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Abstract

is a four-issue superscalar RISC processor that supports the 64-bit MIPS instruction set. The adoption of the aggressive
out-of-order execution and memory hierarchy techniques help Godson-2E to achieve high performance. The Godson-2E

This paper introduces the microarchitecture and physical implementation of the Godson-2E processor, which

processor has been physically designed in a 7-metal 90nm CMOS process using the cell-based methodology with some bit-
sliced manual placement and a number of crafted cells and macros. The processor can be run at 1GHz and achieves a SPEC

CPU2000 rate higher than 500.
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1 Introduction

In the past three decades, some famous general
purpose microprocessors have been developed, such as
MIPS R100001!, HP PA-800012), Alpha 212641!, Sun
UltraSparc-III[*, IBM Power4®], Intel Pentium IV
etc. China started to develop general purpose micro-
processor in 2001. Since then, several general purpose
microprocessors have been developed, such as Godson-
17, Godson-2[8!, etc. Godson-2E is an enhanced ver-
sion of the previous Godson-2, implementing a four-issue
general-purpose RISC microprocessor based on 64-bit
MIPS instruction set.

The main architectural improvement over the previ-
ous Godson-2 includes:

e larger entry number in reorder buffer (from 32 to
64) and in the memory queue (from 16 to 24) to reduce
pipeline stall;

e re-implementation of the two floating point units
(one addition/subtraction and one multiplication) to
support two MAC (multiply and accumulation) floating
point units;

e memory performance enhancement with on-chip
512KB L2 cache and on-chip DDR memory controller;

e speculative forwarding, prefetching and store fill
buffer optimization to reduce memory access latency
and memory bandwidth requirements.

The four-way superscalar of Godson-2E raises high
requirements for inter-instruction dependency resolving
and instruction/data issuing. Godson-2E uses out-of-
order execution and aggressive memory hierarchy design

to improve pipeline efficiency.

Out-of-order execution is a combination of the reg-
ister renaming, dynamic scheduling, and branch predic-
tion techniques, that reduces pipeline stalls caused by
WAR (write after read), WAW (write after write) , RAW
(read after write) hazards and control hazards. Godson-
2E has a 64-entry physical register file for fix- and
floating-point register renaming. The 16-entry fix-point
reservation station and the 16-entry floating-point reser-
vation station are responsible for out-of-order instruc-
tion issuing, while the 64-entry ROQ (reorder queue)
ensures that out-of-order instruction execution is com-
mitted in the program order. For precise branch predic-
tion, a 16-entry BTB (branch target buffer), a 2K-entry
BHT (branch history table), a 9-bit GHR (global his-
tory register) and a 4-entry RAS (return address stack)
are used to record branch history information.

The memory hierarchy of Godson-2E is another im-
portant contribution to the final microprocessor perfor-
mance. Godson-2E has a 64KB level-one instruction
cache, a 64KB level-one data cache, and a 512KB unified
level-two cache, all organized in four-way set associa-
tive. The on-chip 333MHz DDR memory controller al-
lows Godson-2E to achieve high memory bandwidth and
in the same time low memory latency. The fully associa-
tive TLB of Godson-2E has 64-entry each of which maps
an odd page and an even page. A 24-entry memory ac-
cess queue, that contains a content-addressable memory
for dynamic memory disambiguation, allows Godson-2E
to implement out-of-order memory access, non-blocking
cache, load speculation and store forwarding.
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Godson-2E has two fix-point functional units, two
floating-point functional units and one memory access
unit. The floating-point units can also execute 32- or
64-bit fix-point instructions and 8- or 16-bit SIMD fix-
point instructions through extension of the fmt field of
the floating-point instructions.

The Godson-2E processor has been physically im-
plemented using cell based flow with some manual
placement and a number of dedicated crafted cells and
macros. To reduce clock cycle time, specific data
path modules or modules with replicated structure have
been manually mapped to the cell library and manu-
ally placed in a bit-sliced structure. The crafted cells
and macros include some basic cells such as flip-flops,
NANDs, NORs, AOIs, MUXs, buffers and inverters with
different sizes, some double height cells such as 4-, 6-, or
8-bit comparator, 4-bit flip-flops, full adder, a 64 x 64
register file with 4 write ports and 4 read ports and a
special ram macro for TLB. The useful clock skew tech-
nique is used for critical path pipeline stage to borrow
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time from adjacent pipeline stages.

Godson-2E was fabricated with STmicroelectronics
7-metals 90nm CMOS process. The chip includes 47
million transistors, and the area of the chip is 6,800 mi-
crometers by 5,200 micrometers. The highest frequency
of the chip is 1.0GHz and the power dissipation ranges
from 5.0 to 7.0 watt depending on the application.

The 1GHz Godson-2E achieves peak performance
of 4GFLOPS and 8GFLOPS for double- and single-
precision floating point computation respectively. The

SPEC CPU2000 rate of Godson-2E is higher than 500.

The following sections are organized as follows. Sec-
tion 2 summarizes architectural features of the Godson-
2E processor. Section 3 introduces the micro- and pico-
architecture optimization considering the physical im-
plementation. Section 4 presents the physical design
and fabrication of the first Godson-2E chip. Section
5 gives some preliminary performance results. Future
work and conclusion are given in Section 6.
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2 Godson-2E Micro Architecture Overview

The basic pipeline stages of Godson-2E include in-
struction fetch, pre-decode, decode, register rename, dis-
patch, issue, register read, execution and commit. Fig.1
shows major blocks of Godson-2E.

In fetch stage, the instruction cache and instruction
TLB (Translation Lookahead Buffer) are read accord-
ing to the content of PC (program counter). Four new
instructions are sent to IR (instruction register) if the
instruction fetch is TLB hit and cache hit.

In pre-decode stage, branch instructions are found
and their branch directions are dynamically predicted.

In decode stage, the four instructions in IR are de-
coded into internal format of Godson-2FE and are sent
to the register renaming module.

In the register rename stage, a new physical reg-
ister is allocated for each logical destination register,
and each logical source register is renamed to the latest
physical register allocated for the same logical register.
Inter-instruction dependencies among the four instruc-
tions mapped in the same cycle are also checked. The
renamed instructions are latched and sent to the reser-
vation stations and queues in the next cycle.

In the dispatch stage, renamed instructions are dis-
patched to the fix- or floating-point reservation station
for the execution, and are sent to the reorder queue for
the in-order graduation. Associated instructions are also
sent to the branch queue and memory queue.

In the issue stage one instruction with all the re-
quired operands ready is selected from the fix- or
floating-point reservation station for each functional
unit. When there are multiple instructions ready for
the same functional unit, the oldest one is selected. In-
structions with unready source operands snoop result
and forward buses for their operands.

In the register read stage, the issued instruction
reads its source operands from the physical register file
and is sent to the associated functional units. It may
also get the data directly from bypass of the result if its
source register number matches the destination register
number of the result bus.

In execution stage, instructions are executed and ex-
ecution results are written back to the register file. Re-
sults are also sent to the reservation station for snooping
and to the register mapping table to notify that the as-
sociated physical register is ready.

In the commit stage, up to four instructions can be
committed in order per cycle. Committed instructions
are sent to the register mapping module to confirm the
mapping of its destination register and release the old
one. They are also sent to the memory queue to allow
committed store instructions to write cache or memory.

2.1 Fetching and Decoding

The Godson-2E pipeline begins with the fetch stage,
where four instructions are fetched in parallel within
an eight-word instruction cache line. In each cycle, the

processor compares tags read from the cache with phys-
ical addresses translated from ITLB (instruction TLB)
to select the data from the correct way. On the cache
misses a refill request will be raised.

The sixteen-entry ITLB is a subset of the main TLB.
It is different from the main TLB where each ITLB entry
maps only one page. When the ITLB misses, the pro-
cessor creates an internal Godson-2E instruction which
looks for the entry in the main TLB and fills the ITLB.
Normal TLB exception will rise if the missing page is
not in the main TLB too.

In the following pre-decode and decode stages, the
four instructions in IR are decoded into internal instruc-
tion format of Godson-2E and are sent to the register
renaming module. Only one branch instruction can be
decoded in one cycle. BHT is used for predicting di-
rection of conditional branch, while BTB and RAS are
used for predicting target program counter.

The BHT contains a 9-bit global history register
(GHR) and 2K-entry pattern history table (PHT). Each
PHT entry has a 2-bit saturating up/down counter. The
counter is increased by one if the prediction is right, and
is decreased by one otherwise. The higher order bit of
the counter is used for branch prediction.

The 16-entry BTB predicts the target PC of the
jump register instruction. Fach BTB entry contains
the PC and target PC of the jump register instruction.
Moreover, a 2-bit saturating up/down counter is associ-
ated with each BTB entry. On the replacement, entries
with counter values “0” or “1” will be replaced prior to
others.

MIPS instruction set does not provide call or return
instruction, it normally uses branch/jump and link in-
structions and the “jump register 31” instruction in-
stead. Godson-2E implements a four-entry return ad-
dress stack. The decoding of a branch and link instruc-
tion causes its PC+8 to be pushed to the RAS, while
the decoding of a “jump register 31” instruction causes
the target PC to be popped from the RAS. Each branch
instruction saves the top-of-stack pointer of the RAS to
repair the top-of-stack pointer of the RAS after branch
misprediction.

2.2 Register Renaming

Godson-2E implements two 64-entry physical reg-
ister files for fix-point and floating-point register re-
name. Correspondingly, two 64-entry physical register-
mapping tables (PRMT) are maintained to keep the
relationship between physical and architectural reg-
isters. Each PRMT entry has the following fields.
1) State: each physical register is in one of four
states, MAP_ EMPTY, MAP MAPPED, MAP_WTBK,
and MAP_COMMIT; 2) Name: the identifier of the as-
sociated architectural register to which this physical reg-
ister is allocated; 3) Valid: this bit is used to mark the
latest allocation of a given architectural register if more
than one physical registers are allocated to it. Besides,
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the PRMT also includes fields used to restore the regis-
ter mapping on mispredicted branch canceling.

In register renaming stage, the PRMT is associa-
tively looked up for the two source register srcl, src2
and the destination register dest of each instruction
to find the associated latest mapped physical register
psrcl, psrc2, and odest. Besides, a free physical register
pdest whose state is MAP_EMPTY, is allocated to the
destination register dest, and the state of the newly al-
located physical register is set to MAP_MAPPED. The
valid bit of the pdest entry is set to “1” and the valid bit
of the odest entry is set to “0” to notify that pdest be-
comes the latest allocated physical register for the dest
architectural register.

Since four instructions are mapped concurrently,
inter-instruction dependencies among instructions
mapped at the same cycle should be checked. If the
source register srcl of an instruction is identical to
the destination register dest of a previous instruction
mapped at the same cycle, the physical register cor-
responding to srcl should be pdest of this previous
instruction, rather than the psrcl looked up from the
PRMT. This is also true for psrc2 and odest.

Since register renaming, the processor determines
dependencies simply by comparing physical register
name. These physical register names, psrcl, psrc2, and
pdest, are sent to the reservation station, while the odest
field is kept in the reorder queue. After an instruc-
tion is executed, its associated PRMT entry is set to
MAP_WTBK state so that the following instructions
know that the value is ready in the register file. When
an instruction is committed, it sets the pdest entry of
PRMT to MAP_COMMIT state and the odest entry to
MAP_EMPTY state meaning that the destination reg-
ister contents are regarded as the processor state and
the previous contents for this destination register are
discarded.

As consequent there may be multiple physical regis-
ters allocated to the same architectural register because
a logical register may have a sequence of values as writ-
ten by instructions in the pipeline. Physical registers
assigned to the same logical register hold both commit-
ted values and temporary results during the instruction
flow through the pipeline. A physical register is written
exactly once for each assignment.

2.3 Issuing and Reading Operands

Register renamed instructions are latched and then
sent to the reservation station to be scheduled for execu-
tion. Godson-2E has two independent group reservation
stations. Fix-point and memory instructions are sent to
the fix-point reservation station. Floating-point instruc-
tions are sent to the floating-point reservation station.
Each reservation station has 16 entries and can accept
as many as four instructions per cycle.

In the register rename stage, the PRMT is looked
up to see whether the associated operand has been gen-
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erated and written back to the physical register. If the
PRMT indicates that operand is not ready, the reserva-
tion station snoops the result buses and forward buses
for that operand. The associated ready bits are set to
ready if the destination register of one of the snooped
buses matches the source register of incoming instruc-
tions or instructions in the reservation station.

Result and forward buses start from five functional
units. The result buses send out the execution results of
functional units, while the forward buses forecast which
result will be sent out in the next cycle. By snooping
the forward buses, issued instructions can get operands
directly from the result buses before they are written
back to the register file.

The reservation stations can issue as many as five
operand-ready instructions to the five functional units.
If there are multiple operand-ready instructions for the
same functional unit, the oldest one is issued. To record
the age of each instruction, an age field is added to each
entry of the reservation station. It is set to a low value
when an instruction enters in the reservation station,
and is increased by one each time an instruction of the
same functional unit enters in the reservation station.

Issued instructions read their operands from the
physical register file. Godson-2E has one fix-point phys-
ical register file and one floating-point physical register
file, both with the size of 64 x 64.

The fix-point register file has three write ports and
seven read ports. The ALU1 fix-point unit uses one
write port and three read ports (for conditional move
instructions), while the ALU2 and the memory unit uses
one write port and two read ports each. The floating-
point register file has three write ports and seven read
ports. The FALU1 and FALU2 floating-point unit uses
one write port and three read ports (for MAC instruc-
tion) each. Besides, floating-point load instructions use
one write port and floating-point store instructions use
one read port of the floating-point register file.

Execution results are written back directly to the
register file, and can also be bypassed to the following
instructions which are RAW dependent on it.

2.4 Execution and Functional Units

Instructions are sent to functional and memory units
for execution after reading operands. Godson-2E has
two fix-point functional units ALU1 and ALU2, and two
floating-point functional units FALU1 and FALU2.

The ALU1 unit executes fix-point addition, subtrac-
tion, logical, shift, comparison, trap, conditional move,
and branch instructions. All ALU1 instructions are ex-
ecuted and written back in one cycle.

The ALU2 unit executes fix-point addition, sub-
traction, logical, shift, comparison, multiplication, and
division instructions. Fix-point multiplication is fully
pipelined and has a latency of four cycles. Fix-point di-
vision uses the SRT algorithm and is not fully pipelined,
its latency ranges from 4 to 37 cycles depending on the
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operands. All the other ALU2 instructions can be exe-
cuted and written back in one cycle.

The fully pipelined FALU1 unit executes floating-
point addition, subtraction, multiplication, multipli-
cation and accumulation, absolute, negation, conver-
sion, comparison, and branch instructions. The la-
tency of floating-point absolute, negation, comparison
and branch are two cycles. The latency of conversion
is four cycles. The latency of floating-point addition,
subtraction, multiplication, multiplication and accumu-
lation are six cycles.

The FALU2 executes floating-point addition, sub-
traction, multiplication, multiplication and accumula-
tion, division, and square root instructions. The latency
of fully pipelined floating-point addition, subtraction,
multiplication, multiplication and accumulation are six
cycles. The division and square root use the SRT algo-
rithm and are not fully pipelined. The latency of sin-
gle/double precision floating-point division ranges from
4 to 10/17 cycles, the latency of floating-point square
root ranges from 4 to 16/31 cycles, depending on the
operands.

The floating-point multiply-add-fused (FMAF) unit
is a key feature in many commercial processors, which
executes C + (A x B) as a single instruction, with
no intermediate rounding. Floating-point addition and
floating-point multiplication can be performed using this
unit by making B = 1 for addition and C = 0 for
multiplication. In Godson-2E processors, both FALU1
and FALU2 floating point units have an FMAF unit,
which executes double or single precision floating-point
multiplication-addition, multiplication and addition in-
structions. It also supports the paired-single instruc-
tions which execute two single floating-point multipli-
cation, addition, multiplication-addition operation con-
currently in one instruction. The FMAF is partitioned
in five pipeline stages. The first stage mainly operates
the bit inversion and alignment of the significant of C'
in parallel with the booth encoding of multiplication.
The second stage uses two 14-2 CSA trees to compress
the multiplication partial products and the C operator
mantissa at the same time. As a consequence, the delay
of stage-two and stage-three are balanced in our pro-
posed FMAF pipelined structure, and also we can easily
support the paired-single instructions by using two sepa-
rate CSA trees to operate two single precision operations
with little change. To make the combination of addition
and rounding possible, we anticipate the normalization
(LZA) in stage-three and detect the sign of addition re-
sults. The fourth stage encodes the LZA outcome to
normalize the carry-save product. In stage five a 51-
bit dual adder is used to compute the most-significant
bits, and the remaining least-significant bits are input to
the logic for the calculation of the carry into the most-
significant part and for the calculation of the rounding
and sticky bits. Finally the carry and the sticky bits are
used to select the two outputs of dual adder to be the
result of multiplication-addition operation.

Besides executing floating-point instructions, the
floating-point functional units can also execute 32- or
64-bit fix-point instructions (arithmetic, logic, shift,
compare, and branch) and 8- or 16-bit SIMD fix-point
instruction through extension of the fmt field of the
floating-point instructions.

2.5 Commit and Reorder Queue

The reorder queue holds all instructions after register
mapping and before they are committed. After instruc-
tions are executed and written back, the reorder queue
commits them in the program order. The reorder queue
can hold as many as 64 instructions concurrently.

Reorder queue can accept as many as four mapped
instructions per cycle. Newly entered instructions
are set to ROQ_MAPPED state. After the instruc-
tion is written back, its state in reorder queue is
set to ROQ_WTBK for ordinary instructions and
ROQ_BRWTBK for branch instructions. The state of
branch instructions are set to ROQ_WTBK after the
branch result has been sent to other parts of the proces-
sor through the branch bus to justify branch prediction
tables and to cancel instructions following mispredicted
branches. ROQ_WTBK instructions can be committed
if they reach the head of the reorder queue.

Reorder queue graduates as many as four
ROQ_WTBK instructions in the queue head per cy-
cle. When an instruction graduates, its pdest and odest
fields are sent to the register mapping module to confirm
the mapping of pdest entry as the processor state and
to free the mapping of odest entry, it also informs the
memory queue where corresponding store instructions
can start to modify memory.

For precise exception handling, exceptions are not
processed as soon as they occur. They are recorded in
the reorder queue instead. When the exception instruc-
tion reaches the head of the reorder queue, the exception
information is sent out through exception bus. All fol-
lowing instructions are cancelled, exception information
is recorded in the CPO registers, and the PC is set to
the entry point of exception handler.

2.6 Branch Canceling and Branch Queue

A branch instruction enters the branch queue at the
same time when it is sent to the reorder queue and the
reservation station. At most one branch instruction can
be accepted by the branch queue per cycle. The branch
queue can hold as many as eight branch instructions
concurrently.

The branch queue provides information necessary for
execution when a branch instruction is issued to be exe-
cuted. The information includes the PC value for branch
and link instructions, and the predicted taken bit for
conditional branch instructions.

After a branch instruction is executed, execution re-
sults are written back to the branch queue. The results
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include the target PC for JR and JALR instructions,
the branch direction for conditional branch instructions,
and a bit indicating whether the branch prediction is in-
correct. The branch instruction execution result should
be feedback to the instruction fetch part before it can be
committed. Besides correcting mispredicted branches,
the branch execution result is also used to justify the
BHT, BTB, RAS, and GHR for branch prediction.

In case of incorrect prediction, instructions following
the mispredicted branch instruction should be cancelled.
The key issue is for each instruction in the pipeline to
decide whether it is before or after the mispredicted
branch. Godson-2E divides the continuous instruction
stream into basic blocks separated by branch instruc-
tions. Each instruction is assigned a branch queue po-
sition identifier brqid that can be regarded as its basic
block number. For branch instruction, this identifier in-
dicates its position in the branch queue; for ordinary
instruction, this identifier indicates the position of its
previous branch instruction in the branch queue. In
this way, each instruction can determine its relative po-
sition to the mispredicted branch by comparing its brqid
with the brgid of the mispredicted branch. Delay slot
instructions should be paid special attention in branch
canceling.

2.7 Memory Subsystem

Memory references are issued out-of-order to the ad-
dress calculation unit. The Godson-2E memory access
pipeline is split into four stages. 1) In the first stage,
address is calculated and the CAM of TLB is searched
to form the index of TLB RAM. 2) In the second stage,
TLB RAM is accessed in parallel with cache RAM ac-
cess. Tag comparison is also performed at this stage,
but value selection according to tag comparison result
is delayed to next cycle. 3) In the third stage, access
value is formed according to the tag comparison re-
sult of last stage, memory access exception bits are also
formed at this stage. The value is then sent to memory
access queue, where dynamic memory disambiguation
and memory forwarding are performed. 4) Finally the
results are written back when ready.

The 64-entry fully associative TLB contains a CAM
part that is used to do associative search of virtual ad-
dresses and a RAM part which stores physical page num-
bers and page protect bits. The CAM lookup is done
in address calculation stage to avoid the need of asyn-
chronous RAM. To reduce hardware cost, Godson-2E
uses 40-bit virtual address and 40-bit physical address
instead of the rarely needed 64-bit.

The 64-KB four-way set associative primary data
cache is virtually indexed and physically tagged so that
accesses can happen in parallel with TLB lookups. The
replacement policy is random, but two continuous re-
placement of the same block is avoided by hardware.
To reduce chip area and ease physical design, single
port RAM is used for both tag and data. Godson-2E
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allows simultaneous loads and write-back of stores pro-
vided they access different banks to alleviate cache ac-
cess conflict. When cache port conflict occurs among
refills, loads (stores read only the tag array) and write-
back of stores (which write cache data only), refills have
the highest priority while write-back of stores have the
lowest priority.

Memory access queue is the core unit of Godson-
2E memory subsystem. It can track up to 24 in-flight
memory loads or stores. Loads and stores enter the
queue out-of-order, but an in-order architectural mem-
ory model is maintained. Multiple cache misses and
hits under misses are allowed. Using a physical address
CAM, the memory access queue dynamically performs
disambiguation and forwarding between accesses. When
a load enters the queue, it checks all older stores for pos-
sible bypass for each byte it needs. When a store enters
the queue, it checks all younger loads in the queue un-
til another younger store to the same byte to decide
whether to forward value to them. The queue snoops
cache refill and replace operations too.

The miss queue sits below the memory queue in the
Godson-2E memory hierarchy. It connects instruction
cache, data cache, L2 cache, DDR memory controller,
and SysAD system bus controller. The miss queue ac-
cepts both instruction miss requests and data miss re-
quests, accesses L2 cache on L1 cache miss, further ac-
cesses lower memory hierarchy through processor inter-
face on L2 cache miss, and delivers L2 cache or memory
access results to L1 and/or L2 cache. Miss queue im-
plements the store fill buffer optimization which gathers
L1 miss store operations for full modified cache blocks
and refill the gathered cache block directly to L1 cache
to avoid unnecessary memory access.

The 512KB L2 cache is four-way set associative. The
block size of L2 cache is 32-byte which is the same as
that of the L1 cache. The L2 cache accepts L2 cache
access or refill request from miss queue, and sends ac-
cess results back to miss queue. It also accepts L1 cache
write back requests directly from L1 cache and sends L2
cache write back requests directly to lower level memory
hierarchy. The fully pipelined L2 cache of Godson-2E
runs at the same frequency as the processor core and
has an access latency of five cycles.

The 64-bit on-chip DDR memory controller allows
Godson-2E to achieve high memory bandwidth with low
latency. The 64-bit SysAD processor interface supports
up to eight split transactions and remote memory access
capability.

3 Micro- and Pico-Architecture Optimization

Though CMOS technology advances have driven
much of clock frequency improvements in microproces-
sors, micro-architecture optimization also played an im-
portant role in reducing microprocessor cycle time. In a
processor design, an understanding of the physical and
electrical behavior of each architectural element is essen-
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tial to reduce the clock cycle time of the processor. It
even requires detailed wire-level plan for microprocessor
design under submicron technology.

In a nanometer technology, processor architecture
design and optimization have to take into account wire
delay from the beginning. In this paper, we call the ar-
chitecture design and optimization related to physical
implementation with the name of pico-architecture de-
sign. Pico-architecturel® is a kind of organization below
the level of micro-architecture and optimizes the proces-
sor organization mainly for efficient physical implemen-
tation.

3.1 Pipeline Stage Optimization

Great effort has been taken to reduce the logical levels
of each pipeline stage in the Godson-2E architecture de-
sign. Several chips have been taped out before Godson-
2E to verify the design and improve the performance
continuously. During the process of these tapeouts, the
architecture was finely tuned with the information feed-
back coming from the physical design.

The most obvious method to increase processor fre-
quency is adding stages to the microprocessor pipeline
to reduce the amount of work per stage and Godson-2E
adopts this idea to a certain extent. A previous ver-
sion of Godson-2 (called Godson-2B) adopted T7-stage
pipeline including fetching, decoding, register renam-
ing, issuing, read register, execution, and commit, while
Godson-2E divides the first two (fetching and decoding)
stages into three (fetching, pre-decoding and decoding)
and the middle three stages (register renaming, issuing,
read register) into four (register renaming, dispatching,
issuing, read register), as described in the previous sec-
tion.

Increasing pipeline stages, of course, will reduce the
pipeline efficiency. For example, in the 7-stage pipeline,
two data-dependent instructions can issue on the suc-
cessive cycles if the first instruction is a one-cycle in-
struction, while this is not true in the 9-stage pipeline
because the number of cycles from reservation station to
functional unit is increased from 1 to 2. Godson-2E com-
pensates for the loss of long pipeline through increasing
the cache size and speculative forwarding technique. In-
creasing the cache size will compensate the performance
loss caused by low efficiency of long pipeline. Previous
study!'?! showed that designing deeper pipelines can in-
crease the processor frequency which, when combined
with larger on-chip caches, can yield significant perfor-
mance improvements.

A speculative forwarding technique is used in

Godson-2E to reduce efficiency loss of long pipeline. In
the previous version of Godson-2, the cache access for-
ward bus starts from the tag comparison pipeline stage,
i.e., if tag compare result shows that an access hits the
cache, then a forward bus informs the fix or float reser-
vation station that the access result will be produced in
the result bus in the next cycle. In the 9-stage pipeline
of Godson-2E, there are two pipeline stages (issue and
read register) between reservation station and functional
units. As a result, there is no data forward from mem-
ory access result bus because the memory access result
appears in the result bus when a following dependent
operation is in the issue stage. To speedup the for-
ward mechanism, Godson-2E implements the specula-
tive forwarding mechanism which speculatively notifies
load operation result in the reservation station two cy-
cles before the real access result appears in the result
bus, i.e., when the load operation is reading data cache.
This allows the following dependent operation to snoop
memory access result bus in read register pipeline stage,
and as a result, remove one delay slot for all cache hit
load operations. If a speculative forwarded load found
to be a cache miss in the next tag compare stage, the
speculative issued dependent operation is cancelled in
the issue stage.

3.2 Pipeline Stalling Signal Optimization

Global pipeline stalling signals are another kind of
critical paths in an out-of-order superscalar processor
design like Godson-2E. They freeze all previous stages
of the pipeline when an unexpected event, such as data
cache miss or register file port confliction, occurs. De-
lays of these signals are dominated by the wire delay
that does not scale down with the CMOS technology.
Godson-2E decouples the 9-stage pipeline into three
parts to stop the propagation of pipeline stalling sig-
nals. Decouple buffers or queues are accommodated be-
tween pre-decoding and decoding stages, and between
dispatching and issuing stages, as shown in Fig.2.

3.3 Register File Optimization

Both fix-point and floating point register files need
multiple port registers. The fix-point register file pro-
vides operands and accepts results from ALU1, ALU2,
and MEM unit, while the floating point register file
provides operands and accepts results from FALUI,
FALU2, and MEM unit. Godson-2E reduces the reg-
ister file latency through splitting a register file into two
to take advantage of the physical locality of the register
file.

Fetch Pre-Dec. Decode Rename

Dispatch

Issue Read Reg Exe. Commit

Inst Queue Full Queue Full

Function Unit Busy

-4

—<

Fig.2. Decoupling of pipeline stages.



Take the fix-point register file as an example, the
ALU1, ALU2, and MEM unit require 3rlw (3 read ports
and 1 write port), 2rlw, and 2r1w respectively. Godson-
2E uses two 4rdw register file to act as a 3r7w regis-
ter file. All results are written into both register files.
The first register file provides operands to ALU1, while
the second register file provides operands to ALU2 and
MEM. Splitting one register file into two parts has fol-
lowing advantages: 1) the latency of register file read
time decreases linearly with the number of read port; 2)
each register file can be placed close to the correspond-
ing functional unit to reduce wire latency.

3.4 Cache and TLB Pipeline Optimization

L1 cache access is one of the critical paths in this
processor design. The work of L1 cache access in-
cludes cache RAM access, tag comparison, and way se-
lection according to the tag comparison result. Godson-
2E separates L1 cache access into two pipeline stages.
Instruction cache way selection is combined with the
pre-decoding stage, and data cache way selection runs
in parallel with the address disambiguation in memory
queue.

AN RAM

: Line Sel.

i 6-64 ﬁec.

=

64-6 Enc.

27bit cmp

Adder

1

(a) (b)

Fig.3. TLB CAM optimization. (a) With encoding and decoding.
(b) Removing encoding and decoding.

Fig.3 shows an optimization to reduce the critical
path latency of the address calculation cycle in the cache
access pipeline. In Fig.3(a), the address calculation cy-
cle includes a 48-bit adder and a 64-entry TLB CAM
search. In our cell-based methodology, CAM search in-
cludes a 27-bit address comparison with each of the TLB
entries and a 64-6 encoder to encode the 64-bit compari-
son result vector to a 6-bit index. Since the RAM access
in the next cycle starts with the decoding of this 6-bit
index, we remove the encoder and decoder from both
cycles, as shown in Fig.3(b). This, of course, requires
the custom design of the RAM macro which is accessed
directly with the word line signals. It does not change
the pipeline structure or the order in which instructions
are executed, but improve performance by enabling ef-
ficient physical implementation.
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With many micro- and pico-architecture improve-
ments, together with some crafted cells, the number of
cells between flip-flops of critical path is reduced from
34 to 21, and the cycle time is reduced correspondingly.

4 Physical Implementation

Godson-2E processor has been physically designed
with the cell-based methodology and manufactured with
STMicroelectronics’s 7-metal 90nm CMOS process. De-
sign Compiler was used to do logical synthesis, Physical
Compiler was used to generate the placement for cells,
and Astro was used for floorplan, clock tree generation,
and routing. The design includes 47 million transistors,
and the area of the chip is about 6,800 micrometers by
5,200 micrometers.

4.1 Semi-Hierarchical and Semi-Custom Place
and Route Flow

The design flow for Godson-2E is neither hierarchi-
cal nor flatten, and is neither full ASIC nor full custom.
It is semi hierarchy and semi custom instead. On one
hand, it is cell-based design and takes the full advan-
tage of existing mature EDA tools and flows to reduce
the design cost and time to market. On the other hand,
Godson-2E is a high performance microprocessor and
has a very tight requirement for timing closure. To
meet the above contradicting requirements, many op-
timizations have been taken to achieve the extreme per-
formance target of Godson-2E while keeping the design
simplicity of the ASIC design flow. The semi-custom
and semi-hierarchical place and route method was cho-
sen to manually map critical path modules with repli-
cated structure to the cell library and to manually place
cells of these modules in a bit-sliced way. A number of
crafted cells and macros were built to remove margins
of the standard cell library.

The existing EDA design flows are either flat or hi-
erarchical. The flat design flow regards the chip as a
whole and is suitable to small design, while the hierar-
chical design flow divides the chip into several parts and
is suitable to large design. Though Godson-2E which
includes about one million cells can be faced with a flat
design method, it is divided into several blocks to finely
tune the timing of each block. Fig.4 show the layout of
Godson-2E. In Fig.4, the chip is divided into the follow-
ing eight blocks:

e The FETCH block is composed by the instruction
cache, instruction TLB, branch predication, and decode
logical modules.

e The REGROQ block is composed by the register
mapping and reorder queue logical modules.

e The FIX block is composed by the fix point reser-
vation station, general purpose register file, ALU1, and
ALU?2 logical modules.

e The FLOAT block is composed by the floating-
point reservation station, floating point register file,
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FALU1, and FALU2 logical modules.

e The MEMORY block is composed by the ad-
dress calculation, data cache, TLB, tag comparison, and
memory queue logical modules.

e The CACHE2MEM block sits between data cache,
instruction cache, L2 cache, and processor interface and
is composed by the miss queue logical module.

e The L2CACHE block is composed by the L2 cache
logical module.

e The IO block is composed by the DDR controller,
SysAD controller, and the arbitration logical which con-
nects the processor core, SysAD controller, and DDR
controller. The asynchronous FIFO which transfers sig-

nals between the core clock and system clock also be-
longs to the 10 block.

[0 oo REGROQ

Fig.4. Layout of Godson-2E.

In traditional hierarchical design, blocks are placed
and routed separately and then combined back into the
full chip after route. In the semi-hierarchical design flow
of Godson-2E, blocks are combined back into a full chip
immediately after the placement. Fig.5 illustrates the
semi-hierarchical design flow of Godson-2E. In Fig.5,
logic synthesis, placement and in-place optimization use
the hierarchical flow, while clock tree synthesis, route
and the sign-off analysis use the flatten flow. The semi-
hierarchy flow has the following advantages. 1) The de-
sign is divided into multiple blocks in such a way that
all blocks can be better optimized in parallel. Small
blocks also help each block to be finely tuned. 2) The
incremental placement optimization can be made after
blocks are combined back into a whole chip. The room of
incremental placement optimization is larger than that
of post route optimization. 3) The timing budget of
each block may not be precise at the initial prototype
stage, and the incremental placement optimization helps
to fully optimize the boundary logic of each block. 4)
Since blocks are combined back into the full chip after
placement, pins of each block can be located according
to the final placement result instead of the initial pro-
totyping result.

In a hierarchical design, the boundary constraints
are the starting point for block-level design and their
veracity affect the quality of the design. However, the
boundary constraints from the prototype stage may not
be precise. The boundary constraints of a block vary in
different design stages. In Godson-2E, boundary tim-
ing paths are normally the critical paths across different
pipeline stages such as result bus, commit bus, branch
canceling bus, etc. After many experiments we found
that the best way to define the block boundary timing
constraints is manually defining these constraints as a
joint work of architectural and physical engineers, de-
pending on the logical relationship of different blocks
and the possible future physical placement. Designers
of different blocks may even bargain each other for tim-
ing budget of neighboring blocks or blocks with logical
relationship. The manual timing budget, of course, will
be tuned by the designer in different design stages such
as logic synthesis, placement, and in placement opti-
mization.

RTL code is the output of architecture designer and
the most important input of the physical designer. In
Godosn-2E, the logical RTL which is the output of the
architecture designer is reorganized to fit the physical
implementation. The reorganized RTL, also called phys-
ical RTL, is different from the logical RTL in the follow-
ing aspects. The top module is reorganized to group
logical modules into the above eight blocks. The units
driving multiple different blocks are split into multiple
physical instances. A certain amount of manual inser-
tion netlist is included into the physical RTL for critical
paths or tiled structures. The process from the logical
RTL code to the physical RTL code is actually a transfer
process from the logical hierarchy to the physical hier-
archy. It is hardly implemented by automatic design
tools and flows. To ensure the correctness of this pro-
cess, equivalence between logic RTL code and physical
RTL code is verified with the formal verification tool
Formality by Synopsys.

Godson-2E includes manual placement to improve
performance. Fig.6 shows part of the MEMORY block
floorplan. The manually placed cells have been intro-
duced for the TLB CAM (as shown in Fig.6). The dou-
ble height cells in Fig.6 are crafted cells which will be
introduced in the next subsection.

4.2 Craft Cell and Macro Design

In order to meet the critical constraints of Godson-2E
physical design, some full-custom macros and standard
cells were designed. Full-custom macros include a 4w4r
(four write port and four read port) 64 x 64 register file
and a 1wlr (one write port and one read port) 64 x 64
register file.

The 1wlr 64 x 64 register file is used as the TLB
RAM in Godson-2E. Its address decode part is removed
to reduce the encode time of its previous pipeline stage,
as shown in Fig.3.
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Fig.5. Semi-hierarchical design flow.

Fig.6. Manual placement of the TLB CAM.

The 4w4r 64 x 64 register file is used as the physical
register file for general purpose and floating point regis-
ters. In Godson-2E, both general purpose and floating
point physical register file need three write and seven
read ports. Two 4w4r register file is used as a 4w8r
register file. The 4w4r register file uses a dynamic de-
sign. The bit-line is pre-charged in the rising edge of
clock. When a word line is enabled for read, the pre-
charged bit line is discharged or kept depending on the
content of the associated bit. The read enable signal is
used to gate the pre-charge circuit to reduce power con-
sumption. The write and read address decode circuits
are also dynamic, which help to accelerate the decoding
process and guarantee the proper open/close function
of the word-line. All word lines are closed during pre-
charge process, so that a word line is not opened before
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the previous word line was closed. If static logic is used
for decode, care should be taken to ensure word lines be
opened one by one. In the multi-port register file design,
the width and space of bit lines dominate the area. The
4widr register file uses single port bit line instead of the
normal dual-port bit line to reduce area. Keepers are
added on bit lines to tolerate noise between wires. In
the 4w4r register, the core cell size is 16.36um? and the
total size of the register file is 123,341 um?2.

Godson-2E also builds a number of crafted cells for
reducing latency, area, and power. Following are some
examples of crafted cells built in the design of Godson-
2E and previous 0.18um Godson-2C.

An out-of-order processor like Godson-2E heavily de-
pends on the comparison of register name or memory ad-
dress to resolve register or memory location dependency.
In Godson-2E, there are thousands of comparators dis-
tributed in the register renaming table, fix- and floating-
point reservation station, TLB, and memory queue. To
reduce latency and area, some 2-, 3-, and 4-bit com-
parator cells are designed for Godson-2E. Compared to
the synthesized comparators which normally consist of
XOR or NXOR cells followed by NAND or NOR cells,
the crafted comparator removes an output inverter in
the XOR or NXOR cell. The number of cells and chip
area are also reduced.

In the library, cells with different drive strength
have different sizes. For example, in the Artisan’s
0.18um library for SMIC, the NAND cell has NANDXL,
NANDX1, NANDX2, and NANDX4 variants, each
with different size. In the 0.18um Godson-2C, an
NAND2X1P5 which has the drive strength 1.5 is de-
signed. It uses the same cell-size as NAND2X1
but provides 1.5 times driven ability of NAND2X1.
The NAND1P5 cell replaces almost all NANDX1 and
NANDX2 cells in the synthesis of Godson-2C. More
than 20,000 instances of NAND1P5 were used.

Flip-flops are essential for high performance design.
In Godson-2C and Godson-2E, a semi-dynamic flip-flop
cell is designed to replace the static design. Besides, the
clock is gated by the input enable signal in the cell to
reduce redundant transitions. Table 1 shows the com-
parison between different FF cells in the SMIC 0.18um
technology.

Table 1. Comparison of Artisan FF, Crafted Master-Slave
FF and Crafted Semi-Dynamic FF in SMIC 0.18um Process

Artisan’s ICT ICT-Semidyn
SEDFFX4 SEDFFX4 SEDFFX4
Tsetup+Tcq Rise 529.16 ps 411.91 ps 217.90 ps
(154FF Load) Fall 640.89 ps 366.69 ps 285.90 ps
Power of Clock Enable 1.31  Enable 4.36
(1 for Artisan’s FF) Disable 0.28 Disable 0.31
Cell Area 116.424 99.792 133.056

When loading 154 FF, Semi-dynamic FF’s propagation de-
lay is 300ps faster than Artisan’s FF, and is 80ps faster than
crafted master-slave FF.

Clock power is the important part of power con-
sumption. Godson-2E reduces the amount of clock leaf-
node by design multi-bit flip-flop cells. Fig.7 shows a 2-

bit flip-flop design. In this 2-bit flip-flop cell, the clock
logic is shared by two flip-flops, thus reduce area and
power consumption. 4-bit and 6-bit flip-flop cells are
also designed to further reduce the power consumption
and total area.

Fig.7. 2-bit flip-flops.

The above semi-hierarchical and semi-custom de-
sign which finely tunes the logic and placement of crit-
ical paths with the help of crafted high speed cells,
together with the finely tuned micro-architecture and
pico-architecture as introduced in last section, lead to
the 1GHz design of Godson-2E with cell-based design
method.

5 Preliminary Performance Evaluation

The preliminary performance test of Godson-2E pro-
cessor includes basic performance parameters such as
highest frequency, power dissipation, GFLOPS, media
player performance, and the SPEC CPU2000 rate.

The highest frequency of Godson-2E ranges from
750MHz to 1GHz when running under the voltage be-
tween 1.0v and 1.4v. The total power dissipation of the
Godson-2E CPU, an FPGA north bridge, and 512MB
memory DIMM is 2.56W for core and 4.53W for 10 un-
der the frequency of 750MHz, and is 8.16W for core and
4.93W for IO under the frequency of 1GHz. When run-
ning at 1GHz, the double and single precision floating
point peak performance is 3.99 and 7.99 GFLOPS re-
spectively.

Some standard test video streams are downloaded
from the mplayer web site (http//ww.mplayerhq.hu,
ftp://ftp.mplayerhq.hu/Mplayer /benchmark) to test
the media player performance of Godson-2E. The
mplayer media player of the Godson-2E Linux PC
prototype can play MPEG1, MPEG2, and MPEG4
video stream smoothly through software decoding. In
the test mode, the decoding rate of 750MHz Godson-
2E is 253fps, 52fps, and 68fps for the MPEGI,
MPEG2, and MPEG4 format of the standard matrix
test video stream. Table 2 lists the decoding rate
of 750MHz Godson-2E for different format of different
video streams.

Table 3 lists the SPEC CPU2000 rates of 1GHz
Godson-2E. The ORC compiler which is developed for
Godson-2E is used. Table 4 shows the SPEC CPU2000
rates of different frequency Godson-2E and some Pen-
tium IIT and Pentium IV machine. The gcc3.4.1-02 is
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Fig.8. Memory bandwidth of Godson-2E.

used for both the Godson-2E and Pentium III/IV ma-
chines. It can be seen from Table 3 and Table 4
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that both the peak SPECint2000 and SPEC{p2000 rates
are higher than 500, and the SPEC CPU2000 rate of
Godson-2E is much higher than that of Pentium III/IV
with the same frequency.

Fig.8 presents the memory bandwidth of 1GHz
tested with the llcbench program
(http://icl.cs.utk.edu/projects/llcbench). It can be seen
from the figure that the effect of L1 and L2 cache is ob-
vious for bandwidth and the DDR controller is effective
to improve the memory bandwidth of Godson-2E.

6 Conclusion and Future Work

This paper introduces the micro-architecture and
physical implementation of the Godson-2E processor.
Godson-2E is a 64-bit, 4-issue, out-of-order execution
RISC processor which implements MIPS instruction set.
The adoption of the aggressive out-of-order execution
techniques and cache techniques help the Godson-2E to
achieve high performance.

Table 2. Mplayer Performance in Godson-2E

Media Files Format  Resolution kbps Required Fps  Total Frames Play Time (s) Real fps
matrix_ved.mpg mpegl 352 x 288 1150.0 25 4675 18.47 253.1
matrix_-mpg2.mpg  mpeg2 720 x 576 11421.6 25 4675 88.87 52.6
matrix_-mpg4.avi mpeg4 720 X 576 1655.7 25 4675 68.30 68.4
star_war.avi mpeg4 720 X 576 1858.3 25 4750 86.15 55.1
hannibal.avi mpeg4 480 x 260 153.7 24 3336 12.00 278.0
sample.avi mpeg4 640 x 352 823.3 23 1518 15.76 96.3

Table 3. SPEC_int2000 and SPEC_fp2000 of Godson-2E (peak)

SPEC Programs Description Ref Time Run Time Ratio
164.gzip Compression 1400 403 347
175.vpr FPGA circuit placement and routing 1400 273 512
176.gcc C programming language compiler 1100 221 497
181.mcf Combination optimization 1800 307 586
186.crafty Game playing: Chess 1000 167 598
197.parser Word processing 1800 472 382
252.eon Computer visualization 1300 188 690
253.perlbmk Perl programming language 1800 354 508
254.gap Group theory, interpreter 1100 240 458
255.vortex Object-oriented database 1900 263 722
256.bzip2 Compression 1500 365 411
300.twolf Place and route simulator 3000 645 465
SPEC_INT2000 503
168.wupwise Physics: Quantum chromodynamics 1600 238 672
171.swim Shadow water modeling 3100 660 469
172.mgrid Multigrid solver: 3D potential field 1800 579 311
173.applu Partial differential equations 2100 549 382
177.mesa 3D graphics library 1400 221 634
178.galgel Computational fluid dynamics 2900 412 704
179.art Image recognition/neural networks 2600 416 624
183.equake Seismic wave propagation simulation 1300 208 624
187.facerec Image processing: Face recognition 1900 300 632
188.ammp Computational chemistry 2200 432 509
189.lucas Number theory/primality testing 2000 396 506
191.fma3d Finite-element crash simulation 2100 531 395
200.sixtrack Nuclear physics accelerator design 1100 345 319
301.apsi Meteorology: Pollutant distribution 2600 528 493
SPEC_FP2000 503
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Table 4. SPEC CPU2000 Comparison Between Godson-2E and Pentium Machines

Godson-2E SPEC Ratio

Pentium SPEC Ratio

2E-750MHz 2E-900MHz 2E-1.0GHz

PIII-800MHz  PIII-1.0GHz PIV-1.4GHz

164.gzip 209 248 263
175.vpr 237 284 313
176.gcc 282 338 373
181.mcf 271 324 359
186.crafty 356 427 474
197.parser 202 242 268
252.eon 289 346 384
253.perlbmk 235 277 287
254.gap 238 284 314
255.vortex 236 283 312
256.bzip2 247 296 323
300.twolf 313 374 411
SPECint2000 256 306 335
168.wupwise 307 368 408
171.swim 247 297 327
172.mgrid 156 187 205
173.applu 188 225 249
177.mesa 373 448 496
179.art 349 413 462
183.equake 250 299 328
188.ammp 277 332 366
200.sixtrack 131 157 173
301.apsi 172 206 226
SPEC{p2000 232 278 307

344 436 397
261 275 246
241 287 350
229 224 255
352 439 386
231 255 331
90.7 113 125
397 480 547
260 296 441
383 451 478
249 268 314
269 271 287
260 296 326
248 275 474
218 194 244
99.2 112 320
154 153 333
265 323 265
115 110 109
190 193 493
174 194 200
137 171 224
190 206 199
171 183 263

Our recent work will further improve Godson-2E to
make it a product chip. The Godson-3 which is the
next generation of Godson processors is also under de-
sign. Godson-3 processor is a scalable CMP processor
in which multiple cores share a distributed L2 cache.
The distribution of L2 cache makes the Godosn-3 a CC-
NUCA (Cache Coherent Non-Uniform Cache Access)
architecture CMP processor. Besides, the virtual ma-
chine design of Godson-3 will make Godson-3 run binary
of different instruction sets.
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