
1-1

Introduction

IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

1-

The on-chip FPU allows floating point instruc-
tions to execute in parallel with integer instruc-
tions and features a 64-bit data interface. The
FPU incorporates a four-deep instruction
queue and a four-deep store queue to facilitate
parallel execution.

Additionally the IBM 6x86 CPU incorporates
a low power suspend mode, stop clock capa-
bility, and system management mode (SMM)
for power sensitive applications.

1.1 Major Functional
Blocks

The IBM 6x86 processor consists of five major
functional blocks, as shown in the overall
block diagram on the first page of this manual:

• Integer Unit
• Cache Unit
• Memory Management Unit
• Floating Point Unit
• Bus Interface Unit

Instructions are executed in the X and Y pipe-
lines within the Integer Unit and also in the
Floating Point Unit (FPU). The Cache Unit
stores the most recently used data and instruc-
tions to allow fast access to the information by
the Integer Unit and FPU.

Product Overview

1. ARCHITECTURE
OVERVIEW

The IBM 6x86 CPU is a leader in the sixth
generation of high performance, x86-compat-
ible microprocessors. Increased performance is
accomplished by the use of superscalar and
superpipelined design techniques.

The IBM 6x86 CPU is superscalar in that it
contains two separate pipelines that allow
multiple instructions to be processed at the
same time. The use of advanced processing
technology and the increased number of pipe-
line stages (superpipelining) allows the IBM
6x86 CPU to achieve clocks rates of 100 MHz
and above.

Through the use of unique architectural
features, the IBM 6x86 processor eliminates
many data dependencies and resource
conflicts, resulting in optimal performance for
both 16-bit and 32-bit x86 software.

The IBM 6x86 CPU contains two caches: a
16-KByte dual-ported unified cache and a
256-byte instruction line cache. Since the
unified cache can store instructions and data in
any ratio, the unified cache offers a higher hit
rate than separate data and instruction caches
of equal size. An increase in overall
cache-to-integer unit bandwidth is achieved by
supplementing the unified cache with a small,
high-speed, fully associative instruction line
cache. The inclusion of the instruction line
cache avoids excessive conflicts between code
and data accesses in the unified cache.

1-2

Integer Unit

Physical addresses are calculated by the
Memory Management Unit and passed to
the Cache Unit and the Bus Interface Unit
(BIU). The BIU provides the interface
between the external system board and the
processor’s internal execution units.

1.2 Integer Unit

The Integer Unit (Figure 1-1) provides parallel
instruction execution using two seven-stage
integer pipelines. Each of the two pipelines,
X and Y, can process several instructions
simultaneously.

Figure 1-1. Integer Unit

Inst. Decode 2

Address Calc. 1

Address Calc. 2

Execution

Write-Back

Inst. Decode 2

Address Calc. 1

Address Calc. 2

Execution

Write-Back

Instruction Decode 1

Instruction Fetch

1727300
X Pipeline Y Pipeline

In-Order
Processing

Out-of-Order
Completion

1-3

Integer Unit 1
The Integer Unit consists of the following
pipeline stages:

• Instruction Fetch (IF)
• Instruction Decode 1 (ID1)
• Instruction Decode 2 (ID2)
• Address Calculation 1 (AC1)
• Address Calculation 2 (AC2)
• Execute (EX)
• Write-Back (WB)

The instruction decode and address calculation
functions are both divided into superpipelined
stages.

1.2.1 Pipeline Stages

The Instruction Fetch (IF) stage, shared by
both the X and Y pipelines, fetches 16 bytes of
code from the cache unit in a single clock
cycle. Within this section, the code stream is
checked for any branch instructions that could
affect normal program sequencing.

If an unconditional or conditional branch is
detected, branch prediction logic within the IF
stage generates a predicted target address for
the instruction. The IF stage then begins
fetching instructions at the predicted address.

The superpipelined Instruction Decode func-
tion contains the ID1 and ID2 stages. ID1,
shared by both pipelines, evaluates the code
stream provided by the IF stage and deter-
mines the number of bytes in each instruction.
Up to two instructions per clock are delivered
to the ID2 stages, one in each pipeline.

The ID2 stages decode instructions and send
the decoded instructions to either the X or Y
pipeline for execution. The particular pipeline
is chosen, based on which instructions are
already in each pipeline and how fast they are

expected to flow through the remaining pipe-
line stages.

The Address Calculation function contains two
stages, AC1 and AC2. If the instruction refers
to a memory operand, the AC1 calculates a
linear memory address for the instruction.

The AC2 stage performs any required memory
management functions, cache accesses, and
register file accesses. If a floating point
instruction is detected by AC2, the instruction
is sent to the FPU for processing.

The Execute (EX) stage executes instructions
using the operands provided by the address
calculation stage.

The Write-Back (WB) stage is the last IU
stage. The WB stage stores execution results
either to a register file within the IU or to a
write buffer in the cache control unit.

1.2.2 Out-of-Order
Processing

If an instruction executes faster than the
previous instruction in the other pipeline, the
instructions may complete out of order. All
instructions are processed in order, up to the
EX stage. While in the EX and WB stages,
instructions may be completed out of order.

If there is a data dependency between two
instructions, the necessary hardware interlocks
are enforced to ensure correct program
execution. Even though instructions may
complete out of order, exceptions and writes
resulting from the instructions are always
issued in program order.

1-4

Integer Unit

1.2.3 Pipeline Selection

In most cases, instructions are processed in
either pipeline and without pairing constraints
on the instructions. However, certain instruc-
tions are processed only in the X pipeline:

• Branch instructions
• Floating point instructions
• Exclusive instructions

Branch and floating point instructions may be
paired with a second instruction in the Y pipe-
line.

Exclusive Instructions cannot be paired with
instructions in the Y pipeline. These instruc-
tions typically require multiple memory
accesses. Although exclusive instructions may
not be paired, hardware from both pipelines is
used to accelerate instruction completion.
Listed below are the IBM 6x86 CPU exclusive
instruction types:

• Protected mode segment loads
• Special register accesses

 (Control, Debug, and Test Registers)
• String instructions
• Multiply and divide
• I/O port accesses
• Push all (PUSHA) and pop all (POPA)
• Intersegment jumps, calls, and returns

1.2.4 Data Dependency
Solutions

When two instructions that are executing in
parallel require access to the same data or
register, one of the following types of data
dependencies may occur:

• Read-After-Write (RAW)
• Write-After-Read (WAR)
• Write-After-Write (WAW)

Data dependencies typically force serialized
execution of instructions. However, the IBM
6x86 CPU implements three mechanisms that
allow parallel execution of instructions
containing data dependencies:

• Register Renaming
• Data Forwarding
• Data Bypassing

The following sections provide detailed exam-
ples of these mechanisms.

1.2.4.1 Register Renaming

The IBM 6x86 CPU contains 32 physical
general purpose registers. Each of the 32
registers in the register file can be temporarily
assigned as one of the general purpose
registers defined by the x86 architecture
(EAX, EBX, ECX, EDX, ESI, EDI, EBP, and
ESP). For each register write operation a new
physical register is selected to allow previous
data to be retained temporarily. Register
renaming effectively removes all WAW and
WAR dependencies. The programmer does not
have to consider register renaming; it is
completely transparent to both the operating
system and application software.

1-5

Integer Unit 1

Example #1 - Register Renaming Eliminates Write-After-Read (WAR) Dependency

A WAR dependency exists when the first in a pair of instructions reads a logical register, and the
second instruction writes to the same logical register. This type of dependency is illustrated by the
pair of instructions shown below:

X PIPE Y PIPE

(1) MOV BX, AX (2) ADD AX, CX
BX ←AX AX ←AX + CX

Note: In this and the following examples the original instruction order is shown in parentheses.

In the absence of register renaming, the ADD instruction in the Y pipe would have to be stalled to
allow the MOV instruction in the X pipe to read the AX register.

The IBM 6x86 CPU, however, avoids the Y pipe stall (Table 1-1). As each instruction executes,
the results are placed in new physical registers to avoid the possibility of overwriting a logical
register value and to allow the two instructions to complete in parallel (or out of order) rather than
in sequence.

Table 1-1. Register Renaming with WAR Dependency

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Reg4 Pipe

(Initial) AX BX CX

MOV BX, AX AX CX BX X Reg3 ← Reg0

ADD AX, CX CX BX AX Y Reg4 ← Reg0 + Reg2

Note: The representation of the MOV and ADD instructions in the final column of Table 1-1
are completely independent.

1-6

Integer Unit

Example #2 - Register Renaming Eliminates Write-After-Write (WAW) Dependency

A WAW dependency occurs when two consecutive instructions perform writes to the same
logical register. This type of dependency is illustrated by the pair of instructions shown below:

X PIPE Y PIPE

(1) ADD AX, BX (2) MOV AX, [mem]
AX ←AX + BX AX ← [mem]

Without register renaming, the MOV instruction in the Y pipe would have to be stalled to guar-
antee that the ADD instruction in the X pipe would write its results to the AX register first.

The IBM 6x86 CPU uses register renaming and avoids the Y pipe stall. The contents of the AX
and BX registers are placed in physical registers (Table 1-2). As each instruction executes, the
results are placed in new physical registers to avoid the possibility of overwriting a logical
register value and to allow the two instructions to complete in parallel (or out of order) rather than
in sequence.

Table 1-2. Register Renaming with WAW Dependency

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Pipe

(Initial) AX BX

ADD AX, BX BX AX X Reg2 ← Reg0 + Reg1

MOV AX, [mem] BX AX Y Reg3 ← [mem]

Note: All subsequent reads of the logical register AX will refer to Reg 3, the result of the MOV
 instruction.

1-7

Integer Unit 1
1.2.4.2 Data Forwarding

Register renaming alone cannot remove RAW
dependencies. The IBM 6x86 CPU uses two
types of data forwarding in conjunction with
register renaming to eliminate RAW depen-
dencies:

• Operand Forwarding
• Result Forwarding

Operand forwarding takes place when the
first in a pair of instructions performs a move
from register or memory, and the data that is
read by the first instruction is required by the
second instruction. The IBM 6x86 CPU
performs the read operation and makes the
data read available to both instructions simul-
taneously.

Result forwarding takes place when the first
in a pair of instructions performs an operation
(such as an ADD) and the result is required by
the second instruction to perform a move to a
register or memory. The IBM 6x86 CPU
performs the required operation and stores the
results of the operation to the destination of
both instructions simultaneously.

1-8

Integer Unit

Example #3 - Operand Forwarding Eliminates Read-After-Write (RAW) Dependency

A RAW dependency occurs when the first in a pair of instructions performs a write, and the
second instruction reads the same register. This type of dependency is illustrated by the pair of
instructions shown below in the X and Y pipelines:

X PIPE Y PIPE

(1) MOV AX, [mem] (2) ADD BX, AX
AX ← [mem] BX ← AX + BX

The IBM 6x86 CPU uses operand forwarding and avoids a Y pipe stall (Table 1-3). Operand
forwarding allows simultaneous execution of both instructions by first reading memory and then
making the results available to both pipelines in parallel.

Operand forwarding can only occur if the first instruction does not modify its source data. In
other words, the instruction is a move type instruction (for example, MOV, POP, LEA). Operand
forwarding occurs for both register and memory operands. The size of the first instruction desti-
nation and the second instruction source must match.

Table 1-3. Example of Operand Forwarding

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Pipe

(Initial) AX BX

MOV AX, [mem] BX AX X Reg2 ← [mem]

ADD BX, AX AX BX Y Reg3 ← [mem] + Reg1

1-9

Integer Unit 1
Example #4 - Result Forwarding Eliminates Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a
write, and the second instruction reads the same register. This dependency is illustrated by the
pair of instructions in the X and Y pipelines, as shown below:

X PIPE Y PIPE

(1) ADD AX, BX (2) MOV [mem], AX
AX ←AX + BX [mem] ← AX

The IBM 6x86 CPU uses result forwarding and avoids a Y pipe stall (Table 1-4). Instead of trans-
ferring the contents of the AX register to memory, the result of the previous ADD instruction
(Reg0 + Reg1) is written directly to memory, thereby saving a clock cycle.

The second instruction must be a move instruction and the destination of the second instruction
may be either a register or memory.

Table 1-4. Result Forwarding Example

Instruction

Physical Register
Contents

Action

Reg0 Reg1 Reg2 Pipe

(Initial) AX BX

ADD AX, BX BX AX X Reg2 ←Reg0 + Reg1

MOV [mem], AX BX AX Y [mem] ← Reg0 +Reg1

1-10

Integer Unit

1.2.4.3 Data Bypassing

In addition to register renaming and data forwarding, the IBM 6x86 CPU implements a third data
dependency-resolution technique called data bypassing. Data bypassing reduces the performance
penalty of those memory data RAW dependencies that cannot be eliminated by data forwarding.

Data bypassing is implemented when the first in a pair of instructions writes to memory and the
second instruction reads the same data from memory. The IBM 6x86 CPU retains the data from
the first instruction and passes it to the second instruction, thereby eliminating a memory read
cycle. Data bypassing only occurs for cacheable memory locations.

Example #1- Data Bypassing with Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a
write to memory and the second instruction reads the same memory location. This dependency is
illustrated by the pair of instructions in the X and Y pipelines as shown below:

X PIPE Y PIPE

(1) ADD [mem], AX (2) SUB BX, [mem]
[mem] ←[mem] + AX BX ← BX - [mem]

The IBM 6x86 CPU uses data bypassing and stalls the Y pipe for only one clock by eliminating
the Y pipe’s memory read cycle (Table 1-5). Instead of reading memory in the Y pipe, the result
of the previous instruction ([mem] + Reg0) is used to subtract from Reg1, thereby saving a
memory access cycle.

Table 1-5. Example of Data Bypassing

Instruction

Physical Register
Contents

Action

Reg0 Reg1 Reg2 Pipe

(Initial) AX BX

ADD [mem], AX AX BX X [mem] ← [mem] + Reg0

SUB BX, [mem] AX BX Y Reg2 ← Reg1 - {[mem] + Reg0}

1-11

Integer Unit 1

1.2.5 Branch Control

Branch instructions occur on average every
four to six instructions in x86-compatible pro-
grams. When the normal sequential flow of a
program changes due to a branch instruction,
the pipeline stages may stall while waiting for
the CPU to calculate, retrieve, and decode the
new instruction stream. The IBM 6x86 CPU
minimizes the performance degradation and
latency of branch instructions through the use
of branch prediction and speculative execu-
tion.

1.2.5.1 Branch Prediction

The IBM 6x86 CPU uses a 256-entry, 4-way
set associative Branch Target Buffer (BTB) to
store branch target addresses and branch
prediction information. During the fetch stage,
the instruction stream is checked for the pres-
ence of branch instructions. If an uncondi-
tional branch instruction is encountered, the
IBM 6x86 CPU accesses the BTB to check for
the branch instruction’s target address. If the
branch instruction’s target address is found in
the BTB, the IBM 6x86 CPU begins fetching
at the target address specified by the BTB.

In case of conditional branches, the BTB also
provides history information to indicate
whether the branch is more likely to be taken
or not taken. If the conditional branch instruc-
tion is found in the BTB, the IBM 6x86 CPU
begins fetching instructions at the predicted
target address. If the conditional branch misses
in the BTB, the IBM 6x86 CPU predicts that
the branch will not be taken, and instruction
fetching continues with the next sequential

instruction. The decision to fetch the taken or
not taken target address is based on a four-state
branch prediction algorithm.

Once fetched, a conditional branch instruction
is first decoded and then dispatched to the X
pipeline only. The conditional branch instruc-
tion proceeds through the X pipeline and is
then resolved in either the EX stage or the WB
stage. The conditional branch is resolved in the
EX stage, if the instruction responsible for
setting the condition codes is completed prior
to the execution of the branch. If the instruc-
tion that sets the condition codes is executed in
parallel with the branch, the conditional
branch instruction is resolved in the WB stage.

Correctly predicted branch instructions
execute in a single core clock. If resolution of
a branch indicates that a misprediction has
occurred, the IBM 6x86 CPU flushes the pipe-
line and starts fetching from the correct target
address. The IBM 6x86 CPU prefetches both
the predicted and the non-predicted path for
each conditional branch, thereby eliminating
the cache access cycle on a misprediction. If
the branch is resolved in the EX stage, the
resulting misprediction latency is four cycles.
If the branch is resolved in the WB stage, the
latency is five cycles.

Since the target address of return (RET)
instructions is dynamic rather than static, the
IBM 6x86 CPU caches target addresses for
RET instructions in an eight-entry return stack
rather than in the BTB. The return address is
pushed on the return stack during a CALL
instruction and popped during the corre-
sponding RET instruction.

1-12

Cache Units

1.2.5.2 Speculative Execution

The IBM 6x86 CPU is capable of speculative
execution following a floating point instruc-
tion or predicted branch. Speculative execution
allows the pipelines to continuously execute
instructions following a branch without
stalling the pipelines waiting for branch reso-
lution. The same mechanism is used to execute
floating point instructions (see Section 1.5) in
parallel with integer instructions.

The IBM 6x86 CPU is capable of up to four
levels of speculation (i.e., combinations of
four conditional branches and floating point
operations). After generating the fetch address
using branch prediction, the CPU checkpoints
the machine state (registers, flags, and
processor environment), increments the specu-
lation level counter, and begins operating on
the predicted instruction stream.

Once the branch instruction is resolved, the
CPU decreases the speculation level. For a
correctly predicted branch, the status of the
checkpointed resources is cleared. For a
branch misprediction, the IBM 6x86 processor
generates the correct fetch address and uses the
checkpointed values to restore the machine
state in a single clock.

In order to maintain compatibility, writes that
result from speculatively executed instructions
are not permitted to update the cache or
external memory until the appropriate branch
is resolved. Speculative execution continues
until one of the following conditions occurs:

1) A branch or floating point operation
is decoded and the speculation level
is already at four.

2) An exception or a fault occurs.

3) The write buffers are full.

4) An attempt is made to modify a
non-checkpointed resource (i.e.,
segment registers, system flags).

1.3 Cache Units

The IBM 6x86 CPU employs two caches, the
Unified Cache and the Instruction Line Cache
(Figure 1-2).

1.3.1 Unified Cache

The 16-KByte unified write-back cache func-
tions as the primary data cache and as the
secondary instruction cache. Configured as a
four-way set-associative cache, the cache
stores up to 16 KBytes of code and data in 512
lines. The cache is dual-ported and allows any
two of the following operations to occur in
parallel:

• Code fetch
• Data read (X pipe, Y pipeline or FPU)
• Data write (X pipe, Y pipeline or FPU)

The unified cache uses a pseudo-LRU replace-
ment algorithm and can be configured to allo-
cate new lines on read misses only or on read
and write misses. More information
concerning the unified cache can be found in
Section 2.7.1 (Page 2-52).

1-13

Cache Units 1
1.3.2 Instruction Line Cache

The fully associative 256-byte instruction line
cache serves as the primary instruction cache.
The instruction line cache is filled from the
unified cache through the data bus. Fetches
from the integer unit that hit in the instruction
line cache do not access the unified cache. If
an instruction line cache miss occurs, the
instruction line data from the unified cache is
transferred to the instruction line cache and the
integer unit, simultaneously.

The instruction line cache uses a pseudo-LRU
replacement algorithm. To ensure proper oper-
ation in the case of self-modifying code, any
writes to the unified cache are checked against
the contents of the instruction line cache. If a
hit occurs in the instruction line cache, the
appropriate line is invalidated.

Figure 1-2. Cache Unit Operations

FPU

1739503

Data Bus

Instruction Data

Set 0
Set 1

Set 2
Set 3

Integer
Unit

Bus
Interface

Unit

X
Pipe

Y
Pipe

Cache
Tags

Instruction
Address

Instruction Line Cache Data
Bypass
Aligner

IF

256-Byte Fully Associative, 8 Lines

Memory Management Unit
(TLB)

Modified X, Y
Physical Addresses

Linear
Address

Line Cache
Miss Address

= Dual Bus
= Single Bus

InstructionX, Y

Unified Cache

 16-KByte, 4-Way Set Associative, 128 Lines/Set

Instruction Line Cache

 Unified Cache

16-KByte, 4-Way Set Associative, 512 Lines

1-14

Memory Management Unit

1.4.1 Variable-Size Paging
Mechanism

The IBM 6x86 variable-size paging
mechanism allows software to map pages
between 4 KBytes and 4 GBytes in size. The
large contiguous memories provided by this
mechanism help avoid TLB (Translation
Lookaside Buffer) thrashing [see Section 2.6.4
(Page 2-45)] associated with some operating
systems and applications. For example, use of
a single large page instead of a series of small
4-KByte pages can greatly improve
performance in an application using a large
video memory buffer.

1.4 Memory
Management Unit

The Memory Management Unit (MMU),
shown in Figure 1-3, translates the linear
address supplied by the IU into a physical
address to be used by the unified cache and the
bus interface. Memory management proce-
dures are x86 compatible, adhering to standard
paging mechanisms.

The IBM 6x86 MMU includes two paging
mechanisms (Figure 1-3), a traditional paging
mechanism, and a IBM 6x86 variable-size
paging mechanism.

Figure 1-3. Paging Mechanism within the Memory Management Unit

CR3

Physical PageDTE PTE

Control Register

0

127

Variable-Size Paging Mechanism
Control

Directory Table Page Table Page Frame

DTE Cache

Victim TLB

Linear
Address

Main TLB

Traditional Paging Mechanism

= On Chip

0

7

3

0

1-15

Floating Point Unit 1

1.4.2 Traditional
Paging Mechanism

The traditional paging mechanism has been
enhanced on the IBM 6x86 CPU with the addi-
tion of the Directory Table Entry (DTE) cache
and the Victim TLB. The main TLB (Transla-
tion Lookaside Buffer) is a direct-mapped
128-entry cache for page table entries.

The four-entry fully associative DTE cache
stores the most recent DTE accesses. If a Page
Table Entry (PTE) miss occurs followed by a
DTE hit, only a single memory access to the
PTE table is required.

The Victim TLB stores PTEs which have been
displaced from the main TLB due to a TLB
miss. If a PTE access occurs while the PTE is
stored in the victim TLB, the PTE in the victim
TLB is swapped with a PTE in the main TLB.
This has the effect of selectively increasing
TLB associativity. The IBM 6x86 CPU
updates the eight-entry fully associative victim
TLB on an oldest entry replacement basis.

1.5 Floating Point Unit

The IBM 6x86 Floating Point Unit (FPU)
interfaces to the integer unit and the cache unit
through a 64-bit bus. The IBM 6x86 FPU is
x87 instruction set compatible and adheres to
the IEEE-754 standard. Since most applica-
tions contain FPU instructions mixed with
integer instructions, the IBM 6x86 FPU
achieves high performance by completing
integer and FPU operations in parallel.

FPU Parallel Execution

The IBM 6x86 CPU executes integer instruc-
tions in parallel with FPU instructions. Integer
instructions may complete out of order with
respect to the FPU instructions. The IBM 6x86
CPU maintains x86 compatibility by signaling
exceptions and issuing write cycles in program
order.

As previously discussed, FPU instructions are
always dispatched to the integer unit’s X pipe-
line. The address calculation stage of the X
pipeline checks for memory management
exceptions and accesses memory operands
used by the FPU. If no exceptions are detected,
the IBM 6x86 CPU checkpoints the state of the
CPU and, during AC2, dispatches the floating
point instruction to the FPU instruction queue.
The IBM 6x86 CPU can then complete any
subsequent integer instructions speculatively
and out of order relative to the FPU instruction
and relative to any potential FPU exceptions
which may occur.

As additional FPU instructions enter the pipe-
line, the IBM 6x86 CPU dispatches up to four
FPU instructions to the FPU instruction queue.
The IBM 6x86 CPU continues executing spec-
ulatively and out of order, relative to the FPU
queue, until the IBM 6x86 CPU encounters
one of the conditions that causes speculative
execution to halt. As the FPU completes
instructions, the speculation level decreases
and the checkpointed resources are available
for reuse in subsequent operations. The IBM
6x86 FPU also uses a set of four write buffers
to prevent stalls due to speculative writes.

1-16

Bus Interface Unit

1.6 Bus Interface Unit

The Bus Interface Unit (BIU) provides the
signals and timing required by external
circuitry. The signal descriptions and bus inter-
face timing information is provided in
Chapters 3 and 4 of this manual.

