
Cyrix SMM
Programmer’s Guide

Revision 2.1

Cyrix is a registered trademark
of the Cyrix Corporation

1996
Order Number 94211-01

ii

1996 Copyright Cyrix Corporation. All rights reserved.

Printed in the United States of America
Trademark Acknowledgments:
Cyrix is a registered trademark of Cyrix Corporation.
Cx486DX, Cx486DX2, Cx486DX4, 5x86 and 6x86 are trademarks of Cyrix Corporation.
Product names used in this publication are for identification purposes only and may be trademarks of their respective com-
panies.

Cyrix Corporation
2703 North Central Expressway
Richardson, Texas 75080
United States of America

Order Number 94211-01 March 1996

This document contains source code for sample programs that can be used to demonstrate the functions/features described.
CYRIX makes no representations that these programs are error-free. These programs are provided “AS IS” WITHOUT WAR-
RANTY OR REPRESENTATION OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, ANY WARRANTY OF NONINFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROP-
ERTY RIGHT, AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. IN NO EVENT WILL CYRIX BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFOR-
MATION, OR OTHER PECUNIARY LOSS, AND OTHER CONSEQUENTIAL AND/OR INCIDENTAL DAMAGES) ARISING
OUT OF THE USE OR INABILITY TO USE THESE PROGRAMS, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CON-
SEQUENTIAL OR INCIDENTAL DAMAGES, THIS LIMITATION MAY NOT APPLY TO YOU.

Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specification described herein without notice.
Before design-in or order placement, customers are advised to verify that the information on which orders or design activi-
ties are based is current. Cyrix warrants its products to conform to current specifications in accordance with Cyrix’ standard
warranty. Testing is performed to the extent necessary as determined by Cyrix to support this warranty. Unless explicitly
specified by customer order requirements, and agreed to in writing by Cyrix, not all device characteristics are necessarily
tested. Cyrix assumes no liability, unless specifically agreed to in writing, for customer’s product design or infringement of
patents or copyrights of third parties arising from use of Cyrix devices. No license, either express or implied, to Cyrix pat-
ents, copyrights, or other intellectual property rights pertaining to any machine or combination of Cyrix devices is hereby
granted. Cyrix products are not intended for use in any medical, life saving, or life sustaining systems. Information in this
document is subject to change without notice.

iii

TABLE OF CONTENTS



PRELIMINARY

SMM PROGRAMMER’S GUIDE

1. SMM Overview

1.1 Introduction.. 1-1
1.2 Cyrix SMM Features.. 1-1
1.3 Typical SMM Routine .. 1-2

2. SMM Implementation

2.1 SMM Pins.. 2-1
2.2 Cyrix SMM Mode.. 2-1
2.3 SL SMM Mode .. 2-3
2.4 Configuration Control Registers and SMM 2-5

3. SMM Software Considerations

3.1 Initializing SMM ... 3-1
3.2 SMM Handler Entry State ... 3-3
3.3 Maintaining the CPU State .. 3-8
3.4 Initializing the SMM Environment .. 3-11
3.5 Accessing Main Memory Overlapped by SMM Memory 3-12
3.6 I/O Restart .. 3-13
3.7 I/O Port Shadowing and Emulation... 3-14
3.8 Resume to HLT Instruction ... 3-15
3.9 Exiting the SMI Handler ... 3-16
3.10 Testing and Debugging SMM Code ... 3-16

4. Power Management Features

4.1 Reduction of Clock Frequency .. 4-1
4.2 Lowering the CPU Supply Voltage... 4-1
4.3 Suspend Mode .. 4-1

 Appendices

A. Assembler Macros for Cyrix Instructions.....................................A-1
B. DX2/DX4 Resume to HALT... B-1
C. Differences in Cyrix Processors ...C-1

PRELIMINARY

SMM PROGRAMMER’S GUIDE

1-1

1. SMM OVERVIEW

1.1 Introduction

This Programmer’s Guide is provided to assist
programmers in the creation of software that
uses the Cyrix® System Management Mode
(SMM) for the following Cyrix products:

• Cx486DX2™ processo r
• Cx486DX4™ processo r
• 5x86™ processor
• 6x86™ processor

Note: “6x86” is a product code that will be
replaced by a product name at a later date.
This guide should be used in conjunction with
the appropriate Cyrix Processor Data Book.

This manual is an update to the 1992
Cx486SLC/e SMM Programmer’s Guide that
describes SMM operations for the Cx486SLC/e
and Cx486DX Cyrix CPUs.

SMM provides the system designer with
another operating mode for the CPU. Within
this document, the standard x86 operating
modes (real, V86, and protected) are referred
to as normal mode. Normal-mode operation
can be interrupted by an SMI interrupt or spe-
cial instruction that places the processor in
System Management Mode (SMM). SMM can
be used to enhance the functionality of the sys-
tem by providing power management, register
shadowing, peripheral emulation and other
system-level functions. SMM can be totally
transparent to all software, including
protected-mode operating systems.

1.2 Cyrix SMM Features

The Cyrix microprocessors have programma-
ble location and size for the SMM memory
region. The CPUs automatically save minimal
register information, reducing the time needed
for SMM entry and exit. The SMM imple-
mentation by Cyrix provides unique instruc-
tions that save additional segment registers.
The x86 MOV instruction can be used to save
the general purpose registers.

The Cyrix processors simplify I/O trapping by
providing I/O type identification and instruc-
tion restarting. Cyrix CPUs also make avail-
able to the SMM routine information that can
simplify peripheral register shadowing.

Cyrix provides a method to prevent SMM con-
figuration registers from being accessed by
applications. Not allowing an application to
disable or alter SMM operation is useful for
anti-virus or security measures.

1-2 PRELIMINARY

1.3 Typical SMM Routines

A typical SMM routine is illustrated in the
flowchart shown in Figure 1-1. Upon entry
to SMM, the CPU registers that will be used
by the SMM routine must be saved. The
SMM environment is initialized by setting up
an Interrupt Descriptor Table, initializing seg-
ment limits, and setting up a stack. If entry
to SMM results from an I/O bus cycle, the
SMM routine can monitor peripheral activity,
shadow read-only ports, and emulate periph-
erals in software. If a peripheral is powered

Figure 1-1. Typical SMM Routine

down, the SMM routine can power it up and
reissue the I/O instruction. If the SMM rou-
tine is not the result of an I/O bus cycle,
non-trap SMI functions can be serviced. If
an HLT instruction is interrupted by an SMI
then the HLT instruction should be restarted
when the SMM routine is completed. Before
normal operation is resumed, any CPU regis-
ters modified during the SMM routine must
be restored to their previous state.

SMM Entry

Save State

Initialize SMM
Environment

Trap?
Service

Non-Trap SMI

HALT?
Decrement

EIP

Device
OFF?

Shadow

Service
Trap SMI

Modify State
For I/O Restart

Restore
State

Resume

I/O

SMM Exit

N Y

Y

Y

N

N

or Emulate

1727400

3PRELIMINARY

 TABLE OF CONTENTS

2-1PRELIMINARY

SMM PROGRAMMER’S GUIDE

2. SMM IMPLEMENTATION

This chapter describes the Cyrix SMM System
interface. SMM operations for Cyrix micropro-
cessors are similar to related operations per-
formed by other x86 microprocessors.

Cyrix CPUs support two SMM modes, Cyrix
SMM mode and SL SMM mode—except for the
6x86 which supports only SL SMM mode.

The CPU defaults to Cyrix SMM mode. Setting
SMM_MODE bit (in CCR3) will cause the CPU
to operate in SL SMM mode.

2.1 SMM Pins

In either SMM mode, two unique pins are
required to support SMM. These pins perform
three functions:

1. Signaling when an SMI interrupt
should occur,

2. Informing the chipset that the CPU
is in SMM mode,

3. Informing the chipset whether the
bus cycle is intended for SMM
memory or system memory.

Signals at the SMI# and SMADS# pins are used
to implement SMM.

2.2 Cyrix SMM Mode

The CPU defaults to Cyrix SMM mode. Cyrix
SMM mode is not supported by the 6x86.

An SMM routine can be started by asserting the
SMI# “input” pin. Once the SMM routine has
begun, the SMI# pin becomes an output pin
that signals the chip set that an SMM routine is
in progress. The SMADS# address strobe signal
is generated (instead of an ADS# address strobe
signal) while the CPU is executing instructions
or accessing data in SMM address space

2.2.1 SMI# Pin Timing

To enter Cyrix SMM mode, the SMI# pin must
be asserted for at least one CLK period (two
clocks if SMI# is asserted asynchronously). To
accomplish I/O trapping, the SMI# signal
should be asserted two clocks before the RDY#
for that I/O cycle. Once the CPU recognizes the
active SMI# input, the CPU drives the SMI#
input low for the duration of the SMM routine.

The SMM routine is terminated with an
SMM-specific resume instruction (RSM). When
the RSM instruction is executed, the CPU drives
the SMI# pin high for one CLK period. The
SMI# pin must be allowed to go high for one
CLK at the end of the SMM routine to allow for
the next SMI to be recognized. Since the SMI#
pin is bi-directional, only one SMI# interrupt
can become active at one time.

2-2 PRELIMINARY

2.2.2 Address Strobes

The CPU has two address strobes, ADS# and
SMADS#. ADS# is the address strobe used dur-
ing normal operations. The SMADS# address
strobe replaces ADS# during SMM for memory
accesses when data is written, read, or fetched
in the SMM defined region. Using a separate
address strobe simplifies chipset design.

During an SMM interrupt routine, control can
be transferred to main memory via a JMP,
CALL, Jcc instruction, or by execution of a soft-
ware interrupt (INT), or execution of a hard-
ware interrupt (INTR or NMI).

Code accesses in main memory will assert
ADS#. ADS# will also be asserted for data
accesses outside of the defined SMM address
region. It is assumed, but not required, that the
chipset ultimately translates SMADS# and a par-
ticular address to some other address.

To access data in main memory that overlaps
the SMM address space, the MMAC bit (CCR1,
bit 3) must be set. This allows ADS# strobes to
be generated for data accesses in memory that
overlap SMM memory while in SMM mode.
While in SMM mode it is not possible to execute
code in main memory that overlaps SMM space.

SMADS# can also be generated for memory
reads, memory writes, and code fetches within

the defined SMM region when the SMAC bit
(CCR1, bit 2) is set while in normal mode. The
generation of SMADS# permits a program in
normal mode to execute out of SMM memory.
The RSM instruction should not be executed
when not servicing an SMM interrupt unless
valid return information is first written into the
SMM header.

2.2.3 Cache Coherency

SMM memory is never cached in the CPU inter-
nal cache. This makes cache coherency com-
pletely transparent to the SMM programmer
using Cyrix SMM mode. If the CPU cache is in
write-back mode, all write-back cycles will be
directed to normal memory with the use of the
ADS# signal. An INVD or WBINVD will write
dirty data out to normal memory even if it over-
laps with SMM space.

SMM memory can be cached by an external
cache controller, but it is up to the cache
designer to be sure to maintain a distinction
between SMM memory space and normal mem-
ory space.

The A20M# input to the CPU is ignored for all
SMM space accesses (that is, any access that uses
SMADS#).

2-3

2

PRELIMINARY

2.3 SL SMM Mode

SL SMM mode is selected by the SMM_MODE
bit in CCR3 The 6x86 supports only SL SMM
mode.

The SMI# and SMADS# pins are used to imple-
ment SL SMM Mode. (SMADS# is referred to as
SMIACT# on the 6x86.) The SMI# pin is an
input pin used by the chipset to signal the CPU
that an SMI has been requested. While the CPU
is in the process of servicing an SMI interrupt,
the SMADS# (SMIACT#) pin is an output used
to signal the chipset that the SMM processing is
occurring. The ADS# address strobe signal is
asserted in order to access data in either normal
memory or SMM address space.

2.3.1 SMI# Input

SMI# is an edge-triggered input pin sampled by
two rising edges of CLK. SMI# must meet cer-
tain setup and hold times to be detected on a
specific clock edge. To accomplish I/O trap-
ping, the SMI# signal should be asserted three
clocks before the RDY# or BRDY# for that I/O
cycle. Once the CPU recognizes the active
SMI# input, the CPU drives SMADS# (SMI-
ACT#) active for the duration of the SMM rou-
tine. The SMM routine is terminated with an
SMM-specific resume instruction (RSM). When
the RSM instruction is executed, the CPU
negates the SMADS# (SMIACT#) pin after the
last bus cycle to SMM memory. While execut-
ing the SMM service routine, one additional
SMI# can be latched for service after resuming
from the first SMI.

2.3.2 SMADS# (SMIACT#)
Address Strobe

The CPU uses one address strobe, ADS#, to ini-
tiate memory cycles for both normal and SMM
memory.

The chipset must monitor the address on the
bus to determine if a given cycle is intended for
normal or SMM memory. If SMADS# (SMI-
ACT#) is inactive when an ADS# is asserted, the
cycle will access normal memory. If SMADS#
(SMIACT#) is active when an ADS# is asserted,
the chipset must compare the address bus to the
address range for SMM memory. If the address
is within the SMM address region, the cycle
should be directed to SMM memory. If the
address is outside of the SMM address region,
the cycle should be directed to normal memory.

Normal memory located within the same phys-
ical address range as the SMM address region
can only be accessed from within SMM mode by
chipset-specific functions which will relocate
the normal memory to an address that is acces-
sible to the SMM code. In normal mode, SMM
memory can be initialized by using chipset-spe-
cific functions to map the SMM memory into
normal memory so that it can be accessed.

The MMAC and SMAC bits in CCR1 should not
be used while in SL SMM mode. See Appendix
C for details on how these bits function in each
of the Cyrix CPUs.

2-4 PRELIMINARY

2.3.3 Cache Coherency

Intel’s SL Enhanced 486 allows SMM memory
accesses to be cached. This may cause coher-
ency problems in systems where SMM memory
space and normal memory space overlap.
Therefore, Intel recommends one of two
options: (1) flush the cache when entering and
exiting an SMM service routine, or (2) flush the
cache when entering an SMM service routine
and then make all SMM accesses non-cacheable
using the KEN# pin. In both cases, Intel rec-
ommends asserting the FLUSH# input when
SMIACT# is asserted. This is acceptable for a
CPU with a write-through cache because the
flush invalidates the cache in a single clock.

Therefore, the Cyrix CPU must also write back
and invalidate the cache prior to asserting
SMADS# (SMIACT#). No dirty data can exist
in the CPU (cache and write buffers) at the time

that SMADS# (SMIACT#) is asserted. On the
486DX2/DX4 this flush is done automatically
before SMADS# (SMIACT#) is asserted.

On 5x86 and 6x86 CPUs, the chipset must
drive FLUSH# on the same clock as SMI# to
ensure that the dirty data is written out to
memory before the SMIACT# is asserted.

If the software instruction SMINT is used to
enter SMM a WBINVD instruction should be
executed immediately before the SMINIT
instruction to assure that no dirty data is in the
cache.

A bus snoop will not hit in the CPU cache if the
FLUSH# pin has been asserted before entering
SMM. Cyrix CPUs prevent dirty data hits
within SMM because the SMM space is always
non-cacheable.

2-5

2

PRELIMINARY

2.4 Configuration Control
Registers and SMM

This section describes fields in the Configura-
tion Registers that configure SMM operations.
Fields not related to SMM are not described in
this manual and are shown as blank fields in the
configuration register tables. For a complete
description of the configuration registers, refer
to the appropriate data book.

All configuration-register bits related to SMM
and power management are cleared to 0 when
RESET is asserted. Asserting WM_RST does
not affect the configuration registers.

These registers are accessed by writing the reg-
ister index to I/O port 22h. I/O port 23h is
used for data transfer. Each data transfer to I/O
port 23h must be preceded by an I/O port 22h
register-index selection, otherwise the port 23h
access will be directed off chip.

Before accessing these registers, all interrupts
must be disabled. A problem could occur if an
interrupt occurs after writing to port 22h but
before accessing port 23h. The interrupt service
routine might access port 22h or 23h. After
returning from the interrupt, the access to port
23h would be redirected to another index or
possibly off chip.

An SMI interrupt cannot interrupt accesses to
the configuration registers. After writing an
index to port 22h in the CPU configuration
space, SMI interrupts are disabled until the cor-
responding access to port 23h is complete.

The portions of the configuration registers that
apply to SMM and power management are
described in the following pages.

2-6 PRELIMINARY

Table 2-1. CCR1 Register
Register INDEX = C1h

7 6 5 4 3 2 1 0

SM3 MMAC SMAC USE_SMI

Table 2-2. CCR1 Bit Definitions

BIT
 POSITION NAME DESCRIPTION Notes

1 USE_SMI Enable SMM Pins.

If = 1: The SMI# input/output pin and SMADS# (SMIACT#) output
pin are enabled. USE_SMI must be set to 1 before any attempted
access to SMM memory is made.

If = 0: the SMI# input pin is ignored and SMADS# (SMIACT#) output
pin floats. Execution of Cyrix specific SMM instructions will generate
an invalid opcode exception.

Also called SMI

2 SMAC System Management Memory Access.

If = 1: SMI# input is ignored. Memory accesses while in normal mode
that fall within the specified SMM address region generate an
SMADS# (SMIACT#) output and access SMM memory. Instructions
with SMM opcodes are enabled.

If = 0: All memory accesses in normal mode go to system memory
with ADS# output active. In normal mode, execution of Cyrix spe-
cific SMM instructions generate an invalid opcode exception.

Valid on
Cx486DX2/DX4
and 5x86 only
when operating in
Cyrix SMM mode.

SMAC is always
available for 6x86.

3 MMAC Main Memory Access.

If = 1: Data accesses while in SMM mode that fall within the specified
SMM address region will generate an ADS# output and access main
memory. Code fetches are not effected by the MMAC bit. Code
fetches from the SMM address region always generate an SMADS#
output and access SMM memory. If both the SMAC and MMAC bits
are set to 1, the MMAC bit has precedence.

If = 0: All memory accesses to the SMM address region while in SMM
mode go to SMM memory with SMADS# output active.

Not available for
6x86.
Do not set MMAC
unless operating
in Cyrix SMM
mode.

7 SM3 SMM Space Address Region 3
If = 1 Address Region 3 (ARR3) is redefined as the SMM Address
Region (SMAR).

Available for 6x86
only.

2-7

2

PRELIMINARY

Table 2-3. CCR2 Register
Register INDEX = C2h

7 6 5 4 3 2 1 0

USE_SUSP SUSP_HALT

Table 2-4. CCR2 Bit Definitions

BIT
 POSITION

NAME DESCRIPTION Notes

3 SUSP_HALT Suspend on HALT.
If = 1: CPU enters suspend mode following execu-
tion of a HLT instruction.
If = 0: CPU does not enter suspend mode following
execution of a HLT instruction.

Also called HALT.

7 USE_SUSP Enable Suspend Pins.
If = 1: SUSP# input and SUSPA# output are enabled.
If = 0: SUSP# input is ignored and SUSPA# output
floats.

Also called SUSP.

2-8 PRELIMINARY

Table 2-5. CCR3 Register
INDEX = C3h

7 6 5 4 3 2 1 0

SMM_MODE NMI_EN SMI_LOCK

Table 2-6. CCR3 Bit Definitions

BIT
 POSITION

NAME DESCRIPTION Notes

0 SMI_LOCK SMM Register Lock.

If = 1: the following Configuration Control Register bits can not be
modified unless operating in SMM mode: USE_SMI, SMAC,
MMAC, NMI_EN, SM3 and SMAR.

If = 0: any program in normal mode, as well as SMM software, has
access to all Configuration Control Registers.

Once set, the SMI_LOCK bit can only be cleared by asserting the
RESET pin.

1 NMI_EN NMI Enable.

If = 1: NMI is enabled during SMM. This bit should only be set tem-
porarily while in the SMM routine to allow NMI interrupts to be ser-
viced. NMI_EN should not be set to 1 while in normal mode. If
NMI_EN = 1 when an SMI occurs, an NMI could occur before the
SMM code has initialized the Interrupt Descriptor Table.

If = 0: NMI (Non-Maskable Interrupt) is not recognized during
SMM. One occurrence of NMI can be latched and serviced after
SMM mode is exited. The NMI_EN bit should be cleared before
executing a RSM instruction to exit SMM.

Also called NMIEN

3 SMM_MODE SMM Mode

If = 1: SMM pins function as defined for SL-compatible mode.

If = 0: SMM pins function as defined for Cyrix SMM compatible
mode.

Not available on
6x86 as 6x86 oper-
ates in SL SMM
mode only.

2-9

2

PRELIMINARY

Table 2-7. SMM Address Region Registers (SMAR)

Note for 6x86 processors only: Address Region 3 (ARR3) is designated as SMM address space if CCR1 bit 7 (SM3) is set.

Table 2-8. SMAR Register SIZE Field

Bits 3-0 BLOCK SIZE Bits 3-0 BLOCK SIZE

0h Disable 8h 512 KBytes

1h 4 KBytes 9h 1 MBytes

2h 8 KBytes Ah 2 MBytes

3h 16 KBytes Bh 4 MBytes

4h 32 KBytes Ch 8 MBytes

5h 64 KBytes Dh 16 MBytes

6h 128 KBytes Eh 32 MBytes

7h 256 KBytes Fh 4 KBytes (same as 1h)
4 GBytes (6x86 only)

7

SIZE SMAR

0 7 4 3 0

REG. INDEX = CEh REG. INDEX = CFh

A23 A16 A15 A12

1713403

A24 A31

07

REG. INDEX = CDh

STARTING ADDRESS

2-10 PRELIMINARY

2.5 SMM Instruction
Summary

Cyrix has added seven new instructions to the
x86 standard instruction set to aid in SMM pro-
gramming. These instructions are only valid
when:

1) USE_SMI = 1
2) SMAR > 0
3) Current Privilege Level (CPL) = 0
4) SMAC bit is set or the CPU is in

SMM mode

Note: There are minor differences between
CPUs concerning when these instruction are
valid as detailed in Appendix C.

The CPU will generate an invalid opcode fault
when the conditions above are not met and one
of the SMM instructions is executed. The
assembly language macro SMIMAC.INC listed
in Appendix A will automatically generate the
appropriate machine code when included in a
source file containing Cyrix SMM instructions.

Most of the Cyrix SMM instructions are used to
access the non-programmer visible internal
descriptors. The standard x86 instructions
cannot access this information inside the CPU.
This information is stored in memory in a
10-byte area that is comprised of both the
descriptor (8 bytes) and the segment regis-
ter/selector (2 bytes). The 8-byte descriptor is
in the same format that it is found in the GDT
or LDT. If the data area is dword aligned, the
memory access time will be minimized.

Table 2-9. Register and Descriptor Save Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SELECTOR or SEGMENT +8

BASE 31-24 G D 0 AVL LIMIT 19-16 +6

P DPL DT TYPE BASE 23-16 +4

BASE 15-0 +2

LIMIT 15-0 +0

2-11

2

PRELIMINARY

2.5.1 RSDC - Restore Register and Descriptor

RSDC loads the information at the mem80 into a segment register/selector and its associated
descriptor. Attempting to use this instruction to load the Code Segment or Code Selector will
generate an invalid opcode instruction. Code Segment or Code Selector is restored from the
SMM header as part of the RSM instruction.

2.5.2 RSLDT - Restore LDT and Descriptor

RSLDT loads the information at the mem80 into Local Descriptor Table Register and its associ-
ated descriptor.

2.5.3 RSM - Resume Back to Normal Mode

RSM will restore the state of the CPU from the SMM header at the top of SMM space and exit
SMM. This is the last instruction executed in an SMM handler.

Table 2-10. Restore Register and Descriptor

Instruction Opcode Parameters

RSDC 0F 79 [mod sreg3 r/m] sreg3, mem80

Table 2-11. Restore LDT and Descriptor

Instruction Opcode Parameters

RSLDT 0F 7B [mod 000 r/m] mem80

Table 2-12. Resume Back to Normal Mode

Instruction Opcode Parameters

RSM 0F AA None

2-12 PRELIMINARY

2.5.4 RSTS - Restore TSR and Descriptor

RSTS loads the information at the mem80 address into the Task Register and its associated descrip-
tor.

2.5.5 SMINT - Software SMM Interrupt

SMINT will cause the CPU to enter SMM as though the hardware SMI# pin were sampled enabled.
The SMINT instruction sets the “S” bit in the SMM header. The SMI# signal is not driven by the
CPU if an SMM routine is entered using an SMINT instruction and if the CPU is operating in Cyrix
SMM mode. If operating an 6x86 in write-back mode, a WBINVD instruction should be executed
immediately proceeding a SMINT instruction to preserve cache coherency.

2.5.6 SVDC - Save Register and Descriptor

SVDC saves the contents of a segment register/selector and its associated descriptor to memory at
mem80. This instruction can be used on any segment/selector including the Code Segment.

Table 2-13. Restore TSR and Descriptor

Instruction Opcode Parameters

RSTS 0F 7D [mod 000 r/m] mem80

Table 2-14. Software SMM Interrupt

Instruction Opcode Parameters

SMINT 0F 7E None

Table 2-15. Save Register and Descriptor

Instruction Opcode Parameters

SVDC 0F 78 [mod sreg3 r/m] mem80, sreg3

2-13

2

PRELIMINARY

2.3.7 SVLDT - Save LDT and Descriptor

SVLDT saves the Local Descriptor Table Selector and non-programmer visible descriptor infor-
mation at the address location mem80.

2.3.8 SVTS - Save TSR and Descriptor

SVTS saves the Task Register and its associated descriptor to address location mem80.

Table 2-16. Save LDT and Descriptor

Instruction Opcode Parameters

SVLDT 0F 7A [mod 000 r/m] mem80

Table 2-17. Save TSR and Descriptor
Instruction Opcode Parameters

SVTS 0F 7C mem80

SMM PROGRAMMER’S GUIDE

PRELIMINARY

3-1

3. SMM SOFTWARE
CONSIDERATIONS

This section provides information helpful in
the development of SMM code.

3.1 Initializing SMM

Many systems have memory controllers that
aid in the initialization of SMM memory. Cyrix
SMM features allow the initialization of SMM
memory without external hardware memory
remapping.

When loading SMM memory with an SMM
interrupt handler it is important that the SMI#
does not occur before the handler is loaded.

To load SMM memory with a program it is first
necessary to enable SMM memory without
enabling the SMI pins. This is done by setting

SMAC = 1 and loading SMAR with the SMM
address region. Setting USE_SMI = 1 will then
map the SMM memory region over main mem-
ory. The SMM region is physically mapped by
the assertion of SMADS# to allow memory
access within the SMM region. A REP MOV
instruction can then be used to transfer the
program to SMM memory. After initializing
SMM memory, negate SMAC to activate poten-
tial SMI#s.

SMM space can be located anywhere in the
4-GByte address range. However, if the loca-
tion of SMM space is above 1 MByte, the value
in CS will truncate the segment above 16 bits
when stored from the stack. This would pro-
hibit doing calls or interrupts from real mode
without restoring the 32-bit features of the 486
because of the incorrect return address on the
stack.

3-2 PRELIMINARY

; load SMM memory from system memory (Cyrix SMM mode only)

include SMIMAC.INC
SMMBASE = 68000h
SMMSIZE = 4000h ;SMM SIZE is 16K
SMI = 1 shl 1
SMAC = 1 shl 2
MMAC = 1 shl 3
;interrupts should be disabled here

mov al, 0cdh ;index SMAR, SMM base<A31-A24>
out 22h, al ;select
mov al, 00h ;set high SMM address to 00
out 23h, al ;write value
mov al, 0ceh ;index SMAR,SMM base<A23-A16>
out 22h, al ;select
mov al, 06h ;set mid SMM address to 06h
out 23h, al ;write value
mov al, 0cfh ;SMAR,SMM base<A15-A12> & SIZE
out 22h, al ;select
mov al, 083h ;set SMM lower addr. 80h, 16K
out 23h, al ;write value
mov al, 0c1h ;index to CCR1
out 22h, al ;select CCR1 register
in al, 23h ;read current CCR1 value
mov ah, al ;save it
mov al, 0c1h ;index to CCR1
out 22h, al ;select CCR1 register
mov al, ah
or al, SMI or SMAC; set SMI and SMAC
out 23h, al ;new value now in CCR1, SMM now

;mapped in
mov ax, SMMBASE shr 4
mov es, ax
mov edi, 0 ;es:di = start of the SMM area
mov esi, offset SMI_ROUTINE ;start of copy of SMM
mov ax, seg SMI_ROUTINE ;routine in main memory
mov ds, ax
mov ecx, (SMI_ROUTINE_LENGTH+3)/4 ;calc. length

; this line copies the SMM routine from DS:ESI to ES:EDI
rep
movs dword ptr es:[edi],dword ptr ds:[esi]

; now disable SMI by clearing SMAC and SMI
mov al, 0c1h ;index to CCR1
out 22h, al ;select CCR1 register
mov al, ah ;AH is still old value
and al, NOT SMAC;disable SMAC, enable SMI#
out 23h, al ;write new value to CCR1

3-3PRELIMINARY

3
3.2 SMM Handler

Entry State

Before entering an SMM routine, certain por-
tions of the CPU state are saved at the top of
SMM memory. To optimize the speed of SMM
entry and exit, the CPU saves the minimum
CPU state information necessary for an SMI
interrupt handler to execute and return to the
interrupted context.

The information is saved to the SMM header at
the top of the defined SMM region (starting at
SMM base + size - 30h) as shown in

Figure 3-1. SMM Memory Space Header

Figure 3-1. Only the CS, EIP, EFLAGS, CR0,
and DR7 are saved upon entry to SMM. Data
accesses must use a CS segment override to
save other registers and access data in SMM
memory. To use any other segment register,
the SMM programmer must first save the con-
tents using the SVDC instruction for segment
registers or MOV operations for general pur-
pose registers (See Cyrix SMM instruction
description Section 2.3). It is possible to save
all the CPU registers as needed. See Section
3.3 for an example of saving and restoring the
entire CPU state.

DR7

EFLAGS

CR0

031
Top of SMM

-4h

-8h

-Ch

-10h

-14h

-18h

-1Ch

-20h

-24h

-28h

P

Current IP

Next IP

CS Selector

CS Descriptor (Bits 63-32)

CS Descriptor (Bits 31-0)

ESI or EDI

I

1713506

31 16 15 0

31 2 1 0

-2Ch

-30h

Address Space

3

S

I/O AddressI/O Data Size

I/O Write Data

16 15

2122

CPL

H

4

Reserved

Reserved

Reserved

3-4 PRELIMINARY

Upon execution of an RSM instruction, control
is returned to NEXT_IP. The value of
 NEXT_IP may need to be modified for restart-
ing I/O instructions. This modification is a
simple move of the CURRENT_IP value to the
NEXT_IP location. Execution is then returned
to the I/O instruction, rather than to the
instruction after the I/O instruction.

This CURRENT_IP value is valid only if the
instruction executing when the SMI occurred
was an I/O instruction. Table 3-1 lists the SMM
header information needed to restart an I/O
instruction. The restarting of I/O instructions
may also require modifications to the ESI, ECX
and EDI depending on the instruction (see
Section 3.6 for an example.)

Table 3-1. I/O Trap Information

Bit Description Size

H HALT Indicator
If = 1: The CPU was in a halt or shut down prior to serving the SMM interrupt.
If = 0: The CPU was not in a halt or shut down prior to serving the SMM
interrupt.

1 bit

S Software SMM Entry Indicator
S=1, if current SMM is the result of an SMINT instruction.
S=0, if current SMM is not the result of an SMINT instruction.

1 bit

P REP INSx/OUTSx Indicator
If = 1: Current instruction does not have a REP prefix
If = 0: Current instruction has a REP prefix

1 bit

I IN, INSx, OUT, or OUTSx Indicator
If = 1: Current instruction performed an I/O WRITE
If = 0: Current instruction performed an I/O READ

1 bit

I/O Data
Size

Indicates size of data for the trapped I/O
 01h = byte
 03h = word
 0fh = dword

2 bytes

I/O
Address

Address of the trapped I/O 2 bytes

I/O Write
 Data

Data written during I/O trapped write 4 bytes

ESI or EDI Value of appropriate index register before the trapped I/O instruction 4 bytes

3-5PRELIMINARY

3
The EFLAGS, CR0 and DR7 registers are set to
their reset values upon entry to the SMI han-
dler. Resetting these registers has implications
for setting breakpoints using the debug regis-
ters. Breakpoints in SMM address space can
not be set prior to the SMI interrupt using
debug registers. A debugger will only be able
to set a code breakpoint using INT 3 outside of
the SMM handler. See Section 3.11 for restric-
tions on debugging SMM code. Once the SMI
has occurred and the debugger has control in
SMM space, the debug registers can be used
for the remainder of the SMI handler execu-
tion.

If the S bit in the SMM header is set, the SMM
entry resulted from an SMINT instruction.

Upon SMM entry, I/O trap information is
stored in the SMM memory space header. This
information allows restarting of I/O instruc-

tions, as well as the easy emulation of I/O
functions by the SMM handler. This data is
valid only if the instruction executing when
the SMI occurred was an I/O instruction. On
DX2/DX4 devices, only I/O writes generate
valid I/O fields to allow I/O restart. On 5x86
and 6x86 devices, both I/O reads and I/O write
traps result in valid I/O fields and current P
and I field values.

If the H bit in the SMM header is set, a HLT
instruction was being executed when the SMI
occurred. To resume execution of the HLT
instruction, the field NEXT-IP in the SMM
header should be decremental by one before
executing RSM instruction. The DX2/DX4
processors do not support the H bit. Refer to
Appendix B for instruction on handling
resume to halt operations on a DX2 or DX4.

3-6 PRELIMINARY

The values found in the I/O trap information fields are specified below for all cases.

Table 3-2. Valid I/O Trap Cases

Valid Cases P I
I/O

Write
Data Size

I/O Write
Address

I/O Write
Data

ESI or
EDI

Not an I/O
instruction

x x x x x x

IN al 0 0 01h I/O Address xxxxxxx x EDI

IN ax 0 0 03h I/O Address xxxxxxx x EDI

IN eax 0 0 0Fh I/O Address xxxxxxx x EDI

INSB 0 0 01h I/O Address xxxxxxx x EDI

INSW 0 0 03h I/O Address xxxxxxx x EDI

INSD 0 0 0Fh I/O Address xxxxxxx x EDI

REP INSB 1 0 01h I/O Address xxxxxxx x EDI

REP INSW 1 0 03h I/O Address xxxxxxx x EDI

REP INSD 1 0 0Fh I/O Address xxxxxxx x EDI

OUT al 0 1 01h I/O Address xxxxxxd d ESI

OUT ax 0 1 03h I/O Address xxxxddd d ESI

OUT eax 0 1 0Fh I/O Address ddddddd d ESI

OUTSB 0 1 01h I/O Address xxxxxxd d ESI

OUTSW 0 1 03h I/O Address xxxxddd d ESI

OUTSD 0 1 0Fh I/O Address ddddddd d ESI

REP OUTSB 1 1 01h I/O Address xxxxxxd d ESI

REP OUTSW 1 1 03h I/O Address xxxxddd d ESI

REP OUTSD 1 1 0Fh I/O Address ddddddd d ESI

Note: x = invalid
Note: For DX2/DX4 devices, the I/O Data size, I/O address, I/O address, I/O data fields are not
valid for IN instructions. The P, I and ESI or EDI fields are valid to allow I/O restart.

3-7PRELIMINARY

3

Upon SMM entry, the CPU enters the state described in Table 3-1.

Table 3-1. SMM Entry State

Register Register
Content

Comments

CS SMM base
specified by
SMAR

CS limit is set to 4 GBytes
(64 KBytes for a DX2/DX4 devices).

EIP 0000 0000h Begins execution at the base of SMM memory

EFLAGS 0000 0002h Reset State

CR0 0000 0010h DX2/DX4 only:
EM is not modified.

6000 0010h Other than DX2/DX4:
NW will not be modified if LOCK_NW is set.

DR7 0000 0400h Traps disabled

3-8 PRELIMINARY

3.3 Maintaining the CPU State

The following registers are not automatically saved on SMM entry or restored on SMM exit.

General Purpose Registers: EAX, EBX, ECX, EDX
Pointer and Index Registers: EBP, ESI, EDI, ESP
Selector/Segment Registers: DS, ES, SS, FS, GS
Descriptor Table Registers: GDTR, IDTR, LDTR, TR
Control Registers: CR2, CR3
Debug Registers: DR0, DR1, DR2, DR3, DR6
Configuration Registers: all valid configuration registers
FPU Registers: Entire FPU state.

If the SMM routine will use any of these registers, their contents must be saved after entry into the
SMM routine and then restored prior to exit from SMM. Additionally, if power is to be removed
from the CPU and the system is required to return to the same system state after power is reap-
plied, then the entire CPU state must be saved to a non-volatile memory subsystem such as a hard
disk.

3.3.1 Maintaining Common CPU Registers
The following is an example of the instructions needed to save the entire CPU state and restore it.
This code sequence will work from real mode if the conditions needed to execute Cyrix SMM
instructions are met (see Section 2.3). Configuration registers would also need to be saved if
power is to be removed.

; Save and Restore the common CPU registers.
; The information automatically saved in the
; header on entry to SMM is not saved again.
include SMIMAC.INC

.386P ;required for SMIMAC.INC macro
mov cs:save_eax,eax
mov cs:save_ebx,ebx
mov cs:save_ecx,ecx
mov cs:save_edx,edx
mov cs:save_esi,esi
mov cs:save_edi,edi
mov cs:save_ebp,ebp
mov cs:save_esp,esp
svdc cs:,save_ds,ds
svdc cs:,save_es,es
svdc cs:,save_fs,fs
svdc cs:,save_gs,gs
svdc cs:,save_ss,ss
svldt cs:,save_ldt ;sldt is not valid in real mode

3-9PRELIMINARY

3

svts cs:,save_tsr ;str is not valid in real mode
db 66h ;32bit version saves everything
sgdt fword ptr cs:[save_gdt]
db 66h ;32bit version saves everything
sidt fword ptr cs:[save_idt]

; at the end of the SMM routine the following code
; sequence will reload the entire CPU state

mov eax,cs:save_eax
mov ebx,cs:save_ebx
mov ecx,cs:save_ecx
mov edx,cs:save_edx
mov esi,cs:save_esi
mov edi,cs:save_edi
mov ebp,cs:save_ebp
mov esp,cs:save_esp
rsdc ds,cs:,save_ds
rsdc es,cs:,save_es
rsdc fs,cs:,save_fs
rsdc gs,cs:,save_gs
rsdc ss,cs:,save_ss
rsldt cs:,save_ldt
rsts cs:,save_tsr
db 66h
lgdt fword ptr cs:[save_gdt]
db 66h
lidt fword ptr cs:[save_idt]

; the data space so save the CPU state is in
; the Code Segment for this example
save_ds dt ?
save_es dt ?
save_fs dt ?
save_gs dt ?
save_ss dt ?
save_ldt dt ?
save_tsr dt ?
save_eax dd ?
save_ebx dd ?
save_ecx dd ?
save_edx dd ?
save_esi dd ?
save_edi dd ?
save_ebp dd ?
save_esp dd ?
save_gdt df ?
save_idt df ?

3-10 PRELIMINARY

3.3.2 Maintaining Control
Registers

CR0 is maintained in the SMM header. CR2
and CR3 should be saved if the SMM routine
will be entering protected mode and enabling
paging. Most SMM routines will not need to
enable paging. However, if the CPU will be
powered off, these registers should be saved.

3.3.3 Maintaining Debug
Registers

DR7 is maintained in the SMM Header. Since
DR7 is automatically initialized to the reset
state on entry to SMM, the Global Disable bit
(DR7 bit 13) will be cleared. This allows the
SMM routine to access all of the Debug Regis-
ters. Returning from the SMM handler will
reload DR7 with its previous value. In most
cases, SMM routines will not make use of the
Debug Registers and they will need to be saved
only if the CPU needs to be powered down.

3.3.4 Maintaining
Configuration Control
Registers

The SMM routine should be written so that it
maintains the Configuration Control Registers
in the same state as they were initialized by the
BIOS at power-up.

3.3.5 Maintaining FPU State
If power will be removed from the CPU or if
the SMM routine will execute FPU instruc-
tions, then the FPU state should be maintained
for the application running before SMM was
entered. If the FPU state is to be saved and
restored from within SMM, there are certain
guidelines that must be followed to make SMM
completely transparent to the application pro-
gram.

The complete state of the FPU can be saved
and restored with the FNSAVE and FNRSTOR
instructions. FNSAVE is used instead of the
FSAVE because FSAVE will wait for the FPU to
check for existing error conditions before stor-
ing the FPU state. If there is a unmasked FPU
exception condition pending, the FSAVE
instruction will wait until the exception condi-
tion is serviced. To maintain transparency for
the application program, the SMM routine
should not service this exception. If the FPU
state is restored with the FNRSTOR instruction
before returning to normal mode, the applica-
tion program can correctly service the excep-
tion. Any FPU instructions can be executed
within SMM once the FPU state has been
saved.

The information saved with the FSAVE
instruction varies depending on the operating
mode of the CPU. To save and restore all FPU
information, the 32-bit protected mode ver-
sion of the FPU save and restore instruction
should be used. This can be accomplished by
using the following code example:

3-11PRELIMINARY

3
; Save the FPU state

mov eax,CR0
or eax,00000001h
mov CR0,eax ;set the PE bit in CR0
jmp $+2 ;clear the prefetch que
db 66h ;do 32bit version of fnsave
fnsave [save_fpu] ;saves fpu state to

;the address DS:[save_fpu]
mov eax,CR0
and eax, 0FFFFFFFEh ;clear PE bit in CR0
mov CR0,eax ;return to real mode

;now the SMM routine can do any FPU instruction.
;Restore the FPU state before executing a RSM

FNINIT ;initialize the FPU to a valid state
mov eax,CR0
or eax,00000001h
mov CR0,eax ;set the PE bit in CR0
jmp $+2 ;clear the prefetch que
db 66h ;do 32bit version of fnsave
frstor [save_fpu] ;restore the FPU state

;Some assemblers may require
;use of the fnrstor instruction

mov eax,CR0
and eax, 0FFFFFFFEh ;clear PE bit in CR0
mov CR0,eax ;return to real mode

Be sure that all interrupts are disabled before
using this method for entering protected
mode. Any attempt to load a selector register
while in protected mode will shutdown the
CPU since no GDT is set up. Setting up a GDT
and doing a long jump to enter protected
mode will also work correctly.

3.4 Initializing the
SMM Environment

After entering SMM and saving the CPU regis-
ters that will be used by the SMM routine, a
few registers need to be initialized.

Segment registers need to be initialized if the
CPU was operating in protected mode when
the SMI interrupt occurred. Segment registers
that will be used by the SMM routine should
be loaded with known limits before they are

used. The protected mode application could
have set a segment limit to less than 64K. To
avoid a protection error, all segment registers
can be given limits of 4 GBytes. This can be
done with the Cyrix RSDC instruction and will
allow access to the full 4 GBytes of possible
system memory without entering protected
mode. Once the limits of a segment register
are set, the base can be changed by use of the
MOV instruction.

If necessary, an Interrupt Descriptor Table
(IDT) should be set up in SMM memory before
any interrupts or exceptions occur. The
Descriptor Table Register can be loaded with
an LIDT instruction to point to a small IDT in
SMM memory that can handle the possible
interrupts and exceptions that might occur
while in the SMM routine.

3-12 PRELIMINARY

A stack should always be set up in SMM memory so that stack operations done within SMM do
not affect the system memory.

; SMM environment initialization example
include SMIMAC.INC ; see Appendix A

rsdc ds,cs:,seg4G ;DS is a 4GByte segment, base=0
rsdc es,cs:,seg4G ;ES is a 4GByte segment, base=0
rsdc fs,cs:,seg4G ;FS is a 4GByte segment, base=0
rsdc gs,cs:,seg4G ;GS is a 4GByte segment, base=0
rsdc ss,cs:,seg4G ;SS is a 4GByte segment, base=0
lidt cs:smm_idt ;load IDT base and limit for

;SMM's IDT
mov esp, smm_stack
jmp continue_smm_code

;
;descriptor of 4GByte data segment for use by rsdc
seg4G dw 0ffffh ; limit 4G

dw 0 ; base = 0
db 0 ; base = 0
db 10010011B ; data segment, DPL=0,P=1
db 8fh ; limit = 4G,
db 0h ; base = 0
dw 0 ; segment register = 0

smm_idt dw smm_idt_limit
dd smm_idt_base

3.5 Accessing Main Memory Overlapped by SMM Memory

In SMM mode, there are instances where the program needs access to the system memory that is
overlapping with SMM memory. This need for access this area of system memory most com-
monly occurs when the SMM routine is trying to save the entire memory image to disk before
powering down the system. If using Cyrix SMM mode, access is made to main memory that
overlaps SMM space by setting the MMAC bit in CCR1. The following code will enable and then
disable MMAC.

; Set MMAC to access main memory
; this code is only valid for Cyrix SMM mode operations
MMAC = 1 shl 3

mov al, 0c1h ;select CCR1
out 22h, al
in al, 23h ;get CCR1 current value
mov ah, al ;save it
mov al, 0c1h ;select CCR1 again
out 22h, al
mov al, ah
or al, MMAC ;set MMAC
out 23h, al ;write new value to CCR1

3-13PRELIMINARY

3
;Now all data memory access will use ADS#, Code fetches
;will continue to be done with SMADS# from SMM memory.
;
;Disable MMAC

mov al, 0c1h ;select CCR1
out 22h, al
mov al, ah ;get old value of CCR1
out 23h, al ;and restore it

3.6 I/O Restart

Often when implementing a power management design, peripherals are required to be powered
down by the system when not in use. When an I/O instruction is issued to a powered down
device, the SMM routine is called to power up the peripheral and then reissue the I/O instruc-
tion. Cyrix CPUs make it easy to restart the I/O instruction that has generated an SMI interrupt.

The system will generate an SMI interrupt when an I/O bus cycle to a powered-down peripheral
is detected. The SMM routine should interrogate the system hardware to find out if the SMI was
caused by an I/O trap. By checking the SMM header information, the SMM routine can deter-
mine the type of I/O instruction that was trapped. If the I/O instruction has a REP prefix, the
ECX register needs to be incremented before restarting the instruction. If the I/O trap was on a
string I/O instruction, the ESI or EDI registers must be restored to their previous value before
restarting the instruction.
The following code example shows how easy I/O restart is with the Cyrix CPU.

include SMIMAC.INC ;see Appendix A
;Restart the interrupted instruction

mov eax,dword ptr cs:[SMI_CURRENTIP]
mov dword ptr cs:[SMI_NEXTIP],eax
mov al,byte ptr cs:[SMI_BITS]

;test for REP instruction
bt ax,2 ;rep instruction?

;(result to Carry)
adc ecx,0 ;if so, increment ecx
test al,1 shl 1 ;test bit 1 to see

;if an OUTS or INS
jnz out_instr

; A port read (INS or IN) instruction caused the
; chipset to generate an SMI instruction.
; Restore EDI from SMM header.

mov edi, dword ptr cs:[SMI_ESIEDI]
jmp common1

; A port write (OUTS or OUT) instruction caused the

3-14 PRELIMINARY

; chipset to generate an SMI instruction.
; Restore ESI from SMM header.
out_instr:

mov esi, dword ptr cs:[SMI_ESIEDI]
common1:

3.7 I/O Port Shadowing
and Emulation

Some system peripherals contain write-only
ports. In a system that does power manage-
ment, these peripherals need to be powered off
and then reinitialized when their functions are
needed later. The Cyrix SMM implementation
makes it very easy to monitor the last value
written to specific I/O ports. This process is
known as shadowing. If the system can gener-
ate an SMI whenever specific I/O addresses get
accessed, the SMM routine can, transparently
to the system, monitor the port activity. The
SMM header contains the address of the I/O
write as well as the data. In addition, informa-
tion is saved which indicates whether it is a
byte, word or dword write. With this informa-
tion, shadowing system write-only ports
becomes trivial.

Some peripheral components contain registers
that must be programmed in a specific order.
If an SMI interrupt occurs while an application
is accessing this type of peripheral, the SMI
routine must be sure to reload the peripheral
registers to the same stage before returning to
normal mode. If the SMM routine needs to
access such a peripheral, the previous normal-
mode state must be restored. The previous
accesses that were shadowed by previous SMM
calls can be used to reload the peripheral regis-
ters back to the stage where the application
was interrupted. The application can then
continue where it left off accessing the periph-
eral.

In a similar way, the Cyrix SMM implementa-
tion allows the SMM routine to emulate the
function of peripheral components in software.

3-15PRELIMINARY

3
3.8 Resume to HLT Instruction

To make an SMI interrupt truly transparent to the system, an SMI interrupt from a HLT instruc-
tion should return to the HLT instruction. There are known cases with DOS software where
returning from an SMI handler to the instruction following the HLT will cause a system error.
To determine if a HLT instruction was interrupted by the SMI, the H bit in the SMM header
must be interrogated. If the H bit is set, the SMI interrupted a HLT instruction. To restart the
HLT instruction simply decrement the NEXT_IP field in the SMM header.

The H bit is not available on a Cx486DX2/DX4. See Appendix B for a explanation on how to
resume to a HLT instruction on a Cx486DX2/DX4.

;This is the start of specific code to check if the SMI
;occurred while in a HLT instruction. If it did, then
;resume back to the HLT instruction when SMI is finished.

include SMIMAC.INC ;see Appendix A

mov ax,cs:word ptr[SMI_BITS] ;get H bit
test ax,0010h ;check if H=1
je not_hlt ;was not a HLT
dec cs:dword ptr[SMI_NEXTIP] ;decrement NEXT_IP

not_hlt:

3-16 PRELIMINARY

3.9 Exiting the SMI Handler

When the RSM instruction is executed at the
end of the SMI handler, the EIP is loaded from
the SMM header at the address (SMMbase +
SMMsize - 14h) called NEXT_IP. This permits
the instruction to be restarted if NEXT_IP was
modified by the SMM program. The values of
ECX, ESI, and EDI, prior to the execution of
the instruction that was interrupted by SMI,
can be restored from information in the header
which pertains to the INx and OUTx instruc-
tions. See Section 3.6 for an example program
to restart an I/O instruction. The only regis-
ters that are restored from the SMM header are
CS, NEXT_IP, EFLAGS, CR0, and DR7. All
other registers which were modified by the
SMM program need to be restored before exe-
cuting the RSM instruction.

3.10 Testing and Debugging
SMM Code

An SMI routine can be debugged with stan-
dard debugging tools, such as DOS DEBUG, if
the following requirements are met:

1. The debugger will only be able to set a
code break point using INT 3 outside of
the SMI handler. The debug control reg-
ister DR7 is set to the reset value upon
entry to the SMI handler. Therefore, any
break conditions in DR0-3 will be dis-
abled after entry to SMM. Debug regis-
ters can be used if they are set after entry
to the SMI handler and if debug registers
DR0-3 are saved.

2. The debugger must be running in real
mode and the SMM routine must not
enter protected mode. This insures that
normal system interrupts, BIOS calls and
the debugger will work correctly from
SMM mode.

3. Before an INT 3 break point is executed,
all segment registers should have their
limits modified to 64K, or larger, within
the SMM routine.

A-1

Appendix A

PRELIMINARY

SMM PROGRAMMER’S GUIDE

A. ASSEMBLER MACROS FOR CYRIX INSTRUCTIONS

The include file SMIMAC.INC provides a complex set of macros which generate SMM opcodes
along with the appropriate mod/rm bytes. In order to function, the macros require that the labels
which are accessed correspond to the specified segment. Thus segment overrides must be passed
to the macro as an argument.

Do not specify a segment override if the default segment for an address is being used. If an
address size override is used, a final argument of ‘1’ must be passed to the macro as well. Address
size overrides must be presented explicitly to prevent the assembler from generating them auto-
matically and breaking the macros.

;SMM Instruction Macros - SMIMAC.INC
;Macros which generate mod/rm automatically

svdc MACRO segover,addr,reg,adover
 domac segover,addr,reg,adover,78h
 ENDM
rsdc MACRO reg,segover,addr,adover
 domac segover,addr,reg,adover,79h
 ENDM
svldt MACRO segover,addr,adover
 domac segover,addr,es,adover,7ah
 ENDM
rsldt MACRO segover,addr,adover
 domac segover,addr,es,adover,7bh
 ENDM
svts MACRO segover,addr,adover
 domac segover,addr,es,adover,7ch
 ENDM
rsts MACRO segover,addr,adover
 domac segover,addr,es,adover,7dh
 ENDM
rsm MACRO
 db 0fh,0aah
 ENDM
smint MACRO

 db 0fh,7eh
 ENDM

PRELIMINARYA-2

;Sub-Macro used by the above macro

domac MACRO segover,addr,reg,adover,op
 local place1,place2,count
 count = 0
 ifnb <adover>
 count=count+1
 endif
 ifnb <segover>
 count=count+1
 endif
 if (count eq 0)
 nop ;expanding the opcode one byte
 endif
 place1 = $
;pull off the proper prefix byte count
 mov word ptr segover addr,reg
 org place1+count
 mov word ptr segover addr,reg
 place2 = $
;patch the opcode
 org place1+(count*2)-1
 db 0Fh,op
 org place2
ENDM

;Offset Definition for access into SMM space
SMI_SAVE STRUC
$ESIEDI DD ?
$IOWDATA DD ?
$IOWADDR DW ?
$IOWSIZE DW ?
$BITS DD ?
$CSSELL DD ?
$CSSELH DD ?
$CS DW ?
$RES1 DW ?
$NEXTIP DD ?
$CURRENTIP DD ?
$CR0 DD ?
$EFLAGS DD ?
$DR7 DD ?
SMI_SAVE ENDS

A-3

A

PRELIMINARY

SMI_ESIEDI EQU ($ESIEDI + SMMSIZE - SIZE SMI_SAVE)
SMI_IOWDATA EQU ($IOWDATA+ SMMSIZE - SIZE SMI_SAVE)
SMI_IOWADDR EQU ($IOWADDR+ SMMSIZE - SIZE SMI_SAVE)
SMI_IOWSIZE EQU ($IOWSIZE+ SMMSIZE - SIZE SMI_SAVE)
SMI_BITS EQU ($BITS + SMMSIZE - SIZE SMI_SAVE)
SMI_CSSELL EQU ($CSSELL + SMMSIZE - SIZE SMI_SAVE)
SMI_CSSELH EQU ($CSSELH + SMMSIZE - SIZE SMI_SAVE)
SMI_CS EQU ($CS + SMMSIZE - SIZE SMI_SAVE)
SMI_RES1 EQU ($RES1 + SMMSIZE - SIZE SMI_SAVE)
SMI_NEXTIP EQU ($NEXTIP + SMMSIZE - SIZE SMI_SAVE)
SMI_CURRENTIP EQU ($CURRENTIP+ SMMSIZE -SIZE SMI_SAVE)
SMI_CR0 EQU ($CR0 + SMMSIZE - SIZE SMI_SAVE)
SMI_EFLAGS EQU ($EFLAGS + SMMSIZE - SIZE SMI_SAVE)
SMI_DR7 EQU ($DR7 + SMMSIZE - SIZE SMI_SAVE)

SMM Instruction macro example: TEST.ASM

.MODEL SMALL

.386
;SMM Macro Examples

include smimac.inc

0000 .DATA
0000 0A*(??) there db 10 dup (?)
000A .CODE
0000 2E 0F 78 1E 004E svdc cs:,hello,ds
0006 2E 0F 79 1E 004E rsdc ds,cs:,hello
000C 2E 0F 79 2E 004E rsdc gs,cs:,hello
0012 2E 67 2E 0F 78 9C 58 0000004E svdc cs:,[eax+ebx*2+hello],1
001D 67| 0F 78 23 svdc ,[ebx],fs,1

0021 0F 78 2E 0000 svdc ,there,gs
0026 2E 0F 7A 06 004E svldt cs:,hello
002C 2E 0F 7B 06 004E rsldt cs:,hello

0032 2E 0F 7D 06 004E rsts cs:,hello
0038 2E 67 2E 0F 7C 84 58 0000004E svts cs:,[eax+ebx*2+hello],1
0043 67| 0F 7A 03 svldt ,[ebx],1
0047 0F 7C 06 0000 svts ,there
004C 0F AA rsm

004E 0A*(??) hello db 10 dup (?)
end

B-1

Appendix B

PRELIMINARY

SMM PROGRAMMER’S GUIDE

B. DX2/DX4 Resume to Halt

The Cx486DX2/DX4 does not support the H bit in the SMM header. To make an SMI interrupt
truly transparent to the system, an SMI interrupt from a HLT instruction should return to the
HLT instruction. There are known cases with DOS software where returning from an SMI han-
dler to the instruction following the HLT will cause a system error. To determine if a HLT
instruction was interrupted by the SMI, the opcode from memory needs to be interrogated.
This code example describes how to determine if the current instruction is a HLT and how to
restart it.

;This is the start of specific code to check if the SMI
;occurred while in a HLT instruction. If it did, then
;return back to the HLT instruction when SMI is finished.

rsdc fs,cs:,[seg4G] ;FS is base=0 limit=4G data
;segment to be used to check if
;HLT instruction was executing

;on a Cyrix part, if the SMI occurred while in a HLT
;instruction, the CURRENT IP and the NEXT IP will both
;point to the instruction following the HLT.

mov eax,cs:dword ptr[SMI_CURRENTIP]
cmp eax,cs:dword ptr[SMI_NEXTIP]
jne not_hlt ;can't be a HLT but could be

;a LOOP or REP
;load EAX with CS base from the SMM header

mov ax,cs:word ptr [SMI_CSSELH+2]
mov al,cs:byte ptr [SMI_CSSELH]
shl eax,10h
mov ax,cs:word ptr[SMI_CSSELL+2]

;calculate linear address
add eax,cs:dword ptr [SMI_CURRENTIP]
dec eax ;decrement to HLT instruction
mov edx,eax ;save lin addr in edx

B-2 PRELIMINARY

mov eax,cs:dword ptr [SMI_CR0] ;check if paging on
test eax,80000000h
je no_paging ;if no paging then linear

;address = physical address
;set MMAC to get access to Main memory

mov al,0c1h
out 22h,al
in al,23h
mov cl,al ;save old CCR1 value in cl
mov al,0c1h
out 22h,al
mov al,cl
or al,08h ;set MMAC bit in CCR1
mov al,0c1h
out 23h,al
mov eax,CR3 ;get Page Directory Base Reg
and eax,0fffff000h
mov ebx,edx ;linear address
shr ebx,22 ;get 10 byte Directory Entry

;read Directory Table
mov eax,dword ptr fs:[eax+ebx*4]
and eax,0fffff000h
mov ebx,edx ;linear address
shr ebx,12
and ebx,03ffh ;get 10 byte Page Table Entry
mov eax,dword ptr fs:[eax+ebx*4]
and eax,0fffff000h
mov ebx,edx ;linear address
and ebx,0fffh ;get 12 byte offset into page

;Get the physical address of the instruction before the
;Current IP. Save in BL.

mov bl,byte ptr fs:[eax+ebx]
mov al,0c1h ;set MMAC back to normal

 out 22h,al
mov al,cl
out 23h,al ;MMAC = 0
jmp got_inst

;If paging is not enabled then checking for the HLT
;instruction is easy since the linear address equals
;the physical address.

no_paging:
mov al,0c1h ;set MMAC
out 22h,al
in al,23h
mov ah,al

B-3PRELIMINARY

B
mov al,0c1h
out 22h,al
mov al,ah
or al,08h
out 23h,al

;get instruction interrupted by SMI
mov bl,byte ptr fs:[edx]
mov al,0c1h ;store it in BL
out 22h,al
mov al,ah
out 23h,al ;set MMAC back to normal

got_inst:
cmp bl,0f4h ;was it a HLT instruction?
jne not_hlt ;if not a F4 then not a HLT

;set up SMM header to return
;to the HLT instruction

dec cs:dword ptr [SMI_NEXTIP]

not_hlt:
jmp continue_SMI_routine

; data within the SMM Space Code Segment
seg4G dw 0ffffh ;limit 15-0

dw 0 ;base
db 0 ;base
db 10010011B ;data segment, DPL=0, present
db 8Fh ;high limit =f, Gran =4K, 16 bit
db 0 ;base
dw 0

Appendix C

PRELIMINARY

C-1

SMM PROGRAMMER’S GUIDE

C. Differences in Cyrix Processors

Table C-1 lists the major differences between the Cx486DX2/DX4, 5x86 and 6x86 CPUs as
related to System Management Mode.

Table C-1. Differences between Cyrix CPUs

Feature Cx486DX2/DX4 5x86 6x86

SMAC
CCR1 - bit 2

Valid only. if
SMM_MODE=0.

Valid only if
SMM_MODE=0.

Available

MMAC
CCR1 - bit 3

Valid only. if
SMM_MODE=0.

Valid only. if
SMM_MODE=0.

Not available

SM3
CCR1 - bit 7

Not available register
index CDh, CEh and CFh
are always defined as
SMAR.

Not available, register
index CDh, CEh and CFh
are always defined as
SMAR.

Must be set to define reg-
ister index CDh CEh and
CFh as SMAR.

SMIACT
CCR3 - bit3

Available on revisions
with DIR1 >= 30h. Prior
revisions only support
Cyrix SMM Mode.

Available Always in SL SMM mode.

SMAR SIZE field If = Fh, SMAR size set to
4 KBytes

If = Fh, SMAR size set to
4K Bytes

If = Fh, SMAR size set to
4 GBytes

SMI# acknowledged
when:

CPL=0 &
USE_SMI=1 &
(SMAR size > 0) &
SMAC=0 &
(in normal mode)

CPL=0 &
USE_SMI=1 &
(SMAR size > 0) &
SMAC=0 &
(in normal mode)

CPL=0 &
USE_SMI=1 &
(ARR3 size > 0) &
SM3=1 &
SMAC=0 &
(in normal mode)

SMINT instruction is
valid when:

CPL=0 & USE_SMI=1 &
(SMAR size > 0) &
SMAC=1 &
SMM_Mode=0

CPL=0 & USE_SMI=1 &
(SMAR size > 0) &
SMAC=1 &
SMM_Mode=0

CPL=0 & USE_SMI=1 &
(ARR3 size > 0) &
 SM3=1 &
 SMAC=1

Cyrix Specific SMM
instructions are valid
when:

CPL=0 & USE_SMI=1 &
(SMAR size > 0) &
(SMAC=1 or
in SMM mode)

CPL=0 & USE_SMI=1 &
(SMAR size > 0) &
(SMAC=1 or
 in SMM mode)

CPL=0 & USE_SMI=1 &
(ARR3 size > 0) &
SM3=1 &
(SMAC=1 or
 in SMM mode)

C-2 PRELIMINARY

H bit in SMM header Not available, Reserved

See Appendix B for details
for resuming to a HLT
instruction.

Valid Valid

I/O trap information I/O Data Size,
I/O Address and
I/O Data only valid for
I/O writes trapped
by an SMI.

I/O Data Size,
I/O Address and
I/O Data valid for both
I/O reads and
writes trapped by an SMI.

I/O Data Size,
I/O Address and
I/O Data valid for both
I/O reads and
writes trapped by an SMI.

CS limit on entry to
SMM

64 KByte limit 4 GByte limit 4 GByte limit

CR0 value on entry to
SMM

0000 0010h except EM
bit is not cleared on entry.
The SMM routine should
clear EM before execut-
ing any FPU instructions.

6000 0010h
if LOCK_NW=1 then NW
is not changed

6000 0010h
if LOCK_NW=1 then NW
is not changed

Table C-1. Differences between Cyrix CPUs (Continued)

Feature Cx486DX2/DX4 5x86 6x86

Cyrix Worldwide Offices

United States
Corporate Office
Richardson, Texas
Tel: (214) 968-8388
Fax: (214) 699-9857

Tech Support and Sales: (800) 462-9749
Internet: tech_support@cyrix.com
BBS: (214) 968-8610 (up to 28.8K baud)

See us on the Internet Worldwide Web:
http://www.cyrix.com

Europe
United Kingdom
Cyrix International Ltd.
Tel: +44 (0) 1 793 417777
Fax: +44 (0) 1 793 417770

Japan
Cyrix K.K.
Tel: 81-45-471-1661
Fax: 81-45-471-1666

Taiwan
Cyrix International, Inc.
Tel: 886-2-718-4118
Fax: 886-2-719-5255

Hong Kong
Cyrix International, Inc.
Tel: (852) 2485-2285
Fax: (852) 2485-2920

Cyrix Corporation
P.O. Box 850118
Richardson, TX 75085-0118
Tel: (214) 968-8388
Fax: (214) 699-9857

94211-01 March 1996

 Printed in the USA on recycled paper.



