
 3-25

3Functional Timing

3.3 Functional Timing

3.3.1 Reset Timing

Figure 3-2 illustrates the required RESET tim-
ing for both a power-on reset and a reset that
occurs during operation. The WM_RST,
FLUSH# and QDUMP# inputs are sampled at

Figure 3-2. RESET Timing

the falling edge of RESET to determine if the
6x86 CPU should enter built-in self-test, enable
tri-state test mode or enable the scatter-gather
interface pins, respectively. WM_RST,
FLUSH# and QDUMP# must be valid at least
two clocks prior to the RESET falling edge.

VALID

VALID

VALID

Reset after Power-On = 15 CLKs Min.

Reset Inactive = 2 CLKs Min.

Power-On Reset = 1 msec Min.

CLK

RESET

WM_RST

FLUSH#

QDUMP#

1734900

Note 1. ADS# asserted approximately 150-200 clocks after RESET falling edge if no built-in self-test

Note 2. ADS# asserted approximately 2**19 clocks after RESET falling edge if built-in self-test requested.

Note 3. Output pins driven to specified RESET state a maximum of 2 CLKs after RESET rising edge.

Power-On Reset = 1 msec Min.

Reset Inactive = 2 CLKs Min.

Reset after Power-On = 15 CLKs Min.

3-26

Functional Timing

3.3.2 Bus State Definition

The 6x86 CPU bus controller supports non-pipelined and pipelined operation as well as single
transfer and burst bus cycles. During each CLK period, the bus controller exists in one of six
states as listed in Table 3-12. Each of these bus states and its associated state transitions is illus-
trated in Figure 3-3, (Page 3-27) and listed in Table 3-13, (Page 3-28).

Table 3-12. 6x86 CPU Bus States

STATE NAME DESCRIPTION

Ti Idle Clock During Ti, no bus cycles are in progress. BOFF# and RESET force the
bus to the idle state. The bus is always in the idle state while HLDA is
active.

T1 First Bus Cycle Clock During the first clock of a non-pipelined bus cycle, the bus enters the T1
state. ADS# is asserted during T1 along with valid address and bus cycle
definition information.

T2 Second and Subsequent
Bus Cycle Clock

During the second clock of a non-pipelined bus cycle, the bus enters the
T2 state. The bus remains in the T2 state for subsequent clocks of the bus
cycle as long as a pipelined cycle is not initiated. During T2, valid data is
driven during write cycles and data is sampled during reads. BRDY# is
also sampled during T2. The bus also enters the T2 state to complete bus
cycles that were initiated as pipelined cycles but complete as the only
outstanding bus cycle.

T12 First Pipelined Bus Cycle
Clock

During the first clock of a pipelined cycle, the bus enters the T12 state.
During T12, data is being transferred and BRDY# is sampled for the
current cycle at the same time that ADS# is asserted and address/bus cycle
definition information is driven for the next (pipelined) cycle.

T2P Second and Subsequent
Pipelined Bus Cycle Clock

During the second and subsequent clocks of a pipelined bus cycle where
two cycles are outstanding, the bus enters the T2P state. During T2P, data
is being transferred and BRDY# is sampled for the current cycle.
However, valid address and bus cycle definition information continues to
be driven for the next pipelined cycle.

Td Dead Clock The bus enters the Td state if a pipelined cycle was initiated that requires
one idle clock to turn around the direction of the data bus. Td is required
for a read followed immediately by a pipelined write, and for a write
followed immediately by a pipelined read.

 3-27

3Functional Timing

Figure 3-3. IBM 6x86 CPU Bus State Diagram

Ti

T1

T2P

TD

1741800

B

C

J

M

I

N

O

K

D

A

F

L

T2

T12

P (from any state)

E

G H

3-28

Functional Timing

Table 3-13. Bus State Transitions

TRANSITION
CURRENT

STATE
NEXT

STATE
EQUATION

A Ti Ti No Bus Cycle Pending.

B Ti T1 New or Aborted Bus Cycle Pending.

C T1 T2 Always.

D T2 T2 Not Last BRDY# and No New Bus Cycle Pending, or
Not Last BRDY# and New Bus Cycle Pending and NA#
Negated.

E T2 T1 Last BRDY# and New Bus Cycle Pending and HITM# Negated.

F T2 Ti Last BRDY# and No New Bus Cycle Pending, or
Last BRDY# and HITM# Asserted.

G T2 T12 Not Last BRDY# and New Bus Cycle Pending and NA#
Sampled Asserted.

H T12 T2 Last BRDY# and No Dead Clock Required.

I T12 Td Last BRDY# and Dead Clock Required.

J T12 T2P Not Last BRDY#.

K T2P T2P Not Last BRDY#.

L T2P T2 Last BRDY# and No Dead Clock Required.

M T2P Td Last BRDY# and Dead Clock Required.

N Td T12 New Bus Cycle Pending and NA# Sampled Asserted.

O Td T2 No New Bus Cycle Pending, or
New Bus Cycle Pending and NA# Negated.

P Any
State

Ti RESET Asserted, or
BOFF# Asserted.

 3-29

3Functional Timing

3.3.3 Non-pipelined Bus
Cycles

Non-pipelined bus operation may be used for
all bus cycle types. The term “non-pipelined”
refers to a mode of operation where the CPU
allows only one outstanding bus cycle. In
other words, the current bus cycle must com-
plete before a second bus cycle is allowed to
start.

3.3.3.1 Non-pipelined Single
Transfer Cycles

Single transfer read cycles occur during
non-cacheable memory reads, I/O read cycles,
and special cycles. A non-pipelined single
transfer read cycle begins with address and bus
cycle definition information driven on the bus
during the first clock (T1 state) of the bus
cycle. The CPU then monitors the BRDY#
input at the end of the second clock (T2 state).
If BRDY# is asserted, the CPU reads the
appropriate data and data parity lines and ter-
minates the bus cycle. If BRDY# is not active,
the CPU continues to sample the BRDY# input
at the end of each subsequent cycle (T2 states).
Each of the additional clocks is referred to as a
wait state.

The CPU uses the data parity inputs to check
for even parity on the active data lines. If the
CPU detects an error, the parity check output
(PCHK#) asserts during the second clock fol-
lowing the termination of the read cycle.

Figure 3-4 (Page 3-30) illustrates the func-
tional timing for two non-pipelined sin-
gle-transfer read cycles. Cycle 2 is a
potentially cacheable cycle as indicated by the
CACHE# output. Because this cycle is poten-
tially cacheable, the CPU samples the KEN#
input at the same clock edge that BRDY# is
asserted. If KEN# is negated, the cycle termi-
nates as shown in the diagram. If KEN# is
asserted, the CPU converts this cycle into a
burst cycle as described in the next section.
NA# must be negated for non-pipelined opera-
tion. Pipelined bus cycles are described later
in this chapter.

3-30

Functional Timing

Figure 3-4. Non-Pipelined Single Transfer Read Cycles

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T1 T2

VALID

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN

VALID

Cycle 1:

0 Wait State Read

Cycle 2:
Potentially Cacheable,
2 Wait-State Read

Non-Cacheable,

CYCLE 1 CYCLE 2

T2 T2 Ti Ti Ti

IN

VALID

 3-31

3Functional Timing

Single transfer write cycles occur for writes
that are neither line replacement nor write-back
cycles. The functional timing of two non-pipe-
lined single transfer write cycles is shown in
Figure 3-5. During a write cycle, the data and
data parity lines are outputs and are driven
valid during the second clock (T2 state) of the

bus cycle. Data and data parity remain valid
during all wait states. If the write cycle is a
write to a valid cache location in the “shared”
state, the WB/WT# pin is sampled with
BRDY#. If WB/WT# is sampled high, the
cache line transitions from the “shared” to the
“exclusive” state.

Figure 3-5. Non-Pipelined Single Transfer Write Cycles

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T1 T2

VALID

NA#

BRDY#

DATA, DP OUT

CYCLE 1 CYCLE 2

Cycle 1:
0 Wait-State Write

Cycle 2:
2 Wait-State Write

WB/WT# VALID

T2 T2 Ti

OUT

VALID

3-32

Functional Timing

Each time BRDY# is sampled asserted during
the burst cycle, a data transfer occurs. The
CPU reads the data and data parity busses and
assigns the data to an internally generated
burst address. Although the CPU internally
generates the burst address sequence, only the
first address of the burst is driven on the exter-
nal address bus. System logic must predict the
burst address sequence based on the first
address. Wait states may be added to any
transfer within a burst by delaying the asser-
tion of BRDY# by the desired number of
clocks.

The CPU checks even data parity for each of
the four transfers within the burst. If the CPU
detects an error, the parity check output
(PCHK#) asserts during the second clock fol-
lowing the BRDY# assertion of the data trans-
fer.

Figure 3-6 (Page 3-33) illustrates two
non-pipelined burst read cycles. The cycles
shown are the fastest possible burst sequences
(2-1-1-1). NA# must be negated for non-pipe-
lined operation as shown in the diagram. Pipe-
lined bus cycles are described later in this
chapter.

Figure 3-7 (Page 3-34) depicts a burst read
cycle with wait states. A 3-2-2-2 burst read is
shown.

3.3.3.2 Non-pipelined Burst
Read Cycles

The 6x86 CPU uses burst read cycles to per-
form cache line fills. During a burst read
cycle, four 64-bit data transfers occur to fill
one of the CPU’s 32-byte internal cache lines.
A non-pipelined burst read cycle begins with
address and bus cycle definition information
driven on the bus during the first clock (T1
state) of the bus cycle. The CACHE# output is
always active during a burst read cycle and is
driven during the T1 clock.

The CPU then monitors the BRDY# input at
the end of the second clock (T2 state). If
BRDY# is asserted, the CPU reads the data
and data parity and also checks the KEN#
input. If KEN# is negated, the CPU terminates
the bus cycle as a single transfer cycle. If
KEN# is asserted, the CPU converts the cycle
into a burst (cache line fill) by continuing to
sample BRDY# at the end of each subsequent
clock. BRDY# must be asserted a total of four
times to complete the burst cycle.

WB/WT# is sampled at the same clock edge as
KEN#. In conjunction with PWT and the
on-chip configuration registers, WB/WT#
determines the MESI state of the cache line for
the current line fill.

 3-33

3Functional Timing

Figure 3-6. Non-Pipelined Burst Read Cycles

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T2 T2 T1 T2 T2

VALID

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN IN

VALID

Cycle 1: 2-1-1-1 Burst Read Cycle

T2 T2 Ti

IN IN IN ININ IN

VALID VALID VALID VALID VALID VALID

Cycle 2: 2-1-1-1 Burst Read Cycle

WB/WT# VALID VALID

CYCLE 2CYCLE 1

3-34

Functional Timing

Figure 3-7. Burst Cycle with Wait States

ples the state of KEN#. If KEN# is active, the
CPU then performs the burst cycle with the
address sequence shown in Table 3-14 (Page
3-35). The IBM 6x86 CPU CACHE# output is
not asserted during the single read cycle prior
to the burst. Therefore, CACHE# must not be
used to qualify the KEN# input to the proces-
sor. In addition, if KEN# is returned active for
the “1” read cycle in the “1+4”, all data bytes
supplied to the CPU must be valid. The CPU
samples WB/WT# during the “1” read cycle,
and does not resample WB/WT# during the
following burst cycle. Figure 3-8 (Page 3-35)
illustrates a “1+4” burst read cycle.

Burst Cycle Address Sequence.

The IBM 6x86 CPU provides two different
address sequences for burst read cycles.
TheIBM 6x86 CPU burst cycle address
sequence modes are referred to as “1+4” and
“linear”. After reset, the CPU default mode is
“1+4”.

In “1+4” mode, the CPU performs a single
transfer read cycle prior to the burst cycle, if
the desired first address is (...xx8). During this
single transfer read cycle, the CPU reads the
critical data. In addition, the 6x86 CPU sam-

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T2 T2 T2 T2 T2

BRDY#

KEN#

DATA, DP

PCHK#

IN

Cycle 1: 3-2-2-2 Burst Read Cycle 1735400

T2 Ti Ti

VALID VALID VALID VALID

IN IN IN

CYCLE 1

WB/WT# VALID

 3-35

3Functional Timing

.

Table 3-14. “1+4” Burst Address Sequences

BURST CYCLE FIRST
ADDRESS

SINGLE READ CYCLE
PRIOR TO BURST

BURST CYCLE ADDRESS
 SEQUENCE

0 None 0-8-10-18

8 Address 8 0-8-10-18

10 None 10-18-0-8

18 Address 18 10-18-0-8

Figure 3-8. “1+4” Burst Read Cycle

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T1 T2 T2 T2 T2 Ti

NA#

BRDY#

DATA, DP IN

KEN# must be asserted for both cycles.

1740300

Ti

Cycle 1: Single transfer read

WB/WT#

PCHK#

VALID (A4-A0 = 08h or 18h) VALID (A4-A0 = 00h or 10h)

VALID VALID VALID VALID VALID

IN IN IN IN

CYCLE 1 CYCLE 2

KEN#

VALID

Cycle 2: 2-1-1-1 Burst Read Cycle

3-36

Functional Timing

The address sequences for the 6x86 CPU's linear burst mode are shown in Table 3-15. Oper-
ating the CPU in linear burst mode minimizes processor bus activity resulting in higher sys-
tem performance. Linear burst mode can be enabled through the IBM 6x86 CPU CCR3
configuration register.

Table 3-15. Linear Burst Address Sequences

BURST CYCLE FIRST
ADDRESS

BURST CYCLE ADDRESS
 SEQUENCE

0 0-8-10-18

8 8-10-18-0

10 10-18-0-8

18 18-0-8-10

 3-37

3Functional Timing

3.3.3.3 Burst Write Cycles

Burst write cycles occur for line replacement
and write-back cycles. Burst writes are similar
to burst read cycles in that the CACHE# output
is asserted and four 64-bit data transfers occur.
Burst writes differ from burst reads in that the
data and data parity lines are outputs rather than
inputs. Also, KEN# and WB/WT# are not sam-
pled during burst write cycles.

Data and data parity for the first data transfer
are driven valid during the second clock (T2
state) of the bus cycle. Once BRDY# is sam-
pled asserted for the first data transfer, valid
data and data parity for the second transfer are
driven during the next clock cycle. The same
timing relationship between BRDY# and data
applies for the third and fourth data transfers as
well. Wait states may be added to any transfer
within a burst by delaying the assertion of
BRDY# by the required number of clocks.

As on burst read cycles, only the first address
of a burst write cycle is driven on the external
address bus. System logic must predict the
remaining burst address sequence based on the
first address. Burst write cycles always begin
with a first address ending in 0 (signals
A4-A0=0) and follow an ascending address
sequence for the remaining transfers
(0-8-10-18).

Figure 3-9 illustrates two non-pipelined burst
write cycles. The cycles shown are the fastest
possible burst sequences (2-1-1-1). As shown,
an idle clock always exists between two
back-to-back burst write cycles. Therefore, the
second burst write cycle in a pair of
back-to-back burst writes is always issued as a
non-pipelined cycle regardless of the state of
the NA# input.

Figure 3-9. Non-Pipelined Burst Write Cycles

VALID (A4-A0 = 00h)

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T2 T2 Ti* T1 T2

VALID (A4-A0 = 00h)

NA#

BRDY#

DATA, DP OUT OUT

Cycle 1: 2-1-1-1 Burst Write Cycle 1735300

T2 T2 T2

OUT OUT OUT OUTOUT OUT

Cycle 2: 2-1-1-1 Burst Write Cycle

Ti

*Note: Ti state always exists between two back-to-back burst write cycles.

CYCLE 1 CYCLE 2

3-38

Functional Timing

3.3.4 Pipelined Bus Cycles

Pipelined addressing is a mode of operation
where the CPU allows up to two outstanding
bus cycles at any given time. Using pipelined
addressing, the address of the first bus cycle is
driven on the bus and while the CPU waits for
the data for the first cycle, the address for a
second bus cycle is issued. Pipelined bus
cycles occur for all cycle types except locked
cycles and burst write cycles.

Pipelined cycles are initiated by asserting
NA#. The CPU samples NA# at the end of
each T2, T2P and Td state. KEN# and
WB/WT# are sampled at either the same clock
as NA# is active, or at the same clock as the
first BRDY# for that cycle, whichever occurs
first. The CPU issues the next address a mini-

mum of two clocks after NA# is sampled
asserted.

The CPU latches the state of the NA# pin
internally. Therefore, even if a new bus cycle
is not pending internally at the time NA# was
sampled asserted, the CPU still issues a pipe-
lined bus cycle if an internal bus request
occurs prior to completion of the current bus
cycle. Once NA# is sampled asserted, the state
of NA# is ignored until the current bus cycle
completes. If two cycles are outstanding and
the second cycle is a read, the CPU samples
KEN# and WB/WT# for the second cycle
when NA# is sampled asserted.

Figure 3-10 and Figure 3-11 (Page 3-39) illus-
trate pipelined single transfer read cycles and
pipelined burst read cycles, respectively.

Figure 3-10. Pipelined Single Transfer Read Cycles

VALID 1

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T12 T2 T2 Ti

VALID 2

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN 1 IN 2

VALID 1 VALID 2

Cycle 1:
2 Wait State Read

Cycle 2:Potentially Cacheable,
Pipelined Read Cycle

Non-Cacheable,

CYCLE 1 CYCLE 2
CPU enters idle bus state because

no bus cycle pending internally.

KEN# sampled when NA# sampled asserted.

T2

 3-39

3Functional Timing

Figure 3-11. Pipelined Burst Read Cycles

VALID 1

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T12 T2P T2 T2 T2

VALID 2

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN 1 IN 1

VALID 1

Cycle 1: 2-1-1-1 Burst Read Cycle 1741500

T2 Ti Ti

IN 1 IN 1 IN 2 IN 2 IN 2

VALID 1 VALID 1 VALID 1 VALID 2 VALID 2 VALID 2

Cycle 2: Pipelined Burst Read Cycle

IN 2

VALID 2

CYCLE 1 CYCLE 2

WB/WT# VALID VALID

3-40

Functional Timing

3.3.4.1 Pipelined
Back-to-Back
Read/Write Cycles

Figure 3-12 depicts a read cycle followed by a
pipelined write cycle. Under this condition,
the data bus must change from an input for the
read cycle to an output for the write cycle. In
order to accomplish this transition without

causing data bus contention, the CPU automat-
ically inserts a “dead” (Td) clock cycle. Dur-
ing the Td state, the data bus floats. The CPU
then drives the write data onto the bus in the
following clock. The CPU also inserts a Td
clock between a write cycle and a pipelined
read cycle to allow the data bus to smoothly
transition from an output to an input.

Figure 3-12. Read Cycle Followed by Pipelined Write Cycle

VALID 1

CLK

ADS#

Address, AP

CACHE#

W/R#

1735700

Ti T1 T2 T2 T12 T2P Td T2 Ti

VALID 2

NA#

BRDY#

KEN#

DATA, DP

PCHK#

Cycle 1: 2-1-1-1 Burst Read Cycle 2: Pipelined Write

CYCLE 1 CYCLE 2

IN 1 IN 1IN 1 IN 1

VALID 1 VALID 1 VALID 1 VALID 1

OUT 2

 3-41

3Functional Timing

3.3.5 Interrupt
Acknowledge
Cycles

The CPU issues interrupt acknowledge bus
cycles in response to an active INTR input.
Interrupt acknowledge cycles are single trans-
fer cycles and always occur in locked pairs as
shown in Figure 3-13. The CPU reads the
interrupt vector from the lower eight bits of the
data bus at the completion of the second inter-

Figure 3-13. Interrupt Acknowledge Cycles

rupt acknowledge cycle. Parity is not checked
during the first interrupt acknowledge cycle.

M/IO#, D/C# and W/R# are always logic low
during interrupt acknowledge cycles. Addi-
tionally, the address bus is driven with a value
of 0000 0004h for the first interrupt acknowl-
edge cycle and with a value of 0000 0000h for
the second. A minimum of one idle clock
always occurs between the two interrupt
acknowledge cycles.

0000 0004h

CLK

ADS#

Address

LOCK#

1735800

Ti T1 T2 Ti T1 T2 Ti

0000 0000h

Acknowledge Cycle.

Interrupt Vector Read
During Second Interrupt

BRDY#

DATA IN IN

Idle States = 1 CLK Min.
CYCLE 1 CYCLE 2

M/IO#,

D/C#, W/R#

PCHK#

Ti

VALID

3-42

Functional Timing

3.3.6 SMI# Interrupt Timing

The CPU samples the System Management
Interrupt (SMI#) input at each clock edge. At
the next appropriate instruction boundary, the
CPU recognizes the SMI# and completes all
pending write cycles. The CPU then asserts
SMIACT# and begins saving the SMM header
information to the SMM address space.
SMIACT# remains asserted until after
execution of a RSM instruction. Figure 3-14
illustrates the functional timing of the
SMIACT# signal.

Figure 3-14. SMIACT# Timing

To facilitate using SMI# to power manage I/O
peripherals, the 6x86 CPU implements a fea-
ture called I/O trapping. If the current bus
cycle is an I/O cycle and SMI# is asserted a
minimum of three clocks prior to BRDY#, the
CPU immediately begins execution of the SMI
service routine following completion of the
I/O instruction. No additional instructions are
executed prior to entering the SMI service rou-
tine. I/O trap timing requirements are shown
in Figure 3-15 (Page 3-43).

CLK

ADS#

 BRDY#

SMI#

SMIACT#

1739900

Normal
Access

Normal
Access

SMI
Handler

Normal
Access

1 CLK MIN 1 CLK MIN
4 CLK
MIN 4 CLK

MIN

 3-43

3Functional Timing

Figure 3-15. SMM I/O Trap Timing

The latency between when FLUSH# occurs
and when the cache invalidation actually com-
pletes varies depending on:

(1) the state of the processor when FLUSH#
is asserted,

(2) the number of modified cache lines,
(3) the number of wait states inserted during

the write-back cycles.

Figure 3-16 (Page 3-44) illustrates the
sequence of events that occur on the bus in
response to a FLUSH# request.

3.3.7 Cache Control Timing

3.3.7.1 Invalidating the
Cache Using FLUSH#

The FLUSH# input forces the CPU to
write-back and invalidate the entire contents of
the on-chip cache. FLUSH# is sampled at each
clock edge, latched internally and then recog-
nized internally at the next instruction bound-
ary. Once FLUSH# is recognized, the CPU
issues a series of burst write cycles to
write-back any “modified” cache lines. The
cache lines are invalidated as they are written
back. Following completion of the write-back
cycles, the CPU issues a flush acknowledge
special bus cycle.

CLK

Address,

ADS#

BRDY#

SMI#

T1 T2 T2 T2 T2 T2

I/O Cycle (Read or Write)

3 CLK Min.

Byte Enables VALID

3-44

Functional Timing

Figure 3-16. Cache Invalidation Using FLUSH#

CLK

ADS#

BRDY#

Address

FLUSH#

Wait for Processor
to Complete Current

Instruction

Write-Back of all Modified Lines
in Internal Cache

Flush Acknowledge
Special Cycle

Write-Back Cycle 0000 0004h

 3-45

3Functional Timing

3.3.7.2 EWBE# Timing

During memory and I/O write cycles, the
6x86™ CPU samples the external write buffer
empty (EWBE#) input. If EWBE# is negated,
the CPU does not write any data to “exclusive”
or “modified” internal cache lines. After sam-
pling EWBE# negated, the CPU continues to

Figure 3-17. External Write Buffer Empty (EWBE#) Timing

sample EWBE# at each clock edge until it
asserts. Once EWBE# is asserted, all inter-
nal cache writes are allowed. Through use of
this signal, the external system may enforce
strong write ordering when external write
buffers are used. EWBE# functional timing
is shown in Figure 3-17.

CLK

ADS#

W/R#

DATA

EWBE#

Write Cycle:
EWBE# sampled
with each BRDY#.

Writes to E or M-State lines

T1 T2

BRDY#

OUT

that hit in the internal cache
can complete.

No writes to E or M-State lines
that hit in the internal cache.
EWBE# sampled at each
clock edge.

