
3-46

3.3.8 Bus Arbitration

An external bus master can take control of the
CPU's bus using either the HOLD/HLDA
handshake signals or the back-off (BOFF#)
input. Both mechanisms force the IBM 6x86
CPU to enter the bus hold state.

Figure 3-18. Requesting Hold from an Idle Bus

Functional Timing

3.3.8.1 HOLD and HLDA

Using the HOLD/HLDA handshake, an exter-
nal bus master requests control of the CPU’s
bus by asserting the HOLD signal. In response
to an active HOLD signal, the CPU completes
all outstanding bus cycles, enters the bus hold
state by floating the bus, and asserts the HLDA
output. The CPU remains in the bus hold state
until HOLD is negated. Figures 3-18, 3-19
(Page 3-47) and 3-20 (Page 3-48) illustrate the
timing associated with requesting HOLD dur-
ing an idle bus, during a non-pipelined bus
cycle and during a pipelined bus cycle, respec-
tively.

CLK

ADS#

Address

HOLD

Ti Ti Ti Ti Ti T1 T2

VALID

HLDA

Min One Clock
Min

Zero Clocks

 3-47

3

Figure 3-19. Requesting Hold During a Non-Pipelined Bus Cycle

Functional Timing

CLK

ADS#

Address

BRDY#

T1 T2 T2 Ti Ti Ti

VALID

HLDA

HOLD

3-48

Figure 3-20. Requesting Hold During a Pipelined Bus Cycle

Functional Timing

VALID 1

CLK

ADS#

Address, AP

Ti T1 T2

BRDY#

DATA, DP

CYCLE 1

HOLD

HLDA

T2 T12 T2 T2 Ti Ti Ti

VALID 2

IN 1 IN 2

CYCLE 2

NA#

 3-49

3

3.3.8.2 Back-Off Timing

An external bus master requests immediate
control of the CPU's bus by asserting the
back-off (BOFF#) input. The CPU samples
BOFF# at each clock edge and responds by
floating the bus in the next clock cycle as
shown in Figure 3-21. The CPU remains in
the bus hold state until BOFF# is negated.

If the assertion of BOFF# interrupts a bus
cycle, the bus cycle is restarted in its entirety
following the negation of BOFF#. If KEN#

Functional Timing

Figure 3-21. Back-Off Timing

was sampled by the processor before the cycle
was aborted, it must be returned with the same
value during the restarted cycle. The state of
WB/WT# may be changed during the restarted
cycle.

If BOFF# and BRDY# are active at the same
clock edge, the CPU ignores BRDY#. Any
data returned to the CPU with the BRDY# is
also ignored. If BOFF# interrupts a burst read
cycle, the CPU does not cache any data
returned prior to BOFF#. However, this data
may be used for internal CPU execution.

CLK

ADS#

Address

BRDY#

T1 T2 Ti Ti T1 T2

VALID

BOFF#

VALID

3-50

3.3.9 Cache Inquiry Cycles

Cache inquiry cycles are issued by the system
with the CPU in either a bus hold or address
hold state. Bus hold is requested by asserting
either HOLD or BOFF#, and address hold is
requested by asserting AHOLD. The system
initiates the cache inquiry cycle by asserting
the EADS# input. The system must also drive
the desired inquiry address on the address
lines, and a valid state on the INV input.

In response to the cache inquiry cycle, the
CPU checks to see if the specified address is
present in the internal cache. If the address is
present in the cache, the CPU checks the MESI
state of the cache line. If the line is in the
“exclusive” or “shared” state, the CPU asserts
the HIT# output and changes the cache line
state to “invalid” if the INV input was sampled
logic high with EADS#.

Functional Timing

If the line is in the “modified” state, the CPU
asserts both HIT# and HITM#. The CPU then
issues a bus cycle request to write the modified
cache line to external memory. HITM#
remains asserted until the write-back bus cycle
completes. No additional cache inquiry cycles
are accepted while HITM# is asserted. Write-
back cycles always start at burst address 0.
Once the write-back cycle has completed, the
CPU changes the cache line state to “invalid”
if the INV input was sampled logic high, or
“shared” if the INV input was sampled low.

In addition to checking the cache, the CPU
also snoops the internal line fill and cache
write-back buffers in response to a cache
inquiry cycle. The following sections
describe the functional timing for cache
inquiry cycles and the corresponding
write-back cycles for the various types of
inquiry cycles.

 3-51

3

3.3.9.1 Inquiry Cycles
Using HOLD/HLDA

Figure 3-22 illustrates an inquiry cycle where
HOLD is used to force the CPU into a bus hold
state. In this case, the system asserts HOLD
and must wait for the CPU to respond with
HLDA before issuing the cache inquiry cycle.
To avoid address bus contention, EADS#

Functional Timing

Figure 3-22. HOLD Inquiry Cycle that Hits on a Modified Line

should not be asserted until the second clock
after HLDA as shown in the diagram. If the
inquiry address hits on a modified cache line,
HIT# and HITM# are asserted during the sec-
ond clock following EADS#. Once HITM#
asserts, the system must negate HOLD to allow
the CPU to run the corresponding write-back
cycle. The first cycle issued following nega-
tion of HLDA is the write-back bus cycle.

To CPU

CLK

ADS#

Address

BRDY#

HOLD

T2 Ti Ti Ti Ti Ti Ti Ti Ti

From CPU

EADS#

INV

HIT#

HITM#

T1 T2 T2 T2

Write-Back Cycle

T2 Ti Ti

VALID

HLDA

3-52

3.3.9.2 Inquiry Cycles
Using BOFF#

Figure 3-23 illustrates an inquiry cycle where
BOFF# is used to force the CPU into a bus hold
state. In this case, the system asserts BOFF#
and the CPU immediately relinquishes control
of the bus in the next clock. To avoid address
bus contention, EADS# should not be asserted

Functional Timing

Figure 3-23. BOFF# Inquiry Cycle that Hits on a Modified Line

until the second clock edge after BOFF# as
shown in the diagram. If the inquiry address
hits on a modified cache line, HIT# and HITM#
are asserted during the second clock following
EADS#. Once HITM# asserts, the system must
negate BOFF# to allow the CPU to run the cor-
responding write-back cycle. The first cycle
issued following negation of BOFF# is the
write-back bus cycle.

To CPU

CLK

ADS#

Address

BRDY#

BOFF#

T1 Ti Ti Ti Ti Ti T1 T2 T2

From CPU

EADS#

INV

HIT#

HITM#

T2 T2 Ti T1

Write-Back Cycle

T2

VALID

Cycle 1

(Restarted)

Ti

 3-53

3
3.3.9.3 Inquiry Cycles

Using AHOLD

Figure 3-24 illustrates an inquiry cycle where
AHOLD is used to force the CPU into an
address hold state. In this case, the system
asserts AHOLD and the CPU immediately
floats the address bus in the next clock. To
avoid address bus contention, EADS# should
not be asserted until the second clock edge after

Functional Timing

Figure 3-24. AHOLD Inquiry Cycle that Hits on a Modified Line

AHOLD as shown in the diagram. If the
inquiry address hits on a modified cache line,
the CPU asserts HIT# and HITM# during the
second clock following EADS#. The CPU then
issues the write-back cycle even if AHOLD
remains asserted. ADS# for the write-back
cycle asserts two clocks after HITM# is
asserted. To prevent the address bus and data
bus from switching simultaneously, the system
must adhere to the restrictions on negation of
AHOLD as shown in Figure 3-24.

To CPU

CLK

ADS#

Address

BRDY#

Data, DP

T1 T2 Ti Ti Ti Ti Ti T1 T2

From CPU

AHOLD

EADS#

INV

HIT#

T2 T2 T2 T2

Write-Back Cycle

Ti

VALID

HITM#

OUT OUT OUT OUT

Ti

Restrictions on negating AHOLD:
1. During a write cycle, AHOLD should not be negated in the same clock that BRDY# is asserted.
2. During pipelined bus cycles, AHOLD should not be negated during the Td clock between a read cycle followed by a pipelined write cycle.
3. While HITM# is asserted, AHOLD should not be negated in the same clock that ADS# is asserted.

3-54

Figure 3-25 depicts an AHOLD inquiry cycle
during a line fill. In this case, the write-back
cycle occurs after the line fill is completed.
At least one idle clock exists between the final
BRDY# of the line fill and the ADS# for the
write-back cycle. If the inquiry cycle hits on
the address of the line fill that is in progress,

Figure 3-25. AHOLD Inquiry Cycle During a Line Fill

Functional Timing

the data from the line fill cycle is always used
to complete the pending internal operation.
However, the data is not placed in the cache if
INV is sampled asserted with EADS#. The
data is placed in the cache in a “shared” state
if INV is sampled negated.

To CPU

CLK

ADS#

Address

BRDY#

Data, DP

T1 T2 T2 T2 T2 T2 T2

From CPU

AHOLD

EADS#

INV

HIT#

VALID

HITM#

IN IN IN

Line Fill

Note: If the inquiry cycle hits on the line fill in progress, the data from the line fill will be used to complete the pending internal operation.
The line is not placed in the cache if INV is sampled asserted with EADS#. The line is placed in the cache in a "shared"
state if INV is sampled negated with EADS#.

T1 T2 T2 T2 T2 Ti Ti

OUT OUT OUT OUTIN

Write-Back Cycle

Ti

 3-55

3

During cache inquiry cycles, the CPU performs
address parity checking using A31-A5 and the
AP signal. The CPU checks for even parity and

Functional Timing

Figure 3-26. APCHK# Timing

asserts the APCHK# output if a parity error is
detected. Figure 3-26 illustrates the functional
timing of the APCHK# output.

CLK

EADS#

Address

AP

Tx Tx Tx Tx Tx

To CPU

APCHK#

To CPU

VALID

3-56

3.3.10 Scatter/Gather
Buffer Interface

The scatter/gather buffer interface signals, in
conjunction with the byte enables and address
hold, can be used by the system hardware to
transfer data to/from a 32-bit peripheral inter-
face bus. A 64-bit buffer resides in the CPU to
assist the system in these transfers.

As shown in Figure 3-27 when BHOLD is
asserted the CPU floats the byte enable outputs
(BE7#-BE0#) in the next clock. While BHOLD
is asserted, only the byte enables are disabled.
The current bus cycle remains active and can

be completed in the normal fashion. The CPU
continues to generate additional bus cycles
while BHOLD is asserted, so BHOLD should
only be asserted while AHOLD is asserted.

Figure 3-27 also illustrates DHOLD timing.
DHOLD forces the CPU to float the data and
data parity buses in the next clock. While
DHOLD is asserted, the current bus cycle
remains active and additional bus cycles may
be generated by the CPU.

Figure 3-27. BHOLD and DHOLD Timing

Functional Timing

CLK

DHOLD

D63-D0

BHOLD

BE7#-BE0#

D1 D1

BEx BEx

 3-57

3

Figures 3-28 and 3-29 (Page 3-58) illustrate CPU read and write cycles that access a 32-bit
device using the scatter/gather buffer.

Functional Timing

Figure 3-28. CPU Upper Byte Read from 32-Bit Bus Using Scatter/Gather

CLK

ADS#

LBA#

D63-D32

D31-D0

BE7#-BE0# BE# = 0xBF From CPU BE# From CPU

BHOLD

BRDY#

D1 (to S/G Buffer))

D1

D2

D1

BE# = 0xBF To CPU

BHOLD is asserted in order to
issue the MUX command
via the BE#s (BE# = 0xBFh).

Controller detects CPU read of
upper byte to 32-bit peripheral bus
via LBA# and BE#s.

The clock following BE# = 0xBFh,
the CPU maps D31-D0 to D63-D32
of the scatter/gather buffer to read byte 6.

3-58

Figure 3-29. CPU Upper Byte Write to 32-Bit Bus Using Scatter/Gather

Functional Timing

CLK

ADS#

LBA#

D63-D32

D31-D0

BE7#-BE0# BE# = 0xBF From CPU BE# From CPU

BHOLD

BRDY#

D2

D2 (from S/G Buffer)

D2

D1

Controller detects CPU write of
upper byte to 32-bit peripheral bus
via LBA# and BE#s.

BHOLD need not be asserted
because the CPU automatically
maps D63-D32 to D31-D0 when
LBA# asserted and BE3-BE0 = Fh.

During the clock following BE# = 0xBFh,
the CPU maps D63-D32 to D31-D0
for transfer on 32-bit bus.

 3-59

3

Figures 3-30 and 3-31 (Page 3-60) illustrate bus master reads and writes between a 32-bit device
and 64-bit main memory. The CPU bus must be idle when a bus master initiates a scatter/gather
cycle.

Functional Timing

Figure 3-30. Bus Master Read from 64-Bit Memory to 32-Bit Bus

CLK

D63-D32

D31-D0

BE7#-BE0#

BHOLD

DHOLD

BE#=0x00 BE#=0xF0

QDUMP#

D2 from Memory

D1 from Memory

D2

D2 from S/G Buffer D1 from S/G Buffer

BE#=0x0FBE#=0xFF

Controller asserts BHOLD and DHOLD
to transfer data from memory
to CPU's internal scatter/gather buffer.

BE#=0x00 causes the 64-bit data from
memory to be written into CPU's buffer.
The controller negates BE# (BE=0xFF)
so that data in the scatter/gather buffer is
not corrupted and tristates the data bus
to allow for a scatter operation to proceed.

The controller negates DHOLD and
asserts BE#=0x0F followed by 0xF0
along with QDUMP# to transfer the
upper word (D2=D63-D32) followed
by the lower word (D1=D31-D0),
respectively, to the 32-bit bus.

3-60

Figure 3-31. Bus Master Write to 64-Bit Memory from 32-Bit Bus

Functional Timing

CLK

D32-D63

D0-D31

BE0-BE7

BHOLD

DHOLD

BE#=FFh

QDUMP#

D2 (to Memory)

D1 (to Memory)

BE#=0xF0BE#=0x0F

D1 (to S/G Buffer)D2 (to S/G Buffer)

BE#=0x00

Controller asserts BHOLD and DHOLD
to transfer data from the 32-bit bus
to CPU's internal scatter/gather buffer.

The MUX command along with a word
write is issued by the controller to
write D1 from the 32-bit bus into
D63-D32 of CPU's buffer followed by
a 2nd word write to D31-D0.

The controller relinquishes control of
CPU data bus, negates DHOLD and
asserts QDUMP# to dump the 64-bit data
on to the CPU local bus for transfer to memory.

 3-61

3

3.3.11 Power Management
Interface

SUSP# Initiated Suspend Mode

The 6x86 CPU enters suspend mode when the
SUSP# input is asserted and execution of the
current instruction, any pending decoded
instructions and associated bus cycles are
completed. A stop grant bus cycle is then
issued and the SUSPA# output is asserted.
The CPU responds to SUSP# and asserts
SUSPA# only if the SUSP bit is set in the
CCR2 configuration register.

SUSP# is sampled (Figure 3-32) on the rising
edge of CLK. SUSP# must meet specified
setup and hold times to be recognized at a
particular CLK edge. The time from assertion
of SUSP# to activation of SUSPA# varies

Figure 3-32. SUSP# Initiated Suspend Mode

Functional Timing

depending on which instructions were decoded
prior to assertion of SUSP#. The minimum
time from SUSP# sampled active to SUSPA#
asserted is eight CLKs. As a maximum, the
CPU may execute up to two instructions and
associated bus cycles prior to asserting
SUSPA#. The time required for the CPU to
deactivate SUSPA# once SUSP# has been
sampled inactive is five CLKs.

If the CPU is in a hold acknowledge state and
SUSP# is asserted, the CPU may or may not
enter suspend mode depending on the state of
the CPU internal execution pipeline. If the
CPU is in a SUSP# initiated suspend mode,
one occurrence of NMI, INTR and SMI# is
stored for execution once suspend mode is
exited. The 6x86 CPU also recognizes and
acknowledges the HOLD, AHOLD, BOFF#
and FLUSH# signals while in suspend mode.

CLK

SUSP#

SUSPA#

Tx Tx Ti Ti Ti Ti Tx

8 CLKs 5 CLKs

3-62

HALT Initiated Suspend Mode

The CPU also enters suspend mode as a result
of executing a HALT instruction if the SUSP
HALT bit in CCR2 is set. The SUSPA# output
is asserted no later than 40 CLKs following

BRDY# sampled active for the HALT bus cycle
as shown in Figure 3-33. Suspend mode is then
exited upon recognition of an NMI, an
unmasked INTR or an SMI#. SUSPA# is
deactivated 10 CLKs after sampling of an
active interrupt.

Functional Timing

Figure 3-33. HALT Initiated Suspend Mode

CLK

ADS#

M/IO#,

BRDY#

INTR, NMI

SUSPA#

T1 T2 Ti Ti Ti Ti Ti Ti

Non-Pipelined HALT

BE(0, 1, 3-7)#,
W/R#

10 CLKs

A3-A31,
BE#2, D/C#, IO#

40 CLKs (Max)

 3-63

3
Stopping the Input Clock

Once the CPU has entered suspend mode, the
input clock (CLK) can be stopped and
restarted without loss of any internal CPU
data. The CLK input can be stopped at either a
logic high or logic low state.

The CPU remains suspended until CLK is
restarted and suspend mode is exited as

described earlier. While the CLK is stopped,
the CPU can no longer sample and respond to
any input stimulus.

Figure 3-34 illustrates the recommended
sequence for stopping the CLK using SUSP# to
initiate suspend mode. CLK may be started
prior to or following negation of the SUSP#
input. The system must allow sufficient time
for the CPU’s internal PLL to lock to the
desired frequency before exiting suspend
mode.

Figure 3-34. Stopping CLK During Suspend Mode

CLK

SUSP#

SUSPA#

Tx Tx Tx Tx

