EB EB jumps to FFDD

code ends

end
2 Using 16-Bit ROMCS Designs in Élan TMSC300 and ÉlanSC310 Microcontrollers

PGP PINS AS ADDRESS DECODES AND IOCS16 TIMING
The general-purpose programmable PGP0 and PGP1
pins can be programmed as inputs or outputs using
index register 70h bit 6 for PGP0 and index register 74h
bit 2 for PGP1. PGP2 and PGP3 are output only.

The PGP3–PGP0 pins can be individually programmed
as decoder outputs or chip selects for external
peripherals using bits 6–0 of index registers 94h for
PGP2, 95h for PGP3, 9Ch for PGP1, and 89h for
PGP0. In address decode mode, bits 6–0 of these
registers correspond to the SA address bits SA9–SA3,

which provide address decodes from 0h–3F8h in
8-byte increments. To use the PGP3–PGP0 pins to
drive IOCS16, they must first be configured as address
decode only in index register 91h, and then they will
meet the timing in Figure 1 below.

Figure 1 shows the simulation result for timing
requirements for PGPx and IOCS16. For detailed
timing between other signals, refer to ISA I/O 16-bit
read/write cycle timing diagrams in the ÉlanTMSC300
Microcontroller Data Sheet, order #18514.

Figure 1. PGP Pins as Address Decodes Versus IOCS16 Input Timing Requirements

REFERENCE MATERIAL
■ ÉlanTMSC300 Microcontroller Data Sheet,

order #18514

■ ÉlanTMSC310 Microcontroller Data Sheet,
order #20668

■ ÉlanTMSC300 Programmer’s Reference Manual,
order #18470

■ ÉlanTMSC310 Programmer’s Reference Manual,
order #20665

■ ÉlanTMSC300 and ÉlanTMSC310 Devices’ ISA Bus
Anomalies Application Note, order #20747

SA15–SA0

PGPx

IOCS16

t1

t2

t3

Notes:
1. t1: SA stable to PGP falling edge 10 ns (maximum) when programmed as address decode only (index 91h)

2. t2: SA stable to PGP rising edge 10 ns (maximum) when programmed as address decode only (index 91h)

3. t3: SA stable to IOCS16 active 95 ns (maximum)

Using 16-Bit ROMCS Designs in Élan TMSC300 and ÉlanSC310 Microcontrollers 3

Trademarks

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Élan is a trademark of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
4 Using 16-Bit ROMCS Designs in Élan TMSC300 and ÉlanSC310 Microcontrollers

