
2-40

Address Space

2.5 Address Space

The IBM 6x86 CPU can directly address 64
KBytes of I/O space and 4 GBytes of physical
memory (Figure 2-24).

Memory Address Space. Access can be
made to memory addresses between
0000 0000h and FFFF FFFFh. This 4 GByte

Figure 2-24. Memory and I/O Address Spaces

memory space can be accessed using byte,
word (16 bits), or doubleword (32 bits) format.
Words and doublewords are stored in consecu-
tive memory bytes with the low-order byte
located in the lowest address. The physical
address of a word or doubleword is the byte
address of the low-order byte.

2-41

2Memory Addressing Methods

I/O Address Space

The IBM 6x86 I/O address space is accessed
using IN and OUT instructions to addresses
referred to as “ports”. The accessible I/O
address space size is 64 KBytes and can be
accessed through 8-bit, 16-bit or 32-bit ports.
The execution of any IN or OUT instruction
causes the M/IO# pin to be driven low, thereby
selecting the I/O space instead of memory
space.

The accessible I/O address space ranges
between locations 0000 0000h and 0000 FFFFh
(64 KBytes). The I/O locations (ports) 22h and
23h can be used to access the IBM 6x86
configuration registers.

2.6 Memory Addressing
 Methods

With the IBM 6x86 CPU, memory can be
addressed using nine different addressing
modes (Table 2-23, Page 2-42). These
addressing modes are used to calculate an
offset address often referred to as an effective
address. Depending on the operating mode of
the CPU, the offset is then combined using
memory management mechanisms to create a
physical address that actually addresses the
physical memory devices.

Memory management mechanisms on the IBM
6x86 CPU consist of segmentation and paging.
Segmentation allows each program to use
several independent, protected address
spaces. Paging supports a memory subsystem
that simulates a large address space using a
small amount of RAM and disk storage for
physical memory. Either or both of these
mechanisms can be used for management of
the IBM 6x86 CPU memory address space.

2-42

Memory Addressing Methods

2.6.1 Offset Mechanism

The offset mechanism computes an offset
(effective) address by adding together one or
more of three values: a base, an index and a
displacement. When present, the base is the
value of one of the eight 32-bit general regis-
ters. The index if present, like the base, is a
value that is in one of the eight 32-bit general
purpose registers (not including the ESP
register). The index differs from the base in
that the index is first multiplied by a scale
factor of 1, 2, 4 or 8 before the summation is
made. The third component added to the
memory address calculation is the displace-
ment. The displacement is a value of up to
32-bits in length supplied as part of the instruc-
tion. Figure 2-25 illustrates the calculation of
the offset address.

Nine valid combinations of the base, index,
scale factor and displacement can be used with
the IBM 6x86 CPU instruction set. These
combinations are listed in Table 2-23. The
base and index both refer to contents of a
register as indicated by [Base] and [Index].

Figure 2-25. Offset Address Calculation

Table 2-23. Memory Addressing Modes

ADDRESSING
MODE

BASE INDEX
SCALE

FACTOR
(SF)

DISPLACEMENT
(DP)

OFFSET ADDRESS (OA)
CALCULATION

Direct x OA = DP

Register Indirect x OA = [BASE]

Based x x OA = [BASE] + DP

Index x x OA = [INDEX] + DP

Scaled Index x x x OA = ([INDEX] * SF) + DP

Based Index x x OA = [BASE] + [INDEX]

Based Scaled Index x x x OA = [BASE] + ([INDEX] * SF)

Based Index with
Displacement

x x x OA = [BASE] + [INDEX] + DP

Based Scaled Index with
Displacement

x x x x OA = [BASE] + ([INDEX] * SF) + DP

2-43

2Memory Addressing Methods

2.6.2 Memory
Addressing

Real Mode Memory Addressing

In real mode operation, the IBM 6x86 CPU
only addresses the lowest 1 MByte of memory.
To calculate a physical memory address, the
16-bit segment base address located in the
selected segment register is multiplied by 16
and then the 16-bit offset address is added.
The resulting 20-bit address is then extended.
Three hexadecimal zeros are added as upper
address bits to create the 32-bit physical address.
Figure 2-26 illustrates the real mode address
calculation.

The addition of the base address and the offset
address may result in a carry. Therefore, the
resulting address may actually contain up to 21
significant address bits that can address
memory in the first 64 KBytes above 1 MByte.

Protected Mode Memory Addressing

In protected mode three mechanisms calculate a
physical memory address (Figure 2-27, Page 2-44).

• Offset Mechanism that produces the
offset or effective address as in real mode.

• Selector Mechanism that produces the
base address.

• Optional Paging Mechanism that trans-
lates a linear address to the physical
memory address.

The offset and base address are added together
to produce the linear address. If paging is not
enabled, the linear address is used as the phys-
ical memory address. If paging is enabled, the
paging mechanism is used to translate the
linear address into the physical address. The
offset mechanism is described earlier in this
section and applies to both real and protected
mode. The selector and paging mechanisms
are described in the following paragraphs.

Figure 2-26. Real Mode Address Calculation

2-44

Memory Addressing Methods

Figure 2-27. Protected Mode Address Calculation

2.6.3 Selector Mechanism

Using segmentation, memory is divided into an
arbitrary number of segments, each containing
usually much less than the 232 byte (4 GByte)
maximum.

The six segment registers (CS, DS, SS, ES, FS
and GS) each contain a 16-bit selector that is
used when the register is loaded to locate a
segment descriptor in either the global
descriptor table (GDT) or the local descriptor
table (LDT). The segment descriptor defines

the base address, limit, and attributes of the
selected segment and is cached on the IBM
6x86 CPU as a result of loading the selector.
The cached descriptor contents are not visible
to the programmer. When a memory reference
occurs in protected mode, the linear address is
generated by adding the segment base address
in the hidden portion of the segment register to
the offset address. If paging is not enabled,
this linear address is used as the physical
memory address. Figure 2-28 illustrates the
operation of the selector mechanism.

Figure 2-28. Selector Mechanism

2-45

2Memory Addressing Methods

2.6.4 Paging Mechanisms

The paging mechanisms (Figure 2-29) trans-
late linear addresses to their corresponding
physical addresses. For traditional paging, the
page size is always 4 KBytes. If IBM 6x86
Variable-Size Paging is selected, a page size
may be as large as 4 GBytes. Use of larger
page sizes allows large memory areas such as
video memory to be placed in a single page,
eliminating page table thrashing.

Paging is activated when the PG and the PE
bits within the CR0 register are set.

2.6.4.1 Traditional Paging
Mechanism

The traditional paging mechanism translates
the 20 most significant bits of a linear address
to a physical address. The linear address is
divided into three fields DTI, PTI, PFO
(Figure 2-30, Page 2-46). These fields respec-
tively select:

• an entry in the directory table,
• an entry in the page table selected by the

directory table
• the offset in the physical page selected by

the page table

The directory table and all the page tables can
be considered as pages as they are 4-KBytes in

size and are aligned on 4-KByte boundaries.
Each entry in these tables is 32 bits in length.
The fields within the entries are detailed in
Figure 2-31 (Page 2-46) and Table 2-24 (Page
2-47).

A single page directory table can address up to
4 GBytes of virtual memory (1,024 page
tables—each table can select 1,024 pages and
each page contains 4 KBytes).

Translation Lookaside Buffer (TLB) is made
up of three caches (Figure 2-30, Page 2-46).

• the DTE Cache caches directory table
entries

• the Main TLB caches page tables entries
• the Victim TLB stores PTEs that have

been evicted from the Main TLB

The DTE cache is a 4-entry fully associative
cache, the main TLB is a 128-entry direct
mapped cache and the victim TLB is an
8-entry fully associative cache.The DTE cache
caches the four most recent DTEs so that
future TLB misses only require a single page
table read to calculate the physical address.
The DTE cache is disabled following RESET
and is enabled by setting the DTE_EN bit
(CCR4 bit4).

Figure 2-29. Paging Mechanisms

2-46

Memory Addressing Methods

Figure 2-30. Traditional Paging Mechanism

Figure 2-31. Directory and Page Table Entry (DTE and PTE) Format

CR3

Directory Table Index Page Table Index Page Frame Offset

31 22 21 12 11 0

Physical Page

DTE PTE

0 0 0

4 Kb4 Kb

(DTI) (PTI) (PFO)

7

0

0

127

0

3

Main TLB
128 Entry

Direct Mapped

DTE Cache
4 Entry

Fully Associative

Page Table MemoryDirectory Table

0

4 Kb

4 Gb

Linear
Address

Control
Register External Memory

Victim TLB
8 Entry

Fully Associative

BASE ADDRESS AVAILABLE P
WU

D

31 012 11 9 8 123456710

ARESERVED
PP

C
D

W
T

/
S

/
R

Note: In DTE format, bit 6 is reserved

2-47

2Memory Addressing Methods

Table 2-24. Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT POSITION FIELD NAME DESCRIPTION

31-12 BASE
ADDRESS

Specifies the base address of the page or page table.

11-9 -- Undefined and available to the programmer.

8-7 -- Reserved and not available to the programmer.

6 D Dirty Bit. If set, indicates that a write access has occurred to the page (PTE
only, undefined in DTE).

5 A Accessed Flag. If set, indicates that a read access or write access has occurred
to the page.

4 PCD Page Caching Disable Flag. If set, indicates that the page is not cacheable in
the on-chip cache.

3 PWT Page Write-Through Flag. If set, indicates that writes to the page or page tables
that hit in the on-chip cache must update both the cache and external memory.

2 U/S User/Supervisor Attribute. If set (user), page is accessible at privilege level 3.
If clear (supervisor), page is accessible only when CPL ≤ 2.

1 W/R Write/Read Attribute. If set (write), page is writable. If clear (read), page is
read only.

0 P Present Flag. If set, indicates that the page is present in RAM memory, and
validates the remaining DTE/PTE bits. If clear, indicates that the page is not
present in memory and the remaining DTE/PTE bits can be used by the
programmer.

For a TLB hit, the TLB eliminates accesses to
external directory and page tables.

The victim TLB increases the apparent associa-
tivity of the main TLB and helps eliminate TLB
trashing (unproductive TLB management).
When an entry in the main TLB is replaced, a
copy of the replaced entry is sent to the victim
TLB before the entry in the main TLB is over-
written. If the victim TLB receives a hit, its
entry is swapped with a main TLB entry.

The TLB must be flushed by the software when
entries in the page tables are changed. The TLB

is flushed whenever the CR3 register is loaded.
A particular page can be flushed from the TLB
by using the INVLPG instruction. This instruc-
tion also flushes the entire DTE cache.

2.6.4.2 Translation Lookaside
Buffer Testing

The TLB can be tested by writing to a main TLB
followed by performing a TLB lookup (TLB
read) to see if the expected contents are within
the TLB. TLB test operations are performed
using test register TR6 and TR7 shown in
Figure 2-32 (Page 2-48). Tables 2-25 through
2-27 list the bit definitions for TR6 and TR7.

2-48

Memory Addressing Methods

Main TLB Write . To perform a direct write to
a main TLB entry, the TR7 register is config-
ured with the desired physical address as well
as the PCD and PWT bits. The BI, HV, HD and
HB bits are not used. The TR6 register is then
configured with the linear address, D, U, W and
V bits. The D, U, and W bits must be comple-
ments of the D#, U#, and W# bits during a
write. When the TR6 register is configured, the
IBM 6x86 CPU writes the linear and physical
address into the main TLB along with the A, D,
U, and W bits. The main TLB entry is selected
by bits 12 through 18 of the linear address field.

TLB Lookup . During a TLB lookup, the IBM
6x86 CPU queries the TLB with a given linear
address and expected A, W, U and D values.
The query returns a corresponding physical
address, and the source of the address. The
address source could be from the main TLB,

from the victim TLB or from the variable-size
paging mechanism.

The TLB lookup involves a single TR6 register
write. The CMD bits are set to 0x1. The D, U,
W, D#, U# and W# bits are not used during
TLB lookups.

After a TLB lookup, the HV, HD and HB bits
in TR7 indicate which (if any) PTEs were
found with the requested linear address. If a
TLB entry was found for a PTE in the victim or
variable size-paging cache, the BI bit in the
TR7 register will contain the index of the par-
ticular entry. If multiple entries respond, only
the HV, HD and HB bits are valid and all TR7
fields are undefined.

Figure 2-32. TLB Test Registers

ADR6 (LINEAR ADDRESS)

 = Reserved

V D U U# W TR6

ADR7 (PHYSICAL ADDRESS / BC MASK)

31 12 10 9 8 7 6 5

PCDPWT HV TR7BI HD

4 3 2 01

D# W#

12 10 9 8 7 6 5 4 3 2 0131

11

11

CMD

HB

A A#

2-49

2Memory Addressing Methods

Table 2-25. TLB Test Register Bit Definitions

REGISTER
NAME

NAME RANGE DESCRIPTION

TR7 ADR7 31-12 Physical address or variable page size mechanism mask.
TLB lookup: data field from the TLB.
TLB write: data field written into the TLB.

PCD 11 Page-level cache disable bit (PCD).
Corresponds to the PCD bit of a page table entry.

PWT 10 Page-level cache write-through bit (PWT).
Corresponds to the PWT bit of a page table entry.

BI 9-7 Cell index for victim TLB and block cache operations.

HV 5 Victim TLB hit.

HD 4 Main TLB hit.

HB 3 Variable-Size Paging Mechanism hit.

TR6 ADR6 31-12 Linear Address.
TLB lookup: The TLB is interrogated per this address. If
one and only one match occurs in the TLB, the rest of the
fields in TR6 and TR7 are updated per the matching TLB
entry.
TLB write: A TLB entry is allocated to this linear address.

V 11 PTE Valid.
TLB write: If set, indicates that the TLB entry contains
valid data. If clear, target entry is invalidated.

D, D# 10-9 Dirty Attribute Bit and its complement.
Refer to Table 2-26., Page 2-50.

U, U# 8-7 User/Supervisor Attribute Bit and its complement.
Refer to Table 2-26., Page 2-50.

W, W# 6-5 Write Protect bit and its complement.
Refer to Table 2-26., Page 2-50.

A, A# 4-3 Accessed Bit and its complement.
Used for block cache entries only.
Refer to Table 2-26., Page 2-50.

CMD 2-0 Array Command Select.
Determines TLB array command.
Refer to Table 2-27, Page 2-50.

2-50

Memory Addressing Methods

Table 2-26. TR6 Attribute Bit Pairs

BIT BIT# EFFECT ON TLB LOOKUP EFFECT ON TLB WRITE

0 0 Do not match. Undefined.

0 1 If bit = 0, match. Bit is cleared.

1 0 If bit = 1, match. The bit is set.

1 1 If bit = 0 or 1, match. Undefined.
Note: “BIT” applies to A, D, U or W fields in TR6; “BIT#” applies to A#, D#, U#, or W# fields in TR6.

Table 2-27. TR6 Command Bits

CMD Command

0x0 Direct write to main TLB.

0x1 TLB lookup for a linear address in all arrays.

100 Write to variable page size mask only.

110 Write to variable page size linear and physical address fields.

101 Read variable page size mask and linear address.

111 Read variable page size cache physical and linear address.
Note: x = don’t care

2-51

2Memory Addressing Methods

2.6.5 Variable-Size
Paging Mechanism

The Variable-Size Paging Mechanism
(VSPM) is an advanced alternative to
traditional paging. As shown in Figure 2-33,
VSPM allows the creation of pages ranging in
size from 4 KBytes to 4 GBytes. The larger
page size nearly eliminates page table thrashing
associated with using multiple 4-KByte pages.

For example, paging 1 MByte of memory
requires 256 4-KByte pages using traditional
paging. The software not only incurs overhead
during setting up the 256 pages, but also incurs
additional overhead accessing the page tables
each time a page is not found in the on-chip
TLB. In contrast, a single 1-MByte page
virtually eliminates the overhead.

Configuring Variable-Size Pages. The VSPM
is configured using TLB test registers, TR6 and
TR7 (These registers are also used to test the
TLB). The VSPM configuration is performed
in much the same manner as when writing to a
line of the TLB (Refer to Section 2.6.4.2.).
The major exception to this, is that a mask field
is written to the VSPM as part of the VSPM
configuration.

The physical address, linear address, valid bit
and attribute bits in a main TLB write all have
the same meaning as in a main TLB read except
that CMD=110. The BI field is used to select the
VSPM cell to be written.

A VSPM mask setup operation is performed
when CMD=100 and a test register write is per-
formed. During a VSPM mask setup, the TR7
address field is used as the mask field. The mask
field selectively masks linear address bits 31-12
from the VSPM tag compare. This has the
effect of allowing the VSPM to map pages
greater than 4 KBytes.

Figure 2-33. Variable-Size Paging Mechanism

Physical Page

0
Memory

0

< 4 GByte

4 GByte
Linear

Address

Variable-Size Paging Mechanism

Physical
Address

2-52

Memory Caches

After a VSPM mask setup, the valid bit,
attribute bits, and the linear address are left in
undefined states. Therefore, the VSPM mask
setup should be performed prior to other VSPM
operations.

Unlike the victim and main TLBs, the VSPM
operations make use of the accessed bit. During
a VSPM mask or physical address write the A
and A# fields are written to the VSPM.

VSPM Reads. VSPM reads are performed with
the address of the entry to be read in the BI field
of the TR7 register and with CMD=111. The
entry’s and physical address is read into the TR6
and TR7 address fields as well as the valid bit,
and attribute bits.

If CMD=101, the linear address, mask, valid bit
and attribute bits are read.

2.7 Memory Caches

The IBM 6x86 CPU contains two memory
caches as described in Chapter 1. The Unified
Cache acts the primary data cache, and
secondary instruction cache. The Instruction
Line Cache is the primary instruction cache and
provides a high speed instruction stream for the
Integer Unit.

The unified cache is dual-ported allowing
simultaneous access to any two unique banks.
Two different banks may be accessed at the
same time permitting any two of the following
operations to occur in parallel:

• Code fetch
• Data read (X pipe, Y pipe or FPU)
• Data write (X pipe, Y pipe or FPU).

2.7.1 Unified Cache
MESI States

The unified cache lines are assigned one of four
MESI states as determined by MESI bits stored
in tag memory. Each 32-byte cache line is
divided into two 16-byte sectors. Each sector
contains its own MESI bits. The four MESI
states are described below:

Modified MESI cache lines are those that have
been updated by the CPU, but the corre-
sponding main memory location has not yet
been updated by an external write cycle. Modi-
fied cache lines are referred to as dirty cache
lines.

Exclusive MESI lines are lines that are exclu-
sive to the IBM 6x86 CPU and are not dupli-
cated within another caching agent’s cache
within the same system. A write to this cache
line may be performed without issuing an
external write cycle.

Shared MESI lines may be present in another
caching agent’s cache within the same system.
A write to this cache line forces a corresponding
external write cycle.

Invalid MESI lines are cache lines that do not
contain any valid data.

2-53

2Memory Caches

2.7.1.1 Unified Cache Testing

The unified cache can be tested through the
use of TR3, TR4, and TR5 on-chip test regis-
ters. Fields within these test registers identify
which area of the cache will be selected for
testing.

Cache Organization. The unified cache
(Figure 2-34) is divided into 32-bytes lines.
This cache is divided into four sets. Since a set
(as well as the cache) is smaller than main
memory, each line in the set corresponds to
more than one line in main memory. When a
cache line is allocated, bits A31-A12 of the
main memory address are stored in the cache

line tag. The remaining address bits are used
to identify the specific 32-byte cache line
(A11-A5), and the specific 4-byte entry within
the cache line (A4-A2).

Test Initiation . A test register operation is
initiated by writing to the TR5 register shown
in Figure 2-35 (Page 2-54) using a special
MOV instruction. The TR5 CTL field,
detailed in Table 2-28 (Page 2-54), determines
the function to be performed. For cache
writes, the registers TR4 and TR3 must be
initialized before a write is made to TR5. Eight
4-byte accesses are required to access a
complete cache line.

Figure 2-34. Unified Cache

SET 0

SET 1

SET 2

SET 3

ENT = 4-byte entry

32 Bytes of Data

512 Lines

ENT ENT ENT ENT ENT ENT ENT ENT

Lower SectorUpper Sector

128 Lines

Typical
Single
Line

2-54

Memory Caches

Figure 2-35. Cache Test Registers

Table 2-28. Cache Test Register Bit Definitions

REGISTER
NAME

FIELD
NAME

RANGE DESCRIPTION

TR5 SET 13 - 12 Cache set selection (one of four “sets”).

LINE 11 - 5 Cache line selection (one of 128 lines).

ENT 4 - 2 Entry selection (one of eight 4-byte entries in a line).

CTL 1 - 0 Control field
If = 00: flush cache without invalidate
If = 01: write cache
If = 10: read cache
If = 11: no cache or test register modification

TR4 TAG 31 - 12 Physical address for selected line

MESIU 7 - 6 If = 00, Modified Upper Sector MESI bits
If = 01, Shared Upper Sector MESI bits
If = 10, Exclusive Upper Sector MESI bits
If = 11, Invalid Upper Sector MESI bits*

MESIL 5 - 4 If = 00, Modified Lower Sector MESI bits
If = 01, Shared Lower Sector MESI bits
If = 10, Exclusive Lower Sector MESI bits
If = 11, Invalid Lower Sector MESI bits*

MRU 3 - 0 Used to determine the Least Recently Used (LRU) line.

TR3 DATA 31 - 0 Data written or read during a cache test.
*Note: All 32 bytes should contain valid data before a line is marked as valid.

 = Reserved

31

TR5

DATA (CACHE DATA)

31

MESIL TR4

31

TR3

CTL

MRUTAG (CACHE TAG ADDRESS)

11 10 9 8 7 6 5 4 3 2 01

9 8 7 6 5 4 3 2 01

1213

LINESET ENT

11 1012

MESIU

2-55

2Interrupts and Exceptions

Write Operations. During a write, the TR3
DATA (32-bits) and TAG field information is
written to the address selected by the SET,
LINE, and ENT fields in TR5.

Read Operations. During a read, the cache
address selected by the SET, LINE and ENT
fields in TR5 are used to read data into the TR3
DATA (32-bits) field. The TAG, MESI and
MRU fields in TR4 are updated with the infor-
mation from the selected line. TR3 holds the
selected read data.

Cache Flushing. A cache flush occurs during
a TR5 write if the CTL field is set to zero.
During flushing, the CPU’s cache controller
reads through all the lines in the cache. “Modi-
fied” lines are redefined as “shared” by setting
the shared MESI bit. Clean lines are left in
their original state.

2.8 Interrupts and
Exceptions

The processing of either an interrupt or an
exception changes the normal sequential flow
of a program by transferring program control
to a selected service routine. Except for SMM
interrupts, the location of the selected service
routine is determined by one of the interrupt
vectors stored in the interrupt descriptor table.

Hardware interrupts are generated by signal
sources external to the CPU. All exceptions
(including so-called software interrupts) are
produced internally by the CPU.

2.8.1 Interrupts

External events can interrupt normal program
execution by using one of the three interrupt
pins on the IBM 6x86 CPU.

• Non-maskable Interrupt (NMI pin)
• Maskable Interrupt (INTR pin)
• SMM Interrupt (SMI# pin).

For most interrupts, program transfer to the
interrupt routine occurs after the current
instruction has been completed. When the
execution returns to the original program, it begins
immediately following the last completed instruc-
tion.

With the exception of string operations, inter-
rupts are acknowledged between instructions.
Long string operations have interrupt windows
between memory moves that allow interrupts
to be acknowledged.

The NMI interrupt cannot be masked by
software and always uses interrupt vector 2 to
locate its service routine. Since the interrupt
vector is fixed and is supplied internally, no
interrupt acknowledge bus cycles are
performed. This interrupt is normally reserved
for unusual situations such as parity errors and
has priority over INTR interrupts.

Once NMI processing has started, no addi-
tional NMIs are processed until an IRET
instruction is executed, typically at the end of
the NMI service routine. If NMI is re-asserted
prior to execution of the IRET instruction, one
and only one NMI rising edge is stored and
processed after execution of the next IRET.

2-56

Interrupts and Exceptions

2.8.2 Exceptions

Exceptions are generated by an interrupt
instruction or a program error. Exceptions are
classified as traps, faults or aborts depending
on the mechanism used to report them and the
restartability of the instruction that first caused
the exception.

A Trap Exception is reported immediately
following the instruction that generated the
trap exception. Trap exceptions are generated
by execution of a software interrupt instruction
(INTO, INT 3, INT n, BOUND), by a
single-step operation or by a data breakpoint.

Software interrupts can be used to simulate
hardware interrupts. For example, an INT n
instruction causes the processor to execute the
interrupt service routine pointed to by the nth
vector in the interrupt table. Execution of the
interrupt service routine occurs regardless of
the state of the IF flag in the EFLAGS register.

The one byte INT 3, or breakpoint interrupt
(vector 3), is a particular case of the INT n
instruction. By inserting this one byte instruc-
tion in a program, the user can set breakpoints
in the code that can be used during debug.

Single-step operation is enabled by setting the
TF bit in the EFLAGS register. When TF is
set, the CPU generates a debug exception
(vector 1) after the execution of every instruc-
tion. Data breakpoints also generate a debug
exception and are specified by loading the
debug registers (DR0-DR7) with the appro-
priate values.

During the NMI service routine, maskable
interrupts may be enabled (unmasked). If an
unmasked INTR occurs during the NMI
service routine, the INTR is serviced and
execution returns to the NMI service routine
following the next IRET. If a HALT instruc-
tion is executed within the NMI service
routine, the IBM 6x86 CPU restarts execution
only in response to RESET, an unmasked INTR
or an SMM interrupt. NMI does not restart
CPU execution under this condition.

The INTR interrupt is unmasked when the
Interrupt Enable Flag (IF) in the EFLAGS
register is set to 1. When an INTR interrupt
occurs, the CPU performs two locked interrupt
acknowledge bus cycles. During the second
cycle, the CPU reads an 8-bit vector that is
supplied by an external interrupt controller.
This vector selects one of the 256 possible
interrupt handlers which will be executed in
response to the interrupt.

The SMM interrupt has higher priority than
either INTR or NMI. After SMI# is asserted,
program execution is passed to an SMI service
routine that runs in SMM address space
reserved for this purpose. The remainder of
this section does not apply to the SMM inter-
rupts. SMM interrupts are described in greater
detail later in this chapter.

2-57

2Interrupts and Exceptions

A Fault Exception is reported prior to
completion of the instruction that generated
the exception. By reporting the fault prior to
instruction completion, the CPU is left in a
state that allows the instruction to be restarted
and the effects of the faulting instruction to be
nullified. Fault exceptions include
divide-by-zero errors, invalid opcodes, page
faults and coprocessor errors. Instruction
breakpoints (vector 1) are also handled as
faults. After execution of the fault service
routine, the instruction pointer points to the
instruction that caused the fault.

An Abort Exception is a type of fault excep-
tion that is severe enough that the CPU cannot
restart the program at the faulting instruction.
The double fault (vector 8) is the only abort
exception that occurs on the IBM 6x86 CPU.

2.8.3 Interrupt Vectors

When the CPU services an interrupt or excep-
tion, the current program’s FLAGS, code
segment and instruction pointer are pushed
onto the stack to allow resumption of execu-
tion of the interrupted program. In protected
mode, the processor also saves an error code
for some exceptions. Program control is then
transferred to the interrupt handler (also called
the interrupt service routine). Upon execution
of an IRET at the end of the service routine,
program execution resumes by popping from
the stack, the instruction pointer, code segment,
and FLAGS.

Interrupt Vector Assignments

Each interrupt (except SMI#) and exception is
assigned one of 256 interrupt vector numbers
(Table 2-29). The first 32 interrupt vector
assignments are defined or reserved. INT
instructions acting as software interrupts may
use any of the interrupt vectors, 0 through 255.

2-58

Interrupts and Exceptions

Table 2-29. Interrupt Vector Assignments

INTERRUPT VECTOR FUNCTION EXCEPTION TYPE

0 Divide error FAULT

1 Debug exception TRAP/FAULT*

2 NMI interrupt

3 Breakpoint TRAP

4 Interrupt on overflow TRAP

5 BOUND range exceeded FAULT

6 Invalid opcode FAULT

7 Device not available FAULT

8 Double fault ABORT

9 Reserved

10 Invalid TSS FAULT

11 Segment not present FAULT

12 Stack fault FAULT

13 General protection fault TRAP/FAULT

14 Page fault FAULT

15 Reserved

16 FPU error FAULT

17 Alignment check exception FAULT

18-31 Reserved

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP
*Note: Data breakpoints and single-steps are traps. All other debug exceptions are faults.

2-59

2Interrupts and Exceptions

In response to a maskable hardware interrupt
(INTR), the IBM 6x86 CPU issues interrupt
acknowledge bus cycles used to read the vector
number from external hardware. These vectors
should be in the range 32 - 255 as vectors 0 - 31
are reserved.

Interrupt Descriptor Table

The interrupt vector number is used by the IBM
6x86 CPU to locate an entry in the interrupt
descriptor table (IDT). In real mode, each IDT
entry consists of a four-byte far pointer to the
beginning of the corresponding interrupt
service routine. In protected mode, each IDT
entry is an eight-byte descriptor. The Interrupt
Descriptor Table Register (IDTR) specifies the
beginning address and limit of the IDT.
Following reset, the IDTR contains a base
address of 0h with a limit of 3FFh.

The IDT can be located anywhere in physical
memory as determined by the IDTR register.
The IDT may contain different types of
descriptors: interrupt gates, trap gates and task
gates. Interrupt gates are used primarily to
enter a hardware interrupt handler. Trap gates
are generally used to enter an exception handler
or software interrupt handler. If an interrupt
gate is used, the Interrupt Enable Flag (IF) in
the EFLAGS register is cleared before the inter-
rupt handler is entered. Task gates are used to
make the transition to a new task.

2.8.4 Interrupt and Exception
Priorities

As the IBM 6x86™ CPU executes instructions,
it follows a consistent policy for prioritizing
exceptions and hardware interrupts. The priori-
ties for competing interrupts and exceptions are
listed in Table 2-30 (Page 2-60). Debug traps
for the previous instruction and the next
instructions always take precedence. SMM
interrupts are the next priority. When NMI and
maskable INTR interrupts are both detected at
the same instruction boundary, the IBM 6x86
microprocessor services the NMI interrupt first.

The IBM 6x86 CPU checks for exceptions in
parallel with instruction decoding and execu-
tion. Several exceptions can result from a
single instruction. However, only one excep-
tion is generated upon each attempt to execute
the instruction. Each exception service routine
should make the appropriate corrections to the
instruction and then restart the instruction. In
this way, exceptions can be serviced until the
instruction executes properly.

The IBM 6x86 CPU supports instruction restart
after all faults, except when an instruction
causes a task switch to a task whose task state
segment (TSS) is partially not present. A TSS
can be partially not present if the TSS is not
page aligned and one of the pages where the
TSS resides is not currently in memory.

2-60

Interrupts and Exceptions

Table 2-30. Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES

0 Warm Reset Caused by the assertion of WM_RST.

1 Debug traps and faults from previ-
ous instruction.

Includes single-step trap and data breakpoints
specified in the debug registers.

2 Debug traps for next instruction. Includes instruction execution breakpoints
specified in the debug registers.

3 Hardware Cache Flush Caused by the assertion of FLUSH#.

4 SMM hardware interrupt. SMM interrupts are caused by SMI# asserted
and always have highest priority.

5 Non-maskable hardware interrupt. Caused by NMI asserted.

6 Maskable hardware interrupt. Caused by INTR asserted and IF = 1.

7 Faults resulting from fetching the
next instruction.

Includes segment not present, general protec-
tion fault and page fault.

8 Faults resulting from instruction
decoding.

Includes illegal opcode, instruction too long,
or privilege violation.

9 WAIT instruction and TS = 1 and
MP = 1.

Device not available exception generated.

10 ESC instruction and EM = 1 or
TS = 1.

Device not available exception generated.

11 Floating point error exception. Caused by unmasked floating point exception
with NE = 1.

12 Segmentation faults (for each
memory reference required by the
instruction) that prevent transfer-
ring the entire memory operand.

Includes segment not present, stack fault, and
general protection fault.

13 Page Faults that prevent transfer-
ring the entire memory operand.

14 Alignment check fault.

2-61

2Interrupts and Exceptions

2.8.5 Exceptions in Real Mode

Many of the exceptions described in Table 2-30 (Page 2-60) are not applicable in real mode.
Exceptions 10, 11, and 14 do not occur in real mode. Other exceptions have slightly different
meanings in real mode as listed in Table 2-31.

Table 2-31. Exception Changes in Real Mode

VECTOR
NUMBER

PROTECTED MODE FUNCTION REAL MODE FUNCTION

8 Double fault. Interrupt table limit overrun.

10 Invalid TSS. x

11 Segment not present. x

12 Stack fault. SS segment limit overrun.

13 General protection fault. CS, DS, ES, FS, GS segment limit overrun.

14 Page fault. x
Note: x = does not occur

2-62

Interrupts and Exceptions

2.8.6 Error Codes

When operating in protected mode, the following exceptions generate a 16-bit error code:

The error code is pushed onto the stack prior to entering the exception handler. The error code
format is shown in Figure 2-36 and the error code bit definitions are listed in Table 2-32. Bits
15-3 (selector index) are not meaningful if the error code was generated as the result of a page
fault. The error code is always zero for double faults and alignment check exceptions.

Double Fault Invalid TSS

Alignment Check Segment Not Present

Page Fault Stack Fault

General Protection Fault

15 3 2 1 0

Selector Index S2 S1 S0

Figure 2-36. Error Code Format

Table 2-32. Error Code Bit Definitions

FAULT
TYPE

SELECTOR
INDEX

(BITS 15-3)

S2
(BIT 2)

S1
(BIT 1)

S0
(BIT 0)

Double Fault or
Alignment Check

0 0 0 0

Page Fault Reserved. Fault caused by:
0 = not present page
1 = page-level
protection violation.

Fault occurred dur-
ing:
0 = read access
1 = write access.

Fault occurred dur-
ing:
0 = supervisor access
1 = user access.

IDT Fault Index of faulty
IDT selector.

Reserved. 1 If = 1, exception
occurred while try-
ing to invoke excep-
tion or hardware
interrupt handler.

Segment
Fault

Index of faulty
selector.

TI bit of faulty
selector.

0 If =1, exception
occurred while try-
ing to invoke excep-
tion or hardware
interrupt handler.

