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3.3 Functional Timing

3.3.1 Reset Timing

Figure 3-2 illustrates the required RESET tim-
ing for both a power-on reset and a reset that 
occurs during operation.  The WM_RST, 
FLUSH# and QDUMP# inputs are sampled at 

Figure 3-2. RESET Timing

the falling edge of RESET to determine if the 
6x86 CPU should enter built-in self-test, enable 
tri-state test mode or enable the scatter-gather 
interface pins, respectively.  WM_RST, 
FLUSH# and QDUMP# must be valid at least 
two clocks prior to the RESET falling edge.

VALID

VALID

VALID

Reset after Power-On = 15 CLKs Min.

Reset Inactive = 2 CLKs Min.

Power-On Reset = 1 msec  Min.

CLK

RESET

WM_RST

FLUSH#

QDUMP#

1734900

Note 1.  ADS# asserted approximately 150-200 clocks after RESET falling edge if no built-in self-test

Note 2.  ADS# asserted approximately 2**19 clocks after RESET falling edge if built-in self-test requested.

Note 3.  Output pins driven to specified RESET state a maximum of 2 CLKs after RESET rising edge.

Power-On Reset = 1 msec Min. 

Reset Inactive = 2 CLKs Min.

Reset after Power-On = 15 CLKs Min.
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3.3.2 Bus State Definition

The 6x86 CPU bus controller supports non-pipelined and pipelined operation as well as single 
transfer and burst bus cycles.  During each CLK period, the bus controller exists in one of six 
states as listed in Table 3-12.  Each of these bus states and its associated state transitions is illus-
trated in Figure 3-3, (Page 3-27) and listed in Table 3-13, (Page 3-28). 

Table 3-12. 6x86 CPU Bus States

STATE NAME DESCRIPTION

Ti Idle Clock During Ti, no bus cycles are in progress.  BOFF# and RESET force the 
bus to the idle state.  The bus is always in the idle state while HLDA is 
active.

T1 First Bus Cycle Clock During the first clock of a non-pipelined bus cycle, the bus enters the T1 
state.  ADS# is asserted during T1 along with valid address and bus cycle 
definition information.

T2 Second and Subsequent 
Bus Cycle Clock

During the second clock of a non-pipelined bus cycle, the bus enters the 
T2 state.  The bus remains in the T2 state for subsequent clocks of the bus 
cycle as long as a pipelined cycle is not initiated.  During T2, valid data is 
driven during write cycles and data is sampled during reads.  BRDY# is 
also sampled during T2.  The bus also enters the T2 state to complete bus 
cycles that were initiated as pipelined cycles but complete as the only 
outstanding bus cycle.

T12 First Pipelined Bus Cycle 
Clock

During the first clock of a pipelined cycle, the bus enters the T12 state.  
During T12, data is being transferred and BRDY# is sampled for the 
current cycle at the same time that ADS# is asserted and address/bus cycle 
definition information is driven for the next (pipelined) cycle. 

T2P Second and Subsequent 
Pipelined Bus Cycle Clock

During the second and subsequent clocks of a pipelined bus cycle where 
two cycles are outstanding, the bus enters the T2P state.  During T2P, data 
is being transferred and BRDY# is sampled for the current cycle.  
However, valid address and bus cycle definition information continues to 
be driven for the next pipelined cycle.

Td Dead Clock The bus enters the Td state if a pipelined cycle was initiated that requires 
one idle clock to turn around the direction of the data bus.  Td is required 
for a read followed immediately by a pipelined write, and for a write 
followed immediately by a pipelined read.
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Figure 3-3.  IBM 6x86 CPU Bus State Diagram
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Table 3-13. Bus State Transitions

TRANSITION
CURRENT 

STATE
NEXT 

STATE
EQUATION

A Ti Ti No Bus Cycle Pending.

B Ti T1 New or Aborted Bus Cycle Pending.

C T1 T2 Always.

D T2 T2 Not Last BRDY# and No New Bus Cycle Pending, or
Not Last BRDY# and New Bus Cycle Pending and NA# 
Negated. 

E T2 T1 Last BRDY# and New Bus Cycle Pending and HITM# Negated.

F T2 Ti Last BRDY# and No New Bus Cycle Pending, or
Last BRDY# and HITM# Asserted.

G T2 T12 Not Last BRDY# and New Bus Cycle Pending and NA# 
Sampled Asserted.

H T12 T2 Last BRDY# and No Dead Clock Required.

I T12 Td Last BRDY# and Dead Clock Required.

J T12 T2P Not Last BRDY#.

K T2P T2P Not Last BRDY#. 

L T2P T2 Last BRDY# and No Dead Clock Required.

M T2P Td Last BRDY# and Dead Clock Required.

N Td T12 New Bus Cycle Pending and NA# Sampled Asserted.

O Td T2 No New Bus Cycle Pending, or
New Bus Cycle Pending and NA# Negated.

P Any
State

Ti RESET Asserted, or
BOFF# Asserted.
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3.3.3 Non-pipelined Bus
Cycles

Non-pipelined bus operation may be used for 
all bus cycle types.  The term “non-pipelined” 
refers to a mode of operation where the CPU 
allows only one outstanding bus cycle.  In 
other words, the current bus cycle must com-
plete before a second bus cycle is allowed to 
start.

3.3.3.1 Non-pipelined Single 
Transfer Cycles

Single transfer read cycles occur during 
non-cacheable memory reads, I/O read cycles, 
and special cycles.  A non-pipelined single 
transfer read cycle begins with address and bus 
cycle definition information driven on the bus 
during the first clock (T1 state) of the bus 
cycle.  The CPU then monitors the BRDY# 
input at the end of the second clock (T2 state).  
If BRDY# is asserted, the CPU reads the 
appropriate data and data parity lines and ter-
minates the bus cycle.  If BRDY# is not active, 
the CPU continues to sample the BRDY# input 
at the end of each subsequent cycle (T2 states).  
Each of the additional clocks is referred to as a 
wait state. 

The CPU uses the data parity inputs to check 
for even parity on the active data lines.  If the 
CPU detects an error, the parity check output 
(PCHK#) asserts during the second clock fol-
lowing the termination of the read cycle.  

Figure 3-4 (Page 3-30) illustrates the func-
tional timing for two non-pipelined sin-
gle-transfer read cycles.  Cycle 2 is a 
potentially cacheable cycle as indicated by the 
CACHE# output.  Because this cycle is poten-
tially cacheable, the CPU samples the KEN# 
input at the same clock edge that BRDY# is 
asserted.  If KEN# is negated, the cycle termi-
nates as shown in the diagram.  If KEN# is 
asserted, the CPU converts this cycle into a 
burst cycle as described in the next section.   
NA# must be negated for non-pipelined opera-
tion.  Pipelined bus cycles are described later 
in this chapter.
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Figure 3-4.  Non-Pipelined Single Transfer Read Cycles
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Single transfer write cycles occur for writes 
that are neither line replacement nor write-back 
cycles.  The functional timing of two non-pipe-
lined single transfer write cycles is shown in 
Figure 3-5.  During a write cycle, the data and 
data parity lines are outputs and are driven 
valid during the second clock (T2 state) of the 

bus cycle.  Data and data parity remain valid 
during all wait states. If the write cycle is a 
write to a valid cache location in the “shared” 
state, the WB/WT# pin is sampled with 
BRDY#.  If WB/WT# is sampled high, the 
cache line transitions from the “shared” to the 
“exclusive” state.

Figure 3-5.  Non-Pipelined Single Transfer Write Cycles
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Each time BRDY# is sampled asserted during 
the burst cycle, a data transfer occurs.  The 
CPU reads the data and data parity busses and 
assigns the data to an internally generated 
burst address.  Although the CPU internally 
generates the burst address sequence, only the 
first address of the burst is driven on the exter-
nal address bus.  System logic must predict the 
burst address sequence based on the first 
address.  Wait states may be added to any 
transfer within a burst by delaying the asser-
tion of BRDY# by the desired number of 
clocks. 

The CPU checks even data parity for each of 
the four transfers within the burst.  If the CPU 
detects an error, the parity check output 
(PCHK#) asserts during the second clock fol-
lowing the BRDY# assertion of the data trans-
fer. 

Figure 3-6 (Page 3-33) illustrates two 
non-pipelined burst read cycles.  The cycles 
shown are the fastest possible burst sequences 
(2-1-1-1).  NA# must be negated for non-pipe-
lined operation as shown in the diagram.  Pipe-
lined bus cycles are described later in this 
chapter.

Figure 3-7 (Page 3-34) depicts a burst read 
cycle with wait states. A 3-2-2-2 burst read is 
shown.

3.3.3.2 Non-pipelined Burst
Read Cycles

The 6x86 CPU uses burst read cycles to per-
form cache line fills.  During a burst read 
cycle, four 64-bit data transfers occur to fill 
one of the CPU’s 32-byte internal cache lines.  
A non-pipelined burst read cycle begins with 
address and bus cycle definition information 
driven on the bus during the first clock (T1 
state) of the bus cycle.  The CACHE# output is 
always active during a burst read cycle and is 
driven during the T1 clock. 

The CPU then monitors the BRDY# input at 
the end of the second clock (T2 state).  If 
BRDY# is asserted, the CPU reads the data 
and data parity and also checks the KEN# 
input.  If KEN# is negated, the CPU terminates 
the bus cycle as a single transfer cycle.  If 
KEN# is asserted, the CPU converts the cycle 
into a burst (cache line fill) by continuing to 
sample BRDY# at the end of each subsequent 
clock. BRDY# must be asserted a total of four 
times to complete the burst cycle.

WB/WT# is sampled at the same clock edge as 
KEN#.  In conjunction with PWT and the 
on-chip configuration registers, WB/WT# 
determines the MESI state of the cache line for 
the current line fill.
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Figure 3-6.  Non-Pipelined Burst Read Cycles
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Figure 3-7.  Burst Cycle with Wait States

ples the state of KEN#.  If KEN# is active, the 
CPU then performs the burst cycle with the 
address sequence shown in Table 3-14 (Page 
3-35).  The IBM 6x86 CPU CACHE# output is 
not asserted during the single read cycle prior 
to the burst.  Therefore, CACHE# must not be 
used to qualify the KEN# input to the proces-
sor.  In addition, if KEN# is returned active for 
the “1” read cycle in the “1+4”, all data bytes 
supplied to the CPU must be valid. The CPU 
samples WB/WT# during the “1” read cycle, 
and does not resample WB/WT# during the 
following burst cycle. Figure 3-8 (Page 3-35) 
illustrates a “1+4” burst read cycle.

Burst Cycle Address Sequence.

The IBM 6x86 CPU provides two different 
address sequences for burst read cycles.  
TheIBM 6x86 CPU burst cycle address 
sequence modes are referred to as “1+4” and 
“linear”.  After reset, the CPU default mode is 
“1+4”.

In “1+4” mode, the CPU performs a single 
transfer read cycle prior to the burst cycle, if 
the desired first address is (...xx8).  During this 
single transfer read cycle, the CPU reads the 
critical data.  In addition, the 6x86 CPU sam-

VALID
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CACHE#

W/R#

Ti T1 T2 T2 T2 T2 T2 T2 T2

BRDY#

KEN#

DATA, DP

PCHK#

IN

Cycle 1:  3-2-2-2 Burst Read Cycle 1735400

T2 Ti Ti

VALID VALID VALID VALID

IN IN IN

CYCLE 1

WB/WT# VALID
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.

Table 3-14.   “1+4” Burst Address Sequences

BURST CYCLE FIRST 
ADDRESS

SINGLE READ CYCLE 
PRIOR TO BURST

BURST CYCLE ADDRESS
 SEQUENCE

0 None 0-8-10-18

8 Address 8 0-8-10-18

10 None 10-18-0-8

18 Address 18 10-18-0-8

Figure 3-8. “1+4” Burst Read Cycle

CLK
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Address, AP

CACHE#

W/R#

Ti T1 T2 T1 T2 T2 T2 T2 Ti

NA#

BRDY#

DATA, DP IN

KEN# must be asserted for both cycles.

1740300

Ti

Cycle 1: Single transfer read

WB/WT#

PCHK#

VALID (A4-A0 = 08h or 18h) VALID (A4-A0 = 00h or 10h)

VALID VALID VALID VALID VALID

IN IN IN IN

CYCLE 1 CYCLE 2

KEN#

VALID

Cycle 2:  2-1-1-1 Burst Read Cycle



3-36

Functional Timing

The address sequences for the 6x86 CPU's linear burst mode are shown in Table 3-15.  Oper-
ating the CPU in linear burst mode minimizes processor bus activity resulting in higher sys-
tem performance.  Linear burst mode can be enabled through the IBM 6x86 CPU CCR3 
configuration register.

Table 3-15.  Linear Burst Address Sequences

BURST CYCLE FIRST 
ADDRESS

BURST CYCLE ADDRESS
 SEQUENCE

0 0-8-10-18

8 8-10-18-0

10 10-18-0-8

18 18-0-8-10
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3.3.3.3 Burst Write Cycles

Burst write cycles occur for line replacement 
and write-back cycles.  Burst writes are similar 
to burst read cycles in that the CACHE# output 
is asserted and four 64-bit data transfers occur.  
Burst writes differ from burst reads in that the 
data and data parity lines are outputs rather than 
inputs.  Also, KEN# and WB/WT# are not sam-
pled during burst write cycles.

Data and data parity for the first data transfer 
are driven valid during the second clock (T2 
state) of the bus cycle.  Once BRDY# is sam-
pled asserted for the first data transfer, valid 
data and data parity for the second transfer are 
driven during the next clock cycle.  The same 
timing relationship between BRDY# and data 
applies for the third and fourth data transfers as 
well. Wait states may be added to any transfer 
within a burst by delaying the assertion of  
BRDY# by the required number of clocks.

As on burst read cycles, only the first address 
of a burst write cycle is driven on the external 
address bus.  System logic must predict the 
remaining burst address sequence based on the 
first address.  Burst write cycles always begin 
with a first address ending in 0 (signals 
A4-A0=0) and follow an ascending address 
sequence for the remaining transfers 
(0-8-10-18).

Figure 3-9 illustrates two non-pipelined burst 
write cycles.  The cycles shown are the fastest 
possible burst sequences (2-1-1-1).  As shown, 
an idle clock always exists between two 
back-to-back burst write cycles.  Therefore, the 
second burst write cycle in a pair of 
back-to-back burst writes is always issued as a 
non-pipelined cycle regardless of the state of 
the NA# input.

Figure 3-9.  Non-Pipelined Burst Write Cycles
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3.3.4 Pipelined Bus Cycles

Pipelined addressing is a mode of operation 
where the CPU allows up to two outstanding 
bus cycles at any given time.  Using pipelined 
addressing, the address of the first bus cycle is 
driven on the bus and while the CPU waits for 
the data for the first cycle, the address for a 
second bus cycle is issued.  Pipelined bus 
cycles occur for all cycle types except locked 
cycles and burst write cycles.

Pipelined cycles are initiated by asserting 
NA#.  The CPU samples NA# at the end of 
each T2, T2P and Td state. KEN# and 
WB/WT# are sampled at either the same clock 
as NA# is active, or at the same clock as the 
first BRDY# for that cycle, whichever occurs 
first. The CPU issues the next address a mini-

mum of two clocks after NA# is sampled 
asserted. 

The CPU latches the state of the NA# pin 
internally. Therefore, even if a new bus cycle 
is not pending internally at the time NA# was 
sampled asserted, the CPU still issues a pipe-
lined bus cycle if an internal bus request 
occurs prior to completion of the current bus 
cycle. Once NA# is sampled asserted, the state 
of NA# is ignored until the current bus cycle 
completes.  If two cycles are outstanding and 
the second cycle is a read, the CPU samples 
KEN# and WB/WT# for the second cycle 
when NA# is sampled asserted.

Figure 3-10 and Figure 3-11 (Page 3-39) illus-
trate pipelined single transfer read cycles and 
pipelined burst read cycles, respectively.

Figure 3-10.  Pipelined Single Transfer Read Cycles
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Figure 3-11.  Pipelined Burst Read Cycles
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3.3.4.1 Pipelined
Back-to-Back
Read/Write Cycles

Figure 3-12 depicts a read cycle followed by a 
pipelined write cycle.  Under this condition, 
the data bus must change from an input for the 
read cycle to an output for the write cycle.  In 
order to accomplish this transition without 

causing data bus contention, the CPU automat-
ically inserts a “dead” (Td) clock cycle.  Dur-
ing the Td state, the data bus floats.  The CPU 
then drives the write data onto the bus in the 
following clock.  The CPU also inserts a Td 
clock between a write cycle and a pipelined 
read cycle to allow the data bus to smoothly 
transition from an output to an input.

Figure 3-12.   Read Cycle Followed by Pipelined Write Cycle
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3.3.5 Interrupt
Acknowledge
Cycles

The CPU issues interrupt acknowledge bus 
cycles in response to an active INTR input.  
Interrupt acknowledge cycles are single trans-
fer cycles and always occur in locked pairs as 
shown in Figure 3-13.  The CPU reads the 
interrupt vector from the lower eight bits of the 
data bus at the completion of the second inter-

Figure 3-13.  Interrupt Acknowledge Cycles

rupt acknowledge cycle.  Parity is not checked 
during the first interrupt acknowledge cycle.

M/IO#, D/C# and W/R# are always logic low 
during interrupt acknowledge cycles.  Addi-
tionally, the address bus is driven with a value 
of 0000 0004h for the first interrupt acknowl-
edge cycle and with a value of 0000 0000h for 
the second.  A minimum of one idle clock 
always occurs between the two interrupt 
acknowledge cycles. 
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3.3.6 SMI# Interrupt Timing

The CPU samples the System Management 
Interrupt (SMI#) input at each clock edge.  At 
the next appropriate instruction boundary, the 
CPU recognizes the SMI# and completes all 
pending write cycles.  The CPU then asserts 
SMIACT# and begins saving the SMM header 
information to the SMM address space.  
SMIACT# remains asserted until after 
execution of a RSM instruction. Figure 3-14 
illustrates the functional timing of the 
SMIACT# signal.

Figure 3-14.  SMIACT# Timing

To facilitate using SMI# to power manage I/O 
peripherals, the 6x86 CPU implements a fea-
ture called I/O trapping.  If the current bus 
cycle is an I/O cycle and SMI# is asserted a 
minimum of three clocks prior to BRDY#, the 
CPU immediately begins execution of the SMI 
service routine following completion of the 
I/O instruction.  No additional instructions are 
executed prior to entering the SMI service rou-
tine.  I/O trap timing requirements are shown 
in Figure 3-15 (Page 3-43).
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Figure 3-15.  SMM I/O Trap Timing

The latency between when FLUSH# occurs 
and when the cache invalidation actually com-
pletes varies depending on:

(1) the state of the processor when FLUSH# 
is asserted,

(2) the number of modified cache lines,
(3) the number of wait states inserted during 

the write-back cycles.

Figure 3-16 (Page 3-44) illustrates the 
sequence of events that occur on the bus in 
response to a FLUSH# request.

3.3.7 Cache Control Timing

3.3.7.1 Invalidating the
Cache Using FLUSH#

The FLUSH# input forces the CPU to 
write-back and invalidate the entire contents of 
the on-chip cache.  FLUSH# is sampled at each 
clock edge, latched internally and then recog-
nized internally at the next instruction bound-
ary.  Once FLUSH# is recognized, the CPU 
issues a series of burst write cycles to 
write-back any “modified” cache lines.  The 
cache lines are invalidated as they are written 
back.  Following completion of the write-back 
cycles, the CPU issues a flush acknowledge 
special bus cycle.
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BRDY#
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T1 T2 T2 T2 T2 T2

I/O Cycle (Read or Write)

3 CLK Min.

Byte Enables VALID
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Figure 3-16.  Cache Invalidation Using FLUSH#
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3.3.7.2 EWBE# Timing

During memory and I/O write cycles, the 
6x86™ CPU samples the external write buffer 
empty (EWBE#) input.  If EWBE# is negated, 
the CPU does not write any data to “exclusive” 
or “modified” internal cache lines.  After sam-
pling EWBE# negated, the CPU continues to 

Figure 3-17.  External Write Buffer Empty (EWBE#) Timing

sample EWBE# at each clock edge until it 
asserts.  Once EWBE# is asserted, all inter-
nal cache writes are allowed.  Through use of 
this signal, the external system may enforce 
strong write ordering when external write 
buffers are used.  EWBE# functional timing 
is shown in Figure 3-17.
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