
Assembling 16-Bit Code in a 32-Bit Code
Segment for Windows® CE Bootstrap
Application Note
by Dave Tobias
This application note explains how to assemble 16-bit code in a 32-bit code segment for
Windows® CE bootstrap. This information is useful for those using a 32-bit microcontroller such as
an Élan™SC400 or ÉlanSC410 microcontroller.

The standard build process that comes with the OEM
adaptation kit for Windows CE requires that you use
the assembler in flat, 32-bit mode. However, the CPU
boots into 16-bit mode.

Microsoft® compensates for this discrepancy by
keeping the 16-bit code as short as possible and also
by using macros to force the assembler into generating
instructions for 16-bit mode.

A good understanding of this workaround process is
required to successful ly add chipset-speci f ic
initialization code to the 16-bit code section.

The execution unit of the CPU controls how the CPU
processes a given opcode. For a 386 (or later)
processor, the execution unit operates in either 16-bit
mode or 32-bit mode.

The execution unit considers instruction size as two
elements: address size and data size. The execution
unit allows individual control over these two elements
on an instruction-by-instruction basis.

When in real mode or V8086 mode, both the data and
address, which will be manipulated by a particular
opcode, default to being processed as 16-bit quantities
because descriptors are not used in real or V8086
modes.

When in protect mode, the default instruction size
depends on the default (D) bit, which is found in all
code segment descriptors, and which must be set up
by the systems programmer.

Regardless of whether the default instruction size is
16 bit or 32 bit, the execution unit can always execute
instructions using either 16-bit or 32-bit operands
and/or addresses. In fact, a given opcode can be
executed using any combination of operand size and
data size via the use of override prefix bytes. To
individually change the default address size and/or
default data size of a single instruction, either one or
two prefix bytes must precede the instruction.

The two prefix bytes are 66h and 67h:

■ 66h changes the size of the instruction operand.

■ 67h changes the size of the instruction address.

Separating the size of the operand from the size of the
address allows programmers to write instructions such
as the following:

mov ax, [ebx]

In 16-bit mode, the assembler encodes the preceding
instruction as 67 8B 03. This is because the address
size is not the default 16 bits, so the assembler adds a
67h address prefix.

In 32-bit mode, the assembler encodes the instruction
as 66 8B 03. This is because the operand size is not
the default 32 bits, so the assembler adds a 66h
operand prefix.

The assembler is designed to generate correct
prefixes. The programmer defines the mode in which
the assembler is operating by using the USE16 or
USE32 keyword in a segment definition.

Note that simply providing the assembler with one of
these directives does not control whether the CPU
hardware will actually operate in 16-bit mode or 32-bit
mode. This hardware setup must be done manually,
and is beyond the scope of this application note.
Specifying a USE16 or USE32 segment directive
simply tells the assembler to generate code as if the
CPU hardware is in 16-bit mode or 32-bit mode,
respectively.

Unfortunately, the assembler does not allow the
programmer to switch back and forth between these
assumptions in a single segment. NASM, the netwide
assembler, does allow this switching via the USE16
and USE32 assembler pseudo-operation codes.
(NASM is a free assembler available via the internet.)

The "clean" way to approach this problem if the
assembler does not support arbitrary switching
between USE16 and USE32 is to generate two
segments, a 16-bit segment and a 32-bit segment.
Publication# 21642 Rev: A Amendment/0
Issue Date: November 1997

This document contains information on a product under development at Advanced Micro Devices. The information
is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this product
without notice.

However, the linker and/or build process may not
always support this approach.

Here are the steps required to modify and integrate
working 16-bit code:

1. Use macros to define the prefix bytes:

OpPrefix Macro

db 66h

ENDM

AddrPrefixMacro

db 67h

ENDM

2. Prefix all instructions that use 32-bit operands or
addressing with OpPrefix and/or AddrPrefix,
as approp r ia te . The assemb ler w i l l no t
automatically insert the prefixes because it thinks it
is in 32-bit mode, even though the CPU is in 16-bit
mode.

3. Change all 16-bit instructions into pseudo-32-bit
instructions to keep the assembler from inserting
unwanted OpPrefixes/AddrPrefixes.

For example:

out 22h,ax ---> out 22h,eax

Because the assembler thinks the CPU is in 32-bit
mode , the assemb ler w i l l assemble the
out 22h,eax without a prefix, which the CPU (in
16-bit mode) wil l correctly interpret as out
22h,ax.

4. Important! While performing step 3, watch for in-
structions that have immediate 16-bit data. If you do
something like the following example, you will get
very bad results:

mov ax,ConstValue --->

mov eax,ConstValue

The assembler thinks it is in 32-bit mode, so it will
make the constant in the instruction four bytes. The
computer will interpret the last two of those bytes
(00h 00h) as the first two bytes of the next
instruction.

There are several methods for working around this.
One method is to create a macro:

LOADAX macro value

db 0B8h

dw value

ENDM

Another method is to code the instructions as 32-bit
instructions:

OpPrefix

mov eax,ConstValue

Of course, this does not work if you want to
preserve the upper half of eax. If the upper half of
eax needs to be preserved, you could do it in two
instructions:

OpPrefix

and eax,0FFFF0000h

OpPrefix

or eax,ConstValue

5. Check the assembly listing to ensure the following:

– The instructions assembled as you expected
them to.

– All conditional jumps (e.g., jz, jnz, etc.) are as-
sembled in their short form (single byte offset). If
a conditional jump is assembled in its long form,
the prefix byte will not be correct. For uncondi-
tional jumps, the fact that the offset was extended
by two bytes is immaterial (will not affect CPU op-
eration).

6. Strip all calls out of the code (replace with macros),
or insert prefix instructions to ensure not only that
the size of the offset is correct (the last two bytes of
the four-byte offset are not treated as the next in-
struction), but also that the calls and returns match
in usage of the stack.

7. Finally, use the disassembler in DOS debug to dis-
assemble and/or step through a portion of the code
to make sure that it is doing what you expect it to do.

Trademarks

Copyright © 1997 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Élan is a trademark of Advanced Micro Devices, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corp.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
2 Assembling 16-Bit Code in a 32-Bit Code Segment

