
The Cyrix M1
Architecture Overview

1

Cyrix M1 architectural
feature comparison

Feature Cyrix
M1

Intel
Pentium

Alpha
21164

PowerPC
604

x86 instruction
set

✔ ✔

Superscalar ✔ ✔ ✔ ✔

Multiple integer
units

✔ ✔ ✔ ✔

Superpipelined ✔ ✔

Register renaming ✔ ✔

General purpose
registers 32 8 32 32

Data forwarding ✔ ✔

Branch prediction ✔ ✔ ✔ ✔

Speculative
execution ✔ ✔

Out-of-order
completion ✔ ✔ ✔

Cache size 16
KByte

16 KByte 16 Kbyte
+

96 KByte
L2

32 KByte

Cache
architecture

Unified
+ ILC

Harvard Harvard Harvard

FPU ✔ ✔ ✔ ✔

The Cyrix M1 architecture is a superscalar, superpipelined x86
processor architecture operating at very high clock rates. The architecture’s
sophisticated dependency- and conflict-reduction schemes are
implemented in hardware, allowing it to deliver performance increases of
roughly 2.5 times that of the 486 architecture operating at an identical
clock rate, and a gain of 30%–50% over the Pentium at an identical clock
rate when running today’s applications. This architectural advantage,
coupled with the core clock rates of 100 MHz and better, yield up to five
times the performance of a 486-50, and up to two times that of a current
Pentium processor. The M1 architecture provides more than 12 times the
performance of a typical RISC-based architecture operating in
“compatibility” mode, the mode required for the RISC architecture to run
existing x86 software.

The Cyrix M1 architecture includes five basic elements: Integer Unit,
Floating Point Unit, Cache Unit, Memory Management Unit, and Bus
Control Unit.

Integer Unit and Floating Point Unit
The M1 is a superscalar, superpipelined architecture that utilizes two

seven-stage integer pipelines, the x-pipe and the y-pipe. Each pipeline
contains a prefetch stage, two decode stages (ID1, ID2), two address-
calculation stages (AC1, AC2), an execute stage (EX), and a write-back stage
(WB).

The M1 architecture also contains a single, 64-bit, enhanced x87-
compatible, floating point pipeline. The FPU is enhanced by a four-
instruction queue and four independent, 64-bit write buffers.

Cache Unit and Memory Management Unit
The M1 architecture contains a 16-KByte, on-chip, 4-way set

associative, unified instruction/data cache as the primary data cache and
secondary instruction cache, and a 256-byte, fully set associative,
instruction line cache that is the primary instruction cache. The unified
cache is dual-ported to allow for two simultaneous fetches, reads, writes, or
combinations of any two.

The M1 architecture memory management unit includes two paging
mechanisms, the traditional x86 architecture mechanism, and a M1-unique
variable-sized paging mechanism. The variable-sized paging mechanism
allows software to map address regions between 4 KBytes and 4 GBytes in
size. The use of large, contiguous memories significantly increases
performance in applications that make heavy use of RAM, such as video-
intensive graphics applications and desktop publishing applications.

Bus Interface Unit
The M1 architecture bus interface unit provides the signal lines and

device timing required to implement the architecture in a system. The bus
interface unit is logically isolated, to provide for wide flexibility in system
implementation.

2

The Cyrix M1 Architecture:
Overview — continued

The Cyrix M1 Architecture
The Cyrix M1 architecture includes five basic elements:
integer unit, floating point unit, cache unit, memory management
unit and bus control unit.

The Cyrix M1Architecture:

Optimizing
Pipeline Usage

Integer Unit and
Floating Point Unit
(FPU)

3

Cyrix M1 architectural
feature comparison

Feature Cyrix
M1

Intel
Pentium

Alpha
21164

PowerPC
604

Superscalar ✔ ✔ ✔ ✔

Multiple integer units ✔ ✔ ✔ ✔

Superpipelined ✔ ✔

Branch prediction ✔ ✔ ✔ ✔

Speculative
execution ✔ ✔

Out-of-order
completion ✔ ✔ ✔

FPU ✔ ✔ ✔ ✔

Integer unit logic diagram

Overview
The M1 is a superscalar, superpipelined processor architecture.

Superscalar means that the M1 architecture contains two separate
instruction pipelines capable of executing instructions in parallel.
Superpipelined means that the instruction pipelines themselves are divided
into seven processing stages, allowing higher clock rates with a given
process technology.

Because of the degree of sophistication in the M1 architecture
superpipelining scheme, an M1 register access and an M1 cache access
require the same amount of time — one clock — to complete. Other
processor architectures, such as the Pentium, typically require two or more
clocks to complete a cache access.

In x86 programs, branch instructions occur an average of every
four to six instructions. Branch instructions change the sequential
ordering of the instruction stream, that may result in pipeline stalls as
the processor calculates, retrieves, and decodes the new instruction
stream. The M1 architecture provides two mechanisms to reduce the
performance impact and latency of branch instructions: branch
prediction and speculative execution.

Integer Unit
The integer unit includes two seven-stage integer pipelines, the x-pipe

and the y-pipe. Each pipeline contains an instruction fetch stage (IF), two
instruction decode stages (ID1, ID2), two address calculation stages (AC1,
AC2), an execute stage (EX), and a write-back stage (WB).

Instruction Fetch (IF)
The instruction fetch (IF) stage prefetches up to 16 bytes of instructions

per clock. Branch predictions are performed during this cycle to fetch
instructions from the predicted path.

Branch Prediction. The M1 architecture uses branch prediction to
select an instruction path for a branch instruction. The selection — or
prediction — is based on the target address and history information in the
branch target buffer (BTB). In the IF pipeline stage, the instruction stream is
checked for branch instructions. If a branch instruction is found in the
stream, the processor accesses the BTB. The type of BTB data checked
depends on whether the branch instruction was conditional or
unconditional.

Unconditional Branches. Unconditional branches are changes in program
flow that always occur — they are not dependent upon the fulfillment of
certain conditions or the state of certain program elements. Unconditional
branches result in a BTB check for the branch instruction’s target address.

4

The Cyrix M1 Architecture:
Integer Unit and Floating
Point Unit — continued

Branch prediction flow
The M1 architecture selects an instruction path
for a branch instruction.

If the check results in a BTB hit — a target address associated with the
branch instruction is found in the BTB — the processor predicts that the
branch will be taken at the address in the BTB, and begins fetching
instructions from that address. Execution begins based on the new
instruction stream.

Conditional Branches. Conditional branches are changes in program flow
that depend upon the fulfillment of certain conditions or the state of certain
program elements. Conditional branches result in a BTB check for the
branch instruction’s target address. If the check results in a BTB hit — a
target address associated with the branch instruction has been found — the
processor checks the history bits associated with the BTB address to
determine if the branch should be “taken” or “not taken.”

When the history bits predict that the branch will be taken, the
processor begins fetching instructions from the BTB address. Speculative
execution begins, based on the new instruction stream.

When the history bits predict that the branch will not be taken,
speculative execution continues along the sequential instruction stream, the
“not taken” branch.

If the BTB check results in a miss — the address is not found — the
processor predicts that the branch will not be taken and thus, the stream
does not branch.

The decision to fetch instructions from either the taken branch address
or the not-taken branch address is based on a 4-stage prediction algorithm.
Branch prediction accuracy in the M1 architecture is approximately 90%.

Return Instructions. Return (RET) instructions are branch instructions
with dynamic target addresses. As a result, the M1 architecture caches RET
target addresses in a return stack, rather than in the BTB. The RET address
is pushed on the stack during a CALL instruction and popped during the
corresponding RET instruction.

Instruction Decode (ID1, ID2)
The instruction decode stage determines the instruction length (ID1),

decodes the instruction, and determines the optimal pipeline in which to
execute the instruction (ID2).

Intelligent Instruction Dispatch. The M1 architecture uses intelligent
instruction dispatch to select the destination pipeline — either the x-pipe
or the y-pipe — for each instruction decoded. For the most commonly used
instructions in the x86 instruction set there are no constraints on pipeline
selection, so the selection is made to optimize the parallel use of the
pipelines. However, there are certain conditions where the architecture
imposes selection restraints on instruction processing:

X-Pipe-Only Instructions. The following instructions may only be
processed in the x-pipeline:

• Branch
• Floating point
• Exclusive
There are some additional parameters for the dispatch of these

instruction types, as follows:
Branch and Floating Point Instructions. Branch and floating point

instructions may be paired with an instruction in the y-pipeline.
Exclusive Instructions. Exclusive instructions may not be paired with an

instruction in the y-pipeline. However, hardware in both pipelines is used
to accelerate completion of these instructions.

5

The Cyrix M1 Architecture:
Integer Unit and Floating
Point Unit — continued

Speculative execution
By following the instruction stream of a predicted
branch, speculative execution eliminates pipeline
stalls that would result from waiting on the
resolution of the predicted branch instruction.

The following M1 instruction types are exclusive.
• Protected mode segment loads
• Control, debug, and test register accesses
• String instructions
• Multiply and divide instructions
• I/O port accesses
• Push/Pop All (PUSHA and POPA)
• Task switches

Address Calculation (AC1, AC2)
The address calculation stage calculates up to two effective addresses

per clock cycle, performs register renaming, and makes scoreboard checks
(AC1). The second address calculation stage (AC2) accesses the translation
lookaside buffer (TLB), cache, and register file, as well as performing
segmentation and paging checks. The superpipelined architecture of the
address calculation stage allows ALU instructions that use an operand from
the cache to complete in a single clock.

Execution (EX)
The execution stage performs ALU operations. Speculative execution

and out-of-order completion take place during this stage and the WB stage.
Speculative Execution. The M1 architecture uses speculative

execution to continuously execute instructions in the x- and y-pipelines
following a branch instruction or floating point operation. By following the
instruction stream of a predicted branch, speculative execution eliminates
pipeline stalls that would result from waiting on the resolution of the
predicted branch instruction.

Checkpointing and Speculation Level. Once a branch instruction has been
predicted, the processor checkpoints the machine state — the state of
registers, flags, and the processor environment — and increments the
speculation level counter. With checkpointing complete, the processor
fetches the instruction stream from the predicted target address and begins
executing the stream as if the branch had been correctly predicted.

The M1 architecture is capable of up to four levels of speculation —
combinations of branch predictions and floating point operations — active
at any one time.

Once a predicted branch instruction is resolved, the processor
decrements the speculation level counter and then acts on the instruction
stream, depending on the outcome of the prediction.

Correctly Predicted Branches. Correctly predicted branches result in the
processor clearing the checkpoints for that branch and continuing
execution of the current stream.

Mispredicted Branches. Mispredicted branches result in the processor
clearing the pipeline and fetching the correct instruction stream from the
actual target address. The machine state is restored to the checkpoint values
in a single clock, and the processor resumes execution on the correct
instruction stream in the ID1 stage.

Cache/Memory Writes. For compatibility, writes that result from
speculatively-executed instructions are prohibited from updating the cache
or external memory until the originating branch instruction is resolved.

Constraints. Speculative execution continues in the M1 architecture
until one of four conditions occurs:

6

The Cyrix M1 Architecture:
Integer Unit and Floating
Point Unit — continued

Out-of-order completion
Current and subsequent instructions in the EX
stage of the non-stalled pipeline may be
completed without waiting for the instruction in
the stalled pipeline to complete.

A branch instruction or floating point operation is decoded when
1. the speculation level counter is already at four or
2. an exception or fault occurs or
3. the write buffers are full, or
4. an attempt is made to modify a non-checkpointed resource, such as

the system registers.
Out-of-Order Completion. The M1 architecture uses out-of-order

completion to enable instructions in one pipeline to complete without
waiting for an instruction in the other pipeline to complete, regardless of
the order in which the two instructions were issued.

Out-of-order completion occurs in the execution (EX) and write-back
(WB) stages of the pipeline. Out-of-order completion occurs whenever the
following conditions are met:

1. an instruction in one pipeline is ready to complete before an
instruction in the other pipeline,

2. the instruction in the other pipeline is the “first” instruction,
3. the “first” instruction requires multiple clock cycles to complete.
These conditions usually result from the “first” instruction’s being

stalled while waiting for a memory access to complete.
With out-of-order completion, the “ready-to-complete” instruction, as

well as any subsequent instructions in the EX stage of the non-stalled
pipeline, may be completed without waiting for the “first” instruction to
complete.

x86 Program Compatibility. The rules governing inter-instruction
dependencies and program order ensure that software compatibility is
maintained, while still achieving significant performance increases.

When there are inter-instruction dependencies that might cause the
stall in one pipe to stall the other, the M1 architecture includes a number of
data dependency removal schemes to enable the non-stalled pipe to
continue executing.

The M1 architecture always provides instructions to the EX stage in
program order, and allows instructions to complete out-of-order only from
that point on. In conjunction with the restrictions governing exclusive
instructions, this limitation ensures that exceptions occur in program order
and that writes resulting from instructions completed out-of-order are
issued to the cache or external bus in program order.

Write-Back (WB)
The write-back stage writes to the register file and write buffers and

updates the machine state.

Floating Point Unit (FPU)
The M1 architecture integral FPU is a 64-bit, enhanced x87-compatible

device. The FPU provides a four-instruction queue and a set of four
independent, 64-bit write buffers, allowing up to four FPU instructions to
be outstanding while the integer unit continues to execute instructions in
parallel.

The Cyrix M1Architecture:

Providing A High
Cache Hit Rate

Cache and Memory
Management Unit
(MMU)

7

Cyrix M1 architectural
feature comparison

Feature Cyrix
M1

Intel
Pentium

Alpha
21164

PowerPC
604

Cache size 16 KBytes 16 KBytes 16
Kbytes +

96
Kbytes

L2

32 KBytes

Cache
architecture

Unified+
ILC

Harvard Harvard Harvard

Cache unit logic diagram

Overview
The M1 architecture cache is a 16-Kbyte, on-chip, dual-ported, 4-way

set associative, unified instruction/data cache, providing the primary data
cache and secondary instruction cache. The instruction line cache is a 256-
byte, fully associative, cache providing the primary instruction cache.

The M1 architecture memory management unit (MMU) provides an
enhanced x86-compatible page-mapping mechanism, and a M1-unique
page-mapping mechanism to improve performance.

Cache Unit
The M1 architecture cache is an innovative design combining a unified

instruction/data cache capable of storing data and instructions in any ratio,
with a separate instruction line cache.

By combining the unified cache and the instruction line cache into a
single architectural cache scheme, the M1 architecture provides a higher hit
rate over a wider range of applications than other cache architectures of the
same size and achieves high bandwidth.

Unified Cache. The 4-way set associative unified cache can store up to
16 KBytes of code and data, with each of the 512 cache lines holding 32
bytes.

Dual-Porting. The unified
cache is dual-ported to allow for
two simultaneous code fetches,
reads (x- or y-pipe, FPU), writes
(x- or y-pipe, FPU), or
combinations of any two of
these operations.

Instruction Line Cache.
The instruction line cache is a
256-byte fully associative
instruction cache.

The instruction line cache is
filled from the unified cache.
Code fetches from the integer
unit which hit in the line cache
do not access the unified cache.
For instruction line cache
misses, the data from the
unified cache is transferred to
the instruction line cache and
the integer unit simultaneously.
The instruction line cache uses a
pseudo-LRU algorithm

8

The Cyrix M1 Architecture:
Cache and Memory
Management Unit — continued

Memory management unit
(MMU)

for cache line replacements. To ensure safety for self-modifying code,
any writes to the unified cache are checked against the contents of the
instruction line cache. If a hit occurs in the line cache, the appropriate line
is invalidated.

Memory Management Unit (MMU)
The MMU translates integer unit linear addresses into physical

addresses for use by the cache unit and the bus interface unit. The MMU
includes a translation lookaside buffer (TLB), a victim translation lookaside
buffer (Victim TLB), and a directory table entry (DTE) cache.

Translation Lookaside Buffer (TLB). The M1 architecture TLB is a
128-line, direct-mapped cache for the most recently used page table entries
(PTE).

Victim Translation Lookaside Buffer (Victim TLB). The Victim TLB
is an eight-entry, fully associative cache storing the PTEs displaced from the
main TLB due to a miss. If a PTE access occurs while the PTE is stored in
the Victim TLB, the Victim PTE is swapped with a PTE in the main TLB.
This swapping has the effect of selectively increasing TLB associativity. The
Victim TLB is updated on an “oldest-entry” basis.

Directory Table Entry (DTE) Cache. The DTE cache is a four-entry,
fully associative cache storing the most recent DTE accesses. With the DTE
cache, only a single memory access to the page table is required when there
is a page table entry (PTE) miss followed by a DTE hit,.

M1-Unique Variable-Size Page Mechanism. The M1-unique
variable-sized paging mechanism allows software to map address regions
between 4 KBytes and 4 GBytes in size. The use of large, contiguous
memories significantly increases performance in applications which make
heavy RAM demands, such as video-intensive graphics applications and
desktop publishing applications.

The large contiguous memories allowed by the variable-sized paging
mechanism also help avoid the TLB thrashing associated with certain
operating systems and applications.

The Cyrix M1Architecture:

Removing Data
Dependencies

Register Renaming
and Data Forwarding

9

Cyrix M1 architectural
feature comparison

Feature Cyrix
M1

Intel
Pentium

Alpha
21164

PowerPC
604

Register renaming ✔ ✔

General purpose
registers 32 8 32 32

Data forwarding ✔ ✔

Overview
In traditional x86 architectures, instructions execute in a single pipeline

in the order in which they were issued — the instruction process is serial.
In superscalar architectures, instructions execute in either of two pipelines,
and may complete in a different order from that in which they were
issued — the instruction process is parallel.

Because superscalar architectures use two parallel pipelines,
instructions are issued in pairs, one to each pipeline. This provides the
potential for very dramatic performance increases over traditional
architectures, but existing software is often coded in such a way that it
cannot take full advantage of both pipelines.

The limiting factor in the case of superscalar architectures is that one of
the paired instructions may require the data from the other instruction. As
both instructions are executing at the same time, the instruction that
requires the data to complete stalls while it waits for the other instruction to
write the data it needs to the appropriate register. This is what is known as
a read-after-write (RAW) dependency, and the stall it causes is called a
serialization stall.

There are two ways to minimize the effects of RAW dependencies in
superscalar architectures: recompilation, and architectural design solutions.

Recompilation — requiring all existing software to be “optimized” for
the new architecture — is the solution adopted by those architectures that
are merely intragenerational improvements of traditional architectures.
Recompilation works by reducing the number of dependencies generated
by code serialization. While somewhat effective, recompilation is
enormously expensive, for everyone other than the processor developer. For
the application developer and, more importantly, for the end-user — who
must replace or upgrade a significant software investment in order to
achieve the promised performance — recompilation is expensive,
frustrating, and time-consuming. This approach doesn’t deliver the
promised performance from the huge installed base of x86 compatible
applications, though it reduces development time and expenses for the
processor developer.

The more comprehensive solution is to remove the dependencies
resulting from code serialization by building a better architecture. This is
the approach taken by the M1 architecture. While this is more complicated
for Cyrix, it has the advantage of delivering the promised performance
today — by taking advantage of the installed base of x86 applications. This
dramatically reduces the real cost of acquiring high-performance
technology to the end-user, as it eliminates the need to replace existing
applications with “new” or “optimized” versions of the same program.

The M1 architecture implements three architectural enhancements to
eliminate or minimize the impact of data dependencies:

• Dynamic register renaming,
• Data forwarding,
• Data bypassing.

10

The Cyrix M1 Architecture:
Removing Data Dependencies
— continued

Without register renaming
All the processor’s register operation are
limited to these eight physical registers.

Using register renaming
Any GP register can be dynamically assigned
to any of 32 physical registers the processor
requires.

Register Renaming
In traditional x86 architectures, the processor has access to 8 general-

purpose registers: EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP. All of the
processor’s register operations are confined to these eight physical registers.
In superscalar architectures based on the x86 model, this situation results
in a performance degradation, as the advantages of having two pipelines are
offset by the inadequacy of the register set.

With a huge installed base of applications designed to run on the x86
model architecture — including the use of those eight general-purpose (GP)
registers — the solution to removing this performance obstacle involves
more than simply adding more registers. An architecture which intends to
protect the existing installed base while still providing a substantial
performance increase must make the same registers available to the
processor, even when those registers are already in use.

To accomplish this, the Cyrix M1 architecture implements dynamic
register renaming on a set of 32 physical registers. Any one of the 32
physical registers can be used as any one of the eight x86 GP registers. In
this way, the processor’s access to the GP register it needs is not limited by
the x86 model of registers; (any GP register can be dynamically assigned to
any of 32 physical registers the processor requires). As register renaming is
an architectural — not a software — enhancement, it is transparent to the
applications running on the processor, and therefore allows those
applications to enjoy the full benefit of the superscalar architecture, without
being specially recompiled.

Write-After-Read (WAR) Dependency Removal. A WAR dependency
exists when an instruction in one pipeline must wait for the instruction in
the other pipeline to read a register value before it can write to the same
register. A WAR dependency results in a stall in the “waiting” instruction
pipeline. With dynamic register renaming, the M1 eliminates the WAR
dependency.

The instructions
(1) MOV BX,AX
(2) ADD AX,CX
are executed in parallel,
X PIPE Y PIPE
(1) BX << AX (2) AX << AX+CX
resulting in a WAR dependency on the AX register in the Y pipeline.
The WAR dependency is resolved in the M1 by mapping the three GP

registers involved into four physical registers.
Where the initial mapping is
AX=reg0
BX=reg1
CX=reg2
the M1 executes in parallel,
X PIPE Y PIPE
(1) reg3 << reg0 (2) reg4 << reg0+reg2
resulting in the removal of the WAR dependency on the AX register in the Y
pipeline.
 The final register mapping is
AX=reg4
BX=reg3
CX=reg2.

11

The Cyrix M1 Architecture:
Removing Data Dependencies
— continued

Without data forwarding
When a processor executes a MOV instruction in
one pipeline, while the instruction in the other
pipeline requires the data being moved, a read-
after-write (RAW) dependency is created on the
data being moved — the operand — in the
second pipeline:

Write-After-Write (WAW) Dependency Removal. A WAW dependency
exists in any situation where an instruction in one pipeline must wait for
the instruction in the other pipeline to complete a register before it can
write to the same register. In the M1, which utilizes data forwarding to
remove memory dependencies, a WAW dependency results in a stall in the
“waiting” instruction pipeline. With dynamic register renaming, the M1
eliminates the WAW dependency.

The instructions
(1) MOV AX,[mem]
(2) ADD AX,BX
are executed in parallel using data forwarding,
X PIPE Y PIPE
(1) AX << [mem] (2) AX <<[mem]+BX
resulting in a WAW dependency on the AX register in the Y pipeline.
The WAW dependency is resolved in the M1 by mapping the two GP

registers involved into four physical registers.
Where the initial mapping is
AX=reg0
BX=reg1,
the M1 executes in parallel,
X PIPE Y PIPE
(1) reg2 << [mem] (2) reg3 << [mem]+reg1
resulting in the removal of the WAW dependency on the AX register in the Y
pipeline.
The final register mapping is
AX=reg3
BX=reg1.

Data Forwarding
Data forwarding, when used in conjunction with register renaming,

removes data dependencies between instructions that normally require
serialization. By forwarding the operand or result from the “leading”
instruction to the “following” instruction, data forwarding allows the
instructions to execute in parallel, eliminating serialization stalls and
removing most RAW dependencies.

Operand Forwarding. When a processor executes a MOV instruction
from memory to a register in one pipeline, while the instruction in the
other pipeline requires the data being moved, a read-after-write (RAW)
dependency is created on the data being moved — the operand — in the
second pipeline. The M1 eliminates this dependency by forwarding the
operand to the second pipeline without waiting for the MOV instruction to
complete.

The instructions
(1) MOV AX,[mem]
(2) ADD BX,AX
are executed in parallel,
X PIPE Y PIPE
(1) AX << [mem] (2) BX << AX+BX
resulting in a RAW dependency on the AX register in the Y pipeline.
The RAW dependency is resolved in the M1 using data forwarding from

memory to the Y pipeline.
Where the initial mapping is
AX=reg0
BX=reg1

12

The Cyrix M1 Architecture:
Removing Data Dependencies
— continued

Using data forwarding
The M1 eliminates this dependency by
forwarding the operand to the second pipeline
without waiting for the MOV instruction to
complete:

the two instructions are executed in parallel using data forwarding,
X PIPE Y PIPE
(1) reg2 << [mem] (2) reg3 << [mem]+reg1
resulting in the removal of the RAW dependency on the AX register in the Y
 pipeline.
The final register mapping is
AX=reg2
BX=reg3.

Result Forwarding. When a processor executes a MOV instruction
from a register to memory on the results of an instruction in the other
pipeline, a read-after-write (RAW) dependency is created on the data being
moved — the result — in the first pipeline. The M1 eliminates this
dependency by forwarding the result to the first pipeline without waiting
for the instruction in the first pipeline to complete the store of its result.

The instructions
(1) ADD AX,BX
(2) MOV [mem],AX
are executed in parallel,
X PIPE Y PIPE
(1) AX << AX+BX (2) [mem] << AX
resulting in a RAW dependency in the Y pipeline on the AX register.
The RAW dependency is resolved in the M1 using data forwarding from

the X pipeline to memory.
Where the initial mapping is
AX=reg0
BX=reg1
the two instructions are then executed in parallel using data forwarding,
X PIPE Y PIPE
(1) reg2 << reg0+reg1 (2) [mem] << reg0+reg1
resulting in the removal of the RAW dependency on the AX register in the Y
 pipeline.
 The final register mapping is
AX=reg2
BX=reg1.

Data Bypassing
Data bypassing allows a memory location or register operand to be

passed directly to the next instruction, without waiting for the location or
register to be updated, further reducing the penalty of RAW dependencies
that cannot be resolved using data forwarding. Although many processors
perform data bypassing for register operands, the M1 also allows bypassing
for memory operands.

When a processor executes an instruction in one pipeline, while the
instruction in the other pipeline requires the result of that instruction as its
operand, a read-after-write (RAW) dependency is created on the operand in
the second pipeline. When the dependency occurs for a memory location,
the M1 minimizes the delays resulting from this dependency by passing the
result of the first pipeline instruction to the second, eliminating the read
cycle from memory of the result of the first instruction.

The instructions
(1) ADD [mem],AX
(2) SUB BX,[mem]

13

The Cyrix M1 Architecture:
Removing Data Dependencies
— continued

C
Cyrix Corporation
P.O. Box 850118
Richardson, TX 75085-0118
(214) 968-8388
Fax:214-699-9857

94252-00 © August 1995 Cyrix Corporation. Cyrix is a
registered trademark and M1 is a trademark of Cyrix
Corporation. All other brand or product names are
trademarks or registered trademarks of their respective
holders.

are executed,
X PIPE Y PIPE
(1) [mem] << [mem]+AX (2) BX << BX-[mem]
resulting in a RAW dependency on the memory operand in the Y pipeline.
The RAW dependency is minimized in the M1 by passing the result of

the X pipeline instruction directly to the Y pipeline instruction.
Where the initial mapping is
AX=reg0
BX=reg1
the instructions are executed in parallel using memory bypassing,
X PIPE
(1) [mem] << [mem]+reg0
Y PIPE
(2) reg2 << reg1-{[mem]+reg0}
resulting in the minimalization of the RAW dependency on memory in the Y
 pipeline.
The final register mapping is
AX=reg0
BX=reg2.

