
2-1

Programming Interface

IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

2. PROGRAMMING
INTERFACE

In this chapter, the internal operations of the
IBM 6x86 CPU are described mainly from an
application programmer’s point of view.
Included in this chapter are descriptions of pro-
cessor initialization, the register set, memory
addressing, various types of interrupts and the
shutdown and halt process. An overview of
real, virtual 8086, and protected operating
modes is also included in this chapter. The FPU
operations are described separately at the end of
the chapter.

This manual does not—and is not intended to—
describe the IBM 6x86 microprocessor or its
operations at the circuit level.

2.1 Processor Initialization

The IBM 6x86 CPU is initialized when the
RESET signal is asserted. The processor is
placed in real mode and the registers listed in
Table 2-1 (Page 2-2) are set to their initialized
values. RESET invalidates and disables the
cache and turns off paging. When RESET is
asserted, the IBM 6x86 CPU terminates all local
bus activity and all internal execution. During
the entire time that RESET is asserted, the inter-
nal pipelines are flushed and no instruction exe-
cution or bus activity occurs.

Approximately 150 to 250 external clock cycles
after RESET is negated, the processor begins
executing instructions at the top of physical
memory (address location FFFF FFF0h). Typi-
cally, an intersegment JUMP is placed at FFFF
FFF0h. This instruction will force the processor
to begin execution in the lowest 1 MByte of
address space.

Note: The actual time depends on the clock scal-
ing in use. Also an additional 220 clock cycles
are needed if self-test is requested.

2-2

Instruction Set Overview

2.2 Instruction Set

Table 2-1. Initialized Register Controls

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS

EAX Accumulator xxxx xxxxh 0000 0000h indicates self-test passed.

EBX Base xxxx xxxxh

ECX Count xxxx xxxxh

EDX Data 05 + Device ID Device ID = 31h or 33h (2X clock)
Device ID = 35h or 37h (3X clock)

EBP Base Pointer xxxx xxxxh

ESI Source Index xxxx xxxxh

EDI Destination Index xxxx xxxxh

ESP Stack Pointer xxxx xxxxh

EFLAGS Flag Word 0000 0002h

EIP Instruction Pointer 0000 FFF0h

ES Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

CS Code Segment F000h Base address set to FFFF 0000h.
Limit set to FFFFh.

SS Stack Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

DS Data Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

FS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

GS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

IDTR Interrupt Descriptor Table
Register

Base = 0, Limit = 3FFh

GDTR Global Descriptor Table
 Register

xxxx xxxxh, xxxxh

LDTR Local Descriptor Table
 Register

xxxx xxxxh, xxxxh

TR Task Register xxxxh

CR0 Machine Status Word 6000 0010h

CR2 Control Register 2 xxxx xxxxh

CR3 Control Register 3 xxxx xxxxh

CCR (0-5) Configuration Control (0-5) 00h

ARR (0-7) Address Region Registers
(0-7)

00h

RCR (0-7) Region Control Registers (0-7) 00h

DIR0 Device Identification 0 31h or 33h (2X clock)
35h or 37h (3X clock)

DIR1 Device Identification 1 Step ID + Revision ID

DR7 Debug Register 7 0000 0400h
Note: x = Undefined value

2-3

2Instruction Set Overview

Overview

The IBM 6x86 CPU instruction set performs
nine types of general operations:

All IBM 6x86 CPU instructions operate on as
few as zero operands and as many as three
operands. An NOP instruction (no operation) is
an example of a zero operand instruction. Two
operand instructions allow the specification of
an explicit source and destination pair as part of
the instruction. These two operand instructions
can be divided into eight groups according to
operand types:

An operand can be held in the instruction itself
(as in the case of an immediate operand), in one
of the processor’s registers or I/O ports, or in
memory. An immediate operand is prefetched
as part of the opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are sup-
ported as well as 64-or 80-bit associated with
floating point instructions. Operand lengths of
8 or 32 bits are generally used when executing
code written for 386- or 486-class (32-bit code)
processors. Operand lengths of 8 or 16 bits are
generally used when executing existing 8086 or
80286 code (16-bit code). The default length of

• Arithmetic • High-Level Language Support

• Bit Manipulation • Operating System Support

• Control Transfer • Shift/Rotate

• Data Transfer • String Manipulation

• Floating Point

• Register to Register • Register to I/O

• Register to Memory • I/O to Register

• Memory to Register • Immediate Data to Register

• Memory to Memory • Immediate Data to Memory

an operand can be overridden by placing one or
more instruction prefixes in front of the opcode.
For example, by using prefixes, a 32-bit oper-
and can be used with 16-bit code, or a 16-bit
operand can be used with 32-bit code.

Chapter 6 of this manual lists each instruction
in the IBM 6x86 CPU instruction set along with
the associated opcodes, execution clock counts,
and effects on the FLAGS register.

2.2.1 Lock Prefix

The LOCK prefix may be placed before certain
instructions that read, modify, then write back
to memory. The prefix asserts the LOCK# sig-
nal to indicate to the external hardware that the
CPU is in the process of running multiple indi-
visible memory accesses. The LOCK prefix
can be used with the following instructions:

Bit Test Instructions (BTS, BTR, BTC)
Exchange Instructions (XADD, XCHG,

CMPXCHG)
One-operand Arithmetic and Logical

Instructions (DEC, INC, NEG, NOT)
Two-operand Arithmetic and Logical

Instructions (ADC, ADD, AND, OR,
SBB, SUB, XOR).

An invalid opcode exception is generated if the
LOCK prefix is used with any other instruction,
or with the above instructions when no write
operation to memory occurs (i.e., the
destination is a register). The LOCK# signal
can be negated to allow weak-locking for all of
memory or on a regional basis. Refer to the
descriptions of the NO-LOCK bit (within
CCR1) and the WL bit (within RCRx) later in
this chapter.

2-4

Register Sets

2.3 Register Sets

From the programmer’s point of view there are
58 accessible registers in the IBM 6x86 CPU.
These registers are grouped into two sets. The
application register set contains the registers
frequently used by application programmers,
and the system register set contains the regis-
ters typically reserved for use by operating sys-
tem programmers.

The application register set is made up of gen-
eral purpose registers, segment registers, a flag
register, and an instruction pointer register.

The system register set is made up of the
remaining registers which include control reg-
isters, system address registers, debug regis-
ters, configuration registers, and test registers.

Each of the registers is discussed in detail in the
following sections.

2.3.1 Application
Register Set

The application register set, (Figure 2-1, Page
2-5) consists of the registers most often used by
the applications programmer. These registers
are generally accessible and are not protected
from read or write access.

The General Purpose Register contents are
frequently modified by assembly language
instructions and typically contain arithmetic
and logical instruction operands.

Segment Registers in real mode contain the
base address for each segment. In protected
mode the segment registers contain segment
selectors. The segment selectors provide
indexing for tables (located in memory) that
contain the base address and limit for each seg-
ment, as well as access control information.

The Flag Register contains control bits used to
reflect the status of previously executed
instructions. This register also contains control
bits that affect the operation of some instructions.

The Instruction Pointer register points to the
next instruction that the processor will execute.
This register is automatically incremented by
the processor as execution progresses.

2-5

2Register Sets

Figure 2-1. Application Register Set

2.3.2 General Purpose
Registers

The general purpose registers are divided into
four data registers, two pointer registers, and two
index registers as shown in Figure 2-2 (Page 2-6).

The Data Registers are used by the applica-
tions programmer to manipulate data struc-
tures and to hold the results of logical and
arithmetic operations. Different portions of
the general data registers can be addressed by
using different names.

An “E” prefix identifies the complete 32-bit
register. An “X” suffix without the “E” prefix
identifies the lower 16 bits of the register.

The lower two bytes of a data register can be
addressed with an “H” suffix (identifies the
upper byte) or an “L” suffix (identifies the lower
byte). The _L and _H portions of a data regis-
ters act as independent registers. For example,
if the AH register is written to by an instruc-
tion, the AL register bits remain unchanged.

2-6

Register Sets

Figure 2-2. General Purpose Registers

The IBM 6x86 CPU processor implements a
stack using the ESP register. This stack is
accessed during the PUSH and POP
instructions, procedure calls, procedure
returns, interrupts, exceptions, and
interrupt/exception returns.

The microprocessor automatically adjusts the
value of the ESP during operation of these
instructions.The EBP register may be used to
reference data passed on the stack during
procedure calls. Local data may also be placed
on the stack and referenced relative to BP. This
register provides a mechanism to access stack
data in high-level languages.

The Pointer and Index Registers are listed
below.

SI or ESI Source Index
DI or EDI Destination Index
SP or ESP Stack Pointer
BP or EBP Base Pointer

These registers can be addressed as 16- or
32-bit registers, with the “E” prefix indicating
32 bits. The pointer and index registers can be
used as general purpose registers, however,
some instructions use a fixed assignment of
these registers. For example, repeated string
operations always use ESI as the source
pointer, EDI as the destination pointer, and
ECX as the counter. The instructions using
fixed registers include multiply and divide, I/O
access, string operations, translate, loop, vari-
able shift and rotate, and stack operations.

EAX (Accumulator)

EBX (Base)

ECX (Count)

EDX (Data)

ESI (Source Index)

EDI (Destination Index)

EBP (Base Pointer)

ESP (Stack Pointer)

A X

SI

DI

BP

SP

31 16 15 8 7 0

B X

C X

D X

A H

B H

C H

D H

A L

B L

C L

D L

2-7

2Register Sets

2.3.3 Segment Registers and
Selectors

Segmentation provides a means of defining
data structures inside the memory space of the
microprocessor. There are three basic types of
segments: code, data, and stack. Segments are
used automatically by the processor to deter-
mine the location in memory of code, data, and
stack references.

There are six 16-bit segment registers:

CS Code Segment
DS Data Segment
ES Extra Segment
SS Stack Segment
FS Additional Data Segment
GS Additional Data Segment.

In real and virtual 8086 operating modes, a seg-
ment register holds a 16-bit segment base. The
16-bit segment is multiplied by 16 and a 16-bit
or 32-bit offset is then added to it to create a lin-
ear address. The offset size is dependent on the
current address size. In real mode and in virtual

8086 mode with paging disabled, the linear
address is also the physical address. In virtual
8086 mode with paging enabled, the linear
address is translated to the physical address
using the current page tables. Paging is
described in Section 2.6.4 (Page 2-45).

In protected mode a segment register holds a
Segment Selector containing a 13-bit index, a
Table Indicator (TI) bit, and a two-bit
Requested Privilege Level (RPL) field as
shown in Figure 2-3.

The Index points into a descriptor table in
memory and selects one of 8192 (213) segment
descriptors contained in the descriptor table.

A segment descriptor is an eight-byte value
used to describe a memory segment by defining
the segment base, the segment limit, and access
control information. To address data within a
segment, a 16-bit or 32-bit offset is added to the
segment’s base address. Once a segment selec-
tor has been loaded into a segment register, an
instruction needs only to specify the segment
register and the offset.

Figure 2-3. Segment Selector in Protected Mode

2-8

Register Sets

The Table Indicator (TI) bit of the selector
defines which descriptor table the index points
into. If TI=0, the index references the Global
Descriptor Table (GDT). If TI=1, the index ref-
erences the Local Descriptor Table (LDT). The
GDT and LDT are described in more detail in
Section 2.4.2. Protected mode addressing is dis-
cussed further in Sections 2.6.2 and 2.6.3.

The Requested Privilege Level (RPL) field in
a segment selector is used to determine the
Effective Privilege Level of an instruction
(where RPL=0 indicates the most privileged
level, and RPL=3 indicates the least privileged
level).

If the level requested by RPL is less than the
Current Program Level (CPL), the RPL level is
accepted and the Effective Privilege Level is
changed to the RPL value. If the level
requested by RPL is greater than CPL, the CPL
overrides the requested RPL and Effective Priv-
ilege Level remains unchanged.

When a segment register is loaded with a seg-
ment selector, the segment base, segment limit
and access rights are loaded from the descriptor
table entry into a user-invisible or hidden por-
tion of the segment register (i.e., cached
on-chip). The CPU does not access the descrip-
tor table entry again until another segment reg-
ister load occurs. If the descriptor tables are
modified in memory, the segment registers
must be reloaded with the new selector values
by the software.

The processor automatically selects an implied
(default) segment register for memory refer-
ences. Table 2-2 describes the selection rules.
In general, data references use the selector con-
tained in the DS register, stack references use
the SS register and instruction fetches use the
CS register. While some of these selections
may be overridden, instruction fetches, stack
operations, and the destination write of string
operations cannot be overridden. Special seg-
ment override instruction prefixes allow the use
of alternate segment registers including the use
of the ES, FS, and GS segment registers.

Table 2-2. Segment Register Selection Rules

TYPE OF MEMORY REFERENCE
IMPLIED (DEFAULT)

SEGMENT
SEGMENT OVERRIDE

PREFIX

Code Fetch CS None

Destination of PUSH, PUSHF, INT, CALL,
 PUSHA instructions

SS None

Source of POP, POPA, POPF, IRET,
 RET instructions

SS None

Destination of STOS, MOVS, REP STOS,
 REP MOVS instructions

ES None

Other data references with effective
 address using base registers of:
 EAX, EBX, ECX,
 EDX, ESI, EDI
 EBP, ESP

DS

SS

CS, ES, FS, GS, SS

CS, DS, ES, FS, GS

2-9

2Register Sets

2.3.4 Instruction Pointer
Register

The Instruction Pointer (EIP) register contains
the offset into the current code segment of the
next instruction to be executed. The register is nor-
mally incremented with each instruction execu-
tion unless implicitly modified through an
interrupt, exception or an instruction that
changes the sequential execution flow
(e.g., JMP, CALL).

2.3.5 Flags Register

The Flags Register, EFLAGS, contains status
information and controls certain operations on
the IBM 6x86 CPU microprocessor. The lower 16
bits of this register are referred to as the FLAGS
register that is used when executing 8086 or 80286
code. The flag bits are shown in Figure 2-4 and
defined in Table 2-3 (Page 2-10).

Figure 2-4. EFLAGS Register

2-10

Register Sets

Table 2-3. EFLAGS Bit Definitions

BIT
POSITION

NAME FUNCTION

0 CF Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) the most
significant bit of the result occurs; cleared otherwise.

2 PF Parity Flag: Set when the low-order 8 bits of the result contain an even number of ones;
cleared otherwise.

4 AF Auxiliary Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) bit
position 3 of the result occurs; cleared otherwise.

6 ZF Zero Flag: Set if result is zero; cleared otherwise.

7 SF Sign Flag: Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

8 TF Trap Enable Flag: Once set, a single-step interrupt occurs after the next instruction
completes execution. TF is cleared by the single-step interrupt.

9 IF Interrupt Enable Flag: When set, maskable interrupts (INTR input pin) are acknowledged
and serviced by the CPU.

10 DF Direction Flag: If DF=0, string instructions auto-increment (default) the appropriate index
registers (ESI and/or EDI). If DF=1, string instructions auto-decrement the appropriate
index registers.

11 OF Overflow Flag: Set if the operation resulted in a carry or borrow into the sign bit of the
result but did not result in a carry or borrow out of the high-order bit. Also set if the
operation resulted in a carry or borrow out of the high-order bit but did not result in a carry
or borrow into the sign bit of the result.

12, 13 IOPL I/O Privilege Level: While executing in protected mode, IOPL indicates the maximum
current privilege level (CPL) permitted to execute I/O instructions without generating an
exception 13 fault or consulting the I/O permission bit map. IOPL also indicates the
maximum CPL allowing alteration of the IF bit when new values are popped into the
EFLAGS register.

14 NT Nested Task: While executing in protected mode, NT indicates that the execution of the
current task is nested within another task.

16 RF Resume Flag: Used in conjunction with debug register breakpoints. RF is checked at
instruction boundaries before breakpoint exception processing. If set, any debug fault is
ignored on the next instruction.

17 VM Virtual 8086 Mode: If set while in protected mode, the microprocessor switches to virtual
8086 operation handling segment loads as the 8086 does, but generating exception 13 faults
on privileged opcodes. The VM bit can be set by the IRET instruction (if current privilege
level=0) or by task switches at any privilege level.

18 AC Alignment Check Enable: In conjunction with the AM flag in CR0, the AC flag determines
whether or not misaligned accesses to memory cause a fault. If AC is set, alignment faults
are enabled.

21 ID Identification Bit: The ability to set and clear this bit indicates that the CPUID instruction
is supported. The ID can be modified only if the CPUID bit in CCR4 is set.

2-11

2System Register Set

2.4 System Register Set

The system register set, shown in Figure 2-5
(Page 2-12), consists of registers not generally
used by application programmers. These regis-
ters are typically employed by system level
programmers who generate operating systems
and memory management programs.

The Control Registers control certain aspects
of the IBM 6x86 microprocessor such as pag-
ing, coprocessor functions, and segment protec-
tion. When a paging exception occurs while
paging is enabled, some control registers retain
the linear address of the access that caused the
exception.

The Descriptor Table Registers and the Task
Register can also be referred to as system
address or memory management registers.
These registers consist of two 48-bit and two
16-bit registers. These registers specify the
location of the data structures that control the
segmentation used by the IBM 6x86 micropro-
cessor. Segmentation is one available method
of memory management.

The Configuration Registers are used to con-
figure the IBM 6x86 CPU on-chip cache oper-
ation, power management features and System
Management Mode. The configuration regis-
ters also provide information on the CPU
device type and revision.

The Debug Registers provide debugging facil-
ities to enable the use of data access break-
points and code execution breakpoints.

The Test Registers provide a mechanism to
test the contents of both the on-chip 16 KByte
cache and the Translation Lookaside Buffer
(TLB). In the following sections, the system
register set is described in greater detail.

2-12

System Register Set

Figure 2-5. System Register Set

2-13

2System Register Set

PAGE FAULT LINEAR ADDRESS

CR3

CR2

CR0

MSW

PAGE DIRECTORY BASE REGISTER (PDBR) RESV.RESERVED

31 12 11 4 3 0

P P

1RESERVED RESERVED
T E M PA WP C N

W
T

C
D

S M P EM P

01234161831 30 29

G D W
N
E

5

2.4.1 Control Registers

The Control Registers (CR0, CR2 and CR3), are
shown in Figure 2-6. The CR0 register contains
system control bits which configure operating
modes and indicate the general state of the CPU.
The lower 16 bits of CR0 are referred to as the
Machine Status Word (MSW). The CR0 bit def-
initions are described in Table 2-4 and Table 2-5
(Page 2-14). The reserved bits in CR0 should not
be modified.

When paging is enabled and a page fault is gen-
erated, the CR2 register retains the 32-bit linear
address of the address that caused the fault.
When a double page fault occurs, CR2 contains
the address for the second fault. Register CR3
contains the 20 most significant bits of the phys-

ical base address of the page directory. The
page directory must always be aligned to a
4-KByte page boundary, therefore, the lower 12
bits of CR3 are not required to specify the base
address.

CR3 contains the Page Cache Disable (PCD)
and Page Write Through (PWT) bits. During
bus cycles that are not paged, the state of the
PCD bit is reflected on the PCD pin and the
PWT bit is driven on the PWT pin. These bus
cycles include interrupt acknowledge cycles
and all bus cycles, when paging is not enabled.
The PCD pin should be used to control caching
in an external cache. The PWT pin should be
used to control write policy in an external cache.

Figure 2-6. Control Registers

Table 2-4. CR0 Bit Definitions

2-14

System Register Set

2.4.2 Descriptor Table

1 MP Monitor Processor Extension: If MP=1 and TS=1, a WAIT instruction causes Device Not Avail-
able (DNA) fault 7. The TS bit is set to 1 on task switches by the CPU. Floating point instruc-
tions are not affected by the state of the MP bit. The MP bit should be set to one during normal
operations.

2 EM Emulate Processor Extension: If EM=1, all floating point instructions cause a DNA fault 7.

3 TS Task Switched: Set whenever a task switch operation is performed. Execution of a floating
point instruction with TS=1 causes a DNA fault. If MP=1 and TS=1, a WAIT instruction also
causes a DNA fault.

4 1 Reserved: Do not attempt to modify.

5 NE Numerics Exception. NE=1 to allow FPU exceptions to be handled by interrupt 16. NE=0 if
FPU exceptions are to be handled by external interrupts.

16 WP Write Protect: Protects read-only pages from supervisor write access. WP=0 allows a read-only
page to be written from privilege level 0-2. WP=1 forces a fault on a write to a
read-only page from any privilege level.

18 AM Alignment Check Mask: If AM=1, the AC bit in the EFLAGS register is unmasked and allowed
to enable alignment check faults. Setting AM=0 prevents AC faults from occurring.

29 NW Not Write-Back: If NW=1, the on-chip cache operates in write-through mode. In write-through
mode, all writes (including cache hits) are issued to the external bus. If NW=0, the on-chip
cache operates in write-back mode. In write-back mode, writes are issued to the external bus
only for a cache miss, a line replacement of a modified line, or as the result of a cache inquiry
cycle.

30 CD Cache Disable: If CD=1, no further cache line fills occur. However, data already present in the
cache continues to be used if the requested address hits in the cache. Writes continue to update
the cache and cache invalidations due to inquiry cycles occur normally. The cache must also be
invalidated to completely disable any cache activity.

31 PG Paging Enable Bit: If PG=1 and protected mode is enabled (PE=1), paging is enabled. After
changing the state of PG, software must execute an unconditional branch instruction (e.g., JMP,
CALL) to have the change take effect.

Table 2-5. Effects of Various Combinations of EM, TS, and MP Bits

CR0 BIT INSTRUCTION TYPE

EM TS MP WAIT ESC

0 0 0 Execute Execute

0 0 1 Execute Execute

0 1 0 Execute Fault 7

0 1 1 Fault 7 Fault 7

1 0 0 Execute Fault 7

1 0 1 Execute Fault 7

1 1 0 Execute Fault 7

1 1 1 Fault 7 Fault 7

Table 2-4. CR0 Bit Definitions

BIT
POSITION

NAME FUNCTION

2-15

2System Register Set

Registers and Descriptors

Descriptor Table Registers

The Global, Interrupt, and Local Descriptor
Table Registers (GDTR, IDTR and LDTR),
shown in Figure 2-7, are used to specify the
location of the data structures that control seg-
mented memory management. The GDTR,
IDTR and LDTR are loaded using the LGDT,
LIDT and LLDT instructions, respectively. The
values of these registers are stored using the cor-
responding store instructions. The GDTR and
IDTR load instructions are privileged instruc-
tions when operating in protected mode. The
LDTR can only be accessed in protected mode.

The Global Descriptor Table Register (GDTR)
holds a 32-bit linear base address and 16-bit
limit for the Global Descriptor Table (GDT).
The GDT is an array of up to 8192 8-byte
descriptors. When a segment register is loaded
from memory, the TI bit in the segment selector
chooses either the GDT or the Local Descriptor
Table (LDT) to locate a descriptor. If TI = 0, the
index portion of the selector is used to locate the
descriptor within the GDT table. The contents
of the GDTR are completely visible to the pro-
grammer by using a SGDT instruction. The first

descriptor in the GDT (location 0) is not used by
the CPU and is referred to as the “null descrip-
tor”. The GDTR is initialized using a LGDT
instruction.

The Interrupt Descriptor Table Register
(IDTR) holds a 32-bit linear base address and
16-bit limit for the Interrupt Descriptor Table
(IDT). The IDT is an array of 256 interrupt
descriptors, each of which is used to point to an
interrupt service routine. Every interrupt that
may occur in the system must have an associ-
ated entry in the IDT. The contents of the IDTR
are completely visible to the programmer by
using a SIDT instruction. The IDTR is initialized
using the LIDT instruction.

The Local Descriptor Table Register (LDTR)
holds a 16-bit selector for the Local Descriptor
Table (LDT). The LDT is an array of up to 8192
8-byte descriptors. When the LDTR is loaded,
the LDTR selector indexes an LDT descriptor
that must reside in the Global Descriptor Table
(GDT). The base address and limit are loaded
automatically and cached from the LDT
descriptor within the GDT.

Figure 2-7. Descriptor Table Registers

BASE ADDRESS LIMIT

SELECTOR

47 16 15 0

LDTR

IDTR

GDTRBASE ADDRESS LIMIT

2-16

System Register Set

Subsequent access to entries in the LDT use the
hidden LDTR cache to obtain linear addresses.
If the LDT descriptor is modified in the GDT,
the LDTR must be reloaded to update the hidden
portion of the LDTR.

When a segment register is loaded from mem-
ory, the TI bit in the segment selector chooses
either the GDT or the LDT to locate a segment
descriptor. If TI = 1, the index portion of the
selector is used to locate a given descriptor
within the LDT. Each task in the system may be
given its own LDT, managed by the operating
system. The LDTs provide a method of isolat-
ing a given task’s segments from other tasks in
the system.

The LDTR can be read or written by the LLDT
and SLDT instructions.

Descriptors

There are three types of descriptors:

• Application Segment Descriptors that
define code, data and stack segments.

• System Segment Descriptors that define
an LDT segment or a Task State Segment
(TSS) table described later in this text.

• Gate Descriptors that define task gates,
interrupt gates, trap gates and call gates.

Application Segment Descriptors can be
located in either the LDT or GDT. System Seg-
ment Descriptors can only be located in the
GDT. Dependent on the gate type, gate descrip-
tors may be located in either the GDT, LDT or
IDT. Figure 2-8 illustrates the descriptor format
for both Application Segment Descriptors and
System Segment Descriptors. Table 2-6 (Page
2-17) lists the corresponding bit definitions.

Figure 2-8. Application and System Segment Descriptors

2-17

2System Register Set

Table 2-6. Segment Descriptor Bit Definitions

BIT
POSITION

MEMORY
OFFSET

NAME DESCRIPTION

31-24
7-0

31-16

+4
+4
+0

BASE Segment base address.
32-bit linear address that points to the beginning of the segment.

19-16
15-0

+4
+0

LIMIT Segment limit.

23 +4 G Limit granularity bit:
0 = byte granularity, 1 = 4 KBytes (page) granularity.

22 +4 D Default length for operands and effective addresses.
Valid for code and stack segments only: 0 = 16 bit, 1 = 32-bit.

20 +4 AVL Segment available.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

12 +4 DT Descriptor type:
0 = system, 1 = application.

11-8 +4 TYPE Segment type. See Tables 2-7 and 2-8.

Table 2-7. TYPE Field Definitions with DT = 0

TYPE
(BITS 11-8)

DESCRIPTION

0001 TSS-16 descriptor, task not busy.

0010 LDT descriptor.

0011 TSS-16 descriptor, task busy.

1001 TSS-32 descriptor, task not busy

1011 TSS-32 descriptor, task busy.

2-18

System Register Set

Table 2-8. TYPE Field Definitions with DT = 1

TYPE
APPLICATION DECRIPTOR INFORMATION

E C/D R/W A

0 0 x x data, expand up, limit is upper bound of segment

0 1 x x data, expand down, limit is lower bound of segment

1 0 x x executable, non-conforming

1 1 x x executable, conforming (runs at privilege level of calling procedure)

0 x 0 x data, non-writable

0 x 1 x data, writable

1 x 0 x executable, non-readable

1 x 1 x executable, readable

x x x 0 not-accessed

x x x 1 accessed

