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PREFACE
INTRODUCTION
ÉlanSC400 AND ÉlanSC410 MICROCONTROLLERS
The ÉlanSC400 and ÉlanSC410 microcontrollers are the latest in a series of E86 family 
microcontrollers, which integrate proven x86 CPU cores with a comprehensive set of on-
chip peripherals. 

The ÉlanSC400 and ÉlanSC410 microcontrollers combine a 32-bit, low-voltage Am486 
CPU with a complete set of PC/AT-compatible peripherals, along with sophisticated power 
management features.

PURPOSE OF THIS MANUAL
This manual describes the technical features and programming interface of the ÉlanSC400 
and ÉlanSC410 microcontrollers.

Intended Audience
The ÉlanSC400 and ÉlanSC410 Microcontrollers User’s Manual is intended for computer 
software and hardware architects and system engineers who are designing or are 
considering designing systems based on the ÉlanSC400 and ÉlanSC410 microcontrollers.

Overview of This Manual
This manual is organized into the following chapters.

■ Chapter 1 provides an architectural overview of the ÉlanSC400 and ÉlanSC410 
microcontrollers, including system trade-offs and block and system diagrams.

■ Chapter 2 is an overview of the basic concepts required to configure the microcontroller. 
It discusses the direct-mapped and indirect-mapped (indexed) register spaces.

■ Chapter 3 discusses the integrated Am486 CPU and how it differs from other Am486 
CPUs. Also included is information on cache memory management, System 
Management Mode (SMM), and core CPU identification methods.

■ Chapter 4 describes the system interfaces on the microcontroller, including initialization, 
pin descriptions and configuration, data and address buses, and example bus 
configurations. The ISA and VESA local (VL) bus interfaces, as well as the PC/AT port 
logic, are also described.

■ Chapter 5 describes the power management features of the microcontroller, including 
power management modes of operation, flowcharts, and control functions.

■ Chapter 6 describes how to control the clocks on the microcontroller. Also included is a 
description of clock generation.

■ Chapter 7 discusses memory management on the microcontroller. Subjects include 
address decoding and aliasing, memory spaces, and translated and non-translated 
memory management.

■ Chapter 8 describes the ROM/Flash interface, including configuration and initialization.

■ Chapter 9 covers the DRAM controller, including system design issues, system address 
decoding, timing and control signal generation, and initialization.
Introduction xxi



■ Chapter 10 describes the PC/AT-compatible DMA controller.

■ Chapter 11 describes the PC/AT-compatible programmable interrupt controller (PIC).

■ Chapter 12 describes the PC/AT-compatible programmable interval timer (PIT).

■ Chapter 13 describes the PC/AT-compatible real-time clock (RTC).

■ Chapter 14 covers the parallel port, including PC/AT Compatible mode, Bidirectional 
mode, and Enhanced Parallel Port (EPP) mode.

■ Chapter 15 describes the serial port (UART).

■ Chapter 16 describes the keyboard interfaces available on the microcontroller, including 
the matrix (scan) keyboard interface, System Control Processor (SCP) emulation, and 
the XT interface.

■ Chapter 17 covers the general-purpose input/output signals and the programmable chip 
selects available on the microcontroller.

■ Chapter 18 describes the infrared port and using DMA for high-speed infrared transfers.

■ Chapter 19 describes the integrated PC Card controller available on the ÉlanSC400 
microcontroller.

■ Chapter 20 describes the integrated LCD graphics controller available on the ÉlanSC400 
microcontroller.

■ Chapter 21 covers the test and debugging features of the microcontroller, including the 
boundary-scan interface, test access port operation, and scan paths.

■ Appendix A describes multiplexed pin configuration control. It includes a table listing 
which signals are traded for others and how each multiplexed signal is enabled.

■ Appendix B covers pin termination and includes a table with control bits and affected pins.
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RELATED DOCUMENTS

AMD Documentation
The following AMD documents provide additional information about the ÉlanSC400 and 
ÉlanSC410 microcontrollers. In addition to this manual, the documentation set for the 
ÉlanSC400 and ÉlanSC410 microcontrollers includes the following documents:

■ The ÉlanSC400 and ÉlanSC410 Microcontrollers Data Sheet (order #21028) includes 
complete pin lists, pin state tables, timing and thermal characteristics, and package 
dimensions for the ÉlanSC400 and ÉlanSC410 microcontrollers.

■ The ÉlanSC400 Microcontroller Register Set Reference Manual (order #21032) 
provides a complete description of all the registers required to program the ÉlanSC400 
and ÉlanSC410 microcontrollers.

■ The Am486® Microprocessor Software User’s Manual (order #18497) includes the 
Am486 microprocessor instruction set. Appendices provide useful information about 
programming the base architecture and system level registers. A glossary of terms is 
also included. Note that this document describes floating-point features not supported 
on the ÉlanSC400 and ÉlanSC410 microcontrollers.

Other documents of interest:

■ Enhanced Am486® Microprocessor Family Data Sheet (order #19225)

■ Am486®DX/DX2 Microprocessor Hardware Reference Manual (order #17965). Note 
that this document describes floating-point features not supported on the ÉlanSC400 
and ÉlanSC410 microcontrollers.

Additional Information
The following non-AMD documents provide additional information that may be of interest 
to users of the ÉlanSC400 and ÉlanSC410 microcontrollers.

IEEE Std 1149.1-1990 Standard Test Access Port and Boundary-Scan Architecture, 
(order #SH16626-NYF), Institute of Electrical and Electronic Engineers, Inc., 800-678-
4333, www.ieee.org.

Infrared Data Association Serial Infrared Physical Layer Link Specification, Version 1.1, 
Infrared Data Association (IrDA), 510-943-6546, www.irda.org. October 1995.

Infrared Data Association Serial Infrared Link Access Protocol (IrLAP), Version 1.1, IrDA, 
510-943-6546, www.irda.org. June 1996.

ISA Bus/PC AT Bus Draft Standard 996, D2.02 (order #DS0224), Institute of Electrical and 
Electronic Engineers, Inc., 800-678-4333, www.ieee.org. July 1990.

ISA System Architecture, Mindshare, Inc., Third Edition. Reading, MA: Addison-Wesley, 
1995.

PC Card Standard, Personal Computer Memory Card International Association (PCMCIA), 
408-433-2273, www.pc-card.com. February 1995.

PCMCIA Standard Release 2.1, PCMCIA, 408-433-2273, www.pc-card.com. July 1993.

The Indispensable PC Hardware Book, Hans-Peter Messmer, Second Edition. Wokingham, 
England: Addison-Wesley, 1995.
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VL-Bus Standard 2.0, Video Electronics Standards Association (VESA), 408-435-0333, 
www.vesa.org. November 1993.

DOCUMENTATION CONVENTIONS
The following table lists the documentation conventions used throughout this manual.

 

 Documentation Conventions Table

Notation Meaning

Reference Notation

CSC index 00h[1] ÉlanSC400 Chip Setup and Control (CSC) indexed register 00h, 
bit 1

Graphics index 00h[1] Graphics controller indexed register 00h, bit 1

PC Card index 00h[1] PC Card controller indexed register 00h, bit 1

Port 0014h[1] Direct-mapped register 0014h, bit 1

RTC index 00h[1] RTC and configuration RAM indexed register 00h, bit 1

Pin Naming

/ Two functions available on the pin at the same time

{ } Pin function during hardware reset

[ ] Alternative pin function selected by firmware configuration

[[ ]] Alternative pin function selected by a hardware configuration pin 
state at power-on reset

ROMCS1 An overbar indicates that the signal assumes the logic Low state 
when asserted

RSTDRV The absence of an overbar indicates that the signal assumes 
the logic High state when asserted

ROMCS2–ROMCS0 All three ROM chip select signals

ROMCSx Any of the three ROM chip select signals

Numbers

b Binary number

d Decimal number
Decimal is the default radix

h Hexadecimal number

x in register address Any of several legal values; e.g., 3x4h as a graphics index 
address register can be either 3B4h or 3D4h, depending on the 
mode selected
Introduction xxv



[X–Y, Z] The bit field that consists of bits X through Y, and the bit field 
consisting of the single bit Z.
Example: Use CSC index 52h[5–3,1]

General

field Bit field in a register (one or more consecutive and related bits)

can It is possible to perform an action if properly configured

will A certain action is going to occur

XMI SMI or NMI

Set 29h[1] Write bit 1 of index 29h to 1.
Note: The applicable indexed register space will either be 
obvious from the surrounding text, or will be stated explicitly. For 
example, RTC index 0h[1] would be a reference to bit 1 in real-
time clock indexed register space.

Clear 29h[1] Write bit 1 of index 29h to 0.

 Documentation Conventions Table (continued)

Notation Meaning
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CHAPTER
1
 ARCHITECTURAL OVERVIEW
1.1 ÉlanSC400 AND ÉlanSC410 MICROCONTROLLERS
The ÉlanSC400 and ÉlanSC410 microcontrollers combine a 32-bit, low-voltage Am486 
CPU with a complete set of PC/AT-compatible peripherals, along with the power 
management features required for battery operation. The ÉlanSC400 and ÉlanSC410 
microcontrollers use the industry-standard 486 microprocessor instruction set. All software 
written for the x86 architecture family is compatible with the ÉlanSC400 and ÉlanSC410 
microcontrollers.

The ÉlanSC400 and ÉlanSC410 microcontrollers include the following distinctive 
characteristics. 

■ E86 family of x86 embedded processors

— Offers improved time-to-market, software migration, and field-proven development 
tools

■ Highly integrated single-chip CPU with a complete set of common peripherals

— Accelerates time-to-market with simplified hardware

— Low-power 0.35 micron process technology

— Single chip delivers smallest system form factor

— 33-MHz, 66-MHz, and 100-MHz operating frequencies

— No floating point unit

■ Am486® CPU core

— Robust Microsoft® Windows® compatible CPU

— 8-Kbyte write-back cache for enhanced performance

— Fully static design with System Management Mode (SMM) for power savings

■ Comprehensive power management unit

— Seven modes of operation allow fine-tuning of power requirements for maximum 
battery life

— Provides a superset of Advanced Power Management (APM) 1.2 features

■ Glueless burst-mode ROM/Flash interface

— Reduces system cost by allowing static memory such as mask ROM, Flash, and 
SRAM with three ROM/Flash chip selects

■ Glueless DRAM controller 

— Extended Data Out (EDO) and Fast Page Mode (FPM) DRAMs supported

— Allows mixed DRAM types on a per-bank basis to reduce system cost
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■ Standard PC/AT system logic, including dual Programmable Interrupt Controllers (PIC), 
dual DMA controllers, Programmable Interval Timer (PIT), and Real-Time Clock (RTC)

— DOS, ROM-DOS, Windows, and industry-standard BIOS support

— Leverages the benefits of desktop software at embedded price points

■ Local bus and ISA bus interface 

— Reduces time-to-market with a wide variety of off-the-shelf companion chips

■ Bidirectional parallel port with EPP mode

■ 16550-compatible UART

■ Infrared port for wireless communication

— Standard and high-speed

■ Keyboard interface 

— Matrix keyboard support with up to 15 rows and 8 columns

1.1.1 ÉlanSC400 Microcontroller
The ÉlanSC400 microcontroller includes the following additional features designed 
specifically for mobile computing applications. A block diagram of the ÉlanSC400 
microcontroller is shown in Figure 1-1. Figure 4-1 shows how signals are multiplexed on 
the ÉlanSC400 microcontroller.

■ Dual PC Card (PCMCIA Version 2.1) controller supports 8- or 16-bit data bus

— Provides end-user (after-market) system expansion

— Compliant with Exchangeable Card Architecture (ExCA), also called QuickSwap

— 82365-register set compatible

— Leverages off-the-shelf card and socket services

— Supports DMA transfers between I/O PC cards and system DRAM

■ LCD graphics controller 

— Supports both color and monochrome SuperTwisted Nematic (STN) LCDs 

— Internal unified memory architecture (UMA) eliminates separate video memory

1.1.2 ÉlanSC410 Microcontroller
Targeted specifically at embedded systems, the ÉlanSC410 microcontroller includes all 
the features of the ÉlanSC400 microcontroller, without the PC Card controller and the 
internal graphics controller. A complete list of pin changes for the ÉlanSC410 
microcontroller is included in Section 4.3. A block diagram of the ÉlanSC410 microcontroller 
is shown in Figure 1-2. Figure 4-2 shows how signals are multiplexed on the ÉlanSC410 
microcontroller.
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Figure 1-1 ÉlanSC400 Microcontroller Block Diagram 
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Figure 1-2 ÉlanSC410 Microcontroller Block Diagram 
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1.2 ARCHITECTURAL OVERVIEW
The architectural goals of the ÉlanSC400 microcontroller included a focus on CPU 
performance, CPU-to-memory performance, and internal graphics controller performance. 
The resulting architecture includes several distinguishing features of interest to the system 
designer:

■ The main system DRAM is shared between the CPU and graphics controller, so that 
the graphics controller can be serviced quickly to maintain video display performance 
at higher panel resolutions. The internal unified memory architecture (UMA) 
implemented on the ÉlanSC400 microcontroller means lower cost and less complication 
for the system designer, with only one DRAM interface, fewer pins, and a much smaller 
board for many designs.

■ CPU-to-memory performance is critical for both DRAM and ROM accesses. The CPU 
on the ÉlanSC400 microcontroller has a concurrent path to the ROM/Flash interface 
and can execute code out of ROM/Flash at the same time as the graphics controller is 
accessing DRAM for a screen refresh. Many system designs will be able to take 
advantage of this concurrency without sacrificing performance.

■ The ROM/Flash interface provides the flexibility to optimize the performance of ROM 
cycles, including the support of burst-mode ROMs. This is beneficial because products 
based on the ÉlanSC400 and ÉlanSC410 microcontrollers may be implemented such 
that the operating system or application programs are executed from ROM.

■ Because the microcontrollers support a large number of external buses and interfaces, 
the address and data buses are shared between the various interfaces to reduce pin 
count on the chip.

The result is a versatile architecture that can use various combinations of data bus sizes 
to achieve cost and performance goals. The architecture provides maximum performance 
and flexibility for high-end vertical applications, but contains functionality for a wider 
horizontal market that may demand less performance.

■ A typical lower performance/lower cost system might implement 16-bit DRAM banks, 
an 8-bit ISA bus, an 8/16-bit PC Card bus, and use the internal graphic controller.

■ A higher performance, full-featured system might include 32-bit DRAM, VL-bus to an 
external graphics controller, and a 16-bit ISA/PC Card bus.

The following basic data bus configuration rules apply. (A complete list of feature trade-
offs to be considered in system design can be found in Section 1.3.)

■ When the internal graphics controller on the ÉlanSC400 microcontroller is enabled, 
DRAM is always 16-bits wide, and no 32-bit targets are supported. This is because the 
graphics controller needs a guaranteed short latency for adequate video performance. 
If either 32-bit DRAMs, 32-bit ROMs, or the VL-bus is enabled, the internal graphics 
controller is unavailable. 

Note that, as a derivative of the original ÉlanSC400 microcontroller, the ÉlanSC410 
microcontroller shares the primary architectural characteristics of the ÉlanSC400 
microcontroller described above, minus the graphics controller.

The following sections provide an overview of the features of the ÉlanSC400 and 
ÉlanSC410 microcontrollers, including on-chip peripherals and system interfaces. 
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1.2.1 Low-Voltage Am486 CPU Core (Chapter 3)
The ÉlanSC400 and ÉlanSC410 microcontrollers are based on the low-voltage Am486 
CPU core. It includes the following features:

■ 2.7–3.3-V operation reduces power consumption

■ Industry-standard 8-Kbyte unified code and data write-back cache improves both CPU 
and total system performance by significantly reducing traffic on the DRAM bus.

■ System Management Mode (SMM) facilitates designs requiring power management by 
providing a mechanism to control power to unneeded peripherals transparently to 
application software.

To reduce power consumption, the floating point unit has been removed from the Am486 
CPU core. Floating point instructions are not supported on the ÉlanSC400 and ÉlanSC410 
microcontrollers, although normal software emulation can be implemented easily.

The ÉlanSC400 and ÉlanSC410 microcontrollers use the industry-standard 486 instruction 
set. Software written for the 486 microprocessor and previous members of the x86 
architecture family can run on the ÉlanSC400 and ÉlanSC410 microcontrollers.

1.2.2 Power Management (Chapter 5)
Power management on the ÉlanSC400 and ÉlanSC410 microcontrollers includes a 
dedicated power management unit and additional power management features built into 
each integrated peripheral. The ÉlanSC400 and ÉlanSC410 microcontrollers can use the 
following techniques to conserve power:

■ Slow down clocks when the system is not in active use

■ Shut off clocks to parts of the chip that are idle

■ Switch off power to parts of the system that are idle

■ Automatically reduce power use when batteries are low

The power management unit (PMU) controls stopping and changing clocks, SMI 
generation, timers, activities, and battery-level monitoring. It provides:

■ Hyper-Speed, High-Speed, Low-Speed, Temporary Low-Speed, Standby, Suspend, 
and Critical Suspend modes

■ Dynamically adjusted clock speeds for power reduction

■ Programmable activity and wake-up monitoring

■ General-purpose I/O pins to control external devices and external power management

■ Battery low and AC power monitoring

■ SMI/NMI synchronization and generation

1.2.3 Clock Generation (Chapter 6)
The ÉlanSC400 and ÉlanSC410 microcontrollers require only one 32.768 KHz crystal to 
generate all the other clock frequencies required by the system. The output of the on-chip 
crystal oscillator circuit is used to generate the various frequencies by utilizing four Phase-
Locked Loop (PLL) circuits. An additional PLL in the CPU is used for Hyper-Speed mode.
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1.2.4 ROM/Flash Interface (Chapter 8)
The integrated ROM/Flash interface supports the following features:

■ 8-, 16-, and 32-bit ROM/Flash interfaces 

■ Three ROM/Flash chip selects

■ Burst-mode ROMs

■ ROM accesses at both ISA and CPU speeds (normal and fast-speed modes)

■ Dedicated ROM Read and ROM Write signals for better performance

Each ROM space can accommodate up to 64 Mbytes of ROM. The three ROM spaces 
may be individually write-protected. This is useful for protecting code residing in Flash 
devices. 

Three ROM access modes are supported: Normal mode, Fast mode, and Burst mode. A 
different set of timings is used in each mode. In Normal ROM access mode, the bus cycles 
follow ISA-like timings. In Fast ROM access mode, the bus cycle timing occurs at the CPU 
clock rate with controls for wait state insertion. Burst ROM access timing is used when the 
ROM/Flash interface is fulfilling an internal CPU burst request to support a cache line refill.

Wait states are supported for all ROM and Flash accesses, including burst mode. Burst-
mode (page-mode) ROM reads are supported for either 16- or 32-bit ROM interface running 
in Fast mode. 

1.2.5 DRAM Controller (Chapter 9)
The integrated DRAM controller provides the signals and associated timing necessary to 
support an external DRAM array with minimal software programming and overhead. Internal 
programmable registers are provided to select the DRAM type and operating mode, as well 
as refresh options. A wide variety of commodity DRAMs are supported, and substantial 
flexibility is built into the DRAM controller to optimize performance of the CPU and (on the 
ÉlanSC400 microcontroller) the internal graphics controller, which uses system DRAM for 
its buffers.

The DRAM controller supports the following features:

■ 3.3-V, 70-ns DRAMs

■ Up to four banks

■ 16-bit or 32-bit banks

■ Up to 64 Mbytes of total memory

■ Self-refresh DRAMs

■ Fast page and Extended Data Out (EDO) DRAMs

■ Two-way interleaved operation among identically populated banks using fast-page 
mode devices

■ Mixed depth and width of DRAM banks in non-interleaved mode

■ Symmetrical and asymmetrical DRAM support
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1.2.6 Integrated Standard PC/AT Peripherals
The ÉlanSC400 and ÉlanSC410 microcontrollers include all the standard peripheral 
controllers that make up a PC/AT system.

1.2.6.1 Dual DMA Controllers (Chapter 10)

Dual, cascaded, 8237A-compatible DMA controllers provide seven user DMA channels. 
Of the seven internal channels, four are 8-bit channels and three are 16-bit channels. 
Channel 4 is used for the cascade function.

Any two of the seven channels can be mapped simultaneously to external DMA request/
acknowledge lines.

The DMA controller on the ÉlanSC400 and ÉlanSC410 microcontrollers is software- 
compatible with the PC/AT cascaded 8237 controller pair. Its features include:

■ Single, block, and demand transfer modes

■ Enable/disable channel controller

■ Address increment or decrement

■ Software priority 

■ 64-Mbyte system address space for increased performance

■ Dynamic clock-enable design reduces clocked elements during DMA inactivity

■ Programmable clock frequency for performance

1.2.6.2 Dual Interrupt Controllers (Chapter 11)

Dual, cascaded, 8259-compatible programmable interrupt controllers support 15 user 
interrupt levels. Eight external interrupt requests can be mapped to any of the 15 internal 
IRQ inputs.

The interrupt controller block includes these features:

■ Software-compatibility with PC/AT interrupt controllers

■ 15-level priority controller

■ Programmable interrupt modes

■ Individual interrupt request mask capability

■ Accepts requests from peripherals

■ Resolves priority on pending interrupts and interrupts in service

■ Issues interrupt request to processor

■ Provides interrupt vectors for interrupt service routines 

■ Tied into the PMU for power management

The interrupt controller block is functionally compatible with the standard cascaded 8259A 
controller pair as implemented in the PC/AT system. The master controller drives the CPU’s 
interrupt input signal based on the highest priority interrupt request pending at the master 
controller’s IRQ7–IRQ0 inputs. The master IRQ2 input is configured for Cascade mode and 
is driven only by the slave controller’s interrupt output pin. The highest pending interrupt at 
the slave’s IRQ inputs will therefore drive the IRQ2 input of the master.
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The interrupt controller has programmable sources for interrupts that are controlled through 
extended configuration registers and (on the ÉlanSC400 microcontroller) through PC Card 
controller configuration registers.

1.2.6.3 Programmable Interval Timer (PIT) (Chapter 12)

The programmable interval timer on the ÉlanSC400 and ÉlanSC410 microcontrollers is 
software-compatible with PC/AT 8254 system timers. The PIT provides three 16-bit 
counters that can be operated independently in six different modes. The PIT is generally 
used for timing external events, counting and producing repetitive waveforms. The PIT can 
be programmed to count in binary or in BCD.

1.2.6.4 Real-Time Clock (RTC) (Chapter 13)

The RTC designed into the ÉlanSC400 and ÉlanSC410 microcontrollers is compatible with 
the MC146818A device used in PC/AT systems. The RTC consists of time-of-day clock 
with alarm interrupt and a 100-year calendar. The clock/calendar has a programmable 
periodic interrupt, 114 bytes of static user RAM, and can be represented in either binary 
or BCD. The RTC includes the following features:

■ Counts seconds, minutes, and hours of the day

■ Counts days of the week, date, month, and year

■ 12–24 hour clock with AM and PM indication in 12-hour mode

■ 14 clock, status, and control registers

■ 114 bytes of general purpose RAM

■ Three interrupts are separately software-maskable and testable

— Time-of-day alarm is programmable to occur from once-per-second to once-per-day

— Periodic interrupts can be continued to occur at rates from 122 µs to 500 ms

— Update-ended interrupt provides cycle status

■ Dedicated power pin directly supports lithium backup battery when the rest of the chip 
is completely powered down (RTC-only mode)

■ Voltage monitor circuit checks the voltage level of the lithium backup battery and sets 
a bit when the battery is below specification.

■ Internal RTC reset signal performs a reset when power is applied to the RTC core.

1.2.6.5 PC/AT Support Features (Chapter 4)

The ÉlanSC400 and ÉlanSC410 microcontrollers provide all of the support functions found 
in the original IBM PC/AT. These include the Port B status and control bits, speaker control, 
SCP-based CPU-core reset, and A20 gate control, as well as extensions for fast CPU core 
reset and A20 gate control. In addition, a CPU shutdown cycle (e.g., as a result of a triple 
fault) will generate a CPU core reset.

1.2.7 Bidirectional Enhanced Parallel Port (EPP) (Chapter 14)
The parallel port on the ÉlanSC400 and ÉlanSC410 microcontrollers is functionally 
compatible with IBM PC/AT and PS/2 systems, with an added EPP mode for faster transfers. 
The microcontroller’s parallel port interface provides all the status inputs, control outputs, 
and the control signals necessary for the external parallel port data buffers.

The parallel port interface on both microcontrollers is shared with some of the GPIO signals 
and, on the ÉlanSC400 microcontroller, with the second PC Card socket interface. Only 
one of these interfaces can be enabled at one time.
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The parallel port interface can be configured to operate in one of three different modes of 
operation:

■ PC/AT Compatible mode–This mode provides a byte-wide forward (host-to-peripheral) 
channel with data and status lines used according to their original (Centronics) definitions 
in the IBM PC/AT.

■ Bidirectional mode–This mode offers byte-wide bidirectional parallel data transfers 
between host and peripheral, equivalent to the parallel interface on the IBM PS/2.

■ Enhanced Parallel Port (EPP) mode –This mode provides a byte-wide bidirectional 
channel controlled by the microcontroller. It provides separate address and data cycles 
over the eight data lines of the interface with an automatic address and data strobe for 
the address and data cycles, respectively. EPP mode offers wider system bandwidth 
and increased performance over both the PC/AT Compatible and Bidirectional modes. 

1.2.8 Serial Port (Chapter 15)
The ÉlanSC400 and ÉlanSC410 microcontrollers include an industry-standard 16550A 
UART. The UART can be used to drive a standard 8-pin serial interface or a 2-pin infrared 
interface. The 8-pin serial interface and infrared interface pins are available on the 
ÉlanSC400 and ÉlanSC410 microcontrollers at all times, though only one is available at 
any given time. 

The UART powers up as a 16450-compatible device. It can be switched to and from the 
FIFO (16550) mode under software control. In the FIFO mode, the receive and the transmit 
circuitry are each enhanced by separate 16-byte FIFOs to off-load the CPU from repetitive 
service routines.

The serial port includes the following features:

■ Eight pin interface: serial in, serial out, two modem control lines, and four modem status 
lines

■ Separately enabled receiver line status, receiver data, character time-out, transmitter 
holding register, and modem status interrupts

■ Baud rate generator provides input clock divisor from 1 to 65535 to create 16x clock

■ 5, 6, 7, or 8 bit data

■ Even, odd, stick, or no parity generation and checking

■ 1, 1-1/2 or 2 stop-bit generation

■ Break generation/detection

1.2.9 Keyboard Interfaces (Chapter 16)
The integrated keyboard controller has the following features:

■ Matrix keyboard support with up to 15 rows and 8 columns

■ Hardware support for software emulation of the System Control Processor (SCP) 
emulation logic

■ XT keyboard interface
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1.2.10 Programmable General-Purpose Inputs and Outputs (Chapter 17)
The chip supports several general-purpose I/O pins (GPIOs) that can be used on the system 
board. There are two classifications of GPIO available, the GPIOx signals, which are 
programmable as inputs or outputs only, and the GPIO_CSx signals.

The GPIO_CSx signals have many programmable options. They can be configured as chip 
selects. As outputs, these pins are individually programmable to be High or Low for the 
following PMU modes: Hyper, High-Speed, Low-Speed, Standby, and Suspend. As inputs 
or outputs, they can be programmed to cause System Management Interrupts (SMIs), Non-
Maskable Interrupts (NMIs), wake ups, or activities for the power management unit. They 
can also be used as I/O or memory chip selects.

1.2.11 Infrared Port (Chapter 18)
The ÉlanSC400 and ÉlanSC410 microcontrollers support infrared data transfer. This 
support consists of adding additional transmit and receive serializers as well as a controlling 
state machine and DMA interface to the internal UART.

The integrated infrared port includes these features:

■ Low-speed mode supports all bit rates from UART, up to 115 Kbit/s

■ High-speed mode transfers 1.152 Mbit/s using DMA

1.2.12 Dual PC Card Controller (Chapter 19)
(ÉlanSC400 Microcontroller Only)
The PC Card host bus adapter included on the ÉlanSC400 microcontroller conforms to 
PCMCIA Standard Release 2.1. It provides support for two sockets, each implementing 
the PC Card memory and I/O interfaces. The PC Card controller is not supported on the 
ÉlanSC410 microcontroller.

The PC Card controller includes the following features:

■ ExCA-compliant, 82365-register-set compatible

■ 8- and 16-bit data bus

■ DMA transfers between I/O PC cards and system DRAM

■ Ten available memory windows, five per socket

Of the two PC Card sockets supported, only one is available in all modes of operation. The 
second socket is multiplexed with the parallel port and GPIO features.

Register set compatibility with the 82365SL PC Card Interface Controller is maintained 
where features are common to both controllers. 

Of the ten memory windows available, six are dedicated to the PC Card controller and four 
are shared with MMS Windows C–F.
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1.2.13 Graphics Controller for CGA-Compatible Text and Graphics 
(Chapter 20) (ÉlanSC400 Microcontroller Only)
The graphics controller included on the ÉlanSC400 microcontroller offers a low-cost 
integrated graphics solution for the mobile terminal market. Integration with the main 
processor and system logic affords the advantages of an integrated local-bus interface and 
frame and font buffers which are shared with main memory. The graphics controller is not 
supported on the ÉlanSC410 microcontroller.

The graphics controller includes the following features:

■ Supports multiple panel resolutions

■ Provides internal unified memory architecture (UMA) with optional write-through caching 
of graphics buffers

■ Stores frame and font buffer data in system DRAM, eliminates extra memory chip

■ Provides software compatibility with Color Graphics Adapter (CGA), Monochrome 
Display Adapter (MDA), and Hercules Graphics Adapter (HGA) text and graphics

■ Supports single-scan or dual-scan monochrome LCD panels with 4- or 8-bit data 
interface 

■ Typical panels supported include: 

— 640x200, 640x240, 640x480, 480x320, 480x240, 480x128, 320x200, 320x240

— Other resolutions may be supported 

■ Supports single-scan color STN panels with 8-bit 
interface, same resolutions as monochrome mode

■ Internal local-bus interface provides high performance

■ Logical screen may be larger than physical window. 

■ Supports panning and scrolling 

■ Supports horizontal dot doubling and vertical line doubling

The following MDA/CGA-compatible text mode features are supported: 

■ 40, 64, or 80 columns with characters 16, 10, or 8 
pixels wide

■ Variable height characters up to 32 lines 

■ Variable width characters—8, 10, or 16 pixels

■ MDA Monochrome, or CGA 4 gray shades, 16 gray shades, or 16-colors

■ 16-Kbyte downloadable font area, relocatable on 16-Kbyte boundaries within lower 16 
Mbytes of system DRAM (may be write protected)

■ 16-Kbyte frame buffer, relocatable on either 16-Kbyte boundaries within lower 16 Mbytes 
of system DRAM (CGA-compatible mode) or 32-Kbyte boundaries when the frame buffer 
is larger than 16 Kbytes (flat-mapped mode)

The following graphics mode features are supported:

■ 640x200 1 bit-per-pixel, CGA-compatible graphics buffer memory map

■ 320x200 2 bits-per-pixel, CGA-compatible graphics buffer memory map

■ 640x480 2 bits-per-pixel, flat memory map (lower resolutions supported)
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■ 640x480 1 bit-per-pixel, flat memory map

■ 1, 2, or 4 bits-per-pixel packed-pixel flat-mapped graphics up to 640x240/480x320 with 
two mapping modes:

—  16-Kbyte window with bank swapping to address up to 64 Kbytes of graphics frame 
buffer while consuming only 16 Kbytes of DOS/Real-mode CPU address space

—  Direct-mapped (no bank swapping) with locatable base address, up to 128-Kbyte 
direct addressability

■ Hercules Graphics mode emulation (HGA)

1.2.14 JTAG Test Features (Chapter 21)
The ÉlanSC400 and ÉlanSC410 microcontrollers provide a boundary-scan interface based 
on the IEEE Std 1149.1, Standard Test Access Port and Boundary-Scan Architecture. The 
test access port provides a scan interface for testing the microcontroller and system 
hardware in a production environment. It contains extensions that allow a hardware-
development system to control and observe the microcontroller without interposing 
hardware between the microcontroller and the system.

1.2.15 System Interfaces (Chapter 4)

1.2.15.1 Data Buses

The ÉlanSC400 and ÉlanSC410 microcontrollers provide 32 bits of data that are divided 
into two separate 16-bit buses.

■ System Data Bus—The system (or peripheral) data bus (SD15-SD0) is always 16 bits 
wide and is shared between ISA, 8- or 16-bit ROM/Flash, and PC Card peripherals. It 
can be directly connected to all of these devices. In addition, these signals are the upper 
word of the VESA local (VL) data bus, the 32-bit DRAM interface, and the 32-bit ROM 
interface.

■ Data Bus—The D15–D0 data bus is used during 16-bit DRAM cycles. For 32-bit DRAM, 
VL-bus, and ROM cycles, this bus is combined with the system data bus. In other words, 
the data bus pins D31–D16 are shared with the system data bus pins SD15–SD0.

The ÉlanSC400 and ÉlanSC410 microcontrollers support the data bus configurations listed 
below. External transceivers or buffers are required in some bus configurations to isolate 
the buses and to provide proper data steering. 

■ 16-bit DRAM bus, 8/16-bit ROM, 32-bit VL-bus disabled, internal graphics controller 
enabled/disabled

■ 16/32-bit DRAM bus, 8/16-bit ROM, 32-bit VL-bus enabled/disabled, internal graphics 
controller disabled

■ 16/32-bit DRAM bus, 32-bit ROM, 32-bit VL-bus enabled/disabled, internal graphics 
controller disabled

See Figure 1-3 and Figure 1-4 for block diagrams of example systems.

The ÉlanSC400 and ÉlanSC410 microcontrollers offer flexibility in configuring the ROM 
and DRAM data buses for different widths. The widths (8/16/32 bits) for ROMCS0 are 
programmed during power-up through two pin straps, CFG0 and CFG1. The DRAM widths 
(16/32 bits) are programmed through configuration registers. Up to four 16- or 32-bit banks 
of DRAM are supported.
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1.2.15.2 Address Buses

There are two external address buses on the ÉlanSC400 and ÉlanSC410 microcontrollers.

■ System Address Bus—The SA25–SA0 system address bus outputs the physical 
memory or I/O port latched addresses. These addresses are used by all external 
peripheral devices other than main system DRAM. In addition, the system address bus 
is the local address bus in VL-bus mode.

■ DRAM Address Bus—DRAM row and column addresses are multiplexed onto the 
DRAM address bus (MA12–MA0). Row addresses are driven onto this bus and are valid 
upon the falling edge of RAS. Column addresses are driven onto this bus and are valid 
upon the falling edge of CAS.

The SA bus is shared between the ISA bus, the VL-bus, the ROM/Flash controller, and, 
on the ÉlanSC400 microcontroller, the PC Card controller. The ÉlanSC400 and ÉlanSC410 
microcontrollers provide programmable drive strengths in the I/O buffers to accommodate 
loading for various system configurations. 

1.2.15.3 Memory Management (Chapter 7)

The ÉlanSC400 and ÉlanSC410 microcontrollers manage up to nine separate physical 
device memory address spaces. All but the ISA memory address space can have a depth 
of up to 64 Mbytes each. The ISA bus memory area is limited to 16 Mbytes. The nine 
memory spaces are listed below.

■ System memory address space (DRAM)

■ ROM0 memory address space (ROMCS0 pin)

■ ROM1 memory address space (ROMCS1 pin)

■ ROM2 memory address space (ROMCS2 pin)

■ PC Card Socket A memory address spaces (common and attribute)
(ÉlanSC400 microcontroller only)

■ PC Card Socket B memory address spaces (common and attribute)
(ÉlanSC400 microcontroller only)

■ External ISA/VL-bus memory address space

The system memory address space (DRAM) is accessible using direct-mapped CPU 
addresses and can also be accessed by the CPU in an indirect method using the Memory 
Mapping System (MMS). DRAM is also accessible by the integrated graphics controller on 
the ÉlanSC400 microcontroller, if enabled.

The ROM0 address space is partially accessible via a direct mapping of the CPU address 
bus and partially accessible via the MMS. The ROM1 and ROM2 address spaces are only 
accessible indirectly using the MMS. 

On the ÉlanSC400 microcontroller, the PC Card address spaces are accessed through a 
separate, 82365SL-compatible address mapping system.

The ISA/VL-bus address space is accessible as a direct mapping of the CPU address bus. 
ISA memory cycles are generated when the CPU generates a memory cycle that is not 
detected as an access to any other memory space. An ISA bus memory cycle may also 
be generated if the CPU generates a memory address that resides in the ISA overlapping 
memory region window. This window can be defined to overlay any system memory region 
below 16 Mbytes. 
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1.2.15.4 ISA Bus Interface For External ISA Peripherals (Chapter 4)

The ISA interface consists of a subset of ISA-compatible bus signals, allowing for the 
connection of 8- or 16-bit devices supporting ISA-compatible I/O, memory, and DMA cycles. 
The following features are supported:

■ 8.2944 MHz maximum bus clock speed

■ Programmable DMA clock speed up to 16 MHz

■ 8-bit and 16-bit ISA I/O and memory cycles (ISA memory is non-cacheable)

■ Direct connection to 3- or 5-volt peripherals

Eight programmable IRQ input pins are available. These interrupts may be routed via 
software to any available PC/AT-compatible interrupt channel. 

Two programmable DMA channels are available for external DMA peripherals. These DMA 
channels may be routed to software to any available ISA DMA channel. 

1.2.15.5 VESA Local (VL) Bus Interface Supports 32-Bit Memory and I/O Targets 
(Chapter 4)

The VESA local (VL) bus controller provides the signals and associated timing necessary 
to support a single VESA compliant VL-bus target. Multiple VL-bus targets can be supported 
using external circuitry to allow multiple VL devices to share the VL_LDEV signal. This 
allows the ÉlanSC400 and ÉlanSC410 microcontrollers to operate as a normal VL-bus 
motherboard controller, in accordance with the VL-Bus Standard 2.0.

On the ÉlanSC400 microcontroller, the VL-bus is available only when the internal graphics 
controller is disabled. 

The microcontroller’s VL-bus controller includes the following features:

■ 33-MHz operation at 3.3 V

■ 32-bit data bus

■ Burst-mode transfers

■ Register control of local bus reset

VESA bus mastering and DMA transfers to and from the VL-bus target are not supported. 
VL memory is non-cacheable.
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1.3 SYSTEM CONSIDERATIONS
Figure 1-3 shows the ÉlanSC400 microcontroller as it might be used in a typical mobile 
terminal design. 

Figure 1-4 and Figure 1-5 show more complex system designs for each microcontroller 
and the features that are traded for others because of pin multiplexing.

■ The ÉlanSC400 and ÉlanSC410 microcontrollers support a maximum of 4 banks of 32-
bit DRAM, but because the RAS and CAS signals for the high word and for banks 2 and 
3 are traded for keyboard row signals, the minimum system would have one or two banks 
of DRAM (either Bank 0 or Bank 1) populated with 16-bit DRAMs. The MA12 signal for 
asymmetrical support is also traded with a keyboard row signal.

■ Because the VL-bus and the graphics controller share control signals on the ÉlanSC400 
microcontroller, use of the internal graphics controller is traded with having an external 
VL-bus on that microcontroller.

■ If either 32-bit DRAMs, 32-bit ROMs, or the VL-bus is enabled, the internal graphics 
controller on the ÉlanSC400 microcontroller is unavailable because of internal design 
constraints.

■ The ÉlanSC400 and ÉlanSC410 microcontrollers provide an absolute minimum of 
dedicated ISA control signals. Any additional ISA controls are traded with GPIOs or 
keyboard rows and columns.

■ The SD buffer shares control signals with some of the GPIOs. This buffer controls the 
high word of the D data bus (D31–D16). Note that using the SD buffer is optional. The 
high word of the D data bus can be hooked up directly to devices that want the SD data 
bus (SD15–SD0). Buffering aids in voltage translation or isolation for heavy loading.

■ The R32BFOE signal buffers the high word of the D data bus (D31–D16) for 32-bit 
ROMs. The control signal associated with the ROM32 buffer is shared with a keyboard 
row.

■ On the ÉlanSC400 microcontroller, the parallel port is traded for PC Card Socket B. It 
requires an external buffer and latch. 

■ The serial and infrared ports share the same internal UART. Real-time switching 
between the two is supported; however, only one is available at any given time.

■ ROMCS2 is not connected to a dedicated pin. Software may enable and map it to any 
of the 15 GPIO_CS pins.
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Figure 1-3 Typical Mobile Terminal Design—ÉlanSC400 Microcontroller
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Figure 1-4 System Diagram with Trade-offs—ÉlanSC400 Microcontroller
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Figure 1-5 System Diagram with Trade-offs—ÉlanSC410 Microcontroller
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CHAPTER
2
 CONFIGURATION BASICS
2.1 OVERVIEW
This chapter provides basic information about configuring the ÉlanSC400 and ÉlanSC410 
microcontrollers. It discusses the various configuration and control register spaces available 
on the chip, and briefly describes the pin-strapping options available.

The word configuration is used to indicate chip setup that is typically done once during 
system initialization, whereas operational control (abbreviated to “control”) is used to 
indicate operations that must be performed as an integral part of actually doing work with 
the chip. For example, on the ÉlanSC400 microcontroller, selecting the number of PC card 
sockets that will be available to the system is a clear example of configuration, whereas 
using the PC card controller registers to turn on power to a PC card socket is an example 
of operational control.

The term register refers to a data storage element.

The term port refers to an I/O address that is read from or written to in order to access data 
that is stored in an associated register.

2.2 CONFIGURATION METHODS
The ÉlanSC400 and ÉlanSC410 microcontrollers can be configured to operate in several 
different modes, or to have certain operational characteristics that are selected by the 
system designer. 

Any modes that must be available immediately upon system reset (i.e., boot ROM data 
path width) are configured via pin-strapping options. 

The term pin-strapping as used in this chapter refers to connecting a weak external 
terminating resistor to certain pins of the ÉlanSC400 and ÉlanSC410 microcontrollers. 
These pins are sampled at reset time, and their states at that time are used to configure 
specific aspects of the chip. The pins used for this on the ÉlanSC400 and ÉlanSC410 
microcontrollers are not dedicated to this function. As soon as the reset is deasserted and 
normal system operation begins, the pins are used to implement part of the DRAM interface. 
(See Section 4.1.1.1 for more detail.)

Each of the pin-strap pins has a very weak internal pull-down resistor. Thus, if no external 
termination is connected, the configuration will act as if external pull-downs were applied. 
To select the alternate pin-strap function for a particular pin, a stronger pull-up must be 
applied externally. The external pull-ups, if used, should be 10 kilohms. 

Most configuration options do not need to be configured before the boot code begins to 
execute. In these cases, system firmware must configure the chip using Chip Setup and 
Control (CSC) registers that are unique to the ÉlanSC400 and ÉlanSC410 microcontrollers 
and are accessed using direct-mapped I/O ports 22h/23h as described in the following 
section. Although some configuration options are controlled by non-CSC registers, the vast 
majority of system configuration is done using the CSC registers.
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2.3 CONFIGURATION REGISTER SPACES AND INDEXED ADDRESSING

2.3.1 Direct-Mapped Registers
The ÉlanSC400 and ÉlanSC410 microcontrollers contain hundreds of configuration and 
control registers. Some of these registers are accessed directly without using an indexed 
addressing scheme. Many of the PC/AT legacy registers fall into this category. An example 
of a direct-mapped register is the System Control Port A Register, which can be accessed 
using x86 assembly language shown below. (Note that accesses to direct-mapped registers 
with 8-bit addresses can omit the use of the DX Register.)

in AL,92h ;Read the register
.
.
mov AL,1
out 92h,AL ;Write a value of 1 to System Control Port A

Accesses to direct-mapped registers with 16-bit addresses must use the DX Register (as 
is the case for any x86-compatible CPU) as follows:

mov DX,3FFh
mov AL,0AAh
out DX,AL ;Write a value of AAh to the serial port scratch

;pad register.

Table 2-1 shows a summary of the direct-mapped registers that are implemented in the 
ÉlanSC400 and ÉlanSC410 microcontrollers.

Table 2-1 Internal I/O Port Address Map  

Internal I/O Device I/O Address Range

Slave DMA (DMA1) 0000–000Fh

Master Programmable Interrupt Controller (PIC) 0020–0021h

CSC Index, Data 0022h, 0023h

Programmable Interval Timer (PIT) 0040–0043h

Keyboard 0060h, 0064h

System Control Port B/NMI Status 0061h

RTC Index, Data 0070h, 0071h

General 8x Registers 0080h, 0084–0086h, 0088h, 008C–008Fh

DMA Page Registers 0081–0083h, 0087h, 0089–008Bh

System Control Port A 0092h

Slave PIC 00A0–00A1h

Master DMA (DMA0) 00C0–00DEh (even addresses only)

Alternate A20 Gate Control 00EEh

Alternate CPU Reset Control 00EFh

Parallel Port LPT2 0278–027Fh

Serial Port COM2 02F8–02FFh

Parallel Port LPT1 0378–037Fh

MDA Graphics Index, Data 03B4h, 03B5h

CGA Graphics Index, Data 03D4h, 03D5h

PC Card Index, Data 03E0h, 03E1h 

Serial Port COM1 03F8–03FFh
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2.3.2 Indirect-Mapped Registers (Indexed Registers)
While most of the PC/AT legacy registers are direct-mapped, the vast majority of the 
configuration and control registers are indirect-mapped or indexed.   

When adding registers to a particular architecture, one must be careful to maintain 
compatibility with the existing registers. Because of the openness of the ISA architecture 
and the length of time that the architecture has been evolving, this can be difficult to do. It 
is impossible to say exactly what “PC/AT compatibility” is at this point. The use of an indexed 
addressing scheme makes this compatibility task easier by creating separate address 
spaces in which the new registers can be placed, thus avoiding the possibility for new 
registers to conflict with legacy registers. This technique is far from new; it has been used 
in the PC/AT architecture since the original PC used it for the Monochrome Display Adapter 
(MDA) register interface.

The term index appears often in the following text. An indexed register is one that is 
accessed via an index, or secondary address, into an array of registers. Because of the 
use of this secondary address, the indexed register may be thought of as residing in a 
separate indexed register I/O space. The secondary address itself is often referred to as 
an index with many of the same properties as the index of an array. Finally, the storage 
element itself which holds the index while data is being read from or written to an indexed 
register is known as the index register. 

There are four indexed register spaces on the ÉlanSC400 and ÉlanSC410 microcontrollers. 
The names of these spaces, and the direct-mapped port addresses through which their 
index and data registers are accessed are listed in Table 2-2. Refer to the appropriate 
chapter in this manual for detailed information on the function and usage of registers within 
the indexed register spaces. Refer to the ÉlanSC400 Microcontroller Register Set 
Reference Manual for bit-level reference information concerning registers in these indexed 
spaces.

Table 2-2 Indexed Register Space

■ CSC indexed registers are the main method for configuring the ÉlanSC400 and 
ÉlanSC410 microcontrollers and are discussed in more detail in Section 2.3.3.

■ RTC indexed registers allow access to the real time clock configuration, time and date 
status, and the 114 bytes of CMOS RAM that is typically used by system firmware (BIOS) 
in a PC/AT-compatible system. 

■ LCD graphics controller indexed registers (ÉlanSC400 microcontroller only) allow 
LCD panel configuration and control. To conform to different standards in the PC/AT 
architecture, the LCD controller can use one of the two different index and data register 
port addresses listed above. If configured to support MDA (Monochrome Display 
Adapter) compatibility, 03B4h/03B5h are the port addresses that allow access to the 

Indexed Register Space Access through Direct-Mapped Ports

Chip Setup and Control (CSC) 0022h = index; 0023h = data

Real-Time Clock (RTC) and CMOS RAM 0070h = index; 0071h = data

LCD Graphics Controller 
(ÉlanSC400 microcontroller only): 
MDA
CGA

03B4h = index,03B5h = data
03D4h = index, 03D5h = data

PC Card Controller (ÉlanSC400 microcontroller only) 03E0h = index, 03E1h = data
Configuration Basics 2-3



graphics controller’s index and data registers. If CGA compatibility (Color Graphics 
Adapter) is configured, 03D4h and 03D5h are used instead. 

■ PC Card indexed registers (ÉlanSC400 microcontroller only) provide PC Card 
controller configuration, status, and control.

The indexed register spaces on the ÉlanSC400 and ÉlanSC410 microcontrollers are 
accessed via index and data registers, which are in turn accessed via sets of direct-mapped 
I/O ports. This is the “double addressing” mentioned earlier. For each indexed space, there 
is an index port and a data port. 

For example, in the case of the original MDA, the index port was 03B4h, and the data port 
was 03B5h. In order to access an indexed register, first write an index to the index register 
(via the index port), and then write to or read from the data register (via the data port). An 
example of an access to the MDA registers follows:

mov DX,3B4h ;Access to IO ports with 16-bit addresses
;requires the use of DX

mov AL,10h ;Select the MDA Light Pen Register
out DX,AL ;Write the index of the Light Pen Register 

;to the hardware
inc DX ;Point to the MDA data port
in AL,DX ;Read the MDA Light Pen Register into AL

Note that the CSC and RTC register sets listed in Table 2-2 have index and data ports that 
use only 8-bit addressing. Indexed register schemes that utilize 8-bit I/O port addressing 
have two main advantages over those that require 16-bit addresses. First, 8-bit addresses 
do not require the use of DX. The AL Register is the minimum requirement (see earlier 
examples). This can be useful if the initialization code needs to conserve CPU register use 
in cases where the DRAM is not available yet, etc. The second advantage of using 8-bit 
I/O addresses is that common 16-bit instructions can be used to store data very easily. For 
example, to store the value 81h to CSC index 65h (as shown in Figure 2-2), the following 
16-bit I/O instruction may be executed:

mov AX,08165h
out 22h,AX

This technique is widely used when a table of indexed registers needs to be written to 
known values. Simply create a table of registers and indexes, point to this table using the 
x86 SI register, and then use the x86 OUTSW (out string word) to write the desired data 
to the specified indexed register. This 16-bit I/O write with the OUTSW instruction is broken 
down internally into the two required 8-bit writes to the respective index and data registers.

Figure 2-1 and Figure 2-2 show the configuration and control registers spaces graphically.
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Figure 2-1 Indexed Configuration Register Space

Figure 2-2 Using the Index and Data I/O Ports to Access CSC Register Space 
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In this example, the value of 81h is written to CSC index 65h.
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2.3.3 Chip Setup and Control (CSC) Indexed Registers
The registers specific to the ÉlanSC400 and ÉlanSC410 microcontrollers that are indirectly 
accessed using ports 22h/23h are used for most of the important chip configuration. 

It is important to remember that all of the index registers must be treated as system 
resources. Interrupt handlers, in particular, must always save any index register used by 
the handler and then restore the index register before returning control to the interrupted 
routine.

The indexes for these CSC registers were chosen such that related functions are, as much 
as possible, grouped together in the register map.

The groups start on either 8- or 16-byte boundaries in the map. For example, all of the 
DRAM control functions are accessed starting at CSC index 00h. Even though there are 
only eight DRAM control registers (indexes 00-07h), the next block (cache control) starts 
at 10h. Table 2-3 shows the organization of the CSC registers by functional grouping, and 
the index at which the group begins:

Table 2-3 Chip Setup and Control (CSC) Indexed Register Map

Note: While all possible effort was made to group the controls for related functions 
together, some control bits affect several functional areas of the chip, and so may be located 
in a group other than expected. For a complete listing of registers that belong to each of 
the above groups, refer to the ÉlanSC400 Microcontroller Register Set Reference Manual.

Start Index Register Group Name

00h DRAM Setup and Configuration

10h Cache Control

20h ROM Configuration, Setup, and Control

30h MMS Configuration, Setup, and Control

38h GPIO Pin Multiplexing and Termination

40h PMU Mode Control and Status

50h PMU Wake Up Control and Status

60h PMU Activity Control and Status

70h Battery Level (BL) Pin Control and Status

80h Clock Control and Status

88h Factory Level Debug Registers

90h SMI/NMI Generation and Status

A0h GPIO Pin Control, Status, and Multiplexing

C0h Matrix and XT Keyboard Control and Status

D0h Extended PC/AT Features and Peripheral Control

E0h ISA Bus Configuration

EAh Infrared Port Control and Status

F0h PC Card Controller Configuration

FFh Chip Revision 
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Do not mistake the PC Card controller configuration group as listed in Table 2-3 for the 
82365-compatible indexed registers that are accessed via I/O ports 03E0h and 03E1h. 
This is a good example of configuration versus operational control. Configure the PC Card 
controller (will there be one socket or two?, DMA capable or not?, etc.) with the CSC indexed 
registers. When it is configured, operate the PC Card controller (control PC Card VCC, VPP, 
windows, etc.) with the PC Card controller indexed registers.

2.4 FEATURE TRADE-OFFS
The ÉlanSC400 and ÉlanSC410 microcontrollers are extremely versatile devices that can 
be configured to support several different feature sets. For example, on the ÉlanSC400 
microcontroller, you can have either an LCD controller or a VESA Local bus, a second PC 
Card socket or a parallel port, etc. All of these feature trade-offs are configured using CSC 
indexed registers, except the selection of the R32BFOE signal, which is an indirect result 
of selecting a 32-bit ROM interface via pin strapping options. For a complete list of system 
level trade-offs that are available for the ÉlanSC400 and ÉlanSC410 microcontrollers, see 
Section 1.3, on page 1-16.

2.4.1 Pin Multiplexing
To support these feature trade-offs, many pins on the ÉlanSC400 and ÉlanSC410 
microcontrollers are also traded off (i.e., have multiple and usually mutually exclusive 
functions). Figure 4-1 and Figure 4-2 show the pins and their alternate functions for each 
microcontroller. A table showing how to configure each pin on the ÉlanSC400 and 
ÉlanSC410 microcontrollers can be found in Appendix A.

2.4.2 Pin Termination
When a particular function is configured to be available to the user/system, the functions 
of the pins on the ÉlanSC400 and ÉlanSC410 microcontrollers change accordingly. When 
the pin function changes, the termination of the pin can, and often does change. Where 
there may have been an internal pull-up, the signal may now just be three-stated, or have 
a pull-down connected.

Internal design considerations on the ÉlanSC400 and ÉlanSC410 microcontrollers require 
that system firmware “latch in” or activate the new termination(s) as a separate operation 
from the actual pin function selection. This is done by setting the TERM_LATCH bit in the 
Suspend Mode Pin State Override Register (CSC index E5h[0]) after configuring one or 
more of the pin functions. The typical usage is to configure the chip at boot time from system 
firmware, and then set the termination latch bit one time after all the configuration is 
complete. 

There may be times, however, when the chip is reconfigured after the system firmware has 
performed the initial chip configuration. When all reconfiguration is completed, the 
TERM_LATCH bit must once again be set. Note that it does not hurt to set the 
TERM_LATCH bit over and over, but it will probably negatively affect system operation to 
fail to set it after changing pin functions. 

Appendix B includes a listing of pins and their respective termination control bits. When 
any of the pin functions shown in Table B-1 are changed, the TERM_LATCH bit must be set.

CSC indexed registers that affect pad pull-up/pull-down termination include: 00–03h, 14h, 
38–3Eh, A0–A5h, CAh, D1h, D2h, DDh, EAh, and F2h.
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CHAPTER
3
 Am486® CPU
3.1 OVERVIEW
The ÉlanSC400 and ÉlanSC410 microcontrollers are based on the low-voltage Am486 
CPU core. It includes the following features:

■ 2.7–3.3-V operation reduces power consumption

■ Industry-standard 8-Kbyte unified code and data write-back cache improves both CPU 
and total system performance by significantly reducing traffic on the DRAM bus.

■ System Management Mode (SMM) facilitates designs requiring power management by 
providing a mechanism to control power to unneeded peripherals transparently to 
application software.

To reduce power consumption, the floating point unit has been removed from the Am486 
CPU core. Floating point instructions are not supported on the ÉlanSC400 and ÉlanSC410 
microcontrollers, although normal software emulation can be implemented easily.

The ÉlanSC400 and ÉlanSC410 microcontrollers use the industry-standard 486 instruction 
set. All software written for the 486 microprocessor and previous members of the x86 
architecture family can run on the ÉlanSC400 and ÉlanSC410 microcontrollers.

3.2 REGISTERS
A summary listing of the direct-mapped and chip setup and control (CSC) index registers 
used to control the CPU on the ÉlanSC400 and ÉlanSC410 microcontrollers is shown in 
Table 3-1. Complete register descriptions can be found in the ÉlanSC400 Microcontroller 
Register Set Reference Manual (order #21032). 

Table 3-1 CPU Control Register Summary

Register I/O Address CPU Control Function Keyword
Description 
in Register 
Set Manual

Direct-Mapped Registers

RTC/CMOS RAM Index Register 0070h Master NMI enable page 2-52

Chip Setup and Control (CSC) Index Registers

Non-Cacheable Window 0 
Address/Attributes/SMM 
Register

22h/23h
Index 11h

SMM cache enable and auto-flush on SMM 
entry

page 3-20

Cache and VL Miscellaneous 
Register

22h/23h
Index 14h

CPU write-through or write-back cache select, 
write-back bus cycle status, flush cycle status, 
CPU shutdown cycle status, graphics memory 
write-through cache

page 3-23

Various SMI/NMI Enable and 
Status Registers

22h/23h
Index 90–9Ch

See Chapter 5, Table 5-1 for complete listing. various
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3.3 CPU FEATURES SPECIFIC TO THE ÉlanSC400 AND ÉlanSC410 
MICROCONTROLLERS
The ÉlanSC400 and ÉlanSC410 microcontrollers are fully integrated systems in silicon, 
and the CPU is central to this integration. Most of the details of the communication between 
the CPU core and the peripherals are transparent to the user and are not documented here.

While we have tried to provide most of the information designers will require to incorporate 
the ÉlanSC400 and ÉlanSC410 microcontrollers into products, a full description of the 
operation of a 486 microprocessor is well beyond the scope of this chapter, which discusses 
programming issues related to this specific implementation, rather than general x86 or 486 
programming.

Any bookstore with a good computer section will have many good books on x86 
programming, and the following AMD publications are a good starting point for learning 
about the Am486 microprocessor as it has evolved over time. The oldest publication is 
listed first. The subsequent publications enhance the original functional descriptions.

■ Am486®DX/DX2 Microprocessor Hardware Reference Manual, 1994 (order #17965)

■ Am486® Microprocessor Software User’s Manual, 1994, (order #18497)

■ Enhanced Am486® Microprocessor Family Data Sheet, 1995, (order #19225)

■ Am5x86 Microprocessor Family Data Sheet, 1996 (order #19751)

The CPU core in the ÉlanSC400 and ÉlanSC410 microcontrollers is derived from the 
Enhanced Am486 microprocessor Family (as described in order #19225). The following 
differences may be relevant to the programmer:

■ There is no floating point unit (FPU).

■ There is no provision for an L2 cache.

■ From a CPU-core perspective only, the cache is always in write-back mode and will 
report this state in response to the CPUID instruction. However, other logic within the 
ÉlanSC400 and ÉlanSC410 microcontrollers actually controls whether cache operation 
is write-through or write-back on an access-by-access basis. The true default on the 
ÉlanSC400 and ÉlanSC410 microcontrollers is write-through, although all accesses can 
be write-back, if desired. This is discussed in Section 3.4.

One feature of the enhanced Am486 CPU that is fully supported by the ÉlanSC400 and 
ÉlanSC410 microcontrollers is System Management Mode (SMM), which is a powerful 
mechanism for adding transparent BIOS support for device emulation and power 
management. Because SMM is unfamiliar to many experienced x86 programmers, its 
implementation in the ÉlanSC400 and ÉlanSC410 microcontrollers is covered in 
Section 3.5.

XMI Control Register 22h/23h
Index 9Dh

Master SMI enable page 3-109

ÉlanSC400 Microcontroller 
Revision ID Register

22h/23h
Index FFh

Major and minor stepping level of ÉlanSC400 
and ÉlanSC410 microcontrollers

page 3-201

Table 3-1 CPU Control Register Summary (continued)

Register I/O Address CPU Control Function Keyword
Description 
in Register 
Set Manual
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Because there are now many x86 CPU variants available from several different vendors, 
programs sometimes require the ability to determine the hardware they are running on. 
The ÉlanSC400 and ÉlanSC410 microcontrollers can themselves itself via the CPUID 
instruction. This is discussed in Section 3.6.

3.4 CACHE MEMORY MANAGEMENT
The ÉlanSC400 and ÉlanSC410 microcontrollers contain an 8-Kbyte unified code and data 
cache. Cache operation defaults to write-through, although write-back mode can be 
enabled at any time by setting bit 0 in the Cache and VL Miscellaneous Register (CSC 
index 14h[0]).

Only the L1 cache is supported on the ÉlanSC400 and ÉlanSC410 microcontrollers; there 
is no support for an L2 cache.The L1 cache can be configured through the standard cache 
configuration bits in the CPU’s machine status register (CRO register). The CD (cache 
disable bit [bit 30]) and NW (not write-through [bit 29]) are decoded as shown in Table 3-2.

Table 3-2 Cache Configuration Options

Caching is controlled by the memory management subsystem on a per-access basis. For 
example, ISA bus accesses are not cached. The programmer has some control over which 
regions of memory are cacheable and which are not. This is discussed in Chapter 7.

3.5 SYSTEM MANAGEMENT MODE (SMM)
System Management Mode (SMM) is a separate operating mode of the CPU (apart from 
Real, Virtual, and Protected modes) with distinct hardware and software features. SMM is 
intended for use only by system firmware (e.g., BIOS) and not by application software or 
general-purpose system software. SMM lets the system designer add to computer products 
software-controlled features that operate transparently to the operating system and 
software applications.

This section presents basic information on using SMM on the ÉlanSC400 and ÉlanSC410 
microcontrollers; more complete information is available in the Enhanced Am486 
Microprocessor Family Data Sheet (order #19225).

3.5.1 Uses of SMM
SMM provides an operating-system-independent method of adding support for specialized 
hardware features. Two uses that may be quite common with systems based on the 
ÉlanSC400 and ÉlanSC410 microcontrollers are power management and PC/AT keyboard 
emulation, because complete hardware support for both of these features is integrated 
directly into the ÉlanSC400 and ÉlanSC410 microcontrollers.

CD NW Operating Mode

1 1 Cache line fills, cache write-throughs, and cache invalidations are disabled. To 
completely disable the cache, set both CD and NW to 1 and flush the cache by 
executing a WBINVD or INVD instruction. 

1 0 Cache line fills are disabled. Cache write-throughs and cache invalidations are 
enabled. This configuration allows software to disable the cache for a short time, 
then re-enable it without flushing the original contents.

0 1 Invalid setting. A general-protection exception with an error code of 0 is 
generated.

0 0 Cache line fills, cache write-throughs, and cache invalidations are enabled. This 
is the normal operating configuration.
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Power management is a good example of something that has both hardware-specific and 
operating-system-specific components. Basic power management can be performed 
completely transparently to the operating system with hardware support. This is possible 
because the operating system knows nothing about SMM. The power management unit 
(PMU) can cause a System Management Interrupt (SMI) to occur based on various PMU 
activities (see Chapter 5 for details). The operating system knows nothing about the SMI, 
which causes the transition to SMM. Code in the SMM handler (usually provided by the 
BIOS) will respond to the activity and cause a power management state transition, and 
then return from the SMI with a resume (RSM) instruction.

The matrix keyboard controller can also generate SMIs. With the hardware support provided 
by the ÉlanSC400 and ÉlanSC410 microcontrollers, an SMI handler can let the matrix 
keyboard controller emulate a PC/AT keyboard, also completely transparently to the 
operating system. See Chapter 16 for details.

3.5.2 SMM Requirements
The ability of SMM to operate completely transparently to any operating system places 
several requirements on SMM implementation:

■ An area of memory the O/S is not aware of must be available to store the complete state 
of the CPU on SMM entry. This area is called the State Save Map and is a part of the 
SMRAM (System Management Random Access Memory).

■ Code that the O/S is not aware of must be available to execute the SMM task. This code 
is also stored in SMRAM.

■ The effect on the cache of using this data and code space that the O/S is not aware of 
must be carefully considered. The ÉlanSC400 and ÉlanSC410 microcontrollers offer 
several options for managing the cache during SMM execution.

■ The SMM code itself must not execute for too long, or the O/S will notice the increased 
interrupt latency (e.g., by losing characters coming in from a UART).

3.5.3 System Management Random Access Memory (SMRAM)
As noted above, SMM requires an area of memory independent of the O/S to store system 
state when SMM is entered and to store the code that runs during SMM. This memory is 
called SMRAM. Because there is no way to inform most legacy operating systems to leave 
a particular area of RAM alone, the ÉlanSC400 and ÉlanSC410 microcontrollers have the 
ability to “hide” SMRAM “underneath” other resources, such as ROM or ISA memory space. 
This effectively makes SMRAM invisible to the operating system. This hiding is 
accomplished by changing the value of SMBASE, a CPU register that defines the start of 
SMRAM. Historically, SMRAM is 64 Kbytes in length, but in the ÉlanSC400 and ÉlanSC410 
microcontrollers, it is only 32 Kbytes in length, occupying the highest addressed 32 Kbytes 
in the legacy 64-Kbyte SMRAM block.

Figure 3-1 illustrates the SMRAM address space. SMBASE defines the start of the historical 
64-Kbyte SMRAM, and the 32-Kbyte portion of SMRAM actually implemented by the 
ÉlanSC400 and ÉlanSC410 microcontrollers starts at SMBASE + 8000h. This is the location 
of the SMM handler entry point. SMRAM ends at SMBASE+0FFFFh, and the save area 
occupies the highest 512 bytes of SMRAM, from SMBASE+0FE00h to SMBASE+0FFFFh.
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Figure 3-1 SMRAM Organization

3.5.4 System Management Interrupt (SMI)
SMM is entered via an SMI, which is a type of non-maskable interrupt. SMI is the highest 
priority interrupt in the entire system. SMI generation is controlled by CSC indexed registers 
90–9Dh, which are more fully described in Chapter 5. Typically, a hardware activity, such 
as a change on the SUS_RES pin, will be programmed to cause an SMI. An SMI may also 
be forced by setting bit 0 in the Miscellaneous SMI/NMI Enable Register (CSC index 90h[0]). 
An SMI can be driven into the microcontroller by an external device by configuring one of 
the GPIO pins as an external SMI input via the GPIO_XMI to GPIO_CS Map Register (CSC 
index B0h). No SMI will be propagated to the CPU core unless bit 0 (Master SMI Enable) 
in the XMI Control Register (CSC index 9Dh[0]) has been set.

The following activities occur when the ÉlanSC400 and ÉlanSC410 microcontrollers 
process an SMI:

1. The cache will be automatically flushed unless disabled by setting bit 5 in the Non-
Cacheable Window 0 Address/Attributes/SMM Register (CSC index 11h[5]).

2. Caching while in SMM is disabled unless enabled by setting bit 6 in CSC index 11h. See 
Section 7.7.3.1 in this manual for a discussion about caching and SMM.

3. The memory management hardware will map an area in DRAM to use for SMRAM when 
the 32-Kbyte region starting at SMBASE+8000h overlaps the “upper memory area” or 
“high memory area” (memory between 00A0000h and 010FFFFh). In this case, during 
SMM, CPU accesses (but not DMA accesses) to this 32-Kbyte area are directed to 
system DRAM instead of ROM or the ISA bus. This special feature allows “hiding” 
SMRAM under ISA or ROM space. In addition to the ISA or ROM space, SMRAM can 
be hidden under any MMS window that has been opened in the upper memory area 
(00A0000h–00FFFFFh) or the high memory area (0100000–010FFFFh). For example, 
if MMS Window B (which starts at 10000h) is opened and not pointing to DRAM (starting 
at 0100000h), the SMBASE can be located in this region. SMM mode thus time-
multiplexes this system address space resource between MMS and SMM functions. If 
there is no overlap between the SMRAM region and upper or high memory, no redirection 
occurs.

4. A20M is deasserted so that SMM code can access any address in the system.

5. The entire CPU core state is saved at the top of SMRAM, in the State Save Map, as 
shown in Table 3-3. State is stored one double word (DWORD) at a time, starting at 
SMRAM+FFFCh, and proceeding downward in a stack-like fashion. 

SMBASE

SMBASE + 8000h

SMBASE + 8000h + 7FFFh Start of State Save Area

SMM Handler Entry Point

(SMBASE default = 30000h)
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6. Interrupts (including NMI) are disabled and registers are initialized as shown in 
Table 3-4. Recognition of CPU soft resets is disabled.

7. SMM Execution starts at SMBASE+8000h. See Section 3.5.5 for more information.

8. The SMM routine supplied by the customer or BIOS vendor executes and performs 
whatever tasks are necessary to deal with the SMI. At the end of execution, this routine 
must make sure that the SMI source has been cleared, usually by writing a 0 to the 
appropriate bit in CSC indexed registers 94–97h or 9B–9Ch. Then the routine must 
execute a RSM (resume) opcode (0Fh AAh) to return from System Management Mode. 
If the source of the SMI is not cleared, another SMI is issued immediately upon return 
from the current SMI. Note that the state save is for CPU core registers only. For example, 
none of the CSC indexed registers, PC/AT legacy registers, etc., are included. Since 
SMI is the highest priority interrupt, care must be taken to preserve certain system 
resources. Any indexed register is an example of this, but the CSC index register at 22h 
must absolutely be preserved to maintain a transparent SMM handler.

9. System registers, including processor mode and interrupt enable information, are 
restored from the State Save Map. If the SMM handler has stored invalid information 
here, such as setting SMBASE to a value that is not 32-Kbyte-aligned, or setting illegal 
bits in the saved CR0 register image, a shutdown mode is entered.

10.The override of A20 is removed.

11.The SMRAM memory mapping override is removed.

12.Caching is restored to its original state.

13.If a soft CPU reset has been requested, it will be issued and the CPU SRESET signal 
will be pulsed.

3.5.4.1 State Save Map

When an SMI occurs, the entire state of the CPU, including internal registers not normally 
visible to the programmer, is automatically saved to SMRAM so that, when the SMI 
processing is finished, the CPU core state can be transparently restored by the RSM 
instruction. The area of SMRAM where the state is stored is called the State Save Map. 
Table 3-3 shows the format of the State Save Map.

Many SMI handlers will have no interest in the format of the State Save Map, except for 
the location of SMBASE, because the goal of the handler is complete transparency to other 
code running on the machine.

Some SMI handlers are required to communicate with other code running on the machine. 
A typical example of this might be an implementation of Advanced Power Management 
(APM). Operating systems may make BIOS calls to communicate APM information. The 
BIOS will typically force an SMI to occur to exchange information with the SMI handler. In 
this case, the SMI handler requires knowledge of the format of the State Save Map, so that 
it can examine or store register values.

Although the entire state of the CPU is written out to the State Save Map, the format of 
some of the internal registers is subject to change, and is not documented. These areas 
in the map are marked “No access” in the table. Some registers, such as EAX, may be 
altered by the SMI handler before returning. These areas in the map are marked “Read/
Write”. Other areas in the map can be read by the SMI handler, but should not be altered 
because alteration would leave the CPU in an undefined state. For example, the segment 
selector registers such as DS, CS, etc., can be read, but should not be written because the 
internal hidden descriptor would no longer match the selector value. These map areas are 
marked “Read-Only” in the table.
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Table 3-3 SRAM State Save Map

Offset from 
SMBASE

Length 
in Bytes

Map Contents
Permitted 
Accesses

0FFFCh 4 CR0 Register Read-only

0FFF8h 4 CR3 Register Read-only

0FFF4h 4 EFLAGS Register Read/Write

0FFF0h 4 EIP Register Read/Write

0FFECh 4 EDI Register Read/Write

0FFE8h 4 ESI Register Read/Write

0FFE4h 4 EBP Register Read/Write

0FFE0h 4 ESP Register Read/Write

0FFDCh 4 EBX Register Read/Write

0FFD8h 4 EDX Register Read/Write

0FFD4h 4 ECX Register Read/Write

0FFD0h 4 EAX Register Read/Write

0FFCCh 4 DR6 Register Read-only

0FFC8h 4 DR7 Register Read-only

0FFC4h 4 TR (lower two bytes) Read-only

0FFC0h 4 LDTR (lower two bytes) Read-only

0FFBCh 4 GS Selector (lower two bytes) Read-only

0FFB8h 4 FS Selector (lower two bytes) Read-only

0FFB4h 4 DS Selector (lower two bytes) Read-only

0FFB0h 4 SS Selector (lower two bytes) Read-only

0FFACh 4 CS Selector (lower two bytes) Read-only

0FFA8h 4 ES Selector (lower two bytes) Read-only

0FF08h 160 Internal Registers No access

0FF06h 2 I/O Trap Address Read-only

0FF04h 2 I/O Trapped (bit 1) and Read/Write (bit 0) Read-only

0FF02h 2 Halt Auto Restart (Bit 0 = 1) Read/Write

0FF00h 2 I/O Trap Restart in lower byte (if = FFh) Read/Write

0FEFCh 4 SMM Revision Identifier Read/Write

0FEF8h 4 SMBASE Read/Write

0FE00h 248 Internal Registers No access
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Table 3-4 SMM Initial Register Values

Note:

1.The CS Selector value remains at 3000h, even if SMBASE is changed.

3.5.5 SMM Execution Environment
Table 3-4 shows the state of the CPU on entry to SMM mode. The following is a summary 
of key features in the SMM environment:

■ Real-mode-style address calculation

■ 4-Gbyte address limit checking

■ IF flag is cleared and NMI is disabled

■ TF flag in EFLAGS is cleared and single step traps are disabled

■ DR7 is cleared and debug traps are disabled

■ The RSM instruction no longer generates an invalid opcode exception

■ Opcodes, register, and stack default to 16-bit usage

The processor begins execution of the SMI handler at offset 8000h in SMBASE. SMBASE 
defaults to 30000h, but may be moved from within an SMI handler (See Section 3.5.9 for 
details on relocating SMBASE). As Table 3-4 shows, the CS Selector value is 3000h. This 
is true even if SMBASE has been relocated, so care should be taken when reloading CS, 
or if attempting to load CS to another segment register, because the base value will not 
match the selector.

When the SMI handler is invoked, the CPU’s PE and PG bits in CR0 are reset to 0 to disable 
paging. The processor is in an environment similar to Real mode, but without the 64-Kbyte 
limit checking. However, the default operand size and the default address size are set to 
16 bits. The EM bit is cleared so that no exceptions are generated.

Register or Feature SMM Initial State

EAX, EBX, ECX, EDX, 
ESI, EDI, EBP, ESP, 
GDTR, LDTR, IDTR, 
TSSR

Unmodified (contain values from interrupted program)

EFLAGS 0000 0002h

CR0 Bits 0, 2, 3, and 31 (PE, EM, TS, and PG) cleared; rest unmodified

DR6 Unpredictable state

DR7 0000 0400h

CS Selector = 3000h1, Base = SMBASE (Default value 30000h), 
Attributes = 16-bit / Expand Up, Limit = 4 Gbytes

EIP 0000 8000h

DS, ES, FS, GS, SS Selector = 0, Base = 0, Attributes = 16 bit / Expand Up,
Limit = 4 Gbytes

NMI Non-maskable interrupts are disabled on entry. To enable NMIs, 
execute an IRET from with SMI handler.
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Because the segment bases (other than CS) are cleared to 0 and the segment limits are 
set to 4 Gbytes, the address space may be treated as a single flat 4-Gbyte linear space 
that is unsegmented. The CPU is still in Real mode, and when a segment selector is loaded 
with a 16-bit value, that value is then shifted left by 4 bits and loaded into the Segment 
Base Register. Loading a selector does not alter the limit or attributes in the hidden part of 
the descriptor.

In SMM, the CPU can access or jump anywhere within the 4-Gbyte physical address space. 
However, because the CPU is in a mode similar to Real mode, the following restrictions 
apply:

■ Address prefix overrides are required to reach any address greater than 1 Mbyte. 
Because segment addresses are simply the selector value shifted left 4 bits, only the 
first 1 Mbyte may be addressed without an override, both for data accesses and for 
control transfers.

■ If SMBASE has been relocated, reloading CS with 3000h (e.g., via a far return or IRET) 
will not store the proper value in the CS Base. If interrupts are to be enabled or exceptions 
may occur, the SMM handler should perform a far jump to itself at its actual location. 
For example, if SMBASE has been relocated to A0000h, the following code sequence 
could be performed.

push 0A000h ; new segment selector (A000h * 16 = A0000h)
push offset ReturnLocation
retf ; far return to self

ReturnLocation:

■ Any jump, call, or return that does not have an operand-size override prefix, and any 
interrupt or exception, will truncate both the new EIP and the return address (if any) to 
the 16 low-order bits. If the SMM handler will be executing any code above 1 Mbyte, 
interrupts should not be enabled, and exceptions should not be allowed to occur.

■ SMMBASE is not reset as a result of typical reset conditions, e.g., triple fault, Port 
0092[0], etc., unless an SMI is pending or active, in which case a hard reset will occur.

3.5.6 Exceptions and Interrupts
When the CPU enters SMM, it disables INTR interrupts, debug, and single-step traps by 
clearing the EFLAGS, DR6, and DR7 registers. This prevents a debug application from 
accidentally breaking into an SMI handler. This is necessary because the SMI handler 
operates from a distinct address space (SMRAM), and the debug trap does not represent 
the normal system memory space.

For an SMI handler to use the debug trap feature of the processor to debug SMI handler 
code, it must first ensure that an SMM-compliant debug handler is available. The SMI 
handler must also ensure DR3–DR0 are saved to be restored later. The debug registers 
DR3–DR0 and DR7 must then be initialized with the appropriate values.

For the software to use the single-step feature, it must ensure that an SMM-compliant 
single-step handler is available and then set the trap flag in the EFLAGS Register. If the 
system design requires the processor to respond to hardware INTR requests while in SMM, 
it must ensure than an SMM-compliant interrupt handler is available, and then set the 
interrupt flag in the EFLAGS Register (using the STI instruction). Software interrupts are 
not blocked on entry to SMM, and the system software designer must provide an SMM-
compliant interrupt handler before attempting to execute any software interrupt instructions. 
Note that in SMM mode, the interrupt vector table has the same properties and location as 
the Real-mode vector table.
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NMI interrupts are blocked on entry to the SMI handler. If an NMI request occurs during 
the SMI handler, it is latched and serviced after the processor exits SMM. Only one NMI 
request is latched during the SMI handler. If an NMI request is pending when the processor 
executes the RSM instruction, the NMI is serviced before the next instruction of the 
interrupted code sequence.

Although NMI requests are blocked when the CPU enters SMM, they may be enabled 
through software by executing an IRET instruction. If the SMI handler requires the use of 
NMI interrupts, it should invoke a dummy interrupt service routine to execute an IRET 
instruction. When an IRET instruction is executed, NMI interrupt requests are serviced in 
the same Real-mode manner in which they are handled outside of SMM.

3.5.7 Auto Halt Restart
In some power managed systems, the Halt (HLT) instruction can be used to halt execution 
when there is no work to be done. Typically, HLT is executed with interrupts enabled, and 
an interrupt request brings the CPU out of halt state. After the interrupt is serviced, main 
line execution resumes with the instruction after the Halt instruction.

When an SMI occurs while the CPU is halted, by default, the Halt instruction is restarted 
upon exit from SMM. This will cause the CPU to re-enter the halt state after having executed 
the SMI. This feature is called “Auto Halt Restart.” The SMI handler may choose to disable 
this feature (on a per-SMI basis). This causes the CPU to resume with the instruction after 
the HLT upon exit from SMM, just as it does when a regular interrupt handler exits. In this 
case, the SMI causes the CPU to leave the halt state to continue executing main-line code 
after the SMI handler finishes.

Bit 0 of the word at SMBASE+0FF02h is the Auto Halt Restart bit. It will be set to 1 upon 
SMM entry if and only if the interrupted instruction was a HLT. When the SMI handler resets 
this bit to 0, execution after the RSM continues with the instruction after the HLT; otherwise 
the HLT is re-executed. The SMI handler should never set this bit—doing so causes 
unexpected behavior when the interrupted instruction is not a halt.

3.5.8 I/O Trapping

3.5.8.1 Restarting I/O Instructions

An I/O instruction is said to be “trapped” if address decode logic external to the CPU core 
asserts the SMI input to the CPU during an I/O cycle. The ÉlanSC400 and ÉlanSC410 
microcontrollers have several programmable sources for enabling SMI generation based 
on certain I/O address cycles being decoded. When any of these is enabled and the 
specified I/O access occurs, SMM will be entered as a result of an I/O trap. The I/O Trap 
Restart feature allows a trapped I/O instruction to be restarted. This feature is very useful 
for power-managed systems. 

For example, consider a system with a floppy disk controller that may be shut off to conserve 
power. The operating system knows nothing of this power management, so the power 
management must be completely transparent to the O/S. If the power management 
firmware decides that the floppy should be turned off (perhaps because of a PMU timer 
time-out), it can turn off the floppy controller, and then can turn on I/O trapping for floppy 
disk accesses by setting bit 0 in the I/O Access SMI Enable Register B (CSC index 9Ah[0]).

When the O/S next attempts to read from or write to a floppy controller I/O address, the 
instruction will be trapped and the SMI handler will be entered. The hardware will set bit 0 
of the I/O Access SMI Status Register B (CSC index 9Ch[0]) to indicate the SMI was caused 
by trapping a floppy disk controller access.
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When the SMI handler notices that bit 0 is set, the handler should take the following actions:

■ Reset this bit (by writing 0FEh to CSC index 9Ch).

■ Power up the floppy disk controller (this action is system-implementation-dependent).

■ Restore all floppy disk controller registers to valid states.

■ Make the RSM instruction restart the trapped I/O instruction by setting the word at 
SMBASE+0FF00h (the I/O Instruction Restart Slot) to 00FFh.

■ Execute the RSM instruction to allow the floppy access to proceed.

Note that, if one of these I/O trap bits (in CSC index 9B or 9C) is set upon entry to SMI, the 
condition should be dealt with before exiting SMM. Restarting an I/O instruction from a 
subsequent back-to-back SMI request is not legal. I/O traps should be prioritized ahead of 
other SMI causes in the SMI dispatcher.

3.5.8.2 Emulating I/O Instructions

Trapped I/O instructions can also be emulated and then discarded, rather than restarted. 
When a valid I/O instruction has been trapped, bit 1 of the word at SMBASE+0FF04H is 
set. When this bit is set, bit 0 of the same word will be 1 if the interrupted instruction was 
attempting an I/O read, or 0 for a write, and the word at SMBASE+0FF06h will contain the 
I/O address of the access. 

This information can be used to emulate the I/O access. An example is to emulate a standard 
PC/AT floppy controller when a non-standard one is being used. 

This information can also be used to determine what I/O address caused the trap when 
using the GPIO trap feature, which will generate a trap for up to 16 consecutive addresses. 
See the register descriptions for CSC index B4–B7h.

Emulation is performed by examining the instruction opcode to determine the exact 
instruction, and then using the register information in the State Save Map (i.e., the address 
of the trapped I/O) to determine exactly what to do. In the simplest case, the value of the 
AL Register in the State Save Map (e.g., the lowest byte of the EAX Register) is used to 
output, or is updated for an input. If an instruction is emulated, no special action is needed 
to cause the CPU to continue with the next instruction after the RSM.

If the SMI did not occur as a result of a trapped I/O instruction, bit 1 of the word at 
SMBASE+0FF04h will be zero, and the value of bit 0 in this word will be unpredictable, as 
will the value of the word at SMBASE+0FF06h. In this case, the word at SMBASE+0FF00h 
(the I/O Instruction Restart Slot) should not be written to because the results will be 
unpredictable.

3.5.9 SMM Base Relocation Example
As discussed previously, the default value for SMBASE is 30000h. This legacy value is not 
suitable for many operating systems because it does not allow transparent SMM operation 
(the RAM at 30000h is visible to the host operating system). The value of SMBASE can be 
changed, but only from within an SMI handler.

The solution is to force an SMI to occur and change the SMBASE value from within the 
handler before the O/S gets control. This is exactly how the BIOS power management code 
does it.
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The following simplified program shows how to move an SMI handler to A8000 (behind the 
ISA VGA graphics space). The program assumes the following:

■ SMM features of the currently running BIOS (such as power management) have been 
shut off to keep SMM from being relocated by the BIOS. (SMBASE is at its default 
30000h value.)

■ The program is running from DOS, and there are few enough TSRs and drivers so that 
the default SMRAM area (38000–3FFFFh) is free for use.

■ The display is a VGA card in a normal text mode (80x25 screen at B8000h).

■ The area at B0000h is free for use by the program, e.g., the internal graphics controller 
on the ÉlanSC400 microcontroller is disabled, no monochrome card is attached, and 
EMM/QEMM/etc. have not appropriated the area. (This area is where the MMS A 
memory mapping window is located.)

Given the above assumptions, the code that follows is a fully functional program. It contains 
a code fragment that is moved to the default SMRAM location, and another code fragment 
that is moved to the target SMRAM location, via use of MMS (because the DRAM at the 
target SRAM location of A8000h is not visible during normal system operation). The code 
fragment moved to the default SMRAM location changes SMBASE and performs an RSM 
instruction. Since the cause of the SMI has not been removed, another SMI occurs 
immediately, but using the relocated SMBASE. The other code fragment removes the cause 
of the SMM (the force SMM bit) and performs an RSM instruction. Both code fragments 
update the VGA display to show that the SMI occurred.

; This program was assembled with TASM, and linked with TLINK into a
; tiny model (.COM) file.
; It assumes that there are not so many TSRs and drivers loaded that
; it loads too high -- CS should be well below 3000h when the
; program runs.

code segment para public use16 ’CODE’
.386

assume cs: code, ds: code, es: nothing, fs: nothing,gs:nothing

org 100h
Go:

jmp     short PastTheData

; Data for moves. We are moving one code fragment into 3000:8000
; (assuming that that does not interfere with the location of this
; program) and another fragment into A000:8000, via the MMS window
; at B000:0000.

CodeDst1 LABEL DWORD
dw      8000h,3000h

CodeSrc1 DW     CodeFrag1

CodeDst2 LABEL DWORD
dw      0000h,0B000h

CodeSrc2 DW     CodeFrag2

PastTheData:
in      al,22h
push    ax
Am486® CPU3-12



; Use MMS Window 5 to map CPU address B000:0 to RAM address A000:8000
mov     ax,(0A800h SHR (15-4)) * 100h + 32h
out     22h,ax
mov     ax,0C833h
out     22h,ax

; Move both the code fragments
les     di,CodeDst1
mov     si,CodeSrc1
mov     cx,CodeLen1
cld
rep     movs byte ptr es:[di],byte ptr ds:[si]

les     di,CodeDst2
mov     si,CodeSrc2
mov     cx,CodeLen2
cld
rep     movs byte ptr es:[di],byte ptr ds:[si]

; Disable the MMS window
mov     ax,033h
out     22h,ax

; Enable SMI and force it a few times, to prove that it works
mov     ax,019Dh ;Enable SMI at index 9D
out     22h,ax

; Force SMI. This first force will actually generate 2 SMIs.
; This is an (expected in this case) side effect of not clearing
; the force smi bit in the primary SMM handler at 38000. SMIs
; will continue to occur until the force smi bit is cleared as
; is done in the relocated SMM handler at B0000h.

; Note that the 2nd time you run this, only 1 SMI will occur
; because the primary handler at 38000 will not be called. Also
; note that in order to start from scratch in terms of SMI handlers,
; you have to power cycle the system, or hit the hard reset
; (resetdrv) button. CTL-ALT-DEL will not reset the SMMBASE.

mov     ax,0190h
out     22h,ax

mov     ax,0090h ;Disable force smi
out     22h,ax

; Exit back to DOS
int     20h ;Return to DOS

;-----------------------------------------------------------------------

;----------< SMI handler for power on reset default SMM Base >-----------

;-----------------------------------------------------------------------

; This code fragment is the initial SMI handler that gets copied to the
; default SMI location at 3000:8000 to handle the first SMI. Inside the
; default handler the SMMBASE is moved to the less intrusive location of
; A000:8000.

CodeFrag1:

; Set new state base
mov     dword ptr cs:[0FEF8h],0A0000h
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s

; Write sign on message to the VGA screen.
mov     ax,0B800h ;Source and dest segments are the 
mov     es,ax ;display buffer
mov     ds,ax
cld

mov     si,80*2 ;Scroll everything up 1 line
mov     di,0
mov     cx,80*24
rep     movsw

mov     di,80*24*2 ;Init the (new) bottom line to spaces
mov     ax,0720h
mov     cx,80
rep     stosw

;-----------< Now write the signon message >---------------

mov     di,80*24*2 ;Init the destination to start of last line

; Remember, the code fragments, including the signon message are
; being loaded into memory 38000h and a8000h manually by this
; utility. So you can’t just use the .asm offset directive to
; find the start of the string like you normally would. Since
; only codefrag1 is copied into the 38000 area, the signon message
; is relative to the segment (which is hard coded to be CS), to
; codefrag1 (which is the start of the code), and to the size of
; codefrag1 (which is SMI3000Happens-CodeFrag1).

mov     bx,(SMI3000Happens-CodeFrag1) + 8000h
mov     ah,07h ;Use light gray attribute

WriteLoop1:
mov     al,cs:[bx] ;Attribute is in ah, char is in al
inc     bx ;Next char
or      al,al ;Check for sentinel (0)
jz      short ExitWrite1 ;if sentinel, bail
stosw ;else write to screen memory
jmp     WriteLoop1 ;

ExitWrite1:

; Exit the handler. Another SMI will happen immediately because we haven’t
; and cleared the forcesmi bit. This time, the SMBASE has changed, so we
; will start executing from the A000:8000 location.

db      0Fh,0AAh                ; return from SMI (Resume instruction)

SMI3000Happens db      "SMI handler installed & working. SMM base relocated 
to system DRAM at A0000h.",0

CodeLen1        EQU $ - CodeFrag1

;-----------------------------------------------------------------------

;--------------< SMI handler for relocated SMM Base >--------------------

;-----------------------------------------------------------------------

; This code fragment is the SMI handler for the 2nd SMI and beyond. It get
; copied to the (somewhat arbitrary) location of A000:8000.
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CodeFrag2:

;-----------------------------------------------------------------------

;------< Click the speaker for an audible indication of SMI activity >--

;-----------------------------------------------------------------------

mov    bx,4300 ;frequency of click
mov    ax,34DDh
mov    dx,0012h
cmp    dx,bx
jnb    ExitClick
div    bx
mov    bx,ax
in     al,61h
test   al,03
jne    SpkrEnabled
or     al,03
out    61h,al
mov    al,0B6h
out    43h,al

SpkrEnabled:
mov    al,bl
out    42h,al
mov    al,bh
out    42h,al

; short delay while the speaker is putting out the click
mov    cx,08000h
loop   $

; Don’t bother to put back timer count or speaker gate value,
; this is just a test utility.in     al,61h

and    al,0FCh ;Turn off the speaker gate
out    61h,al

ExitClick:

; Clear all SMI status bits or another SMI can result. Any SMM status port
; that has an SMI status bit set will be written to port 680H, and port
; 80 candisplay the value read back. The last port found with any bits
; set is what will be displayed in ports 680/80.

in      al,22h ;Save index 22h for later restoration so SMI
mov     bl,al ;does not change system state

mov     al,0
out     80h,al ;Leave 0 at port 80 to indicate no smi event
mov     dx,680h ;happened

Try94:

mov     al,94h
out     22h,al
in      al,23h
cmp     al,0
je      Try95
out     80h,al
mov     al,0
out     23h,al
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mov     al,94h
out     dx,al

Try95:

mov     al,95h
out     22h,al
in      al,23h
cmp     al,0
je      Try96
out     80h,al
mov     al,0
out     23h,al
mov     al,95h
out     dx,al

if 0    ;----< Uncomment this block when working with XT Keyboard SMIs >-----

You would think this is required, but it doesn’t seem to be. Test
this with smi_xt.pas in the tech\kbd directory.
in      al,60h ;This should clear the interrupt so 

;another can occur

in      al,64h ;some test code to see what port 64h looked
mov     dx,3ffh ;like when smm occurred due to xt kb smi. 

;(It reads 0Ah).
out     dx,al ;Store in a global for display.

; The following toggle must be done or you only get 1 SMI, 
; and then no more.

in      al,61h ;And this toggling of 61h[7] should clear
or      al,0C0h ;the xt shift register so you don’t get
out     61h,al ;false smis when the next byte is shifted

;in (and the existing data is shifted out
;to the IRQ signal!!

; This delay is required since you are "acking" the XT KB which is
; running relatively slow microcode. Failure to do this can cause
; the XT KB to generate a continuous stream of SMIs. 

mov     cx,0ffffh ;Short delay
loop    $

and     al,7fh    ;Enable the XT kb interface again.
out     61h,al

endif   ;----------<********************************************>-------

Try96:

mov     al,96h
out     22h,al
in      al,23h
cmp     al,0
je      Try97
out     80h,al
mov     al,0
out     23h,al
mov     al,96h
out     dx,al
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Try97:

mov     al,97h
out     22h,al
in      al,23h
cmp     al,0
je      Try9B
out     80h,al
mov     al,0
out     23h,al
mov     al,97h
out     dx,al

Try9B:

mov     al,9Bh
out     22h,al
in      al,23h
cmp     al,0
je      Try9C
out     80h,al
mov     al,0
out     23h,al
mov     al,9Bh
out     dx,al

Try9C:

mov     al,9Ch
out     22h,al
in      al,23h
cmp     al,0
je      ExitSmm
out     80h,al
mov     al,0
out     23h,al
mov     al,9Ch
out     dx,al

ExitSmm:

mov     al,bl ;restore index 22h
out     22h,al

db      0Fh,0AAh ;return from SMI (Resume instruction)

CodeLen2        EQU $ - CodeFrag2

code ends

end go

3.5.10 SMM Interaction With SRESET 
The Am486 CPU NMI and SMI input signals are edge-triggered. The Am486 CPU core 
clears all internal NMI and SMI events upon receipt of the SRESET signal. Internal to the 
ÉlanSC400 and ÉlanSC410 microcontrollers, the NMI and SMI signals are asserted once 
and are then held in the asserted state until the source for the interrupt is cleared. Therefore, 
an SRESET event that is subsequent to or concurrent with the assertion of one of these 
interrupts clears the interrupt internal to the CPU, even though the external PMU logic is 
asserting the SMI or NMI signal. As a result, the interrupt handler is never called to clear 
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the PMU logic, and no new edge is ever generated to the CPU on these signals. 
Consequently, no further interrupt ever occurs from these sources. 

To avoid this situation, the boot code (which is invoked as a result of the SRESET) should 
force the NMI and SMI signals to be deasserted via their enable bits and then re-enable 
them. This will cause a new edge to be asserted to the CPU for the NMI and SMI events 
if any events were pending. SMIs can be disabled via CSC index 9Dh[0]. NMIs can be 
disabled via Port 0070h[7].

Note that SRESET is normally the result of either setting Port 0092h[0], reading Port 00EFh, 
sending a CPU reset command to the keyboard controller, or experiencing a CPU triple-
fault. All of these means have been used by older software to switch the CPU from Protected 
mode back to Real mode.

3.6 CPU CORE IDENTIFICATION USING THE CPUID INSTRUCTION
Information about the integrated Am486 CPU core is available by reading the DX Register 
after a system reset (see reset information in Chapter 4), and also by using the CPUID 
instruction at any time. The CPUID instruction is available on later model 32-bit processors 
from all leading x86 vendors and allows programs to determine information about the CPU, 
including the manufacturer, cache type, and availability of an FPU.

The ÉlanSC400 and ÉlanSC410 microcontrollers are the first members of a new family of 
embedded devices. The CPUID instruction can be used to identify a processor as belonging 
to this family, and then the ÉlanSC400 Microcontroller Revision ID Register (CSC index 
FFh) can be used to identify which silicon revision software is running on.

A user-modifiable bit in the EFLAGS Register indicates support of the CPUID instruction. 
This bit (bit 21) is referred to as the EFLAGS.ID bit and is reset to 0 at CPU reset (RESET 
or SRESET) for compatibility with existing processor designs.

Using the CPUID instruction the microcontroller can be done with the following steps, as 
shown in the code sample in Section 3.6.3:

■ Ensure that the CPU is capable of executing an “invalid opcode” exception if it does not 
recognize the CPUID instruction, and install a trap at the exception vector.

■ Execute the CPUID instruction twice, once to get the manufacturer name and once to 
get the device description.

■ Make sure the manufacturer name is “AuthenticAMD”.

■ Make sure the device is described as a 486 SX1 with a write-back cache.

The Am486 CPU core in the ÉlanSC400 and ÉlanSC410 microcontrollers is the first CPU 
AMD has made with a write-back cache and no FPU, so these tests should be sufficient to 
uniquely identify the family. For consistency, the results reported by CPUID are constant. 
Even though cache accesses can be set to write-back or write-through and the CPU speed 
can be clock-doubled or clock-tripled, changing these parameters through software does 
not alter the CPUID results.

3.6.1 CPUID Timing
CPUID execution timing depends on the selected EAX parameter values, as shown in Table 
3-5. 
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Table 3-5 CPUID Instruction Description 

3.6.2 CPUID Operation
The CPUID instruction requires the user to pass an input parameter to the CPU in the EAX 
Register. The CPU response is returned to the user in registers EAX, EBX, ECX, and EDX. 

■ When the parameter passed in EAX is 0, the register values returned upon instruction 
execution are:

EAX[31:0] = 00000001h
EBX[31:0] = 68747541h
ECX[31:0] = 444D4163h
EDX[31:0] = 69746E65h

The values in EBX, ECX, and EDX contain an ASCII string that spells out 

‘AuthenticAMD’

■ When the parameter passed in EAX is 1, the register values returned are:

EAX[3:0] = Stepping ID
EAX[7:4] = Model:

AH = enhanced Am486 SX1 write back mode
EAX[11:8] = Family

 4H = Am486 CPU
EAX[15:12] = 0000b
EAX[31:16] = RESERVED
EBX[31:0] = 00000000h
ECX[31:0] = 00000000h
EDX[31:0] = 00000000h

The 0 in bit 0 of EDX[31:0] indicates that the FPU is not present

Note: Please send e-mail to the LPD Technical Support Center for stepping ID details. 
Use this e-mail address: LPD@amd.com

The value returned in EAX after executing the CPUID instruction is identical to the value 
loaded into EDX upon CPU reset. Software must avoid any dependency upon the state of 
reserved processor bits. 

■ When the parameter passed in EAX is greater than 1, the register values returned upon 
instruction execution are:

EAX[31:0] = 00000000h
EBX[31:0] = 00000000h
ECX[31:0] = 00000000h
EDX[31:0] = 00000000h

Flags Affected: None
Exceptions: None

OP 
Code

Instruction
EAX

Input Value
CPU Core 

Clocks
Description

0F A2 CPUID 0
1

>1

41
14
9

AMD ASCII String
CPU ID Register
Null Registers
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3.6.3 CPUID Example
Using the CPUID instruction from 32-bit assembly language is relatively easy; using the 
CPU ID instruction is more difficult from 16-bit C code. The following C code fragment 
shows how to positively identify ÉlanSC400 microcontroller (and derivative) CPUs from 16-
bit Microsoft C.

////////////////////////////////////////////////////////////////////////
// Exception and MyInt6 are used by IsE4 to install a longjmp handler
// at the illegal opcode exception vector.

static jmp_buf Exception;

void MyInt6(void)
{
// Reenable interrupts, and make the setjmp return a ’1’, showing that
// the exception occurred

_enable();
longjmp(Exception,1);
}

////////////////////////////////////////////////////////////////////////

// The goal of IsE4 is to return TRUE if the CPU is an 
// ÉlanSC400 microcontroller or derivative, by verifying the following:

//   - The CPU was made by AMD "AuthenticAMD"
//   - The CPU has no FPU
//   - The CPU is capable of write-back caching

// Because of limitations with 16-bit code, the upper words of the data
// are not verified, but the verification is still relatively secure.

BOOL IsE4(void)
{
typedef void (_far * LPFUNC)(void);
typedef LPFUNC _far *LPLPFUNC;

LPLPFUNC Int6;
LPFUNC OldInt6;

// Save the old int6 vector, and install our exception handler

Int6 = MK_FP(0,6*4);
OldInt6 = *Int6;
*Int6 = MyInt6;

// 8088/8086 CPUs don't have exception handling, but 8088-80186 CPUs push a
// different value when pushing SP than the 286 and above.

_asm {
push   sp
pop   ax
sub   ax,sp
jnz   NotMine   // Jump if 8088/8086 or 80188/80186

}

// setjmp will only return true if we encountered the 'illegal exception'
// opcode.

// In this case, clean up by restoring the interrupt vector, and return
// FALSE.
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if (setjmp(Exception))
{

    // If we ever vector to "NotMine", we’ll clean up and return FALSE.

_asm {
NotMine:
}

*Int6 = OldInt6;
return FALSE;

}

// All set up, ready to perform the test. The 16-bit compiler doesn’t
// understand 32-bit instructions, so we manually code them.

_asm{
_emit 0x66  // XOR EAX,EAX  -- a 286 should vector to int 6 here
_emit 0x33
_emit 0xC0

_emit 0x0F  // CPUID   -- 386s, older 486s should vector to int 6 here
_emit 0xA2

// Test for fragments of the "AuthenticAMD" string
// This checks every other word of the string (ignores high-order words)

cmp   ax,1           -- Make sure EAX changed
jnz   NotMine
cmp   bx,07541h      -- Check low order string portions
jnz   NotMine
cmp   cx,04163h
jnz   NotMine
cmp   dx,06E65h
jnz   NotMine

// Check the stepping, that it has write-back cache, and that
// it has no FPU. EAX should already contain a 1 from previous
// CPUID instruction

_emit 0x0F  // CPUID
_emit 0xA2

or   bx,cx
or   bx,dx
jnz   NotMine   // Jump if FPU or other feature present

mov   bx,ax
and   bx,0Fh
xor   ax,bx
cmp   bx,4    // Check for stepping 4 or greater of core
jb   NotMine
cmp   ax,04A0h  // Check features
jnz   NotMine
}

// Passed all the tests. Must be an ÉlanSC400 microcontroller or
// derivative. Clean up and return TRUE.

*Int6 = OldInt6;
return TRUE;

}
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CHAPTER
4
 SYSTEM INTERFACES
4.1 INITIALIZATION
The microcontroller is in an indeterminate state when power is first applied. Power-on reset 
places the microcontroller into a defined state, as described in this section. Other types of 
reset defined below are used to control the state of specific parts of the microcontroller.

4.1.1 Types of Reset
The ÉlanSC400 and ÉlanSC410 microcontrollers employ five different types of reset, which 
are summarized in Table 4-1.

■ Power-On Reset—This master hardware is generated by the RESET input. RESET is 
an asynchronous input equivalent to POWERGOOD in the PC/AT system architecture. 

■ RTC-Only Reset—This internal reset uses the BBATSEN signal to sense the Real-Time 
Clock’s back-up battery voltage during a power-on reset. 

■ CPU Reset—Also called soft reset, this is equivalent to the SRESET function on the 
Am486 microprocessor. This reset is a synchronized reset to the CPU only. 

■ ISA System Reset—The RSTDRV output is used to reset all external devices connected 
to the ISA bus.

■ VESA Local (VL) Bus Reset— The VL_RST output is used to reset all external devices 
connected to the VL-bus.
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Table 4-1 Types of Reset

4.1.1.1 Power-On Reset

Power-on reset is invoked by asserting the RESET input. Power-on reset can be asserted 
at any point during operation. Power-on reset configures the microcontroller as follows:

■ Instruction execution is suspended.

■ Instruction fetching is suspended.

■ Any interrupt or trap conditions are ignored.

■ Except as previously noted, the contents of all configuration registers are reset to their 
listed default power-on reset states.

■ The PLLs are disabled.

Power-on reset mode is exited when the RESET input is deasserted. At this point, 

Types of Reset Also Called Cause Effect

Power-On 
Reset

Reset
System Reset
Master Reset
Cold Reset
Internal Master Reset
Hardware Reset

Asserting and deasserting the 
RESET input

Resets the entire microcontroller 
except for the Real-Time Clock.
All configuration registers are 
reset. 
The CPU core is reset. (The 
CPU’s RESET input is driven 
active.)
The microcontroller enters High-
Speed Power-Management 
mode.
See Table 4-2 for more detail.

RTC-Only 
Reset

The BBATSEN input being 
sampled below 2.4 V during a 
power-on reset 
BBATSEN also provides an 
internal reset signal to the RTC 
when an external back-up battery 
is applied for the first time.

Only the RTC is reset.
Resets bit 7 (VRT) of Register D 
(RTC index 0Ch) to 0. An initial 
read to this register will then set 
the bit back to 1.

CPU Reset Soft Reset
Fast Reset
Hot Reset
CPU Core Reset
SRESET
Slow Reset

Reading the Alternate CPU Reset
Control Register (Port 00EFh)

Pulses the internal CPU SRESET 
signal. Only the CPU is reset. The 
Am486 cache state and SMBASE 
are not affected.
No effect on configuration 
registers

Setting bit 0 of the System Control
Port A Register (Port 0092h)

“Slow reset” command sequences 
that are intended for an external 
SCP are trapped and decoded 
internally

Shutdown cycle issued by the CPU

ISA System 
Reset

Signal Name: RSTDRV
System Reset
ISA Reset

Asserting the RESET input Re-initializes all devices 
connected to the ISA bus to their 
reset state

VL-Bus Reset Signal Name: VL_RST
VESA Reset

Setting bit 4 in the Cache and VL 
Miscellaneous Register (CSC 
index 14h) asserts VL_RST

Re-initializes the VL-bus target to 
its reset state. After enabling the 
VL-bus interface, VL_RST should 
be asserted and deasserted 
before using the VL-bus.
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■ The configuration pins CFG3-CFG0 are sampled.

■ CPU begins fetching instructions from the reset vector of 3FFFFF0h in ROMCS0 space 
when RESET is deasserted.

The state of CFG1–CFG0 pin straps determines the width of the ROM0 data bus (as 
described in Section 4.4). These pin straps are used to select between 8-, 16-, or 32-bit 
data bus widths for the physical device that is connected to the ROMCS0 pin for the linear 
address decode. At power-on reset, the 64-Kbyte segment between 00F0000h and 
00FFFFFh is enabled by default for ROMCS0 decode. 3FF0000–3FFFFFFh is enabled for 
decode (CSC index 21h),and in many systems this will alias to 00F0000–00FFFFFh. 
(Setting the characteristics of the ROM address spaces is described in Chapter 8.)

The CFG2 pin strap selects whether or not the system will boot from the device attached 
to ROMCS0 or from the PC Card Socket A memory card. 

The CFG3 pin strap is used for selecting between the GPIO_CSx I/O pins and the SD bus 
buffer control signals: DBUFOE, DBUFRDL, and DBUFRDH. When the buffer control signal 
configuration is selected using the CFG3 pin, the DBUFOE, DBUFRDL, and DBUFRDH 
signals will be driven from boot time on for all accesses to the peripheral data bus. These 
signals are used to control external transceivers on the system data bus.

A power-on reset configures the internal cores and peripherals of the ÉlanSC400 and 
ÉlanSC410 microcontrollers as shown in Table 4-2. After the deassertion of RESET, the 
configuration registers should be initialized with the information required for the system, 
and interrupts should be re-enabled. See Section 4.4.1 for more detail on configuration pin 
usage.

Table 4-2 Internal Core States Immediately Following Power-On Reset

Internal Core State Comments

Internal Am486 CPU Enabled

Power-Management Unit Enabled High-Speed mode, 8 MHz

ISA Bus Controller Enabled Not all pins available until programmed

VL-Bus Controller Disabled

ROM/Flash Controller Enabled Pin straps are used to set the ROM width for 
ROMCS0 and device from which to fetch 
(ROM/PC Card)

DRAM Controller Disabled

DMA Controllers Enabled

Programmable Interrupt 
Controllers

Enabled Although the PIC address decode enable 
control is affected by power-on reset, the 
internal state of the PICs is not reset until the 
PICs receive ICW1

Programmable Interval Timer Enabled

Real-Time Clock Enabled Not reset by a power-on reset

Parallel Port Disabled

Serial Port Disabled

Matrix Keyboard Controller Disabled

XT Keyboard Controller Disabled

GPIOs Enabled
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4.1.1.2 Am486 CPU DX Register at CPU Reset

The DX register always contains a component identifier at the conclusion of the CPU reset 
process. The upper byte of DX(DH) contains 04h and the lower byte of DX(DL) contains a 
CPU type/stepping identifier. Table 4-3 shows the value in the DX register after CPU reset.

Table 4-3 CPU ID Codes

Infrared Port Disabled

PC Card Controller Disabled VCC to cards is enabled to support using CFG2 
to cause reset vector to point to PC Card Socket 
A. The PC Card controller is not supported on 
the ÉlanSC410 microcontroller.

Graphics Controller Disabled The graphics controller is not supported on the 
ÉlanSC410 microcontroller.

CPU Type and Cache Mode
During CPU Reset

Component
ID (DH)

Revision
ID(DL)

SX1 in write-back mode 04h Axh

Table 4-2 Internal Core States Immediately Following Power-On Reset (continued)

Internal Core State Comments
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4.2 SIGNAL DESCRIPTIONS
The descriptions in Table 4-4 are organized in alphabetical order within the functional group 
listed here.

■ System Interface

■ Configuration Pins

■ Memory Interface

■ VL-Bus Interface

■ Power Management 

■ Clocks

■ Parallel Port

■ Serial Port 

■ Keyboard Interfaces

■ General-Purpose Input/Output

■ Serial Infrared Port

■ PC Card (ÉlanSC400 Microcontroller Only)

■ LCD Graphics Controller (ÉlanSC400 Microcontroller Only)

■ Boundary Scan Test Interface

■ Reset and Power

Table 4-4 Signal Description Table

Signal Type Description

System Interface

AEN O DMA Address Enable is used to indicate that the current address active on the SA25–SA0 
address bus is a memory address, and that the current cycle is a DMA cycle. All I/O devices 
should use this signal in decoding their I/O addresses, and should not respond when this 
signal is asserted. When AEN is asserted, the PDACK1– PDACK0 signals are used to select 
the appropriate I/O device for the DMA transfer. AEN is also asserted when a DMA cycle is 
occurring internal to the chip

AEN is also asserted for all accesses to the PC Card I/O space to prevent ISA devices from 
responding to the IOR/IOW signal assertions, since these signals are shared between the 
PC Card and ISA interfaces.

BALE O Bus Address Latch Enable is driven at the beginning of an ISA bus cycle with valid address. 
This signal can be used by external devices to latch the address for the current cycle. BALE 
is also asserted for all accesses to the PC Card interfaces (memory or I/O) and all DMA 
cycles. This prevents an ISA device from responding to a cycle based on a previously latched 
address.

DBUFOE O Data Buffer Output Enable is used to control the output enable on the external transceiver 
required to drive the peripheral data bus in local bus and 32-bit DRAM modes.

DBUFRDH O High Byte Data Buffer Direction Control controls direction of data flow through the external 
transceiver required to drive the peripheral data bus in local bus and 32-bit DRAM mode. This 
is the control signal for the upper 8 bits of the data bus.

DBUFRDL O Low Byte Data Buffer Direction Control controls direction of data flow through the external 
transceiver required to drive the peripheral data bus in local bus and 32-bit DRAM mode. This 
is the control signal for the lower 8 bits of the data bus.
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IOCHRDY STI
PU

I/O Channel Ready should be driven by open-drain devices. When pulled Low during an ISA 
access, wait states are inserted in the current cycle. This pin has an internal weak pull-up 
that should be supplemented by a stronger external pull-up (usually 4.7 or 1 Kilohm) for faster 
rise time.

IOCS16 I I/O Chip Select 16: The targeted I/O device drives this signal active early in the cycle to 
request a 16-bit transfer.

IOR O I/O Read Command indicates that the current cycle is a read from the currently addressed 
I/O device. When this signal is asserted, the selected I/O device may drive data onto the data 
bus. This signal is also shared with the PC Card interface.

IOW O I/O Write Command indicates that the current cycle is a write to the currently addressed 
I/O device. When this signal is asserted, the selected I/O device may latch data from the data 
bus. This signal is also shared with the PC Card interface.

MCS16 I Memory Chip Select 16-bit is used to signal to the ISA control logic that the targeted 
memory device is a 16-bit device.

MEMR O Memory Read Command indicates that the current cycle is a read of the currently 
addressed memory device.   When this signal is asserted, the memory device may drive data 
onto the data bus.

MEMW O Memory Write Command indicates that the current cycle is a write of the currently 
addressed memory device. When this signal is asserted, the memory device may latch data 
from the data bus.

PDACK1–PDACK0 O Programmable DMA Acknowledge signals may each be mapped to one of the seven 
available DMA channels. They are driven active (Low) back to the DMA initiator to 
acknowledge the corresponding DMA requests.

PDRQ1–PDRQ0 I Programmable DMA Requests may each be mapped to one of the seven available DMA 
channels. They are asserted active (High) by a DMA initiator to request DMA service from 
the DMA controller.

PIRQ7–PIRQ0 I Programmable Interrupt Requests may each be mapped to one of the available 8259 
interrupt channels. They are asserted when a peripheral requires interrupt service. (Rising 
Edge/Active High Trigger)

RSTDRV O System Reset is the ISA bus reset signal. When this signal is asserted, all connected 
devices re-initialize to their reset state. This signal should not be confused with the internal 
CPU RESET and SRESET signals.

SA25–SA0 O System Address Bus outputs the physical memory or I/O port latched addresses. It is used 
by all external peripheral devices other than main system DRAM. In addition, this is the local 
address bus in local bus mode.

SBHE O System Byte High Enable is driven active when the high data byte is to be transferred on 
the upper 8 bits of the ISA data bus.

SD15–SD0 B System Data Bus is shared between ISA, 8- or 16-bit ROM/Flash, and PC Card peripherals 
and can be directly connected to all of these devices. In addition, these signals are the upper 
word of the local data bus, the 32-bit DRAM interface, and the 32-bit ROM interface. In these 
modes, the system data bus can be generated via an external buffer connected to the SD 
bus and controlled by the buffer control signals provided.

SPKR O Speaker, Digital Audio Output controls an external speaker driver. It is generated from the 
internal 8254-compatible timer Channel 2 output “ANDed” with I/O Port 0061h[1] (Speaker 
Data Enable); the PC Card speaker signals are “exclusively-ORed” with each other and the 
speaker control function of the timer to generate the SPKR signal.

TC O Terminal Count is driven from the DMA controller pair to indicate that the transfer count for 
the currently active DMA channel has reached zero, and that the current DMA cycle is the 
last transfer.

Configuration Pins

BNDSCN_EN I Boundary Scan Enable enables the boundary scan pin functions. When this pin is High, the 
boundary scan interface is enabled. When this pin is Low, the boundary scan pin functions 
are disabled and the pins are configured to their default functions.

Table 4-4 Signal Description Table (continued)
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CFG3 I Configuration Pin 3 enables the SD buffer control signals, DBUFOE, DBUFRDH, and 
DBUFRDL. This pin is sampled at the deassertion of RESET.

CFG2 I Configuration Pin 2 selects whether or not the system will boot from PC Card Socket A 
memory card or from the device attached to ROMCS0. This pin is sampled at the deassertion 
of RESET. This pin is not supported on the ÉlanSC410 microcontroller.

CFG1–CFG0 I Configuration Pins 1–0  select the data bus width for the physical device(s) selected by the 
ROMCS0 pin (i.e., 8-, 16-, or 32-bit). These pins are sampled at the deassertion of RESET.

Memory Interface

CASH3–CASH0 O Column Address Strobe High indicates to the DRAM devices that a valid column address 
is asserted on the MA lines.

These CAS signals are for the odd banks (Banks 1 and 3); CASH3–CASH2 are for the high 
word; and CASH1–CASH0 is for the low word.

CASL3–CASL0 O Column Address Strobe Low indicates to the DRAM devices that a valid column address 
is asserted on the MA lines.

These CAS signals are for the even banks (Banks 0 and 2); CASL1–CASL0 are for the low 
word; CASL3–CASL2 are for the high word.

D31–D0 B Data Bus is used for DRAM and local bus cycles. This bus is also used when interfacing to 
32-bit ROMs.

MA12–MA0 O Memory Address: The DRAM row and column addresses are multiplexed onto this bus. 
Row addresses are driven onto this bus and are valid upon the falling edge of RAS. Column 
addresses are driven onto this bus and are valid upon the falling edge of CAS.

MWE O Write Enable indicates an active write cycle to the DRAM devices. This signal is also used 
to three-state EDO DRAMs at the end of EDO read cycles.

RAS3–RAS0 O Row Address Strobe indicates to the DRAM devices that a valid row address is asserted 
on the MA lines.

ROMCS2–ROMCS0 O ROM Chip Selects are active Low outputs that provide the chip select for the BIOS ROM 
and/or the ROM/Flash array. After power-on reset, the ROMCS0 chip select will go active for 
accesses into the 64K segment that contains the boot vector, at address 3FF0000h to 
3FFFFFFh. ROMCS0 can be driven active during a linear (direct) address decode of certain 
addresses in the high memory (00A0000–00FFFFFh) region. By default, direct-mapped 
accesses to the 64-Kbyte region from 00FFFF0h to 00FFFFFh are enabled to support legacy 
PC/AT BIOS. This area is known as the aliased boot vector. It can also be activated by 
accessing a Memory Management System (MMS) page that points to the ROM0 address 
space. ROMCS1 is activated only when accessing an MMS page that points to it. A third, 
MMS-mappable ROMCS2 signal is available by reconfiguring one of the chip’s General 
Purpose Input Output (GPIO) pins for this function and also requires the use of MMS to 
access devices connected to it.

ROMRD O ROM Read indicates that the current cycle is a read of the currently selected ROM device. 
When this signal is asserted, the selected ROM device may drive data onto the data bus.

ROMWR O ROM Write indicates that the current cycle is a write of the currently selected ROM device. 
When this signal is asserted, the selected ROM device may latch data from the data bus.

R32BFOE O ROM 32-Bit Buffer Output Enable provides the buffer enable signal for the external 
transceivers on the low word of the ROM interface. This signal is automatically provided 
when the ROMCS0 interface is configured as 32-bit (the configuration can be done using 
either CFG1–CFG0 or CSC index 20h[1–0]). Once ROMCS0 is configured as 32-bit, all 
accesses to 32-bit ROM devices on ROMCS2–ROMCS0 will result in the assertion of the 
R32BFOE signal.

VL-Bus Interface

VL_ADS O Local Bus Address Strobe is asserted to indicate the start of a VL-bus cycle. It is always 
strobed Low for one clock period. The address and status lines will be valid on the rising edge 
of VL_LCLK which samples this signal Low.

VL_BE3–VL_BE0 O Local Bus Byte Enables indicate which byte lanes of the 32-bit data bus are involved with 
the current VL-bus transfer.

Table 4-4 Signal Description Table (continued)

Signal Type Description
System Interfaces 4-7



VL_BLAST O Local Bus Burst Last is asserted to indicate that the next VL_BRDY assertion will terminate 
the current VL-bus transfer.

VL_BRDY I Local Bus Burst Ready is asserted by the VL-bus target to indicate that it is terminating the 
current burst transfer. The chip samples this signal on the rising edge of VL_LCLK. 
VL_BRDY should be asserted for one VL_LCLK period per burst transfer. If VL_LRDY is 
asserted at the same time as VL_BRDY, VL_BRDY will be ignored and the VL-bus transfer 
will be terminated.

VL_D/C

VL_M/IO

VL_W/R

O

O

O

Local Bus Data/Code Status is driven Low to indicate that code is being transferred. A High 
on this signal indicates that data is being transferred.

Local Bus Memory/I/O Status is driven Low to indicate an I/O transfer. A High on this signal 
indicates a memory transfer.

Local Bus Write/Read Status is driven Low to indicate a read transfer. A High on this signal 
indicates a write.

VL_LCLK O Local Bus Clock is the VL-bus clock. It is used by the VL-bus target for all timing references. 
This signal is in phase with the internal CPU’s clock input.

(Rising Edge Active)

VL_LDEV I Local Bus Device Select is asserted by the VL-bus target to indicate that it is accepting the 
current transfer as indicated by the address and status lines. The VL-bus target will assert 
this signal as a function of the address and status presented on the bus. VL_LDEV may be 
qualified with VL_ADS by the local bus device.

VL_LRDY I Local Bus Ready is asserted by the VL-bus target to indicate that it is terminating the current 
bus cycle. This signal is sampled by the chip on the rising edge of VL_LCLK.

VL_RST O Local Bus Reset is the VL-bus master reset. It is controlled with CSC index 14h[4].

Power Management

ACIN I AC Supply Active can be used to indicate to the system that it is being powered from an AC 
source. When asserted, this signal may disable power management functions (if configured 
to do so).

BL2–BL0 I Battery Low Detects are used to indicate to the chip the current status of the system’s 
primary battery pack. BL0–BL2 can indicate various conditions of the battery as conditions 
change. These inputs may be used to force the system into one of the power saving modes 
when activated. (Low-Going Edge)

LBL2 O Latched Battery Low Detect 2 may be driven Low and latched on the low going edge of the 
BL2 input to indicate to the system that the chip has been forced into the Suspend mode by 
a battery dead indication from the BL2 signal. It is cleared by one of the “all clear” indicators 
that allow the system to resume after a battery dead indication.

SUS_RES I Suspend/Resume Operation: When the chip is in Hyper-Speed, High-Speed, Low-Speed, 
or Standby mode, a software-configurable edge on this pin may cause the internal logic to 
enter Suspend mode. When in Suspend, a software-configurable edge on this pin may cause 
the chip to enter the High-Speed or Low-Speed mode. The choice of edge is configured using 
the SUS_RES Pin Configuration Register at CSC index 50h.

Table 4-4 Signal Description Table (continued)

Signal Type Description

Bus Cycle Initiated VL_M/IO VL_D/C VL_W/R

Interrupt Acknowledge 0 0 0

Halt/Special Cycle 0 0 1

I/O Read 0 1 0

I/O Write 0 1 1

Code Read 1 0 0

Reserved 1 0 1

Memory Read 1 1 0

Memory Write 1 1 1
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Clocks

CLK_IO I/O Clock Input/Output can be used as an input to drive the integrated 8254 timer with a 
1.19318 mHz clock signal from an external source, or it can be used as an output to bring 
out certain internal clock sources to drive external devices.

LF_INT, LF_LS, 
LF_VID, LF_HS 

A Loop Filters are used to connect external RC loop filters required by the internal PLLs. 
LF_VID is not supported on the ÉlanSC410 microcontroller.

32KXTAL1
32KXTAL2

32.768 KHz Crystal Interface Signals are used for the 32.768 KHz crystal. This is the main 
clock source for the chip and is used to drive the internal Phase-Locked Loops (PLLs) that 
generate all other clock frequencies needed in the system.

Parallel Port (Note: The names in parentheses in this section are those used in EPP mode.)

ACK (INTR) I Printer Acknowledge: In standard mode, this signal is driven by the parallel port device with 
the state of the printer acknowledge signal. In EPP Mode, this signal is used to indicate to 
the chip that the parallel port device has generated an interrupt request.

AFDT (DSTRB) O Auto Line Feed Detect: In standard mode, this signal is driven by the chip indicating to the 
parallel port device to insert a line feed at the end of every line. In EPP mode, this signal is 
driven active by the chip during reads or writes to the EPP data registers.

BUSY (WAIT) I Printer Busy: In standard mode, this signal is driven by the parallel port device with the state 
of the printer busy signal. In EPP mode, this signal is used to add wait states to the current 
cycle.

ERROR I Error: The printer asserts the Error signal to inform the parallel port of a deselect condition, 
paper end (PE) or other error condition.

INIT O Initialize Printer: This signals the printer to begin an initialization routine.

PE I Paper End: The printer asserts this signal when it is out of paper.

PPDWE O Parallel Port Write Enable controls an external 374 type latch in a unidirectional parallel port 
design. This device is used to latch the SD7–SD0 bus onto the parallel port data bus. To 
implement a bidirectional parallel port, this pin is reconfigured to act as an address decode 
for the parallel port data port. It may then be externally gated with IOR and IOW to provide 
the Parallel Port Data Read and Write Strobes, respectively.

PPOEN O Parallel Port Output Buffer Enable supports a bidirectional parallel port design. PPOEN is 
used to control the output enable of the external Parallel Port Output Buffer (373 octal D-type 
transparent latch).

SLCT I Printer Select is returned by a printer upon receipt of SLCTIN

SLCTIN (ASTRB) O Printer Selected: In Standard mode, this signal is driven by the chip to select the parallel 
port device. In EPP mode, this signal is driven active by the chip during reads or writes to the 
EPP address register.

STRB (WRITE) O Strobe: In Standard mode, this signal is used to indicate to the parallel port device to latch 
the data on the parallel port data bus. In EPP mode, this signal is driven active during writes 
to the EPP data or the EPP address register.

Serial Port

CTS I Clear To Send is driven back to the serial port to indicate that the external data carrier 
equipment (DCE) is ready to accept data.

DCD I Data Carrier Detect is driven back to the serial port from a piece of data carrier equipment 
when it has detected a carrier signal from a communications target.

DSR I Data Set Ready indicates that the external DCE is ready to establish a communication link 
with the internal serial port controller.

DTR O Data Terminal Ready indicates to the external DCE that the internal serial port controller is 
ready to communicate.

RIN I Ring Indicate is used by an external modem to inform the serial port that a ring signal was 
detected. A change in state on this signal by the external modem may be configured to cause 
a modem status interrupt. This signal may be used to cause the chip to resume from a 
Suspend state.

Table 4-4 Signal Description Table (continued)
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RTS O Request To Send indicates to the external DCE that the internal serial port controller is 
ready to send data.

SIN I Serial Data In is used to receive the serial data from the external serial device or DCE into 
the internal serial port controller.

SOUT O Serial Data Out is used to transmit the serial data from the internal serial port controller to 
the external serial device or DCE.

Keyboard Interfaces

KBD_COL7–
KBD_COL0

O Matrix-Scanned Keyboard Column Outputs drive the matrix keyboard column lines. 
(Open Collector Output with programmable termination)

KBD_ROW14–
KBD_ROW0

STI Matrix-Scanned Keyboard Row Inputs samples the row lines on the matrix keyboard.

XT_CLK I/O XT Keyboard Clock is the clock signal for an external XT keyboard interface. 
(Open Collector Output)

XT_DATA I/O XT Keyboard Data is the data signal for an external XT keyboard interface. 
(Open Collector Output)

General-Purpose Input/Output

GPIO31–GPIO15
GPIO_CS14–
GPIO_CS0

B General Purpose I/Os and Programmable Chip Selects

Each of the GPIOs can be programmed to be an input or an output. 

As outputs, all of the GPIOs can be programmed to be High or Low. Some of the GPIOs can 
be programmed to be High or Low for each of the power management modes. Also as 
outputs, some of these pins can be individually programmed as chip selects for other 
external peripheral devices. These can be configured as direct memory address decodes or 
I/O decodes qualified or non-qualified by the ISA bus command signals. Any one of the 
GPIO_CSx signals can be configured as ROMCS2. 

As inputs, all the GPIOs can be read back with a register bit. Some of these pins can be 
individually programmed to act as activity triggers, wake up sources, or SMIs.

Serial Infrared Port

SIRIN I Infrared Serial Input is the digital input for the serial infrared interface.

SIROUT O Infrared Serial Output is the digital output for the serial infrared interface.

PC Card Controller (ÉlanSC400 Microcontroller Only) 
(Note: The names in parentheses in this section are those used in PC Card Memory and I/O mode.)

BVD1_A 
(STSCHG_A)–
BVD1_B 
(STSCHG_B)

I Battery Voltage Detect is driven Low by a PC Card when its on-board battery is dead. When 
the PC Card interface is configured for I/O, this signal can be driven by the card to indicate 
a card status change. It is typically used to generate a system IRQ in this mode. These pins 
are not supported on the ÉlanSC410 microcontroller.

BVD2_A (SPKR_A) 
(DRQ_A)–BVD2_B 
(SPKR_B) (DRQ_B)

I Battery Voltage Detect is driven Low by a PC Card when its on-board battery is weak. When 
the PC Card interface is configured for I/O, this signal can be driven by the card’s speaker 
output. When enabled, this signal can drive the chip SPKR output. When PC Card DMA is 
enabled, the DMA request from the PC Card can be programmed to appear on this signal. 
See also the description for WP_A (IOIS16_A) (DRQ_A) and WP_B (IOIS16_B) (DRQ_B); 
the DMA request can also be programmed to appear on these pins. These pins are not 
supported on the ÉlanSC410 microcontroller.

CD_A–CD_B
CD_A2

I Card Detect indicates that the card is properly inserted. Socket A is capable of being 
configured to use two card detect inputs and socket B is only provided with one. If only one 
card detect is to be used for a socket, the input signals should be driven from a logical AND 
(digital OR) of the CD1 and CD2 signals from their respective card interfaces. These pins are 
not supported on the ÉlanSC410 microcontroller.

Table 4-4 Signal Description Table (continued)
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ICDIR O Card Data Direction controls the direction of the card data buffers or voltage translators. It 
works in conjunction with the MCEL and MCEH card enable signals to control data buffers 
on the card interface. When this signal is High, the data flow is from the chip to the card 
socket, indicating a data write cycle. When this signal is Low, the data flow is from the card 
socket into the chip, indicating a read cycle. This pin is not supported on the ÉlanSC410 
microcontroller.

OE O PC Card Output Enable: This is the PC Card memory read signal. This pin is not supported 
on the ÉlanSC410 microcontroller.

MCEH_A, MCEH_B O Card Enables, High Byte enables a PC Card’s high data bus byte transceivers for the 
respective card interfaces. These pins are not supported on the ÉlanSC410 microcontroller.

MCEL_A, MCEL_B O Card Enables, Low Byte enables a PC Card’s low data bus byte transceivers for the 
respective card interfaces. These pins are not supported on the ÉlanSC410 microcontroller.

PCMA_VCC O PC Card Socket A VCC Enable can be used to control the VCC to socket A. This pin is not 
supported on the ÉlanSC410 microcontroller.

PCMB_VCC O PC Card Socket B VCC Enable can be used to control the VCC to socket B. This pin is not 
supported on the ÉlanSC410 microcontroller.

PCMA_VPP2–
PCMA_VPP1

O PC Card Socket A VPP Selects can be used to control the VPP to socket A. These pins are 
not supported on the ÉlanSC410 microcontroller.

PCMB_VPP2–
PCMB_VPP1

O PC Card Socket B VPP Selects can be used to control the VPP to socket B. These pins are 
not supported on the ÉlanSC410 microcontroller.

RDY_A (IREQ_A), 
RDY_B (IREQ_B)

I Card Ready indicates that the respective card is ready to accept a new data transfer 
command. When the card interface is configured as an I/O interface, this signal is used as 
the card Interrupt Request input into the chip. These pins are not supported on the 
ÉlanSC410 microcontroller.

REG_A (DACK_A), 
REG_B (DACK_B)

O Attribute Memory Select signals are driven inactive (High) for accesses to a PC Card’s 
Common Memory, and asserted (Low) for accesses to a PC Card’s Attribute Memory and 
I/O space for their respective card interfaces. When PC Card DMA is enabled, the DMA 
acknowledge to the PC Card will appear on this signal. These pins are not supported on the 
ÉlanSC410 microcontroller.

RST_A, RST_B O Card Reset signals are the reset for their respective cards. When active, this signal clears 
the Interrupt and General Control Register (PC Card index 03h and 43h), thus placing a card 
in an unconfigured (Memory-Only mode) state. It also indicates the beginning of any 
additional card initialization. These pins are not supported on the ÉlanSC410 microcontroller.

WAIT_AB I Extend Bus Cycle delays the completion of the memory access or I/O access that is 
currently in progress. When this signal is asserted (Low), wait states are inserted into the 
cycle in progress. Only one WAIT input is provided on the chip. External logic is required for 
a two-socket implementation to logically AND (digitally OR) each card’s WAIT signal 
together. This pin is not supported on the ÉlanSC410 microcontroller.

WE (TC) O PC Card Write Enable is the PC Card memory write signal. Data will be transferred from the 
chip to the PC Card. When PC Card DMA is enabled, the DMA Terminal Count to the PC 
Card will appear on this signal. This pin is not supported on the ÉlanSC410 microcontroller.

WP_A (IOIS16_A) 
(DRQ_A), WP_B 
(IOIS16_B) 
(DRQ_B)

I Write Protect indicates the status of the respective card’s Write Protect switch. When the 
respective card is configured for an I/O interface, this signal is used by the card to indicate 
back to the chip that the currently accessed port is 16 bits wide. When PC Card DMA is 
enabled, the DMA request from the PC Card can be programmed to appear on this signal. 
See also the description for BVD2_A (SPKR_A) (DRQ_A) and BVD2_B (SPKR_B) 
(DRQ_B); the DMA request can also be programmed to appear on these pins. These pins 
are not supported on the ÉlanSC410 microcontroller.

LCD Graphics Controller (ÉlanSC400 Microcontroller Only)

FRM O LCD Panel Line Frame Start  is asserted by the chip at the start of every frame to indicate 
to the LCD panel that the next data clocked out is intended for the start of the first scan line 
on the panel. Some panels refer to this signal as FLM or S (scan start up). This pin is not 
supported on the ÉlanSC410 microcontroller.

Table 4-4 Signal Description Table (continued)
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LC O LCD Panel Line Clock is activated at the start of every pixel line. Commonly referred to by 
LCD data sheets as CL1 or CP1. This pin is not supported on the ÉlanSC410 microcontroller.

LCDD7–LCDD0 O LCD Panel Data bits: LCDD7–LCDD0 are data bits for the LCD panel interface. When 
driving 4-bit single-scan panels, bits 3–0 form a nibble-wide LCD data interface.   In dual-
scan panel mode, LCDD3–LCDD0 are the data bits for the top half of the LCD, and LCDD7–
LCDD4 are the data bits for the bottom half of the LCD. When driving 8-bit single-scan panels 
(monochrome or color STN), these bits are the 8-bit data interface. These pins are not 
supported on the ÉlanSC410 microcontroller.

LVDD O LCD Panel VDD Voltage Control is used to control the assertion of the LCD’s VDD voltage. 
This is provided to be part of the solution in sequencing the panel’s VDD, DATA, and VEE in 
the proper order during panel power up and power down to prevent damage to the panel from 
CMOS driver latch up. VDD is used to power the LCD logic and is usually +5 V or +3 V DC. 
This pin is not supported on the ÉlanSC410 microcontroller.

LVEE O LCD Panel VEE Voltage Control is used to control the assertion of the LCD’s VEE voltage. 
This is provided to be part of the solution in sequencing the panel’s VDD, DATA, and VEE in 
the proper order during panel power up and power down to prevent damage to the panel from 
CMOS driver latch up. VEE is the LCD contrast voltage and is either positive or negative with 
an amplitude of 15–30 V DC.This pin is not supported on the ÉlanSC410 microcontroller.

M O LCD Panel AC Modulation is the AC modulation signal for the LCD. AC modulation causes 
the LCD panel drivers to reverse polarity to prevent an internal DC bias from forming on the 
panel. This pin is not supported on the ÉlanSC410 microcontroller.

SCK O LCD Panel Shift Clock is the nibble/byte strobe used by the LCD panel to latch a nibble or 
byte of incoming data. Commonly referred to by LCD panels as CL2 or CP2. This pin is not 
supported on the ÉlanSC410 microcontroller.

Boundary Scan Test Interface

BNDSCN_TCK I Test Clock is the boundary-scan input clock that is used to shift serial data patterns in from 
BNDSCN_TDI. 

BNDSCN_TDI I Test Data Input is the serial input stream for boundary-scan input data. This pin has a weak 
internal pull-up resistor. It is sampled on the rising edge of BNDSCN_TCK. If not driven, this 
input is sampled High internally.

BNDSCN_TDO O
TS

Test Data Output is the serial output stream for boundary-scan result data. It is in the high 
impedance state except when scanning is in progress.

BNDSCN_TMS I Test Mode Select is an input for controlling the test access port. This pin has a weak internal 
pull-up resistor. If it is not driven, it is sampled High internally.

Reset and Power

BBATSEN I Backup Battery Sense: RTC (Real Time Clock) backup battery voltage is sampled on this 
pin each time the AVCC pin has power applied to it followed by a chip master reset. If this 
samples below 2.4 V, the VRT bit (RTC index 0Dh) will be cleared until read one time. At this 
time, the VRT bit will be set until BBATSEN is sampled again. BBATSEN also provides a 
power-on-reset signal for the RTC when an RTC backup battery is applied for the first time.

GND Ground Pins

RESET I Reset Input is an asynchronous hardware reset input equivalent to POWERGOOD in the AT 
system architecture.

VCC 3.3 V DC Supply Pins provide power to the core.

VCC_ANALOG 3.3 V Supply Pins provide power to the analog section of the chip, including the internal 
PLLs and integrated oscillator circuit. Extreme care should be taken that this supply voltage 
is isolated properly to provide a clean, noise free voltage to the PLLs.

VCC_BUS 3.3 V DC Supply Pins provide power to the SD bus I/O signals.

VCC_CPU 3.3 V DC Supply Pins provide power to the internal CPU.

VCC_LCD or 
VCC_VL

3.3 V DC Supply Pins provide power to the LCD panel/VL-bus control signals on the 
ÉlanSC400 microcontroller. These pins are called VCC_VL on the ÉlanSC410 
microcontroller.

Table 4-4 Signal Description Table (continued)
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4.3 PIN CHANGES FOR THE ÉLANSC410 MICROCONTROLLER
The following signals supported on the ÉlanSC400 microcontroller are not available on the 
ÉlanSC410 microcontroller.

■ Configuration pin: CFG2

■ PC Card controller signals: MCEL_A, MCEL_B, MCEH_A, MCEH_B, RST_A, RST_B, 
REG_A, REG_B, CD_A, CD_B, CD_A2, RDY_A, RDY_B, BVD1_A, BVD1_B, BVD2_A, 
BVD2_B, WP_A, WP_B, WAIT_AB, OE, WE, ICDIR, PCMA_VCC, PCMA_VPP1, 
PCMA_VPP2, PCMB_VCC, PCMB_VPP1, PCMB_VPP2

■ Graphics controller signals: LCDD7–LCDD0, M, LC, SCK, FRM, LVEE, LVDD

■ Loop filter signal: LF_VID

The following power pins are renamed on the ÉlanSC410 microcontroller: 

■ The two VCC_LCD pins are called VCC_VL on the ÉlanSC410 microcontroller.

■ VCC_PCM and VCC_PCM2 are both called VCC_PP on the ÉlanSC410 microcontroller.

4.4 MULTIPLEXED PIN FUNCTION OPTIONS
Many pins on the ÉlanSC400 and ÉlanSC410 microcontrollers have more than one 
function. Figure 4-1 and Figure 4-2 show the multiplexing of pins by function for each 
microcontroller.

Pins with multiplexed functions have their functions selected in one of two ways:

■ By configuration pins that are latched during reset

■ By firmware via programmed configuration registers 

Reference tables showing which configuration registers are used to select pin functions 
are included in Appendix A of this manual.

VCC_MEM 3.3 V DC Supply Pins provide power to the system memory I/O signals.

VCC_PCM or 
VCC_PP

3.3 V DC Supply Pin provides power to the PC Card Socket A control signals on the 
ÉlanSC400 microcontroller. This pin is called VCC_PP on the ÉlanSC410 microcontroller.

VCC_PCM2 or 
VCC_PP

3.3 V DC Supply Pin provides power to the parallel port/PC Card slot B control signals on 
the ÉlanSC400 microcontroller. This pin is called VCC_PP on the ÉlanSC410 microcontroller.

VCC_RTC 3.3 V Supply Pin provides power to the internal real time clock and on-board static/
configuration RAM. This pin may be driven independently of all other power pins. 

VCC_SER 3.3 V DC Supply Pins provide power to the serial port I/O signals

VCC_SYS 3.3 V DC Supply Pins provide power to the ISA bus control signals

Table 4-4 Signal Description Table (continued)

Signal Type Description
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Figure 4-1 Multiplexed Pins on the ÉlanSC400 Microcontroller
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LCDD4 [VL_LRDY]
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MA3 {CFG3}
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ROMWR
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LF_VID, LF_HS
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GPIO19 [LBL2]

GPIO20 [CD_A2]
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KBD_ROW11 [SBHE]

KBD_ROW10 [BALE]

KBD_ROW9 [PIRQ2]

KBD_ROW8 [PDRQ1]

KBD_ROW7 [PDACK1]

KBD_ROW6 [MA12]

KBD_ROW5 [RAS3]

KBD_ROW4 [RAS2]

KBD_ROW3 [CASH3]

KBD_ROW2 [CASH2]

KBD_ROW1 [CASL3]

KBD_ROW0 [CASL2]

LCD Graphics 
Controller or 
VESA Local Bus

8-Pin Serial Port

DRAM Interface 
and Feature 
Configuration Pins

Infrared Interface

Boundary Scan 
Enable

Speaker

RTC

Reset

Loop Filters

Power 
Management 
Interface

GPIOs

GPIO/PC Card 
Power Control

Scan Keyboard 
Columns/IRQs/XT 
Keyboard Interface

Scan Keyboard 
Rows/DRAM 
Interface

VL, ROM, ISA, and 
PC Card Address

ROM/Flash Control

PC Card Command
ISA Bus Command 
and Reset

Dedicated Single 
Slot PC Card and 
Boundary Scan 
Interface

Parallel Port or 
Second PC Card or 
GPIOs

32 KHz Crystal

ÉlanSC400 
Microcontroller 

292 BGA

Note:  / =Two functions available on the pin at the same time. { } = Function during hardware reset. [ ] = Alternative function 
selected by firmware configuration. [[ ]] = Alternate function selected by a hardware configuration pin state at power-on reset.
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Figure 4-2 Multiplexed Pins on the ÉlanSC410 Microcontroller
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GPIO_CS13
GPIO_CS14
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GPIO16

GPIO17
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GPIO20
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KBD_ROW11 [SBHE]

KBD_ROW10 [BALE]

KBD_ROW9 [PIRQ2]

KBD_ROW8 [PDRQ1]

KBD_ROW7 [PDACK1]

KBD_ROW6 [MA12]

KBD_ROW5 [RAS3]

KBD_ROW4 [RAS2]

KBD_ROW3 [CASH3]

KBD_ROW2 [CASH2]
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VESA Local Bus

8-Pin Serial Port

DRAM Interface 
and Feature 
Configuration Pins

IrDA Interface

Boundary Scan 
Enable

Speaker

RTC

Reset

Loop Filters

Power 
Management 
Interface

GPIOs

GPIO/
Power Control

Scan Keyboard 
Columns/IRQs/XT 
Keyboard Interface

Scan Keyboard 
Rows/DRAM 
Interface

VL, ROM, and ISA 
Address

ROM/Flash Control

ISA Bus Command 
and Reset

Boundary Scan 
Interface

Parallel Port or 
GPIOs

32 KHz Crystal

ÉlanSC410 
Microcontroller 

292 BGA

Note:  / =Two functions available on the pin at the same time. { } = Function during hardware reset. [ ] = Alternative function 
selected by firmware configuration. [[ ]] = Alternate function selected by a hardware configuration pin state at power-on reset.
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4.4.1 Using the Configuration Pins to Select Pin Functions
The configuration pins are used only for those functions that must be selected at reset, 
prior to firmware execution. All other I/O functions are selected using configuration registers. 

Table 4-5 provides an overview of the configuration pin functions. All of the CFG pins have 
weak internal pull-down resistors that select the default function. External pull-up resistors 
are required to select an alternative function. 

Table 4-5 Pin Strap Bus Buffer Options 

Notes:

1. In the table above, CFG3 is defined as the enable/disable for the DBUFOE, DBUFRDL, and DBUFRDH signals. 
They can be enabled independently of whether or not a 32-bit D bus is selected via the firmware to support the 
VL local bus or 32-bit DRAM interface. 

2. The 32-bit ROM option must be selected on ROMCS0 for the R32BFOE signal to be enabled. The selection of 
the DBUFOE, DBUFRDL, and DBUFRDH signals is still dependent only on the CFG3 signal.

4.4.1.1 CFG0 and CFG1 Pins 

These pins (shown in Table 4-6) configure the data bus width (8-, 16-, or 32-bit) of the ROM 
interface that is selected by the ROMCS0 pin. When a 32-bit ROM is selected, these pins 
also enable the R32BFOE. Once ROMCS0 is configured as 32-bit, all accesses to 32-bit 
ROM devices on ROMCS2–ROMCS0 will result in the assertion of the R32BFOE signal. 

Note: The data bus width for the ROMCS0 interface can also be changed through 
programming. However, this is not recommended. The programming feature was 
implemented mainly for testing.

Table 4-6 CFG0 and CFG1 Configuration

CFG3 CFG1 CFG0
ROMCS0

Data
Width

DBUFOE
DBUFRDL
DBUFRDH

R32BFOE

0 0 0 8-bit Disabled Disabled

0 0 1 Reserved Reserved Reserved

0 1 0 16-bit Disabled Disabled

0 1 1 32-bit Disabled Enabled

1 0 0 8-bit Enabled Disabled

1 0 1 Reserved Reserved Reserved

1 1 0 16-bit Enabled Disabled

1 1 1 32-bit Enabled Enabled

CFG1 CFG0 Configuration

0 0 8-bit ROMCS0 ROM interface

0 1 Reserved

1 0 16-bit ROMCS0 ROM interface

1 1 32-bit ROMCS0 ROM interface
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4.4.1.2 CFG2 Pin

On the ÉlanSC400 microcontroller, this configuration pin (see Table 4-7) is used for 
selecting the ROMCS0 steering at system boot time. CFG2 is not supported on the 
ÉlanSC410 microcontroller. 

The boot ROM chip select (ROMCS0) can either be enabled to drive the ROMCS0 pin or 
can be rerouted to drive the PC Card (socket A only) interface chip selects. The CFG0 and 
CFG1 pins are still used to select the data bus width for the ROMCS0 decode, regardless 
of the CFG2 configuration. The PC Card ROMCS0 redirection should not be selected when 
the CFG0 and CFG1 configuration pins are set to select a 32-bit ROM interface. See Section 
7.6.4.2 for more information on redirecting ROMCS0 to PC Card Socket A.

When the ROM chip select decode has been redirected to PC Card socket A, all of the 
normal PC Card controller features can still be used to drive the PC Card Socket A interface. 
The ROM chip select and decode remapping to the PC Card socket can be enabled and 
disabled using firmware at any time.

Table 4-7 CFG2 Configuration

4.4.1.3 CFG3 Pin

This configuration pin is used for selecting between the GPIO_CS4–GPIO_CS2 I/O pins 
and the SD bus buffer control signals: DBUFOE, DBUFRDL, and DBUFRDH. When the 
buffer control signal configuration is selected using the CFG3 pin, the DBUFOE, DBUFRDL, 
and DBUFRDH are driven from boot time on for all accesses to the peripheral data bus. 
These three signals are to be used for the external system bus transceiver control. See 
Table 4-8 for the CFG3 configuration definitions.

Table 4-8 CFG3 Configuration

4.4.1.4 BNDSCN_EN Pin

The BNDSCN_EN configuration pin (see Table 4-9) is used to enable the boundary scan 
function I/O pins. The following pins are configured for their boundary scan function when 
BNDSCN_EN is asserted:

■ BNDSCN_TCK

■ BNDSCN_TMS

■ BNDSCN_TDI

■ BNDSCN_TDO 

CFG2 Configuration

0 Enables the ROMCS0 decode on the ROMCS0 pin

1 Enables the ROMCS0 decode to access PC Card socket A

CFG3 Configuration

0 Enables the GPIO_CS4–GPIO_CS2 signals on the I/O pins

1 Enables the SD bus buffer control signals 
DBUFOE, DBUFRDL, and DBUFRDH on the I/O pins
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Table 4-9 Boundary Scan Function Configuration

4.5 DATA AND ADDRESS BUSES

4.5.1 Data Buses
The ÉlanSC400 and ÉlanSC410 microcontrollers provide 32 bits of data that are divided 
into two separate 16-bit buses.

■ System Data (SD) Bus—The system (or peripheral) data bus (SD15-SD0) is always 
16 bits wide and is shared between ISA, 8- or 16-bit ROM/Flash, and, on the ÉlanSC400 
microcontroller, the PC Card peripherals. The system data bus can be directly connected 
to all of these devices. In addition, these signals are the upper word of the VESA local 
(VL) data bus, the 32-bit DRAM interface, and the 32-bit ROM interface.

■ Data (D) Bus—The D15–D0 data bus is used during 16-bit DRAM cycles. For 32-bit 
DRAM, VL-bus, and ROM cycles, this bus is combined with the system data bus. In 
other words, the data bus pins D31–D16 are shared with the system data bus pins 
SD15–SD0.

The ÉlanSC400 and ÉlanSC410 microcontrollers support the data bus configurations listed 
below. External transceivers or buffers are required in some bus configurations to isolate 
the buses and to provide proper data steering. 

■ Configuration A—16-bit DRAM bus, 8/16-bit ROM, 32-bit VL-bus disabled, internal 
graphics controller enabled/disabled, matrix keyboard interface enabled/disabled

■ Configuration B—16/32-bit DRAM bus, 8/16-bit ROM, 32-bit VL-bus enabled/disabled, 
internal graphics controller disabled, matrix keyboard interface disabled

■ Configuration C—16/32-bit DRAM bus, 32-bit ROM, 32-bit VL-bus enabled/disabled, 
internal graphics controller disabled, matrix keyboard interface disabled

The ÉlanSC400 and ÉlanSC410 microcontrollers offer flexibility in configuring the ROM 
and DRAM data buses for different widths.The ROM widths (8/16/32 bits) are programmed 
during power up through two pin straps, CFG0 and CFG1.

■ When DRAM is configured for 16 bits and the VL-bus is disabled, the pins SD15–SD0/
D31–D16 are dedicated for the system (SD) bus. This results in Configuration A.

■ When DRAM is configured for 32 bits or the VL-bus is enabled, the pins SD15–SD0/
D31–D16 are shared between the SD bus and the DRAM/VL-bus. This corresponds to 
Configuration B or Configuration C. Control signals are available to control an external 
SD buffer when necessary to isolate the (variable) system data bus loading (ISA, PC 
Card, etc.) from the local data bus or to level-shift voltages. Devices on the D-bus side 
connected to the microcontroller are the DRAM and the VL-bus target; on the SD-buffer 
side (away from the microcontroller) are the ISA, ROM, and PC Card devices.

The DRAM widths (16/32 bits) as well as the VL-bus enabling/disabling are programmed 
through configuration registers. When enabled, the VL-bus is always 32 bits wide. The 
graphics controller on the ÉlanSC400 microcontroller is enabled/disabled through a 
configuration register. Up to four 16- or 32-bit banks of DRAM are supported.

BNDSCN_EN Configuration

0 Enables the PC Card function

1 Enables the boundary scan function
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The ÉlanSC400 and ÉlanSC410 microcontrollers contain a total of 4 data byte lanes, which 
are referred to as: V3, V2, V1, and V0. The functionality of these four data byte lanes 
depends on the bus configuration chosen, as shown in Figure 4-3, Figure 4-4, and Figure 4-
5, beginning on page 4-21. The byte lanes map to the microcontroller’s pins as shown in 
Table 4-10.

Table 4-10 Byte Lanes

4.5.1.1 Configuration A: 16-Bit DRAM Bus and 16-Bit SD Bus

In this configuration (shown in Figure 4-3), byte lanes V1 and V0 form the DRAM data bus 
byte lanes D15–D8 and D7–D0 respectively. Bytes lanes V3 and V2 form the SD data bus 
byte lanes SD15–SD8 and SD7–SD0 respectively. No external buffers or transceivers are 
required to provide isolation between local and system data buses in this mode. The internal 
graphics controller on the ÉlanSC400 microcontroller may be enabled or disabled. The VL-
bus is always disabled in this mode. The ROM and PC Card targets reside on the SD bus 
and may be programmed to be 8 or 16 bits wide. The matrix keyboard may be enabled or 
disabled in this mode. Note that the RAS and CAS signals for DRAM banks 2 and 3 are 
traded for keyboard row signals.

4.5.1.2 Configuration B: 32-Bit DRAM Bus and 16-Bit SD Bus

This configuration (Figure 4-4) differs from Configuration A in that either the DRAM interface 
is programmed to be 32 bits wide and/or the VL-bus is enabled. This configuration uses 
byte lanes V3 and V2 for the upper word of the DRAM bus and/or the VL-bus. The SD 
system bus is formed by buffering byte lanes V3 and V2 through external transceivers to 
create SD15–SD8 and SD7–SD0. These external transceivers might be required to reduce 
SD bus loading on the high word of the VL-bus/32-bit DRAM bus. DBUFOE is the enable 
signal for these two transceivers while DBUFRDL and DBUFRDH are the direction control 
signals for the low and high bytes of the SD bus. 

The internal graphics controller on the ÉlanSC400 microcontroller must always be disabled 
in this mode. The VL-bus may be enabled or disabled. As in Configuration A, the ROM and 
PC Card targets reside on the system bus and may be programmed to be 8 or 16 bits wide.

The matrix keyboard interface is not available in Configuration B.

4.5.1.3 Configuration C: 32-Bit DRAM Bus, 16-Bit SD Bus, and 32-Bit ROM Bus

Configuration C (Figure 4-5) is identical to Configuration B except for the ROM interface, 
which supports 32-bit wide ROM interface. Byte lanes V1 and V0 are buffered through two 
external 8-bit transceivers or buffers to generate the lower sixteen bits of the 32-bit ROM 
data bus. 

It is important to note that 32-bit ROM operation is only supported in Fast-ROM mode. Once 
ROMCS0 is configured as 32-bit, all accesses to 32-bit ROM devices on ROMCS2–
ROMCS0 will result in the assertion of the R32BFOE signal. R32BFOE provides the buffer 
enable signal for the external transceivers on the low word of the ROM interface. ROMRD 
is used as the direction control signal for both bytes of the high ROM word. The use of 

Byte Lane  Pins

V0 D7–D0

V1 D15–D8

V2 SD7–SD0/D23–D16

V3 SD15–SD8/D31–D24
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R32BFOE and associated buffers is at the discretion of the system designer. It is only 
required if loading on the ROM interface is heavy enough to impact the VL/DRAM data bus 
operation or if a 5-V ROM device needs voltage translation to the 3.3-V VL/DRAM bus level.

The matrix keyboard interface is not available in Configuration C.

4.5.1.4 Data Paths

Table 4-11 shows the external signals used for all permitted CPU-initiated data transfers.

Table 4-11 Byte Lanes by Access Target and Type

Target
Access 

Type
Byte 3
(V3)

Byte 2
(V2)

Byte 1
(V1)

Byte 0
(V0)

32-Bit DRAM or
VL-Bus double word 

Read/Write D31–D24
(SD15–SD8)

D23–D16
(SD7–SD0)

D15–D8 D7–D0

16-Bit DRAM Read/Write D15–D8 D7–D0 D15–D8 D7–D0

32-Bit ROM/Flash Read/Write D31–D24
(SD15–SD8)

D23–D16
(SD7–SD0)

D15–D8 D7–D0

16-Bit ROM/Flash, PC 
Card, or ISA Slave

Read/Write SD15–SD8 SD7–SD0 SD15–SD8 SD7–SD0

8-Bit ROM/Flash, PC 
Card, or ISA Slave

Read/Write SD7–SD0 SD7–SD0 SD7–SD0 SD7–SD0

Parallel Port Read/Write SD7–SD0 SD7–SD0 SD7–SD0 SD7–SD0
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Figure 4-3 Bus Configuration A: 16-Bit DRAM Bus and 16-Bit SD Bus

ROM/Flash

Low Word
Low Byte

Low Word
High Byte

ROM/Flash
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V3

SD7–SD0
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ROMCSx

D7–D0

D15–D8

SD7–SD0/D23–D16

SD15–SD8/D31–D24
CFG1

VCC

(Optional)

Notes:

The ÉlanSC400 and ÉlanSC410 microcontrollers support a maximum of 4 banks of 32-bit DRAM, but because the
RAS and CAS signals for the high word and for banks 2 and 3 are traded for keyboard row signals, the minimum
system would have one or two banks of DRAM—either Bank 0 or Bank 1 populated with 16-bit DRAMs. See Section
1.3 for a complete description of which features can be traded for others. See Figure 4-1 and Figure 4-2 for a
summary of multiplexed pin options.

In this configuration, ROMCSx can be either ROMCS0, ROMCS1, or ROMCS2.

When used, the CFG1 pin-strap enables a 16-bit ROM/Flash interface. When the CFG1 pin-strap pull-up is not
used, an 8-bit ROM/Flash interface results. See Section 4.4.1.1 for information on using the CFG1–CFG0
configuration pins (which are always used together).

ÉlanSC400 Microcontroller

SD15–SD0

SD15–SD0
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Figure 4-4 Bus Configuration B: 32-Bit DRAM Bus and 16-Bit SD Bus
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Anytime the interface (DRAM, VL-bus, or ROM) is programmed for 32 bits, the matrix keyboard interface is not
available. See Section 1.3 for a complete description of which features can be traded for others. See Figure 4-1
and Figure 4-2 for a summary of multiplexed pin options.

In this configuration, ROMCSx can be either ROMCS0, ROMCS1, or ROMCS2.

When used, the CFG1 pin-strap enables a 16-bit ROM/Flash interface. When the CFG1 pin-strap pull-up is not
used, an 8-bit ROM/Flash interface results. See Section 4.4.1.1 for information on using the CFG1–CFG0
configuration pins (which are always used together).
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Figure 4-5 Bus Configuration C: 32-Bit DRAM Bus, 16-Bit SD Bus, and 32-Bit ROM

 

V0

V1

V2

V3

VL-Bus 

DBUFOE

DBUFRDL

DBUFRDH

R32BFOE

Target

Low Word
Low Byte

Low Word
High Byte

ROM/Flash

High Word
Low Byte

High Word
High Byte

ROM/Flash

ROM/Flash

ROM/Flash

ISA (8/16)

PC Card (8/16)

XCVR

XCVR

XCVR

XCVR

BANK 3

BANK 2

BANK 1

BANK 0

Low Word
Low Byte

DRAM

BANK 3

BANK 2

BANK 1

BANK 0

Low Word
High Byte

DRAM

BANK 3

BANK 2

BANK 1

BANK 0

High Word
Low Byte

DRAM

BANK 3

BANK 2

BANK 1

BANK 0

High Word
High Byte

DRAM

D7–D0

D15–D8

D23–D16

D31–D24

D7–D0

D15–D8

D23–D16

D31–D24

ROMRD

ROMCS0

Notes:

Anytime the interface (DRAM, VL-bus, or ROM) is programmed for 32 bits, the matrix keyboard interface is not
available. See Section 1.3 for a complete description of which features can be traded for others. See Figure 4-1
and Figure 4-2 for a summary of multiplexed pin options.

In this configuration, all of the ROM chip selects are available. ROMCS0 must be configured as 32-bit to provide
access to the R32BFOE signal. Once ROMCS0 is configured as 32-bit, all accesses to 32-bit ROM devices on
ROMCS2–ROMCS0 will result in the assertion of the R32BFOE signal. Mixed ROM sizes can be supported. Once
any ROM is buffered (High or Low), all ROMs connected to that word must be buffered. 
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4.5.2 Address Buses
Address generation on the ÉlanSC400 and ÉlanSC410 microcontrollers is shown in 
Figure 4-6. There are two address buses on the ÉlanSC400 and ÉlanSC410 
microcontrollers.

■ System Address Bus—The SA25–SA0 system address bus outputs the physical 
memory or I/O port latched addresses. These addresses are used by all external 
peripheral devices other than main system DRAM, including ISA services, the ROM/
Flash interface, and, on the ÉlanSC400 microcontroller, the PC Card controller. In 
addition, this is the local address bus in VL-bus mode.

■ Memory Address Bus—DRAM row and column addresses are multiplexed onto the 
memory address bus (MA12–MA0). Valid row addresses are driven onto this bus by the 
falling edge of RAS. Valid column addresses are driven onto this bus by the falling edge 
of CAS.

The SA bus is shared between the ISA bus, the VL-bus, the ROM/Flash interface, and, on 
the ÉlanSC400 microcontroller, the PC Card controller. The ÉlanSC400 and ÉlanSC410 
microcontrollers provide programmable drive strengths in the I/O buffers to accommodate 
loading for various system configurations.

On the ÉlanSC400 microcontroller, the DRAM controller multiplexes between using the 
system address (SA25–SA0) or the address generated by the internal LCD graphics 
controller, depending on which system is accessing DRAM. The DRAM controller then 
generates a separate DRAM address on the MA12–MA0 bus. The separate DRAM address 
is a multiplexed row/column address required by DRAM devices. This use of dual address 
buses feeding the DRAM controller frees up the system address bus to allow CPU accesses 
to other peripherals during graphics controller DRAM fetches.

Figure 4-6 Address Generation
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4.6 SYSTEM INTERFACES
The following system interfaces are described in separate chapters of this book:

■ ROM interface (Chapter 8)

■ DRAM interface (Chapter 9)

■ Parallel port interface (Chapter 14)

■ Serial port interface (Chapter 15)

■ Keyboard interfaces (Chapter 16)

■ Infrared port interface (Chapter 18)

■ PC Card interface (ÉlanSC400 microcontroller only) (Chapter 19)

■ Graphics interface (ÉlanSC400 microcontroller only) (Chapter 20)

4.7 ISA BUS INTERFACE

4.7.1 Overview
The ISA interface consists of a subset of ISA-compatible bus signals, allowing for the 
connection of 8- or 16-bit devices supporting ISA-compatible I/O, memory, and DMA cycles. 
The following features are supported:

■ 8.2944 MHz maximum bus clock speed

■ Programmable DMA clock speed up to 16 MHz

■ 8-bit and 16-bit ISA I/O and memory cycles (ISA memory is non-cacheable)

■ Direct connection to 3- or 5-volt peripherals

Eight programmable IRQ (PIRQ7–PIRQ0) input pins are available. These interrupts may 
be routed via software to any available PC/AT-compatible interrupt channel. Interrupts on 
the ÉlanSC400 and ÉlanSC410 microcontrollers are described in Chapter 11.

Two programmable DMA channels are available for external DMA peripherals. These DMA 
channels may be routed via software to any available ISA DMA channel. DMA on the 
ÉlanSC400 and ÉlanSC410 microcontrollers is described in Chapter 10.

Note: External ISA bus-mastering is not supported on the ÉlanSC400 and ÉlanSC410 
microcontrollers.

4.7.2 Registers
A summary listing of the chip setup and control (CSC) registers used to control the ISA 
interface is shown in Table 4-12. Complete register descriptions can be found in the 
ÉlanSC400 Microcontroller Register Set Reference Manual (order #21032). 

Table 4-12 ISA Interface Register Summary

Register I/O Address ISA Interface Function
Description 
in Register 
Set Manual

Linear ROM0/Shadow Register 22h/23h
Index 21h

00F0000–00FFFFFh ROM0 decode disable,
accesses directed to the ISA bus

page 3-26

Pin Mux Register A 22h/23h
Index 38h

ISA signal enable: PIRQ0, PIRQ1, AEN, TC, 
IOCHRDY, IOCS16, PDRQ0, and PDACK0

page 3-44
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4.7.3 Block Diagram
Block diagrams of the ISA interface are shown in Figure 4-7 and Figure 4-8. The ISA bus 
can be set up for either an 8-bit only configuration or an 8-/16-bit configuration, depending 
on the pin multiplexing options that are selected. The two programmable DMA channels 
can use any available 8- or 16-bit DMA channel.

■ In the 8-bit only configuration (shown in Figure 4-7), all bus cycles, including DMA, are 
performed as 8-bit transfers on the lower half of the SD data bus. The single available 
DMA handshake pair can be routed to any available 8-bit channels.

■ In the 8-/16-bit configuration (shown in Figure 4-8), 8- and 16-bit bus cycles can access 
8- or 16-bit target devices. 

Pin Mux Register B 22h/23h
Index 39h

ISA signal enable: MCS16, SBHE, BALE, 
PIRQ2, PDRQ1, and PDACK1

page 3-45

Pin Mux Register C 22h/23h
Index 3Ah

ISA signal enable: PIRQ7–PIRQ3, pin 
termination when the ISA interface is powered 
down in Suspend

page 3-46

GP_CSA/B IO Command 
Qualification Register

22h/23h
Index B8h

Data bus width and timing for ISA I/O cycles 
on GP_CSA or GP_CSB

page 3-138

GP_CSC/D Memory Command 
Qualification Register

22h/23h
Index BDh

Data bus width and timing for ISA memory 
cycles on GP_CSC or GP_CSD

page 3-144

Internal I/O Device Disable/Echo 
Z-Bus Configuration Register

22h/23h
Index D0h

CSC register echo and direct-mapped register 
echo to ISA bus for debugging

page 3-164

Write-Protected System Memory 
(DRAM) Window/Overlapping 
ISA Window Enable Register

22h/23h
Index E0h

Overlapping ISA window enable, CPU 
accesses generate an ISA cycle instead of a 
DRAM cycle

page 3-181

Overlapping ISA Window Start 
Address Register

22h/23h
Index E1h

Start address for the overlapping ISA window page 3-182

Overlapping ISA Window Size 
Register

22h/23h
Index E2h

Window size for the overlapping ISA window page 3-183

Suspend Pin State Register A 22h/23h
Index E3h

Power control in Suspend mode for ISA bus 
interface

page 3-184

Suspend Mode Pin State 
Override Register

22h/23h
Index E5h

Suspend mode override for ISA bus interface page 3-186

Table 4-12 ISA Interface Register Summary (continued)

Register I/O Address ISA Interface Function
Description 
in Register 
Set Manual
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Figure 4-7 8-Bit Minimal ISA Interface

Figure 4-8 16-Bit Maximum ISA Interface
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4.7.4 Supported ISA Signals
The ISA interface on the ÉlanSC400 and ÉlanSC410 microcontrollers uses the signals 
listed in Table 4-13. The ISA signals shown as optional in Table 4-13 are shared with other 
functions on the ÉlanSC400 and ÉlanSC410 microcontrollers. Table 4-14 lists the signals 
that are traded off for ISA signals. The signals are grouped by enable bit.

■ ISA control signals IOCHRDY and IOCS16, and MCS16 are available via a 
programmable option. 

■ IOCHRDY can be deasserted to extend the length of ISA or ROM cycles.

■ IOCS16 and MCS16 can be asserted on a cycle basis to generate 16-bit ISA I/O or 
memory transfers, respectively. IOCS16 and MCS16 are ignored during ROM, PC Card, 
or DRAM cycles. IOCS16 and MCS16 are also ignored for accesses to internal I/O 
devices and VL-bus cycles.

Signals not supported by the ISA interface include MASTER, REFRESH, IOCHCHK, OSC 
(14.318 MHz), SYSCLK, and 0WS. 

Table 4-13 ISA Interface Signals

Table 4-14 Signals Shared with the ISA Interface

Function External Signals

Data Bus SD15–SD0

Address Bus SA23–SA0

Control Signals
(Optional)

BALE, IOCS16, MCS16, SBHE, IOCHRDY, 
DBUFRDL, DBUFRDH, DBUFOE

Command Strobes
(Dedicated)

IOR, IOW, MEMR, MEMW

Reset
(Dedicated)

RSTDRV

DMA
(Optional)

AEN, TC, PDRQ0, PDRQ1, PDACK1, PDACK0

Interrupts
(Optional)

PIRQ7–PIRQ0

CSC Index [Bit]
Default Signals Enabled

(Bit=0)
Additional ISA Signals

(Bit=1)

38h[4] GPIO_CS5 IOCS16

38h[3] GPIO_CS6 IOCHRDY

38h[2] GPIO_CS7 PIRQ1

38h[1] GPIO_CS8 PIRQ0

38h[0] GPIO_CS12–GPIO_CS9 PDRQ0, PDACK0, AEN, TC

39h[2] KBD_ROW12–KBD_ROW7 MCS16, SBHE, BALE, PIRQ2, PDRQ1, 
PDACK1

3Ah[1] KBD_COL6–KBD_COL2 PIRQ7–PIRQ3
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4.7.5 Operation
The ISA controller on the ÉlanSC400 and ÉlanSC410 microcontrollers generates all the 
required ISA bus command and control signals and ensures that the ISA timing 
specifications are met. These specifications are based on the IEEE’s Personal Computer 
Bus Standards P996, with certain non-critical modifications.

4.7.5.1 Bus Speeds

The ISA bus runs at a maximum speed of 8.294 MHz while the microcontroller is in High-
Speed mode. In Low-Speed or Temporary Low-Speed mode, the ISA bus speed is dictated 
by the CPU clock speed and can be programmed to be 8.924, 4.147, 2.074, or 1.037 MHz. 
In Standby and Suspend modes, the ISA bus is not functional. 

The DMA controller clock can be programmed to 16, 8, 4, or 1 MHz when the microcontroller 
is in High-Speed mode. When in Low Speed or Temporary Low Speed mode, the DMA 
clock runs at either the programmed value or the CPU clock speed, whichever is lower; or 
it can be disabled. Timing compatible with legacy DMA is achieved when the DMA controller 
is configured to 4 MHz. Faster timings, however, are not anticipated to cause problems for 
modern DMA devices.

4.7.5.2 Addressing

All address signals on the ÉlanSC400 and ÉlanSC410 microcontrollers are internally 
latched, from SA23 through SA0. This differs from standard ISA, where address bits 23-
17 are provided non-latched. The address-to-command setup time provided for SA23–
SA17 is sufficiently fast that these signals may be connected to devices that decode ISA 
signals LA23–LA17 early in order to generate MCS16 or IOCS16. If a device has signal 
pins for standard ISA signals LA19–LA17 and SA19–SA17, the microcontroller’s SA19–
SA17 pins may be connected to both sets of corresponding device address pins. BALE is 
provided as a programmable option for compatibility purposes. SBHE is also available as 
a programmable option for external devices that require it.

Note that the microcontroller’s address space extends to 64 Mbytes with the addition of 
address bits SA24 and SA25. ISA memory space is limited to a maximum 16 Mbytes, 
however. MEMR and MEMW will not be asserted for any accesses above the programmed 
limit, with the exception of the memory overlay window explained below. 

The ISA memory overlay feature allows the “overlapping” of a single block of ISA memory 
space on top of system DRAM space. This block is in addition to the ISA memory region 
found in standard PC architecture between 640 Kbytes and 1 Mbyte. An ISA window of 64-
Kbyte granularity and programmable start location may be defined using registers at CSC 
index E0–E2h. This window is fully locatable throughout the first 16-Mbytes of system 
memory space and can have a maximum size of 16 Mbytes. When this window is enabled 
and a memory access is detected in this region, the ÉlanSC400 and ÉlanSC410 
microcontrollers will execute the cycle on the ISA bus and the DRAM interface will not be 
activated. This ISA window is not affected by the system DRAM write-protect controls. Any 
system DRAM that is located at the same address as this ISA window becomes invisible 
to the system, unless it is accessed through the MMS or video buffer relocation. The block 
is active for ISA memory even if the upper limit for other ISA accesses has been set to 
1 Mbyte. 

All ISA memory space is non-cacheable.

4.7.5.3 Command Strobes

The ISA command strobes MEMR and MEMW are asserted only for ISA cycles. The IOR 
and IOW command strobes are asserted for both ISA and PC Card cycles. Separate 
memory strobes are provided for accesses to ROM and PC Card memory. The ROM 
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interface uses dedicated ROMRD and ROMWR signals, while the PC Card sockets use 
MCEL_A, MCEH_A, MCEL_B, and MCEH_B. Table 4-15 shows the eight ISA DMA cycle 
types and the command strobes generated by each.

Table 4-15 ISA DMA Cycle Types

4.7.5.4 External Buffer Control Signals

When the ÉlanSC400 and ÉlanSC410 microcontrollers are configured for a 32-bit DRAM 
interface or are in local bus mode, it is necessary to use an external data bus buffer for the 
ISA bus. External buffers are also useful when the bus is heavily loaded. To provide 
buffering, three optional signals, DBUFOE, DBUFRDL, and DBUFRDH may be enabled.   
Figure 4-9 illustrates how external ‘245 transceivers could be connected to the 
microcontroller using these signals.

Figure 4-9 8-Bit ISA Bus with External Data Buffer
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4.7.6 Using the ISA Bus for Debugging
Both direct-mapped and CSC indexed register accesses can be made to “echo” on the ISA 
bus for debugging purposes. This feature provides a data path for all register bits to be 
propagated to the pins of the chip. Setting bits 4 and 5 in the Internal I/O Device Disable/
Echo Z-Bus Configuration Register (CSC index D0h) allows all core register accesses, 
including PC/AT cores and CSC indexed registers, to be seen from the outside of the chip 
on the ISA bus. 

■ All non-echoed CSC indexed registers, PC Card indexed registers, and graphics indexed 
registers operate at CPU speeds.

■ All other non-VL-bus, non-echoed I/O accesses use ISA timing. 

■ When programmed to echo on the ISA bus, direct-mapped and CSC indexed registers 
are accessed at ISA bus speeds. 

The following paragraphs describe this debugging feature for direct-mapped and CSC 
indexed registers.

4.7.6.1 Echoing Direct-Mapped PC/AT Registers

Direct-mapped register accesses in the ÉlanSC400 and ÉlanSC410 microcontrollers can 
be echoed onto the external ISA bus by setting CSC index D0h[4]. This echo feature 
selection is disabled by default. This bit has no affect on the CSC indexed-register echo 
feature.

4.7.6.1.1 Direct-Mapped Register Writes
During an I/O write to a direct-mapped register when the echo feature is enabled, the 
following activity occurs on the external ISA bus:

■ The I/O address is driven out onto the SA bus (SA23–SA0).

■ SBHE is driven out (if enabled).

■ BALE is driven out (if enabled).

■ MCS16 and IOCS16 inputs are ignored (if enabled or disabled).

■ AEN is asserted (if enabled).

■ DBUFOE is deasserted (if enabled).

■ DBUFRDH and DBUFRDL are static (if enabled).

■ IOW is asserted.

■ IOCHRDY input is ignored (if enabled or disabled).

■ The write data is driven out onto SD7–SD0.

Note: The annotation “if enabled” above refers to the fact that the pin(s) may or may not 
be configured for the ISA bus function.

There are some direct-mapped registers that can be disabled when particular internal 
features are disabled, such as the following: 

■ Keyboard controller ports 0060h and 0064h 

■ PC Card controller ports 03E0h and 03E1h 

■ RTC ports 0070h, 0071h 

■ UART ports (COM1 at 03F8–03FFh and COM2 at 02F8–02FFh) 

■ Parallel port (LPT1 at 0378–037Fh and LPT2 at 0278–027Fh)
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■ Internal graphics controller ports 

When these internal features are disabled, accesses to these registers (reads and writes) 
will be treated as standard ISA bus cycles whether or not direct-mapped register echoing 
is enabled. 

Port 0070h is a special case. Writes to Port 0070h always go to Port 0070h, as well as to 
the ISA bus.

I/O ports 0080h, 0084–0086h, 0088h, and 008C–008Eh are also special cases. Because 
these I/O ports are both internal read/write registers and typically used as external writable 
ports for diagnostics, they must be handled differently. All I/O writes to these registers are 
run as ISA and internal cycles. In addition, AEN will not be asserted; and DBUFOE, 
DBUFRDH, and DBUFRDL will be asserted. This allows the ISA bus cycle to modify any 
external ISA bus register that may be present during a write cycle (i.e., a Port 0080h debug 
card). 

All I/O write accesses that are not decoded as direct-mapped register accesses or CSC 
indexed register accesses will be driven onto the external ISA bus with all enabled ISA 
control signals available, assuming the cycle is not claimed by a device on the VL-bus. 
External cycles are first given to the VL-bus; if not claimed, they default to the ISA bus.

4.7.6.1.2 Direct-Mapped Register Reads
During an I/O read to a direct-mapped register when the echo feature is enabled, the 
following activity occurs on the external ISA bus:

■ The I/O address is driven out onto the SA bus SA23–SA0.

■ SBHE is driven out (if enabled).

■ BALE is driven out (if enabled).

■ MCS16 and IOCS16 inputs are ignored (if enabled or disabled).

■ AEN is asserted (if enabled).

■ DBUFOE is deasserted (if enabled).

■ DBUFRDH and DBUFRDL are static (if enabled).

■ IOR is asserted.

■ IOCHRDY input is ignored (if enabled or disabled).

■ SD7–SD0 is driven with the data that is present on the internal data bus.

There are some internal PC/AT Core registers that can be disabled when particular internal 
features are disabled such as the following: 

■ Keyboard controller ports 0060h and 0064h

■ PC Card controller ports 03E0h and 03E1h

■ RTC ports 0070h, 0071h

■ UART ports (COM1 at 03F8–03FFh and COM2 at 02F8–02FFh) 

■ Parallel port (LPT1 at 0378–037Fh and LPT2 at 0278–027Fh) 

■ Internal graphics controller ports 

When these features are disabled, accesses to these registers (reads and writes) will be 
treated as standard ISA bus cycles whether or not direct-mapped register echoing is 
enabled.
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When the RTC is enabled, reads come from the internal register only. When the RTC is 
disabled, reads come from the ISA bus only.

All I/O read accesses that are not decoded as direct-mapped register accesses or CSC 
indexed register accesses will occur on the external ISA bus with all enabled ISA control 
signals available.

4.7.6.2 Echoing CSC Indexed Registers

CSC indexed register accesses can also be programmed to echo on the external ISA bus 
by setting CSC index D0h[5]. In order to eliminate any bus contention and/or cycle-to-cycle 
address conflicts on the external ISA bus, the microcontroller will always force the CSC 
indexed register accesses to run at the ISA bus speed when echoing is enabled. The CSC 
indexed-register echoing feature is totally independent of the direct-mapped register 
echoing feature. 

4.7.6.2.1 CSC Indexed Register Writes
During an I/O write to a CSC indexed register, the following activity occurs on the external 
ISA bus when the CSC indexed-register echo feature is enabled. 

■ The I/O address is driven out onto SA23–SA0. For writes to the index register, this 
address is 22h. For writes to the actual CSC indexed register, the address is 23h. 

■ SBHE is driven out (if enabled).

■ BALE is driven out (if enabled).

■ MCS16 and IOCS16 inputs are ignored (if enabled or disabled).

■ AEN is asserted (if enabled).

■ DBUFOE is deasserted (if enabled).

■ DBUFRDH and DBUFRDL are static (if enabled).

■ IOW is asserted.

■ IOCHRDY input is ignored (if enabled or disabled).

■ The write data is driven out onto SD7–SD0.

All accesses are performed at ISA bus speeds when the CSC indexed-register echo feature 
is enabled. If a particular core feature is disabled, the individual CSC indexed registers 
associated with that core can still be accessed and, if the echo feature is enabled, will be 
echoed onto the ISA bus. The actual register bits may or may not be functional in this state. 

4.7.6.2.2 CSC Indexed Register Reads
During an I/O read to a CSC indexed register, the following activity will occur on the external 
ISA bus when the CSC indexed-register echo feature is enabled. 

■ The I/O address is driven out onto SA23–SA0. 

■ SBHE is driven out (if enabled).

■ BALE is driven out (if enabled).

■ MCS16 and IOCS16 inputs are ignored (if enabled or disabled).

■ AEN is asserted (if enabled).

■ DBUFOE is deasserted (if enabled).

■ DBUFRDH and DBUFRDL are static (if enabled).

■ IOR is asserted.
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■ IOCHRDY input is ignored (if enabled or disabled).

■ SD7–SD0 is driven with the data that is present on the internal data bus.

All accesses are performed at ISA bus speeds when the CSC indexed-register echoing 
feature is enabled. If a particular core feature is disabled, the individual CSC indexed 
registers associated with that core can still be accessed and, if the echo feature is enabled, 
will be echoed onto the ISA bus. The actual register bits may or may not be functional in 
this state. 

Note that since DBUFOE is always deasserted in the above listed scenarios, echoed data 
will never be seen past the system data bus buffers (if any are used in the system).

4.7.7 Initialization
The ISA bus controller is enabled at power-on reset.

4.7.8 Power Management
The power management unit monitors the MEMR and MEMW signals for activity. The 
internal clock for the ISA bus controller is shut off when no ISA accesses are being 
performed.

Operation of the ISA bus controller is affected by the power-management functions shown 
in Table 4-16.

Table 4-16 Power Management in the ISA Bus Controller

ISA Bus Event Description
Power Management Effect

Wake-Up Activity SMI NMI

GPIO_CS14–
GPIO_CS0

Triggered by the falling edge of the signal Yes Primary Yes Yes

GP_CSA–GP_CSD Triggered by the falling edge of the signal 
qualified with the correct command

Programmable Yes Yes
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4.8 VESA LOCAL (VL) BUS CONTROLLER

4.8.1 Overview
The VESA local (VL) bus controller provides the signals and associated timing necessary 
to support a single VL-bus target compliant with the Video Electronics Standards 
Association’s (VESA) VL-Bus Standard 2.0.

The VL-bus controller includes the following features:

■ 33 MHz operation at 3.3 V

■ 32-bit data bus

■ Burst-mode transfers

■ Control of local bus reset through a CSC indexed register

VESA bus mastering and DMA transfers to and from the VL-bus target are not supported.

Note that, on the ÉlanSC400 microcontroller, the VL-bus is only available when the internal 
graphics controller is disabled in the Internal Graphics Control Register A (CSC index 
DDh[2]). 

4.8.2 Registers
A summary listing of the chip setup and control (CSC) registers used to control the VL-bus 
is shown in Table 4-17. Complete register descriptions can be found in the ÉlanSC400 
Microcontroller Register Set Reference Manual (order #21032). 

The following CSC indexed registers are used to program the VL-bus interface.

■ Cache and VL Miscellaneous Register–Setting bit 3 in this register enables the VL-
bus. The VL-bus reset is also controlled in this register.

■ Activity Monitor Registers–For power management, these registers report that any 
VL-bus cycle (memory or I/O) is the source of an activity.

Table 4-17 VL-Bus Register Summary

Register I/O Address VL-Bus Function Keyword
Description 
in Register 
Set Manual

Cache and VL Miscellaneous 
Register

22h/23h
Index 14h

VL-bus interface enable, VL-bus reset control page 3-23

Activity Source Enable Register A 22h/23h
Index 62h

Activity source enable: VL-bus cycle (memory 
or I/O)

page 3-71

Activity Source Status Register A 22h/23h
Index 66h

Activity source status: VL-bus cycle (memory 
or I/O)

page 3-75

Activity Classification Register A 22h/23h
Index 6Ah

Primary or secondary activity classification: 
VL-bus cycle (memory or I/O)

page 3-79

Suspend Pin State Register A 22h/23h
Index E3h

Power control in Suspend mode for VL-bus 
interface

page 3-184
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4.8.3 Block Diagram
Figure 4-10 is a simplified block diagram showing all the external signals used by the VL-
bus. More complex examples showing how these signals are used in different 
configurations can be found in Figure 4-4 and Figure 4-5, starting on page 4-22.

Figure 4-10 VL-Bus Block Diagram
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be connected to the outputs of the external data transceiver. 32-bit DRAM should be 
connected to SD15–SD0, not to the buffered side.

Table 4-18 VL-Bus Data Bus Byte Ordering

4.8.4.3 Normal Bus Cycles

The VL-bus on the ÉlanSC400 and ÉlanSC410 microcontrollers supports single- and burst-
mode transfers to and from the VL-bus target. There are five types of normal VL-bus cycles:

■ Memory read, non-burst

■ Memory read, burst

■ Memory write, non-burst

■ I/O read, non-burst

■ I/O write, non-burst

The VL-bus controller is tightly coupled with the internal memory controller and address 
decode logic. The microcontroller drives the current CPU address onto the VL-bus and 
asserts VL_ADS when the cycle is not internally decoded as a DRAM, ROM, MMU hit, or 
I/O access to an internal core or register. VL_LDEV is then sampled at the next rising edge 
of the CPU clock. VL_BLAST is valid at the rising edge of VL_LCLK that samples VL_ADS 
asserted. Bus transfers are terminated by VL_LRDY and VL_LBRDY. If no VL-bus device 
asserts VL_LDEV, the cycle is then driven to the ISA bus.

VL-bus accesses are not cached. DRAM, ROM, and cycles that result in an MMS-windows 
access are of higher priority than VL-bus accesses.

4.8.4.4 Special Bus Cycles

The special bus cycles listed in Table 4-19 may also be visible on VL-bus accesses.

Note: Technically, these special cycles are not considered VL-bus accesses on the 
ÉlanSC400 and ÉlanSC410 microcontrollers. VL_ADS will not be asserted for these special 
cycles. It might be difficult for a system to determine that a special cycle has occurred, 
particularly when the CPU is in a Hold state and its output states for these signals are 
undefined.

 Signals
VL-Bus Byte 

Lane
 Byte Enable

D7–D0 Byte 0 VL_BE0

D15–D8 Byte 1 VL_BE1

D23–D16 Byte 2 VL_BE2

D31–D24 Byte 3 VL_BE3
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Table 4-19 Special Bus Cycles

4.8.4.5 Unsupported VL-Bus Signal

Note that the microcontroller’s VL-bus does not drive the VESA RDYRTN signal. The 
system designer is responsible for tying the VL-bus target’s LRDY and RDYRTN signals 
together.

4.8.5 Initialization
The VL-bus controller is disabled at power-on reset. After enabling the VL-bus interface, 
VL_RST should be asserted and deasserted before using the VL-bus. The VL-bus reset 
control is located at CSC index 14h[4].

4.8.6 Power Management
The speed of the VL-bus changes with the CPU speed. VL-bus logic switching is disabled 
when the VL-bus interface is disabled.

Operation of the VL-bus is affected by the power-management functions shown in Table 
4-20.

Table 4-20 Power Management in the VL-Bus Controller

SA4-SA2 VL_M/IO VL_D/C VL_W/R
VL_BE3–

VLBE0
Cycle Type Cause

000 0 0 1 7h Write-back Completion of all write-backs in 
response to a WBINVD instruction.

000 0 0 1 Dh Flush Completion of a WBINVD or INVD 
instruction.

001 0 0 1 7h Flush 
Acknowledge 
#1

Completion of all write-backs in 
response to the assertion of the internal 
CPU’s FLUSH signal.

001 0 0 1 Dh Flush
Acknowledge 
#2

Completion of a cache flush in 
response to the assertion of the internal 
CPU’s FLUSH signal.

100 0 0 1 Bh Stop Grant Assertion of internal CPU’s STPCLK 
signal.

000 0 0 1 Bh Halt

xxx 0 0 1 Eh Shutdown

VL-Bus Event Description
Power Management Effect

Wake-Up Activity SMI NMI

VL-bus cycle Any VL-bus cycle (memory or I/O) Programmable Yes Yes
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4.9 PC/AT PORT LOGIC

4.9.1 Overview
The ÉlanSC400 and ÉlanSC410 microcontrollers provide all of the support functions found 
in the original IBM PC/AT. These include the Port B status and control bits, speaker control, 
SCP-based CPU-core reset, and A20 gate control, as well as extensions for fast CPU core 
reset and A20 gate control. In addition, a CPU shutdown cycle (e.g., as a result of a triple 
fault) will generate a CPU core reset. None of these resets will affect either on-board 
PC/AT legacy registers or CSC indexed registers specific to the ÉlanSC400 and ÉlanSC410 
microcontrollers.

4.9.2 Registers
4.9.2.1 Direct-Mapped Registers

The following PC/AT features are supported using direct-mapped registers.

■ System Control Port B/NMI Status Register (Port 0061h)—Port B is a PC/AT 
standard, miscellaneous feature, 8-bit, control register. The lower two bits of this register 
are read/write control bits that enable or disable sound generation features. The standard 
sound source on the PC/AT is the output of PIT Channel 2, which is fed to the system 
speaker via a driver. The PIT has several modes of operation that require software to 
have access to the PIT “gate” control. This gate control is provided by bit 0. In addition, 
software can enable or disable the PIT output data from reaching the system via bit 1.

Bits 3 and 2 are reserved on the ÉlanSC400 and ÉlanSC410 microcontrollers. The 
legacy function of these bits was to enable and disable ISA bus I/O channel check or 
parity error Non-Maskable Interrupt (NMI) sources. 

Bits 5 and 4 of this register are read-only status bits that return the status of the SPKR 
output pin state and the DRAM refresh activity, respectively. The DRAM-refresh indicator 
bit toggles once each time the DRAM refresh cycle occurs. Although this rate was 
nominally 15.087 µs on a PC/AT, the refresh rate can be varied on the ÉlanSC400 and 
ÉlanSC410 microcontrollers if PIT Channel 1 is used as the DRAM refresh signal. By 
default, the system 32.768-KHz clock is used for DRAM refresh.

The normal PC/AT functions performed by bits 7–6 (i.e., IOCHCK and Parity Error 
indication) are not supported on the ÉlanSC400 and ÉlanSC410 microcontrollers. These 
bits always read back a value of 0.

■ NMI Control—The power management unit, keyboard scan timer, 8042 emulation logic, 
and the PC Card controller are the only possible sources for the generation of an NMI 
to the internal CPU. A master enable function inhibits any NMIs from reaching the CPU 
regardless of the state of the individual source enables. NMIs can be enabled by writing 
a 0 to the most significant bit at I/O address 0070h. Port 0070h is a write-only register, 
and bits 0–6 function as the RTC index address port. 

■ System Control Port A Register (Port 0092h)—Bit 0 of this register is used for fast 
CPU reset. A low-to-high transition on this bit will automatically reset the CPU. The reset 
pulse lasts for a period predetermined by the CPU reset pulse width timer. This bit is 
not automatically reset to ‘0b.’ To perform successive resets of the CPU core by software, 
this bit must be written to 0 and then back to ‘1b.’ 

Bit 1 is used for A20 signal control. Setting this bit allows the CPU Address(20) to be 
propagated to the system logic; clearing this bit (default state) allows the CPU A20 signal 
to be driven Low as long as no other A20 gate control sources are forcing the CPU A20 
signal to propagate. If any A20 gate control source is forcing A20 to propagate, then no 
other A20 gate control source will have any effect on A20. A20 signal propagation control 
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is an artifact of the PC/AT legacy architecture. The original purpose for the 80286 CPU 
(and later CPUs having greater than 20 address lines) was to support software 
applications that relied on the 8086/8088 address wrap.

Note:This register causes the CPU’s SRESET signal to be asserted for 16 CPU clock 
cycles.

■ Alternate Gate A20 Control Register (Port 00EEh)—A special 8-bit read/write control 
register provides a fast and reliable way to control the CPU A20 signal. A dummy read 
of this register returns a value of FFh and forces the CPU A20 to propagate to the core 
logic, while a dummy write to this register will cause the CPU A20 signal to be forced 
Low as long as no other A20 gate control sources are forcing the CPU A20 signal to 
propagate. 

■ Alternate CPU Reset Control Register (Port 00EFh)—A special 8-bit read-only control 
register provides a fast and reliable way to control the CPU Reset signal. A read of this 
register resets the CPU. This SRESET control mechanism together with both bit 0 of 
Port 0092 and KBD_SLOW_RC command sequence trapping (see Chapter 16) provide 
three different ways to generate SRESET control. Forcing these SRESET events while 
in SMM mode will cause the SRESET signal to be asserted after the SMM routine is 
exited.
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CHAPTER
5
 POWER MANAGEMENT
5.1 OVERVIEW
Power management on the ÉlanSC400 and ÉlanSC410 microcontrollers includes a 
dedicated power management unit (PMU) and additional power management features built 
into each integrated peripheral. Power management on the ÉlanSC400 and ÉlanSC410 
microcontrollers provides a superset of APM 1.2 features. Seven modes of operation allow 
fine-tuning of power requirements for maximum battery life. The ÉlanSC400 and 
ÉlanSC410 microcontrollers can use the following techniques to conserve power:

■ Slow down clocks when the system is not in active use

■ Shut off clocks to parts of the microcontroller that are idle

■ Switch off power to parts of the system that are idle

■ Automatically reduce power use when batteries are low

The power management unit controls stopping and changing clocks, SMI (System 
Management Interrupt) generation, timers, activities, and battery-level monitoring.
The PMU provides:

■ Hyper-Speed, High-Speed, Low-Speed, Temporary Low-Speed, Standby, Suspend, 
and Critical Suspend modes

■ Dynamically adjusted clock speeds for power reduction

■ Programmable activity and wake-up monitoring

■ General-purpose I/O pins to control external devices and external power management

■ Battery low and AC power monitoring

■ SMI/NMI synchronization and generation

5.1.1 PMU Terms
This document refers to activities, wake-ups, SMI/NMIs, battery controls, timer time-outs, 
and events. The following are the definitions:

■ Activities—Indicate the system is doing something and needs to be operating. Activities 
can reset timers and cause mode changes to higher modes. Activities are only effective 
from Hyper-Speed, High-Speed, Low-Speed, Standby, and Temporary Low-Speed 
modes; they have no affect when the PMU is in Suspend mode. A primary activity is 
one that requires extensive CPU involvement and forces the PMU back to High-Speed 
mode from Low-Speed or Standby modes. A secondary activity does not require 
extensive CPU time to service it.

■ Wake-ups—Actions that wake up the PMU from Suspend mode and take it back to an 
operating mode (Hyper-, High-, or Low-Speed). Wake-ups are only effective when the 
PMU is in Suspend mode.

■ SMI/NMIs—Many things can be programmed to cause an SMI or Non-Maskable 
Interrupt (NMI) in the system. The only mode changes that occur for an SMI/NMI are 
changes to restart the clocks for interrupt servicing.
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■ Battery control—The ACIN, BL2–BL0 battery monitoring signals.

■ Timer time-out—Each mode has a timer that allows the PMU to drop to the next mode 
(e.g., High-Speed drops to Low-Speed) when the timer times out. 

■ Events—A generic label to indicate any or all of the above terms. 

■ PMUA, PMUB, PMUC, and PMUD—Up to four GPIO_CS pins can be programmed to 
inform external hardware of internal PMU states. The internal signal names associated 
with this information are PMUA, PMUB, PMUC, and PMUD. 

5.2 REGISTERS
A summary listing of the chip setup and control (CSC) registers used to control the PMU 
is shown in Table 5-1. Complete register descriptions can be found in the ÉlanSC400 
Microcontroller Register Set Reference Manual (order #21032).

5.2.1 PMU Mode Control and Status Registers
CSC index registers 40–45h are used for mode control and status reporting. Important 
features of these registers include:

■ A register for software to immediately program the PMU to any of the modes

The PMU Force Mode Register (CSC index 40h) immediately takes the system to the 
programmed PMU mode. If the programmed mode is the mode the system is already 
in, the associated mode timer is reset.

■ A register to read the present mode and the last mode the PMU was in

The PMU Present and Last Mode Register (CSC index 41h) reflects the current mode 
and also the last mode the PMU was in. The following are special cases as far as 
mode changes are concerned.

– In High-Speed mode, when a primary activity happens, the High-Speed mode timer 
is merely restarted. This is not a mode change; therefore the PMU Present and Last 
Mode Change Register remains unchanged.

– In Temporary Low-Speed mode, when a secondary activity happens, the Temporary 
Low-Speed mode timer is merely restarted. This is not a mode change; therefore the 
PMU Present and Last Mode Change Register remains unchanged.

– High-Speed, Low-Speed, or Temporary Low-Speed modes can be entered by 
programming the PMU Force Mode Register. While in the same mode, the PMU 
Present and Last Mode Register does not change because of this register write. The 
Present and Last Mode Register continues to reflect the real last state the PMU was 
in. The write to the PMU Force Mode Register restarts the mode’s timer.

■ A register (Clock Control Register at CSC index 82h[0]) to enable keeping the Phase-
Locked Loops (PLLs) on during Suspend mode

■ Registers (CSC index 42–44h) to set the timer value for each of the PMU modes 

■ A register bit (CSC index 40h[4]) to speed up all mode timers so that they time-out more 
quickly during debug 

This is beneficial in reducing the time it takes to go through diagnostic routines to 
check out the board, the microcontroller, and power management software. 
(The Temporary Low-Speed timer is not affected by this bit.)

■ A register field (in the Wake-Up Pause/High-Speed Clock Timers Register at CSC index 
45h [5–3]) to set the timer value for delaying starting up the High-Speed CPU clock when 
going to High-Speed mode from Suspend 
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Upon wake-up, the microcontroller goes into High-Speed mode at a reduced fre-
quency (8.29 MHz) and delays running the clock up to the maximum programmed 
speed based on CSC index 45h[5–3]. 

If an SMI/NMI is serviced for the wake-up, the CPU-speed stepping-delay timer contin-
ues to count down during the interrupt service. If the timer times-out during the inter-
rupt service routine, the CPU clock speeds up during the routine. This feature is useful 
for lowering the sudden current draw on the power supply when returning from Sus-
pend. Software can determine if full operating speed has been reached by reading 
CSC index 40h[3]. This feature should not be disabled if the HS_COUNTING bit (CSC 
index 40h[3]) is set. (It should not be disabled when in use).

■ A register field (CSC index 45h[2–0]) to set the timer value for delaying bringing the 
system out of Suspend, allowing time for the power planes to stabilize (if any have been 
turned off)

■ A register bit (CSC index 40h[5]) to disable the LCD in Standby mode 

■ A register bit (CSC index 41h[6]) to immediately time out the active timer, allowing 
software to cause an immediate mode change

Note: When EN_HYPER (CSC index 40h [6]) is set, any PMU Force Mode Register write 
that forces High-Speed goes to Hyper-Speed instead. With EN_HYPER set, High-Speed 
mode is not accessible through the PMU Force Mode Register. Also, after a wake-up from 
Suspend, the TIMEO_NOW bit (CSC index 41h[6]) cannot be written to for at least 30 µs.

Table 5-1 PMU Controller Register Summary

Register I/O Address PMU Controller Function Keyword
Description 
in Register 
Set Manual

PMU Mode Control and Status

PMU Force Mode Register 22h/23h
Index 40h

PMU mode force, high-speed clock delay timer 
status, speed-up Suspend and Standby mode 
timer debug, LCD operation in Standby, 
Hyper-Speed mode enable, Low-Speed timer 
reset

page 3-51

PMU Present and Last Mode 
Register

22h/23h
Index 41h

Read present and last PMU mode, time-out 
current mode timer in Hyper-Speed mode

page 3-53

Hyper/High-Speed Mode Timers 
Register

22h/23h
Index 42h

Timer values for dropping down to High-Speed 
and Low-Speed modes from Hyper-and High-
Speed

page 3-54

Low-Speed/Standby Mode 
Timers Register

22h/23h
Index 43h

Timer values for dropping to Standby and 
Suspend modes from Low-Speed and 
Standby

page 3-55

Suspend/Temporary Low-Speed 
Mode Timers Register

22h/23h
Index 44h

Timer values to count down in Temporary Low-
Speed and Suspend modes, NMI/SMI service

page 3-56

Wake-Up Pause/High Speed 
Clock Timers Register

22h/23h
Index 45h

Timer values for stabilizing power supplies and 
for switching the CPU clock to the programmed 
speed

page 3-57

PMU Wake-Up Control and Status

SUS_RES Pin Configuration 
Register

22h/23h
Index 50h

SUS_RES pin enable, pin trigger configuration page 3-58
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Wake-Up Source Enable 
Register A

22h/23h
Index 52h

Wake-up source enable: RTC alarm, UART 
RIN and SIN pins, Suspend mode timer time-
out, matrix key press

page 3-59

Wake-Up Source Enable 
Register B

22h/23h
Index 53h

Wake-up source enable: BL0, BL1, BL2, and 
ACIN

page 3-60

Wake-Up Source Enable 
Register C

22h/23h
Index 54h

Wake-up source enable: PIRQ5–PIRQ0 and 
PDRQ1–PDRQ0

page 3-61

Wake-Up Source Enable 
Register D

22h/23h
Index 55h

Wake-up source enable: Ring Indicate, 
Interrupt Request, Card Detect, and Status 
Change for PC Card pins

page 3-62

Wake-Up Source Status 
Register A

22h/23h
Index 56h

Wake-up source status: SUS_RES, RTC 
alarm, UART RIN and SIN pins, Suspend 
mode timer time-out, matrix key press

page 3-63

Wake-Up Source Status 
Register B

22h/23h
Index 57h

Wake-up source status: BL0, BL1, BL2, and 
ACIN

page 3-64

Wake-Up Source Status 
Register C

22h/23h
Index 58h

Wake-up source status: PIRQ5–PIRQ0 and 
PDRQ1–PDRQ0

page 3-65

Wake-Up Source Status 
Register D

22h/23h
Index 59h

Wake-up source status: Ring Indicate, 
Interrupt Request, Card Detect, and Status 
Change for PC Card pins

page 3-66

GPIO as a Wake-Up or Activity 
Source Status Register A

22h/23h
Index 5Ah

Wake-up or activity source status: 
GPIO_CS0–GPIO_CS7

page 3-67

GPIO as a Wake-Up or Activity 
Source Status Register B

22h/23h
Index 5Bh

Wake-up or activity source status: 
GPIO_CS8–GPIO_CS14

page 3-68

PMU Activity Control and Status

GP_CS Activity Enable Register 22h/23h
Index 60h

Activity enable: GP_CSA–GP_CSD page 3-69

GP_CS Activity Status Register 22h/23h
Index 60h

Activity status: GP_CSA–GP_CSD  page 3-70

Activity Source Enable Register A 22h/23h
Index 62h

Activity source enable: CPU access to UART, 
internal graphics I/O and memory, ROMCS2–
ROMCS0, and any VL-bus cycle

page 3-71

Activity Source Enable Register B 22h/23h
Index 63h

Activity source enable: CPU access to DRAM, 
matrix key pressed, timer tick interrupt, 
keyboard timer time-out, and keyboard 
registers

page 3-72

Activity Source Enable 
Register C

22h/23h
Index 64h

Activity source enable: CPU access to external 
VGA controller I/O and memory, floppy 
controller registers, and IDE hard drive 
registers; DMA request, ACIN signal, UART 
RIN pin, and UART SIN pin

page 3-73

Table 5-1 PMU Controller Register Summary (continued)

Register I/O Address PMU Controller Function Keyword
Description 
in Register 
Set Manual
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Activity Source Enable 
Register D

22h/23h
Index 65h

Activity source enable: CPU access to parallel 
port, PC Card Socket A, PC Card Socket B, 
internal system registers; also enables PC 
Card Ring Indicate and PC Card INTR

page 3-74

Activity Source Status Register A 22h/23h
Index 66h

Activity source status: CPU access to UART, 
internal graphics I/O and memory, ROMCS2–
ROMCS0, and any VL-bus cycle

page 3-75

Activity Source Status Register B 22h/23h
Index 67h

Activity source status: CPU access to DRAM, 
matrix key pressed, timer tick interrupt, 
keyboard timer time-out, and keyboard 
registers

page 3-76

Activity Source Status Register C 22h/23h
Index 68h

Activity source status: CPU access to external 
VGA controller I/O and memory, floppy 
controller registers, and IDE hard drive 
registers; DMA request, ACIN signal, UART 
RIN pin, and UART SIN pin

page 3-77

Activity Source Status Register D 22h/23h
Index 69h

Activity source status: CPU access to parallel 
port, PC Card Socket A, PC Card Socket B, 
internal system registers; also enables PC 
Card Ring Indicate and PC Card INTR

page 3-78

Activity Classification Register A 22h/23h
Index 6Ah

Primary and secondary activity classification: 
CPU access to UART, internal graphics I/O 
and memory, ROMCS2–ROMCS0, and any 
VL-bus cycle

page 3-79

Activity Classification Register B 22h/23h
Index 6Bh

Primary and secondary activity classification: 
CPU access to DRAM, matrix key pressed, 
timer tick interrupt, keyboard timer time-out, 
and keyboard registers

page 3-80 

Activity Classification Register C 22h/23h
Index 6Ch

Primary and secondary activity classification: 
CPU access to external VGA controller I/O and 
memory, floppy controller registers, and IDE 
hard drive registers; DMA request, ACIN 
signal, UART RIN pin, and UART SIN pin

page 3-81 

Activity Classification Register D 22h/23h
Index 6Dh

Primary and secondary activity classification: 
CPU access to parallel port, PC Card Socket 
A, PC Card Socket B, internal system 
registers; also enables PC Card Ring Indicate 
and PC Card INTR

page 3-82

Battery Level Pin Control and Status

Battery/AC Pin Configuration 
Register A

22h/23h
Index 70h

BLx pin configuration, force CPU clock and 
PMU mode, force software ACIN, and 
Suspend indications

page 3-83

Battery/AC Pin Configuration 
Register B

22h/23h
Index 71h

Assert ACIN to disable PMU, BL2 control to 
force PMU mode

page 3-85

Battery/AC Pin State Register 22h/23h
Index 72h

BL0–BL2, ACIN, and SUS_RES states page 3-86

Table 5-1 PMU Controller Register Summary (continued)

Register I/O Address PMU Controller Function Keyword
Description 
in Register 
Set Manual
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Clock Control and Status

CPU Clock Speed Register 22h/23h
Index 80h

CPU clock speeds in Hyper-, High-, and Low-
Speeds; present CPU clock speed

page 3-87

CPU Clock Auto Slowdown 
Register

22h/23h
Index 81h

Fast and slow clock duration, auto slowdown 
enable

page 3-88

Clock Control Register 22h/23h
Index 82h

PLL enable, restart delay time, 32-KHz clock 
state, DMA clock frequency

page 3-90

SMI/NMI Generation and Status

Miscellaneous SMI/NMI Enable 
Register

22h/23h
Index 90h

SMI/NMI enable: wake-up, SIN pin, RIN pin, 
RTC alarm, SUS_RES pin, force NMI or SMI

page 3-94

PC Card and Keyboard SMI/NMI 
Enable Register

22h/23h
Index 91h

SMI/NMI enable: matrix keyboard key press, 
keyboard timer, and Input Buffer Written and 
Keyboard Output Buffer Read interrupts; PC 
Card interrupt, ring indicate, and card detects 
for PC Card Sockets A and B

page 3-95

Mode Timer SMI/NMI Enable 
Register

22h/23h
Index 92h

SMI/NMI enable: time-outs for Suspend, 
Standby, Low-Speed, High-Speed, and 
Hyper-Speed mode timers

page 3-96

Battery Low and ACIN SMI/NMI 
Enable Register

22h/23h
Index 93h

SMI/NMI enable: ACIN, BL2–BL0 pin edges page 3-102

Miscellaneous SMI/NMI Status 
Register

22h/23h
Index 94h

SMI/NMI status: wake-up, SIN pin, RIN pin, 
RTC alarm, SUS_RES pin, force NMI or SMI

page 3-99

PC Card and Keyboard SMI/NMI 
Status Register

22h/23h
Index 95h

SMI/NMI status: matrix keyboard key press, 
keyboard timer, and Input Buffer Written and 
Keyboard Output Buffer Read interrupts; PC 
Card interrupt, ring indicate, and card detects 
for PC Card Sockets A and B

page 3-100

Mode Timer SMI/NMI Status 
Register

22h/23h
Index 96h

SMI/NMI status: time-outs for Suspend, 
Standby, Low-Speed, High-Speed, and 
Hyper-Speed mode timers

page 3-101

Battery Low and ACIN SMI/NMI 
Status Register

22h/23h
Index 97h

SMI/NMI status: ACIN, BL2–BL0 pin edges page 3-102

SMI/NMI Select Register 22h/23h
Index 98h

Select SMI or NMI: RTC alarm, RIN pin, SIN 
pin, PC Card interrupts, wake-ups, internal 
keyboard interrupts, SUS_RES pin, battery 
management (ACIN and BL2–BL0), and PMU 
mode timers

page 3-104

I/O Access SMI Enable 
Register A

22h/23h
Index 99h

SMI enable for I/O access to keyboard, internal 
graphics, LPT1/LPT2 parallel port, UART 
COM1 and COM2

page 3-105

I/O Access SMI Enable 
Register B

22h/23h
Index 9Ah

SMI enable for I/O access to GP_CSA, 
GP_CSB, PC Card Socket A, PC Card Socket 
B, IDE hard drive, and floppy controller

page 3-106

Table 5-1 PMU Controller Register Summary (continued)

Register I/O Address PMU Controller Function Keyword
Description 
in Register 
Set Manual
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I/O Access SMI Status Register A 22h/23h
Index 9Bh

SMI status for I/O access to keyboard, internal 
graphics, LPT1/LPT2 parallel port, UART 
COM1 and COM2

page 3-107

I/O Access SMI Status Register B 22h/23h
Index 9Ch

SMI status for I/O access to GP_CSA, 
GP_CSB, PC Card Socket A, PC Card Socket 
B, IDE hard drive, and floppy controller

page 3-108

XMI Control Register 22h/23h
Index 9Dh

Master SMI enable, NMI routine done page 3-109

GPIO Pin Control, Status, Multiplexing

GPIO_CS Function Select 
Register A

22h/23h
Index A0h

GPIO_CS3–GPIO_CS0 as inputs, outputs, 
primary activities, or wake-ups

page 3-110

GPIO_CS Function Select 
Register B

22h/23h
Index A1h

GPIO_CS7–GPIO_CS4 as inputs, outputs, 
primary activities, or wake-ups

page 3-111

GPIO_CS Function Select 
Register C

22h/23h
Index A2h

GPIO_CS11–GPIO_CS8 as inputs, outputs, 
primary activities, or wake-ups

page 3-112

GPIO_CS Function Select 
Register D

22h/23h
Index A3h

GPIO_CS14–GPIO_CS12 as inputs, outputs, 
primary activities, or wake-ups

page 3-113

GPIO_PMUA Mode Change 
Register

22h/23h
Index AAh

Drive GPIO_PMUA signal with programmed 
value in PMU modes

page 3-120

GPIO_PMUB Mode Change 
Register

22h/23h
Index ABh

Drive GPIO_PMUB signal with programmed 
value in PMU modes

page 3-122

GPIO_PMUC Mode Change 
Register

22h/23h
Index ACh

Drive GPIO_PMUC signal with programmed 
value in PMU modes

page 3-124

GPIO_PMUD Mode Change 
Register

22h/23h
Index ADh

Drive GPIO_PMUD signal with programmed 
value in PMU modes

page 3-126

GPIO_PMU to GPIO_CS Map 
Register A

22h/23h
Index AEh

GPIO_PMUA and GPIO_PMUB mapping to 
GPIO_CSx pins

page 3-128

GPIO_PMU to GPIO_CS Map 
Register B

22h/23h
Index AFh

GPIO_PMUC and GPIO_PMUD mapping to 
GPIO_CSx pins

page 3-129

GPIO_XMI to GPIO_CS Map 
Register

22h/23h
Index B0h

GPIO_XMI mapping to GPIO_CS pins, SMI/
NMI selection

page 3-130

Suspend Control

Suspend Mode Pin State 
Register A

22h/23h
Index E3h

Power control in Suspend mode for PC Card 
sockets A and B, VL-bus, ISA bus, DRAM, and 
ROM interfaces

page 3-184

Suspend Mode Pin State 
Register B

22h/23h
Index E4h

Power control in Suspend mode for DBUFOE, 
R32BFOE

page 3-185

Suspend Mode Pin State 
Override Register

22h/23h
Index E5h

Suspend mode override for PC Card sockets 
A and B, DBUFOE, R32FOE, ISA bus, and 
ROM interface; pin termination latch command

page 3-186

Table 5-1 PMU Controller Register Summary (continued)

Register I/O Address PMU Controller Function Keyword
Description 
in Register 
Set Manual
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5.3 BLOCK DIAGRAM
Figure 5-1 shows a block diagram of the power management unit.

Figure 5-1 Power Management Unit Block Diagram
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5.4 OPERATION
The PMU on the ÉlanSC400 and ÉlanSC410 microcontrollers is designed to operate in 
either fully automatic mode, software-driven mode, or various combinations of the two. 

■ Fully automatic mode allows extensive power management operations to be performed 
completely transparently to software. In this mode, wake-ups and activities move the 
PMU to higher power/performance states, and time-outs without the presence of 
activities move the PMU to lower power/performance states. 

■ In software-driven modes, the PMU provides all of the resources required by a power 
management driver to implement almost any power management scheme, including a 
superset of APM 1.2. In addition, the PMU may be used in a role where it operates 
completely independently of any O/S, drive, or application software to provide intelligent 
power utilization at the system level.

For fully automatic mode operation, the BIOS/HAL initialization code must set up the PMU 
to define time-outs between the PMU states (modes) and also to define what events should 
be taken by the PMU as activities, wake-ups, etc. Once the operating system has loaded, 
the PMU requires no software intervention.

In a software-driven power management scheme, the PMU Force Mode Register is used 
by a software state machine to force the hardware into the desired power-consumption 
state. When no power management software is available, the hardware can be configured 
once at boot time by BIOS or system firmware to implement power management based on 
mode timers and power management events. After this has been done, the PMU hardware 
controls the system performance/power consumption state automatically and without action 
of any kind by software. More complex power management schemes can be devised which 
leverage intelligent power management software and automatic power management 
hardware in the same system.

A state sequencer on the ÉlanSC400 and ÉlanSC410 microcontrollers monitors the activity 
in the system and transitions from mode to mode based on built-in timers and the level of 
activity in the system. The actions that occur in each mode are programmable.

All clock switching is done at a “safe” time when transitions between modes will not harm 
system operation. Because the system implements hidden refresh, the PMU requests a 
CPU Hold before changing the CPU clock so that the CPU is inactive at the time the clock 
switches. 

Changes in PMU modes affect the CPU clock primarily. Other clocks on the microcontroller 
may be limited by the speed of the CPU clock, but they are not otherwise altered by the 
mode changes. More detailed information on clock control and generation is found in 
Chapter 6.

The ACIN feature can be configured to disable most mode transitions and allow the system 
to run at maximum performance. Suspend mode can still be accessed. This feature is useful 
to get maximum non-driver-managed performance while connected to an AC wall adapter 
without completely reprogramming all mode timers, etc.

Each mode has a timer that, when it times-out, signals the PMU to step down to the next 
lower mode (see Figure 5-3). Each timer can be disabled to allow the PMU to remain in 
any mode, except for the Temporary Low-Speed timer. The PMU mode timers, when used 
in conjunction with activities and wake-ups, can provide power management control that 
is transparent to the operating system.

Temporary Low-Speed is a temporary mode. Its timer has a default minimum so that the 
PMU returns to the appropriate mode soon after the event that sent it to Temporary Low-
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Speed mode is done. (The appropriate mode is dependent on entry conditions and other 
configurations; this can be determined by examining the flowcharts shown in Figure 5-3–
Figure 5-8.) This timer is different than the other mode timers in that respect. The timer has 
no disable. It does not cause the PMU to stay in Temporary Low-Speed mode; it always 
continues on to another mode. This timer allows a system design that only goes as low as 
Standby mode but will still service secondary activities and then return to the low-power 
Standby mode (rather than getting stuck in Temporary Low-Speed mode). Again, this 
feature provides for “hardware-only” power management that automatically trades off 
processing performance with power consumption based on the real-time needs of the 
system.

5.4.1 Hyper-Speed Mode
Hyper-Speed mode is used when performance is much more valuable than battery life. 
Hyper-Speed mode utilizes the CPU’s clock multiplying capability to run the CPU at 66 
MHz (2x) or 100 MHz (3x). 

For all PMU modes except Hyper-Speed mode, the CPU is clocked by the microcontroller-
specific Phase-Locked-Loop (PLL) and clock-generation circuitry. However, when Hyper-
Speed mode is used, the four microcontroller-specific PLLs are not used for CPU clock 
generation. In this case, the CPU core’s own PLL is used.

When enabled, Hyper-Speed mode is entered from High-Speed mode. Any event that takes 
the microcontroller to High-Speed mode does so while the CPU-core PLL is brought up, 
then switches to Hyper-Speed mode. The exception to this is when the Hyper-Speed mode 
timer times out and drops to High-Speed mode. The PMU stays in High-Speed mode until 
a primary activity or ACIN forces a change back to Hyper-Speed mode (or until the High-
Speed timer times out and PMU drops to Low-Speed mode). 

While the CPU-core PLL is brought up, the CPU cannot operate in static clock mode. The 
CPU enters the Stop Grant state until the PLL stabilizes. Going to High-Speed mode while 
in the Stop Grant state allows any other device time to stabilize (e.g., power on an external 
device can be turned on by a GPIO).

The clock selection (66 MHz or 100 MHz) can be done at any time. If it is done while in 
Hyper-Speed mode, it will not take effect until the next time the PMU goes to Hyper-Speed 
mode. The system must do a CPU Stop Grant using the CPU’s Stop Clock Interrupt before 
the clock switching can be done for entering and exiting Hyper-Speed mode.

This mode defaults to disabled. A bit must be set to enable the system to transition to Hyper-
Speed mode.

5.4.1.1 Actions Taken During Hyper-Speed Mode

The following actions are taken on the ÉlanSC400 and ÉlanSC410 microcontrollers during 
Hyper-Speed mode:

■ All parts of the system are clocked at full speed. (A summary of clock speeds per PMU 
mode is shown in Table 6-6.)

– Because this mode uses the CPU-core PLL, there is a 1 ms delay in changing the 
CPU frequency (a CPU Stop Grant must be done using the CPU’s Stop Clock 
Interrupt).

– Automatic slowdown is available in this mode. When enabled via CSC index 81h, the 
automatic slowdown feature slows down the CPU clock at a programmed interval for 
a programmed amount of time. Although power is saved, the automatic slowdown 
feature reduces average system performance, because it slows down the CPU clock 
per a duty cycle that is software-controllable via CSC index 81h. 
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■ The CPU clock is programmable to be 66 or 100 MHz. The bus clock remains at 33 MHz 
in Hyper-Speed mode. (Note that the CPU clock on the ÉlanSC400 and ÉlanSC410 
microcontrollers does not switch dynamically per type of access cycle.)

5.4.1.2 Entering Hyper-Speed Mode

The system enters Hyper-Speed mode when Hyper-Speed Mode is enabled and either of 
the following occurs:

■ The system goes to High-Speed mode.

– After a 1 ms delay (for the CPU-core PLL to start up and stabilize), the system goes 
to Hyper-Speed mode unless High-Speed mode was entered by the Hyper-Speed 
timer time-out. Note that if Hyper-Speed mode is enabled, and a write to the PMU 
Force Mode Register (CSC index 40h) forced High-Speed mode, the system goes 
to Hyper-Speed mode.

■ The system is in High-Speed mode and a primary activity happens.

— The same PLL start-up time restrictions apply.

5.4.1.3 Leaving Hyper-Speed Mode

The system leaves Hyper-Speed mode when any of the following occurs:

■ The Hyper-Speed mode timer times out.

– The system drops to High-Speed mode.

■ The system is programmed directly out with the PMU Force Mode Register.

– The system can go to any other mode.

■ The SUS_RES signal toggles.

– If enabled, forces the system directly to Suspend mode

■ BL0, BL1, or BL2 go Low (programmable option using CSC index 70–71h).

– BL2 causes a mode change to Critical Suspend mode if enabled and ACIN is not 
active.

— BL0 or BL1 causes a mode change to Low-Speed mode or High-Speed mode (8 MHz) 
if enabled and ACIN is not active.

5.4.2 High-Speed Mode
This mode is used when performance is more valuable than battery life. High-Speed mode 
does not use the CPU-core PLL for operation; it drives the enhanced Am486 CPU core in 
static clock mode.

High-Speed mode can be disabled by enabling and asserting the BL2–BL0 inputs (CSC 
index 70 and 71h). When this occurs, activities that normally caused a mode change to 
High-Speed go to Low-Speed instead. Only the PMU Force Mode Register (CSC index 
40h) allows access to High-Speed mode.
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5.4.2.1 Actions Taken During High-Speed Mode

The following actions are taken in the ÉlanSC400 and ÉlanSC410 microcontrollers during 
High-Speed mode:

■ All parts of the system are clocked at full speed. (A summary of clock speeds per PMU 
mode is shown in Table 6-6.)

– Automatic slowdown is available in this mode. When enabled via CSC index 81h, the 
automatic slowdown feature slows down the CPU clock at a programmed interval for 
a programmed amount of time. Although power is saved, the automatic slowdown 
feature reduces average system performance, because it slows down the CPU clock 
per a duty cycle that is software-controllable via CSC index 81h. 

■ The CPU clock is programmable to be 33 MHz, 16 MHz, or 8 MHz. (Note that the CPU 
clock on the ÉlanSC400 and ÉlanSC410 microcontrollers does not switch dynamically 
per type of access cycle.)

5.4.2.2 Entering High-Speed Mode

The system goes to High-Speed mode when High-Speed Mode is not disabled via BL2 or 
BL1 and any of the following occurs:

■ Hardware reset (the CPU clock will default to 8 MHz)

■ Hyper-Speed mode timer times out.

■ A primary activity is detected and the microcontroller is not currently in Hyper-Speed 
mode.

■ Resume or wake up from Suspend

■ Programmed directly with the PMU Force Mode Register

■ ACIN is enabled and the ACIN signal goes active or a bit in the Battery/AC Pin 
Configuration Register (CSC index 70h[5]) is set.

5.4.2.3 Leaving High-Speed Mode

The system leaves High-Speed mode when any one of the following occurs:

■ A primary activity occurs and Hyper-Speed mode is enabled.

– Goes to Hyper-Speed mode after the CPU-core PLL is stable.

– If Hyper-Speed is enabled, the system stays in High-Speed mode for 1 ms only.

■ The High-Speed mode timer times out.

– Drops to Low-Speed mode

■ Programmed directly out with the PMU Force Mode Register

– Can go to any other mode

■ The SUS_RES signal toggles.

– If enabled, forces the system directly to Suspend mode

■ BL0, BL1, or BL2 are asserted (programmable option using CSC index 70–71h).

– BL2 causes a mode change to Critical Suspend mode if enabled and ACIN is not 
active.

— BL0 or BL1 causes a mode change to Low-Speed mode if enabled and ACIN is not 
active.
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5.4.3 Low-Speed Mode
This mode is used when there is not a lot of CPU intensive activity in the microcontroller 
and the CPU clock can be slowed down for all CPU cycles.

5.4.3.1 Actions Taken During Low-Speed Mode

The following actions are taken in the ÉlanSC400 and ÉlanSC410 microcontrollers during 
Low-Speed mode:

■ The CPU clock can be programmed to 8 MHz, 4 MHz, 2 MHz, or 1 MHz in this mode.
(A summary of clock speeds per PMU mode is shown in Table 6-6.)

■ The CPU clock is driven with the programmed frequency for all cycles.

— The CPU clock does not speed up to 8 MHz for ISA, PC Card, or ROM cycles. They 
happen at the programmed CPU clock speed. For example, if the CPU clock is 
programmed to 2 MHz, the ISA cycles will be approximately 4 times as long as normal, 
because the ISA clock is also 2 MHz.

5.4.3.2 Entering Low-Speed Mode

The system goes to Low-Speed mode when any one of the following occurs:

■ The High-Speed mode timer times out.

■ Programmed directly with the PMU Force Mode Register

■ BL0 or BL1 goes Low (programmable option).

■ A primary activity happens and the High-Speed mode is disabled via BL2 or BL1.

■ Resume or wake up from Suspend mode when the High-Speed mode is disabled

■ When a secondary activity occurs in Low-Speed mode the Timer may be reset 
(programming option); modes are not changed.

5.4.3.3 Leaving Low-Speed mode

The system leaves Low-Speed mode when any one of the following happens:

■ The Low-Speed mode timer times out.

– Drops to Standby mode

■ Programmed directly out with the PMU Force Mode Register

– Can go to any other mode

■ A primary activity is detected and High-Speed mode is enabled.

– Goes back up to High-Speed mode

■ BL2 goes Low (programmable option using CSC index 70–71h).

– Cause a mode change to Critical Suspend mode if enabled and ACIN is not active

■ The SUS_RES signal toggles.

— If enabled, forces the system to Suspend mode
Power Management 5-13



5.4.4 Standby Mode
This mode is used when there is no activity in the microcontroller and many clocks can be 
shut down. When an enabled activity occurs, the PMU switches to the appropriate mode. 

5.4.4.1 Actions Taken During Standby Mode

The following actions are taken in the ÉlanSC400 and ÉlanSC410 microcontrollers during 
Standby mode:

■ The CPU clock is stopped. (A summary of clock speeds per PMU mode is shown in 
Table 6-6.)

■ The internal LCD graphics controller can be programmed to be enabled or disabled.

■ The High-Speed PLL can be shut off.

5.4.4.2 Entering Standby Mode

The system goes to Standby mode when any of the following occurs:

■ The Low-Speed mode timer times out.

■ Programmed directly with the PMU Force Mode Register

■ Return from Temporary Low-Speed mode when the Temporary Low-Speed timer 
times out

— When Temporary Low-Speed mode was entered from Standby mode

5.4.4.3 Leaving Standby Mode

The system leaves Standby mode when any of the following occurs:

■ The Standby mode timer times out.

– Drops to Suspend mode

■ A primary activity is detected.

– Goes back up to High-Speed or Low-Speed Mode (based on BL2 or BL1)

■ A secondary activity is detected.

– Goes to Temporary Low-Speed mode

– The Standby timer is paused while in Temporary Low-Speed mode. The count-down 
continues when Standby mode is re-entered. The timer is not reset by this mode 
change.

■ BL2 goes Low (programmable option using CSC index 70–71h).

– Cause a mode change to Critical Suspend mode if ACIN is not active

■ The SUS_RES signal toggles.

– If enabled, forces the system to Suspend mode
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5.4.5 Suspend Mode
Suspend mode is used when the system wants to enter a very low power mode, keeping 
the DRAM refreshed and saving the status of the microcontroller’s internal wake-up or 
resume registers so it can return to the point it left off. If the system PLLs (the High-Speed, 
Low-Speed, Intermediate, and Graphics Dot Clock PLLs) are shut off, it will take longer to 
return, but Suspend power requirements will be reduced.

5.4.5.1 Actions Taken During Suspend Mode

The following actions are taken in the ÉlanSC400 and ÉlanSC410 microcontrollers during 
Suspend mode:

■ All clocks are stopped (except the RTC and memory refresh, which are derived off the 
32-KHz oscillator without the system PLL’s involvement).

■ The PLLs shut down (programmable option via CSC index 82h[0]). Note that clocks can 
be stopped (gated off) without shutting down the PLLs.

■ The RTC is left running.

■ The DRAM refresh (either CAS-before-RAS or self-refresh) is programmable to be left 
active or turned off.

– If CAS-before-RAS refresh is left active, the refresh clock is switched from the timer 
counter to the 32-KHz oscillator.

■ The pins on the microcontroller go to their predetermined state and stop toggling. 

5.4.5.2 Entering Suspend Mode

The system goes to Suspend mode when any of the following occurs:

■ The Standby mode timer times out.

■ Programmed directly with the PMU Force Mode Register

■ Critical Suspend mode is unlocked by ACIN, BL2, and/or BL1 and BL2.

■ The SUS_RES signal is enabled and changes.

5.4.5.3 Leaving Suspend Mode

The system leaves Suspend mode when any of the following occurs:

■ The Suspend mode timer times out.

– If an SMI/NMI is enabled, it goes to Temporary Low-Speed mode. 

– All the PLLs (except the CPU-core PLL) must be started back up to service the XMI 

in Temporary Low-Speed mode. The timing sequence is shown in the ÉlanSC400 
and ÉlanSC410 Microcontrollers Data Sheet (order #21028).

– If enabled as a wake-up, it goes to High or Low-Speed mode based on either BL2 or 
BL1.

— If both the SMI/NMI and wake-up are enabled, it goes to High or Low-Speed mode 
before servicing the SMI/NMI, as opposed to servicing the SMI in Temporary Low-
Speed mode.

■ BL2 is enabled and asserted.

— Goes to Critical Suspend mode
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■ A wake-up source is detected active, or the SUS_RES signal toggles.

— If enabled, forces the system to High-Speed or Low-Speed mode. The PLLs have to 
be started back up.

5.4.6 Critical Suspend Mode
Critical Suspend mode is used when a battery-dead indication comes in on BL2, and the 
microcontroller must quickly go to a Suspend mode and stay there until an unlock event 
occurs. When an unlock event occurs in Critical Suspend mode, the system will do one of 
the following:

■ Go to Suspend mode and wait for a wake-up.

■ Wake up if the unlock event is also programmed as a wake-up.

■ Wake up if a wake-up was sensed while the system was in Critical Suspend.

The unlock events that can be enabled are:

■ ACIN is toggled.

■ BL2 goes inactive.

■ BL2 and BL1 go inactive.

5.4.6.1 Actions Taken During Critical Suspend Mode

The following actions are taken in the ÉlanSC400 and ÉlanSC410 microcontrollers during 
Critical Suspend mode:

■ Same as Suspend mode

■ The system is locked in Critical Suspend mode as long as an unlock event does not occur.

■ The LCD panel shutdown sequence is accelerated. The voltage and control signals to 
the panel will disable without regard to normal power-down sequencing, which is 
specified in graphics index 50–51h.

■ PLLs shut down.

5.4.6.2 Entering Critical Suspend Mode

The system goes to Critical Suspend mode when:

■ BL2 goes Low (programmable option) and ACIN is not enabled or asserted.

5.4.6.3 Leaving Critical Suspend Mode

The system leaves Critical Suspend mode when either of the following occurs:

■ An unlock occurs.

– Goes to Suspend mode

■ An unlock that is enabled as a wake-up occurs.

— Forces the system to High-Speed or Low-Speed mode
Power Management5-16



5.4.7 Temporary Low-Speed Mode
Temporary Low-Speed mode is a PMU mode that the programmer can use to handle events 
that occur when the PMU is currently in a clock-off mode. This mode is used to service a 
secondary activity or an SMI/NMI from Standby mode and then return to Standby mode, 
or to service the Suspend timer time-out SMI/NMI and then return to Suspend mode. 

Temporary Low-Speed mode may be entered when a secondary activity occurs. Secondary 
activities are invoked as a result of events that do not need extensive CPU time to service, 
so the PMU does not return to High-Speed mode for them. Instead, Temporary Low-Speed 
mode acts as a temporary low-speed mode that has its own timer and returns to Standby 
mode if it was entered by a secondary activity. A secondary activity that is received while 
in Temporary Low-Speed mode causes the system to restart the Temporary Low-Speed 
timer. 

The Temporary Low-Speed mode timer works differently that other mode timers. When 
other mode timers time out, the PMU transitions to the next lower power/performance state. 
When the Temporary Low-Speed mode timer expires, the PMU returns to the clock-off 
state from which it was awakened to process the secondary activity in the first place.

When Temporary Low-Speed mode is entered from Standby mode, the Standby timer will 
be paused while in Temporary Low-Speed mode. The Standby timer then resumes its count 
down when it returns to Standby mode.

When Temporary Low-Speed mode is entered from Suspend, it acts like Suspend in that 
only a wake-up can change the mode to High- or Low-Speed (activities and ACIN do not 
change the mode). A force mode register write, however, can change to any other mode. 

5.4.7.1 Actions Taken During Temporary Low-Speed Mode

The following actions are taken in the ÉlanSC400 and ÉlanSC410 microcontrollers during 
Temporary Low-Speed mode:

■ CPU clock goes to the programmed Low-Speed mode rate. (A summary of clock speeds 
per PMU mode is shown in Table 6-6.)

■ All other clocks go to the appropriate Low-Speed mode rate.

– Except for LCD graphics, if it was disabled in the mode the PMU is coming from.

■ Temporary Low-Speed mode timer is started.

5.4.7.2 Entering Temporary Low-Speed Mode

The system goes to Temporary Low-Speed mode when one of the following occurs:

■ A secondary activity is received in Standby mode.

– If a secondary activity happens in Temporary Low-Speed mode, the timer is restarted.

■ An SMI/NMI is triggered while in the Standby mode, or by a Suspend timer time-out.

– SMI/NMI in Suspend does not cause the PMU to go to Temporary Low-Speed unless 
it is caused by the Suspend timer time-out. The system goes to Temporary Low-
Speed mode to service the SMI/NMI. During the interrupt service routine the PMU 
Force Mode Register can be used to change the PMU mode to any other mode rather 
than letting the system go back to Suspend or Standby mode.

■ Programmed directly with the PMU Force Mode Register
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5.4.7.3 Leaving Temporary Low-Speed Mode

The system leaves Temporary Low-Speed mode when one of the following occurs:

■ Temporary Low-Speed mode timer times out.

– If the last mode was Standby, the system returns to Standby; otherwise it goes to 
Suspend.

■ Programmed directly out with the PMU Force Mode Register

– Can go to any other mode

■ The SUS_RES signal toggles.

– If enabled and Temporary Low-Speed mode was called from Standby mode, forces 
the system to Suspend mode

– If enabled and Temporary Low-Speed was entered as an SMI/NMI service routine 
from Suspend mode, the SUS_RES signal causes a transition to High-Speed (or 
Low-Speed) mode.

■ A primary activity is detected (and Suspend was not the last mode).

– Goes back up to High-Speed mode

■ BL2 goes Low (programmable option).

– BL2 causes a mode change to Critical Suspend mode if ACIN is not enabled and 
asserted.

■ Wake-up detected

– If Temporary Low-Speed mode was entered from Suspend, wake-ups can be 
detected and cause a mode change to High-Speed or Low-Speed mode.
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5.4.8 PMU Flowcharts
The flowcharts in Figure 5-3–Figure 5-8 diagram the flow between modes for each of the 
major events: timers, activities, wake-ups/resume, ACIN, BL0 and BL1, and BL2, with the 
SMI flows for each.

The following conventions apply to the flowcharts in this chapter.

■ Clock speeds shown in boldface are the default speeds. Other speeds listed are 
programmable options.

■ The solid arrows represent the default configurations.

■ Dashed arrows show programmable options.

■ An arrow leaving a mode at the same point where another arrow enters it represents 
what happens after the entering-arrow event happens. For example, in Figure 5-2, when 
the High-Speed mode timer times out and is programmed to cause an SMI/NMI, the 
SMI/NMI will happen while in High-Speed mode. After the interrupt is serviced, the 
system will then drop to Low-Speed Mode.

■ SMI/NMI done—An SMI is done when the state restore from the SMI Return instruction 
is completed. An NMI is done when CSC index 9Dh[1] is written.

Figure 5-2 Interrupts in High-Speed Mode: Example
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Figure 5-3 PMU Timer Mode Flow
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5.4.9 Wake-Up Sources
Several options are available to wake up the system from Suspend mode. Table 5-2 shows 
the wake-up sources. The Suspend and wake-up/resume mode flow is diagrammed in 
Figure 5-4. The wake-up trigger is only valid to take the system from Suspend mode to 
High-Speed or Low-Speed mode. (Some of the BL2—BL0 signals can limit the PMU modes 
to Low-Speed; see Section 5.4.11.2.) The wake-up trigger has no use in any mode except 
Suspend. If Temporary Low-Speed mode was entered from Suspend, then wake-ups can 
be detected and the PMU will wake up from Temporary Low-Speed (it will not go back to 
Suspend mode to wake up). When receiving a wake-up in Suspend mode, any section of 
the PMU that has its clock disabled must be clocked again. Next, the PMU can start up the 
PLLs (if they were programmed to be off), gate the clocks, and resume the system.

Table 5-2 PMU Wake-Up Sources

Wake-Up Sources Description

ACIN signal The ACIN signal rising or falling edge can cause a wake-up

BL2–BL0 signals Any of the BL2–BL0 signals’ rising or falling edge can cause a wake-up

SUS_RES signal The default is disabled.
This signal is also used as a keyboard row input.
Programmable to cause Suspend, Resume, both, or neither.
Programmable to Suspend on rising or falling edge, Resume on rising or falling edge, or 
toggle mode (Suspend if operating, Resume if Suspended) on rising or falling edge.
The SUS_RES pin has a 15 ms debounce time. The waveforms below describe the 
different possible actions of the SUS_RES signal, depending on how it is programmed.
 

Notes:

Oper—The PMU is operating in Hyper/High/Low/Standby/Temporary Low-Speed mode

Sus—The PMU is in Suspend mode

X—The PMU is in any mode

Suspend—The SUS_RES signal forces the PMU to Suspend mode

Resume—The SUS_RES signal resumes the system from Suspend mode

Toggle—The SUS_RES signal forces the PMU to Suspend mode if the PMU is operating,
or resume the system from Suspend mode.

Resume
Suspend

Resume
Suspend

OR

Resume

OR

OR

Suspend
OR Resume

OR Suspend

OR

toggle
OR toggle

X oper

X
oper

sus
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X
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X

X

oper or sus

oper
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sus or oper
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oper or sus
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X

X

oper
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Suspend mode timer 
time-out

Suspend mode timer time-out can cause a wake-up

External DMA request DMA request pin (either PDRQ0 or PDRQ1) rising-edge triggered.
Only active if the PDRQ is enabled and mapped to a DMA channel in the DMA Controller, 
and the Pin Mux Register A (CSC index 38h[0]) selects the DMA function of the pin. 

External IRQ Any of the three external IRQ lines PIRQ2–PIRQ0 rising edge causes a wake-up.
Only active if the PIRQ is enabled and mapped to an IRQ in the interrupt controller, and 
the Pin Mux Register A (CSC index 38h[1,2] selects the IRQ function of the pin.

RTC alarm IRQ8 rising-edge triggered

UART ring indicate 
signal

The internal UART Ring Indicate (RIN) falling-edge triggered

UART receive signal Falling edge of the internal UART receive (SIN) signal triggered

Matrix keyboard key 
press

Internal keyboard controller key-pressed interrupt falling edge causes trigger

GPIO_CS14–
GPIO_CS0 signals

Triggered by the falling edge on the signal

PC Card detect signals Either PC Card Detect signal rising or falling edge can cause a wake-up

PC Card ring indicate 
signals

When the PC Card controller on the ÉlanSC400 microcontroller is programmed (PC Card 
index 03h or 43h) for a ring indicate signal, a falling edge can cause a wake-up. The PC 
Card controller uses the BVD1_x pins for ring indicate signals.

PC Card IRQ signals Either PC Card Interrupt Request signal rising edge can cause a wake-up.
Only active if the IRQ is enabled in the interrupt controller. 

PC Card status 
change IRQ signals

Either PC Card Status Change Interrupt Request signal rising edge can cause a wake-up.
Only active if the IRQ is enabled in the interrupt controller. 

Table 5-2 PMU Wake-Up Sources (continued)

Wake-Up Sources Description
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Figure 5-4 Suspend and Wake-Up/Resume Mode Flow
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5.4.10 General-Purpose I/O (GPIO) Pins
The ÉlanSC400 and ÉlanSC410 microcontrollers support several general-purpose I/O pins 
(GPIOs) that can be used for power management. (The GPIO pins are fully described in 
Chapter 17.)

The GPIO_CSx signals have many programmable options for power management. As 
outputs, these pins are individually programmable to be High or Low for each PMU mode 
(Hyper-Speed/High-Speed/Low-Speed/Standby/Suspend). As inputs or outputs, they can 
be programmed to cause SMI/NMIs, wake-ups, or to be activities for the PMU. They can 
also be used as I/O or memory chip selects.

As an output, a GPIO_CSx can be: 

■ A PMU mode change output: set for High or Low for each PMU mode

— A maximum of four of the GPIO_CSx signals can be PMU mode change outputs at 
any one time. (See Section 5.4.10.1 and Chapter 17.)

■ Enabled to cause an SMI/NMI

— Only one GPIO_CSx can cause an SMI/NMI at any one time.

■ Enabled to cause an activity and wake-up

■ Memory or I/O decode

As an input, a GPIO_CSx can be:

■ Enabled to cause an SMI/NMI (Only one GPIO_CSx can cause an SMI/NMI at any one 
time)

■ Enabled to cause an activity and wake up the system from Suspend mode

5.4.10.1 Mappable GPIO_PMUA–GPIO_PMUD Signals

Up to four GPIO_CS pins can be programmed to inform external hardware of internal PMU 
states. The internal signal names associated with this information are PMUA, PMUB, 
PMUC, and PMUD. Each of these signals has a register, GPIO_PMUx Mode Change 
Register (CSC index AA–ADh), that defines its value during every distinct PMU state. Each 
of these signals has a 4-bit field in the GPIO_PMU to GPIO_CS Map Registers A and B 
(CSC index AE–AFh) that defines which, if any, GPIO_CS pin it drives. The pin’s output 
bit in CSC indexed registers A0–A5h must be 1 to set the pin to output mode. The pin’s 
I/O bit in CSC indexed registers A6–A9h must be 0 to allow the PMU signal to propagate.

5.4.11 ACIN Detect and Battery Low 
Four signals are brought into the microcontroller from outside so that the state of the system 
power can be reported to the microcontroller and used in the power management scheme. 
The Alternating Current INput (ACIN) signal is meant as an indication that the system is 
connected to a greater source of power (such as an AC wall plug) and that power savings 
are no longer as important as performance. The Battery Low (BL0, BL1, and BL2) signals 
are digital inputs that external voltage comparators or an external processor can drive to 
inform the microcontroller of the state of the charge on the system batteries. Each Battery 
Low signal can report a different level in the battery discharge. For example, they may be 
used as follows:

■ BL0—Batteries are getting weak, so slow down the clock in High-Speed Mode

■ BL1—Batteries are weaker, so disable High-Speed mode and limit the PMU to go to 
Low-Speed mode as the highest mode.
Power Management5-24



■ BL2 —The batteries are so low they cannot operate the system. Force the system into 
Critical Suspend mode and do not allow a resume until there is AC power or the batteries 
are changed.

5.4.11.1 ACIN

The ACIN signal is used to indicate that the system is connected to a permanent source 
of power (i.e., an AC wall adapter) and that power management is not required (Suspend 
mode is still accessible). The ACIN mode flow is diagramed in Figure 5-5.

There is a register bit in the Battery/AC Pin Configuration Register (CSC index 70h[5] to 
perform a software ACIN, which, when set, has the same affect as asserting the ACIN pin. 
This is useful for software to emulate the effect the hardware ACIN line has on the function 
of the PMU. There is no functional difference between the ACIN pin being active and the 
ACIN software bit being set. Software can determine which is active by reading the Battery/
AC Pin State Register (CSC index 72h[5].

ACIN is similar to a primary activity. Both can take the PMU back up to Hyper- or High-
Speed mode, but the ACIN will keep it there by masking the timer time-outs. If the PMU 
Force Mode Register is programmed while ACIN is active (and programmed to disable 
PMU functions) the PMU will change mode, but will immediately switch back to High-Speed 
or Hyper-Speed mode because of ACIN. 

 Activities, wake-ups, and SMI/NMIs still work when ACIN is active also. SMI/NMIs are still 
accessible and the system will still wake up from Suspend when ACIN is active. 

ACIN can also be used as part of the Critical Suspend unlock scheme.

When the ACIN signal is enabled and active, it causes the following to happen:

■ Forces the system into High-Speed or Hyper-Speed mode (if Hyper-Speed mode is 
enabled) if it is in Low-Speed, Temporary Low-Speed, or Standby modes. If it is in 
Suspend mode, ACIN active does not cause a mode change unless programmed to be 
a wake-up.

■ Forces most PMU mode timers’ time-outs to be ignored by the PMU so the 
microcontroller does not time out and change modes. The microcontroller can still go 
into Suspend mode through a SUS_RES pin toggle or register force. The Suspend mode 
timer remains operational when ACIN is active.

■ Disables BL0, BL1, or BL2 from causing a mode or clock-speed change, unless it is also 
programmed as an SMI or a wake-up.

The state of the ACIN signal can be read from CSC index 72h[3].

5.4.11.2 Battery Low

The three Battery Low pins (BL0, BL1, and BL2) are active Low signals that allow the system 
to monitor the state of the system batteries with up to three different levels. The mode flows 
for these three signals are diagrammed in Figure 5-6 and Figure 5-7. As a result of the 
battery-low monitoring, the PMU can be programmed to reduce the CPU clock speed in 
High-Speed mode, disable High-Speed mode and use Low-Speed mode as the fastest 
mode, or go to Critical Suspend Mode. 

All three Battery Low inputs are negative edge-triggered. There is a 60-ms debounce time 
during which all further edges will be ignored. After the debounce time, another edge can 
be detected. If a Battery Low input changes polarity during the debounce time, and remains 
changed after 60 ms, this other edge will be detected (after the first 60 ms debounce time). 
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These power saving features occurs on the falling edge of the respective Battery Low signal 
unless ACIN is enabled and active. When ACIN goes inactive, any active and enabled 
battery-low feature will take affect at that time.

The state of all Battery Low signals can be read from the Battery/AC Pin State Register 
(CSC index 72h[2–0].

5.4.11.2.1 CPU Clock Speed Reduction
BL0 and BL1 can be programmed to force the microcontroller to disable Hyper-Speed mode 
and use 8.29 MHz as the High-Speed CPU frequency, or to disable High-Speed mode and 
force the microcontroller to go to Low-Speed mode as the highest mode. The PMU Force 
Mode Register does not override the Battery Low feature. If the PMU Force Mode Register 
is used to force Hyper- or High-Speed, the system returns to Low-Speed or High-Speed 
due to BL0 and BL1.

5.4.11.2.2 Critical Suspend Mode Access
Battery Low 2 is programmable to force the microcontroller to Critical Suspend mode (within 
55 µs from the falling edge of BL2) and lock the system into this mode to stop it from 
resuming until it is unlocked. The unlock requires special handling because the BL2 signal 
may go High again after Suspend mode is reached. Because system current consumption 
is reduced, the voltage from the battery may rise. When the BL2 signal is used as the Critical 
Suspend mode change signal, all wake-up sources can be detected and latched, but they 
will not cause a wake-up until the system is unlocked. Unlocking the system from Critical 
Suspend is a programmable function. The system is locked into Critical Suspend after a 
BL2 signal is seen active until one of the following unlock sources happens: 

■ ACIN is seen active.

■ BL2 alone is seen inactive.

■ Both BL2 and BL1 are inactive. 

These unlock sources do not automatically cause a wake-up (unless programmed as wake-
up sources). They only disable the lock circuit so a wake-up source can resume the system.

If the BL2 signal is enabled to cause an SMI/NMI, the system will still enter Critical Suspend 
in 55 µs, and then service the SMI/NMI after the system wakes up.

When the system is active and the LCD is displaying data, the BL2 force to Critical Suspend 
mode occurs without regard to normal LCD power sequencing. The LVEE, LVDD, and LCD 
signals do not sequence off as they normally do when going to Suspend. They all go inactive 
at approximately the same time. This is done so Critical Suspend mode is entered as quickly 
as possible.

A signal is available on the microcontroller to indicate when the microcontroller is locked 
into Critical Suspend mode by a BL2: the LBL2 signal (Latched BL2). The LBL2 signal goes 
Low during Critical Suspend mode and goes High again when the PMU leaves Critical 
Suspend. 

A bit is available in the Battery/AC Pin Configuration Register (CSC index 70h[7]) to indicate 
to the system that it has been in Critical Suspend mode. This feature can be used by SMI/
firmware/software to indicate the system has resumed from a Critical Suspend so that any 
problems this has caused can be fixed. For example, if a PC Card was being written and 
was powered down by the Suspend, the card can then be reconfigured and the write 
continued. 
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Figure 5-5 ACIN Mode Flow
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Figure 5-6 BL1–BL0 Mode Flow
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Figure 5-7 BL2 Mode Flow
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5.4.12 SMI/NMI Generation
The System Management Mode (SMM) feature of the CPU works closely with power 
management. Using the System Management Interrupt (SMI) allows the CPU to pause its 
application code execution and manage the system power usage without affecting the 
application software. The code execution is effectively hidden from the application. With 
an SMI, the CPU state is automatically saved and Real mode is entered automatically. This 
is particularly important for Protected-mode operating systems that use Real-mode BIOS 
for handling power management functions. This interrupt is truly non-maskable; it is not 
part of the PC/AT architecture, so other programs will not interfere with the operation. It is 
also well suited for I/O trapping.

Non-Maskable Interrupts (NMIs) are useful in a closed system—one that runs only known 
software and does not have to hide the power management code from the application 
software. NMIs have the advantage of running faster than SMIs, because SMIs need to 
save the whole state of the CPU to RAM before executing and then restore the state when 
done. NMIs only save a limited state and there is less setup involved in using it so it is 
simpler to implement.

The power management unit, keyboard scan timer, 8042 emulation logic, and (on the 
ÉlanSC400 microcontroller) the PC Card controller are the only possible sources for the 
generation of an NMI to the internal CPU. There is also a master enable function provided 
which can inhibit any NMIs from reaching the CPU regardless of the state of the individual 
source enables. NMI can be enabled by writing a 0 to the most significant bit at I/O address 
0070h. Port 0070h is a write-only register, and bits 0–6 function as the RTC index address 
port. 

All the interrupts discussed here can be programmed to cause SMIs or NMIs, except the 
I/O trapping, which uses SMIs to service.

Interrupt flag registers are provided in the CSC indexed registers to determine the source 
of the SMI/NMI.

If an SMI/NMI occurs while the system is in Suspend mode, the interrupt will not wake up 
the system. Only wake-ups can do that. An exception to this is the Suspend Mode timer 
time-out. When this is enabled as an SMI/NMI, the system will go to Temporary Low-Speed 
mode to service the SMI/NMI. 

Note: This is the only SMI/NMI source that can be serviced while in Suspend.

When an SMI/NMI is triggered in a Standby mode, the PMU will go to Temporary Low-
Speed mode to service it. When an SMI/NMI is triggered by a timer time-out in High-Speed, 
Low-Speed, or Temporary Low-Speed modes, it is serviced in that mode before changing 
modes.

When exiting the SMI routine, any flag register that is still set will cause a new SMI and 
force the system back into the SMI routine.

When exiting the NMI routine, the NMI_DONE bit (CSC index 9Dh[1]) must be set to clear 
the NMI to the processor.

When an SMI/NMI source is asserted while enabled to cause an SMI/NMI, it generates an 
SMI/NMI.

Table 5-3 shows the SMI/NMI sources.
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Table 5-3 SMI/NMI Sources

5.4.12.1 I/O Access SMIs

Causing an SMI from the following I/O instruction cycles allows the SMI code to program 
the I/O Instruction Restart Slot Register in the CPU. This register causes the CPU to re-
execute the I/O cycle that caused the SMI. This can be used to power up external devices 
for use, start up clocks, etc., before the device is actually accessed by the I/O cycle.

Table 5-4 shows the I/O trap sources.

SMI/NMI Source Description

ACIN signal Rising or falling edge can cause interrupt

BL2–BL0 signals A falling or rising edge on any of the BL2–BL0 signals can cause an 
interrupt

SUS_RES signal Rising edge, falling edge, or both can cause an interrupt.
Note that if the system is in Suspend mode and SUS_RES is not enabled 
for resume, the SMI/NMI will not occur.

Hyper-Speed mode,
High-Speed mode,
Low-Speed mode,
Stand-By mode, and
Suspend mode timers

These timer time-outs can cause interrupts

RTC alarm (IRQ8) IRQ8 rising edge can cause an interrupt

UART ring indicate Internal UART Ring Indicate (RIN) signal falling edge can cause an 
interrupt

UART receive Falling edge of internal UART receive (SIN) signal can cause an interrupt

Matrix keyboard key 
pressed

Internal keyboard controller key-pressed interrupt falling edge can cause 
an interrupt

Keyboard timer Internal keyboard controller timer time-out can cause an interrupt

Keyboard input buffer 
written

Internal keyboard controller input buffer written can cause an interrupt

Keyboard output buffer 
read

Internal keyboard controller output buffer read can cause an interrupt

GPIO_CS14–
GPIO_CS0 signals

Falling edge can cause SMI/NMI

PC Card Detect 
signals

Either edge of a Card Detect change can cause an SMI/NMI

PC Card INTR signal Falling edge can cause an SMI/NMI

PC Card Ring Indicate 
signal

Falling edge can cause an SMI/NMI

Force SMI/NMI bits Bits for software to force an SMI/NMI to occur

Peripheral I/O trapping Causes an interrupt

Wake-up Any wake-up can cause an SMI/NMI
Power Management 5-31



Table 5-4 I/O Trap Sources

5.4.13 Activity Monitor
An activity monitor keeps track of activities that indicate the CPU or peripherals are needed 
or in use so the PMU can determine what mode and clock speed is needed. Activities reset 
timers and/or cause mode changes. The activity mode flow is diagrammed in Figure 5-8.

Two levels of activity are provided, primary and secondary activities.

■ Primary activities—These activities require extensive CPU involvement and force the 
PMU back to High-Speed mode from Low-Speed or Standby modes. 

When a primary activity is received while in High-Speed mode, it resets the High-Speed 
time-out timer. Primary activities have no affect in Suspend mode. Suspend mode is 
exited using wake-ups instead of activities. When a primary activity is received in 
Temporary Low-Speed mode, it forces a switch to High-Speed mode unless Temporary 
Low-Speed was entered from Suspend. When Temporary Low-Speed is entered from 
Suspend, it is an extension of Suspend mode, so only a wake-up can cause a mode 
change (activities have no effect). 

■ Secondary activities—These activities require CPU involvement, but they do not need 
the highest performance in the system. Secondary activities are handled differently, 
depending on the state the PMU is in when the secondary activity is received. 

— In High-Speed or Hyper-Speed mode, secondary activities have no effect, since the 
CPU is already in the highest performing mode.

— In Low-Speed mode, if the timer is enabled, a secondary activity causes the timer to 
be reset and to begin counting down.

— In Standby mode, a secondary activity causes the PMU to switch to Temporary Low-
Speed mode. Once the activity is complete, the Temporary Low-Speed timer begins 
counting down. On a timer time-out, the PMU returns to Standby mode. When another 
secondary activity comes before the timer times out, the PMU remains in Temporary 

SMI/NMI Source Description

Parallel port access LPT1 (0378–037Fh) or LPT2 (0278–027Fh) can cause a trap

UART access COM1 (03F8–03FFh) or COM2 0(2F8–02FFh) can cause a trap

Keyboard access Reads and writes to ports 0060h and 0064h can cause a trap

GP_CSA–GP_CSB Can cause a trap even when not programmed to come off the 
microcontroller at a pin

PC Card Socket A I/O 
access

Can cause a trap; the actual address range is programmed in the PC 
Card controller on the ÉlanSC400 microcontroller

PC Card Socket B I/O 
access

Can cause a trap; the actual address range is programmed in the PC 
Card controller on the ÉlanSC400 microcontroller

Graphics I/O access I/O accesses to the graphics controller on the ÉlanSC400 microcontroller 
can cause a trap. This includes addresses: 03B4h, 03B5h, 03B8h, 03BAh, 
or 03D4h, 03D5h, 03D8–03DCh. 

External VGA video 
I/O access

I/O access to addresses 03B4h, 03B5h, 03D4h, 03D5h, 03C0–03CAh, 
03CCh, 03CEh, 03CFh, and/or 03DAh can cause a trap

IDE hard drive access I/O accesses addressed to 01F0–01F7h, 03F6h, and/or 03F7h can cause 
a trap

Floppy controller 
access

I/O accesses addressed to 03F0–03F2h, 03F4h, 03F5h, and/or 03F7h 
can cause a trap
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Low-Speed mode and begins the countdown from the start. When Temporary Low-
Speed is entered from Suspend mode, secondary activities do not reset the 
Temporary Low-Speed timer.

— In Suspend or Critical Suspend modes, secondary activities have no effect.

When events can be programmed to be both activities and SMI/NMIs, the SMI/NMI will be 
generated and the mode will change during the SMI/NMI routine.

5.4.13.1 Using the Activity Source Flag Registers

The activity source flag registers are read to determine what caused an activity. Write to 
‘1’ has no effect, write to ‘0’ to clear. If an activity source is asserted when enabled as an 
activity, it generates an activity. The activity sources are listed in Table 5-5.

Note: When an activity occurs in Suspend mode, it sets the flag register.

Primary activities occurring in Hyper-Speed, High-Speed, or Suspend/Critical Suspend 
mode do not incur a mode change, but set the status bit for that activity. If the primary 
activity occurs in Hyper-Speed or High-Speed PMU modes, the respective mode timers 
are reset. If the primary activity occurs in Suspend/Critical Suspend mode, the Hyper-
Speed/High-Speed mode time-out is increased by 60 µs upon wake up.

If a secondary activity occurs in any mode except Standby, the associated status bit is set. 
However, the activity is not latched until Temporary Low-Speed or Low-Speed mode is 
entered. The secondary activity event (but not the status bit) is cleared in High-Speed or 
Hyper-Speed mode.

It is possible to configure the microcontroller to allow a secondary activity that occurs while 
in Low-Speed mode to reset the Low-Speed mode timer (CSC index 40h[7]).

Also note that if an event is active when it is enabled as an activity, that activity will be 
detected by the PMU, and the status bit for this activity will be set. For this reason, it is 
recommended that the associated status bit be cleared immediately following an activity 
being enabled. PMU activity status bits are undefined when the associated event is not 
enabled as an activity.
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Figure 5-8 PMU Activity Mode Flow
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Table 5-5 Activity Sources

Activity
 Enable 
(CSC 
index)

Primary or 
Secondary

Trigger State

ACIN signal 64h Programmable Rising edge of the ACIN signal

CPU access to internal 
system registers

65h Programmable Falling edge of address decodes qualified with command

Any VL-bus activity 
(memory or I/O)

62h Programmable Rising edge of the internal signal that decodes a VL-bus 
cycle

CPU access to ROMCS2–
ROMCS0

62h Programmable Falling edge of chip select qualified with command 

CPU access to DRAM not in 
graphics controller range

63h Programmable When the DRAM_IS_ACT bit (CSC index 63h[1]) is 
asserted (rising edge)

DMA request 64h Programmable Rising edge of qualified PDRQ1–PDRQ0 (the pin must 
be programmed as a PDRQ and assigned to a DMA 
channel that must be unmasked in the DMA controller

Interrupt active
(all except IRQ0 timer tick)

63h Programmable Rising edge of any of the IRQs coming to the PMU

Timer tick (IRQ0) 63h Programmable Rising edge of IRQ0

CPU access to parallel port 65h Programmable Falling edge of address decode qualified with command

CPU access to UART, 
internal or external

62h Programmable Falling edge of address decode qualified with commands

UART ring indicate 64h Programmable Falling edge of RIN pin

UART receive 64h Programmable Falling edge of SIN pin

Matrix keyboard key press 63h Programmable Falling edge of internal keyboard key-pressed interrupt

Keyboard timer time-out 63h Programmable The keyboard timer interrupt

CPU access to internal 
keyboard (ports 60h and 64h)

63h Programmable Falling edge of internal keyboard chip select

GPIO_CS14–GPIO_CS0 A0–
A3h

Primary Falling edge of the signal

GP_CSA–GP_CSD I/O and 
memory signals

Programmable Falling edge of the signal qualified with the correct 
command

CPU access to PC Card 
Socket A and B memory

65h Programmable Falling edge of address decode qualified with command

CPU access to PC Card 
Socket A and B I/O

65h Programmable Falling edge of address decode qualified with command

PC Card Ring Indicate signal 65h Programmable Falling edge of the PC Card Ring Indicate signal

PC Card INTR signal 65h Programmable Falling edge of the PC Card INTR signal

CPU access to graphics 
controller I/O

62h Programmable Falling edge of I/O chip selects qualified with command

CPU access to DRAM within 
graphics controller memory 
range

62h Programmable When the VID_DRAM bit in graphics index 4Fh is 
asserted (rising edge) and the CPU accesses DRAM 
within graphics memory space

CPU access to external VGA 
video controller I/O

64h Programmable Falling edge of address decode qualified with command

CPU access to external VGA 
video controller memory

64h Programmable Falling edge of address decode qualified with command

CPU access to floppy 
controller

64h Programmable Falling edge of address decode qualified with command

CPU access to IDE hard drive 64h Programmable Falling edge of address decode qualified with command
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5.4.14 State Options in PMU Modes

5.4.14.1 Suspend State Options

The ÉlanSC400 and ÉlanSC410 microcontrollers allow external board components to be 
left either powered in Suspend mode or powered off. When an external component is left 
powered, its inputs should not toggle or else power will be wasted. The interface signals 
are held in an inactive state. When the external component is to be powered off in Suspend 
mode, the interface signals are held Low. Any signal that is left High tries to power the 
device through an I/O pin, resulting in possible damage. Three registers (CSC index E3–
E5h) allow each interface group of pins to be individually programmed to a specific state 
in Suspend mode and allow for the overriding of pull-ups and pull-downs. Power-down 
groups for each pin are listed in the ÉlanSC400 and ÉlanSC410 Microcontrollers Data 
Sheet (order #21028).

5.4.14.2 Programmable Pull-Up and Pull-Down Options

The GPIO and GPIO_CS pins all have default termination. Four registers (CSC index 3B–
3Eh) are used to enable or disable the default pull-up or pull-down resistors. Any time the 
termination configuration is changed, the TERM_LATCH bit (CSC index E5h[0]) must be 
set to enable the current configuration. See Section 2.4.2 and Appendix B for more 
information on pin termination.

5.5 INITIALIZATION
The power management unit is enabled at power-on reset. The default mode is High-Speed 
mode at an 8-MHz CPU clock.
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CHAPTER
6
 CLOCK CONTROL
6.1 OVERVIEW
To support power management features, the internal cores of the ÉlanSC400 and 
ÉlanSC410 microcontrollers operate over a range of frequencies. The PMU determines 
the optimal clock speed, based on current system activities and programmable register 
values. The ÉlanSC400 and ÉlanSC410 microcontrollers require only one 32.768-KHz 
crystal to generate all the other clock frequencies required by the system. The output of 
the on-chip crystal oscillator circuit is used to generate the various frequencies by utilizing 
four Phase-Locked Loop (PLL) circuits. An additional PLL in the CPU is used for Hyper-
Speed mode. 

6.2 REGISTERS
A summary listing of the chip setup and control (CSC) and graphics index registers used 
to control the clocks on the ÉlanSC400 and ÉlanSC410 microcontrollers is shown in Table 
6-1. Complete descriptions for all registers can be found in the ÉlanSC400 Microcontroller 
Register Set Reference Manual (order #21032).

Table 6-1 Clocking Register Summary

6.3 BLOCK DIAGRAM
Figure 6-1 shows a high-level block diagram of the clock sources on the ÉlanSC400 and 
ÉlanSC410 microcontrollers and how the clocks are generated.  is the definitive information 
source for what clock speeds are supported in each peripheral core. 

Register I/O Address Clock Function Keyword
Description 
in Register 
Set Manual

Chip Setup and Control (CSC) Index Registers

CPU Clock Speed Register 22h/23h
Index 80h

CPU clock speeds in Hyper-, High-, and Low-
Speed modes; present speed of CPU clock

page 3-87

CPU Clock Auto Slowdown 
Register

22h/23h
Index 81h

Fast clock duration in High-Speed mode, slow 
clock duration in Low-Speed mode, auto 
slowdown

page 3-88

Clock Control Register 22h/23h
Index 82h

PLL enable, restart delay time, 32-KHz clock 
state, DMA clock frequency

page 3-90

CLK_IO Pin Output Clock Select 
Register

22h/23h
Index 83h

CLK_IO pin clock source page 3-91

PC Card Mode and DMA Control 
Register

22h/23h
Index F1h

Clock speed for PC Card controller page 3-198

Graphics Index Registers

Pixel Clock Control Register 3x4h/3x5h
Index 4Ch

Graphics dot clock base frequency and divide 
select

page 5-36
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Figure 6-1 Clock Source Block Diagram
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6.4 OPERATION

6.4.1 Clock Generation
The output of the crystal oscillator circuit on the ÉlanSC400 microcontroller generates the 
various clock frequencies by utilizing four Phase-Locked Loop (PLL) circuits. (Only three 
of these PLL circuits are available on the ÉlanSC410 microcontroller.) The PLL clock 
distribution scheme is shown in Figure 6-2. Table 6-2 shows all the PLL output frequencies 
and their usage. (Note that these PLL circuits are in addition to the internal CPU-core PLL 
and do not replace it.)

The four PLLs are called Intermediate PLL, Low-Speed PLL, High-Speed PLL, and 
Graphics Dot Clock PLL. (The Graphics Dot Clock PLL is not available on the ÉlanSC410 
microcontroller.) Each of the integrated phase-locked loops has a dedicated pin to support 
the required external loop filter. These pins are: LF_INT (Intermediate PLL), LF_LS (Low-
Speed PLL), LF_HS (High-Speed PLL), and LF_VID (Graphics Dot Clock PLL). Two 
capacitors and one resistor are required to implement each loop filter. The LF_VID pin is 
not supported on the ÉlanSC410 microcontroller.

The crystal oscillator needs two pins, but it does not require any external components 
except the crystal; the load capacitors and the feedback resistor are integrated on-chip. 

Figure 6-2 Clock Generation

Notes:

On the ÉlanSC400 microcontroller, the graphics controller’s DRAM interface is clocked by the 66 MHz DRAM clock.

Both the ROM/Flash interface and the PC Card controller are clocked from the CPU clock. They also have the
option of being run from the slow system clock.

Neither the graphics controller nor the PC Card controller are supported on the ÉlanSC410 microcontroller.
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Table 6-2 Integrated Peripheral Clock Sources 

Source PLL Divider Resultant Frequency Where Used

Intermediate PLL 
1.4746 MHz

1 1.4746 MHz Low-Speed PLL input

Low-Speed PLL
36.864 MHz

1 36.864 MHz High-Speed PLL input

Graphics Dot PLL input

20 1.8432 MHz UART

2 18.4328 MHz UART

31 1.1892 MHz PIT

Graphics Dot Clock PLL
36.864 MHz

Programmable 20.736–36.864 MHz Graphics controller dot clock

1 36.864 MHz DRAM controller

Graphics controller

High-Speed PLL
66.3532 MHz

1 66.3532 MHz DRAM controller

Graphics controller

2 33.1776 MHz CPU

VL-bus controller

4 16.5888 MHz CPU

VL-bus controller

DMA controller

8 8.2944 MHz CPU

VL-bus controller

ISA bus controller

ROM/Flash interface

DMA controller

PC Card controller

16 4.1472 MHz CPU

VL-bus controller

ISA bus controller

ROM/Flash interface

DMA controller

PC Card controller

32 2.0736 MHz CPU

VL-bus controller

ISA bus controller

ROM/Flash interface

DMA controller

PC Card controller

64 1.0368 MHz CPU

VL-bus controller

ISA bus controller

ROM/Flash interface

DMA controller

PC Card controller
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6.4.1.1 32-KHz Crystal Oscillator

The 32-KHz oscillator circuit is shown in Figure 6-3 and Figure 6-4; the only external 
component required for operation is a 32.768-KHz crystal. The inverting amplifier (AMP) 
is integrated on-chip with the feedback resistor and the load capacitors. The on-chip 
oscillator circuit can be bypassed by removing the external crystal, grounding the 
32KXTAL1 pin, and driving the 32KXTAL2 pin with an external 32-KHz clock. When 
32KXTAL1 is grounded, the amplifier no longer affects the circuit.

Figure 6-3 32-KHz Crystal Circuit

Figure 6-4 32-KHz Oscillator Circuit

6.4.1.2 Intermediate and Low-Speed PLLs

Figure 6-5 shows the block diagram for both the Intermediate and Low-Speed PLLs. Each 
consists of a phase detector, a charge-pump, a voltage controlled oscillator (VCO), an 
external loop filter, and a feedback divider. This is a generic implementation of the charge-
pump PLL architecture; all four PLLs use the same architecture. The Intermediate and Low-
Speed PLLs differ only in component values and frequency of operation.

The phase detector compares the phase and frequency of the two clock signals, reference 
frequency (Fr) and feedback frequency (Ff). The Up signal is a logic one if Fr leads Ff, while 
the Down signal is a logic one if Ff leads Fr.   The Up and Down signals control the charge 
pump. The charge pump either charges or discharges the loop filter capacitors to change 
the VCO input voltage level. Since the VCO output frequency tracks the VCO input voltage, 
the VCO output frequency is adjusted whenever Fr and Ff differ in phase or frequency. 

The feedback divide ratio determines the frequency multiplication factor. Frequency 
multiplication is 1/(Feedback Divider). 
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For the Intermediate PLL, the feedback divider is 1/45; therefore, the frequency 
multiplication is 45.   With an input frequency of 32.768 KHz, the output frequency is 1.47456 
MHz.

The input clock for the Low-Speed PLL, Fr, originates at the Intermediate PLL output. It is 
multiplied by 25 to generate the 36.864-MHz clock output. 

Figure 6-5 Intermediate and Low-Speed PLLs Block Diagram

6.4.1.3 Graphics Dot Clock PLL

The input clock to the Graphics Dot Clock PLL is the output clock (36.864 MHz) of the Low-
Speed PLL divided by 16.The output frequency is programmable using three CSC indexed 
register bits (PLLRATIO[2–0]) in the range of 20.736 MHz to 36.864 MHz (spaced 2.304 
MHz apart). These three bits in the Pixel Clock Control Register (graphics index 4Ch) control 
the output frequency by selecting the divide value in the feedback divider as shown in Table 
6-3.

The Graphics Dot Clock PLL requires a stabilization period after changing frequency. 
Figure 6-6 shows the block diagram for the Graphics Dot Clock PLL.

The Graphics Dot Clock PLL is not available on the ÉlanSC410 microcontroller.

Table 6-3 Frequency Selection Control for Graphics Dot Clock PLL

PLLRATIO[2–0] Divider Output Frequency

000 9 20.736 MHz

001 10 23.04 MHz

010 11 25.344 MHz

011 12 27.648 MHz

100 13 29.952 MHz

101 14 32.256 MHz

110 15 34.56 MHz

111 16 36.864 MHz
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Figure 6-6 Graphics Dot Clock PLL Block Diagram

6.4.1.4 High-Speed PLL

The High-Speed PLL generates a 66.3552-MHz clock for the DRAM controller. Figure 6-7 
shows the block diagram for the High-Speed PLL. The input to the High-Speed PLL is the 
output of the Low-Speed PLL divided by 5. The feedback divider is 9, which results in a 
output frequency (Fo) of 66.3552 MHz. This frequency is divided by two in the PMU to 
provide the 33-MHz input for the PLL in the CPU core.

Figure 6-7 High-Speed PLL Block Diagram
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6.4.2 Clock Control
Several of the core clocks on the ÉlanSC400 and ÉlanSC410 microcontrollers are 
programmable. This programmability is either directly controlled by system firmware or is 
forced due to a power-management mode change. Table 6-4  shows the speeds for each 
clock, and Table 6-5 shows bus cycle clock speeds for the ÉlanSC400 and ÉlanSC410 
microcontrollers.

6.4.2.1 CPU 1x Clock

The speed of the CPU’s static clock is programmable based on:

■ PMU mode—Programmable values for High- and Low-Speed modes, stopped for 
Standby and Suspend modes, 33 MHz for Hyper-Speed mode.

■ CPU Clock Speed Register settings—Program the clock value used in High- and Low-
Speed modes.

■ Auto Slowdown enabled—Changes the CPU clock speed based on the programmed 
duty cycle when the PMU is in High- and Hyper-Speed modes.

The CPU is put in hold before changing this clock.

6.4.2.2 Memory Clock

This clock is used by the DRAM controller to time the cycles to the DRAM. The clock is 
either 66 MHz (when the LCD graphics controller on the ÉlanSC400 microcontroller is 
enabled and displaying as indicated by the LVDD signal) or it is 2x the CPU clock when 
the LCD controller is not displaying data. The speed is selected by LVDD, the PMU mode, 
and the CPU clock speed selected.

6.4.2.3 Timer Clock

This clock is used by the Programmable Interval Timer (PIT). The clock is either the Low-
Speed PLL output divided by 31, or it is an external oscillator brought in on the CLK_IO 
pin. This option defaults to using the internal PLL for the timer clock; if the pin multiplexing 
registers select CLK_IO to be active as an input, then the PIT gets its clock from this input.

6.4.2.4 UART Clock

This clock is used by the UART. It operates at either 1.8432 MHz for standard UART 
interfaces, or 18.432 MHz to support the serial infrared 1-Mbit/s transfer frequency. The 
UART clock is stopped in Suspend mode or when the UART is disabled (CSC index D1h[0]). 
The clock is changed based on the indication that the infrared interface needs High-Speed 
Infrared mode and that the UART is in use.

6.4.2.5 System Clock

This clock is used by the ISA bus controller, the PC Card controller, internal ISA cycles, 
and PC Card cycles at ISA speeds. 

The system clock is a maximum of 8.29 MHz and will be 4, 2, or 1 MHz, depending on the 
CPU clock frequency. This clock is controlled by the PMU mode and the CPU clock 
frequency.

6.4.2.6 RTC Clock

Used by many cores, this clock is the 32.768 KHz generated by the internal oscillator. it is 
always available.

6.4.2.7 DMA Clock

This clock is used by the ISA bus controller and the DMA controller. The DMA clock is 
controlled by CSC index 82h.
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Table 6-4 Clock Speeds

Clock Programmable Speed Comments

CPU 1x clock 33.18 MHz/16.59 MHz/8.29 MHz Default: 
8.29 MHz on reset

Programmable to one speed at a time for High-Speed 
mode
33.18 MHz for Hyper-Speed mode; clock multiplied by 
the CPU-core PLL to be 66 MHz or 100 MHz to the CPU 
only

8.29 MHz/4.15 MHz/2.07 MHz/1.04 MHz
Default: 8.29 MHz on reset

Programmable to one speed at a time for Low-Speed 
and Temporary Low-Speed modes

0 MHz Clock is stopped in Standby and Suspend modes

Memory 
clock

66 MHz Clocked at 66 MHz whenever the graphics controller on 
the ÉlanSC400 microcontroller is enabled and 
displaying data to the LCD. The graphics controller uses 
the main DRAM as its memory and must access it at 66 
MHz whenever data is being displayed to the LCD.

2x CPU clock rate Clocked at the 2x CPU clock rate whenever the graphics 
controller is not displaying data to the LCD

36.864 MHz Clocked from the Low-Speed PLL in Standby mode 
when this feature is enabled and the LCD is enabled

0 MHz Clock is stopped when no DRAM accesses are 
occurring, such as in Suspend mode or Standby mode 
when the LCD is shut off. DRAM refreshes will continue 
under the control of the 32-KHz clock.

Graphics dot 
clock

20.736 MHz to 36.864 MHz Speed required is selected by the graphics controller, 
depending on the LCD to be driven and graphics mode 
selected

0 MHz Clock is stopped in modes in which LCD is not displaying 
data

Timer clock 1.1892 MHz PC/AT standard is 1.19318 MHz; speed on the 
ÉlanSC400 and ÉlanSC410 microcontrollers is 1.1892 
MHz 

Clocked from CLK_IO pin For designs that need exact timer counts, the CLK_IO 
pin can be driven with the PC/AT standard clock from 
an external oscillator

0 MHz Clock is stopped in Suspend mode, because it does not 
need the timer active

UART clock 1.8432 MHz or 18.432 MHz Programmable to use either speed, can be changed at 
any time. 1.8432 MHz is standard PC/AT, 18.432 MHz 
is support for 1-Mbit/s serial infrared

0 MHz Clock is stopped in Suspend mode or when the UART 
is disabled via CSC index D1h[0]

System clock 8.29 MHz/4.15 MHz/2.07 MHz/1.04 MHz 8 MHz in High-Speed mode, equals the CPU clock in 
Low-Speed and Temporary Low-Speed modes

0 MHz Clock stopped in Standby and Suspend modes
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Table 6-5 Bus Cycle Clock Speeds

RTC clock 32 KHz Always runs as long as there is power

PMU clock 32 KHz Always runs as long as there is power

DMA clock 16.59 MHz/8.29 MHz/4.15 MHz/2.07 
MHz/1.04 MHz

Follows CPU clock when it is operating

0 MHz Clock stopped when DMA is disabled or not in use

High-Speed 
PLL

66 MHz Runs in all modes except Critical Suspend. 
Programmable to be shut off in Standby and Suspend 
modes.

Low-Speed 
and 
Intermediate 
PLL

36.864 MHz/1.4746 MHz Runs in all modes except Critical Suspend. 
Programmable to be shut off in Suspend mode.

Graphics Dot 
Clock PLL

20.736 MHz-36.864 MHz Runs in all modes except Critical Suspend. 
Programmable to be shut off in Suspend mode. 
Only runs when internal graphics controller on the 
ÉlanSC400 microcontroller is enabled.

Clock Mode MHz  MHz MHz MHz MHz MHz MHz

CPU 33 (66) 16 8 4 2 1 0

VL-Bus 33 16 8 4 2 1 0

DRAM LCD 66 66 66 66 66 66 0

LCD (Standby) 66 66 66 66 66 66 36

No LCD 66 33 16 8 4 2 0

ISA 8 8 8 4 2 1 0

DMA Programmable 
Option

16 16 8 4 2 1 0

8 8 4 4 2 1 0

4 4 4 4 2 1 0

ROM and Internal 
Registers

Programmable 
Option

33 16 8 4 2 1 0

8 8 8 4 2 1 0

PC Card Programmable 
Option

33 16 8 4 2 1 0

8 8 8 4 2 1 0

Table 6-4 Clock Speeds (continued)

Clock Programmable Speed Comments
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6.5 INITIALIZATION
The CPU Clock Speed Register (CSC index 80h) controls CPU clock speed in Hyper-Speed, 
High-Speed, and Low-Speed PMU modes. The Clock Control Register (CSC index 82h) 
controls the DMA clock frequency, the internal CPU PLL restart delay time, and the 
microcontroller-specific PLLs. 

Note: If the graphics controller on the ÉlanSC400 microcontroller is enabled, the memory 
(DRAM) clock is always 66 MHz. If the graphics controller is not enabled, the memory clock 
is always 2x the CPU clock. On the ÉlanSC410 microcontroller, the memory clock is always 
2x the CPU clock.

6.6 POWER MANAGEMENT
The PMU controls the clock generation circuitry to change the clocks the other cores 
receive. Table 6-6 shows the clock speeds for each PMU mode.

The CPU clock is programmable to run at 33.18 MHz to 1.04 MHz in High-Speed and Low-
Speed modes, and at 33.18 MHz for Hyper-Speed mode (the 33 MHz is multiplied up by 
the CPU-core PLL to 66 MHz or 100 MHz). When the CPU clock is at 33, 16, or 8 MHz, 
the system clock used for ISA access will occur using the 8.29 MHz clock. When the CPU 
clock is below 8 MHz (4, 2, or 1 MHz), the clock for ISA access will occur using the same 
clock speed (4, 2, or 1 MHz).

The automatic slowdown feature is another way to fine tune the system by giving up some 
performance for lower power. When enabled via CSC index 81h, the automatic slowdown 
feature will cause the CPU clock to switch between two clock speeds at a programmed 
duty cycle. Although this will impact system performance, it is a way to fine-tune the power 
requirements of the system. Caution should be taken when using this feature while DMA 
transfers are active.

Auto slowdown also provides thermal protection, should this become necessary. 
Occasionally slowing down the CPU clock reduces the CPU’s heat. This feature is effective 
when the PMU is in Hyper- or High-Speed modes. 

■ When Hyper-Speed mode is enabled and entered, the PMU will switch to using the High-
Speed mode CPU clock speed.

■ When Hyper-Speed mode is disabled, the PMU will switch between High- and Low-
Speed CPU clock speeds. 

If the High-Speed CPU clock is programmed to 8.29 MHz, the system should be 
programmed to use the Low-Speed CPU clock at less than 8.29 MHz. Otherwise this will 
not have any power saving affect, but it will have a performance affect, because the CPU 
will be put in hold occasionally to switch the clock.

Note that the automatic slowdown feature does not actually change the PMU’s mode; it 
simply changes the CPU clock speed.

The CPU clock speeds can be changed from any mode; speed switching is done without 
violating the clock specifications. For example, when in High-Speed mode the CPU clock 
can be changed between 33 MHz, 16 MHz, and 8 MHz without exiting to Low-Speed mode 
to program the new speed.

The High-Speed PLL can be disabled in Standby mode for additional power savings. Note 
that it will take on the order of 200 µsec to get it started back up. In Standby Mode if the 
graphics controller on the ÉlanSC400 microcontroller is displaying data, the memory 
controller will operate off of the Low Speed PLL clock, 36 MHz (regardless of the High-
Speed PLL enable.
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Table 6-6 Clock Speed Per PMU Mode

Notes:

1. The Memory clock is stopped in Standby mode if the graphics controller on the ÉlanSC400 microcontroller is
disabled or the LCD is not refreshed.

2. Graphics on the ÉlanSC400 microcontroller is programmable to shut down in standby mode. If Temporary Low-
Speed mode is entered from Standby mode, the graphics dot and memory clocks may or may not be enabled.

3. The UART clock is stopped in Suspend mode or when the UART is disabled via CSC index D1h[0].

4. The graphics dot clock and the Graphics Dot Clock PLL are not supported on the ÉlanSC410 microcontroller.

Clock
Hyper-
Speed

High-Speed Low-Speed Standby
Temporary 
Low-Speed

Suspend

CPU 1x Clock 33 MHz 33 MHz–8 MHz 8 MHz–1 MHz DC 8 MHz–1 MHz DC

Memory Clock On On On On/DC1 On DC

System Clock 8.29 MHz 8.29 MHz 8 MHz–1 MHz DC 8 MHz–1 MHz DC

Graphics Dot Clock4 On On On On/DC2 On/DC2 DC

PMU Clock 32 KHz 32 KHz 32 KHz 32 KHz 32 KHz 32 KHz

Timer Clock On On On On On DC

RTC Clock 32 KHz 32 KHz 32 KHz 32 KHz 32 KHz 32 KHz

UART CLock3 On/DC On/DC On/DC On/DC On/DC DC

High-Speed PLL On On On On/DC On On/DC

Low-Speed and 
Intermediate PLL

On On On On On On/DC

Graphics Dot Clock 

PLL4
On/DC On/DC On/DC On/DC On/DC On/DC
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CHAPTER
7
 MEMORY MANAGEMENT
7.1 OVERVIEW
The ÉlanSC400 and ÉlanSC410 microcontrollers contain a sophisticated memory 
management unit (MMU). This MMU makes achieving memory-mapped PC/AT 
compatibility and 82365 compatibility quite easy for the designer. However, if the designer 
wants to do something different, there is a lot of information to be learned about the MMU. 
The purpose of this chapter is to explain what the MMU is capable of and how it can be 
programmed to achieve the designer’s goals.

7.2 REGISTERS
A summary listing of the chip setup and control (CSC) registers used to control the MMU 
windows on the ÉlanSC400 and ÉlanSC410 microcontrollers is shown in Table 7-1. 
Registers used to configure the address spaces for DRAM (Chapter 9), ROM (Chapter 8), 
PC Card (Chapter 19), and ISA (Chapter 4) are summarized in the chapters devoted to 
each block.

Complete register descriptions can be found in the ÉlanSC400 Microcontroller Register 
Set Reference Manual (order #21032).

Table 7-1 Memory Management Unit Register Summary

Register I/O Address MMU Function Keyword
Description 
in Register 
Set Manual

Non-Cacheable Window 0 
Address Register

22h/23h
Index 10h

Start address bits SA23–SA16 for Non-
Cacheable Window 0

page 3-19

Non-Cacheable Window 0 
Address/Attributes/SMM 
Register

22h/23h
Index 11h

Start address bits SA25–SA24 and controls 
window size and SMM caching

page 3-20

Non-Cacheable Window 1 
Address Register

22h/23h
Index 12h

Start address bits SA23–SA16 for Non-
Cacheable Window 1

page 3-21

Non-Cacheable Window 1 
Address/Attributes Register

22h/23h
Index 13h

Start address bits SA25–SA24 and controls 
window size

page 3-22

Cache and VL Miscellaneous 
Register

22h/23h
Index 14h

Write-through caching of the LCD graphics 
memory regions and MMU DRAM access 
delay

page 3-23

Linear ROM0/Shadow Register 22h/23h
Index 21h

Linear access direction using MMS Windows 
C–F if applicable

page 3-26

Linear ROMCS0 Attributes 
Register

22h/23h
Index 22h

Caching and write protection for regions 
00F0000–00CFFFFh

page 3-28

MMS Window C–F Attributes 
Register

22h/23h
Index 30h

Caching and write protection for MMS 
Windows C–F

page 3-38

MMS Window C–F Device Select 
Register

22h/23h
Index 31h

Physical device selection for MMS Windows 
C–F

page 3-39
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MMS Window A Destination 
Register

22h/23h
Index 32h

Destination start address bits SA22–SA15 for 
MMS Window A

page 3-40

MMS Window A Destination/
Attributes Register

22h/23h
Index 33h

Destination start address bits SA25–SA23; 
enabling, caching, write protection, and 
physical device selection for MMS Window A

page 3-41

MMS Window B Destination 
Register

22h/23h
Index 34h

Destination start address bits SA22–SA15 for 
MMS Window B

page 3-42

MMS Window B Destination/
Attributes Register

22h/23h
Index 35h

Destination start address bits SA25–SA23; 
enabling, caching, write protection, and 
physical device selection for MMS Window B

page 3-43

Internal I/O Device Disable/Echo 
Z-Bus Configuration Register

22h/23h
Index D0h

PC Card controller enable—required to setup 
MMS Windows C–F for either microcontroller

page 3-164

Write-Protected System Memory 
(DRAM) Window/Overlapping
ISA Window Enable Register

22h/23h
Index E0h

Stop address bits SA25–SA20 for the write-
protected window

page 3-181

Overlapping ISA Window Start 
Address Register

22h/23h
Index E1h

Start address for the overlapping ISA window page 3-182

Overlapping ISA Window Size 
Register

22h/23h
Index E2h

Window size for the overlapping ISA window page 3-183

PC Card Mode and DMA Control 
Register

22h/23h
Index F1h

PC Card controller mode, memory window 
allocation

page 3-198

Graphics Index Registers

Frame/Font Buffer Base Address 
Register Low

3x4h/3x5h
Index 4Fh

Graphics Frame Buffer MMS Window enable, 
MMS page select

page 5-39

PC Card Index Registers

Address Window Enable 
Register

3E0h/3E1h
Index 46h 

Socket B: memory windows 1–4 enable page 6-15

Memory Window 1 Registers 
(various)

3E0h/3E1h
Index 58–5Dh 

MMS Window C configuration page 6-31–
page 6-36

Memory Window 2 Registers 
(various)

3E0h/3E1h
Index 60–65h 

MMS Window D configuration page 6-37–
page 6-42

Memory Window 3 Registers 
(various)

3E0h/3E1h
Index 68–6Dh 

MMS Window E configuration page 6-43–
page 6-48

Memory Window 4 Registers 
(various)

3E0h/3E1h
Index 70–75h

MMS Window F configuration page 6-49–
page 6-54

Table 7-1 Memory Management Unit Register Summary (continued)

Register I/O Address MMU Function Keyword
Description 
in Register 
Set Manual
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7.3 ADDRESS DECODING AND ALIASING
Most designers are familiar with address aliasing, which means that if an address is only 
partially decoded by a device, that device will appear to exist multiple times throughout the 
address space. However, there are significant implications associated with aliasing on the 
ÉlanSC400 and ÉlanSC410 microcontrollers, which must be thoroughly understood by the 
designer before attempting to use the memory management features. 

The rest of this chapter assumes a full understanding of the implications of the architectural 
features discussed in this section.

7.3.1 Internal Address Bus Size
The internal address bus on the ÉlanSC400 and ÉlanSC410 microcontrollers is 26 bits 
wide. Even though the Am486 CPU has a 32-bit address bus, the top six address lines are 
not connected, even internal to the ÉlanSC400 and ÉlanSC410 microcontrollers. This 
means that, from a programming perspective, the ÉlanSC400 and ÉlanSC410 
microcontrollers can “see” 64 Mbytes of memory at a time, memory that is aliased 64 times 
into the 4-Gbyte physical address space of the Am486 CPU.

7.3.2 Special Handling for A20
The Am486 CPU contains logic to perform special handling for A20. Because the 
ÉlanSC400 and ÉlanSC410 microcontrollers are designed to be PC/AT-compatible, they 
contain logic to allow backward compatibility all the way to the 8088. One of these 8088 
features is the address wrap that occurs from the top of its 1-Mbyte memory back down to 
the bottom of memory. The Am486 CPU core is required to have direct support for this, 
because aliasing must occur even before the internal cache sees the address to support 
backward compatibility. 

The Am486 CPU performs this function with the A20 control gate, which can force A20 to 
always be 0. Since the Am486 CPU defaults to 8088-compatible mode, the programmer 
must set the gate to allow A20 propagation for most applications. 

Note: Most operating systems, such as MS-DOS, contain code to do this. In the case of 
MS-DOS, HIMEM.SYS contains the code and has an API to allow program control of A20. 
A20 will be automatically set to propagate if HIMEM.SYS is loaded and DOS=HIGH[,UMB] 
is added to CONFIG.SYS. For information about direct control over the A20 gate, see the 
descriptions for the microcontroller’s direct-mapped registers at ports 0092h and 00EEh.

7.3.3 Top of Memory CPU Execution
At reset, the processor is in Real mode, which normally can address only a megabyte, but 
the first instruction is fetched from address FFFFFFF0h, at the top of memory. The initial 
value of CS, the code segment, is 000F000h, and the initial value of the instruction pointer, 
IP, is 000FFF0h; however, the internal CPU base address associated with the code 
segment is FFFF0000h, rather than 00F0000h. The first far jump will cause the CS base 
address to be set to 16 times the segment of the jump target, so all PC/AT-compatible BIOS 
implementations have a far jump to a target in segment 000F000h as the first instruction 
executed.

This may become an issue if the boot ROM is larger than 1 Mbyte. In many implementations 
a small boot ROM (128 Kbyte or 256 Kbyte) will be used and will alias to all addresses 
decoded as boot ROM addresses. In this case, the software can effectively ignore the fact 
that the physical address of the first instruction fetched is nowhere near the physical address 
of the rest of the boot ROM, because the high-order address lines are not decoded by 
the ROM. 
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If, however, the boot ROM is larger than 1 Mbyte, the designer must be aware that the top 
16 bytes of the boot ROM must be reserved for a far jump to a location in segment 000F000h, 
which will reside immediately below 1 Mbyte in the same boot ROM. (Because of 
compatibility issues, at boot-up the only locations in the CPU address space that map to 
the boot ROM are the 64 Kbytes at the very top of memory, and the 64 Kbytes immediately 
below 1 Mbyte. This is discussed in more detail later.)

7.3.4 ISA Bus Addressing
The ÉlanSC400 and ÉlanSC410 microcontrollers provide 26 bits of address on the SA 
address bus. However, standard 8-bit ISA devices only decode the lower 20 bits and 
standard 16-bit (PC/AT-compatible) devices decode the lower 24 bits. When a cycle is not 
claimed by internal devices (DRAM controller or ROM controller), it is driven to the VL-bus. 
If the cycle is not claimed on the VL-bus via an active VL_LDEV signal, it is then driven to 
ISA. Since the ISA bus receives all unclaimed cycles and the microcontroller’s SA bus is 
26 bits, it is possible to address up to 64 Mbytes on the ISA bus.

The definition of the ISA bus only contains 24 address lines, so a peripheral that decodes 
the “full” 24 lines of the address bus could be aliased four times in the microcontroller’s 
address space. Any 8-bit ISA peripherals and 16-bit ISA peripherals that rely on ISA signals 
SMEMR and SMEMW will decode only the 20 address lines of the original 8-bit ISA bus, 
and thus could be aliased 64 times into the microcontroller’s address space.

It is up to each designer to determine the requirements for generating SMEMR and 
SMEMW. The most general design generates SMEMx by qualifying MEMx with A20–A25 
all equal to 0, avoiding any aliasing for the lower megabyte. However, if the only non-VL 
memory-mapped peripherals in the system reside below 1 Mbyte, it is probably acceptable 
to simply connect the microcontroller’s MEMx signals to the peripheral’s SMEMx lines. 
Even if there are non-VL, memory-mapped peripherals above 1 Mbyte, for a closed system 
it is quite likely that the qualification can be performed with fewer than 6 address lines.

The designer should also be aware of the potential for making use of the ISA aliasing. If a 
design has 16 Mbyte of RAM, it may not be possible to address an ISA peripheral at, for 
example, 4 Mbyte, but the peripheral could be programmed to respond at 4 Mbyte, and the 
CPU could address it at 20 Mbyte (16 Mbyte + 4 Mbyte).

7.4 MULTIPLE MEMORY SPACES
One concept which may be foreign to some designers is that of multiple, parallel memory 
spaces, as opposed to a single linear space. The ÉlanSC400 and ÉlanSC410 
microcontrollers can address up to nine distinct memory spaces: 

■ System memory address space (DRAM)

■ ROM0 memory address space

■ ROM1 memory address space

■ ROM2 memory address space

■ PC Card A memory address space (both data and attribute memory spaces) 
(ÉlanSC400 microcontroller only)

■ PC Card B memory address space (both data and attribute memory spaces)
(ÉlanSC400 microcontroller only)

■ External ISA/VL-bus memory address space
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(For the purposes of this discussion, the VL and ISA buses are treated identically. However, 
the designer should realize that they are prioritized by VL-bus peripherals—if a VL-bus 
peripheral claims a bus cycle, the ISA bus never sees it.) 

The size of each space is 64 Mbyte; however, as noted in the previous section, the 16-Mbyte 
ISA bus is aliased four times into its 64 Mbytes.

The ÉlanSC400 and ÉlanSC410 microcontrollers support two classes of memory 
management schemes: non-translated and translated memory management. 

■ Non-translated accesses—In this case, the MMU hardware simply selects one of the 
9 distinct memory spaces for the read or write, and the memory address is passed 
unchanged to the hardware controlling that space. 

■ Translated accesses—In this case, the MMU translates the address in addition to 
choosing the space.

The DRAM, ROM0, ISA/VL-bus, and (on the ÉlanSC400 microcontroller) PC Card Socket 
A spaces are each accessible, to a degree, using non-translated memory management. 
All spaces except the ISA/VL-bus are fully accessible using translated memory 
management. 

Figure 7-1 Memory Mapping System Example
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MMS Windows C–F are variable in size (minimum 4 Kbytes) and can be located anywhere in the
CPU memory address space (except the lowest 64-Kbyte region of the CPU memory space) on
4-Kbyte boundaries. The Graphics Frame Buffer MMS Window is not supported on the ÉlanSC410
microcontroller.
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Figure 7-2 Address Translation Example

7.5 NON-TRANSLATED MEMORY MANAGEMENT
As noted above, when performing non-translated memory management, the MMU simply 
decides which device space will receive a given memory cycle by examining the memory 
address provided by the CPU. However, after examination, the address is passed 
unchanged to the hardware managing that space.

7.5.1 ROM0 and Non-Translated Memory Management
For most of the CPU address space, the default memory space on power-up is the 
ISA/VL-bus. The exceptions are CPU address ranges 00F0000–00FFFFFh and 3FF0000–
3FFFFFFh, which are mapped to ROM0 (or PC Card Socket A1). The CPU boots by jumping 
to location FFFFFFF0h (which is aliased to 3FFFFFFh), which must execute a far jump to 
the initialization code. Because the CPU boots in Real mode, the target of the initial far 
jump must be in the lower megabyte, and for any PC/AT-compatible BIOS, the segment of 
the jump target will be F000h. This means that the jump target will be in the range 00F0000–
00FFFFFh.

In a typical boot ROM scenario, ROMCS0 is connected to a single EPROM or Flash device 
with a capacity of 128 or 256 Kbytes. The upper address lines are not connected to this 
device, so the device is aliased throughout the entire 64-Mbyte address space. In this 
scenario, a single contiguous BIOS segment can be programmed into the ROM, and the 
ROM can be treated as if the upper 64 Kbytes are mapped at F0000, and as if the CPU 
starts execution at F000:FFF0h.

1.  On the ÉlanSC400 microcontroller, all ROM0 accesses may be redirected to PC Card Socket A via a hardware
strapping option which is sampled at reset. A design could use PC Card Socket A as the sole boot device, but this
option is most useful for cost-sensitive applications using a Flash boot device soldered to the board. If the code in
the boot device becomes damaged, it may be reprogrammed by setting the strapping option to boot from Socket A.
After it boots, the code in the PC Card card may copy itself to memory (or open an MMS window to point to itself),
and redirect ROM0 back to the on-board Flash device by resetting bit 2 in the Pin Strap Status Register (CSC index
20h).

 

CPU and DMA Source Destination 

Source

Source

Non-translated (linear)
Destination

Destination
Start Address

Stop Address

Boot vector Boot vector

Translated (non-linear)Address Stop

Address Start

Note:

MMS Window A–B have a fixed decode region; the user supplies a destination start address only. 
MMS Windows C–F require the user to program the start and stop address and an offset.
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However, if the boot device is larger than 1 Mbyte, or if additional external address decoding 
is done in the ROMCS0 space, note that booting may require a far jump to be stored in the 
top 16 bytes of the address space and for BIOS code to be stored between 00F0000h and 
00FFFFFh in the address space. Again, this is because the default memory management 
involves no address translation by the ÉlanSC400 and ÉlanSC410 microcontrollers. The 
MMU simply examines the CPU address and chooses one of several parallel memory 
spaces to access.

After the code has booted into the 00F0000–00FFFFFh range, it has some programmatic 
control over which CPU addresses cause an access to ROM0. Using the Linear ROM0/
Shadow Register and the Linear ROM0 Attributes Register (CSC index 21 and 22h), the 
CPU can discretely control address space selection in five different 64-Kbyte regions: 
00C0000–00CFFFFh, 00D0000–00DFFFFh, 00E0000–00EFFFFh, 00F0000–00FFFFFh, 
and 3FF0000–3FFFFFFh. These are the only regions that may be mapped to ROM0 space 
without using translated memory management.

7.5.2 DRAM and Non-Translated Memory Management
Before any DRAM can be used, the boot code must program the DRAM controller using 
CSC index registers 00–07h. The DRAM controller logically concatenates all the system 
DRAM into a single unified address space which starts at address 0. By default, CPU 
addresses from 0 to the top of DRAM are mapped to the DRAM space, in preference to 
ISA/VL-bus space. The two exceptions to this are the window from 640 Kbytes to 1 Mbyte 
(00A0000–0100000h) which defaults to ISA/VL-bus space or ROM0, as described in the 
previous section, and the 64-Kbyte window at the top of CPU address space (3FF0000–
3FFFFFFh), which defaults to ROM0.

The ÉlanSC400 and ÉlanSC410 microcontrollers offer a limited amount of programmatic 
control over DRAM using non-translated memory management:

■ In the region 00C0000–00FFFFFh, any accesses that would have gone to ROM0 can 
be redirected to DRAM by setting bit 5 in the Linear ROM0/Shadow Register at CSC 
index 21h. Any of these 64-Kbyte regions that are mapped to the ISA bus instead of 
ROM0 are not redirected by setting this bit. This bit was designed to support shadowing 
slow ROM into faster DRAM; the Linear ROM0 Attributes Register (CSC index 22h) 
allows this shadowed memory to be write protected and/or made cacheable.

■ On the ÉlanSC400 microcontroller, in any region in the lower 16 Mbyte (but typically in 
the range 00B0000–00BFFFFh for compatibility), the internal LCD controller can be 
programmed to direct accesses to the frame buffer (32–128 Kbytes, depending on 
graphics mode) and the 16-Kbyte font buffer (text modes only) to DRAM in preference 
to ROM or ISA.

■ The Overlapping ISA Window Start Address and Overlapping ISA Window Size registers 
(CSC index E1 and E2h) can be programmed to force accesses that would normally 
default to DRAM to go to the ISA bus instead. The primary use for this is to allow systems 
that have 16 Mbytes or more of DRAM to support ISA peripherals that require a large 
memory window, without relying on ISA bus aliasing.

■ The 64 Kbytes at the top of CPU address space (3FF0000–3FFFFFFh), which defaults 
to ROM0, can be redirected to DRAM by setting bit 3 in CSC index register 21h. Boot 
code should normally do this, because in most systems, there is no reason to access 
ROM0 at that address range after the first instruction fetch.

■ When System Management Mode (SMM) is entered via an SMI, the 32-Kbyte area 
where the system state is stored and where SMM execution starts is automatically 
mapped to DRAM. This allows SMM RAM to be mapped in a location such as 00A8000–
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00AFFFFh, which normally is directed to ISA space.1 This allows SMM RAM to be 
invisible to normal system operation.

7.6 TRANSLATED MEMORY MANAGEMENT
When the microcontroller performs translated memory management, it translates 
addresses in addition to selecting the correct address space for each access. A window in 
the CPU address space is mapped to a particular target location in the target address space.

Note that it is the programmer’s responsibility to understand all of the mapping mechanisms, 
and to avoid using translated memory management in a manner which attempts to map 
more than one target location to the same CPU address space. This will result in undefined 
behavior which could possibly damage hardware, e.g., by enabling multiple drivers onto 
the same bus.

The ÉlanSC400 and ÉlanSC410 microcontrollers have several distinct types of translated 
memory management:

■ MMS Windows A and B

■ MMS Windows C–F

■ Graphics Frame Buffer MMS Window (ÉlanSC400 microcontroller only)

■ 82365-compatible PC Card access (ÉlanSC400 microcontroller only)

A discussion of each of these translated memory management methods follows.

7.6.1 MMS Windows A and B
The simplest translated memory management is provided by MMS windows A and B. 

MMS Window A, when enabled, occupies the 32 Kbytes of CPU address space from 
00B0000–00B7FFFh, taking precedence over ISA accesses in that region. It can target 
any address in DRAM, ROM0, ROM1, or ROM2 spaces, allowing access to any 32 Kbytes 
on 32-Kbyte boundaries. Complete control over MMS Window A is provided via CSC index 
registers 32 and 33h.

MMS Window B, when enabled, occupies the 64 Kbytes of CPU address space from 
0100000h (1 Mbyte) to 010FFFFh. A20 control must be enabled (e.g., via a read from Port 
0EEh) before MMS Window B will function properly, because the PC/AT-compatible A20 
remapping occurs before the MMU receives the address from the CPU. From Real mode, 
the last 16 bytes in this window are inaccessible (the rest can be accessed using segment 
000FFFFh with an offset from 10h to 000FFFFh); however, the window still allows access 
to any address in DRAM, ROM0, ROM1, or ROM2 spaces, because the address granularity 
is 32 Kbytes. This is the same as MMS Window A, even though the size of MMS Window 
B is 64 Kbytes. Complete control over MMS Window B is provided via CSC index registers 
34h and 35h.

MMS Windows A and B differ from MMS Windows C–F in that they have a fixed decode 
region, and the user supplies a destination start address only.

1.  To move SMRAM, which defaults to 3000:8000, the program must first store an initial SMM handler at 38000h,
force an SMI to occur (e.g., using CSC index 90h[0]), and change SMBASE from within the SMI handler before is-
suing an RSM instruction. Advanced memory mapping can be used to store the runtime SMI handler at the desired
address.
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7.6.2 MMS Windows C, D, E, and F
These four MMS windows are more powerful than MMS windows A and B, but they are 
more complex to program. 

To enable the setup of MMS Windows C–F on either the ÉlanSC400 or ÉlanSC410 
microcontroller, the PC Card controller indexed register space must be enabled (CSC index 
D0h[1] = 1) and the PC Card controller must be set up to operate in Standard mode (CSC 
index F1h[0] = 0). On either microcontroller, once any of MMS Windows C–F is opened via 
PC Card index space, disabling the internal PC Card controller does not disable the MMS 
windows, but disallows their reconfiguration until the internal PC Card controller is re-
enabled. When the internal PC Card controller is disabled on either microcontroller, I/O 
accesses to the PC Card indexed register space go off the microcontroller to the ISA bus.

Note: The register settings described above are required even though the internal PC 
Card controller is not available on the ÉlanSC410 microcontroller.

MMS Windows C–F are very flexible. In addition to allowing mapping to any address in the 
target DRAM or ROM address spaces, they allow selection of window location within the 
CPU address space, as well as selection of window size. The granularity of all addresses 
and sizes is 4 Kbytes, which may have some advantages over the 32-Kbyte granularity of 
MMS windows A and B. MMS Windows C–F differ from MMS Windows A–B in that the 
user supplies the destination start and stop addresses, as well as an offset address.

After the use of these windows is enabled via resetting CSC index F1h[0], the windows are 
controlled using two registers in the CSC index space and the PC Card index registers 
normally used for Socket B Memory Windows 1–4.

■ The MMS Window C–F Attributes and MMS Window C–F Device Select registers (CSC 
index 30h and 31h) contain bits that control the device selection (ROM0, ROM1, ROM2, 
or DRAM), and write-protect and cacheability options for each of the windows.

■ The Address Window Enable Register for PC Card Socket B (PC Card index 46h) 
contains individual enables for these windows at bits 1–4.

■ PC Card index registers 58–75h contain location information. This is programmed as a 
start address, which defines the start of the window in CPU address space; a stop 
address, which defines the end of the window in CPU address space (thus implicitly 
defining the length); and an offset address, which should be programmed to the desired 
target address, minus the Start Address.

Because MMS windows C–F on the ÉlanSC400 microcontroller share the memory mapping 
logic in the PC Card controller, use of these windows places restrictions on PC Card socket 
use. This may be unworkable in many designs, especially those expecting to use standard 
card and socket services for two PC Card cards and those requiring translated PC Card 
timing or DMA. See the description of the PC Card Mode and DMA Control Register (CSC 
index F1h) for a list of PC Card restrictions.

7.6.3 Graphics Frame Buffer MMS Window 
(ÉlanSC400 Microcontroller Only)
On the ÉlanSC400 microcontroller, when the internal LCD controller is enabled and 
configured for graphics (not text) mode, graphics index 4Fh can be used to set up a 
specialized memory mapping window. This window occupies the 16 Kbytes of CPU address 
space from 00B8000–00BBFFFh and can be mapped to the lowest 16 Mbytes of DRAM 
only; that is, to any of the four 16-Kbyte pages within the 64-Kbyte frame buffer defined by 
graphics index 4Dh. Typically, the frame buffer will be programmed to 00B0000h, and this 
mode simply allows backward compatibility for CGA display programming. 
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When the Graphics Frame Buffer MMS window is set, the frame buffer is not visible to the 
CPU at the location it actually occupies in DRAM (unless that region of system CPU address 
space defaults to DRAM anyway). It is visible only one 16-Kbyte page at a time through 
the MMS window. This window should not be used for anything except the internal LCD 
controller; enabling the LCD controller causes several side effects, such as disabling 
caching on the mapped region.

7.6.4 PC Card Memory Management (ÉlanSC400 Microcontroller Only)

7.6.4.1 Standard 82365 PC Card Control

The PC Card controller on the ÉlanSC400 microcontroller is modeled on the 82365 device; 
a complete discussion of it is beyond the scope of this document. However, as the previous 
section discusses, the controller's memory mapping is quite sophisticated. This section 
focuses on differences between the ÉlanSC400 microcontroller and the 82365, with 
particular emphasis on memory management.

The standard 82365 registers are mapped at I/O locations 03E0 and 03E1h. Additionally, 
CSC index registers F0–F2h are used for PC Card control.

The ÉlanSC400 microcontroller has two distinct PC Card modes: Standard and Enhanced. 
When bit 0 in the PC Card Mode and DMA Control Register (CSC index F1h) is clear 
(Standard mode), the PC Card Socket B memory windows 1–4 are reassigned to be MMS 
windows. Window 0 in each socket is still available for PC Card, and Socket A's windows 
1–4 can be individually remapped to point either to Socket A or Socket B, using bits 4–7 
of the PC Card Extended Features Register (CSC index F0h).

When CSC index F1h[0] is set (Enhanced mode), each PC Card socket has its full 
complement of five memory windows, and MMS Windows C–F are disabled.

7.6.4.2 Simplified PC Card Control

In addition to the standard access of the PC Card space, PC Card A data space may be 
accessed by remapping ROMCS0 and/or ROMCS1 to the PC Card.

ROMCS0 remapping is provided to support reprogramming of soldered down Flash boot 
parts from a PC Card when a jumper is set. The ROMCS0 redirection feature also allows 
testing of code by placing it on a PC Card memory card (linear Flash or SRAM, but not 
ATA) and booting the BIOS or XIP (eXecute In Place) O/S image. Thus multiple builds can 
be kept on different PC Cards and swapped out quickly as required. 

There are several caveats to keep in mind when redirecting ROMCS0 to PC Card Socket 
A via the CFG2 pin strap. 

First of all, the PC Card that is used must not decode more of the PC Card space than it 
actually has physical memory for. Many linear Flash/SRAM cards perform only a partial 
decode of the address space. The amount of decode is equal to the physical memory on 
the card. Such a PC Card will be aliased throughout the PC Card memory space. 

For example, a 4-Mbyte card with this type of address decoding will appear at 0–03FFFFFh, 
0400000–07FFFFFh, and so on, all the way through the 64-Mbytes PC Card memory space. 
This is important because the boot vector address driven to the PC Card will always be 
3FFFFF0h, so a card that does not alias and that is less than 64-Mbyte will have no way 
to hook the boot vector. Because the CPU will begin fetching from 3FFFFF0h, PC Cards 
must supply a boot vector hook in the top 16 bytes of the card space. 

Note that the first access beyond the current segment will cause A25–A20 to be asserted. 
As long as no inter-segment code control transfer (call, jmp, etc.) occurs, code can be 
fetched from any location in the top 64 Kbytes of the PC Card indefinitely. In order to 
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continue operation from the PC Card above 1 Mbyte, but outside of the top 64 Kbytes, 
Protect mode must be entered, and an MMS window must be set up and pointed to the 
ROM0 device. 

Finally, it is important to note that default termination on the PC Card Socket A VCC control 
pin at reset is such that PC Card socket power is enabled. This was done to support 
redirection of ROMCS0 to Socket A. However, software running in the configuration must 
be careful to manually turn the socket power on via the PC Card VCC control registers prior 
to configuring the PC Card socket power controls as such via CSC index 39h[1–0]. Failure 
to do this will shut off card power while instructions are being fetched from it.

After boot, the ROMCS0 redirection can be cancelled by resetting bit 2 in the Pin Strap 
Status Register (CSC index 20h).

ROMCS1 remapping is provided as a simple method (e.g. using MMS windows A or B) of 
accessing a memory card in PC Card Socket A without having to learn all the intricacies 
of programming the 82365. This is controlled with bit 6 in the Linear ROM0/Shadow Register 
(CSC index 21h).

7.7 SYSTEM CONSIDERATIONS

7.7.1 2.7-Volt Operation
If the microcontroller is operated at 2.7 volts, the boot code should set bit 5 in the Cache 
and VL Miscellaneous Register (CSC index 14h), or MMU DRAM accesses will not work 
properly.

7.7.2 ROMCS2 Operation
Unlike ROMCS0 and ROMCS1, ROMCS2 is not mapped to an external pin by default. It 
can be mapped to any of the GPIO_CS14–GPIO_CS0 pins. It is the programmer's 
responsibility to ensure that other options which may use the selected pin are disabled.

The following C code fragment shows using GPIO0 as ROMCS2:

SetIO(GP0STAT_CTL,1); // Force GPIO_CS_0 output value to 1
SetIO(CS0_DIR,1); // Make sure GPIO_CS_0 is an output
SetIO(CS0_PUEN,0); // Disable internal GPIO_CS_0 pull-up
SetIO(TERM_LATCH,1); // Set termination latch
do {} while (GetIO(TERM_LATCH));  // Wait for disable to take place
SetIO(GPROM_CS2_MUX,0); // Map ROMCS2 to GPIO_CS_0
SetIO(GP0STAT_CTL,0); // Stop forcing GPIO_CS_0 output

7.7.3 Memory Mapping and Caching
The ÉlanSC400 and ÉlanSC410 microcontrollers provide a great deal of control over the 
cacheability of various memory regions. 

■ ISA/VL-bus and PC Card spaces are never cached. 

■ Memory mapped to the internal graphics controller is never cached. 

■ DRAM, in general, is cacheable by default, but two non-cache windows are provided to 
allow programmer control over areas that should not be cached. These two windows 
are controlled via CSC index registers 10–13h. Use of a “virtual desktop” with the LCD 
screen (e.g., making the logical screen larger than the physical LCD size and scrolling 
the physical LCD around on the logical screen) requires a larger non-cacheable window 
than is provided automatically by the LCD controller. One of the non-cacheable windows 
can be used to mark the entire virtual screen area as non-cacheable so that the physical 
memory always reflects the actual desired display.
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The programmer has control over cacheability of BIOS code segments by using the Linear 
ROM0 Attributes Register (CSC index 22h). For compatibility, the BIOS should usually be 
left non-cacheable, but in an embedded design it may be desirable to allow it to be cached.

The programmer also controls the caching of each MMS window. MMS and/or PC Card 
caching should only be enabled under very special circumstances (such as completely 
static window mapping), as the CPU is not aware of MMU mapping (the CPU caching 
operates using linear memory addresses).

The programmer should also be careful not to access the same 16-byte cache line through 
two different linear CPU addresses, especially if one of the accesses is non-translated, and 
thus cached by default.

7.7.3.1 Caching in System Management Mode

Caching during SMM operation is controllable using bits 5 and 6 in the Non-Cacheable 
Window 0 Address/Attributes/SMM Register (CSC index 11h). By default, the cache will 
be flushed upon entry to SMM, and caching will not be enabled during SMM execution. 
The programmer could speed up SMM entry and execution by changing these bits, but 
careful consideration must be given to system issues. The following list gives information 
about each of the possible bit combinations:

■ Auto-flush enabled, SMM caching disabled—This is the default state. The cache is 
flushed immediately upon entry to SMM, and no caching is performed during SMM. This 
dramatically reduces the performance of systems that depend on SMI interrupts, but is 
safe to use with overlaid SMM RAM.

■ Auto-flush enabled, SMM caching enabled—This could be even lower performance 
than the previous case for overlaid SMM RAM, because a manual flush should be 
performed upon exiting SMM. The only possible reason to use this configuration is if 
SMM routines are very lengthy.

■ Auto-flush disabled, SMM caching disabled—This should work for systems where 
the SMM RAM is not overlaying anything which is cacheable, but is not itself always 
present. For example, if SMM RAM has been relocated to 00A0000, it (potentially) 
overlays an ISA bus VGA card memory. Because the ISA bus is not cacheable, VGA 
memory will not be in the cache when SMM is entered, and the cache will not need to 
be flushed. Because caching during SMM is disabled, no flush needs to be performed 
upon exit from SMM.

■ Auto-flush disabled, SMM caching enabled—This could be useful in a closed 
environment where SMM RAM is always visible, to make SMIs faster.
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CHAPTER
8
 ROM/FLASH INTERFACE
8.1 OVERVIEW
The integrated ROM/Flash interface includes the following features:

■ 8-, 16-, and 32-bit ROM/Flash interfaces 

■ Three ROM/Flash chip selects

■ Dedicated ROM Read and Flash Write signals for better performance

■ Generates ROMWR for writes to Flash devices

■ Assembles/disassembles double word to and from the CPU for fast ROM cycles

■ Supports programmable wait states based on the CPU bus clock for faster ROMs. 

■ Slower ROMs are also supported by starting the ISA controller and using the ISA bus 
speed MEMR and MEMW signals

■ High-performance support for burst mode ROMs

■ Drives appropriate data steering signals during 8- and 16-bit cycles

The ROM/Flash interface operates at the CPU bus speed (maximum 33 MHz) and provides 
three separate ROM chip selects. 

Note that DMA to ROM devices is not supported on the ÉlanSC400 and ÉlanSC410 
microcontrollers. Note also that, if the 32-bit ROM interface is enabled, the matrix keyboard 
interface is not available, and, on the ÉlanSC400 microcontroller, the internal graphics 
controller is unavailable.

8.2 REGISTERS
A summary listing of the chip setup and control (CSC) index registers used to control the 
ROM/Flash interface is shown in Table 8-1. Complete register descriptions can be found 
in the ÉlanSC400 Microcontroller Register Set Reference Manual (order #21032).

Table 8-1 ROM/Flash Interface Register Summary

Register I/O Address ROM/Flash Interface Function Keyword
Description 
in Register 
Set Manual

Pin Strap Status Register 22h/23h
Index 20h

Data bus width, default boot interface (ROM0 
or PC Card), availability of the external buffer 
control signals

page 3-25

Linear ROMCS0/Shadow 
Register

22/22h
Index 21h

Linear ROM0 decode, boot ROM caching, and 
shadowing; ROM1 space access redirection to 
PC Card Socket A

page 3-26

Linear ROMCS0 Attributes 
Register

22h/23h
Index 22h

Write protection and caching for regions 
00FFFFF–00C0000h

page 3-28
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8.3 BLOCK DIAGRAM
Figure 8-1 is a simplified block diagram showing all the external signals used by the ROM/
Flash interface. More complex examples showing how these signals are used in different 
configurations can be found in Figure 4-3, Figure 4-4, and Figure 4-5. 

If the 32-bit ROM interface is enabled, the matrix keyboard interface is not available, and, 
on the ÉlanSC400 microcontroller, the internal graphics controller is unavailable. The 
R32BFOE signal is shared with the KBD_ROW13 signal.

Note that, unlike ROMCS0 and ROMCS1, ROMCS2 is not mapped to an external pin by 
default. It can be mapped to any of the GPIO_CS14–GPIO_CS0 pins. This process is 
described in Section 7.7.2.

ROMCS0 Configuration 
Register A

22h/23h
Index 23h

Access speed, burst mode support, and early 
chip-select for ROM0

page 3-29

ROMCS0 Configuration 
Register B

22h/23h
Index 24h

Fast-Speed ROM mode, wait states for burst 
and non-burst cycles for ROM0

page 3-31

ROMCS1 Configuration 
Register A

22h/23h
Index 25h

Access speed, burst mode support, and early 
chip-select for ROM1

page 3-32

ROMCS1 Configuration 
Register B

22h/23h
Index 26h

Fast-Speed ROM mode, wait states for burst 
and non-burst cycles for ROM1

page 3-34

ROMCS2 Configuration 
Register A

22h/23h
Index 27h

Access speed, burst mode support, and early 
chip-select for ROM2

page 3-35

ROMCS2 Configuration 
Register B

22h/23h
Index 28h

Fast-Speed ROM mode, wait states for burst 
and non-burst cycles for ROM2

page 3-37

Activity Source Enable Register A 22h/23h
Index 62h

Activity source enable: CPU access to 
ROMCS0 and ROMCS2–ROMCS1

page 3-71

Activity Source Status Register A 22h/23h
Index 66h

Activity source enable: CPU access to 
ROMCS0 and ROMCS2–ROMCS1

page 3-75

Activity Classification Register A 22h/23h
Index 6Ah

Primary or secondary activity classification: 
CPU access to ROMCS0 and ROMCS2–
ROMCS1

page 3-79

Standard Decode to GPIO_CS 
Map Register

22h/23h
Index B1h

ROM Chip Select 2 (ROMCS2) mapping to 
one of the GPIO_CS pins

page 3-131

Suspend Pin State Register A 22h/23h
Index E3h

Status of ROM interface in Suspend mode 
(powered, not powered)

page 3-184

Suspend Pin State Register B 22h/23h
Index E4h

Status of R32FOE in Suspend mode page 3-185

Suspend Mode Pin State 
Override Register

22h/23h
Index E5h

Power Down Group B output signals three-
state when ROM interface remains powered in 
Suspend mode

page 3-186

Table 8-1 ROM/Flash Interface Register Summary (continued)

Register I/O Address ROM/Flash Interface Function Keyword
Description 
in Register 
Set Manual
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Figure 8-1 ROM/Flash Interface Block Diagram

8.4 OPERATION

8.4.1 Architectural Overview
The ROM controller provides for control over three ROM interfaces, and each of the 
interfaces may be individually configured for interface width (8/16/32 bit) with 26-bit (64 
Mbyte) addressability. Although there is a chip select (ROMCS0, ROMCS1, and ROMCS2) 
that is dedicated to each of these ROM interfaces, the remainder of the standard bus signals 
are shared. 

The ROM interfaces also share two signals that are specific to the ROM interface, ROMRD 
and ROMWR. These signals are similar in function to the ISA MEMR and MEMW 
commands, but provide further isolation of the ROM interface from the ISA bus, and also 
support the non-ISA-standard timings that are present when Fast-Speed ROM mode is 
enabled.

Each of the three interfaces has separate configuration and timing controls. Of the three 
interfaces, only ROMCS0 may be accessed via direct-mapped (non-MMS translated) 
memory cycles, and only the regions between 00C0000–00FFFFFh and 3FF0000h–
3FFFFFFh are included in this direct-mapped access capability. To access the remainder 
of ROMCS0, and any portion of ROMCS1 or ROMCS2 spaces, an MMS window is required. 
(See Chapter 7 for more detail on using MMS windows.) ROMCS0 must be connected to 
the boot ROM device which is why the direct-mapped accesses to the 3FF0000–3FFFFFFh 
region are included. 

ÉlanSC400 Microcontroller CFG2

SD15-SD0

SA3-SA0

CFG1-CFG0

ROMSC0

ROMCS1

ROMCS2

R32BFOE

ROMRD

ROMWR

D15-D0
(32-bit ROMs)

Addresses

Data

SA25-SA4

CFG3
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The 00C0000–00FFFFFh region is broken down into four segments, each having 
independent controls. Each segment is 64 Kbytes wide:

■ 00C0000–00CFFFFh

■ 00D0000–00DFFFFh

■ 00E0000–00EFFFFh

■ 00F0000–00FFFFFh

Each of these four segments has individual controls for enable, and also for cacheability 
and write protection of linear accesses. The direct-mapped accessibility is provided for 
these segments in order to support the standard PC/AT ROM memory map compatibility 
with minimum effort on the part of the system designer/software engineer. 

Accesses to any segment that is not enabled for ROMCS0 linear decode will go to the 
external ISA or VL-bus. 

Accesses to any segments that have been enabled for linear ROMCS0 decode may be 
redirected to DRAM for use in shadowing ROM BIOS. This is commonly referred to as 
shadowing support or simply shadowing. On the ÉlanSC400 and ÉlanSC410 
microcontrollers, the shadowing control operates on an “all or nothing” basis. If shadowing 
is enabled, then accesses to all of the above segments that have been enabled for linear 
ROMCS0 decode will be redirected to DRAM. 

Note that neither PC Card windows nor MMS windows C–F may be located in any segment 
that has been enabled for ROMCS0 linear decode, regardless of whether or not shadowing 
has been enabled. Doing so will result in unexpected system operation, and must be 
avoided. Any segment that is not enabled for ROMCS0 linear decode may be overlaid with 
a PC Card or MMS C–F window. The ROMCS0 linear decode may be redirected to PC 
Card Socket A to support field upgrades of firmware or special development environments. 
This redirection can be done using either pin strapping, as explained below, or software 
manipulation of CSC registers. In addition, ROMCS1 can also be redirected to PC Card 
Socket A under software control only. The ROM controller supports enhanced access times 
for “burst-mode” ROM devices. These devices support faster access speeds for certain 
transfers to improve ROM interface performance as described below.

8.4.2 Data Bus Usage
This section provides a brief overview of the data bus usage by the ROM controller, because 
it is not intuitively obvious. This section is included for the benefit of those who are trying 
to connect a logic analyzer to the microcontroller’s ROM interface. The ÉlanSC400 and 
ÉlanSC410 microcontrollers are highly configurable, but system-level resources must be 
shared for several configurations. 

The 32-bit data bus on the ÉlanSC400 and ÉlanSC410 microcontrollers is broken down 
into four byte lanes: V3–V0. These byte lanes carry data to and from the CPU from different 
devices depending on the current microcontroller configuration (see Table 4-11). It may 
help to think of the use of the microcontroller’s data bus as being “DRAM-centric”, because 
the byte-lane assignments always seem to make the most sense from the standpoint of 
the DRAM controller. 

When the DRAM controller is configured to be 16 bits wide, it uses byte lanes V1 and V0 
to carry DRAM data D15–D8 and D7–D0 respectively. 

When a ROM interface is configured to be 16 bits wide, it uses the other 2 byte lanes, V3 
and V2, to carry ROM data RD15–RD8 and RD7–RD0 respectively. 
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Figure 8-2 ROM Decode Example 

In this way, a system using a 16-bit DRAM interface and a 16-bit ROM interface is simplified, 
because the data buses for these two functions are completely isolated. It is important to 
note that V3 and V2 are collectively known as the system data bus (16 bits). This is because 
they are used to support not only ROM data, but also PC Card and ISA data, as well as 
DRAM and VL-bus data, if so configured. Further references in this section to the “system 
bus” should be taken to mean that portion of the V3 and V2 byte lanes which service the 
PC Card, ROM, and ISA interfaces.

When the DRAM controller is configured to be 32 bits wide, it uses V3–V0 to carry DRAM 
data D31–D0. Assuming a 16-bit ROM interface, the DRAM and ROM controller must share 
byte lanes V3 and V2 in this configuration. Because V3 and V2 are used for the system 
bus as well as the DRAM interface in this configuration, the loading on byte lanes V3 and 
V2 from these other system interfaces must be avoided while they are being used for DRAM 
data transfers. This is where the DBUFOE signal comes into play. It is used to electrically 
connect the devices on the system bus to byte lanes V3 and V2 when PC Card, ROM, or 
ISA accesses are being performed. When VL-bus or DRAM accesses are being performed, 
the system bus is electrically disconnected from V3 and V2.

Regardless of the DRAM controller data bus width, if the ROM controller is configured to 
be 32 bits wide, the byte lane usage for ROM accesses changes. This time, however, the 
change is in a fashion that is more intuitive from the perspective of the ROM controller. 
With a 32-bit ROM configuration, V3–V0 carry ROM data RD31–RD0 in a byte lane usage 
that becomes similar to the DRAM controller. Relative to the 16-bit ROM interface byte lane 
usage, this is a byte lane switch for RD15–RD0 which use V1–V0 in a 32-bit ROM 
configuration, but use V3–V2 in a 16-bit ROM configuration. Note that any data transfer 
between either PC Card or ISA controllers always uses byte lanes V3 and V2.

In a 32-bit configuration, the ROM controller is using byte lanes that were previously used 
only by the VL and DRAM interfaces, so further external buffering may be required. Whereas 
the DBUFOE signal is used to control the electrical connection of the ROM devices with 
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00F0000

00E0000

00D0000

00C0000

00B0000

00A0000
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32 KB MMS window
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00B8000
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byte lanes V3 and V2 when a 16-bit ROM interface is used with a 32-bit DRAM interface, 
the R32BFOE signal is used to control the electrical connection of the ROM devices with 
byte lanes V1 and V0 when a 32-bit ROM interface is used with any DRAM interface width. 
The DBUFRDH and DBUFRDL signals are the data direction controls for the buffers which 
are connected to bytes lanes V3 and V2 respectively. The ROMRD signal is used as the 
direction control for the V1 and V0 byte lane buffers, should they be required in the system. 

The use of R32BFOE and associated buffer is at the discretion of the system designer. It 
should be used if the ROM device that is connected to the low word of a 32-bit ROMCS0 
interface will load the bus too heavily for proper DRAM/VL-bus operation. The use of 
DBUFOE is also at the discretion of the system designer, but will probably be required if 
the system allows use of PC Card or ISA expansion buses.

8.5 INITIALIZATION
A portion of the ROM/Flash interface is enabled at power-on reset to support boot-up of 
system firmware. 

By default, only two regions are enabled by the ROM controller. They are enabled for 
ROMCS0 and for linear accesses only. These regions are the 64-Kbyte block from 
3FF0000–3FFFFFFh that encompasses the normal CPU boot vector segment, and the 
64-Kbyte block from 00F0000–00FFFFFh that encompasses the aliased boot-vector 
segment. On an x86 CPU, the normal boot vector (the place where the CPU fetches the 
first instruction after reset) will be at the top of the address space minus 15 bytes. Because 
the ÉlanSC400 and ÉlanSC410 microcontrollers do not in any way utilize the CPU address 
bits A32–A26, these address bits are ignored, and only the 26 address bits from A25–A0 
are used to specify the boot vector. This means that on the ÉlanSC400 and ÉlanSC410 
microcontrollers, the normal boot vector will be 3FFFFF0h (instead of FFFFFFF0h for a 
standard Am486 microprocessor), and the first instruction following reset will be fetched 
from this location. 

After reset on an Am486 CPU, the code segment register is set to F000h, and A31–A20 
(effectively A25–A20 on the ÉlanSC400 and ÉlanSC410 microcontrollers) are held in the 
asserted state. Because segment registers must be multiplied by 16 to obtain the base 
physical address, at reset, the base physical address for the ÉlanSC400 and ÉlanSC410 
microcontrollers is 3FF0000h. The default instruction pointer value of FFF0h is added to 
this base address, and the result is that the absolute physical address for the first instruction 
fetch for the ÉlanSC400 and ÉlanSC410 microcontrollers is 3FFFFF0h as stated above. 
Even though the CPU is in real mode, A25–A20 will remain asserted until an inter-segment 
(far) jump or call is made. When this is done, address bits A25–A20 are deasserted by the 
CPU, and the code fetches come from addresses that are below 1 Mbyte. Because of this 
Am486 CPU behavior, the ÉlanSC400 and ÉlanSC410 microcontrollers by default support 
an enabled linear address decode of 64 Kbytes in this high segment of the ROMCS0 space 
to support extended boot code that may want to reside at the top of the ROMCS0 space.

On a typical PC/AT-compatible system, the boot vector behavior is as described above, 
but in the top 15 bytes, the code performs a far jump to some entry point in the PC/AT-
compatible BIOS ROM with a code segment of F000h. As described above, the far jump 
causes subsequent accesses to be performed with A25–A20 deasserted. This means that 
immediately following the far jump, code fetches will be from the PC/AT-compatible BIOS 
that resides in the 64-Kbyte segment from 00F0000–00FFFFFh. To support this PC/AT 
quirk, the ÉlanSC400 and ÉlanSC410 microcontrollers enable this region also by default 
for linear ROMCS0 accesses.

Note that, if the device connected to the boot ROM chip select (ROMCS0) is less than or 
equal to 1 Mbyte in size, it will alias throughout the 64-Mbyte ROMCS0 address space, 
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and the ROM device will not be able to distinguish between two addresses such as 
3FFFFF0h and 00FFFF0h. This is the typical case in a PC/AT-compatible system. If, 
however, the device is greater than1 Mbyte, the ROM will decode more address lines, and 
the device will be able to distinguish between the sample addresses of 3FFFFF0h and 
00FFFF0h. Because of this, boot ROM devices used in PC/AT-compatible environments 
that are larger than 1 Mbyte must have far jump instructions located in the top 16 bytes of 
the physical ROM device. Failure to do this will cause invalid instructions to be fetched by 
the CPU during boot-up.

8.5.1 Configuring the ROMCS0 Interface Using Pin Straps
Several aspects of the ROMCS0 interface must be established for devices that contain the 
boot code prior to the first instruction fetch. These include selection of the data bus width 
(8/16/32 bits), selection of the boot device (ROMCS0 or PC Card Socket A), and the 
selection of GPIO pins or buffer control signals (GPIO_CS4–GPIO_CS2 or DBUFOE, 
DBUFRDH, DBUFRDL, and R32BFOE).

Four configuration pin straps, which are sampled at power-on reset, are used to configure 
those functions that must be selected at reset, prior to firmware execution.

■ CFG1-CFG0 are used to select between 8-, 16-, or 32-bit data bus widths for the physical 
device that is connected to the ROMCS0 pin. (Data-width selection for the devices that 
connect to ROMCS1 and ROMCS2 is done through a programmable register.)

■ The CFG2 pin strap on the ÉlanSC400 microcontroller selects whether or not the system 
will boot from the device attached to ROMCS0 or from the PC Card Socket A memory 
card. See Section 7.6.4.2 for more information on the redirection of ROMCS0 to PC 
Card Socket A.

■ The CFG3 pin strap is used for selecting between the GPIO_CSx I/O pins and the SD 
bus buffer control signals: DBUFOE, DBUFRDL, and DBUFRDH. When the buffer 
control signal configuration is selected using the CFG3 pin, the DBUFOE, DBUFRDL, 
and DBUFRDH signals will be driven from boot time on for all accesses to the peripheral 
data bus. These signals are used for the external transceiver control.

Each configuration pin has an internal pull-down that will take effect to configure the ROM 
interface if no other external termination is supplied. The internal pull-downs on the CFG 
pins are very weak and may be pulled up to the CPU core voltage via a 10-kilohm resistor 
to select the configuration options described above.

Table 8-2 provides an overview of the configuration pin functions.These pins are described 
in more detail in Chapter 4.
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Table 8-2 Pin Strap Bus Buffer Options 

Notes:

1. In the table above, CFG3 is defined as the enable/disable for the DBUFOE, DBUFRDL, and DBUFRDH signals. 
They can be enabled independently of whether or not a 32-bit D bus is selected via the firmware to support the 
VL local bus or 32-bit DRAM interface. 

2. The 32-bit ROM option must be selected on ROMCS0 for the R32BFOE signal to be enabled. The selection of 
the DBUFOE, DBUFRDL, and DBUFRDH signal are still dependent only on the CFG3 signal.

8.5.2 Other ROMCSx Interface Configuration Options
As seen above, some features of the ROMCS0 interface must be configured using hardware 
pin straps. Other ROMCS0 features, and all features of ROMCS1 and ROMCS2, may be 
configured by software at any time after the boot code gets control. Note that even the 
ROMCS0 interface width may be changed by software after the pin straps have initially 
configured it. This was provided mainly for test purposes. All of the ROM chip select 
interfaces support the following additional features which may be configured by software/
firmware:

8.5.2.1 Data Width Control 

The ROMCSx data bus widths may each be independently configured for 8-, 16-, or 32-bit 
wide operation using the CSC registers for ROMCS0, ROMCS1, and ROMCS2. As 
mentioned above, software control for the ROMCS0 interface width was provided mainly 
for testing. It is not recommended that the ROMCS0 data width be set outside of the pin-
strap method.

Note that setting the ROMCS0 interface width to 32-bit automatically enables the R32BFOE 
signal. Once ROMCS0 is configured as 32-bit, all accesses to 32-bit ROM devices on 
ROMCS2–ROMCS0 will result in the assertion of the R32BFOE signal. Setting ROMCS1 
or ROMCS2 to a 32-bit interface does not automatically enable R32BFOE; if buffering is 
required in this case, it must be supplied by the board designer.

On the ÉlanSC410 microcontroller, having a 32-bit ROM interface is mutually exclusive 
with the matrix keyboard. On the ÉlanSC400 microcontroller, having a 32-bit ROM interface 
is mutually exclusive with the internal LCD graphics controller and with the matrix keyboard.

Finally, if the ROMCS0 cycles have been redirected to the PC Card Socket A on the 
ÉlanSC400 microcontroller, the width of the access is still controlled by the CFG0 and CFG1 
pin straps. The 32-bit ROM option should not be selected concurrently with the option to 
boot from a PC Card.

CFG3 CFG1 CFG0
ROMCS0

DATA
WIDTH

DBUFOE
DBUFRDL
DBUFRDH

R32BFOE

0 0 0 8-bit Disabled Disabled

0 0 1 8-bit Disabled Disabled

0 1 0 16-bit Disabled Disabled

0 1 1 32-bit Disabled Enabled

1 0 0 8-bit Enabled Disabled

1 0 1 8-bit Enabled Disabled

1 1 0 16-bit Enabled Disabled

1 1 1 32-bit Enabled Enabled
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8.5.2.2 Access Speed 

The ROM devices connected to ROMCS2–ROMCS0 can be accessed at either normal 
speed or at fast speed. 

8.5.2.2.1 Normal-Speed Mode
When Normal-Speed mode is selected, accesses to the ROM interface occur using 
standard ISA-bus-compatible timings. The wait state control registers in CSC indexes 24h, 
26h, and 28h have no effect in this mode. The standard ISA bus IOCHRDY signal may be 
driven Low during Normal-Speed ROM data transfers to add wait states to a ROM cycle. 

8.5.2.2.2 Fast-Speed Mode
Fast-Speed mode can be enabled directly by a configuration bit on a per-chip select basis. 
Additionally, if a ROMCSx interface width is configured for 32-bit operation, that interface 
will automatically be forced to use fast-speed timings. If Fast-Speed mode is selected for 
a ROMCSx access, that access will operate at the same rate as the CPU 1x clock up to a 
limit of 33 MHz. In Fast-Speed mode, the access time can be slowed down to accommodate 
slower ROM devices by inserting wait states. 

Wait states for ROMCSx cycles are controlled using the ROMCSx Configuration Register 
B (CSC index 24h, 26h, and 28h for ROMCS0, ROMCS1, and ROMCS2 respectively). 

The ÉlanSC400 and ÉlanSC410 microcontrollers provide wait state control for both burst 
and non-burst accesses. Note that burst-type accesses are not limited to burst-mode 
ROMs. The term burst as used here refers to a technology designed into some ROM devices 
that allows operation with fewer wait states on the second and subsequent accesses that 
make up a 16-byte transfer than is required on the first access of the transfer. The burst-
mode ROM terminology comes from supporting ROM devices whose internal architecture 
uses a burst-mode paradigm. On the ÉlanSC400 and ÉlanSC410 microcontrollers, this 
support includes providing two timing sets for the device: one slower set for the first access 
of the burst (or non-burst) device and another faster set of timings for the remainder of 
the burst. 

The first type of wait state (specified in the WAIT_NBRSTx bit field) is always used in the 
first access for either burst or non-burst supported device. It starts at the assertion of the 
chip select or at the transition of SA3–SA0, whichever occurs later. 

The second type of wait state (specified in the WAIT_BRSTx bit field) is used only for any 
subsequent burst read accesses to a burst mode ROM device. It starts at the transition of 
SA3–SA0. The burst address valid duration depends on which wait state is used. If the wait 
state is set to 0, then the minimum address duration is 30 ns (one bus clock cycle). If wait 
states are added via the deassertion of IOCHRDY, the data setup time to IOCHRDY 
assertion is 0 ns (minimum).

System firmware must set up the wait state usage via the ROMCSx_WS_SLCT bits. These 
bits are located in the ROMCSx Configuration Register A (CSC index 23h, 25h, and 27h 
for ROMCS0, ROMCS1, and ROMCS2 respectively). 

If ROMCSx_WS_SLCT = 0, then it will be assumed that a burst mode capable ROM is not 
installed in the system, and the WAIT_NBRSTx timings will always be used for all ROM 
accesses.

If ROMCSx_WS_SLCT = 1, then it will be assumed that a burst-mode-capable ROM is 
installed in the system. The first access to the ROM under these conditions will use the 
wait states defined by the WAIT_NBRSTx bit field, and then the remainder of the accesses 
that make up a 16-byte transfer will use the faster timing that is specified by the 
WAIT_BRSTx bit field. 
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Note that burst-mode timings on the ROM interface will only be used when the ROM 
controller is fulfilling an internal CPU burst request to support a cache line fill. At all other 
times, non-burst-mode wait states will be used. Thus, burst-mode ROM timings will only 
be used for paragraph-aligned accesses, because the CPU will not request an internal 
burst cycle otherwise.   

Note that, under certain conditions, the ROM controller assembles data as a double word 
before transfer to the CPU. The conditions are that the ROM access is a double-word-
aligned read which is configured to be cacheable with the CPU cache enabled, and the 
ROM interface width is configured to be 8 or 16 bits. While the ROM controller is building 
the double word, both the ROM chip select and the ROMRD signal are held in the active 
state while A0 and A1 change to address ROM data as required. This is done regardless 
of whether a burst-mode-capable ROM is in the system or not. While this feature improves 
performance for very fast ROM devices, it can cause some confusion if the ROMCSx or 
ROMRD signals are being used as clocks for a logic analyzer that is capturing state-mode 
data. Simply making the ROM accesses noncacheable will cause the chip select and 
ROMRD signal to toggle for each ROM access.

8.5.2.3 Early Chip Select 

Controls exist for each of the ROM chip selects to specify chip select qualification. Reducing 
the qualifiers brings the chip select out earlier, which may be required under certain 
circumstances. 

For Normal-Speed mode read operations, disabling the early chip select feature causes 
the chip select to come out when the address decode is true and the ROMRD or ROMWR 
command is asserted, and an edge is seen on the internal ROM controller clock. Normal-
Speed mode write operations (to a Flash device, for example) require that the early chip 
select feature be enabled. When the early chip select feature is enabled, the chip select 
comes out as a result of address decode being true with no other qualification, regardless 
of whether Normal or Fast-Speed mode is configured.   

For Fast-Speed mode operations with the early chip select feature disabled, the chip select 
comes out when the address decode is true, and an edge is seen on the internal ROM 
controller clock. In this case, no qualification with the ROMRD or ROMWR command is 
performed.

Table 8-3 shows how various fields in the CSC indexed registers control configuration of 
the ROM/Flash interface.
ROM/Flash Interface8-10



Table 8-3 ROMCSx Configuration Dependencies

Notes:

Non-burst = Not capable of burst-mode ROM interface timings

Burst-capable = Capable of burst-mode ROM interface timings under conditions specified in bit 3 of CSC index
registers 23h, 25h, and 27h.

8.6 POWER MANAGEMENT
To improve power dissipation, the ROM/Flash interface’s internal clock is turned off if there 
is no access to the interface or if the access is to the ISA bus. 

Operation of the ROM/Flash interface is affected by the power-management functions 
shown in Table 8-4.

Table 8-4 Power Management in the ROM/Flash Interface

ROMCSx Configuration Summary DSIZEx[1–0]
ROMCSx Data 

Bus Width
ROMCS0_
WS_SLCT

FAST_
ROMCSx

8-bit, Normal-Speed, Non-Burst 0 x 8-bit don’t care 0

8-bit, Fast-Speed, Non-Burst 0 x 8-bit don’t care 1

16-bit, Normal-Speed, Non-Burst 1 0 16-bit don’t care 0

16-bit, Fast-Speed, Non-Burst 1 0 16-bit 0 1

16-bit, Fast-Speed, Burst-Capable 1 0 16-bit 1 1

32-bit, Fast-Speed, Non-Burst 1 1 32-bit 0 don’t care

32-bit, Fast-Speed, Burst-Capable 1 1 32-bit 1 don’t care

ROM/Flash Interface 
Event Description

Power Management Effect

Wake-Up Activity SMI NMI

ROM access Triggered by the falling edge of the 
ROMCS2–ROMCS0 chip selects qualified 
with the command (ROM Read/Write)

Programmable
ROM/Flash Interface 8-11



ROM/Flash Interface8-12



CHAPTER
9
 DRAM CONTROLLER
9.1 SYSTEM DESIGN
The ÉlanSC400 and ÉlanSC410 microcontrollers can directly control up to 64 Mbytes of 
DRAM. The integrated DRAM controller interfaces gluelessly to most commodity FPM (Fast 
Page Mode) and EDO (Extended Data Out, sometimes referred to as hyper-page mode) 
3.3-V, 70 ns DRAM devices. The following features and constraints should be considered 
carefully, as they may affect overall system design.

A. Up to four DRAM banks are supported, unless the matrix keyboard is to be used (see 
item F below).

B. Each bank has an independently selectable width of 16 or 32 bits. However, if any DRAM 
bank is configured to be 32 bits, the system must meet these constraints:

— On the ÉlanSC400 microcontroller, the internal graphics controller must not be used.

— The internal matrix keyboard interface must not be used (see item F below).

— An external buffer might be required for the 16-bit SD bus, which is multiplexed with 
D31–D16, and a pull-up might be required on CFG3 to reconfigure GPIO_CS4–
GPIO_CS2 as buffer control signals DBUFOE, DBUFRDL, and DBUFRDH.

C. Each bank has an independently selectable depth and symmetry. (Symmetry is the term 
used to describe the DRAM's internal row/column configuration, e.g., how close the 
number of rows is to the number of columns.) All devices in a given bank must have the 
same depth and symmetry, but the physical width of the devices making up the bank is 
irrelevant to the ÉlanSC400 and ÉlanSC410 microcontrollers as long as electrical signal 
loading constraints are not violated. Supported device depths and symmetries are listed 
in Table 9-3. The data sheet for the DRAM device should be checked against the table 
to make sure the device is supported.

D. Each bank’s device type (FPM or EDO) can be set independently. The device type must 
be set correctly, and FPM and EDO devices may not be mixed in the same bank.

E. If DRAMs requiring the MA12 signal (e.g., asymmetric 8-Mbit or 16-Mbit depths) are to 
be used, the matrix keyboard interface may not be used (see item F below). Also, in this 
case, if all DRAM banks are 16 bits wide, at least one of the enabled banks must be 
Bank 2 or Bank 3, to force proper output of the MA12 signal. (Any given set of banks 
can be enabled, e.g., Bank 2 can be enabled without enabling Bank 0 or Bank 1.)

F. Setting the width of Bank 0 or Bank 1 to 32 bits, or enabling Bank 2 or Bank 3, causes 
the DRAM controller to pre-empt KBD_ROW6–KBD_ROW0. If the internal matrix 
keyboard interface is to be used, the following limitations apply:

— All banks must be 16 bits wide because CASL2, CASL3, CASH2, and CASH3 are 
multiplexed with KBD_ROW0, KBD_ROW1, KBD_ROW2, and KBD_ROW3.

— Only two banks (0 and 1) may be used because RAS2 and RAS3 are multiplexed 
with KBD_ROW4 and KBD_ROW5.

— Asymmetric 8-Mbit and 16-Mbit depth DRAMs are not supported because MA12 is 
multiplexed with KBD_ROW6.
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G. Bank 0 may be interleaved with Bank 1, and/or Bank 2 may be interleaved with Bank 3, 
as long as the banks to be interleaved with each other contain identical FPM devices. 
The ÉlanSC400 and ÉlanSC410 microcontrollers do not alter memory access timing on 
interleaved banks (because data bus contention would increase power consumption), 
but the page size is effectively doubled, which can increase page hit frequency, and 
thus performance, in some applications.

H. The DRAM controller is disabled at power-on reset. The DRAM drive strength, timing, 
and interleaving parameters, and each bank’s type (EDO or FPM) and bank configuration 
(depth, width, symmetry) must be programmed before the DRAM is used. This requires 
system software (even in embedded systems, unless the DRAM type is guaranteed 
never to change) to detect the DRAM type and configuration, and program the controller, 
very early in the boot process. Section 9.5 describes the algorithm required to determine 
the type and configuration.

I. If a DRAM device requiring refresh at greater than a 64-KHz rate (note that no such 
devices are available at press time) is used, the device cannot be refreshed during 
Suspend mode unless self-refresh is chosen. Self-refresh mode is global—if chosen, 
all DRAM devices in the system must support self-refresh.

J. If the microcontroller is to operate at 2.7 volts, one wait state must be added to DRAM 
hits generated by the MMU. This is done by setting bit 5 in the Cache and VL 
Miscellaneous Register (CSC index 14h).
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9.2 REGISTERS
A summary listing of the chip setup and control (CSC) registers used to control the DRAM 
controller is shown in Table 9-1. Complete register descriptions can be found in the 
ÉlanSC400 Microcontroller Register Set Reference Manual (order #21032).

Note:

1. CASL3–CASL2, CASH3–CASH2, RAS3–RAS2, and MA12 can be enabled by setting the correct bits in any of 
the four configuration registers (32-bit data width and either Bank 0 or Bank 1 enabled, or just Bank 2 or Bank 3 
enabled). 

Table 9-1 DRAM Controller Register Summary

Register I/O Address DRAM Controller Function Keyword
Description 
in Register 
Set Manual

DRAM Bank 0 Configuration 
Register

22h/23h
Index 00h

DRAM Bank 0 configuration1: enable, data 
width and depth, address symmetry, and FPM/
EDO selection

page 3-10

DRAM Bank 1 Configuration 
Register

22h/23h
Index 01h

DRAM Bank 1 configuration1: enable, data 
width and depth, address symmetry, and FPM/
EDO selection

page 3-11 

DRAM Bank 2 Configuration 
Register

22h/23h
Index 02h

DRAM Bank 2 configuration1: enable, data 
width and depth, address symmetry, and FPM/
EDO selection

page 3-12 

DRAM Bank 3 Configuration 
Register

22h/23h
Index 03h

DRAM Bank 3 configuration1: enable, data 
width and depth, address symmetry, and FPM/
EDO selection

page 3-13 

DRAM Control Register 22h/23h
Index 04h

All banks: EDO detect, interleave options, 
RAS-to-CAS delay, CAS precharge delay, 
CAS pulse width, and MWE setup time

page 3-14

DRAM Refresh Control Register 22h/23h
Index 05h

All banks: Refresh enable, request period, self-
refresh, input source of the refresh timer, RAS 
time-out value

page 3-16

Drive Strength Control Register A 22h/23h
Index 06h

All banks: I/O pad drive strength for D15–D0, 
MA12–MA0, MWE, RAS3–RAS0

page 3-17

Drive Strength Control Register B 22h/23h
Index 07h

All banks: I/O pad drive strength for SA23–
SA0, SD15–SD0

page 3-18

Cache and VL Miscellaneous 
Register

22h/23h
Index 14h

MMU DRAM access delay, 2.7-V operation page 3-23

Activity Source Enable Register B 22h/23h
Index 63h

Activity source enable: CPU access to DRAM 
(non-graphics access)

page 3-72 

Activity Source Status Register B 22h/23h
Index 67h

Activity source status: CPU access to DRAM 
(non-graphics access)

page 3-76

Activity Classification Register B 22h/23h
Index 6Bh

Primary or secondary activity classification: 
CPU access to DRAM (non-graphics access)

page 3-80

Suspend Pin State Register A 22h/23h
Index E3h

DRAM interface state in Suspend mode page 3-184
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9.3 BLOCK DIAGRAM
Figure 9-1 shows an example DRAM subsystem with all four banks populated. The memory 
address (MA), data (D), and memory write enable (MWE) signals are shared by all banks. 
The DRAM output enables (OE) are not driven by the ÉlanSC400 and ÉlanSC410 
microcontrollers and should be grounded. Each bank, 0–3, has a corresponding RAS signal. 
Each microcontroller byte lane, 0–3, has a corresponding CAS signal. The CAS signals 
are further subdivided into Low and High (CASLx and CASHx) signals to support 
interleaving. Banks 0 and 2 share CASL3–CASL0 and banks 1 and 3 share CASH3–
CASH0. Banks configured for 16-bit operation do not use CASL3–CASL2, CASH3–CASH2, 
or D31–D16, and, if the matrix keyboard controller is to be used, CASL3–CASL2, CASH3–
CASH2, RAS3–RAS2, and MA12 may not be used by the DRAM array.

Figure 9-1 DRAM Bank Configuration

Note: 

The shaded area of each bank and its associated signals are used for 32-bit DRAM only.

The OE signals for all banks should be grounded, since the ÉlanSC400 and ÉlanSC410 microcontrollers implement
“early” write.
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D31–D24 D23–D16 D15–D8 D7–D0

CASH3 CASH2 CASH1 CASH0B
A

N
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 1

D31–D24 D23–D16 D15–D8 D7–D0

CASL3 CASL2 CASL1 CASL0B
A

N
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 2

D31–D24 D23–D16 D15–D8 D7–D0

CASL3 CASL2 CASL1 CASL0B
A

N
K

 0

MWE

CASH3–CASH0

CASL3–CASL0

MA12–MA0

D31–D0
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RAS2
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9.4 OPERATION

9.4.1 System Address Decoding 
The DRAM controller receives physical addresses from the CPU, the DMA controller, and 
the graphics controller, and decomposes them as follows:

■ The DRAM controller uses information about each bank’s address and size to select 
the correct bank (which RAS strobe will be asserted). If two banks are interleaved (using 
the DRAM Control Register, CSC index 04h), both banks' RAS strobes are asserted 
simultaneously.

■ The DRAM controller generates an address offset by subtracting the start of the selected 
bank from the physical address.

■ The highest-order bits of the address offset will be asserted on MA12–MA0 as the row 
address (with the RAS strobe), the middle bits of the offset will be asserted on MA12–
MA0 as the column address (with the CAS strobe(s)), and the lowest order bits will be 
used in conjunction with the size of the read or write request to determine which byte 
lanes will be read or written (which CAS strobes will be asserted). The number of row, 
column, and byte lane address bits depends on the particular DRAM bank’s device 
configuration. Table 9-2 shows the byte lane mapping. Table 9-4 shows the row and 
column mapping for non-interleaved banks, and Table 9-5 shows the row and column 
mapping for interleaved banks. 

9.4.1.1 RAS Strobe Assertion (Bank Selection)

Bank 0 is considered to be the first bank, and Bank 3 is the last bank. Any combination 
of banks can be enabled (e.g., it is not necessary to enable Bank 0 in order to enable 
Bank 2). The first enabled DRAM bank is located in the CPU address space at physical 
address 0000000h. The size of each enabled bank is automatically calculated by the 
ÉlanSC400 and ÉlanSC410 microcontrollers using the WIDTH and DEPTH fields 
programmed into each DRAM configuration register, and all enabled banks are 
automatically placed contiguously in the memory space. There is no direct programmer 
control over bank location or ordering, and there are no bank alignment restrictions for the 
programmer to worry about. For the purposes of length and start address calculation, 
interleaving two banks effectively combines them into a single larger bank.

9.4.1.2 CAS Strobe Assertion (Byte Lane Selection)

Table 9-2 shows a mapping of physical addresses to CAS strobes. The microcontroller 
simultaneously issues up to two CAS strobes during a memory cycle addressed to a 16-bit 
bank, or up to four strobes during a cycle addressed to a 32-bit bank. The number of CAS 
cycles required depends on the bank width and the originator of the memory request:

■ DMA controller requests are always satisfied in one CAS cycle. 8-bit DMA requests 
assert only one CAS strobe, and 16-bit DMA requests assert two CAS strobes and 
access an aligned word.

■ On the ÉlanSC400 microcontroller, graphics controller requests fill up the graphics 
controller FIFO, by burst-reading as much data as required via optimized back-to-back 
CAS cycles, starting with the lowest order address. Because the graphics controller only 
supports 16-bit DRAM reads, two CAS strobes are asserted on each cycle.

■ CPU requests are always treated by the DRAM controller as 32 bits wide, so if the 
request is addressed to a 16-bit bank, two CAS cycles will always be generated, even 
if CAS no strobes are asserted during one of them. The highest order word is always 
read or written first.
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The DRAM controller will “burst” CPU cache line fills and flushes using four 32-bit or eight 
16-bit back-to-back CAS cycles, if the CPU clock speed is 16 MHz or above. The CPU core 
dictates the order in which the four double words are accessed. See the Am486DX/DX2 
Microprocessor Hardware Reference Manual (order #17965) for details. For 16-bit banks, 
each of the four 32-bit memory cycles is stretched into two CAS cycles, with the highest 
order word accessed first.

Table 9-2 System Address to CAS Strobe Mapping

Byte Lanes CASL0 CASL1 CASL2 CASL3 CASH0 CASH1 CASH2 CASH3

16-Bit 
Non-interleaved

A0 A0 inactive inactive A0 A0 inactive inactive

32-bit 
Non-interleaved

A1 * A0 A1 * A0 A1 * A0 A1 * A0 A1 * A0 A1 * A0 A1 * A0 A1 * A0

16-bit 
Interleaved

A1 * A0 A1 * A0 inactive inactive A1 * A0 A1 * A0 inactive inactive

32-bit 
Interleaved

A2 * A1
 * A0

A2 * A1
 * A0

A2 * A1
 * A0

A2 * A1
 * A0

A2 * A1
 * A0

A2 * A1
 * A0

A2 * A1
 * A0

A2 * A1
 * A0
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Table 9-3 Supported DRAM Bank Configurations

Note:

1. In this case, if all DRAM banks are 16 bits wide, at least one of the enabled banks must be Bank 2 or Bank 3, to 
force proper output of the MA12 signal.

Physical Bank Configuration CSC Index 00–03h Bit Values

Bank Size
Depth
(Bits)

Width
(Bits)

Rows Columns ASYM WIDTH DEPTH

512 Kbytes 256 K 16 9 9 0 0 000

1 Mbyte 256 K
512 K

32
16

9
10

9
9

0
1

1
0

000
001

2 Mbytes 512 K
1 M

32
16

10
10
12

9
10
8

1
0
1

1
0
0

001
010
010

4 Mbytes 1 M

2 M

32

16

10
12
11
12

10
8
10
9

0

0
1

1
1
0
0

010
010
011
011

8 Mbytes 2 M

4 M

32

16

11
12
11
12

10
9
11
10

0
1
0
1

1
1
0
0

011
011
100
100

16 Mbytes 4 M

8 M

32

16

11
12
12

131

11
10
11
10

0
1
0
1

1
1
0
0

100
100
101
101

32 Mbytes 8 M

16 M

32

16

12

131

12

131

11
10
12
11

0
1
0
1

1
1
0
0

101
101
110
110

64 Mbytes 16 M 32 12

131
12
11

0
1

1
1

110
110
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Table 9-4 Non-Interleaved System Address (A) to Memory Address (MA) Mapping

CSC Index 00–03h
Bit Values

DRAM 
Configuration

Non-Interleaved MA Mapping

System Address to MA Mapping for Rows/Columns

Asym Width Depth

Bytes: Banks x 
Rows x Cols x Bits, 
Page Size, Refresh 

Cycles

MA
12

MA 
11

MA 
10

MA 
9

MA 
8

MA 
7

MA 
6

MA 
5

MA 
4

MA 
3

MA 
2

MA 
1

MA 
0

0 0 000 0.5 MB: 1x9x9x16 
1 Kbyte, 512

A12

A9

A11

A8

A10

A7

A13

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A1

0 0 001 N/A

0 0 010 2 MB: 1x10x10x16
2 Kbyte, 1024

A13
A10

A12
A9

A11
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A1

0 0 011 4 MB: 1x11x10x16
2 Kbyte, 2048

A11 A13
A10

A12
A9

A21
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A1

0 0 100 8 MB: 1x11x11x16
4 Kbyte, 2048

A22

A11

A13

A10

A12

A9

A21

A8

A20

A7

A19

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A1

0 0 101 16 MB: 1x12x11x16 
4 Kbyte, 4096

A23 A22
A11

A13
A10

A12
A9

A21
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A1

0 0 110 32 MB: 1x12x12x16 
8 Kbyte, 4096

A23
A12

A24
A11

A13
A10

A22
A9

A21
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A1

0 0 111 N/A

0 1 000 1 MB: 1x9x9x32
2 Kbyte, 512

A13

A9

A12

A8

A11

A7

A19

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A10

0 1 001 N/A

0 1 010 4 MB: 1x10x10x32
4 Kbyte, 1024

A21
A11

A13
A9

A12
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

0 1 011 8 MB: 1x11x10x32
4 Kbyte, 2048

A22 A21
A11

A13
A9

A12
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

0 1 100 16 MB: 1x11x11x32 
8 Kbyte, 2048

A22

A12

A21

A11

A13

A9

A23

A8

A20

A7

A19

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A10

0 1 101 32 MB: 1x12x11x32 
8 Kbyte, 4096

A24 A22
A12

A21
A11

A13
A9

A23
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

0 1 110 64 MB: 1x12x12x32 
16 Kbyte, 4096

A25
A13

A22
A12

A21
A11

A24
A9

A23
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

0 1 111 N/A
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Note:

To use Table 9-4, first find the ASYM, WIDTH, and DEPTH values for the desired DRAM bank configuration in Table
9-3, “Supported DRAM Bank Configurations,” on page 9-7.

1 0 000 N/A

1 0 001 1 MB: 1x10x9x16
1 Kbyte, 1024

A13 A12
A9

A11
A8

A10
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A1

1 0 010 2 MB: 1x12x8x16 
0.5 Kbyte, 4096

A9 A10 A13 A12 A11
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A1

1 0 011 4 MB: 1x12x9x16
1 Kbyte, 4096

A11 A10 A13 A12

A9

A21

A8

A20

A7

A19

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A1

1 0 100 8 MB: 1x12x10x16
2 Kbyte, 4096

A11 A22 A13
A10

A12
A9

A21
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A1

1 0 101 16 MB: 1x13x10x16 
2 Kbyte, 8192

A11 A23 A22 A13
A10

A12
A9

A21
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A1

1 0 110 32 MB: 1x13x11x16 
4 Kbyte, 8192

A12 A23 A24

A11

A13

A10

A22

A9

A21

A8

A20

A7

A19

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A1

1 0 111 N/A

1 1 000 N/A

1 1 001 2 MB: 1x10x9x32
2 Kbyte, 1024

A11 A13
A9

A12
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

1 1 010 4 MB: 1x12x8x32
1 Kbyte, 4096

A10 A11 A21 A13 A12
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A9

1 1 011 8 MB: 1x12x9x32
2 Kbyte, 4096

A11 A22 A21 A13

A9

A12

A8

A20

A7

A19

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A10

1 1 100 16 MB: 1x12x10x32 
4 Kbyte, 4096

A23 A22 A21
A11

A13
A9

A12
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

1 1 101 32 MB: 1x13x10x32 
4 Kbyte, 8192

A12 A24 A22 A21
A11

A13
A9

A23
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

1 1 110 64 MB: 1x13x11x32 
8 Kbyte, 8192

A13 A25 A22

A12

A21

A11

A24

A9

A23

A8

A20

A7

A19

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A10

1 1 111 N/A

Table 9-4 Non-Interleaved System Address (A) to Memory Address (MA) Mapping (cont.)

CSC Index 00–03h
Bit Values

DRAM 
Configuration

Non-Interleaved MA Mapping

System Address to MA Mapping for Rows/Columns

Asym Width Depth

Bytes: Banks x 
Rows x Cols x Bits, 
Page Size, Refresh 

Cycles

MA
12

MA 
11

MA 
10

MA 
9

MA 
8

MA 
7

MA 
6

MA 
5

MA 
4

MA 
3

MA 
2

MA 
1

MA 
0
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Table 9-5 Interleaved System Address (A) to Memory Address (MA) Mapping

CSC Index 00–03h
Bit Values

DRAM 
Configuration

Interleaved MA Mapping

System Address to MA Mapping for Rows/Columns

Asym Width Depth

Bytes: Banks x 
Rows x Cols x Bits, 
Page Size, Refresh 

Cycles

MA
12

MA
11

MA
10

MA
9

MA
8

MA
7

MA
6

MA
5

MA
4

MA
3

MA
2

MA
1

MA
0

0 0 000 1 MB: 2x9x9x16
2 Kbyte, 512

A12
A9

A11
A8

A13
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

0 0 001 N/A

0 0 010 4 MB: 2x10x10x16
4 Kbyte, 1024

A13

A11

A12

A9

A21

A8

A20

A7

A19

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A10

0 0 011 8 MB: 2x11x10x16
4 Kbyte, 2048

A12 A13

A11

A22

A9

A21

A8

A20

A7

A19

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A10

0 0 100 16 MB: 2x11x11x16 
8 Kbyte, 2048

A23

A12

A13

A11

A22

A9

A21

A8

A20

A7

A19

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A10

0 0 101 32 MB: 2x12x11x16 
8 Kbyte, 4096

A23 A24

A12

A13

A11

A22

A9

A21

A8

A20

A7

A19

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A10

0 0 110 64 MB: 2x12x12x16 
16 Kbyte, 4096

A25

A13

A24

A12

A23

A11

A22

A9

A21

A8

A20

A7

A19

A6

A18

A5

A17

A4

A16

A3

A15

A2

A14

A10

0 0 111 N/A

0 1 000 2 MB: 2x9x9x32
4 Kbyte, 512

A13
A9

A12
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A11

A14
A10

0 1 001 N/A

0 1 010 8 MB: 2x10x10x32
8 Kbyte, 1024

A21
A12

A13
A9

A22
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A11

A14
A10

0 1 011 16 MB: 2x11x10x32 
8 Kbyte, 2048

A22 A21
A12

A13
A9

A23
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A11

A14
A10

0 1 100 32 MB: 2x11x11x32 
16 Kbyte, 2048

A22
A13

A21
A12

A24
A9

A23
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A11

A14
A10

0 1 101 64 MB: 2x12x11x32 
16 Kbyte, 4096

A25 A22
A13

A21
A12

A24
A9

A23
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A11

A14
A10

0 1 110 N/A

0 1 111 N/A
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Note:

To use Table 9-5, first find the ASYM, WIDTH, and DEPTH values for the desired DRAM bank configuration in Table
9-3, “Supported DRAM Bank Configurations,” on page 9-7.

1 0 000 N/A

1 0 001 2 MB: 2x10x9x16
2 Kbyte, 1024

A13 A12
A9

A11
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

1 0 010 4 MB: 2x12x8x16
1 Kbyte, 4096

A11 A10 A13 A12 A21
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A9

1 0 011 8 MB: 2x12x9x16
2 Kbyte, 4096

A11 A12 A13 A22
A9

A21
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

1 0 100 16 MB: 2x12x10x16 
4 Kbyte, 4096

A23 A12 A13
A11

A22
A9

A21
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

1 0 101 32 MB: 2x13x10x16 
4 Kbyte, 8192

A12 A23 A24 A13
A11

A22
A9

A21
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

1 0 110 64 MB: 2x13x11x16 
8 Kbyte, 8192

A13 A25 A24
A12

A23
A11

A22
A9

A21
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A2

A14
A10

1 0 111 N/A

1 1 000 N/A

1 1 001 4 MB: 2x10x9x32
4 Kbyte, 1024

A21 A13
A9

A12
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A11

A14
A10

1 1 010 8 MB: 2x12x8x32
2 Kbyte, 4096

A11 A22 A21 A13 A12
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A9

A14
A10

1 1 011 16 MB: 2x12x9x32
4 Kbyte, 4096

A23 A22 A21 A13
A9

A12
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A11

A14
A10

1 1 100 32 MB: 2x12x10x32 
8 Kbyte, 4096

A13 A22 A21
A12

A24
A9

A23
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A11

A14
A10

1 1 101 64 MB: 2x13x10x32 
8 Kbyte, 8192

A13 A25 A22 A21
A12

A24
A9

A23
A8

A20
A7

A19
A6

A18
A5

A17
A4

A16
A3

A15
A11

A14
A10

1 1 110 N/A

1 1 111 N/A

Table 9-5 Interleaved System Address (A) to Memory Address (MA) Mapping (cont.)

CSC Index 00–03h
Bit Values

DRAM 
Configuration

Interleaved MA Mapping

System Address to MA Mapping for Rows/Columns

Asym Width Depth

Bytes: Banks x 
Rows x Cols x Bits, 
Page Size, Refresh 

Cycles

MA
12

MA
11

MA
10

MA
9

MA
8

MA
7

MA
6

MA
5

MA
4

MA
3

MA
2

MA
1

MA
0
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9.4.2 Timing and Control Signal Generation
All memory controller timing is derived from a single clock, which operates at 66 MHz if the 
CPU speed is 33 MHz, or if the graphics controller on the ÉlanSC400 microcontroller is 
enabled. When the graphics controller is disabled, the memory clock operates at two times 
the CPU bus clock.

The ÉlanSC400 and ÉlanSC410 Microcontrollers Data Sheet (order #21028) shows all 
the relevant timing diagrams.

9.4.2.1 Page Mode and RAS Time-Outs

The DRAM controller uses the page-mode capabilities of the DRAM whenever the CPU 
speed is greater than 8 MHz. This can greatly speed up some DRAM accesses, particularly 
graphics controller FIFO fills and CPU burst cycles. After a row address is driven out on 
MA12–MA0 with a RAS strobe, the DRAM controller may keep issuing new column 
addresses on MA12–MA0 with CAS strobes until either a new page is required, a refresh 
cycle is required, or the DRAM's tRAS parameter (RAS time-out value) would be violated. 
The tRAS value may be set to either 10 or 100 µs via bit 5 of the DRAM Refresh Control 
Register (CSC index 05h).

9.4.2.2 MWE Generation

The controller asserts MWE one cycle before asserting any CAS strobes so that the DRAMs 
can distinguish write from read cycles (this assertion of MWE before CAS is referred to as 
an early write cycle). The DRAMs will latch the written data on the falling edge of CAS, 
assuming that their tWCS parameter is not violated. For systems with heavily loaded MWE 
lines, the DRAM Control Register (CSC index 04h[6]) can be set to delay CAS after MWE 
by an extra clock period, to ensure that the tWCS parameter is met. This delay is also applied 
to reads (to guarantee that MWE is inactive before CAS strobes active) to meet the DRAMs' 
tRCS parameter.

For EDO DRAMs, after the completion of a read (or multiple reads, in the case of a graphics 
controller FIFO fill or a CPU burst), MWE will be pulsed low (with all CAS strobes 
deasserted) for one memory clock to disable the DRAM outputs.

9.4.2.3 CAS Pulse Width

CSC index 04h[4] determines the minimum value of the tCAS DRAM parameter (minimum 
active pulse width). Setting this bit adds 1 cycle to the minimum number of memory clock 
cycles, which is 2 for graphics controller cycles and cycles addressed to EDO DRAM and 
3 for CPU or DMA cycles addressed to FPM DRAM.

9.4.2.4 CAS Precharge Delay

CSC index 04h[3] determines the minimum value of the tCP DRAM parameter (minimum 
amount of time CAS is inactive before it goes active). If this bit is 0, the minimum tCP value 
is 1 memory clock for normal reads and writes and 2 memory clocks for write-backs and 
copy-backs (a four double-word burst). (Note that the additional precharge delay will occur 
only between consecutive double words, not between two 16-bit writes which were broken 
up into two cycles to accommodate 16-bit DRAM banks.) If this bit is 1, the minimum tCP 
value is 2 memory clocks.

9.4.2.5 Refresh

The DRAM controller performs CAS-before-RAS refreshes. Refresh parameters including 
enable, clock source, divisor, and self refresh are selectable via CSC index 05h. The refresh 
clock may be sourced from the programmable interval timer (PIT) for backward PC/AT 
compatibility or from the 32-KHz clock.
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When the 32-KHz clock is used, the refresh rate may be programmed to be 8, 16, 32, or 
64 KHz. The slowest rate which is within tolerance for the chosen DRAM should be used. 
DRAM refresh requirements are often specified in terms of a refresh interval (e.g., how long 
a row can go without being refreshed). The required refresh rate can be calculated by 
dividing the number of rows that must be refreshed by the required refresh interval. For 
example, if a DRAM part is organized as 2 Mbit x 8, with 11 row addresses (meaning there 
are 2048 rows) and 10 column addresses, and must be refreshed in 32 ms, the formula is 
2048 rows/32 ms = 64 Kbyte Rows/s.

Some DRAM devices will internally refresh multiple rows per refresh request, so the DRAM 
data sheet must be read carefully to understand the requirements of the particular device.

If the chosen DRAM devices require a refresh rate faster than 64 KHz (note that no such 
devices are available at press time), they must be refreshed using the programmable 
interval timer (PIT), and if the system is to support Suspend mode, the DRAM must support 
self-refresh, because the PIT is disabled during Suspend mode.

When the self-refresh bit in CSC index 05h is set, whenever the CPU enters Suspend 
mode, all system DRAMs are placed into self-refresh mode by asserting CAS before RAS 
and then holding both signals active.

If the memory clock is 33 MHz or greater, the RAS signal assertions and deassertions will 
be staggered (turned on and off one strobe at a time) to minimize switching currents and 
noise.

9.5 INITIALIZATION
Complete source code of a sample application that initializes the DRAM controller and 
determines the type and size of the attached DRAM devices can be found at 
ftp://ftp.amd.com/pub/epd/e86.

9.5.1 Boot Process Overview
In a closed embedded system, the designer may be able to simply choose the correct 
values to output to CSC indexed registers 00–07h and be finished. Systems where the 
DRAM parameters are not known at boot time (e.g., because there is a DRAM DIMM socket 
available) present more issues. Many DRAM characteristics, such as signal loading, cannot 
be accurately determined by software. One way to deal with this issue is to have a staged 
boot process, as follows:

■ First, all timing and drive strength registers are programmed to assume a worst-case 
system. The values for this are: CSC index 04h = 5Ch, index 05h = 40h, index 06h = 
00h, and index 07h = 00h. Also, if the microcontroller might be operating at 2.7 V, CSC 
index 14h[5] should be set.

■ Next, the DRAM banks are individually tested for DRAM existence, type (EDO/FPM), 
and size. Banks which contain DRAM are enabled with the correct parameters. See 
sections 9.5.2 for a full description of this process.

■ A system memory test is then performed to ensure there are no obvious problems. The 
user may be notified, and bad banks may be disabled, if any problems are encountered.

■ If the user has control over DRAM setup parameters, such as timing and drive strength, 
the user’s parameters must not be applied to the DRAM array until late in the boot 
process so that the setup program can always be used to recover the system if it becomes 
unbootable. After finishing or bypassing the setup menu, the system can apply user 
selections to CSC indexed registers 04–07h and finish booting.
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9.5.2 Dynamic DRAM Detection Algorithm
Many systems require the capability to dynamically configure the DRAM controller for the 
installed DRAM. This involves determining the amount and type of DRAM installed, and 
setting the registers appropriately.

The algorithm that does this must be careful to avoid bus contention between DRAM banks, 
and between DRAM and ROM during the process. Avoiding this contention is very difficult, 
because contention can occur in several ways:

■ Using DRAM during detection (e.g., using Bank 0 while detecting Bank 1) will result in 
contention.

■ Executing the detection algorithm from 32-bit ROMs will result in contention. (If booting 
from 32-bit ROMs, the detection algorithm must be run from the cache.)

■ Testing for EDO DRAMs must be done carefully, or contention will occur.

■ The detection algorithm must disable and enable banks, but if the algorithm disables a 
bank while a DRAM refresh is active, contention may result. A delay must be inserted 
between disabling refresh and disabling any bank.

■ If disabling or changing device width on a bank causes CAS signals to be transferred 
to the keyboard controller, a glitch on the upper CAS lines may result, causing contention. 
RAS2, RAS3, the upper CAS lines, and MA12 automatically become DRAM control 
signals if Bank 0 is enabled and set to 32 bits, Bank 1 is enabled and set to 32 bits, or 
either Bank 2 or 3 is enabled. Otherwise, they become matrix keyboard signals.

While avoiding any contention, the algorithm must determine the following for each bank:

■ If the bank is populated with DRAM

■ If the DRAM is EDO or FPM

■ If the DRAM is asymmetrical or symmetrical

■ The depth of the DRAM

■ The width of the DRAM

A code sample that contains the algorithm to determine these values and program the CSC 
registers appropriately can be found at ftp://ftp.amd.com/pub/epd/e86.

To determine total memory size after running the algorithm, simply add up the size 
represented by each enabled bank (except do not add in Bank 3 if CSC index 03h is equal 
to 0B0h). The amount of DRAM in each bank is determined by using the depth and width 
fields in the bank’s configuration register in the following formula:

DramBytes = 1 << ((depth field) + (width field) + 9);

In other words, the DRAM size is always 2n, where ‘n’ is 9 plus the 3-bit quantity in the 
depth field, plus 1 if the bank is 32 bits wide.
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9.6 POWER MANAGEMENT
Operation of the DRAM controller is affected by the power-management functions shown 
in Table 9-6.

Minimizing power consumption was a major goal in the design of the ÉlanSC400 and 
ÉlanSC410 microcontrollers. Some of the features of the DRAM controller that support this 
are not applicable to all designs and must be explicitly enabled by the designer.

■ The drive strength of the DRAM controller pins can be controlled using CSC indexed 
registers 06h and 07h. Reducing the drive strength to the minimum required for the 
application will reduce power consumption and EMI emissions.

■ DRAM self refresh during Suspend mode can be selected with CSC index 05h.

■ Extended-refresh DRAM devices are supported. The refresh timer may be programmed 
to run as slowly as 8 KHz.

Other DRAM controller features that minimize power consumption are generally transparent 
to system design, but might be noticed during system bring-up and debug. These include:

■ RAS signals are staggered during refresh for CPU bus clock frequencies of 16 and 33 
MHz. RAS signals are not staggered for CPU bus clock frequencies less than 16 MHz.

■ RAS and CAS signals are not generated for disabled banks during refresh.

■ MWE is pulsed after reads from EDO devices to force them to three-state the data bus.

■ Dynamic clock changes initiated by the PMU change the DRAM controller without extra 
complication.

■ Suspend mode operation is accomplished with a single 32-KHz clock.

Table 9-6 Power Management in the DRAM Controller

DRAM Controller 
Event Description

Power Management Effect

Wake-Up Activity SMI NMI

DRAM access CPU access to DRAM within graphics 
controller memory range

Programmable

DRAM access CPU access to DRAM not in graphics 
memory space

Programmable
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CHAPTER
10
 DMA CONTROLLER
10.1 OVERVIEW
Direct memory access (DMA) permits data transfer between memory and peripherals 
without CPU involvement. 

On the ÉlanSC400 and ÉlanSC410 microcontrollers, dual cascaded, 8237A-compatible 
DMA controllers provide seven user DMA channels. Of the seven internal channels, four 
are 8-bit channels and three are 16-bit channels.

Since the ÉlanSC400 and ÉlanSC410 microcontrollers support the standard PC/AT system 
architecture, the method for DMA transfer complies with the Industry Standard Architecture 
(ISA) specifications and will not be described in detail in this chapter.)

Any two of the seven channels can be simultaneously mapped to the external DMA request/
acknowledge lines, PRDQ1–PDRQ0 and PDACK1–PDACK0.

DMA transfers can be initiated by external ISA peripherals or by the serial infrared port and 
(on the ÉlanSC400 microcontroller) the PC Card interface (Sockets A and B). Each of these 
internal peripherals has a field in its control register for specifying which DMA channel is 
to be used for the transfer. Specific information about DMA transfers in the infrared port 
and the PC Card controller can be found in Section 18.4.2.9 and Section 19.5.7, 
respectively.

The DMA controller on the ÉlanSC400 and ÉlanSC410 microcontrollers is software-
compatible with the PC/AT cascaded 8237 controller pair. Its features include:

■ Single, block, and demand transfer modes

■ Enable/disable channel controller

■ Address increment or decrement

■ Software priority 

■ 64-Mbyte system address space for increased performance

■ Dynamic clock-enable design for reducing clocked elements during DMA inactivity

■ Programmable clock frequency for performance

10.2 REGISTERS

10.2.1 Direct-Mapped Registers
The DMA controller block on the ÉlanSC400 and ÉlanSC410 microcontrollers supports the 
following direct-mapped registers.

These registers are one per channel:

■ Memory Address Register (Read/Write)—This register provides the lower bits of the 
channel memory address. It is read/written via two successive I/O accesses. It is used 
in conjunction with the Page Register to form a 24-bit memory address. The 
microcontroller can perform 26-bit DMA accesses using the Extended Page registers 
available in CSC indexed register space.
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■ Transfer Count Register (Read/Write)—This register is written and read in two 
successive bytes. The actual number of transfers will be one more than specified by this 
register.

■ Page Register (Read/Write)—Provides the middle address bits during DMA transfers. 
The processor writes the Page Register before enabling DMA transfers.

The following registers are one per controller (slave/master):

■ Status Register (Read)—This register is read to determine the status of DMA requests 
and terminal counts detected per channel.

■ Control Register (Write)—This register controls various functions of the master or slave 
controller, such as priority type (fixed or rotating) and timing. It is also used to disable 
the master/slave controller while writing to the DMA registers.

■ Software Request Register (Write)—Software can initiate a DMA request, as long as 
the controller is programmed for block mode. This register is used to select which DMA 
channel will assert or deassert a DMA request initiated by software.

■ Mask Register (Write)—This register is used to mask or unmask DMA channels. Setting 
a mask bit to 1 disables the channel.

■ Mode Register (Write)—This register is used to specify the transfer mode (demand, 
single, block, or cascade), address decrement, and type of DMA operation (verify, write, 
or read) per channel.

■ Clear Byte Pointer Register (Write)—This register is used across the slave or master 
controller to determine which byte will be accessed in the 16-bit registers of the DMA 
controller.

■ Controller Reset Register (Write)—A write of any data to this register resets the DMA 
controller to the same state as a hardware reset.

■ Reset Mask Register (Write)—Writing data to this register resets the Mask Register, 
thereby activating the associated DMA channels.

■ General Mask Register (Write)–This register provides another alternative for enabling 
the DMA channels. It is used to disable or enable incoming requests.

10.2.2 Chip Configuration and Control (CSC) Registers
A summary listing of the chip setup and control (CSC) index registers used to control the 
DMA controller is shown in Table 10-1. Complete register descriptions can be found in the 
ÉlanSC400 Microcontroller Register Set Reference Manual (order #21032).

CSC indexed registers provide any functionality beyond normal strict PC/AT compatibility, 
such as Extended Page registers and the ability to map PDRQx and PDACKx signals to 
specific channels of the DMA controller.

10.2.2.1 Extended Page Registers

The Extended Page registers provide the upper address bits during DMA transfers. The 
Extended Page registers permit DMA addresses to extend throughout the 64-Mbyte 
memory address space. The processor writes the Extended Page registers before enabling 
DMA transfers.
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Table 10-1 DMA Controller Register Summary

10.3 BLOCK DIAGRAM
A block diagram of the DMA controller block on the ÉlanSC400 and ÉlanSC410 
microcontrollers is shown in Figure 10-1.

The DMA system supports seven DMA channels. Two DMA controllers are used: the slave 
controller supports four 8-bit channels and the master controller supports three 16-bit 
channels. Channels 0–3 must be programmed as 8-bit channels, and Channels 5–7 must 

Register I/O Address DMA Controller Function Keyword
Description 
in Register 
Set Manual

Pin Mux Register A 22h/23h
Index 38h

ISA DMA signals enable: PDRQ0, PDACK0, 
AEN, and TC

page 3-44

Pin Mux Register B 22h/23h
Index 39h

ISA DMA signals enable: PDRQ1, PDACK1, 
AEN, and TC

page 3-45

Wake-Up Source Enable 
Register C

22h/23h
Index 54h

Wake-up source enable: PDRQ0 and PDRQ1 page 3-61

Wake-Up Source Status 
Register C

22h/23h
Index 58h

Wake-up source status: PDRQ0 and PDRQ1 page 3-65

Activity Source Enable 
Register C

22h/23h
Index 64h

Activity source enable: DMA request page 3-73

Activity Source Status Register C 22h/23h
Index 68h

Activity source status: DMA request page 3-77

Activity Classification Register C 22h/23h
Index 6Ch

Primary or secondary activity classification: 
DMA request

page 3-81

Clock Control Register 22h/23h
Index 82h

DMA controller clock frequency select, high-
speed infrared operation

page 3-90

CLK_IO Pin Output Clock Select 
Register

22h/23h
Index 83h

Internal DMA and 2x DMA clock select for 
CLK_IO

page 3-91

Internal I/O Device Disable/Echo 
Z-Bus Configuration Register

22h/23h
Index D0h

DMA0 and DMA1 slave controller disable page 3-164

DMA Channel 0–3 Extended 
Page Register

22h/23h
Index D9h

Highest two bits of memory address for 
channels 3–0

page 3-175

DMA Channel 5–7 Extended 
Page Register

22h/23h
Index DAh

Highest two bits of memory address for 
channels 7–5

page 3-176

DMA Resource Channel Map 
Register A

22h/23h
Index DBh

PDRQx/PDACKx and infrared controller 
mapping to internal DMA controller channels

page 3-177

DMA Resource Channel Map 
Register B

22h/23h
Index DCh

PC Card Sockets A and B mapping to internal 
DMA controller channels

page 3-178

IrDA Control Register 22h/23h
Index EAh

Infrared DMA start-up control, data rate select page 3-188

IrDA Status Register 22h/23h
Index EBh

Infrared DMA IRQ state and generation page 3-190

PC Card Mode and DMA Control 
Register

22h/23h
Index F1h

DMA enable for PC Card Sockets A and B page 3-198
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be programmed as 16-bit channels. Channel 4 must be programmed to Cascade mode 
and must be unmasked if any of the 8-bit channels 0–3 are to be used.

The external DMA ISA signals are shared with other functions.

■ PDRQ0 and PDACK0 are shared with GPIO_CS12 and GPIO_CS11, respectively.

■ AEN and TC and shared with GPIO_CS10 and GPIO_CS9, respectively.

■ PDRQ1 and PDACK1 are shared with KBD_ROW8 and KBD_ROW7, respectively.

On the ÉlanSC400 microcontroller, PC Card DMA requests can be programmed to appear 
on either the WP_x pins or the BVD2_x pins.

Figure 10-1 DMA Controller Block Diagram

Cascaded

8237-Compatible

Page and Extended

Channel

Mapping

HLDA

TC

IOR
IOW

AEN

ADDR(15–0)

DRQ(7–0)

Infrared DMA Request Infrared DMA Acknowledge

PDRQ0
PDACK0

PDRQ1
PDACK1

DMA Controllers

PC Card DMA

ÉlanSC400 Microcontroller

Page Registers

Target (Memory)

Control

HOLD
To/From CPU

Initiator 

Control

(I/O)

ISA
I/O

PC Card
I/O

IOR
IOW
TC=WE 

or OE

DRAM, ISA,
or PC Card
Memory
Signals

Infrared
Read/Write

DACK(7–0)

BVD2_A (SPKR_A)

Acknowledge
PC Card DMA
Requests

BVD2_B (SPKR_B)
REG_A

REG_B

Signals

Note:

Instead of BVD2_A and BVD2_B, the PC Card signals WP_A and WP_B can be programmed as
DMA requests. This selection is made in the PC Card Mode and DMA Control Register (CSC index
F1h[7–4]). The PC Card controller is not supported on the ÉlanSC410 microcontroller.
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10.4 OPERATION
The ÉlanSC400 and ÉlanSC410 microcontrollers support standard PC/AT DMA transfers 
as follows:

■ Only fly-by DMA transfers are supported. A fly-by transfer is a transfer in which the data 
is moved from the I/O device to memory (DMA write), or from memory to the I/O device 
(DMA read) in a single transaction. 

■ Single, block, and demand transfers are supported. 

■ Memory-to-memory transfers are not supported.

The DMA controller operates in standard PC/AT mode at 4 MHz, or optionally at 8 or 
16 MHz. The faster speed reduces DMA overhead significantly, but is non-standard. It 
should only be used when all DMA initiators are capable of the faster timing. The internal 
infrared controller is capable of using the fast DMA timing. Note that there is no method to 
automatically change the DMA controller clock based on initiator. If the DMA clock is 
programmed for 16 MHz, the ISA and PC Card DMA cycle timing will be non-standard and 
may result in failures. The DMA clock is controlled by CSC index 82h.

10.4.1 Addressing DMA Channels
Channels 0–3 support 8-bit data transfers between 8-bit I/O devices and system memory. 
8-bit DMA may access any location within the 64-Mbyte system address space; however, 
the address counter is only 16 bits wide, so 8-bit DMA requests cannot cross 64-Kbyte 
physical page boundaries. As shown in Table 10-2, during 8-bit DMA transfers, the DMA 
slave controller provides the lower 16 bits, DMA Page registers provide the next 8 bits, and 
Extended Page registers provide the top 2 bits of the system memory address. 

DMA Channel 4 is used to cascade channels 0–3 from the slave controller through the 
master controller to the CPU and is not available for data transfer.

Channels 5–7 support 16-bit data transfers between 16-bit I/O devices and system memory. 
16-bit DMA may access any even (word-aligned) location within the 64-Mbyte system 
address space; however, the address counter is only 16 bits wide, so 16-bit DMA requests 
cannot cross 128-Kbyte physical page boundaries. As shown in Table 10-3, during 16-bit 
DMA transfers, A0 is 0, the DMA master controller provides the next 16 bits, DMA Page 
registers provide the next 7 bits, and Extended Page registers provide the top 2 bits of the 
system memory address.

Table 10-2 8-Bit DMA Channel Address Generation

Table 10-3 16-Bit DMA Channel Address Generation

Source Extended Page Registers DMA Page Registers
Slave Controller

Channel x
Memory Address Register

Address A25–A24 A23–A16 A15–A0

Source Extended Page Registers DMA Page Registers
Master Controller

Channel x
Memory Address Register

Address A25–A24 A23–A17 A16–A1
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10.4.2 DMA Transfers
Because the ÉlanSC400 and ÉlanSC410 microcontrollers support the standard PC/AT 
system architecture, the method for DMA transfer complies with the Industry Standard 
Architecture (ISA) specifications. The following general rules apply to DMA transfers on 
the ÉlanSC400 and ÉlanSC410 microcontrollers:

■ The DMA initiator is the I/O device that asserts DRQ. This is always an I/O device residing 
on either the ISA bus or PC Card bus, or the infrared port, and may be either 8 bits 
(Channels 0–3) or 16 bits (Channels 5–7). (Note that the infrared port must be 
programmed as an 8-bit channel).

■ The DMA target is the memory device being accessed by the I/O device (the DMA 
Initiator). It is always a memory resource, and may be either DRAM (16/32 bits), ISA 
bus (8/16 bits), or PC Card bus (8/16 bits), as listed in Table 10-4. Note that ROMCSx 
and VL-bus targets are not supported; neither is a PC Card initiator to a PC Card target.

■ The target memory must be currently mapped into the CPU address space, either linearly 
or using an MMS window. This address mapping must not change during the DMA 
transfer.

■ An 8-bit DMA initiator may not transfer to a target that is less than its bus width. For 
example, a 16-bit initiator cannot transfer to an 8-bit target. An 8-bit target can transfer 
to a 16-bit target.

Table 10-4 Supported DMA Initiator/Target Combinations

Note:

The PC Card controller is not supported on the ÉlanSC410 microcontroller.

■ All DMA transfers are fly-by type (the data is moved from the I/O device to memory (DMA 
write), or from memory to the I/O device (DMA read) in a single transaction). A non-fly-
by transfer implies two cycles, one for the initiator and one for the target. PC/AT DMA 
transactions are always fly-by type.

■ Memory-to-memory transfers are not supported.

■ There are three modes of DMA transfers supported: single transfer, demand transfer, 
and block transfer (described more completely below).

Fly-by DMA transfers require the ability to simultaneously assert an I/O command and a 
memory command (i.e. IOR, MEMW for DMA writes, IOW, MEMR for DMA reads). The 
ISA bus provides an additional signal, AEN, to prevent I/O devices residing on the same 
bus as the DMA initiator from decoding the memory target address driven by the DMA 
controller.

DMA Initiator
DMA Target

DRAM ISA Bus PC Card

Infrared Port (8 bits) Yes Yes Yes

PC Card (8/16 bits) Yes Yes No

ISA bus (8/16 bits) Yes Yes Yes
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10.4.2.1 Transfer Modes

The DMA controller performs read and write operations in single cycle, demand, or block 
transfer modes. 

■ A read operation consists of a memory read cycle from the address in the current address 
register followed by an I/O write cycle. 

■ A write operation consists of an I/O read cycle followed by a memory write cycle to the 
address in the current address register. Depending on the DMA channel selected, the 
data may be 8 bits or 16 bits in width. 

ISA bus DMA timing requires that one DMA wait state be inserted during all DMA read 
cycles, and two wait states must be inserted for DMA write cycles. Also, additional wait 
states may be added by the actual DMA target.

10.4.2.1.1 Single Transfer Mode
In single transfer mode, the DMA initiator asserts DRQ and holds it active until 
acknowledged by the assertion of DACK. The DMA controller performs the programmed 
DMA transfer.

10.4.2.1.2 Demand Transfer Mode
In demand transfer mode, the DMA initiator asserts DRQ and holds it active as long as it 
has data to be transferred. The DMA controller will continue to perform DMA transfers until 
Terminal Count (TC) is reached or the DRQ is deasserted by the DMA initiator.

10.4.2.1.3 Block Transfer Mode
In block transfer mode, the DMA initiator asserts DRQ and holds it active until acknowledged 
by the assertion of DACK. The DMA controller performs DMA transfers until TC is reached, 
indicating the programmed number of transfers has been completed. Any channel mapped 
for use with the infrared port must not be programmed for block mode.

10.4.2.2 Autoinitialize

During autoinitialize, the original values of the Current Address and Current Word Count 
registers are automatically restored to the values in the Base Address and Base Word 
Count registers of the given channel following the TC.

10.4.2.3 Priority

After recognition of any one channel for service, the other channels are prevented from 
interfering with that service until it is complete. After completion of a service, HOLD goes 
inactive until HLDA is inactive before HOLD is activated for a second cycle. 

The fixed priority scheme is based upon the descending value of channel numbers (Channel 
0 is the highest priority). DRQ must be held active until DACK becomes active in order to 
be recognized. 

In the rotating priority scheme, the last channel serviced becomes the lowest priority, with 
the other channels rotating accordingly.

10.4.2.4 DMA Cycles

Table 10-5 shows the eight ISA DMA cycle types and the command strobes generated by 
each. The ISA command strobes MEMR and MEMW are asserted only for ISA cycles. The 
IOR and IOW command strobes are asserted for both ISA and PC Card cycles. Separate 
memory strobes are provided for accesses to ROM and PC Card memory. The ROM 
interface uses dedicated ROMRD and ROMWR signals, while the PC Card sockets use 
MCEL_A, MCEH_A, MCEL_B, and MCEH_B.
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Table 10-5 ISA DMA Cycle Types

10.4.3 DMA Channel Mapping
DMA requests may originate from the following sources:

■ Infrared port (always 8 bits)

■ PC Card bus (8 bits or 16 bits) using WP_A, WP_B, BVD2_A or BVD2_B
(ÉlanSC400 microcontroller only)

■ ISA bus using PDRQ1–PDRQ0 and PDACK1–PDACK0 (8 bits or 16 bits)

Note that any channel mapped for use with the infrared port must not be programmed for 
block mode.

Table 10-6 shows the microcontroller resource and the DMA channels to which the resource 
can be mapped. 

All DMA channel mapping in the ÉlanSC400 and ÉlanSC410 microcontrollers is 
programmable using CSC index DBh and DCh. The DMA Resource Channel Map Registers 
A and B should be programmed consecutively to prevent two resources from being mapped 
to the same channel.

Table 10-6 DMA Channel Mapping

I/O Device Sits 
on this Bus 

(DMA Initiator)

Memory Device Sits 
on this Bus

(DMA Target)

Data Transfer Direction
(DMA Cycle Type)

ISA Command 
Strobes Generated

ISA ISA I/O to Memory (DMA Write) MEMW, IOR

ISA PC Card I/O to Memory (DMA Write) IOR

ISA DRAM I/O to Memory (DMA Write) IOR

PC Card ISA I/O to Memory (DMA Write) MEMW, IOR

ISA ISA Memory to I/O (DMA Read) MEMR, IOW

PC Card ISA Memory to I/O (DMA Read) MEMR, IOW

ISA PC Card Memory to I/O (DMA Read) IOW

ISA DRAM Memory to I/O (DMA Read) IOW

Microcontroller Resource

DMA Channel

0 1 2 3 4 5 6 7

Infrared Port X X

PC Card Controller (Sockets A and B)
(ÉlanSC400 microcontroller only)

X X X

PDRQ0/PDACK0 Programmable DMA Channel X X X X X X X

PDRQ1/PDACK1 Programmable DMA Channel X X X X X X X
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10.4.4 DMA Latency
The following requests could delay a DMA acknowledgment.

■ A higher priority DMA request

■ A cache write-back, if the DMA target is in a dirty cache line

■ A high-priority PMU request

The DMA Hold request is prevented from reaching the CPU when the CPU is in the Stop 
Grant state. Latency for this can be 1 ms.

Once a demand transfer or block transfer has started, if the DMA is trying to read from a 
memory region that is in the cache, the transfer will be paused while a cache line write-
back occurs. If the cache holds data that the DMA controller is overwriting, a cache line 
invalidate cycle will also occur. 

On the ÉlanSC400 microcontroller, when the internal graphics controller is enabled and 
the graphics FIFOs get starved, the DMA transfer will be held off while the graphics controller 
gets more data from DRAM.

10.5 INITIALIZATION
The DMA controller is enabled at power-on reset, but all channels are masked off. This is 
also the state after the Software Reset Register is written.

10.6 POWER MANAGEMENT
To conserve power, the DMA clock is gated to stop the clock due to DMA controller inactivity. 
Operation of the DMA controller is affected by the power-management functions shown in 
Table 10-7.

Table 10-7 Power Management in the DMA Controller

DMA Controller 
Event Description

Power Management Effect

Wake-Up Activity SMI NMI

External DMA request Triggered by rising edge of PDRQ0 or 
PDRQ1 if PDRQ is enabled and mapped to 
a DMA channel and Pin Mux Register A 
(CSC index 38h[0] selects the DMA 
function of the pin.

Yes Programmable
DMA Controller 10-9



DMA Controller10-10



CHAPTER
11
 PROGRAMMABLE INTERRUPT 
CONTROLLER
11.1 OVERVIEW
Dual, cascaded, 8259-compatible programmable interrupt controllers support 15 user 
interrupt levels. The two internal devices are internally connected on the ÉlanSC400 and 
ÉlanSC410 microcontrollers and must be programmed to operate in Cascade mode. 

Eight external interrupt requests (PIRQ7–PIRQ0) can be mapped to any of the 15 internal 
IRQ inputs. The programmable sources for interrupts going into the programmable interrupt 
controller (PIC) block are controlled through the CSC and PC Card index registers.

The interrupt controller block includes these features:

■ Software-compatibility with PC/AT interrupt controllers

■ 15-level priority controller

■ Programmable interrupt modes

■ Individual interrupt request mask capability

■ Accepts requests from peripherals

■ Resolves priority on pending interrupts and interrupts in service

■ Issues interrupt request to processor

■ Provides interrupt vectors for interrupt service routines 

■ Tied into the PMU for power management

The interrupt controller block is functionally compatible with the standard cascaded 8259A 
controller pair as implemented in the PC/AT system. The master controller drives the CPU’s 
interrupt input signal based on the highest priority interrupt request pending at the master 
controller’s IRQ7–IRQ0 inputs. The master IRQ2 input is configured for Cascade mode and 
is driven only by the slave controller’s interrupt output pin. The highest pending interrupt at 
the slave’s IRQ inputs will therefore drive the IRQ2 input of the master.

The interrupt controller has programmable sources for interrupts that are controlled using 
CSC indexed registers and (on the ÉlanSC400 microcontroller) using PC Card indexed 
registers.

11.2 REGISTERS
The following types of registers are used to configure the PIC on the ÉlanSC400 and 
ÉlanSC410 microcontrollers. 

■ Direct-mapped initialization words—These registers set the PIC to a known state.

■ Direct-mapped operation control words—These registers set up any special 
operating modes for the PIC.

■ Direct-mapped status registers—The Interrupt Request Register indicates which 
internal IRQs are requesting service.The In-Service Register indicates which internal 
IRQs are being serviced. The Interrupt Mask Register sets the mask bits for the internal 
IRQs.
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■ Indexed configuration registers

A summary listing of the CSC and PC Card indexed registers used to control the PIC is 
shown in Table 11-1. Complete register descriptions for all the registers used to configure 
the PIC can be found in the ÉlanSC400 Microcontroller Register Set Reference Manual 
(order #21032).

Table 11-1 Programmable Interrupt Controller Register Summary

11.3 BLOCK DIAGRAM
A block diagram of the PIC on the ÉlanSC400 and ÉlanSC410 microcontrollers is shown 
in Figure 11-1.

The interrupt controller block on the ÉlanSC400 and ÉlanSC410 microcontrollers is 
functionally compatible with the standard cascaded 8259A controller pair, as implemented 
in the PC/AT system. 

Interrupt Requests 0–7 are configured for master operation in Cascade mode, with IRQ2 
dedicated to cascading the slave interrupt controller. Interrupt Requests 8–15 are 
configured for slave operation.

Register I/O Address
Programmable Interrupt Controller 
Function Keyword

Description 
in Register 
Set Manual

Chip Setup and Control (CSC) Index Registers

Keyboard Configuration 
Register A

22h/23h
Index C0h

 XT keyboard IRQ1 control, SCP mouse 
emulation IRQ12 control

page 3-146

Interrupt Configuration 
Register A

22h/23h
Index D4h

PIRQ1–PIRQ0 mapping to IRQ15–IRQ1 page 3-170

Interrupt Configuration 
Register B

22h/23h
Index D5h

PIRQ3–PIRQ2 mapping to IRQ15–IRQ1  page 3-171

Interrupt Configuration 
Register C

22h/23h
Index D6h

PIRQ5–PIRQ4 mapping to IRQ15–IRQ1  page 3-172

Interrupt Configuration 
Register D

22h/23h
Index D7h

PIRQ7–PIRQ6 mapping to IRQ15–IRQ1 page 3-173

Interrupt Configuration 
Register E

22h/23h
Index D8h

Mapping of UART, infrared port, parallel port, 
and cursor high/low address register IRQs; 
IRQ3, IRQ4, IRQ5, IRQ7, IRQ9

page 3-174

PC Card Index Registers

Interrupt and General Control 
Register

3E0h/3E1h
Index 03h 
(Socket #A) 
and 43h 
(Socket #B)

IRQ mapping for RDY_X page 6-11

Card Status Change Interrupt 
Configuration Register

3E0h/3E1h
Index 05h (#A) 
and 45h (#B)

IRQ mapping for card status change interrupt page 6-13
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Figure 11-1 Programmable Interrupt Controller Block Diagram

11.4 OPERATION
The PIC as implemented on the ÉlanSC400 and ÉlanSC410 microcontrollers is different 
from the standard 8259 part in the following ways.

■ Cascade mode is hardwired internally, using INT2 for the cascade. 

■ 8080/8085 mode is not supported. 

■ Automatic End-of-Interrupt (AEOI) is not supported in the slave. However, AEOI is 
supported in the master.

■ After initialization, the PIC always comes up in fully nested mode. EOIs should already 
be defined.

INT2 (Slave)

INT1 (Master)

Interrupt Configuration Registers A–E

Interrupt Mapping and IRQ Qualification

INT2 (Slave)

Cascade lines

IRQ2INT
INT to CPU

IRQ1–IRQ0

IRQ15–IRQ8
Qualified
IRQs to
PMU

IRQ7–IRQ3

PIRQ7–PIRQ0

ÉlanSC400 Microcontroller

Internal interrupt sources

External interrupt sources
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11.4.1 IRQ Mapping
Table 11-2 shows the resources of the ÉlanSC400 and ÉlanSC410 microcontrollers and 
the IRQs that these peripherals can be mapped to. IRQ mapping in the ÉlanSC400 and 
ÉlanSC410 microcontrollers is programmable using CSC index registers and PC Card 
index registers. 

Note that sharing interrupts (i.e., steering two IRQ sources into the same IRQ line) is not 
recommended and may lead to unpredictable system behavior.

Table 11-2 IRQ Mapping

Note:

1. PC Card IRQ mapping is fully compatible with the 82365SL PC Card controller and is controlled by the PC Card 
index registers. The PC Card controller is not supported on the ÉlanSC410 microcontroller.

Microcontroller Resource

IRQ Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Programmable Interval Timer X

Matrix Keyboard Controller 
(Keyboard Output Buffer Full)

X

XT Keyboard Controller 
(Shift Buffer Full)

X

UART (8-Pin Serial and Infrared Ports) X X

Parallel Port X X

Real-Time Clock X

Graphics Controller 
(Cursor Control Address Register Accesses)

X

Matrix Keyboard Controller 
(Mouse Output Buffer Full)

X

PC Card (Sockets A and B):1

—I/O and Memory mode (IREQx pin)
—Memory-only mode (status change/RI)

X X X X X X X X X X

PIRQ0 Programmable IRQ I/O Pin X X X X X X X X X X X X X X

PIRQ1 Programmable IRQ I/O Pin X X X X X X X X X X X X X X

PIRQ2 Programmable IRQ I/O Pin X X X X X X X X X X X X X X

PIRQ3 Programmable IRQ I/O Pin X X X X X X X X X X X X X X

PIRQ4 Programmable IRQ I/O Pin X X X X X X X X X X X X X X

PIRQ5 Programmable IRQ I/O Pin X X X X X X X X X X X X X X

PIRQ6 Programmable IRQ I/O Pin X X X X X X X X X X X X X X

PIRQ7 Programmable IRQ I/O Pin X X X X X X X X X X X X X X
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11.4.2 Interrupt Vectors
Table 11-3 lists the vector returned to the CPU for each IRQ during the internal interrupt-
acknowledge sequence.

Table 11-3 Interrupt Vectors

11.5 INITIALIZATION
The PIC is enabled at power-on reset. However, it is not reset by a power-on reset.

None of the direct-mapped PIC (8259) registers have power-on reset values. These 
registers must go through an initialization sequence before being used. 

Note that all four initialization control words are required on the ÉlanSC400 and ÉlanSC410 
microcontrollers. The Initialization Control Word (ICW) registers 1–4 are programmed in 
sequence. Writing to Port 20h with bit 4 = 1 causes the ICW1 Register to be written and 
resets the PIC’s internal state machine and ICW register pointer. Master ICW2–4 are 
programmed via Port 21h. Each time Port 21h is written to (following ICW1), the register 
pointer points to the next internal ICW register. 

IRQ Vector Value

IRQ0 8h

IRQ1 9h

IRQ2 Not available 
(used for cascading)

IRQ3 Bh

IRQ4 Ch

IRQ5 Dh

IRQ6 Eh

IRQ7 Fh

IRQ8 70h

IRQ9 71h

IRQ10 72h

IRQ11 73h

IRQ12 74h

IRQ13 75h

IRQ14 76h

IRQ15 77h
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11.6 POWER MANAGEMENT
The interrupt controller provides interrupt information to the on-chip power management 
unit to allow the monitoring of the system activity. A qualified interrupt is sent to the PMU 
when an interrupt request is active (and not masked in the PIC), or when an interrupt in-
service bit is set. These signals are implemented as combinatorial paths to allow speeding 
up or starting of the system clocks depending on which device generates the interrupt 
request.

Operation of the programmable interrupt controller is affected by the power-management 
functions shown in Table 11-4.

Table 11-4 Power Management in the Programmable Interrupt Controller

PIC Event Description

Power Management Effect

Wake-Up Activity SMI NMI

External interrupt 
request

Triggered by a rising edge of any of the 
three PIRQ2–PIRQ0 signals if the PIRQ is 
enabled, mapped to an internal IRQ, and 
the IRQ function is selected via CSC index 
38h[1,2]

Yes

Internal interrupt 
request

Triggered by rising edge of any internal IRQ 
coming into the PMU

Programmable
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CHAPTER
12
 PROGRAMMABLE INTERVAL TIMER
12.1 OVERVIEW
The programmable interval timer (PIT) on the ÉlanSC400 and ÉlanSC410 microcontrollers 
is software-compatible with PC/AT 8254 system timers. The PIT provides three 16-bit timer 
channels (also called counters) that can be operated independently in six different modes. 
The PIT is generally used for timing external events, counting, and producing repetitive 
waveforms. It can be programmed to count in binary or in BCD.

All three timer channels are driven from a common clock internally generated from one of 
the on-chip phase-locked loops (PLL). Alternatively, the CLK_IO pin can be configured as 
an input to provide an external clock source. When the internal PLL is used for clock 
generation, the resulting source clock frequency is 1.1892 MHz. The standard PC/AT timer 
clock source frequency is 1.19318 MHz. Section 12.4.2.1 describes how this affects DOS-
compatible systems. 

12.2 REGISTERS
A summary listing of the chip configuration and control (CSC) index registers used to control 
the programmable interval timer is shown in Table 12-1. Complete register descriptions 
can be found in the ÉlanSC400 Microcontroller Register Set Reference Manual (order 
#21032).

12.2.1 Direct-Mapped Registers
The direct-mapped registers provide a common set of controls to load, read, and configure 
each timer channel. The following direct-mapped registers are available.

■ Programmable Interval Timer #1 Mode Control Register (Port 0043h)—Stores the 
control word used to define the operation of the channels, including mode. 

■ Programmable Interval Timer #1 Channel Count Registers (Ports 0040–0042h) —
Store the current count values for each channel.

■ Programmable Interval Timer #1 Counter Latch Command Register (Port 0043h)—
When the counter latch command is valid, the value in the status register plus the output 
signal of the counter is latched into this status latch register. The status in this register 
is cleared only after the status is read by the CPU.

■ Programmable Interval Timer #1 Read-Back Command Register (Port0043h)—
Allows the status and current mode of each channel to be read.

■ Programmable Interval Timer #1 Status Registers (Ports 0040–0042h) —Contain 
the programmed mode and the null count value for each timer channel. 

■ System Control Port B/ NMI Status Register (Port 0061h)—Controls the gate input 
for Timer Channel 2 and reflects the output signal state for Channel 2.
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Table 12-1 Programmable Timer Register Summary

12.3 BLOCK DIAGRAM
Figure 12-1 shows a block diagram of the programmable interval timer.

Figure 12-1 Programmable Interval Timer Block Diagram 

Register I/O Address Programmable Timer Function
Description 
in Register 
Set Manual

DRAM Refresh Control Register 22h/23h
Index 05h

PIT as DRAM refresh clock page 3-14

Pin Mux Register A 22h/23h
Index 38h

CLK_IO as PIT clock input page 3-44

Data Bus
Buffer

Output
Selector

Read/
Write
Logic

Control
Word
Decoder

Channel 0

Channel 1

Channel 2

Timer Clock

IRQ0

Refresh

Gate 2

Output

Gate 0

Gate 1

Vcc

Vcc

Internal 
Bus

ÉlanSC400 Microcontroller

Programmable
Interrupt
Controller PIRQx

Clock
DRAM
Controller

CLK_IO

Low-Speed
PLL

/31

Port B (0061h[0])

Port B (0061h[5])

SPKR
Port B (0061h[1])
Programmable Interval Timer12-2



12.4 OPERATION
Each of the three 16-bit timer channels can be operated independently. 

■ Timer Channel 0 is the primary system timer. It is used for generating interrupt requests. 
Its output is hardwired internally to drive IRQ0 of the microcontroller’s programmable 
interrupt controller. 

■ Timer Channel 1 is used for memory refresh. It is programmed as a rate generator to 
produce a refresh pulse to the microcontroller’s DRAM controller. The refresh source 
(either the PIT or 32 KHz) can be read in the System Control Port B/NMI Status Register 
(Port 0061h).

■ Timer Channel 2 is available for general system use. It is also used in conjunction with 
a bit (SPKD) in Port B to drive the SPKR output pin. 

12.4.1 Modes of Operation
The six timer modes are shown in Table 12-2. Channel 0 and Channel 1 operate in four 
modes only. Channel 2 supports all six modes of operation of the timer. Mode selection is 
performed in the PIT #1 Mode Control Register (Port 0043h). 

Table 12-2 Timer Modes

12.4.1.1 Mode 0: Interrupt on Terminal Count

Mode 0 is used to cause an event after a predetermined interval.

■ The initial count is loaded into the count register and the output of the counter goes Low. 

■ If the gate input is held High, the count value gets decremented by one for each input 
clock pulse. If the gate input is held Low, the count will maintain its state until after a 
rising edge of the clock after the gate goes High again. 

■ The output of the counter is initially Low and will remain Low until the counter reaches 
zero. 

■ The output then goes High until a new count or a new Mode 0 control word is loaded 
into the Counter. 

12.4.1.2 Mode 1: Hardware-Retriggerable One-Shot

Mode 1 is used to create a fixed duration output.

■ After an initial count is loaded into the count register, a rising edge on the gate input 
causes the output of the counter to go Low. 

Mode Function
Supported Channels

Channel 0 Channel 1 Channel 2

0 Interrupt on Terminal Count Yes Yes Yes

1 Hardware Retriggerable One-Shot No No Yes

2 Rate Generator Yes Yes Yes

3 Square Wave Generator Yes Yes Yes

4 Software Triggered Strobe Yes Yes Yes

5 Hardware Triggered Strobe No No Yes
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■ The count value gets decremented with each successive clock pulse. 

■ The gate trigger begins the one-shot pulse with the output going Low until the count 
reaches zero. 

■ Output then goes High and remain High until the clock pulse after the next trigger. 

The duration of the one-shot pulse is the initial count multiplied by the period of the clock 
input. This mode is called hardware retriggerable because, once an output pulse has 
started, if a rising edge is experienced at the gate input, the counter is reloaded with the 
initial count and the pulse continues until the new count expires. 

12.4.1.3 Mode 2: Rate Generator

Mode 2 is used to generate a short periodic pulse. PC/AT-compatible BIOS programs 
(including the ones available for the ÉlanSC400 and ÉlanSC410 microcontrollers) will 
program Channel 0 to operate in Mode 2 to provide the standard 55-ms timer tick.

When programmed in this mode, the counters operate as divide by N counters, where N 
is the initial count. 

■ The output signal starts off High until the initial count is decremented to one. 

■ The output then goes Low for one clock pulse and goes High again; the counter is 
reloaded with the initial count; and the counting sequence is repeated.

One clock pulse appears at the output for every N clock cycles.

12.4.1.4 Mode 3: Square Wave Mode

Mode 3 is used to generate a periodic square wave. Timer Channels 1 and 2 use this mode 
by default to drive DRAM refresh and speaker, respectively.

In this mode, the output of the counter has a 50% duty cycle whenever the counter is loaded 
with an even count. 

■ The output is initially High. 

■ The count decrements by two with each clock cycle when the gate is held High. 

■ When the count reaches zero the output toggles state, the initial count is reloaded and 
the sequence is repeated. 

The period of the output signal is equal to the input clock period multiplied by the initial 
count loaded into the counter. If the initial count is an odd number, the output is High for 
(N+1)/2 cycles and is Low for (N-1)/2 cycles. 

12.4.1.5 Mode 4: Software Triggered Strobe

Mode 4 generates a strobe under software control.

In this mode, the counter automatically begins to decrement one clock pulse after it is 
loaded with the initial count through software. 

■ The output signal is initially High. 

■ The count decrements at the rate set by the clock input signal. 

■ At the moment the terminal count is reached, the counter generates a single strobe 
pulse on the output for one clock pulse duration. 

If the counter is loaded with a count of N, then a strobe pulse is produced at the output 
after N+1 clock cycles.
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12.4.1.6 Mode 5: Hardware Triggered Strobe 

Mode 5 generates a strobe under hardware control.

The counting in this mode is initiated by a signal at the gate input. 

■ The output will be initially High. 

■ Counting begins at the rising edge of the gate input. The output remains High until the 
count has expired. 

■ The output goes Low for one clock cycle and goes High again. 

■ After writing the control word and the initial count, the counter is loaded at the next clock 
pulse after the trigger. 

The strobe pulse occurs N+ 1 clock pulses after the Low-to-High transition (trigger) on the 
gate input. This count sequence is retriggerable. 

12.4.2 Timer Configuration 

12.4.2.1 Configuring Timer Channel 0

Timer Channel 0 is used for generating interrupt requests. Its output is hardwired internally 
to drive IRQ0 of the interrupt controller. For DOS-compatible systems, system BIOS usually 
programs the PIT #1 Channel 0 Count Register (Port 0040h) to a value of FFFFh. DOS 
relies on this periodic interrupt in order to keep accurate time of day. Because the timer 
clock source is 1.1892 MHz in the ÉlanSC400 and ÉlanSC410 microcontrollers, the IRQ0 
is generated every 55.11 ms. Historically, the timer clock source has been 1.19318 MHz. 
This translates into an IRQ0 generation rate of 54.93 ms. This IRQ0 generation rate 
difference causes the time keeping function of DOS to be inaccurate. 

There are two possible ways to address this issue. One method involves modifying Port 
0040h via the system BIOS. The second method involves driving the timer from an external 
clock source.

■ Modifying PIT #1 Channel 0 Count Register (Port 0040h)—If the system BIOS programs 
Port 0040h to a value of FF23h, the desired IRQ0 generation rate of 54.93 ms can be 
achieved.

■ Driving an external 1.19318 MHz clock on the CLK_IO pin—A system designer may 
choose to supply an external clock source frequency of 1.19318 MHz on the 
microcontroller’s CLK_IO pin. This pin must be specifically configured for this 
functionality by the system BIOS during the system boot process prior to configuring 
Port 0040h. 

12.4.2.2 Configuring Timer Channel 1

Timer Channel 1 can be programmed as the system memory (DRAM) refresh clock source. 
It is programmed as a rate generator to produce a refresh pulse to the DRAM controller. 

In the ÉlanSC400 and ÉlanSC410 microcontrollers, the 32-KHz oscillator clock source is 
the default memory refresh clock source. If Timer Channel 1 is configured as the refresh 
clock source, the 32-KHz clock source is always enabled as the refresh clock source when 
the system enters the Suspend mode of operation and CAS-before-RAS refresh is enabled 
in Suspend. In this case, the refresh clock source will switch back to the timer Channel 1 
upon resuming from Suspend. This is required because the timer clock source is disabled 
during Suspend. 
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12.4.2.3 Configuring Timer Channel 2

The gate line for Timer Channel 2 is controlled by Port 0061h[0]. The output of Timer 
Channel 2 is read at Port 0061h[5]. The output goes to the speaker (SPKR) when Port 
0061h[1] is set. 

12.4.3 Programming the Timer Channels
The timer channels are programmed by first writing a control word into the PIT #1 Mode 
Control Register and then writing an initial count into the count register of the timer channel 
being programmed. The control word determines the format of the initial count.

A new initial count can be written at any time without affecting the programmed mode. The 
mode definitions describe how counting is handled in each mode. The new count must 
follow the programmed count format.

The channel must be read without disturbing the count in progress. There are three possible 
methods to accomplish this: a simple read operation, counter latch command, and read-
back command. 

■ Simple read operation—The count value in the count latch of the counter is read. It 
should be noted that simple reads will not always return a correct value. The two methods 
that follow are the preferred way of reading the current count.

■ Counter latch command—This command is written to the PIT #1 Mode Control Register 
and acts like a control word. The SC1–SC0 bits select one of the three channels; two 
other bits, RW1 and RW0, distinguish this command from a control word.

■ Read-back command—Also written to the PIT #1 Mode Control Register. It allows the 
user to check the count value, programmed mode, and current state of the output of the 
chosen channel. 

12.5 INITIALIZATION
The programmable interval timer is enabled at power-on reset. After power-up, the state 
of the timer itself is undefined. The mode, count value, and output of all channels are 
undefined. Each timer channel must be programmed before it can be used.

The timer clock is either the Low-Speed PLL divided by 31, or it is an external oscillator 
brought in on the CLK_IO pin. The default is to use the PLL to generate the timer clock. 

If the pin-multiplexing registers select CLK_IO to be active as an input, then the PIT gets 
its clock from this input. For DOS applications, the pin should have a stable 1.19218 MHz 
frequency on it, because it will be switched in immediately as the timer clock.

12.6 POWER MANAGEMENT
Operation of the programmable interval timer is affected by the power-management 
functions shown in Table 12-3.

Table 12-3 Power Management in the Programmable Interval Timer

PIT Event Description

Power Management Effect

Wake-Up Activity SMI NMI

Timer tick (IRQ0) Triggered by the rising edge of internal 
IRQ0

Programmable
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CHAPTER
13
 REAL-TIME CLOCK
13.1 OVERVIEW
The RTC designed into the ÉlanSC400 and ÉlanSC410 microcontrollers is compatible with 
the MC146818A device used in PC/AT systems. The RTC consists of time-of-day clock 
with alarm and a 100-year calendar. The clock/calendar has a programmable periodic 
interrupt and 114 bytes of static user RAM, and can be represented in either binary or BCD. 
The RTC includes the following features:

■ Counts seconds, minutes, and hours of the day

■ Counts days of the week, date, month, and year

■ 12–24 hour clock with AM and PM in 12 hour mode

■ 14 bytes of clock and control registers

■ 114 bytes of general purpose RAM

■ Three interrupts are separately software-maskable and testable

— Time-of-day alarm is programmable to occur from once-per-second to once-per-day

— Periodic interrupts can be continued to occur at rates from 122 µs to 500 ms

— Update-ended interrupt provides cycle status

The RTC has its own reset and power pin separate from the rest of the core supplies. When 
the chip is powered off, the RTC can remain powered up and in full functional mode, 
maintaining time, calendar, and user RAM data.

The RTC includes ten registers for time, calendar, and alarm data and four general-purpose 
registers, named A, B, C, and D. Register D has a status bit that indicates the validity of 
the contents of the RAM, time registers, and the calendar. This status bit is set based on 
the power supply level on the RTC VCC supply pin (VCC_RTC). The RTC alarm function 
is supported.

The RTC interrupt request is connected internally to IRQ8. This, along with other IRQs, 
may be configured as the system power management unit’s wake-up activity.

Note: The RTC must be initialized correctly to provide proper function of the matrix 
keyboard timer and, on the ÉlanSC400 microcontroller, the internal graphics controller. 
This initialization must occur, regardless of whether the internal RTC or an external device 
will be used for the RTC function in a system design.

13.2 REGISTERS
Two different sets of index registers are used to configure the RTC. 

■ The chip setup and control (CSC) index registers are accessed via the 22h/23h index/
data I/O scheme.

■ The standard RTC index registers are accessed via the PC/AT I/O space at Ports 0070h 
and 0071h. 
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A summary listing of the chip setup and control (CSC) and RTC index registers used to 
control the real-time clock is shown in Table 13-1. Complete register descriptions can be 
found in the ÉlanSC400 Microcontroller Register Set Reference Manual (order #21032).

13.2.1 RTC and Configuration RAM Index Registers
These indexed registers function as the configuration, setup, and status for the Real-Time 
Clock (RTC), as well as user-configurable RAM locations. 

■ RTC index registers 00–09h contain RTC seconds, minutes, hours, day of week, date 
of months, months of year, and year status, as well as second, minute, and hour alarm 
configuration control. Both binary and BCD formats are supported for these registers.

■ RTC registers 0A–0Dh are used to configure the RTC.

■ All index values from 0E–7Fh can be used as read/write RAM locations.

The 114 general-purpose RAM bytes are not dedicated to the RTC. They can be used by 
system- or application-level software and are fully available during the update cycle. These 
user RAM bytes provide low-power CMOS battery-backed storage and extend the RAM 
available to the program.

Table 13-1 Real-Time Clock Register Summary

Register I/O Address Real-Time Clock Function Keyword
Description 
in Register 
Set Manual

Chip Setup and Control (CSC) Index Registers

Wake Up Source Enable 
Register A

22h/23h
Index 52h

Wake-up source enable: RTC alarm (IRQ8) page 3-59

Wake Up Source Status 
Register A

22h/23h
Index 56h

Wake-up source status: RTC alarm page 3-63

Miscellaneous SMI/NMI Enable 22h/23h
Index 90h

SMI/NMI enable: RTC alarm (IRQ8) page 3-94

Miscellaneous SMI/NMI Status 
Register A

22h/23h
Index 94h

SMI/NMI status: RTC alarm page 3-99

SMI/NMI Select Register 22h/23h
Index 98h

SMI or NMI selection: RTC alarm page 3-104

Internal I/O Device Disable/Echo 
Z-Bus Configuration Register

22h/23h
Index D0h

RTC enable page 3-164

RTC and Configuration RAM Index Registers

RTC Current Second Register 70h/71h
Index 00h

Seconds page 4-5

RTC Alarm Second Register 70h/71h
Index 01h

Seconds alarm page 4-6

RTC Current Minute Register 70h/71h
Index 02h

Minutes page 4-7

RTC Alarm Minute Register 70h/71h
Index 03h

Minutes alarm page 4-8

RTC Current Hour Register 70h/71h
Index 04h

Hours, 12- and 24-hour mode page 4-9
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13.3 BLOCK DIAGRAM
A block diagram of the real-time clock is shown in Figure 13-1. Backup battery 
considerations, along with system diagrams, are described in Section 13.4.5.

13.3.1 Voltage Monitoring
The voltage monitor for the RTC block provides a reset signal to the RTC block when it 
detects a low backup battery voltage and provides an early warning signal when the system 
is powering down. A diagram of the RTC voltage monitor is shown in Figure 13-2. The 
internal RTC reset signal is asserted on power-up if the backup battery voltage drops below 
2.4 V. Internal circuitry prevents multiple resets during power-on. An internal power-down 
signal is used by the RTC to isolate the RTC core from the rest of the microcontroller. The 
RTC voltage monitor uses the RESET assertion to detect a power down.

The band gap block generates the bias currents for the four PLLs and provides the 2.4-V 
reference source for the RTC voltage monitor. The current sources, constant over VCC, 
temperature, and process variations, are used by the four PLL charge pumps for adjusting 
the PLL operating frequency. 

RTC Alarm Hour Register 70h/71h
Index 05h

Hours alarm, 12- and 24-hour mode page 4-10

RTC Current Day of Week 
Register

70h/71h
Index 06h

Day of the week page 4-11

RTC Current Day of Month 
Register

70h/71h
Index 07h

Date of the month page 4-11

RTC Current Month Register 70h/71h
Index 08h

Month page 4-12

RTC Current Year Register 70h/71h
Index 09h

Year page 4-13

Register A 70h/71h
Index 0Ah

Update status, internal oscillator control, rate 
selection

page 4-16

Register B 70h/71h
Index 0Bh

Update override (SET); periodic interrupt, 
alarm interrupt, and update-ended interrupt 
enables; date mode, 24/12 hour control, and 
daylight savings enable

page 4-18

Register C 70h/71h
Index 0Ch

Interrupt request, periodic interrupt, alarm 
interrupt, and update-ended interrupt flags

page 4-19

Register D 70h/71h
Index 0Dh

External backup battery condition, RTC reset, 
BBATSEN

page 4-20

Configuration RAM 70h/71h
Index 0E–7Fh

General-purpose CMOS RAM bytes page 4-15

Table 13-1 Real-Time Clock Register Summary (continued)

Register I/O Address Real-Time Clock Function Keyword
Description 
in Register 
Set Manual
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Figure 13-1 Real-Time Clock Block Diagram

Figure 13-2 RTC Voltage Monitor
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13.4 OPERATION
Programs can retrieve time and calendar information from the RTC by reading the 
appropriate RTC index registers. Programs can also change the time, calendar, and alarm 
information in the RTC by writing to these registers. 

The 24/12 bit in Register B establishes whether the hour locations represent 1-to-12 or 0-
to-23. The 24/12 bit cannot be changed without re-initializing the hour registers. When the 
12-hour format is selected, the high-order bit of the hours byte represents PM when it is a 1.

The three alarm bytes can be used in two different ways. 

■ If the alarm enable bit is set, the alarm interrupt occurs at the time specified in the 
appropriate hours, minutes, and seconds alarm registers. 

■ If a “don’t care” state (any hexadecimal byte from C0–FFh) is written to one or more of 
three alarm registers. 

13.4.1 Interrupts
The RTC provides three different interrupt sources. All three are connected internally to 
IRQ8. The three interrupt sources are:

■ Periodic interrupt—Can be set at rates from 500 ms to 122 µs. 

■ Alarm interrupt—Can be set at rates from once-per-second to once-per-day. 

■ Update-ended interrupt—Provides update cycle status.

These three interrupts are enabled in Register B (RTC index 0Bh[6,5,4]). Table 13-2 lists 
the values of RS3–RS0 in Register A (RTC index 0Ah[3–0]) used to specify different periodic 
interrupt rates.

Table 13-2 Using RS3–RS0 to Specify a Periodic Interrupt Rate

Periodic Interrupt Rate RS3 RS2 RS1 RS0

None 0 0 0 0

3.90625 ms 0 0 0 1

7.8125 ms 0 0 1 0

122.070 µs 0 0 1 1

244.141 µs 0 1 0 0

488.281 µs 0 1 0 1

976.562 µs 0 1 1 0

1.953125 ms 0 1 1 1

3.90625 ms 1 0 0 0

7.8125 ms 1 0 0 1

15.625 ms 1 0 1 0

31.25 ms 1 0 1 1

62.5 ms 1 1 0 0

125 ms 1 1 0 1

250 ms 1 1 1 0

500 ms 1 1 1 1
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13.4.2 RTC Clock
The RTC clock is the 32.768 KHz generated by the internal oscillator. This clock is used 
by many cores and is always available (as long as there is power).

13.4.3 Internal Oscillator Control Bits
The normal operational setting for the internal oscillator control bits DV2–DV0 in Register 
A is ‘010b’. This turns the oscillator on, uses an internal time base of 32768 Hz, and enables 
the countdown chain to run at the internal time base frequency. 

A value of ‘11xb’ turns the oscillator on, but holds the countdown chain in reset. In this 
mode, the time and date update cycles do not occur. This mode is useful for precision 
setting of the clock. If entering this mode from the oscillator-off mode, a 200-ms delay must 
be observed to allow for oscillator stabilization prior to attempting to set the time. Time and 
date update cycles begin 500 ms after the countdown chain reset is removed.

Programming DV2–DV0 to any value except ’010b’ or ’11xb’ disables the input clock from 
the oscillator circuit. In this mode, time and date update cycles do not occur, but the RTC 
draws slightly less power.

Upon exiting this mode, a 200-ms delay should be observed before reconfiguring or using 
the time and date information to allow for oscillator stabilization. DV2–DV0 are not affected 
by a reset of the RTC subsystem.

13.4.4 Update Cycle
The RTC executes an update cycle once per second, assuming the DV2–DV0 divider is 
not clear and the SET bit in Register B is clear. When the SET bit is 1, the program can 
initialize the time and calendar bytes by stopping an existing update and preventing a new 
one from occurring.

With a 32.768-KHz time base, the update cycle takes 1984 µs. During the update cycle, 
the time, calendar, and alarm bytes are not available because they are taken off the bus 
for the entire update cycle. If a program reads these RAM locations before the update is 
complete, the output is undefined. The update in progress (UIP) status bit is set during this 
time.

There are three ways to handle nonavailability during an RTC update.

■ Use the update-ended interrupt. If enabled, this interrupt occurs after every update cycle. 
This means that over 999 ms are available to read the time and date registers. Before 
leaving the interrupt service routine, clear the IRQF bit in Register C.

■ Use the Update-in-Progress bit (UIP) in Register A. The UIP bit changes once per 
second. The update cycle begins 244 µs after the UIP bit goes High. This means that, 
if a 0 is read on the UIP bit, there are at least 244 µs before the time or calendar data 
will be changed. If a 1 is read in the UIP bit, the time or calendar data may not be valid. 
Note that the time allocated to read time or calendar data should not exceed 244 µs.

■ Use a periodic interrupt to determine if an update cycle is occurring. 

Note that, to ensure correct data, the time should not be set on the last day of the month 
within two seconds of the rollover to the next day.

13.4.5 Backup Battery Considerations
The behavior of the RTC when the primary power supply is turned off depends on whether 
or not an external backup battery is included in the system design.
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13.4.5.1 Using an External RTC Backup Battery

Figure 13-3 shows a specific system implementation with the ÉlanSC400 microcontroller 
using an external backup battery to keep the 32-KHz oscillator, RTC, and RAM powered 
on when the primary system power supply is turned off (i.e., the AVCC source is removed). 
In the circuit shown, both D1 and D2 are required to have a maximum forward voltage drop 
of 0.25 V at a forward current of 100 µA.

Figure 13-3 Backup Battery Used to Power RTC

RTC index 0Dh contains the VRT (Valid RAM and Time) bit. This bit can be sampled at 
system boot time by the BIOS to determine whether or not the RTC time, date, and user 
RAM are valid since the last boot. 

The operation of the RTC reset and VRT bit is outlined below for the circuit in Figure 13-3:

1. The VCC_RTC pin is a dedicated power supply pin for the 32-KHz crystal oscillator and 
the RTC. 

2. When the primary system power supply is turned on, the analog VCC pin (AVCC) drives 
the VCC_RTC pin through an external diode.

3. When the primary power supply is turned off or non-functional, VCC_RTC is driven by 
the backup battery through a second external diode.

4. An on-chip voltage monitor circuit monitors the voltage level of the backup battery 
through the BBATSEN pin every time the system primary power supply is initially applied 
(i.e., the AVCC pin has power applied to it) and the ÉlanSC400 microcontroller’s master 
reset (RESET pin) is deasserted.

5. If the backup battery is sampled below 2.4 V, the RTC logic is completely reset. The 
read-only VRT bit (RTC index 0Dh[7]) is cleared and latched in this state until the bit is 
read. After this bit is initially read, it always reads back a value of 1 for all subsequent 
reads prior to a RTC reset. 

AVCC

VCC_RTC

BBATSEN

BATT

R1

C1

C2

D1 D2

 

ÉlanSC400 Microcontroller
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6. When the main system power supply is off and the backup battery is initially installed, 
the external RC circuit consisting of R1 and C1 causes a slow rising edge on the 
BBATSEN input, causing the RTC to be reset via an internal power-on-reset circuit. The 
RTC is then reset (or not) as described in items 4 and 5.

13.4.5.2 Not Using an External RTC Backup Battery

Figure 13-4 shows a specific system implementation with the ÉlanSC400 Microcontroller 
that does not use an external backup battery to keep the RTC and RAM powered on when 
the primary system power supply is turned off (i.e., the AVCC source is removed).

Figure 13-4 Implementation with No Backup Battery Used

Referring to the description of the operation of the RTC reset and VRT bit as outlined above, 
this implementation will always reset the RTC (and therefore clear the VRT bit) whenever 
the primary system power supply is turned on and a master reset is performed.

13.4.5.3 Overall System Implications

Using the scheme described above allows the BIOS to detect the state of the backup battery 
independently of the actual VCC level that is applied to the RTC (i.e., when the system has 
booted and firmware reads the VRT bit). The state of the VRT bit will reflect the state of 
the RTC power supply prior to the application of the primary power supply and not the state 
of the RTC power supply in real time.

AVCC

VCC_RTC

BBATSEN

C1
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13.5 INITIALIZATION
The real-time clock is enabled at power-on reset; however, it is not reset by a power-on 
reset.

1. Before initializing the internal registers, set the SET bit in Register B to prevent time or 
calendar updates from occurring. 

2. Initialize the ten time, calendar, and alarm registers in either binary or BCD data format.

3. Specify the format in the data mode (DM) bit of Register B. All ten time, calendar, and 
alarm registers must use the same data mode, either binary or BCD. 

4. Clear the SET bit to enable updates. 

When initialized, the RTC makes all updates in whatever data mode has been programmed. 
To change the data mode, the ten data bytes must be re-initialized.

13.6 POWER MANAGEMENT
Operation of the programmable interrupt controller is affected by the power-management 
functions shown in Table 13-3.

Table 13-3 Power Management in the Real-Time Clock

RTC Event Description

Power Management Effect

Wake-Up Activity SMI NMI

RTC alarm Triggered by the rising edge of internal IRQ8 Programmable
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CHAPTER
14
 PARALLEL PORT
14.1 OVERVIEW
The parallel port on the ÉlanSC400 and ÉlanSC410 microcontrollers is functionally 
compatible with an IBM PC/AT and PS/2 system, with an optional mode for faster transfers. 
The microcontroller’s parallel port interface provides all the status inputs, control outputs, 
and the control signals necessary for the external parallel port data buffers.

Communication between the host (microcontroller) and the peripheral is asynchronous. 
The parallel port datapath is external to the microcontroller. The parallel port can be 
physically mapped to one of two different I/O locations or can be completely disabled. Only 
edge-triggered interrupts are supported.

The parallel port interface is shared with the GPIO31–GPIO21 signals and, on the 
ÉlanSC400 microcontroller, with the PC Card Socket B interface. Only one of these 
interfaces can be enabled at one time.

The parallel port interface can be configured to operate in one of three different modes of 
operation:

■ PC/AT Compatible mode–This mode provides a byte-wide forward (host-to-peripheral) 
channel with data and status lines used according to their original (Centronics) definitions 
in the IBM PC/AT.

■ Bidirectional mode–This mode offers byte-wide bidirectional parallel data transfers 
between host and peripheral, equivalent to the parallel interface on the IBM PS/2.

■ Enhanced Parallel Port (EPP) mode –This mode provides a byte-wide bidirectional 
channel controlled by the microcontroller. EPP mode provides separate address and 
data cycles over the eight data lines of the interface. EPP mode offers wider system 
bandwidth and increased performance over both the PC/AT Compatible and 
Bidirectional modes. 

14.2 REGISTERS
The parallel port interface is controlled primarily by software. A summary listing of the chip 
setup and control (CSC) registers used to control the parallel port interface is shown in 
Table 14-1. Complete register descriptions can be found in the ÉlanSC400 Microcontroller 
Register Set Reference Manual (order #21032).

14.2.1 Direct-Mapped Registers
The parallel port interface can be mapped to one of the two I/O locations: LPT1 from ports 
0378–037Fh or LPT2 from ports 0278–027Fh. The following direct-mapped registers are 
available for either LPT1 or LPT2. 

■ Parallel Port Control Register (Port 037Ah or 027Ah)— This register sets the various 
signals that control the data transfer to or from the parallel port peripheral device. These 
control signals are SLCTIN, INIT, STRB, and AFDT. The parallel port’s internal interrupt 
request is enabled or cleared in this register. Bidirectional data direction is controlled 
through bit 5 of this register. 
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■ Parallel Port Status Register (Port 0379h or 0279h)—This register keeps track of the 
parallel port peripheral device status via the status input signals, BUSY, ACK, SLCT, 
ERROR, and PE. The fields of this register vary according to mode of operation.

■ Parallel Port Data Registers (Ports 0378h, 037C–037Fh, or 0278h, 027C–027Fh) —
These internal registers (including the EPP 32-bit data registers) hold the data read from 
or written to the parallel port.

14.2.2 Chip Setup and Control Registers
The following chip setup and control (CSC) registers are available.

■ Pin Mux Register B—Setting bit 1 in this register enables the parallel port signals.

■ Parallel/Serial Port Configuration Register—By default, the internal parallel port is 
disabled; the port is enabled by setting bit 2 of this register. Bit 3 controls mapping the 
parallel port interface to one of the two I/O locations: LPT1 from ports 0378–037Fh or 
LPT2 from ports 0278–027Fh.

■ Parallel Port Configuration Register—This register is used to configure the operation 
mode of the parallel port and to enable EPP mode time-outs. The default mode is 
PC/AT Compatible mode. Bidirectional or EPP mode must be enabled by setting the 
following bits: To enable bidirectional data transfers, set bit 1 to 1. To enable EPP mode, 
set bit 0 to 1. 

■ Activity Monitor Registers—For power management, these registers report that the 
parallel port is the source of an activity.

■ I/O Access SMI Enable and Status Registers—These registers allow the user to 
determine that the parallel port is the source of a system management interrupt (SMI). 
This information can be used to power-up an external peripheral for use before the 
peripheral is actually accessed by the I/O cycle.

■ Interrupt Configuration Register E—This register controls the mapping of the parallel 
port’s internal interrupt request to either the PIRQ5 or PIRQ7 output.

Table 14-1 Parallel Port Register Summary

Register I/O Address Parallel Port Function Keyword
Description 
in Register 
Set Manual

Pin Mux Register B 22h/23h
Index 39h

Parallel port signals enable page 3-45

Activity Source Enable 
Register D

22h/23h
Index 65h

Activity source enable: CPU access to the 
parallel port

page 3-74

Activity Source Status Register D 22h/23h
Index 69h

Activity source status: CPU access to the 
parallel port

page 3-78

Activity Classification Register D 22h/23h
Index 6Dh

Primary or secondary activity classification:
CPU access to the parallel port

page 3-82

I/O Access SMI Enable 
Register A

22h/23h
Index 99h

SMI enable for I/O access to LPT1 or LPT2 page 3-105

I/O Access SMI Status Register A 22h/23h
Index 9Bh

SMI state for I/O access to LPT1 or LPT2 page 3-107

Parallel/Serial Port Configuration 
Register

22h/23h
Index D1h

Internal parallel port enable, base address 
configuration (LPT1 or LPT2)

page 3-167
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14.3 BLOCK DIAGRAM
The parallel port interface is shared with the GPIO31-GPIO21 signals and, on the 
ÉlanSC400 microcontroller, with the PC Card Socket B interface. Only one of these 
interfaces can be enabled at one time. Figure 14-1 shows a block diagram of the parallel 
port interface.

Figure 14-1 Parallel Port Block Diagram

Parallel Port Configuration 
Register

22h/23h
Index D2h

PC/AT Compatible, Bidirectional, or EPP 
mode select, EPP timeouts

page 3-168

Interrupt Configuration 
Register E

22h/23h
Index D8h

IRQ mapping to the programmable interrupt 
controller

page 3-174

Table 14-1 Parallel Port Register Summary (continued)

Register I/O Address Parallel Port Function Keyword
Description 
in Register 
Set Manual

ÉlanSC400 Microcontroller

ACK

AFDT

BUSY

ERROR

INIT

PE

PPDWE

PPOEN

SLCT

SLCTIN

STRB

SD7–SD0
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14.4 PIN DEFINITIONS BY MODE
The pin definitions for the parallel port vary according to mode of operation. Table 14-2 
shows the parallel port signals that appear on the pins of the ÉlanSC400 and ÉlanSC410 
microcontrollers in PC/AT Compatible, Bidirectional, and EPP modes.

Table 14-2 Parallel Port Signal Definitions by Mode

Note:

The initialization (INIT), error (ERROR) and the paper end(PE) signals have the same function in PC/AT Compatible,
Bidirectional, and EPP modes.

 ÉlanSC400 and 
ÉlanSC410 

Microcontrollers
Pin Name

PC/AT Compatible 
and

Bidirectional Mode 
Signal Name

EPP 
Mode
Signal
Name

Function

BUSY BUSY WAIT In PC/AT Compatible and Bidirectional modes, this 
signal is driven by the parallel port device with the state 
of the printer busy signal. 
In EPP mode, this signal is used to add wait states to 
the current cycle. 

ACK ACK INTR In PC/AT Compatible and Bidirectional modes, this 
signal is driven by the parallel port device with the state 
of the printer acknowledge signal. 
In EPP mode, this signal is used to indicate to the 
microcontroller that the parallel port device has 
generated an interrupt request.

SLCTIN SLCTIN ASTRB In PC/AT Compatible and Bidirectional modes, this 
signal is driven by the microcontroller to select the 
parallel port device.
In EPP mode, this signal is driven active by the 
microcontroller when selecting the parallel port device 
and writes to the EPP address register. 

AFDT AFDT DSTRB In PC/AT Compatible and Bidirectional modes, this 
signal is driven by the microcontroller indicating to the 
parallel port device to insert a line feed at the end of 
every line (i.e., carriage return).
In EPP mode, this signal is driven active by the 
microcontroller during reads or writes to the EPP data 
registers.

STRB STRB WRITE In PC/AT Compatible and Bidirectional modes, this 
signal is used to indicate to the parallel port device to 
latch the data on the parallel port data bus. 
In EPP mode, this signal is driven active during writes 
to the selected parallel port device and writes to the 
internal EPP data or the EPP address register.
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14.5 OPERATION
The parallel port can be configured in hardware as either a PC/AT Compatible port or a 
Bidirectional/EPP port. 

In any mode, a read or write to or from the data registers will generate the parallel port data 
write enable signal PPDWE and the output enable signal PPOEN. 

■ In PC/AT Compatible mode, PPDWE is used to drive data to the external parallel port 
data bus. 

■ In the Bidirectional or EPP mode of operation, the PPDWE signal is reconfigured via 
firmware to function as an address decode for the Parallel Port Data Register.

14.5.1 Minimal System Design

14.5.1.1 PC/AT Compatible Mode

The PC/AT Compatible parallel port requires an external 374 Octal D Flip-Flop to latch the 
data from the SD data bus and drive the data onto the external parallel port data bus, as 
shown in Figure 14-2.

Figure 14-2 Parallel Port Data Control in PC/AT Compatible Mode

The PPDWE signal is the parallel port data write enable signal. In PC/AT Compatible mode, 
a write operation to the Parallel Port Data Register causes SD7–SD0 data to be latched 
and driven onto the parallel port data bus. A read operation causes the internal Parallel 
Port Data Register to return the last value that was written to it.

14.5.1.2 Bidirectional and EPP Modes

The Bidirectional and EPP mode configuration requires two external devices, one 373 Octal 
D Transparent Latch and one 244 Octal Buffer, as shown in Figure 14-3.

D

CLK

OE

Q

PPDWE

SD7–SD0

Parallel Port
Data Bus

374 Octal D Flip Flop

ÉlanSC400 
Microcontroller
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Figure 14-3 Parallel Port Data Control in Bidirectional and EPP Modes

When the parallel port is configured in either Bidirectional or EPP mode, the parallel port 
data write enable pin (PPDWE) is redefined to function as the Parallel Port Data Register 
address decode. 

The parallel port output enable (PPOEN) signal from the microcontroller is controlled 
through the bidirectional data transfer (DIR) bit 5 of the Parallel Port Control Port Register. 
PPOEN controls the output enable of the external parallel port data latch. Table 14-3 
outlines the operation of the parallel port data transfers to and from the internal Parallel 
Port Data Register when Bidirectional or EPP mode is enabled.

Table 14-3 Parallel Port Data Register Transactions in Bidirectional and EPP Modes

Note:

In EPP mode, the read or write cycles refer to EPP address, ports 027Bh or 037Bh, and data registers
of address 027C–027Fh or 037C–037Fh. 

DIR Bit
Transaction 

Type
Result

0 Write Data is driven out on the external parallel port data bus and latched 
into the external 373 and into the internal data register.

1 Write Data written is latched into the external 373 and into the internal 
data register.

0 Read Data is read from the internal data register.

1 Read Data is read from the external parallel port data bus.

D Q

EN
OE

Y A

ENB

IOW

PPDWE

IOR

SD7–SD0 Parallel Port Data Bus

373 Octal D Transparent Latch

244 Buffer

PPOEN

ÉlanSC400
Microcontroller
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14.5.2 Operating Modes

14.5.2.1 PC/AT Compatible Mode

This unidirectional mode provides a byte-wide forward (host-to-peripheral) channel with 
data and status lines used according to their original (Centronics) definitions in the IBM 
PC/AT.

14.5.2.2 Bidirectional Mode

This mode offers byte-wide bidirectional parallel data transfers between host and 
peripheral, equivalent to the parallel interface on the IBM PS/2. It is similar to Enhanced 
Parallel Port (EPP) mode described below, without the external command strobes and 
without wait state insertion.

14.5.2.3 Enhanced Parallel Port (EPP) Mode

The Enhanced Parallel Port mode allows the host faster data transfers through direct 
register addressing of the peripheral devices. This is achieved by automatically generating 
the address and data strobes. 

The data transfer can be either an 8-bit, 16-bit, or 32-bit data transfer. For a 32-bit data 
transfer, a 32-bit I/O write to Port 027Ch causes four back-to-back 8-bit bus cycles to occur 
to the four EPP data registers (ports 027C–027Fh).

The timing for EPP mode described in the following sections is illustrated in Figure 14-4 
and Figure 14-5.

14.5.2.3.1 EPP Address Write
To begin an address write cycle, the host asserts WRITE, places the register address on 
the data signals, and asserts ASTRB. The peripheral responds by deasserting WAIT to 
indicate that it is ready to receive the address byte. When the host recognizes WAIT as 
inactive, it deasserts ASTRB to latch the address byte into the device. The peripheral 
acknowledges the end of the cycle and indicates that it is ready for the next cycle to begin 
by asserting WAIT. The host can then modify the address/data on the data signals and 
change the state of the WRITE signal.

14.5.2.3.2 EPP Address Read
To begin an address read cycle, the host deasserts WRITE, places the data signals in a 
high-impedance state, and then asserts ASTRB. The peripheral responds by driving the 
data signals with the address byte and then deasserting WAIT to indicate that the address 
is valid. When the host recognizes WAIT as inactive, it reads the address from the data 
signals and deasserts ASTRB. The peripheral places the data signals in a high-impedance 
state, acknowledges the end of the cycle, then indicates that it is ready for the next cycle 
to begin by asserting WAIT. The host can then drive the data signals and change the state 
of the WRITE signal.
Parallel Port 14-7



Figure 14-4 EPP Write Cycle

14.5.2.3.3 EPP Data Write
To begin a data write cycle, the host asserts WRITE, drives the data signals, and asserts 
DSTRB. The peripheral responds by deasserting WAIT to indicate that it is ready to receive 
the data byte. When the host recognizes WAIT as inactive, it deasserts DSTRB to latch 
the data byte into the device. The peripheral acknowledges the end of the cycle and 
indicates that it is ready for the next cycle to begin by asserting WAIT. The host can then 
modify the address/data on the data signals and change the state of the WRITE signal.

14.5.2.3.4 EPP Data Read
To begin a data read cycle, the host deasserts WRITE, places the data signals in a high-
impedance state, and then asserts DSTRB. The peripheral responds by driving the data 
signals and deasserting WAIT to indicate that the data is valid. When the host recognizes 
WAIT as inactive, it reads the data from the data signals and deasserts DSTRB. The 
peripheral places the data signals in the high-impedance state, acknowledges the end of 
the cycle, and indicates that it is ready for the next cycle to begin by asserting WAIT. The 
host can then drive the data signals and change the state of the WRITE signal.

Address Register Access

Data Register Access

IOW

PPDWE

PPOEN

STRB

SLCTIN

AFDT

SD7-SD0

BUSY

DBUFOE

DBUFRDL

(WRITE)

(ASTRB)

(DSTRB)

(WAIT)
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Figure 14-5 EPP Read Cycle

14.5.2.3.5 EPP Time-Out
The EPP time-out feature ensures that an external peripheral does not hangup the host. 
A 10 µs time-out counter is implemented in case the peripheral asserts BUSY/WAIT to 
insert wait states but then fails to deassert the signal back to High during an EPP data/
address read or write cycle. A clock of frequency 1.47456 MHz from the clock divider block 
is used to provide the source for the 15 clock counts. 

Setting bit 2 to 1 in the Parallel Port Configuration Register enables this time-out function. 
Reading bit 0 in the Parallel Port Status Register shows whether an EPP time-out has 
occurred; when bit 0 is a 1, a time-out has occurred. Consecutive reads of the Parallel Port 
Status Register always return a 0; bit 0 of this register is reset after each read.

Address Register Access

Data Register Access

IOR

PPDWE

PPOEN

STRB

SLCTIN

AFDT

SD7-SD0

BUSY

DBUFOE

DBUFRDL

(WRITE)

(ASTRB)

(DSTRB)

(WAIT)
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14.6 INITIALIZATION
The parallel port is disabled at power-on reset. The parallel port must be configured by 
software before the parallel port is enabled. After it is enabled, the parallel port defaults to 
PC/AT Compatible mode. 

14.7 POWER MANAGEMENT
Operation of the parallel port is affected by the power-management functions shown in 
Table 14-4.

Table 14-4 Power Management in the Parallel Port

Parallel Port Event Description
Power Management Effect

Wake-Up Activity SMI NMI

Parallel port access Triggered by the falling edge of an address 
decode qualified with the command 
(I/O read/write) 

Programmable

Parallel port access Accesses to LPT1 (378-37Fh) or LPT2 
(278-27Fh) can cause an SMI through an 
I/O trap

Yes
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CHAPTER
15
 SERIAL PORT (UART)
15.1 OVERVIEW
The ÉlanSC400 and ÉlanSC410 microcontrollers include a single industry-standard 
16550A UART. The UART can be used to drive either a standard eight-pin serial interface 
or a two-pin infrared interface using the chip setup and control (CSC) index registers. The 
infrared port is fully documented in Chapter 18.

The UART powers up as a 16450-compatible device. It can be switched to and from the 
16550-compatible mode under software control. In 16650-compatible mode, the receive 
and transmit sections are each aided by 16-byte FIFOs to off-load the CPU from repetitive 
service routines.

The serial port includes the following features:

■ Eight-pin interface: serial in, serial out, six modem control lines

■ Separately enabled receiver line status, receiver data, character timeout, transmitter 
holding register, and modem status interrupts

■ Programmable UART transfer rates, up to 115 Kbit/s.

■ Baud-rate generator provides input clock divisor from 1 to 65535 to create 16x clock

■ The programmable serial interface includes:

— 5-, 6-, 7-, or 8-bit data

— Even, odd, no, or stick parity generation and checking

— 1, 1-1/2 or 2 stop-bit generation

— Break generation/detection

■ Internal diagnostics:

— Serial loopback—transmit to receive

— Error simulation

■ Receive line noise filter

15.2 REGISTERS

15.2.1 Direct-Mapped Registers
Note that, because the ÉlanSC400 and ÉlanSC410 microcontrollers include only one serial 
port, the on-board UART can only be mapped to either COM1 or COM2 at any time. The 
SP_CONFIG bit in the Parallel/Serial Port Configuration Register (CSC index D1h[1]) 
controls this selection. IRQ levels are mapped separately using the Interrupt Configuration 
Register E (CSC index D8h[6–5]). 

The following direct-mapped registers are available for COM1 and COM2. 

■ COMx Line Control Register (Ports 02FBh/03FBh)—Used to configure the format of 
the UART frame for data transfer, including character length, stop bits, and parity. Set 
the DLAB bit in this register to gain access to the baud-rate divisor latches. Clear the 
Serial Port (UART) 15-1



DLAB bit to gain access to the Transmit Holding and Receive Buffer registers at Port 
0xF8h and the Interrupt Enable Register at Port 0xF9h.

■ COMx Baud Clock Divisor Latch LSB (Ports 02F8h/03F8h)—Holds the least 
significant byte of a 16-bit baud-rate clock divisor that is used to generate the 16x baud 
clock (when COMx DLAB is 1).

■ COMx Baud Clock Divisor Latch MSB (Ports 02F9h/03F9h)—Holds the most 
significant byte of the clock divisor (when COMx DLAB is 1).

■ COMx Transmit Holding Register (Ports 02F8h/03F8h)—The byte to be transmitted 
is written to this write-only register (when COMx DLAB is 0).

■ COMx Receive Buffer Register (Ports 02F8h/03F8h)—The received byte is read from 
this read-only register (when COMx DLAB is 0). This register shares an address with 
the Transmit Holding Register.

■ COMx Interrupt Enable Register (Ports 02F9h/03F9h)—Enables the following serial 
port interrupts: modem status, receiver line status, transmitter holding empty, received 
data available, and time-out interrupts (when COMx DLAB is 0).

■ COMx Interrupt ID Register (Ports 02FAh/03FAh)—A read-only register used to 
identify UART interrupts.

■ COMx FIFO Control Register (Ports 02F3h/03F3h)—A write-only register used to 
enable and control the FIFO in 16650-compatible mode.

■ COMx Line Status Register (Ports 02FDh/03FDh)—Shows the status of the data 
transfer, including parity and framing errors, as well as break and empty indicators

■ COMx Modem Control Register (Ports 02FCh/03FCh) —Used to enable COMx 
interrupts and loopback diagnostic mode, and to assert RTS and DTR.

■ COMx Modem Status Register (Ports 02FEh/03FEh)—Contains both real-time and 
latched status bits for DCD, RIN, DSR, and CTS.

■ COMx Scratch Pad Register (Ports 02FFh/03FFh)—This general-purpose I/O location 
can be used to hold temporary data and is not required for serial data transfer.

15.2.2 Chip Setup and Control (CSC) Index Registers
A summary listing of the chip setup and control (CSC) index registers used to control the 
serial port interface is shown in Table 15-1. Complete register descriptions can be found 
in the ÉlanSC400 Microcontroller Register Set Reference Manual (order #21032).

Table 15-1 Serial Port Register Summary

Register I/O Address UART Function Keyword
Description 
in Register 
Set Manual

Wake Up Source Enable 
Register A

22h/23h
Index 52h

Wake-up source enable: RIN and SIN pins page 3-59

Wake Up Source Status 
Register A

22h/23h
Index 56h

Wake-up source status: RIN and SIN pins page 3-63

Activity Source Enable Register A 22h/23h
Index 62h

Activity source enable: CPU access to UART 
at COM1 or COM2

page 3-71

Activity Source Enable 
Register C

22h/23h
Index 64h

Activity source enable: RIN and SIN pins page 3-73
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15.3 BLOCK DIAGRAM
A block diagram of the serial port on the ÉlanSC400 and ÉlanSC410 microcontrollers is 
shown in Figure 15-1. 

Both the serial interface pins and the infrared interface pins are available on the ÉlanSC400 
and ÉlanSC410 microcontrollers at all times, although only one interface is available at any 
given time, because they both share the same internal UART. This means that both a serial 
device and an IrDA device can be designed into the same system; the ÉlanSC400 and 
ÉlanSC410 microcontrollers support real-time switching between the two ports.

Activity Source Status Register A 22h/23h
Index 66h

Activity source status: CPU access to UART 
at COM1 or COM2

page 3-75

Activity Source Status Register C 22h/23h
Index 68h

Activity source status: RIN and SIN pins page 3-77

Activity Classification Register A 22h/23h
Index 6Ah

Primary or secondary activity classification: 
CPU access to UART at COM1 or COM2

page 3-79

Activity Classification Register C 22h/23h
Index 6Ch

Primary or secondary activity classification: 
RIN and SIN pins

page 3-81

CLK_IO Pin Output Clock Select 
Register

22h/23h
Index 83h

UART clock output on CLK_IO pin page 3-91

Miscellaneous SMI/NMI Enable 
Register

22h/23h
Index 90h

SMI/NMI enable: RIN and SIN pins page 3-94

Miscellaneous SMI/NMI Status 
Register

22h/23h
Index 94h

SMI/NMI status: RIN and SIN pins page 3-99

SMI/NMI Select Register 22h/23h
Index 98h

Select SMI or NMI: RIN and SIN pins page 3-104

I/O Access SMI Enable 
Register A

22h/23h
Index 99h

SMI enable for I/O access to UART COM1 or 
COM2

page 3-105

I/O Access SMI Status Register A 22h/23h
Index 9Bh

SMI status for I/O access to UART COM1 or 
COM2

page 3-107

Parallel/Serial Port Configuration 
Register

22h/23h
Index D1h

COM1 or COM2 base address configuration, 
UART enable

page 3-167

UART FIFO Control Shadow 
Register

22h/23h
Index D3h

Shadow FIFO control, 16550-compatible 
mode enable, FIFO buffer clear, trigger for 
received-data-available interrupt pending

page 3-169

Interrupt Configuration 
Register E

22h/23h
Index D8h

IRQ mapping: UART (IRQ3 or IRQ4) page 3-174

Suspend Pin State Register A 22h/23h
Index E3h

Suspend state of serial port or infrared 
interface

page 3-184

IrDA Control Register 22h/23h
Index EAh

UART or infrared mode select page 3-188

Table 15-1 Serial Port Register Summary (continued)

Register I/O Address UART Function Keyword
Description 
in Register 
Set Manual
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Figure 15-1 Serial Port Block Diagram

15.4 OPERATION
The UART converts serial data received on the serial input line (SIN) into parallel data that 
can be processed by the microcontroller. The UART also converts parallel data into serial 
data for transmission off the chip on the serial output line (SOUT). Data can be transmitted 
and received at the same time.

15.4.1 Baud-Rate Generation
The serial data can be transferred from or to the UART on the microcontroller at baud rates 
up to 115,200, for a transfer rate of 115 Kbit/s. The transmit and receive sections can be 
operated at different baud rates.

The UART clock on the ÉlanSC400 and ÉlanSC410 microcontrollers runs at 1.8432 MHz. 
To generate the baud rate of the transfer, the UART clock is divided by a divisor value 
chosen by the programmer. The UART’s baud-rate generator automatically calculates the 
baud rate from the divisor value programmed into the two COMx Baud Rate Divisor 
Registers (MSB and LSB). These registers are read at initialization to set the baud rate for 
the transfer. Table 15-2 lists some typical baud rates and their divisors. The divisor for any 
baud rate can be calculated by dividing 115,200 by the baud rate.

Modem Control

Baud Clock

1.8432
MHz

2Select Device

and Mode

SOUT

SIN

SIROUT

SIRIN

UART

Port

Infrared

DCD

DTR

DSR

CTS

RTS

RIN

ÉlanSC400 Microcontroller
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Table 15-2 Baud Rates at 1.8432 MHz

15.4.2 UART Frame
Each byte of data is transferred using a format called a frame. Figure 15-2 shows the format 
of a typical UART frame. The transmitter and receiver must agree on the frame format (as 
well as the baud rate), or transmission will not be successful. The frame format is determined 
by the value written into the Line Control Register (ports 03FBh/02FBh). A frame consists 
of a start bit, 5–8 data bits, an optional parity bit, and 1, 1.5, or 2 stop bits. 

Transmission of a frame is initiated when software writes a byte to the Transmit Holding 
Register (ports 03F8h/02F8h). First, the SOUT output is driven Low for one baud-rate clock 
period. This is the start bit. Next, 5, 6, 7, or 8 data bits from the Transmit Holding Register 
are driven out on SOUT, one bit per clock period, starting with bit 0 (the LSB). If parity has 
been enabled in the Line Control Register, a parity bit is then clocked out. Finally, 1, 1.5, 
or 2 stop bits are clocked out, again according to the frame format chosen in the Line Control 
Register. 

Reception of a frame is initiated when a start bit is received (the SIN input is driven Low 
for one baud-rate clock period). This start bit allows the receiver to synchronize its clock 
with the sender's clock. The receiver then clocks the next 5–8 bits into the Receive Buffer 
Register (ports 03F8h/02F8h), and then validates that the received parity is correct (if 
enabled) and that at least one stop bit is received. Any errors are reported in the Line Status 
Register (ports 03FDh/02FDh).

Desired
Baud Rate 

Decimal
Divisor

Hexadecimal
Divisor

Error (Percentage)
Difference Between 

Desired Baud Rate and Actual

50 2304 900h

75 1536 600h

110 1047 417h 0.026

150 768 300h

300 384 180h

600 192 C0h

1200 96 60h

1800 64 40h

2000 58 3Ah 0.69

2400 48 30h

3600 32 20h

4800 24 18h

7200 16 10h

9600 12 0Ch

19200 6 6h

38400 3 3h

57600 2 2h

115200 1 1h
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Figure 15-2 UART Frame

15.4.3 Operating Modes
The UART on the ÉlanSC400 and ÉlanSC410 microcontrollers supports two different 
modes of operation.

15.4.3.1 16450-Compatible Mode (No FIFOs)

In this mode, there is storage for only one byte to be transmitted and for only one byte of 
received data. 

If a second transmit byte is written by the CPU before the first is moved from the Transmit 
Holding Register to the Transmit Serializer, the second byte will be lost. This situation can 
be avoided by waiting for a Transmit Holding Register Empty (THRE) interrupt or by polling 
the THRE bit. 

If a received character is not read by the CPU before a second character is completely 
received, the first character is lost and an overrun error occurs, generating an interrupt. 

15.4.3.2 16550-Compatible Mode (FIFOs)

In this mode, there are two 16-byte FIFOs for transmitting and receiving. 

The CPU can write 16 bytes to the transmit FIFO and use the THRE interrupt or poll the 
THRE bit to trigger another 16 bytes. The receive FIFO has a programmable trigger level 
that can interrupt the CPU at 1, 4, 8 or 16 bytes present.

Writing a byte to a full transmit FIFO results in the last byte being lost.

If the receive FIFO is full, receipt of one more character generates an overrun error. The 
latest character is the one lost; the 16 bytes in the FIFO are unchanged.

15.4.4 Interrupts
The serial port on the ÉlanSC400 and ÉlanSC410 microcontrollers supports the standard 
UART interrupts. These include the Received Data Available, Transmit Holding Register 
Empty, Modem Status, and Receiver Line Status interrupts. In 16650-compatible mode, 
enabling the Received Data Available interrupt also enables time-out interrupts.

The priority of these interrupts is shown in Table 15-3. If two interrupt sources are pending 
simultaneously, only the highest priority interrupt will be indicated by the ID2–ID0 field of 
the COMx Interrupt ID Register (ports 03FAh/02FAh[3–0]). When the interrupt source is 
cleared, a subsequent read from this port will return the next highest priority interrupt source. 

In 16650-compatible mode, a FIFO time-out occurs when the receive FIFO is not empty, 
and more than four continuous character times have transpired without more data being 
placed into or read out of the receive FIFO. Reading a character from the receive FIFO 
clears the time-out interrupt.

UART Frame

Data Bits

0 0 0 01 1 1 1 10

Start
Bit

Stop 
Bit
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Table 15-3 Serial Port Interrupt Priority

Note: In 16450-compatible mode, ID2 always reads back ‘0b’.

The UART interrupts are enabled in ports 03F9h/02F9h and read in ports 03FAh/02FAh.

The serial port on the ÉlanSC400 and ÉlanSC410 microcontrollers has one internal IRQ 
that can be mapped to either IRQ3 or IRQ4. The Interrupt Configuration Register E (CSC 
index D8h[6–5]) controls which of these two IRQs is input to the programmable interrupt 
controller. Table 15-4 shows the IRQ and I/O address assignments for the serial port.

Table 15-4 Serial Port IRQ Assignments

15.5 INITIALIZATION
The serial port is disabled at power-on reset and must be configured by software before 
being enabled. When the internal UART is disabled, accesses to I/O locations in the 3F8–
3FFh and 2F8–2FFh ranges go off the chip to the ISA bus.

■ Enable the UART by setting the UART_ENB bit in the Parallel/Serial Port Configuration 
Register (CSC index D1h[0]).

■ Select either COM1 or COM2. The SP_CONFIG bit in the Parallel/Serial Port 
Configuration Register (CSC index D1h[1]) controls this selection.

■ Select UART mode (instead of infrared mode) by writing the SELDEVICE bit to 0 in the 
IrDA Control Register (CSC index EAh[0]).

■ Configure the UART by programming the required registers.

After the UART is enabled, it powers up as a 16450-compatible device. It can be switched 
to and from 16650-compatible mode under software control.

■ Enable 16650-compatible mode by setting the FIFOEN bit in the COMx FIFO Control 
Register (ports 03FAh/02FAh[0]). Note that the contents of either of these write-only 
registers can be read back in the UART FIFO Control Shadow Register (CSC index D8h).

15.6 POWER MANAGEMENT
The internal UART clock is turned off if the UART_ENB bit (CSC index D1h[0]) is 0. 
Operation of the serial port is affected by the power-management functions shown in Table 
15-5.

ID2–ID0 Interrupt Priority

0 1 1 Receive Line Status First (Highest)

0 1 0 Received Data Available/
Receiver FIFO trigger (16550-compatible mode)

Second

1 1 0 FIFO time-out Second

0 0 1 Transmitter Holding Register Empty/Transmit 
FIFO Empty (16550-compatible mode)

Third

0 0 0 Modem status Fourth (Lowest)

Serial Port Interrupt I/O Address

COM1 IRQ4 03F8–03FFh

COM2 IRQ3 02F8–02FFh
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Table 15-5 Power Management in the Serial Port

Serial Port Event Description

Power Management Effect

Wake-Up Activity SMI NMI

UART Ring Indicate 
(RIN) signal

Triggered by the falling edge of RIN Yes Yes Yes

UART Receive (SIN) 
signal

Triggered by the falling edge of SIN Yes Yes Yes

CPU access to UART 
(internal or external)

Triggered by the falling edge of the address 
decode qualified with commands

Programmable

UART access Accesses to COM1 (3F8–3FFh) or COM2 
(2F8–2FFh) can cause an SMI or NMI 
through an I/O trap

Yes Yes
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CHAPTER
16
 KEYBOARD INTERFACES
16.1 OVERVIEW
The integrated keyboard controller on the ÉlanSC400 and ÉlanSC410 microcontrollers has 
the following features:

■ Matrix keyboard support with up to 15 rows and 8 columns

■ Hardware support for software emulation of the System Control Processor (SCP) 
emulation logic

■ XT keyboard interface 

In addition to the keyboard interfaces provided on the ÉlanSC400 and ÉlanSC410 
microcontrollers, any one of the GPIO_CSx pins can be enabled to output an external 8042 
chip select.

16.1.1 Matrix Keyboard Interface
The integrated matrix keyboard controller directly interfaces to the rows and columns of a 
key matrix, eliminating the need for external keyboard logic. 

The custom matrix keyboard interface on the ÉlanSC400 and ÉlanSC410 microcontrollers 
offers the following features:

■ 15-row Schmitt trigger input signals with built-in pull-up resistors

■ 8-column open-drain output signals with built-in pull-up resistors

■ The SUS_RES signal appears as a key in the Keyboard Row Register B (CSC index C9h)

■ Keyboard Column Register (CSC index C7h) for setting the column signals

■ Keyboard Row Registers A and B for reading the row signals

■ An interrupt for signaling when a key is pressed

■ A timer for interrupting the CPU to service the keyboard

■ A status register to get information about the state of the controller

■ Keyboard Configuration Registers A and B for customizing the controller

Note that anytime the interface (DRAM, VL-bus, or ROM) is programmed for 32 bits, the 
matrix keyboard interface is not available.
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16.1.2 SCP Emulation
In a typical PC/AT-compatible system, the keyboard has a processor to map the pressed 
key into a make-and-break code that it sends to the SCP in the computer. (The SCP is the 
System Control Processor, another processor connected to the ISA bus, originally the 
8042.) Each key in the matrix has a unique make-and-break code. The SCP takes the 
codes from the keyboard and maps them to a scan code. The SCP puts this scan code in 
its output buffer (which may cause an IRQ1). The CPU can then read the scan code at Port 
0060h. This scan code is programmable. One of three tables can be used to determine a 
key’s scan code. The scan codes reside in ROM memory and are selectable by the BIOS 
or software.

It would be very complex to design a hardware keyboard interface that exactly duplicated 
the SCP function. Because the SCP function relies on the key matrix layout and scan code 
set selected, the hardware keyboard interface would differ for every system design and 
would differ depending on the scan code programmed. This would require dictating the 
keyboard matrix layout (which keys at each row/column intersection) or requiring hardware 
ROM fetches to get the scan code maps for each key press. 

Due to these size and complexity constraints, the matrix keyboard interface described in 
this chapter is custom to the ÉlanSC400 and ÉlanSC410 microcontrollers and not 
hardware-compatible with the PC/AT. However, PC/AT compatibility can still be achieved 
by using SMIs to capture the keystrokes and map them to the correct scan code for the CPU. 

The ÉlanSC400 and ÉlanSC410 microcontrollers provide software and hardware support 
for SCP emulation and PC/AT compatibility with the following features:

■ The SCP Input Buffer/Output Buffer/Status Register for SCP software emulation

■ An interrupt for signaling that the Input Buffer has been written

■ An interrupt for signaling that the Output Buffer has been read

■ Hardware for generating the IRQ1 signal

■ Hardware for emulating the SCP A20GATE command

■ Hardware for emulating the SCP RESET CPU command

16.1.3 XT Keyboard Interface
The XT keyboard interface in the ÉlanSC400 and ÉlanSC410 microcontrollers is compatible 
with IBM’s PC-XT keyboard, consisting of clock and data inputs (XT_CLK and XT_DATA) 
to the ÉlanSC400 and ÉlanSC410 microcontrollers.

The XT keyboard interface includes the following features:

■ Compatible with IBM’s PC-XT keyboard

■ Operates at speeds up to 250 KHz
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16.2 REGISTERS
A summary listing of the chip setup and control (CSC) indexed registers used to control 
the keyboard interface on the ÉlanSC400 and ÉlanSC410 microcontrollers is shown in 
Table 16-1. Complete register descriptions can be found in the ÉlanSC400 Microcontroller 
Register Set Reference Manual (order #21032).

Table 16-1 Keyboard Interface Register Summary

Register I/O Address Keyboard Interface Function Keyword
Description 
in Register 
Set Manual

Pin Mux Register B 22h/23h
Index 39h

Keyboard Row (KBD_ROW12–KBD_ROW7) 
or ISA signals enable, Keyboard Column 
(KBD_COL1–KBD_COL0) or XT keyboard 
(XT_CLK, XT_DATA) signals enable

page 3-45

Pin Mux Register C 22h/23h
Index 3Ah

Matrix keyboard usage state for proper pin 
termination during Suspend

page 3-46

Wake-Up Source Enable 
Register A

22h/23h
Index 52h

Wake-up source enable: matrix key press page 3-59

Wake-Up Source Status 
Register A

22h/23h
Index 56h

Wake-up source status: matrix key press page 3-63

Activity Source Enable Register B 22h/23h
Index 63h

Activity source enable: matrix keyboard key 
press, keyboard timer time-out, and CPU 
access to keyboard registers

page 3-72

Activity Source Status Register B 22h/23h
Index 67h

Activity source status: matrix keyboard key 
press, keyboard timer time-out, and CPU 
access to keyboard registers

page 3-76

Activity Classification Register B 22h/23h
Index 6Bh

Primary or secondary activity classification: 
matrix keyboard key press, keyboard timer 
time-out, and CPU access to keyboard 
registers

page 3-80

PC Card and Keyboard SMI/NMI 
Enable Register

22h/23h
Index 91h

SMI/NMI enable: matrix keyboard key press, 
keyboard timer, and Input Buffer Written and 
Keyboard Output Buffer Read interrupts

page 3-95

PC Card and Keyboard SMI/NMI 
Status Register

22h/23h
Index 95h

SMI/NMI status: matrix keyboard key press, 
keyboard timer, and Input Buffer Written and 
Keyboard Output Buffer Read interrupts

page 3-100

SMI/NMI Select Register 22h/23h
Index 98h

SMI or NMI select page 3-104

I/O Access SMI Enable 
Register A

22h/23h
Index 99h

SMI enable for I/O access to keyboard page 3-105

I/O Access SMI Status Register A 22h/23h
Index 9Bh

SMI state for I/O access to keyboard page 3-107

Standard Decode to GPIO_CS 
Map Register

22h/23h
Index B1h

External SCP chip select mapping to one of 
the GPIO_CS pins

page 3-131
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Keyboard Configuration 
Register A

22h/23h
Index C0h

Keyboard configuration; SMI/NMI generation 
for SCP reset, GateA20 command, and 
SUS_RES/KBD_ROW14; IRQ12 and IRQ1 
generation for SCP emulation and XT 
interface, reset disable, GateA20 disable, and 
keyboard transmit time-out

page 3-146

Keyboard Configuration 
Register B

22h/23h
Index C1h

XT keyboard interface enable, XT keyboard 
select SMI/NMI or IRQ1, keyboard timer SMI/
NMI status and clear, internal SCP emulation 
registers or external SCP chip select

page 3-149

Keyboard Input Buffer Read-
Back Register

22h/23h
Index C2h

Storage of writes to direct-mapped ports 
0060h and 0064h

page 3-151

Keyboard Output Buffer Write 
Register

22h/23h
Index C3h

Output buffer back door, data shifted in from 
XT_DATA

page 3-152

Mouse Output Buffer Write 
Register

22h/23h
Index C4h

Mouse output buffer back door page 3-153

Keyboard Status Register Write 
Register

22h/23h
Index C5h

Keyboard status back door, emulated SCP 
status register

page 3-154

Keyboard Timer Register 22h/23h
Index C6h

Time delay before the keyboard timer SMI/NMI 
occurs

page 3-155

Keyboard Column Register 22h/23h
Index C7h

Column pin state, read or write page 3-156

Keyboard Row Register A 22h/23h
Index C8h

Row pin state, read or write page 3-158

Keyboard Row Register B 22h/23h
Index C9h

Row pin state, read or write page 3-160

Keyboard Column Termination 
Control Register

22h/23h
Index CAh

Pin termination, pull-up or pull-down resistor 
state, read or write

page 3-162

Table 16-1 Keyboard Interface Register Summary (continued)

Register I/O Address Keyboard Interface Function Keyword
Description 
in Register 
Set Manual
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16.3 OPERATION

16.3.1 Matrix Keyboard Interface
Figure 16-1 shows a block diagram of the matrix keyboard controller. Note that anytime 
the interface (DRAM, VL-bus, or ROM) is programmed for 32 bits, the matrix keyboard 
interface is not available. The matrix keyboard signals shown in Table 16-2 are shared with 
other functions on the ÉlanSC400 and ÉlanSC410 microcontrollers.

Support for up to 112 keys is provided with 14 row and 8 column pins dedicated. The row 
signals have built-in pull-up resistors (~150 Kilohm), eliminating the need for external/
discrete components. The column pull-ups are programmable to be individually disabled 
in Suspend mode. This eliminates the current draw when a column has been programmed 
to remain Low in Suspend mode in order to enable a key-press as a wake-up source.

The SUS_RES signal is also brought into the Keyboard Row registers and the key-pressed 
interrupt logic. This signal can be individually disabled. With this design, the suspend/
resume functions can be more closely incorporated into the keyboard (i.e., using the 
SUS_RES key with other key presses to initiate system actions like reset). If the hardware 
suspend is not needed in the system design, this signal gives another row input, for a total 
of 15 rows and support for up to 120 keys.

The basic operation of the matrix keyboard interface includes the following steps.

■ Write all keyboard columns to 0 (via the Keyboard Column Register at CSC index C7h). 
This is required so that a key press on any column will generate an interrupt. Note that 
an SMI or NMI is the only type of interrupt the matrix keyboard interface recognizes as 
a key-pressed interrupt.

■ When the interrupt is received, perform a matrix scan. The scan is performed one column 
at a time by writing one column control bit to 0, while the other column bits are written 
to 1. For each column being checked, read back the row inputs (through Keyboard 
Registers A and B at CSC index C8–C9h). If, for a particular column, a row read-back 
bit is 0, then the key corresponding to that row and column is currently pressed.

■ Clear the interrupt.

■ If the interrupt was an NMI, set the NMI_DONE bit in the XMI Control Register (CSC 
index 9Dh[1]) prior to returning control to the interrupted routine, then return.

Table 16-2 Keyboard Signals Shared with the Other Interfaces

Default Signal Alternate Function Control

KBD_ROW13 R32BFOE Do not enable the 32-bit ROM 
interface on ROMCS0.

KBD_ROW12–KBD_ROW7 MCS16, SBHE, BALE, PIRQ2, PDRQ1, 
PDACK1

CSC index 39h[2]

KBD_ROW6–KBD_ROW0 MA12, RAS3–RAS2, CASH3–CASH2, 
CASL3–CASL2

CSC index 00–03h[3]

KBD_COL6–KBD_COL2 PIRQ7–PIRQ3 CSC index 3Ah[1]

KBD_COL1–KBD_COL0 XT_CLK, XT_DATA CSC index 39h[3]
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Figure 16-1 Matrix Keyboard Controller Block Diagram
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16.3.1.1 N-Key Rollover

N-key rollover is the problem that happens when three keys are pressed at the same time. 
With two keys in the same row and two keys in the same column, a fourth key will be 
detected as pressed. Because keyboards no longer incorporate diodes to eliminate current 
paths through keys, the controller and system designer have to resolve this problem.

■ Example—Two rows, W and X, and two columns, Y and Z are in the matrix. The keys 
at (W,Y), (W,Z), and (X,Z) are pressed. When column Z is driven Low and the rows are 
read (Figure 16-2), rows W and X will be Low, as they should be, because these keys 
are pressed. When column Y is driven Low and the rows are read (Figure 16-3), rows 
W and X are Low, which is wrong. Only the key at (W,Y) should be detected; but there 
is a path to row X through the keys at (W,Z) and (X,Z), so the key at (X,Y) appears as 
the “Ghost Key”.

N-key rollover is addressed in this design by having many row signals and using several 
of them for special keys like Shift, Alt, Ctrl, Fn, etc. By putting only one key on each row, 
there is no path for the Low column signal to drive a row signal it should not. This will limit 
the total size of the keyboard supported, but an 80-key keyboard can still be supported with 
four additional keys handled in this special way.

Figure 16-2 N-Key Rollover Example #1 

Figure 16-3 N-Key Rollover Example #2 

16.3.1.2 Key-Pressed Interrupt

When no keys are pressed, it is not necessary for the CPU to spend time scanning the 
keyboard (although it could, if the software required it). The ÉlanSC400 and ÉlanSC410 
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pressed. To use it, the CPU writes all the columns to Low. All the rows are ANDed together 
inside the chip and can be programmed to cause an NMI or SMI on a key press if any row 
goes Low. This can only be used while no keys are pressed, because as long as a key is 
held down, the SMI would be active. 

In addition, a key press can cause the CPU clock to start back up, if it is stopped and the 
keyboard is programmed to cause a PMU activity.

As a variation, one or several of the columns can be programmed Low, so only certain keys 
will cause the interrupt when pressed. This requires careful layout of the key matrix by the 
system designer to isolate those special keys.

16.3.1.3 Keyboard Wake-Up

The keyboard can be programmed to wake up the system from Suspend mode. This is 
done by programming the necessary columns Low and using the key-pressed interrupt as 
the wake-up. As an alternative to using the columns, the SUS_RES signal can be used to 
do the wake-up. The enables to make these wake-ups are described in Section 5.4.9.

16.3.1.4 CPU-Scanned Keyboard

The CPU handles all scanning of the keyboard. There is no state machine to automatically 
walk a 0 through the columns and save the pressed key information for the CPU to retrieve 
later.

The CPU obtains its key-pressed information by writing the column signals Low (through 
the Keyboard Column Register at CSC index C7h) one at a time and reading the rows 
(through Keyboard Registers A and B at CSC index C8–C9h) to check if any of the rows 
are Low. If any row is detected Low, then the key at that row/column intersection is pressed. 

To account for key bounce, a software debounce should occur by waiting an appropriate 
amount of time (several milliseconds—actual time depends on key-switch characteristics 
and system design) and scanning the keys again to confirm the same keys are pressed. 

The software/firmware that is controlling this can then map that row/column intersection 
into a code indicating which key is pressed. 

16.3.1.5 Keyboard Timer

The keyboard controller incorporates its own timer that can be set for 3.91 ms to 1 second 
in 3.91-ms increments. On a time-out, the timer generates a key-timer interrupt that can be 
programmed to cause an SMI or NMI and start the CPU clock back up if it has been stopped. 

Note: The internal RTC must be initialized before the keyboard timer function can be used. 
This is particularly important for those systems that use an external RTC.

The timer can be used to support key debounce, typematic keys, and to keep the CPU 
scanning the keyboard. These three different rates are as follows:

■ Debounce—Typically 5–40 ms depending on the key switch characteristics.

■ Typematic support—The PC/AT standard calls for a delay (the time a key is held down 
until the typematic support begins) of 250 ms to 1 second in 250-ms intervals. The 
typematic period (interval from one key output to the next) is 2 to 30 characters per 
second (33–500 ms per key output) at a variable rate defined by the following equation:

Period = (8+A) x (2B) x 0.00417 seconds

where A and B are programmable by the system.
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The keyboard timer will not support this exact equation, but the resolution of the timer is 
small enough and the range broad enough to work without a noticeable difference.

■ CPU scanning—A good touch typist can type 50 words per minute; this equals 250 
keystrokes per minute or about 5 keystrokes per second. This indicates the keyboard 
should be scanned every 200 ms to look for a new key press.

16.3.1.6 Typematic Support

The typematic the feature is the keyboard automatically repeating a key at a programmable 
rate, as long as a key is held down after it has been pressed a predetermined amount of 
time. Because the key matrix is scanned by the CPU, there is no specific hardware for 
typematic, but the timer can be used to aid in typematic support.

16.3.2 SCP Emulation
To facilitate software emulation of a PC/AT keyboard, the keyboard controller provides the 
SCP Input Buffer, Output Buffer, and Status registers, as well as IRQ generation. Keyboard 
Configuration Register B at CSC index C1h[3–2] enables the internal SCP emulation 
registers.

■ Input Buffer— This CPU write register (ports 0060h and 0064h) can be enabled to cause 
an SMI/NMI when the CPU writes it. The firmware can then read out the byte at the 
Keyboard Input Buffer Read-Back Register (CSC index C2h) and use the information 
for its keyboard code. By writing to the Input Buffer at Port 0060h or 0064h, the IBF flag 
in the Status Register is set. By reading CSC index C2h, the IBF flag in the Status 
Register is cleared.

■ Output Buffer— This CPU read register (Port 0060h) is writable at the Keyboard Output 
Buffer Write Register (CSC index C3h). This is where the firmware would communicate 
information back to the CPU (such as key press scan codes). By reading the Output 
Buffer at Port 0060h, the OBF flag in the Status Register is cleared. By writing CSC 
index C3h, the OBF flag in the Status Register is set.

■ Status Register— This CPU read register (Port 0064h) is writable at the Keyboard 
Status Register Write Register (CSC index C5h). Several of the bits are writable by 
firmware and some (IBF, OBF, Mouse OBF, Command/Data) are set and cleared 
automatically when accesses occur (Input Buffer is written or read, Output Buffer is 
written or read, etc.).

■ IRQ1—As part of the SCP support, IRQ1 will be generated if it is enabled when the OBF 
flag is set because of a write to CSC index C3h.

■ IRQ12—As part of the SCP support, IRQ12 will be generated if it is enabled when the 
OBF flag is set because of a write to the Mouse Output Buffer Write Register (CSC index 
C4h).

16.3.2.1 SCP GATEA20 and Reset CPU Command Emulation 

The ÉlanSC400 and ÉlanSC410 microcontrollers do not support an A20GATE or RESCPU 
input pin. These inputs are typically driven by the external SCP in response to a command 
request that is issued by the main CPU. In the implementation on the ÉlanSC400 and 
ÉlanSC410 microcontrollers, the A20GATE and RESET CPU command sequences are 
detected by internal logic, and the appropriate action is taken.

The A20GATE command is detected when the CPU issues the standard command write 
to Port 0064h of ‘D1h’ followed by a data write to Port 0060h. Bit 1 of the write to Port 0060h 
drives the A20 control logic. A value of 1 allows the CPU A20 signal to propagate to the 
core logic, while a value of 0 allows the CPU A20 signal to be driven Low, as long as no 
other A20GATE control sources are forcing the CPU A20 signal to propagate. 
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The RESET CPU command is detected when the CPU issues the standard command write 
to Port 0064h of FEh.

The A20GATE and RESET CPU command emulation can be enabled or disabled 
independently. Also, the Input Buffer Full SMI/NMI’s can be disabled from occurring for 
both sequences independently. 

16.3.3 Keyboard System Scenarios

16.3.3.1 Scenario #1: Simple Matrix Keyboard Support by Interrupting

The following is one possible scenario of how the system would use the keyboard controller 
with interrupting, if PC/AT compatibility is not required (i.e., the system runs only custom 
software or guarantees all keyboard accesses go through BIOS and not directly to the 
keyboard controller):

1. No keys are pressed. Write the Keyboard Column Register all low (‘00’) and enable the 
key-pressed interrupt to cause an SMI or NMI on a key press (any row driven Low).

The CPU can continue to run the application software without polling the keyboard now.

2. As soon as a key is pressed, an SMI/NMI occurs and the CPU stops running the 
application software and jumps to the SMI/NMI code to service the keyboard.

3. The keyboard service code disables the key-pressed interrupt from causing an SMI/
NMI; writes the Keyboard Column Register with ‘FE’ to set only column 0 low; reads the 
Keyboard Row Registers A and B to see if any of the keys on column 0 are pressed; 
continues to walk a ‘0’ through all the columns, and reads the rows to identify all the 
keys that are pressed. The timer is then set for some amount of time and enabled to 
cause an SMI/NMI; the SMI/NMI routine is exited; and control is returned to the 
application software (this is for software debounce). 

4. On a timer time-out (key-timer interrupt), the SMI/NMI interrupt occurs, and the keyboard 
service code runs through all the keys to find all that are pressed. These are compared 
to the keys pressed the first time through, and any that match are reported back to the 
software for its use. 

5. The timer is reset and re-enabled, the SMI/NMI is exited, and control is returned to the 
software. 

6. The next time the timer times-out, the keyboard service code looks for new keys pressed 
and does the software debounce before reporting them. Any keys that are detected Low 
for a predetermined amount of time are reported at the programmed typematic rate.

7. When all keys are released. the keyboard service code starts over at the top, 
programming all columns Low and enabling the key-pressed interrupt to cause an 
SMI/NMI.

16.3.3.2 Scenario #2: Simple Matrix Keyboard Support by Polling

The following is one possible scenario of how the system would use the keyboard controller 
with polling if PC/AT compatibility is not require (i.e., the system runs only custom software 
or guarantees all keyboard accesses go through BIOS and not directly to the keyboard 
controller):

1. The software running simply goes out and walks a 0 through the columns and reads the 
rows until a key is detected as pressed. 

2. When the key is detected pressed for several milliseconds, it is accepted as a valid hit 
and used by the software.
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16.3.3.3 Scenario #3: Matrix Keyboard Support with PC/AT Compatibility

The following is one possible scenario of how the system would use the keyboard controller 
if PC/AT compatibility is required (i.e., the system runs standard PC/AT software and has 
to guarantee that accesses directly to the keyboard controller will work):

1. No keys are pressed.Write the Keyboard Column Register all low (‘00’), and enable the 
key-pressed interrupt to cause an SMI on a key press (any row goes Low).

The CPU can continue to run the application software without polling the keyboard now.

2. Enable the Input Buffer Full flag (IBF) being set to cause an SMI.

3. Enable the Output Buffer Full flag (OBF) being cleared to cause an SMI.

4. When a key is pressed, an SMI occurs and the CPU stops running the application 
software and jumps to the SMI code to service the keyboard.

5. The SMI keyboard service code disables the key-pressed interrupt from causing an SMI; 
writes the Keyboard Column Register with ‘FEh’ to set only column 0 low; reads the 
Keyboard Row Registers A and B to see if any of the keys on column 0 are pressed; 
continues to walk a ‘0’ through all the columns, and reads the rows to identify all the 
keys that are pressed. 

6. The timer is then set for some amount of time and enabled to cause an SMI; the SMI 
routine is exited; and control is returned to the application software (this is for software 
debounce). 

7. On a timer time-out (key-timer interrupt), the SMI interrupt occurs, and the keyboard 
service code runs through all the columns to identify all keys that are pressed. Those 
keys found are compared to the keys pressed the first time through, and any that match 
are translated into the correct PC/AT scan code. The first key scan code is written through 
the Keyboard Output Buffer Write Register (CSC index C3h) into the Output Buffer.

8. The SMI routine is then exited and control is returned to the application software.

9. When the software reads the Output Buffer to get the keystroke, the OBF being cleared 
causes an SMI, the code puts the next key scan code into the Output Buffer and exits, 
and so on, until all pressed keys are reported.

10.While a key is in the “pressed” state, the timer can be used to perform software debounce 
of the key-press and provide information on the duration of the key-press for Typematic 
support.

11.When all keys are released, the routine returns to the top, programming all columns 
Low and a key-pressed interrupt to cause an SMI. 

12.If the software writes to the Input Buffer with a command to the keyboard controller, it 
causes an SMI, and the SMI code can read the byte from the Keyboard Input Buffer 
Read-Back Register (CSC index C2h) and act accordingly.
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16.3.4 XT Keyboard
The XT keyboard interface in the ÉlanSC400 and ÉlanSC410 microcontrollers is compatible 
with IBM’s PC-XT keyboard. 

The interface includes the bidirectional clock and data signals, XT_CLK and XT_DATA. 
These pins are driven by open-drain drivers with optional weak internal pull-up resistors. If 
a system design requires a reset pin for the XT keyboard interface, an additional output 
pin, such as one of the GPIO pins, can be used.

16.3.4.1 Interrupts

When a serial keyboard byte has been assembled, an XT Keyboard Byte Received interrupt 
is generated on IRQ1. The software should respond to the interrupt by reading the byte 
assembled in the keyboard data shift buffer at Port 0060h. The programmer also has the 
option of driving the clock pin Low as an additional handshake indication. After reading the 
byte at Port 0060h, the program clears the keyboard data shift buffer and interrupt by writing 
Port 0061h[7] High, then Low again. This action not only clears the shift buffer and interrupt, 
but also releases the data line to be an input again.

The Keyboard Configuration Register A (CSC index C0h[4]) provides IRQ1 control for the 
XT keyboard interface. Table 16-3 shows the effect of setting this bit on IRQ1 generation.

Table 16-3 IRQ1 Generation

SCP 
Support

XT Keyboard 
Enabled

XT Interrupt 
Type

Effect of Setting CSC Index Bit C0h[4]

External N/A N/A No effect

None No N/A No effect

None Yes XMI No effect

None Yes IRQ1 Allows IRQ1 to be generated as a result of data being received from 
the XT keyboard interface.

Internal No N/A Allows IRQ1 to be generated as a result of the Keyboard Output Buffer 
Write Register (CSC index C3h) being written to.

Internal Yes XMI Allows IRQ1 to be generated as a result of CSC index C3h being 
written to.

Internal Yes IRQ1 Allows IRQ1 to be generated as a result of data being received from 
the XT keyboard interface or as a result of CSC index C3h being 
written to. When configured like this, if either IRQ1 source is being 
asserted, the other source will not be able to generate an IRQ1. Care 
must be taken in the IRQ1 handler for this specialized case because 
if both sources of IRQ1 are asserted simultaneously (i.e., a write to 
C3h is quickly followed by arrival of data from the XT keyboard 
interface). The handler must not exit until one of the following has 
occurred:
— Both IRQ1 sources are cleared.
— CSC index C0[4] has been toggled after one of the IRQ1 sources
      has been cleared to generate an edge for the remaining IRQ source.
Failure to perform one of the above can result in the loss of further 
IRQ1 requests being detected by the PIC, as an edge is required for 
this.
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16.3.4.2 Enabling the XT Keyboard Interface

The XT keyboard interface is enabled by setting CSC index C1h[4]. Setting this bit does 
the following:

■ Allows the pins, XT_DATA and XT_CLK, to become available as keyboard signals, 
because their function is shared

■ Allows Port 0060h to be read as an internal XT por

■ Allows IRQ1 to be used by the XT interface

16.3.4.3 Controlling the XT Keyboard Interface

Two control bits (Port 0061h[7, 6] are provided for control of the XT keyboard interface. 

■ Bit 7 is used to clear the keyboard interrupt, clear the keyboard data shift buffer, and 
force the data line XT_DATA Low (which can be used as a busy signal to the keyboard). 
Two writes are required for the proper operation of this bit: the first to set it, and the 
second to clear it. If it is not cleared, then the shift buffer will be held in a “clear” 
configuration. 

■ Bit 6, when 0, forces the keyboard clock line XT_CLK Low, which can also be used as 
a busy signal to the keyboard.

Once a serial keyboard byte has been assembled, it can be read at Port 0060h.

16.3.4.4 Timing

The XT keyboard clock typically runs at roughly 100 KHz, or 10 µs per bit. The falling edge 
of the XT_CLK input (after being delayed by two CPUCLKS/6) is what clocks the shift buffer. 
Therefore, XT_DATA should be changed on the rising edge of the XT_CLK signal. The XT 
keyboard interface will run at speeds up to 250 KHz.

16.4 INITIALIZATION
Both the matrix keyboard interface and the XT keyboard interface are disabled at power-
on reset, and must be configured by software before being enabled. Note that the internal 
RTC must be initialized before the keyboard timer function can be used. This is particularly 
important for those systems that use an external RTC.

16.5 POWER MANAGEMENT
Operation of the keyboard interfaces on the ÉlanSC400 and ÉlanSC410 microcontrollers 
is affected by the power-management functions shown in Table 16-4.
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Table 16-4 Power Management in the Keyboard Interfaces

Keyboard Interface 
Event Description

Power Management Effect

Wake-Up Activity SMI NMI

Matrix keyboard key 
press

Triggered by the falling edge of the internal 
keyboard controller’s key-pressed interrupt 

Yes Programmable Yes Yes

PU access to internal 
keyboard (ports 60h 
and 64h)

Triggered by the falling edge of the internal 
keyboard controller’s chip select

Programmable

Keyboard timer time-
out

Triggered by keyboard controller’s timer 
time-out interrupt

Yes Yes

Keyboard input buffer 
write

Triggered by keyboard controller’s input 
buffer write interrupt

Yes Yes

Keyboard output buffer 
read 

Triggered by keyboard controller’s output 
buffer read interrupt

Yes Yes

Keyboard access Reads and writes to ports 0060h and 0064h 
can cause an SMI through a trap

Yes
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CHAPTER
17
 GENERAL-PURPOSE INPUT/OUTPUT
AND PROGRAMMABLE CHIP SELECTS
17.1 OVERVIEW
The ÉlanSC400 and ÉlanSC410 microcontrollers support 32 general-purpose I/O pins 
(GPIOs) that can be used on the system board. There are two classifications of GPIO 
available: 

■ GPIOx signals (where ‘x’ is a number)—These signals are programmable to be inputs 
or outputs only. There are 17 GPIOx pins on the ÉlanSC400 and ÉlanSC410 
microcontrollers.

■ GPIO_CSx signals—These signals can be programmed to be inputs, outputs, chip 
selects, or power management functions. There are 15 GPIO_CSx pins on the 
ÉlanSC400 and ÉlanSC410 microcontrollers.

Two general-purpose I/O pins are dedicated: GPIO_CS0 and GPIO_CS1. The rest are 
shared with other functions, including external buffer control, the ISA bus interface, the 
parallel port, and, on the ÉlanSC400 microcontroller, PC Card power control and the PC 
Card Socket B interface.

The GPIO_CSx signals can be programmed for the following functions:

■ PMU mode change outputs, activities, wake-ups, or SMI/NMI

■ I/O or memory address decode outputs

■ ROMCS2 (ROM Chip Select 2)

■ External 8042 (or similar) keyboard controller chip select (called SCP_CS in this 
chapter.)

17.1.1 External Pins
The ÉlanSC400 and ÉlanSC410 microcontrollers support 32 general-purpose I/O pins 
(GPIOs). Except for two pins (GPIO_CS0 and GPIO_CS1), all the GPIO pins share pins 
with other functions. The designer should carefully consider the system implications of 
using a pin as a GPIO instead of its alternate function.

In addition to their general-purpose I/O functions, 15 of the GPIO signals (GPIO_CS14–
GPIO_CS0) can be used as chip selects, power management unit (PMU) I/Os, or to signal 
an SMI or NMI.

17.1.2 Internal Chip-Select Logic
The ÉlanSC400 and ÉlanSC410 microcontrollers contain internal chip-select logic that 
provides two fixed chip selects (ROMCS2 and SCP_CS) and four programmable chip 
selects (GP_CSA–GP_CSD).

Each of these chip selects can optionally be mapped to any one of the 15 GPIO_CSx pins. 
Additionally, the programmable chip selects (GP_CSA–GP_CSD) can be used for power 
management or to generate SMIs, whether or not they are physically mapped to external 
GPIO pins. This is fully discussed in Section 17.7.
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17.2 REGISTERS
A summary listing of the chip setup and control (CSC) indexed registers used to control 
the GPIO signals is shown in Table 17-1. Complete register descriptions can be found in 
the ÉlanSC400 Microcontroller Register Set Reference Manual (order #21032).

Table 17-1 GPIO Register Summary

Register I/O Address GPIO Function Keyword
Description 
in Register 
Set Manual

Pin Strap Status Register 22h/23h
Index 20h

External buffer controls (DBUFOE, 
DBUFRDH, DBUFRDL) enable on 
GPIO_CS4–GPIO_CS2, ROM0 data bus 
width, ROM0 or PC Card boot vector decode

page 3-25

Pin Mux Register A 22h/23h
Index 38h

GPIO_CS8–GPIO_CS5 or ISA signals enable page 3-44

Pin Mux Register B 22h/23h
Index 39h

PC Card power controls or GPIO_CSx signals, 
keyboard columns or XT keyboard signals; 
LBL2; parallel port, PC Card Socket B, or 
GPIOx signals

page 3-45

Pin Mux Register C 22h/23h
Index 3Ah

PC Card Socket A second card detect or GPIO 
signal

page 3-46

GPIO Termination Control 
Registers A–D

22h/23h
Index 3B–3Eh

GPIOx and GPIO_CSx pull-ups and pull-
downs

page 3-47–
page 3-50

GPIO as a Wake Up or Activity 
Source Status Registers A–B

22h/23h
Index 5A–5Bh

Wake-up or activity source status: GPIO_CSx 
signals

page 3-67–
page 3-68

GP_CS Activity Enable Register 22h/23h
Index 60h

Activity enable for GP_CSA–GP_CSD signals, 
primary and secondary activity classification

page 3-69

GP_CS Activity Status Register 22h/23h
Index 61h

Activity status: GP_CSA–GP_CSC signals page 3-70

Mode Timer SMI/NMI Status 
Register

22h/23h
Index 96h

SMI/NMI status: GPIOx signals page 3-96

I/O Access SMI Enable 
Register B

22h/23h
Index 9Ah

SMI enable: I/O access to GP_CSA or 
GP_CSB address range

page 3-106

I/O Access SMI Status Register B 22h/23h
Index 9Ch

SMI status: I/O access to GP_CSA or 
GP_CSB address range

page 3-108

GPIO_CS Function Select 
Registers A–D

22h/23h
Index A0–A3h

GPIO_CSx signals: activity, wake-up, input, or 
output

page 3-110–
page 3-113

GPIO Function Select Registers 
E–F

22h/23h
Index A4–A5h

GPIOx signals: inputs or outputs page 3-114–
page 3-115

GPIO Read-Back/Write
Registers A–D

22h/23h
Index A6–A9h

GPIO_CSx status and control page 3-116–
page 3-119

 GPIO_PMUx Mode Change 
Registers

22h/23h
Index AA–ADh

Drive GPIO_PMUA–GPIO_PMUD signals in 
PMU modes

page 3-120–
page 3-126

GPIO_PMU to GPIO_CS Map 
Registers A–B

22h/23h
Index AE–AFh

GPIO_PMUA–GPIO_PMUD mapping to 
GPIO_CSx pins

page 3-128–
page 3-129

GPIO_XMI to GPIO_CS Map 
Register

22h/23h
Index B0h

GPIO_CSx pin to the internal GPIO_XMI 
signal, SMI or NMI selection

page 3-130
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Standard Decode to GPIO_CS 
Map Register

22h/23h
Index B1h

Keyboard controller chip select (SCP_CS) and 
ROMCS2 mapping to GPIO_CSx pins

page 3-131

GP_CS to GPIO_CS Map 
Registers A–B

22h/23h
Index B2–B3h

GP_CSA–GP_CSD mapping to GPIO_CSx 
pins

page 3-132–
page 3-133

GP_CSA I/O Address Decode 
Register

22h/23h
Index B4h

Chip select A address page 3-134

GP_CSA I/O Address Decode 
and Mask Register

22h/23h
Index B5h

Chip select A address, SA3–SA0 mask page 3-135

GP_CSB I/O Address Decode 
Register

22h/23h
Index B6h

Chip select B address page 3-136

GP_CSB I/O Address Decode 
and Mask Register

22h/23h
Index B7h

Chip select B address and SA3–SA0 mask page 3-137

GP_CSA/B I/O Command 
Qualification Register

22h/23h
Index B8h

GP_CSA and GP_CSB qualified with IOR/
IOW, GP_CSA and GP_CSA ISA cycle data 
bus widths and timing selectors

page 3-138

GP_CSC Memory Address 
Decode Register

22h/23h
Index B9h

Chip select C address page 3-140

GP_CSC Memory Address 
Decode and Mask Register

22h/23h
Index BAh

Chip select C address, SA3–SA0 mask page 3-141

GP_CSD Memory Address 
Decode Register

22h/23h
Index BBh

Chip select D address page 3-142

GP_CSD Memory Address 
Decode and Mask Register

22h/23h
Index BCh

Chip select D address, SA3–SA0 mask page 3-143

GP_CSC/D Memory Command 
Qualification Register

22h/23h
Index BDh

GP_CSC and GP_CSD qualified with IOR/
IOW, GP_CSA and GP_CSA ISA cycle data 
bus widths and timing selectors

page 3-144

Suspend Mode Pin State 
Override Register

22h/23h
index E5h

Pin termination latch page 3-186

Table 17-1 GPIO Register Summary (continued)

Register I/O Address GPIO Function Keyword
Description 
in Register 
Set Manual
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17.3 BLOCK DIAGRAM
Figure 17-1 shows all the GPIO signals available on the ÉlanSC400 and ÉlanSC410 
microcontrollers and their shared functions, if any. Figure 17-2 shows a block diagram of 
the GPIO_CSx signals.

Figure 17-1 General-Purpose Input/Output Block Diagram

ÉlanSC400 Microcontroller

GPIO20 [CD_A2]

GPIO19 [LBL2]

GPIO18 [PCMB_VPP2]

GPIO17 [PCMB_VPP1]

GPIO15 [PCMA_VPP2]

GPIO_CS14 [PCMA_VPP1]

GPIO_CS13 [PCMA_VCC]

GPIO_CS12 [PDRQ0]

GPIO_CS11 [PDACK0]

GPIO_CS10 [AEN]

GPIO_CS9 [TC]

GPIO_CS8 [PIRQ0]

GPIO_CS7 [PIRQ1]

GPIO_CS6 [IOCHRDY]

GPIO_CS5 [IOCS16]

GPIO_CS4 [[DBUFOE]]

GPIO_CS3 [[DBUFRDH]]

GPIO_CS2 [[DBUFRDL]]

GPIO_CS1

GPIO_CS0

GPIO16 [PCMB_VCC]

GPIO26 [PE] [RDY_B]

GPIO25 [ACK] [BVD1_B]

GPIO24 [BUSY] [BVD2_B]

GPIO23 [SLCT] [WP_B]

GPIO21 [PPDWE]

GPIO22 [PPOEN]

GPIO31 [STRB] [MCEL_B]

GPIO30 [AFDT] [MCEH_B]

GPIO29 [SLCTIN] [RST_B]

GPIO27 [ERROR] [CD_B]

GPIO28 [INIT] [REG_B]
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Figure 17-2 GPIO_CSx Signals Block Diagram

Activity

Wake-up

ENA_ACT

ENA_W/U

SMI/NMI
ENA_SMI

High-Speed

Low-Speed

Standby

Suspend

GPIO_CSxPolarity

Control

Register
Settings

2

2

S

Register
Settings

Register

Settings

Read 
Register

Interrupt
Controller

Power
Management

Unit

ROM
Address
Decode

Memory
Address
Decode

I/O
Address
Decode

Simple
Output

External
8042

Chip Select
General-Purpose Input/Output and Programmable Chip Selects 17-5



17.4 GPIO SYSTEM IMPLICATIONS
Because all of the GPIOs (except GPIO_CS0 and GPIO_CS1) trade off against other 
functionality, the designer will usually be constrained in choosing which GPIO pins to use 
for which functions. Figure 17-1 shows the mapping of GPIO pins to alternate functions. 
Choosing between GPIOs and alternate functions is done by functional groups within the 
Pin Mux Registers A–C (CSC indexed registers 38–3Ah), except for the buffer control group 
(GPIO_CS2–GPIO_CS4), which is selected via pin strapping at reset.

In addition to the alternate function trade-offs, the following should also be considered when 
selecting which GPIO pins to use:

■ All GPIOs are, by default, terminated by either pull-ups or pull-downs (depending on 
alternate function). The termination can be disabled, but should be considered when 
deciding which GPIO to use. For example, if a GPIO that is pulled down by default is to 
be used for a chip select, the internal pull-down will have to be overridden by a stronger   
external pull-up resistor, or else the external device will see its chip select active at reset. 
This also has power implications: when the chip select is active, current will be flowing 
through the pull-up resistor. See Section 2.4.2 and Appendix B for more information on 
pin termination.

■ GPIO31–GPIO15 are only capable of simple I/O. They can be set to be High, Low, or 
not driven, and can be read back.

■ GPIO_CS14–GPIO_CS0 have the I/O capabilities of GPIO31–GPIO15, and additional 
chip select, PMU, and SMI/NMI capabilities.

17.5 INITIALIZATION
All 32 GPIO signals can be programmed as inputs or outputs, or to support their alternate 
function. They are enabled as GPIO inputs at power-on reset, with pin-dependent pull-ups 
or pull-downs enabled. 

■ To change a GPIO to be an output, set the appropriate bit in GPIO Function Select 
Registers A–F (CSC index A0–A5h). 

■ To select the alternate (non-GPIO) pin function, set the appropriate bit in Pin Mux 
Registers A–C (CSC index 38–3Ah). 

■ To disable the pull-up or pull-down, reset the appropriate bits in GPIO Termination 
Control Registers A–D (CSC index 3B–3Eh).

Note: After changing to or from an alternate function, or enabling or disabling a pull-up/
pull-down, be sure to set the Pin Termination Latch Command Bit in the Suspend Mode 
Pin State Override Register (CSC index E5h[0]).

17.5.1 GPIO Pins and Simple Input
GPIO pins are selected for simple input at power-up, with the exception of GPIO_CS4–
GPIO_CS2, which can be selected as buffer control signals via a strapping option. The 
input value of the pins can be read using the GPIO Read-Back/Write Registers A–D (CSC 
index A6–A9h).

Any of the following actions will disable simple input on the GPIO pin:

■ Selecting the pin's alternate function via the Pin Mux Registers A–C (CSC index 38–3Ah)

■ Setting the GPIO's output bit in CSC index A0–A5h to turn the GPIO into an output
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17.5.2 GPIO Pins and Simple Output
If the GPIO pin’s alternate function has not been selected with the appropriate Pin Mux 
Register, and the GPIO’s output bit in CSC index A0–A5h is set, the GPIO will now be an 
output. The value of the pin can be set by writing to its bit in CSC index A6–A9h.

17.5.3 GPIO_CS Pins and Automatic Output
Automatic outputs are outputs that change state automatically, based on hardware events, 
without explicit software attention.

Fifteen of the GPIOs, GPIO_CS14–GPIO_CS0, support automatic output, which can be 
used for two different functions: PMU state information output and chip select output.

To use an automatic output function, the pin must be set to output mode (using CSC index 
A0–A5h), the output VALUE must be set to 0 (CSC index A6–A9h), and the desired function 
must be steered to the correct pin (CSC index AEh, AFh, and B1–B3h).

Note that, in many cases, automatic output must be programmed very carefully to insure 
that no glitches occur. Consider programming GPIO_CS0 to be ROMCS2. By default, it 
will be pulled up, so the ROM will not be driving the data bus. The programming must be 
done in such a way as to keep this true for the entire sequence:

■ (If it was one of the GP_CSx selects instead of ROMCS2, its registers would be initialized 
here to make sure it is not selecting continuously. See Section 17.7.)

■ Write 0000 to bits 7–4 of the Standard Decode to GPIO_CS Map Register (CSC index 
B1h) to steer ROMCS2 to GPIO_CS0.

■ Output a 0 to bit 0 of the GPIO Read-Back/Write Register A (CSC index A6h) to allow 
ROMCS2 to propagate.

■ Output a 1 to bit 0 of the GPIO_CS Function Select Register A (CSC index A0h) to 
change the GPIO to being an output from being an input (it should now be driven High, 
because ROMCS2 is not being driven).

17.5.3.1 Automatic PMU Information Output

Up to four GPIO_CS pins can be programmed to inform external hardware of internal PMU 
states. The internal signal names associated with this information are PMUA, PMUB, 
PMUC, and PMUD. Each of these signals has a register, GPIO_PMUx Mode Change 
Register (CSC index AA–ADh), that defines its value during every distinct PMU state, and 
each of these signals has a 4-bit field in the GPIO_PMU to GPIO_CS Map Registers A and 
B (CSC index AE–AFh) that defines which, if any, GPIO_CS pin it drives. As noted above, 
the GPIO's output bit in CSC indexed registers A0–A5h must be 1 to set the pin to output 
mode, and the GPIO's I/O bit in CSC indexed registers A6–A9h must be 0 to allow the PMU 
signal to propagate.

17.5.3.2 Automatic Chip Select Outputs

Up to six GPIO_CS pins can be programmed as chip selects for external hardware devices. 
The correct sequence for initializing a pin for use as a chip select is shown above in Section 
17.5.3.

Two of these chip selects, ROMCS2 and SCP_CS, select hard-coded addresses, with 
ROMCS2 selecting any memory operation to the ROMCS2 space, and SCP_CS selecting 
any I/O operation to ports 60h and 64h. These two selects can be independently mapped 
to any one of the GPIO_CS pins using the Standard Decode to GPIO_CS Map Register 
(CSC index B1h).
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The other four chip selects (GP_CSA, GP_CSB, GP_CSC, GP_CSD) can be independently 
mapped to any one of the GPIO_CS pins using the GP_CS to GPIO_CS Map Registers A 
and B (CSC index B2–B3h). 

GP_CSA and GP_CSB decode I/O addresses and GP_CSC and GP_CSD decode memory 
addresses. These signals can be used for internal functions in addition to or instead of 
being used for external chip selects. See Section 17.7 for details on selecting I/O and 
memory regions for decode.

17.6 GPIO_CS SIGNALS AS PMU ACTIVITIES AND SMI/NMI GENERATION
As noted in Section 17.5.3.1, PMU state information can be output on GPIO_CS pins. 
GPIO_CS pins can also be used to input information to the PMU, or to generate an SMI or 
NMI. Chapter 5 contains a discussion of the PMU and SMI generation.

Note that a GPIO_CS pin can be configured to provide information to the PMU or to generate 
an SMI or NMI, independent of whether the pin has been configured as an input or as an 
output. For example, an SMI could be generated by external hardware (input), or by writing 
to a GPIO_CS register (output), or by accessing a particular device or memory region 
(automatic output).

17.6.1 GPIO_CS PMU Activity and Wake-Up
By setting the appropriate bits in the GPIO_CS Function Select Registers A–C (CSC index 
A0–A3h), any GPIO_CS pin (or set of pins) can be programmed to be a primary activity 
and wake-up. A low-going edge on the pin will cause a wake-up to occur if the system is 
in Suspend mode, or a primary activity if the system is already running. PMU code can 
detect which pin caused the activity by examining the GPIO as a Wake-Up or Activity Source 
Status Registers A–B (CSC index 5A–5Bh).

17.6.2 GPIO_CS Signals and SMI/NMI Generation
The GPIO_XMI to GPIO_CS Map Register (CSC index B0h) can be configured to allow 
any one GPIO_CS signal to generate an SMI or NMI on the falling edge. The SMI or NMI 
handler can notice and reset this condition by checking and resetting bit 5 in the Mode 
Timer SMI/NMI Status Register (CSC index 96h).

17.7 GENERAL-PURPOSE CHIP SELECTS (GP_CSA–GP_CSD)
The ÉlanSC400 and ÉlanSC410 microcontrollers contain four internal general-purpose 
chip select signals.

■ GP_CSA and GP_CSB are intended for use as I/O chip selects. They decode the lower 
15 bits of the address bus and can optionally qualify the address with IOR and/or IOW. 
(To avoid aliasing, address bits A15–A10 are compared with 0s.) GP_CSA and GP_CSB 
are configured using CSC indexed registers B4–B8h.

■ GP_CSC and GP_CSD are intended for use as memory chip selects. They decode the 
upper 12 bits of the address bus, and can optionally qualify the address with MEMR 
and/or MEMW, or CPU address valid. They are configured via CSC indexed registers 
B9–BDh.

CSC indexed registers B4–BDh also allow any combination of the lowest four bits of the 
address to be ignored during decode (SA3–SA0 for GP_CSA and GP_CSB, SA17–SA14 
for GP_CSC and GPC_CSD), and also allow automatic forcing of 16-bit ISA cycles, on a 
per-chip select basis.
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17.7.1 Using DMA with General-Purpose Chip Selects
The memory chip selects GP_CSC and GP_CSD can be used for DMA cycles. I/O chip 
selects GP_CSA and GP_CSB are asserted for CPU-initiated cycles only. The GP_CSC 
and GP_CSD memory chip selects behave as follows:

■ Raw address decode (CPU or DMA)

■ Qualified with MEMR assertion (CPU or DMA)

■ Qualified with MEMW assertion (CPU or DMA)

■ Qualified with MEMW or MEMR assertion (CPU or DMA)

■ Qualified with CPU address valid (The chip select would not be asserted for DMA cycles.)

17.7.2 Mapping a General-Purpose Chip Select to a GPIO_CS Pin
As discussed in Section 17.5.3, each chip select can be independently mapped to any one 
of the GPIO_CS pins for use as an external device chip select, and/or to generate an SMI 
or NMI via CSC index B0h. Many external devices require no additional logic to use this 
scheme. CSC indexed registers B1h and B2h perform this mapping. Do not map two 
different GP_CS signals to the same GPIO_CS pin, or to a pin to which PMUx has been 
mapped.

17.7.3 Using General-Purpose Chip Selects as PMU Activities
The GP_CS Activity Enable Register (CSC index 60h) allows any of the general-purpose 
chip selects to be programmed to be primary or secondary activities. The GP_CS Activity 
Status Register (CSC index 61h) allows software to determine which general-purpose chip 
select activity occurred.

17.7.4 Using General-Purpose Chip Selects to Force an SMI
I/O accesses decoded by GP_CSA and GP_CSB can be trapped by setting bits 5 and/or 
6 in the I/O Access SMI Enable Register B (CSC index 9Ah). The SMI handler can determine 
and clear the cause of the SMI by examining and resetting bits 5 and/or 6 in the I/O Access 
SMI Status Register B (CSC index 9Ch). The SMI handler can emulate the I/O or restart 
the instruction. See Chapter 3 for SMI handler details.

In addition, the GPIO_XMI to GPIO_CS Map Register (CSC index B0h) can be used in 
conjunction with any one GPIO_CS pin to cause either an SMI or NMI. This works with 
output pins as well as input pins, so even GP_CSC and GP_CSD could be programmed 
to cause an SMI or NMI by programming them to drive the pin that CSC index B0h is 
sampling.

17.8 POWER MANAGEMENT
Operation of the GPIOs is affected by the power-management functions shown in Table 
17-2.

Table 17-2 Power Management in the GPIOs

GPIO Event Description

Power Management Effect

Wake-Up Activity SMI NMI

GPIO_CS14–GPIO_CS0 Triggered by falling edge on the signal Yes Primary Yes Yes
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CHAPTER
18
 INFRARED PORT
18.1 OVERVIEW
The ÉlanSC400 and ÉlanSC410 microcontrollers provide an infrared port designed for 
systems that need to support an infrared communications port compliant with the Infrared 
Data Association (IrDA) standard. The infrared port on the ÉlanSC400 and ÉlanSC410 
microcontrollers provides a reliable, half-duplex, wireless communications link to other 
systems that support the IrDA standard using light pulses in the Infrared spectrum to carry 
the data. 

On the ÉlanSC400 and ÉlanSC410 microcontrollers, the industry-standard 16550A UART 
is shared between RS-232 and infrared operations. Special modifications have been made 
to the UART to support infrared operation. The UART can be used to drive either the 
standard eight-pin RS-232 interface or a two-pin infrared interface.

The infrared port has dedicated transmit and receive data pins, called SIROUT and SIRIN 
respectively. These pins are designed to be connected gluelessly to common IrDA transmit 
and receive LED modules to support Slow-Speed (up to 115 Kbit/s) or High-Speed (1.152 
Mbit/s) Infrared mode operation. The UART and the infrared interface pins are not 
multiplexed with each other, or with any other interfaces, and are therefore available on 
the microcontroller at all times. However, because the two interfaces share the internal 
UART, only one interface can be enabled at any given time. This means that both a serial 
device and an IrDA device can be designed into the same system, and the microcontroller 
will support real-time switching between the two ports.

The infrared port on the ÉlanSC400 and ÉlanSC410 microcontrollers is capable of half-
duplex operation only. The port operates in either Slow-Speed or High-Speed Infrared 
modes.

■ Slow-Speed Infrared mode —Supports a variable (programmable) baud rate in exactly 
the same way as a standard 16550 UART, using the same registers and controls. Either 
interrupt-driven or polled-I/O operation is possible in Slow-Speed Infrared mode, but 
DMA is not supported in this mode. The serialized data format that is emitted from the 
SIROUT pin in this mode is identical to what is found on a standard RS-232 SOUT signal 
(i.e., programmable length start, data, and stop bit fields), but the pulses are inverted 
and shortened.

■ High-Speed Infrared mode —Supports a fixed transfer rate of 1.152 Mbit/s. This mode 
is characterized by a continuous data stream; the data bytes are not separated from 
each other with individual start and stop bits. DMA is always used for transferring High-
Speed Infrared mode data between system DRAM and the UART’s transmit and receive 
I/O ports.
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18.2 REGISTERS
A summary listing of the chip setup and control (CSC) registers used to control the infrared 
port interface is shown in Table 18-1. Complete register descriptions can be found in the 
ÉlanSC400 Microcontroller Register Set Reference Manual (order #21032).

CSC index registers for power management and SMI/NMI control in the UART are listed 
in Chapter 15 in Table 15-1.

Table 18-1 Infrared Port Register Summary

Register I/O Address Infrared Port Function Keyword
Description 
in Register 
Set Manual

Clock Control Register 22h/23h
Index 82h

DMA clock frequency select for High-Speed 
Infrared mode

page 3-90

Parallel/Serial Port Configuration 
Register

22h/23h
Index D1h

COM1 or COM2 base address configuration, 
UART enable

page 3-167

UART FIFO Control Shadow 
Register

22h/23h
Index D3h

Shadow FIFO control, 16550-compatible 
mode enable, FIFO buffer clear, trigger for 
received-data-available interrupt pending

page 3-169

Interrupt Configuration 
Register E

22h/23h
Index D8h

IRQ mapping for infrared port page 3-174

DMA Resource Channel Map 
Register A

22h/23h
Index DBh

DMA controller channel mapping for infrared 
port

page 3-177

IrDA Control Register 22h/23h
Index EAh

Infrared mode enable, infrared data rate, Slow-
Speed and High-Speed mode, DMA start-up, 
interrupt requests, data direction, receive 
blocking, SIRIN pull-down disable, and end-of-
transmission status

page 3-188

IrDA Status Register 22h/23h
Index EBh

Transmit and receive FIFO status, transmit 
and receive underflow, terminal count/end-of 
transmission status, and High-Speed interrupt 
request status

page 3-190

IrDA CRC Status Register 22h/23h
Index ECh

CRC error detect and receive abort page 3-192

IrDA Own Address Register 22h/23h
Index EDh

Assigned address page 3-193

IrDA Frame Length Register A 22h/23h
Index EEh

Transmit mode: Length of transmitted infrared 
data frame (first part). Receive mode: Length 
of received infrared data frame (first part)

page 3-194

IrDA Frame Length Register B 22h/23h
Index EFh

Transmit mode: Length of transmitted infrared 
data frame (second part). Receive mode: 
Length of received infrared data frame (second 
part)

page 3-195
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18.3 BLOCK DIAGRAM
A block diagram of the infrared port is shown in Figure 18-1. Note that the UART SOUT 
and SIN pins become disabled when the infrared interface is enabled. To complete the 
serial infrared implementation, optical infrared transceivers and their support circuitry (e.g., 
drivers) must be added externally to the chip.

Figure 18-1 Infrared Port Block Diagram

18.4 OPERATION
The Infrared Data Association (IrDA) consists of member companies that have an interest 
in generating hardware and software standards for infrared communications. Supporting 
the IrDA standard, the infrared port on the ÉlanSC400 and ÉlanSC410 microcontrollers 
provides a reliable, half-duplex, wireless communications link to other IrDA-compatible 
systems. 

The hardware designed into the ÉlanSC400 and ÉlanSC410 microcontrollers is not a 
generic infrared port implementation. What is provided is an infrared port designed to 
support an IrDA-compatible system implementation. Most of the features of the infrared 
port on the ÉlanSC400 and ÉlanSC410 microcontrollers were derived directly from either 
from the requirements of the IrDA specifications, or, at the system level, from the goals of 
the IrDA specifications.

A complete understanding of the IrDA specifications will help the user to better comprehend 
the features in the ÉlanSC400 and ÉlanSC410 microcontrollers that support those 
specifications. See the Infrared Data Association Serial Infrared Physical Layer Link 
Specification and the Infrared Data Association Serial Infrared Link Access Protocol (IrLAP) 
for more detail.

Two different modes of operation are provided: Slow-Speed mode and High-Speed mode.
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18.4.1 Slow-Speed Infrared Mode
Slow-Speed Infrared mode supports a programmable baud rate in exactly the same way 
as a standard 16550 UART. When operating in Slow-Speed Infrared mode, the infrared 
port on the ÉlanSC400 and ÉlanSC410 microcontrollers is like a two-wire virtual RS-232 
cable that has transmit and receive signals only and that can operate only in half-duplex 
mode. 

Slow-Speed Infrared mode is similar to High-Speed Infrared mode in terms of the pulse 
stream from the SIROUT pin. All fields are transmitted with the least significant bit of each 
byte first, and the data stream is RZI (Return-to-Zero-Inverted).

Besides this, one other observable difference between the output of the infrared interface’s 
SIROUT pin and the UART interface’s SOUT pin is that the actual pulses sent out on the 
SIROUT pin to the external infrared LED module are pulse-shaped to only 3/16 of a standard 
RS-232 bit-cell time, in order to reduce transmit operation power consumption. The pulse 
width is not adjustable—it is fixed to be the minimum width allowed by the IrDA Serial 
Infrared Physical Layer Link Specification and is centered in the standard RS-232 bit-cell 
time slot. In this mode, incoming pulses are detected and stretched to the full RS-232 bit-
cell length by the microcontroller prior to being fed to the on-board UART for deserialization.

18.4.1.1 Hardware Support

Slow-Speed Infrared mode does not provide any special hardware support (i.e., CRC 
generation, etc.) for the IrDA IrLAP (Infrared Link Access Protocol) layer like High-Speed 
infrared mode does. Because of this, software must handle all aspects of IrLAP protocol 
in Slow-Speed Infrared mode. This also means that the IrLAP need not be implemented if 
all that is desired is an RS-232 port implemented via infrared. 

Slow-Speed Infrared mode does not use DMA. Instead, it uses all of the traditional UART 
interrupts and controls for data transfer. The standard UART interrupts generated due to 
Receive Buffer Full, Transmit Holding Register Empty, and status changes do apply and 
are generated in this mode. As with any conventional 16550 UART, Slow-Speed Infrared 
mode can operate with the UART FIFOs either enabled (16550 operation) or disabled 
(16450 operation).

Slow-Speed Infrared mode consists of a transmit section and a receive section, as shown 
in Figure 18-2. The baud clock is 16 times the bit clock in Slow-Speed Infrared mode (115 
Kbit/s), or 1.8432 MHz.

Figure 18-2 Slow-Speed (115 Kbits/s) Infrared Mode
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The transmit section accepts the serial data output from the UART and produces an output 
pulse equivalent to three UART clocks wide on the SIROUT pin. Figure 18-3 shows a unit 
of serial data (serial data unit or SDU); the corresponding Slow-Speed Infrared mode SDU 
is shown in Figure 18-4. 

The infrared port accepts the serial data input from the external IrDA device that has been 
squared and conditioned to the appropriate logic level. The incoming pulse on the SIRIN 
pin is detected and appropriately stretched.

Figure 18-3 UART Serial Data Unit (SDU)

Figure 18-4 Slow-Speed Infrared Mode SDU

18.4.2 High-Speed Infrared Mode
High-Speed Infrared mode supports a fixed transfer rate of 1.152 Mbit/s. This mode is 
characterized by a continuous data stream and always uses DMA for data transfers.

Since many of the High-Speed Infrared mode features were implemented to address 
requirements in the IrDA standard for 1.152 Mbit/s operation, a short overview of the high-
speed IrDA frame structure is presented in this section to provide a basis for further 
discussion. The intent of this section is to provide some basic familiarity with a high-speed 
IrDA frame so that the user will understand how to use the High-Speed Infrared mode 
controls provided on the ÉlanSC400 and ÉlanSC410 microcontrollers.
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18.4.2.1 High-Speed IrDA Frame

The basic unit of data transfer defined by the Infrared Data Association Serial Infrared Link 
Access Protocol (IrLAP) specification is called a frame. As a basic point of reference, the 
1.152 Mbit/s IrDA frame is similar to an HDLC frame. 

Each 1.152 Mbit/s IrDA frame consists of two pieces: the payload data, and the wrapping 
layer. The payload data contains some overhead data used to operate the link along with 
the user information to be transmitted. The wrapping layer surrounds the payload data with 
start and end flags which delimit the frame. The wrapping layer also provides CRC data 
for error detection and recovery.

The payload data consists of three fields: Address (ADDR), Control (CTL), and an optional 
Information (INFO) field. The following is an in-sequence breakdown of a high-speed (1.152 
Mbit/s) IrDA frame shown in Figure 18-5:

■ STA (2 bytes) —The STA bytes are part of the wrapping layer. For 1.15 Mbit/s IrDA, a 
minimum of two STA flags are required at the beginning of each frame. The start flag is 
set to a constant value of 7Eh (01111110b) that is defined by the IrLAP standard. More 
than the required minimum of two start flags can be sent since an infrared receiver treats 
multiple start flags as a single flag. Multiple start flags are depicted in the diagram below. 
STA flags are alternatively referred to as BOF (Beginning-Of-Frame) flags.

■ ADDR (1 byte) —An 8-bit field at the beginning of the payload data specifies the address 
of the intended receiver. Actually, only bits 7–1 of this field are the receiver’s address. 
Bit 0 of the ADDR byte is the C/R (Command/Response) bit indicates whether the 
transmission is from a primary (Command) or secondary (Response) station. A receiver 
can use the remaining bits of the address field to determine whether or not the data 
being received applies to it. A value of FEh in this field is used to specify a broadcast 
message that is applicable to all receivers within range of the transmitter. A value of 00h 
is called the null address, and no receiver should try to respond to this address.

■ CTL (1 byte) —The control field follows the address field, and specifies the function of 
a particular frame. The control byte command encodings are given in the IrLAP 
specification.

■ INFO —The Information field is optional. Whether or not it is present, and the meaning 
of the bytes it contains, depends on the value in the CTL field since the CTL field 
determines the frame type. If this field does exist, it can be any power-of-2 size between 
64 bytes and 2048 (2K) bytes. The information field does not have to be of fixed length, 
but must be a multiple of 8 bits.

■ FCS (Frame Check Sequence field) (2 bytes)—A 16-bit cyclic redundancy check (CRC) 
in CCITT format allows the checking of received frames for errors that may have been 
introduced during frame transmission.

■ STO (1 byte)—Minimum one stop flag at the end of each frame. (The receiver treats 
multiple stop flags as single flag.) The stop flag is set to a constant value of 7Eh or 
01111110b. STO flags are alternatively referred to as EOF (End-Of-Frame) flags.

Figure 18-5 High-Speed Infrared Frame Format
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18.4.2.2 Frame Sequences

Frames are grouped into frame sequences, which may consist of from one to seven frames. 
The maximum number of frames in a sequence is a parameter that two stations negotiate 
when they form a connection and is known as the window size for the connection. 

After the connection has been established, only frame sequences that have less than or 
equal to the negotiated window size are allowed. The window size may never be greater 
than seven. When only one frame is sent, the window size is considered to be 1. 

Each time a frame sequence is sent, an acknowledgment must be sent back to the 
transmitting station by the receiving station to confirm that the data was received. Since 
the interface is only capable of half-duplex operation, the act of listening for a response 
after having sent out some data costs some turnaround-time overhead. Thus, a larger 
window size and the sending of multiple frames per sequence (also known as back-to-back 
frames) may increase performance. The entire frame structure shown above is repeated 
for each frame in the sequence. Window size can be limited by resources on either the 
transmitting or receiving station such as transmit/receive buffer space, storage space to 
temporarily hold received data CRC calculations, etc.

18.4.2.3 High-Speed Infrared Mode

High-Speed Infrared mode is similar in some ways to Slow-Speed Infrared mode in terms 
of the pulse stream from the SIROUT pin. As mentioned earlier, all fields are transmitted 
with the least significant bit of each byte first. Of course, the bit-cell times will be shorter to 
reflect the higher speed, but the data stream is still RZI (Return-to-Zero-Inverted) like Slow-
Speed Infrared mode. 

Another minor difference is that the bit-cell time for the High-Speed Infrared mode data is 
1/4 the actual bit-cell (as opposed to 3/16 of the actual bit-cell in Slow-Speed Infrared mode 
—see Figure 18-6 for more detail on High-Speed Infrared mode modulation). In terms of 
the actual data observed in the data stream, High-Speed Infrared mode has some notable 
differences, as compared to Slow-Speed Infrared mode. 

Figure 18-6 High-Speed Infrared Data Modulation
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When observing this data stream at the SIROUT pin, the user will see that extra 0 bits have 
been inserted into the data stream by the infrared transmit hardware for all frame fields 
except the STA and STO flags. This action, called zero bit-stuffing has two purposes: 

■ Synchronization—This disallows too much time to pass without a light pulse being 
emitted (remember that a ‘0’ bit is transmitted as a light pulse since the signal is inverted).

■ Allowing a value of 7Eh to be part of the normal (non-flag) data— This is required since 
the STA and STO flags (as defined by the IrDA specification) are merely bytes of 7Eh.

18.4.2.5 FIFO Usage

For performance reasons, the 16550 FIFOs must be enabled via Port 03FAh or 02FAh 
when operating in High-Speed Infrared mode. Even though DMA to the UART is not allowed 
when operating the UART in normal RS-232 mode or in Slow-Speed Infrared mode, in 
High-Speed infrared mode, DMA is used for all data transfers between main system DRAM 
and the UART’s transmit and receive FIFOs. 

■ When transmitting, data is placed in a buffer located in system DRAM and is then 
transferred via DMA to the transmit FIFO. The transmit state machine takes data from 
the transmit FIFO, serializes, bit-stuffs, pulse-shapes and inverts the data before sending 
it out the SIROUT pin. 

■ When receiving, the receive state machine takes the incoming bit stream from the SIRIN 
pin, inverts, pulse-stretches, un-bit-stuffs, and then places it into the receive FIFO on 
the UART, from which point it is transferred via DMA to DRAM. 

18.4.2.6 Receive and Transmit State Machines

In High-Speed Infrared mode, the UART receive and transmit serializers and controlling 
state machines have some properties that are specific to High-Speed Infrared mode 
operation. 

First, the receiver state machine filters all incoming data before starting to put anything in 
the receive FIFO. This filtering consists of waiting for a valid STA flag to be detected. Upon 
seeing this, it enables bit unstuffing to occur, and then starts looking for the address byte 
which should come right after the STA flag(s). 

If the received address does not match the broadcast address (FEh) or the address that 
has been programmed into the IrDA Own Address Register (CSC index EDh), the receive 
state machine will not place the data into the receive FIFO, but will instead begin looking 
for STA flags again. This avoids software from handling frames that were destined for 
another station. 

If a match does occur, the data is deserialized and placed into the receive FIFO. From the 
data in the payload field, the infrared receive state machine calculates a 16-bit CRC and 
compares it against the one which was received at the end of the frame.

If the calculated CRC and the received CRC do not match, then a register bit in the IrDA 
CRC Status Register (CSC index ECh) is set to indicate an error. The CPU can later read 
this register bit for status information. The error status bit which will be set depends upon 
how many frames were received after the status bits were last cleared up until the frame 
which caused the error. For example, if the status bits were just cleared, and then 3 back-
to-back frames are received followed by a frame with a CRC error, ECh[2-0] will be clear, 
and ECh[3] will be set. Thus, it is important to check and clear the CRC error bits after each 
frame sequence is received.

To support bit-stuffing on the transmit side, the transmit state machine must monitor the 
outgoing data stream to know when the two required STA flags have been transmitted so 
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that it can start bit-stuffing, and it must know where the STO flags are so that it can send 
them without bit-stuffing. The transmit state machine expects exactly two STA flags at the 
start of a transmitted frame. After transmitting the first two bytes from the transmit buffer 
(i.e., the STA flags), the transmit state machine begins bit-stuffing.

The point at which to stop bit-stuffing is determined by starting a down-counter with the 
value found in the IrDA Frame Length Registers A and B after the start flags have been 
detected. Each time the transmit state machine grabs a byte from the transmit FIFO and 
sends it out the SIROUT pin, the down-counter is decremented. Bit-stuffing is done on all 
data from the start of the counter to a counter value of zero. This count must include all of 
the bytes in the payload field, plus the two CRC bytes. 

The infrared transmit state machine does not automatically insert STA or STO flags. It is 
up to the infrared driver software to load the transmit buffer with all of the flags, CRC bytes, 
and data, and to load the proper transfer count into the DMA controller prior to initiating the 
DMA transfer. 

For transmit operations, the software should construct the transmit buffer to contain frame 
data as follows: two STAs, payload data, 16-bit software-generated CRC of the payload 
data, one STO. The DMA transfer-count must be the sum of all bytes in the transmit buffer. 

Failure to properly program the Frame Length Registers will result in the transmit state 
machine becoming locked up. In order to recover from this type of software error, a reset 
for the high-speed transmit state machine has been implemented. To activate it, write any 
data to CSC index ECh. This also clears the frame error status, so be sure to read the error 
status before resetting the transmit state machine.

18.4.2.7 Frame Abort 

A frame abort can occur due to the following: 

■ Blocking the infrared transmission path in the middle of the frame 

■ Random introduction of infrared noise

■ Intentional termination by the transmitter 

Regardless of what caused the aborted frame, the receiver treats a frame as an aborted 
frame when seven or more consecutive 1s are received. The abort terminates the frame 
immediately without waiting to receive the FCS field or a STO flag. An abort will cause CSC 
index ECh[7] to be set.

18.4.2.8 Sending Back-to-Back Frames 

Transmission of back-to-back frames is allowed by butting the data (i.e., payload data and 
wrappers) for up to seven frames up against each other in the transmit buffer. If two 
consecutive frames are not back-to-back, the time delay between the last ending flag of 
the first frame and the start of next frame should be separated by at least seven bit-times 
(refer to frame-abort sequence described in Section 18.4.2.7).

18.4.2.9 Receiving Back-to-Back Frames 

When receiving frames, there is no way to tell how big the frame will be before it is received. 
To handle this, software must allocate a receive buffer that is larger than all of the data that 
is expected to be received for all frames in the current frame sequence, and set the DMA 
transfer count to that large number. During receipt, the DMA transfer count should never 
expire. Software must rely solely on the Received Frame Complete (RFC) interrupt and 
the Receive Buffer Empty status bit to know when a frame or frame sequence is complete. 
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In order to support back-to-back frames, the infrared circuitry counts the bytes as they are 
received. At the end of receipt of a frame, the byte-count can be read from the Frame Length 
Registers (CSC index EEh and EFh), along with some status information, and stored to 
DRAM for later analysis. This must be done in a time critical fashion, because the received 
byte-count read from EEh and EFh must be reset at the start of each received frame. Failure 
to handle the task in a time-critical fashion will result in data overruns in the receive FIFO. 

The status bits provided are to be used for a status information overrun indication. If the 
software fails to read the byte-count out before two byte-counts are written, the third byte-
count written will result in losing byte-count information. This byte-count information is 
necessary for receiving back-to-back frames, because it allows the CPU to ascertain frame 
boundaries for back-to-back frames within the DMA buffer. Note that the CPU must be 
running at 33 MHz or faster while receiving back-to-back frames to avoid getting byte-count 
overruns. 

The process for receiving back-to-back frames follows. Register details can be found in the 
ÉlanSC400 Microcontroller Register Set Reference Manual (order #21032) and 
amendments:

1. Set up for receive mode.

2. Read the byte-count latches to clear internal the overrun internal pre-bit.

3. Write the 11 bit byte-count to ’111 1111 1111b’.

4. [Start receiving data.]

5. [Receive first byte.]

6. [Byte transferred to FIFO.]

7. [Count decrements.]

8. [Rest of frame data transferred over, count decremented once per received byte.]

9. [End-of-frame detected by receive state machine.]

10.[Received-frame-complete interrupt occurs.]

11.Read the byte-count latches and the overrun bit (this clears the pre-bit).

12.Invert the byte-count (it reads out in 1’s-complement format from the registers), and 
save it and the overrun status to some variable location.

13.Write the 11 bit byte-count to '111 1111 1111b' as setup for the next frame.

14.[Starting with Step 4, repeat the steps listed above until the entire sequence is received.]

18.4.2.10 Transmit Data Transfers

For High-Speed Infrared mode transmit operations, as long as the transmit FIFO is not full 
(i.e., the number of bytes in the FIFO is less than 16) and the START_DMA bit is set, an 
internal infrared port DMA request is generated so that the DMA controller will transfer 
another byte from the transmit buffer in DRAM to the transmit FIFO. The internal infrared 
port DMA request is deasserted after each write transfer. The TC (Terminal Count) signal 
from the DMA controller signifies that all bytes indicated by the transfer count programmed 
into the DMA controller have been transferred into the FIFO. When the terminal count has 
been reached, the START_DMA bit is automatically cleared. Thus, the infrared controller 
will not issue further DMA requests until the START_DMA bit is set again, even if the transmit 
FIFO is not full.
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The sequence of events for transmitting data in High-Speed Infrared mode follows. 

1. Software sets up the transmit buffer in system DRAM with data as required.

2. Software routes the infrared DMA to an 8-bit DMA channel via the DMA Resource 
Channel Map Register A (CSC index DBh[7-6]). Note that any channel mapped for use 
with the infrared port must not be programmed for block mode. See Section 10.4.2.1.3.

3. Software ensures the DMA clock is running sufficiently fast to avoid transmit underflow. 
This is based on system latency issues, and will be worst case if the internal graphics 
controller on the ÉlanSC400 microcontroller is in use with a high-resolution LCD panel 
with high color depth. This is because the LCD controller will be accessing system DRAM 
constantly in order to keep the LCD panel fed with display data. Operation at 8 or 16 
Mhz is suggested. See the Clock Control Register (CSC index 82h[6-5]).

4. Software selects infrared mode via EAh[0], selects High-Speed Infrared mode via the 
IrDA Control Register (CSC index EAh[1]), optionally enables High-Speed Infrared mode 
IRQs via EAh[3], sets up infrared controller for transmit operation by clearing EAh[4], 
and then sets the START_DMA bit to begin the DMA operation. Note that all EAh register 
accesses can be done via one I/O if desired.

5. As a result of the START_DMA bit being set, an internal infrared port DMA request is 
generated by the infrared interface.

6. DMA issues an internal infrared port DMA acknowledge signal to the requesting IrDA 
device after the CPU relinquishes the bus.

7. Memory read followed by I/O write signals are generated by the DMA controller.

8. The DMA controller executes the write cycle by moving the byte from the memory to the 
transmit FIFO. 

9. An internal infrared port DMA acknowledge signal is deasserted after the transfer is 
complete and in turn, the DMA controller surrenders the bus back to CPU.

10.Steps 6–9 are repeated until the DMA transfer is complete. This is indicated by the TC 
signal from the DMA controller. The end-of-memory transfer indicated when the TC 
generates an interrupt request (IRQ) (assumes the if the interrupt enable control bit has 
been enabled). Note that the FIFO is still full when the TC signal occurs. Before changing 
to receive mode, software must wait until the transmit FIFO is empty. This can be done 
by polling the IrDA Status Register (CSC index EBh[0]). Alternatively the TC interrupt 
can be swapped out for a Transmit FIFO Empty interrupt by setting CSC index EAh[7]. 
In this case, the interrupt will not occur until the transmit FIFO has completely emptied 
into the transmit serializer, so it is acceptable to change to receive mode immediately 
to look for the response. This is the suggested operating mode for most situations.

18.4.2.11 Receive Data Transfers

Per the IrLAP specification, software should look for the initial connection between IrDA 
ports to be performed in Slow-Speed Infrared mode at 9600 baud. During the negotiation 
phase, if both stations agree to connect at 1.15 Mbit/s, the SELMODE bit is set to 1. In this 
transfer mode, whenever the receive FIFO is not empty, an internal infrared port DMA 
request is generated. If the DMA controller has been set up, this will result in DMA transfers 
of data from receive FIFO to system DRAM. 

Sequence of events:

1. Software allocates space in system DRAM for a receive buffer.

2. Same as Transmit Step 2.
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3. Same as Transmit Step 3.

4. Software selects infrared mode via EAh[0], selects High-Speed Infrared mode via the 
IrDA Control Register (CSC index EAh[1]), optionally enables High-Speed Infrared mode 
IRQs via CSC index EAh[3], and sets up infrared controller for receive operation by 
setting CSC index EAh[4]. Note that all EAh register accesses can be done via one I/O 
if desired. 

5. As soon as the receive FIFO has any data in it, an internal infrared port DMA request 
is generated by the infrared controller to request that the data be transferred to system 
DRAM.

6. The internal DMA controller issues an internal infrared port DMA acknowledge signal to 
the requesting IrDA device after the CPU relinquishes the bus.

7. Memory write followed by I/O read signals are generated by the DMA controller.

8. The DMA controller executes the read cycle by moving the byte from the receive FIFO 
to the memory. 

9. The internal infrared port DMA acknowledge signal is deasserted after the transfer is 
complete and in turn the DMA controller surrenders the bus back to the CPU.

10.Steps 5–9 are repeated until the I/O transfer is complete. The transfer can complete in 
two possible ways: a valid STO flag can be detected, or the transfer can be aborted due 
to the infrared path becoming obstructed, etc. In either case, it is possible to get an 
interrupt to notify the software of the event. When in receive mode, CSC index EBh[6] 
changes meaning from TC/EOT status to RFC/ABORT. RFC stands for Received Frame 
Complete, and this bit will be set when the receive state machine detects the STO flag. 
Note that this does not indicate that the data has been transferred to DRAM yet, just 
that the STO flag has been detected. In order to know when the transfer to DRAM is 
complete, poll CSC index EBh[2] after receipt of the RFC/ABORT interrupt. If the interrupt 
was due to an abort rather than RFC, that status will be available in the IrDA CRC Status 
Register (CSC index ECh[7]).

18.4.2.12 Interrupts

The normal UART interrupts generated due to Receive Buffer Full, Transmit Holding 
Register Empty, and status changes do not apply and are not generated in High-Speed 
Infrared mode. Special interrupts are supported for this mode, including DMA Terminal 
Count/End-of-Transmission, Receive FIFO Overflow, and Transmit FIFO Underflow.

The interrupt request signal from the infrared interface is multiplexed with the IRQ signal 
of the internal UART. Thus, the IRQ routing to the interrupt controller level for High-Speed 
Infrared mode IRQs is controlled by the same bits as for the UART in the Interrupt 
Configuration Register E (CSC index D8h[6-5]). The IRQ_ENABLE bit, along with the 
SELMODE bit in the IrDA Control Register, acts as the select signal. Upon interrupt request, 
the interrupt handler can read the infrared port status registers to find the cause and then 
process the interrupts accordingly.

The RECV_BLOCKING bit (CSC index EAh[5]) is provided to disable the receive section 
while in transmit mode. This prevents any leakage or erroneous data being captured while 
transmitting. This feature can be disabled by clearing the RECV_BLOCKING bit.

18.4.2.13 Serial Infrared Interaction Pulse (SIP) Generation

In High-Speed Infrared mode, the IrLAP specification requires the infrared port to be capable 
of generating a Serial Infrared Interaction Pulse (SIP). A SIP is used to quiet Slow-Speed 
Infrared mode traffic in the local vicinity of the High-Speed Infrared mode traffic. The SIP 
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is required to be generated once each 500 ms when the primary station generating the 
pulses is not actually transmitting. 

To do this on the ÉlanSC400 and ÉlanSC410 microcontrollers, software must put the 
infrared controller into Slow-Speed Infrared mode at 9600 baud with the UART set up for 
1 start bit and no parity. Then, a value of FFh must be written to the COMx Transmit Holding 
Register (Port 02F8h/03F8h). This will effectively send a 1.6-µs light pulse with no other 
pulses because Slow-Speed Infrared is not bit-stuffed. Note that it takes approximately 
108 ns to complete the switch from High-Speed Infrared mode to Slow-Speed Infrared 
mode, after which time the FFh data may be written. After writing the SIP pulse data, the 
software will need to wait about 8 µs (one byte-time) after the UART’s THRE status bit goes 
active before switching back to High-Speed Infrared mode, to ensure that the SIP gets sent.

18.5 INITIALIZATION
The infrared port is disabled at power-on reset and must be configured by software before 
being enabled.

■ In Slow-Speed Infrared mode, the port is essentially operating in standard UART mode. 
For Slow-Speed Infrared mode, set up all of the registers that are required to set up the 
UART. Slow-Speed Infrared operation requires that the UART be set up for 8 data bits, 
no parity, and 1 stop bit via the UART COMx Line Control Register at Port 03FBh/02FBh. 
Write SELMODE to 0 (CSC index EAh[1]) to select Slow-Speed Infrared mode, and set 
SELDEVICE to 1 (CSC index EAH[0]) to enable the infrared interface. Enable the UART 
by setting the UART_ENB bit in the Parallel/Serial Port Configuration Register (CSC 
index D1h[0]). Select the UART/infrared port base address via CSC index D1h[1], and 
IRQ routing via the Interrupt Configuration Register E (CSC index D8h[6-5]).

■ For High-Speed Infrared mode, set the FIFOEN bit to enable the FIFO in COM2 FIFO 
Control (Port 03FAh/02FAh), and then set up all the infrared registers. Set SELMODE 
to 1 to select High-Speed Infrared mode, and set SELDEVICE to 1 to enable the infrared 
interface. Enable the UART by setting the UART_ENB bit in the Parallel/Serial Port 
Configuration Register (CSC index D1h[0]). Note that configuring the UART registers is 
not required for this mode. 

18.6 POWER MANAGEMENT
Operation of the infrared port is affected by the power-management functions shown in 
Table 18-2.

Table 18-2 Power Management in the Infrared Port

Infrared Port Event Description

Power Management Effect

Wake-Up Activity SMI NMI

UART Ring Indicate 
(RIN) signal

Triggered by the falling edge of RIN Yes Yes Yes

UART Receive (SIN) 
signal

Triggered by the falling edge of SIN Yes Yes Yes

CPU access to UART 
(internal or external)

Triggered by the falling edge of the address 
decode qualified with commands

Programmable

UART access Accesses to COM1 (03F8–03FFh) or 
COM2 (02F8–02FFh) can cause an SMI or 
NMI through an I/O trap

Yes Yes
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CHAPTER
19
 PC CARD CONTROLLER
(ÉlanSC400 MICROCONTROLLER ONLY)
19.1 OVERVIEW
The integrated dual PC Card controller is compliant with PCMCIA Standard Release 2.1 
and supports up to two fully 82365-resource-compatible PC Card sockets. The PC Card 
Socket B interface is shared with both the parallel port interface and the GPIO31-GPIO21 
signals. Only one of these interfaces can be enabled at one time.The PC Card controller 
is not supported on the ÉlanSC410 microcontroller.

Each card socket is capable of DMA transfers between I/O PC Cards and system DRAM. 
DRQ and DACK pin configurability for DMA is a subset of the PC Card Standard (also 
known as PC Card ‘95 or PC Card Standard Release 3.0—Berlin Drafts). The PC Card 
controller also provides some register-level extensions to a standard 82365 to support 
larger memory-window addresses and faster PC Card timings. 

Each socket is provided with five memory windows. Each window can be opened anywhere 
above 64 Kbytes in the ÉlanSC400 microcontroller’s 64-Mbyte memory map with 4-Kbyte 
granularity on 4-Kbyte boundaries. Each window may be individually configured to access 
common or attribute memory. Each socket is also provided with two I/O windows that can 
be opened in the range of 0–64 Kbytes. 

In order to save pins on the ÉlanSC400 microcontroller, some socket interface pins defined 
in the PCMCIA Standard Release 2.1 electrical specification are optional or not available:

■ The INPACK pin is not supported.

■ The second card detect input signal for Socket A is optional (shared with another feature) 
and must be enabled by software if required. 

■ The second card detect input signal for Socket B is not supported.

■ There is only one WAIT signal to support both sockets.

The PC Card controller supports all standard 82365-compatible status change interrupt 
and PC Card interrupt enable and routing features. The standard interrupt capability is 
extended by coupling the PC Card controller to the ÉlanSC400 microcontroller’s Power 
Management Unit (PMU) to support SMI and NMI.

In addition, PC Card controller interrupts, memory accesses, and I/O accesses can be 
configured to cause PMU wake ups and activities. 82365-compatible socket power controls 
are available for Socket A and B VPP1 and VCC controls, and the 82365 auto-power feature 
that turns off socket power until a card is inserted is supported. The PC Card controller also 
supports software-generated card detect change interrupts.

For information on redirecting ROMCS0 to PC Card Socket A, see Section 7.6.4.2.
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19.2 REGISTERS
Two different sets of indexed registers are used to configure the PC Card controller. 

■ The chip setup and control (CSC) index registers are accessed via the 22h/23h index/
data I/O scheme.

■ The standard 82365SL (Rev.B) registers are accessed via the PC/AT I/O space at Ports 
03E0h and 03E1h. 

All PC Card controller registers that pertain to Socket A have indexes from 00–3Fh. All PC 
Card controller registers that pertain to Socket B have indexes ranging from 40–7Fh. Thus, 
to get the Socket B counterpart index for a given Socket A register, add 40h to the Socket 
A index value. If an external 82365-compatible PC Card controller were added, Socket C 
would be controlled by indexes 80–BFh, and Socket D would be controlled by indexes C0–
FFh. See Section 19.6 for details on how an external 82365-compatible PC Card controller 
works with ports 03E0h0/3E1h.

Note that the PC Card controller index register 03E0h (like the ÉlanSC400 microcontroller 
CSC index register at Port 0022h and the other ÉlanSC400 microcontroller index registers) 
is a system-level resource that can be accessed by more than one driver or software thread 
in a system. Any interrupt-driven routine must restore the index register to its original value 
prior to returning from the interrupt. This ensures proper system operation.

A summary listing of the chip setup and control (CSC) and PC Card index registers used 
to control the PC Card controller is shown in Table 19-1. Complete register descriptions 
can be found in the ÉlanSC400 Microcontroller Register Set Reference Manual (order 
#21032).

Table 19-1 PC Card Controller Register Summary

Register I/O Address PC Card Controller Function
Description 
in Register 
Set Manual

Chip Setup and Control (CSC) Index Registers

MMS Window C–F Attributes 
Register

22h/23h
Index 30h

Caching and write protection for MMS 
Windows C–F

page 3-38

MMS Window C–F Device Select 
Register

22h/23h
Index 31h

Physical device selection for MMS Windows 
C–F

page 3-39

Pin Mux Register B 22h/23h
Index 39h

PC Card Socket B signals, VCC and VPP 
control signals for Socket A and B enable

page 3-45

Pin Mux Register C 22h/23h
Index 3Ah

Socket A second card detect enable page 3-46

Wake-Up Source Enable 
Register D

22h/23h
Index 55h

Wake-up source enable: ring indicate, Sockets 
A and B interrupt requests, card detects, and 
status change

page 3-62

Wake-Up Source Status 
Register D

22h/23h
Index 59h

Wake-up source status: ring indicate, Sockets 
A and B interrupt requests, card detects, and 
status change

page 3-66

Activity Source Enable 
Register D

22h/23h
Index 65h

Activity source enable: CPU memory and I/O 
access to PC Card Sockets A and B; ring 
indicate; and PC Card interrupt

page 3-74
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Activity Source Status Register D 22h/23h
Index 69h

Activity source status: CPU memory and I/O 
access to PC Card Sockets A and B; ring 
indicate; and PC Card interrupt

page 3-78

Activity Classification Register D 22h/23h
Index 6Dh

Primary or secondary activity classification: 
CPU Memory and I/O access to PC Card 
Sockets A and B; ring indicate; and PC Card 
interrupt

page 3-82

PC Card and Keyboard SMI/NMI 
Enable Register

22h/23h
Index 91h

SMI/NMI enable: PC Card interrupt, ring 
indicate, and card detects for Sockets A and B

page 3-95

PC Card and Keyboard SMI/NMI 
Status Register

22h/23h
Index 95h

SMI/NMI status: PC Card interrupt, ring 
indicate, and card detects for Sockets A and B

page 3-100

SMI/NMI Select Register 22h/23h
Index 98h

SMI or NMI select: PC Card interrupts page 3-104

I/O Access SMI Enable 
Register B

22h/23h
Index 9Ah

SMI enable: I/O access to Sockets A and B page 3-106

I/O Access SMI Status Register B 22h/23h
Index 9Ch

SMI status: I/O access to Sockets A and B page 3-108

Internal I/O Device Disable/Echo 
Z-Bus Configuration Register

22h/23h
Index D0h

PC Card controller enable, MMS Windows 
C–F setup

page 3-164

DMA Resource Channel Map 
Register B

22h/23h
Index DCh

Sockets A and B mapping to an internal DMA 
controller channel

page 3-178

Suspend Pin State Register A 22h/23h
Index E3h

Suspend state of Socket A and Socket 
interfaces

page 3-184

PC Card Extended Features 
Register

22h/23h
Index F0h

PC Card Memory Window selection and 
socket mapping, force card detect event

page 3-196

PC Card Mode and DMA Control 
Register

22h/23h
Index F1h

Operating mode, Standard mode, Enhanced 
mode, clock speed, and DMA enables for both 
sockets

page 3-198

PC Card Socket A/B Input Pull-Up 
Control Register

22h/23h
Index F2h

Sockets A and B input pull-up resistor enable page 3-200

PC Card Index Registers

Identification and Revision 
Register

3E0h/3E1h
Index 00h 
(Socket #A)
and 40h 
(Socket #B)

Interface ID, revision level page 6-7

Interface Status Register 3E0h/3E1h
Index 01h (#A) 
and 41h (#B)

Battery voltage detect, card detect state, 
memory write protect, power status, ready/
busy

page 6-8

Power and RESETDRV Control 
Register

3E0h/3E1h
Index 02h (#A) 
and 42h (#B)

Auto power enable, socket VCC enable, VPP 
control

page 6-9

Table 19-1 PC Card Controller Register Summary (continued)

Register I/O Address PC Card Controller Function
Description 
in Register 
Set Manual
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Interrupt and General Control 
Register

3E0h/3E1h
Index 03h (#A) 
and 43h (#B)

IRQ mapping for RDY_x, card status change 
interrupt destination, I/O and memory 
configuration, PC Card Reset, RST_x, ring 
indicate enable

page 6-11

Card Status Change Register 3E0h/3E1h
Index 04h (#A) 
and 44h (#B)

CD_x, RDY_x, BVD1_x, BVD2_x states, 
battery warning, battery dead

page 6-12

Card Status Change Interrupt 
Configuration Register

3E0h/3E1h
Index 05h (#A) 
and 45h (#B)

IRQ mapping for card status change interrupt; 
card status change interrupt on CD_x; RDY_x, 
BVD1_x, or BVD2_x state

page 6-13

Address Window Enable 
Register

3E0h/3E1h
Index 06h (#A) 
and 46h (#B)

I/O windows 1 and 0 enable, memory windows 
1–4 enable

page 6-15

I/O Window Control Register 3E0h/3E1h
Index 07h (#A) 
and 47h (#B)

I/O window size and timing set page 6-16

I/O Window Address Registers 3E0h/3E1h
Various

I/O Window address bits for mapping into PC 
Card I/O address space

page 6-17–
page 6-24

Memory Window Address 
Registers

3E0h/3E1h
Various

Memory Window address bits for mapping into 
the PC Card memory address space

page 6-25–
page 6-52

Memory Window Address Offset 
Registers

3E0h/3E1h
Various

Memory Window 0 offset address, window 
write protect, REG_x active, common or 
attribute memory mapping

page 6-29–
page 6-54

Setup Timing Registers 3E0h/3E1h
Various

Setup multiplier value and prescalar select 
before PC Card command goes active

page 6-55–
page 6-64

Command Timing Registers 3E0h/3E1h
Various

Command multiplier value and prescalar 
select

page 6-56–
page 6-65

Recovery Timing Registers 3E0h/3E1h
Various

Recovery multiplier value and prescalar select 
for address hold time after the PC Card 
command goes inactive until the address 
changes state

page 6-57–
page 6-66

Table 19-1 PC Card Controller Register Summary (continued)

Register I/O Address PC Card Controller Function
Description 
in Register 
Set Manual
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19.3 BLOCK DIAGRAM
A block diagram of the PC Card controller is shown in Figure 19-1. The PC Card Socket B 
interface is shared with both the parallel port interface and the GPIO31-GPIO21 signals. 
Only one of these interfaces can be enabled at one time. The PC Card power control signals 
are shared with some of the GPIO signals.

Figure 19-1 PC Card Controller Block Diagram
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19.4 PIN DEFINITIONS BY MODE
Several of the ÉlanSC400 microcontroller pins used for PC Card control have different 
functions, depending on whether or not a socket is configured for the Memory-only mode 
or the Memory and I/O mode. Table 19-2 compares the functions for these pins (each row 
of the table is one ÉlanSC400 microcontroller pin). Only the name in the “Memory-Only 
Mode” column is used on the ÉlanSC400 microcontroller pin list.

In many instances in this chapter, the names of the dual-function signals have been merged 
into the format “Memory-only name (Memory and I/O name)”.

For example, WP_x (IOIS16_x) represents the signal whose Memory-only mode function 
is “Write protect” and whose Memory and I/O function is “Dynamic data bus sizing.” As a 
programmable option, a DMA request signal can also appear on this pin in Memory and 
I/O mode. The context of the description in which the signal is used determines which 
function is being used.

Table 19-2 Dual-Mode Signal Functions

19.5 OPERATION
The ÉlanSC400 microcontroller’s PC Card controller provides signals and timings to 
support memory, I/O, and DMA cycles to the two supported socket interfaces A and B. The 
PC Card controller design is optimized for a low-cost, non-buffered PC Card socket 
implementation. 

The PCMCIA Standard Release 2.1 has specifically designed the PC Card socket 
interface’s pin lengths to support hot PC Card insertion and removal in a non-buffered 
implementation. As a card is inserted, first ground is applied to the card, then power, then 
bus signals. The PC Card is thus able to three-state its bus interface signals by the time 
they come in contact with the system bus.

Each socket shares the same address and data bus, but each socket has dedicated chip 
selects for the low and high byte of the data bus as required by the PCMCIA Standard 
Release 2.1. Both sockets share a single WAIT signal. Each socket supports a reset signal 
that is software controllable via a PC Card controller indexed register bit. 

Memory and I/O accesses to PC Cards are done via memory or I/O windows that software 
must enable before any access is possible. Interrupts can be generated by either an 
installed PC Card or by the PC Card controller itself, based on several events. Either of 
these interrupt types can be routed to several target destinations on the ÉlanSC400 
microcontroller by the PC Card controller.

Each socket can be configured to operate in one of two modes as defined by the PCMCIA 
Standard Release 2.1: Memory-only mode, or Memory and I/O mode. 

Memory-Only Mode Memory and I/O Mode

Name Function Name Function Name
Alternate 
Function

RDY_x Ready indication IREQ_x Interrupt request I

WP_x Write protect IOIS16_x Dynamic data bus sizing DRQ_x DMA request

BVD1_x Battery voltage detect 1 STSCHG_x Status change indication

BVD2_x Battery voltage detect 2 SPKR_x Speaker driver DRQ_x DMA request
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■ Memory-only mode is the only mode originally defined in the PCMCIA Standard 
Release 1.0. This specification had no support for I/O cards, but defined the basic 
connector and card electrical and physical formats. 

■ Memory and I/O mode was added when support for I/O cards was included in the 
PCMCIA Standard Release 2.1. Memory and I/O mode redefines a few signals on the 
PC Card interface that were not often used or are memory-card-specific. 

Although a memory card can be read when the PC Card controller is configured to be in 
Memory and I/O mode, the intent is that the interface be set up in Memory-only mode if a 
memory card (Flash, SRAM, ROM, etc.) is inserted, and in Memory and I/O mode if an
I/O card is inserted (ATA, serial port/modem, network adapter, etc.). The type of card 
inserted and the system resources it requires can be read from the card CIS (Card 
Information Structure), which is defined by the PCMCIA Standard Release 2.1. This is 
typically the job of the PC Card and socket services drivers, further discussion of which is 
beyond the scope of this document.

In addition to the window configuration registers, the PC Card controller supports other 
control registers used for interrupt routing and enabling, selection of common/attribute 
memory, and socket power control. The status of the PC Card interface as well as the 
status of pending PC Card and PC Card controller interrupt events can be read. Interrupts 
can be routed to the power management unit to cause NMIs (Non-Maskable Interrupts) 
and SMIs (System Management Interrupts), or to serve as wake up or activity events.

The PC Card Controller can run at various speeds. There are two main speed categories: 
running at the current ISA bus clock rate (which is variable on the ÉlanSC400 microcontroller 
from 8 MHz down to 1 MHz) or running at the current CPU clock speed (which is variable 
on the ÉlanSC400 microcontroller from 33 MHz down to 1 MHz). 

As described in Section 19.5.2, the PC Card controller operates in one of two modes: 
Standard or Enhanced.

■ Standard mode—This mode is “standard” for the ÉlanSC400 microcontroller and does 
not include compatibility with the standard 82365.

■ Enhanced mode—This mode provides full 82365-compatibility with additional 
enhancements, including DMA and timing controls.

When the PC Card controller is configured for Enhanced mode, the bus timings of memory 
cycles can be fine-tuned in terms of setup, command, and recovery (hold) times. Four 
individually configurable sets (three registers per set) of timing registers are used for this, 
and every window can be assigned to use one of the four timing register sets. Thus, if 
multiple resources exist on a PC Card, and each of the resources have different timings, 
a different window can be set up and used to access each of the resources. This provides 
the maximum performance possible from the PC Card. These timing registers are intended 
to be used only when the PC Card controller is configured for Enhanced mode. Any driver 
that optimizes card performance for a particular card must restore the default timings when 
the card is removed. This ensures proper timings for the next card that is inserted. 

19.5.1 Signal Multiplexing
The PC Card address bus (A25-A0) is time-multiplexed with the ISA and ROM address 
bus (SA25-SA0) on the ÉlanSC400 microcontroller’s pins on a cycle-by-cycle basis. During 
PC Card accesses, the PC Card address appears on these pins; during ISA accesses, the 
ISA address appears on these pins. The ISA control signals IOR and IOW are time-
multiplexed with the PC Card IORD and IOWR signals in the same way.
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Note that because the IOR and IOW signals are shared with the ISA bus, DMA initiated 
from an ISA bus device and targeted at a PC Card is limited to common memory (i.e., the 
PC Card signal REG_A or REG_B is inactive).

The ÉlanSC400 microcontroller’s ISA data bus (SD15-SD0) is used to directly access data 
on the PC Card data bus. If buffering of the PC Card address and data buses is desired, 
the ICDIR signal can be used along with some combinational logic external to the 
ÉlanSC400 microcontroller to control the direction and enabling of these buffers during PC 
Card accesses.

19.5.2 Memory Interface
The ÉlanSC400 microcontroller’s PC Card Controller can be configured to operate in either 
of two modes: Standard mode or Enhanced mode. The mode applies to both sockets 
simultaneously (i.e., the sockets cannot be configured independently for different modes). 

Standard and Enhanced modes differ in three areas: number of memory windows 
supported, PC Card cycle speeds supported, and PC Card DMA configuration support.

19.5.2.1 Standard Mode

Standard mode is the default power-up mode. Standard mode is further described in 
Section 19.5.5. It includes the following features:

■ Memory Windows—Six total memory windows. Two are fixed (one for each socket) and 
the remaining four can “float” (i.e., can be configured for Socket A or B on a window-by-
window basis.)

■ Cycle Speeds—Nominal 8 MHz (PC/AT-bus clock) speed only.

■ DMA Features—PC Cards cannot be configured as DMA initiators in this mode.

19.5.2.2 Enhanced Mode

Enhanced mode is entered by programming the MODE bit in the PC Card Mode and DMA 
Control Register (CSC index F1h). Enhanced mode is further described in Section 19.5.6. 
It includes the following features:

■ Memory Windows: Ten total memory windows. Five are fixed for each socket.

■ Cycle Speeds—Nominal 8 MHz (PC/AT-bus clock) speed or nominal 33 MHz (Local 
Bus clock) to support higher-performance PC Cards.

■ DMA Features—PC Cards can be configured as DMA initiators in this mode. Two 
different PC Card signals are supported as DMA requests.

19.5.2.3 PC Card Controller Memory Windows 

Memory windows are regions of variable length which are “opened” by setting aside a block 
of addresses in the CPU memory map at user-defined start/stop locations. Each of these 
memory windows can be as small as 4 Kbytes, and as large as 64 Mbytes (although no 
window base address can be positioned below 64 Kbytes). It is through this 4-Kbyte–
64-Mbyte “viewing area” that a similarly-sized block of PC Card memory can be read from 
or written to. 

Each of the five memory windows per socket can be individually write-protected, and the 
data path width can be set to either 8 or 16 bits via the memory window control registers. 
No dynamic memory interface width control is provided such as that provided for the I/O 
windows.

A typical memory window size is 4 Kbytes, so that all ten memory windows may fit into a 
single 64-Kbyte block (segment) of CPU address space. Because the PC Card may have 
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up to 64 Mbytes of memory on board, the viewed location on the PC Card is software 
programmable, and is commonly referred to as the card offset. Thus, using only a small 
window, the entire PC Card memory-mapped resource is accessible. 

Because the PC Card controller is 82365 compatible, the card offset is related to the 
window’s base address. One simple way to determine the value to program into the offset 
register (which is 14 bits distributed over two PC Card controller indexed registers—
14h and 15h for Window 0’s offset, for example) is to use the formula:

REGISTER = (OFFSET - WINDOW_START) >> 12

where:

REGISTER is the 14 bit offset register

OFFSET is the desired base address of the PC Card memory region to

access (note 4 Kbyte granularity for this)

WINDOW_START is the window’s start address which would be programmed

for Socket A, Window 0 via PC Card controller index 10h and 11h 

“>>” refers to a shift right operation (shift right 12 bits) 

Note: PC Card controller memory windows should never be opened in any region that is 
enabled for linear ROMCS0 decode, whether or not shadowing is enabled. Failure to adhere 
to this may cause improper system operation because no internal address decoding priority 
is defined in this regard.

As a window setup example, the following code opens PC Card Socket A’s memory window 
0 as a 4-Kbyte window at 00D0000h in CPU memory space and points it to card offset 0:

;Set up Socket A’s memory window 0 to have a start address of 00D0000h
mov DX,3E0h ;PC Card controller index register
mov AL,10h ;Window start address bits 19:12
out DX,AL
inc DX ;PC Card controller data register
mov AL,D0h
out DX,AL

dec DX ;Back to the index register
mov AL,11h ;Window start address bits 25:20
out DX,AL
inc DX ;Data
mov AL,0
out DX,AL

;Set up Socket A’s memory window 0 to have an end address of 00D0000h. 
;This is a 4 Kbyte window
dec DX ;Index
mov AL,12h ;Window stop address bits 19:12
out DX,AL
inc DX ;Data
mov AL,D0h
out DX,AL
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T)
dec DX ;Index
mov AL,13h ;Window stop address bits 25:20
out DX,AL
inc DX ;Data
mov AL,0
out DX,AL

;Set up Socket A’s memory window 0 card offset to be (OFFSET - WINDOW_STAR
;>> 12 where the desired offset is 0, and the window start address is
;D0000h. Note that 0-00D0000h=FFF30000h, so the 14 bit offset value=3F30
;(The top 2 bits of this register control other features, so be sure to
;mask them off)

dec DX ;Index
mov AL,14h ;Encoded window offset address bits 19:12 to

;index 14h
out DX,AL
inc DX ;Data
mov AL,30h
out DX,AL

dec DX ;Index
mov AL,15h ;Encoded window offset address bits 25:20 to

;index 15h
out DX,AL
inc DX ;Data
in AL,DX ;Top 2 bit of this register must be preserved
and AL,0C0h
or AL,3Fh
out DX,AL

Note: This example is meant to show basic window setup only. For this window from 
Socket A to function properly, it must be enabled via PC Card index 06h, and socket power 
must be applied via PC Card index 02h as a minimum.

19.5.3 I/O Interface
Both sockets have two I/O windows available. I/O PC Cards of both 8- and 16-bit widths 
are supported on both sockets. 

Each I/O window has the following features:

■ Full 16-bit decode is performed for single-byte addressability of the entire 64-Kbyte 
system I/O address space.

■ 64-Kbyte I/O range is accessible via 16-bit wide start and stop registers.

The following PC Card optional signals are supported:

■ SPKR_A and SPKR_B for digital audio.

■ STSCHG_A and STSCHG_B can be mapped to system interrupts. 

■ STSCHG_A and STSCHG_B (RI) can be configured as a PMU activity or a wake-up 
source.

19.5.3.1 I/O Windows

PC Card controller I/O windows differ slightly from memory windows in that no address 
translation is performed. This is because a PC Card controller I/O window is capable of 
being made to be 64 Kbytes wide, which is the same as the maximum I/O range of an x86 
CPU like the ÉlanSC400 microcontroller. 
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There are two I/O windows per socket, and they are available regardless of whether the 
PC Card controller is in Standard or Enhanced mode. In order for I/O windows to be used 
however, the PC Card controller must be configured to be in Memory and I/O mode by 
setting bit 5 of the Interrupt and General Control Register for the socket on which an I/O 
window is to be opened.

Each I/O window is defined in terms of a 16-bit start and finish address, thus providing I/O 
windows as small as 1 byte and as large as 65536 bytes with 1-byte granularity. If the start 
address is made equal to the finish address, the window will be 1 byte wide. 

The PC Card controller makes no attempt to limit where the I/O windows are opened in the 
0–64 Kbyte range, so care should be taken not to conflict with other I/O mapped resources 
(especially the PC Card controller index and data registers). I/O windows have individual 
enable bits that are located together with the memory window enable bits in the Address 
Window Enable Register on a per-socket basis. 

I/O windows may be forced to 8 or 16 bits in width via a register bit, or dynamically sized 
based on the IOIS16 signal which may be driven by a PC Card. The selection of whether 
this is forced or dynamic is done via a register control bit, and would typically be configured 
by a PC Card device driver when the card is inserted.

19.5.4 PC Card Bus Cycles
The possible PC Card bus cycle types and the associated PC Card command signal are 
summarized in Table 19-3. Decode tables for each function follow.

Table 19-3 PC Card Supported Cycle Types

Table 19-4 PC Card Attribute Memory Read Function

Cycle Type PC Card Command Signal

Memory read (attribute or common) OE

Memory write (attribute or common) WE

I/O read IOR

I/O write IOW

DMA read (target) OE

DMA write (target) WE

DMA read (initiator) IOW (TC on WE)

DMA write (initiator) IOR (TC on OE)

Mode REG_x MCEH_x MCEL_x SA0 OE WE SD15–SD8 SD7–SD0

Byte Access L

L

H

H

L

L

L

H

L

L

H

H

Three-state

Three-state

Even byte

not valid

Word Access L L L x L H Not valid Even byte

Odd-Byte-Only 
Access

L L H x L H Not valid Three-state
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Table 19-5 PC Card Attribute Memory Write Function

Table 19-6 PC Card Common Memory Read Function

Table 19-7 PC Card Common Memory Write Function

Table 19-8 PC Card I/O Read Function

Table 19-9 PC Card I/O Write Function

Table 19-10 PC Card DMA Read Function

Mode REG_x MCEH_x MCEL_x SA0 OE WE SD15–SD8 SD7–SD0

Byte Access L

L

H

H

L

L

L

H

H

H

L

L

xx

xx

Even byte

xx

Word Access L L L x H L xx Even byte

Odd-Byte-Only 
Access

L L H x H L xx xx

Mode REG_x MCEH_x MCEL_x SA0 OE WE SD15–SD8 SD7–SD0

Byte Access H

H

H

H

L

L

L

H

L

L

H

H

Three-state

Three-state

Even byte

Odd byte

Word Access H L L x L H Odd byte Even byte

Odd-Byte-Only 
Access

H L H x L H Odd byte Three-state

Mode REG_x MCEH_x MCEL_x SA0 OE WE SD15–SD8 SD7–SD0

Byte Access H

H

H

H

L

L

L

H

H

H

L

L

XX

XX

Even byte

Odd byte

Word Access H L L x H L Odd byte Even byte

Odd-Byte-Only 
Access

H L H x H L Odd byte xx

Mode REG_x MCEH_x MCEL_x SA0 IOR IOW SD15–SD8 SD7–SD0

Byte Access L

L

H

H

L

L

L

H

L

L

H

H

Three-state

Three-state

Even byte

Odd byte

Word Access L L L x L H Odd byte Even byte

High Byte Only L L H x L H Odd byte Three-state

Mode REG_x MCEH_x MCEL_x SA0 IOR IOW SD15–SD8 SD7–SD0

Byte Access L

L

H

H

L

L

L

H

H

H

L

L

xx

xx

Even byte

Odd byte

Word Access L L L x H L Odd byte Even byte

Odd-Byte-Only 
Access

L L H x H L Odd byte xx

Mode DACK DREQ MCEH_x MCEL_x OE WE IOR IOW SD15–SD8 SD7–SD0

Byte Access H L H L H TC H L xx Even byte

Word Access H L L L H TC H L Odd byte Even byte
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Table 19-11 PC Card DMA Write Function

19.5.4.1 Memory Write Protection

One exception to the cycle command decode is when a memory write is attempted to a 
write-protected region. Write protection to a memory region can be indicated by one of two 
sources:

■ The WR_PROT bit from the Memory Window Address Offset High Register is set for 
the window being accessed during the current cycle

■ During a write-protected ROM cycle redirected to Socket A

If one of these two conditions is true, then the WE signal is held in its inactive state for the 
duration of the cycle, so that the PC Card in the socket does not see the memory write 
command.

19.5.4.2 Non-DMA Cycle Timing

The timing control registers are responsible for directing the PC Card cycle command 
control block during non-DMA cycles issued to a PC Card. The timing control registers are 
divided into four independent timing sets. Each set has three registers responsible for:

■ Setup timing

■ Command timing

■ Recovery timing 

Each memory window can be configured for one of the four timing sets. This selection is 
done using the Memory Window (0–4) Stop Address High Registers. 

The contents of the timing control registers are basically counter values. They tell the 
command cycle timer how many clocks to count for each phase (setup, command, and 
recovery) of a PC Card cycle. Thus, their meaning in terms of how much time is spent in 
each phase is dependent on the clock speed used for the command cycle timer. The clock 
speed is determined by three factors: The value of both the MODE and CLK_SEL bits in 
the PC Card mode and DMA Control Register and the PMU state.

The MODE bit in the PC Card Mode and DMA Control Register selects between Standard 
and Enhanced mode for the PC Card controller block. 

■ In Standard mode, only the PC/AT bus (8 MHz) clock can be used for cycle control. 
Thus, the granularity for cycle phase timing is 125 ns.

■ In Enhanced mode, the CLK_SEL bit in the PC Card Mode and DMA Control Register 
selects between the PC/AT bus (nominal 8 MHz) clock and the VL-bus (nominal 33 
MHz) clock. Thus, when the VL-bus clock is selected, the granularity for cycle phase 
timing is 30 ns.

The last factor in clock speed used for the command cycle timer is the PMU state. The 
PMU has control of the PC/AT bus and VL-bus clocks for power savings reasons and can 
enter states that stretch out clock cycles. This has the effect of also stretching out PC Card 
accesses. 

Mode DACK DREQ MCEH_x MCEL_x OE WE IOR IOW SD15–SD8 SD7–SD0

Byte Access H L H L TC H L H xx Even byte

Word Access H L L L TC H L H Odd byte Even byte
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The actual timings of each phase of all non-DMA memory or I/O cycles are based on the 
following: 

■ Clock speed as described above 

■ Value programmed into the command, setup, and recovery timing control set selected 
by a particular memory or I/O window

■ Operating mode (Standard or Enhanced)

For both modes:

t-setup = 4 clocks + value programmed into setup timing control 

t-command = 1 clock + value programmed into command timing control 

t-recovery = 2 clocks + value programmed into recovery timing control

Because this PC Card controller is compatible with the 82365SL (Rev. B) and the controller 
resets to Standard mode (PC/AT Bus clock timing), the four timing sets reset to values 
consistent with the four possible wait state settings (0, 1, 2, or 3 PC/AT bus wait states) of 
82365SL (Rev. B) memory windows. This means that default PC Card cycles are of the 
same length as 82365SL (Rev. B) cycles.

The values of the timing control registers should not be changed when the controller is in 
Standard mode in order to maintain 82365SL (Rev. B) timing compatibility. The timing sets 
are intended to be changed when the controller is in Enhanced mode to take advantage of 
the higher access speeds attainable with the VL-bus clock.

Each of the timing control registers has a two-bit Prescalar Select field and a five-bit 
Multiplier Value field. The Prescalar Select field selects a weighting described in 
Table 19-12.

Table 19-12 Prescalar Select Field Weighting

Note: The Multiplier Value, Nval, is combined with the Prescalar Weighting, Npres, to determine the
number of clocks to count for the current state (Setup, Command active, or Recovery). The Current
State (S,C, or R) = (Npres x Nval) + 1.

Field Value Prescalar Weighting

00 Npres=1

01 Npres=16

10 Npres=256

11 Npres=4096
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19.5.5 Using Standard PC Card Mode
Standard mode is the default mode. In Standard PC Card mode, a total of six PC Card 
memory windows is available. Each socket has one memory window dedicated to it. The 
remaining four windows are mapped to PC Card Socket A by default, but are individually 
mappable to either Socket A or Socket B. In this Standard PC Card mode, four of the 
memory windows that are normally used for Socket B (in Enhanced PC Card mode) are 
used for MMS windows C–F instead. 

When only one socket is implemented in the system design (i.e., Socket A), the ÉlanSC400 
microcontroller provides one fully 82365-compatible PC Card socket. If two PC Card 
sockets are implemented in a system design and the Standard PC Card mode is selected, 
the six available PC Card memory windows can be mapped in various combinations 
between Socket A and Socket B. In any situation in which a socket has less than five 
memory windows available to it, compatible PC Card drivers are not guaranteed to work 
with the sockets. Although a memory window from Socket A may be mapped to Socket B, 
the controls still remain in their original Socket A index locations.

19.5.5.1 Memory Window Redirection

In Standard mode, four of the memory windows nominally assigned to Socket A can be 
reassigned to Socket B. This feature is controlled by the PC Card Extended Features 
Register (CSC index F0h). The bits MEM_WIN_SEL[3:0] in this register control the 
destination socket for PC Card memory cycles, as shown in Table 19-13. Note that in 
Enhanced Mode, the bits MEM_WIN_SEL[3:0] have no effect on PC Card cycles; all five 
memory windows for each socket are available to that socket only.

Table 19-13 Memory Window Socket Mapping

When a hit to one of the Socket A memory windows 1 through 4 is decoded, the bits 
MEM_WIN_SEL[3:0] determine which socket’s MCEL_x, MCEH_x, and REG_x pins are 
actually activated. Table 19-14 outlines the effects the redirection has on the socket-specific 
PC Card cycle control signals. In the table, the status of the REG_x pin is described in 
terms of how the REG_ACT bit in the Memory Window Address Offset High Register for 
the hit window is used. 

CSC Index 
F0h 

MEM_WIN_SEL

[3–0]

Socket A Memory 
Windows 

1–4 Socket Mapping

CSC Index 
F0h 

MEM_WIN_SEL

[3–0]

Socket A Memory 
Windows 

1–4 Socket Mapping

Socket A Socket B Socket A Socket B

0000 (0h) 1,2,3,4 None 1000 (8h) 1,2,3 4

0001 (1h) 2,3,4 1 1001 (9h) 2,3 1,4

0010 (2h) 1,3,4 2 1010 (Ah) 1,3 2,4

0011 (3h) 3,4 1,2 1011 (Bh) 3 1,2,4

0100 (4h) 1,2,4 3 1100 (Ch) 1,2 3,4

0101 (5h) 2,4 1,3 1101 (Dh) 2 1,3,4

0110 (6h) 1,4 2,3 1110 (Eh) 1 2,3,4

0111 (7h) 4 1,2,3 1111 (Fh) None 1,2,3,4
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Table 19-14 Memory Window Redirection Effects

19.5.5.2 Configuring MMS Windows C–F

MMS windows C–F are configured using a combination of PC Card index registers and 
CSC index registers. PC Card Socket B Memory Window 1–4 configuration registers are 
the PC Card index registers that are used to define the start address and the stop address 
of the window in the CPU address space, the offset address, and the window enable/disable 
configuration. Table 19-15 below shows the PC Card Socket B memory window resources 
that are used to configure MMS windows C–F in Standard PC Card mode. 

Note that if the integrated PC Card controller is disabled, the CPU will not be able to access 
the PC Card index registers. If the MMS C–F windows are setup when the integrated PC 
Card controller is enabled and then the integrated PC Card controller is disabled, the MMS 
C–F windows would still be functional. 

Table 19-15 PC Card Socket B Memory Window Resources Used for MMS

19.5.6 Using Enhanced PC Card Mode
Enhanced mode is enabled by programming the MODE bit in the PC Card Mode and DMA 
Control Register. 

In the Enhanced PC Card mode, the PC Card control registers are used to control PC Card 
Socket B memory windows 1–4. MMS windows C–F are not available. In this mode, any 
CSC index register bits that pertain to MMS window C–F control have no effect. 

MEM_WIN_SEL
[3:0]

Memory Window 
Hit

Socket A Socket B

MCEx_A REG_A MCEx_B REG_B

XXX0 1, Socket A Active win 1 REG_ACT Inactive Inactive

XXX1 1, Socket B Inactive Inactive Active win 1 REG_ACT

XX0X 2, Socket A Active win 2 REG_ACT Inactive Inactive

XX1X 2, Socket B Inactive Inactive Active win 2 REG_ACT

X0XX 3, Socket A Active win 3 REG_ACT Inactive Inactive

X1XX 3, Socket B Inactive Inactive Active win 3 REG_ACT

0XXX 4, Socket A Active win 4 REG_ACT Inactive Inactive

1XXX 4, Socket B Inactive Inactive Active win 4 REG_ACT

PC Card Socket B Memory 
Window Control

MMS Window PC Card Index Registers Used 

Window 0 None None

Window 1 MMS C 46h[1], 58–5Dh

Window 2 MMS D 46h[2], 60–65h

Window 3 MMS E 46h[3], 68–6Dh

Window 4 MMS F 46h[4], 70–75h
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19.5.7 DMA Interface
The ÉlanSC400 microcontroller supports DMA between PC Cards and system memory/
ISA memory, as defined in the PC Card Standard (also known as PC Card ‘95 or PC Card 
Standard Release 3.0—Berlin Drafts). DMA is supported between an I/O PC Card and 
system memory. DMA between two PC Cards is not supported. PC Card DMA is only 
supported in Enhanced mode. (See Table 4-15 for a complete listing of ISA DMA cycle 
types and command strobes generated.)

One of two PC Card interface signals from each socket can be configured as the DREQ 
(DMA Request) signal to be routed to the ÉlanSC400 microcontroller’s DMA controller: 
BVD2_x (SPKR_x), or WP_x (IOIS16_x). Regardless of which signal is configured to serve 
as DREQ on the PC Card interface, the REG_x signal always acts as the DMA Acknowledge 
(DACK_x) signal. The socket must be configured for Memory and I/O mode via the 
CARD_IS_IO bit in the Interrupt and General Control Register before a card can issue DMA 
requests. Note that the PC Card Standard requires that a third PC Card signal (INPACK) 
be available to be used as the DREQ input. The ÉlanSC400 microcontroller does not 
support the INPACK interface signal. 

DMA write verify cycles to the PC Card are also supported specifically to support PC Card 
floppy disk drive controllers. 

19.5.7.1 DMA Cycle Timing

The ÉlanSC400 microcontroller has several enhancements to support DMA to and from 
PC Cards. A PC Card can be either a DMA target or a DMA initiator.

When a PC Card is a DMA target, the PC Card cycles have the same format as normal 
memory cycles (i.e., the decode for the window hits is handled by the MMU in the same 
way as cycles originating from the CPU).

When a PC Card is a DMA initiator, the PC Card I/O cycles have the same timing as the 
DIOR and DIOW signals from the DMA controllers. These signals are simply gated onto 
the PC Card IOR and IOW signals, respectively. DMA Terminal Count cycles and DMA 
verify cycles are exceptions; these cycles have their own state machines that track when 
to pulse the PC Card I/O command signals.

For DMA Terminal Count cycles, a state machine clocked by the DMA clock tracks the type 
of cycle being requested. It waits for the cycle state machine to enter the Command state, 
and if it determines that a PC Card-initiated DMA is being serviced and the Command cycle 
is more than two clocks long, it will enter a state that allows the TC input to be enabled onto 
the WE or OE signal (as appropriate). When there is one clock left in the Command state, 
it will inactivate the TC signal on WE or OE. 

For DMA verify cycles, the IOR command is pulsed one time for a period equal to three 
and a half DMA clock periods. This means that PC Card DMA verify cycles can only be run 
in single-transfer DMA mode.

For PC Card DMA cycles, the PC Card controller timing set registers are disabled. During 
these cycles, all PC Card cycle timing is dictated by the DMA controller. The standard setup, 
command, and recovery timing for these PC Card DMA cycles will be 102 ns (min), 250 ns 
(min), and 53 ns (min), respectively, based on a DMA controller clock frequency of 4 MHz. 
If the DMA controller clock frequency is modified, the PC Card setup, command, and 
recovery timing will be scaled accordingly. A PC Card DMA device can add wait states to 
memory or I/O accesses by asserting the WAIT signal if the proper setup from command 
is observed. 
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19.5.8 System Interrupt Control
System interrupt generation by the PC Card controller is very flexible. 

■ A PC Card can generate an interrupt request on its RDY_x (IREQ_x) pin when configured 
for the Memory and I/O mode. 

■ Also, the PC Card controller can generate a card status change interrupt when changes 
in state are detected on any of several PC Card interface signals when the socket is 
configured for either Memory-only or Memory and I/O mode. 

■ Finally, a Ring Indicate signal can be enabled to the PMU block to indicate a change in 
card status when a card’s BVD1_x (STSCHG_x) signal is active and the socket is 
configured for the Memory and I/O mode.

The standard PC/AT edge-triggered interrupts are supported. 

■ A card status change interrupt can be generated from changes in the following signals: 
CD_A, CD_B, BVD1_A, BVD1_B, BVD2_A, BVD2_B, RDY_A, and RDY_B (for memory 
cards only.) The status change interrupts can be steered to any of the following system 
interrupts: SMI, NMI, IRQ3–5, IRQ7, IRQ9–12, and IRQ14–15.

■ The PC Card I/O interface signals RDY_A (IREQ_A) and RDY_B (IREQ_B) (the PC 
Card I/O function is indicated in parenthesis) can be steered to any of the following 
system interrupts: IRQ3–5, IRQ7, IRQ9–12, and IRQ14–15. 

■ The PC Card I/O interface signals BVD1_A (STSCHG_A) and BVD1_B (STSCHG_B) 
(the PC Card I/O function is indicated in parenthesis) can be steered to any of the 
following system interrupts: NMI, SMI, IRQ3–IRQ5, IRQ7, IRQ9–IRQ12, and IRQ14–
IRQ15.

19.5.8.1 Socket Status Inputs

A card status change interrupt for each socket can be generated by any of four different 
sources depending on the configuration of the Card Status Change and the Card Status 
Change Interrupt Configuration registers. Refer to these register descriptions for details on 
how these four sources control the generation of the card status change interrupt for a 
socket.

The socket status inputs, BVD1_x, BVD2_x, CD_x, and RDY_x, are used to generate the 
card status change interrupt, indicating a socket status change. Changes in the state of 
these signals need to be latched to generate the interrupt and be read by system software 
to determine the cause of the interrupt. The Card Status Change Register description 
explains how each of these register bits is to be controlled by hardware. The PC Card 
controller is compliant with revision B of the 82365. Unlike revision C compatibility, the 
status bits will latch when a status change is detected even when the event is not first 
unmasked. To avoid spurious interrupts when enabling status change event sources, the 
latch should be cleared prior to unmasking the status change interrupt source.

The CD_CHNG bit in the Card Status Change Register can also be set (but not cleared) 
by writing to the FORCE_CD_x bit in the PC Card Extended Features Register. This feature 
allows software to generate a card detect change event that can be read back from the 
Card Status Change Register.

19.5.9 Sound Generation
When a socket is configured for the Memory and I/O mode, its BVD2_x (SPKR_x) pin can 
be used to generate sounds on the system speaker via the ÉlanSC400 microcontroller’s 
SPKR pin.
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The first step of this feature is the masking of the BVD2_x (SPKR_x) signals with the 
CARD_IS_IO bit in the Interrupt and General Control Register (no sounds can be generated 
on BVD2_x when the socket is configured for the Memory-only mode and the masked signal 
is held in the inactive high state). The resulting masked SPKR_x signals are exclusive-
ORed together and sent to the PC/AT port to be merged with the other sources of the 
ÉlanSC400 microcontroller’s SPKR signal.

19.5.10 Using the WAIT_AB, CD_A, and CD_B Pins
To achieve the maximum benefit from the pins available on the ÉlanSC400 microcontroller, 
some of the PC Card signals specified in the PCMCIA Standard Release 2.1 must be gated 
together before driving the ÉlanSC400 microcontroller pin. This merging function is 
described in the following sections.

19.5.10.1 WAIT_AB Signal Merging

The ÉlanSC400 microcontroller has only one pin, WAIT_AB, to support the PC Card WAIT 
signal from Socket A and Socket B. To support WAIT from both sockets, the WAIT signal 
from each socket should be logical ORed together after being masked off by their respective 
Card Enable pins as shown in Figure 19-2. In other words, WAIT from Socket A should be 
logical ANDed with MCEL_A and MCEH_A before being ORed with the same masking 
function on Socket B’s WAIT.

Figure 19-2 Merging WAIT signals from Sockets A and B

19.5.10.2 CD_A and CD_B Signal Merging

The ÉlanSC400 microcontroller has only one dedicated card detect pin to support the PC 
Card CD1 (Card Detect 1) and CD2 (Card Detect 2) pins from Socket A. The CD_A pin is 
the dedicated card detect input for Socket A. The Card Detect function that this signal is 
intended to perform can be achieved by applying the logical OR function to the CD1 and 
CD2 pins from Socket A, and then sending the resulting signal to the CD_A ÉlanSC400 
microcontroller pin as shown in Figure 19-3.

WAIT_AB

MCEL_A

MCEL_B

MCEH_A

MCEH_B

WAIT (Socket A)

WAIT (Socket B)
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Figure 19-3 Card Detect Function for Socket A

The same can be done for CD_B using CD1 and CD2 from Socket B. This ensures that a 
card is not detected until it is fully inserted because the CD1 and CD2 pins are located at 
opposite edges of the card.

To avoid having to use the external gate, a second Card Detect input pin can be configured 
for Socket A. The input function CD_A2 is multiplexed on one of the ÉlanSC400 
microcontroller GPIO pins. If the CD_A2 function is selected via firmware, the external gate 
can be eliminated. 

19.5.11 Power Considerations

19.5.11.1 Card VCC and VPP Control

An 82365SL-compatible VCC and VPP control interface is provided for both Socket A and 
Socket B. The following interface signals provide control for the sockets that VCC and VPP 
supply:

■ Socket A—PCMA_VCC, PCMA_VPP1, PCMA_VPP2

■ Socket B—PCMB_VCC, PCMB_VPP1, PCMB_VPP2 

These signals are multiplexed with other ÉlanSC400 microcontroller interface signals. The 
PC Card functionality for these pins can be enabled on a socket-by-socket basis. Bits in 
the Power and RESETDRV Control Register (PC Card index 02h (Socket A) and Index 42h 
(Socket B)) are used to control these features, as shown in Table 19-16 and Table 19-17.

Table 19-16 VPP Control Signal Definition

Bit 4 
VCC 

Power

Bit 1
VPP Control 

Bit 1

Bit 2 
VPP Control 

Bit 0
PCMx_VPP2 PCMx_VPP1 PCMx_VCC Comments

1 0 0 0 0 0 VPP is N/C 

VCC enabled

1 0 1 0 1 0 VPP = VCC

 VCC enabled

1 1 0 1 0 0 VPP = +12V 

VCC enabled

1 1 1 0 0 0 VPP is N/C

VCC enabled

0 X X 0 0 1 VPP is N/C

VCC disabled

CD1

CD2

S
oc

ke
t A

CD_A

ÉlanSC400 Microcontroller
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Table 19-17 VCC Control Signal Definition

The ÉlanSC400 microcontroller does not directly support the external data buffer control 
pin as is found on the 82365SL controller. The ÉlanSC400 microcontroller’s PC Card 
implementation is essentially a non-buffered 82365SL design. An external buffer may be 
included in the system design and would require a small amount of external logic to provide 
the appropriate control. 

19.5.11.2 Power Considerations for System Design

Powering down sections of a system during operation is difficult to handle correctly, and 
the PC Card power planes are no different. Fully buffering each PC Card socket allows the 
system to power the cards up and down at any time. However, the major drawback is that 
there are many signals to buffer, and total system cost, board space, and power 
consumption will all be increased. This is acceptable for some but not for all systems. If the 
system design does not fully buffer each PC Card socket, then each of the shared signals 
on the ÉlanSC400 microcontroller requires some amount of special consideration. 
Table 19-18 lists the PC Card signals and the other parts of the system with which they 
are shared. 

Table 19-18 Shared PC Card Signals

■ Address Signals—Shared with the other PC Card socket, ISA bus, ROM, VL-bus. 
Because the address is shared with other interfaces, the card will have to be powered 
up when it is connected and the system is operating (i.e., not in Suspend mode). Because 
the address is not bidirectional (driven by the ÉlanSC400 microcontroller only), the cards 
can be 3.3 V or 5 V (the designer should ensure that nothing in the system pulls an 
address line up to 5 V). During Suspend mode, the address signals all go Low so the 
cards can be powered off in Suspend.

■ Data Signals—Shared with the other PC Card socket, ISA bus, ROM, VL-bus, DRAM. 
There are many considerations here depending on which of the above interfaces are 
used in the system, and the voltage at which they are run. Because the data is shared 

Socket CD_x
Low

Bit 5 
Auto Power

Control

Bit 4 VCC 
Power

PCMx_VCC
PC Card Power Active 

(Bit 6 of Interface 
Status Register) 

Comments

X X 0 1 0 Socket forced off

X 0 1 0 1 Socket forced on

No 1 1 1 0 Auto power enabled and no 
card inserted

Yes 1 1 0 1 Auto power enabled and 
card inserted/powered

PC Card Signals Shared with

Address Other PC Card socket, ISA bus, ROM, VL-bus

Data Other PC Card socket, ISA bus, ROM, VL-bus, 
DRAM (if 32-bit; buffer controls available) 

IOR/IOW Other PC Card socket, ISA bus 

WAIT Other PC Card socket 

OE/WE Other PC Card socket
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with other interfaces, the card will have to be powered up when it is connected and the 
system is operating (i.e., not in Suspend mode). Because the data bus is bidirectional, 
the voltages become more of an issue. DRAM and VL bus in this system are 3.3 V only. 
If the PC Card power plane is to be at 5 V (or the ISA bus, parallel port, or ROM are 
5 V), then the SD level-translating buffer must be added to the system (controlled by 
the ÉlanSC400 microcontroller’s DBUFOE, DBUFRDL, and DBUFRDH signals). This 
will isolate the 5-V devices (ISA, ROM, parallel port, PC Card) from the 3.3-V devices 
(DRAM and VL-bus). If the card is to be powered at 3.3 V, and the ISA/ROM are 5 V, 
then additional buffering is needed to isolate the PC Cards sockets from the ISA/ROM 
devices. The ÉlanSC400 microcontroller signal ICDIR is provided for steering this buffer 
(the socket card enables (MCEL_x and MCEH_x) can be used to enable the buffers).

■ IOR/IOW Signals—Shared with other PC Card socket, ISA bus. Because the data is 
shared with other interfaces, the card will have to be powered up when it is connected 
and the system is operating (i.e., not in Suspend mode). If the card is to be powered off 
in Suspend mode, then these signals should be buffered for each card. In Suspend 
mode, IOR and IOW are left High; this would back-power the card if it is not buffered off.

■ WAIT Signals—Shared with the other PC Card socket. Because the WAIT signals for 
the two sockets need to be ORed together (logical OR; since they are active Low, this 
is actually an AND gate), their pull-ups must be handled carefully. On the system board, 
each card's WAIT pull-up would normally be tied to that card’s VCC, but this can cause 
problems in a non-buffered system. With each socket WAIT pulled up to that card's VCC, 
and the two WAIT signals ORed together, neither socket can be powered down at any 
time, even if it does not have a card installed. (If one socket is powered down when the 
other socket is in use, the powered down socket's VCC goes away, the pull-up no longer 
pulls up, the AND gate gets a low input, the WAIT signal is seen as Low at the ÉlanSC400 
microcontroller, and the system locks up when it attempts to access the socket with a 
card. The ÉlanSC400 microcontroller cannot distinguish which card is actually pulling 
the WAIT). The best approach for this is to tie the socket WAIT pull-ups to a VCC that is 
always on when the system is operating. This pull-up should be gated so the cards can 
be powered off in Suspend mode (and will not be back-powered by the WAIT pull-up).

■ OE/WE Signals—Shared with the other PC Card socket. If the card is to be powered 
off in Suspend mode, then these signals should be buffered for each card. In Suspend 
mode, OE and WE are left High; this would back-power the card if it is not buffered off.

The PC Card power control signals allow the system to turn each power plane of the card 
on and off. PCMx_VCC (x being A or B) controls the 5-V (or 3-V) power plane; and 
PCMx_VPP1 and PCMx_VPP2 work together to choose 12 V, VCC, or GND for the PC 
Card VPP power pins. To design a system that provides either 5 V or 3.3 V to the PC Card 
power planes, use an ÉlanSC400 microcontroller GPIO signal for the 3.3-V enable (or use 
a GPIO to steer the PCMx_VCC signal to either the 5-V or 3-V enable).

The PC Card sockets are usable individually, but they are not able to be powered individually 
if they are not buffered.

19.6 INITIALIZATION
The PC Card controller is disabled at power-on reset and must be configured and enabled 
by software. There are really two levels at which the PC Card controller can be disabled: 

■ Individual features can be turned off (i.e., PC Card windows can be disabled, IRQs 
unrouted, etc.).

■ Access to the PC Card controller index and data registers can be disabled (ports 3E0h 
and 3E1h respectively). 
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The PC Card controller starts off with both the individual features and the access to the 
index and data registers being disabled. To gain access to the registers used to turn on 
individual features, the PC Card controller index and data ports must be made accessible 
by enabling their corresponding internal address decode by setting CSC index D0h[1]. 

Note: Subsequently turning off the index/data port address decode by clearing CSC index 
D0h[1] does not disable any PC Card controller features (windows, etc.) that have already 
been turned on. To completely disable the PC Card controller, all features must be turned 
off individually, and then CSC index D0h[1] must be cleared.

When the PC Card controller is disabled, all of the CPU I/O accesses to the PC Card 
controller indexed registers (i.e., ports 03E0h and 03E1h) are driven to the ÉlanSC400 
microcontroller’s ISA or VL-bus. When the PC Card controller is enabled, all writes to Port 
03E0h go to both the internal PC Card controller’s index register and to the ISA or VL-bus. 
This is done to support the possibility of having a second 82365-compatible PC Card 
controller external to the ÉlanSC400 microcontroller to support two additional PC Card 
sockets C and D. Reads from Port 03E0h come from the internal PC Card index register 
only and are not seen on external buses. The destination for I/O reads or writes to the PC 
Card controller data port (03E1h) depends upon the data that was last written to Port 03E0h. 
If the last data written to Port 03E0h was 80–FFh, then subsequent Port 03E1h accesses 
will go to the external ISA or VL-bus only. This will remain the case until new data that is 
between 00–7Fh is written to Port 03E0h, at which time all subsequent accesses to Port 
03E1h will go to the internal PC Card controller only.

Immediately following power-on reset, the PC Card controller defaults to Standard mode, 
which supports only one fully 82365-compatible PC Card socket (or two sub-82365 sockets 
that must share six memory windows instead of the normal ten windows), no PC Card 
controller DMA capability, and standard ISA timings only. In Standard mode, four of the 
memory windows (windows 1–4) that normally belong to Socket B are unavailable because 
they are redefined to be general-purpose MMS. See Section 19.5.5.1 for more information 
on these MMS windows. See Section 19.5.5 for more information on Standard mode. The 
PC Card controller can be configured for Enhanced mode by setting CSC index F1h[0]. 
Enhanced mode supports all ten 82365-compliant memory windows and PC Card controller 
DMA, and is discussed in Section 19.5.6 and Section 19.5.7. Other than the memory 
window, DMA, and timing features just described, there are no other differences between 
the Standard and Enhanced modes.

19.6.1 Identification and Revision Register
The Identification and Revision Register for each socket has two different modes for read-
back: In one, the 82365SL-(Rev.B)-compatible value of 82h is read back. In the other, the 
ÉlanSC400 microcontroller-specific value of 0Fxh is read back. (The actual value depends 
on the specific version of the ÉlanSC400 microcontroller.) This allows the PC Card controller 
to both identify itself as 82365SL (Rev.B)-compatible and identify the ÉlanSC400 
microcontroller-specific features that are available.

The default read value is 82h. In order to read the ÉlanSC400 microcontroller-specific value, 
these steps must be followed:

1. The Identification and Revision Register index value (00h for Socket A, 40h for Socket 
B) must be written to the PC Card controller index register at 03E0h.

2. The PC Card controller data register at 03E1h must be written. This write goes to the 
Identification and Revision Register, which is read-only in the 82365SL (Rev.B). For this 
reason, the ÉlanSC400 microcontroller’s PC Card controller ignores the data written 
and records only the fact that the write occurred.
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3. The PC Card controller data register at 03E1h must be read immediately after step 2.

4. If any other reads or writes occur between steps 2 and 3, the mechanism is broken and 
the 82365SL (Rev.B)-compatible value of 82h is read back. Thus, these steps must be 
surrounded with STI/CLI CPU instructions to avoid an interrupt-handling routine from 
disarming the PC Card controller stepping-level read-back circuit.

19.7 POWER MANAGEMENT
The PC Card controller core manages its own power by gating its clock.The clock is enabled 
only when the following conditions are true:

■ A PC Card cycle has been started.

■ Any CPU cache line write-back (due to PC Card-initiated DMA) has completed.

The PC Card controller can operate at up to 33 MHz. During power-saving modes, the 
clock to the controller can be dropped down as low as DC. Because PC Card cycles are 
measured in terms of the number of clock cycles, slowing down the clock to the controller 
slows down PC Card cycles, because the number of clocks counted per cycle remains 
constant.

Operation of the PC Card controller is affected by the power-management functions shown 
in Table 19-19.

Table 19-19 Power Management in the PC Card Controller

PC Card Controller 
Event Description

Power Management Effect

Wake-Up Activity SMI NMI

PC Card Ring Indicate 
signal

Triggered by a falling edge on the signal 
when the PC Card controller is programmed 
(PC Card index 03h or 43h) for a ring 
indicate signal. The PC Card controller uses 
the BVD1_x pins for ring indicate signals.

Yes Programmable Yes Yes

PC Card Detect 
signals

Triggered by either PC Card Detect signal 
rising or falling edge

Yes Yes Yes

PC Card IRQ signals Triggered by either PC Card Interrupt 
Request signal rising edge (only active if the 
IRQ is enabled in the interrupt controller) 

Yes

PC Card Status 
Change IRQs

Triggered by either PC Card Status Change 
Interrupt Request signal rising edge (only 
active if the IRQ is enabled in the interrupt 
controller) 

Yes

CPU access to PC 
Card Socket A and B 
memory

Triggered by falling edge of address decode 
qualified with command

Programmable

CPU access to PC 
Card Socket A and B
I/O

Triggered by falling edge of address decode 
qualified with command

Programmable

PC Card INTR signal Triggered by falling edge Programmable Yes Yes

PC Card Socket A and 
B I/O access

Can cause an SMI/NMI through an I/O trap; 
the actual address range is programmed in 
the PC Card controller

Yes Yes
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CHAPTER
20G
(

RAPHICS CONTROLLER
ÉlanSC400 MICROCONTROLLER ONLY)
20.1 OVERVIEW
The graphics controller included on the ÉlanSC400 microcontroller offers a low-cost 
integrated graphics solution for the mobile terminal market. Integration with the main 
processor and system logic affords the advantages of an integrated local-bus interface and 
frame and font buffers which are shared with main memory. The graphics controller is not 
supported on the ÉlanSC410 microcontroller. 

The graphics controller includes the following features:

■ Supports multiple panel resolutions

■ Provides internal unified memory architecture (UMA) with optional write-through caching 
of graphics buffers

■ Stores frame and font buffer data in system DRAM, eliminates extra memory chip

■ Provides software compatibility with Color Graphics Adapter (CGA), Monochrome 
Display Adapter (MDA), and Hercules Graphics Adapter (HGA) text and graphics

■ Supports single-scan or dual-scan monochrome LCD panels with 4- or 8-bit data 
interface 

■ Typical panels supported include: 

— 640x200, 640x240, 640x480, 480x320, 480x240, 480x128, 320x200, 320x240

— Other resolutions may be supported 

■ Supports single-scan color SuperTwisted Nematic (STN) panels with 8-bit interface, 
same resolutions as monochrome mode

■ Internal local-bus interface provides high performance

■ Logical screen may be larger than physical window. 

■ Supports panning and scrolling 

■ Supports horizontal dot doubling and vertical line doubling

The following MDA/CGA-compatible text mode features are supported: 

■ 40, 64, or 80 columns with characters 16, 10, or 8 
pixels wide

■ Variable height characters up to 32 lines 

■ Variable width characters—8, 10, or 16 pixels

■ MDA Monochrome, or CGA 4 gray shades, 16 gray shades, or 16 colors

■ 16-Kbyte downloadable font area, relocatable on 16-Kbyte boundaries within lower 16 
Mbytes of system DRAM (may be write protected)

■ 16-Kbyte graphics frame buffer (MMS Window), relocatable on either 16-Kbyte 
boundaries within lower 16 Mbytes of system DRAM (CGA-compatible mode) or 32-
Kbyte boundaries when the frame buffer is larger than 16 Kbytes (flat-mapped mode)
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The following graphics mode features are supported:

■ 640x200 1 bit-per-pixel, CGA-compatible graphics buffer memory map

■ 320x200 2 bits-per-pixel, CGA-compatible graphics buffer memory map

■ 640x480 2 bits-per-pixel, flat memory map (lower resolutions supported)

■ 640x480 1 bit-per-pixel, flat memory map

■ 1, 2, or 4 bits-per-pixel packed-pixel flat-mapped graphics up to 640x240/480x320 with 
two mapping modes:

—  16-Kbyte window with bank swapping to address up to 64 Kbytes of graphics frame 
buffer while consuming only 16 Kbytes of DOS/Real-mode CPU address space

—  Direct-mapped (no bank swapping) with locatable base address, up to 128-Kbyte 
direct addressability

■ Hercules Graphics mode emulation (HGA)

20.2 REGISTERS
Graphics controller registers are indexed using I/O ports 03D4h (index) and 03D5h (data) 
for Color Graphics Adapter (CGA) mode and I/O ports 03B4h (index) and 03B5h (data) for 
Monochrome Display Adapter (MDA) mode. Different ports are used, depending on the 
graphics mode selected. The mode is selected using bit 0 of the Internal Graphics Control 
Register A (CSC index DDh).

■ When MDA mode is selected, the MDA index and data registers are located at ports 
03B4h and 03B5h, respectively, in the I/O address space.

■ When CGA mode is selected, the CGA index and data registers are located at ports 
03D4h and 03D5h, respectively, in the I/O address space.

The graphics controller indexed registers are accessed using a two-step process:

■ An I/O write to the I/O address port for the chosen mode is performed. The data written 
is the index of the requested graphics controller register. 

■ This I/O write is followed by an I/O read or write to the data port for the chosen mode. 
This access causes the graphics controller to allow access to the addressed 
configuration register.

A summary listing of the direct-mapped, chip setup and control (CSC) index, and graphics 
index registers used to control the LCD graphics controller is shown in Table 20-1. Complete 
register descriptions can be found in the ÉlanSC400 Microcontroller Register Set 
Reference Manual (order #21032).

Table 20-1 Graphics Controller Register Summary

Register I/O Address Graphics Controller Function Keyword
Description 
in Register 
Set Manual

Direct-Mapped Registers

CGA/MDA Index Registers 03B4h, 03D4h Graphics controller indexed register to read or 
write for MDA/HGA or CGA modes

page 2-130, 
page 2-135

CGA/MDA Data Ports 03B5h, 03D5h Data to be written to register selected in 3x4h 
for MDA/HGA or CGA modes

page 2-131, 
page 2-136
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MDA/HGA Mode Control 
Register

03B8h Text blink control, video blanking, HGA 
graphics enable, MDA/HGA select, HGA page 
select

page 2-132

MDA/HGA Status Register 03BAh Vertical retrace status (simulated vertical 
sync), display-memory access status 
(simulated horizontal sync)

page 2-133

HGA Configuration Register 03BFh Allow HGA page select, HGA text or graphics 
enable

page 2-134

CGA Mode Control Register 03D8h Text attribute, CGA graphics control, video 
blanking, color burst select, text or graphics, 
CGA column select

page 2-137

CGA Status Register 03DAh Vertical retrace status (simulated vertical 
sync), display-memory access status 
(simulated horizontal sync), light pen switch, 
light pen status

page 2-139

CGA Color Select Register 03D9h Alternate palette, alternate background; 
intense, red, green, or blue border/background

page 2-138

Chip Setup and Control (CSC) Index Registers

DRAM Control Register 22h/23h
Index 04h

CAS pulse width for graphics controller reads page 3-14

Cache and VL Miscellaneous 
Register

22h/23h
Index 14h

Write-through caching of graphics memory page 3-23

PMU Force Mode Register 22h/23h
Index 40h

Standby mode graphics enable page 3-51

Activity Source Enable Register A 22h/23h
Index 62h

Activity source enable: CPU access to internal 
graphics I/O and internal graphics memory

page 3-71

Activity Source Status Register A 22h/23h
Index 66h

Activity source status: CPU access to internal 
graphics I/O and internal graphics memory

page 3-75

Activity Classification Register A 22h/23h
Index 6Ah

Primary or secondary activity classification: 
CPU access to internal graphics I/O and 
internal graphics memory

page 3-79

CLK_IO Pin Output Clock Select 
Register

22h/23h
Index 83h

Route internal graphics dot clock to external 
CLK_IO pin

page 3-91

I/O Access SMI Enable 
Register A

22h/23h
Index 99h

SMI on I/O access to internal graphics 
controller

page 3-105

I/O Access SMI Enable 
Register B

22h/23h
Index 9Ah

SMI on I/O access to external VGA graphics 
controller

page 3-106

I/O Access SMI Status Register A 22h/23h
Index 9Bh

SMI status of I/O access to internal graphics 
controller

page 3-107

I/O Access SMI Status Register B 22h/23h
Index 9Ch

SMI status of I/O access to external VGA 
graphics controller

page 3-108

Table 20-1 Graphics Controller Register Summary (continued)

Register I/O Address Graphics Controller Function Keyword
Description 
in Register 
Set Manual
Graphics Controller 20-3



Internal Graphics Control 
Register A

22h/23h
Index DDh

Graphics controller enable, CGA/MDA mode, 
compatibility mode, linear flat-mapped 
graphics mode, panel type, drive width, 
horizontal dot doubling, and vertical line 
doubling

page 3-179

Internal Graphics Control 
Register B

22h/23h
Index DEh

Non-display data value, blanked data value, 
text mode data polarity, graphic modes data 
polarity, pixel depth for linear flat-mapped 
modes, lockout for CSC registers at 3x4h/
3x5h, underline attribute

page 3-180

Graphics Index Registers: Legacy (CGA/MDA) Registers

Cursor Start Register 3x4h/3x5h
Index 0Ah

Alphanumeric cursor start line, blinking control page 5-6

Cursor End Register 3x4h/3x5h
Index 0Bh

Last line of alphanumeric cursor page 5-7

Start Address High Register 3x4h/3x5h
Index 0Ch

High-order start address bits: first data to be 
displayed at top of screen

page 5-8

Start Address Low Register 3x4h/3x5h
Index 0Dh

Low-order start address bits: first data to be 
displayed at top of screen

page 5-9

Cursor Address High Register 3x4h/3x5h
Index 0Eh

High-order cursor address bits: alphanumeric 
cursor location

page 5-10

Cursor Address Low Register 3x4h/3x5h
Index 0Fh

Low-order cursor address bits: alphanumeric 
cursor location

page 5-11

Light Pen High Register 
(Read Only)

3x4h/3x5h
Index 10h

Value of Cursor Address High Register for 
CGA compatibility

page 5-12

Light Pen Low Register 
(Read Only)

3x4h/3x5h
Index 11h

Value of Cursor Address Low Register for CGA 
compatibility

page 5-13

Graphics Index Registers: Extended Features

Horizontal Total Register 3x4h/3x5h
Index 30h

Total number of characters in a horizontal line, 
slowing the frame rate

page 5-14

Horizontal Display End Register 3x4h/3x5h
Index 31h

Number of the last character position in a line 
output from the frame buffer

page 5-15

Horizontal Line Pulse Start 
Register

3X4/3X5
Index 32h

Horizontal line pulse start, horizontal line pulse 
width, timing requirements

page 5-16

Horizontal Border End Register 3x4h/3x5h
Index 33h

Last character position to be displayed at the 
end of a line

page 5-17

Non-display Lines Register 3x4h/3x5h
Index 34h

Non-display lines to be added to the bottom of 
the vertical display sequence after vertical 
adjust rolls over

page 5-18

Vertical Adjust Register 3x4h/3x5h
Index 35h

Vertical adjust, excess lines page 5-19

Table 20-1 Graphics Controller Register Summary (continued)

Register I/O Address Graphics Controller Function Keyword
Description 
in Register 
Set Manual
Graphics Controller20-4



Overflow Register 3x4h/3x5h
Index 36h

Vertical synch mode, eighth bits of the Vertical 
Display Enable End Register and Vertical 
Border End Register

page 5-20

Vertical Display End Register 3x4h/3x5h
Index 37h

Number of the last character line to be output 
from the frame buffer at the bottom of the 
screen

page 5-21

Vertical Border End Register 3x4h/3x5h
Index 38h

Last character line to be output to the panel at 
the bottom of the display

page 5-22

Frame Sync Delay Register 3x4h/3x5h
Index 39h

Number of character clocks to delay frame 
sync from beginning of horizontal line pulse

page 5-23

Dual Scan Row Adjust Register 3x4h/3x5h
Index 3Bh

Dual scan mode, character row overlap page 5-24

Dual Scan Offset Address High 
Register

3x4h/3x5h
Index 3Ch

Dual scan mode, high byte of offset address 
between lower and upper screens

page 5-25

Dual Scan Offset Address Low 
Register

3x4h/3x5h
Index 3Dh

Dual scan mode, low byte of offset address 
between lower and upper screens

page 5-26

Offset Register 3x4h/3x5h
Index 3Eh

Frame buffer width page 5-27

Underline Location Register 3x4h/3x5h
Index 3Fh

Scan line number of the underline attribute 
used in MDA modes

page 5-28

Maximum Scan Line Register 3x4h/3x5h
Index 40h

Number of lines in a character row of identically 
addressed horizontal lines minus one

page 5-29

LCD Panel AC Modulation Clock 
Control Register

3x4h/3x5h
Index 41h

Horizontal line divide ratio, modulation mode page 5-30

Font Table Register 3x4h/3x5h
Index 42h

Offset font plane, character width, and font 
table write-protection

page 5-31

Graphics Controller Grayscale 
Mode Register

3x4h/3x5h
Index 43h

Grayscale functions: remapping, mapping 
mode, shade mode, contrast enhancement, 
color STN, and color border

page 5-32

Graphics Controller Grayscale 
Remapping Registers

3x4h/3x5h
Index 44–4Bh

Grayscale remapping registers for 
corresponding input grayscale code

page 5-34

Pixel Clock Control Register 3x4h/3x5h
Index 4Ch

Graphics dot clock base frequency and divide 
select

page 5-36

Frame Buffer Base Address 
Register

3x4h/3x5h
Index 4Dh

Frame buffer window base address high byte page 5-37

Font Buffer Base Address High 
Byte

3x4h/3x5h
Index 4Eh

Font buffer window base address high byte page 5-38

Frame/Font Buffer Base Address 
Register Low

3x4h/3x5h
Index 4Fh

Frame and font buffers window base address 
low bytes, Graphics Frame Buffer MMS 
window enable, MMS page select, allocate 
DRAM

page 5-39

Table 20-1 Graphics Controller Register Summary (continued)

Register I/O Address Graphics Controller Function Keyword
Description 
in Register 
Set Manual
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20.3 BLOCK DIAGRAM
Figure 20-1 shows a block diagram of the LCD graphics controller. Because the VL-bus 
and the graphics controller share control signals, use of the internal graphics controller is 
traded with having an external VL-bus. If either 32-bit DRAMs, 32-bit ROMs, or the VL-bus 
is enabled, the internal graphics controller is unavailable.

20.4 OPERATION
The LCD graphics controller on the ÉlanSC400 microcontroller supports the following 
modes of operation:

■ CGA graphics modes

■ HGA graphics modes

■ CGA/MDA text modes—80, 64, and 40 column

■ Flat-mapped graphics modes—Support flat linear maps of 1, 2, or 4 bits-per-pixel (BPP) 
up to resolutions of 480x320 or 640x240 and 640x480 at 1 or 2 BPP 

20.4.1 Using the Graphics Controller
The graphics controller provides the necessary control registers, register and memory 
decodes, bus interface logic, data path steering, and interrupt generation to support LCD 
panel operation. The entire graphics I/O space can be deactivated and become invisible 
to the CPU. 

20.4.1.1 Interrupts and I/O Trapping

An interrupt source and a PMU activity event source are provided. The interrupt source is 
triggered by writes to the 6845-compatible cursor address registers at graphics index 0Eh 
and 0Fh. The interrupt source can be used to keep track of the cursor location independent 
of application software when the physical display screen is smaller than the frame buffer. 
The PMU activity event is triggered by any read or write to the active graphics frame buffer.

I/O trapping via SMI/NMI is supported for all of the I/O registers and may be selectively 
disabled for certain frequently-used registers that are CGA-compatible.

PMU Control Register 1 3x4h/3x5h
Index 50h

Power-up power sequencing delays, PMU 
power control enable, and software power-up 
and power-down

page 5-40

PMU Control Register 2 3x4h/3x5h
Index 51h

Power-up power sequencing delays page 5-41

Extended Feature Control 
Register

3x4h/3x5h
Index 52h

Extended feature control: RGBI output, CGA 
legacy I/O trap SMI/NMI generation enable, 
inter-frame FIFO flush/refill delay, cursor blink 
rate, HGA register extensions, HGA read-
back, page memory enable, hidden flush

page 5-42

Table 20-1 Graphics Controller Register Summary (continued)

Register I/O Address Graphics Controller Function Keyword
Description 
in Register 
Set Manual
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Figure 20-1 Graphics Controller Block Diagram

20.4.1.2 Clock Control

The master pixel clock is generated from a dedicated PLL with user-programmable 
frequency (graphics index 4Ch). All other primary clocks and strobes used in the system 
are derived from the master pixel clock.These include the character clock, which drives the 
screen controller, the graphics dot (or pixel shifter) clock, and the strobes used for loading 
data into the shift registers and reading data from the internal FIFO.

20.4.1.3 Screen Timing Generation and Cursor Control

Screen timing generation is based on a hybrid implementation of the 6845 and VGA CRT 
control registers. Start address generation and text mode cursor control follows the CGA/
MDA standard. An offset register similar to the standard VGA offset register is also included. 
The offset register supports a virtual screen (i.e., a small physical screen that windows into 
a larger “virtual” screen). Scrolling and character panning are available using the start 
address registers. 

Graphics
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Data

Attribute

Controller

Remapping

Registers

Gray

Scaling

Logic

LCD
Data

Screen Timing
Generator and

LCD
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Address

Generator
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Memory

Interface

Main
Memory
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Addresses
to Main
Memory
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LCD
Power
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Control

Cursor Control

CPU
Interface
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Display Data
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The following additional features are included:

■ AC modulation control—Selectable to either one toggle (phase change) per frame or up 
to 128 horizontal lines per toggle 

■ Frame and line pulse timing control—Allows the graphics controller to have compatible 
timing with a large number of different LCD panels

■ Vertical and horizontal border registers—Allow unused areas of the display panel to be 
blanked, if necessary

■ Dual-scan screen setup registers—Allows for setup of dual-scan screens in text or 
graphics modes

■ Optional SMI/NMI trapping—Allows for CGA mode-set register compatibility

20.4.1.4 Internal Unified Memory Architecture

Unlike older graphics controller architectures where a separate memory device was used 
to support the graphics controller frame and font buffers, the ÉlanSC400 microcontroller’s 
graphics controller uses a portion of main system DRAM for these buffers to lower system 
cost. This technique is known as Unified Memory Architecture (UMA). 

With UMA, the system cost is lowered, power consumption is reduced, board space is 
saved, and external design is simplified. On the other hand, the graphics controller must 
constantly access the main system DRAM to refresh the LCD. Because delays in providing 
data to the LCD refresh would result in visual artifacts present on the LCD screen, the 
graphics controller is given very high priority over other types of DRAM accesses. Because 
the amount of data that needs to be transferred from system DRAM to the graphics controller 
to support screen refresh is proportional to the display resolution as well as the color depth 
of each pixel (number of bits of data required to form each pixel), system performance can 
decrease as LCD panel resolution and color depth increase.

20.4.2 Graphics Buffers
The ÉlanSC400 microcontroller’s graphics controller can maintain two buffers in UMA 
DRAM: the frame buffer (also known as the Graphics Frame Buffer MMS Window) and the 
font buffer. The frame buffer has meaning in either text or graphics modes, whereas the 
font buffer is only supported in text mode. The frame buffer is illustrated in Figure 20-2.

20.4.2.1 Using the Frame Buffer in Text Mode

In text mode, software writes two types of data to the frame buffer. These are the ASCII 
code of the character to be displayed and an attribute byte that modifies display 
characteristics of the ASCII character (color, intensity, or blinking). Thus, two bytes are 
written into the frame buffer for each text mode character displayed. 

For example, a standard CGA 80x25 text display uses 80 x 25 x 2 = 4000 bytes for each 
screen that is displayed. Because the ÉlanSC400 microcontroller’s text mode frame buffer 
is fixed at 16 Kbytes, data for up to four different text mode screens (with a few unused 
bytes left over per screen) can be stored in the font buffer at any time. 

The Start Address High and Low registers (graphics index 0Ch and 0Dh) are used to specify 
where in the frame buffer the text data for the upper left corner of the display should be 
fetched. Using these two registers, it is possible to quickly select which portion of the text 
frame buffer is displayed at any time. The format of the text mode frame buffer is discussed 
in Section 20.4.5.1.1. 
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20.4.2.2 Using the Frame Buffer in Graphics Mode

In graphics mode, software writes data into the frame buffer in order to display individual 
pixels. The ÉlanSC400 microcontroller’s graphics controller can be configured to use either 
1, 2, or 4 bits of the frame buffer data to form each pixel displayed. 

With 1 bit-per-pixel, a pixel can have only 2 states: on or off. In this mode, an off pixel can 
not be seen on the display, and an on pixel is displayed at full contrast giving a dark 
appearance on a monochrome LCD. 

Adding to the pixel depth (configuring the graphics controller for 2 or 4 BPP) allows gray 
shades to be displayed. 

20.4.2.3 Graphics Mode Memory Maps

There are three types of memory maps available in graphics mode on the ÉlanSC400 
microcontroller: CGA compatible, linear or flat-mapped, and paged. 

20.4.2.3.1 CGA-Compatible Mode
The CGA-compatible memory map is provided for software compatibility with applications 
that use the CGA memory map. For performance reasons on early PCs, the 16-Kbyte CGA 
graphics frame buffer is split into two address ranges. The first 8 Kbytes control even-
numbered scan lines on the LCD display, and the second 8 Kbytes control odd numbered 
scan lines. Two pixel depths are available for the CGA-compatible graphics mode: 1 BPP 
or 2 BPP, which correspond to the legacy CGA resolutions of 640x200 or 320x200 that are 
supported by the ÉlanSC400 microcontroller’s LCD controller. When the graphics controller 
is put into CGA-compatible mode, the frame buffer is fixed at 16 Kbytes in size. 

20.4.2.3.2 Flat-Mapped Mode
The flat-mapped mode (often referred to as linear packed-pixel mode due to the lack of 
CGA’s split addressing) takes advantage of modern graphics hardware performance 
capabilities to get rid of the split memory map. The flat-mapped mode can be considered 
the native graphics mode of the ÉlanSC400 microcontroller and should be used for all new 
graphics driver development. It supports 1, 2, or 4 BPP operation using a memory map for 
pixel data that is more intuitive for software writers, and also provides higher performance 
for some graphics operations. 

The flat-mapped mode frame buffer size is based upon the pixel color depth: 64 Kbyte for 
1 BPP mode and 128 Kbytes for 2 and 4 BPP modes. As in text mode, multiple graphics 
screens can be stored in the graphics frame buffer; the number is limited only by the number 
of screens that can fit in a 64-Kbyte (1 BPP) or 128-Kbyte (2–4 BPP) frame buffer. For 
example, if the LCD resolution is small, then each screen will take up less graphics frame 
buffer space, so more screens can be stored at once. 

To determine the number of screens that can be stored for a particular resolution and pixel 
color depth, multiply the LCD pixels in the “X” dimension by those in the “Y” dimension, and 
multiply by the color depth (number of BPP). Divide the result by eight to get the number 
of bytes required to store a single screen’s worth of data, then divide 64 Kbytes or 128 
Kbytes (based on selection of 1 BPP or 2–4 BPP as explained earlier) to get the number 
of screens that will fit into the graphics frame buffer.

Regardless of whether graphics or text mode is being used, the frame buffer base address 
must be configured at system boot time. The memory maps described above are then 
relative to the frame buffer base address. This programming is done via the Frame Buffer 
Base Address Register and the Frame/Font Buffer Base Address Register Low (graphics 
index 4Dh and 4Fh). The frame buffer base address for any of the above modes can be 
set to any 16-Kbyte boundary within the lowest 16 Mbytes of system DRAM when the frame 
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buffer is 16 Kbytes and to any 32-Kbyte boundary within the lowest 16 Mbytes of system 
DRAM when the frame buffer is larger than 16 Kbytes.

20.4.2.3.3 Paged Mode
The paged mapping mode is provided for use when CPU address space is limited, such 
as in a Real-mode-only system. When paged mode is enabled, a 64-Kbyte frame buffer is 
available and can be located above 1 Mbyte using the frame buffer base address registers 
mentioned earlier. This mode differs from other modes in that the software that is updating 
the 64-Kbyte graphics-only (text mode not supported) frame buffer will not access it directly 
(i.e., at the address programmed into the frame buffer base address), but rather via a special 
16-Kbyte LDC graphics window that becomes available at 00B8000h in the CPU address 
space when paged mode is enabled. Although the CPU can only access 16 Kbytes of the 
64-Kbyte buffer at a time, the graphics controller can access the entire 64 Kbytes at all 
times, so that the frame buffer data can be used to constantly refresh the LCD screen.

20.4.2.4 Font Buffer

The font buffer is used only in text mode and does not exist in any graphics mode. The font 
buffer can be made to reside anywhere below 16 Mbytes in system DRAM on a 16-Kbyte 
boundary. The font buffer is used to hold pixel data that is used to form the ASCII characters 
available in text mode. A piece of graphics hardware known as the character generator 
uses the ASCII codes stored in even addresses of the text frame buffer to look up the 
associated ASCII character bitmap data in the font buffer, and then display it to the screen. 

The font buffer is fixed at 16 Kbytes in size, and can hold character bitmap data for 
characters up to 32 pixels in height, and of 8, 10, or 16 pixel in width. There are 256 ASCII 
characters that must be supported by each set of text character fonts (character bitmap is 
referred to as a font).

It is possible to store more than one set of fonts at a time in the font buffer. The number of 
font sets that can be stored is based on the fixed 16-Kbyte font buffer size and the number 
of bytes required per font set. The number of bytes per font set is based on the size of the 
font (character cell). When the cell height (see the Maximum Scan Line Register at graphics 
index 40h) and width (see the Font Table Register at graphics index 42h) have been 
determined, one or more different font sets of identical size (again, based on the size of 
the character cell) can be stored in the font buffer. Then, any of the loaded font sets can 
be quickly selected for display by selecting a font offset between 0 and 31 via graphics 
index 42h. The font buffer format is detailed in Section 20.4.5.3.

20.4.2.5 Managing Graphics Memory

The following general guidelines apply:

■ Graphics memory must be in system memory (DRAM) space. This means that the 
address must be lower than the top-of-DRAM value that is calculated by the DRAM 
controller when it is programmed.

■ Graphics memory must not overlap with an MMS window, a PC Card window, or a region 
that has been enabled for linear ROM0 decode when shadowing has been enabled. 
(The possible shadow ROM areas are 00C0000–00FFFFFh.)

■ Accesses in the range of 00B0000–00FFFFFh that coincide with a graphics frame or 
font buffer will be directed to DRAM. If the access is not in a graphics area (and not in 
ROM, shadow ROM, MMS, or PC Card areas), it will go to ISA. Note that there is an 
exception if the ISA window is put over the graphics region.

■ Font memory has write-protect priority over the normal system memory write-protect 
window. If the programmer does not write-protect the font area and then puts a system 
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memory write-protect window in the same place as the font window, the font window 
will not be write-protected.

■ Graphics hits are write-through cacheable by setting CSC index 14h[7]. An SMM save-
state region cannot be put over a graphics area. Non-cached graphics hits have higher 
priority than linear ROM0 (shadowed, non-shadowed or boot) hits, which are higher than 
the non-cache window hits. When using the non-cache window, make sure the window 
is not in the range 00C0000–00FFFFFh, 3FF0000–3FFFFFFh, the SMM save-state 
region, or PC Card windows.

Figure 20-2 16-Kbyte Graphics Frame Buffer MMS Window Implementation

20.4.3 CGA Graphics Modes
In the CGA graphics modes (also called all-points-addressable or APA), graphics-memory 
bits directly represent display pixels. No indirect mapping to a font table is used. The use 
of either one or two bits-per-pixel defines the color depth of the image. 

■ The CGA graphics modes are enabled by setting bit 1 of the CGA Mode Control Register 
(Port 03D8h). 

■ Bit 4 of the CGA graphics mode register selects between 320x200 four-color mode or 
640x200 two-color mode. 

■ The CGA Color Select Register (Port 03D9h) can be used to map colors in the CGA 
graphics modes.

CPU Address Space

00B8000h

00BBFFFh
16-Kbyte Graphics

 Frame Buffer

System Memory (DRAM)
 Address Space

16 Kbyte

16 Kbyte

16 Kbyte

16 Kbyte

64-Kbyte 
Block01

10

11

00

Page Select
 Control
 Bits
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20.4.3.1 CGA Graphics Pixel Formats

20.4.3.1.1 High-Resolution Mode
As discussed earlier, in the CGA high-resolution mode, each byte in memory contains 
information relating to eight pixels. The bytes are organized sequentially using the odd/
even format described in Figure 20-3, resulting in a screen resolution of 640x200, with two 
colors mapped to each pixel. 

Figure 20-3 CGA Graphics Mode Memory Map

The byte offset and bit offset of a given pixel in the display coordinates (origin located in 
the top left corner of the screen; y increases positively in the downward direction; x increases 
positively in the rightward direction) may be calculated from x- and y-coordinates as follows:

Byte offset = ((y%2)*8192) + ((y/2)*80) + (x/8)

C0 Bit offset = 7 - (x%8)

where:

/ is integer division with truncation

% is the integer modulus (remainder) operator

Figure 20-4 Memory Byte Format (CGA High-Resolution Graphics)

20.4.3.1.2 Low-Resolution Mode
In the CGA low-resolution mode, each byte in memory contains information relating to four 
pixels. The bytes are organized sequentially using the odd/even format described in 
Figure 20-3, resulting in a screen resolution of 320x200, with four colors mapped to each 
pixel. 

The byte offset and bit offset of a given pixel in the display coordinates (origin located in 
the top left corner of the screen; y increases positively in the downward direction; x increases 
positively in the rightward direction) may be calculated from x- and y-coordinates as follows:

CGA Graphics Frame Buffer
|

100 |
Even-numbered 8000 bytes |

Scan Lines |
|

Unused 192 bytes 16 Kbytes
|

100 |
Odd-numbered 8000 bytes |

Scan Lines |
|

Unused 192 bytes |

Bit 7 Bit 0

C0 C0 C0 C0 C0 C0 C0 C0

PEL PEL PEL PEL PEL PEL PEL PEL

Leftmost PEL Rightmost PEL
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Byte offset = ((y%2)*8192) + ((y/2)*80) + (x/4)

C1 Bit offset (msb) = 7 - (x%4)*2

C0 Bit offset (lsb) = 6 - (x%4)*2

where:

/ is integer division with truncation

% is the integer modulus (remainder) operator

Figure 20-5 Memory Byte Format (CGA Low-Resolution Graphics)

20.4.3.2 CGA Graphics Color Processing

20.4.3.2.1 320x200 Mode 
In CGA low-resolution mode, the C1 and C0 bits map to RGBI colors as shown in Table 20-2:

Table 20-2 Color Mapping in CGA Low-Resolution Mode

20.4.3.2.2 640x200 Mode 
In CGA high-resolution mode, the C0 bit maps to RGBI colors as shown in Table 20-3.

Table 20-3 Color Mapping in CGA High-Resolution Mode

20.4.4 HGA Graphics Modes
In the HGA graphics modes, memory is divided into four interleaved sections, a simple 
extension of the method used in CGA graphics mode. Only 1 bit-per-pixel is supported.

■ The HGA graphics mode is enabled by setting bit 4 of the Extended Feature Control 
Register (graphics index 52h) to logic 1. 

■ Doing this makes the HGA mode register at Port 03B8h and the HGA Configuration 
register at Port 03BFh visible. 

 Bit 7 Bit 0

C1 C0 C1 C0 C1 C0 C1 C0

PEL PEL PEL PEL

Leftmost PEL Rightmost PEL

C1 C0 Red Green Blue Intensity

0 0 Port 03D9h[2] Port 03D9h[1] Port 03D9h[0] Port 03D9h[3]

0 1 0 1 Port 03D9h[5] Port 03D9h[4]

1 0 1 0 Port 03D9h[5] Port 03D9h[4]

1 1 1 1 Port 03D9h[5] Port 03D9h[4]

C0 Red Green Blue Intensity

0 0 0 0 0

1 Port 03D9h[2] Port 03D9h[1] Port 03D9h[0] Port 03D9h[3]
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20.4.4.1 HGA Graphics Mode Memory Model

In the HGA graphics modes, display memory is divided into rows of four memory-interleaved 
scan lines. Figure 20-6 illustrates the HGA memory model. The standard HGA screen 
dimensions are 720 by 348.

■ The top quarter of each page is allocated to the first scan line of each four-line set (lines 
0,4,8...), the second quarter to the second scan line of each four-line set (lines 1,5,9...), 
etc. 

■ The character height is set to 4, with the lowest two row-scan line counter bits used to 
select the memory planes. 

■ In addition, HGA graphics mode optionally supports two 32-Kbyte pages with Port 
03B8h, bit 7 being the page select bit. 

Figure 20-6 HGA Graphics Mode Memory Map

HGA Graphics Frame Buffer
|

87 |
Bank 0 7830 bytes |

Scan Lines |
|

Unused 362 bytes |
|

87 |
Bank 1 7830 bytes |

Scan Lines |
|

Unused 362 bytes 32 Kbytes
Page 0

87 |
Bank 2 7830 bytes |

Scan Lines |
|

Unused 362 bytes |
|

87 |
Bank 3 7830 bytes |

Scan Lines |
|

Unused 362 bytes |
|

87 |
Bank 0 7830 bytes |

Scan Lines |
|

Unused 362 bytes |
|

87 |
Bank 1 7830 bytes |

Scan Lines |
|

Unused 362 bytes 32 Kbytes
Page 1

87 |
Bank 2 7830 bytes |

Scan Lines |
|

Unused 362 bytes |
|

87 |
Bank 3 7830 bytes |

Scan Lines |
|

Unused 362 bytes |
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20.4.4.2 HGA Graphics Pixel Formats

In the HGA graphics mode, each byte in memory contains information relating to eight 
pixels. The bytes are organized sequentially using the interleaved format described above, 
resulting in a screen resolution of 720x348, with two colors mapped to each pixel. 

The byte offset and bit offset of a given pixel in the display coordinates (origin located in 
the top left corner of the screen; y increases positively in the downward direction; x increases 
positively in the rightward direction) may be calculated from x- and y-coordinates as follows:

Byte offset = ((y%4)*8192) + ((y/4)*90) + (x/8)

C0 Bit offset = 7 - (x%8)

where:

/ is integer division with truncation

% is the integer modulus (remainder) operator

Figure 20-7 Memory Byte Format

Following are the data formats for the HGA graphics mode. 16-level or 4-level grayscaling 
may be selected when using 1- or 2-BPP flat-mapped (linear packed-pixel) modes. The 
grayscale palette (see Section 20.4.7.2.2) should be used for color mapping in the HGA 
graphics mode.

Figure 20-8 16-Grayscale Palette Mapping (1 Pixel)

20.4.5 CGA/MDA Text Modes

20.4.5.1 Data Structures

The text modes support emulation of CGA or MDA text attributes and addressing. Standard 
registers 03D8h/03B8h, 03D9h/03B9h and 03DAh/03BAh are emulated in CGA/MDA 
modes. Cursor positioning and sizing are performed through the 6845-compatible cursor 
control registers. The cursor attributes can be programmed as either blinking at a 1 Hz rate 
or nonblinking, with full or half intensity. Character underlining is supported. The number 
of the row scan line used for character underlining is programmable at the Underline 
Location Register (graphics index 3Fh).

In the text modes, display characters are represented in memory as a two-byte data 
structure: the character byte followed by the attribute byte. 

The graphics memory space is partitioned into a 16 Kbyte block of display data and an 
independent off-screen font area. 

Bit 7... Bit 0

C0 C0 C0 C0 C0 C0 C0 C0

PEL PEL PEL PEL PEL PEL PEL PEL

Leftmost PEL Rightmost PEL

Red Green Blue Intensity

0 0 0 PEL
Bit C0
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20.4.5.1.1 Display Data Memory Space
In the display-data portion of memory:

■ Even addresses contain character bytes (the ASCII code for the character to be 
displayed at that screen location) that are used by the graphics controller to point to the 
correct font in memory to display that character (refer to Section 20.4.5.3 for more 
information on fonts). 

■ Odd addresses contain attribute bytes that allow attributes such as blinking, background/
foreground colors, intensity, and underlining to be manipulated on individual characters. 

Each even/odd combination of bytes represents one character on the screen. For example, 
in CGA text modes, memory address 00B8000h is the character byte for the upper left 
character on the display, 00B8001h is the attribute for that character; address 00B8002h 
is the character byte for the next character to the right, 00B8003h is its attribute, etc.

Table 20-4 illustrates the memory mapping for page 0 of the CGA 80x25 text mode. Note 
that one page (or one screen of information) takes up 4 Kbytes of memory and there are 
16 Kbytes of memory available for display data. Therefore, memory will hold four pages 
(or screens) of data at one time. Selection between pages can be performed using graphics 
index 0Ch and 0Dh (the 6845-compatible Start Address High and Low registers). The 40x25 
text mode (CGA only) functions in the same manner, except that eight pages are provided, 
because each page uses only 2 Kbytes of memory.

Table 20-4 Text Mode Memory Display Data (CGA 80x25)

Notes:

C is Character byte

A is Attribute byte

The CGA-compatible buffer base address of 00B8000h must be programmed at mode 
setup through the Shared Memory Address registers. This buffer may also be relocated to 
any other 16-Kbyte boundary in the lower 16 Mbyte of memory if CGA memory address 
compatibility is not necessary.

In MDA emulation mode, the screen pages begin at 00B0000h instead of 00B8000h. For 
compatibility, the Shared Memory Address registers must be programmed to the 
appropriate values at mode setup. Unlike the original IBM MDA mode, four pages of text 
are available instead of one.

20.4.5.1.2 Character Byte
The character byte can be any number from 00h to FFh to designate one of the 256 fonts 
stored in a font table in memory. For example, the ASCII code for the letter “A” is 41h, so, 
assuming the frame buffer base address has been set to 00B8000h, to display an “A” in 

Display Row 0 - 00B8000h C.0 A.0 C.1 A.1 . . . C.79 A.79 00B809Fh

Display Row 1 - 00B80A0h C.80 A.80 C.81 A.81 . . . C.159 A.159 00B813Fh

Display Row 2 - 00B8140h C.160 A.160 C.161 A.161 . . . C.239 A.239 00B81DFh

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

Display Row 24 - 00B8FA0h C.1920 A.1920 C.1921 A.1921 . . . C.1999 A.1999 00B8F9Fh

00B8FA0h Unused 00B8FFFh
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the upper left corner of the screen, one would write 41h into address 00B8000h. The 
character byte is used as by the graphics controller as a pointer to the appropriate font 
location in memory (see Section 20.4.5.3 for more information).

Figure 20-9 CGA/MDA Character

20.4.5.1.3 Attribute Byte
The attribute byte defines the qualities of a character as displayed on the screen, defining 
the character color, intensity, blinking, etc. The attribute byte is defined differently for CGA 
and MDA modes. Following are the byte definitions for CGA- and MDA-compatible attribute 
bytes:

Figure 20-10 CGA Attribute Byte

Table 20-5 CGA Attribute Byte: Foreground Color

Bit 7 0

CA7 CA6 CA5 CA4 CA3 CA2 CA1 CA0

Bit 7 0

BLINK BAK2 BAK1 BAK0 INTEN FOR2 FOR1 FOR0

Bit Name R/W Function
2–0 FOR0-2 R/W Foreground color
3 INTEN R/W Intensity of character

 0: Normal Intensity
 1: High Intensity

6–4 BAK0-2 R/W Background color

7 BLINK R/W Blinking if Port 03D8h bit 5 = 1. If Port 03D8h bit 5 = 
0, then this is the background intensity bit:
 0: Not Blinking
 1: Blinking

FOR2 FOR1 FOR0 Color

Red Green Blue Intensity = 0 Intensity = 1

0 0 0 Black Dark gray

0 0 1 Blue Light Blue

0 1 0 Green Light Green

0 1 1 Cyan Light Cyan

1 0 0 Red Light Red

1 0 1 Magenta Light Magenta

1 1 0 Brown Yellow

1 1 1 Light gray White
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Table 20-6 CGA Attribute Byte: Background Color

Figure 20-11 MDA Attribute Byte

Figure 20-12 illustrates the matrix of cursor and character attributes supported in MDA 
modes. For this example, the character “A” is displayed in an 8x14 character block. The 
Maximum Scan Line Register (graphics index 40h) is programmed to 0Eh, the Underline 
Location Register (graphics index 3Fh) is programmed to 0Eh, the Cursor Start Register 
(graphics index 0Ah) is programmed to 0Ch, and the Cursor End Register (graphics index 
0Bh) is programmed to 0Dh. Note that underlining is only available in MDA mode. 
Alternating rows illustrate the appearance of the character when blink is on and off, and 
when the cursor is on and off.

BAK2 BAK1 BAK0 Color

Red Green Blue
Port 03D8h[5] = 0

or Port 03D8h[5] = 1 and Blink = 0
Port 03D8h[5] = 1

and Blink = 1

0 0 0 Black Dark gray

0 0 1 Blue Light Blue

0 1 0 Green Light Green

0 1 1 Cyan Light Cyan

1 0 0 Red Light Red

1 0 1 Magenta Light Magenta

1 1 0 Brown Yellow

1 1 1 Light gray White

Bit 7 0

BLINK BAK2 BAK1 BAK0 INTEN FOR2 FOR1 FOR0

Bit Name R/W Function
2–0 FOR2–0 R/W Foreground definition

3 INTEN R/W Intensity of character
0: Normal Intensity
 1: High Intensity

6–4 BAK2–0 R/W Background definition
7 BLINK R/W Blinking (if Port 03B8h[5] is set to1)

 0: Not Blinking
 1: Blinking

BAK2 BAK1 BAK0 FOR2 FOR1 FOR0 Character Displayed As

0 0 0 0 0 0 Non-display

0 0 0 0 0 1 Underline

0 0 0 1 1 1 Normal display

1 1 1 0 0 0 Reverse video
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Figure 20-12 Black-and-White Attributes Example for 8x14 Character Cell (MDA Mode Only)
Normal Underline Non-display Reverse Reverse and

Underline

  X      X    X X X  X X X X X X X  X X X X
  X X X    X X X   X X    X X X X X    X X X
 X X  X X  X X  X X  X   X   X X X   X   X X

X X    X X X X    X X   X X X   X   X X X   X

Blink Off
No Cursor

X X    X X X X    X X   X X X   X   X X X   X
X X    X X X X    X X   X X X   X   X X X   X
X X X X X X X X X X X X X X        X        X
X X    X X X X    X X   X X X   X   X X X   X
X X    X X  X X    X X   X X X   X   X X X   X
X X    X X X X    X X   X X X   X   X X X   X

        X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X

        X X X X X X X X X X X X X X X X
 

X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X

Blink On
No Cursor

X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X

  X      X    X X X  X X X X X X X  X X X X
  X X X    X X X  X X    X X X X X    X X X
 X X  X X  X X  X X X   X   X X X   X   X X

X X    X X X X    X X   X X X   X   X X X   X

Blink Off
Cursor On

X X    X X X X    X X   X X X   X   X X X   X
X X    X X X X    X X   X X X   X   X X X   X
X X X X X X X X X X X X X X        X        X
X X    X X X X    X X   X X X   X   X X X   X
X X    X X  X X    X X    X X X   X   X X X   X
X X    X X X X    X X   X X X   X   X X X   X

X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X

Blink On
Cursor On

X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X
Graphics Controller 20-19



20.4.5.2 Cursor Generation

The cursor position is set by use of the Cursor Address register pair to point to a character 
address within the currently displayed frame. If the address programmed in the Cursor 
Address registers is outside of the displayed area of memory, the cursor will not be visible 
on the screen. 

The shape of the cursor is determined by the setting of the Cursor Start and Cursor End 
registers. The Cursor Start Register defines the number of the first row line at which the 
cursor will be turned on. The Cursor End Register defines the last row line used for cursor 
display. The value of the Cursor Start and End registers must be less than or equal to the 
Maximum Scan Line Register, and the Cursor End Register must be greater than or equal 
to the Cursor Start Register for the cursor to be visible. The cursor causes the pixels 
underneath it to be turned on when it blinks on, or normal character data to be displayed 
when it blinks off. (i.e., it is added to the underlying pixel data.)

Cursor blinking may be programmed to one of four modes, defined by bits 6–5 in the Cursor 
Start Register (graphics index 0Ah). These modes are defined as in Table 20-7.

Table 20-7 Cursor Blinking

The following illustrates an example of programming the cursor setup registers for an 8x8 
character cell:

20.4.5.3 Fonts

The character fonts are stored in memory as a bit map representing the shape of the 
character. 256 different font characters are stored in each font area, representing character 
codes from 00h to 0FFh.

A relocatable 16-Kbyte block of memory is allocated for font storage. The font memory is 
organized so as to maximize system DRAM page hits during text display refresh. The font 
memory may be independently write-protected.

The 16 Kbyte font memory area is divided into 32 pages of 256 words. Each page 
corresponds to the pixel information of a particular scan line. Up to 32 scan lines may be 
used in the vertical dimension of a font. 

The Maximum Scan Line Register (graphics index 09h) is used by the graphics controller 
to determine the displayed vertical height of the font. The horizontal dimension is selectable 

Bits 
6–5

Function Effect

0 Blinking Cursor blinks at 1 Hz (2 Hz if graphics index 52h[3] is set to 1)

01 No-display The cursor is not generated

10 Flashing Cursor blinks at half of frame rate, which causes it to appear at half-intensity

11 Non-blink The pixels of the cursor are always added to the pixels of the character

Character Cell
0  
1  
2  
3
4
5 X XX X X X X X X <- Cursor Start = 5
6 X X X X X X X X <- Cursor End = 6
7 <- Maximum Scan Line = 7
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as 8,10, or 16 bits. The displayed pixel information is left-justified and the odd and even 
bytes are swapped (see the examples below). If the vertical height selected is 16 or less, 
the Font Table Register (graphics index 42h) may be used to select alternate fonts (only 
one font set is available if the number of row lines exceeds 16). 

The total number of fonts available for a given number of row lines may be calculated by 
the formula:

fonts = INT(32/row_lines)

where:

fonts is the number of available fonts, 

row_lines is the number of row lines used in the font, and

INT truncates the fractional part of the division result. 

The address of the word corresponding to a given character and row line is given by the 
equation:

fontpixel_address = font_table_base_address + (512*(row_line + fontoffset) + 2*character)

Table 20-8 shows the bit mapping used for font addresses.

Table 20-8 Font Address Mapping

Notes:

The Character Address (CA7–0) is the character byte stored in the frame buffer. It is used by the
graphics controller as an address to point to the position in memory where that character font resides.

The Row Address (RA) is generated by the graphics controller and used to point to the row scan
line of the font to be displayed.

These bits from the Font Table Register (graphics index 42h) are used to select the offset within the
font memory area to be used during display.

Byte Address 
Bit Position

Mapping

0 0

1 CA0

2 CA1

3 CA2

4 CA3

5 CA4

6 CA5

7 CA6

8 CA7

9 RA + FontOFF (bit 0)

10 RA + FontOFF (bit 1)

11 RA + FontOFF (bit 2)

12 RA + FontOFF (bit 3)

13 RA + FontOFF (bit 4)

23–14 Font table base

25–24 00
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20.4.5.3.1 8x8 Font Example
The bit map for the letter “A” in an 8x8 font may look like that shown in Figure 20-13 (only 
shaded area is used for display).

Figure 20-13 8x8 Font Example

The bit map for the letter “A” in a 10x12 font may look like that shown in Figure 20-14 (only 
shaded area is used for display).

Figure 20-14 10x12 Font Example

 Bit - 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 Hex Data

 row 0 -   X X             0030h

 row 1 -  X X X X            0078h

 row 2 - X X   X X           00CCh

 row 3 - X X   X X           00CCh

 row 4 - X X X X X X           00FCh

 row 5 - X X   X X           00CCh

 row 6 - X X   X X           00CCh

 row 7 -                 0000h

Bit - 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 Hex Data

 row 0 -     X X           000Ch

 row 1 -    X X X X          001Eh

 row 2 -   X X   X X         0033h

 row 3 -  X X     X X        8061h

 row 4 -  X X     X X        8061h

 row 5 -  X X     X X        8061h

 row 6 -  X X X X X X X X        807Fh

 row 7 -  X X     X X        8061h

 row 8 -  X X     X X        8061h

 row 9 -  X X     X X        8061h

 row 10 -                 0000h

 row 11 -                 0000h
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The bit map for the letter “A” in a 16x14 font may look like that shown in Figure 20-15 
(shaded area is used for display).

Figure 20-15 16x14 Font Example

20.4.6 Flat-Mapped Graphics Modes
In the flat-mapped graphics modes, the CPU views graphics memory as a flat, packed-
pixel, linear map. Pixel data is organized in memory as a linear array, starting from the 
upper leftmost pixel and ending with the bottom rightmost pixel. The packed-pixel size may 
be set to 1, 2, or 4 bits. In all cases the leftmost displayed pixel uses the most significant 
bit(s) of a given byte in memory. 

Table 20-9 shows some example memory configurations that are available for some screen/
pixel resolutions and memory window sizes. 

Because graphics memory is shared with system memory, the entire lower 16 Mbytes of 
system DRAM space is available for use as the graphics frame buffer. Any memory that is 
not used to refresh the display may be used for other purposes—there are no inherent 
boundaries between what may be considered “graphics memory” and “system memory”.

The base address of the frame buffer may be set to any 32-Kbyte boundary within the lower 
16 Mbytes of memory by programming the Frame Buffer Base Address Register (graphics 
index 4Dh).

With all memory and pixel configurations, there will be some number of pages of screen 
memory (different screens of data stored simultaneously in memory). The screen controller 
address counter will wrap around to the beginning of the first page of the display buffer 
when the limit of the screen controller addressing range is reached (e.g., due to scrolling 
operations). 

The graphics controller memory addressing range is 128 Kbytes in 4-BPP and 2-BPP 
modes, and 64 Kbytes in 1 BPP mode. This is the upper limit on the memory utilization of 
a screen or contiguous set of screens. The start address register and character counter 
are extended to 15 bits to allow for full scrolling within the addressing limits. 

Bit - 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 Hex Data

 row 0 -     X X X X       C003h

 row 1 -    X X X X X X X X     F00Fh

 row 2 -   X X X X   X X X X   3C3Ch

 row 3 -  X X X X     X X X X  1E78h

 row 4 -  X X X X     X X X X  1E78h

 row 5 -  X X X X     X X X X  1E78h

 row 6 -  X X X X X X X X X X X X X X  FE7Fh

 row 7 -  X X X X X X X X X X X X X X  FE7Fh

 row 8 -  X X X X     X X X X  1E78h

 row 9 -  X X X X     X X X X  1E78h

 row 10 -  X X X X     X X X X  1E78h

 row 11 -  X X X X     X X X X  1E78h

 row 12 - 0000h

 row 13 -   0000h
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Note: The “start address register” described in this section refers to a 10-bit internal 
register controlled by the Frame Buffer Base Address Register and the Frame/Font Buffer 
Base Address Register Low, graphics index 4Dh and 4Fh, respectively. 

In all flat-mapped configurations, each “character” address corresponds to a row of eight 
pixels.

Table 20-9 Example Memory Configurations

20.4.6.1 Memory Configuration Example: 640x240 Panel, Flat-Mapped Mode

Figure 20-16, Figure 20-17, and Figure 20-18 illustrate one way screen memory may be 
used on a 640x240 panel in flat-mapped mode. 

Another acceptable way to set up the memory map would be to define a virtual screen that 
is larger than the physical screen, and use the start address registers to move the physical 
screen “window” through the virtual screen. As long as the base address remains the same, 
the virtual screen cannot be larger than 128 Kbytes in 2-BPP mode and 64 Kbytes in 1-BPP 
mode.

These are not the only possible maps; other screens up to a maximum of 640x240 or 
480x320 are also supported. The shared memory frame-buffer base address may be 
programmed to any 32-Kbyte boundary in the system DRAM address space.

Screen 
Resolution

BPP
Memory 

Bytes/Screen

Maximum 
Number of 
Screens

640x200 1 16,000 4

2 32,000 4

4 64,000 2

480x320 1 19,200 3

2 38,400 3

4 76,800 1
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Figure 20-16 Flat-Mapped, 1 BPP, 640x240

Note:

Set the start address register to the value shown to display the corresponding screen.

Figure 20-17 Flat-Mapped, 2 BPP, 640x240

Note:

Set the start address register to the value shown to display the corresponding screen.

Start Addr Reg Mem Address Frame Buffer

0000h Base + 00000h Screen 1, Row 1
19200 bytes

|

Base + 00050h Screen 1, Row 2 |

. . . . . . |

Base + 04AB0h Screen 1, Row 240 |

4B00h Base + 04B00h Screen 2, Row 1
19200 bytes 

|

Base + 04B50h Screen 2, Row 2 |

. . . . . . |

Base + 095B0h Screen 2, Row 240 64 Kbytes

9600h Base + 09600h Screen 3, Row 1
19200 bytes

|

Base + 09650h Screen 3, Row 2 |

. . . . . . |

Base + 0E0B0h Screen 3, Row 240 |

E100h Base + 0E100h
7936 bytes

|

Unused |

|

Start Addr Reg Mem Address Frame Buffer

0000h Base + 00000h Screen 1, Row 1
38400 bytes

|

Base + 000A0h Screen 1, Row 2 |

. . . . . . |

Base + 09560h Screen 1, Row 240 |

4B00h Base + 09600h Screen 2, Row 1
38400 bytes

|

Base + 096A0h Screen 2, Row 2 |

. . . . . . |

Base + 12B60h Screen 2, Row 240 128 Kbytes

9600h Base + 12C00h Screen 3, Row 1
38400 bytes

|

Base + 12CA0h Screen 3, Row 2 |

. . . . . . |

Base + 1C160h Screen 3, Row 240 |

E100h Base + 1C200h
15872 bytes

|

Unused |

|
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Figure 20-18 Flat-Mapped, 4 BPP, 640x240

Note:

Set the start address register to the value shown to display the corresponding screen

A section of the CPU memory map is allocated to the graphics frame buffer by programming 
a base address for the displayed graphics memory. The display controller has visibility into 
shared memory starting from the programmed base address and extending to the limit of 
the graphics address counter. The graphics address counter is 64 Kbytes for 1 BPP mode 
and 128 Kbyte for 2 and 4 BPP modes.

The address offset and pixel location offset for a given set of x and y coordinates (origin 
located in the top left corner of the screen; y increases positively in the downward direction; 
x increases positively in the rightward direction) may be calculated using the following 
formulae:

1 Bit-Per-Pixel Mode:

Byte offset = (y*(W/8)) + (x/8)

Bit position = 7 - (x%8)

2 Bits-Per-Pixel Mode:

Byte offset = (y*(W/4)) + (x*4)

Pixel Bit 1 position (msb) = 7 - ((x%4)*2)

Pixel Bit 0 position (msb) = 6 - ((x%4)*2)

4 Bits-Per-Pixel Mode:

Byte offset = (y*(W/2)) + (x*2)

Pixel Bit 3 position (msb) = 7 - ((x%2)*4)

Pixel Bit 2 position = 6 - ((x%2)*4)

Pixel Bit 1 position = 5 - ((x%2)*4)

Pixel Bit 0 position (lsb) = 4 - ((x%2)*4)

where:

W is the screen width in pixels

% is the integer modulus (remainder) operator

/ represents integer division

Start Addr Reg Mem Address Frame Buffer

0000h Base + 00000h Screen 1, Row 1
76800 bytes

|

Base + 00140h Screen 1, Row 2 |

. . . . . . |

Base + 12AC0h Screen 1, Row 240 128 
Kbyte

Base + 12C00h |

Unused 54272 bytes |

|
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20.4.6.2 Memory Configuration Example: 640x480 Panel, Flat-Mapped Mode

Figure 20-19 illustrates the memory map for a 2-BPP 640x480 panel in flat-mapped mode. 

Another acceptable way to set up the memory map would be to define a virtual screen that 
is larger than the physical screen, and use the start address registers to move the physical 
screen “window” through the virtual screen. As long as the base address remains the same, 
the virtual screen cannot be larger than 128 Kbytes in 2-BPP mode and 64 Kbytes in 
1-BPP mode.

The shared memory frame-buffer base address may be programmed to any 32-Kbyte 
boundary in the system DRAM address space.

Figure 20-19 Flat-Mapped, 2 BPP, 640x480

Note:

Set the start address register to the value shown to display the corresponding screen

20.4.6.3 Flat-Mapped Graphics Mode Data Formats

Following are the data formats for the three flat-mapped graphics modes. 

■ 16-level or 4-level grayscaling may be selected when using 1 or 2 BPP flat-mapped 
modes. 

■ 16-level grayscaling should be used with the 4 BPP flat-mapped mode. 

Note that the grayscale palette (see Section 20.4.7) should be used for color mapping in 
the flat-mapped modes.

Start Addr Reg Mem Address Frame Buffer

0000h Base + 00000h Screen 1, Row 1
76800 bytes

|

Base + 000A0h Screen 1, Row 2 |

. . . . . . |

Base + 12B60h Screen 1, Row 480 128 
Kbyte

Base + 12C00h |

Unused 54272 bytes |

|
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Figure 20-20 Memory Byte Format: 1 BPP Flat-Mapped Graphics Mode 

Figure 20-21 16-Grayscale Palette Mapping (1 Pixel): 1 BPP Flat-Mapped Graphics Mode

Figure 20-22 Memory Byte Format: 2 BPP Flat-Mapped Graphics Mode

Figure 20-23 16-Grayscale Palette Mapping (1 Pixel): 2 BPP Flat-Mapped Graphics Mode

Figure 20-24 Memory Byte Format: 4 BPP Flat-Mapped Graphics Mode

Figure 20-25 16-Grayscale Palette Mapping (1 Pixel): 4 BPP Flat-Mapped Graphics Mode

Bit 7... Bit 0

PEL 0 PEL 1 PEL 2 PEL 3 PEL4 PEL5 PEL6 PEL7

Leftmost Rightmost

Red Green Blue Intensity

0 0 0 PEL
Bit 0

Bit 7... Bit 0

PEL 0
Bit 1

PEL 0
Bit 0

PEL 1 
Bit 1

PEL 1 
Bit 0

PEL2 
Bit 1

PEL2 
Bit 0

PEL3 
Bit 1

PEL3 
Bit 0

Leftmost Rightmost

Red Green Blue Intensity

0 0 PEL
Bit 1

PEL
Bit 0

Bit 7...  Bit 0

PEL 0
Bit 3

PEL 0
Bit 2

PEL 0 
Bit 1

PEL 0 
Bit 0

PEL1 
Bit 3

PEL1 
Bit 2

PEL1 
Bit 1

PEL1 
Bit 0

Leftmost PEL Rightmost PEL

Red Green Blue Intensity

PEL
Bit 3

PEL
Bit 2

PEL
Bit 1

PEL
Bit 0
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20.4.7 Grayscale Generation

20.4.7.1 Four-Color Grayscale Encoding 

Selecting grayscaling Option 1 via the Graphics Controller Grayscale Mode Register 
(graphics index 43h[1]) enables the four-color grayscaling options. In four-color mode, 
frame-rate shading creates four different levels of gray by varying the duty cycle of the “on” 
time for individual pixels as seen over successive frames. Table 20-10 lists the duty cycles 
available in the four-grayscale modes.

Table 20-10 Four-Color Grayscale Duty Cycles

20.4.7.2 16-Color Grayscale Encoding

The ÉlanSC400 microcontroller’s grayscaling logic uses frame-rate shading and flicker-
reduction techniques to generate 16 gray shades. All 16 shades may be individually 
remapped by programming the Graphics Controller Grayscale Remapping registers 
(graphics index 44–4Bh). For example, to remap RGBI codes 0 through 7 to code 0 and 
RGBI codes 8 through 15 to code 15, the first eight nibbles would be programmed to 0 and 
the second eight nibbles would be programmed to 0Fh. The default mapped duty cycles 
are given in Table 20-11.

Active 
RGBI

Map 
Select 1 
Codes

Map Select 1 
Duty Cycles 

(Monochrome 
Mapping Mode)

Map 
Select 2 
Codes

Map Select 2 
Duty Cycles 

(Color Mapping Mode)

(none) 1 0.33 (1/3) 0 0

I 0 0 0 0

B 2 0.667 (2/3) 0 0

IB 3 1 0 0

G 2 0.667 (2/3) 1 0.33 (1/3)

IG 3 1 1 0.33 (1/3)

GB 2 0.667 (2/3) 1 0.33 (1/3)

IGB 3 1 1 0.33 (1/3)

R 2 0.667 (2/3) 2 0.667(2/3)

IR 3 1 2 0.667(2/3)

RB 2 0.667 (2/3) 2 0.667(2/3)

IRB 3 1 2 0.667(2/3)

RG 2 0.667 (2/3) 3 1

IRG 3 1 3 1

RGB 2 0.667 (2/3) 3 1

RGBI 3 1 3 1
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Table 20-11 16-Color Grayscale Duty Cycles

20.4.7.2.1 Grayscale Remapping
The grayscale remapping feature allows system software to tune the look of the displayed 
graphics without the need to rewrite the application software that is writing bit patterns into 
the graphics buffer. This is done by allowing each bit pattern that represents a pixel in the 
graphics buffer to be arbitrarily mapped to one of the available grayscales. Remapping is 
available for 1-, 2-, or 4-BPP mode. The optimal mapping can vary based on the LCD 
manufacturer. This tuning is done via the eight color-mapping registers (containing 16 
individual bit fields) located at graphics index 44h-4Bh, and only takes effect when graphics 
index 43h[0] = ‘1b.’ 

The graphics controller uses a pixel modulation scheme to allow either 4 or 16 grayscales 
to be present on the display at any one time (selected via graphics index 43h[1]). Grayscales 
are achieved by controlling the average time that a pixel is turned on over a series of 
refreshes of the LCD screen. The duty cycles that produce the grayscales are evenly spaced 
across the range of always off to always on. For example, when using 4-grayscale mode, 
the “pixel-on” average duty cycles are 0, 33%, 66%, and 100% for the 4 grayscales. 

While graphics index 43h[1] selects the number of grayscales the graphics controller is 
capable of generating, the configuration of the graphics buffer dictates the maximum 
number of grayscales that can be displayed at any time. The graphics buffer can be 
configured so that either 1, 2, or 4 bits of data are required to define each pixel. This number 
of BPP (often referred to as the color depth of the graphics buffer), in conjunction with the 
grayscale mode (4/16), defines the maximum number of different grayscales which can be 
seen on the LCD at any time. The maximum grayscales is the lesser of (2BPP) and the 
number of grayscales available.

Due to its roots in the CGA standard, the graphics controller on the ÉlanSC400 
microcontroller considers each grayscale as having a Red, Green, Blue, and Intensity 
(RGBI) component. Each component is either on or off, and is each is nominally represented 
by a bit in the graphics buffer. The four RGBI bits taken together can be thought of as 

Active 
RGBI

 Code Duty cycle

(none) 0 0

I 1 0.12

B 2 0.18

IB 3 0.24

G 4 0.29

IG 5 0.35

GB 6 0.41

IGB 7 0.47

R 8 0.53

IR 9 0.59

RB 10 0.65

IRB 11 0.71

RG 12 0.76

IRG 13 0.82

RGB 14 0.88

RGBI 15 1
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representing a color code with a range of 0–15. Since CGA supported a 2-BPP graphics-
buffer mapping, the other two bits had to come from somewhere else. In this case, the R 
and G components are controlled by bits 1–0 of the bitmap for a particular pixel in the 
graphics buffer, and the B and I components come from Port 03D9h[5–4] respectively. 

A similar situation exists for 1-BPP (high-resolution) CGA mode. In this case, when the bit 
associated with a pixel = '0b', the RGBI components are each '0b' (color code 0). When 
the bit = '1b', the RGBI components come from 03D9h[2], 03D9h[1], 03D9h[0], and 03D9h[3] 
respectively. 

Since flat-mapped graphics mode is custom, its 2-BPP mode uses a different scheme for 
specifying the RGBI components. B and I are represented by bits 1–0 of the bitmap for a 
particular pixel in the graphics buffer, and the R and G components are always assumed 
to be 0. For 4-BPP flat-mapped graphics mode, the RGBI color code is specified by bits 
3–0 of the bitmap for each pixel.   

RGBI color codes are mapped to one of the available grayscales per Table 20-12. On the 
left is each possible RGBI combination (which also presents each of the 16 RGBI color 
codes in binary). On the right is the register and bit field for specifying which grayscale will 
be present on-screen for a pixel with that RGBI color code associated with it. 

Table 20-12 Grayscale Remapping

20.4.7.2.2 Color-to-Grayscales Mapping
In 16-color grayscales mode, color-to-grayscales mapping is always handled through the 
16x4 grayscale palette, giving complete flexibility. The palette allows any individual RGBI 
pixel value to be mapped to any 16 grayscale code. The 16-color grayscales mode may 
be used in any memory setup (e.g., CGA text, 1 BPP, 2 BPP or 4 BPP). The invert bits in 
the Internal Graphics Control Register B (CSC index DEh) allow for selective inversion of 
all grayscales or colors in text and graphics modes. For example, grayscales may be 
inverted in graphics modes, but not text modes, or vice-versa.

In four-color grayscales mode, mapping is handled differently in text and CGA graphics 
modes. In CGA graphics modes, four-gray shading may be used in high- or low-resolution 

R G B I CSC Index 
Bit Field

(16-Color Grayscale 
Mode)

Bit Field
(4-Color Grayscale 

Mode)

0 0 0 0 44h  3–0  1–0

0 0 0 1 44h  7–4  5–4

0 0 1 0 45h  3–0  1–0

0 0 1 1 45h  7–4  5–4

0 1 0 0 46h  3–0  1–0

0 1 0 1 46h  7–4  5–4

0 1 1 0 47h  3–0  1–0

0 1 1 1 47h  7–4  5–4

1 0 0 0 48h  3–0  1–0

1 0 0 1 48h  7–4  5–4

1 0 1 0 49h  3–0  1–0

1 0 1 1 49h  7–4  5–4

1 1 0 0 4Ah  3–0  1–0

1 1 0 1 4Ah  7–4  5–4

1 1 1 0 4Bh  3–0  1–0

1 1 1 1 4Bh  7–4  5–4
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modes. In 1 BPP modes, 0 maps to all pixels off, and 1 maps to all pixels on (inversion also 
may be applied). In 2-BPP modes, mapping is performed per Table 20-10, using the color 
mapping mode. Colors may also be inverted using the Internal Graphics Control Register 
B as is possible in 16-grayscales mode. In color text modes without contrast enhancement 
enabled, the R and G bits of the color value are used to select the shading value, with R 
the most significant and G the least significant. When contrast enhancement is enabled, 
the 16x4 grayscale palette becomes a 16x2 palette, allowing for full remapping of the 
grayscales. 

In monochrome text modes, the logical OR of the RGB bits turns on a pixel. If the intensity 
bit is off, the on and off pixels of a character are mapped to shades 3 and 0, respectively. 
If the intensity bit is on, the on and off pixels are mapped to shades 2 and 1. When contrast 
enhancement is enabled, the 16x4 grayscale palette becomes a 16x2 palette, allowing for 
full remapping of the grayscales. 

In linear-packed-pixel modes, 4- or 16-color gray shading may be used in 1- or 2-BPP 
modes. The 16x2 grayscales palette should be enabled in this case, allowing for full 
remapping of the grayscales. 16-color gray shading should be selected in 4-BPP flat-
mapped mode.

20.4.7.2.3 Color STN Mode
In color STN mode, eight normal and eight intensified colors are supported under the CGA 
RGBI format. The colors are normal if the “I” (intensity) bit is set to 0. For a normal color, 
each of the R, G, and B signals is driven with a 2/3 duty cycle waveform when on. For an 
intensified color, each of the R,G, and B bits is driven with a constant one duty cycle when 
on. If monochrome mapping is selected, the 4- or 16-grayscale Frame Rate Control (FRC) 
is output to the RGB bits of the panel in unison. FRC is the method used to obtain gray 
shading in which individual pixels are turned on and off very rapidly, with the average duty 
cycle of the on-time of a pixel determining its shading.

20.4.8 Configuring Graphics Modes

20.4.8.1 Screen Controller Registers

The screen controller registers control the timing of vertical and horizontal display signals. 
Internally, the screen controller contains counters for horizontal character elements and 
vertical rows. The Horizontal Total and Vertical Border End registers determine the 
maximum values for their respective counters. Values in the Horizontal and Vertical Display 
End, Line Pulse Start, Vertical Adjust, and Border End registers are compared to the internal 
counters to generate internal and/or external control signals for their respective functions. 
Note that the actual horizontal line count is two greater than the value programmed into 
the Horizontal Total Register. For the last line of each frame, the horizontal end time is 
increased to allow time for flushing and reloading the internal FIFOs.

20.4.8.1.1 Example Configuration
Consider an example, where it is desired to display 20 rows of 64 characters, with a 
character cell of 10x11, on a single-scan panel of 640x240 pixels. 

■ The Maximum Scan Line Register (graphics index 40h) must be programmed with a 
value equal to the number of lines in a character minus 1, which would be 10 in this 
example. 

■ The character width is set to 10 dots by setting bits 6–5 of the Font Table Register 
(graphics index 42h) to 01b. 

■ The total number of lines required for display is 20x11 = 220 lines. This leaves 20 extra 
lines at the bottom of the panel to be blanked. 
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■ The Vertical counter counts in character rows; the number of whole character rows in 
the panel display area may be calculated: Int(240/11) = 21 character rows. 

■ The Vertical Border End Register (graphics index 38h) should be programmed to a value 
of 21 - 1 = 20. 

■ There will be 240 - (21*11) = 9 extra lines at the bottom of the screen; therefore the 
Vertical Adjust Register (graphics index 35h) should be programmed to a value of 9. 

■ To begin blanking the screen after the 20th row, the Vertical Display End Register 
(graphics index 37h) should be programmed to 19 (=20 - 1). 

■ The number of horizontal pixels required is 64x10 = 640, which equals the number of 
horizontal pixels on the panel. Because no horizontal border is required, the Horizontal 
Total, the Horizontal Display End, and the Horizontal Border End registers (graphics 
index 30h, 31h, and 33h) should all be set to a value of 63 (= 64–1). 

■ If it is desired to slow down the frame refresh rate or if bit 3 of the Extended Feature 
Control Register (graphics index 52h) is set (see Section 20.4.8.2.3), the value in the 
Horizontal Total Register may be increased while maintaining the same value in the 
Horizontal Display End and the Horizontal Border End registers, thus increasing the 
“dead” time between active display of each horizontal line. 

■ If line doubling is enabled by setting the VERTDOUB bit in the Internal Graphics Control 
Register A, the Vertical Adjust, Vertical Display End and Vertical Border End registers 
must be recalculated using twice the number of lines in a character row. The Maximum 
Scan Line Register keeps its same value, regardless of the setting of VERTDOUB. 

■ For the example above, the number of lines in a character row would become 22, making 
the programmed values of the Vertical Border End, Vertical Adjust, and Vertical Display 
End registers change to 9, 20, and 9 respectively. 

■ If horizontal dot doubling is enabled, each pixel is sent to the display twice, making the 
effective character width double. This must be accounted for when setting up the 
Horizontal Total, the Horizontal Display End and Horizontal Border End registers.

20.4.8.2 Dual-Scan Panel Setup

When a dual-scan panel is being used, an additional set of registers must be programmed 
in order to facilitate the internal calculation of row/line numbers and refresh addresses. 
These are the Dual Scan Row Adjust and Dual Scan Offset Address High/Low registers. 

20.4.8.2.1 Dual Scan Row Adjust Registers
The Dual Scan Row Adjust Register (graphics index 3Bh) is used in text modes and CGA 
graphics modes to determine row scan line numbers in the lower screen which correspond 
to equivalent upper screen row scan line numbers. 

For example, a dual-scan 640x240 panel consists of two 640x120 panels joined together. 
If the font size (character box size) has been set to 8x14 (width x height) by programming 
the Maximum Scan Line Register to 13, and setting the character width to 8, the number 
of lines in a character is not an integer multiple of the number of lines in the half screen 
(i.e., 120/14 <> 0). 

The Dual Scan Row Adjust Register should be programmed with the number of extra row 
scan lines at the top of the lower screen when a character box overlaps the upper and lower 
screens. This will happen whenever the number of lines in a half screen is not an integer 
multiple of the character box height. 

Continuing the above example, there are 120 lines in a half screen, and the character box 
height is 14. Given that there are 8 whole character rows in the upper screen, this leaves 
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120 – (8*14) = 8 extra lines in the upper screen. These 8 lines are the upper portion of a 
14-line character box overlapping the upper and lower screens. The number of extra lines 
in the lower screen is therefore 14 – 8 = 6 lines. In this case a value of 6 should be 
programmed into the Dual Scan Row Adjust Register. In cases where the number of lines 
in a half screen is an integer multiple of the character box height, the Dual Scan Row Adjust 
Register should be set to zero. In general:

Dual Scan Row Adjust = F*D - (H - (int(H/F*D) * (F*D)))

where:

F = font height in lines,

D = 2 for line doubling, 1 otherwise,

H = half the total number of lines in the panel

int = integer division.

In CGA graphics modes, the character height is 2--one even-addressed line and one odd-
addressed line. Therefore, the Dual Scan Row Adjust Register would be set to 0, unless 
there were an odd number of lines in a half screen, in which case it would be programmed 
to 1.

In flat-mapped modes, the character height is 1. Therefore, the Dual Scan Row Adjust 
Register is always set to 0 in these modes.

20.4.8.2.2 Dual Scan Row Offset Address Registers
The Dual Scan Offset Address registers (graphics index 3C–3Dh) must be programmed 
with a value equal to the number of whole character rows in the upper screen, multiplied 
by the number of bytes in a character row. 

Continuing the example above, there are 8 complete character rows in the upper screen 
(see calculation above). Each character is represented in memory by 2 bytes, and there 
are 640/8 = 80 characters in a row. This gives 160 bytes in each character row. Therefore, 
the Dual Scan Offset Address registers should be programmed with the product of 160 and 
8, or 1280 decimal (500h). In general:

Dual Scan Offset Address = (#bytes in a character row or line) * int(H/(F*D))

where:

H equals half the total number of scan lines in the panel

F is the font height in lines

D = 2 when line doubling is enabled, 1 otherwise

int = integer division

There is always a direct correspondence between the value programmed into the Offset 
Register (graphics index 3Eh) and the number of bytes in a line or row. If virtual screen is 
being used, the number of bytes in a line/row is based on the size of the virtual screen, not 
the physical screen. Note that, in 1-BPP flat-mapped mode, a virtual screen must be an 
even number of bytes wide. If the logical screen and physical screen are the same width, 
the Offset Register may, in this case, be programmed to an odd value.

In graphics modes, the same principles apply as in text modes, except that the height of a 
character row will be 2 for CGA graphics modes, 4 for HGA modes, and 1 for flat-mapped 
modes. The character width is limited to 8 pixels (16 with horizontal doubling). The number 
of bytes in a horizontal line will depend on the pixel depth. For example, for 2 bits-per-pixel 
with a horizontal width of 640 pixels, each byte holds data for four pixels. Therefore the 
number of bytes in a line would equal 640/4, or 160 bytes.
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If the number of horizontal lines is being doubled by setting the VERTDOUB bit in Internal 
Graphics Control Register A to a logic 1, the effective character box height is doubled, so 
the values programmed into the Dual Scan Row Adjust, and Dual Scan Offset Address 
High/Low registers must be calculated using the doubled character height as noted above, 
in addition to the modifications to the Vertical Adjust, Vertical Display End and Vertical 
Border End registers described above. Horizontal dot doubling is handled the same way 
as in the single-scan case (see above).

20.4.8.2.3 Frame-Refill Delay Configuration
The graphics controller must perform a FIFO flush/refill at the beginning of each frame. The 
time required to complete the flush and refill includes an arbitration delay plus a refill time. 
The total time required depends on the display configuration, as indicated in the table given 
under the description of bit 2 in the Extended Feature Control Register. 

There are three options for accommodating the delay. 

■ If bits 2 and 7 of the Extended Feature Control Register are both set to 0, the delay is 
automatically added to the end of the last line of each frame as described in the 
description of bit 2 in the Extended Feature Control Register. This may cause contrast 
problems on some panels.

■ If Bit 2 of the Extended Feature Control Register is set and bit 7 is cleared, the extra 
delay is not added automatically at the end of the last line of each line and must be 
accommodated by increasing the value of the Horizontal Total register so that the 
difference between the values programmed into the Horizontal Total and Horizontal 
Border End registers is sufficient to allow for the required delay. When this is done, all 
horizontal lines will have the same timing, but the dot rate will need to be increased in 
order to maintain the same frame rate obtained when Bit 2 of the Extended Feature 
Control Register is cleared. This option would be the one most frequently used.

■ A third option, most useful when using text mode on a dual-screen panel, is enabled by 
setting both Bit 2 and Bit 7 of the Extended Feature Control Register. When this is done, 
the Non-display Lines Register must be set to a non-zero value. The graphics controller 
will then perform the FIFO flush/refill during one of the non-displayed lines. In this case 
no extra time is added to any horizontal lines; however, at least one extra line must be 
output at the end of the frame. Typically, this extra line has minimal or no impact on the 
contrast ratio of an LCD panel. 

20.4.9 LCD Data Formatting
The examples given in the tables and figures in this section are for 320x240 resolution 
panels.
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20.4.9.1 Monochrome, Single-Scan Panels 

Table 20-13 Pixel Chart (Row:Column), Monochrome Single-Scan 320x240 

Figure 20-26 Data Format for 4-Bit Single-Scan Monochrome Panel
(First horizontal line shown)

Figure 20-27 Data Format for 8-Bit Single-Scan Monochrome Panel 
(First horizontal line shown)

ROW
COLUMN

COL 0  . . . COL 319

ROW 1 D1:0 D1:1 D1:2 D1:3 D1:4 D1:5 . . . D1:318 D1:319

ROW 2 D2:0 D2:1 D2:2 D2:3 D2:4 D2:5 . . . D2:318 D2:319

. . .  . . . . . .  . . .

. . .  . . . . . .  . . .

ROW 240 D240:0 D240:1 D240:2 D240:3 D240:4 D240:5 . . . D240:318 D240:319

D1:0 D1:8 . . . D1:312 D1:316

D1:1 D1:5 D1:9 . . . D1:313 D1:317

D1:2 D1:6 D1:10 . . . D1:314 D1:318

D1:3 D1:7 D1:11 . . . D1:315 D1:319

D1:4

SCK

LCDD_1[3]

LCDD_1[2]

LCDD_1[1]

LCDD_1[0]

. . .

D1:1 D1:9 . . . D1:305 D1:313

D1:12 . . . D1:308 D1:316

D1:5 D1:13 . . . D1:309 D1:317

D1:0 D1:8 . . . D1:304 D1:312

D1:6 D1:14 . . . D1:310 D1:318

D1:7 D1:15 . . . D1:311 D1:319

D1:3 D1:11 . . . D1:307 D1:315

D1:2 D1:10 . . . D1:306 D1:314

D1:4

SCK

LCDD_1[3]

LCDD_1[2]

LCDD_1[1]

LCDD_1[0]

LCDD_2[3]

LCDD_2[2]

LCDD_2[1]

LCDD_2[0]

. . .
Graphics Controller20-36



20.4.9.2 Monochrome, Dual-Scan Panels

Table 20-14 Pixel Chart (Row:Column), Monochrome Dual-Scan 320x240

Figure 20-28 Data Format for 2x4-Bit Dual-Scan Monochrome Panel 
(First horizontal line shown)

COLUMN

ROW COL 0  . . . COL 319

Upper screen ROW 1 D1:0 D1:1 D1:2  . . .  . . . D1:318 D1:319

. . . D2:0 D2:1 D2:2  . . .  . . . D2:318 D2:319

. . .  . . .  . . .  . . .  . . .  . . .

Upper screen ROW 120 D120:0 D120:1 D120:2  . . .  . . . D120:318 D120:319

Lower screen ROW 121 D121:0 D121:1 D121:1  . . .  . . . D121:318 D121:319

. . . D122:1 D122:1 D122:1  . . .  . . . D122:318 D122:319

. . .  . . .  . . .  . . .  . . .  . . .

Lower screen ROW 240 D240:0 D240:1 D240:2  . . .  . . . D240:318 D240:319

D1:0 D1:4 . . . D1:316

D121:0 D121:7 . . . D121:316

D1:1 D1:5 . . . D1:317

D1:2 D1:6 . . . D1:318

D1:3 D1:7 . . . D1:319

D121:1 D121:6 . . . D121:317

D121:2 D121:5 D121:318

D121:3 D121:4 D121:319

 . . .

 . . .

 . . .SCK

LCDD_1[3]

LCDD_1[2]

LCDD_1[1]

LCDD_1[0]

LCDD_2[3]

LCDD_2[2]

LCDD_2[1]

LCDD_2[0]
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20.4.9.3 Color STN, Single-Scan Panels

Table 20-15 Pixel Chart (Row:Column), Color STN Single-Scan 320x240

Figure 20-29 Data Format for 8-Bit Single-Scan Color STN Panel (First horizontal line shown)

20.5 INITIALIZATION
The graphics controller is disabled at power-on reset and must be configured by software 
before being enabled.

At power-on reset, LVDD and LVEE are both deasserted. The SCK, LC, FRM, M, and all 
LCDD signals are held Low. When bringing up the display from reset, software should use 
the following sequence:

1. Enable the graphics controller by setting the Internal Graphics Control Register A 
(CSC index DDh[2]) and disable the CSC indexed register lockout in the Internal 
Graphics Control Register B (CSC index DEh[6]).

2. Program all graphics controller registers, load initial memory image, and keep the display 
blanked (Port 03x8h[3]).

3. Set the CSC indexed register lockout bit (CSC index DEh[6]) and unblank the display 
(Port 03x8h[3]).

The PMU or software control bit can command the LCD controller to power up or power 
down in a normal mode, or power down in emergency mode. These three possible cases 
are described in Section 20.6. 

Note: The internal RTC must be initialized before the graphics controller can be used. 
This is particularly important for system designs that do not use the internal RTC.

ROW

COLUMN

COL 0  . . . COL 319

ROW 1 R1:0 G1:0 B1:0 R1:1 G1:1 B1:1  . . . R1:319 G1:319 B1:319

ROW 2 R2:0 G2:0 B2:0 R2:1 G2:1 B2:1  . . . R2:319 G2:319 B2:319

. . .  . . .  . . .

. . .  . . .  . . .

ROW 240 R240:0 G240:0 B240:0 R240:1 G240:1 B240:1  . . . R240:319 G240:319 B240:319

R1:0 B1:2 G1:5 . . . R1:312 B1:314

. . .

G1:317

G1:1 R1:4 B1:6 . . . G1:313 R1:316 B1:318

B1:1 G1:4 R1:7 . . . B1:313 G1:316 R1:319

R1:2 B1:4 G1:7 . . . R1:314 B1:316 G1:319

G1:2 R1:5 B1:7 . . . G1:314 R1:317 B1:319

G1:0 R1:3 B1:5 . . . G1:312 R1:315 B1:317

B1:0 G1:3 R1:6 . . . B1:312 G1:315 R1:318

R1:1 B1;3 G1:6 . . . R1:313 B1:315 G1:318

SCK

LCDD_1[3]

LCDD_1[2]

LCDD_1[1]

LCDD_1[0]

LCDD_2[3]

LCDD_2[2]

LCDD_2[1]

LCDD_2[0]
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20.6 POWER MANAGEMENT
Operation of the LCD graphics controller is affected by the power-management functions 
shown in Table 20-16.

The graphics controller generates correct sequencing for the external LCD panel power 
control signals LVDD and LVEE and the LCD timing signals, so that power sequencing 
requirements for various LCD panels can be satisfied. The power-up and power-down 
sequencing can be activated either by a control signal from the system PMU or by writing 
to a bit. A special battery-failure power-down mode generates accelerated power-down 
timing, so that LCD power can be brought down gracefully under emergency battery-fail 
conditions. When enabled, this special sequencing is activated by an edge on the BL2 pin.

The PMU or software control bit can command the LCD controller to power up or power 
down in a normal mode, or power down in emergency mode. This gives the following three 
cases.

20.6.1 Normal Power-Up
On initial power-up, LVDD and LVEE are both deasserted High. The SCK, LC, FRM, M, 
and all LCDD data signals are held Low.

Then, LVDD switches from High to Low. The SCK, LC, FRM, M, and all LCDD signals are 
held Low. After waiting for the delay programmed into bits 2–0 of PMU Control Register 1 
(graphics index 50h), the screen controller is enabled so that LC, FRM, the LCDD bits, and 
M begin cycling. After waiting for the delay programmed into bits 5–3 of PMU Control 
Register 1, LVEE is asserted.

20.6.2 Normal Power-Down
First, LVEE switches from Low to High. SCK, LC, FRM, the LCDD bits, and M continue to 
run. After waiting for the delay programmed into bits 2–0 of PMU Control Register 2 
(graphics index 51h), the screen controller is disabled and LC, FRM, the LCDD bits, and 
M are forced Low, coincident with the end of the current horizontal line. After waiting for 
the delay programmed into bits 5–3 of PMU Control Register 2, LVDD is asserted to 
complete the power-down.

20.6.3 Emergency Power-Down
First, LVEE switches from Low to High. SCK, LC, FRM, the LCDD bits, and M continue to 
run. After waiting for one graphics dot clock period, the screen controller is disabled and 
LC, FRM, the LCDD bits, and M are forced Low. After waiting again for one graphics dot 
clock period, LVDD is asserted to complete the power-down.
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Table 20-16 Power Management in the LCD Graphics Controller

Graphics Controller 
Event Description

Power Management Effect

Wake-Up Activity SMI NMI

CPU access to 
graphics controller I/O

Triggered by the falling edge of I/O chip 
selects qualified with command

Programmable

CPU access to DRAM 
within graphics 
controller memory 
range

When the VID_DRAM bit in graphics index 
4Fh is asserted (rising edge) and the CPU 
accesses DRAM within graphics memory 
space

Programmable

Graphics I/O access I/O accesses to the graphics controller can 
cause an SMI through a trap. This includes 
the following addresses: 03B4h, 03B5h, 
03B8h, 03BAh, or 03D4h, 03D5h, 03D8–
03DCh 

Yes
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CHAPTER
21
 TEST AND DEBUGGING
21.1 OVERVIEW
The ÉlanSC400 and ÉlanSC410 microcontrollers provide test and debug features compat-
ible with the standard Test Access Port (TAP) and Boundary-Scan Architecture (JTAG). 
The test logic provided allows for testing to ensure that components function correctly, that 
interconnections between various components are correct, and that various components 
interact correctly on the printed circuit board.

The boundary-scan test logic consists of a boundary scan register and support logic that 
are accessed through a test access port (TAP). The TAP provides a simple serial interface 
that makes it possible to test all signal traces with only a few probes.

The TAP can be controlled via a bus master. The bus master can be either automatic test 
equipment or a component (PLD) that interfaces to the four-pin test bus.

The test and debugging features on the ÉlanSC400 and ÉlanSC410 microcontrollers 
include the following elements:

■ Five pins— BNDSCN_TDI, BNDSCN_TMS, BNDSCN_TCK, BNDSCN_TDO, and 
BNDSCN_EN. On the ÉlanSC400 microcontroller, only the BNDSCN_EN pin is 
dedicated; the other four are multiplexed with the PC Card controller signals. All five 
boundary-scan interface pins are dedicated on the ÉlanSC410 microcontroller.

■ Test Access Port (TAP) controller—Decodes the inputs on the Test Mode Select 
(BNDSCN_TMS) line to control test operations.

■ Instruction Register (IR)—The instruction codes select the specific test or debug 
operation to be performed and the test data register to be accessed.

■ Test Data Registers—Boundary Scan Register (BSR), Device Identification Register 
(DID), and Bypass Register (BPR).

The instruction and test data registers are separate shift-register paths connected in par-
allel that have a common serial data input and a common serial data output connected to 
the TAP signals, BNDSCN_TDI and BNDSCN_TDO, respectively.

21.2 BOUNDARY-SCAN ARCHITECTURE

21.2.1 Enabling the Boundary-Scan Interface
Because the boundary-scan interface is shared with the PC Card function on the ÉlanSC400 
microcontroller, the boundary-scan interface for either microcontroller is enabled by 
asserting the dedicated BNDSCN_EN configuration pin. (Using the BNDSCN_EN pin in 
this way makes this implementation on the ÉlanSC400 and ÉlanSC410 microcontrollers 
non-compliant with IEEE Std 1149.1, Standard Test Access Port and Boundary-Scan 
Architecture; otherwise the JTAG features on the ÉlanSC400 and ÉlanSC410 
microcontrollers follow this IEEE standard.) 
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The following pins are configured for their boundary-scan function when BNDSCN_EN is 
asserted:

■ BNDSCN_TCK, Test Clock (Input)—Test Clock is a JTAG input clock that is used to 
access the Test Access Port.

■ BNDSCN_TDI, Test Data Input (Input)—Test Data Input is the serial input stream for 
JTAG scan input data.

■ BNDSCN_TDO, Test Data Output (Three-State Output)—Test Data Output is the serial 
output stream for JTAG scan result data.

■ BNDSCN_TMS, Test Mode Select (Input)—Test Mode Select is an input for controlling 
the Test Access Port.

21.2.2 Test Data Registers
The ÉlanSC400 and ÉlanSC410 microcontrollers contain the two required test data 
registers; Bypass Register and Boundary Scan Register. In addition, it includes a Device 
Identification Register.

Each test data register is serially connected to BNDSCN_TDI and BNDSCN_TDO, with 
BNDSCN_TDI connected to the most significant bit and BNDSCN_TDO connected to the 
least significant bit of the test data register. Data is shifted one stage (bit position within the 
register) on each rising edge of the test clock (BNDSCN_TCK).

21.2.2.1 Bypass Register (BPR)

The Bypass Register provides a path from BNDSCN_TDI to BNDSCN_TDO with one clock 
cycle latency. It helps to bypass a chip completely while testing boards containing many 
chips.

21.2.2.2 Boundary Scan Register (BSR)

The Boundary Scan Register is a single shift register path containing the boundary scan 
cells that are connected to all input and output pins of the ÉlanSC400 and ÉlanSC410 
microcontrollers. Figure 21-2 shows the logical structure of the BSR. While output cells 
determine the value of the signal driven on the corresponding pin, input cells only capture 
data; they do not affect the normal operation of the device. Data is transferred without 
inversion from BNDSCN_TDI to BNDSCN_TDO through the BSR during scanning. The 
BSR can be operated by the EXTEST and SAMPLE instructions.

21.2.2.3 Device Identification Register (DID)

The Device Identification Register is a 32-bit register that contains AMD’s ID code for the 
ÉlanSC400 and ÉlanSC410 microcontrollers: 00FFF003h. Figure 21-1 shows the format.

Figure 21-1 Format of Device Identification Register

01234567891011131415161718192021222324252631 27282930

1

12

Version Part Number
Manufacturer

Identity
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21.2.3 Instruction Register and Implemented Instructions
The Instruction Register (IR) is a 4-bit register that allows instructions to be serially shifted 
into the device. The instruction determines the test to execute, the data register to access, 
or both. The least significant bit is nearest the BNDSCN_TDO output. When the TAP 
controller is reset, the Instruction Register is loaded with the default instruction IDCODE. 

Figure 21-2 Logical Structure of Boundary Scan Register

21.2.3.1 Test Access Port Instruction Set

The ÉlanSC400 and ÉlanSC410 microcontrollers support all three mandatory boundary-
scan instructions, BYPASS, SAMPLE/PRELOAD, and EXTEST, along with two additional 
instructions, IDCODE and HIGHZ. 

Table 21-1 shows the TAP instructions that are supported on the ÉlanSC400 and 
ÉlanSC410 microcontrollers.

Table 21-1 Test Access Port Instruction Set

Instruction IR3–IR0

EXTEST 0000

SAMPLE/PRELOAD 0001

IDCODE 0010

HIGHZ 0011

BYPASS 1111

System
LogicB/S

CELL
System
Logic
Input

TCK

TDI TDO

System
Bidirectional 
Pin

BOUNDARY SCAN REGISTER

B/S
Cell

System
Logic
Input

TCK

TDI

System
Bidirectional 
Pin

System
Three-State
Output

Boundary Scan Register

17852A-090

B/S
CELL

B/S
CELL

B/S
CELL

B/S
CELL
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■ EXTEST—The instruction code is “0000". The EXTEST instruction allows testing of 
circuitry external to the component package, typically board interconnects. It does so 
by driving the values loaded into the microcontroller’s BSR out on the output pins 
corresponding to each boundary scan cell. It then captures the values on the 
microcontroller’s input pins to be loaded into their corresponding BSR locations. I/O pins 
are selected as input RUNBIST or output, depending on the value loaded into their 
control setting locations in the BSR. Values shifted into input latches in the BSR are 
never used by the internal logic of the ÉlanSC400 and ÉlanSC410 microcontrollers.

Note: After using the EXTEST instruction, the ÉlanSC400 and ÉlanSC410 
microcontrollers must be reset before normal (non-boundary scan) use.

■ SAMPLE/PRELOAD—The instruction code is “0001". The SAMPLE/PRELOAD 
instruction has two functions that it performs. When the TAP controller is in the 
Capture-DR state, the SAMPLE/PRELOAD instruction allows a “snapshot” of the normal 
operation of the component without interfering with that normal operation. The instruction 
causes BSR cells associated with outputs to sample the value being driven by the 
microcontroller. It causes the cells associated with inputs to sample the value being 
driven into the microcontroller. On both outputs and inputs, the sampling occurs on the 
rising edge of BNDSCN_TCK. When the TAP controller is in the Update-DR state, the 
SAMPLE/PRELOAD instruction preloads data to the device pins to be driven to the 
board by executing the EXTEST instruction. Data is preloaded to the pins from the BSR 
on the falling edge of BNDSCN_TCK.

■ IDCODE—The instruction code is “0010". The IDCODE instruction selects the DID to 
be connected to BNDSCN_TDI and BNDSCN_TDO, allowing the device identification 
code to be shifted out of the device on BNDSCN_TDO. Note that the DID is not altered 
by data being shifted in on BNDSCN_TDI.

■ HIGHZ—The instruction code is “0011”. The HIGHZ instruction connects the Bypass 
Register between BNDSCN_TDI and BNDSCN_TDO. This instruction makes all outputs 
(both two- and three-state) on the ÉlanSC400 and ÉlanSC410 microcontrollers disabled 
or puts them in a high-impedance state.

■ BYPASS—The instruction code is “1111". The BYPASS instruction selects the bypass 
register to be connected to BNDSCN_TDI or BNDSCN_TDO, effectively bypassing the 
test logic on the ÉlanSC400 and ÉlanSC410 microcontrollers by reducing the shift length 
of the device to one bit. Note that an open circuit fault in the board-level test data path 
causes the Bypass Register to be selected following an instruction scan cycle due to 
the pull-up resistor on the BDNSCN_TDI input. This has been done to prevent any 
unwanted interference with the proper operation of the system logic.
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21.3 TEST ACCESS PORT CONTROLLER OPERATION
The TAP controller is a synchronous, finite state machine that controls the sequence of 
operations of the test logic. The TAP controller changes state in response to the rising edge 
of BNDSCN_TCK and defaults to the Test-Logic-Reset state at power-up. Re-initialization 
to the Test-Logic-Reset state is accomplished by holding the BNDSCN_TMS pin High for 
five BNDSCN_TCK periods. The TAP controller is shown in Figure 21-3.

Figure 21-3 TAP Controller State Diagram

21.3.1 TAP Controller States

21.3.1.1 Test-Logic-Reset State

In this state, the test logic is disabled so that normal operation of the device can continue 
unhindered. This is achieved by initializing the instruction register such that the IDCODE 
instruction is loaded. No matter what the original state of the controller, the controller enters 
Test-Logic-Reset state when the BNDSCN_TMS input is held High (1) for at least five rising 
edges of BNDSCN_TCK. The controller remains in this state while BNDSCN_TMS is High. 
The TAP controller is also forced to enter this state at power-up.
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21.3.1.2 Run-Test-Idle State

This is a controller state between scan operations. When in this state, the controller remains 
in this state as long as BNDSCN_TMS is held Low. For instructions not causing functions 
to execute during this state, no activity occurs in the test logic. The instruction register and 
all test data registers retain their previous state. When BNDSCN_TMS is High and a rising 
edge is applied to BNDSCN_TCK, the controller moves to the Select-DR state.

21.3.1.3 Select-DR-Scan State

This is a temporary controller state. The test data register selected by the current instruction 
retains its previous state. If BNDSCN_TMS is held Low and a rising edge is applied to 
BNDSCN_TCK when in this state, the controller moves into the Capture-DR state and a 
scan sequence for the selected test data register is initiated. If BNDSCN_TMS is held High 
and a rising edge is applied to BNDSCN_TCK, the controller moves to the Select-IR-Scan 
state.

The instruction does not change in this state.

21.3.1.4 Capture-DR State

In this state, the BSR captures input pin data if the current instruction is EXTEST or 
SAMPLE/PRELOAD. The other test data registers, which do not have parallel input, are 
not changed.

The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to BNDSCN_TCK, the 
controller enters the Exit1-DR state if BNDSCN_TMS is High, or the Shift-DR state if 
BNDSCN_TMS is Low.

21.3.1.5 Shift-DR State

In this controller state, the test data register connected between BNDSCN_TDI and 
BNDSCN_TDO as a result of the current instruction shifts data one stage toward its serial 
output on each rising edge of BNDSCN_TCK.

The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to BNDSCN_TCK, the 
controller enters the Exit1-DR state if BNDSCN_TMS is High, or remains in the Shift-DR 
state if BNDSCN_TMS is Low.

21.3.1.6 Exit1-DR State

This is a temporary state. While in this state, if BNDSCN_TMS is held High, a rising edge 
applied to BNDSCN_TCK causes the controller to enter the Update-DR state, which 
terminates the scanning process. If BNDSCN_TMS is held Low and a rising edge is applied 
to BNDSCN_TCK, the controller enters the Pause-DR state.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

21.3.1.7 Pause-DR State

The pause state allows the test controller to temporarily halt the shifting of data through 
the test data register in the serial path between BNDSCN_TDI and BNDSCN_TDO. An 
example of using this state could be to allow a tester to reload its pin memory from disk 
during application of a long test sequence.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.
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The controller remains in this state as long as BNDSCN_TMS is Low. When BNDSCN_TMS 
goes High and a rising edge is applied to BNDSCN_TCK, the controller moves to the 
Exit2-DR state.

21.3.1.8 Exit2-DR State

This is a temporary state. While in this state, if BNDSCN_TMS is held High, a rising edge 
applied to BNDSCN_TCK causes the controller to enter the Update-DR state, which 
terminates the scanning process. If BNDSCN_TMS is held Low and a rising edge is applied 
to BNDSCN_TCK, the controller enters the Shift-DR state.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

21.3.1.9 Update-DR State

The BSR is provided with a latched parallel output to prevent changes at the parallel output 
while data is shifted in response to the EXTEST and SAMPLE/PRELOAD instructions. 
When the TAP controller is in this state and the BSR is selected, data is latched onto the 
parallel output of this register from the shift-register path on the falling edge of 
BNDSCN_TCK. The data held at the latched parallel output does not change other than in 
this state.

All shift-register stages in a test data register selected by the current instruction retain their 
previous values during this state. The instruction does not change in this state.

21.3.1.10 Select-IR-Scan State

This is a temporary controller state. The test data register selected by the current instruction 
retains its previous state. If BNDSCN_TMS is held Low and a rising edge is applied to 
BNDSCN_TCK when in this state, the controller moves into the Capture-IR state and a 
scan sequence for the instruction register is initiated. If BNDSCN_TMS is held High and a 
rising edge is applied to BNDSCN_TCK, the controller moves to the Test-Logic-Reset state.

The instruction does not change in this state.

21.3.1.11 Capture-IR State

In this controller state, the shift register contained in the instruction register loads the fixed 
value “0001" on the rising edge of BNDSCN_TCK.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

When the controller is in this state and a rising edge is applied to BNDSCN_TCK, the 
controller enters the Exit1-IR state if BNDSCN_TMS is held High, or the Shift-IR state if 
BNDSCN_TMS is held Low.

21.3.1.12 Shift-IR State

In this state, the shift register contained in the instruction register is connected between 
BNDSCN_TDI and BNDSCN_TDO, and shifts data one stage towards its serial output on 
each rising edge of BNDSCN_TCK.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

When the controller is in this state and a rising edge is applied to BNDSCN_TCK, the 
controller enters the Exit1-IR state if BNDSCN_TMS is held High, or remains in the Shift-IR 
state if BNDSCN_TMS is held Low.
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21.3.1.13 Exit1-IR State

This is a temporary state. While in this state, if BNDSCN_TMS is held High, a rising edge 
applied to BNDSCN_TCK causes the controller to enter the Update-IR state, which 
terminates the scanning process. If BNDSCN_TMS is held Low and a rising edge is applied 
to BNDSCN_TCK, the controller enters the Pause-IR state.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

21.3.1.14 Pause-IR State

The pause state allows the test controller to temporarily halt the shifting of data through 
the instruction register.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

The controller remains in this state as long as BNDSCN_TMS is Low. When BNDSCN_TMS 
goes High and a rising edge is applied to BNDSCN_TCK, the controller moves to the 
Exit2-IR state.

21.3.1.15 Exit2-IR State

This is a temporary state. While in this state, if BNDSCN_TMS is held High, a rising edge 
applied to BNDSCN_TCK causes the controller to enter the Update-IR state, which 
terminates the scanning process. If BNDSCN_TMS is held Low and a rising edge is applied 
to BNDSCN_TCK, the controller enters the Shift-IR state.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

21.3.1.16 Update-IR State

The instruction shifted into the instruction register is latched onto the parallel output from 
the shift-register path on the falling edge of BNDSCN_TCK. When the new instruction has 
been latched, it becomes the current instruction.

Test data registers selected by the current instruction retain their previous value.

21.3.2 Order of Scan Cells in Boundary-Scan Path
This section documents the scan paths and the order of scan cells in the paths. There are 
three scan paths from BNDSCN_TDI to BNDSCN_TDO in the ÉlanSC400 and ÉlanSC410 
microcontrollers: 1) the instruction path, 2) the bypass path, and 3) the main data path 
through the BSR.

21.3.2.1 Instruction Path

This four-cell path is used to scan into the Instruction Register. This chain is loaded when 
the TAP controller is driven to the states Select-IR-Scan through Update-IR. 
See Figure 21-3.

21.3.2.2 Bypass Path

This path bypasses the test logic on the microcontroller by reducing the shift length of the 
device to one bit.

21.3.2.3 Main Data Scan Path

Table 21-2 shows the main data scan path. The order shown is first-to-last; i.e., the first is 
closest to BNDSCN_TDI and the last is closest to BNDSCN_TDO. Control cells are used 
to control the enables of the three-state pads. They are part of the boundary-scan chain 
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that is connected between BNDSCN_TDI and BNDSCN_TDO. Their values are shifted 
serially through BNDSCN_TDI into the boundary-scan chain. If “1" is loaded into the control 
cell, the associated pins are three-stated or selected as inputs. 

Each of the control cells shown in Table 21-2 contains the output enable control for the 
pads listed below the control cell and before the next control cell. The control cell for the 
first group is the last element in the scan-chain.

Table 21-2 Main Data Scan Path

Bit Pad Name
JTAG Cell 

Type
Comment

281 CD_A Input

280 RDY_A Input

279 WAIT_AB Input

278 WP_A Input

277 BVD2_A Input

276 BVD1_A Input

275 GPIO25 Input

274 GPIO25 Output

273 GPIO22 Input

272 GPIO22 Output

271 GPIO30 Input

270 GPIO30 Output

269 GPIO31 Input

268 GPIO31 Output

267 GPIO24 Input

266 GPIO24 Output

265 GPIO26 Input

264 GPIO26 Output

263 GPIO21 Input

262 GPIO21 Output

261 GPIO23 Input

260 GPIO23 Output

259 GPIO29 Input

258 GPIO29 Output

257 GPIO28 Input

256 GPIO28 Output

255 GPIO27 Input

254 GPIO27 Output

253 N/A Control cell Controller for miscellaneous cells

252 SPKR Output

251 RESET Input

250 RTS Output

249 SIROUT Output

248 DTR Output

247 DCD Input
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246 SIRIN Input

245 DSR Input

244 CTS Input

243 SOUT Output

242 SIN Input

241 RIN Input

240 ACIN Input

239 RSTDRV Output

238 SUS_RES Input

237 BL2 Input

236 BL1 Input

235 BL0 Input

234 BL0 Output

233 GPIO19 Input

232 GPIO19 Output

231 GPIO18 Input

230 GPIO18 Output

229 GPIO17 Input

228 GPIO17 Output

227 N/A Control cell Bus control

226 GPIO16 Input

225 GPIO16 Output

224 GPIO15 Input

223 GPIO15 Output

222 GPIO_CS14 Input

221 GPIO_CS14 Output

220 GPIO_CS13 Input

219 GPIO_CS13 Output

218 GPIO_CS12 Input

217 GPIO_CS12 Output

216 GPIO_CS11 Input

215 GPIO_CS11 Output

214 GPIO_CS10 Input

213 GPIO_CS10 Output

212 GPIO_CS9 Input

211 GPIO_CS9 Output

210 GPIO_CS8 Input

209 GPIO_CS8 Output

208 GPIO_CS7 Input

207 GPIO_CS7 Output

206 GPIO_CS6 Input

205 GPIO_CS6 Output

Table 21-2 Main Data Scan Path (continued)

Bit Pad Name
JTAG Cell 

Type
Comment
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204 GPIO_CS5 Input

203 GPIO_CS5 Output

202 GPIO_CS1 Input

201 GPIO_CS1 Output

200 GPIO_CS0 Input

199 GPIO_CS0 Output

198 MEMR Output

197 MEMW Output

196 ROMWR Output

195 ROMRD Output

194 ROMCS0 Output

193 ROMCS1 Output

192 IOR Output

191 IOW Output

190 N/A Control cell Control for address bus

189 SA0 Output

188 SA1 Output

187 SA2 Output

186 SA3 Output

185 SA4 Output

184 SA5 Output

183 SA6 Output

182 SA7 Output

181 SA8 Output

180 SA9 Output

179 SA10 Output

178 SA11 Output

177 SA12 Output

176 SA13 Output

175 SA14 Output

174 SA15 Output

173 SA16 Output

172 SA17 Output

171 SA18 Output

170 SA19 Output

169 SA20 Output

168 SA21 Output

167 SA22 Output

166 SA23 Output

165 SA24 Output

164 SA25 Output

163 GPIO20 Input

Table 21-2 Main Data Scan Path (continued)

Bit Pad Name
JTAG Cell 

Type
Comment
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162 GPIO20 Output

161 N/A Control cell

160 SCK Output

159 LC Output

158 M Output

157 FRM Output

156 LCDD7 Output

155 LCDD6 Input

154 LCDD6 Output

153 LCDD5 Output

152 LCDD4 Input

151 LCDD4 Output

150 LCDD3 Output

149 LCDD2 Output

148 LCDD1 Output

147 LCDD0 Output

146 LVEE Input

145 LVEE Output

144 LVDD Output

143 GPIO_CS3 Input

142 GPIO_CS3 Output

141 GPIO_CS2 Input

140 GPIO_CS2 Output

139 KBD_ROW0 Input

138 KBD_ROW0 Output

137 KBD_ROW1 Input

136 KBD_ROW1 Output

135 KBD_ROW2 Input

134 KBD_ROW2 Output

133 KBD_ROW3 Input

132 KBD_ROW3 Output

131 KBD_ROW4 Input

130 KBD_ROW4 Output

129 KBD_ROW5 Input

128 KBD_ROW5 Output

127 KBD_ROW6 Input

126 KBD_ROW6 Output

125 N/A Control cell

124 RAS1 Output

123 RAS0 Output

122 CASH1 Output

Table 21-2 Main Data Scan Path (continued)

Bit Pad Name
JTAG Cell 

Type
Comment
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121 CASH0 Output

120 CASL1 Output

119 CASL0 Output

118 MA11 Output

117 MA10 Output

116 MA9 Output

115 MA8 Output

114 MA7 Output

113 MA6 Output

112 MA5 Output

111 MA4 Output

110 MA3 Input

109 MA3 Output

108 MA2 Input

107 MA2 Output

106 MA1 Input

105 MA1 Output

104 MA0 Input

103 MA0 Output

102 MWE Output

101 N/A Control cell Control for data bus

100 D0 Input

99 D0 Output

98 D1 Input

97 D1 Output

96 D2 Input

95 D2 Output

94 D3 Input

93 D3 Output

92 D4 Input

91 D4 Output

90 D5 Input

89 D5 Output

88 D6 Input

87 D6 Output

86 D7 Input

85 D7 Output

84 D8 Input

83 D8 Output

82 D9 Input

81 D9 Output

80 D10 Input

Table 21-2 Main Data Scan Path (continued)

Bit Pad Name
JTAG Cell 

Type
Comment
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79 D10 Output

78 D11 Input

77 D11 Output

76 D12 Input

75 D12 Output

74 D13 Input

73 D13 Output

72 D14 Input

71 D14 Output

70 D15 Input

69 D15 Output

68 KBD_COL7 Input

67 KBD_COL7 Output

66 GPIO_CS4 Input

65 GPIO_CS4 Output

64 KBD_ROW13 Input

63 KBD_ROW13 Output

62 KBD_COL2 Input

61 KBD_COL2 Output

60 KBD_COL3 Input

59 KBD_COL3 Output

58 KBD_COL4 Input

57 KBD_COL4 Output

56 KBD_COL5 Input

55 KBD_COL5 Output

54 KBD_COL6 Input

53 KBD_COL6 Output

52 N/A Control cell Control for data bus

51 KBD_ROW7 Input

50 KBD_ROW7 Output

49 KBD_ROW8 Input

48 KBD_ROW8 Output

47 KBD_ROW9 Input

46 KBD_ROW9 Output

45 KBD_ROW10 Input

44 KBD_ROW10 Output

43 KBD_ROW11 Input

42 KBD_ROW11 Output

41 KBD_ROW12 Input

40 KBD_ROW12 Output

39 KBD_COL0 Input

38 KBD_COL0 Output

Table 21-2 Main Data Scan Path (continued)

Bit Pad Name
JTAG Cell 

Type
Comment
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37 KBD_COL1 Input

36 KBD_COL1 Output

35 SD0 Input

34 SD0 Output

33 SD1 Input

32 SD1 Output

31 SD2 Input

30 SD2 Output

29 SD3 Input

28 SD3 Output

27 SD4 Input

26 SD4 Output

25 SD5 Input

24 SD5 Output

23 SD6 Input

22 SD6 Output

21 SD7 Input

20 SD7 Output

19 SD8 Input

18 SD8 Output

17 SD9 Input

16 SD9 Output

15 SD10 Input

14 SD10 Output

13 SD11 Input

12 SD11 Output

11 SD12 Input

10 SD12 Output

9 SD13 Input

8 SD13 Output

7 SD14 Input

6 SD14 Output

5 SD15 Input

4 SD15 Output

3 OE Output

2 WE Output

1 ICDIR Output

0 N/A Control cell

Table 21-2 Main Data Scan Path (continued)

Bit Pad Name
JTAG Cell 

Type
Comment
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APPENDIX
A
 MULTIPLEXED PIN CONFIGURATION 
CONTROL
OVERVIEW
Many pins on the ÉlanSC400 and ÉlanSC410 microcontrollers have more than one 
function. Figure 4-1 and Figure 4-2 show the multiplexing of pins by function for each 
microcontroller.

Pins with multiplexed functions have their functions selected in one of two ways:

■ By configuration pins that are latched during reset

■ By firmware via programmed configuration registers 

Table A-1 shows how to select the desired pin functions. 

Note: Signals noted  with an asterisk (*) in Table A-1 are not supported on the ÉlanSC410 
microcontroller.

Table A-1 Multiplexed Pin Configuration Control

Signal You 
Want

Signals You 
Give Up

How to Configure the Signal You Want on the Pin

System Interface

BALE KBD_ROW10 Set CSC index 39h[2].

DBUFOE GPIO_CS4 Hardwire strap the CFG3 pin High.

DBUFRDH GPIO_CS3 Hardwire strap the CFG3 pin High.

DBUFRDL GPIO_CS2 Hardwire strap the CFG3 pin High.

MCS16 KBD_ROW12 Set CSC index 39h[2].

PDACK1 KBD_ROW7 Set CSC index 39h[2].

PDRQ1 KBD_ROW8 Set CSC index 39h[2].

PIRQ7 KBD_COL6 Set CSC index 3Ah[2].

PIRQ6 KBD_COL5 Set CSC index 3Ah[2].

PIRQ5 KBD_COL4 Set CSC index 3Ah[2].

PIRQ4 KBD_COL3 Set CSC index 3Ah[1].

PIRQ3 KBD_COL2 Set CSC index 3Ah[1].

PIRQ2 KBD_ROW9 Set CSC index 39h[2].

PIRQ1 GPIO_CS7 Set CSC index 38h[2].

PIRQ0 GPIO_CS8 Set CSC index 38h[1].

R32BFOE KBD_ROW13 Hardwire strapping both the CFG1 and CFG0 pins High 
enables the 32-bit ROM interface on ROMSC0. This 
automatically enables R32BFOE.

SBHE KBD_ROW11 Set CSC index 39h[2].
Multiplexed Pin Configuration Control A-1



Memory Interface

CASH3 KBD_ROW3 Set bit 3 of the DRAM Bank x Configuration Register.

CASH2 KBD_ROW2 

CASL3 KBD_ROW1 

CASL2 KBD_ROW0 

MA12 KBD_ROW6 

RAS3 KBD_ROW5 

RAS2 KBD_ROW4

VL-Bus Control

VL_ADS LCDD1* Enable the VL-bus interface by setting CSC index 14h[3].

VL_BLAST LVDD* 

VL_BE3 LCDD7* 

VL_BE2 M* 

VL_BE1 LC* 

VL_BE0 SCK* 

VL_BRDY LVEE* 

VL_D/C LCDD5* 

VL_LCLK FRM * 

VL_LDEV LCDD6* 

VL_LRDY LCDD4* 

VL_M/IO LCDD3* 

VL_RST LCDD0* 

VL_W/R LCDD2* 

ISA Bus

AEN GPIO_CS10 Set CSC index 38h[0].

IOCHRDY GPIO_CS6 Set CSC index 38h[3].

IOCS16 GPIO_CS5 Set CSC index 38h[4].

PDACK0 GPIO_CS11 Set CSC index 38h[0] 

PDRQ0 GPIO_CS12 Set CSC index 38h[0].

TC GPIO_CS9 Set CSC index 38h[0].

GPIOs

GPIO31 STRB, MCEL_B*  Clear CSC index 39h[1–0].

GPIO30 AFDT, MCEH_B* Clear CSC index 39h[1–0].

GPIO29 SLCTIN, RST_B* Clear CSC index 39h[1–0].

GPIO28 INIT, REG_B* Clear CSC index 39h[1–0].

GPIO27 ERROR, CD_B* Clear CSC index 39h[1–0].

GPIO26 PE, RDY_B* Clear CSC index 39h[1–0].

GPIO25 ACK, BVD1_B* Clear CSC index 39h[1–0].

GPIO24 BUSY, BVD2_B* Clear CSC index 39h[1–0].

GPIO23 SLCT, WP_B* Clear CSC index 39h[1–0].

Table A-1 Multiplexed Pin Configuration Control (continued)

Signal You 
Want

Signals You 
Give Up

How to Configure the Signal You Want on the Pin
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GPIO22 PPOEN Clear CSC index 39h[1–0].

GPIO21 PPDWE Clear CSC index 39h[1–0].

GPIO20 CD_A2* Clear CSC index 3Ah[0].

GPIO19 LBL2 Clear CSC index 39h[4].

GPIO18 PCMB_VPP2* Clear CSC index 39h[6].

GPIO17 PCMB_VPP1* Clear CSC index 39h[6].

GPIO16 PCMB_VCC* Clear CSC index 39h[6].

GPIO15 PCMA_VPP2* Clear CSC index 39h[5].

GPIO_CS14 PCMA_VPP1* Clear CSC index 39h[5].

GPIO_CS13 PCMA_VCC* Clear CSC index 39h[5].

GPIO_CS12 PDRQ0 Clear CSC index 38h[0].

GPIO_CS11 PDACK0 Clear CSC index 38h[0].

GPIO_CS10 AEN Clear CSC index 38h[0].

GPIO_CS9 TC Clear CSC index 38h[0].

GPIO_CS8 PIRQ0 Clear CSC index 38h[1].

GPIO_CS7 PIRQ1 Clear CSC index 38h[2].

GPIO_CS6 IOCHRDY Clear CSC index 38h[3].

GPIO_CS5 IOCS16 Clear CSC index 38h[4].

GPIO_CS4 DBUFOE Hardwire-strap the CFG3 pin Low.

GPIO_CS3 DBUFRDH Hardwire-strap the CFG3 pin Low.

GPIO_CS2 DBUFRDL Hardwire-strap the CFG3 pin Low.

Parallel Port

ACK GPIO25, BVD1_B* Write CSC index 39h[1–0] to 10. 

AFDT GPIO30, MCEH_B*  

BUSY GPIO24, BVD2_B* 

ERROR GPIO27, CD_B*  

INIT GPIO28, REG_B* 

PE GPIO26, RDY_B* 

SLCT GPIO23, WP_B* 

SLCTIN GPIO29, RST_B*  

STRB GPIO31, MCEL_B*  

Keyboard Interfaces

XT_CLK KBD_COL1 Clear CSC index 39h[3].

XT_DATA KBD_COL0 Clear CSC index 39h[3].

KBD_COL6 PIRQ7 Clear CSC index 3Ah[1].

KBD_COL5 PIRQ6 Clear CSC index 3Ah[1].

KBD_COL4 PIRQ5 Clear CSC index 3Ah[1].

KBD_COL3 PIRQ4 Clear CSC index 3Ah[1].

KBD_COL2 PIRQ3 Clear CSC index 3Ah[1].

KBD_COL1 XT_CLK Clear CSC index 39h[3].

Table A-1 Multiplexed Pin Configuration Control (continued)

Signal You 
Want

Signals You 
Give Up

How to Configure the Signal You Want on the Pin
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KBD_COL0 XT_DATA Clear CSC index 39h[3].

KBD_ROW13 R32BFOE Do not enable the 32-bit ROM interface on ROMCS0 (e.g., 
do not hardwire strap both the CFG1 and CFG0 pins 
High).

KBD_ROW12 MCS16 Clear CSC index 39h[2].

KBD_ROW11 SBHE Clear CSC index 39h[2].

KBD_ROW10 BALE Clear CSC index 39h[2].

KBD_ROW9 PIRQ2 Clear CSC index 39h[2].

KBD_ROW8 PDRQ1 Clear CSC index 39h[2].

KBD_ROW7 PDACK1 Clear CSC index 39h[2].

KBD_ROW6 MA12 Clear bit 3 of the DRAM Bank x Configuration Register.

KBD_ROW5 RAS3 Clear bit 3 of the DRAM Bank x Configuration Register.

KBD_ROW4 RAS2 Clear bit 3 of the DRAM Bank x Configuration Register.

KBD_ROW3 CASH3 Clear bit 3 of the DRAM Bank x Configuration Register.

KBD_ROW2 CASH2 Clear bit 3 of the DRAM Bank x Configuration Register.

KBD_ROW1 CASL3 Clear bit 3 of the DRAM Bank x Configuration Register.

KBD_ROW0 CASL2 Clear bit 3 of the DRAM Bank x Configuration Register.

PC Card Controller (ÉlanSC400 Microcontroller Only)

BVD1_B* GPIO25, ACK Write CSC index 39h[1–0] to 01.

BVD2_B* GPIO24, BUSY Write CSC index 39h[1–0] to 01.

CD_A2*  GPIO20 Set CSC index 3Ah[0].

CD_B* GPIO27, ERROR Write CSC index 39h[1–0] to 01.

LBL2* GPIO19 Set CSC index 39h[4].

MCEL_A* BDNSCN_TCK Pull the BNDSCN_EN pin Low.

MCEH_A*  BNDSCN_TMS Pull the BNDSCN_EN pin Low.

MCEL_B*  GPIO31, STRB Write CSC index 39h[1–0] to 01.

MCEH_B*  GPIO30, AFDT Write CSC index 39h[1–0] to 01.

PCMA_VCC* GPIO_CS13 Set CSC index 39h[5].

PCMA_VPP1*  GPIO_CS14 Set CSC index 39h[5].

PCMA_VPP2* GPIO15 Set CSC index 39h[5].

PCMB_VCC*  GPIO16 Set CSC index 39h[6].

PCMB_VPP1* GPIO17 Set CSC index 39h[6].

PCMB_VPP2* GPIO18 Set CSC index 39h[6].

REG_A*  BNDSCN_TDO Pull the BNDSCN_EN pin Low.

RST_A*  BNDSCN_TDI Pull the BNDSCN_EN pin Low.

REG_B* GPIO28, INIT Write CSC index 39h[1–0] to 01.

RST_B*  GPIO29, SLCTIN Write CSC index 39h[1–0] to 01.

RDY_B* GPIO26, PE Write CSC index 39h[1–0] to 01.

WP_B* GPIO23, SLCT Write CSC index 39h[1–0] to 01.

Table A-1 Multiplexed Pin Configuration Control (continued)

Signal You 
Want

Signals You 
Give Up

How to Configure the Signal You Want on the Pin
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Note:

* This signal is not supported on the ÉlanSC410 microcontroller.

LCD Graphics Controller (ÉlanSC400 Microcontroller Only)

FRM*  VL_LCLK Enable the graphics controller by setting CSC index 
DDh[2].LC* VL_BE1

LCDD0* VL_RST

LCDD1*  VL_ADS

LCDD2*  VL_W/R

LCDD3* VL_M/IO

LCDD4* VL_LRDY

LCDD5* VL_D/C

LCDD6* VL_LDEV

LCDD7* VL_BE3

LVEE* VL_BRDY

LVDD* VL_BLAST

M* VL_BE2

SCK* VL_BE0

Boundary Scan Interface

BDNSCN_TCK MCEL_A*  Pull the BNDSCN_EN pin High.

BNDSCN_TDI RST_A*  Pull the BNDSCN_EN pin High.

BNDSCN_TDO REG_A*  Pull the BNDSCN_EN pin High.

BNDSCN_TMS MCEH_A*  Pull the BNDSCN_EN pin High.

Miscellaneous

BL0 CLK_IO Write CSC index 38h[7–6] to 01.

CLK_IO BL0 Write CSC index 38h[7–6] to 10 to enable CLK_IO as an 
output or to 11 to enable as a timer clock input.

SUS_RES KBD_ROW14 Clear bit 3 of the Keyboard Configuration Register.

Table A-1 Multiplexed Pin Configuration Control (continued)

Signal You 
Want

Signals You 
Give Up

How to Configure the Signal You Want on the Pin
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APPENDIX
B
 PIN TERMINATION
OVERVIEW
When a particular function on the microcontroller is configured to be available to the user 
or the system, the functions of the pins on the microcontroller change accordingly. When 
the pin function changes, the termination of the pin can, and often does change.

System firmware must activate the new termination as a separate operation from the actual 
pin function selection. This is done by setting the TERM_LATCH bit in the Suspend Mode 
Pin State Override Register (CSC index E5h[0]) after configuring one or more of the 
microcontroller’s pin functions. The typical usage is to configure the chip at boot time from 
system firmware, and then set the termination latch bit one time after all the configuration 
is complete. When any of the pin functions shown in Table B-1 are changed, the 
TERM_LATCH bit must be set. A more complete discussion of pin termination can be found 
in Section 2.4.2.

Note: Signals noted  with an asterisk (*) in Table B-1 are not supported on the ÉlanSC410 
microcontroller.

Table B-1 Pin Termination Control

Control Bit CSC Index Pins Affected

WIDTH0, BNK_ENBL0 00h[3,7] KBD_ROW6 [MA12]

WIDTH1, BNK_ENBL1 01h[3,7] KBD_ROW5 [RAS3]

BNK_ENBL2 02h[7] KBD_ROW4 [RAS2]

BNK_ENBL3 03h[7] KBD_ROW3 [CASH3]
KBD_ROW2 [CASH2]
KBD_ROW1 [CASL1]
KBD_ROW0 [CASL0]

VL_ENB 14h[3] LCDD7* [VL_BE3]

VID_ENB DDh[2] LCDD6* [VL_LDEV]
LCDD5* [VL_D_C]
LCDD4* [VL_LRDY]
LCDD3* [VL_M_IO]
LCDD2* [VL_W_R]
LCDD1* [VL_ADS]
LCDD0* [VL_RST]
M* [VL_BE2]
LC* [VL_BE1]
SCK* [VL_BE0]
FRM* [VL_LCLK]
LVEE* [VL_BRDY]
LVDD* [VL_BLAST]
Pin Termination B-1



GP_EQU_DMA 38h[0] GPIO_CS9 [TC]
GPIO_CS10 [AEN]
GPIO_CS11 [PDACK0]
GPIO_CS12 [PDRQ0]

GP_EQU_PIRQ0 38h[1] GPIO_CS8 [PIRQ0]

GP_EQU_PIRQ1 38h[2] GPIO_CS7 [PIRQ1]

GP_EQU_IOCHRDY 38h[3] GPIO_CS6 [IOCHRDY]

GP_EQU_IOCS16 38h[4] GPIO_CS5 [IOCS16]

BL0_CLKIO_SLCT 38h[7–6] BL0 [CLK_IO]

PP_PCMB_SLCT 39h[1–0] GPIO21 [PPDWE]
GPIO22 [PPOEN]
GPIO23 [SLCT] [WP_B]*
GPIO24 [BUSY] [BVD2_B]*
GPIO25 [ACK] [BVD1_B]*
GPIO26 [PE] [RDY_B]*
GPIO27 [ERROR] [CD_B]*
GPIO28 [INIT] [REG_B]*
GPIO29 [SLCTIN] [RST_B]*
GPIO30 [AFDT] [MCEH_B]*
GPIO31 [STRB] [MCEL_B]*

ISA_KBDROW_SLCT 39h[2] KBD_ROW7 [PDACK1]
KBD_ROW8 [PDRQ1]
KBD_ROW9 [PIRQ2]
KBD_ROW10 [BALE]
KBD_ROW11 [SBHE]
KBD_ROW12 [MCS16]

GPIO_LBL2_SLCT 39h[4] GPIO19 [LBL2]

GPIO_PCPWR_SLCTA 39h[5] GPIO_CS13 [PCMA_VCC]*
GPIO_CS14 [PCMA_VPP1]*
GPIO15 [PCMA_VPP2]*

GPIO_PCPWR_SLCTA 39h[6] GPIO16 [PCMB_VCC]*
GPIO17 [PCMB_VPP1]*
GPIO18 [PCMB_VPP2]*

GPIO_PCACD_SLCT 3Ah[0] GPIO20 [CD_A2]*

CS0_PUEN 3Bh[0] GPIO_CS0

CS1_PUEN 3Bh[1] GPIO_CS1

CS2_PUEN 3Bh[2] GPIO_CS2 [DBUFRDL]

CS3_PUEN 3Bh[3] GPIO_CS3 [DBUFRDH]

CS4_PUEN 3Bh[4] GPIO_CS4 [DBUFOE]

CS5_PUEN 3Bh[5] GPIO_CS5 [IOCS16]

Table B-1 Pin Termination Control (continued)

Control Bit CSC Index Pins Affected
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CS6_PUEN 3Bh[6] GPIO_CS6 [IOCHRDY]

CS7_PUEN 3Bh[7] GPIO_CS7 [PIRQ1]

CS8_PUEN 3Ch[0] GPIO_CS8 [PIRQ0]

CS9_PUEN 3Ch[1] GPIO_CS9 [TC]

CS10_PUEN 3Ch[2] GPIO_CS10 [AEN]

CS11_PUEN 3Ch[3] GPIO_CS11 [PDACK0]

CS12_PDEN 3Ch[4] GPIO_CS12 [PDRQ0]

CS13_PDEN 3Ch[5] GPIO_CS13 [PCMA_VCC]*

CS14_PDEN 3Ch[6] GPIO_CS14 [PCMA_VPP1]*

GPIO15_PDEN 3Ch[7] GPIO15 [PCMA_VPP2]*

GPIO16_PDEN 3Dh[0] GPIO16 [PCMB_VCC]*

GPIO17_PDEN 3Dh[1] GPIO17 [PCMB_VPP1]*

GPIO18_PDEN 3Dh[2] GPIO18 [PCMB_VPP2]*

GPIO19_PUEN 3Dh[3] GPIO19 [LBL2]

GPIO20_PUEN 3Dh[4] GPIO20 [CD_A2]*

GPIO21_PUEN 3Dh[5] GPIO21 [PPDWE]

GPIO22_PUEN 3Dh[6] GPIO22 [PPOEN]

GPIO23_PUEN 3Dh[7] GPIO23 [SLCT] [WP_B]*

GPIO24_PUEN 3Eh[0] GPIO24 [BUSY] [BVD2_B]*

GPIO25_PUEN 3Eh[1] GPIO25 [ACK] [BVD1_B]*

GPIO26_PUEN 3Eh[2] GPIO26 [PE] [RDY_B]*

GPIO27_PUEN 3Eh[3] GPIO27 [ERROR] [CD_B]*

GPIO28_PUEN 3Eh[4] GPIO28 [INIT] [REG_B]*

GPIO29_PUEN 3Eh[5] GPIO29 [SLCTIN] [RST_B]*

GPIO30_PUEN 3Eh[6] GPIO30 [AFDT] [MCEH_B]*

GPIO31_PUEN 3Eh[7] GPIO31 [STRB] [MCEL_B]*

CS0_DIR A0h[0] GPIO_CS0

CS1_DIR A0h[2] GPIO_CS1

CS2_DIR A0h[4] GPIO_CS2 [DBUFRDL]

CS3_DIR A0h[6] GPIO_CS3 [DBUFRDH]

CS4_DIR A1h[0] GPIO_CS4 [DBUFOE]

CS5_DIR A1h[2] GPIO_CS5 [IOCS16]

CS6_DIR A1h[4] GPIO_CS6 [IOCHRDY]

CS7_DIR A1h[6] GPIO_CS7 [PIRQ1]

Table B-1 Pin Termination Control (continued)

Control Bit CSC Index Pins Affected
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CS8_DIR A2h[0] GPIO_CS8 [PIRQ0]

CS9_DIR A2h[2] GPIO_CS9 [TC]

CS10_DIR A2h[4] GPIO_CS10 [AEN]

CS11_DIR A2h[6] GPIO_CS11 [PDACK0]

CS12_DIR A3h[0] GPIO_CS12 [PDRQ0]

CS13_DIR A3h[2] GPIO_CS13 [PCMA_VCC]*

CS14_DIR A3h[4] GPIO_CS14 [PCMA_VPP1]*

GPIO15_DIR A3h[6] GPIO15 [PCMA_VPP2]*

GPIO16_DIR A4h[0] GPIO16 [PCMB_VCC]*

GPIO17_DIR A4h[1] GPIO17 [PCMB_VPP1]*

GPIO18_DIR A4h[2] GPIO18 [PCMB_VPP2]*

GPIO19_DIR A4h[3] GPIO19 [LBL2]

GPIO20_DIR A4h[4] GPIO20 [CD_A2]*

GPIO21_DIR A4h[5] GPIO21 [PPDWE]

GPIO22_DIR A4h[6] GPIO22 [PPOEN]

GPIO23_DIR A4h[7] GPIO23 [SLCT] [WP_B]*

GPIO24_DIR A5h[0] GPIO24 [BUSY] [BVD2_B]*

GPIO25_DIR A5h[1] GPIO25 [ACK] [BVD1_B]*

GPIO26_DIR A5h[2] GPIO26 [PE] [RDY_B]*

GPIO27_DIR A5h[3] GPIO27 [ERROR] [CD_B]*

GPIO28_DIR A5h[4] GPIO28 [INIT] [REG_B]

GPIO29_DIR A5h[5] GPIO29 [SLCTIN] [RST_B]*

GPIO30_DIR A5h[6] GPIO30 [AFDT] [MCEH_B]*

GPIO31_DIR A5h[7] GPIO31 [STRB] [MCEL_B]*

COL0PULLUP CAh[0] KBD_COL0 [XT_DAT]

COL1PULLUP CAh[1] KBD_COL1 [XT_CLK]

COL2PULLUP CAh[2] KBD_COL2 [PIRQ3]

COL3PULLUP CAh[3] KBD_COL3 [PIRQ4]

COL4PULLUP CAh[4] KBD_COL4 [PIRQ5]

COL5PULLUP CAh[5] KBD_COL5 [PIRQ6]

COL6PULLUP CAh[6] KBD_COL6 [PIRQ7]

COL7PULLUP CAh[7] KBD_COL7

Table B-1 Pin Termination Control (continued)

Control Bit CSC Index Pins Affected
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* This signal is not supported on the ÉlanSC410 microcontroller.

UART_ENB D1h[0] SIN 
RIN
DSR
DCD
CTS
SOUT
RTS
DTR

PP_MODE D2h[1–0] GPIO23 [SLCT] [WP_B]*
GPIO24 [BUSY] [BVD2_B]*
GPIO25 [ACK] [BVD1_B]*
GPIO26 [PE] [RDY_B]*
GPIO27 [ERROR] [CD_B]*
GPIO28 [INIT] [REG_B]*
GPIO29 [SLCTIN] [RST_B]*
GPIO30 [AFDT] [MCEH_B]*
GPIO31 [STRB] [MCEL_B]*

SIRIN_PD_DIS EAh[6] SIRIN

SKA_PU_EN F2h[0] GPIO20 [CD_A2]*
CD_A*
RDY_A*
BVD1_A*
BVD2_A*
WP_A*
WAIT_AB*

SKB_PU_EN F2h[1] GPIO23 [SLCT] [WP_B]*
GPIO24 [BUSY] [BVD2_B]*
GPIO25 [ACK] [BVD1_B]*
GPIO26 [PE] [RDY_B]*
GPIO27 [ERROR] [CD_B]*

Table B-1 Pin Termination Control (continued)

Control Bit CSC Index Pins Affected
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INDEX
Numerics
32KXTAL2–32KXTAL1 signals

usage, 6-5

A
AC Supply Active signal. See ACIN signal.
ACIN signal

control, 5-4–5-6
description, 4-8
usage, 5-21, 5-24–5-25, 5-27, 5-31, 5-35

ACK signal
control, 14-2
description, 4-9

Activity Classification Registers A–D 
(CSC index 6A–6Dh)

function, 5-5
Activity Source Enable Registers A–D 

(CSC index 62–65h)
function, 5-4

Activity Source Status Registers A–D 
(CSC index 66h–69h)

function, 5-5
address buses, 4-24

address generation (figure), 4-24
Address Window Enable Register 

(PC Card index 06h/46h)
function, 7-2, 19-4
usage, 7-9, 19-11

AEN signal
control, 4-25, 10-3
description, 4-5
usage, 10-4, 10-6

AFDT signal
control, 14-1
description, 4-9

AL Register
usage, 3-11

Alternate CPU Reset Control Port (Port 00EFh)
function, 4-40
usage, 4-2

Alternate Gate A20 Control Port (Port 00EEh)
function, 4-40

Am486 CPU
cache configuration options (table), 3-3
cache memory management, 3-3
CPU control register summary (table), 3-1
CPU core identification

CPUID instruction, 3-18, 3-20
ÉlanSC400 microcontroller-specific features, 3-2
instruction set, xxiv
overview, 3-1
registers, 3-1
System Management Mode (SMM), 3-3

auto Halt restart, 3-10
base relocation example, 3-11
emulating I/O instructions, 3-11
exceptions and interrupts, 3-9
execution environment, 3-8
I/O trapping, 3-10
memory mapping and caching, 7-12
requirements, 3-4
restarting I/O instructions, 3-10
SMM initial register values (table), 3-8
SRAM state save map (table), 3-7
SRESET, 4-40
SRESET interaction, 3-17
state save map, 3-6
System Management Interrupt (SMI), 3-5

generation, 5-30
System Management Random Access Memory 
(SMRAM), 3-4
uses, 3-3

Attribute Memory Select signals. 
See REG_A, REG_B signals.

Auto Line Feed Detect signal. See AFDT signal.

B
Backup Battery Sense signal. See BBATSEN signal.
BALE signal

control, 4-26
description, 4-5

Battery Low and ACIN SMI/NMI Enable Register 
(CSC index 93h)

function, 5-6
Battery Low and ACIN SMI/NMI Status Register 

(CSC index 97h)
function, 5-6
Index I-1



Battery Low Detect signals. See BL2–BL0 signals.
Battery Voltage Detect signals. See BVD1_A 

(STSCHG_A)–BVD1_B (STSCHG_B) signals.
Battery Voltage Detect signals. See BVD2_A 

(SPKR_A)–BVD2_B (SPKR_B) signals.
Battery/AC Pin Configuration Registers A–B 

(CSC index 70–71h)
function, 5-5
usage, 5-12, 5-25–5-26

Battery/AC Pin State Register (CSC index 72h)
function, 5-5
usage, 5-25–5-26

BBATSEN signal
control, 13-3
description, 4-12
usage, 4-2, 13-7

Bidirectional mode. See parallel port.
bits

DEPTHx, 9-5
DIR, 14-6
DM, 13-9
DSIZE, 8-11
DV2–DV0, 13-6
FAST_ ROM, 8-11
FIFOEN, 15-7
ID2–ID0, 15-6
IRQ_ENABLE, 18-12
IRQF, 13-6
PLLRATIO, 6-6
RS3–RS0, 13-5
SELDEVICE, 15-7
SELMODE, 18-11–18-12
SET, 13-6
SPKD, 12-3
START_DMA, 18-10
TERM_LATCH, 2-7, B-1
THRE, 15-6, 18-13
UART_ENB, 15-7
UIP, 13-6
VALUE, 17-7
VERTDOUB, 20-33
VRT, 13-7
WAIT_BRST, 8-9
WAIT_NBRST, 8-9
WIDTHx, 9-5

BL2–BL0 signals
control, 5-4–5-6
description, 4-8
usage, 5-21, 5-24–5-26, 5-31, 20-39

BNDSCN_EN signal
description, 4-6
usage, 4-17, 21-1

BNDSCN_TCK signal
control, 4-17
description, 4-12
usage, 21-1–21-2, 21-4–21-8

BNDSCN_TDI signal
control, 4-17
description, 4-12
usage, 21-1–21-2, 21-4, 21-6

BNDSCN_TDO signal
control, 4-17
description, 4-12
usage, 21-1–21-2, 21-4, 21-6

BNDSCN_TMS signal
control, 4-17
description, 4-12
usage, 21-1, 21-5–21-8

Boundary Scan Enable signal. 
See BNDSCN_EN signal.

Bus Address Latch Enable signal. See BALE signal.
BUSY signal

control, 14-2, 14-9
description, 4-9

BVD1_A (STSCHG_A) signal
description, 4-10

BVD1_B (STSCHG_B) signal
description, 4-10
usage, 19-18

BVD2_A (SPKR_A) signal
description, 4-10
usage, 10-8, 19-17–19-18

BVD2_B (SPKR_B) signal
description, 4-10
usage, 10-8, 19-17–19-18

Byte High Enable signal. See SBHE signal.

C
Cache and VL Miscellaneous Register (CSC index 14h)

function, 3-1, 7-1
usage, 3-3, 4-2, 4-35, 7-11, 9-2

Card Data Direction signal. See ICDIR signal.
Card Enables, High Byte signals. 

See MCEH_A, MCEH_B signals.
Card Enables, Low Byte signals. 

See MCEL_A, MCEL_B signals.
Card Reset signals. See RST_A, RST_B signals.
Card Status Change Interrupt Configuration Register 

(PC Card index 05h/45h)
function, 19-4
usage, 19-18

Card Status Change Register (PC Card index 04h/44h)
function, 19-4
usage, 19-18

CAS3–CAS0 signals
usage, 9-12
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CASH3–CASH0 signals
control, 9-3
description, 4-7
usage, 9-1, 9-4, 9-6

CASL3–CASL0 signals
control, 9-3
description, 4-7
usage, 9-1, 9-4, 9-6

CD_A signal
description, 4-10
usage, 19-18–19-19

CD_A2 signal
usage, 19-20

CD_B signal
usage, 19-18–19-19

CFG1–CFG0 signals
description, 4-7, 8-7

CFG2 signal
description, 4-7
usage, 8-7

CFG3 signal
description, 4-7
usage, 4-17, 8-7, 9-1

CFG3–CFG0 signals
power-on reset, 4-3

CGA Color Select Register (Port 03D9h)
function, 20-3
usage, 20-11

CGA Data Port (Port 03D5h)
function, 20-2

CGA Index Register (Port 03D4h)
function, 20-2

CGA Mode Control Register (Port 03D8h)
function, 20-3
usage, 20-11

CGA mode. See graphics controller.
CGA Status Register (Port 03DAh)

function, 20-3
chip selects. See programmable chip selects 

(GPIO_CS).
Clear To Send signal. See CTS signal.
CLK_IO Pin Output Clock Select Register 

(CSC index 83h)
function, 6-1
usage, 10-3, 15-3

CLK_IO signal
control, 6-1
description, 4-9
usage, 6-8, 10-3, 12-1, 12-5–12-6, 15-3

clock control
block diagram, 6-1
bus cycle clock speeds (table), 6-10
clock generation, 6-3

32-KHz crystal circuit (figure), 6-5

32-KHz crystal oscillator, 6-5
32-KHz oscillator circuit (figure), 6-5
clock generation (figure), 6-3
frequency selection control for graphics dot clock 
PLL (table), 6-6
Graphics Dot Clock PLL, 6-6
Graphics Dot Clock PLL block diagram, 6-7
High-Speed PLL, 6-7
High-Speed PLL block diagram (figure), 6-7
integrated peripheral clock sources (table), 6-4
Intermediate and Low-Speed PLLs, 6-5
Intermediate And Low-Speed PLLs block dia-
gram (figure), 6-6

clock source block diagram (figure), 6-2
clock speeds (table), 6-9
clocks

CPU 1x clock, 6-8
DMA clock, 6-8
memory clock, 6-8
RTC clock, 6-8
system clock, 6-8
timer clock, 6-8
UART clock, 6-8

initialization, 6-11
operation, 6-3
overview, 6-1
power management, 6-11

clock speed per PMU mode (table), 6-12
registers, 6-1

Clock Control Register (CSC index 82h)
function, 6-1
usage, 5-2, 6-11, 10-3, 18-2, 18-11

Clock Input/Output signal. See CLK_IO signal.
Column Address Strobe High signals. 

See CASH3–CASH0 signals.
Column Address Strobe Low signals. 

See CASL3–CASL0 signals.
COM1 Line Control Register (Port 03FBh)

usage, 18-13
COM2 FIFO Control Register (Port 02FAh)

usage, 18-13
COM2 Line Control Register (Port 02FBh)

usage, 18-13
Command Timing Registers

function, 19-4
usage, 19-7, 19-13, 19-17

configuration
direct-mapped registers, 2-2
feature trade-offs, 1-16, 2-7
indexed registers

chip setup and control (CSC) registers, 2-6
CSC indexed register map (table), 2-6
index and data I/O port usage (figure), 2-5
indexed addressing, 2-2
indexed configuration register space (figure), 2-5
indexed register space (table), 2-3
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LCD graphics controller indexed registers, 2-3
PC Card indexed registers, 2-4
RTC indexed registers, 2-3

indirect-mapped registers (indexed registers), 2-3
internal I/O port address map (table), 2-2
methods, 2-1
multiplexed pin configuration control (table), A-1
overview, 2-1
pin multiplexing, 2-7
pin termination, 2-7
register spaces, 2-2
system trade-offs, 1-16

Configuration Pin 0 signal. See CFG0 signal.
Configuration Pin 1 signal. See CFG1 signal.
Configuration Pin 2 signal. See CFG2 signal.
Configuration Pin 3 signal. See CFG3 signal.
Configuration RAM

function, 13-3
CPU Clock Auto Slowdown Register (CSC index 81h)

function, 6-1
CPU Clock Speed Register (CSC index 80h)

function, 6-1, 6-11
usage, 6-8, 6-11

CPU. See Am486 CPU.
CPUID instruction

description, 3-19
example, 3-20
operation, 3-19
timing, 3-18

Critical Suspend mode. 
See power management unit (PMU).

CRO Register
usage, 3-3

Crystal Interface signals. 
See 32KXTAL1–32KXTAL2 signals.

CTS signal
control, 15-2
description, 4-9

Cursor Address High Register (graphics index 0Eh)
function, 20-4

Cursor Address Low Register (graphics index 0Fh)
function, 20-4

Cursor End Register (graphics index 0Bh)
function, 20-4
usage, 20-18, 20-20

Cursor Start Register (graphics index 0Ah)
function, 20-4
usage, 20-18, 20-20

customer service
FTP site, iii
hotlines, iii

D
D15–D0 signals

control, 9-3
usage, 8-4

D31–D0 signals
description, 4-7
usage, 1-13, 4-18, 8-5, 9-1, 9-4

Data Buffer Output Enable signal. See DBUFOE signal.
Data Bus signals. See D31–D0 signals.
data buses, 4-18

16-bit DRAM and 16-bit SD bus, 4-19
32-bit DRAM and 16-bit SD bus, 4-19
32-bit DRAM, 16-bit SD, and 32-bit ROM bus, 4-19
byte lanes (table), 4-19
byte lanes by access target and type (table), 4-20
data paths, 4-20

Data Carrier Detect signal. See DCD signal.
Data Set Ready signal. See DSR signal.
Data Terminal Ready signal. See DTR signal.
DBUFOE signal

control, 4-17, 5-7
description, 4-5
usage, 8-5–8-7, 9-1

DBUFRDH signal
description, 4-5
usage, 8-6–8-7, 9-1

DBUFRDL signal
control, 4-17, 8-6–8-7
description, 4-5
usage, 8-7, 9-1

DCD signal
control, 15-2
description, 4-9

DEPTHx field
usage, 9-5

DIR bit
usage, 14-6

DM bit
usage, 13-9

DMA Address Enable signal. See AEN signal.
DMA Channel 0–3 Extended Page Register 

(CSC index D9h)
function, 10-3

DMA Channel 5–7 Extended Page Register 
(CSC index DAh)

function, 10-3
DMA controller

addressing DMA channels, 10-5
16-bit channel address generation (table), 10-5
8-bit channel address generation (table), 10-5

autoinitialize, 10-7
block diagram, 10-3
channel mapping, 10-8

DMA channel mapping (table), 10-8
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initialization, 10-9
latency, 10-9
operation, 10-5
overview, 10-1
power management, 10-9
registers, 10-1
transfers, 10-6

block transfer mode, 10-7
demand transfer mode, 10-7
DMA cycle types, 10-7
DMA initiator/target combinations (table), 10-6
priority, 10-7
single transfer mode, 10-7

DMA Resource Channel Map Register A 
(CSC index DBh)

function, 10-3
usage, 10-8, 18-2, 18-11

DMA Resource Channel Map Register B 
(CSC index DCh)

function, 10-3
usage, 10-8, 19-3

documentation
ÉlanSC400 microcontroller documentation set, xxiii
ÉlanSC410 microcontroller documentation set, xxiii
FTP site, iii
literature ordering, iii
world wide web site, iii

DRAM Bank 0 Configuration Register (CSC index 00h)
function, 9-3

DRAM Bank 1 Configuration Register (CSC index 01h)
function, 9-3

DRAM Bank 2 Configuration Register (CSC index 02h)
function, 9-3

DRAM Bank 3 Configuration Register (CSC index 03h)
function, 9-3

DRAM Control Register (CSC index 04h)
function, 9-3
usage, 9-5, 9-12

DRAM controller
bank configuration (figure), 9-4
bank configurations supported (table), 9-7
block diagram, 9-4
initialization, 9-13

boot process overview, 9-13
detection algorithm, 9-14
memory sizing, 9-14

memory management, 7-7
operation, 9-5
power management, 9-15
registers, 9-3
system address decoding, 9-5

CAS strobe assertion (byte lane selection), 9-5
byte lane mapping (table), 9-6

interleaved system address (A) to memory
address (MA) mapping (table), 9-10

non-interleaved system address (A) to memory 
address (MA) mapping (table), 9-8
RAS strobe assertion (bank selection), 9-5

system design issues, 9-1
timing and control signal generation, 9-12

CAS precharge delay, 9-12
CAS pulse width, 9-12
MWE generation, 9-12
page mode and RAS time-outs, 9-12
refresh, 9-12

DRAM Refresh Control Register (CSC index 05h)
function, 9-3
usage, 9-12

Drive Strength Control Register A (CSC index 06h)
function, 9-3

Drive Strength Control Register B (CSC index 07h)
function, 9-3

DSIZE bit
usage, 8-11

DSR signal
control, 15-2
description, 4-9

DTR signal
control, 15-2
description, 4-9

Dual Scan Offset Address High Register 
(graphics index 3Ch)

function, 20-5
usage, 20-33, 20-35

Dual Scan Offset Address Low Register 
(graphics index 3Dh)

function, 20-5
Dual Scan Row Adjust Register (graphics index 3Bh)

function, 20-5
usage, 20-33

DV2–DV0 bits
usage, 13-6

DX Register
usage, 4-4

E
EAX Register

usage, 3-11, 3-19
EBX Register

usage, 3-19
ECX Register

usage, 3-19
EDX Register

usage, 3-19
EFLAGS Register

usage, 3-9
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ÉlanSC400 microcontroller
block diagram, 1-3
configuration

basics, 2-1
CPU cache, 3-3

differences from ÉlanSC410 microcontroller, 1-2
distinctive characteristics, 1-1
documentation set, xxiii
logic symbol (figure), 4-14
multiplexed pins (figure), 4-14
overview, 1-5

address buses, 1-14
Am486 CPU core, 1-6
clock generation, 1-6
data buses, 1-13
DMA controller, 1-8
DRAM controller, 1-7
EPP parallel port, 1-9
general-purpose inputs/outputs, 1-11
graphics controller, 1-12
interrupt controller, 1-8
ISA bus interface, 1-15
JTAG test features, 1-13
keyboard interfaces, 1-10
memory management, 1-14
PC Card controller, 1-11
PC/AT peripherals, 1-8
PC/AT support features, 1-9
power management, 1-6
programmable interval timer (PIT), 1-9
real-time clock (RTC), 1-9
ROM/Flash interface, 1-7
serial port (UART), 1-10
system interfaces, 1-13
VESA Local (VL) bus, 1-15

package dimensions, xxiv
pin designations, xxiv
register descriptions, xxiv
system considerations, 1-16

system diagram with trade-offs (figure), 1-18
typical mobile terminal design (figure), 1-17

thermal characteristics, xxiv
timing, xxiv

ÉlanSC400 Microcontroller Revision ID Register 
(CSC index FFh)

function, 3-2
ÉlanSC410 microcontroller

block diagram, 1-4
configuration

basics, 2-1
CPU cache, 3-3

differences from ÉlanSC400 microcontroller, 1-2
distinctive characteristics, 1-1
documentation set, xxiii
logic symbol (figure), 4-15
multiplexed pins (figure), 4-15

overview, 1-5
address buses, 1-14
Am486 CPU core, 1-6
clock generation, 1-6
data buses, 1-13
DMA controller, 1-8
DRAM controller, 1-7
EPP parallel port, 1-9
general-purpose inputs/outputs, 1-11
interrupt controller, 1-8
ISA bus interface, 1-15
JTAG test features, 1-13
keyboard interfaces, 1-10
memory management, 1-14
PC/AT peripherals, 1-8
PC/AT support features, 1-9
power management, 1-6
programmable interval timer (PIT), 1-9
real-time clock (RTC), 1-9
ROM/Flash interface, 1-7
serial port (UART), 1-10
system interfaces, 1-13
VESA Local (VL) bus, 1-15

package dimensions, xxiv
pin designations, xxiv
register descriptions, xxiv
signals not supported, 4-13
system considerations, 1-16

system diagram with trade-offs (figure), 1-19
thermal characteristics, xxiv
timing, xxiv

Enhanced PC Card mode. See PC Card controller.
EPP mode. See parallel port.
ERROR signal

control, 14-2
description, 4-9

Extend Bus Cycle signal. See WAIT_AB signal.
Extended Feature Control Register 

(graphics index 52h)
function, 20-6
usage, 20-13, 20-20, 20-35

F
FAST_ ROM bit

usage, 8-11
Fast-Speed ROM mode. See ROM/Flash interface.
fields. See bits.
FIFOEN bit

usage, 15-7
Font Buffer Base Address High Byte 

(graphics index 4Eh)
function, 20-5
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Font Table Register (graphics index 42h)
function, 20-5
usage, 20-10, 20-21, 20-32

Frame Buffer Base Address Register 
(graphics index 4Dh)

function, 20-5
usage, 20-9, 20-23–20-24

Frame Sync Delay Register (graphics index 39h)
function, 20-5

Frame/Font Buffer Base Address Register Low 
(graphics index 4Fh)

function, 20-5
usage, 7-2, 20-9, 20-24

FRM signal
description, 4-11
usage, 20-38–20-39

G
General Purpose I/O signals. 

See GPIO31–GPIO15 signals.
general-purpose input/output (GPIO)

general-purpose chip selects (GP_CSA–GP_CSD), 
17-8
forcing an SMI, 17-9
mapping to a GPIO_CS pin, 17-9
PMU activities, 17-9

GPIO signals
block diagram (figure), 17-4

GPIO_CS signals, 17-8
block diagram (figure), 17-5
PMU activity and wake-up, 17-8
SMI/NMI generation, 17-8

initialization, 17-6
GPIO pins and simple input, 17-6
GPIO pins and simple output, 17-7
GPIO_CS pins and automatic output, 17-7

automatic chip select outputs, 17-7
automatic PMU information output, 17-7

overview, 17-1
external pins, 17-1
internal chip-select logic, 17-1

power management, 17-9
registers, 17-2
signal descriptions, 4-10
system implications, 17-6

GP_CS Activity Enable Register (CSC index 60h)
function, 5-4, 17-2
usage, 17-9

GP_CS Activity Status Register (CSC index 61h)
function, 5-4, 17-2
usage, 17-2, 17-9

GP_CS to GPIO_CS Map Registers A–B 
(CSC index B2–B3h)

function, 17-3

GP_CSA I/O Address Decode and Mask Register 
(CSC index B5h)

function, 17-3
GP_CSA I/O Address Decode Register 

(CSC index B4h)
function, 17-3

GP_CSA/B I/O Command Qualification Register 
(CSC index B8h)

function, 17-3
GP_CSB I/O Address Decode and Mask Register 

(CSC index B7h)
function, 17-3

GP_CSB I/O Address Decode Register 
(CSC index B6h)

function, 17-3
GP_CSC Memory Address Decode and Mask Register 

(CSC index BAh)
function, 17-3

GP_CSC Memory Address Decode Register 
(CSC index B9h)

function, 17-3
GP_CSC/D Memory Command Qualification Register 

(CSC index BDh)
function, 17-3

GP_CSD Memory Address Decode Register 
(CSC index BBh)

function, 17-3
GPIO as a Wake-Up or Activity Source Status Registers 

A–B (CSC index 5A–5Bh)
function, 5-4, 17-2

GPIO Function Select Registers E–F 
(CSC index A4–A5h)

function, 17-2
GPIO functions. See general-purpose input/output 

(GPIO).
GPIO Read-Back/Write Registers A–D 

(CSC index A6–A9h)
function, 17-2

GPIO Termination Control Registers A–D 
(CSC index 3B–3Eh)

function, 17-2
GPIO_CS Function Select Register A (CSC index A0h)

usage, 17-7
GPIO_CS Function Select Registers A–D 

(CSC index A0–A3h)
function, 5-7, 17-2

GPIO_CS14–GPIO_CS0 signals
control, 5-7, 8-2, 16-3
description, 4-10
usage, 5-2, 5-24, 5-35–5-36, 17-1, 17-9

GPIO_PMU to GPIO_CS Map Registers A–B 
(CSC index AE–AFh)

function, 5-7
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GPIO_PMUA Mode Change Register (CSC index AAh)
function, 5-7
usage, 17-7

GPIO_PMUA–GPIO_PMUD signals
usage, 5-2, 5-24, 17-7

GPIO_PMUB Mode Change Register (CSC index ABh)
function, 5-7
usage, 17-7

GPIO_PMUC Mode Change Register (CSC index ACh)
function, 5-7
usage, 17-7

GPIO_PMUD Mode Change Register (CSC index ADh)
function, 5-7
usage, 17-7

GPIO_XMI to GPIO_CS Map Register 
(CSC index B0h)

function, 5-7, 17-2
usage, 3-5, 17-8–17-9

GPIO31–GPIO15 signals
description, 4-10
usage, 5-36, 14-1, 17-1, 17-9, 19-5

graphics controller
block diagram, 20-6
CGA graphics modes, 20-11

color mapping (high-resolution), 20-13
color mapping (low-resolution), 20-13
color processing, 20-13
memory byte format (high-resolution), 20-12
memory byte format (low-resolution), 20-13
pixel formats, 20-12

CGA/MDA text modes, 20-15
10x12 font example (figure), 20-22
16x14 font example (figure), 20-23
8x8 font example (figure), 20-22
black-and-white attributes (figure), 20-19
CGA attribute byte (figure), 20-17
CGA attribute byte background color, 20-18
CGA attribute byte foreground color, 20-17
CGA/MDA character (figure), 20-17
cursor blinking (table), 20-20
cursor generation, 20-20
data structures, 20-15
display data memory mapping (table), 20-16
font address mapping (table), 20-21
fonts, 20-20
MDA attribute byte (figure), 20-18

clock control, 20-7
configuring graphics modes, 20-32

dual-scan panel setup, 20-33
CPA graphics modes

memory map (figure), 20-12
data formatting, 20-35

color STN, single-scan panels, 20-38
monochrome, dual-scan panels, 20-37
monochrome, single-scan panels, 20-36

flat-mapped graphics modes, 20-23
16-grayscale palette mapping, 1 BPP, 20-28
16-grayscale palette mapping, 2 BPP, 20-28
16-grayscale palette mapping, 4 BPP, 20-28
data formats, 20-27
memory byte format

1 BPP flat-mapped graphics mode, 20-28
2 BPP flat-mapped graphics mode, 20-28
4 BPP flat-mapped graphics mode, 20-28

memory configuration example, 20-24, 20-27
memory configurations (table), 20-24
panel example

1 BPP, 640x240 (figure), 20-25
2 BPP, 640x240 (figure), 20-25
4 BPP, 640x240 (figure), 20-26

graphics buffers, 20-8
font buffer, 20-10
frame buffer, 20-8
Graphics Frame Buffer MMS Window, 7-9, 20-8
managing graphics memory, 20-10

grayscale generation, 20-29
16-color grayscale duty cycles (table), 20-30
16-color grayscale options, 20-29
4-color grayscale duty cycles (table), 20-29
4-color grayscale encoding, 20-29

HGA graphics modes, 20-13
16-grayscale palette mapping (figure), 20-15
memory byte format (figure), 20-15
memory map (figure), 20-14
memory model, 20-14
pixel formats, 20-15

initialization, 13-1, 20-38
operation, 20-6
overview, 20-1
power management, 20-39

emergency power-down, 20-39
registers, 20-2
screen controller registers, 20-32
screen timing generation and cursor control, 20-7
signal descriptions, 4-11

Graphics Controller Grayscale Mode Register 
(graphics index 43h)

function, 20-5
usage, 20-29

Graphics Controller Grayscale Remapping Registers 
(graphics index 44–4Bh)

function, 20-5
usage, 20-29

H
HGA Configuration Register (Port 03BFh)

function, 20-3
usage, 20-13

HGA mode. See graphics controller.
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High Byte Data Buffer Direction Control signal. 
See DBUFRDH signal.

High-Speed Infrared mode. See infrared port.
High-Speed mode. 

See power management unit (PMU).
Horizontal Border End Register (graphics index 33h)

function, 20-4
usage, 20-33, 20-35

Horizontal Display End Register (graphics index 31h)
function, 20-4
usage, 20-33

Horizontal Line Pulse Start Register 
(graphics index 32h)

function, 20-4
Horizontal Total Register (graphics index 30h)

function, 20-4
usage, 20-32–20-33, 20-35

Hyper/High-Speed Mode Timers Register 
(CSC index 42h)

function, 5-3
Hyper-Speed mode. 

See power management unit (PMU).

I
I/O Access SMI Enable Register B (CSC index 9Ah)

usage, 3-10, 17-9
I/O Access SMI Enable Registers A–B 

(CSC index 99–9Ah)
function, 5-6

I/O Access SMI Status Register B (CSC index 9Ch)
usage, 3-10, 17-9

I/O Access SMI Status Registers A–B 
(CSC index 9B–9Ch)

function, 5-7
I/O Channel Ready signal. See IOCHRDY signal.
I/O Chip Select 16 signal. See IOCS16 signal.
I/O Instruction Restart Slot Register

usage, 5-31
I/O Read Command signal. See IOR signal.
I/O Window Address Registers

function, 19-4
I/O Window Control Register (PC Card index 07h/47h)

function, 19-4
I/O Write Command signal. See IOW signal.
ICDIR signal

description, 4-11
usage, 19-8

ID2–ID0 field
usage, 15-6

Identification and Revision Register 
(PC Card index 00h/40h)

function, 19-3
usage, 19-23

infrared port
block diagram, 18-3
High-Speed Infrared mode, 18-1, 18-5, 18-7

back-to-back frames, 18-9
bit-stuffing, 18-8
data modulation (figure), 18-7
data stream, 18-7
DMA, 10-8, 18-9–18-10, 18-12
FIFO usage, 18-8
frame abort, 18-9
frame format (figure), 18-6
frame sequences, 18-7
interrupts, 18-12
IrDA frame, 18-6
receive and transmit state machines, 18-8
serial infrared interaction pulse generation, 18-12
transmit data transfers, 18-10–18-11

initialization, 18-13
IrDA standard, xxiv, 18-3–18-4
operation, 18-3
overview, 18-1
power management, 18-13
registers, 18-2
Slow-Speed Infrared mode, 18-1, 18-3–18-4

hardware support, 18-4
interrupts, 18-4
serial data unit (SDU) (figure), 18-5
transmit and receive sections, 18-4

UART serial data unit (SDU) (figure), 18-5
INIT signal

control, 14-1
description, 4-9

initialization
clocks, 6-11
device, 4-1
DMA controller, 10-9
DRAM controller, 9-13
general-purpose input/output (GPIO) pins, 17-6
graphics controller, 20-38
infrared port, 18-13
ISA bus interface, 4-34
keyboard interfaces, 16-13
multiplexed pin configuration (table), A-1
parallel port, 14-10
PC Card controller, 19-22
PMU, 5-36
programmable interrupt controller (PIC), 11-5
programmable interval timer (PIT), 12-6
real-time clock (RTC), 13-9
ROM/Flash interface, 8-6
serial port (UART), 15-7
VL-bus controller, 4-38
Index I-9



Initialize Printer signal. See INIT signal.
instruction set, xxiv
Interface Status Register (PC Card index 01h/41h)

function, 19-3
usage, 19-21

Internal Graphics Control Register A (CSC index DDh)
function, 20-4
usage, 4-35, 20-33, 20-35, 20-38

Internal Graphics Control Register B (CSC index DEh)
function, 20-4
usage, 20-31, 20-38

Internal I/O Device Disable/Echo Z-Bus Configuration 
Register (CSC index D0h)

usage, 4-26, 4-31, 7-2, 10-3, 13-2, 19-3
Interrupt and General Control Register 

(PC Card index 03h/43h)
function, 19-4
usage, 4-11, 19-11, 19-17, 19-19

Interrupt Configuration Register A (CSC index D4h)
function, 11-2

Interrupt Configuration Register B (CSC index D5h)
function, 11-2

Interrupt Configuration Register C (CSC index D6h)
function, 11-2

Interrupt Configuration Register D (CSC index D7h)
function, 11-2

Interrupt Configuration Register E (CSC index D8h)
function, 11-2
usage, 14-2, 15-1, 15-7, 18-13

interrupts. See programmable interrupt controller (PIC).
IOCHRDY signal

control, 4-25
description, 4-6
usage, 8-9

IOCS16 signal
control, 4-25
description, 4-6

IOR signal
description, 4-6
usage, 4-29, 10-6–10-7, 17-8, 19-7, 19-17

IOW signal
description, 4-6
usage, 4-29, 10-6–10-7, 17-8, 19-7, 19-17

IrDA Control Register (CSC index EAh)
function, 18-2
usage, 15-7, 18-11–18-13

IrDA CRC Status Register (CSC index ECh)
function, 18-2
usage, 18-8–18-9, 18-12

IrDA Frame Length Register A (CSC index EEh)
function, 18-2
usage, 18-9

IrDA Frame Length Register B (CSC index EFh)
function, 18-2
usage, 18-9

IrDA Own Address Register (CSC index EDh)
function, 18-2
usage, 18-8

IrDA Serial Input signal. See SIRIN signal.
IrDA Serial Output signal. See SIROUT signal.
IrDA Status Register (CSC index EBh)

function, 18-2
usage, 18-11–18-12

IrDA. See infrared port.
IRQ_ENABLE bit

usage, 18-12
IRQF bit

usage, 13-6
ISA bus interface, 4-25

16-bit maximum ISA interface (figure), 4-27
8-bit ISA bus with external data buffer (figure), 4-30
8-bit minimal ISA interface (figure), 4-27
addressing, 4-29, 7-4
block diagram, 4-26
bus speeds, 4-29
command strobes, 4-29
debugging, 4-31
DMA cycle types (table), 4-30, 10-8
echoing direct-mapped PC/AT registers, 4-31
echoing extended registers, 4-33
external buffer control signals, 4-30
initialization, 4-34
ISA Bus/PC AT Bus Draft Standard 996, xxiv
ISA signals (table), 4-28
operation, 4-29
overview, 4-25
power management, 4-34
registers, 4-25
shared signals (table), 4-28, 8-3, 16-5
supported ISA signals, 4-28

J
JTAG. See test and debugging.

K
KBD_COL7–KBD_COL0 signals

description, 4-10
KBD_ROW14–KBD_ROW0 signals

control, 16-4
description, 4-10

Keyboard Column Register (CSC index C7h)
function, 16-4
usage, 16-5, 16-10
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Keyboard Column Termination Control Register 
(CSC index CAh)

function, 16-4
Keyboard Configuration Register A (CSC index C0h)

function, 16-4
Keyboard Configuration Register B (CSC index C1h)

function, 16-4
usage, 16-9

Keyboard Input Buffer Read-Back Register 
(CSC index C2h)

function, 16-4
keyboard interfaces

initialization, 13-1, 16-13
matrix keyboard interface, 16-1, 16-5

block diagram (figure), 16-6
CPU-scanned keyboard, 16-8
key-pressed interrupt, 16-7
n-key rollover

example #1 (figure), 16-7
example #2 (figure), 16-7

shared signals (table), 8-3, 16-5
timer, 16-8
typematic support, 16-9
wake-up, 16-8

operation, 16-5
overview, 16-1
power management, 16-13
registers, 16-3
SCP emulation, 16-2, 16-9

SCP GateA20 and reset CPU emulation, 16-9
signal descriptions, 4-10
system scenarios, 16-10

matrix keyboard with PC/AT compatibility, 16-11
simple matrix keyboard with interrupts, 16-10
simple matrix keyboard with polling, 16-10

XT keyboard interface, 16-2, 16-12
controlling, 16-13
enabling, 16-13
interrupts, 16-12
IRQ1 generation (table), 16-12
timing, 16-13

Keyboard Output Buffer Write Register 
(CSC index C3h)

function, 16-4
usage, 16-9, 16-11

Keyboard Row Register A (CSC index C8h)
function, 16-4
usage, 16-5

Keyboard Row Register B (CSC index C9h)
function, 16-4
usage, 16-5

Keyboard Status Register Write Register 
(CSC index C5h)

function, 16-4
usage, 16-9

Keyboard Timer Register (CSC index C6h)
function, 16-4

L
Latched Battery Low Detect 2 signal. See LBL2 signal.
LBL2 signal

description, 4-8
LC signal

description, 4-12
usage, 20-38–20-39

LCD Panel AC Modulation Clock Register 
(graphics index 41h)

function, 20-5
LCD Panel AC Modulation signal. See M signal.
LCD Panel Data signals. See LCDD7–LCDD0 signals.
LCD Panel Line Clock signal. See LC signal.
LCD Panel Line Frame Start signal. See FRM signal.
LCD Panel Shift Clock signal. See SCK signal.
LCD Panel VDD Voltage Control signal. 

See LVDD signal.
LCD Panel VEE Voltage Control signal. 

See LVEE signal.
LCD. See graphics controller.
LCDD7–LCDD0 signals

description, 4-12
usage, 20-38–20-39

LF_HS signal
description, 4-9
usage, 6-3

LF_INT signal
description, 4-9
usage, 6-3

LF_LS signal
description, 4-9
usage, 6-3

LF_VID signal
description, 4-9
usage, 6-3

Light Pen High Register (graphics index 10h)
function, 20-4

Light Pen Low Register (graphics index 11h)
function, 20-4

Linear ROMCS0 Attributes Register (CSC index 22h)
function, 8-1

Linear ROMCS0/Shadow Register (CSC index 21h)
function, 8-1

Local Bus Address Strobe signal. See VL_ADS signal.
Local Bus Burst Last signal. See VL_BLAST signal.
Local Bus Burst Ready signal. See VL_BRDY signal.
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Local Bus Byte Enable signals. See VL_BE3–VL_BE0 
signals.

Local Bus Clock signal. See VL_LCLK signal.
Local Bus Data/Code Status signal. 

See VL_D/C signal.
Local Bus Device Select signal. See VL_LDEV signal.
Local Bus Memory/I/O Status signal. 

See VL_M/IO signal.
Local Bus Ready signal. See VL_LRDY signal.
Local Bus Reset signal. See VL_RST signal.
Local Bus Write/Read Status signal. 

See VL_W/R signal.
local bus. See VL-bus controller.
Loop Filter signals. See LF_INT, LF_LS, LF_VID, 

LF_HS signals.
Low Byte Data Buffer Direction Control signal. 

See DBUFRDL signal.
Low-Speed mode. See power management unit (PMU).
Low-Speed/Standby Mode Timers Register 

(CSC index 43h)
function, 5-3

LVDD signal
description, 4-12
usage, 5-26, 6-8, 20-38–20-39

LVEE signal
description, 4-12
usage, 5-26, 20-39

M
M signal

description, 4-12
usage, 20-38–20-39

MA12–MA0 signals
control, 9-3
description, 4-7
usage, 9-1, 9-4–9-5, 9-8, 9-10, 9-12

matrix keyboard. See keyboard interfaces.
Matrix-Scanned Keyboard Column Output signals. 

See KBD_COL7–KBD_COL0 signals.
Matrix-Scanned Keyboard Row Input signals. 

See KBD_ROW14–KBD_ROW0 signals.
Maximum Scan Line Register (graphics index 40h)

function, 20-5
usage, 20-10, 20-18, 20-20, 20-32–20-33

MCEH_A signal
description, 4-11
usage, 19-19

MCEH_B signal
description, 4-11

MCEL_A signal
description, 4-11
usage, 19-19

MCEL_B signal
description, 4-11

MCS16 signal
control, 4-26
description, 4-6

MDA mode. See graphics controller.
MDA/HGA Data Port (Port 03B5h)

function, 20-2
MDA/HGA Index Register (Port 03B4h)

function, 20-2
MDA/HGA Mode Control Register (Port 03B8h)

function, 20-3
MDA/HGA Status Register (Port 03BAh)

function, 20-3
Memory Address signals. See MA12–MA0 signals.
Memory Chip Select signal. See MCS16 signal.
memory management

address decoding and aliasing, 7-3
internal address bus size, 7-3
ISA bus addressing, 7-4
special handling for A20, 7-3
top of memory CPU execution, 7-3

address translation example (figure), 7-6
caching, 7-11
memory mapping, 7-11
memory mapping system example (figure), 7-5
multiple memory spaces, 7-4
non-translated memory management, 7-6

DRAM memory management, 7-7
ROM0 memory management, 7-6

overview, 7-1
registers, 7-1
ROMCS2 operation, 7-11
system considerations, 7-11

2.7-Volt operation, 7-11
System Management Mode (SMM)

caching, 7-12
translated memory management, 7-8

MMS windows A–B, 7-8
MMS windows C–F, 7-9
PC Card memory management, 7-10

Memory Read Command signal. See MEMR signal.
Memory Window Address Offset Registers

function, 19-4
usage, 19-9, 19-13, 19-15–19-16

Memory Window Address Registers
function, 19-4
usage, 19-13, 19-16

Memory Write Command signal. See MEMW signal.
MEMR signal

description, 4-6
usage, 4-29, 10-6, 17-8

MEMW signal
description, 4-6
usage, 4-29, 10-6, 17-8
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Miscellaneous SMI/NMI Enable Register 
(CSC index 90h)

function, 5-6
usage, 3-5

Miscellaneous SMI/NMI Status Register 
(CSC index 94h)

function, 5-6
MMS Window A Destination Register (CSC index 32h)

function, 7-2
usage, 7-8

MMS Window A Destination/Attributes Register 
(CSC index 33h)

function, 7-2
usage, 7-8

MMS Window B Destination Register (CSC index 34h)
function, 7-2
usage, 7-8

MMS Window B Destination/Attributes Register 
(CSC index 35h)

function, 7-2
usage, 7-8

MMS Window C–F Attributes Register (CSC index 30h)
function, 7-1
usage, 7-9

MMS Window C–F Device Select Register 
(CSC index 31h)

function, 7-1
usage, 7-9

MMS windows. See memory management.
MMU. See memory management.
Mode Timer SMI/NMI Enable Register (CSC index 92h)

function, 5-6
Mode Timer SMI/NMI Status Register (CSC index 96h)

function, 5-6
usage, 17-8

Mouse Output Buffer Write Register (CSC index C4h)
function, 16-4
usage, 16-9

MWE signal
control, 9-3
description, 4-7
usage, 9-4, 9-12, 9-15

N
NMI master enable bit, 5-30
Non-Cacheable Window 0 Address Register 

(CSC index 10h)
function, 7-1

Non-Cacheable Window 0 Address/Attributes/SMM 
Register (CSC index 11h)

function, 3-1, 7-1

Non-Cacheable Window 1 Address Register 
(CSC index 12h)

function, 7-1
Non-Cacheable Window 1 Address/Attributes Register 

(CSC index 13h)
function, 7-1

Non-Display Lines Register (graphics index 34h)
function, 20-4
usage, 20-35

Normal-Speed ROM mode. See ROM/Flash interface.

O
OE signal

description, 4-11
usage, 9-4, 19-17

Offset Register (graphics index 3Eh)
function, 20-5
usage, 20-34

Overflow Register (graphics index 36h)
function, 20-5

Overlapping ISA Window Size Register 
(CSC index E2h)

function, 4-26
usage, 4-29, 7-7

Overlapping ISA Window Start Address Register 
(CSC index E1h)

function, 4-26
usage, 4-29, 7-7

P
Paper End signal. See PE signal.
parallel port

Bidirectional mode, 14-7
block diagram, 14-3
data transfer

Bidirectional and EPP modes (figure), 14-6
Data Register transactions (table), 14-6
PC/AT Compatible mode (figure), 14-5

enhanced parallel port (EPP) mode, 14-7
EPP read cycle (figure), 14-9
EPP write cycle (figure), 14-8

initialization, 14-10
minimal system design, 14-5
operating modes, 14-7
operation, 14-5
overview, 14-1
PC/AT Compatible mode, 14-5
pin definitions by mode, 14-4
power management, 14-10
registers, 14-1
signal definitions by mode (table), 14-4
signal descriptions, 4-9
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Parallel Port Configuration Register (CSC index D2h)
function, 14-3
usage, 14-2, 14-9

Parallel Port Output Buffer Enable signal. 
See PPOEN signal.

Parallel Port Write Enable signal. See PPDWE signal.
Parallel/Serial Port Configuration Register 

(CSC index D1h)
function, 14-2, 15-3, 18-2
usage, 14-2, 15-1, 15-7, 18-13

PC Card and Keyboard SMI/NMI Enable Register 
(CSC index 91h)

function, 5-6
usage, 16-3

PC Card and Keyboard SMI/NMI Status Register 
(CSC index 95h)

function, 5-6
usage, 16-3

PC Card controller
block diagram, 19-5
bus cycles, 19-11, 19-17

attribute memory read function (table), 19-11
attribute memory write function (table), 19-12
common memory read function (table), 19-12
common memory write function (table), 19-12
DMA cycle timing, 19-17
DMA read function (table), 19-12
DMA write function (table), 19-13
I/O read function (table), 19-12
I/O write function (table), 19-12
memory write protection, 19-13
non-DMA cycle timing, 19-13

prescaler select field weighting (table), 19-14
supported cycle types (table), 19-11

CD_A and CD_B signal merging, 19-19
card detect function for Socket A (figure), 19-20

DMA channel mapping, 10-8
dual-mode signal functions (table), 19-6
Enhanced mode, 19-8, 19-16
external PC card controller usage, 19-23
I/O interface, 19-10

I/O windows, 19-10
Identification and Revision Register, 19-23
initialization, 19-22
interrupts, 19-18

socket status inputs, 19-18
memory interface, 19-8

memory windows, 19-8
memory management, 7-10
operation, 19-6
overview, 19-1
PC Card Standard, xxiv
PCMCIA Standard Release 2.1, xxiv
pin definitions by mode, 19-6
power considerations

shared PC Card signals (table), 19-21
system design, 19-21

VCC and VPP control, 19-20
VCC control signal definition (table), 19-21
VPP control signal definition (table), 19-20

power management, 19-24
registers, 19-2
signal descriptions, 4-10
signal multiplexing, 19-7
sound generation, 19-18
Standard mode, 19-8, 19-15

configuring MMS Windows C–F, 19-16
memory window redirection, 19-15
memory window redirection effects (table), 19-16
memory window socket mapping (table), 19-15
Socket B memory windows for MMS, 19-16

WAIT_AB pin usage, 19-19
merging WAIT signals (figure), 19-19

PC Card Extended Features Register (CSC index F0h)
function, 19-3
usage, 7-10, 19-15, 19-18

PC Card Mode and DMA Control Register 
(CSC index F1h)

function, 7-2, 19-3
usage, 6-1, 7-9–7-10, 10-3–10-4, 19-8, 19-13, 19-16

PC Card Output Enable signal. See OE signal.
PC Card Socket A VCC Enable signal. 

See PCMA_VCC signal.
PC Card Socket A VPP Select signals. 

See PCMA_VPP2–PCMA_VPP1 signals.
PC Card Socket A/B Input Pull-Up Control Register 

(CSC index F2h)
function, 19-3
usage, 7-10

PC Card Socket B VCC Enable signal. 
See PCMB_VCC signal.

PC Card Socket B VPP Select signals. 
See PCMB_VPP2–PCMB_VPP1 signals.

PC Card Write Enable signal. See WE signal.
PC/AT Compatible mode. See parallel port.
PC/AT port, 4-39

overview, 4-39
registers, 4-39

PCMA_VCC signal
description, 4-11
usage, 19-20

PCMA_VPP1 signal
description, 4-11
usage, 19-20

PCMA_VPP2 signal
description, 4-11
usage, 19-20

PCMB_VCC signal
description, 4-11
usage, 19-20
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PCMB_VPP1 signal
description, 4-11
usage, 19-20

PCMB_VPP2 signal
description, 4-11
usage, 19-20

PCMCIA. See PC Card controller.
PDACK1–PDACK0 signals

control, 4-25, 10-3
description, 4-6
usage, 10-1, 10-4, 10-8

PDRQ1–PDRQ0 signals
control, 4-25, 5-4, 10-3
description, 4-6
usage, 5-22, 10-4, 10-8–10-9

PE signal
control, 14-2
description, 4-9

Phase-Locked Loops (PLLs)
clock generation (figure), 6-3
clock sources (table), 6-4
control during Suspend mode, 5-15
CPU PLL in Hyper-Speed PMU mode, 5-10–5-12
function, 6-3
Graphics Dot Clock PLL, 6-6
High-Speed PLL, 6-7
Intermediate and Low-Speed PLLs, 6-5

PIC. See programmable interrupt controller (PIC).
Pin Mux Register A (CSC index 38h)

function, 17-2
usage, 5-22, 17-6

Pin Mux Register B (CSC index 39h)
function, 17-2
usage, 14-2, 16-3, 17-6

Pin Mux Register C (CSC index 3Ah)
function, 17-2
usage, 16-3, 17-6

Pin Strap Status Register (CSC index 20h)
function, 8-1, 17-2
usage, 7-6, 7-11

pin termination, 17-6
configuration, 2-7
control (table), B-1
default pull-ups and pull-downs, 5-36
TERM_LATCH bit, 2-7

pins
multiplexed pins (figure), 4-14–4-15

pins. See signals.
PIRQ1–PIRQ0 signals

control, 4-25
PIRQ2 signal

control, 4-26

PIRQ7–PIRQ0 signals
control, 11-2
description, 4-6
usage, 11-1, 14-2

PIRQ7–PIRQ3 signals
control, 4-26

PIT. See programmable interval timer (PIT).
Pixel Clock Control Register (graphics index 4Ch)

function, 20-5
usage, 6-1, 6-6

PLLRATIO bits
usage, 6-6

PMU Control Register 1 (graphics index 50h)
function, 20-6
usage, 20-39

PMU Control Register 2 (graphics index 51h)
function, 20-6
usage, 20-39

PMU Force Mode Register (CSC index 40h)
function, 5-3
usage, 5-2–5-3, 5-11–5-13, 5-15, 5-17, 5-25–5-26

PMU mode change outputs. 
See GPIO_PMUA–GPIO_PMUD signals.

PMU Present and Last Mode Register (CSC index 41h)
function, 5-3
usage, 5-2

PMU. See power management unit (PMU).
Power and RESETDRV Control Register 

(PC Card index 02h/42h)
function, 19-3
usage, 19-20

power management unit (PMU)
ACIN detect, 5-24
activities

activity monitor, 5-32
activity source flag registers, 5-33
activity sources (table), 5-35
primary activities, 5-32
secondary activities, 5-32

battery low, 5-25
CPU clock speed reduction, 5-26
Critical Suspend mode access, 5-26

block diagram, 5-8
general purpose I/O (GPIO) pins, 5-24
GPIO_PMUA–GPIO_PMUD signals, 5-24
initialization, 5-36
modes

ACIN mode flow (figure), 5-27
activity mode flow (figure), 5-34
BL1–BL0 mode flow (figure), 5-28
BL2 mode flow (figure), 5-29
Critical Suspend mode, 5-16
flowcharts, 5-19
High-Speed mode, 5-11
Hyper-Speed mode, 5-10
Low-Speed mode, 5-13
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PMU timer mode flow (figure), 5-20
Standby mode, 5-14
suspend and wake-up/resume mode flow, 5-23
Suspend mode, 5-15
Temporary Low-Speed mode, 5-17

operation, 5-9
overview, 5-1
registers, 5-2
SMI/NMI generation, 5-30

I/O access SMIs, 5-31
I/O trap sources (table), 5-32
SMI/NMI sources (table), 5-31

state options, 5-36
programmable pull-ups and pull-downs, 5-36
Suspend state, 5-36

terminology, 5-1
wake-up sources, 5-21

wake-up sources (table), 5-21
PPDWE signal

description, 4-9
usage, 14-5–14-6

PPOEN signal
description, 4-9
usage, 14-5–14-6

Printer Acknowledge signal. See ACK signal.
Printer Busy signal. See BUSY signal.
Printer Select signal. See SLCT signal.
Printer Selected signal. See SLCTIN signal.
Programmable Chip Select signals. 

See GPIO_CS14–GPIO_CS0 signals.
Programmable DMA Acknowledge signals. 

See PDACK1–PDACK0 signals.
Programmable DMA Request signals. 

See PDRQ1–PDRQ0 signals.
programmable interrupt controller (PIC)

block diagram, 11-2
initialization, 11-5
interrupt vectors, 11-5
interrupt vectors (table), 11-5
IRQ mapping, 11-4
IRQ mapping (table), 11-4
operation, 11-3
overview, 11-1
PIRQ7–PIRQ0 signals, 11-1
power management, 11-6
registers, 11-1

Programmable Interrupt Request signals. 
See PIRQ7–PIRQ0 signals.

Programmable Interval Timer #1 Mode Control Register 
(Port 0043h)

function, 12-1

programmable interval timer (PIT)
block diagram, 12-2
configuring

timer channel 0, 12-5
timer channel 1, 12-5
timer channel 2, 12-6

initialization, 12-6
modes

Mode 0 (interrupt on terminal count), 12-3
Mode 1 (hardware-retriggerable one-shot), 12-3
Mode 2 (rate generator), 12-4
Mode 3 (square wave mode), 12-4
Mode 4 (software triggered strobe), 12-4
Mode 5 (hardware triggered strobe), 12-5
timer modes (table), 12-3

operation, 12-3
overview, 12-1
power management, 12-6
programming the timer channels, 12-6
registers, 12-1

R
R32BFOE signal

control, 5-7
description, 4-7
usage, 4-16, 8-6

RAS3–RAS0 signals
control, 9-3
description, 4-7
usage, 9-1, 9-12

RDY_A (IREQ_A) signal
description, 4-11
usage, 19-18

RDY_B (IREQ_B) signal
description, 4-11
usage, 19-18

real-time clock (RTC)
backup battery considerations, 13-6
backup battery not used (figure), 13-8
backup battery used (figure), 13-7
block diagram, 13-3
initialization, 13-9
interrupts, 13-5

specifying a periodic interrupt rate (table), 13-5
operation, 13-5
oscillator control, 13-6
overview, 13-1
power management, 13-9
registers, 13-1
RTC clock, 13-6
RTC voltage monitor, 13-4
system implications, 13-8
update cycle, 13-6
voltage monitoring, 13-3
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Recovery Timing Registers
function, 19-4
usage, 19-7, 19-13, 19-17

REG_A signal
description, 4-11
usage, 19-8, 19-16

REG_B signal
description, 4-11
usage, 19-8, 19-16

Register A (RTC index 0Ah)
function, 13-3
usage, 13-5–13-6

Register B (RTC index 0Bh)
function, 13-3
usage, 13-5–13-6

Register C (RTC index 0Ch)
function, 13-3
usage, 13-6

Register D (RTC index 0Dh)
function, 13-3
usage, 4-2

registers
Activity Classification Register A, 5-5
Activity Classification Register B, 5-5
Activity Classification Register C, 5-5
Activity Classification Register D, 5-5
Activity Source Enable Register A, 5-4
Activity Source Enable Register B, 5-4
Activity Source Enable Register C, 5-4
Activity Source Enable Register D, 5-5
Activity Source Status Register A, 5-5
Activity Source Status Register B, 5-5
Activity Source Status Register C, 5-5
Activity Source Status Register D, 5-5
Address Window Enable Register, 7-2, 19-4
Battery Low and ACIN SMI/NMI Enable Register, 

5-6
Battery Low and ACIN SMI/NMI Status Register, 5-6
Battery/AC Pin Configuration Register A, 5-5
Battery/AC Pin Configuration Register B, 5-5
Battery/AC Pin State Register, 5-5
Cache and VL Miscellaneous Register, 3-1, 7-1
Card Status Change Interrupt Configuration 

Register, 19-4
Card Status Change Register, 19-4
CGA Color Select Register, 20-3
CGA Data Port, 20-2
CGA Index Address Register, 20-2
CGA Mode Control Register, 20-3
CGA Status Register, 20-3
CGA/MDA Data Port, 20-2
CGA/MDA Index Register, 20-2
chip setup and control (CSC) indexed register map 

(table), 2-6
CLK_IO Pin Output Clock Select Register, 6-1
Clock Control Register, 6-1

registers (continued)
Command Timing Registers, 19-4
CPU Clock Auto Slowdown Register, 6-1
CPU Clock Speed Register, 6-1
Cursor Address High Register, 20-4
Cursor Address Low Register, 20-4
Cursor End Register, 20-4
Cursor Start Register, 20-4
descriptions, xxiv
DMA Channel 0–3 Extended Page Register, 10-3
DMA Channel 5–7 Extended Page Register, 10-3
DMA Resource Channel Map Register A, 10-3
DMA Resource Channel Map Register B, 10-3
DRAM Bank 0 Configuration Register, 9-3
DRAM Bank 1 Configuration Register, 9-3
DRAM Bank 2 Configuration Register, 9-3
DRAM Bank 3 Configuration Register, 9-3
DRAM Control Register, 9-3
DRAM Refresh Control Register, 9-3
Drive Strength Control Register A, 9-3
Drive Strength Control Register B, 9-3
Dual Scan Offset Address High Register, 20-5
Dual Scan Offset Address Low Register, 20-5
Dual Scan Row Adjust Register, 20-5
ÉlanSC400 Microcontroller Revision ID Register, 

3-2
Extended Feature Control Register, 20-6
Font Buffer Base Address High Byte, 20-5
Font Table Register, 20-5
Frame Buffer Base Address Register, 20-5
Frame Sync Delay Register, 20-5
Frame/Font Buffer Base Address Register Low, 20-5
general-purpose configuration CMOS RAM, 13-3
GP_CS Activity Enable Register, 5-4, 17-2
GP_CS Activity Status Register, 5-4
GP_CS to GPIO_CS Map Registers A–B, 17-3
GP_CSA I/O Address Decode and Mask Register, 

17-3
GP_CSA I/O Address Decode Register, 17-3
GP_CSA/B I/O Command Qualification Register, 

17-3
GP_CSB I/O Address Decode and Mask Register, 

17-3
GP_CSB I/O Address Decode Register, 17-3
GP_CSC Memory Address Decode and Mask 

Register, 17-3
GP_CSC Memory Address Decode Register, 17-3
GP_CSC/D Memory Command Qualification 

Register, 17-3
GP_CSD Memory Address Decode and Mask 

Register, 17-3
GPIO as a Wake-Up or Activity Source Status 

Register A, 5-4
GPIO as a Wake-Up or Activity Source Status 

Register B, 5-4
GPIO as a Wake-Up or Activity Source Status 

Registers A–B, 17-2
GPIO Function Select Registers E–F, 17-2
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registers (continued)
GPIO Read-Back/Write Registers A–D, 17-2
GPIO Termination Control Registers A–D, 17-2
GPIO_CS Function Select Register A, 5-7
GPIO_CS Function Select Register B, 5-7
GPIO_CS Function Select Register C, 5-7
GPIO_CS Function Select Register D, 5-7
GPIO_CS Function Select Registers A–D, 17-2
GPIO_PMU to GPIO_CS Map Register A, 5-7
GPIO_PMU to GPIO_CS Map Register B, 5-7
GPIO_PMUA Mode Change Register, 5-7, 17-2
GPIO_PMUB Mode Change Register, 5-7, 17-2
GPIO_PMUC Mode Change Register, 5-7, 17-2
GPIO_PMUD Mode Change Register, 5-7, 17-2
GPIO_XMI to GPIO_CS Map Register, 5-7, 17-2
Graphics Controller Grayscale Mode Register, 20-5
Graphics Controller Grayscale Remapping 

Registers, 20-5
HGA Configuration Register, 20-3
Horizontal Border End Register, 20-4
Horizontal Display End Register, 20-4
Horizontal Line Pulse Start Register, 20-4
Horizontal Total Register, 20-4
Hyper/High-Speed Mode Timers Register, 5-3
I/O Access SMI Enable Register A, 5-6
I/O Access SMI Enable Register B, 5-6
I/O Access SMI Status Register A, 5-7
I/O Access SMI Status Register B, 5-7
I/O Window Address Registers, 19-4
I/O Window Control Register, 19-4
Identification and Revision Register, 19-3
index and data I/O port usage (figure), 2-5
indexed configuration register space (figure), 2-5
indexed register space (table), 2-3
Interface Status Register, 19-3
Internal Graphics Control Register A, 20-4
Internal Graphics Control Register B, 20-4
Internal I/O Device Disable/Echo Z-Bus 

Configuration Register, 4-26
internal I/O port address map (table), 2-2
Interrupt and General Control Register, 19-4
Interrupt Configuration Register A, 11-2
Interrupt Configuration Register B, 11-2
Interrupt Configuration Register C, 11-2
Interrupt Configuration Register D, 11-2
Interrupt Configuration Register E, 11-2
IrDA Control Register, 18-2
IrDA CRC Status Register, 18-2
IrDA Frame Length Register A, 18-2
IrDA Frame Length Register B, 18-2
IrDA Own Address Register, 18-2
IrDA Status Register, 18-2
Keyboard Column Register, 16-4
Keyboard Column Termination Register, 16-4
Keyboard Configuration Register A, 16-4
Keyboard Configuration Register B, 16-4
Keyboard Input Buffer Read-Back Register, 16-4
Keyboard Output Buffer Write Register, 16-4

registers (continued)
Keyboard Row Register A, 16-4
Keyboard Row Register B, 16-4
Keyboard Status Register Write Register, 16-4
Keyboard Timer Register, 16-4
LCD Panel AC Modulation Clock Control Register, 

20-5
Light Pen High Register, 20-4
Light Pen Low Register, 20-4
Linear ROMCS0 Attributes Register, 8-1
Linear ROMCS0/Shadow Register, 8-1
Low-Speed/Standby Mode Timers Register, 5-3
Maximum Scan Line Register, 20-5
MDA/HGA Mode Control Register, 20-3
MDA/HGA Status Register, 20-3
Memory Window Address Offset Registers, 19-4
Memory Window Address Registers, 19-4
Miscellaneous SMI/NMI Enable Register, 5-6
Miscellaneous SMI/NMI Status Register, 5-6
MMS Window A Destination Register, 7-2
MMS Window A Destination/Attributes Register, 7-2
MMS Window B Destination Attributes Register, 7-2
MMS Window B Destination Register, 7-2
MMS Window C–F Attributes Register, 7-1
MMS Window C–F Device Select Register, 7-1
Mode Timer SMI/NMI Enable Register, 5-6
Mode Timer SMI/NMI Status Register, 5-6
Mouse Output Buffer Write Register, 16-4
Non-Cacheable Window 0 Address Register, 7-1
Non-Cacheable Window 0 Address/Attributes/SMM 

Register, 3-1, 7-1
Non-Cacheable Window 1 Address Register, 7-1
Non-Cacheable Window 1 Address/Attributes 

Register, 7-1
Non-display Lines Register, 20-4
Offset Register, 20-5
Overflow Register, 20-5
Overlapping ISA Window Size Register, 4-26
Overlapping ISA Window Start Address Register, 

4-26
Parallel Port Configuration Register, 14-3
Parallel/Serial Port Configuration Register, 14-2
PC Card and Keyboard SMI/NMI Enable Register, 

5-6
PC Card and Keyboard SMI/NMI Status Register, 

5-6
PC Card Extended Features Register, 19-3
PC Card Mode and DMA Control Register, 7-2, 19-3
PC Card Socket A/B Input Pull-Up Control Register, 

19-3
Pin Mux Register A, 17-2
Pin Mux Register B, 17-2
Pin Mux Register C, 17-2
Pin Strap Status Register, 8-1, 17-2
Pixel Clock Control Register, 20-5
PMU Control Register 1, 20-6
PMU Control Register 2, 20-6
PMU Force Mode Register, 5-3
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registers (continued)
PMU Present and Last Mode Register, 5-3
Power and RESETDRV Control Register, 19-3
Programmable Interval Timer #1 Mode Control 

Register, 12-1
Recovery Timing Registers, 19-4
Register A, 13-3
Register B, 13-3
Register C, 13-3
Register D, 13-3
ROMCS0 Configuration Register A, 8-2
ROMCS0 Configuration Register B, 8-2
ROMCS1 Configuration Register A, 8-2
ROMCS1 Configuration Register B, 8-2
ROMCS2 Configuration Register A, 8-2
ROMCS2 Configuration Register B, 8-2
RTC Alarm Hour Register, 13-3
RTC Alarm Minute Register, 13-2
RTC Alarm Second Register, 13-2
RTC Current Day of Month Register, 13-3
RTC Current Day of Week Register, 13-3
RTC Current Hour Register, 13-2
RTC Current Minute Register, 13-2
RTC Current Month Register, 13-3
RTC Current Second Register, 13-2
RTC Current Year Register, 13-3
Setup Timing Registers, 19-4
SMI/NMI Select Register, 5-6
Standard Decode To GPIO_CS Map Register, 17-3
Start Address High Register, 20-4
Start Address Low Register, 20-4
SUS_RES Pin Configuration Register, 5-3
Suspend Mode Pin State Override Register, 5-7
Suspend Mode Pin State Register A, 5-7
Suspend Mode Pin State Register B, 5-7
Suspend/Temporary Low-Speed Mode Timers 

Register, 5-3
System Control Port B/ NMI Status Register, 12-1
UART FIFO Control Shadow Register, 15-3
Underline Location Register, 20-5
Vertical Adjust Register, 20-4
Vertical Border End Register, 20-5
Vertical Display End Register, 20-5
Wake-Up Pause/High Speed Clock Timers Register, 

5-3
Wake-Up Source Enable Register A, 5-4
Wake-Up Source Enable Register B, 5-4
Wake-Up Source Enable Register C, 5-4
Wake-Up Source Enable Register D, 5-4
Wake-Up Source Status Register A, 5-4
Wake-Up Source Status Register B, 5-4
Wake-Up Source Status Register C, 5-4
Wake-Up Source Status Register D, 5-4
Write-Protected System Memory (DRAM) 

Window/Overlapping ISA Window Enable 
Register, 4-26

XMI Control Register, 5-7

Request To Send signal. See RTS signal.
reset

CPU reset, 4-39–4-40
internal core states (table), 4-3
SRESET and SMM, 3-17
types, 4-1
types (table), 4-2

RESET signal
description, 4-12
usage, 4-1–4-2, 13-3

RIN signal
control, 5-4, 5-6, 15-2
description, 4-9
usage, 5-22, 5-31, 15-8, 18-13

Ring Indicate signal. See RIN signal.
ROM Chip Select signals. See ROMCS2–ROMCS0 

signals.
ROM Read signal. See ROMRD signal.
ROM Write signal. See ROMWR signal.
ROM x32 Buffer Output Enable signal. 

See R32BFOE signal.
ROM/Flash interface

architectural overview, 8-3
block diagram, 8-2
configuration

access speed, 8-9
data width control, 8-8
early chip select, 8-10
other options, 8-8
pin strap bus buffer options (table), 8-8
ROMCS0 interface using pin straps, 8-7
ROMCSx configuration dependencies, 8-11

data bus usage, 8-4
Fast Speed mode, 8-9
initialization, 8-6
memory management, 7-6
Normal Speed mode, 8-9
operation, 8-3
overview, 8-1
power management, 8-11
registers, 8-1
ROM decode example (figure), 8-5

ROMCS0 Configuration Register A (CSC index 23h)
function, 8-2
usage, 8-9

ROMCS0 Configuration Register B (CSC index 24h)
function, 8-2
usage, 8-9

ROMCS0 signal
usage, 4-16–4-17, 7-6, 7-10, 8-3–8-4, 8-6–8-8, 19-9

ROMCS1 Configuration Register A (CSC index 25h)
function, 8-2

ROMCS1 Configuration Register B (CSC index 26h)
function, 8-2
usage, 8-9
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ROMCS1 signal
usage, 7-10, 8-3–8-4, 8-8

ROMCS2 Configuration Register A (CSC index 27h)
function, 8-2

ROMCS2 Configuration Register B (CSC index 28h)
function, 8-2
usage, 8-9

ROMCS2 signal
control, 7-11, 8-2
usage, 8-3, 8-8, 17-7

ROMCS2–ROMCS0 signals
control, 5-4
description, 4-7
usage, 5-35, 8-11

ROMRD signal
description, 4-7
usage, 8-3, 8-6, 8-10

ROMWR signal
description, 4-7
usage, 8-3

Row Address Strobe signals. See RAS3–RAS0 signals.
RS3–RS0 bits

usage, 13-5
RST_A signal

description, 4-11
RST_B signal

description, 4-11
RSTDRV signal

description, 4-6
usage, 4-1

RTC Alarm Hour Register (RTC index 05h)
function, 13-3

RTC Alarm Minute Register (RTC index 03h)
function, 13-2

RTC Alarm Second Register (RTC index 01h)
function, 13-2

RTC Current Day of Month Register (RTC index 07h)
function, 13-3

RTC Current Day of Week Register (RTC index 06h)
function, 13-3

RTC Current Hour Register (RTC index 04h)
function, 13-2

RTC Current Minute Register (RTC index 02h)
function, 13-2

RTC Current Month Register (RTC index 08h)
function, 13-3

RTC Current Second Register (RTC index 00h)
function, 13-2

RTC Current Year Register (RTC index 09h)
function, 13-3

RTC. See real-time clock (RTC).
RTS signal

control, 15-2
description, 4-10

S
SA25–SA0 signals

control, 7-1–7-2
description, 4-6
usage, 4-24, 19-7

SBHE signal
control, 4-26
description, 4-6
usage, 4-29

scan keyboard. See keyboard interfaces.
SCK signal

description, 4-12
usage, 20-38–20-39

SCP emulation. See keyboard interfaces.
SD15–SD0 signals

description, 4-6
usage, 1-13, 4-18, 19-8

Segment Base Register
usage, 3-9

SELDEVICE bit
usage, 15-7

SELMODE bit
usage, 18-11–18-12

Serial Data In signal. See SIN signal.
Serial Data Out signal. See SOUT signal.
serial port (UART)

16450-compatible mode (no FIFOs), 15-6
16550-compatible mode (FIFOs), 15-6
baud rate generation, 15-4

baud rates at 1.8432 MHz (table), 15-5
block diagram, 15-3
infrared port, 18-1, 18-3
initialization, 15-7
interrupts, 15-6

interrupt priority (table), 15-7
IRQ assignments (table), 15-7

operating modes, 15-6
operation, 15-4
overview, 15-1
power management, 15-7
registers, 15-1
UART frame, 15-5
UART frame (figure), 15-6

SET bit
usage, 13-6, 13-9

Setup Timing Registers
function, 19-4
usage, 19-7, 19-13, 19-17

signal descriptions, 4-5
boundary scan test interface, 4-12
clocks, 4-9
configuration pins, 4-6
general-purpose input/output (GPIO), 4-10
keyboard interfaces, 4-10
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LCD graphics controller, 4-11
memory interface, 4-7
parallel port, 4-9
PC Card, 4-10
power management, 4-8
reset and power, 4-12
system interface, 4-5
VL-bus Interface, 4-7

signals
ACIN, 4-8
ACK, 4-9
AEN, 4-5
AFDT, 4-9
BALE, 4-5
BBATSEN, 4-12
BL2–BL0, 4-8
BNDSCN_EN, 4-6
BNDSCN_TCK, 4-12
BNDSCN_TDI, 4-12
BNDSCN_TDO, 4-12
BNDSCN_TMS, 4-12
BUSY, 4-9
BVD1_A (STSCHG_A), 4-10
BVD1_B (STSCHG_B), 4-10
BVD2_A (SPKR_A)—BVD2_B (SPKR_B), 4-10
CASH3–CASH0, 4-7
CASL3–CASL0, 4-7
CD_A, CD_B, CD_A2, 4-10
CFG1–CFG0, 4-7
CFG2, 4-7
CFG3, 4-7
CLK_IO, 4-9
CTS, 4-9
D31–D0, 4-7
DBUFOE, 4-5
DBUFRDH, 4-5
DBUFRDL, 4-5
DCD, 4-9
DSR, 4-9
DTR, 4-9
ERROR, 4-9
FRM, 4-11
GPIO_CS14–GPIO_CS0, 4-10
GPIO31–GPIO15, 4-10
ICDIR, 4-11
INIT, 4-9
IOCHRDY, 4-6
IOCS16, 4-6
IOR, 4-6
IOW, 4-6
KBD_COL7–KBD_COL0, 4-10
KBD_ROW14–KBD_ROW0, 4-10
LBL2, 4-8, 5-26
LC, 4-12
LCDD7–LCDD0, 4-12
LF_HS, 4-9
LF_INT, 4-9

signals (continued)
LF_LS, 4-9
LF_VID, 4-9
LVDD, 4-12
LVEE, 4-12, 20-38
M, 4-12
MA12–MA0, 4-7
MCEH_A, 4-11
MCEH_B, 4-11
MCEL_A, 4-11
MCEL_B, 4-11
MCS16, 4-6
MEMR, 4-6
MEMW, 4-6
MWE, 4-7
OE, 4-11
PCMA_VCC, 4-11
PCMA_VPP1, 4-11
PCMA_VPP2, 4-11
PCMB_VCC, 4-11
PCMB_VPP1, 4-11
PCMB_VPP2, 4-11
PDACK1–PDACK0, 4-6
PDRQ1–PDRQ0, 4-6
PE, 4-9
PIRQ7–PIRQ0, 4-6
PPDWE, 4-9
PPOEN, 4-9
R32BFOE, 4-7
RAS3–RAS0, 4-7
RDY_A (IREQ_A), 4-11
RDY_B (IREQ_B), 4-11
REG_A, 4-11
REG_B, 4-11
RESET, 4-12
RIN, 4-9
ROMCS2–ROMCS0, 4-7
ROMRD, 4-7
ROMWR, 4-7
RST_A, 4-11
RST_B, 4-11
RSTDRV, 4-6
RTS, 4-10
SA25–SA0, 4-6
SBHE, 4-6
SCK, 4-12
SD15–SD0, 4-6
SIN, 4-10
SIRIN, 4-10
SIROUT, 4-10
SLCT, 4-9
SLCTIN, 4-9
SOUT, 4-10
SPKR, 4-6
STRB, 4-9
SUS_RES, 4-8
TC, 4-6
VCC_ANALOG, 4-12
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signals (continued)
VCC_BUS, 4-12
VCC_CPU, 4-12
VCC_LCD, 4-12
VCC_MEM, 4-13
VCC_PCM, 4-13
VCC_PCM2, 4-13
VCC_PP, 4-13
VCC_RTC, 4-13
VCC_SER, 4-13
VCC_SYS, 4-13
VCC_VL, 4-12
VL_ADS, 4-7
VL_BLAST, 4-8
VL_BRDY, 4-8
VL_D/C, 4-8
VL_LCLK, 4-8
VL_LDEV, 4-8
VL_LRDY, 4-8
VL_M/IO, 4-8
VL_RST, 4-8
VL_W/R, 4-8
WAIT_AB, 4-11
WE, 4-11
WP_A (IOIS16_A), 4-11
WP_B (IOIS16_B), 4-11
XT_CLK, 4-10
XT_DATA, 4-10

SIN signal
control, 5-4, 5-6
description, 4-10
usage, 5-22, 5-31, 5-35, 15-4–15-5, 15-8, 18-3, 

18-13
SIRIN signal

control, 18-2
description, 4-10
usage, 18-5

SIROUT signal
description, 4-10
usage, 18-1, 18-4–18-5

SLCT signal
control, 14-2
description, 4-9

SLCTIN signal
control, 14-1
description, 4-9

SMBASE Register
usage, 3-4, 3-6

SMI/NMI Select Register (CSC index 98h)
function, 5-6

SMM. See Am486 CPU.
SOUT signal

description, 4-10
usage, 15-4–15-5, 18-3

Speaker, Digital Audio Output signal. See SPKR signal.

SPKD bit
usage, 12-3

SPKR signal
description, 4-6
usage, 4-39, 12-3, 12-6, 19-18–19-19

SRESET signal
control, 4-39
usage, 3-17

Standard Decode to GPIO_CS Map Register 
(CSC index B1h)

function, 17-3
usage, 8-2, 17-7

Standard PC Card mode. See PC Card controller.
Standby mode. See power management unit (PMU).
Start Address High Register (graphics index 0Ch)

function, 20-4
usage, 20-8, 20-16

Start Address Low Register (graphics index 0Dh)
function, 20-4

START_DMA bit
usage, 18-10

STRB signal
control, 14-1
description, 4-9

Strobe signal. See STRB signal.
SUS_RES Pin Configuration Register (CSC index 50h)

function, 5-3
usage, 4-8

SUS_RES signal
control, 5-3, 5-5–5-6, 16-4
description, 4-8
usage, 3-5, 5-21, 5-31, 16-1, 16-5, 16-8

Suspend Mode Pin State Override Register 
(CSC index E5h)

function, 5-7
usage, 2-7, 17-3, 17-6, B-1

Suspend mode. See power management unit (PMU).
Suspend Pin State Register A (CSC index E3h)

function, 5-7
Suspend Pin State Register B (CSC index E4h)

function, 5-7
Suspend/Resume Operation signal. 

See SUS_RES signal.
Suspend/Temporary Low-Speed Mode Timers Register 

(CSC index 44h)
function, 5-3

System Address Bus signals. See SA25–SA0 signals.
System Control Port A Register (Port 0092h)

function, 4-39
usage, 4-2

System Control Port B/NMI Status Register 
(Port 0061h)

function, 4-39, 12-1
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System Data Bus signals. See SD15–SD0 signals.
system interfaces

address buses, 4-24
address generation (figure), 4-24

configuration pin usage, 4-16
BNDSCN_EN pin, 4-17
boundary scan configuration (table), 4-18
CFG0 and CFG1 configuration (table), 4-16
CFG0 and CFG1 pins, 4-16
CFG2 configuration (table), 4-17
CFG2 pin, 4-17
CFG3 configuration (table), 4-17
CFG3 pin, 4-17
pin strap bus buffer options (table), 4-16

data buses, 4-18
16-bit DRAM bus and 16-bit SD bus, 4-19
32-bit DRAM bus and 16-bit SD bus, 4-19
32-bit DRAM bus, 16-bit SD bus, and 32-bit ROM 
bus, 4-19
bus configuration A (figure), 4-21
bus configuration B (figure), 4-22
bus configuration C (figure), 4-23
byte lanes (table), 4-19
byte lanes by access target and type (table), 4-20
data paths, 4-20

device and CPU identification
Am486 CPU DX Register at CPU reset, 4-4
CPU ID codes (table), 4-4

device initialization, 4-1
multiplexed pin configuration control (table), A-1
multiplexed pin function options, 4-13
multiplexed pins (figure), 4-14–4-15
overview, 4-25
reset

internal core states (table), 4-3
power-on reset, 4-2
types, 4-1
types (table), 4-2

signal descriptions, 4-5
System Management Mode (SMM). See Am486 CPU.
System Reset signal. See RSTDRV signal.

T
TC signal

control, 4-25, 10-3
description, 4-6
usage, 10-4, 18-10–18-11, 19-17

Temporary Low-Speed mode. 
See power management unit (PMU).

TERM_LATCH bit, B-1
usage, 2-7

Terminal Count signal. See TC signal.

test and debugging
boundary scan architecture

signal descriptions, 4-12
Boundary Scan Register (BSR), 21-2

logical structure (figure), 21-3
boundary-scan architecture (JTAG), 21-1
Bypass Register (BPR), 21-2
Device Identification Register (DID), 21-2

format (figure), 21-2
enabling the boundary-scan interface, 21-1
IEEE Std 1149.1-1990, xxiv
Instruction Register, 21-3
order of scan cells in boundary-scan path, 21-8
overview, 21-1
scan paths

bypass path, 21-8
instruction path, 21-8
main data scan path, 21-8
main data scan path (table), 21-9

supported instructions, 21-3
TAP controller state diagram (figure), 21-5
test access port (TAP)

instruction set, 21-3
instruction set (table), 21-3
operation, 21-5
states, 21-5

test data registers, 21-2
Test Clock signal. See BNDSCN_TCK signal.
Test Data Input signal. See BNDSCN_TDI signal.
Test Data Output signal. See BNDSCN_TDO signal.
Test Mode Select signal. See BNDSCN_TMS signal.
THRE bit

usage, 15-6, 18-13

U
UART FIFO Control Shadow Register (CSC index D3h)

function, 15-3
usage, 15-7

UART. See serial port (UART).
UART_ENB bit

usage, 15-7
UIP bit

usage, 13-6
Underline Location Register (graphics index 3Fh)

function, 20-5
usage, 20-15, 20-18

V
VALUE bit

usage, 17-7
VCC_ANALOG signal

description, 4-12
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VCC_BUS signals
description, 4-12

VCC_CPU signals
description, 4-12

VCC_LCD signals
description, 4-12

VCC_MEM signals
description, 4-13

VCC_PCM signals
description, 4-13

VCC_PCM2 signals
description, 4-13

VCC_RTC signal
description, 4-13
usage, 13-7

VCC_SER signals
description, 4-13

VCC_SYS signals
description, 4-13

VERTDOUB bit
usage, 20-33

Vertical Adjust Register (graphics index 35h)
function, 20-4
usage, 20-32

Vertical Border End Register (graphics index 38h)
function, 20-5
usage, 20-33

Vertical Display End Register (graphics index 37h)
function, 20-5
usage, 20-32

VESA local bus. See VL-bus controller.
VL_ADS signal

description, 4-7
usage, 4-37

VL_BE3–VL_BE0 signals
description, 4-7

VL_BLAST signal
description, 4-8
usage, 4-37

VL_BRDY signal
description, 4-8

VL_D/C signal
description, 4-8
usage, 4-36

VL_LCLK signal
description, 4-8
usage, 4-37

VL_LDEV signal
description, 4-8
usage, 4-37

VL_LRDY signal
description, 4-8
usage, 4-37

VL_M/IO signal
description, 4-8
usage, 4-36

VL_RST signal
description, 4-8
usage, 4-2, 4-38

VL_W/R signal
description, 4-8
usage, 4-36

VL-bus controller
address interface, 4-36
block diagram, 4-36
data bus byte ordering (table), 4-37
data interface, 4-36
initialization, 4-38
normal bus cycles, 4-37
operation, 4-36
overview, 4-35
power management, 4-38
registers, 4-35
special bus cycles, 4-37
special bus cycles (table), 4-38
unsupported VL-bus signal, 4-38
VL-Bus Standard 2.0, xxiv

VRT bit
usage, 4-2, 13-7

W
WAIT_AB signal

description, 4-11
usage, 19-19

WAIT_BRST bit
usage, 8-9

WAIT_NBRST bit
usage, 8-9

Wake-Up Pause/High-Speed Clock Timers Register 
(CSC index 45h)

function, 5-3
usage, 5-2

Wake-Up Source Enable Registers A–D 
(CSC index 52–55h)

function, 5-4
Wake-Up Source Status Registers A–D 

(CSC index 56–59h)
function, 5-4

WE signal
description, 4-11
usage, 19-13, 19-17

WIDTHx field
usage, 9-5

WP_A (IOIS16_A) signal
description, 4-11
usage, 10-8, 19-17
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WP_B (IOIS16_B) signal
description, 4-11
usage, 10-8, 19-17

Write Enable signal. See MWE signal.
Write Protect signals. See WP_A (IOIS16_A), WP_B 

(IOIS16_B) signals.
Write-Protected System Memory (DRAM) 

Window/Overlapping ISA Window Enable 
Register (CSC index E0h)

function, 4-26
usage, 4-29

X
XMI Control Register (CSC index 9Dh)

function, 5-7
usage, 3-5, 16-5

XT Keyboard Clock signal. See XT_CLK signal.
XT Keyboard Data signal. See XT_DATA signal.
XT keyboard. See keyboard interfaces.
XT_CLK signal

control, 16-3
description, 4-10
usage, 16-2, 16-12–16-13

XT_DATA signal
control, 16-3–16-4
description, 4-10
usage, 16-2, 16-12–16-13
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