
                                     PRELIMINARY                                        3-1

Bus Interface

Advancing the Standards



6x86 PROCESSOR
Superscalar, Superpipelined,

Sixth-generation, x86 Compatible CPU

3.0 6x86 BUS INTERFACE

The signals used in the 6x86 CPU bus interface are described in this chapter. Figure 3-1 shows the 
signal directions and the major signal groupings. A description of each signal and their reference to 
the text are provided in Table 3-1 (Page 3-2). 

Figure 3-1.  6x86 CPU Functional Signal Groupings

1 7 37 9 00

INTR

NMI
Interrupt

EWBE#

FLUSH#

KEN#

PCD
Cache

BRDYC#

ADS#

Data D63 - D0

Reset
RESET

A31 - A3

BE7# - BE0#

Address

Bus

W/R#

D/C#

M/IO#

LOCK#

SMIACT#

DP7 - DP0

PCHK#

Data

NA#

BRDY#

AHOLD

EADS#

HIT#

INV

WM_RST

Cache

PWT
Bus 

Bus

Parity

Cycle
Definition

Bus
Cycle
Control

Control

Control

Coherency

SUSP#

SUSPA#

Power
Management

ADSC#

CLK

 CPU

A20M#

AP

APCHK#
Address
Parity

SCYC

CACHE#

SMI#

WB/WT#

BREQ

HOLD
Bus

HLDA

BOFF#

Arbitration

HITM#

FERR#

IGNNE#
FPU Error

DHOLD

LBA#

Scatter

QDUMP#

BHOLD

Gather Buffer

TCK

TDI

TDO

TRST#

JTAG

TMS

CLKMUL
Clock
Control

6x86



3-2                                            PRELIMINARY                                   

Signal Description Table
Advancing the Standards



3.1 Signal Description Table

The Signal Summary Table (Table 3-1) describes the signals in their active state unless otherwise 
mentioned. Signals containing slashes (/) have logic levels defined as “1/0.”  For example the signal 
W/R#, is defined as write when W/R#=1, and as read when W/R#=0. Signals ending with a “#” 
character are active low.

.

Table 3-1. 6x86 CPU Signals Sorted by Signal Name

Signal 
Name     

 Description I/O Reference

A20M# A20 Mask causes the CPU to mask (force to 0) the A20 address bit when 
driving the external address bus or performing an internal cache access. 
A20M# is provided to emulate the 1 MByte address wrap-around that 
occurs on the 8086.  Snoop addressing is not effected.

Input Page 3-9

A31-A3 The Address Bus, in conjunction with the Byte Enable signals 
(BE7#-BE0#), provides addresses for physical memory and external I/O 
devices. During cache inquiry cycles, A31-A5 are used as inputs to 
perform cache line invalidations.

3-state 
I/O

Page 3-9

ADS# Address Strobe begins a memory/I/O cycle and indicates the address 
bus (A31-A3, BE7#-BE0#) and bus cycle definition signals (CACHE#, 
D/C#, LOCK#, M/IO#, PCD, PWT, SCYC, W/R#) are valid.

Output Page 3-13

ADSC# Cache Address Strobe performs the same function as ADS#. Output Page 3-13

AHOLD Address Hold allows another bus master access to the 6x86 CPU address 
bus for a cache inquiry cycle. In response to the assertion of AHOLD, the 
CPU floats AP and A31-A3 in the following clock cycle.

Input Page 3-18

AP Address Parity is the even parity output signal for address lines A31-A5 
(A4 and A3 are excluded). During cache inquiry cycles, AP is the 
even-parity input to the CPU, and is sampled with EADS# to produce 
correct parity check status on the APCHK# output.

3-state 
I/O

Page 3-10

APCHK# Address Parity Check Status is asserted during a cache inquiry cycle if 
an address bus parity error has been detected. APCHK# is valid two 
clocks after EADS# is sampled active. APCHK# will remain asserted for 
one clock cycle if a parity error is detected.

Output Page 3-10

BE7#-BE0# The Byte Enables, in conjunction with the address lines, determine the 
active data bytes transferred during a memory or I/O bus cycle.

3-state 
I/O

Page 3-9

BHOLD Byte Enable Hold forces the byte enables (BE7#-BE0#) to float during 
the next clock cycle. The 6x86 CPU continues to generate additional bus 
cycles while BHOLD is asserted. While BHOLD is asserted, the byte 
enables are driven by an external source and select which data bytes are 
accessed through the scatter/gather buffer.  BHOLD is ignored if the 
scatter/gather interface is disabled.

Input Page 3-20

BOFF# Back-Off forces the 6x86 CPU to abort the current bus cycle and 
relinquish control of the CPU local bus during the next clock cycle. The 
6x86 CPU enters the bus hold state and remains in this state until BOFF# 
is negated.

Input Page 3-16



                                     PRELIMINARY                                         3-3

3Signal Description Table

BRDY# Burst Ready indicates that the current transfer within a burst cycle, or the 
current single transfer cycle, can be terminated. The 6x86 CPU samples 
BRDY# in the second and subsequent clocks of a bus cycle. BRDY# is active 
during address hold states.

Input Page 3-13

BRDYC# Cache Burst Ready performs the same function as BRDY# and is logically 
ORed with BRDY# within the 6x86 CPU.

Input Page 3-13

BREQ Bus Request is asserted by the 6x86 CPU when an internal bus cycle is 
pending. The 6x86 CPU always asserts BREQ, along with ADS#, during the 
first clock of a bus cycle. If a bus cycle is pending, BREQ is asserted during 
the bus hold and address hold states. If no additional bus cycles are pending, 
BREQ is negated prior to termination of the current cycle.

Output Page 3-16

CACHE# Cacheability Status indicates that a read bus cycle is a potentially 
cacheable cycle; or that a write bus cycle is a cache line write-back or line 
replacement burst cycle. If CACHE# is asserted for a read cycle and KEN# is 
asserted by the system, the read cycle becomes a cache line fill burst cycle.

Output Page 3-11

CLK Clock provides the fundamental timing for the 6x86 CPU. The frequency of 
the 6x86 CPU input clock determines the operating frequency of the CPU’s 
bus. External timing is defined referenced to the rising edge of CLK.

Input Page 3-7

CLKMUL The Clock Multiplier input is sampled during RESET to determine the 
6x86 CPU core operating frequency.  If CLKMUL=0 or is left unconnected, 
the core frequency is 2x the frequency of the CLK input.  If CLKMUL=1, the 
core frequency is 3x the frequency of CLK.

Input Page 3-7

D63-D0 Data Bus signals are three-state, bi-directional signals which provide the 
data path between the 6x86 CPU and external memory and I/O devices. The 
data bus is only driven while a write cycle is active (state=T2). The data bus is 
floated when DHOLD is asserted.

3-state 
I/O

Page 3-10

D/C# Data/Control Status. If high, indicates that the current bus cycle is an I/O 
or memory data access cycle. If low, indicates a code fetch or special bus cycle 
such as a halt, prefetch, or interrupt acknowledge bus cycle. D/C# is driven 
valid in the same clock as ADS# is asserted.

Output Page 3-11

DHOLD Data Bus Hold forces the 6x86 CPU to float the data bus (D63-D0) and the 
data parity lines (DP7-DP0) in the next clock. While DHOLD is asserted, 
only the data and data parity buses are disabled. The current bus cycle 
remains active and is completed in the normal fashion in response to BRDY#. 
The 6x86 CPU generates additional bus cycles while DHOLD is asserted. 
DHOLD is ignored if the scatter/gather interface is disabled.

Input Page 3-21

DP7-DP0 Data Parity signals provide parity for the data bus, one data parity bit per 
data byte. Even parity is driven on DP7-DP0 for all data write cycles. 
DP7-DP0 are read by the 6x86 CPU during read cycles to check for even 
parity. The data parity bus is only driven while a write cycle is active 
(state=T2).

3-state 
I/O

Page 3-10

Table 3-1. 6x86 CPU Signals Sorted by Signal Name  (Continued)

Signal 
Name     

 Description I/O Reference



3-4                                            PRELIMINARY                                   

Signal Description Table
Advancing the Standards



EADS# External Address Strobe indicates that a valid cache inquiry address is 
being driven on the 6x86 CPU address bus (A31-A5) and AP. The state of 
INV at the time EADS# is sampled active determines the final state of the 
cache line. A cache inquiry cycle using EADS# may be run while the 6x86 
CPU is in the address hold or bus hold state.

Input Page 3-18

EWBE# External Write Buffer Empty indicates that there are no pending write 
cycles in the external system. EWBE# is sampled only during I/O and 
memory write cycles. If EWBE# is negated, the 6x86 CPU delays all 
subsequent writes to on-chip cache lines in the “exclusive” or “modified” state 
until EWBE# is asserted.

Input Page 3-14

FERR# FPU Error Status indicates an unmasked floating point error has occurred. 
FERR# is asserted during execution of the FPU instruction that caused the 
error. FERR# does not float during bus hold states.

Output Page 3-19

FLUSH# Cache Flush forces the 6x86 CPU to flush the cache. External interrupts 
and additional FLUSH# assertions are ignored during the flush. Cache 
inquiry cycles are permitted during the flush.

Input Page 3-15

HIT# Cache Hit indicates that the current cache inquiry address has been found 
in the cache (modified, exclusive or shared states).  HIT# is valid two clocks 
after EADS# is sampled active, and remains valid until the next cache inquiry 
cycle.

Output Page 3-18

HITM# Cache Hit Modified Data indicates that the current cache inquiry address 
has been found in the cache and dirty data exists in the cache line (modified 
state). The 6x86 CPU does not accept additional cache inquiry cycles while 
HITM# is asserted.  HITM# is  valid two clocks after EADS#.

Output Page 3-18

HLDA Hold Acknowledge indicates that the 6x86 CPU has responded to the 
HOLD input and relinquished control of the local bus.  The 6x86 CPU 
continues to operate during bus hold as long as the on-chip cache can satisfy 
bus requests.

Output Page 3-16

HOLD Hold Request indicates that another bus master has requested control of the 
CPU’s local bus.

Input Page 3-16

IGNNE# Ignore Numeric Error forces the 6x86 CPU to ignore any pending 
unmasked FPU errors and allows continued execution of floating point 
instructions.

Input Page 3-19

INTR Maskable Interrupt forces the processor to suspend execution of the 
current instruction stream and begin execution of an interrupt service 
routine. The INTR input can be masked (ignored) through the IF bit in the 
Flags Register.

Input Page 3-14

INV Invalidate Request is sampled with EADS# to determine the final state of 
the cache line in the case of a cache inquiry hit. An asserted INV directs the 
processor to change the state of the cache line to “invalid”.  A negated INV 
directs the processor to change the state of the cache line to “shared.”

Input Page 3-18

Table 3-1. 6x86 CPU Signals Sorted by Signal Name  (Continued)

Signal 
Name     

 Description I/O Reference



                                     PRELIMINARY                                         3-5

3Signal Description Table

KEN# Cache Enable allows the data being returned during the current cycle to be 
placed in the CPU’s cache. When the 6x86 CPU is performing a cacheable 
code fetch or memory data read cycle (CACHE# asserted), and KEN# is 
sampled asserted, the cycle is transformed into a 32-byte cache line fill. KEN# 
is sampled with the first asserted BRDY# or NA# for the cycle.

Input Page 3-15

LBA# Local Bus Access indicates that the current bus cycle is for an address 
within the local bus address region. If LBA# is asserted during a CPU write 
cycle with BE3#-BE0# negated, the 6x86 CPU automatically maps the upper 
DWORD of data to the lower DWORD of the data bus. LBA# floats if 
scatter/gather pins are disabled.

Output Page 3-21

LOCK# Lock Status indicates that other system bus masters are denied access to the 
local bus. The 6x86 CPU does not enter the bus hold state in response to 
HOLD while LOCK# is asserted.

Output Page 3-11

M/IO# Memory/IO Status. If high, indicates that the current bus cycle is a 
memory cycle (read or write). If low, indicates that the current bus cycle is an 
I/O cycle (read or write, interrupt acknowledge, or special cycle).

Output Page 3-11

NA# Next Address requests the next pending bus cycle address and cycle 
definition information. If either the current or next bus cycle is a locked cycle, 
a line replacement, a write-back cycle, or if there is no pending bus cycle, the 
6x86 CPU does not start a pipelined bus cycle regardless of the state of NA#.

Input Page 3-13

NMI Non-Maskable Interrupt Request forces the processor to suspend 
execution of the current instruction stream and begin execution of an NMI 
interrupt service routine.

Input Page 3-14

PCD Page Cache Disable reflects the state of the PCD page attribute bit in the 
page table entry or the directory table entry.  If paging is disabled, or for 
cycles that are not paged, the PCD pin is driven low. PCD is masked by the 
cache disable (CD) bit in CR0, and floats during bus hold states.

Output Page 3-15

PCHK# Data Parity Check indicates that a data bus parity error has occurred 
during a read operation. PCHK# is only valid during the second clock 
immediately after read data is returned to the 6x86 CPU (BRDY# 
asserted) and is inactive otherwise. Parity errors signaled by a logic low 
on PCHK# have no effect on processor execution.

Output Page 3-10

PWT Page Write Through reflects the state of the PWT page attribute bit in the 
page table entry or the directory table entry. PWT pin is negated during cycles 
that are not paged, or if paging is disabled. PWT takes priority over 
WB/WT#.

Output Page 3-15

QDUMP# Q Buffer Dump is used to dump the contents of the scatter/gather buffer 
onto the data bus. The data bytes specified by the byte enables (BE7#-BE0#) 
are driven onto the data bus during the clock after QDUMP# is sampled 
asserted. QDUMP# is ignored if the scatter/gather pins are disabled. 

Input Page 3-22

RESET Reset suspends all operations in progress and places the 6x86 CPU into a 
reset state.  Reset forces the CPU to begin executing in a known state. All data 
in the on-chip caches is invalidated.

Input Page 3-7

Table 3-1. 6x86 CPU Signals Sorted by Signal Name  (Continued)

Signal 
Name      Description I/O Reference



3-6                                            PRELIMINARY                                   

Signal Description Table
Advancing the Standards



SCYC Split Locked Cycle indicates that the current bus cycle is part of a 
misaligned locked transfer. SCYC is defined for locked cycles only.  A 
misaligned transfer is defined as any transfer that crosses an 8-byte boundary.

Output Page 3-11

SMI# SMM Interrupt forces the processor to save the CPU state to the top of 
SMM memory and to begin execution of the SMI service routine at the 
beginning of the defined SMM memory space. An SMI is a higher-priority 
interrupt than an NMI.

Input Page 3-14

SMIACT# SMM Interrupt Active indicates that the processor is operating in System 
Management Mode. SMIACT# does not float during bus hold states.

Output Page 3-13

SUSP# Suspend Request requests that the CPU enter suspend mode. SUSP# is 
ignored following RESET and is enabled by setting the SUSP bit in CCR2.

Input Page 3-22

SUSPA# Suspend Acknowledge indicates that the 6x86 CPU has entered 
low-power suspend mode.   SUSPA# floats following RESET and is enabled 
by setting the SUSP bit in CCR2.

Output Page 3-22

TCK Test Clock (JTAG) is the clock input used by the 6x86 CPU's boundary scan 
(JTAG) test logic.

Input Page 3-24

TDI Test Data In (JTAG) is the serial data input used by the 6x86 CPU's 
boundary scan (JTAG) test logic.

Input Page 3-24

TDO Test Data Out (JTAG) is the serial data output used by the 6x86 CPU's 
boundary scan (JTAG) test logic.

Output Page 3-24

TMS Test Mode Select (JTAG) is the control input used by the 6x86 CPU's 
boundary scan (JTAG) test logic.

Input Page 3-24

TRST# Test Mode Reset (JTAG) initializes the 6x86 CPU's boundary scan (JTAG) 
test logic.

Input Page 3-24

WB/WT# Write-Back/Write-Through is sampled during cache line fills to define the 
cache line write policy. If high, the cache line write policy is write-back.  If 
low, the cache line write policy is write-through.  (PWT forces write-through 
policy when PWT=1.)

Input Page 3-15

WM_RST Warm Reset forces the 6x86 CPU to complete the current instruction and 
then places the 6x86 CPU in a known state. Once WM_RST is sampled active 
by the CPU, the reset sequence begins on the next instruction boundary. 
WM_RST does not change the state of the configuration registers, the on-chip 
cache, the write buffers and the FPU registers.  WM_RST is sampled during 
reset.

Input Page 3-9

W/R# Write/Read Status. If high, indicates that the current memory, or I/O bus 
cycle is a write cycle. If low, indicates that the current bus cycle is a read cycle.

Output Page 3-11

Table 3-1. 6x86 CPU Signals Sorted by Signal Name  (Continued)

Signal 
Name     

 Description I/O Reference



                                     PRELIMINARY                                         3-7

3Signal Descriptions

3.2 Signal Descriptions

The following paragraphs provide additional 
information about the 6x86 CPU signals.  For 
ease of this discussion, the signals are divided 
into 16 functional groups as illustrated in 
Figure 3-1 (Page 3-1).

3.2.1 Clock Control

The Clock Input (CLK) signal, supplied by 
the system, is the timing reference use by the 
6x86 CPU bus interface. All external timing 
parameters are defined with respect to the CLK 
rising edge. The CLK signal enters the 6x86 
CPU where it is doubled or tripled to produce 
the 6x86 CPU internal clock signal. During 
power on, the CLK signal must be running 
even if CLK does not meet AC specifications.

The Clock Multiplier (CLKMUL) input is 
sampled during RESET to determine the CPU’s 
core operating frequency.  If CLKMUL=0, the 
core frequency is 2x the frequency of the CLK 
input.  If CLKMUL=1, the core frequency is 3x 
the frequency of the CLK input.  The CLKMUL 
input is connected to an internal pull-down 
resistor.  Therefore, if CLKMUL is left uncon-
nected, the core frequency defaults to 2x the 
input CLK.  CLKMUL should be connected to 
Vss, to Vcc through a pull-up, or left uncon-
nected.  CLKMUL should not be connected to 
a switching signal.

3.2.2 Reset Control

The 6x86 CPU output signals are initialized to 
their reset states during the CPU reset 
sequence, as shown in Table 3-3 (Page 3-8). 
The signal states given in Table 3-3 assume that 
HOLD, AHOLD, and BOFF# are negated.

Asserting RESET suspends all operations in 
progress and places the 6x86 CPU in a reset 
state. RESET is an asynchronous signal but 
must meet specified setup and hold times to 
guarantee recognition at a particular clock 
edge.

On system power-up, RESET must be held 
asserted for at least 1 msec after Vcc and CLK 
have reached specified DC and AC limits. This 
delay allows the CPU’s clock circuit to stabilize 
and guarantees proper completion of the reset 
sequence.

During normal operation, RESET must be 
asserted for at least 15 CLK periods in order to 
guarantee the proper reset sequence is 
executed.  When RESET negates (on its falling 
edge), the pins listed in Table 3-2 determine if 
certain 6x86 CPU functions are enabled.

Table 3-2. Pins Sampled During RESET

SIGNAL 
NAME

DESCRIPTION

FLUSH# If = 0, three-state test mode enabled.

QDUMP# If = 0, scatter/gather interface enabled.

WM_RST If = 1, built-in self test initiated.



3-8                                            PRELIMINARY                                   

Signal Descriptions
Advancing the Standards



Table 3-3. Signal States During RESET

SIGNAL LINE STATE SIGNAL LINE STATE

A20M# Ignored INTR Ignored
A31-A3 Undefined until first ADS# INV Ignored
ADS# 1 KEN# Ignored
ADSC# 1 LBA# 1
AHOLD Recognized LOCK# 1
AP Undefined until first ADS# M/IO# Undefined until first ADS#
APCHK# 1 NA# Ignored
BE7#-BE0# Undefined until first ADS# NMI Ignored
BHOLD Ignored PCD Undefined until first ADS#
BOFF# Recognized PCHK# 1
BRDY# Ignored PWT Undefined until first ADS#
BRDYC# Ignored QDUMP# Enables scatter/gather interface pins
BREQ 0 RESET 1
CACHE# Undefined until first ADS# SCYC Undefined until first ADS#
D(63-0) Float SMI# Ignored
D/C# Undefined until first ADS# SMIACT# 1
DHOLD Ignored SUSP# Ignored
DP(7-0) Float SUSPA# Float
EADS# Ignored TCK Recognized
EWBE# Ignored TDI Recognized
FERR# 1 TDO Responds to TCK, TDI, TMS, TRST#
FLUSH# Initiates three-state test mode TMS Recognized
HIT# 1 TRST# Recognized
HITM# 1 W/R# Undefined until first ADS#
HLDA Responds to HOLD WB/WT# Ignored
HOLD Recognized WM_RST Initiates self-test
IGNNE# Ignored



                                     PRELIMINARY                                         3-9

3Signal Descriptions

Warm Reset (WM_RST) allows the 6x86 
CPU to complete the current instruction and 
then places the 6x86 CPU in a known state. 
WM_RST is an asynchronous signal, but must 
meet specified setup and hold times in order to 
guarantee recognition at a particular CLK edge. 
Once WM_RST is sampled active by the CPU, 
the reset sequence begins on the next instruc-
tion boundary.

WM_RST differs from RESET in that the 
contents of the on-chip cache, the write 
buffers, the configuration registers and the 
floating point registers contents remain 
unchanged.

Following completion of the internal reset 
sequence, normal processor execution begins 
even if WM_RST remains asserted. If RESET 
and WM_RST are asserted simultaneously, 
WM_RST is ignored and RESET takes priority.  
If WM_RST is asserted at the falling edge of 
RESET, built-in self test (BIST) is initiated.

3.2.3 Address Bus

The Address Bus (A31-A3) lines provide the 
physical memory and external I/O device 
addresses. A31-A5 are bi-directional signals 
used by the 6x86 CPU to drive addresses to 
both memory devices and I/O devices. During 
cache inquiry cycles the 6x86 CPU receives 
addresses from the system using signals 
A31-A5.

Using signals A31-A3, the 6x86 CPU can 
address a 4-GByte memory address space.  
Using signals A15-A3, the 6x86 CPU can 
address a 64-KByte I/O space through the 
processor’s I/O ports.  During I/O accesses, 
signals A31-A16 are driven low. A31-A3 float 
during bus hold and address hold states.

The Byte Enable (BE7#-BE0#) lines are 
bi-directional signals that define the valid data 
bytes within the 64-bit data bus.  The 
correlation between the enable signals and data 
bytes is shown in Table 3-4.

During a cache line fill, (burst read or “1+4” 
burst read) the 6x86 CPU expects data to be 
returned as if all data bytes are enabled, regard-
less of the state of the byte enables. BE7#-BE0# 
float during bus hold and byte enable hold 
states.

Address Bit 20 Mask (A20M#) is an active 
low input which causes the 6x86 CPU to mask 
(force low) physical address bit 20 when 
driving the external address bus or when 
performing an internal cache access. Asserting 
A20M# emulates the 1 MByte address 
wrap-around that occurs on the 8086. The A20 
signal is never masked during write-back 
cycles, inquiry cycles, system management 
address space accesses or when paging is 
enabled, regardless of the state of the A20M# 
input.

Table 3-4. Byte Enable Signal to
 Data Bus Byte Correlation

BYTE 
ENABLE

CORRESPONDING
DATA BYTE

BE7# D63-D56

BE6# D55-D48

BE5# D47-D40

BE4# D39-D32

BE3# D31-D24

BE2# D23-D16

BE1# D15-D8

BE0# D7-D0



3-10                                            PRELIMINARY                                   

Signal Descriptions
Advancing the Standards



3.2.4 Address Parity

Address Parity (AP) is a bi-directional signal 
which provides the parity associated with 
address lines A31-A5.  (A4 and A3 are not 
included in the parity determination.)  During 
6x86 CPU generated bus cycles, while the 
address bus lines are driven, AP becomes an 
output supplying even address parity. During 
cache inquiry cycles, AP becomes an input and 
is sampled by EADS#.  During cache inquiry 
cycles, even-parity must be placed on the AP 
line to guarantee an accurate result on the 
APCHK# (Address Parity Check Status) pin.

Address Parity Check Status (APCHK#) is 
driven active by the CPU when an address bus 
parity error has been detected for a cache 
inquiry cycle. APCHK# is asserted two clocks 
after EADS# is sampled asserted, and remains 
valid for one clock only.  Address parity errors 
signaled by APCHK# have no effect on 
processor execution.

3.2.5 Data Bus

Data Bus (D63-D0) lines carry three-state, 
bi-directional signals between the 6x86 CPU 
and the system (i.e., external memory and I/O 
devices). The data bus transfers data to the 
6x86 CPU during memory read, I/O read, and 
interrupt acknowledge cycles. Data is trans-
ferred from the 6x86 CPU during memory and 
I/O write cycles.

Data setup and hold times must be met for 
correct read cycle operation.  The data bus is 
driven only while a write cycle is active.

3.2.6 Data Parity

The Data Parity Bus (DP7-DP0) provides 
and receives parity data for each of the eight 
data bus bytes (Table 3-5).   The 6x86 CPU 
generates even parity on the bus during write 
cycles and accepts even parity from the system 
during read cycles.  DP7-DP0 is driven only 
while a write cycle is active.

Parity Check (PCHK#) is asserted when a 
data bus parity error is detected. Parity is 
checked during code, memory and I/O reads, 
and the second interrupt acknowledge cycle.  
Parity is not checked during the first interrupt 
acknowledge cycle.

Parity is checked for only the active data bytes 
as determined by the active byte enable signals 
except during a cache line fill (burst read or 
“1+4” burst read).  During a cache line fill, the 
6x86 CPU assumes all data bytes are valid and 
parity is checked for all data bytes regardless of 
the state of the byte enables.

Table 3-5.  Parity Bit to Data
Byte Correlation

PARITY BIT DATA BYTE

DP7 D63-D56

DP6 D55-D48

DP5 D47-D40

DP4 D39-D32

DP3 D31-D24

DP2 D23-D16

DP1 D15-D8

DP0 D7-D0



                                     PRELIMINARY                                         3-11

3Signal Descriptions

PCHK# is valid only during the second clock 
immediately after read data is returned to the 
6x86 CPU (BRDY# asserted).  At other times 
PCHK# is not active.  Parity errors signaled by 
the assertion of PCHK# have no effect on 
processor execution.

3.2.7 Bus Cycle Definition

Each bus cycle is assigned a bus cycle type. The 
bus cycle types are defined by six three-state 
outputs: CACHE#, D/C#, LOCK#, M/IO#, 
SCYC, and W/R# as listed in Table 3-6 (Page 
3-12). 

These bus cycle definition signals are driven  
valid while ADS# is active.  D/C#, M/IO#, 
W/R#, SCYC and CACHE# remain valid until 
the clock following the earliest of two signals: 
NA# asserted, or the last BRDY# for the cycle.

LOCK# continues asserted until after BRDY# is 
returned for the last locked bus cycle. The bus 
cycle definition signals float during bus hold 
states.

Cache Cycle Indicator (CACHE#) is an 
output that indicates that the current bus cycle 
is a potentially cacheable cycle (for a read), or 
indicates that the current bus cycle is a cache 
line write-back or line replacement burst cycle 
(for a write). If CACHE# is asserted for a read 
cycle and the KEN# input is returned active by 
the system, the read cycle becomes a cache line 
fill burst cycle.

Data/Control (D/C#) distinguishes between 
data and control operations. When high, this 
signal indicates that the current bus cycle is a 
data transfer to or from memory or I/O. When 
low, D/C# indicates that the current bus cycle 

involves a control function such as a halt, inter-
rupt acknowledge or code fetch.

Bus Lock (LOCK#) is an active low output 
which, when asserted, indicates that other 
system bus masters are denied access to control 
of the CPU bus. The LOCK# signal may be 
explicitly activated during bus operations by 
including the LOCK prefix on certain instruc-
tions. LOCK# is also asserted during descriptor 
updates, page table accesses, interrupt 
acknowledge sequences and when executing 
the XCHG instruction. However, if the 
NO_LOCK bit in CCR1 is set, LOCK# is 
asserted only during page table accesses and 
interrupt acknowledge sequences. The 6x86 
CPU does not enter the bus hold state in 
response to HOLD while the LOCK# output is 
active.

Memory/IO (M/IO#) distinguishes between 
memory and I/O operations. When high, this 
signal indicates that the current bus cycle is a 
memory read or memory write. When low, 
M/IO# indicates that the current bus cycle is an 
I/O read, I/O write, interrupt acknowledge 
cycle or special bus cycle.

Split Cycle (SCYC) is an active high output 
that indicates that the current bus cycle is part 
of a misaligned locked transfer. SCYC is defined 
for locked cycles only.  A misaligned transfer is 
defined as any transfer that crosses an 8-byte 
boundary.

Write/Read (W/R#) distinguishes between 
write and read operations. When high, this 
signal indicates that the current bus cycle is a 
memory write, I/O write or a special bus cycle. 
When low, this signal indicates that the current 
cycle is a memory read, I/O read or interrupt 
acknowledge cycle.



3-12                                            PRELIMINARY                                   

Signal Descriptions
Advancing the Standards



Table 3-6.  Bus Cycle Types

BUS CYCLE TYPE M/IO# D/C# W/R# CACHE# LOCK#

Interrupt Acknowledge 0 0 0 1 0

Does not occur. 0 0 0 X 1

Does not occur. 0 0 1 X 0

Special Cycles:
If BE(7-0)# = FEh: Shutdown
If BE(7-0)# = FDh: Flush (INVD, WBINVD)
If A4 = 0 and BE(7-0)# = FBh: Halt (HLT)
If BE(7-0)# = F7h: Write-Back (WBINVD)
If BE(7-0)# = EFh: Flush Acknowledge (FLUSH#)
If A4 = 1 and BE(7-0)# = FBh: Stop Grant (SUSP#)

0 0 1 1 1

Does not occur. 0 1 X X 0

I/O Data Read 0 1 0 1 1

I/O Data Write 0 1 1 1 1

Does not occur. 1 0 X X 0

Cacheable Memory Code Read
(Burst Cycle if KEN# Returned Active)

1 0 0 0 1

Non-cacheable Memory Code Read 1 0 0 1 1

Does not occur. 1 0 1 X 1

Locked Memory Data Read 1 1 0 1 0

Cacheable Memory Data Read
(Burst Cycle if KEN# Returned Active)

1 1 0 0 1

Non-cacheable Memory Data Read 1 1 0 1 1

Locked Memory Write 1 1 1 1 0

Burst Memory Write
(Writeback or Line Replacement)

1 1 1 0 1*

Single Transfer Memory Write 1 1 1 1 1

Note: X = Don't Care
*Note: LOCK# continues to be asserted during a write-back cycle that occurs following an aborted (BOFF# asserted)
             locked bus cycle.



                                     PRELIMINARY                                         3-13

3Signal Descriptions

3.2.8 Bus Cycle Control

The bus cycle control signals (ADS#, ADSC#, 
BRDY#, BRDYC#,  NA#, and SMIACT#) 
indicate the beginning of a bus cycle and allow 
system hardware to control bus cycle termina-
tion timing and address pipelining.

Address Strobe (ADS#) is an active low 
output which indicates that the CPU has 
driven a valid address and bus cycle definition 
on the appropriate output pins. ADS# floats 
during bus hold states.

Cache Address Strobe (ADSC#) performs 
the same function as ADS#. ADSC# is used to 
interface directly to a secondary cache 
controller.

Burst Ready (BRDY#) is an active low input 
that is driven by the system to indicate that the 
current transfer within a burst cycle or the 
current single transfer bus cycle can be termi-
nated. The CPU samples BRDY# in the second 
and subsequent clocks of a cycle. BRDY# is 
active during address hold states.

Cache Burst Ready (BRDYC#) performs the 
same function as BRDY# and is logically ORed 
with BRDY internally by the CPU. BRDYC# is 
used to interface directly to a secondary cache 
controller.

Next Address (NA#) is an active low input 
that is driven by the system to request the next 
pending bus cycle address and cycle definition 
information even though all data transfers for 
the current bus cycle are not complete. This 
new bus cycle is referred to as a “pipelined” 
cycle. If either the current or next bus cycle is a 
locked cycle, a line replacement, a write-back 

cycle or there is no pending bus cycle, the 
6x86 CPU does not start a pipelined bus cycle 
regardless of the state of the NA# input.

System Management Mode Active 
(SMIACT#) is an active low output which 
indicates that the CPU is operating in System 
Management Mode. SMIACT# is asserted in 
response to the assertion of SMI# or due to 
execution of the SMINT instruction.   
SMIACT# is also asserted during accesses to 
defined SMM memory if the SMAC bit in 
CCR1 is set. This bit allows access to SMM 
memory while not in SMM mode and is typi-
cally used for initialization purposes.

While servicing an SMI# interrupt or SMINT 
instruction, SMIACT#  remains asserted until a 
RSM instruction is executed. The RSM instruc-
tion causes the 6x86 CPU to exit SMM mode 
and negate the SMIACT# output. If a cache 
inquiry cycle occurs while SMIACT# is active, 
any resulting write-back cycle is issued with 
SMIACT# asserted.  This occurs even though 
the write-back cycle is intended for normal 
memory rather than SMM memory.

During RESET, the USE_SMI bit in CCR1 is 
cleared. While USE_SMI is zero, SMIACT# is 
always negated. SMIACT# does not float 
during bus hold states.

3.2.9 Interrupt Control

The interrupt control signals (INTR, NMI, 
SMI#) allow the execution of the current 
instruction stream to be interrupted and 
suspended.



3-14                                            PRELIMINARY                                   

Signal Descriptions
Advancing the Standards



Maskable Interrupt Request (INTR) is an 
active high level-sensitive input which causes 
the processor to suspend execution of the 
current instruction stream and begin execution 
of an interrupt service routine. The INTR input 
can be masked (ignored) through the IF bit in 
the Flags Register.

When not masked, the 6x86 CPU responds to 
the INTR input by performing two locked inter-
rupt acknowledge bus cycles. During the 
second interrupt acknowledge cycle, the 6x86 
CPU reads an 8-bit value, the interrupt vector, 
from the data bus. The 8-bit interrupt vector 
indicates the interrupt level that caused genera-
tion of the INTR and is used by the CPU to 
determine the beginning address of the inter-
rupt service routine. To assure recognition of 
the INTR request, INTR must remain active 
until the start of the first interrupt acknowledge 
cycle.

Non-Maskable Interrupt Request (NMI) is a 
rising edge sensitive input which causes the 
processor to suspend execution of the current 
instruction stream and begin execution of an 
NMI interrupt service routine. The NMI inter-
rupt cannot be masked by the IF bit in the Flags 
Register. Asserting NMI causes an interrupt 
which internally supplies interrupt vector 2h to 
the CPU core. Therefore, external interrupt 
acknowledge cycles are not issued.

Once NMI processing has started, no additional 
NMIs are processed until an IRET instruction is 
executed, typically at the end of the NMI 
service routine. If NMI is re-asserted prior to 
execution of the IRET, one and only one NMI 
rising edge is stored and then processed after 
execution of the next IRET.

System Management Interrupt Request 
(SMI#) is an interrupt input with higher 
priority than the NMI input. SMI# is a falling 
edge sensitive input and is sampled on every 
rising edge of the processor input clock. 
Asserting SMI# forces the processor to save the 
CPU state to the top of SMM memory and to 
begin execution of the SMI service routine at 
the beginning of the defined SMM memory 
space. After the processor internally acknowl-
edges the SMI# interrupt, the SMIACT# output 
is driven low for the duration of the interrupt 
service routine.

Once SMI# servicing has started, no additional 
SMI# interrupts are processed until a RSM 
instruction is executed. If SMI# is re-asserted 
prior to execution of a RSM instruction, one 
and only one SMI# falling edge is stored and 
then processed after execution of the next RSM. 
SMI# is ignored following reset and recognition 
is enabled by setting the USE_SMI bit in CCR1.

3.2.10 Cache Control

The cache control signals (EWBE#, FLUSH#, 
KEN#, PCD, PWT, WB/WT#) are used to indi-
cate cache status and control caching activity.

External Write Buffer Empty (EWBE#) is an 
active low input driven by the system to indi-
cate when there are no pending write cycles in 
the external system. The 6x86 CPU samples 
EWBE# during write cycles (I/O and memory) 
only. If EWBE# is not asserted, the processor 
delays all subsequent writes to on-chip cache 
lines in the “exclusive” or “modified” state until 
EWBE# is asserted. Regardless of the state of 
EWBE#, all writes to the on-chip cache are 
delayed until any previously issued external 



                                     PRELIMINARY                                         3-15

3Signal Descriptions

write cycle is complete. This ensures that 
external write cycles occur in program order 
and is referred to as “strong write ordering”. To 
enhance performance, “weak write ordering” 
may be allowed for specific address regions 
using the Address Region Registers (ARRs) and 
Region Control Registers (RCRs).

Cache Flush (FLUSH#) is a falling edge sensi-
tive input that forces the processor to 
write-back all dirty data in the cache and then 
invalidate the entire cache contents. FLUSH# 
need only be asserted for a single clock but 
must meet specified setup and hold times to 
guarantee recognition at a particular clock 
edge.

Once FLUSH# is sampled active, the 6x86 CPU 
begins the cache flush sequence after comple-
tion of the current instruction. External inter-
rupts and additional FLUSH# requests are 
ignored while the cache flush is in progress. 
However, cache inquiry cycles are permitted 
during the flush sequence. The 6x86 CPU 
issues a flush acknowledge special cycle to indi-
cate completion of the flush sequence. If the 
processor is in a halt or shutdown state, 
FLUSH# is recognized and the 6x86 CPU 
returns to the halt or shutdown state following 
completion of the flush sequence.  If FLUSH# is 
active at the falling edge of RESET, the 
processor enters three state test mode.

Cache Enable (KEN#) is an active low input 
which indicates that the data being returned 
during the current cycle is cacheable. When the 
6x86 CPU is performing a cacheable code fetch 
or memory data read cycle and KEN# is 
sampled asserted, the cycle is transformed into 
a  cache line fill (4 transfer burst cycle) or a 
“1+4” cache line fill.  KEN# is sampled with the 

first asserted BRDY# or NA# for the cycle. I/O 
accesses, locked reads, system management 
memory accesses and interrupt acknowledge 
cycles are never cached.

Page Cache Disable (PCD) is an active high 
output that reflects the state of the PCD page 
attribute bit in the page table entry or the  
directory table entry. If paging is disabled or for 
cycles that are not paged, the PCD pin is driven 
low. PCD is masked by the cache disable (CD) 
bit in CR0 (driven high if CD=1) and floats 
during bus hold states.

Page Write Through (PWT) is an active high 
output that reflects the state of the PWT page 
attribute bit in the page table entry or the direc-
tory table entry. If paging is disabled or for 
cycles that are not paged, the PWT pin is driven 
low. If PWT is asserted, PWT takes priority over 
the WB/WT# input. If PWT is asserted for 
either reads or writes, the cache line is saved in, 
or remains in, the shared (write-through) state. 
PWT floats during bus hold states.

The Write-Back/Write-Through (WB/WT#)
input allows the system to define the write 
policy of the on-chip cache on a line-by-line 
basis. If WB/WT# is sampled high during a line 
fill cycle and PWT is low, the line is defined as 
write-back and is stored in the exclusive state. If 
WB/WT# is sampled high during a write to a 
write-through cache line (shared state) and 
PWT is low, the line is transitioned to 
write-back (exclusive state). If WB/WT# is 
sampled low or PWT is high, the line is defined 
as write-through and is stored in (line fill), or 
remains in (write), the shared state. Table 3-7 
(Page 3-16) lists the effects of WB/WT# on the 
state of the cache line for various bus cycles.



3-16                                            PRELIMINARY                                   

Signal Descriptions
Advancing the Standards



.

3.2.11 Bus Arbitration

The bus arbitration signals (BOFF#, BREQ, 
HOLD, and HLDA) allow the 6x86 CPU to 
relinquish control of its local bus when 
requested by another bus master device. Once 
the processor has released its bus, the bus 
master device can then drive the local bus 
signals.

Back-Off (BOFF#) is an active low input that 
forces the 6x86 CPU to abort the current bus 
cycle and relinquish control of the CPU's local 
bus in the next clock. The 6x86 CPU responds 
to BOFF# by entering the bus hold state as 
listed in Table 3-8 (Page 3-17). The 6x86 CPU 
remains in bus hold until BOFF# is negated. 
Once BOFF# is negated, the 6x86 CPU restarts 
any aborted bus cycle in its entirety. Any data 
returned to the 6x86 CPU while BOFF# is 
asserted is ignored. If BOFF# is asserted in the 
same clock that ADS# is asserted, the 6x86 CPU 
may float ADS# while in the active low state.

Table 3-7.  Effects of WB/WT# on
          Cache Line State

BUS CYCLE
TYPE

PWT
WB/
WT#

WRITE
POLICY

MESI
STATE

Line Fill 0 0 Write-
through

Shared

Line Fill 0 1 Write-
back

Exclusive

Line Fill 1 x Write-
through

Shared

Memory Write
(Note)

0 0 Write-
through

Shared

Memory Write 
(Note)

0 1 Write-
back

Exclusive

Memory Write
(Note)

1 x Write-
through

Shared

Note: Only applies to memory writes to addresses that are currently 
valid in the cache.

Bus Request (BREQ) is an active high output 
asserted by the 6x86 CPU whenever a bus cycle 
is pending internally. The 6x86 CPU always 
asserts BREQ in the first clock of a bus cycle 
with ADS# as well as during bus hold and 
address hold states if a bus cycle is pending. If 
no additional bus cycles are pending, BREQ is 
negated prior to termination of the current 
cycle.

Bus Hold Request (HOLD) is an active high 
input used to indicate that another bus master 
requests control of the CPU's local bus. After 
recognizing the HOLD request and completing 
the current bus cycle or sequence of locked bus 
cycles, the 6x86 CPU responds by floating the 
local bus and asserting the hold acknowledge 
(HLDA) output. The bus remains granted to the 
requesting bus master until HOLD is negated. 
Once HOLD is sampled negated, the 6x86 CPU 
simultaneously drives the local bus and negates 
HLDA.

Hold Acknowledge (HLDA) is an active high 
output used to indicate that the 6x86 CPU has 
responded to the HOLD input and has relin-
quished control of its local bus. Table 3-8 (Page 
3-17) lists the state of all the 6x86 CPU signals 
during a bus hold state. The 6x86 CPU 
continues to operate during bus hold states as 
long as the on-chip cache can satisfy bus 
requests.   HLDA is asserted until HOLD is 
negated. Once HOLD is sampled negated, the 
6x86 CPU simultaneously drives the local bus 
and negates HLDA.



                                     PRELIMINARY                                         3-17

3Signal Descriptions

Table 3-8.  Signal States During Bus Hold

SIGNAL LINE STATE SIGNAL LINE STATE

A20M# Recognized internally INTR Recognized internally

A31-A3 Float INV Recognized

ADS# Float KEN# Ignored

ADSC# Float LBA# Float

AHOLD Ignored LOCK# Float

AP Float M/IO# Float

APCHK# Driven NA# Ignored

BE7#-BE0# Float NMI Recognized internally

BHOLD Ignored PCD Float

BOFF# Recognized PCHK# Driven

BRDY# Ignored PWT Float

BRDYC# Ignored QDUMP# Recognized

BREQ Driven RESET Recognized

CACHE# Float SCYC Float

D/C# Float SMI# Recognized

D63-D0 Float SMIACT# Driven

DHOLD Ignored SUSP# Recognized

DP7-DP0 Float SUSPA# Driven

EADS# Recognized TCK Recognized

EWBE# Recognized internally TDI Recognized

FERR# Driven TDO Responds to TCK, TDI, TMS, TRST#

FLUSH# Recognized TMS Recognized

HIT# Driven TRST# Recognized

HITM# Driven W/R# Float

HLDA Responds to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Recognized

IGNNE# Recognized internally



3-18                                            PRELIMINARY                                   

Signal Descriptions
Advancing the Standards



3.2.12 Cache Coherency

The cache coherency signals (AHOLD, EADS#, 
HIT#, HITM#, and INV) are used to initiate and 
monitor cache inquiry cycles.  These signals are 
intended to be used to ensure cache coherency 
in a uni-processor environment only.  Contact 
Cyrix for additional specifications on main-
taining coherency in a multi-processor environ-
ment.

Address Hold Request (AHOLD) is an active 
high input which forces the 6x86 CPU to float 
A31-A3 and AP in the next clock cycle. While 
AHOLD is asserted, only the address bus is 
disabled. The current bus cycle remains active 
and can be completed in the normal fashion. 
The 6x86 CPU does not generate additional bus 
cycles while AHOLD is asserted except 
write-back cycles in response to a cache inquiry 
cycle.

External Address Strobe (EADS#) is an 
active low input used to indicate to the 6x86 
CPU that a valid cache inquiry address is being 
driven on the 6x86 CPU address bus (A31-A5) 
and AP. The 6x86 CPU checks the on-chip 
cache for this address. If the address is present 
in the cache the HIT# signal is asserted. If the 
data associated with the inquiry address is 
“dirty” (modified state), the HITM# signal is 
also asserted. If dirty data exists, a write-back 
cycle is issued to update external memory with 
the dirty data. Additional cache inquiry cycles 
are ignored while HITM# is asserted.

The state of the INV pin at the time EADS# is 
sampled active determines the final state of the 

cache line. If INV is sampled high, the final 
state of the cache line is “invalid”. If INV is 
sampled low, the final state of the cache line is 
“shared”. A cache inquiry cycle using EADS# 
may be run while the 6x86 CPU is in either an 
address hold or bus hold state. The inquiry 
address must be driven by an external device.

Hit on Cache Line (HIT#) is an active low 
output used to indicate that the current cache 
inquiry address has been found in the cache 
(modified, exclusive or shared states). HIT# is 
valid two clocks after EADS# is sampled active, 
and remains valid until the next cache inquiry 
cycle.

Hit on Modified Data (HITM#) is an active 
low output used to indicate that the current 
cache inquiry address has been found in the 
cache and dirty data exists in the cache line 
(modified state). If HITM# is asserted, a 
write-back cycle is issued to update external 
memory. HITM# is valid two clocks after 
EADS# is sampled active, and remains asserted 
until two clocks after the last BRDY# of the 
write-back cycle is sampled active. The 6x86 
CPU does not accept additional cache inquiry 
cycles while HITM# is asserted.

Invalidate Request (INV) is an active high 
input used to determine the final state of the 
cache line in the case of a cache inquiry hit. INV 
is sampled with EADS#. A logic one on INV 
directs the processor to change the state of the 
cache line to “invalid”.    A logic zero on INV 
directs the processor to change the state of the 
cache line to “shared”.



                                     PRELIMINARY                                         3-19

3Signal Descriptions

3.2.13 FPU Error Interface

The FPU interface signals FERR# and IGNNE# 
are used to control error reporting for the 
on-chip floating point unit. These signals are 
typically used for a PC-compatible system 
implementation. For other applications, FPU 
errors are reported to the 6x86 CPU CPU core 
through an internal interface.

Floating Point Error Status (FERR#) is an 
active low output asserted by the 6x86 CPU 
when an unmasked floating point error occurs. 
FERR# is asserted during execution of the FPU 
instruction that caused the error. FERR# does 
not float during bus hold states.

Ignore Numeric Error (IGNNE#) is an active 
low input which forces the 6x86 CPU to ignore 
any pending unmasked FPU errors and allows 
continued execution of floating point instruc-
tions. When IGNNE# is not asserted and an 
unmasked FPU error is pending, the 6x86 CPU 
only executes the following floating point 
instructions: FNCLEX, FNINIT, FNSAVE, 
FNSTCW, FNSTENV, and FNSTSW#.  IGNNE# 
is ignored when the NE bit in CR0 is set to a 1.

3.2.14 Scatter/Gather Buffer
Interface

The scatter/gather buffer interface signals 
(BHOLD, DHOLD, LBA#, QDUMP#), in 
conjunction with the byte enables (BE7#-BE0#) 
and address hold (AHOLD), can be used by the 
system hardware to transfer data to/from a 
32-bit peripheral interface bus. A 64-bit buffer 
resides in the 6x86 CPU to assist the system in 
these transfers. This buffer provides scatter/-
gather capability during four different types of 
transfers as listed in Table 3-9 (Page 3-20).



3-20                                            PRELIMINARY                                   

Signal Descriptions
Advancing the Standards



Table 3-9.  Scatter/Gather Cycles

CYCLE TYPE
BHOLD 
USED

DHOLD
 USED

QDUMP#
 USED

DATA BUS TIMING

CPU Write to 32-Bit Bus x -- -- Data driven 1 clock after byte enables 
asserted.

CPU Read from 32-Bit Bus x -- -- Data sampled 1 clock after byte 
enables asserted.

32-Bit Bus Master Write to Memory *

  (1) Scatter/gather buffer load from
       32-bit bus master.

x x -- Data sampled 1 clock after byte 
enables asserted.

  (2) Scatter/gather buffer write
        to memory.

x -- x Data driven 1 clock after QDUMP# 
asserted.

32-Bit Bus Master Read from Memory *

 (1) Scatter/gather buffer load
      from memory.

x x -- Data sampled 1 clock after byte 
enables asserted.

 (2) Scatter/gather buffer write to 32-bit
      bus master.

x -- x Data driven 1 clock after QDUMP# 
asserted.

*Note:  Bus master transfers using the scatter/gather buffer must be initiated while the CPU bus is in a bus hold state or an idle state. These 
cycles cannot occur during CPU initiated bus cycles.

BHOLD is asserted by the external system 
during scatter/gather buffer cycles. While 
BHOLD is asserted, the byte enables are driven 
by an external source and indicate which bytes 
of the data bus should be loaded into/written 
out of the scatter/gather buffer. The 6x86 CPU 
samples the byte enables at each rising clock 
edge while BHOLD is asserted. Table 3-10 
(Page 3-21) lists the byte enable mappings for 
the scatter/gather cycles.

Byte Enable Hold (BHOLD) is an active high 
input that causes the 6x86 CPU to float the 
byte enable outputs (BE7#-BE0#) in the next 
clock. While BHOLD is asserted, only the byte 
enables are disabled. The current bus cycle 
remains active and can be completed in the 
normal fashion. The 6x86 CPU continues to 
generate additional bus cycles while BHOLD is 
asserted, so BHOLD should only be asserted 
while AHOLD is asserted.



                                     PRELIMINARY                                         3-21

3Signal Descriptions

.

Table 3-10.  Byte Enable Map for Scatter/Gather Cycles

CYCLE TYPE BE7-BE0# SOURCE DESTINATION
CPU Read from 32-Bit Bus CPU Data Bus Scatter/Gather Buffer

F F No Transfer No Transfer
F x 31-0 31-0
x F 31-0 63-32
x x 63-0 63-0

CPU Write to 32-Bit Bus* Scatter/Gather Buffer CPU Data Bus
F F No Transfer No Transfer
F x 31-0 31-0
x F 63-32 31-0
x x 63-0 63-0

Scatter/Gather Buffer Load 
for 32-Bit Bus Master

CPU Data Bus Scatter/Gather Buffer
F F No Transfer No Transfer
F x 31-0 31-0
x F 31-0 63-32
x x 63-0 63-0

Scatter/Gather Buffer Dump 
using QDUMP#

Scatter/Gather Buffer CPU Data Bus
F F No Transfer No Transfer
F x 31-0 31-0
x F 63-32 31-0
x x 63-0 63-0

*Note: If LBA# is active during a CPU write cycle with BE3-BE0# inactive, the 6x86 CPU automatically maps the upper dword 
of data (D63-D32) to the lower dword of the data bus (D31-D0).

Data Bus Hold (DHOLD) is an active 
high input that forces the 6x86 CPU to 
float the data bus lines (D63-D0) and the 
data parity lines (DP7-DP0) in the next 
clock. While DHOLD is asserted, only the 
data and data parity buses are disabled. 
The current bus cycle remains active and 
is completed in the normal fashion in 
response to BRDY#. The 6x86 CPU gener-
ates additional bus cycles while DHOLD is 
asserted. To avoid writing invalid data, 
during a write cycle, DHOLD and BRDY# 
should not be asserted at the same time,

The external system asserts DHOLD 
during scatter/gather buffer load cycles 

when the 6x86 CPU is not the bus master. 
While DHOLD is asserted, the data bus is 
driven by an external source and the infor-
mation is loaded into the scatter/gather 
buffer based on the state of the byte 
enables (BHOLD asserted). The data bus is 
sampled one clock after the clock edge at 
which an active byte enable is sampled.

Local Bus Access (LBA#) is an active 
low output asserted by the 6x86 CPU for 
any I/O bus cycle or for any bus access 
that resides within a “local bus” address 
region as specified by the on-chip configu-
ration registers. LBA# is asserted during 



3-22                                            PRELIMINARY                                   

Signal Descriptions
Advancing the Standards



the clock that ADS# is asserted and remains 
asserted for only one clock. LBA# is used to 
indicate a cycle intended to address a device 
using the 32-bit peripheral bus. If LBA# is 
active during a CPU write cycle with BE(3-0)# 
inactive, the 6x86 CPU automatically maps the 
upper dword of data to the lower dword of the 
data bus.

Q Buffer Dump (QDUMP#) is an active low 
input asserted by the external system to dump 
the contents of the scatter/gather buffer to the 
data bus. The data bytes specified by the 
asserted byte enables are driven onto the data 
bus during the clock after QDUMP# is 
sampled asserted.  QDUMP# must be asserted 
at the falling edge of RESET to enable the scat-
ter/gather interface pins.

3.2.15 Power Management
Interface

The two power management signals (SUSP#, 
SUSPA#) allow the 6x86 CPU to enter and exit 
suspend mode. The 6x86 CPU also enters 
suspend mode as the result of executing a 
HALT instruction if the HALT bit is set in 
CCR2. Suspend mode circuitry forces the 6x86 
CPU to consume minimal power while main-
taining the entire internal CPU state.

Suspend Request (SUSP#) is an active low 
input which requests that the 6x86 CPU enter 
suspend mode. After recognition of an active 
SUSP# input, the 6x86 CPU completes execu-
tion of the current instruction, any pending 
decoded instructions and associated bus 
cycles, issues a stop grant bus cycle, and then 
asserts the SUSPA# output. SUSP# is ignored 

following RESET and is enabled by setting the 
SUSP bit in CCR2.

The Suspend Acknowledge (SUSPA#)
output indicates that the 6x86 CPU has 
entered low-power suspend mode as the result 
of either assertion of SUSP# or execution of a 
HALT instruction. SUSPA# remains asserted 
until SUSP# is negated, or until an interrupt is 
serviced if suspend mode was entered via the 
HALT instruction. If SUSP# is asserted and 
then negated prior to SUSPA# assertion, 
SUSPA# may toggle state after SUSP# negates.

The 6x86 CPU accepts cache flush requests 
and cache inquiry cycles while SUSPA# is 
asserted.  If FLUSH# is asserted, the CPU exits 
the low power state and services the flush 
request. After completion of all required 
write-back cycles, the CPU returns to the low 
power state.  SUSPA# negates during the 
write-back cycles. Before issuing the 
write-back cycle, the CPU may execute several 
code fetches.

If AHOLD, BOFF# or HOLD is asserted while 
SUSPA# is asserted, the CPU exits the low 
power state in preparation for a cache inquiry 
cycle.  After completion of any required 
write-back cycles resulting from the cache 
inquiry, the CPU returns to the low power state 
only if HOLD, BOFF# and AHOLD are 
negated. SUSPA# negates during the 
write-back cycle.

Table 3-11 (Page 3-23) lists the 6x86 CPU 
signal states for suspend mode when initiated 
by either SUSP# or the HALT instruction. 
SUSPA# is disabled (three-state) following 
RESET and is enabled by setting the SUSP bit 
in CCR2. 



                                     PRELIMINARY                                         3-23

3Signal Descriptions

Table 3-11.  Signal States During Suspend Mode

SIGNAL LINE
SUSP# INITIATED/
HALT INITIATED SIGNAL LINE

SUSP# INITIATED/
HALT INITIATED

A20M# Ignored INTR Latched/Recognized
A31-A3 Driven INV Recognized
ADS# 1 KEN# Ignored
ADSC# 1 LBA# 1
AHOLD Recognized LOCK# 1
AP Driven M/IO# Driven
APCHK# 1 NA# Ignored
BE7#-BE0# Driven NMI Latched/Recognized
BHOLD Ignored PCD Driven
BOFF# Recognized PCHK# 1
BRDY# Ignored PWT Driven
BRDYC# Ignored QDUMP# Ignored
BREQ 0 RESET Recognized
CACHE# Driven SCYC Driven
D/C# Driven SMI# Latched/Recognized
D63-D0 Float SMIACT# 1
DHOLD Ignored SUSP# 0 / Recognized
DP7-DP0 Float SUSPA# 0
EADS# Recognized TCK Recognized
EWBE# Ignored TDI Recognized
FERR# 1 TDO Responds to TCK, TDI, TMS, TRST#
FLUSH# Recognized TMS Recognized
HIT# Driven TRST# Recognized
HITM# 1 W/R# Driven
HLDA Driven in response to HOLD WB/WT# Ignored
HOLD Recognized WM_RST Latched/Recognized
IGNNE# Ignored



3-24                                            PRELIMINARY                                   

Signal Descriptions
Advancing the Standards



3.2.16 JTAG Interface

The 6x86 CPU can be tested using JTAG Inter-
face (IEEE Std. 1149.1) boundary scan test 
logic. The 6x86 CPU pin state can be set 
according to serial data supplied to the chip. 
The 6x86 CPU pin state can also be recorded 
and supplied as serial data.   

Test Clock (TCK) is the clock input used by 
the 6x86 CPU boundary scan (JTAG) test logic. 
The rising edge of TCK is used to clock control 
and data information into the 6x86 CPU using 
the TMS and TDI pins. The falling edge of TCK 
is used to clock data information out of the 
6x86 CPU using the TDO pin.

Test Data Input (TDI) is the serial data input 
used by the 6x86 CPU boundary scan (JTAG) 
test logic. TDI is sampled on the rising edge of 
TCK.

Test Data Output (TDO) is the serial data 
output used by the 6x86 CPU boundary scan 
(JTAG) test logic. TDO is output on the falling 
edge of TCK.

Test Mode Select (TMS) is the control input 
used by the 6x86 CPU boundary scan (JTAG) 
test logic. TMS is sampled on the rising edge of 
TCK.

Test Reset (TRST#) is an active low input 
used to initialize the 6x86 CPU boundary scan 
(JTAG) test logic.



                                     PRELIMINARY                                         3-25

3Functional Timing

3.3 Functional Timing

3.3.1 Reset Timing

Figure 3-2 illustrates the required RESET tim-
ing for both a power-on reset and a reset that 
occurs during operation.  The WM_RST, 
FLUSH# and QDUMP# inputs are sampled at 

VALID

VALID

VALID

Reset after Power-On = 15 CLKs Min.

Reset Inactive = 2 CLKs Min.

Power-On Reset = 1 msec  Min.

CLK

RESET

WM_RST

FLUSH#

QDUMP#

1734900

Note 1.  ADS# asserted approximately 150-200 clocks after RESET falling edge if no built-in self-test

Note 2.  ADS# asserted approximately 2**19 clocks after RESET falling edge if built-in self-test requested.
Note 3.  Output pins driven to specified RESET state a maximum of 2 CLKs after RESET rising edge.

Figure 3-2. RESET Timing

the falling edge of RESET to determine if the 
6x86 CPU should enter built-in self-test, enable 
tri-state test mode or enable the scatter-gather 
interface pins, respectively.  WM_RST, FLUSH# 
and QDUMP# must be valid at least two clocks 
prior to the RESET falling edge.



3-26 PRELIMINARY                                   

Functional Timing
Advancing the Standards



3.3.2 Bus State Definition

The 6x86 CPU bus controller supports non-pipelined and pipelined operation as well as single 
transfer and burst bus cycles.  During each CLK period, the bus controller exists in one of six 
states as listed in Table 3-12.  Each of these bus states and its associated state transitions is illus-
trated in Figure 3-3, (Page 3-27) and listed in Table 3-13, (Page 3-28).

Table 3-12. 6x86 CPU Bus States

STATE NAME DESCRIPTION

Ti Idle Clock During Ti, no bus cycles are in progress.  BOFF# and RESET force the bus 
to the idle state.  The bus is always in the idle state while HLDA is active.

T1 First Bus Cycle Clock During the first clock of a non-pipelined bus cycle, the bus enters the T1 
state.  ADS# is asserted during T1 along with valid address and bus cycle 
definition information.

T2 Second and Subsequent 
Bus Cycle Clock

During the second clock of a non-pipelined bus cycle, the bus enters the 
T2 state.  The bus remains in the T2 state for subsequent clocks of the bus 
cycle as long as a pipelined cycle is not initiated.  During T2, valid data is 
driven during write cycles and data is sampled during reads.  BRDY# is 
also sampled during T2.  The bus also enters the T2 state to complete bus 
cycles that were initiated as pipelined cycles but complete as the only 
outstanding bus cycle.

T12 First Pipelined Bus Cycle 
Clock

During the first clock of a pipelined cycle, the bus enters the T12 state.  
During T12, data is being transferred and BRDY# is sampled for the 
current cycle at the same time that ADS# is asserted and address/bus cycle 
definition information is driven for the next (pipelined) cycle.

T2P Second and Subsequent 
Pipelined Bus Cycle Clock

During the second and subsequent clocks of a pipelined bus cycle where 
two cycles are outstanding, the bus enters the T2P state.  During T2P, data 
is being transferred and BRDY# is sampled for the current cycle.  However, 
valid address and bus cycle definition information continues to be driven 
for the next pipelined cycle.

Td Dead Clock The bus enters the Td state if a pipelined cycle was initiated that requires 
one idle clock to turn around the direction of the data bus.  Td is required 
for a read followed immediately by a pipelined write, and for a write 
followed immediately by a pipelined read.



                                     PRELIMINARY                                         3-27

3Functional Timing

Figure 3-3.  6x86 CPU Bus State Diagram

Ti

T1

T2P

TD

1741800

B

C

J

M

I

N

O

K

D

A

F

L

T2

T12

P (from any state)

E

G H



3-28 PRELIMINARY                                   

Functional Timing
Advancing the Standards



Table 3-13. Bus State Transitions

TRANSITION
CURRENT 

STATE
NEXT 
STATE

EQUATION

A Ti Ti No Bus Cycle Pending.

B Ti T1 New or Aborted Bus Cycle Pending.

C T1 T2 Always.

D T2 T2 Not Last BRDY# and No New Bus Cycle Pending, or
Not Last BRDY# and New Bus Cycle Pending and NA# Negated.

E T2 T1 Last BRDY# and New Bus Cycle Pending and HITM# Negated.

F T2 Ti Last BRDY# and No New Bus Cycle Pending, or
Last BRDY# and HITM# Asserted.

G T2 T12 Not Last BRDY# and New Bus Cycle Pending and NA# Sampled 
Asserted.

H T12 T2 Last BRDY# and No Dead Clock Required.

I T12 Td Last BRDY# and Dead Clock Required.

J T12 T2P Not Last BRDY#.

K T2P T2P Not Last BRDY#.

L T2P T2 Last BRDY# and No Dead Clock Required.

M T2P Td Last BRDY# and Dead Clock Required.

N Td T12 New Bus Cycle Pending and NA# Sampled Asserted.

O Td T2 No New Bus Cycle Pending, or
New Bus Cycle Pending and NA# Negated.

P Any
State

Ti RESET Asserted, or
BOFF# Asserted.



                                     PRELIMINARY                                         3-29

3Functional Timing

3.3.3 Non-pipelined Bus
Cycles

Non-pipelined bus operation may be used for 
all bus cycle types.  The term “non-pipelined” 
refers to a mode of operation where the CPU 
allows only one outstanding bus cycle.  In 
other words, the current bus cycle must com-
plete before a second bus cycle is allowed to 
start.

3.3.3.1 Non-pipelined Single 
Transfer Cycles

Single transfer read cycles occur during 
non-cacheable memory reads, I/O read cycles, 
and special cycles.  A non-pipelined single 
transfer read cycle begins with address and bus 
cycle definition information driven on the bus 
during the first clock (T1 state) of the bus 
cycle.  The CPU then monitors the BRDY# 
input at the end of the second clock (T2 state).  
If BRDY# is asserted, the CPU reads the appro-
priate data and data parity lines and terminates 
the bus cycle.  If BRDY# is not active, the CPU 
continues to sample the BRDY# input at the 
end of each subsequent cycle (T2 states).  Each 
of the additional clocks is referred to as a wait 
state.

The CPU uses the data parity inputs to check 
for even parity on the active data lines.  If the 
CPU detects an error, the parity check output 
(PCHK#) asserts during the second clock fol-
lowing the termination of the read cycle. 

Figure 3-4 (Page 3-30) illustrates the func-
tional timing for two non-pipelined single--
transfer read cycles.  Cycle 2 is a potentially 
cacheable cycle as indicated by the CACHE# 
output.  Because this cycle is potentially cache-
able, the CPU samples the KEN# input at the 
same clock edge that BRDY# is asserted.  If 
KEN# is negated, the cycle terminates as 
shown in the diagram.  If KEN# is asserted, the 
CPU converts this cycle into a burst cycle as 
described in the next section.   NA# must be 
negated for non-pipelined operation.  Pipe-
lined bus cycles are described later in this 
chapter.



3-30 PRELIMINARY                                   

Functional Timing
Advancing the Standards



Figure 3-4.  Non-Pipelined Single Transfer Read Cycles

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T1 T2

VALID

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN

VALID

Cycle 1:

0 Wait State Read

Cycle 2:
Potentially Cacheable,

2 Wait-State Read

Non-Cacheable,

CYCLE 1 CYCLE 2

T2

1735000

T2 Ti Ti Ti

IN

VALID



                                     PRELIMINARY                                         3-31

3Functional Timing

Single transfer write cycles occur for writes that 
are neither line replacement nor write-back 
cycles.  The functional timing of two non-pipe-
lined single transfer write cycles is shown in 
Figure 3-5.  During a write cycle, the data and 
data parity lines are outputs and are driven 
valid during the second clock (T2 state) of the 

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T1 T2

VALID

NA#

BRDY#

DATA, DP OUT

CYCLE 1 CYCLE 2

Cycle 1:  
0 Wait-State Write

Cycle 2:  
2 Wait-State Write

WB/WT# VALID

T2

1735100

T2 Ti

OUT

VALID

Figure 3-5.  Non-Pipelined Single Transfer Write Cycles

bus cycle.  Data and data parity remain valid 
during all wait states. If the write cycle is a 
write to a valid cache location in the “shared” 
state, the WB/WT# pin is sampled with BRDY#.  
If WB/WT# is sampled high, the cache line 
transitions from the “shared” to the “exclusive” 
state.



3-32 PRELIMINARY                                   

Functional Timing
Advancing the Standards



Each time BRDY# is sampled asserted during 
the burst cycle, a data transfer occurs.  The 
CPU reads the data and data parity busses and 
assigns the data to an internally generated 
burst address.  Although the CPU internally 
generates the burst address sequence, only the 
first address of the burst is driven on the exter-
nal address bus.  System logic must predict the 
burst address sequence based on the first 
address.  Wait states may be added to any 
transfer within a burst by delaying the asser-
tion of BRDY# by the desired number of 
clocks.

The CPU checks even data parity for each of 
the four transfers within the burst.  If the CPU 
detects an error, the parity check output 
(PCHK#) asserts during the second clock fol-
lowing the BRDY# assertion of the data trans-
fer.

Figure 3-6 (Page 3-33) illustrates two non--
pipelined burst read cycles.  The cycles shown 
are the fastest possible burst sequences 
(2-1-1-1).  NA# must be negated for non-pipe-
lined operation as shown in the diagram.  
Pipelined bus cycles are described later in this 
chapter.

Figure 3-7 (Page 3-34) depicts a burst read 
cycle with wait states. A 3-2-2-2 burst read is 
shown.

3.3.3.2 Non-pipelined Burst
Read Cycles

The 6x86 CPU uses burst read cycles to per-
form cache line fills.  During a burst read cycle, 
four 64-bit data transfers occur to fill one of 
the CPU’s 32-byte internal cache lines.  A 
non-pipelined burst read cycle begins with 
address and bus cycle definition information 
driven on the bus during the first clock (T1 
state) of the bus cycle.  The CACHE# output is 
always active during a burst read cycle and is 
driven during the T1 clock.

The CPU then monitors the BRDY# input at 
the end of the second clock (T2 state).  If 
BRDY# is asserted, the CPU reads the data and 
data parity and also checks the KEN# input.  If 
KEN# is negated, the CPU terminates the bus 
cycle as a single transfer cycle.  If KEN# is 
asserted, the CPU converts the cycle into a 
burst (cache line fill) by continuing to sample 
BRDY# at the end of each subsequent clock. 
BRDY# must be asserted a total of four times to 
complete the burst cycle.

WB/WT# is sampled at the same clock edge as 
KEN#.  In conjunction with PWT and the 
on-chip configuration registers, WB/WT# 
determines the MESI state of the cache line for 
the current line fill.



                                     PRELIMINARY                                         3-33

3Functional Timing

Figure 3-6.  Non-Pipelined Burst Read Cycles

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T2 T2 T1 T2 T2

VALID

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN IN

VALID

Cycle 1:  2-1-1-1 Burst Read Cycle 1735200

T2 T2 Ti

IN IN IN ININ IN

VALID VALID VALID VALID VALID VALID

Cycle 2:  2-1-1-1 Burst Read Cycle

WB/WT# VALID VALID

CYCLE 2CYCLE 1



3-34 PRELIMINARY                                   

Functional Timing
Advancing the Standards



Figure 3-7.  Burst Cycle with Wait States

CPU then performs the burst cycle with the 
address sequence shown in Table 3-14 (Page 
3-35).  The 6x86 CPU CACHE# output is not 
asserted during the single read cycle prior to 
the burst.  Therefore, CACHE# must not be 
used to qualify the KEN# input to the proces-
sor.  In addition, if KEN# is returned active for 
the “1” read cycle in the “1+4”, all data bytes 
supplied to the CPU must be valid. The CPU 
samples WB/WT# during the “1” read cycle, 
and does not resample WB/WT# during the 
following burst cycle. Figure 3-8 (Page 3-35)
illustrates a “1+4” burst read cycle.

Burst Cycle Address Sequence.

The 6x86 CPU provides two different address 
sequences for burst read cycles.  The 6x86 
CPU burst cycle address sequence modes are 
referred to as “1+4” and “linear”.  After reset, 
the CPU default mode is “1+4”.

In “1+4” mode, the CPU performs a single 
transfer read cycle prior to the burst cycle, if 
the desired first address is (...xx8).  During this 
single transfer read cycle, the CPU reads the 
critical data.  In addition, the 6x86 CPU sam-
ples the state of KEN#.  If KEN# is active, the 

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T2 T2 T2 T2 T2

BRDY#

KEN#

DATA, DP

PCHK#

IN

Cycle 1:  3-2-2-2 Burst Read Cycle 1735400

T2 Ti Ti

VALID VALID VALID VALID

IN IN IN

CYCLE 1

WB/WT# VALID



                                     PRELIMINARY                                         3-35

3Functional Timing

.

Table 3-14.   “1+4” Burst Address Sequences

BURST CYCLE FIRST 
ADDRESS

SINGLE READ CYCLE 
PRIOR TO BURST

BURST CYCLE ADDRESS
 SEQUENCE

0 None 0-8-10-18

8 Address 8 0-8-10-18

10 None 10-18-0-8

18 Address 18 10-18-0-8

Figure 3-8. “1+4” Burst Read Cycle

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T1 T2 T2 T2 T2 Ti

NA#

BRDY#

DATA, DP IN

KEN# must be asserted for both cycles.

1740300

Ti

Cycle 1: Single transfer read

WB/WT#

PCHK#

VALID (A4-A0 = 08h or 18h) VALID (A4-A0 = 00h or 10h)

VALID VALID VALID VALID VALID

IN IN IN IN

CYCLE 1 CYCLE 2

KEN#

VALID

Cycle 2:  2-1-1-1 Burst Read Cycle



3-36 PRELIMINARY                                   

Functional Timing
Advancing the Standards



The address sequences for the 6x86 CPU's linear burst mode are shown in Table 3-15.  Oper-
ating the CPU in linear burst mode minimizes processor bus activity resulting in higher sys-
tem performance.  Linear burst mode can be enabled through the 6x86 CPU CCR3 
configuration register.

Table 3-15.  Linear Burst Address Sequences

BURST CYCLE FIRST 
ADDRESS

BURST CYCLE ADDRESS
 SEQUENCE

0 0-8-10-18

8 8-10-18-0

10 10-18-0-8

18 18-0-8-10



                                     PRELIMINARY                                         3-37

3Functional Timing

3.3.3.3 Burst Write Cycles

Burst write cycles occur for line replacement 
and write-back cycles.  Burst writes are similar 
to burst read cycles in that the CACHE# output 
is asserted and four 64-bit data transfers occur.  
Burst writes differ from burst reads in that the 
data and data parity lines are outputs rather 
than inputs.  Also, KEN# and WB/WT# are not 
sampled during burst write cycles.

Data and data parity for the first data transfer 
are driven valid during the second clock (T2 
state) of the bus cycle.  Once BRDY# is sampled 
asserted for the first data transfer, valid data and 
data parity for the second transfer are driven 
during the next clock cycle.  The same timing 
relationship between BRDY# and data applies 
for the third and fourth data transfers as well. 
Wait states may be added to any transfer within 
a burst by delaying the assertion of  BRDY# by 
the required number of clocks.

As on burst read cycles, only the first address of 
a burst write cycle is driven on the external 
address bus.  System logic must predict the 
remaining burst address sequence based on the 
first address.  Burst write cycles always begin 
with a first address ending in 0 (signals 
A4-A0=0) and follow an ascending address 
sequence for the remaining transfers 
(0-8-10-18).

Figure 3-9 illustrates two non-pipelined burst 
write cycles.  The cycles shown are the fastest 
possible burst sequences (2-1-1-1).  As shown, 
an idle clock always exists between two 
back-to-back burst write cycles.  Therefore, the 
second burst write cycle in a pair of 
back-to-back burst writes is always issued as a 
non-pipelined cycle regardless of the state of 
the NA# input.

Figure 3-9.  Non-Pipelined Burst Write Cycles

VALID (A4-A0 = 00h)

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T2 T2 Ti* T1 T2

VALID (A4-A0 = 00h)

NA#

BRDY#

DATA, DP OUT OUT

Cycle 1:  2-1-1-1 Burst Write Cycle 1735300

T2 T2 T2

OUT OUT OUT OUTOUT OUT

Cycle 2:  2-1-1-1 Burst Write Cycle

Ti

*Note: Ti state always exists between two back-to-back burst write cycles.

CYCLE 1 CYCLE 2



3-38 PRELIMINARY                                   

Functional Timing
Advancing the Standards



3.3.4 Pipelined Bus Cycles

Pipelined addressing is a mode of operation 
where the CPU allows up to two outstanding 
bus cycles at any given time.  Using pipelined 
addressing, the address of the first bus cycle is 
driven on the bus and while the CPU waits for 
the data for the first cycle, the address for a 
second bus cycle is issued.  Pipelined bus 
cycles occur for all cycle types except locked 
cycles and burst write cycles.

Pipelined cycles are initiated by asserting NA#.  
The CPU samples NA# at the end of each T2, 
T2P and Td state. KEN# and WB/WT# are 
sampled at either the same clock as NA# is 
active, or at the same clock as the first BRDY# 
for that cycle, whichever occurs first. The CPU 

VALID 1

CLK

ADS#

Address, AP

CACHE#

W/R#

1735500

Ti T1 T2 T12 T2 T2 Ti

VALID 2

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN 1 IN 2

VALID 1 VALID 2

Cycle 1:
2 Wait State Read

Cycle 2:Potentially Cacheable,
Pipelined Read Cycle

Non-Cacheable,

CYCLE 1 CYCLE 2

CPU enters idle bus state because

no bus cycle pending internally.

KEN# sampled when NA# sampled asserted.

T2

Figure 3-10.  Pipelined Single Transfer Read Cycles

issues the next address a minimum of two 
clocks after NA# is sampled asserted.

The CPU latches the state of the NA# pin inter-
nally. Therefore, even if a new bus cycle is not 
pending internally at the time NA# was sam-
pled asserted, the CPU still issues a pipelined 
bus cycle if an internal bus request occurs 
prior to completion of the current bus cycle. 
Once NA# is sampled asserted, the state of 
NA# is ignored until the current bus cycle 
completes.  If two cycles are outstanding and 
the second cycle is a read, the CPU samples 
KEN# and WB/WT# for the second cycle when 
NA# is sampled asserted.

Figure 3-10 and Figure 3-11 (Page 3-39) illus-
trate pipelined single transfer read cycles and 
pipelined burst read cycles, respectively.



                                     PRELIMINARY                                         3-39

3Functional Timing

Figure 3-11.  Pipelined Burst Read Cycles

VALID 1

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T12 T2P T2 T2 T2

VALID 2

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN 1 IN 1

VALID 1

Cycle 1:  2-1-1-1 Burst Read Cycle 1741500

T2 Ti Ti

IN 1 IN 1 IN 2 IN 2 IN 2

VALID 1 VALID 1 VALID 1 VALID 2 VALID 2 VALID 2

Cycle 2:  Pipelined Burst Read Cycle

IN 2

VALID 2

CYCLE 1 CYCLE 2

WB/WT# VALID VALID



3-40 PRELIMINARY                                   

Functional Timing
Advancing the Standards



3.3.4.1 Pipelined
Back-to-Back
Read/Write Cycles

Figure 3-12 depicts a read cycle followed by a 
pipelined write cycle.  Under this condition, 
the data bus must change from an input for the 
read cycle to an output for the write cycle.  In 
order to accomplish this transition without 

VALID 1

CLK

ADS#

Address, AP

CACHE#

W/R#

1735700

Ti T1 T2 T2 T12 T2P Td T2 Ti

VALID 2

NA#

BRDY#

KEN#

DATA, DP

PCHK#

Cycle 1:  2-1-1-1 Burst Read Cycle 2:  Pipelined Write

CYCLE 1 CYCLE 2

IN 1 IN 1IN 1 IN 1

VALID 1 VALID 1 VALID 1 VALID 1

OUT 2

Figure 3-12.   Read Cycle Followed by Pipelined Write Cycle

causing data bus contention, the CPU auto-
matically inserts a “dead” (Td) clock cycle.  
During the Td state, the data bus floats.  The 
CPU then drives the write data onto the bus in 
the following clock.  The CPU also inserts a Td 
clock between a write cycle and a pipelined 
read cycle to allow the data bus to smoothly 
transition from an output to an input.



                                     PRELIMINARY                                         3-41

3Functional Timing

3.3.5 Interrupt
Acknowledge
Cycles

The CPU issues interrupt acknowledge bus 
cycles in response to an active INTR input.  
Interrupt acknowledge cycles are single trans-
fer cycles and always occur in locked pairs as 
shown in Figure 3-13.  The CPU reads the 
interrupt vector from the lower eight bits of 
the data bus at the completion of the second 

Figure 3-13.  Interrupt Acknowledge Cycles

interrupt acknowledge cycle.  Parity is not 
checked during the first interrupt acknowl-
edge cycle.

M/IO#, D/C# and W/R# are always logic low 
during interrupt acknowledge cycles.  Addi-
tionally, the address bus is driven with a value 
of 0000 0004h for the first interrupt acknowl-
edge cycle and with a value of 0000 0000h for 
the second.  A minimum of one idle clock 
always occurs between the two interrupt 
acknowledge cycles.

0000 0004h

CLK

ADS#

Address

LOCK#

1735800

Ti T1 T2 Ti T1 T2 Ti

0000 0000h

Acknowledge Cycle.

Interrupt Vector Read
During Second Interrupt

BRDY#

DATA IN IN

Idle States = 1 CLK Min.
CYCLE 1 CYCLE 2

M/IO#, 
D/C#, W/R#

PCHK#

Ti

VALID



3-42 PRELIMINARY                                   

Functional Timing
Advancing the Standards



3.3.6 SMI# Interrupt Timing

The CPU samples the System Management 
Interrupt (SMI#) input at each clock edge.  At 
the next appropriate instruction boundary, the 
CPU recognizes the SMI# and completes all 
pending write cycles.  The CPU then asserts 
SMIACT# and begins saving the SMM header 
information to the SMM address space.  
SMIACT# remains asserted until after 
execution of a RSM instruction. Figure 3-14
illustrates the functional timing of the 
SMIACT# signal.

Figure 3-14.  SMIACT# Timing

CLK

ADS#

 BRDY#

SMI#

SMIACT#

1739900

Normal
Access

Normal
Access

SMI
Handler

Normal
Access

1 CLK MIN 1 CLK MIN
4 CLK 
MIN 4 CLK 

MIN

To facilitate using SMI# to power manage I/O 
peripherals, the 6x86 CPU implements a fea-
ture called I/O trapping.  If the current bus 
cycle is an I/O cycle and SMI# is asserted a 
minimum of three clocks prior to BRDY#, the 
CPU immediately begins execution of the SMI 
service routine following completion of the I/O 
instruction.  No additional instructions are 
executed prior to entering the SMI service rou-
tine.  I/O trap timing requirements are shown 
in Figure 3-15 (Page 3-43).



                                     PRELIMINARY                                         3-43

3Functional Timing

Figure 3-15.  SMM I/O Trap Timing

CLK

Address,

ADS#

BRDY#

SMI#

1736000

T1 T2 T2 T2 T2 T2

I/O Cycle (Read or Write)

3 CLK Min.

Byte Enables VALID

The latency between when FLUSH# occurs 
and when the cache invalidation actually com-
pletes varies depending on:

(1) the state of the processor when FLUSH# 
is asserted,

(2) the number of modified cache lines,
(3) the number of wait states inserted during 

the write-back cycles.

Figure 3-16 (Page 3-44) illustrates the 
sequence of events that occur on the bus in 
response to a FLUSH# request.

3.3.7 Cache Control Timing

3.3.7.1 Invalidating the
Cache Using FLUSH#

The FLUSH# input forces the CPU to 
write-back and invalidate the entire contents of 
the on-chip cache.  FLUSH# is sampled at each 
clock edge, latched internally and then recog-
nized internally at the next instruction bound-
ary.  Once FLUSH# is recognized, the CPU 
issues a series of burst write cycles to write-back 
any “modified” cache lines.  The cache lines are 
invalidated as they are written back.  Following 
completion of the write-back cycles, the CPU 
issues a flush acknowledge special bus cycle.



3-44 PRELIMINARY                                   

Functional Timing
Advancing the Standards



CLK

ADS#

BRDY#

Address

FLUSH#

1736100

Wait for Processor
to Complete Current

Instruction

Write-Back of all Modified Lines
in Internal Cache

Flush Acknowledge
Special Cycle

Write-Back Cycle 0000 0004h

Figure 3-16.  Cache Invalidation Using FLUSH#



                                     PRELIMINARY                                         3-45

3Functional Timing

3.3.7.2 EWBE# Timing

During memory and I/O write cycles, the 6x86 
CPU samples the external write buffer empty 
(EWBE#) input.  If EWBE# is negated, the CPU 
does not write any data to “exclusive” or “mod-
ified” internal cache lines.  After sampling 
EWBE# negated, the CPU continues to sample 

CLK

ADS#

W/R#

DATA

EWBE#

1737800

Write Cycle:
EWBE# sampled
with each BRDY#.

Writes to E or M-State lines

T1 T2

BRDY#

OUT

that hit in the internal cache
can complete.

No writes to E or M-State lines
that hit in the internal cache.
EWBE# sampled at each
clock edge.

Figure 3-17.  External Write Buffer Empty (EWBE#) Timing

EWBE# at each clock edge until it asserts.  
Once EWBE# is asserted, all internal cache 
writes are allowed.  Through use of this sig-
nal, the external system may enforce strong 
write ordering when external write buffers 
are used.  EWBE# functional timing is shown 
in Figure 3-17.


