
 3-1

Bus Interface

IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

3.0 IBM 6x86 BUS INTERFACE

The signals used in the IBM 6x86 CPU bus interface are described in this chapter. Figure 3-1
shows the signal directions and the major signal groupings. A description of each signal and their
reference to the text are provided in Table 3-1 (Page 3-2).

Figure 3-1. IBM 6x86 CPU Functional Signal Groupings

INTR

NMI
Interrupt

EWBE#

FLUSH#

KEN#

PCD
Cache

BRDYC#

ADS#

Data D63 - D0

Reset
RESET

A31 - A3

BE7# - BE0#

Address

Bus

W/R#

D/C#

M/IO#

LOCK#

SMIACT#

DP7 - DP0

PCHK#

Data

NA#

BRDY#

AHOLD

EADS#

HIT#

INV

WM_RST

Cache

PWT
Bus

Bus

Parity

Cycle
Definition

Bus
Cycle
Control

Control

Control

Coherency

SUSP#

SUSPA#
Power
Management

ADSC#

CLK

6x86

 CPU

A20M#

AP

APCHK#
Address
Parity

SCYC

CACHE#

SMI#

WB/WT#

BREQ

HOLD
Bus

HLDA

BOFF#

Arbitration

HITM#

FERR#

IGNNE#
FPU Error

DHOLD

LBA#

Scatter

QDUMP#

BHOLD

Gather Buffer

TCK

TDI

TDO

TRST#

JTAG

TMS

CLKMUL
Clock
Control

3-2

Signal Description Table

3.1 Signal Description Table

The Signal Summary Table (Table 3-1) describes the signals in their active state unless otherwise
mentioned. Signals containing slashes (/) have logic levels defined as “1/0.” For example the
signal W/R#, is defined as write when W/R#=1, and as read when W/R#=0. Signals ending with a
“#” character are active low.
.

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name

Signal Name Description I/O Reference

A20M# A20 Mask causes the CPU to mask (force to 0) the A20 address bit when
driving the external address bus or performing an internal cache access.
A20M# is provided to emulate the 1 MByte address wrap-around that
occurs on the 8086. Snoop addressing is not effected.

Input Page 3-9

A31-A3 The Address Bus, in conjunction with the Byte Enable signals
(BE7#-BE0#), provides addresses for physical memory and external I/O
devices. During cache inquiry cycles, A31-A5 are used as inputs to
perform cache line invalidations.

3-state
I/O

Page 3-9

ADS# Address Strobe begins a memory/I/O cycle and indicates the address bus
(A31-A3, BE7#-BE0#) and bus cycle definition signals (CACHE#, D/C#,
LOCK#, M/IO#, PCD, PWT, SCYC, W/R#) are valid.

Output Page 3-13

ADSC# Cache Address Strobe performs the same function as ADS#. Output Page 3-13

AHOLD Address Hold allows another bus master access to the IBM 6x86 CPU
address bus for a cache inquiry cycle. In response to the assertion of
AHOLD, the CPU floats AP and A31-A3 in the following clock cycle.

Input Page 3-18

AP Address Parity is the even parity output signal for address lines A31-A5
(A4 and A3 are excluded). During cache inquiry cycles, AP is the
even-parity input to the CPU, and is sampled with EADS# to produce
correct parity check status on the APCHK# output.

3-state
I/O

Page 3-10

APCHK# Address Parity Check Status is asserted during a cache inquiry cycle if
an address bus parity error has been detected. APCHK# is valid two
clocks after EADS# is sampled active. APCHK# will remain asserted for
one clock cycle if a parity error is detected.

Output Page 3-10

BE7#-BE0# The Byte Enables, in conjunction with the address lines, determine the
active data bytes transferred during a memory or I/O bus cycle.

3-state
I/O

Page 3-9

BHOLD Byte Enable Hold forces the byte enables (BE7#-BE0#) to float during
the next clock cycle. The IBM 6x86 CPU continues to generate additional
bus cycles while BHOLD is asserted. While BHOLD is asserted, the byte
enables are driven by an external source and select which data bytes are
accessed through the scatter/gather buffer. BHOLD is ignored if the
scatter/gather interface is disabled.

Input Page 3-20

BOFF# Back-Off forces the IBM 6x86 CPU to abort the current bus cycle and
relinquish control of the CPU local bus during the next clock cycle. The
IBM 6x86 CPU enters the bus hold state and remains in this state until
BOFF# is negated.

Input Page 3-16

 3-3

3Signal Description Table

BRDY# Burst Ready indicates that the current transfer within a burst cycle, or the
current single transfer cycle, can be terminated. The IBM 6x86 CPU samples
BRDY# in the second and subsequent clocks of a bus cycle. BRDY# is active
during address hold states.

Input Page 3-13

BRDYC# Cache Burst Ready performs the same function as BRDY# and is logically
ORed with BRDY# within the IBM 6x86 CPU.

Input Page 3-13

BREQ Bus Request is asserted by the IBM 6x86 CPU when an internal bus cycle is
pending. The IBM 6x86 CPU always asserts BREQ, along with ADS#,
during the first clock of a bus cycle. If a bus cycle is pending, BREQ is
asserted during the bus hold and address hold states. If no additional bus
cycles are pending, BREQ is negated prior to termination of the current cycle.

Output Page 3-16

CACHE# Cacheability Status indicates that a read bus cycle is a potentially
cacheable cycle; or that a write bus cycle is a cache line write-back or line
replacement burst cycle. If CACHE# is asserted for a read cycle and KEN# is
asserted by the system, the read cycle becomes a cache line fill burst cycle.

Output Page 3-11

CLK Clock provides the fundamental timing for the IBM 6x86 CPU. The
frequency of the IBM 6x86 CPU input clock determines the operating
frequency of the CPU’s bus. External timing is defined referenced to the
rising edge of CLK.

Input Page 3-7

CLKMUL The Clock Multiplier input is sampled during RESET to determine the IBM
6x86 CPU core operating frequency. If CLKMUL=0 or is left unconnected,
the core frequency is 2x the frequency of the CLK input. If CLKMUL=1, the
core frequency is 3x the frequency of CLK.

Input Page 3-7

D63-D0 Data Bus signals are three-state, bi-directional signals which provide the
data path between the IBM 6x86 CPU and external memory and I/O devices.
The data bus is only driven while a write cycle is active (state=T2). The data
bus is floated when DHOLD is asserted.

3-state
I/O

Page 3-10

D/C# Data/Control Status. If high, indicates that the current bus cycle is an I/O or
memory data access cycle. If low, indicates a code fetch or special bus cycle
such as a halt, prefetch, or interrupt acknowledge bus cycle. D/C# is driven
valid in the same clock as ADS# is asserted.

Output Page 3-11

DHOLD Data Bus Hold forces the IBM 6x86 CPU to float the data bus (D63-D0)
and the data parity lines (DP7-DP0) in the next clock. While DHOLD is
asserted, only the data and data parity buses are disabled. The current bus
cycle remains active and is completed in the normal fashion in response to
BRDY#. The IBM 6x86 CPU generates additional bus cycles while DHOLD
is asserted. DHOLD is ignored if the scatter/gather interface is disabled.

Input Page 3-21

DP7-DP0 Data Parity signals provide parity for the data bus, one data parity bit per
data byte. Even parity is driven on DP7-DP0 for all data write cycles.
DP7-DP0 are read by the IBM 6x86 CPU during read cycles to check for
even parity. The data parity bus is only driven while a write cycle is active
(state=T2).

3-state
I/O

Page 3-10

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name Description I/O Reference

3-4

Signal Description Table

EADS# External Address Strobe indicates that a valid cache inquiry address is
being driven on the IBM 6x86 CPU address bus (A31-A5) and AP. The state
of INV at the time EADS# is sampled active determines the final state of the
cache line. A cache inquiry cycle using EADS# may be run while the IBM
6x86 CPU is in the address hold or bus hold state.

Input Page 3-18

EWBE# External Write Buffer Empty indicates that there are no pending write
cycles in the external system. EWBE# is sampled only during I/O and
memory write cycles. If EWBE# is negated, the IBM 6x86 CPU delays all
subsequent writes to on-chip cache lines in the “exclusive” or “modified”
state until EWBE# is asserted.

Input Page 3-14

FERR# FPU Error Status indicates an unmasked floating point error has occurred.
FERR# is asserted during execution of the FPU instruction that caused the
error. FERR# does not float during bus hold states.

Output Page 3-19

FLUSH# Cache Flush forces the IBM 6x86 CPU to flush the cache. External
interrupts and additional FLUSH# assertions are ignored during the flush.
Cache inquiry cycles are permitted during the flush.

Input Page 3-15

HIT# Cache Hit indicates that the current cache inquiry address has been found in
the cache (modified, exclusive or shared states). HIT# is valid two clocks
after EADS# is sampled active, and remains valid until the next cache inquiry
cycle.

Output Page 3-18

HITM# Cache Hit Modified Data indicates that the current cache inquiry address
has been found in the cache and dirty data exists in the cache line (modified
state). The IBM 6x86 CPU does not accept additional cache inquiry cycles
while HITM# is asserted. HITM# is valid two clocks after EADS#.

Output Page 3-18

HLDA Hold Acknowledge indicates that the IBM 6x86 CPU has responded to the
HOLD input and relinquished control of the local bus. The IBM 6x86 CPU
continues to operate during bus hold as long as the on-chip cache can satisfy
bus requests.

Output Page 3-16

HOLD Hold Request indicates that another bus master has requested control of the
CPU’s local bus.

Input Page 3-16

IGNNE# Ignore Numeric Error forces the IBM 6x86 CPU to ignore any pending
unmasked FPU errors and allows continued execution of floating point
instructions.

Input Page 3-19

INTR Maskable Interrupt forces the processor to suspend execution of the
current instruction stream and begin execution of an interrupt service routine.
The INTR input can be masked (ignored) through the IF bit in the Flags
Register.

Input Page 3-14

INV Invalidate Request is sampled with EADS# to determine the final state of
the cache line in the case of a cache inquiry hit. An asserted INV directs the
processor to change the state of the cache line to “invalid”. A negated INV
directs the processor to change the state of the cache line to “shared.”

Input Page 3-18

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name Description I/O Reference

 3-5

3Signal Description Table

KEN# Cache Enable allows the data being returned during the current cycle to be
placed in the CPU’s cache. When the IBM 6x86 CPU is performing a
cacheable code fetch or memory data read cycle (CACHE# asserted), and
KEN# is sampled asserted, the cycle is transformed into a 32-byte cache line
fill. KEN# is sampled with the first asserted BRDY# or NA# for the cycle.

Input Page 3-15

LBA# Local Bus Access indicates that the current bus cycle is for an address
within the local bus address region. If LBA# is asserted during a CPU write
cycle with BE3#-BE0# negated, the IBM 6x86 CPU automatically maps the
upper DWORD of data to the lower DWORD of the data bus. LBA# floats if
scatter/gather pins are disabled.

Output Page 3-21

LOCK# Lock Status indicates that other system bus masters are denied access to the
local bus. The IBM 6x86 CPU does not enter the bus hold state in response to
HOLD while LOCK# is asserted.

Output Page 3-11

M/IO# Memory/IO Status. If high, indicates that the current bus cycle is a memory
cycle (read or write). If low, indicates that the current bus cycle is an I/O cycle
(read or write, interrupt acknowledge, or special cycle).

Output Page 3-11

NA# Next Address requests the next pending bus cycle address and cycle
definition information. If either the current or next bus cycle is a locked cycle,
a line replacement, a write-back cycle, or if there is no pending bus cycle, the
IBM 6x86 CPU does not start a pipelined bus cycle regardless of the state of
NA#.

Input Page 3-13

NMI Non-Maskable Interrupt Request forces the processor to suspend
execution of the current instruction stream and begin execution of an NMI
interrupt service routine.

Input Page 3-14

PCD Page Cache Disable reflects the state of the PCD page attribute bit in the
page table entry or the directory table entry. If paging is disabled, or for
cycles that are not paged, the PCD pin is driven low. PCD is masked by the
cache disable (CD) bit in CR0, and floats during bus hold states.

Output Page 3-15

PCHK# Data Parity Check indicates that a data bus parity error has occurred
during a read operation. PCHK# is only valid during the second clock
immediately after read data is returned to the IBM 6x86 CPU (BRDY#
asserted) and is inactive otherwise. Parity errors signaled by a logic low
on PCHK# have no effect on processor execution.

Output Page 3-10

PWT Page Write Through reflects the state of the PWT page attribute bit in the
page table entry or the directory table entry. PWT pin is negated during cycles
that are not paged, or if paging is disabled. PWT takes priority over
WB/WT#.

Output Page 3-15

QDUMP# Q Buffer Dump is used to dump the contents of the scatter/gather buffer
onto the data bus. The data bytes specified by the byte enables (BE7#-BE0#)
are driven onto the data bus during the clock after QDUMP# is sampled
asserted. QDUMP# is ignored if the scatter/gather pins are disabled.

Input Page 3-22

RESET Reset suspends all operations in progress and places the IBM 6x86 CPU into
a reset state. Reset forces the CPU to begin executing in a known state. All
data in the on-chip caches is invalidated.

Input Page 3-7

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name Description I/O Reference

3-6

Signal Description Table

SCYC Split Locked Cycle indicates that the current bus cycle is part of a
misaligned locked transfer. SCYC is defined for locked cycles only. A
misaligned transfer is defined as any transfer that crosses an 8-byte boundary.

Output Page 3-11

SMI# SMM Interrupt forces the processor to save the CPU state to the top of
SMM memory and to begin execution of the SMI service routine at the
beginning of the defined SMM memory space. An SMI is a higher-priority
interrupt than an NMI.

Input Page 3-14

SMIACT# SMM Interrupt Active indicates that the processor is operating in System
Management Mode. SMIACT# does not float during bus hold states.

Output Page 3-13

SUSP# Suspend Request requests that the CPU enter suspend mode. SUSP# is
ignored following RESET and is enabled by setting the SUSP bit in CCR2.

Input Page 3-22

SUSPA# Suspend Acknowledge indicates that the IBM 6x86 CPU has entered
low-power suspend mode. SUSPA# floats following RESET and is enabled
by setting the SUSP bit in CCR2.

Output Page 3-22

TCK Test Clock (JTAG) is the clock input used by the IBM 6x86 CPU's boundary
scan (JTAG) test logic.

Input Page 3-24

TDI Test Data In (JTAG) is the serial data input used by the IBM 6x86 CPU's
boundary scan (JTAG) test logic.

Input Page 3-24

TDO Test Data Out (JTAG) is the serial data output used by the IBM 6x86 CPU's
boundary scan (JTAG) test logic.

Output Page 3-24

TMS Test Mode Select (JTAG) is the control input used by the IBM 6x86 CPU's
boundary scan (JTAG) test logic.

Input Page 3-24

TRST# Test Mode Reset (JTAG) initializes the IBM 6x86 CPU's boundary scan
(JTAG) test logic.

Input Page 3-24

WB/WT# Write-Back/Write-Through is sampled during cache line fills to define the
cache line write policy. If high, the cache line write policy is write-back. If
low, the cache line write policy is write-through. (PWT forces write-through
policy when PWT=1.)

Input Page 3-15

WM_RST Warm Reset forces the IBM 6x86 CPU to complete the current instruction
and then places the IBM 6x86 CPU in a known state. Once WM_RST is
sampled active by the CPU, the reset sequence begins on the next instruction
boundary. WM_RST does not change the state of the configuration registers,
the on-chip cache, the write buffers and the FPU registers. WM_RST is
sampled during reset.

Input Page 3-9

W/R# Write/Read Status. If high, indicates that the current memory, or I/O bus
cycle is a write cycle. If low, indicates that the current bus cycle is a read
cycle.

Output Page 3-11

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name Description I/O Reference

 3-7

3Signal Descriptions

3.2 Signal Descriptions

The following paragraphs provide additional
information about the IBM 6x86 CPU signals.
For ease of this discussion, the signals are
divided into 16 functional groups as illustrated
in Figure 3-1 (Page 3-1).

3.2.1 Clock Control

The Clock Input (CLK) signal, supplied by the
system, is the timing reference use by the IBM
6x86 CPU bus interface. All external timing
parameters are defined with respect to the CLK
rising edge. The CLK signal enters the IBM
6x86 CPU where it is doubled or tripled to
produce the IBM 6x86 CPU internal clock
signal. During power on, the CLK signal must
be running even if CLK does not meet AC
specifications.

The Clock Multiplier (CLKMUL) input is
sampled during RESET to determine the
CPU’s core operating frequency. If
CLKMUL=0, the core frequency is 2x the
frequency of the CLK input. If CLKMUL=1,
the core frequency is 3x the frequency of the
CLK input. The CLKMUL input is connected
to an internal pull-down resistor. Therefore, if
CLKMUL is left unconnected, the core
frequency defaults to 2x the input CLK.
CLKMUL should be connected to Vss, Vcc, or
left unconnected. CLKMUL should not be
connected to a switching signal.

3.2.2 Reset Control

The IBM 6x86 CPU output signals are initial-
ized to their reset states during the CPU reset
sequence, as shown in Table 3-3 (Page 3-8).
The signal states given in Table 3-3 assume
that HOLD, AHOLD, and BOFF# are negated.

Asserting RESET suspends all operations in
progress and places the IBM 6x86 CPU in a
reset state. RESET is an asynchronous signal
but must meet specified setup and hold times to
guarantee recognition at a particular clock
edge.

On system power-up, RESET must be held
asserted for at least 1 msec after Vcc and CLK
have reached specified DC and AC limits. This
delay allows the CPU’s clock circuit to stabi-
lize and guarantees proper completion of the
reset sequence.

During normal operation, RESET must be
asserted for at least 15 CLK periods in order to
guarantee the proper reset sequence is
executed. When RESET negates (on its falling
edge), the pins listed in Table 3-2 determine if
certain IBM 6x86 CPU functions are enabled.

Table 3-2. Pins Sampled During RESET

SIGNAL
NAME

DESCRIPTION

FLUSH# If = 0, three-state test mode enabled.

QDUMP# If = 0, scatter/gather interface enabled.

WM_RST If = 1, built-in self test initiated.

3-8

Signal Descriptions

Table 3-3. Signal States During RESET

SIGNAL LINE STATE SIGNAL LINE STATE

A20M# Ignored INTR Ignored

A31-A3 Undefined until first ADS# INV Ignored

ADS# 1 KEN# Ignored

ADSC# 1 LBA# 1

AHOLD Recognized LOCK# 1

AP Undefined until first ADS# M/IO# Undefined until first ADS#

APCHK# 1 NA# Ignored

BE7#-BE0# Undefined until first ADS# NMI Ignored

BHOLD Ignored PCD Undefined until first ADS#

BOFF# Recognized PCHK# 1

BRDY# Ignored PWT Undefined until first ADS#

BRDYC# Ignored QDUMP# Enables scatter/gather interface pins

BREQ 0 RESET 1

CACHE# Undefined until first ADS# SCYC Undefined until first ADS#

D(63-0) Float SMI# Ignored

D/C# Undefined until first ADS# SMIACT# 1

DHOLD Ignored SUSP# Ignored

DP(7-0) Float SUSPA# Float

EADS# Ignored TCK Recognized

EWBE# Ignored TDI Recognized

FERR# 1 TDO Responds to TCK, TDI, TMS,
TRST#

FLUSH# Initiates three-state test mode TMS Recognized

HIT# 1 TRST# Recognized

HITM# 1 W/R# Undefined until first ADS#

HLDA Responds to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Initiates self-test

IGNNE# Ignored

 3-9

3Signal Descriptions

Warm Reset (WM_RST) allows the IBM
6x86 CPU to complete the current instruction
and then places the IBM 6x86 CPU in a known
state. WM_RST is an asynchronous signal, but
must meet specified setup and hold times in
order to guarantee recognition at a particular
CLK edge. Once WM_RST is sampled active
by the CPU, the reset sequence begins on the
next instruction boundary.

WM_RST differs from RESET in that the
contents of the on-chip cache, the write
buffers, the configuration registers and the
floating point registers contents remain
unchanged.

Following completion of the internal reset
sequence, normal processor execution begins
even if WM_RST remains asserted. If RESET
and WM_RST are asserted simultaneously,
WM_RST is ignored and RESET takes
priority. If WM_RST is asserted at the falling
edge of RESET, built-in self test (BIST) is
initiated.

3.2.3 Address Bus

The Address Bus (A31-A3) lines provide the
physical memory and external I/O device
addresses. A31-A5 are bi-directional signals
used by the IBM 6x86™ CPU to drive
addresses to both memory devices and I/O
devices. During cache inquiry cycles the IBM
6x86™ CPU receives addresses from the
system using signals A31-A5.

Using signals A31-A3, the IBM 6x86™ CPU
can address a 4-GByte memory address space.
Using signals A15-A3, the IBM 6x86™ CPU
can address a 64-KByte I/O space through the
processor’s I/O ports. During I/O accesses,
signals A31-A16 are driven low. A31-A3 float
during bus hold and address hold states.

The Byte Enable (BE7#-BE0#) lines are
bi-directional signals that define the valid data
bytes within the 64-bit data bus. The
correlation between the enable signals and data
bytes is shown in Table 3-4.

During a cache line fill, (burst read or “1+4”
burst read) the IBM 6x86 CPU expects data to
be returned as if all data bytes are enabled,
regardless of the state of the byte enables.
BE7#-BE0# float during bus hold and byte
enable hold states.

Address Bit 20 Mask (A20M#) is an active
low input which causes the IBM 6x86 CPU to
mask (force low) physical address bit 20 when
driving the external address bus or when
performing an internal cache access. Asserting
A20M# emulates the 1 MByte address
wrap-around that occurs on the 8086. The A20
signal is never masked during write-back
cycles, inquiry cycles, system management
address space accesses or when paging is
enabled, regardless of the state of the A20M#
input.

Table 3-4. Byte Enable Signal to
 Data Bus Byte Correlation

BYTE
ENABLE

CORRESPONDING
DATA BYTE

BE7# D63-D56

BE6# D55-D48

BE5# D47-D40

BE4# D39-D32

BE3# D31-D24

BE2# D23-D16

BE1# D15-D8

BE0# D7-D0

3-10

Signal Descriptions

3.2.4 Address Parity

Address Parity (AP) is a bi-directional signal
which provides the parity associated with
address lines A31-A5. (A4 and A3 are not
included in the parity determination.) During
IBM 6x86 CPU generated bus cycles, while the
address bus lines are driven, AP becomes an
output supplying even address parity. During
cache inquiry cycles, AP becomes an input and
is sampled by EADS#. During cache inquiry
cycles, even-parity must be placed on the AP
line to guarantee an accurate result on the
APCHK# (Address Parity Check Status) pin.

Address Parity Check Status (APCHK#) is
driven active by the CPU when an address bus
parity error has been detected for a cache
inquiry cycle. APCHK# is asserted two clocks
after EADS# is sampled asserted, and remains
valid for one clock only. Address parity errors
signaled by APCHK# have no effect on
processor execution.

3.2.5 Data Bus

Data Bus (D63-D0) lines carry three-state,
bi-directional signals between the IBM 6x86
CPU and the system (i.e., external memory and
I/O devices). The data bus transfers data to the
IBM 6x86 CPU during memory read, I/O read,
and interrupt acknowledge cycles. Data is
transferred from the IBM 6x86 CPU during
memory and I/O write cycles.

Data setup and hold times must be met for
correct read cycle operation. The data bus is
driven only while a write cycle is active.

3.2.6 Data Parity

The Data Parity Bus (DP7-DP0) provides and
receives parity data for each of the eight data
bus bytes (Table 3-5). The IBM 6x86 CPU
generates even parity on the bus during write
cycles and accepts even parity from the system
during read cycles. DP7-DP0 is driven only
while a write cycle is active.

Parity Check (PCHK#) is asserted when a
data bus parity error is detected. Parity is
checked during code, memory and I/O reads,
and the second interrupt acknowledge cycle.
Parity is not checked during the first interrupt
acknowledge cycle.

Parity is checked for only the active data bytes
as determined by the active byte enable signals
except during a cache line fill (burst read or
“1+4” burst read). During a cache line fill, the
IBM 6x86 CPU assumes all data bytes are valid
and parity is checked for all data bytes regard-
less of the state of the byte enables.

Table 3-5. Parity Bit to Data
Byte Correlation

PARITY BIT DATA BYTE

DP7 D63-D56

DP6 D55-D48

DP5 D47-D40

DP4 D39-D32

DP3 D31-D24

DP2 D23-D16

DP1 D15-D8

DP0 D7-D0

 3-11

3Signal Descriptions

PCHK# is valid only during the second clock
immediately after read data is returned to the
IBM 6x86 CPU (BRDY# asserted). At other
times PCHK# is not active. Parity errors
signaled by the assertion of PCHK# have no
effect on processor execution.

3.2.7 Bus Cycle Definition

Each bus cycle is assigned a bus cycle type. The
bus cycle types are defined by six three-state
outputs: CACHE#, D/C#, LOCK#, M/IO#,
SCYC, and W/R# as listed in Table 3-6 (Page
3-12).

These bus cycle definition signals are driven
valid while ADS# is active. D/C#, M/IO#,
W/R#, SCYC and CACHE# remain valid until
the clock following the earliest of two signals:
NA# asserted, or the last BRDY# for the cycle.

LOCK# continues asserted until after BRDY#
is returned for the last locked bus cycle. The
bus cycle definition signals float during bus
hold states.

Cache Cycle Indicator (CACHE#) is an
output that indicates that the current bus cycle
is a potentially cacheable cycle (for a read), or
indicates that the current bus cycle is a cache
line write-back or line replacement burst cycle
(for a write). If CACHE# is asserted for a read
cycle and the KEN# input is returned active by
the system, the read cycle becomes a cache line
fill burst cycle.

Data/Control (D/C#) distinguishes between
data and control operations. When high, this
signal indicates that the current bus cycle is a
data transfer to or from memory or I/O. When
low, D/C# indicates that the current bus cycle

involves a control function such as a halt, inter-
rupt acknowledge or code fetch.

Bus Lock (LOCK#) is an active low output
which, when asserted, indicates that other
system bus masters are denied access to control
of the CPU bus. The LOCK# signal may be
explicitly activated during bus operations by
including the LOCK prefix on certain instruc-
tions. LOCK# is also asserted during descriptor
updates, page table accesses, interrupt acknowl-
edge sequences and when executing the XCHG
instruction. However, if the NO_LOCK bit in
CCR1 is set, LOCK# is asserted only during
page table accesses and interrupt acknowledge
sequences. The IBM 6x86 CPU does not enter
the bus hold state in response to HOLD while
the LOCK# output is active.

Memory/IO (M/IO#) distinguishes between
memory and I/O operations. When high, this
signal indicates that the current bus cycle is a
memory read or memory write. When low,
M/IO# indicates that the current bus cycle is an
I/O read, I/O write, interrupt acknowledge
cycle or special bus cycle.

Split Cycle (SCYC) is an active high output
that indicates that the current bus cycle is part
of a misaligned locked transfer. SCYC is
defined for locked cycles only. A misaligned
transfer is defined as any transfer that crosses
an 8-byte boundary.

Write/Read (W/R#) distinguishes between
write and read operations. When high, this
signal indicates that the current bus cycle is a
memory write, I/O write or a special bus cycle.
When low, this signal indicates that the current
cycle is a memory read, I/O read or interrupt
acknowledge cycle.

3-12

Signal Descriptions

Table 3-6. Bus Cycle Types

BUS CYCLE TYPE M/IO# D/C# W/R# CACHE# LOCK#

Interrupt Acknowledge 0 0 0 1 0

Does not occur. 0 0 0 X 1

Does not occur. 0 0 1 X 0

Special Cycles:
If BE(7-0)# = FEh: Shutdown
If BE(7-0)# = FDh: Flush (INVD, WBINVD)
If A4 = 0 and BE(7-0)# = FBh: Halt (HLT)
If BE(7-0)# = F7h: Write-Back (WBINVD)
If BE(7-0)# = EFh: Flush Acknowledge
(FLUSH#)
If A4 = 1 and BE(7-0)# = FBh: Stop Grant
(SUSP#)

0 0 1 1 1

Does not occur. 0 1 X X 0

I/O Data Read 0 1 0 1 1

I/O Data Write 0 1 1 1 1

Does not occur. 1 0 X X 0

Cacheable Memory Code Read
(Burst Cycle if KEN# Returned Active)

1 0 0 0 1

Non-cacheable Memory Code Read 1 0 0 1 1

Does not occur. 1 0 1 X 1

Locked Memory Data Read 1 1 0 1 0

Cacheable Memory Data Read
(Burst Cycle if KEN# Returned Active)

1 1 0 0 1

Non-cacheable Memory Data Read 1 1 0 1 1

Locked Memory Write 1 1 1 1 0

Burst Memory Write
(Writeback or Line Replacement)

1 1 1 0 1*

Single Transfer Memory Write 1 1 1 1 1

Note: X = Don't Care
*Note: LOCK# continues to be asserted during a write-back cycle that occurs following an aborted (BOFF# asserted)
 locked bus cycle.

 3-13

3Signal Descriptions

3.2.8 Bus Cycle Control

The bus cycle control signals (ADS#, ADSC#,
BRDY#, BRDYC#, NA#, and SMIACT#)
indicate the beginning of a bus cycle and allow
system hardware to control bus cycle termina-
tion timing and address pipelining.

Address Strobe (ADS#) is an active low
output which indicates that the CPU has driven
a valid address and bus cycle definition on the
appropriate output pins. ADS# floats during
bus hold states.

Cache Address Strobe (ADSC#) performs
the same function as ADS#. ADSC# is used to
interface directly to a secondary cache
controller.

Burst Ready (BRDY#) is an active low input
that is driven by the system to indicate that the
current transfer within a burst cycle or the
current single transfer bus cycle can be termi-
nated. The CPU samples BRDY# in the second
and subsequent clocks of a cycle. BRDY# is
active during address hold states.

Cache Burst Ready (BRDYC#) performs the
same function as BRDY# and is logically
ORed with BRDY internally by the CPU.
BRDYC# is used to interface directly to a
secondary cache controller.

Next Address (NA#) is an active low input
that is driven by the system to request the next
pending bus cycle address and cycle definition
information even though all data transfers for
the current bus cycle are not complete. This
new bus cycle is referred to as a “pipelined”
cycle. If either the current or next bus cycle is a
locked cycle, a line replacement, a write-back

cycle or there is no pending bus cycle, the IBM
6x86 CPU does not start a pipelined bus cycle
regardless of the state of the NA# input.

System Management Mode Active
(SMIACT#) is an active low output which
indicates that the CPU is operating in System
Management Mode. SMIACT# is asserted in
response to the assertion of SMI# or due to
execution of the SMINT instruction.
SMIACT# is also asserted during accesses to
defined SMM memory if the SMAC bit in
CCR1 is set. This bit allows access to SMM
memory while not in SMM mode and is typi-
cally used for initialization purposes.

While servicing an SMI# interrupt or SMINT
instruction, SMIACT# remains asserted until a
RSM instruction is executed. The RSM
instruction causes the IBM 6x86™ CPU to exit
SMM mode and negate the SMIACT# output.
If a cache inquiry cycle occurs while
SMIACT# is active, any resulting write-back
cycle is issued with SMIACT# asserted. This
occurs even though the write-back cycle is
intended for normal memory rather than SMM
memory.

During RESET, the USE_SMI bit in CCR1 is
cleared. While USE_SMI is zero, SMIACT# is
always negated. SMIACT# does not float
during bus hold states.

3.2.9 Interrupt Control

The interrupt control signals (INTR, NMI,
SMI#) allow the execution of the current
instruction stream to be interrupted and
suspended.

3-14

Signal Descriptions

Maskable Interrupt Request (INTR) is an
active high level-sensitive input which causes
the processor to suspend execution of the
current instruction stream and begin execution
of an interrupt service routine. The INTR input
can be masked (ignored) through the IF bit in
the Flags Register.

When not masked, the IBM 6x86 CPU
responds to the INTR input by performing two
locked interrupt acknowledge bus cycles.
During the second interrupt acknowledge cycle,
the IBM 6x86 CPU reads an 8-bit value, the
interrupt vector, from the data bus. The 8-bit
interrupt vector indicates the interrupt level that
caused generation of the INTR and is used by
the CPU to determine the beginning address of
the interrupt service routine. To assure recogni-
tion of the INTR request, INTR must remain
active until the start of the first interrupt
acknowledge cycle.

Non-Maskable Interrupt Request (NMI) is a
rising edge sensitive input which causes the
processor to suspend execution of the current
instruction stream and begin execution of an
NMI interrupt service routine. The NMI inter-
rupt cannot be masked by the IF bit in the Flags
Register. Asserting NMI causes an interrupt
which internally supplies interrupt vector 2h to
the CPU core. Therefore, external interrupt
acknowledge cycles are not issued.

Once NMI processing has started, no additional
NMIs are processed until an IRET instruction is
executed, typically at the end of the NMI
service routine. If NMI is re-asserted prior to
execution of the IRET, one and only one NMI
rising edge is stored and then processed after
execution of the next IRET.

System Management Interrupt Request
(SMI#) is an interrupt input with higher priority
than the NMI input. SMI# is a falling edge
sensitive input and is sampled on every rising
edge of the processor input clock. Asserting
SMI# forces the processor to save the CPU
state to the top of SMM memory and to begin
execution of the SMI service routine at the
beginning of the defined SMM memory space.
After the processor internally acknowledges the
SMI# interrupt, the SMIACT# output is driven
low for the duration of the interrupt service
routine.

Once SMI# servicing has started, no additional
SMI# interrupts are processed until a RSM
instruction is executed. If SMI# is re-asserted
prior to execution of a RSM instruction, one
and only one SMI# falling edge is stored and
then processed after execution of the next
RSM. SMI# is ignored following reset and
recognition is enabled by setting the USE_SMI
bit in CCR1.

3.2.10 Cache Control

The cache control signals (EWBE#, FLUSH#,
KEN#, PCD, PWT, WB/WT#) are used to indi-
cate cache status and control caching activity.

External Write Buffer Empty (EWBE#) is an
active low input driven by the system to indi-
cate when there are no pending write cycles in
the external system. The IBM 6x86 CPU
samples EWBE# during write cycles (I/O and
memory) only. If EWBE# is not asserted, the
processor delays all subsequent writes to
on-chip cache lines in the “exclusive” or
“modified” state until EWBE# is asserted.
Regardless of the state of EWBE#, all writes to

 3-15

3Signal Descriptions

the on-chip cache are delayed until any previ-
ously issued external write cycle is complete.
This ensures that external write cycles occur in
program order and is referred to as “strong
write ordering”. To enhance performance,
“weak write ordering” may be allowed for
specific address regions using the Address
Region Registers (ARRs) and Region Control
Registers (RCRs).

Cache Flush (FLUSH#) is a falling edge sensi-
tive input that forces the processor to
write-back all dirty data in the cache and then
invalidate the entire cache contents. FLUSH#
need only be asserted for a single clock but
must meet specified setup and hold times to
guarantee recognition at a particular clock
edge.

Once FLUSH# is sampled active, the IBM
6x86™ CPU begins the cache flush sequence
after completion of the current instruction.
External interrupts and additional FLUSH#
requests are ignored while the cache flush is in
progress. However, cache inquiry cycles are
permitted during the flush sequence. The IBM
6x86™ CPU issues a flush acknowledge special
cycle to indicate completion of the flush
sequence. If the processor is in a halt or shut-
down state, FLUSH# is recognized and the
IBM 6x86 CPU returns to the halt or shutdown
state following completion of the flush
sequence. If FLUSH# is active at the falling
edge of RESET, the processor enters three state
test mode.

Cache Enable (KEN#) is an active low input
which indicates that the data being returned
during the current cycle is cacheable. When the
IBM 6x86 CPU is performing a cacheable code
fetch or memory data read cycle and KEN# is
sampled asserted, the cycle is transformed into

a cache line fill (4 transfer burst cycle) or a
“1+4” cache line fill. KEN# is sampled with
the first asserted BRDY# or NA# for the cycle.
I/O accesses, locked reads, system management
memory accesses and interrupt acknowledge
cycles are never cached.

Page Cache Disable (PCD) is an active high
output that reflects the state of the PCD page
attribute bit in the page table entry or the direc-
tory table entry. If paging is disabled or for
cycles that are not paged, the PCD pin is driven
low. PCD is masked by the cache disable (CD)
bit in CR0 (driven high if CD=1) and floats
during bus hold states.

Page Write Through (PWT) is an active high
output that reflects the state of the PWT page
attribute bit in the page table entry or the direc-
tory table entry. If paging is disabled or for
cycles that are not paged, the PWT pin is driven
low. If PWT is asserted, PWT takes priority
over the WB/WT# input. If PWT is asserted for
either reads or writes, the cache line is saved in,
or remains in, the shared (write-through) state.
PWT floats during bus hold states.

The Write-Back/Write-Through (WB/WT#)
input allows the system to define the write
policy of the on-chip cache on a line-by-line
basis. If WB/WT# is sampled high during a line
fill cycle and PWT is low, the line is defined as
write-back and is stored in the exclusive state.
If WB/WT# is sampled high during a write to a
write-through cache line (shared state) and
PWT is low, the line is transitioned to
write-back (exclusive state). If WB/WT# is
sampled low or PWT is high, the line is defined
as write-through and is stored in (line fill), or
remains in (write), the shared state. Table 3-7
(Page 3-16) lists the effects of WB/WT# on the
state of the cache line for various bus cycles.

3-16

Signal Descriptions

.

3.2.11 Bus Arbitration

The bus arbitration signals (BOFF#, BREQ,
HOLD, and HLDA) allow the IBM 6x86 CPU
to relinquish control of its local bus when
requested by another bus master device. Once
the processor has released its bus, the bus
master device can then drive the local bus
signals.

Back-Off (BOFF#) is an active low input that
forces the IBM 6x86 CPU to abort the current
bus cycle and relinquish control of the CPU's
local bus in the next clock. The IBM 6x86 CPU
responds to BOFF# by entering the bus hold
state as listed in Table 3-8 (Page 3-17). The
IBM 6x86 CPU remains in bus hold until
BOFF# is negated. Once BOFF# is negated, the
IBM 6x86 CPU restarts any aborted bus cycle
in its entirety. Any data returned to the IBM
6x86 CPU while BOFF# is asserted is ignored.
If BOFF# is asserted in the same clock that
ADS# is asserted, the IBM 6x86™ CPU may
float ADS# while in the active low state.

Table 3-7. Effects of WB/WT# on
 Cache Line State

BUS CYCLE
TYPE

PWT
WB/
WT#

WRITE
POLICY

MESI
STATE

Line Fill 0 0 Write-
through

Shared

Line Fill 0 1 Write-
back

Exclusiv
e

Line Fill 1 x Write-
through

Shared

Memory Write
(Note)

0 0 Write-
through

Shared

Memory
Write (Note)

0 1 Write-
back

Exclusiv
e

Memory Write
(Note)

1 x Write-
through

Shared

Note: Only applies to memory writes to addresses that are currently
valid in the cache.

Bus Request (BREQ) is an active high output
asserted by the IBM 6x86 CPU whenever a bus
cycle is pending internally. The IBM 6x86 CPU
always asserts BREQ in the first clock of a bus
cycle with ADS# as well as during bus hold and
address hold states if a bus cycle is pending. If
no additional bus cycles are pending, BREQ is
negated prior to termination of the current
cycle.

Bus Hold Request (HOLD) is an active high
input used to indicate that another bus master
requests control of the CPU's local bus. After
recognizing the HOLD request and completing
the current bus cycle or sequence of locked bus
cycles, the IBM 6x86 CPU responds by floating
the local bus and asserting the hold acknowl-
edge (HLDA) output. The bus remains granted
to the requesting bus master until HOLD is
negated. Once HOLD is sampled negated, the
IBM 6x86 CPU simultaneously drives the local
bus and negates HLDA.

Hold Acknowledge (HLDA) is an active high
output used to indicate that the IBM 6x86 CPU
has responded to the HOLD input and has relin-
quished control of its local bus. Table 3-8 (Page
3-17) lists the state of all the IBM 6x86 CPU
signals during a bus hold state. The IBM 6x86
CPU continues to operate during bus hold states
as long as the on-chip cache can satisfy bus
requests. HLDA is asserted until HOLD is
negated. Once HOLD is sampled negated, the
IBM 6x86 CPU simultaneously drives the local
bus and negates HLDA.

 3-17

3Signal Descriptions

Table 3-8. Signal States During Bus Hold

SIGNAL LINE STATE SIGNAL LINE STATE

A20M# Recognized internally INTR Recognized internally

A31-A3 Float INV Recognized

ADS# Float KEN# Ignored

ADSC# Float LBA# Float

AHOLD Ignored LOCK# Float

AP Float M/IO# Float

APCHK# Driven NA# Ignored

BE7#-BE0# Float NMI Recognized internally

BHOLD Ignored PCD Float

BOFF# Recognized PCHK# Driven

BRDY# Ignored PWT Float

BRDYC# Ignored QDUMP# Recognized

BREQ Driven RESET Recognized

CACHE# Float SCYC Float

D/C# Float SMI# Recognized

D63-D0 Float SMIACT# Driven

DHOLD Ignored SUSP# Recognized

DP7-DP0 Float SUSPA# Driven

EADS# Recognized TCK Recognized

EWBE# Recognized internally TDI Recognized

FERR# Driven TDO Responds to TCK, TDI, TMS, TRST#

FLUSH# Recognized TMS Recognized

HIT# Driven TRST# Recognized

HITM# Driven W/R# Float

HLDA Responds to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Recognized

IGNNE# Recognized internally

3-18

Signal Descriptions

3.2.12 Cache Coherency

The cache coherency signals (AHOLD,
EADS#, HIT#, HITM#, and INV) are used to
initiate and monitor cache inquiry cycles.
These signals are intended to be used to ensure
cache coherency in a uni-processor environ-
ment only. Contact IBM for additional specifi-
cations on maintaining coherency in a
multi-processor environment.

Address Hold Request (AHOLD) is an active
high input which forces the IBM 6x86 CPU to
float A31-A3 and AP in the next clock cycle.
While AHOLD is asserted, only the address bus
is disabled. The current bus cycle remains
active and can be completed in the normal
fashion. The IBM 6x86 CPU does not generate
additional bus cycles while AHOLD is asserted
except write-back cycles in response to a cache
inquiry cycle.

External Address Strobe (EADS#) is an
active low input used to indicate to the IBM
6x86 CPU that a valid cache inquiry address is
being driven on the IBM 6x86 CPU address bus
(A31-A5) and AP. The IBM 6x86 CPU checks
the on-chip cache for this address. If the address
is present in the cache the HIT# signal is
asserted. If the data associated with the inquiry
address is “dirty” (modified state), the HITM#
signal is also asserted. If dirty data exists, a
write-back cycle is issued to update external
memory with the dirty data. Additional cache
inquiry cycles are ignored while HITM# is
asserted.

The state of the INV pin at the time EADS# is
sampled active determines the final state of the
cache line. If INV is sampled high, the final
state of the cache line is “invalid”. If INV is

sampled low, the final state of the cache line is
“shared”. A cache inquiry cycle using EADS#
may be run while the IBM 6x86 CPU is in
either an address hold or bus hold state. The
inquiry address must be driven by an external
device.

Hit on Cache Line (HIT#) is an active low
output used to indicate that the current cache
inquiry address has been found in the cache
(modified, exclusive or shared states). HIT# is
valid two clocks after EADS# is sampled
active, and remains valid until the next cache
inquiry cycle.

Hit on Modified Data (HITM#) is an active
low output used to indicate that the current
cache inquiry address has been found in the
cache and dirty data exists in the cache line
(modified state). If HITM# is asserted, a
write-back cycle is issued to update external
memory. HITM# is valid two clocks after
EADS# is sampled active, and remains asserted
until two clocks after the last BRDY# of the
write-back cycle is sampled active. The IBM
6x86 CPU does not accept additional cache
inquiry cycles while HITM# is asserted.

Invalidate Request (INV) is an active high
input used to determine the final state of the
cache line in the case of a cache inquiry hit.
INV is sampled with EADS#. A logic one on
INV directs the processor to change the state of
the cache line to “invalid”. A logic zero on
INV directs the processor to change the state of
the cache line to “shared”.

 3-19

3Signal Descriptions

3.2.13 FPU Error Interface

The FPU interface signals FERR# and IGNNE#
are used to control error reporting for the
on-chip floating point unit. These signals are
typically used for a PC-compatible system
implementation. For other applications, FPU
errors are reported to the IBM 6x86 CPU core
through an internal interface.

Floating Point Error Status (FERR#) is an
active low output asserted by the IBM 6x86
CPU when an unmasked floating point error
occurs. FERR# is asserted during execution of
the FPU instruction that caused the error.
FERR# does not float during bus hold states.

Ignore Numeric Error (IGNNE#) is an active
low input which forces the IBM 6x86 CPU to
ignore any pending unmasked FPU errors and
allows continued execution of floating point
instructions. When IGNNE# is not asserted and
an unmasked FPU error is pending, the IBM
6x86 CPU only executes the following floating
point instructions: FNCLEX, FNINIT,
FNSAVE, FNSTCW, FNSTENV, and
FNSTSW#. IGNNE# is ignored when the NE
bit in CR0 is set to a 1.

3.2.14 Scatter/Gather Buffer
 Interface

The scatter/gather buffer interface signals
(BHOLD, DHOLD, LBA#, QDUMP#), in
conjunction with the byte enables
(BE7#-BE0#) and address hold (AHOLD), can
be used by the system hardware to transfer data
to/from a 32-bit peripheral interface bus. A
64-bit buffer resides in the IBM 6x86 CPU to
assist the system in these transfers. This buffer
provides scatter/gather capability during four
different types of transfers as listed in Table 3-9
(Page 3-20).

3-20

Signal Descriptions

Table 3-9. Scatter/Gather Cycles

CYCLE TYPE
BHOLD
USED

DHOLD
 USED

QDUMP#
 USED

DATA BUS TIMING

CPU Write to 32-Bit Bus x -- -- Data driven 1 clock after byte enables
asserted.

CPU Read from 32-Bit Bus x -- -- Data sampled 1 clock after byte
enables asserted.

32-Bit Bus Master Write to Memory *

 (1) Scatter/gather buffer load from
 32-bit bus master.

x x -- Data sampled 1 clock after byte
enables asserted.

 (2) Scatter/gather buffer write
 to memory.

x -- x Data driven 1 clock after QDUMP#
asserted.

32-Bit Bus Master Read from Memory
*

 (1) Scatter/gather buffer load
 from memory.

x x -- Data sampled 1 clock after byte
enables asserted.

 (2) Scatter/gather buffer write to 32-bit
 bus master.

x -- x Data driven 1 clock after QDUMP#
asserted.

*Note: Bus master transfers using the scatter/gather buffer must be initiated while the CPU bus is in a bus hold state or an idle state. These
cycles cannot occur during CPU initiated bus cycles.

BHOLD is asserted by the external system
during scatter/gather buffer cycles. While
BHOLD is asserted, the byte enables are
driven by an external source and indicate
which bytes of the data bus should be loaded
into/written out of the scatter/gather buffer.
The IBM 6x86 CPU samples the byte enables
at each rising clock edge while BHOLD is
asserted. Table 3-10 (Page 3-21) lists the byte
enable mappings for the scatter/gather cycles.

Byte Enable Hold (BHOLD) is an active high
input that causes the IBM 6x86 CPU to float
the byte enable outputs (BE7#-BE0#) in the
next clock. While BHOLD is asserted, only the
byte enables are disabled. The current bus
cycle remains active and can be completed in
the normal fashion. The IBM 6x86 CPU
continues to generate additional bus cycles
while BHOLD is asserted, so BHOLD should
only be asserted while AHOLD is asserted.

 3-21

3Signal Descriptions

.

Table 3-10. Byte Enable Map for Scatter/Gather Cycles

CYCLE TYPE BE7-BE0# SOURCE DESTINATION

CPU Read from 32-Bit Bus CPU Data Bus Scatter/Gather Buffer
F F No Transfer No Transfer
F x 31-0 31-0
x F 31-0 63-32
x x 63-0 63-0

CPU Write to 32-Bit Bus* Scatter/Gather Buffer CPU Data Bus
F F No Transfer No Transfer
F x 31-0 31-0
x F 63-32 31-0
x x 63-0 63-0

Scatter/Gather Buffer Load
for 32-Bit Bus Master

CPU Data Bus Scatter/Gather Buffer
F F No Transfer No Transfer
F x 31-0 31-0
x F 31-0 63-32
x x 63-0 63-0

Scatter/Gather Buffer Dump
using QDUMP#

Scatter/Gather Buffer CPU Data Bus
F F No Transfer No Transfer
F x 31-0 31-0
x F 63-32 31-0
x x 63-0 63-0

*Note: If LBA# is active during a CPU write cycle with BE3-BE0# inactive, the IBM 6x86 CPU automatically maps the upper
dword of data (D63-D32) to the lower dword of the data bus (D31-D0).

Data Bus Hold (DHOLD) is an active
high input that forces the IBM 6x86 CPU
to float the data bus lines (D63-D0) and
the data parity lines (DP7-DP0) in the next
clock. While DHOLD is asserted, only the
data and data parity buses are disabled.
The current bus cycle remains active and
is completed in the normal fashion in
response to BRDY#. The IBM 6x86 CPU
generates additional bus cycles while
DHOLD is asserted. To avoid writing
invalid data, during a write cycle, DHOLD
and BRDY# should not be asserted at the
same time,

The external system asserts DHOLD
during scatter/gather buffer load cycles

when the IBM 6x86 CPU is not the bus
master. While DHOLD is asserted, the
data bus is driven by an external source
and the information is loaded into the
scatter/gather buffer based on the state of
the byte enables (BHOLD asserted). The
data bus is sampled one clock after the
clock edge at which an active byte enable
is sampled.

Local Bus Access (LBA#) is an active low
output asserted by the IBM 6x86 CPU for
any I/O bus cycle or for any bus access
that resides within a “local bus” address
region as specified by the on-chip configu-
ration registers. LBA# is asserted during

3-22

Signal Descriptions

the clock that ADS# is asserted and remains
asserted for only one clock. LBA# is used to
indicate a cycle intended to address a device
using the 32-bit peripheral bus. If LBA# is
active during a CPU write cycle with BE(3-0)#
inactive, the IBM 6x86 CPU automatically
maps the upper dword of data to the lower
dword of the data bus.

Q Buffer Dump (QDUMP#) is an active low
input asserted by the external system to dump
the contents of the scatter/gather buffer to the
data bus. The data bytes specified by the
asserted byte enables are driven onto the data
bus during the clock after QDUMP# is
sampled asserted. QDUMP# must be asserted
at the falling edge of RESET to enable the
scatter/gather interface pins.

3.2.15 Power Management
Interface

The two power management signals (SUSP#,
SUSPA#) allow the IBM 6x86 CPU to enter
and exit suspend mode. The IBM 6x86 CPU
also enters suspend mode as the result of
executing a HALT instruction if the HALT bit
is set in CCR2. Suspend mode circuitry forces
the IBM 6x86 CPU to consume minimal power
while maintaining the entire internal CPU
state.

Suspend Request (SUSP#) is an active low
input which requests that the IBM 6x86 CPU
enter suspend mode. After recognition of an
active SUSP# input, the IBM 6x86 CPU
completes execution of the current instruction,
any pending decoded instructions and associ-
ated bus cycles, issues a stop grant bus cycle,
and then asserts the SUSPA# output. SUSP# is

ignored following RESET and is enabled by
setting the SUSP bit in CCR2.

The Suspend Acknowledge (SUSPA#) output
indicates that the IBM 6x86 CPU has entered
low-power suspend mode as the result of either
assertion of SUSP# or execution of a HALT
instruction. SUSPA# remains asserted until
SUSP# is negated, or until an interrupt is
serviced if suspend mode was entered via the
HALT instruction. If SUSP# is asserted and
then negated prior to SUSPA# assertion,
SUSPA# may toggle state after SUSP#
negates.

The IBM 6x86 CPU accepts cache flush
requests and cache inquiry cycles while
SUSPA# is asserted. If FLUSH# is asserted,
the CPU exits the low power state and services
the flush request. After completion of all
required write-back cycles, the CPU returns to
the low power state. SUSPA# negates during
the write-back cycles. Before issuing the
write-back cycle, the CPU may execute several
code fetches.

If AHOLD, BOFF# or HOLD is asserted while
SUSPA# is asserted, the CPU exits the low
power state in preparation for a cache inquiry
cycle. After completion of any required
write-back cycles resulting from the cache
inquiry, the CPU returns to the low power state
only if HOLD, BOFF# and AHOLD are
negated. SUSPA# negates during the
write-back cycle.

Table 3-11 (Page 3-23) lists the IBM 6x86
CPU signal states for suspend mode when
initiated by either SUSP# or the HALT instruc-
tion. SUSPA# is disabled (three-state)
following RESET and is enabled by setting the
SUSP bit in CCR2.

 3-23

3Signal Descriptions

Table 3-11. Signal States During Suspend Mode

SIGNAL LINE
SUSP# INITIATED/
HALT INITIATED

SIGNAL LINE
SUSP# INITIATED/
HALT INITIATED

A20M# Ignored INTR Latched/Recognized

A31-A3 Driven INV Recognized

ADS# 1 KEN# Ignored

ADSC# 1 LBA# 1

AHOLD Recognized LOCK# 1

AP Driven M/IO# Driven

APCHK# 1 NA# Ignored

BE7#-BE0# Driven NMI Latched/Recognized

BHOLD Ignored PCD Driven

BOFF# Recognized PCHK# 1

BRDY# Ignored PWT Driven

BRDYC# Ignored QDUMP# Ignored

BREQ 0 RESET Recognized

CACHE# Driven SCYC Driven

D/C# Driven SMI# Latched/Recognized

D63-D0 Float SMIACT# 1

DHOLD Ignored SUSP# 0 / Recognized

DP7-DP0 Float SUSPA# 0

EADS# Recognized TCK Recognized

EWBE# Ignored TDI Recognized

FERR# 1 TDO Responds to TCK, TDI, TMS,
TRST#

FLUSH# Recognized TMS Recognized

HIT# Driven TRST# Recognized

HITM# 1 W/R# Driven

HLDA Driven in response to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Latched/Recognized

IGNNE# Ignored

3-24

Signal Descriptions

3.2.16 JTAG Interface

The IBM 6x86 CPU can be tested using JTAG
Interface (IEEE Std. 1149.1) boundary scan
test logic. The IBM 6x86 CPU pin state can be
set according to serial data supplied to the chip.
The IBM 6x86 CPU pin state can also be
recorded and supplied as serial data.

Test Clock (TCK) is the clock input used by
the IBM 6x86 CPU boundary scan (JTAG) test
logic. The rising edge of TCK is used to clock
control and data information into the IBM
6x86 CPU using the TMS and TDI pins. The
falling edge of TCK is used to clock data infor-
mation out of the IBM 6x86 CPU using the
TDO pin.

Test Data Input (TDI) is the serial data input
used by the IBM 6x86 CPU boundary scan
(JTAG) test logic. TDI is sampled on the rising
edge of TCK.

Test Data Output (TDO) is the serial data
output used by the IBM 6x86 CPU boundary
scan (JTAG) test logic. TDO is output on the
falling edge of TCK.

Test Mode Select (TMS) is the control input
used by the IBM 6x86 CPU boundary scan
(JTAG) test logic. TMS is sampled on the
rising edge of TCK.

Test Reset (TRST#) is an active low input
used to initialize the IBM 6x86 CPU boundary
scan (JTAG) test logic.

