

 Version 3.0
December 1998

2975 Stender Way, Santa Clara, California 95054
Telephone: (800) 345-7015 • TWX: 910-338-2070 • FAX: (408) 492-8674

Printed in U.S.A.
© 1998 Integrated Device Technology, Inc.

������������������������������������				

��

��

����

��������������������

Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in
order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any
circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that circuitry described
herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication
or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

LIFE SUPPORT POLICY
Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a
specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT.
1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sus-
tain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be rea-
sonably expected to result in a significant injury to the user.
2. A critical component is any components of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.

The IDT logo is a registered trademark, and BiCameral, BurstRAM, BUSMUX, CacheRAM, DECnet, Double-Density, FASTX, Four-Port, FLEXI-CACHE, Flexi-PAK, Flow-thruEDC, IDT/
c, IDTenvY, IDT/sae, IDT/sim, IDT/ux, MacStation, MICROSLICE, PalatteDAC, REAL8, RC3041, RC3051, RC3052, RC3081, RC36100, RC32364, RC4600, RC4640, RC4650, RC4700,
RC5000, RC64474, RC64475, RISController, RISCore, RISC Subsystem, RISC Windows, SARAM, SmartLogic, SyncFIFO, SyncBiFIFO, SPC, TargetSystem and WideBus are trade-
marks of Integrated Device Technology, Inc.
MIPS is a registered trademark, and RISCompiler, RISComponent, RISComputer, RISCware, RISC/os, R3000, and R3010 are trademarks of MIPS Computer Systems, Inc. Postscript
is a registered trademark of Adobe Systems, Inc. AppleTalk, LocalTalk, and Macintosh are registered trademarks of Apple Computer, Inc. Centronics is a registered trademark of Genicom,
Inc. Ethernet is a registered trademark of Digital Equipment Corp. PS2 is a registered trademark of IBM Corp.

�����

����� ��	
 �����
This manual provides a reference for all real hardware (non-synthetic) assembler instructions.
A sister publication of this manual provides an introduction and design overview as well as more

detailed descriptions for the following IDT product families:
◆ IDT79RC30xx family of 32-bit RISC controllers
◆ IDT79RC323xx family of 32-bit enhanced MIPS-2 embedded devices
◆ IDT79RC4xxx 64-BIT RISCONTROLLER family of high-performance 64-bit CPUs
◆ IDT79RC5000 family of MIPS-4 ISA compatible CPU devices

����	
� � ��������
Chapter 1, “CPU Instructions Basics,” presents an overview and broad classification of

the CPU instruction set of all IDT microprocessors and RISControllers.
Chapter 2, “CPU Instructions Reference,” is the detailed reference material for each of

the CPU instructions in alphabetical order. Each new instruction starts on a new page and the
instruction mnemonic is easily locatable at the top of the page in large bold letters.

Chapter 3, “CPU instructions Encoding,” explains the format and encoding of all of the
CPU instructions.

Chapter 4, “FPU Instructions Basics,” is similar to Chapter 1 except that it deals with the
FPU (hardware floating point unit) instructions.

Chapter 5, “FPU Instructions Reference,” is similar to Chapter 2 except that it deals with
the FPU (hardware floating point unit) instructions.

Chapter 6, “FPU instructions Encoding,” is similar to Chapter 3 except that it deals with
the FPU (hardware floating point unit) instructions.
���

About This Manual
��

�����

����� �� 	�
��
��
1 About This Manual

2 CPU Instructions Basics
Introduction .. 1-1
Functional Instruction Groups .. 1-1

Load and Store Instructions .. 1-2
Delayed Loads .. 1-3
CPU Loads and Stores ... 1-3
Atomic Update Loads and Stores ... 1-4
Coprocessor Load and Store Instructions ... 1-4

Computational Instructions .. 1-4
Arithmetic Logic Unit ... 1-4
Shift Instructions ... 1-5
Multiply and Divide Instructions .. 1-6
Jump and Branch Instructions .. 1-6

Miscellaneous Instructions ... 1-8
Exception Instructions ... 1-8
Serialization Instructions ... 1-8
Conditional Move Instructions ... 1-8
Prefetch Instructions ... 1-9

Coprocessor Instructions ... 1-9
Coprocessor Load and Store Instructions ... 1-10
Coprocessor Operations ... 1-10

Memory Access Types ... 1-10
Uncached .. 1-10
Cached Noncoherent .. 1-10
Cached Coherent .. 1-10
Cached .. 1-10

Mixing References with Different Access Types .. 1-10
Cache Coherence Algorithms and Access Types .. 1-11
Implementation-Specific Access Types ... 1-11
Instruction Descriptions .. 1-12

Instruction Mnemonic and Name .. 1-12
Instruction Encoding Picture ... 1-12
Format ... 1-13
Purpose ... 1-13
Description .. 1-13
Restrictions ... 1-13
Operation .. 1-13
Exceptions .. 1-14
Programming and Implementation Notes ... 1-14
Operation Section Notation and Functions ... 1-14
Pseudocode Language ... 1-14
Pseudocode Symbols ... 1-14

Pseudocode Functions .. 1-16
Coprocessor General Register Access Functions ... 1-16
Load and Store Memory Functions .. 1-17
Access Functions for Floating-Point Registers .. 1-19
Miscellaneous Functions .. 1-20
�

Table of Contents
Individual CPU Instruction Descriptions ... 1-21

3 CPU Instruction Reference

4 CPU Instructions Encoding
CPU Instruction Encoding .. 3-2
Instruction Decode ... 3-2
 SPECIAL Instruction Class .. 3-2
 REGIMM Instruction Class .. 3-2
Instruction Subsets of MIPS III and MIPS IV Processors ... 3-2
Non-CPU Instructions in the Tables ... 3-2

Coprocessor 0 - COP0 .. 3-2
Coprocessor 1 - COP1, COP1X, MOVCI, and CP1 load/store 3-3
Coprocessor 2 - COP2 and CP2 load/store .. 3-3
Coprocessor 3 - COP3 and CP3 load/store .. 3-3

5 FPU Instructions Basics
FPU Instruction Set Details .. 4-1
FPU Instructions ... 4-1
Data Transfer Instructions .. 4-1
Arithmetic Instructions .. 4-2
Conversion Instructions .. 4-3
Formatted Operand Value Move Instructions ... 4-4
Conditional Branch Instructions .. 4-5
Miscellaneous Instructions ... 4-5
Valid Operands for FP Instructions .. 4-5
Description of an Instruction ... 4-6
Operation Notation Conventions and Functions ... 4-7
Individual FPU Instruction Descriptions .. 4-7

6 FPU Instructions Reference

7 FPU Instructions Encoding
FPU (CP1) Instruction Opcode Bit Encoding ... 6-3
Instruction Decode ... 6-3

COP1 Instruction Class ... 6-4
COP1X Instruction Class .. 6-4
SPECIAL Instruction Class ... 6-4

Instruction Subsets of MIPS III and MIPS IV Processors ... 6-4
Key to all FPU (CP1) instruction encoding tables: ... 6-25

8 Index
��

�����

���� �� �	
���
Table 1.1 Load/Store Operations Using Register + Offset Addressing Mode 1-2
Table 1.2 Load/Store Operations Using Register + Register Addressing Mode.................... 1-2
Table 1.3 Normal CPU Load/Store Instructions.. 1-3
Table 1.4 Unaligned CPU Load/Store Instructions .. 1-3
Table 1.5 Atomic Update CPU Load/Store Instructions... 1-4
Table 1.6 Coprocessor Load/Store Instructions .. 1-4
Table 1.7 PFU Load/Store Instructions Using Register + Register Addressing..................... 1-4
Table 1.8 ALU Instructions With an Immediate Operand .. 1-5
Table 1.9 Operand ALU Instructions ... 1-5
Table 1.10 Shift Instructions .. 1-5
Table 1.11 Multiply/Divide Instructions ... 1-6
Table 1.12 Jump Instructions Jumping Within a 256 Megabyte Region.................................. 1-7
Table 1.13 Jump Instructions to Absolute Address ... 1-7
Table 1.14 PC-Relative Conditional Branch Instructions, Comparing 2 Registers 1-7
Table 1.15 PC-Relative Conditional Branch Instructions, Comparing Against Zero................ 1-7
Table 1.16 System Call and Breakpoint Instructions ... 1-8
Table 1.17 Trap-on-Condition Instructions, Comparing Two Registers 1-8
Table 1.18 Trap-on-Condition Instructions, Comparing an Immediate 1-8
Table 1.19 Serialization Instructions.. 1-8
Table 1.20 CPU Conditional Move Instructions ... 1-9
Table 1.21 Prefetch Using Register + Offset Address Mode ... 1-9
Table 1.22 Prefetch Using Register + Register Address Mode ... 1-9
Table 1.23 Coprocessor Definition and Use in the MIPS Architecture 1-9
Table 1.24 Coprocessor Operation Instructions .. 1-10
Table 1.25 Symbols in Instruction Operation Statements (Page 1 of 2) 1-14
Table 1.26 Coprocessor General Register Access Functions ... 1-16
Table 1.27 AccessLength Specifications for Loads/Stores.. 1-18
Table 2.28 64-bit RISController Family Primary Cache Indexing .. 2-25
Table 2.29 Values of Hint Field for Prefetch Instruction in RC32364 2-115
Table 2.30 Values of Hint Field for Prefetch Instruction in RC5000 2-116
Table 2.31 Bytes Stored by SDL Instruction.. 2-127
Table 2.32 Bytes Stored by SDR Instruction ... 2-129
Table 2.33 Unaligned Word Store using SWL and SWR... 2-146
Table 2.34 Bytes Stored by SWL Instruction ... 2-147
Table 2.35 Bytes Stored by SWR Instruction .. 2-150
Table 3.1 CPU Instruction Formats ... 3-1
Table 3.2 CPU Instruction Encoding - MIPS I Architecture ... 3-4
Table 3.3 CPU Instruction Encoding - MIPS II Architecture .. 3-5
Table 3.4 CPU Instruction Encoding - MIPS III Architecture ... 3-6
Table 3.5 CPU Instruction Encoding - MIPS IV Architecture ... 3-7
Table 3.6 Architecture Level in Which CPU Instructions are Defined or Extended 3-8
Table 3.7 CPU Instruction Encoding Changes - MIPS II Revision .. 3-9
Table 3.8 CPU Instruction Encoding Changes - MIPS III Revision 3-10
Table 3.9 CPU Instruction Encoding Changes - MIPS IV Revision 3-11
Table 4.10 FPU Loads and Stores Using Register + Offset Address Mode 4-2
Table 4.11 FPU Loads and Stores Using Register + Register Address Mode 4-2
Table 4.12 FPU Move To/From Instructions.. 4-2
Table 4.13 FPU IEEE Arithmetic Operations... 4-3
���

List of Tables
Table 4.14 FPU Approximate Arithmetic Operations... 4-3
Table 4.15 FPU Multiply-Accumulate Arithmetic Operations ... 4-3
Table 4.16 FPU Conversion Operations Using a Directed Rounding Mode............................ 4-4
Table 4.17 FPU Formatted Operand Move Instructions .. 4-4
Table 4.18 FPU Conditional Move on True/False Instructions .. 4-4
Table 4.19 FPU Conditional Move on Zero/Nonzero Instructions ... 4-4
Table 4.20 FPU Conditional Branch Instructions... 4-5
Table 4.21 CPU Conditional Move on FPU True/False Instructions.. 4-5
Table 4.22 FPU Operand Format Field (fmt, fmt3) Decoding.. 4-5
Table 4.23 Valid Formats for FPU Operations ... 4-6
Table 5.24 FPU Comparisons Without Special Operand Exceptions.................................... 5-13
Table 5.25 FPU Comparisons With Special Operand Exceptions for QNaNs....................... 5-14
����

�����

���� �� ��	
���
Figure 1.1 MIPS Architecture Extensions .. 1-1
Figure 1.2 Example Instruction Description ... 1-12
Figure 2.3 Unaligned Doubleword Load using LDL and LDR .. 2-67
Figure 2.4 Bytes Loaded by LDL Instruction .. 2-68
Figure 2.5 Unaligned Doubleword Load using LDR and LDL .. 2-69
Figure 2.6 Bytes Loaded by LDR Instruction ... 2-70
Figure 2.7 Unaligned Doubleword Load using LDL and LDR .. 2-77
Figure 2.8 Bytes Loaded by LDL Instruction .. 2-78
Figure 2.9 Unaligned Doubleword Load using LDR and LDL .. 2-79
Figure 2.10 Bytes Loaded by LDR Instruction ... 2-80
Figure 2.11 Unaligned Word Load using LWL and LWR ... 2-90
Figure 2.12 Bytes Loaded by LWL Instruction ... 2-91
Figure 2.13 Unaligned Word Load using LWR and LWL ... 2-93
Figure 2.14 Bytes Loaded by LWR Instruction... 2-94
Figure 2.15 Unaligned Doubleword Store with SDL and SDR ... 2-126
Figure 2.16 Unaligned Doubleword Store with SDR and SDL ... 2-128
Figure 2.17 Unaligned Word Store using SWR and SWL.. 2-149
��

List of Figures
�

�����

� � �
������� 	
��� ����	
����� ������
�����	
�����
This chapter describes the instruction set architecture (ISA) for the central processing unit (CPU) in the

MIPS IV architecture. The CPU architecture defines the non-privileged instructions that execute in user
mode. It does not define privileged instructions providing processor control executed by the implementa-
tion-specific System Control Processor. Instructions for the floating-point unit (FPU) are described in Chap-
ters 4, 5 and 6.

The original MIPS I CPU ISA has been extended in a backward-compatible fashion three times. The ISA
extensions are inclusive as the diagram illustrates; each new architecture level (or version) includes the
former levels. The description of an architectural feature includes the architecture level in which the feature
is (first) defined or extended. The feature is also available in all later (higher) levels of the architecture.

Figure 1.1 MIPS Architecture Extensions

The practical result is that a processor implementing MIPS IV is also able to run MIPS I, MIPS II, or
MIPS III user-mode binary programs without change.

It should be noted that there may not always be a one-to-one relationship between an IDT micropro-
cessor or RISController and a MIPS ISA level. Some IDT parts adhere strictly to a MIPS ISA level, some
implement a specific MIPS ISA level and also implement additional special instructions (for example, in the
case of RC4640, RC4650), while yet others implement a combination of different MIPS ISA levels and also
additional special instructions (for example, in the case of RC32364).

The CPU instruction set is first summarized by functional group. In Chapter 2 each instruction is
described separately in alphabetical order. Chapter 3 describes the organization of the individual instruction
descriptions and the notation used in them (including FPU instructions). It concludes with the CPU instruc-
tion formats and opcode encoding tables.

�������� �����
����� ���
��
CPU instructions are divided into the following functional groups:

◆ Load and Store
◆ Arithmetic Logic Unit
◆ Jump and Branch
◆ Miscellaneous
◆ Coprocessor

MIPS I

 M IP S II

M IP S III

M IP S IV

CPU Instructions Basics Functional Instruction Groups

��� �� ����� ����������

Load and store instructions transfer data between the memory system and the general register sets in
the CPU and the coprocessors. There are separate instructions for different purposes: transferring various
sized fields, treating loaded data as signed or unsigned integers, accessing unaligned fields, selecting the
addressing mode, and providing atomic memory update (read-modify-write).

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the
smallest byte address among the bytes forming the object. For big-endian ordering this is the most-signifi-
cant byte; for a little-endian ordering this is the least-significant byte.

Except for the few specialized instructions listed in Table 1.4, loads and stores must access naturally
aligned objects. An attempt to load or store an object at an address that is not an even multiple of the size
of the object will cause an Address Error exception.

Load and store operations have been added in each revision of the architecture:
◆ MIPS II

- 64-bit coprocessor transfers1
- atomic update

◆ MIPS III
- 64-bit CPU transfers
- unsigned word load for CPU

◆ MIPS IV
- register + register addressing mode for FPU

Table 1.1 and Table 1.2 tabulate the supported load and store operations and indicate the MIPS archi-
tecture level at which each operation was first supported. The instructions themselves are listed in the
following sections.

1. Even though the RISCore32300 implements MIPS II, double word accesses will signal a trap.

��� ��	
����
 �����	� ��

���� ����
����

������

����

�������
���
� ���� ���
�

byte I I I

halfword I I I

word I III I I I

doubleword III III II II

unaligned word I I

unaligned doubleword III III

linked word
(atomic modify)

II II

linked doubleword
(atomic modify)

III III

Table 1.1 Load/Store Operations Using Register + Offset Addressing Mode

���������	���� ��	
����
 ����

���� ���� ���� ���
�

word IV IV

doubleword IV IV

Table 1.2 Load/Store Operations Using Register + Register Addressing Mode
� � �

CPU Instructions Basics Functional Instruction Groups
�������
����

The MIPS I architecture defines delayed loads; an instruction scheduling restriction requires that an
instruction immediately following a load into register Rn cannot use Rn as a source register. The time
between the load instruction and the time the data is available is the “load delay slot”. If no useful instruction
can be put into the load delay slot, then a null operation (assembler mnemonic NOP) must be inserted.

In MIPS II, this instruction scheduling restriction is removed. Programs will execute correctly when the
loaded data is used by the instruction following the load, but this may require extra real cycles. Most proces-
sors cannot actually load data quickly enough for immediate use and the processor will be forced to wait
until the data is available. Scheduling load delay slots is desirable for performance reasons even when it is
not necessary for correctness.

���
���� �� ������

There are instructions to transfer different amounts of data: bytes, halfwords, words, and doublewords.
Signed and unsigned integers of different sizes are supported by loads that either sign-extend or zero-
extend the data loaded into the register.

Unaligned words and doublewords can be loaded or stored in only two instructions by using a pair of
special instructions. The load instructions read the left-side or right-side bytes (left or right side of register)
from an aligned word and merge them into the correct bytes of the destination register. MIPS I, though it
prohibits other use of loaded data in the load delay slot, permits LWL and LWR instructions targeting the
same destination register to be executed sequentially. Store instructions select the correct bytes from a
source register and update only those bytes in an aligned memory word (or doubleword).

 ��!���� ���
�	���� ������� ��

LB Load Byte I

LBU Load Byte Unsigned I

SB Store Byte I

LH Load Halfword I

LHU Load Halfword Unsigned I

SH Store Halfword I

LW Load Word I

LWU Load Word Unsigned III

SW Store Word I

LD Load Doubleword III

SD Store Doubleword III

Table 1.3 Normal CPU Load/Store Instructions

 ��!���� ���
�	���� ������� ��

LWL Load Word Left I

LWR Load Word Right I

SWL Store Word Left I

SWR Store Word Right I

LDL Load Doubleword Left III

LDR Load Doubleword Right III

SDL Store Doubleword Left III

SDR Store Doubleword Right III

Table 1.4 Unaligned CPU Load/Store Instructions
� � �

CPU Instructions Basics Computational Instructions
������ ������
���� �� ������

There are paired instructions, Load Linked and Store Conditional, that can be used to perform atomic
read-modify-write of word and doubleword cached memory locations. These instructions are used in care-
fully coded sequences to provide one of several synchronization primitives, including test-and-set, bit-level
locks, semaphores, and sequencers/event counts. The individual instruction descriptions describe how to
use them.

�����������
��� �� ����� ����������

These loads and stores are coprocessor instructions, however it seems more useful to summarize all
load and store instructions in one place instead of listing them in the coprocessor instructions functional
group.

If a particular coprocessor is not enabled, loads and stores to that processor cannot execute and will
cause a Coprocessor Unusable exception. Enabling a coprocessor is a privileged operation provided by the
System Control Coprocessor.

����
�������� �����
������
Computational instructions perform arithmetic, logical, shift, multiply, and divide operations on values in

registers. Two’s complement arithmetic is performed on integers represented in two’s complement notation.
There are signed versions of add, subtract, multiply, and divide. There are add and subtract operations,
called “unsigned,” that are actually modulo arithmetic without overflow detection. There are unsigned
versions of multiply and divide. There is a full complement of shift and logical operations.

MIPS I provides 32-bit integers and 32-bit arithmetic. MIPS III adds 64-bit integers and provides sepa-
rate arithmetic and shift instructions for 64-bit operands. Logical operations are not sensitive to the width of
the register.

����������
���� ���

Some arithmetic and logical instructions operate on one operand, from a register and the other from a
16-bit immediate value in the instruction word. The immediate operand is treated as signed for the arith-
metic and compare instructions, and treated as logical (zero-extended to register length) for the logical
instructions.

 ��!���� ���
�	���� ������� ��

LL Load Linked Word II

SC Store Conditional Word II

LLD Load Linked Doubleword III

SCD Store Conditional Doubleword III

Table 1.5 Atomic Update CPU Load/Store Instructions

 ��!���� ���
�	���� ������� ��

LWCz Load Word to Coprocessor-z I

SWCz Store Word from Coprocessor-z I

LDCz Load Doubleword to Coprocessor-z II

SDCz Store Doubleword from Coprocessor-z II

Table 1.6 Coprocessor Load/Store Instructions

 ��!���� ���
�	���� ������� ��

LWXC1 Load Word Indexed to Floating Point IV

SWXC1 Store Word Indexed from Floating Point IV

LDXC1 Load Doubleword Indexed to Floating Point IV

SDXC1 Store Doubleword Indexed from Floating Point IV

Table 1.7 PFU Load/Store Instructions Using Register + Register Addressing
� � "

CPU Instructions Basics Computational Instructions
����� ����������

There are shift instructions that take the shift amount from a 5-bit field in the instruction word and shift
instructions that take a shift amount from the low-order bits of a general register. The instructions with a
fixed shift amount are limited to a 5-bit shift count, so there are separate instructions for doubleword shifts
of 0-31 bits and 32-63 bits.

 ��!���� ���
�	���� ������� ��

ADDI Add Immediate Word I

ADDIU Add Immediate Unsigned Word I

SLTI Set on Less Than Immediate I

SLTIU Set on Less Than Immediate Unsigned I

ANDI And Immediate I

ORI Or Immediate I

XORI Exclusive Or Immediate I

LUI Load Upper Immediate I

DADDI Doubleword Add Immediate III

DADDIU Doubleword Add Immediate Unsigned III

Table 1.8 ALU Instructions With an Immediate Operand

 ��!���� ���
�	���� ������� ��

ADD Add Word I

ADDU Add Unsigned Word I

SUB Subtract Word I

SUBU Subtract Unsigned Word I

DADD Doubleword Add III

DADDU Doubleword Add Unsigned III

DSUB Doubleword Subtract III

DSUBU Doubleword Subtract Unsigned III

SLT Set on Less Than I

SLTU Set on Less Than Unsigned I

AND And I

OR Or I

XOR Exclusive Or I

NOR Nor I

Table 1.9 Operand ALU Instructions

 ��!���� ���
�	���� ������� ��

SLL Shift Word Left Logical I

SRL Shift Word Right Logical I

SRA Shift Word Right Arithmetic I

SLLV Shift Word Left Logical Variable I

SRLV Shift Word Right Logical Variable I

SRAV Shift Word Right Arithmetic Variable I

DSLL Doubleword Shift Left Logical III

DSRL Doubleword Shift Right Logical III

Table 1.10 Shift Instructions
� � #

CPU Instructions Basics Computational Instructions
�������� �� ������ ����������

Multiply produces a full-width product twice the width of the input operands: the low half is placed in LO
and the high half is placed in HI. Integer divides produce both a quotient in LO and a remainder in HI. These
results are accessed by instructions that transfer data between these special purpose registers and the
general registers.

The RC4650 adds the MAD or MADU instruction (multiply-accumulate or multiply-accumulate unsigned,
with HI and LO as the accumulator) to the base MIPS-III ISA. The MAD or MADU instruction uses the HI
and LO registers as a 64-bit accumulator. This process allows these instructions to compatibly operate in
32-bit processors.

The RC4650 also adds MUL, a 3-operand 32x32 → 32 multiply instruction that eliminates the need to
explicitly move the multiply result from the LO register back to a general register.

Note: After executing the MUL instruction, the HI and LO registers are undefined.

���� �� ���� ����������

The architecture defines PC-relative conditional branches, a PC-region unconditional jump, an absolute
(register) unconditional jump, and a similar set of procedure calls that record a return link address in a
general register. For convenience this discussion refers to them all as branches.

DSRA Doubleword Shift Right Arithmetic III

DSLL32 Doubleword Shift Left Logical + 32 III

DSRL32 Doubleword Shift Right Logical + 32 III

DSRA32 Doubleword Shift Right Arithmetic + 32 III

DSLLV Doubleword Shift Left Logical Variable III

DSRLV Doubleword Shift Right Logical Variable III

DSRAV Doubleword Shift Right Arithmetic Variable III

 ��!���� ���
�	���� ������� ��

MAD Multiply/Add IDT extension

MADU Multiply/Add Unsigned IDT extension

MUL Multiply IDT extension

MULT Multiply Word MIPS I

MULTU Multiply Unsigned Word MIPS I

DIV Divide Word I

DIVU Divide Unsigned Word I

DMULT Doubleword Multiply III

DMULTU Doubleword Multiply Unsigned III

DDIV Doubleword Divide III

DDIVU Doubleword Divide Unsigned III

MFHI Move From HI I

MTHI Move To HI I

MFLO Move From LO I

MTLO Move To LO I

Table 1.11 Multiply/Divide Instructions

 ��!���� ���
�	���� ������� ��

Table 1.10 Shift Instructions
� � $

CPU Instructions Basics Computational Instructions
All branches have an architectural delay of one instruction. When a branch is taken, the instruction
immediately following the branch instruction, in the branch delay slot, is executed before the branch to the
target instruction takes place. Conditional branches come in two versions that treat the instruction in the
delay slot differently when the branch is not taken and execution falls through. The “branch” instructions
execute the instruction in the delay slot, but the “branch likely” instructions do not (they are said to nullify it).

By convention, if an exception or interrupt prevents the completion of an instruction occupying a branch
delay slot, the instruction stream is continued by re-executing the branch instruction. To permit this,
branches must be restartable; procedure calls may not use the register in which the return link is stored
(usually register 31) to determine the branch target address.

 ��!���� ���
�	���� ������� ��

J Jump I

JAL Jump and Link I

Table 1.12 Jump Instructions Jumping Within a 256 Megabyte Region

 ��!���� ���
�	���� ������� ��

JR Jump Register I

JALR Jump and Link Register I

Table 1.13 Jump Instructions to Absolute Address

 ��!���� ���
�	���� ������� ��

BEQ Branch on Equal I

BNE Branch on Not Equal I

BLEZ Branch on Less Than or Equal to Zero I

BGTZ Branch on Greater Than Zero I

BEQL Branch on Equal Likely II

BNEL Branch on Not Equal Likely II

BLEZL Branch on Less Than or Equal to Zero Likely II

BGTZL Branch on Greater Than Zero Likely II

Table 1.14 PC-Relative Conditional Branch Instructions, Comparing 2 Registers

 ��!���� ���
�	���� ������� ��

BLTZ Branch on Less Than Zero I

BGEZ Branch on Greater Than or Equal to Zero I

BLTZAL Branch on Less Than Zero and Link I

BGEZAL Branch on Greater Than or Equal to Zero and Link I

BLTZL Branch on Less Than Zero Likely II

BGEZL Branch on Greater Than or Equal to Zero Likely II

BLTZALL Branch on Less Than Zero and Link Likely II

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely II

Table 1.15 PC-Relative Conditional Branch Instructions, Comparing Against Zero
� � %

CPU Instructions Basics Miscellaneous Instructions
�����������
� �����
������

!"������ ����������

Exception instructions have as their sole purpose causing an exception that will transfer control to a soft-
ware exception handler in the kernel. System call and breakpoint instructions cause exceptions uncondi-
tionally. The trap instructions cause exceptions conditionally based upon the result of a comparison.

�������#���� ����������

The order in which memory accesses from load and store instruction appears outside the processor
executing them, such as in a multiprocessor system, is not specified by the architecture. The SYNC instruc-
tion creates a point in the executing instruction stream at which the relative order of some loads and stores
is known. Loads and stores executed before the SYNC are completed before loads and stores after the
SYNC can start.

��������� ���� ����������

Instructions were added in MIPS IV to conditionally move one CPU general register to another, based
on the value in a third general register.

 ��!���� ���
�	���� ������� ��

SYSCALL System Call I

BREAK Breakpoint I

Table 1.16 System Call and Breakpoint Instructions

 ��!���� ���
�	���� ������� ��

'() Trap if Greater Than or Equal II

'()� Trap if Greater Than or Equal Unsigned II

'�' Trap if Less Than II

'�'� Trap if Less Than Unsigned II

')* Trap if Equal II

'+) Trap if Not Equal II

Table 1.17 Trap-on-Condition Instructions, Comparing Two Registers

 ��!���� ���
�	���� ������� ��

TGEI Trap if Greater Than or Equal Immediate II

TGEIU Trap if Greater Than or Equal Unsigned Immediate II

TLTI Trap if Less Than Immediate II

TLTIU Trap if Less Than Unsigned Immediate II

TEQI Trap if Equal Immediate II

TNEI Trap if Not Equal Immediate II

Table 1.18 Trap-on-Condition Instructions, Comparing an Immediate

 ��!���� ���
�	���� ������� ��

SYNC Synchronize Shared Memory II

Table 1.19 Serialization Instructions
� � &

CPU Instructions Basics Coprocessor Instructions
�������� ����������

There are two prefetch advisory instructions: one with register+offset addressing (PREF) and the other
with register+register addressing (PREFX). These instructions advise that memory is likely to be used in a
particular way in the near future and should be prefetched into the cache. The PREFX instruction using
register+register addressing mode is coded in the FPU opcode space, along with the other operations using
register+register addressing. The RC32364 implements PREF instruction.

����������� �����
������
Coprocessors are alternate execution units, with register files separate from the CPU. The MIPS archi-

tecture provides an abstraction for up to 4 coprocessor units, numbered 0 to 3. Each architecture level
defines some of these coprocessors, as shown in Table 1.23.

Coprocessor 0 is always used for system control and coprocessor 1 is used for the floating-point unit.
Other coprocessors are architecturally valid, but do not have a reserved use. Some coprocessors are not
defined and their opcodes are either reserved or used for other purposes.

The coprocessors may have two register sets—coprocessor general registers and coprocessor control
registers—each set containing up to thirty two registers. Coprocessor computational instructions may alter
registers in either set.

System control for all MIPS processors is implemented as coprocessor 0 (CP0), the System Control
Coprocessor. It provides the processor control, memory management, and exception handling functions.
The CP0 instructions are specific to each CPU and are documented with the CPU-specific information.

If a system includes a floating-point unit, it is implemented as coprocessor 1 (CP1). In MIPS IV, the FPU
also uses the computation opcode space for coprocessor unit 3, renamed COP1X. The FPU instructions
are documented in Chapters 4, 5 and 6.

The coprocessor instructions are divided into these two main groups:
◆ Load and store instructions that are reserved in the main opcode space.
◆ Coprocessor-specific operations that are defined entirely by the coprocessor.

 ��!���� ���
�	���� ������� ��

MOVN Move Conditional on Not Zero IV

MOVZ Move Conditional on Zero IV

Table 1.20 CPU Conditional Move Instructions

 ��!���� ���
�	���� ������� ��

PREF Prefetch Indexed IV

Table 1.21 Prefetch Using Register + Offset Address Mode

 ��!���� ���
�	���� ������� ��

PREFX Prefetch Indexed IV

Table 1.22 Prefetch Using Register + Register Address Mode

 -�� .
�/�����0
� ��1��

��	
����
 - -- --- -2

0 Sys Control Sys Control Sys Control Sys Control

1 FPU FPU FPU FPU

2 unused unused unused unused

3 unused unused not defined FPU (COP 1X)

Table 1.23 Coprocessor Definition and Use in the MIPS Architecture
� � ,

CPU Instructions Basics Memory Access Types
�����������
��� �� ����� ����������

Load and store instructions are not defined for CP0; the move to/from coprocessor instructions are the
only way to write and read the CP0 registers. The loads and stores for coprocessors are summarized on
page 1-1.

����������� $��������

There are up to four coprocessors and the instructions are shown generically for coprocessor-z. Within
the operation main opcode, the coprocessor has further coprocessor-specific instructions encoded.

������ ������ �����
MIPS processors provide a few memory access types that are characteristic ways to use physical

memory and caches to perform a memory access. The memory access type is specified as a cache coher-
ence algorithm (CCA) in the CP0 descriptions of a virtual address. The access type used for a location is
associated with the virtual address, not the physical address or the instruction making the reference. Imple-
mentations without multiprocessor (MP) support provide uncached and cached accesses. Implementations
with MP support provide uncached, cached noncoherent and cached coherent accesses. The memory
access types use the memory hierarchy as follows:

�������

Physical memory is used to resolve the access. Each reference causes a read or write to physical
memory. Caches are neither examined nor modified.

������ %��������

Physical memory and the caches of the processor performing the access are used to resolve the
access. Other caches are neither examined nor modified.

������ �������

Physical memory and all caches in the system containing a coherent copy of the physical location are
used to resolve the access. A copy of a location is coherent (noncoherent) if the copy was placed in the
cache by a cached coherent (cached noncoherent) access. Caches containing a coherent copy of the loca-
tion are examined and/or modified to keep the contents of the location coherent. It is unpredictable whether
caches holding a noncoherent copy of the location are examined and/or modified during a cached coherent
access.

������

For early 32-bit processors without MP support, cached is equivalent to cached noncoherent. If an
instruction description mentions the cached noncoherent access type, the comment applies equally to the
cached access type in a processor that has the cached access type.

For processors with MP support, cached is a collective term, e.g. “cached memory” or “cached access”,
that includes both cached noncoherent and cached coherent. Such a collective use does not imply that
cached is an access type, it means that the statement applies equally to cached noncoherent and cached
coherent access types.

������ ���������� ���� ��������� ������ �����
It is possible to have more than one virtual location simultaneously mapped to the same physical loca-

tion. The memory access type that is used for virtual mappings may be different.
For all accesses to virtual locations with the same memory access type, a processor executing load and

store instructions must observe the effect of those instructions to a physical location in the order that they
occur in the instruction stream (such as program order).

 ��!���� ���
�	���� ������� ��

COPz Coprocessor-z Operation I

Table 1.24 Coprocessor Operation Instructions
� � ��

CPU Instructions Basics Cache Coherence Algorithms and Access Types
If a processor executes a load or store using one access type to a physical location, the behavior of a
subsequent load or store to the same location, using a different memory access type, is undefined unless a
privileged instruction sequence is executed between the two accesses. Each implementation has a privi-
leged implementation-specific mechanism that must be used to change the access type being used to
access a location.

The 64-bit RISController family allows physical memory to be described simultaneously with different
access characteristics, such as write-back and write-through. The caches are physically tagged, and
provide sufficient state bites, to ensure memory coherency in a uniprocessor system.

The memory access type of a location affects the behavior of I-fetch, load, store, and prefetch opera-
tions to the location. In addition, memory access types affect some instruction descriptions. Load linked (LL,
LLD) and store conditional (SC, SCD) have defined operation only for locations with cached memory
access type. SYNC affects only load and stores made to locations with uncached or cached coherent
memory access types.

����� ��������� ���������� ��	 ������ �����
The memory access types are specified by implementation-specific cache coherence algorithms (CCAs)

in TLB entries. Slightly different cache coherence algorithms such as “cached coherent, update on write”
and “cached coherent, exclusive on write” can map to the same memory access type, in this case they both
map to cached coherent.

To map to the same access type, the fundamental mechanism of both CCAs must be the same. When it
affects the operation of the instruction, the instructions are described in terms of the memory access types.
The load and store operations in a processor proceeds according to the specific CCA of the reference,
however, and the pseudocode for load and store common functions in the section “Load and Store Memory
Functions” on page 1-18 use the CCA value rather than the corresponding memory access type.

�������������� !������� ������ �����
An implementation may provide memory access types other than uncached, cached noncoherent, or

cached coherent. Implementation-specific documentation will define the properties of the new access types
and their effect on all memory-related operations.
� � ��

CPU Instructions Basics Instruction Descriptions
�����
����� ������������
The CPU instructions are described in alphabetic order. Each description contains several sections that

contain specific information about the instruction. The content of the section is described in detail below. An
example description is shown in Figure 1.2.

Figure 1.2 Example Instruction Description

��������� ������ �� %���

The instruction mnemonic and name are printed as page headings for each page in the instruction
description.

��������� !����� �������

The instruction word encoding is shown in pictorial form at the top of the instruction description. This
picture shows the values of all constant fields and the opcode names for opcode fields in upper-case. It
labels all variable fields with lower-case names that are used in the instruction description. Fields that
contain zeroes but are not named are unused fields that are required to be zero. A summary of the instruc-
tion formats and a definition of the terms used to describe the contents can be found in CPU Instruction
Formats.

 Instruction mnemonic
and descriptive name

Instruction encoding
constant and variable
field names and values

Architecture level at

Short description

Symbolic description

Full description of
instruction operation

Restrictions on
instruction and

High-level language
description of

Exceptions that
instruction can cause

Notes for programmers

operands

which instruction was
defined/redefined and
assembler format(s)
for each definition

instruction operation

Notes for implementors

•

•

•

•

•

•

•

•

•

•

•

� � ��

CPU Instructions Basics Instruction Descriptions
&�����

The assembler formats for the instruction and the architecture level at which the instruction was origi-
nally defined are shown. If the instruction definition was later extended, the architecture levels at which it
was extended and the assembler formats for the extended definition are shown in order of extension. The
MIPS architecture levels are inclusive; higher architecture levels include all instructions in previous levels.
Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

The assembler format is shown with literal parts of the assembler instruction in upper-case characters.
The variable parts, the operands, are shown as the lower-case names of the appropriate fields in the
instruction encoding picture. The architecture level at which the instruction was first defined, e.g. “MIPS I”,
is shown at the right side of the page.

There can be more than one assembler format per architecture level. This is sometimes an alternate
form of the instruction. Floating-point operations on formatted data show an assembly format with the actual
assembler mnemonic for each valid value of the “fmt” field. For example the ADD.fmt instruction shows
ADD.S and ADD.D.

The assembler format lines sometimes have comments to the right in parentheses to help explain varia-
tions in the formats. The comments are not a part of the assembler format.

�������

This section provides a short statement on the purpose of the instruction.

����������

If a one-line symbolic description of the instruction is feasible, it will appear immediately to the right of
the Description heading. The main purpose is to show how fields in the instruction are used in the arithmetic
or logical operation.

The body of the section is a description of the operation of the instruction in text, tables, and figures.
This description complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU General Purpose Register speci-
fied by the instruction field rt. “FPR fs” is the Floating Point Operand Register specified by the instruction
field fs. “CP1 register fd” is the coprocessor 1 General Register specified by the instruction field fd. “FCSR”
is the floating-point control and status register.

'����������

This section documents the restrictions on the instruction. Most restrictions fall into one of the following
six categories:

◆ The valid values for instruction fields (see floating-point ADD.fmt).
◆ The alignment requirements for memory addresses (see LW).
◆ The valid values of operands (see DADD).
◆ The valid operand formats (see floating-point ADD.fmt).
◆ The order of instructions necessary to guarantee correct execution.
◆ The valid memory access types (see LL/SC).

These ordering constraints avoid pipeline hazards for which some processors do not have hardware
interlocks (see MUL).

$�������

This section describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. The purpose of this section is to describe the operation of the instruction clearly in a
form with less ambiguity than prose. This formal description complements the Description section; it is not
complete in itself because many of the restrictions are either difficult to include in the pseudocode or
omitted for readability.

There will be separate Operation sections for 32-bit and 64-bit processors if the operation is different.
This is usually necessary because the path to memory is a different size on these processors.

See “Operation Section Notation and Functions” on page 1-15 for more information on the formal nota-
tion.
� � ��

CPU Instructions Basics Instruction Descriptions
!"�������

This section lists the exceptions that can be caused by operation of the instruction. It omits exceptions
that can be caused by instruction fetch, e.g. TLB Refill. It omits exceptions that can be caused by asynchro-
nous external events, e.g. Interrupt. Although the Bus Error exception may be caused by the operation of a
load or store instruction this section does not list Bus Error for load and store instructions because the rela-
tionship between load and store instructions and external error indications, like Bus Error, are implementa-
tion dependent.

Reserved Instruction is listed for every instruction not in MIPS I because the instruction will cause this
exception on a MIPS I processor. To execute a MIPS II, MIPS III, or MIPS IV instruction, the processor must
both support the architecture level and have it enabled. The mechanism to do this is implementation
specific.

The mechanism used to signal a floating-point unit (FPU) exception is implementation specific. Some
implementations use the exception named “Floating Point”. Others use external interrupts (the Interrupt
exception). This section lists Floating Point to represent all such mechanisms. The specific FPU traps are
listed, indented, under the Floating Point entry.

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions
section.

���������� �� ������������ %����

These sections contain material that is useful for programmers and implementors respectively but that is
not necessary to describe the instruction and does not belong in the description sections.

$������� ������ %������ �� &������

In an instruction description, the Operation section describes the operation performed by each instruc-
tion using a high-level language notation. The contents of the Operation section are described here. The
special symbols and functions used are documented here.

����������
������

Each of the high-level language statements is executed in sequential order (as modified by conditional
and loop constructs).

���������� ���(���

Special symbols used in the notation are described in Table 1.25.

��!3�� ������

¨ Assignment.

=, ≠ Tests for equality and inequality.

|| Bit string concatenation.

xy A y-bit string formed by y copies of the single-bit value x.

xy..z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is
less than z, this expression is an empty (zero length) bit string.

+, - 2’s complement or floating-point arithmetic: addition, subtraction.

*, ¥ 2’s complement or floating-point multiplication (both used for either).

div 2’s complement integer division.

mod 2’s complement modulo.

/ Floating-point division.

< 2’s complement less than comparison.

nor Bit-wise logical NOR.

xor Bit-wise logical XOR.

and Bit-wise logical AND.

or Bit-wise logical OR.

Table 1.25 Symbols in Instruction Operation Statements (Page 1 of 2)
� � �"

CPU Instructions Basics Instruction Descriptions
GPRLEN The length in bits (32 or 64), of the CPU General Purpose Registers.

GPR[x] CPU General Purpose Register x. The content of GPR[0] is always zero.

FPR[x] Floating-Point operand register x.

FCC[cc] Floating-Point condition code cc. FCC[0] has the same value as COC[1].

FGR[x] Floating-Point (Coprocessor unit1), general register x.

CPR[z,x] Coprocessor unit z, general register x.

CCR[z,x] Coprocessor unit z, control register x.

COC[z] Coprocessor unit z condition signal.

BigEndianMem Endian mode as configured at chip reset (0 →Little, 1 → Big). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory), and the endianness of Kernel and Supervi-
sor mode execution.

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User
mode only, and is effected by setting the RE bit of the Status register. Thus, ReverseEndian may be
computed as (SRRE and User mode).

BigEndianCPU The endianness for load and store instructions (0 → Little, 1 → Big). In User mode, this endianness
may be switched by setting the RE bit in the Status Register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. It
is set when a linked load occurs. It is tested and cleared by the conditional store. It is cleared, during
other CPU operation, when a store to the location would no longer be atomic. In particular, it is
cleared by exception return instructions.

I:,
I+n:,
I-n:

This occurs as a prefix to operation description lines and functions as a label. It indicates the instruc-
tion time during which the effects of the pseudocode lines appears to occur (i.e. when the
pseudocode is “executed”). Unless otherwise indicated, all effects of the current instruction appear
to occur during the instruction time of the current instruction. No label is equivalent to a time label of
“I:”. Sometimes effects of an instruction appear to occur either earlier or later – during the instruction
time of another instruction. When that happens, the instruction operation is written in sections
labelled with the instruction time, relative to the current instruction I, in which the effect of that
pseudocode appears to occur. For example, an instruction may have a result that is not available
until after the next instruction. Such an instruction will have the portion of the instruction operation
description that writes the result register in a section labelled “I+1:”.

The effect of pseudocode statements for the current instruction labelled “ I+1:”appears to occur “at
the same time” as the effect of pseudocode statements labelled “I:” for the following instruction.
Within one pseudocode sequence the effects of the statements takes place in order. However,
between sequences of statements for different instructions that occur “at the same time”, there is no
order defined. Programs must not depend on a particular order of evaluation between such sec-
tions.

PC The Program Counter value. During the instruction time of an instruction this is the address of the
instruction word. The address of the instruction that occurs during the next instruction time is deter-
mined by assigning a value to PC during an instruction time. If no value is assigned to PC during an
instruction time by any pseudocode statement, it is automatically incremented by 4 before the next
instruction time. A taken branch assigns the target address to PC during the instruction time of the
instruction in the branch delay slot.

PSIZE The SIZE, number of bits, of Physical address in an implementation.

��!3�� ������

Table 1.25 Symbols in Instruction Operation Statements (Page 2 of 2)
� � �#

CPU Instructions Basics Pseudocode Functions
"��
	���	�
�������
There are several functions used in the pseudocode descriptions. These are used either to make the

pseudocode more readable, to abstract implementation specific behavior, or both. The functions are
defined in this section.

����������� ������� �������� ������
�������
Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between

coprocessor general registers and the rest of the system. What a coprocessor does with a word or double-
word supplied to it and how a coprocessor supplies a word or doubleword is defined by the coprocessor
itself. This behavior is abstracted into the following functions:

COP_LW (z, rt, memword)
z: The coprocessor unit number.
rt: Coprocessor general register specifier.
memword: A 32-bit word value supplied to the coprocessor.

This is the action taken by coprocessor z when supplied with a word from memory during a load word
operation. The action is coprocessor specific. The typical action would be to store the contents of
memword in coprocessor general register rt.

COP_LD (z, rt, memdouble)
z: The coprocessor unit number.
rt: Coprocessor general register specifier.
memdouble: 64-bit doubleword value supplied to the coprocessor.

This is the action taken by coprocessor z when supplied with a doubleword from memory during a load
doubleword operation. The action is coprocessor specific. The typical action would be to store the
contents of memdouble in coprocessor general register rt.

dataword ¨ COP_SW (z, rt)
z: The coprocessor unit number.
rt: Coprocessor general register specifier.
dataword: 32-bit word value.

This defines the action taken by coprocessor z to supply a word of data during a store word operation.
The action is coprocessor specific. The typical action would be to supply the contents of the low-order
word in coprocessor general register rt.

datadouble ¨ COP_SD (z, rt)
z: The coprocessor unit number.
rt: Coprocessor general register specifier.
datadouble: 64-bit doubleword value.

This defines the action taken by coprocessor z to supply a doubleword of data during a store doubleword
operation. The action is coprocessor specific. The typical action would be to supply the contents of the
doubleword in coprocessor general register rt.

Table 1.26 Coprocessor General Register Access Functions
� � �$

CPU Instructions Basics Load and Store Memory Functions
#��	 ��	 !���� ������
�������
Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the

smallest byte address among the bytes forming the object. For big-endian ordering this is the most-signifi-
cant byte; for a little-endian ordering this is the least-significant byte.

In the operation description pseudocode for load and store operations, the functions shown below are
used to summarize the handling of virtual addresses and accessing physical memory.The size of the data
item to be loaded or stored is passed in the AccessLength field.

The valid constant names and values are shown in Table 1.27. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) can be determined directly from
the AccessLength and the two or three low-order bits of the address.

(pAddr, CCA) ¨AddressTranslation (vAddr, IorD, LorS)
pAddr: Physical Address.
CCA: Cache Coherence Algorithm: the method used to access caches and memory

and resolve the reference.
vAddr: Virtual Address.
IorD: Indicates whether access is for INSTRUCTION or DATA.
LorS: Indicates whether access is for LOAD or STORE.

Translate a virtual address to a physical address and a cache coherence algorithm describing the
mechanism used to resolve the memory reference.
Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the
corresponding physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the
reference. If the virtual address is in one of the unmapped address spaces the physical address and CCA
are determined directly by the virtual address. If the virtual address is in one of the mapped address
spaces then the TLB is used to determine the physical address and access type; if the required translation
is not present in the TLB or the desired access is not permitted the function fails and an exception is taken.

MemElem ¨ LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)
MemElem: Data is returned in a fixed width with a natural alignment. The width is the

same size as the CPU general purpose register, 32 or 64 bits, aligned on a
32 or 64-bit boundary respectively.

CCA: Cache Coherence Algorithm: the method used to access caches and memory
and resolve the reference.

AccessLength: Length, in bytes, of access.
pAddr: Physical Address.
vAddr: Virtual Address.
IorD: Indicates whether access is for Instructions or Data.

Load a value from memory.
Uses the cache and main memory as specified in the Cache Coherence Algorithm (CCA) and the sort of
access (IorD) to find the contents of AccessLength memory bytes starting at physical location pAddr. The
data is returned in the fixed width naturally-aligned memory element (MemElem). The low-order two (or
three) bits of the address and the AccessLength indicate which of the bytes within MemElem needs to be
given to the processor. If the memory access type of the reference is uncached then only the referenced
bytes are read from memory and valid within the memory element. If the access type is cached, and the
data is not present in cache, an implementation specific size and alignment block of memory is read and
loaded into the cache to satisfy a load reference. At a minimum, the block is the entire memory element.
� � �%

CPU Instructions Basics Load and Store Memory Functions
StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)
CCA: Cache Coherence Algorithm: the method used to access caches and memory

and resolve the reference.
AccessLength: Length, in bytes, of access.
MemElem: Data in the width and alignment of a memory element. The width is the same

size as the CPU general purpose register, 4 or 8 bytes, aligned on a 4 or 8-
byte boundary. For a partial-memory-element store, only the bytes that will be
stored must be valid.

pAddr: Physical Address.
vAddr: Virtual Address.

Store a value to memory.
The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and
main memory) as specified by the Cache Coherence Algorithm (CCA). The MemElem contains the data
for an aligned, fixed-width memory element (word for 32-bit processors, doubleword for 64-bit
processors), though only the bytes that will actually be stored to memory need to be valid. The low-order
two (or three) bits of pAddr and the AccessLength field indicates which of the bytes within the MemElem
data should actually be stored; only these bytes in memory will be changed.

Prefetch (CCA, pAddr, vAddr, DATA, hint)
CCA: Cache Coherence Algorithm: the method used to access caches and memory

and resolve the reference.
pAddr: physical Address.
vAddr: Virtual Address.
DATA: Indicates that access is for DATA.
hint: hint that indicates the possible use of the data.

Prefetch data from memory.
Prefetch is an advisory instruction for which an implementation specific action is taken. The action taken
may increase performance but must not change the meaning of the program or alter architecturally-visible
state.

.��������/ +�!� 2��0� ������

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

Table 1.27 AccessLength Specifications for Loads/Stores
� � �&

CPU Instructions Basics Access Functions for Floating-Point Registers
������
������� ��� ������� "���� ���������
The details of the relationship between CP1 general registers and floating-point operand registers is

encapsulated in the functions included in this section. See Valid Operands for FP Instructions in the
Chapter Titled “FPU Instruction Set” for more information.

This function returns the current logical width, in bits, of the CP1 general registers. All 32-bit processors
will return “32”. 64-bit processors will return “32” when in 32-bit-CP1-register emulation mode and “64”
when in native 64-bit mode.

The following pseudocode referring to the StatusFR bit is valid for all existing MIPS 64-bit processors at
the time of this writing, however this is a privileged processor-specific mechanism and it may be different in
some future processor.

SizeFGR() -- current size, in bits, of the CP1 general registers
size ¨SizeFGR()

if 32_bit_processor then
size ¨ 32

else
/* 64-bit processor */
if StatusFR = 1 then

size ¨ 64
else

size ¨ 32
endif

endif

This pseudocode specifies how the unformatted contents loaded or moved-to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted
contents from a load (uninterpreted), it is valid to interpret the value in that format, but not to interpret it in a
different format.

ValueFPR() -- Get a formatted value from an FPR.
value ¨ValueFPR (fpr, fmt) /* get a formatted value from an FPR */

if SizeFGR() = 64 then
case fmt of

S, W:
value ¨ FGR[fpr]31..0

D, L:
value ¨ FGR[fpr]

endcase
elseif fpr0 = 0 then /* fpr is valid (even), 32-bit wide FGRs */

case fmt of
S, W:

value ¨ FGR[fpr]
D, L:

value ¨ FGR[fpr+1] || FGR[fpr]
endcase

else /* undefined for odd 32-bit FGRs */
UndefinedResult

endif

This pseudocode specifies the way that a binary encoding representing a formatted value is stored into
CP1 registers by a computational or move operation. This binary representation is visible to store or move-
from instructions. Once an FPR contains a value via StoreFPR(), it is not valid to interpret the value with
ValueFPR() in a different format.
� � �,

CPU Instructions Basics Miscellaneous Functions
StoreFPR() -- store a formatted value into an FPR.
StoreFPR(fpr, fmt, value): /* place a formatted value into an FPR */

if SizeFGR() = 64 then /* 64-bit wide FGRs */
case fmt of

S, W:
FGR[fpr] ¨ undefined32 || value

D, L:
FGR[fpr] ¨ value

endcase
elseif fpr0 = 0 then /* fpr is valid (even), 32-bit wide FGRs */

case fmt of
S, W:

FGR[fpr+1] ¨ undefined32

FGR[fpr] ¨ value
D, L:

FGR[fpr+1] ¨ value63..32
FGR[fpr] ¨ value31..0

endcase
else /* undefined for odd 32-bit FGRs */

UndefinedResult
endif

�����������
�
�������

SyncOperation(stype)
stype: Type of load/store ordering to perform.

order loads and stores to synchronize shared memory.
Perform the action necessary to make the effects of groups synchronizable loads and stores indicated by
stype occur in the same order for all processors.

SignalException(Exception)
Exception The exception condition that exists.

Signal an exception condition.
This will result in an exception that aborts the instruction. The instruction operation pseudocode will never
see a return from this function call.

UndefinedResult()

This function indicates that the result of the operation is undefined.

NullifyCurrentInstruction()

Nullify the current instruction.
This occurs during the instruction time for some instruction and that instruction is not executed further.
This appears for branch-likely instructions during the execution of the instruction in the delay slot and it
kills the instruction in the delay slot.

CoprocessorOperation (z, cop_fun)
z Coprocessor unit number
cop_fun Coprocessor function from function field of instruction

Perform the specified Coprocessor operation.
� � ��

CPU Instructions Basics Individual CPU Instruction Descriptions
��	�$�	
�� �"% �����
����� ������������
The user-mode CPU instructions are described in alphabetic order. See “Instruction Descriptions” on

page 1-13 for a description of the information in each instruction description.
� � ��

CPU Instructions Basics Individual CPU Instruction Descriptions
� � ��

�����

� � �
������� 	
��� ����	
����

����	����
This chapter contains the detailed reference material for each of the CPU instructions in alphabetical
order. Each new instruction starts on a new page and the instruction mnemonic is easily locatable at the top
of the page in large bold letters.

ADD Add Word
Format: ADD rd, rs, rt MIPS I

Purpose: To add 32-bit integers. If overflow occurs, then trap.

Description: rd ← rs + rt

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result. If the
addition results in 32-bit 2’s complement arithmetic overflow then the destination register is not modified
and an Integer Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
temp ←GPR[rs] + GPR[rt]
if (32_bit_arithmetic_overflow) then

SignalException(IntegerOverflow)
else

GPR[rd] ←sign_extend(temp31..0)
endif

Exceptions:
Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but, does not trap on overflow.

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
� � �

ADDI Add Immediate Word
Format: ADDI rt, rs, immediate MIPS I

Purpose: To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: rt ← rs + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs to produce a 32-bit result. If the addi-
tion results in 32-bit 2’s complement arithmetic overflow then the destination register is not modified and an
Integer Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPR rt.

Restrictions:

On 64-bit processors, if GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then
the result of the operation is undefined.

Operation:

if (NotWordValue(GPR[rs])) then UndefinedResult() endif
temp ←GPR[rs] + sign_extend(immediate)
if (32_bit_arithmetic_overflow) then

SignalException(IntegerOverflow)
else

GPR[rt] ←sign_extend(temp31..0)
endif

Exceptions:
Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but, does not trap on overflow.

31 2526 2021 1516 0

ADDI rs rt immediate

6 5 5 16

0 0 1 0 0 0
� � �

ADDIU Add Immediate Unsigned Word
Format: ADDIU rt, rs, immediate MIPS I

Purpose: To add a constant to a 32-bit integer.

Description: rt ← rs + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is
placed into GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then
the result of the operation is undefined.

Operation:

if (NotWordValue(GPR[rs])) then UndefinedResult() endif
temp ←GPR[rs] + sign_extend(immediate)
GPR[rt] ← sign_extend(temp31..0)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic
that does not trap on overflow. It is appropriate for arithmetic which is not signed, such as address arith-
metic, or integer arithmetic environments that ignore overflow, such as “C” language arithmetic.

31 2526 2021 1516 0

ADDIU rs rt immediate

6 5 5 16

0 0 1 0 0 1
� � �

ADDU Add Unsigned Word
Format: ADDU rd, rs, rt MIPS I

Purpose: To add 32-bit integers.

Description: rd ← rs + rt

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is
placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
temp ←GPR[rs] + GPR[rt]
GPR[rd] ← sign_extend(temp31..0)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic
that does not trap on overflow. It is appropriate for arithmetic which is not signed, such as address arith-
metic, or integer arithmetic environments that ignore overflow, such as “C” language arithmetic.

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
� � �

AND And
Format: AND rd, rs, rt MIPS I

Purpose: To do a bitwise logical AND.

Description: rd ← rs AND rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation.
The result is placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:
None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 AND

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
� � �

ANDI And Immediate
Format: ANDI rt, rs, immediate MIPS I

Purpose: To do a bitwise logical AND with a constant.

Description: rt ← rs AND immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise
logical AND operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← zero_extend(immediate) and GPR[rs]

Exceptions:
None

31 2526 2021 1516 0

ANDI rs rt immediate

6 5 5 16

0 0 1 1 0 0
� � 	

BEQ Branch on Equal
Format: BEQ rs, rt, offset MIPS I

Purpose: To compare GPRs then do a PC-relative conditional branch.

Description: if (rs = rt) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after the instruc-
tion in the delay slot is executed.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + tgt_offset

endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

BEQ rs rt offset

6 5 5 16

0 0 0 1 0 0
� �

BEQL Branch on Equal Likely
Format: BEQL rs, rt, offset MIPS II

Purpose: To compare GPRs then do a PC-relative conditional branch; execute the delay slot only
if the branch is taken.

Description: if (rs = rt) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs and GPR rt are equal, branch to the target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + tgt_offset

else
NullifyCurrentInstruction()

endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

BEQL rs rt offset

6 5 5 16

0 1 0 1 0 0
� � �

BGEZ Branch on Greater Than or Equal to Zero
Format: BGEZ rs, offset MIPS I

Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs ≥ 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≥ 0GPRLEN

I+1: if condition then
PC ← PC + tgt_offset

endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

REGIMM rs BGEZ offset

6 5 5 16

0 0 0 0 0 1 0 0 0 0 1
� � ��

BGEZAL Branch on Greater Than or Equal to Zero and Link
Format: BGEZAL rs, offset MIPS I

Purpose: To test a GPR then do a PC-relative conditional procedure call.

Description: if (rs ≥ 0) then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction
following the branch, where execution would continue after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the
same effect when re-executed. The result of executing such an instruction is undefined. This restriction
permits an exception handler to resume execution by re-executing the branch when an exception occurs in
the branch delay slot.

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≥ 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + tgt_offset
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and
link (JAL) or jump and link register (JALR) instructions for procedure calls to more distant addresses.

31 2526 2021 1516 0

REGIMM rs BGEZAL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 0 1
� � ��

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely
Format: BGEZALL rs, offset MIPS II

Purpose: To test a GPR then do a PC-relative conditional procedure call; execute the delay slot
only if the branch is taken.

Description: if (rs ≥ 0) then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction
following the branch, where execution would continue after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the
delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the
same effect when re-executed. The result of executing such an instruction is undefined. This restriction
permits an exception handler to resume execution by re-executing the branch when an exception occurs in
the branch delay slot.

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≥ 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + tgt_offset
else

NullifyCurrentInstruction()
endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and
link (JAL) or jump and link register (JALR) instructions for procedure calls to more distant addresses.

31 2526 2021 1516 0

REGIMM rs BGEZALL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 1 1
� � ��

BGEZL Branch on Greater Than or Equal to Zero Likely
Format: BGEZL rs, offset MIPS II

Purpose: To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the
branch is taken.

Description: if (rs ≥ 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the
delay slot is not executed.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≥ 0GPRLEN

I+1: if condition then
PC ← PC + tgt_offset

else
NullifyCurrentInstruction()

endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

REGIMM rs BGEZL offset

6 5 5 16

0 0 0 0 0 1 0 0 0 1 1
� � ��

BGTZ Branch on Greater Than Zero
Format: BGTZ rs, offset MIPS I

Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs > 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective
target address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← GPR[rs] > 0GPRLEN

I+1: if condition then
PC ← PC + tgt_offset

endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

BGTZ rs 0 offset

6 5 5 16

0 0 0 1 1 1 0 0 0 0 0
� � ��

BGTZL Branch on Greater Than Zero Likely
Format: BGTZL rs, offset MIPS II

Purpose: To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the
branch is taken.

Description: if (rs > 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective
target address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in
the delay slot is not executed.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← GPR[rs] > 0GPRLEN

I+1: if condition then
PC ← PC + tgt_offset

else
NullifyCurrentInstruction()

endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

BGTZL rs 0 offset

6 5 5 16
0 1 0 1 1 1 0 0 0 0 0
� � ��

BLEZ Branch on Less Than or Equal to Zero
Format: BLEZ rs, offset MIPS I

Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs ≤ 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effec-
tive target address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≤ 0GPRLEN

I+1: if condition then
PC ← PC + tgt_offset

endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

BLEZ rs 0 offset

6 5 5 16

0 0 0 1 1 0 0 0 0 0 0
� � ��

BLEZL Branch on Less Than or Equal to Zero Likely
Format: BLEZL rs, offset MIPS II

Purpose: To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the
branch is taken.

Description: if (rs ≤ 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effec-
tive target address after the instruction in the delay slot is executed. If the branch is not taken, the instruc-
tion in the delay slot is not executed.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≤ 0GPRLEN

I+1: if condition then
PC ← PC + tgt_offset

else
NullifyCurrentInstruction()

endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

BLEZL rs 0 offset

6 5 5 16

0 1 0 1 1 0 0 0 0 0 0
� � �	

BLTZ Branch on Less Than Zero
Format: BLTZ rs, offset MIPS I

Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs < 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← GPR[rs] < 0GPRLEN

I+1: if condition then
PC ← PC + tgt_offset

endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

REGIMM rs BLTZ offset

6 5 5 16
0 0 0 0 0 1 0 0 0 0 0
� � �

BLTZAL Branch on Less Than Zero And Link
Format: BLTZAL rs, offset MIPS I

Purpose: To test a GPR then do a PC-relative conditional procedure call.

Description: if (rs < 0) then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction
following the branch (not the branch itself), where execution would continue after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch, in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the
same effect when re-executed. The result of executing such an instruction is undefined. This restriction
permits an exception handler to resume execution by re-executing the branch when an exception occurs in
the branch delay slot.

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← GPR[rs] < 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + tgt_offset
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and
link (JAL) or jump and link register (JALR) instructions for procedure calls to more distant addresses.

31 2526 2021 1516 0

REGIMM rs BLTZAL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 0 0
� � ��

BLTZALL Branch on Less Than Zero And Link Likely
Format: BLTZALL rs, offset MIPS II

Purpose: To test a GPR then do a PC-relative conditional procedure call; execute the delay slot
only if the branch is taken.

Description: if (rs < 0) then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction
following the branch (not the branch itself), where execution would continue after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch, in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not
executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the
same effect when re-executed. The result of executing such an instruction is undefined. This restriction
permits an exception handler to resume execution by re-executing the branch when an exception occurs in
the branch delay slot.

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← GPR[rs] < 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + tgt_offset
else

NullifyCurrentInstruction()
endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and
link (JAL) or jump and link register (JALR) instructions for procedure calls to more distant addresses.

31 2526 2021 1516 0

REGIMM rs BLTZALL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 1 0
� � ��

BLTZL Branch on Less Than Zero Likely
Format: BLTZ rs, offset MIPS II

Purpose: To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the
branch is taken.

Description: if (rs < 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not
executed.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← GPR[rs] < 0GPRLEN

I+1: if condition then
PC ← PC + tgt_offset

else
NullifyCurrentInstruction()

endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

REGIMM rs BLTZL offset

6 5 5 16
0 0 0 0 0 1 0 0 0 1 0
� � ��

BNE Branch on Not Equal
Format: BNE rs, rt, offset MIPS I

Purpose: To compare GPRs then do a PC-relative conditional branch.

Description: if (rs ≠ rt) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + tgt_offset

endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

BNE rs rt offset

6 5 5 16

0 0 0 1 0 1
� � ��

BNEL Branch on Not Equal Likely
Format: BNEL rs, rt, offset MIPS II

Purpose: To compare GPRs then do a PC-relative conditional branch; execute the delay slot only
if the branch is taken.

Description: if (rs ≠ rt) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not
executed.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + tgt_offset

else
NullifyCurrentInstruction()

endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

BNEL rs rt offset

6 5 5 16

0 1 0 1 0 1
� � ��

BREAK Breakpoint
Format: BREAK MIPS I

Purpose: To cause a Breakpoint exception.

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception
handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only
by loading the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

 SignalException(Breakpoint)

Exceptions:
Breakpoint

CACHE op, offset(base)

31 2526

SPECIAL

6

0

BREAKcode

6 5

620

0 0 0 0 0 0 0 0 1 1 0 1
� � ��

CACHE CACHE
Format: CACHE op, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual
address. The virtual address is translated to a physical address, and the 5-bit sub-opcode specifies a cache
operation for that address.

If CP0 is not usable (User or Supervisor mode) the CP0 enable bit in the Status register is clear, and a
coprocessor unusable exception is taken. The operation of this instruction on any operation/cache combi-
nation not listed below is undefined. The operation of this instruction on uncached addresses is also unde-
fined.

The 64-bit RISController family uses only the tag comparisons, not the valid bits, to choose which data it
supplies to the instruction unit. This makes it important that the tags of the A and B sets are never the same.

The Index operation uses part of the virtual address to specify a cache block and set access as shown in
Table 2.28

Index Load Tag also uses vAddr4..3 to select the doubleword for reading parity. When the CE bit of the
Status register is set, Hit WriteBack, Hit WriteBack Invalidate, Index WriteBack Invalidate, and Fill also use
vAddr4..3 to select the doubleword that has its parity modified. This operation is performed unconditionally.

The Hit operation accesses the specified cache as normal data references, and performs the specified
operation if the cache block contains valid data with the specified physical address (a hit). If both sets are
invalid or contain different addresses (a miss), no operation is performed.

Write back from a primary cache goes to memory. The address to be written is specified by the cache
tag and not the translated physical address.

For Index operations (where the physical address is used to index the cache but need not match the
cache tag), unmapped addresses may be used to avoid exceptions.

This operation will never cause Virtual Coherency exceptions.

����� ��������������

������ ���������
��� ��������� ���! ���������

RC4640/RC4650 VAddr12 11..5

RC4700 VAddr13 12..5

RC5000 VAddr14 13..5

Note:
TagLo[12] is the valid bit and TagLo[31:15] is the tag for all secondary cache operations.

Table 2.28 64-bit RISController Family Primary Cache Indexing

31 2526 2021 1516 0

CACHE base op offset

6 5 5 16

1 0 1 1 1 1
� � ��

CACHE CACHE
Bits 17..16 of the instruction specify the cache as follows:

Bits 20..18 (this value is listed under the Code column) of the instruction specify the operation as
follows:

��"� #��� ���$�

0 I Primary instruction

1 D Primary data

2 NA Undefined

 3 SC Secondary Cache (RV5000)

��"� ���$�� #��� %&�������

0 I Index Invalidate Set the cache state of the cache block to Invalid. Index_Invalidate_I
writes the physical address of the cache op into the tag when it clears
the valid bit, which is different from the RC4000.

0 D Index WriteBack
Invalidate

Examine the cache state and W bit of the primary data cache block at
the index specified by the virtual address. If the state is not Invalid and
the W bit is set, then write back the block to memory. The address to
write is taken from the primary cache tag. Set cache state of primary
cache block to Invalid.

0 SC Cache Clear Generate a valid clear sequence to flush the entire cache in one opera-
tion.

1 I, D Index Load Tag Read the tag for the cache block at the specified index and place it into
the TagLo CP0 registers, ignoring parity errors. Also load the data parity
bits into the ECC register.

1 SC Index Load Tag Read the secondary cache for the specified index and places it into the
TagLo CPO register.

2 I, D Index Store Tag Write the tag for the cache block at the specified index from the TagLo
and TagHi CP0 registers.

2 SC Index Store Tag Write the secondary cache for the specified index from the physical
address generated by the CACHE instruction.

3 D Create Dirty
Exclusive

This operation is used to avoid loading data needlessly from memory
when writing new contents into an entire cache block. If the cache block
does not contain the specified address, and the block is dirty, write it
back to the memory. In all cases, set the cache block tag to the specified
physical address, set the cache state to Dirty Exclusive.

4 I, D Hit Invalidate If the cache block contains the specified address, mark the cache block
invalid.

5 D Hit WriteBack
Invalidate

If the cache block contains the specified address, write back the data if it
is dirty, and mark the cache block invalid.

5 I Fill Fill the primary instruction cache block from memory. If the CE bit of the
Status register is set, the contents of the ECC register is used instead of
the computed parity bits for addressed doubleword when written to the
instruction cache.

5 SC Cache Page
Invalidate

Flush 128 lines of the cache in one operation with the tag value from the
TagLo CPO register. The index for the cache page invalidate must be
page aligned. Interrupts are deferred until a cache page invalidate
instruction completes (up to 512 processor clocks for a SysClock ratio of
4).
� � ��

CACHE CACHE
Operation:

Exceptions:

Coprocessor unusable exception

6 D Hit WriteBack If the cache block contains the specified address, and the W bit is set,
write back the data to memory and clear the W bit.

6 I Hit WriteBack If the cache block contains the specified address, write back the data
unconditionally.

��"� ���$�� #��� %&�������

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)
� � �	

CFC1 Move Control Word from Floating-Point
Format: CFC1 rt, fs MIPS I

Purpose: To copy a word from an FPU control register to a GPR.

Description: rt ← FP_Control[fs]

Copy the 32-bit word from FP (coprocessor 1) control register fs into GPR rt, sign-extending it if the GPR
is 64 bits.

Restrictions:

There are only a couple control registers defined for the floating-point unit. The result is not defined if fs
specifies a register that does not exist.

For MIPS I, MIPS II, and MIPS III, the contents of GPR rt are undefined for the instruction immediately
following CFC1.

Operation: MIPS I - III

I: temp ← FCR[fs]
I+1: GPR[rt] ← sign_extend(temp)

Operation: MIPS IV

temp ← FCR[fs]
GPR[rt]← sign_extend(temp)

Exceptions:
Coprocessor Unusable

11

31 2526 2021 1516

COP1 CF rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
� � �

CLO Count Leading Ones
Format: CLO rt, rs RC32364

Description:

The RC32364 adds this new instruction. The content of general register rs is scanned from most signifi-
cant bit to least significant bit, the number of leading ones is written into general register rt. If no bits were
cleared in general register rs, i.e. rs=0xffffffff, the content of general register rt is 32.

Operation:

T: rt <-- Leading_ones(rs)

Exceptions:
None

Programming Notes:
This is an IDT proprietary extension.

11

31 2526 2021 1516

COP1 CF rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
� � ��

CLZ Count Leading Zeros
Format: CLZ rt, rs RC32364

Description:

The RC32364 adds this new instruction. The content of general register rs is scanned from most signifi-
cant bit to least significant bit, the number of leading zeros is written into general register rt. If no bits were
set in general register rs, i.e. rs=0x0, the content of general register rt is 32.

Operation:

T: rt <-- Leading_zeros(rs)

Exceptions:
None

Programming Notes:
This is an IDT proprietary extension.

11

31 2526 2021 1516

COP1 CF rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
� � ��

COPz Coprocessor Operation
Format: COP0 cop_fun MIPS I
COP1 cop_fun
COP2 cop_fun
COP3 cop_fun

Purpose: To execute a coprocessor instruction.

Description:

The coprocessor operation specified by cop_fun is performed by coprocessor unit zz. Details of copro-
cessor operations must be found in the specification for each coprocessor.

Each MIPS architecture level defines up to 4 coprocessor units, numbered 0 to 3. The opcodes corre-
sponding to coprocessors that are not defined by an architecture level may be used for other instructions.

Restrictions:

Access to the coprocessors is controlled by system software. Each coprocessor has a “coprocessor
usable” bit in the System Control coprocessor. The usable bit must be set for a user program to execute a
coprocessor instruction. If the usable bit is not set, an attempt to execute the instruction will result in a
Coprocessor Unusable exception. An unimplemented coprocessor must never be enabled. The result of
executing this instruction for an unimplemented coprocessor when the usable bit is set, is undefined.

See specification for the specific coprocessor being programmed.

Operation:

CoprocessorOperation (z, cop_fun)

Exceptions:
Reserved Instruction
Coprocessor Unusable
Coprocessor interrupt or Floating-Point Exception (CP1 only for some processors)

31 2526

COPz

6

0

cop_fun

26

0 1 0 0 z z
� � ��

CTC1 Move Control Word to Floating-Point
Format: CTC1 rt, fs MIPS I

Purpose: To copy a word from a GPR to an FPU control register.

Description: FP_Control[fs] ← rt

Copy the low word from GPR rt into FP (coprocessor 1) control register fs.

Writing to control register 31, the Floating-Point Control and Status Register or FCSR, causes the
appropriate exception if any cause bit and its corresponding enable bit are both set. The register will be
written before the exception occurs.

Restrictions:

There are only a couple control registers defined for the floating-point unit. The result is not defined if fs
specifies a register that does not exist.

For MIPS I, MIPS II, and MIPS III, the contents of floating-point control register fs are undefined for the
instruction immediately following CTC1.

Operation: MIPS I - III

I: temp ← GPR[rt]31..0
I+1: FCR[fs] ← temp

COC[1] ← FCR[31]23

Operation: MIPS IV

temp ← GPR[rt]31..0
FCR[fs] ← temp
COC[1] ← FCR[31]23

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented Operation
Invalid Operation
Division-by-zero
Inexact
Overflow
Underflow

11

31 2526 2021 1516

COP1 CT rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
� � ��

DADD Doubleword Add
Format: DADD rd, rs, rt MIPS III

Purpose: To add 64-bit integers. If overflow occurs, then trap.

Description: rd ← rs + rt

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rs to produce a 64-bit result.
If the addition results in 64-bit 2’s complement arithmetic overflow then the destination register is not modi-
fied and an Integer Overflow exception occurs. If it does not overflow, the 64-bit result is placed into
GPR rd.

Restrictions:

None

Operation: 64-bit processors

temp ← GPR[rs] + GPR[rt]
if (64_bit_arithmetic_overflow) then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Exceptions:
Integer Overflow
Reserved Instruction

Programming Notes:

DADDU performs the same arithmetic operation but, does not trap on overflow.

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
� � ��

DADDI Doubleword Add Immediate
Format: DADDI rt, rs, immediate MIPS III

Purpose: To add a constant to a 64-bit integer. If overflow occurs, then trap.

Description: rt ← rs + immediate

The 16-bit signed immediate is added to the 64-bit value in GPR rs to produce a 64-bit result. If the addi-
tion results in 64-bit 2’s complement arithmetic overflow then the destination register is not modified and an
Integer Overflow exception occurs. If it does not overflow, the 64-bit result is placed into GPR rt.

Restrictions:

None

Operation: 64-bit processors

temp ← GPR[rs] + sign_extend(immediate)
if (64_bit_arithmetic_overflow) then

SignalException(IntegerOverflow)
else

GPR[rt] ← temp
endif

Exceptions:
Integer Overflow
Reserved Instruction

Programming Notes:

DADDIU performs the same arithmetic operation but, does not trap on overflow.

31 2526 2021 1516 0

DADDI rs rt immediate

6 5 5 16

0 1 1 0 0 0
� � ��

DADDIU Doubleword Add Immediate Unsigned
Format: DADDIU rt, rs, immediate MIPS III

Purpose: To add a constant to a 64-bit integer.

Description: rt ← rs + immediate

The 16-bit signed immediate is added to the 64-bit value in GPR rs and the 64-bit arithmetic result is
placed into GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation: 64-bit processors

GPR[rt] ← GPR[rs] + sign_extend(immediate)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic
that does not trap on overflow. It is appropriate for arithmetic which is not signed, such as address arith-
metic, or integer arithmetic environments that ignore overflow, such as “C” language arithmetic.

31 2526 2021 1516 0

DADDIU rs rt immediate

6 5 5 16

0 1 1 0 0 1
� � ��

DADDU Doubleword Add Unsigned
Format: DADDU rd, rs, rt MIPS III

Purpose: To add 64-bit integers.

Description: rd ← rs + rt

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rs and the 64-bit arithmetic
result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation: 64-bit processors

GPR[rd] ←GPR[rs] + GPR[rt]

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic
that does not trap on overflow. It is appropriate for arithmetic which is not signed, such as address arith-
metic, or integer arithmetic environments that ignore overflow, such as “C” language arithmetic.

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1
� � ��

DDIV Doubleword Divide
Format: DDIV rs, rt MIPS III

Purpose: To divide 64-bit signed integers.

Description: (LO, HI) ← rs / rt

The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt, treating both operands
as signed values. The 64-bit quotient is placed into special register LO and the 64-bit remainder is placed
into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either of the two preceding instructions is MFHI or MFLO, the result of the MFHI or MFLO is undefined.
Reads of the HI or LO special registers must be separated from subsequent instructions that write to them
by two or more other instructions.

If the divisor in GPR rt is zero, the arithmetic result value is undefined.

Operation: 64-bit processors

I-2:, I-1: LO, HI ← undefined
I: LO ← GPR[rs] div GPR[rt]

HI ← GPR[rs] mod GPR[rt]

Exceptions:
Reserved Instruction

Programming Notes:

See the Programming Notes for the DIV instruction.

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DDIV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
� � �	

DDIVU Doubleword Divide Unsigned
Format: DDIVU rs, rt MIPS III

Purpose: To divide 64-bit unsigned integers.

Description: (LO, HI) ← rs / rt

The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt, treating both operands
as unsigned values. The 64-bit quotient is placed into special register LO and the 64-bit remainder is placed
into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either of the two preceding instructions is MFHI or MFLO, the result of the MFHI or MFLO is undefined.
Reads of the HI or LO special registers must be separated from subsequent instructions that write to them
by two or more other instructions.

If the divisor in GPR rt is zero, the arithmetic result value is undefined.

Operation: 64-bit processors

I-2:, I-1: LO, HI ← undefined
I: LO ← (0 || GPR[rs]) div (0 || GPR[rt])

HI ← (0 || GPR[rs]) mod (0 || GPR[rt])

Exceptions:
Reserved instruction

Programming Notes:

See the Programming Notes for the DIV instruction.

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DDIVU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
� � �

DIV Divide Word
Format: DIV rs, rt MIPS I

Purpose: To divide 32-bit signed integers.

Description: (LO, HI) ← rs / rt

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as
signed values. The 32-bit quotient is placed into special register LO and the 32-bit remainder is placed into
special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

If either of the two preceding instructions is MFHI or MFLO, the result of the MFHI or MFLO is undefined.
Reads of the HI or LO special registers must be separated from subsequent instructions that write to them
by two or more other instructions.

If the divisor in GPR rt is zero, the arithmetic result value is undefined.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
I-2:, I-1: LO, HI ← undefined
I: q ← GPR[rs]31..0 div GPR[rt]31..0

LO ← sign_extend(q31..0)
r ← GPR[rs]31..0 mod GPR[rt]31..0
HI ← sign_extend(r31..0)

Exceptions:
None

Programming Notes:

In some processors the integer divide operation may proceed asynchronously and allow other CPU
instructions to execute before it is complete. An attempt to read LO or HI before the results are written will
wait (interlock) until the results are ready. Asynchronous execution does not affect the program result, but
offers an opportunity for performance improvement by scheduling the divide so that other instructions can
execute in parallel.

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions should
be detected and some action taken, then the divide instruction is typically followed by additional instructions
to check for a zero divisor and/or for overflow. If the divide is asynchronous then the zero-divisor check can
execute in parallel with the divide. The action taken on either divide-by-zero or overflow is either a conven-
tion within the program itself or more typically, the system software; one possibility is to take a BREAK
exception with a code field value to signal the problem to the system software.

As an example, the C programming language in a UNIX environment expects division by zero to either
terminate the program or execute a program-specified signal handler. C does not expect overflow to cause
any exceptional condition. If the C compiler uses a divide instruction, it also emits code to test for a zero
divisor and execute a BREAK instruction to inform the operating system if one is detected.

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
� � ��

DIVU Divide Unsigned Word
Format: DIVU rs, rt MIPS I
Purpose: To divide 32-bit unsigned integers.

Description: (LO, HI) ← rs / rt

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as
unsigned values. The 32-bit quotient is placed into special register LO and the 32-bit remainder is placed
into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

If either of the two preceding instructions is MFHI or MFLO, the result of the MFHI or MFLO is undefined.
Reads of the HI or LO special registers must be separated from subsequent instructions that write to them,
like this one, by two or more other instructions.

If the divisor in GPR rt is zero, the arithmetic result is undefined.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
I-2:, I-1: LO, HI ← undefined
I: q ← (0 || GPR[rs]31..0) div (0 || GPR[rt]31..0)

LO ← sign_extend(q31..0)
r ← (0 || GPR[rs]31..0) mod (0 || GPR[rt]31..0)
HI ← sign_extend(r31..0)

Exceptions:
None

Exceptions:
See the programming Notes for the DIV instruction.

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIVU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
� � ��

DMFCO Doubleword Move From System Control Coprocessor
Format: DMFCO rt, rd RC5000

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

This operation is defined in kernel mode regardless of the setting of the Status.KX bit. Execution of this
instruction with in supervisor mode with Status.SX = 0 or in user mode with UX = 0, causes a reserved
instruction exception. All 64-bits of the general register destination are written from the coprocessor register
source. The operation of DMFC0 on a 32-bit coprocessor 0 register is undefined.

Operation:

Exceptions:

Coprocessor unusable exception

Reserved instruction exception for supervisor mode with Status.SX = 0 or user mode with Status.UX =
0.

rd

11 10

5

31 2526 2021 1516 0

C OP0 D M F rt 0

6 5 5 11
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00

 T: data ←CPR[0,rd]

T+1: GPR[rt] ← data
� � ��

DMTCO Doubleword Move To System Control Coprocessor
Format: DMTC0 rt, rd RC5000

Description:

The contents of general register rt are loaded into coprocessor register rd of the CP0.

This operation is defined in kernel mode regardless of the setting of the Status.KX bit. Execution of this
instruction with in supervisor mode with Status.SX = 0 or in user mode with UX = 0, causes a reserved
instruction exception.

All 64-bits of the coprocessor 0 register are written from the general register source. The operation of
DMTC0 on a 32-bit coprocessor 0 register is undefined.

Because the state of the virtual address translation system may be altered by this instruction, the opera-
tion of load instructions and store instructions immediately prior to and after this instruction are undefined.

Operation:

Exceptions:

Reserved instruction exception for supervisor mode with Status.SX = 0 or user mode with Status.UX =
0.

rd

11 10

5

31 2526 2 021 1516 0

C O P 0 D M T rt 0

6 5 5 11

0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 00

 T: data ← GPR[rt]

T+1: CPR[0,rd] ← data
� � ��

DMFC1 Doubleword Move From Floating-Point
Format: DMFC1 rt, fs MIPS III

Purpose: To copy a doubleword from an FPR to a GPR.

Description: rt ← fs

The doubleword contents of FPR fs are placed into GPR rt.

If the coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register
emulation mode in a 64-bit processor), FPR fs is held in an even/odd register pair. The low word is taken
from the even register fs and the high word is from fs+1.

Restrictions:

If fs does not specify an FPR that can contain a doubleword, the result is undefined; see the Chapter
titled “FPU Instruction Set” for information on FP registers, etc..

For MIPS III, the contents of GPR rt are undefined for the instruction immediately following DMFC1.

Operation: MIPS I - III

I: if SizeFGR() = 64 then /* 64-bit wide FGRs */
data ← FGR[fs]

elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */
data ← FGR[fs+1] || FGR[fs]

else /* undefined for odd 32-bit FGRs */
UndefinedResult()

endif
I+1: GPR[rt] ← data

Operation: MIPS IV

if SizeFGR() = 64 then /* 64-bit wide FGRs */
data ← FGR[fs]

elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */
data ← FGR[fs+1] || FGR[fs]

else /* undefined for odd 32-bit FGRs */
UndefinedResult()

endif
GPR[rt] ← data

Exceptions:
Reserved Instruction
Coprocessor Unusable

fs

11 10

5

31 2526 2021 1516 0

COP1 DMF rt 0

6 5 5 11
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00
� � ��

DMTC1 Doubleword Move To Floating-Point
Format: DMTC1 rt, fs MIPS III

Purpose: To copy a doubleword from a GPR to an FPR.

Description: fs ← rt

The doubleword contents of GPR rt are placed into FPR fs.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register emulation
mode in a 64-bit processor), FPR fs is held in an even/odd register pair. The low word is placed in the even
register fs and the high word is placed in fs+1.

Restrictions:

If fs does not specify an FPR that can contain a doubleword, the result is undefined; see the Chapter
Titled “FPU Instruction Set” for information about FP registers, etc.

For MIPS III, the contents of FPR fs are undefined for the instruction immediately following DMTC1.

Operation: MIPS I - III

I: data ← GPR[rt]
I+1: if SizeFGR() = 64 then /* 64-bit wide FGRs */

FGR[fs] ← data
elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */

FGR[fs+1] ← data63..32
FGR[fs] ← data31..0

else /* undefined result for odd 32-bit FGRs */
UndefinedResult()

endif

Operation: MIPS IV

data ← GPR[rt]
if SizeFGR() = 64 then /* 64-bit wide FGRs */

FGR[fs] ← data
elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */

FGR[fs+1] ← data63..32
FGR[fs] ← data31..0

else /* undefined result for odd 32-bit FGRs */
UndefinedResult()

endif

Exceptions:
Reserved Instruction
Coprocessor Unusable

fs

11 10

5

31 2526 2021 1516 0

COP1 DMT rt 0

6 5 5 11
0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 00
� � ��

DMULT Doubleword Multiply
Format: DMULT rs, rt MIPS III

Purpose: To multiply 64-bit signed integers.

Description: (LO, HI) ← rs × rt

The 64-bit doubleword value in GPR rt is multiplied by the 64-bit value in GPR rs, treating both operands
as signed values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into
special register LO, and the high-order 64-bit doubleword is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either of the two preceding instructions is MFHI or MFLO, the result of the MFHI or MFLO is undefined.
Reads of the HI or LO special registers must be separated from subsequent instructions that write to them
by two or more other instructions.

Operation: 64-bit processors

I-2:, I-1: LO, HI ← undefined
I: prod ← GPR[rs] * GPR[rt]

LO ← prod63..0
H I ← prod127..64

Exceptions:
Reserved Instruction

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU
instructions to execute before it is complete. An attempt to read LO or HI before the results are written will
wait (interlock) until the results are ready. Asynchronous execution does not affect the program result, but
offers an opportunity for performance improvement by scheduling the multiply so that other instructions can
execute in parallel.

Programs that require overflow detection must check for it explicitly.

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DMULT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
� � ��

DMULTU Doubleword Multiply Unsigned
Format: DMULTU rs, rt MIPS III

Purpose: To multiply 64-bit unsigned integers.

Description: (LO, HI) ← rs × rt

The 64-bit doubleword value in GPR rt is multiplied by the 64-bit value in GPR rs, treating both operands
as unsigned values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into
special register LO, and the high-order 64-bit doubleword is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either of the two preceding instructions is MFHI or MFLO, the result of the MFHI or MFLO is undefined.
Reads of the HI or LO special registers must be separated from subsequent instructions that write to them
by two or more other instructions.

Operation: 64-bit processors

I-2:, I-1: LO, HI ← undefined
I: prod ← (0 || GPR[rs]) * (0 || GPR[rt])

LO ← prod63..0
HI ← prod127..64

Exceptions:
Reserved Instruction

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DMULTU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1
� � ��

DSLL Doubleword Shift Left Logical
Format: DSLL rd, rt, sa MIPS III

Purpose: To left shift a doubleword by a fixed amount 0 to 31 bits.

Description: rd ← rt << sa

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied bits; the result
is placed in GPR rd. The bit shift count in the range 0 to 31 is specified by sa.

Restrictions:

None

Operation: 64-bit processors

s ← 0 || sa
GPR[rd] ← GPR[rt](63–s)..0 || 0s

Exceptions:
Reserved Instruction

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 0 00 0 0 0 0
� � �	

DSLL32 Doubleword Shift Left Logical Plus 32
Format: DSLL32 rd, rt, sa MIPS III

Purpose: To left shift a doubleword by a fixed amount 32 to 63 bits.

Description: rd ← rt << (sa+32)

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied bits; the result
is placed in GPR rd. The bit shift count in the range 32 to 63 is specified by sa+32.

Restrictions:

None

Operation: 64-bit processors

s ← 1 || sa /* 32+sa */
GPR[rd]← GPR[rt](63–s)..0 || 0s

Exceptions:
Reserved Instruction

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSLL32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 0 0
0

0 0 0 0 0
� � �

DSLLV Doubleword Shift Left Logical Variable
Format: DSLLV rd, rt, rs MIPS III

Purpose: To left shift a doubleword by a variable number of bits.

Description: rd ← rt << rs

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied bits; the result
is placed in GPR rd. The bit shift count in the range 0 to 63 is specified by the low-order six bits in GPR rs.

Restrictions:

None

Operation: 64-bit processors

s ← 0 || GPR[rs]5..0
GPR[rd]← GPR[rt](63–s)..0 || 0s

Exceptions:
Reserved Instruction

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 1 0 1 0 00 0 0 0 0
� � ��

DSRA Doubleword Shift Right Arithmetic
Format: DSRA rd, rt, sa MIPS III

Purpose: To arithmetic right shift a doubleword by a fixed amount 0 to 31 bits.

Description: rd ← rt >> sa (arithmetic)

The 64-bit doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the emptied
bits; the result is placed in GPR rd. The bit shift count in the range 0 to 31 is specified by sa.

Restrictions:

None

Operation: 64-bit processors

s ← 0 || sa
GPR[rd]← (GPR[rt]63)s || GPR[rt] 63..s

Exceptions:
Reserved Instruction

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1
� � ��

DSRA32 Doubleword Shift Right Arithmetic Plus 32
Format: DSRA32 rd, rt, sa MIPS III

Purpose: To arithmetic right shift a doubleword by a fixed amount 32-63 bits.

Description: rd ← rt >> (sa+32) (arithmetic)

The doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the emptied bits;
the result is placed in GPR rd. The bit shift count in the range 32 to 63 is specified by sa+32.

Restrictions:

None

Operation: 64-bit processors

s ← 1 || sa /* 32+sa */
GPR[rd]← (GPR[rt]63)s || GPR[rt] 63..s

Exceptions:
Reserved Instruction

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSRA32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
� � ��

DSRAV Doubleword Shift Right Arithmetic Variable
Format: DSRAV rd, rt, rs MIPS III

Purpose: To arithmetic right shift a doubleword by a variable number of bits.

Description: rd ← rt >> rs (arithmetic)

The doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the emptied bits;
the result is placed in GPR rd. The bit shift count in the range 0 to 63 is specified by the low-order six bits in
GPR rs.

Restrictions:

None

Operation: 64-bit processors

s ← GPR[rs]5..0
GPR[rd]← (GPR[rt]63)s || GPR[rt]63..s

Exceptions:
Reserved Instruction

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1
� � ��

DSRL Doubleword Shift Right Logical
Format: DSRL rd, rt, sa MIPS III

Purpose: To logical right shift a doubleword by a fixed amount 0 to 31 bits.

Description: rd ← rt >> sa (logical)

The doubleword contents of GPR rt are shifted right, inserting zeros into the emptied bits; the result is
placed in GPR rd. The bit shift count in the range 0 to 31 is specified by sa.

Restrictions:

None

Operation: 64-bit processors

s ← 0 || sa
GPR[rd]← 0s || GPR[rt]63..s

Exceptions:
Reserved Instruction

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 1 0
0

0 0 0 0 0
� � ��

DSRL32 Doubleword Shift Right Logical Plus 32
Format: DSRL32 rd, rt, sa MIPS III

Purpose: To logical right shift a doubleword by a fixed amount 32 to 63 bits.

Description: rd ← rt >> (sa+32) (logical)

The 64-bit doubleword contents of GPR rt are shifted right, inserting zeros into the emptied bits; the
result is placed in GPR rd. The bit shift count in the range 32 to 63 is specified by sa+32.

Restrictions:

None

Operation: 64-bit processors

s ← 1 || sa /* 32+sa */
GPR[rd]← 0s || GPR[rt]63..s

Exceptions:
Reserved Instruction

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSRL32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 1 0
0

0 0 0 0 0
� � ��

DSRLV Doubleword Shift Right Logical Variable
Format: DSRLV rd, rt, rs MIPS III

Purpose: To logical right shift a doubleword by a variable number of bits.

Description: rd ← rt >> rs (logical)

The 64-bit doubleword contents of GPR rt are shifted right, inserting zeros into the emptied bits; the
result is placed in GPR rd. The bit shift count in the range 0 to 63 is specified by the low-order six bits in
GPR rs.

Restrictions:

None

Operation: 64-bit processors

s ← GPR[rs]5..0
GPR[rd]← 0s || GPR[rt]63..s

Exceptions:
Reserved Instruction

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 DSRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
rs
� � ��

DSUB Doubleword Subtract
Format: DSUB rd, rs, rt MIPS III

Purpose: To subtract 64-bit integers; trap if overflow.

Description: rd ← rs - rt

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs to produce a 64-bit
result. If the subtraction results in 64-bit 2’s complement arithmetic overflow then the destination register is
not modified and an Integer Overflow exception occurs. If it does not overflow, the 64-bit result is placed into
GPR rd.

Restrictions:

None

Operation: 64-bit processors

temp ← GPR[rs] – GPR[rt]
if (64_bit_arithmetic_overflow) then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Exceptions:
Integer Overflow
Reserved Instruction

Programming Notes:

DSUBU performs the same arithmetic operation but, does not trap on overflow.

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0
� � ��

DSUBU Doubleword Subtract Unsigned
Format: DSUBU rd, rs, rt MIPS III

Purpose: To subtract 64-bit integers.

Description: rd ← rs - rt

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs and the 64-bit arith-
metic result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation: 64-bit processors

GPR[rd] ← GPR[rs] – GPR[rt]

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic
that does not trap on overflow. It is appropriate for arithmetic which is not signed, such as address arith-
metic, or integer arithmetic environments that ignore overflow, such as “C” language arithmetic.

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1
� � �	

ERET Error Exception Trap
Format: ERET

Description:

ERET is the RC4650 instruction for returning from an interrupt, exception, or error trap. Unlike a branch
or jump instruction, ERET does not execute the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR2 = 1), then load the PC from the ErrorEPC and clear the
ERL bit of the Status register (SR2). Otherwise (SR2 = 0), load the PC from the EPC, and clear the EXL bit
of the Status register (SR1).

An ERET executed between a LL and SC also causes the SC to fail.

Operation:

Exceptions:

Coprocessor unusable exception

0

6

6 531 25 2426

COP0

6

0

ERET

191

CO
0 1 0 0 0 0 0 1 1 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T: if SR2 = 1 then
 PC ← ErrorEPC

SR ← SR31..3 || 0 || SR1..0
else

PC ← EPC
SR ← SR31..2 || 0 || SR0

endif
LLbit ← 0
� � �

J Jump
Format: J target MIPS I

Purpose: To branch within the current 256 MB aligned region.

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB
aligned region. The low 28 bits of the target address is the instr_index field shifted left 2 bits. The remaining
upper bits are the corresponding bits of the address of the instruction in the delay slot (not the branch
itself).

Jump to the effective target address. Execute the instruction following the jump, in the branch delay slot,
before jumping.

Restrictions:

None

Operation:

I:
I+1: PC ← PCGPRLEN..28 || instr_index || 02

Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to
the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB
boundary. It allows a branch to anywhere in the region from anywhere in the region which a signed relative
offset would not allow.

This definition creates the boundary case where the branch instruction is in the last word of a 256 MB
region and can therefore only branch to the following 256 MB region containing the branch delay slot

31 2526

J

6

0

instr_index

26

0 0 0 0 1 0
� � ��

JAL Jump And Link
Format: JAL target MIPS I

Purpose: To procedure call within the current 256 MB aligned region.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction
following the branch, where execution would continue after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB
aligned region. The low 28 bits of the target address is the instr_index field shifted left 2 bits. The remaining
upper bits are the corresponding bits of the address of the instruction in the delay slot (not the branch
itself).

Jump to the effective target address. Execute the instruction following the jump, in the branch delay slot,
before jumping.

Restrictions:

None

Operation:

I: GPR[31] ← PC + 8
I+1: PC ← PCGPRLEN..28 || instr_index || 02

Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to
the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB
boundary. It allows a branch to anywhere in the region from anywhere in the region which a signed relative
offset would not allow.

This definition creates the boundary case where the branch instruction is in the last word of a 256 MB
region and can therefore only branch to the following 256 MB region containing the branch delay slot.

31 2526

JAL

6

0

instr_index

26

0 0 0 0 1 1
� � ��

JALR Jump And Link Register
Format: JALR rs (rd = 31 implied) MIPS I
JALR rd, rs

Purpose: To procedure call to an instruction address in a register.

Description: rd ← return_addr, PC ← rs

Place the return address link in GPR rd. The return link is the address of the second instruction following
the branch, where execution would continue after a procedure call.

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch
delay slot, before jumping.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same
effect when re-executed. The result of executing such an instruction is undefined. This restriction permits
an exception handler to resume execution by re-executing the branch when an exception occurs in the
branch delay slot.

The effective target address in GPR rs must be naturally aligned. If either of the two least-significant bits
are not -zero, then an Address Error exception occurs, not for the jump instruction, but when the branch
target is subsequently fetched as an instruction.

Operation:

I: temp ← GPR[rs]
GPR[rd] ← PC + 8

I+1: PC ← temp

Exceptions:
None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link; all other link
instructions use GPR 31 The default register for GPR rd, if omitted in the assembly language instruction, is
GPR 31.

31 2526 2021 1516

SPECIAL rs

6 5 5

rd JALR

5 5 6

11 10 6 5 0

0 0 1 0 0 10 0 0 0 00 0 0 0 00 0 0 0 0 0
� � ��

JR Jump Register
Format: JR rs MIPS I

Purpose: To branch to an instruction address in a register.

Description: PC ← rs

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch
delay slot, before jumping.

Restrictions:

The effective target address in GPR rs must be naturally aligned. If either of the two least-significant bits
are not -zero, then an Address Error exception occurs, not for the jump instruction, but when the branch
target is subsequently fetched as an instruction.

Operation:

I: temp ← GPR[rs]
I+1: PC ← temp

Exceptions:
None

21 2031 2526

SPECIAL

6

0

JRrs

6 5

5 15 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
� � ��

LB Load Byte
Format: LB rt, offset(base) MIPS I

Purpose: To load a byte from memory as a signed value.

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form
the effective address.

Restrictions:

None

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1).. 2 || (pAddr1..0 xor ReverseEndian2)
memword ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ← sign_extend(memword7+8*byte..8*byte)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor ReverseEndian3)
memdouble ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor BigEndianCPU3

GPR[rt] ← sign_extend(memdouble7+8*byte..8*byte)

Exceptions:
TLB Refill, TLB Invalid
Address Error

31 2526 2021 1516 0

LB base rt offset

6 5 5 16

1 0 0 0 0 0
� � ��

LBU Load Byte Unsigned
Format: LBU rt, offset(base) MIPS I

Purpose: To load a byte from memory as an unsigned value.

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched,
zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form
the effective address.

Restrictions:

None

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE – 1 .. 2 || (pAddr1..0 xor ReverseEndian2)
memword ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ← zero_extend(memword7+8* byte..8* byte)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor ReverseEndian3)
memdouble ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor BigEndianCPU3

GPR[rt] ← zero_extend(memdouble7+8* byte..8* byte)

Exceptions:
TLB Refill, TLB Invalid
Address Error

31 2526 2021 1516 0

LBU base rt offset

6 5 5 16

1 0 0 1 0 0
� � ��

LD Load Doubleword
Format: LD rt, offset(base) MIPS III

Purpose: To load a doubleword from memory.

Description: rt ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address
are fetched and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the
effective address.

Restrictions:

The effective address must be naturally aligned. If any of the three least-significant bits of the address
are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 3 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr2..0) ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
memdouble ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← memdouble

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error
Reserved Instruction

31 2526 2021 1516 0

LD base rt offset

6 5 5 16

1 1 0 1 1 1
� � ��

LDCz Load Doubleword to Coprocessor
Format: LDC1 rt, offset(base) MIPS II
LDC2 rt, offset(base)

Purpose: To load a doubleword from memory to a coprocessor general register.

Description: rt ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address
are fetched and made available to coprocessor unit zz. The 16-bit signed offset is added to the contents of
GPR base to form the effective address.

The manner in which each coprocessor uses the data is defined by the individual coprocessor specifica-
tions. The usual operation would place the data into coprocessor general register rt.

Each MIPS architecture level defines up to 4 coprocessor units, numbered 0 to 3. The opcodes corre-
sponding to coprocessors that are not defined by an architecture level may be used for other instructions.

Restrictions:

Access to the coprocessors is controlled by system software. Each coprocessor has a “coprocessor
usable” bit in the System Control coprocessor. The usable bit must be set for a user program to execute a
coprocessor instruction. If the usable bit is not set, an attempt to execute the instruction will result in a
Coprocessor Unusable exception. An unimplemented coprocessor must never be enabled. The result of
executing this instruction for an unimplemented coprocessor when the usable bit is set, is undefined.

This instruction is not available for coprocessor 0, the System Control coprocessor, and the opcode may
be used for other instructions.

The effective address must be naturally aligned. If any of the three least-significant bits of the effective
address are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 3 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr2..0) ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
memdouble ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COP_LD (z, rt, memdouble)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr2..0) ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
memdouble ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COP_LD (z, rt, memdouble)

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error
Reserved Instruction
Coprocessor Unusable

31 2526 2021 1516 0

LDCz base rt offset

6 5 5 16

1 1 0 1 z z
� � ��

LDL Load Doubleword Left
Format: LDL rt, offset(base) MIPS III

Purpose: To load the most-significant part of a doubleword from an unaligned memory address.

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr).
EffAddr is the address of the most-significant of eight consecutive bytes forming a doubleword in memory
(DW) starting at an arbitrary byte boundary. A part of DW, the most-significant one to eight bytes, is in the
aligned doubleword containing EffAddr. This part of DW is loaded appropriately into the most-significant
(left) part of GPR rt leaving the remainder of GPR rt unchanged.

The figure below illustrates this operation for big-endian byte ordering. The eight consecutive bytes in
2..9 form an unaligned doubleword starting at location 2. A part of DW, six bytes, is contained in the aligned
doubleword containing the most-significant byte at 2. First, LDL loads these six bytes into the left part of the
destination register and leaves the remainder of the destination unchanged. Next, the complementary LDR
loads the remainder of the unaligned doubleword.

Figure 2.3 Unaligned Doubleword Load using LDL and LDR

31 2526 2021 1516 0

LDL base rt offset

6 5 5 16

0 1 1 0 1 0

Doubleword at byte 2 in memory, big-endian byte order, - each mem byte contains its address

 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12
1
3

1
4

1
5

Memory

a b c d e f g h GPR 24: Initial contents

2 3 4 5 6 7 g h After executing LDL $24,2($0)

Then after LDR $24,9($0)

2 3 4 5 6 7 8 9
� � �	

LDL Load Doubleword Left
The bytes loaded from memory to the destination register depend on both the offset of the effective
address within an aligned doubleword, i.e. the low three bits of the address (vAddr2..0), and the current byte
ordering mode of the processor (big- or little-endian). The table below shows the bytes loaded for every
combination of offset and byte ordering.

Restrictions:

None

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..3 || (pAddr2..0 xor ReverseEndian3)
if BigEndianMem = 0 then

pAddr ← pAddr(PSIZE-1)..3 || 0
3

endif
byte ← vAddr2..0 xor BigEndianCPU3

memdouble ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt] ← memdouble7+8*byte..0 || GPR[rt]55–8*byte..0

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error
Reserved Instruction

Memory contents and byte offsets (vAddr2..0) Initial contents of
Destination Registermost – significance – least

0 1 2 3 4 5 6 7 ¨ big- most – significance – least

I J K L M N O P a b c d e f g h

7 6 5 4 3 2 1 0 ¨ little-endian offset

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

I J K L M N O P 0 P b c d e f g h

J K L M N O P h 1 O P c d e f g h

K L M N O P g h 2 N O P d e f g h

L M N O P f g h 3 M N O P e f g h

M N O P e f g h 4 L M N O P f g h

N O P d e f g h 5 K L M N O P g h

O P c d e f g h 6 J K L M N O P h

P b c d e f g h 7 I J K L M N O P

Figure 2.4 Bytes Loaded by LDL Instruction
� � �

LDR Load Doubleword Right
Format: LDR rt, offset(base) MIPS III

Purpose: To load the least-significant part of a doubleword from an unaligned memory address.

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr).
EffAddr is the address of the least-significant of eight consecutive bytes forming a doubleword in memory
(DW) starting at an arbitrary byte boundary. A part of DW, the least-significant one to eight bytes, is in the
aligned doubleword containing EffAddr. This part of DW is loaded appropriately into the least-significant
(right) part of GPR rt leaving the remainder of GPR rt unchanged.

The figure below illustrates this operation for big-endian byte ordering. The eight consecutive bytes in
2..9 form an unaligned doubleword starting at location 2. A part of DW, two bytes, is contained in the
aligned doubleword containing the least-significant byte at 9. First, LDR loads these two bytes into the right
part of the destination register and leaves the remainder of the destination unchanged. Next, the comple-
mentary LDL loads the remainder of the unaligned doubleword.

Figure 2.5 Unaligned Doubleword Load using LDR and LDL

31 2526 2021 1516 0

LDR base rt offset

6 5 5 16
0 1 1 0 1 1

Doubleword at byte 2 in memory, big-endian byte order, - each mem byte contains its address

 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12
1
3

1
4

1
5

Memory

a b c d e f g h GPR 24: Initial contents

a b c d e f 8 9 After executing LDR $24,9($0)

Then after LDL $24,2($0)

2 3 4 5 6 7 8 9
� � ��

LDR Load Doubleword Right
The bytes loaded from memory to the destination register depend on both the offset of the effective
address within an aligned doubleword, i.e. the low three bits of the address (vAddr2..0), and the current byte
ordering mode of the processor (big- or little-endian). The table below shows the bytes loaded for every
combination of offset and byte ordering.

Restrictions:

None

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..3 || (pAddr2..0 xor ReverseEndian3)
if BigEndianMem = 1 then

pAddr ← pAddr(PSIZE-1)..3 || 0
3

endif
byte ← vAddr2..0 xor BigEndianCPU3

memdouble ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt] ← GPR[rt]63..64-8*byte || memdouble63..8*byte

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error
Reserved Instruction

Memory contents and byte offsets (vAddr2..0) Initial contents of
Destination Registermost – significance – least

0 1 2 3 4 5 6 7 ← big- most – significance – least

I J K L M N O P a b c d e f g h

7 6 5 4 3 2 1 0 ← little-endian offset

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering
vAddr2..

0
Little-endian byte ordering

a b c d e f g I 0 I J K L M N O P

a b c d e f I J 1 a I J K L M N O

a b c d e I J K 2 a b I J K L M N

a b c d I J K L 3 a b c I J K L M

a b c I J K L M 4 a b c d I J K L

a b I J K L M N 5 a b c d e I J K

a I J K L M N O 6 a b c d e f I J

I J K L M N O P 7 a b c d e f g I

Figure 2.6 Bytes Loaded by LDR Instruction
� � 	�

JALR Jump And Link Register
Format: JALR rs (rd = 31 implied) MIPS I
JALR rd, rs

Purpose: To procedure call to an instruction address in a register.

Description: rd ← return_addr, PC ← rs

Place the return address link in GPR rd. The return link is the address of the second instruction following
the branch, where execution would continue after a procedure call.

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch
delay slot, before jumping.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same
effect when re-executed. The result of executing such an instruction is undefined. This restriction permits
an exception handler to resume execution by re-executing the branch when an exception occurs in the
branch delay slot.

The effective target address in GPR rs must be naturally aligned. If either of the two least-significant bits
are not -zero, then an Address Error exception occurs, not for the jump instruction, but when the branch
target is subsequently fetched as an instruction.

Operation:

I: temp ← GPR[rs]
GPR[rd] ← PC + 8

I+1: PC ← temp

Exceptions:
None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link; all other link
instructions use GPR 31 The default register for GPR rd, if omitted in the assembly language instruction, is
GPR 31.

31 2526 2021 1516

SPECIAL rs

6 5 5

rd JALR

5 5 6

11 10 6 5 0

0 0 1 0 0 10 0 0 0 00 0 0 0 00 0 0 0 0 0
� � 	�

JR Jump Register
Format: JR rs MIPS I

Purpose: To branch to an instruction address in a register.

Description: PC ← rs

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch
delay slot, before jumping.

Restrictions:

The effective target address in GPR rs must be naturally aligned. If either of the two least-significant bits
are not -zero, then an Address Error exception occurs, not for the jump instruction, but when the branch
target is subsequently fetched as an instruction.

Operation:

I: temp ← GPR[rs]
I+1: PC ← temp

Exceptions:
None

21 2031 2526

SPECIAL

6

0

JRrs

6 5

5 15 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
� � 	�

LB Load Byte
Format: LB rt, offset(base) MIPS I

Purpose: To load a byte from memory as a signed value.

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form
the effective address.

Restrictions:

None

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1).. 2 || (pAddr1..0 xor ReverseEndian2)
memword ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ← sign_extend(memword7+8*byte..8*byte)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor ReverseEndian3)
memdouble ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor BigEndianCPU3

GPR[rt] ← sign_extend(memdouble7+8*byte..8*byte)

Exceptions:
TLB Refill, TLB Invalid
Address Error

31 2526 2021 1516 0

LB base rt offset

6 5 5 16

1 0 0 0 0 0
� � 	�

LBU LBU
Format: LBU rt, offset(base) MIPS I

Purpose: To load a byte from memory as an unsigned value.

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched,
zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form
the effective address.

Restrictions:

None

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE – 1 .. 2 || (pAddr1..0 xor ReverseEndian2)
memword ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ← zero_extend(memword7+8* byte..8* byte)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor ReverseEndian3)
memdouble ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor BigEndianCPU3

GPR[rt] ← zero_extend(memdouble7+8* byte..8* byte)

Exceptions:
TLB Refill, TLB Invalid
Address Error

31 2526 2021 1516 0

LBU base rt offset

6 5 5 16

1 0 0 1 0 0
� � 	�

LD Load Doubleword
Format: LD rt, offset(base) MIPS III

Purpose: To load a doubleword from memory.

Description: rt ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address
are fetched and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the
effective address.

Restrictions:

The effective address must be naturally aligned. If any of the three least-significant bits of the address
are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 3 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr2..0) ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
memdouble ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← memdouble

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error
Reserved Instruction

31 2526 2021 1516 0

LD base rt offset

6 5 5 16

1 1 0 1 1 1
� � 	�

LDCz Load Doubleword to Coprocessor
Format: LDC1 rt, offset(base) MIPS II
LDC2 rt, offset(base)

Purpose: To load a doubleword from memory to a coprocessor general register.

Description: rt ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address
are fetched and made available to coprocessor unit zz. The 16-bit signed offset is added to the contents of
GPR base to form the effective address.

The manner in which each coprocessor uses the data is defined by the individual coprocessor specifica-
tions. The usual operation would place the data into coprocessor general register rt.

Each MIPS architecture level defines up to 4 coprocessor units, numbered 0 to 3. The opcodes corre-
sponding to coprocessors that are not defined by an architecture level may be used for other instructions.

Restrictions:

Access to the coprocessors is controlled by system software. Each coprocessor has a “coprocessor
usable” bit in the System Control coprocessor. The usable bit must be set for a user program to execute a
coprocessor instruction. If the usable bit is not set, an attempt to execute the instruction will result in a
Coprocessor Unusable exception. An unimplemented coprocessor must never be enabled. The result of
executing this instruction for an unimplemented coprocessor when the usable bit is set, is undefined.

This instruction is not available for coprocessor 0, the System Control coprocessor, and the opcode may
be used for other instructions.

The effective address must be naturally aligned. If any of the three least-significant bits of the effective
address are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 3 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr2..0) ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
memdouble ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COP_LD (z, rt, memdouble)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr2..0) ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
memdouble ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COP_LD (z, rt, memdouble)

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error
Reserved Instruction
Coprocessor Unusable

31 2526 2021 1516 0

LDCz base rt offset

6 5 5 16

1 1 0 1 z z
� � 	�

LDL Load Doubleword Left
Format: LDL rt, offset(base) MIPS III

Purpose: To load the most-significant part of a doubleword from an unaligned memory address.

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr).
EffAddr is the address of the most-significant of eight consecutive bytes forming a doubleword in memory
(DW) starting at an arbitrary byte boundary. A part of DW, the most-significant one to eight bytes, is in the
aligned doubleword containing EffAddr. This part of DW is loaded appropriately into the most-significant
(left) part of GPR rt leaving the remainder of GPR rt unchanged.

The figure below illustrates this operation for big-endian byte ordering. The eight consecutive bytes in
2..9 form an unaligned doubleword starting at location 2. A part of DW, six bytes, is contained in the aligned
doubleword containing the most-significant byte at 2. First, LDL loads these six bytes into the left part of the
destination register and leaves the remainder of the destination unchanged. Next, the complementary LDR
loads the remainder of the unaligned doubleword.

Figure 2.7 Unaligned Doubleword Load using LDL and LDR

31 2526 2021 1516 0

LDL base rt offset

6 5 5 16

0 1 1 0 1 0

Doubleword at byte 2 in memory, big-endian byte order, - each mem byte contains its address

 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12
1
3

1
4

1
5

Memory

a b c d e f g h GPR 24: Initial contents

2 3 4 5 6 7 g h After executing LDL $24,2($0)

Then after LDR $24,9($0)

2 3 4 5 6 7 8 9
� � 		

LDL Load Doubleword Left
The bytes loaded from memory to the destination register depend on both the offset of the effective
address within an aligned doubleword, i.e. the low three bits of the address (vAddr2..0), and the current byte
ordering mode of the processor (big- or little-endian). The table below shows the bytes loaded for every
combination of offset and byte ordering.

Restrictions:

None

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..3 || (pAddr2..0 xor ReverseEndian3)
if BigEndianMem = 0 then

pAddr ← pAddr(PSIZE-1)..3 || 0
3

endif
byte ← vAddr2..0 xor BigEndianCPU3

memdouble ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt] ← memdouble7+8*byte..0 || GPR[rt]55–8*byte..0

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error
Reserved Instruction

Memory contents and byte offsets (vAddr2..0) Initial contents of
Destination Registermost — significance — least

0 1 2 3 4 5 6 7 ¨ big- most — significance — least

I J K L M N O P a b c d e f g h

7 6 5 4 3 2 1 0 ¨ little-endian offset

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

I J K L M N O P 0 P b c d e f g h

J K L M N O P h 1 O P c d e f g h

K L M N O P g h 2 N O P d e f g h

L M N O P f g h 3 M N O P e f g h

M N O P e f g h 4 L M N O P f g h

N O P d e f g h 5 K L M N O P g h

O P c d e f g h 6 J K L M N O P h

P b c d e f g h 7 I J K L M N O P

Figure 2.8 Bytes Loaded by LDL Instruction
� � 	

LDR Load Doubleword Right
Format: LDR rt, offset(base) MIPS III

Purpose: To load the least-significant part of a doubleword from an unaligned memory address.

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr).
EffAddr is the address of the least-significant of eight consecutive bytes forming a doubleword in memory
(DW) starting at an arbitrary byte boundary. A part of DW, the least-significant one to eight bytes, is in the
aligned doubleword containing EffAddr. This part of DW is loaded appropriately into the least-significant
(right) part of GPR rt leaving the remainder of GPR rt unchanged.

The figure below illustrates this operation for big-endian byte ordering. The eight consecutive bytes in
2..9 form an unaligned doubleword starting at location 2. A part of DW, two bytes, is contained in the
aligned doubleword containing the least-significant byte at 9. First, LDR loads these two bytes into the right
part of the destination register and leaves the remainder of the destination unchanged. Next, the comple-
mentary LDL loads the remainder of the unaligned doubleword.

Figure 2.9 Unaligned Doubleword Load using LDR and LDL

31 2526 2021 1516 0

LDR base rt offset

6 5 5 16
0 1 1 0 1 1

Doubleword at byte 2 in memory, big-endian byte order, - each mem byte contains its address

 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12
1
3

1
4

1
5

Memory

a b c d e f g h GPR 24: Initial contents

a b c d e f 8 9 After executing LDR $24,9($0)

Then after LDL $24,2($0)

2 3 4 5 6 7 8 9
� � 	�

LDR Load Doubleword Right
The bytes loaded from memory to the destination register depend on both the offset of the effective
address within an aligned doubleword, i.e. the low three bits of the address (vAddr2..0), and the current byte
ordering mode of the processor (big- or little-endian). The table below shows the bytes loaded for every
combination of offset and byte ordering.

Restrictions:

None

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..3 || (pAddr2..0 xor ReverseEndian3)
if BigEndianMem = 1 then

pAddr ← pAddr(PSIZE-1)..3 || 0
3

endif
byte ← vAddr2..0 xor BigEndianCPU3

memdouble ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt] ← GPR[rt]63..64-8*byte || memdouble63..8*byte

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error
Reserved Instruction

Memory contents and byte offsets (vAddr2..0) Initial contents of
Destination Registermost – significance – least

0 1 2 3 4 5 6 7 ¨ big- most – significance – least

I J K L M N O P a b c d e f g h

7 6 5 4 3 2 1 0 ¨ little-endian offset

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

a b c d e f g I 0 I J K L M N O P

a b c d e f I J 1 a I J K L M N O

a b c d e I J K 2 a b I J K L M N

a b c d I J K L 3 a b c I J K L M

a b c I J K L M 4 a b c d I J K L

a b I J K L M N 5 a b c d e I J K

a I J K L M N O 6 a b c d e f I J

I J K L M N O P 7 a b c d e f g I

Figure 2.10 Bytes Loaded by LDR Instruction
� �
�

LH Load Halfword
Format: LH rt, offset(base) MIPS I

Purpose: To load a halfword from memory as a signed value.

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are
fetched, sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of
GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If the least-significant bit of the address is non-zero, an
Address Error exception occurs.

MIPS IV: The low-order bit of the offset field must be zero. If it is not, the result of the instruction is unde-
fined.

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr0) ≠ 0 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE – 1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt] ← sign_extend(memword15+8*byte..8* byte)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr0) ≠ 0 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE – 1..3 || (pAddr2..0 xor (ReverseEndian || 0))
memdouble ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU2 || 0)
GPR[rt] ← sign_extend(memdouble15+8*byte..8* byte)

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error

31 2526 2021 1516 0

LH base rt offset

6 5 5 16

1 0 0 0 0 1
� �
�

LHU Load Halfword Unsigned
Format: LHU rt, offset(base) MIPS I

Purpose: To load a halfword from memory as an unsigned value.

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are
fetched, zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of
GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If the least-significant bit of the address is non-zero, an
Address Error exception occurs.

MIPS IV: The low-order bit of the offset field must be zero. If it is not, the result of the instruction is unde-
fined.

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr0) ≠ 0 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE – 1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt] ← zero_extend(memword15+8*byte..8*byte)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr0) ≠ 0 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE – 1..3 || (pAddr2..0 xor (ReverseEndian2 || 0))
memdouble ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU2 || 0)
GPR[rt] ← zero_extend(memdouble15+8*byte..8*byte)

Exceptions:
TLB Refill, TLB Invalid
Address Error

31 2526 2021 1516 0

LHU base rt offset

6 5 5 16

1 0 0 1 0 1
� �
�

LL Load Linked Word
Format: LL rt, offset(base) MIPS II

Purpose: To load a word from memory for an atomic read-modify-write.

Description: rt ← memory[base+offset]

The LL and SC instructions provide primitives to implement atomic Read-Modify-Write (RMW) opera-
tions for cached memory locations.

The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The contents of the 32-bit word at the memory location specified by the aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and written into GPR rt. This begins a RMW
sequence on the current processor.

There is one active RMW sequence per processor. When an LL is executed it starts the active RMW
sequence replacing any other sequence that was active.

The RMW sequence is completed by a subsequent SC instruction that either completes the RMW
sequence atomically and succeeds, or does not and fails. See the description of SC for a list of events and
conditions that cause the SC to fail and an example instruction sequence using LL and SC.

Executing LL on one processor does not cause an action that, by itself, would cause an SC for the same
block to fail on another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the
RMW sequence without attempting a write.

Restrictions:

The addressed location must be cached; if it is not, the result is undefined.

The effective address must be naturally aligned. If either of the two least-significant bits of the effective
address are non-zero an Address Error exception occurs.

MIPS IV: The low-order 2 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
memdouble ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 02)
GPR[rt] ← sign_extend(memdouble31+8*byte..8*byte)
LLbit ← 1

31 2526 2021 1516 0

LL base rt offset

6 5 5 16

1 1 0 0 0 0
� �
�

LL Load Linked Word
Exceptions:
TLB Refill, TLB Invalid
Address Error
Reserved Instruction

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Implementation Notes:

An LL on one processor must not take action that, by itself, would cause an SC for the same block on
another processor to fail. If an implementation depends on retaining the data in cache during the RMW
sequence, cache misses caused by LL must not fetch data in the exclusive state, thus removing it from the
cache, if it is present in another cache.
� �
�

LLD Load Linked Doubleword
Format: LLD rt, offset(base) MIPS III

Purpose: To load a doubleword from memory for an atomic read-modify-write.

Description: rt ← memory[base+offset]

The LLD and SCD instructions provide primitives to implement atomic Read-Modify-Write (RMW) opera-
tions for cached memory locations.

The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address
are fetched and written into GPR rt. This begins a RMW sequence on the current processor.

There is one active RMW sequence per processor. When an LLD is executed it starts the active RMW
sequence replacing any other sequence that was active.

The RMW sequence is completed by a subsequent SCD instruction that either completes the RMW
sequence atomically and succeeds, or does not and fails. See the description of SCD for a list of events
and conditions that cause the SCD to fail and an example instruction sequence using LLD and SCD.

Executing LLD on one processor does not cause an action that, by itself, would cause an SCD for the
same block to fail on another processor.

An execution of LLD does not have to be followed by execution of SCD; a program is free to abandon
the RMW sequence without attempting a write.

Restrictions:

The addressed location must be cached; if it is not, the result is undefined.

The effective address must be naturally aligned. If either of the three least-significant bits of the effective
address are non-zero an Address Error exception occurs.

MIPS IV: The low-order 3 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr2..0) ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
memdouble ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← memdouble
LLbit ← 1

Exceptions:
TLB Refill, TLB Invalid
Address Error
Reserved Instruction

Programming Notes:

Implementation Notes:

An LLD on one processor must not take action that, by itself, would cause an SCD for the same block on
another processor to fail. If an implementation depends on retaining the data in cache during the RMW
sequence, cache misses caused by LLD must not fetch data in the exclusive state, thus removing it from
the cache, if it is present in another cache.

31 2526 2021 1516 0

LLD base rt offset

6 5 5 16

1 1 0 1 0 0
� �
�

LUI Load Upper Immediate
Format: LUI rt, immediate MIPS I

Purpose: To load a constant into the upper half of a word.

Description: rt ← immediate || 016

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit
result is sign-extended and placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← sign_extend(immediate || 016)

Exceptions:
None

31 2526 2021 1516 0

LUI rt immediate

6 5 5 16

0 0 1 1 1 1
0

0 0 0 0 0
� �
�

LW Load Word
Format: LW rt, offset(base) MIPS I

Purpose: To load a word from memory as a signed value.

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed
offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If either of the two least-significant bits of the address
are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 2 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
memdouble ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 02)
GPR[rt] ← sign_extend(memdouble31+8*byte..8*byte)

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error

31 2526 2021 1516 0

LW base rt offset

6 5 5 16

1 0 0 0 1 1
� �
	

LWCz Load Word To Coprocessor
Format: LWC1 rt, offset(base) MIPS I
LWC2 rt, offset(base)
LWC3 rt, offset(base)

Purpose: To load a word from memory to a coprocessor general register.

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are
fetched and made available to coprocessor unit zz. The 16-bit signed offset is added to the contents of
GPR base to form the effective address.

The manner in which each coprocessor uses the data is defined by the individual coprocessor specifica-
tion. The usual operation would place the data into coprocessor general register rt.

Each MIPS architecture level defines up to 4 coprocessor units, numbered 0 to 3 (see Section titled
“Coprocessor Instructions” earlier in this Chapter). The opcodes corresponding to coprocessors that are not
defined by an architecture level may be used for other instructions.

Restrictions:

Access to the coprocessors is controlled by system software. Each coprocessor has a “coprocessor
usable” bit in the System Control coprocessor. The usable bit must be set for a user program to execute a
coprocessor instruction. If the usable bit is not set, an attempt to execute the instruction will result in a
Coprocessor Unusable exception. An unimplemented coprocessor must never be enabled. The result of
executing this instruction for an unimplemented coprocessor when the usable bit is set, is undefined.

This instruction is not available for coprocessor 0, the System Control coprocessor, and the opcode may
be used for other instructions.

The effective address must be naturally aligned. If either of the two least-significant bits of the address
are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 2 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 32-bit processors

I: vAddr ← sign_extend(offset) + GPR[base]
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
 memword ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

I+1: COP_LW (z, rt, memword)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base}
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
memdouble ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 02)
memword ← memdouble31+8*byte..8*byte
COP_LW (z, rt, memdouble)

31 2526 2021 1516 0

LWCz base rt offset

6 5 5 16

1 1 0 0 z z
� �

LWCz Load Word To Coprocessor
Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error
Coprocessor Unusable
� �
�

LWL Load Word Left
Format: LWL rt, offset(base) MIPS I

Purpose: To load the most-significant part of a word as a signed value from an unaligned memory
address.

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr).
EffAddr is the address of the most-significant of four consecutive bytes forming a word in memory (W)
starting at an arbitrary byte boundary. A part of W, the most-significant one to four bytes, is in the aligned
word containing EffAddr. This part of W is loaded into the most-significant (left) part of the word in GPR rt.
The remaining least-significant part of the word in GPR rt is unchanged.

If GPR rt is a 64-bit register, the destination word is the low-order word of the register. The loaded value
is treated as a signed value; the word sign bit (bit 31) is always loaded from memory and the new sign bit
value is copied into bits 63..32.

Figure 2.11 Unaligned Word Load using LWL and LWR

The figure above illustrates this operation for big-endian byte ordering for 32-bit and 64-bit registers. The
four consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, two bytes, is in the
aligned word containing the most-significant byte at 2. First, LWL loads these two bytes into the left part of
the destination register word and leaves the right part of the destination word unchanged. Next, the comple-
mentary LWR loads the remainder of the unaligned word.

31 2526 2021 1516 0

LWL base rt offset

6 5 5 16
1 0 0 0 1 0

Word at byte 2 in memory, big-endian byte order, - each mem byte contains its address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h 32-bit GPR 24: Initial contents

a b c d e f g h 64-bit GPR 24

2 3 g h After executing LWL $24,2($0)

sign bit (31) extend 2 3 g h

2 3 4 5 Then after LWR $24,5($0)

sign bit (31) extend 2 3 4 5
� � ��

LWL Load Word Left
The bytes loaded from memory to the destination register depend on both the offset of the effective
address within an aligned word, i.e. the low two bits of the address (vAddr1..0), and the current byte ordering
mode of the processor (big- or little-endian). The table below shows the bytes loaded for every combination
of offset and byte ordering.

The unaligned loads, LWL and LWR, are exceptions to the load-delay scheduling restriction in the MIPS
I architecture. An unaligned load instruction to GPR rt that immediately follows another load to GPR rt can
“read” the loaded data. It will correctly merge the 1 to 4 loaded bytes with the data loaded by the previous
instruction.

Restrictions:

MIPS I scheduling restriction: The loaded data is not available for use by the following instruction. The
instruction immediately following this one, unless it is an unaligned load (LWL, LWR), may not use GPR rt
as a source register. If this restriction is violated, the result of the operation is undefined.

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..2 || (pAddr1..0 xor ReverseEndian2)
if BigEndianMem = 0 then

pAddr ← pAddr(PSIZE-1)..2 || 0
2

endif
byte ← vAddr1..0 xor BigEndianCPU2

memword ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt] ← memword7+8*byte..0 || GPR[rt]23–8*byte..0

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ¨ big-endian 64-bit register

I J K L offset (vAddr1..0) a b c d e f g h

3 2 1 0 ¨ little-endian most — significance — least

most least 32-bit register e f g h

— significance —

Destination 64-bit register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr1..0 Little-endian byte ordering

sign bit (31) extended I J K L 0 sign bit (31) extended L f g h

sign bit (31) extended J K L h 1 sign bit (31) extended K L g h

sign bit (31) extended K L g h 2 sign bit (31) extended J K L h

sign bit (31) extended L f g h 3 sign bit (31) extended I J K L

The word sign (31) is always loaded and the value is copied into bits 63..32.

 32-bit register Big-endian vAddr1..0 Little-endian

I J K L 0 L f g h

J K L h 1 K L g h

K L g h 2 J K L h

L f g h 3 I J K L

Figure 2.12 Bytes Loaded by LWL Instruction
� � ��

LWL Load Word Left
Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..3 || (pAddr2..0 xor ReverseEndian3)
if BigEndianMem = 0 then

pAddr ← pAddr(PSIZE-1)..3 || 0
3

endif
byte ← 0 || (vAddr1..0 xor BigEndianCPU2)
word ← vAddr2 xor BigEndianCPU
memdouble ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
temp ← memdouble31+32*word-8*byte..32*word || GPR[rt]23-8*byte..0
GPR[rt] ← (temp31)32 || temp

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, i.e. zeroing
bits 63..32 of the destination register when bit 31 is loaded. See SLL or SLLV for a single-instruction method
of propagating the word sign bit in a register into the upper half of a 64-bit register.
� � ��

LWR Load Word Right
Format: LWR rt, offset(base) MIPS I

Purpose: To load the least-significant part of a word from an unaligned memory address as a
signed value.

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr).
EffAddr is the address of the least-significant of four consecutive bytes forming a word in memory (W)
starting at an arbitrary byte boundary. A part of W, the least-significant one to four bytes, is in the aligned
word containing EffAddr. This part of W is loaded into the least-significant (right) part of the word in GPR rt.
The remaining most-significant part of the word in GPR rt is unchanged.

If GPR rt is a 64-bit register, the destination word is the low-order word of the register. The loaded value
is treated as a signed value; if the word sign bit (bit 31) is loaded (i.e. when all four bytes are loaded) then
the new sign bit value is copied into bits 63..32. If bit 31 is not loaded then the value of bits 63..32 is imple-
mentation dependent; the value is either unchanged or a copy of the current value of bit 31. Executing both
LWR and LWL, in either order, delivers in a sign-extended word value in the destination register.

Figure 2.13 Unaligned Word Load using LWR and LWL

The figure above illustrates this operation for big-endian byte ordering for 32-bit and 64-bit registers. The
four consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, two bytes, is in the
aligned word containing the least-significant byte at 5. First, LWR loads these two bytes into the right part of
the destination register. Next, the complementary LWL loads the remainder of the unaligned word.

The bytes loaded from memory to the destination register depend on both the offset of the effective
address within an aligned word, i.e. the low two bits of the address (vAddr1..0), and the current byte ordering
mode of the processor (big- or little-endian). The table below shows the bytes loaded for every combination
of offset and byte ordering.

31 2526 2021 1516 0

LWR base rt offset

6 5 5 16
1 0 0 1 1 0

Word at byte 2 in memory, big-endian byte order, - each mem byte contains its address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h 32-bit GPR 24: Initial contents

a b c d e f g h 64-bit GPR 24

e f 4 5 After executing LWR $24,5($0)

no cng or sign
ext

e f 4 5

2 3 4 5 Then after LWL $24,2($0)
� � ��

LWR Load Word Right
The unaligned loads, LWL and LWR, are exceptions to the load-delay scheduling restriction in the MIPS
I architecture. An unaligned load to GPR rt that immediately follows another load to GPR rt can “read” the
loaded data. It will correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruction.

Restrictions:

MIPS I scheduling restriction: The loaded data is not available for use by the following instruction. The
instruction immediately following this one, unless it is an unaligned load (LWL, LWR), may not use GPR rt
as a source register. If this restriction is violated, the result of the operation is undefined.

Restrictions:

None

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ¨ big-endian 64-bit register

I J K L offset (vAddr1..0) a b c d e f g h

3 2 1 0 ¨ little-endian most — significance — least

most least 32-bit register e f g h

— significance —

Destination 64-bit register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr1..0 Little-endian byte ordering

No cng or sign-extend e f g I 0 sign bit (31) extended I J K L

No cng or sign-extend e f I J 1 No cng or sign-extend e I J K

No cng or sign-extend e I J K 2 No cng or sign-extend e f I J

sign bit (31) extended I J K L 3 No cng or sign-extend e f g I

When the word sign bit (31) is loaded, its value is copied into bits 63..32. When it is not loaded, the
behavior is implementation specific. Bits 63..32 are either unchanged or a the value of the unloaded
bit 31 is copied into them.

32-bit register big-endian vAddr1..0 little-endian

e f g I 0 I J K L

e f I J 1 e I J K

e I J K 2 e f I J

I J K L 3 e f g I

Figure 2.14 Bytes Loaded by LWR Instruction
� � ��

LWR Load Word Right
Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..2 || (pAddr1..0 xor ReverseEndian2)
if BigEndianMem = 0 then

pAddr ← pAddr(PSIZE-1)..2 || 0
2

endif
byte ← vAddr1..0 xor BigEndianCPU2

memword ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt] ← memword31..32-8*byte || GPR[rt]31–8*byte..0

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr(PSIZE-1)..3 || (pAddr2..0 xor ReverseEndian3)
if BigEndianMem = 1 then

pAddr ← pAddr(PSIZE-1)..3 || 0
3

endif
byte ← vAddr1..0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU
memdouble ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp ← GPR[rt]31..32-8*byte || memdouble31+32*word..32*word+8*byte
if byte = 4 then

utemp ← (temp31)32 /* loaded bit 31, must sign extend */

else
one of the following two behaviors:

utemp ← GPR[rt]63..32 /* leave what was there alone */
utemp ← (GPR[rt]31)32 /* sign-extend bit 31 */

endif
GPR[rt] ← utemp || temp

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, i.e. zeroing
bits 63..32 of the destination register when bit 31 is loaded. See SLL or SLLV for a single-instruction method
of propagating the word sign bit in a register into the upper half of a 64-bit register.
� � ��

LWU Load Word Unsigned
Format: LWU rt, offset(base) MIPS III

Purpose: To load a word from memory as an unsigned value.

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are
fetched, zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of
GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If either of the two least-significant bits of the address
are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 2 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
memdouble ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 02)
GPR[rt] ← 032 || memdouble31+8*byte..8*byte

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error
Reserved Instruction

31 2526 2021 1516 0

LWU base rt offset

6 5 5 16

1 0 0 1 1 1
� � ��

MAD Multiply Accumulate
Format: MAD rs, rt

Description:

The RC4650 and RC32364 add a MAD instruction (multiply-accumulate, with HI and LO as the accumu-
lator) to the base MIPS-III ISA. The MAD instruction is defined as:

HI,LO ← HI,LO + rs*rt

The lower 32-bits of the accumulator are stored in the lower 32 bits of LO, while the upper 32 bits of the
result are stored in the lower 32 bits of HI. This is done to allow this instruction to operate compatibly in 32-
bit processors.

The actual repeat rate and latency of this operation are dependent on the size of the operands.

Operation:

Exceptions:

None

Programming Notes:

This is an IDT proprietary extension.

31 2526 2021 1516 0

rs rt

6 5 5

011100

Special 2
0 0

MAD
00000

5 5 6

11 10 56

T: temp ¨ (HI 31. . 0 || LO 31. .0) + ((rs 31)32 || rs31. . 0) x ((rt31)32|| rt31. .0)

 Hi ¨ (temp 63)32 || temp 63 . . 32

 LO ¨ (temp 31) 32 || temp 31 . . 0
� � �	

MADU Multiply/Add Unsigned
Format: MADU rs, rt

Description:

The RC4650 and RC32364 add a MAD instruction (multiply-accumulate, with HI and LO as the accumu-
lator) to the base MIPS-III ISA. The MAD instruction is defined as:

HI,LO ¨ HI,LO + rs*rt

The lower 32-bits of the accumulator are stored in the lower 32 bits of LO, while the upper 32 bits of the
result are stored in the lower 32 bits of HI. This is done to allow this instruction to operate compatibly in 32-
bit processors. The actual repeat rate and latency of this operation are dependent on the size of the oper-
ands.

Operation:

Exceptions:

None

Programming Notes:

This is an IDT proprietary extension.

31 2526 2021 1516 0

rs rt

6 5 5
011100

Special2 0 0 MAD
00001

5 5 6

11 10 56

T: temp ¨ (HI 31. . 0 || LO 31. .0) + (032 || rs31. . 0) x (032 || rt31. .0)

 Hi ¨ (temp 63)32 || temp 63 . . 32

 LO ¨ (temp 31) 32 || temp 31 . . 0
� � �

MFCz Move From Coprocessor
Format: MFCz rt, rd

Description:

The contents of coprocessor register rd of coprocessor z are loaded into general register rt.

Execution of the instruction referencing coprocessor 3 causes a reserved instruction exception, not a
coprocessor unusable exception.

Note: *See “Opcode Bit Encoding” on page 120, or “CPU InstructionEncoding” at the end of Appendix A.

Operation:

Exceptions:

Coprocessor unusable exception

Reserved instruction exception (coprocessor 3)

Opcode Bit Encoding:

11

31 2526 2021 1516

COPz MF rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T: if rd0 = 0 then
data ¨ CPR[z,rd4..1 || 0]31..0

else
data ¨ CPR[z,rd4..1 || 0]63..32

endif
T+1: GPR[rt] ¨ (data31)32 || data

MFCz

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

MFC1 0 0 0 00

24 23 22 21

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

MFC2 0 0 0 00

24 23 22 21

Coprocessor Suboperation

0 0 0 0 01

31 30 29 28 27 26B it # 25 0

MFC0 0 0 0 00

24 23 22 21

Coprocessor Unit Number

Opcode
� � ��

MFHI Move From HI Register
Format: MFHI rd MIPS I

Purpose: To copy the special purpose HI register to a GPR.

Description: rd ← HI

The contents of special register HI are loaded into GPR rd.

Restrictions:

The two instructions that follow an MFHI instruction must not be instructions that modify the HI register:
DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MTHI, MULT, MULTU. If this restriction is violated, the result of
the MFHI is undefined.

Operation:

GPR[rd] ← HI

Exceptions:
None

0

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFHI0

5

11 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
� � ���

MFLO Move From LO Register
Format: MFLO rd MIPS I

Purpose: To copy the special purpose LO register to a GPR.

Description: rd ← LO

The contents of special register LO are loaded into GPR rd.

Restrictions:

The two instructions that follow an MFLO instruction must not be instructions that modify the LO register:
DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MTLO, MULT, MULTU. If this restriction is violated, the result
of the MFLO is undefined.

Operation:

GPR[rd] ← LO

Exceptions:
None

0

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFLO0

5

11 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
� � ���

MOVN Move Conditional on Not Zero
Format: MOVN rd, rs, rt MIPS IV,RC32364

Purpose: To conditionally move a GPR after testing a GPR value.

Description: if (rt ≠ 0) then rd ← rs

If the value in GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

if GPR[rt] ≠ 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:
Reserved Instruction

Programming Notes:

The nonzero value tested here is the “condition true” result from the SLT, SLTI, SLTU, and SLTIU
comparison instructions.

31 2526 1516 0

6 5 5

6 5

6

SPECIAL

5

11 1021 20

5

0 MOVNrdrtrs
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
� � ���

MOVZ Move Conditional on Zero
Format: MOVZ rd, rs, rt MIPS IV,RC32364

Purpose: To conditionally move a GPR after testing a GPR value.

Description: if (rt = 0) then rd ← rs

If the value in GPR rt is equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

if GPR[rt] = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:
Reserved Instruction

Programming Notes:

The zero value tested here is the “condition false” result from the SLT, SLTI, SLTU, and SLTIU compar-
ison instructions.

31 2526 1516 0

6 5 5

6 5

6

SPECIAL

5

11 1021 20

5

0 MOVZrdrtrs
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
� � ���

MSUB Multiply Subtract
Format: MSUB rs, rt RC32364

Description:

The RC32364 adds this new instruction. The content of general registers rs and rt are multiplied,
treating both operands as 32-bit two’s complement values, and the result is subtracted from HI/LO. No
overflow exception occur under any circumstances.

When the operation is complete, the low-order word of the double result is loaded in LO, and the high-
order word of the double result is loaded into HI. The instruction is not interlocked so any attempt to read HI/
LO before the operation completes returns undefined value.

Operation:

T: temp <-- (HI || LO) - GPR[rs] * GPR[rt]
LO <-- temp
HI <-- temp

Exceptions:
None

Programming Notes:
This is an IDT proprietary extension.

31 2526 1516 0

6 5 5

6 5

6

SPECIAL2

5

11 1021 20

5

0 MSUBrdrtrs
0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
� � ���

MSUBU Multiply Subtract Unsigned
Format: MSUB rs, rt RC32364

Description:

The RC32364 adds this new instruction. The content of general registers rs and rt are multiplied,
treating both operand as 32-bit unsigned values, and the result is subtracted from HI/LO. No overflow
exception occur under any circumstances.

When the operation completes, the low-order word of the double result is loaded in LO, and the high-
order word of the double result is loaded in HI. The instruction is not interlocked so any attempt to read HI/
LO before the operation completes returns undefined value.

Operation:

T: temp <-- (HI || LO) - (0||GPR[rs]) * (0||GPR[rt])
LO <-- temp
HI <-- temp

Exceptions:
None

Programming Notes:
This is an IDT proprietary extension.

31 2526 1516 0

6 5 5

6 5

6

SPECIAL2

5

11 1021 20

5

0 MSUBrdrtrs
0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
� � ���

MTCz Move To Coprocessor
Format: MTCz rt, rd
Note: *See “Opcode Bit Encoding” on this page, or “CPU Instruction Encoding” at the end of Appendix A.

Description:

The contents of general register rt are loaded into coprocessor register rd of coprocessor z. Execution of
the instruction referencing coprocessor 3 causes a reserved instruction exception, not a coprocessor unus-
able exception.

Operation:

Exceptions:

Coprocessor unusable exception

Reserved instruction exception (coprocessor 3)

Opcode Bit Encoding:

11

31 2526 2021 1516

COPz MT rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

T: data ¨ GPR[rt]31..0
T+1: if rd0 = 0

CPR[z,rd4..1 || 0] ¨ CPR[z, rd4..1 || 0]63..32 || data
else

CPR[z,rd4..1 || 0] ¨ data || CPR[z,rd4..1 || 0]31..0
endif

MTCz

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

C0P1 0 1 0 00

24 23 22 21

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

C0P2 0 1 0 00

24 23 22 21

Coprocessor Suboperation

0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

C0P0 0 1 0 00

24 23 22 21

Coprocessor Unit NumberOpcode
� � ���

MTHI Move To HI Register
Format: MTHI rs MIPS I

Purpose: To copy a GPR to the special purpose HI register.

Description: HI ← rs

The contents of GPR rs are loaded into special register HI.

Restrictions:

If either of the two preceding instructions is MFHI, the result of that MFHI is undefined. Reads of the HI
or LO special registers must be separated from subsequent instructions that write to them by two or more
other instructions.

A computed result written to the HI/LO pair by DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MULT, or
MULTU must be read by MFHI or MFLO before another result is written into either HI or LO. If an MTHI
instruction is executed following one of these arithmetic instructions, but before a MFLO or MFHI instruc-
tion, the contents of LO are undefined. The following example shows this illegal situation:

MUL r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTHI r6
... # code not containing mflo
MFLO r3 # this mflo would get an undefined value

Operation:

I-2:, I-1: HI ← undefined
I: HI ← GPR[rs]

Exceptions:
None

31 2526 2021 0

rs

6 5

6 5

15 6

SPECIAL 0 MTHI
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
� � ��	

MTLO Move To LO Register
Format: MTLO rs MIPS I

Purpose: To copy a GPR to the special purpose LO register.

Description: LO ← rs

The contents of GPR rs are loaded into special register LO.

Restrictions:

If either of the two preceding instructions is MFLO, the result of that MFLO is undefined. Reads of the HI
or LO special registers must be separated from subsequent instructions that write to them by two or more
other instructions.

A computed result written to the HI/LO pair by DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MULT, or
MULTU must be read by MFHI or MFLO before another result is written into either HI or LO. If an MTLO
instruction is executed following one of these arithmetic instructions, but before a MFLO or MFHI instruc-
tion, the contents of HI are undefined. The following example shows this illegal situation:

MUL r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTLO r6
... # code not containing mfhi
MFHI r3 # this mfhi would get an undefined value

Operation:

I-2:, I-1: LO ← undefined
I: LO ← GPR[rs]

Exceptions:
None

31 2526 2021 0

rs

6 5

6 5

15 6

SPECIAL 0 MTLO
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
� � ��

MUL Multiply
Format: MUL rd, rs, rt

Description:

The RC4650 and RC32364 add a true 3-operand 32x32—>32 multiply instruction to the MIPS-III ISA,
where by rd = rs*rt. This instruction eliminates the need to explicitly move the multiply result from the LO
register back to a general register. The execution time of this operation is operand size dependent.

The HI and LO registers are undefined after executing this instruction. For 16-bit operands, the latency
of MUL is 3 cycles, with a repeat rate of 2 cycles. In addition, the MUL instruction will unconditionally slip or
stall for all but 2 cycles of its latency.

Operation:

Exceptions:

None

Programming Notes:

This instruction is an IDT proprietary extension.

31 2526 2021 1516 0

rs rt

6 5

SPECIAL2 MUL
011100 00010

rd 0

6 5 5 5 5 6

11 10

T: Temp ¨ rs 31 . . . 0 x rt 31 . . 0
rd ¨ (temp31)32 || temp 31. . . 0
HI ¨ undefined
LO ¨ undefined
� � ���

MULT Multiply Word
Format: MULT rs, rt MIPS I

Purpose: To multiply 32-bit signed integers.

Description: (LO, HI) ← rs × rt

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as
signed values, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special
register LO, and the high-order 32-bit word is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

If either of the two preceding instructions is MFHI or MFLO, the result of the MFHI or MFLO is undefined.
Reads of the HI or LO special registers must be separated from subsequent instructions that write to them
by two or more other instructions.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
I-2:, I-1: LO, HI ← undefined
I: prod ← GPR[rs]31..0 * GPR[rt]31..0

LO ← sign_extend(prod31..0)
H I ← sign_extend(prod63..32)

Exceptions:
None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU
instructions to execute before it is complete. An attempt to read LO or HI before the results are written will
wait (interlock) until the results are ready. Asynchronous execution does not affect the program result, but
offers an opportunity for performance improvement by scheduling the multiply so that other instructions can
execute in parallel.

Programs that require overflow detection must check for it explicitly.

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
� � ���

MULTU Multiply Unsigned Word
Format: MULTU rs, rt MIPS I

Purpose: To multiply 32-bit unsigned integers.

Description: (LO, HI) ← rs × rt

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as
unsigned values, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special
register LO, and the high-order 32-bit word is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

If either of the two preceding instructions is MFHI or MFLO, the result of the MFHI or MFLO is undefined.
Reads of the HI or LO special registers must be separated from subsequent instructions that write to them
by two or more other instructions.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
I-2:, I-1: LO, HI ← undefined
I: prod ← (0 || GPR[rs]31..0) * (0 || GPR[rt]31..0)

LO ← sign_extend(prod31..0)
H I ← sign_extend(prod63..32)

Exceptions:
None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU
instructions to execute before it is complete. An attempt to read LO or HI before the results are written will
wait (interlock) until the results are ready. Asynchronous execution does not affect the program result, but
offers an opportunity for performance improvement by scheduling the multiply so that other instructions can
execute in parallel.

Programs that require overflow detection must check for it explicitly.

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULTU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
� � ���

NOR Not Or
Format: NOR rd, rs, rt MIPS I

Purpose: To do a bitwise logical NOT OR.

Description: rd ← rs NOR rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR operation.
The result is placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:
None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 NOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1
� � ���

OR Or
Format: OR rd, rs, rt MIPS I

Purpose: To do a bitwise logical OR.

Description: rd ← rs OR rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The
result is placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:
None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 OR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
� � ���

ORI Or Immediate
Format: ORI rt, rs, immediate MIPS I

Purpose: To do a bitwise logical OR with a constant.

Description: rd ← rs OR immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise
logical OR operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← zero_extend(immediate) or GPR[rs]

Exceptions:
None

31 2526 2021 1516 0

ORI rs rt immediate

6 5 5 16

0 0 1 1 0 1
� � ���

PREF Prefetch
Format: PREF hint, offset(base) MIPS IV,RC32364

Purpose: To prefetch data from memory.

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte address. It
advises that data at the effective address may be used in the near future. The hint field supplies information
about the way that the data is expected to be used.

PREF is an advisory instruction. It may change the performance of the program. For all hint values and
all effective addresses, it neither changes architecturally-visible state nor alters the meaning of the
program. An implementation may do nothing when executing a PREF instruction.

If MIPS IV instructions are supported and enabled, PREF does not cause addressing-related excep-
tions. If it raises an exception condition, the exception condition is ignored. If an addressing-related excep-
tion condition is raised and ignored, no data will be prefetched, Even if no data is prefetched in such a case,
some action that is not architecturally-visible, such as writeback of a dirty cache line, might take place.

PREF will never generate a memory operation for a location with an uncached memory access type
(see the section titled “Memory Access Types” earlier in this Chapter).

If PREF results in a memory operation, the memory access type used for the operation is determined by
the memory access type of the effective address, just as it would be if the memory operation had been
caused by a load or store to the effective address.

PREF enables the processor to take some action, typically prefetching the data into cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context depen-
dent. Any action, including doing nothing, is permitted that does not change architecturally-visible state or
alter the meaning of a program. It is expected that implementations will either do nothing or take an action
that will increase the performance of the program.

For a cached location, the expected, and useful, action is for the processor to prefetch a block of data
that includes the effective address. The size of the block, and the level of the memory hierarchy it is fetched
into are implementation specific.

The hint field supplies information about the way the data is expected to be used. No hint value causes
an action that modifies architecturally-visible state. A processor may use a hint value to improve the effec-
tiveness of the prefetch action. The defined hint values and the recommended prefetch action are shown in
the table below. The hint table may be extended in future implementations.

'��(� #���)��� (�� ��" "�����" &��*���$ ������

0 load Data is expected to be loaded (not modified).
Fetch data as if for a load.

1 store Data is expected to be stored or modified.
Fetch data as if for a store.

31 Ignore hit (Kernel Mode only) Invalidate the cache line and bring in the new data from memory regardless
of the state of the valid bit.

Table 2.29 Values of Hint Field for Prefetch Instruction in RC32364

31 2526 2021 1516

base hint

6 5 5

offset

16

0

1 1 0 0 1 1
PREF
� � ���

PREF Prefetch

Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(uncached, pAddr, vAddr, DATA, hint)

Exceptions:
Reserved Instruction

Programming Notes:

Prefetch can not prefetch data from a mapped location unless the translation for that location is present
in the TLB. Locations in memory pages that have not been accessed recently may not have translations in
the TLB, so prefetch may not be effective for such locations.

Prefetch does not cause addressing exceptions. It will not cause an exception to prefetch using an
address pointer value before the validity of a pointer is determined.

Implementation Notes:

It is recommended that a reserved hint field value either cause a default prefetch action that is expected
to be useful for most cases of data use, such as the “load” hint, or cause the instruction to be treated as a
NOP.

'��(� #���)��� (�� ��" "�����" &��*���$ ������

0 load Data is expected to be loaded (not modified).
Fetch data as if for a load.

1 store Data is expected to be stored or modified.
Fetch data as if for a store.

2-3 Not yet defined.

4 load_streamed Data is expected to be loaded (not modified) but not reused extensively; it will “stream”
through cache.
Fetch data as if for a load and place it in the cache so that it will not displace data
prefetched as “retained”.

5 store_streamed Data is expected to be stored or modified but not reused extensively; it will “stream”
through cache.
Fetch data as if for a store and place it in the cache so that it will not displace data
prefetched as “retained”.

6 load_retained Data is expected to be loaded (not modified) and reused extensively; it should be
“retained” in the cache.
Fetch data as if for a load and place it in the cache so that it will not be displaced by
data prefetched as “streamed”.

7 store_retained Data is expected to be stored or modified and reused extensively; it should be
“retained” in the cache.
Fetch data as if for a store and place it in the cache so that will not be displaced by data
prefetched as “streamed”.

8-31 Not yet defined.

Table 2.30 Values of Hint Field for Prefetch Instruction in RC5000
� � ���

RFE Prefetch
Format: RFE

Description:

This instruction is not implemented on RC4000 and RISCore32300 processors; use ERET instead.

RFE restores the previous interrupt mask and Kernel/User-mode bits (IEp and KUp) of the Status
register (SR) into the corresponding current status bits (IEc and KUc) and restores the old status bits (IEo
and KUo) into the corresponding previous status bits (IEp and KUp). The old status bits remain unchanged.

The architecture does not specify the operation of memory references associated with load/store
instructions immediately prior to an RFE instruction. Normally, the RFE instruction follows in the delay slot
of a JR (jump register)instruction to restore the PC.

R2000/RC3000/RC6000

Operation:

Exceptions:

Coprocessor unusable exception

Reserved instruction exception (RC4000)

31 2526 06 5

COPO RFE
010000 010000

6 6

CO
1

0
0000000000000000000

1 19

24

T: SR ¨ SR31..4|| SR5..2
 LLbit ¨ 0
� � ��	

SB Store Byte
Format: SB rt, offset(base) MIPS I
Note: It is recommended that a reserved hint field value either cause a default prefetch action that is expect-
ed to be useful for most cases of data use, such as the “load” hint, or cause the instruction to be treated as
a NOP.

Purpose: To store a byte to memory.

Description: memory[base+offset] ← rt

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective
address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
byte ← vAddr1..0 xor BigEndianCPU2

dataword ← GPR[rt]31–8*byte..0 || 08*byte

StoreMemory (uncached, BYTE, dataword, pAddr, vAddr, DATA)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian3)
byte ← vAddr2..0 xor BigEndianCPU3

datadouble ← GPR[rt]63–8*byte..0 || 08*byte

StoreMemory (uncached, BYTE, datadouble, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Bus Error
Address Error

31 2526 2021 1516 0

SB base rt offset

6 5 5 16

1 0 1 0 0 0
� � ��

SC Store Conditional Word
Format: SC rt, offset(base) MIPS II

Purpose: To store a word to memory to complete an atomic read-modify-write.

Description: if (atomic_update) then memory[base+offset] ← rt, rt ← 1 else rt ← 0

The LL and SC instructions provide primitives to implement atomic Read-Modify-Write (RMW) opera-
tions for cached memory locations.

The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the
processor. If it would complete the RMW sequence atomically, then the least-significant 32-bit word of
GPR rt is stored into memory at the location specified by the aligned effective address and a one, indicating
success, is written into GPR rt. Otherwise, memory is not modified and a zero, indicating failure, is written
into GPR rt.

If any of the following events occurs between the execution of LL and SC, the SC will fail:
◆ A coherent store is completed by another processor or coherent I/O module into the block of physi-

cal memory containing the word. The size and alignment of the block is implementation dependent.
It is at least one word and is at most the minimum page size.

◆ An exception occurs on the processor executing the LL/SC.
An implementation may detect “an exception” in one of three ways:
1) Detect exceptions and fail when an exception occurs.
2) Fail after the return-from-interrupt instruction (RFE or ERET) is executed.
3) Do both 1 and 2.

If any of the following events occurs between the execution of LL and SC, the SC may succeed or it may
fail; the success or failure is unpredictable. Portable programs should not cause one of these events:

◆ A load, store, or prefetch is executed on the processor executing the LL/SC.
◆ The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte con-

tiguous region of virtual memory. The region does not have to be aligned, other than the alignment
required for instruction words.

The following conditions must be true or the result of the SC will be undefined:
◆ Execution of SC must have been preceded by execution of an LL instruction.
◆ A RMW sequence executed without intervening exceptions must use the same address in the LL

and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

Atomic RMW is provided only for cached memory locations. The extent to which the detection of atom-
icity operates correctly depends on the system implementation and the memory access type used for the
location. See the section titled “Memory Access Types” earlier in this Chapter.

MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be
made with a memory access type of cached coherent.

Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location
must be made with memory access type of either cached noncoherent or cached coherent. All accesses
must be to one or the other access type, they may not be mixed.

I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be
made with a memory access type of cached coherent. If the I/O system does not use coherent memory
operations, then atomic RMW cannot be provided with respect to the I/O reads and writes.

31 2526 2021 1516 0

SC base rt offset

6 5 5 16

1 1 1 0 0 0
� � ���

SC Store Conditional Word
The definition above applies to user-mode operation on all MIPS processors that support the MIPS II
architecture. There may be other implementation-specific events, such as privileged CP0 instructions, that
will cause an SC instruction to fail in some cases. System programmers using LL/SC should consult imple-
mentation-specific documentation.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if
it does not, the result is undefined (see the section titled “Memory Access Types” earlier in this Chapter).

The effective address must be naturally aligned. If either of the two least-significant bits of the address
are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 2 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then

StoreMemory (uncached, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 031 || LLbit

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
byte ← vAddr2..0 xor (BigEndianCPU || 02)
datadouble ← GPR[rt]63-8*byte..0 || 08*byte

if LLbit then
StoreMemory (uncached, WORD, datadouble, pAddr, vAddr, DATA)

endif
GPR[rt] ← 063 || LLbit

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Address Error
Reserved Instruction

Programming Notes:

LL and SC are used to atomically update memory locations as shown in the example atomic increment
operation below.

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some
examples of these are arithmetic operations that trap, system calls, floating-point operations that trap or
require software emulation assistance.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot
� � ���

SC Store Conditional Word
LL and SC function on a single processor for cached noncoherent memory so that parallel programs can
be run on uniprocessor systems that do not support cached coherent memory access types.

Implementation Notes:

The block of memory that is “locked” for LL/SC is typically the largest cache line in use.
� � ���

SCD Store Conditional Doubleword
Format: SCD rt, offset(base) MIPS III

Purpose: To store a doubleword to memory to complete an atomic read-modify-write.

Description: if (atomic_update) then memory[base+offset] ← rt, rt ← 1 else rt ← 0

The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SCD completes the RMW sequence begun by the preceding LLD instruction executed on the
processor. If it would complete the RMW sequence atomically, then the 64-bit doubleword of GPR rt is
stored into memory at the location specified by the aligned effective address and a one, indicating success,
is written into GPR rt. Otherwise, memory is not modified and a zero, indicating failure, is written into
GPR rt.

If any of the following events occurs between the execution of LLD and SCD, the SCD will fail:
◆ A coherent store is completed by another processor or coherent I/O module into the block of physi-

cal memory containing the word. The size and alignment of the block is implementation dependent.
It is at least one doubleword and is at most the minimum page size.

◆ An exception occurs on the processor executing the LLD/SCD.
An implementation may detect “an exception” in one of three ways:
1) Detect exceptions and fail when an exception occurs.
2) Fail after the return-from-interrupt instruction (RFE or ERET) is executed.
3) Do both 1 and 2.

If any of the following events occurs between the execution of LLD and SCD, the SCD may succeed or
it may fail; the success or failure is unpredictable. Portable programs should not cause one of these events.

◆ A memory access instruction (load, store, or prefetch) is executed on the processor executing the
LLD/SCD.

◆ The instructions executed starting with the LLD and ending with the SCD do not lie in a 2048-byte
contiguous region of virtual memory. The region does not have to be aligned, other than the align-
ment required for instruction words.

The following conditions must be true or the result of the SCD will be undefined:
◆ Execution of SCD must have been preceded by execution of an LLD instruction.
◆ A RMW sequence executed without intervening exceptions must use the same address in the LLD

and SCD. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

Atomic RMW is provided only for memory locations with cached noncoherent or cached coherent
memory access types. The extent to which the detection of atomicity operates correctly depends on the
system implementation and the memory access type used for the location. See the section titled “Memory
Access Types” earlier in this Chapter.

MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be
made with a memory access type of cached coherent.

Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location
must be made with memory access type of either cached noncoherent or cached coherent. All accesses
must be to one or the other access type, they may not be mixed.

I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be
made with a memory access type of cached coherent. If the I/O system does not use coherent memory
operations, then atomic RMW cannot be provided with respect to the I/O reads and writes.

31 2526 2021 1516 0

SCD base rt offset

6 5 5 16

1 1 1 1 0 0
� � ���

SCD Store Conditional Doubleword
The defemination above applies to user-mode operation on all MIPS processors that support the MIPS
III architecture. There may be other implementation-specific events, such as privileged CP0 instructions,
that will cause an SCD instruction to fail in some cases. System programmers using LLD/SCD should
consult implementation-specific documentation.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if
it does not, the result is undefined (see the section titled “Memory Access Types” earlier in this Chapter.
The 64-bit doubleword of register rt is conditionally stored in memory at the location specified by the aligned
effective address. The 16-bit signed offset is added to the contents of GPR base to form the effective
address.

The effective address must be naturally aligned. If any of the three least-significant bits of the address
are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 3 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr2..0) ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
datadouble ← GPR[rt]
if LLbit then

StoreMemory (uncached, DOUBLEWORD, datadouble, pAddr, vAddr, DATA)
endif
GPR[rt] ← 063 || LLbit

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Address Error
Reserved Instruction

Programming Notes:

LLD and SCD are used to atomically update memory locations as shown in the example atomic incre-
ment operation below.

Exceptions between the LLD and SCD cause SCD to fail, so persistent exceptions must be avoided.
Some examples of these are arithmetic operations that trap, system calls, floating-point operations that trap
or require software emulation assistance.

LLD and SCD function on a single processor for cached noncoherent memory so that parallel programs
can be run on uniprocessor systems that do not support cached coherent memory access types.

Implementation Notes:

The block of memory that is “locked” for LLD/SCD is typically the largest cache line in use.

L1:
LLD T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SCD T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot
� � ���

SD Store Doubleword
Format: SD rt, offset(base) MIPS III

Purpose: To store a doubleword to memory.

Description: memory[base+offset] ← rt

The 64-bit doubleword in GPR rt is stored in memory at the location specified by the aligned effective
address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If any of the three least-significant bits of the effective
address are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 3 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr2..0) ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
datadouble ← GPR[rt]
StoreMemory (uncached, DOUBLEWORD, datadouble, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Address Error
Reserved Instruction

31 2526 2021 1516 0

SD base rt offset

6 5 5 16

1 1 1 1 1 1
� � ���

SDCz Store Doubleword From Coprocessor
Format: SDC1 rt, offset(base) MIPS II
SDC2 rt, offset(base)

Purpose: To store a doubleword from a coprocessor general register to memory.

Description: memory[base+offset] ← rt

Coprocessor unit zz supplies a 64-bit doubleword which is stored at the memory location specified by
the aligned effective address. The 16-bit signed offset is added to the contents of GPR base to form the
effective address.

The data supplied by each coprocessor is defined by the individual coprocessor specifications. The
usual operation would read the data from coprocessor general register rt.

Each MIPS architecture level defines up to 4 coprocessor units, numbered 0 to 3. The opcodes corre-
sponding to coprocessors that are not defined by an architecture level may be used for other instructions.

Restrictions:

Access to the coprocessors is controlled by system software. Each coprocessor has a “coprocessor
usable” bit in the System Control coprocessor. The usable bit must be set for a user program to execute a
coprocessor instruction. If the usable bit is not set, an attempt to execute the instruction will result in a
Coprocessor Unusable exception. An unimplemented coprocessor must never be enabled. The result of
executing this instruction for an unimplemented coprocessor when the usable bit is set, is undefined.

This instruction is not defined for coprocessor 0, the System Control coprocessor, and the opcode may
be used for other instructions.

The effective address must be naturally aligned. If any of the three least-significant bits of the effective
address are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 3 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr2..0) ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
datadouble ← COP_SD(z, rt)
StoreMemory (uncached, DOUBLEWORD, datadouble, pAddr, vAddr, DATA)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr2..0) ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
datadouble ← COP_SD(z, rt)
StoreMemory (uncached, DOUBLEWORD, datadouble, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Address Error
Reserved Instruction
Coprocessor Unusable

31 2526 2021 1516 0

SDCz base rt offset

6 5 5 16

1 1 1 1 z z
� � ���

SDL Store Doubleword Left
Format: SDL rt, offset(base) MIPS III

Purpose: To store the most-significant part of a doubleword to an unaligned memory address.

Description: memory[base+offset] ← Some_Bytes_From rt

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr).
EffAddr is the address of the most-significant of eight consecutive bytes forming a doubleword in memory
(DW) starting at an arbitrary byte boundary. A part of DW, the most-significant one to eight bytes, is in the
aligned doubleword containing EffAddr. The same number of most-significant (left) bytes of GPR rt are
stored into these bytes of DW.

The figure below illustrates this operation for big-endian byte ordering. The eight consecutive bytes in
2..9 form an unaligned doubleword starting at location 2. A part of DW, six bytes, is contained in the aligned
doubleword containing the most-significant byte at 2. First, SDL stores the six most-significant bytes of the
source register into these bytes in memory. Next, the complementary SDR instruction stores the remainder
of DW.

Figure 2.15 Unaligned Doubleword Store with SDL and SDR

31 2526 2021 1516 0

SDL base rt offset

6 5 5 16

1 0 1 1 0 0

Doubleword at byte 2 in memory (big-endian) - each memory byte contains its address

 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12
1
3

1
4

1
5

Memory

A B C D E F G H GPR 24

After executing

0 1 A B C D E F 8 9 10 ... SDL $24,2($0)

 Then after
� � ���

SDL Store Doubleword Left
The bytes stored from the source register to memory depend on both the offset of the effective address
within an aligned doubleword, i.e. the low three bits of the address (vAddr2..0), and the current byte ordering
mode of the processor (big- or little-endian). The table below shows the bytes stored for every combination
of offset and byte ordering.

Restrictions:

None

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1)..3 || (pAddr2..0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr(PSIZE-1)..3 || 03

endif
byte ← vAddr2..0 xor BigEndianCPU3

datadouble ← 056–8*byte || GPR[rt]63..56–8*byte
StoreMemory (uncached, byte, datadouble, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Bus Error
Address Error
Reserved Instruction

Initial Memory contents and byte offsets
Contents of

Source Registermost
— significance

—
least

0 1 2 3 4 5 6 7 ¨ big- most
— significance

—
least

i j k l m n o p A B C D E F G H

7 6 5 4 3 2 1 0 ¨ little-endian

Memory contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

A B C D E F G H 0 i j k l m n o A

i A B C D E F G 1 i j k l m n A B

i j A B C D E F 2 i j k l m A B C

i j k A B C D E 3 i j k l A B C D

i j k l A B C D 4 i j k A B C D E

i j k l m A B C 5 i j A B C D E F

i j k l m n A B 6 i A B C D E F G

i j k l m n o A 7 A B C D E F G H

Table 2.31 Bytes Stored by SDL Instruction
� � ��	

SDR Store Doubleword Right
Format: SDR rt, offset(base) MIPS III

Purpose: To store the least-significant part of a doubleword to an unaligned memory address.

Description: memory[base+offset] ← Some_Bytes_From rt

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr).
EffAddr is the address of the least-significant of eight consecutive bytes forming a doubleword in memory
(DW) starting at an arbitrary byte boundary. A part of DW, the least-significant one to eight bytes, is in the
aligned doubleword containing EffAddr. The same number of least-significant (right) bytes of GPR rt are
stored into these bytes of DW.

The figure below illustrates this operation for big-endian byte ordering. The eight consecutive bytes in
2..9 form an unaligned doubleword starting at location 2. A part of DW, two bytes, is contained in the
aligned doubleword containing the least-significant byte at 9. First, SDR stores the two least-significant
bytes of the source register into these bytes in memory. Next, the complementary SDL stores the remainder
of DW.

Figure 2.16 Unaligned Doubleword Store with SDR and SDL

31 2526 2021 1516 0

SDR base rt offset

6 5 5 16

1 0 1 1 0 1

Doubleword at byte 2 in memory, big-endian byte order, - each mem byte contains its address

 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12
1
3

1
4

1
5

Memory

A B C D E F G H GPR 24

After executing

0 1 2 3 4 5 6 7 G H 10 ... SDR $24,9($0)

 Then after

0 1 A B C D E F G H 10 ... SDL $24,2($0)
� � ��

SDR Store Doubleword Right
The bytes stored from the source register to memory depend on both the offset of the effective address
within an aligned doubleword, i.e. the low three bits of the address (vAddr2..0), and the current byte ordering
mode of the processor (big- or little-endian). The table below shows the bytes stored for every combination
of offset and byte ordering.

Restrictions:

None

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1)..3 || (pAddr2..0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr(PSIZE-1)..3 || 03

endif
byte ← vAddr1..0 xor BigEndianCPU3

datadouble ← GPR[rt]63–8*byte || 08*byte
StoreMemory (uncached, DOUBLEWORD-byte, datadouble, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Bus Error
Address Error

Reserved Instruction

Initial Memory contents and byte offsets
Contents of

Source Registermost
— significance

—
least

0 1 2 3 4 5 6 7 ¨ big- most
— significance

—
least

i j k l m n o p A B C D E F G H

7 6 5 4 3 2 1 0 ¨ little-endian

Memory contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

H j k l m n o p 0 A B C D E F G H

G H k l m n o p 1 B C D E F G H p

F G H l m n o p 2 C D E F G H o p

E F G H m n o p 3 D E F G H n o p

D E F G H n o p 4 E F G H m n o p

C D E F G H o p 5 F G H l m n o p

B C D E F G H p 6 G H k l m n o p

A B C D E F G H 7 H j k l m n o p

Table 2.32 Bytes Stored by SDR Instruction
� � ���

SH Store Halfword
Format: SH rt, offset(base) MIPS I

Purpose: To store a halfword to memory.

Description: memory[base+offset] ← rt

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

The effective address must be naturally aligned. If the least-significant bit of the address is non-zero, an
Address Error exception occurs.

MIPS IV: The low-order bit of the offset field must be zero. If it is not, the result of the instruction is unde-
fined.

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr0) ≠ 0 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor (ReverseEndian || 0))
byte ← vAddr1..0 xor (BigEndianCPU || 0)
dataword ← GPR[rt]31–8*byte..0 || 08*byte

StoreMemory (uncached, HALFWORD, dataword, pAddr, vAddr, DATA)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr0) ≠ 0 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian2 || 0))
byte ← vAddr2..0 xor (BigEndianCPU2 || 0)
datadouble ← GPR[rt]63–8*byte..0 || 08*byte

StoreMemory (uncached, HALFWORD, datadouble, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Address Error

31 2526 2021 1516 0

SH base rt offset

6 5 5 16

1 0 1 0 0 1
� � ���

SLL Shift Word Left Logical
Format: SLL rd, rt, sa MIPS I

Purpose: To left shift a word by a fixed number of bits.

Description: rd ← rt << sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeroes into the emptied
bits; the word result is placed in GPR rd. The bit shift count is specified by sa. If rd is a 64-bit register, the
result word is sign-extended.

Restrictions:

None

Operation:

s ← sa
temp ← GPR[rt](31-s)..0 || 0s

GPR[rd]← sign_extend(temp)

Exceptions:
None

Programming Notes:

Unlike nearly all other word operations the input operand does not have to be a properly sign-extended
word value to produce a valid sign-extended 32-bit result. The result word is always sign extended into a
64-bit destination register; this instruction with a zero shift amount truncates a 64-bit value to 32 bits and
sign extends it.

Some assemblers, particularly 32-bit assemblers, treat this instruction with a shift amount of zero as a
NOP and either delete it or replace it with an actual NOP.

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0
� � ���

SLLV Shift Word Left Logical Variable
Format: SLLV rd, rt, rs MIPS I

Purpose: To left shift a word by a variable number of bits.

Description: rd ← rt << rs

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeroes into the emptied
bits; the result word is placed in GPR rd. The bit shift count is specified by the low-order five bits of GPR rs.
If rd is a 64-bit register, the result word is sign-extended.

Restrictions:

None

Operation:

s ← GP[rs]4..0
temp ← GPR[rt](31-s)..0 || 0s

GPR[rd]← sign_extend(temp)

Exceptions:
None

Programming Notes:

Unlike nearly all other word operations the input operand does not have to be a properly sign-extended
word value to produce a valid sign-extended 32-bit result. The result word is always sign extended into a
64-bit destination register; this instruction with a zero shift amount truncates a 64-bit value to 32 bits and
sign extends it.

Some assemblers, particularly 32-bit assemblers, treat this instruction with a shift amount of zero as a
NOP and either delete it or replace it with an actual NOP.

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 SLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0
rs
� � ���

SLT Set On Less Than
Format: SLT rd, rs, rt MIPS I

Purpose: To record the result of a less-than comparison.

Description: rd ← (rs < rt)

Compare the contents of GPR rs and GPR rt as signed integers and record the Boolean result of the
comparison in GPR rd. If GPR rs is less than GPR rt the result is 1 (true), otherwise 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
GPR[rd] ← 0GPRLEN-1 || 1

else
GPR[rd] ← 0GPRLEN

endif

Exceptions:
None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLT

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 1 0 1 00 0 0 0 0
� � ���

SLTI Set on Less Than Immediate
Format: SLTI rt, rs, immediate MIPS I

Purpose: To record the result of a less-than comparison with a constant.

Description: rt ← (rs < immediate)

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers and record the
Boolean result of the comparison in GPR rt. If GPR rs is less than immediate the result is 1 (true), otherwise
0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
GPR[rd] ← 0GPRLEN-1|| 1

else
GPR[rd] ← 0GPRLEN

endif

Exceptions:
None

31 2526 2021 1516 0

SLTI rs rt immediate

6 5 5 16

0 0 1 0 1 0
� � ���

SLTIU Set on Less Than Immediate Unsigned
Format: SLTIU rt, rs, immediate MIPS I

Purpose: To record the result of an unsigned less-than comparison with a constant.

Description: rt ← (rs < immediate)

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers and
record the Boolean result of the comparison in GPR rt. If GPR rs is less than immediate the result is 1
(true), otherwise 0 (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction is able to represent
the smallest or largest unsigned numbers. The representable values are at the minimum [0, 32767] or
maximum [max_unsigned-32767, max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPR[rd] ← 0GPRLEN-1 || 1

else
GPR[rd] ← 0GPRLEN

endif

Exceptions:
None

31 2526 2021 1516 0

SLTIU rs rt immediate

6 5 5 16

0 0 1 0 1 1
� � ���

SLTU Set on Less Than Unsigned
Format: SLTU rd, rs, rt MIPS I

Purpose: To record the result of an unsigned less-than comparison.

Description: rd ← (rs < rt)

Compare the contents of GPR rs and GPR rt as unsigned integers and record the Boolean result of the
comparison in GPR rd. If GPR rs is less than GPR rt the result is 1 (true), otherwise 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd] ← 0GPRLEN-1 || 1

else
GPR[rd] ← 0GPRLEN

endif

Exceptions:
None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLTU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1
� � ���

SRA Shift Word Right Arithmetic
Format: SRA rd, rt, sa MIPS I

Purpose: To arithmetic right shift a word by a fixed number of bits.

Description: rd ← rt >> sa (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in
the emptied bits; the word result is placed in GPR rd. The bit shift count is specified by sa. If rd is a 64-bit
register, the result word is sign-extended.

Restrictions:

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal) then
the result of the operation is undefined.

Operation:

if (NotWordValue(GPR[rt])) then UndefinedResult() endif
s ← sa
temp ←(GPR[rt]31)s || GPR[rt]31..s
GPR[rd]← sign_extend(temp)

Exceptions:
None

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
� � ��	

SRAV Shift Word Right Arithmetic Variable
Format: SRAV rd, rt, rs MIPS I

Purpose: To arithmetic right shift a word by a variable number of bits.

Description: rd ← rt >> rs (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in
the emptied bits; the word result is placed in GPR rd. The bit shift count is specified by the low-order five
bits of GPR rs. If rd is a 64-bit register, the result word is sign-extended.

Restrictions:

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal) then
the result of the operation is undefined.

Operation:

if (NotWordValue(GPR[rt])) then UndefinedResult() endif
s ← GPR[rs]4..0
temp ← (GPR[rt]31)s || GPR[rt]31..s
GPR[rd]← sign_extend(temp)

Exceptions:
None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
� � ��

SRL Shift Word Right Logical
Format: SRL rd, rt, sa MIPS I

Purpose: To logical right shift a word by a fixed number of bits.

Description: rd ← rt >> sa (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied
bits; the word result is placed in GPR rd. The bit shift count is specified by sa. If rd is a 64-bit register, the
result word is sign-extended.

Restrictions:

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal) then
the result of the operation is undefined.

Operation:

if (NotWordValue(GPR[rt])) then UndefinedResult() endif
s ← sa
temp ← 0s || GPR[rt]31..s
GPR[rd]← sign_extend(temp)

Exceptions:
None

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa SRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 1 0
0

0 0 0 0 0
� � ���

SRLV Shift Word Right Logical Variable
Format: SRLV rd, rt, rs MIPS I

Purpose: To logical right shift a word by a variable number of bits.

Description: rd ← rt >> rs (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied
bits; the word result is placed in GPR rd. The bit shift count is specified by the low-order five bits of GPR rs.
If rd is a 64-bit register, the result word is sign-extended.

Restrictions:

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal) then
the result of the operation is undefined.

Operation:

if (NotWordValue(GPR[rt])) then UndefinedResult() endif
s ← GPR[rs]4..0
temp ← 0s || GPR[rt]31..s
GPR[rd]← sign_extend(temp)

Exceptions:
None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
� � ���

SUB Subtract Word
Format: SUB rd, rs, rt MIPS I

Purpose: To subtract 32-bit integers. If overflow occurs, then trap.

Description: rd ← rs - rt

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs to produce a 32-bit result.
If the subtraction results in 32-bit 2’s complement arithmetic overflow then the destination register is not
modified and an Integer Overflow exception occurs. If it does not overflow, the 32-bit result is placed into
GPR rd.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
temp ← GPR[rs] - GPR[rt]
if (32_bit_arithmetic_overflow) then

SignalException(IntegerOverflow)
else

GPR[rd] ←temp
endif

Exceptions:
Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but, does not trap on overflow.

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
� � ���

SUBU Subtract Unsigned Word
Format: SUBU rd, rs, rt MIPS I

Purpose: To subtract 32-bit integers.

Description: rd ← rs - rt

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic
result is placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
temp ←GPR[rs] - GPR[rt]
GPR[rd] ←temp

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic
that does not trap on overflow. It is appropriate for arithmetic which is not signed, such as address arith-
metic, or integer arithmetic environments that ignore overflow, such as “C” language arithmetic.

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
� � ���

SW Store Word
Format: SW rt, offset(base) MIPS I

Purpose: To store a word to memory.

Description: memory[base+offset] ← rt

The least-significant 32-bit word of register rt is stored in memory at the location specified by the aligned
effective address. The 16-bit signed offset is added to the contents of GPR base to form the effective
address.

Restrictions:

The effective address must be naturally aligned. If either of the two least-significant bits of the address
are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 2 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 32-bit Processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
StoreMemory (uncached, WORD, dataword, pAddr, vAddr, DATA)

Operation: 64-bit Processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02)
byte ← vAddr2..0 xor (BigEndianCPU || 02)
datadouble ← GPR[rt]63-8*byte || 08*byte

StoreMemory (uncached, WORD, datadouble, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Address Error

31 2526 2021 1516 0

SW base rt offset

6 5 5 16

1 0 1 0 1 1
� � ���

SWCz Store Word From Coprocessor
Format: SWC1 rt, offset(base) MIPS I
SWC2 rt, offset(base)
SWC3 rt, offset(base)

Purpose: To store a word from a coprocessor general register to memory.

Description: memory[base+offset] ← rt

Coprocessor unit zz supplies a 32-bit word which is stored at the memory location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The data supplied by each coprocessor is defined by the individual coprocessor specifications. The
usual operation would read the data from coprocessor general register rt.

Each MIPS architecture level defines up to 4 coprocessor units, numbered 0 to 3. The opcodes corre-
sponding to coprocessors that are not defined by an architecture level may be used for other instructions.

Restrictions:

Access to the coprocessors is controlled by system software. Each coprocessor has a “coprocessor
usable” bit in the System Control coprocessor. The usable bit must be set for a user program to execute a
coprocessor instruction. If the usable bit is not set, an attempt to execute the instruction will result in a
Coprocessor Unusable exception. An unimplemented coprocessor must never be enabled. The result of
executing this instruction for an unimplemented coprocessor when the usable bit is set, is undefined.

This instruction is not available for coprocessor 0, the System Control coprocessor, and the opcode may
be used for other instructions.

The effective address must be naturally aligned. If either of the two least-significant bits of the address
are non-zero, an Address Error exception occurs.

MIPS IV: The low-order 2 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 32-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← COP_SW (z, rt)
StoreMemory (uncached, WORD, dataword, pAddr, vAddr, DATA)

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
if (vAddr1..0) ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02)
byte ← vAddr2..0 xor (BigEndianCPU || 02)
dataword← COP_SW (z, rt)
datadouble ← 032-8*byte || dataword || 08*byte

StoreMemory (uncached, WORD, datadouble, pAddr, vAddr DATA)

31 2526 2021 1516 0

SWCz base rt offset

6 5 5 16
1 1 1 0 z z
� � ���

SWCz Store Word From Coprocessor
Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Address Error
Reserved Instruction
Coprocessor Unusable
� � ���

SWL Store Word Left
Format: SWL rt, offset(base) MIPS I

Purpose: To store the most-significant part of a word to an unaligned memory address.

Description: memory[base+offset] ← rt

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr).
EffAddr is the address of the most-significant of four consecutive bytes forming a word in memory (W)
starting at an arbitrary byte boundary. A part of W, the most-significant one to four bytes, is in the aligned
word containing EffAddr. The same number of the most-significant (left) bytes from the word in GPR rt are
stored into these bytes of W.

If GPR rt is a 64-bit register, the source word is the low word of the register.

Figures Figure 1.2.11 illustrates this operation for big-endian byte ordering for 32-bit and 64-bit registers.
The four consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, two bytes, is
contained in the aligned word containing the most-significant byte at 2. First, SWL stores the most-signifi-
cant two bytes of the low-word from the source register into these two bytes in memory. Next, the comple-
mentary SWR stores the remainder of the unaligned word.

Table 2.33 Unaligned Word Store using SWL and SWR

31 2526 2021 1516 0

SWL base rt offset

6 5 5 16

1 0 1 0 1 0

Word at byte 2 in memory, big-endian byte order, - each mem byte contains its address

most — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

64-bit GPR 24 A B C D E F G H

32-bit GPR 24 E F G H

0 1 E F 4 5 6 ... After executing SWL $24,2($0)

0 1 E F G H 6 ... Then after SWR $24,5($0)
� � ���

SWL Store Word Left
The bytes stored from the source register to memory depend on both the offset of the effective address
within an aligned word, i.e. the low two bits of the address (vAddr1..0), and the current byte ordering mode of
the processor (big- or little-endian). The table below shows the bytes stored for every combination of offset
and byte ordering.

Operation: 32-bit Processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1)..2 || (pAddr1..0 xor ReverseEndian2)
If BigEndianMem = 0 then

pAddr ← pAddr(PSIZE-1)..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU2

dataword ← 024–8*byte || GPR[rt]31..24–8*byte
StoreMemory (uncached, byte, dataword, pAddr, vAddr, DATA)

Operation: 64-bit Processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1)..3 || (pAddr2..0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr(PSIZE-1)..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
datadouble ← 032 || 024-8*byte || GPR[rt]31..24-8*byte

else
datadouble ← 024-8*byte || GPR[rt]31..24-8*byte || 032

endif
StoreMemory(uncached, byte, datadouble, pAddr, vAddr, DATA)

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ¨ big-endian 64-bit register

i j k l offset (vAddr1..0) A B C D E F G H

3 2 1 0 ¨ little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering

vAddr1..0
Little-endian byte

ordering

E F G H 0 i j k E

i E F G 1 i j E F

i j E F 2 i E F G

i j k E 3 E F G H

Table 2.34 Bytes Stored by SWL Instruction
� � ��	

SWL Store Word Left
Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Bus Error
Address Error
� � ��

SWR Store Word Right
Format: SWR rt, offset(base) MIPS I

Purpose: To store the least-significant part of a word to an unaligned memory address.

Description: memory[base+offset] ← rt

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr).
EffAddr is the address of the least-significant of four consecutive bytes forming a word in memory (W)
starting at an arbitrary byte boundary. A part of W, the least-significant one to four bytes, is in the aligned
word containing EffAddr. The same number of the least-significant (right) bytes from the word in GPR rt are
stored into these bytes of W.

If GPR rt is a 64-bit register, the source word is the low word of the register.

Figures Figure 1.2.11 illustrates this operation for big-endian byte ordering for 32-bit and 64-bit registers.
The four consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, two bytes, is
contained in the aligned word containing the least-significant byte at 5. First, SWR stores the least-signifi-
cant two bytes of the low-word from the source register into these two bytes in memory. Next, the comple-
mentary SWL stores the remainder of the unaligned word.

Figure 2.17 Unaligned Word Store using SWR and SWL

31 2526 2021 1516 0

SWR base rt offset

6 5 5 16

1 0 1 1 1 0

Word at byte 2 in memory, big-endian byte order, - each mem byte contains its address

most — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

64-bit GPR 24 A B C D E F G H

32-bit GPR 24 E F G H

0 1 2 3 G H 6 ... After executing SWR $24,5($0)

0 1 E F G H 6 ... Then after SWL $24,2($0)
� � ���

SWR Store Word Right
The bytes stored from the source register to memory depend on both the offset of the effective address
within an aligned word, i.e. the low two bits of the address (vAddr1..0), and the current byte ordering mode of
the processor (big- or little-endian). The table below shows the bytes stored for every combination of offset
and byte ordering.

Restrictions:

None

Operation: 32-bit Processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1)..2 || (pAddr1..0 xor ReverseEndian2)
BigEndianMem = 0 then

pAddr ← pAddr(PSIZE-1)..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU2

dataword ← GPR[rt]31–8*byte || 08*byte

StoreMemory (uncached, WORD-byte, dataword, pAddr, vAddr, DATA)

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←←←← big-endian 64-bit register

i j k l offset (vAddr 1..0) A B C D E F G H

3 2 1 0 ←←←← little-endian most — significance — least

most least 32-bit register E F G H

— significance
—

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering

vAddr 1..

0

Little-endian
byte ordering

H j k l 0 E F G H

G H k l 1 F G H l

F G H l 2 G H k l

E F G H 3 H j k l

Table 2.35 Bytes Stored by SWR Instruction
� � ���

SWR Store Word Right
Operation: 64-bit Processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr(PSIZE-1)..3 || (pAddr2..0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr(PSIZE-1)..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
datadouble ← 032 || GPR[rt]31-8*byte..0 || 0

8*byte

else
datadouble ← GPR[rt]31-8*byte..0 || 08*byte || 032

endif
StoreMemory(uncached, WORD-byte, datadouble, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Bus Error
Address Error
� � ���

SYNC Synchronize Shared Memory
Format: SYNC (stype = 0 implied) MIPS II

Purpose: To order loads and stores to shared memory in a multiprocessor system.

Description:

To serve a broad audience, two descriptions are given. A simple description of SYNC that appeals to
intuition is followed by a precise and detailed description.

A Simple Description:

SYNC affects only uncached and cached coherent loads and stores. The loads and stores that occur
prior to the SYNC must be completed before the loads and stores after the SYNC are allowed to start.

Loads are completed when the destination register is written. Stores are completed when the stored
value is visible to every other processor in the system.

A Precise Description:

If the stype field has a value of zero, every synchronizable load and store that occurs in the instruction
stream prior to the SYNC instruction must be globally performed before any synchronizable load or store
that occurs after the SYNC may be performed with respect to any other processor or coherent I/O module.

Sync does not guarantee the order in which instruction fetches are performed.

The stype values 1-31 are reserved; they produce the same result as the value zero.

Synchronizable: A load or store instruction is synchronizable if the load or store occurs to a physical
location in shared memory using a virtual location with a memory access type of either uncached or cached
coherent. Shared memory is memory that can be accessed by more than one processor or by a coherent I/
O system module.

Performed load: A load instruction is performed when the value returned by the load has been deter-
mined. The result of a load on processor A has been determined with respect to processor or coherent I/O
module B when a subsequent store to the location by B cannot affect the value returned by the load. The
store by B must use the same memory access type as the load.

Performed store: A store instruction is performed when the store is observable. A store on processor A
is observable with respect to processor or coherent I/O module B when a subsequent load of the location by
B returns the value written by the store. The load by B must use the same memory access type as the
store.

Globally performed load: A load instruction is globally performed when it is performed with respect to
all processors and coherent I/O modules capable of storing to the location.

Globally performed store: A store instruction is globally performed when it is globally observable. It is
globally observable when it observable by all processors and I/O modules capable of loading from the loca-
tion.

Coherent I/O module: A coherent I/O module is an Input/Output system component that performs
coherent Direct Memory Access (DMA). It reads and writes memory independently as though it were a
processor doing loads and stores to locations with a memory access type of cached coherent.

Restrictions:

The effect of SYNC on the global order of the effects of loads and stores for memory access types other
than uncached and cached coherent is not defined.

31 2526

SPECIAL

6 15

0 SYNC

6

6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
stype

5

 1011
� � ���

SYNC Synchronize Shared Memory
Operation:

SyncOperation(stype)

Exceptions:
Reserved Instruction

Programming Notes:

A processor executing load and store instructions observes the effects of the loads and stores that use
the same memory access type in the order that they occur in the instruction stream; this is known as
program order. A parallel program has multiple instruction streams that can execute at the same time on
different processors. In multiprocessor (MP) systems, the order in which the effects of loads and stores are
observed by other processors, the global order of the loads and stores, determines the actions necessary to
reliably share data in parallel programs.

When all processors observe the effects of loads and stores in program order, the system is strongly
ordered. On such systems, parallel programs can reliably share data without explicit actions in the
programs. For such a system, SYNC has the same effect as a NOP. Executing SYNC on such a system is
not necessary, but is also not an error.

If a multiprocessor system is not strongly ordered, the effects of load and store instructions executed by
one processor may be observed out of program order by other processors. On such systems, parallel
programs must take explicit actions in order to reliably share data. At critical points in the program, the
effects of loads and stores from an instruction stream must occur in the same order for all processors.
SYNC separates the loads and stores executed on the processor into two groups and the effects of these
groups are seen in program order by all processors. The effect of all loads and stores in one group is seen
by all processors before the effect of any load or store in the other group. In effect, SYNC causes the
system to be strongly ordered for the executing processor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate
as strongly ordered for at least one memory access type. The MIPS architecture also permits MP systems
that are not strongly ordered. SYNC enables the reliable use of shared memory on such systems. A parallel
program that does not use SYNC will generally not operate on a system that is not strongly ordered,
however a program that does use SYNC will work on both types of systems. System-specific documenta-
tion will describe the actions necessary to reliably share data in parallel programs for that system.

The behavior of a load or store using one memory access type is undefined if a load or store was previ-
ously made to the same physical location using a different memory access type. The presence of a SYNC
between the references does not alter this behavior.

SYNC affects the order in which the effects of load and store instructions appears to all processors; it
not generally affect the physical memory-system ordering or synchronization issues that arise in system
programming. The effect of SYNC on implementation specific aspects of the cached memory system, such
as writeback buffers, is not defined. The effect of SYNC on reads or writes to memory caused by privileged
implementation-specific instructions, such as CACHE, is not defined.

Prefetch operations have no effects detectable by user-mode programs so ordering the effects of
prefetch operations is not meaningful.
� � ���

SYNC Synchronize Shared Memory
EXAMPLE: These code fragments show how SYNC can be used to coordinate the use of shared data
between separate writer and reader instruction streams in a multiprocessor environment. The FLAG loca-
tion is used by the instruction streams to determine whether the shared data item DATA is valid. The SYNC
executed by processor A forces the store of DATA to be performed globally before the store to FLAG is
performed. The SYNC executed by processor B ensures that DATA is not read until after the FLAG value
indicates that the shared data is valid.

Implementation Notes:

There may be side effects of uncached loads and stores that affect cached coherent load and store
operations. To permit the reliable use of such side effects, buffered uncached stores that occur before the
SYNC must be written to memory before cached coherent loads and stores after the SYNC may be
performed.

Processor A (writer)

Conditions at entry:

The value 0 has been stored in FLAG and that value is observable by B.

SW R1, DATA # change shared DATA value

LI R2, 1

SYNC # perform DATA store before performing FLAG store

SW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)

LI R2, 1

1: LW R1, FLAG # get FLAG

BNE R2, R1, 1B # if it says that DATA is not valid, poll again

NOP

SYNC # FLAG value checked before doing DATA reads

LW R1, DATA # read (valid) shared DATA values
� � ���

SYSCALL System Call
Format: SYSCALL MIPS I

Purpose: To cause a System Call exception.

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception
handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only
by loading the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(SystemCall)

Exceptions:
System Call

31 2526

SPECIAL

6 20

Code SYSCALL

6

6 5 0

0 0 0 0 0 0 0 0 1 1 00
� � ���

TEQ Trap if Equal
Format: TEQ rs, rt MIPS II

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs = rt) then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is equal to GPR rt then take
a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for
system software. To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

 if GPR[rs] = GPR[rt] then
SignalException(Trap)

endif

Exceptions:
Reserved Instruction
Trap

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TEQ

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 0 0
� � ���

TEQI Trap if Equal Immediate
Format: TEQI rs, immediate MIPS II

Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs = immediate) then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is equal
to immediate then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] = sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:
Reserved Instruction
Trap

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTEQI

16

0

0 0 0 0 0 1 0 1 1 0 0
� � ��	

TGE Trap if Greater or Equal
Format: TGE rs, rt MIPS II

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs ≥ rt) then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is greater than or equal to
GPR rt then take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for
system software. To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≥ GPR[rt] then
SignalException(Trap)

endif

Exceptions:
Reserved Instruction
Trap

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 0
� � ��

TGEI Trap if Greater or Equal Immediate
Format: TGEI rs, immediate MIPS II

Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs ≥ immediate) then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is
greater than or equal to immediate then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≥ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:
Reserved Instruction
Trap

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEI

16

0

0 0 0 0 0 1 0 1 0 0 0
� � ���

TGEIU Trap If Greater Or Equal Immediate Unsigned
Format: TGEIU rs, immediate MIPS II

Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs ≥ immediate) then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if
GPR rs is greater than or equal to immediate then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction is able to represent
the smallest or largest unsigned numbers. The representable values are at the minimum [0, 32767] or
maximum [max_unsigned-32767, max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:
Reserved Instruction
Trap

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEIU

16

0

0 0 0 0 0 1 0 1 0 0 1
� � ���

TGEU Trap If Greater or Equal Unsigned
Format: TGEU rs, rt MIPS II

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs ≥ rt) then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is greater than or equal to
GPR rt then take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for
system software. To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:
Reserved Instruction
Trap

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGEU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 1
� � ���

TLT Trap if Less Than
Format: TLT rs, rt MIPS II

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs < rt) then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is less than GPR rt then take
a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for
system software. To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
SignalException(Trap)

endif

Exceptions:
Reserved Instruction
Trap

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLT

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 0
� � ���

TLTI Trap if Less Than Immediate
Format: TLTI rs, immediate MIPS II

Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs < immediate) then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is less
than immediate then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:
Reserved Instruction
Trap

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTI

16

0

0 0 0 0 0 1 0 1 0 1 0
� � ���

TLTIU Trap if Less Than Immediate Unsigned
Format: TLTIU rs, immediate MIPS II

Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs < immediate) then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if
GPR rs is less than immediate then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction is able to represent
the smallest or largest unsigned numbers. The representable values are at the minimum [0, 32767] or
maximum [max_unsigned-32767, max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:
Reserved Instruction
Trap

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTIU

16

0

0 0 0 0 0 1 0 1 0 1 1
� � ���

TLTU Trap if Less Than Unsigned
Format: TLTU rs, rt MIPS II

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs < rt) then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is less than GPR rt then
take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for
system software. To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:
Reserved Instruction
Trap

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLTU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 1
� � ���

TNE Trap if Not Equal
Format: TNE rs, rt MIPS II

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs ≠ rt) then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is not equal to GPR rt then
take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for
system software. To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≠ GPR[rt] then
SignalException(Trap)

endif

Exceptions:
Reserved Instruction
Trap

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TNE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 1 0
� � ���

TNEI Trap if Not Equal Immediate
Format: TNEI rs, immediate MIPS II

Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs ≠ immediate) then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is not
equal to immediate then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≠ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:
Reserved Instruction
Trap

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTNEI

16

0

0 0 0 0 0 1 0 1 1 1 0
� � ��	

TLBP Probe TLB for Matching Entry
Format: TLBP

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the
EntryHi register. If no TLB entry matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references associated with the instruction
immediately after a TLBP instruction, nor is the operation specified if more than one TLB entry matches.

Operation:

Exceptions:

Coprocessor unusable exception

0

6

6 531 25 2426

COP0

6

0

TLBP

191

CO
0 1 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

T: Index¨ 1 || 0 31
for i in 0..TLBEntries–1

if (TLB[i]167..141 and not (015 || TLB[i]216..205))
 = EntryHi39..13) and not (015 || TLB[i]216..205)) and
(TLB[i]140 or (TLB[i]135..128 = EntryHi7..0)) then

Index ¨ 026 || i 5..0
endif

endfor
� � ��

TLBR Read Indexed TLB Entry
Format: TLBR

Description:

The G bit (which controls ASID matching) read from the TLB is written into both of the EntryLo0 and
EntryLo1 registers.

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry pointed at by the
contents of the TLB Index register. The operation is invalid (and the results are unspecified) if the contents
of the TLB Index register are greater than the number of TLB entries in the processor.

Operation:

Exceptions:

Coprocessor unusable exception

0

6

6 531 25 2426

COP0

6

0

TLBR

191

CO
0 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

T: PageMask ¨ TLB[Index5..0]255..192
EntryHi ¨ TLB[Index5..0]191..128 and not TLB[Index5..0]255..192
EntryLo1 ¨TLB[Index5..0]127..65 || TLB[Index5..0]140
EntryLo0 ¨ TLB[Index5..0]63..1 || TLB[Index5..0]140
� � ���

TLBWI Write Indexed TLB Entry
Format: TLBWI

Description:

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and EntryLo1 registers.

The TLB entry pointed at by the contents of the TLB Index register is loaded with the contents of the
EntryHi and EntryLo registers.

The operation is invalid (and the results are unspecified) if the contents of the TLB Index register are
greater than the number of TLB entries in the processor.

Operation:

Exceptions:

Coprocessor unusable exception

0

6

6 531 25 2426

COP0

6

0

TLBWI

191

CO
0 1 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

T: TLB[Index5..0] ¨

PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0
� � �	�

TLBWR Write Random TLB Entry
Format: TLBWR

Description:

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and EntryLo1 registers.

The TLB entry pointed at by the contents of the TLB Random register is loaded with the contents of the
EntryHi and EntryLo registers.

Operation:

Exceptions:

Coprocessor unusable exception

0

6

6 531 25 2426

C O P 0

6

0

T LB W R

191

CO
0 1 0 0 0 0 0 0 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

T: TLB[Random5..0] ¨

PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0
� � �	�

TLBWR Write Random TLB Entry
� � �	�

WAIT Wait
Format: WAIT

Purpose: To stop the internal pipeline and reduce power used by the CPU.

Description:

The WAIT instruction is used to halt the internal pipeline and thus reduce the power consumption of the
CPU.

Operation:

Exceptions:

Coprocessor unusable exception

0

6

6 531 25 2426

COP0

6

0

WAIT

191

CO
0 1 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

T: if SysAD bus is idle then
StopPipeline

endif
� � �	�

XOR Exclusive OR
Format: XOR rd, rs, rt MIPS I

Purpose: To do a bitwise logical EXCLUSIVE OR.

Description: rd ← rs XOR rt

Combine the contents of GPR rs and GPR rt in a bitwise logical exclusive OR operation and place the
result into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] xor GPR[rt]

Exceptions:
None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 XOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 0 1 1 00 0 0 0 0
� � �	�

XORI Exclusive OR Immediate
Format: XORI rt, rs, immediate MIPS I

Purpose: To do a bitwise logical EXCLUSIVE OR with a constant.

Description: rt ← rs XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise logical exclusive
OR operation and place the result into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] xor zero_extend(immediate)

Exceptions:
None

31 2526 2021 1516 0

XORI rs rt immediate

6 5 5 16

0 0 1 1 1 0
� � �	�

XORI Exclusive OR Immediate
� � �	�

�����

� � �
������� 	
��� ����	
�����

�������
A CPU instruction is a single 32-bit aligned word. The major instruction formats are shown in
Table 3.1.

opcode 6-bit primary operation code

rd 5-bit destination register specifier

rs 5-bit source register specifier

rt 5-bit target (source/destination) register specifier or used to specify functions
within the primary opcode value REGIMM

immediate 16-bit signed immediate used for: logical operands, arithmetic signed operands,
load/store address byte offsets, PC-relative branch signed instruction displace-
ment

instr_index 26-bit index shifted left two bits to supply the low-order 28 bits of the jump target
address.

sa 5-bit shift amount

function 6-bit function field used to specify functions within the primary operation code
value SPECIAL.

Table 3.1 CPU Instruction Formats

I-Type (Immediate).

31 2526 2021 1516 0

opcode rs rt offset

6 5 5 16

J-Type (Jump).

31 2526

opcode

6

0

instr_index

26

R-Type (Register).

31 2526 2021 1516

opcode rs rt

6 5 5

rd sa function

5 5 6

11 10 6 5 0

CPU Instructions Encoding CPU Instruction Encoding
���
��������� ��������
This section describes the encoding of user-level, i.e. non-privileged, CPU instructions for the four levels

of the MIPS architecture, MIPS I through MIPS IV. Each architecture level includes the instructions in the

previous level;1 MIPS IV includes all instructions in MIPS I, MIPS II, and MIPS III. This section presents
eight different views of the instruction encoding.

◆ Separate encoding tables for each architecture level.
◆ A MIPS IV encoding table showing the architecture level at which each opcode was originally

defined and subsequently modified (if modified).
◆ Separate encoding tables for each architecture revision showing the changes made during that revi-

sion.

��������� ������
Instruction field names are printed in bold in this section.
The primary opcode field is decoded first. Most opcode values completely specify an instruction that

has an immediate value or offset. Opcode values that do not specify an instruction specify an instruction
class. Instructions within a class are further specified by values in other fields. The opcode values
SPECIAL and REGIMM specify instruction classes. The COP0, COP1, COP2, COP3, and COP1X instruc-
tion classes are not CPU instructions; See “Non-CPU Instructions in the Tables” below.

�������
��������� �����
The opcode=SPECIAL instruction class encodes 3-register computational instructions, jump register,

and some special purpose instructions. The class is further decoded by examining the format field. The
format values fully specify the CPU instructions; the MOVCI instruction class is not a CPU instruction class.

��	�

��������� �����
The opcode=REGIMM instruction class encodes conditional branch and trap immediate instructions.

The class is further decode, and the instructions fully specified, by examining the rt field.

��������� ������ �� �
��

 ��� �
��
� ����������
MIPS III processors, such as the RC4000, RC4200, RC4300, RC4400, and RC4600, have a processor

mode in which only the MIPS II instructions are valid. The MIPS II encoding table describes the MIPS II-
only mode except that the Coprocessor 3 instructions (COP3, LWC3, SWC3, LDC3, SDC3) are not avail-
able and cause a Reserved Instruction exception.

MIPS IV processors, such as the R8000 and R10000, have processor modes in which only the MIPS II
or MIPS III instructions are valid. The MIPS II encoding table describes the MIPS II-only mode except that
the Coprocessor 3 instructions (COP3, LWC3, SWC3, LDC3, SDC3) are not available and cause a
Reserved Instruction exception. The MIPS III encoding table describes the MIPS III-only mode.

�������
���������� �� ��� ������
The encoding tables show all values for the field they describe and by doing this they include some

entries that are not user-level CPU instructions. The primary opcode table includes coprocessor instruction
classes (COP0, COP1, COP2, COP3/COP1X) and coprocessor load/store instructions (LWCx, SWCx,
LDCx, SDCx for x=1, 2, or 3). The opcode=SPECIAL + function=MOVCI instruction class is an FPU
instruction.

�
��
����
� � ����

COP0 encodes privileged instructions for Coprocessor 0, the System Control Coprocessor. The defini-
tion of the System Control Coprocessor is processor-specific and further information on these instructions
are not included in this document.

1. An exception to this rule is that the reserved, but never implemented, Coprocessor 3 instructions were
removed or changed to another use starting in MIPS III.
� � �

CPU Instructions Encoding Non-CPU Instructions in the Tables
�
��
����
� � � ����� ������ ����	� ��� ��� �
�����
��

Coprocessor 1 is the floating-point unit in the MIPS architecture. COP1, COP1X, and the
(opcode=SPECIAL + function=MOVCI) instruction classes encode floating-point instructions. LWC1,
SWC1, LDC1, and SDC1 are floating-point loads and stores. The FPU instruction encoding is documented
in section FPU” (CP1) Instruction Opcode Bit Encoding in the Chapter “FPU Instruction Set”..

�
��
����
� � � ���
 ��� ��� �
�����
��

Coprocessor 2 is optional and implementation-specific. No standard processor from MIPS has imple-
mented coprocessor 2, but MIPS’ semiconductor licensees may have implemented it in a product based on
one of the standard MIPS processors. At this time the standard processors are: RC2000, RC3000,
RC4000, RC4200, RC4300, RC4400, RC4600, RC6000, R8000, and R10000.

�
��
����
� 	 � ���� ��� ��	 �
�����
��

Coprocessor 3 is optional and implementation-specific in the MIPS I and MIPS II architecture levels. It
was removed from MIPS III and later architecture levels. Note that in MIPS IV the COP3 primary opcode
was reused for the COP1X instruction class. No standard processor from MIPS has implemented copro-
cessor 2, but MIPS’ semiconductor licensees may have implemented it in a product based on one of the
standard MIPS processors. At this time the standard processors are: RC2000, RC3000, RC4000, RC4200,
RC4300, RC4400, RC4600, RC6000, R8000, and R10000.
� � �

CPU Instructions Encoding Non-CPU Instructions in the Tables

Table 3.2 CPU Instruction Encoding - MIPS I Architecture

opcode bits 28..26 Instructions encoded by opcode field.

bits 31..29 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 SPECIAL d REGIMM d J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 d,p COP1 d,p COP2 d,p COP3 d,p,k * * * *

3 011 * * * * * * * *

4 100 LB LH LWL LW LBU LHU LWR *

5 101 SB SH SWL SW * * SWR *

6 110 * LWC1 p LWC2 p LWC3 p,k * * * *

7 111 * SWC1 p SWC2 p SWC3 p,k * * * *

function bits 2..0 Instructions encoded by function field when opcode field = SPECIAL.

bits
5..3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 SLL * SRL SRA SLLV * SRLV SRAV

1 001 JR JALR * * SYSCALL BREAK * *

2 010 MFHI MTHI MFLO MTLO * * * *

3 011 MULT MULTU DIV DIVU * * * *

4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 * * SLT SLTU * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

rt bits 18..16 Instructions encoded by the rt field when opcode field = REGIMM.

bits
20..19

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ = = = = = =

1 01 = = = = = = = =

2 10 BLTZAL BGEZAL = = = = = =

3 11 = = = = = = = =

31 26

opcode

0

31 26

opcode
function

 5 0

= SPECIAL

31 26 20 16 0

opcode
rt= REGIMM
� � �

CPU Instructions Encoding Non-CPU Instructions in the Tables

Table 3.3 CPU Instruction Encoding - MIPS II Architecture

opcode bits 28..26 Instructions encoded by opcode field.

bits 31..29 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 SPECIAL d REGIMM d J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 d,p COP1 d,p COP2 d,p COP3 d,p,k BEQL BNEL BLEZL BGTZL

3 011 * * * * * * * *

4 100 LB LH LWL LW LBU LHU LWR *

5 101 SB SH SWL SW * * SWR r

6 110 LL LWC1 p LWC2 p LWC3 p,k * LDC1 p LDC2 p LDC3 p,k

7 111 SC SWC1 p SWC2 p SWC3 p,k * SDC1 p SDC2 p SDC3 p,k

function bits 2..0 Instructions encoded by function field when opcode field = SPECIAL.

bits
5..3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 SLL * SRL SRA SLLV * SRLV SRAV

1 001 JR JALR * * SYSCALL BREAK * SYNC

2 010 MFHI MTHI MFLO MTLO * * * *

3 011 MULT MULTU DIV DIVU * * * *

4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 * * SLT SLTU * * * *

6 110 TGE TGEU TLT TLTU TEQ * TNE *

7 111 * * * * * * * *

rt bits 18..16 Instructions encoded by the rt field when opcode field = REGIMM.

bits
20..19

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL BGEZL * * * *

1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 10 BLTZAL BGEZAL BLTZALL BGEZALL * * * *

3 11 * * * * * * * *

31 26

opcode

0

31 26

opcode
function

 5 0

= SPECIAL

31 26 20 16 0

opcode
rt= REGIMM
� � �

CPU Instructions Encoding Non-CPU Instructions in the Tables

Table 3.4 CPU Instruction Encoding - MIPS III Architecture

opcode bits 28..26 Instructions encoded by opcode field.

bits 31..29 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 SPECIAL d REGIMM d J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 d,p COP1 d,p COP2 d,p * BEQL BNEL BLEZL BGTZL

3 011 DADDI DADDIU LDL LDR * * * *

4 100 LB LH LWL LW LBU LHU LWR LWU

5 101 SB SH SWL SW SDL SDR SWR r

6 110 LL LWC1 p LWC2 p * LLD LDC1 p LDC2 p LD

7 111 SC SWC1 p SWC2 p * SCD SDC1 p SDC2 p SD

function bits 2..0 Instructions encoded by function field when opcode field = SPECIAL.

bits
5..3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 SLL * SRL SRA SLLV * SRLV SRAV

1 001 JR JALR * * SYSCALL BREAK * SYNC

2 010 MFHI MTHI MFLO MTLO DSLLV * DSRLV DSRAV

3 011 MULT MULTU DIV DIVU DMULT DMULTU DDIV DDIVU

4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 * * SLT SLTU DADD DADDU DSUB DSUBU

6 110 TGE TGEU TLT TLTU TEQ * TNE *

7 111 DSLL * DSRL DSRA DSLL32 * DSRL32 DSRA32

rt bits 18..16 Instructions encoded by the rt field when opcode field = REGIMM.

bits
20..19

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL BGEZL * * * *

1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 10 BLTZAL BGEZAL BLTZALL BGEZALL * * * *

3 11 * * * * * * * *

31 26

opcode

0

31 26

opcode
function

 5 0

= SPECIAL

31 26 20 16 0

opcode
rt= REGIMM
� � �

CPU Instructions Encoding Non-CPU Instructions in the Tables

Table 3.5 CPU Instruction Encoding - MIPS IV Architecture

opcode bits 28..26 Instructions encoded by opcode field.

bits 31..29 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 SPECIAL d REGIMM d J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 d,p COP1 d,p COP2 d,p COP1X d,p BEQL BNEL BLEZL BGTZL

3 011 DADDI DADDIU LDL LDR * * *

4 100 LB LH LWL LW LBU LHU LWR LWU

5 101 SB SH SWL SW SDL SDR SWR r

6 110 LL LWC1 p LWC2 p PREF LLD LDC1 p LDC2 p LD

7 111 SC SWC1 p SWC2 p * SCD SDC1 p SDC2 p SD

function bits 2..0 Instructions encoded by function field when opcode field = SPECIAL.

bits
5..3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 SLL MOVCI d,m SRL SRA SLLV * SRLV SRAV

1 001 JR JALR MOVZ MOVN SYSCALL BREAK * SYNC

2 010 MFHI MTHI MFLO MTLO DSLLV * DSRLV DSRAV

3 011 MULT MULTU DIV DIVU DMULT DMULTU DDIV DDIVU

4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 * * SLT SLTU DADD DADDU DSUB DSUBU

6 110 TGE TGEU TLT TLTU TEQ * TNE *

7 111 DSLL * DSRL DSRA DSLL32 * DSRL32 DSRA32

rt bits 18..16 Instructions encoded by the rt field when opcode field = REGIMM.

bits
20..19

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL BGEZL * * * *

1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 10 BLTZAL BGEZAL BLTZALL BGEZALL * * * *

3 11 * * * * * * * *

31 26

opcode

0

31 26

opcode
function

 5 0

= SPECIAL

31 26 20 16 0

opcode
rt= REGIMM
� � 	

CPU Instructions Encoding Non-CPU Instructions in the Tables
.

Table 3.6 Architecture Level in Which CPU Instructions are Defined or Extended

The architecture level in which each MIPS IVencoding was defined is indicated by a subscript 1, 2, 3, or 4 (for
architecture level I, II, III, or IV). If an instruction or instruction class was later extended, the extending level is indicated
after the defining level.

opcode bits 28..26 Instructions encoded by opcode field.

bits 31..29 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 SPECIAL 1-4 REGIMM 1,2 J 1 JAL 1 BEQ 1 BNE 1 BLEZ 1 BGTZ 1
1 001 ADDI 1 ADDIU 1 SLTI 1 SLTIU 1 ANDI 1 ORI 1 XORI 1 LUI 1
2 010 COP0 1 COP1 1,2,3,4 COP2 1 COP1X 4 BEQL 2 BNEL 2 BLEZL 2 BGTZL 2
3 011 DADDI 3 DADDIU 3 LDL 3 LDR 3 * 1 * 1 * 1 * 1
4 100 LB 1 LH 1 LWL 1 LW 1 LBU 1 LHU 1 LWR 1 LWU 3
5 101 SB 1 SH 1 SWL 1 SW 1 SDL 3 SDR 3 SWR 1 r 2
6 110 LL 2 LWC1 1 LWC2 1 PREF 4 LLD 3 LDC1 2 LDC2 2 LD 3
7 111 SC 2 SWC1 1 SWC2 1 * 3 SCD 3 SDC1 2 SDC2 2 SD 3

function bits 2..0 Instructions encoded by function field when opcode field = SPECIAL.

bits
5..3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 SLL 1 MOVCI 4 SRL 1 SRA 1 SLLV 1 * 1 SRLV 1 SRAV 1
1 001 JR 1 JALR 1 MOVZ 4 MOVN 4 SYSCALL 1 BREAK 1 * 1 SYNC 2
2 010 MFHI 1 MTHI 1 MFLO 1 MTLO 1 DSLLV 3 * 1 DSRLV 3 DSRAV 3
3 011 MULT 1 MULTU 1 DIV 1 DIVU 1 DMULT 3 DMULTU 3 DDIV 3 DDIVU 3
4 100 ADD 1 ADDU 1 SUB 1 SUBU 1 AND 1 OR 1 XOR 1 NOR 1
5 101 * 1 * 1 SLT 1 SLTU 1 DADD 3 DADDU 3 DSUB 3 DSUBU 3
6 110 TGE 2 TGEU 2 TLT 2 TLTU 2 TEQ 2 * 1 TNE 2 * 1
7 111 DSLL 3 * 1 DSRL 3 DSRA 3 DSLL32 3 * 1 DSRL32 3 DSRA32 3

rt bits 18..16 Instructions encoded by the rt field when opcode field = REGIMM.

bits
20..19

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 00 BLTZ 1 BGEZ 1 BLTZL 2 BGEZL 2 * 1 * 1 * 1 * 1
1 01 TGEI 2 TGEIU 2 TLTI 2 TLTIU 2 TEQI 2 * 1 TNEI 2 * 1
2 10 BLTZAL 1 BGEZAL 1 BLTZALL 2 BGEZALL 2 * 1 * 1 * 1 * 1
3 11 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

31 26

opcode

0

31 26

opcode
function

 5 0

= SPECIAL

31 26 20 16 0

opcode
rt= REGIMM
� �

CPU Instructions Encoding Non-CPU Instructions in the Tables

Table 3.7 CPU Instruction Encoding Changes - MIPS II Revision

An instruction encoding is shown if the instruction is added in this revision.

opcode bits 28..26 Instructions encoded by opcode field.

bits 31..29 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000

1 001

2 010 BEQL BNEL BLEZL BGTZL

3 011

4 100

5 101 r

6 110 LL LDC1 p LDC2 p LDC3 p

7 111 SC SDC1 p SDC2 p SDC3 p

function bits 2..0 Instructions encoded by function field when opcode field = SPECIAL.

bits
5..3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000

1 001 SYNC

2 010

3 011

4 100

5 101

6 110 TGE TGEU TLT TLTU TEQ TNE

7 111

rt bits 18..16 Instructions encoded by the rt field when opcode field = REGIMM.

bits
20..19

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 00 BLTZL BGEZL

1 01 TGEI TGEIU TLTI TLTIU TEQI TNEI

2 10 BLTZALL BGEZALL

3 11

31 26

opcode

0

31 26

opcode
function

 5 0

= SPECIAL

31 26 20 16 0

opcode
rt= REGIMM
� � �

CPU Instructions Encoding Non-CPU Instructions in the Tables

Table 3.8 CPU Instruction Encoding Changes - MIPS III Revision

An instruction encoding is shown if the instruction is added or modified in this revision.

opcode bits 28..26 Instructions encoded by opcode field.

bits 31..29 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000

1 001

2 010 *
(was COP3)

3 011 DADDI DADDIU LDL LDR

4 100 LWU

5 101 SDL SDR

6 110 *
(was LWC3)

LLD LD
(was LDC3)

7 111 *
(was SWC3)

SCD SD
(was SDC3)

function bits 2..0 Instructions encoded by function field when opcode field = SPECIAL.

bits
5..3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000

1 001

2 010 DSLLV DSRLV DSRAV

3 011 DMULT DMULTU DDIV DDIVU

4 100

5 101 DADD DADDU DSUB DSUBU

6 110

7 111 DSLL DSRL DSRA DSLL32 DSRL32 DSRA32

rt bits 18..16 Instructions encoded by the rt field when opcode field = REGIMM.

bits
20..19

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 00

1 01

2 10

3 11

31 26

opcode

0

31 26

opcode
function

 5 0

= SPECIAL

31 26 20 16 0

opcode
rt= REGIMM
� � ��

CPU Instructions Encoding Non-CPU Instructions in the Tables

Table 3.9 CPU Instruction Encoding Changes - MIPS IV Revision

An instruction encoding is shown if the instruction is added or modified in this revision.

opcode bits 28..26 Instructions encoded by opcode field.

bits 31..29 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000

1 001

2 010 COP1X d,p

3 011

4 100

5 101

6 110 PREF

7 111

function bits 2..0 Instructions encoded by function field when opcode field = SPECIAL.

bits
5..3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 MOVCI d,m

1 001 MOVZ MOVN

2 010

3 011

4 100

5 101

6 110

7 111

rt bits 18..16 Instructions encoded by the rt field when opcode field = REGIMM.

bits
20..19

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 00

1 01

2 10

3 11

31 26

opcode

0

31 26

opcode
function

 5 0

= SPECIAL

31 26 20 16 0

opcode
rt= REGIMM
� � ��

CPU Instructions Encoding Non-CPU Instructions in the Tables
Key to notes in CPU instruction encoding tables:

* This opcode is reserved for future use. An attempt to execute it causes a Reserved
Instruction exception.

= This opcode is reserved for future use. An attempt to execute it produces an undefined
result. The result may be a Reserved Instruction exception but this is not guaranteed.

δ (also italic opcode name) This opcode indicates an instruction class. The instruction
word must be further decoded by examining additional tables that show values for
another instruction field.

π This opcode is a coprocessor operation, not a CPU operation. If the processor state
does not allow access to the specified coprocessor, the instruction causes a
Coprocessor Unusable exception. It is included in the table because it uses a primary
opcode in the instruction encoding map.

κ This opcode is removed in a later revision of the architecture. If a MIPS III or MIPS IV
processor is operated in MIPS II-only mode this opcode will cause a Reserved
Instruction exception.

µ This opcode indicates a class of coprocessor 1 instructions. If the processor state does
not allow access to coprocessor 1, the opcode causes a Coprocessor Unusable
exception. It is included in the table because the encoding uses a location in what is
otherwise a CPU instruction encoding map. Further encoding information for this
instruction class is in the FPU Instruction Encoding tables.

ρ This opcode is reserved for Coprocessor 0 (System Control Coprocessor) instructions
that require base+offset addressing. If the instruction is used for COP0 in an
implementation, an attempt to execute it without Coprocessor 0 access privilege will
cause a Coprocessor Unusable exception. If the instruction is not used in an
implementation, it will cause a Reserved Instruction exception.
� � ��

�����

� � �
������� 	
��� ����	
����� ������
���
��������� ��� �������
This appendix documents the instructions for the floating-point unit (FPU) in MIPS processors. It

contains some descriptive material at the beginning, a detailed description for each instruction in
alphabetic order, and an instruction opcode encoding table at the end of the section.

The descriptive material describes the FPU instruction categories, the instruction encoding
formats, the valid operands for FPU computational instructions, compare and condition values, FPU
use of the coprocessor registers, and a description of the notation used for the detailed instruction
description.

This section does not describe the operation of floating-point arithmetic, the exception conditions
within FP arithmetic, the exception mechanism of the FPU, or the handling of these FP exceptions.

���
����������
The floating-point unit (FPU) is implemented as Coprocessor unit 1 (CP1) within the MIPS archi-

tecture. A floating-point instruction needs access to coprocessor 1 to execute; if CP1 is not enabled,
an FP instruction will cause a Coprocessor Unusable exception. The FPU has a load/store architec-
ture. All computations are done on data held in registers, and data is transferred between registers
and the rest of the system with dedicated load, store, and move instructions.

The FPU instructions fall into the following categories:
◆ Data Transfer
◆ Arithmetic
◆ Conversion
◆ Formatted Operand Value Move
◆ Conditional Branch
◆ Miscellaneous

���� ��������
����������
The FPU has two separate register sets: coprocessor general registers and coprocessor control

registers. The FPU has a load/store architecture; all computations are done on data held in copro-
cessor general registers. The control registers are used to control FPU operation. Data is trans-
ferred between registers and the rest of the system with dedicated load, store, and move
instructions. The transferred data is treated as unformatted binary data; no format conversions are
performed and, therefore, no IEEE floating-point exceptions can occur.

The supported transfer operations are:

All coprocessor loads and stores operate on naturally-aligned data items. An attempt to load or
store to an address that is not naturally aligned for the data item will cause an Address Error excep-
tion. Regardless of byte-numbering order (endianness), the address of a word or doubleword is the
smallest byte address among the bytes in the object. For a big-endian machine this is the most-
significant byte; for a little-endian machine this is the least-significant byte.

The FPU has loads and stores using the usual register+offset addressing. In MIPS IV, for the
FPU only, there are also load and store instructions using register+register addressing.

• FPU general reg ↔ memory (word/doubleword load/store)

• FPU general reg ↔ CPU general reg (word/doubleword move)

• FPU control reg ↔ CPU general reg (word move)

FPU Instructions Basics Arithmetic Instructions
MIPS I specifies that loads are delayed by one instruction and that proper execution must be insured by
observing an instruction scheduling restriction. The instruction immediately following a load into an FPU
register Fn must not use Fn as a source register. The time between the load instruction and the time the
data is available is the “load delay slot”. If no useful instruction can be put into the load delay slot, then a null
operation (NOP) must be inserted.

In MIPS II, this instruction scheduling restriction is removed. Programs will execute correctly when the
loaded data is used by the instruction following the load, but this may require extra real cycles. Most proces-
sors cannot actually load data quickly enough for immediate use and the processor will be forced to wait
until the data is available. Scheduling load delay slots is desirable for performance reasons even when it is
not necessary for correctness.

����������
����������
The arithmetic instructions operate on formatted data values. The result of most floating-point arithmetic

operations meets the IEEE standard specification for accuracy; a result which is identical to an infinite-
precision result rounded to the specified format, using the current rounding mode. The rounded result
differs from the exact result by less than one unit in the least-significant place (ulp).

���	
��� ��������
� ������ ��

LWC1 Load Word to Floating-Point I

SWC1 Store Word to Floating-Point I

LDC1 Load Doubleword to Floating-Point III

SDC1 Store Doubleword to Floating-Point III

Table 4.10 FPU Loads and Stores Using Register + Offset Address Mode

���	
��� ��������
� ������ ��

LWXC1 Load Word Indexed to Floating-Point IV

SWXC1 Store Word Indexed to Floating-Point IV

LDXC1 Load Doubleword Indexed to Floating-Point IV

SDXC1 Store Doubleword Indexed to Floating-Point IV

Table 4.11 FPU Loads and Stores Using Register + Register Address Mode

���	
��� ��������
� ������ ��

MTC1 Move Word To Floating-Point I

MFC1 Move Word From Floating-Point I

DMTC1 Doubleword Move To Floating-Point III

DMFC1 Doubleword Move From Floating-Point III

CTC1 Move Control Word To Floating-Point I

CFC1 Move Control Word From Floating-Point I

Table 4.12 FPU Move To/From Instructions
� � �

FPU Instructions Basics Conversion Instructions
Two operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation
(RSQRT), may be less accurate than the IEEE specification. The result of RECIP differs from the exact
reciprocal by no more than one ulp. The result of RSQRT differs by no more than two ulp. Within these error
limits, the result of these instructions is implementation specific.

There are four compound-operation instructions that perform variations of multiply-accumulate: multiply
two operands and accumulate to a third operand to produce a result. The accuracy of the result depends
which of two alternative arithmetic models is used for the computation. The unrounded model is more accu-
rate than a pair of IEEE operations and the rounded model meets the IEEE specification.

The RC5000 uses the rounded model which meets the specification.
◆ Rounded or non-fused

- The product is rounded according to the current rounding mode prior to the accumulation. This
model meets the IEEE accuracy specification; the result is numerically identical to the equivalent
computation using multiply, add, subtract, and negate instructions.

◆ Unrounded or fused (R8000 implementation)
- The product is not rounded and all bits take part in the accumulation. This model does not match

the IEEE accuracy requirements; the result is more accurate than the equivalent computation
using IEEE multiply, add, subtract, and negate instructions.

����������
����������
There are instructions to perform conversions among the floating-point and fixed-point data types. Each

instruction converts values from a number of operand formats to a particular result format. Some convert
instructions use the rounding mode specified in the Floating Control and Status Register (FCSR), others
specify the rounding mode directly.

���	
��� ��������
� ������ ��

ADD.fmt Floating-Point Add I

SUB.fmt Floating-Point Subtract I

MUL.fmt Floating-Point Multiply I

DIV.fmt Floating-Point Divide I

ABS.fmt Floating-Point Absolute Value I

NEG.fmt Floating-Point Negate I

SQRT.fmt Floating-Point Square Root II

C.cond.fmt Floating-Point Compare I

Table 4.13 FPU IEEE Arithmetic Operations

���	
��� ��������
� ������ ��

RECIP.fmt Floating-Point Reciprocal Approximation IV

RSQRT.fmt Floating-Point Reciprocal Square Root Approximation IV

Table 4.14 FPU Approximate Arithmetic Operations

���	
��� ��������
�
������

��

MADD.fmt Floating-Point Multiply Add IV

MSUB.fmt Floating-Point Multiply Subtract IV

NMADD.fmt Floating-Point Negative Multiply Add IV

NMSUB.fmt Floating-Point Negative Multiply Subtract IV

Table 4.15 FPU Multiply-Accumulate Arithmetic Operations
� � �

FPU Instructions Basics Formatted Operand Value Move Instructions

��������� ������� ���� ����
����������
These instructions all move formatted operand values among FPU general registers. A particular

operand type must be moved by the instruction that handles that type. There are three kinds of move
instructions:

◆ Unconditional move
◆ Conditional move that tests an FPU condition code
◆ Conditional move that tests a CPU general register value against zero

The conditional move instructions operate in a way that may be unexpected. They always force the
value in the destination register to become a value of the format specified in the instruction. If the destina-
tion register does not contain an operand of the specified format, before the conditional move is executed,
the contents become undefined.

���	
��

�
��������
� ������ ��

CVT.S.fmt Floating-Point Convert to Single Floating-Point I

CVT.D.fmt Floating-Point Convert to Double Floating-Point I

CVT.W.fmt Floating-Point Convert to Word Fixed-Point I

CVT.L.fmt Floating-Point Convert to Long Fixed-Point I

Table 4.1 FPU Conversion Operations Using the FCSR Rounding Mode

���	
��� ��������
� ������ ��

ROUND.W.fmt Floating-Point Round to Word Fixed-Point II

ROUND.L.fmt Floating-Point Round to Long Fixed-Point III

TRUNC.W.fmt Floating-Point Truncate to Word Fixed-Point II

TRUNC.L.fmt Floating-Point Truncate to Long Fixed-Point III

CEIL.W.fmt Floating-Point Ceiling to Word Fixed-Point II

CEIL.L.fmt Floating-Point Ceiling to Long Fixed-Point III

FLOOR.W.fmt Floating-Point Floor to Word Fixed-Point II

FLOOR.L.fmt Floating-Point Floor to Long Fixed-Point III

Table 4.16 FPU Conversion Operations Using a Directed Rounding Mode

���	
��� ��������
� ������ ��

MOV.fmt Floating-Point Move I

Table 4.17 FPU Formatted Operand Move Instructions

���	
��� ��������
� ������ ��

MOVT.fmt Floating-Point Move Conditional on FP True IV

MOVF.fmt Floating-Point Move Conditional on FP False IV

Table 4.18 FPU Conditional Move on True/False Instructions

���	
��� ��������
� ������ ��

MOVZ.fmt Floating-Point Move Conditional on Zero IV

MOVN.fmt Floating-Point Move Conditional on Nonzero IV

Table 4.19 FPU Conditional Move on Zero/Nonzero Instructions
� � �

FPU Instructions Basics Conditional Branch Instructions
����������� �����
����������
The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare

instructions (C.cond.fmt).
All branches have an architectural delay of one instruction. When a branch is taken, the instruction

immediately following the branch instruction, in the branch delay slot, is executed before the branch to the
target instruction takes place. Conditional branches come in two versions that treat the instruction in the
delay slot differently when the branch is not taken and execution falls through. The “branch” instructions
execute the instruction in the delay slot, but the “branch likely” instructions do not (they are said to nullify it).

MIPS I defines a single condition code which is implicit in the compare and branch instructions. MIPS IV
defines seven additional condition codes and includes the condition code number in the compare and
branch instructions. The MIPS IV extension keeps the original condition bit as condition code zero and the
extended encoding is compatible with the MIPS I encoding.

������������
����������

CPU Conditional Move
There are instructions to conditionally move one CPU general register to another based on an FPU

condition code as shown in Table 4.21.

����� �������� ��� ��
����������
The floating-point unit arithmetic, conversion, and operand move instructions operate on formatted

values with different precision and range limits and produce formatted values for results. Each represent-
able value in each format has a binary encoding that is read from or stored to memory. The fmt or fmt3 field
of the instruction encodes the operand format required for the instruction. A conversion instruction specifies
the result type in the function field; the result of other operations is the same format as the operands. The
encoding of the fmt and fmt3 fields is shown in Table 4.22.

���	
��� ��������
� ������ ��

BC1T Branch on FP True I

BC1F Branch on FP False I

BC1TL Branch on FP True Likely II

BC1FL Branch on FP False Likely II

Table 4.20 FPU Conditional Branch Instructions

���	
��� ��������
� ������ ��

MOVZ Move Conditional on FP True IV

MOVN Move Conditional on FP False IV

Table 4.21 CPU Conditional Move on FPU True/False Instructions

�	� �	��
���������
�

���	
���

����
���� ����

��	� ����

0-15 - Reserved

16 0 S single 32 floating-point

17 1 D double 64 floating-point

18-19 2-3 Reserved

20 4 W word 32 fixed-point

21 5 L long 64 fixed-point

22–31 6-7 Reserved

Table 4.22 FPU Operand Format Field (fmt, fmt3) Decoding
� � �

FPU Instructions Basics Description of an Instruction
 Each type of arithmetic or conversion instruction is valid for operands of selected formats. A summary
of the computational and operand move instructions and the formats valid for each of them is listed in Table
4.23. Implementations must support combinations that are valid either directly in hardware or through
emulation in an exception handler.

The result of an instruction using operand formats marked “U” is not currently specified by this architec-
ture and will cause an exception. They are available for future extensions to the architecture. The exact
exception mechanism used is processor specific. Most implementations report this as an Unimplemented
Operation for a Floating Point exception. Other implementations report these combinations as Reserved
Instruction exceptions.

����������� �� ��
���������
For the FPU instruction detail documentation, all variable subfields in an instruction format (such as fs,

ft, immediate, and so on) are shown in lower-case. The instruction name (such as ADD, SUB, and so on) is
shown in upper-case.

For clarity, we sometimes use an alias for a variable subfield in the formats of specific instructions. For
example, we use rs = base in the format for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

���	
��� �������
�

������ �	�

��
�� �� ��

� ! "

ABS Absolute value ² ² U U

ADD Add ² ² U U

C.cond Floating-point compare ² ² U U

CEIL.L Convert to word/longword fixed-point, round toward +∞ ² ² U U

CEIL.W

CVT.D Convert to double floating-point ² U ² ²

CVT.L Convert to longword fixed-point ² ² U U

CVT.S Convert to single floating-point U ² ² ²

CVT.W Convert to 32-bit fixed-point ² ² U U

DIV Divide ² ² U U

FLOOR.L Convert to word/longword fixed-point, round toward −∞ ² ² U U

FLOOR.W

MOV Move Register ² ² U U

MOVF FP Move Conditional on condition ² ² U U

MOVT

MOVN FP Move Conditional on GPR ≠ zero ² ² U U

MOVZ FP Move Conditional on GPR = zero ² ² U U

NEG Negate ² ² U U

RECIP Reciprocal approximation ² ² U U

ROUND.L Convert to word/longword fixed-point, round to nearest/even ² ² U U

ROUND.W

RSQRT Reciprocal square root approximation ² ² U U

SQRT Square root ² ² U U

SUB Subtract ² ² U U

TRUNC.L Convert to word/longword fixed-point, round toward zero ² ² U U

TRUNC.W

Key: • - Valid. U - Causes unimplemented exception traps.

Table 4.23 Valid Formats for FPU Operations
� � �

FPU Instructions Basics Operation Notation Conventions and Functions
In some instructions, the instruction subfields op and function can have constant 6-bit values. When
reference is made to these instructions, upper-case mnemonics are used. For instance, in the floating-point
ADD instruction we use op = COP1 and function = ADD. In other cases, a single field has both fixed and
variable subfields, so the name contains both upper and lower case characters. Bit encodings for
mnemonics are shown at the end of this section, and are also included with each individual instruction.

��������� �������� ����������� ��� ��������
The instruction description includes an Operation section that describes the operation of the instruction

in a pseudocode. The pseudocode and terms used in the description are described in “Operation Section
Notation and Functions” on page 15 of Chapter 1.

�������� ���
��������� ������������
The FP instructions are described in alphabetic order. For a description of the information in each

instruction, see “Instruction Descriptions” on page 13 of Chapter 1.
� � #

FPU Instructions Basics Individual FPU Instruction Descriptions
� � $

�����

� � �
������� 	
��� ����	
�����

����	����
This chapter is similar to Chapter 2 except that it deals with the FPU (hardware floating point unit)
instructions.

ABS.fmt Floating-Point Absolute Value
Format: ABS.S fd, fs MIPS I
ABS.D fd, fs

Purpose: To compute the absolute value of an FP value.

Description: fd ← absolute(fs)

The absolute value of the value in FPR fs is placed in FPR fd. The operand and result are values in
format fmt.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is
undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented Operation
Invalid Operation

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ABS

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1
� � �

ADD.fmt Floating-Point Add
Format: ADD.S fd, fs, ft MIPS I
ADD.D fd, fs, ft

Purpose: To add FP values.

Description: fd ← fs + ft

The value in FPR ft is added to the value in FPR fs. The result is calculated to infinite precision, rounded
according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are
values in format fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result
is undefined.

The operands must be values in format fmt. If they are not, the result is undefined and the value of the
operand FPRs becomes undefined.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) + ValueFPR(ft, fmt))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented Operation
Invalid Operation
Inexact
Overflow
Underflow

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd ADD

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0
� � �

BC1F Branch on FP False
Format: BC1F offset (cc = 0 implied) MIPS I
BC1F cc, offset MIPS IV

Purpose: To test an FP condition code and do a PC-relative conditional branch.

Description: if (cc = 0) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the FP condition code bit cc is false (0), branch to the effective target address after the instruction in
the delay slot is executed

An FP condition code is set by the FP compare instruction, C.cond.fmt.

The MIPS I architecture defines a single floating-point condition code, implemented as the
coprocessor 1 condition signal (Cp1Cond) and the C bit in the FP Control and Status register. MIPS I, II,
and III architectures must have the cc field set to 0, which is implied by the first format in the Format section.

The MIPS IV architecture adds seven more condition code bits to the original condition code 0. FP
compare and conditional branch instructions specify the condition code bit to set or test. Both assembler
formats are valid for MIPS IV.

Restrictions:

MIPS I, II, III: There must be at least one instruction between the compare instruction that sets a condi-
tion code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS IV: None.

3

 15

BC

31 2526

COP1

6

0

16

offsetnd

21 20

5
0 1 0 0 0 1 0 1 0 0 0 0

cc

1 1
0
tf

18 17 16
� � �

BC1F Branch on FP False
Operation:

MIPS I, II, and III define a single condition code; MIPS IV adds 7 more condition codes.This operation
specification is for the general “Branch On Condition” operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have spe-
cific values for tf and nd.

MIPS I
I -1: condition ← COC[1] = tf
I : target_offset← (offset15)GPRLEN-(16+2) || offset || 02

I +1: if condition then
PC ← PC + target

endif

MIPS II and MIPS III:
I -1: condition ← COC[1] = tf
I : target_offset← (offset15)GPRLEN-(16+2) || offset || 02

I +1: if condition then
PC ← PC + target

else if nd then
NullifyCurrentInstruction()

endif

MIPS IV:
I : condition ← FCC[cc] = tf

target_offset← (offset15)GPRLEN-(16+2) || offset || 02

I +1: if condition then
PC ← PC + target

else if nd then
NullifyCurrentInstruction()

endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.
� � �

BC1FL Branch on FP False Likely
Format: BC1FL offset (cc = 0 implied) MIPS II
BC1FL cc, offset MIPS IV

Purpose: To test an FP condition code and do a PC-relative conditional branch; execute the delay
slot only if the branch is taken.

Description: if (cc = 0) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the FP condition code bit cc is false (0), branch to the effective target address after the instruction in
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

The MIPS I architecture defines a single floating-point condition code, implemented as the
coprocessor 1 condition signal (Cp1Cond) and the C bit in the FP Control and Status register. MIPS I, II,
and III architectures must have the cc field set to 0, which is implied by the first format in the Format section.

The MIPS IV architecture adds seven more condition code bits to the original condition code 0. FP
compare and conditional branch instructions specify the condition code bit to set or test. Both assembler
formats are valid for MIPS IV.

Restrictions:

MIPS II, III: There must be at least one instruction between the compare instruction that sets a condi-
tion code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS IV: None.

3

 15

BC

31 2526

COP1

6

0

16

offsetnd

21 20

5
0 1 0 0 0 1 0 1 0 0 0 1

cc

1 1
0
tf

18 17 16
� � �

BC1FL Branch on FP False Likely
Operation:

MIPS II, and III define a single condition code; MIPS IV adds 7 more condition codes.This operation
specification is for the general “Branch On Condition” operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have spe-
cific values for tf and nd.

MIPS II and MIPS III:
I -1: condition ← COC[1] = tf
I : target_offset← (offset15)GPRLEN-(16+2) || offset || 02

I +1: if condition then
PC ← PC + target

else if nd then
NullifyCurrentInstruction()

endif

MIPS IV:
I : condition ← FCC[cc] = tf

target_offset← (offset15)GPRLEN-(16+2) || offset || 02

I +1: if condition then
PC ← PC + target

else if nd then
NullifyCurrentInstruction()

endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.
� � 	

BC1T Branch on FP True
Format: BC1T offset (cc = 0 implied) MIPS I
BC1T cc, offset MIPS IV

Purpose: To test an FP condition code and do a PC-relative conditional branch.

Description: if (cc = 1) then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the FP condition code bit cc is true (1), branch to the effective target address after the instruction in the
delay slot is executed

An FP condition code is set by the FP compare instruction, C.cond.fmt.

The MIPS I architecture defines a single floating-point condition code, implemented as the
coprocessor 1 condition signal (Cp1Cond) and the C bit in the FP Control and Status register. MIPS I, II,
and III architectures must have the cc field set to 0, which is implied by the first format in the Format section.

The MIPS IV architecture adds seven more condition code bits to the original condition code 0. FP
compare and conditional branch instructions specify the condition code bit to set or test. Both assembler
formats are valid for MIPS IV.

Restrictions:

MIPS I, II, III: There must be at least one instruction between the compare instruction that sets a condi-
tion code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS IV: None

3

 15

BC

31 2526

COP1

6

0

16

offsetnd

21 20

5
0 1 0 0 0 1 0 1 0 0 0 0

cc

1 1
1
tf

18 17 16
� �

BC1T Branch on FP True
Operation:

MIPS I, II, and III define a single condition code; MIPS IV adds 7 more condition codes.This operation
specification is for the general “Branch On Condition” operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have spe-
cific values for tf and nd.

MIPS I
I -1: condition ← COC[1] = tf
I : target ← (offset15)GPRLEN-(16+2) || offset || 02

I +1: if condition then
PC ← PC + target

endif

MIPS II and MIPS III:
I -1: condition ← COC[1] = tf
I : target ← (offset15)GPRLEN-(16+2) || offset || 02

I +1: if condition then
PC ← PC + target

else if nd then
NullifyCurrentInstruction()

endif

MIPS IV:
I : condition ← FCC[cc] = tf

target ← (offset15)GPRLEN-(16+2) || offset || 02

I +1: if condition then
PC ← PC + target

else if nd then
NullifyCurrentInstruction()

endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.
� � �

BC1TL Branch on FP True Likely
Format: BC1TL offset (cc = 0 implied) MIPS II
BC1TL cc, offset MIPS IV

Purpose: To test an FP condition code and do a PC-relative conditional branch; execute the delay
slot only if the branch is taken.

Description: if (cc = 1) then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction
following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target
address.

If the FP condition code bit cc is true (1), branch to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

The MIPS I architecture defines a single floating-point condition code, implemented as the
coprocessor 1 condition signal (Cp1Cond) and the C bit in the FP Control and Status register. MIPS I, II,
and III architectures must have the cc field set to 0, which is implied by the first format in the Format section.

The MIPS IV architecture adds seven more condition code bits to the original condition code 0. FP
compare and conditional branch instructions specify the condition code bit to set or test. Both assembler
formats are valid for MIPS IV.

Restrictions:

MIPS II, III: There must be at least one instruction between the compare instruction that sets a condi-
tion code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS IV: None.

3

 15

BC

31 2526

COP1

6

0

16

offsetnd

21 20

5
0 1 0 0 0 1 0 1 0 0 0 1

cc

1 1
1
tf

18 1716
� � ��

BC1TL Branch on FP True Likely
Operation:

MIPS II, and III define a single condition code; MIPS IV adds 7 more condition codes.This operation
specification is for the general “Branch On Condition” operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have spe-
cific values for tf and nd.

MIPS II and MIPS III:
I -1: condition ← COC[1] = tf
I : target ← (offset15)GPRLEN-(16+2) || offset || 02

I +1: if condition then
PC ← PC + target

else if nd then
NullifyCurrentInstruction()

endif

MIPS IV:
I : condition ← FCC[cc] = tf

target ← (offset15)GPRLEN-(16+2) || offset || 02

I +1: if condition then
PC ← PC + target

else if nd then
NullifyCurrentInstruction()

endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or
jump register (JR) instructions to branch to more distant addresses.
� � ��

C.cond.fmt Floating-Point Compare
Format: C.cond.S fs, ft (cc = 0 implied) MIPS I
C.cond.D fs, ft (cc = 0 implied)
C.cond.S cc, fs, ft MIPS IV
C.cond.D cc, fs, ft

Purpose: To compare FP values and record the Boolean result in a condition code.

Description: cc ← fs compare_cond ft

The value in FPR fs is compared to the value in FPR ft; the values are in format fmt. The comparison is
exact and neither overflows nor underflows. If the comparison specified by cond2..1 is true for the operand
values, then the result is true, otherwise it is false. If no exception is taken, the result is written into condition
code cc; true is 1 and false is 0.

If cond3 is set and at least one of the values is a NaN, an Invalid Operation condition is raised; the result
depends on the FP exception model currently active.

◆ Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid Operation
enable bit is set in the FCSR, no result is written and an Invalid Operation exception is taken imme-
diately. Otherwise, the Boolean result is written into condition code cc.

◆ Imprecise exception model (R8000 normal mode): The Boolean result is written into condition code
cc. No FCSR flag is set. If the Invalid Operation enable bit is set in the FCSR, an Invalid Operation
exception is taken, imprecisely, at some future time.

There are four mutually exclusive ordering relations for comparing floating-point values; one relation is
always true and the others are false. The familiar relations are greater than, less than, and equal. In addi-
tion, the IEEE floating-point standard defines the relation unordered which is true when at least one
operand value is NaN; NaN compares unordered with everything, including itself. Comparisons ignore the
sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as “less than
or equal”, “equal”, “not less than”, or “unordered or equal”. Compare distinguishes sixteen comparison pred-
icates. The Boolean result of the instruction is obtained by substituting the Boolean value of each ordering
relation for the two FP values into equation. If the equal relation is true, for example, then all four example
predicates above would yield a true result. If the unordered relation is true then only the final predicate,
“unordered or equal” would yield a true result.

Logical negation of a compare result allows eight distinct comparisons to test for sixteen predicates as
shown in Table 5.24. Each mnemonic tests for both a predicate and its logical negation. For each
mnemonic, compare tests the truth of the first predicate. When the first predicate is true, the result is true as
shown in the “if predicate is true” column (note that the False predicate is never true and False/True do not
follow the normal pattern). When the first predicate is true, the second predicate must be false, and vice
versa. The truth of the second predicate is the logical negation of the instruction result. After a compare
instruction, test for the truth of the first predicate with the Branch on FP True (BC1T) instruction and the
truth of the second with Branch on FP False (BC1F).

31 2526 2021 1516 0

COP1

6 5 5

346 58 71011

42235

ft fs cc 0 FC condfmt
0 1 0 0 0 1 1 10 0
� � ��

C.cond.fmt Floating-Point Compare

There is another set of eight compare operations, distinguished by a cond3 value of 1, testing the same
sixteen conditions. For these additional comparisons, if at least one of the operands is a NaN, including
Quiet NaN, then an Invalid Operation condition is raised. If the Invalid Operation condition is enabled in the
FCSR, then an Invalid Operation exception occurs.

���� ���������� ��������� ���������� ��

������
����

cond
Mnemonic

name of predicate and
logically negated predicate

(abbreviation)

relation
values

If
 predicate

 is true

Inv Op
excp
if Q
NaN

cond field

> < = ? 3 2..0

F False [this predicate is always
False,

F F F F F No 0 0

True (T) it never has a True result] T T T T

UN Unordered F F F T T 1

Ordered (OR) T T T F F

EQ Equal F F T F T 2

Not Equal (NEQ) T T F T F

UEQ Unordered or Equal F F T T T 3

Ordered or Greater than or Less than (OGL) T T F F F

OLT Ordered or Less Than F T F F T 4

Unordered or Greater than or Equal (UGE) T F T T F

ULT Unordered or Less Than F T F T T 5

Ordered or Greater than or Equal (OGE) T F T F F

OLE Ordered or Less than or Equal F T T F T 6

Unordered or Greater Than (UGT) T F F T F

ULE Unordered or Less than or Equal F T T T T 7

Ordered or Greater Than (OGT) T F F F F

key: “?” = unordered, “>” = greater than, “<” = less than, “=” is equal, “T” = True, “F” = False

Table 5.24 FPU Comparisons Without Special Operand Exceptions
� � ��

C.cond.fmt Floating-Point Compare

The instruction encoding is an extension made in the MIPS IV architecture. In previous architecture
levels the cc field for this instruction must be 0.

The MIPS I architecture defines a single floating-point condition code, implemented as the
coprocessor 1 condition signal (Cp1Cond) and the C bit in the FP Control and Status register. MIPS I, II,
and III architectures must have the cc field set to 0, which is implied by the first format in the Format section.

The MIPS IV architecture adds seven more condition code bits to the original condition code 0. FP
compare and conditional branch instructions specify the condition code bit to set or test. Both assembler
formats are valid for MIPS IV.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If they are not valid, the result is
undefined.

The operands must be values in format fmt. If they are not, the result is undefined and the value of the
operand FPRs becomes undefined.

MIPS I, II, III: There must be at least one instruction between the compare instruction that sets a condi-
tion code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

���� ���������� ��������� ����������

�� ������
����

cond
Mnemonic

name of predicate and
logically negated predicate (abbreviation)

relation
values

If
 predicate

 is true

Inv Op
excp if

Q
NaN

cond field

> < = ? 3 2..0

SF Signaling False [this predicate always False] F F F F F Yes 1 0

Signaling True (ST) T T T T

NGLE Not Greater than or Less than or Equal F F F T T 1

Greater than or Less than or Equal (GLE) T T T F F

SEQ Signaling Equal F F T F T 2

Signaling Not Equal (SNE) T T F T F

NGL Not Greater than or Less than F F T T T 3

Greater than or Less than (GL) T T F F F

LT Less than F T F F T 4

Not Less Than (NLT) T F T T F

NGE Not Greater than or Equal F T F T T 5

Greater than or Equal (GE) T F T F F

LE Less than or Equal F T T F T 6

Not Less than or Equal (NLE) T F F T F

NGT Not Greater than F T T T T 7

Greater than (GT) T F F F F

key: “?” = unordered, “>” = greater than, “<” = less than, “=” is equal, “T” = True, “F” = False

Table 5.25 FPU Comparisons With Special Operand Exceptions for QNaNs
� � ��

C.cond.fmt Floating-Point Compare
Operation:

if NaN(Value FPR(fs, fmt)) or NaN(ValueFPR(ft, fmt)) then
less ← false
equal ← false
unordered ← true
if t then

SignalException(InvalidOperation)
endif

else
less ← ValueFPR(fs, fmt) < ValueFPR(ft, fmt)
equal ← ValueFPR(fs, fmt) = ValueFPR(ft, fmt)
unordered ← false

endif
condition ← (cond2 and less) or (cond1 and equal) or (cond0 and unordered)
FCC[cc] ← condition
if cc = 0 then

COC[1] ← condition
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented Operation
Invalid Operation
� � ��

C.cond.fmt Floating-Point Compare
Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN, will
raise the Invalid Operation condition. The comparisons that raise the Invalid Operation condition for Quiet
NaNs in addition to SNaNs, permit a simpler programming model if NaNs are errors. Using these
compares, programs do not need explicit code to check for QNaNs causing the unordered relation. Instead,
they take an exception and allow the exception handling system to deal with the error when it occurs. For
example, consider a comparison in which we want to know if two numbers are equal, but for which unor-
dered would be an error.

comparisons using explicit tests for QNaN
c.eq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
c.un.d $f2,$f4 # it is not equal, but might be unordered
bc1t ERROR# unordered goes off to an error handler

not-equal-case code here
...

equal-case code here
L2:
--
comparison using comparisons that signal QNaN

c.seq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
nop

it is not unordered here...
not-equal-case code here

...
#equal-case code here
L2:
� � ��

CEIL.L.fmt Floating-Point Ceiling Convert to Long Fixed-Point
Format: CEIL.L.S fd, fs MIPS III
CEIL.L.D fd, fs

Purpose: To convert an FP value to 64-bit fixed-point, rounding up.

Description: fd ← convert_and_round(fs)

The value in FPR fs in format fmt, is converted to a value in 64-bit long fixed-point format rounding
toward +∞ (rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result
cannot be represented correctly and an IEEE Invalid Operation condition exists. The result depends on the
FP exception model currently active.

◆ Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid Operation
enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 263–1, is written to fd.

◆ Imprecise exception model (R8000 normal mode): The default result, 263–1, is written to fd. No
FCSR flag is set. If the Invalid Operation enable bit is set in the FCSR, an Invalid Operation excep-
tion is taken, imprecisely, at some future time.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed-point. If they are not
valid, the result is undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Invalid Operation Unimplemented Operation
Inexact Overflow

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CEIL.L

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
� � �	

CEIL.W.fmt Floating-Point Ceiling Convert to Word Fixed-Point
Format: CEIL.W.S fd, fs MIPS II
CEIL.W.D fd, fs

Purpose: To convert an FP value to 32-bit fixed-point, rounding up.

Description: fd ← convert_and_round(fs)

The value in FPR fs in format fmt, is converted to a value in 32-bit word fixed-point format rounding
toward +∞ (rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result
cannot be represented correctly and an IEEE Invalid Operation condition exists. The result depends on the
FP exception model currently active.

◆ Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid Operation
enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 231–1, is written to fd.

◆ Imprecise exception model (R8000 normal mode): The default result, 231–1, is written to fd. No
FCSR flag is set. If the Invalid Operation enable bit is set in the FCSR, an Invalid Operation excep-
tion is taken, imprecisely, at some future time.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed-point. If they are not
valid, the result is undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Invalid Operation
Unimplemented Operation
Inexact
Overflow

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CEIL.W

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0
� � �

CFC1 Move Control Word from Floating-Point
Format: CFC1 rt, fs MIPS I

Purpose: To copy a word from an FPU control register to a GPR.

Description: rt ← FP_Control[fs]

Copy the 32-bit word from FP (coprocessor 1) control register fs into GPR rt, sign-extending it if the GPR
is 64 bits.

Restrictions:

There are only a couple control registers defined for the floating-point unit. The result is not defined if fs
specifies a register that does not exist.

For MIPS I, MIPS II, and MIPS III, the contents of GPR rt are undefined for the instruction immediately
following CFC1.

Operation: MIPS I - III

I: temp ← FCR[fs]
I +1: GPR[rt] ← sign_extend(temp)

Operation: MIPS IV

temp ← FCR[fs]
GPR[rt]← sign_extend(temp)

Exceptions:
Coprocessor Unusable

11

31 2526 2021 1516

COP1 CF rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
� � ��

CTC1 Move Control Word to Floating-Point
Format: CTC1 rt, fs MIPS I

Purpose: To copy a word from a GPR to an FPU control register.

Description: FP_Control[fs] ← rt

Copy the low word from GPR rt into FP (coprocessor 1) control register fs.

Writing to control register 31, the Floating-Point Control and Status Register or FCSR, causes the
appropriate exception if any cause bit and its corresponding enable bit are both set. The register will be
written before the exception occurs.

Restrictions:

There are only a couple control registers defined for the floating-point unit. The result is not defined if fs
specifies a register that does not exist.

For MIPS I, MIPS II, and MIPS III, the contents of floating-point control register fs are undefined for the
instruction immediately following CTC1.

Operation: MIPS I - III

I : temp ← GPR[rt]31..0
I +1: FCR[fs] ← temp

COC[1] ← FCR[31]23

Operation: MIPS IV

temp ← GPR[rt]31..0
FCR[fs] ← temp
COC[1] ← FCR[31]23

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented Operation
Invalid Operation
Division-by-zero
Inexact
Overflow
Underflow

11

31 2526 2021 1516

COP1 CT rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
� � ��

CVT.D.fmt Floating-Point Convert to Double Floating-Point
Format: CVT.D.S fd, fs MIPS I
CVT.D.W fd, fs
CVT.D.L fd, fs MIPS III

Purpose: To convert an FP or fixed-point value to double FP.

Description: fd ← convert_and_round(fs)

The value in FPR fs in format fmt is converted to a value in double floating-point format rounded
according to the current rounding mode in FCSR. The result is placed in FPR fd.

If fmt is S or W, then the operation is always exact.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for double floating-point. If they are
not valid, the result is undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Invalid Operation
Unimplemented Operation
Inexact
Overflow
Underflow

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.D

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 1 0 0 0 0 10 0 0 0 0
� � ��

CVT.L.fmt Floating-Point Convert to Long Fixed-Point
Format: CVT.L.S fd, fs MIPS III
CVT.L.D fd, fs

Purpose: To convert an FP value to a 64-bit fixed-point.

Description: fd ← convert_and_round(fs)

Convert the value in format fmt in FPR fs to long fixed-point format, round according to the current
rounding mode in FCSR, and place the result in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result
cannot be represented correctly and an IEEE Invalid Operation condition exists. The result depends on the
FP exception model currently active:

◆ Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid Operation
enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 263–1, is written to fd.

◆ Imprecise exception model (R8000 normal mode): The default result, 263–1, is written to fd. No
FCSR flag is set. If the Invalid Operation enable bit is set in the FCSR, an Invalid Operation excep-
tion is taken, imprecisely, at some future time.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed-point. If they are not
valid, the result is undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Invalid Operation
Unimplemented Operation
Inexact
Overflow

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.L

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 1 0 0 1 0 10 0 0 0 0
� � ��

CVT.S.fmt Floating-Point Convert to Single Floating-Point
Format: CVT.S.D fd, fs MIPS I
CVT.S.W fd, fs
CVT.S.L fd, fs MIPS III

Purpose: To convert an FP or fixed-point value to single FP.

Description: fd ← convert_and_round(fs)

The value in FPR fs in format fmt is converted to a value in single floating-point format rounded
according to the current rounding mode in FCSR. The result is placed in FPR fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for single floating-point. If they are not
valid, the result is undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Invalid Operation
Unimplemented Operation
Inexact
Overflow
Underflow

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.S

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 1 0 0 0 0 00 0 0 0 0
� � ��

CVT.W.fmt Floating-Point Convert to Word Fixed-Point
Format: CVT.W.S fd, fs MIPS I
CVT.W.D fd, fs

Purpose: To convert an FP value to 32-bit fixed-point.

Description: fd ← convert_and_round(fs)

The value in FPR fs in format fmt is converted to a value in 32-bit word fixed-point format rounded
according to the current rounding mode in FCSR. The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result
cannot be represented correctly and an IEEE Invalid Operation condition exists. The result depends on the
FP exception model currently active.

◆ Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid Operation
enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 231–1, is written to fd.

◆ Imprecise exception model (R8000 normal mode): The default result, 231–1, is written to fd. No
FCSR flag is set. If the Invalid Operation enable bit is set in the FCSR, an Invalid Operation excep-
tion is taken, imprecisely, at some future time.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed-point. If they are not
valid, the result is undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Invalid Operation
Unimplemented Operation
Inexact
Overflow

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.W

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 1 0 0 1 0 00 0 0 0 0
� � ��

DIV.fmt Floating-Point Divide
Format: DIV.S fd, fs, ft MIPS I
DIV.D fd, fs, ft

Purpose: To divide FP values.

Description: fd ← fs / ft

The value in FPR fs is divided by the value in FPR ft. The result is calculated to infinite precision,
rounded according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result
are values in format fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result
is undefined.

The operands must be values in format fmt. If they are not, the result is undefined and the value of the
operand FPRs becomes undefined.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR(ft, fmt))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Inexact Unimplemented Operation
Division-by-zero Invalid Operation
Overflow Underflow

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd DIV

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 1 1
� � ��

DMFC1 Doubleword Move From Floating-Point
Format: DMFC1 rt, fs MIPS III

Purpose: To copy a doubleword from an FPR to a GPR.

Description: rt ← fs

The doubleword contents of FPR fs are placed into GPR rt.

If the coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register
emulation mode in a 64-bit processor), FPR fs is held in an even/odd register pair. The low word is taken
from the even register fs and the high word is from fs+1.

Restrictions:

If fs does not specify an FPR that can contain a doubleword, the result is undefined.

For MIPS III, the contents of GPR rt are undefined for the instruction immediately following DMFC1.

Operation: MIPS I - III

I : if SizeFGR() = 64 then /* 64-bit wide FGRs */
data ← FGR[fs]

elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */
data ← FGR[fs+1] || FGR[fs]

else /* undefined for odd 32-bit FGRs */
UndefinedResult()

endif
I +1: GPR[rt] ← data

Operation: MIPS IV

if SizeFGR() = 64 then /* 64-bit wide FGRs */
data ← FGR[fs]

elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */
data ← FGR[fs+1] || FGR[fs]

else /* undefined for odd 32-bit FGRs */
UndefinedResult()

endif
GPR[rt] ← data

Exceptions:
Reserved Instruction
Coprocessor Unusable

fs

11 10

5

31 2526 2021 1516 0

COP1 DMF rt 0

6 5 5 11
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00
� � ��

DMTC1 Doubleword Move To Floating-Point
Format: DMTC1 rt, fs MIPS III

Purpose: To copy a doubleword from a GPR to an FPR.

Description: fs ← rt

The doubleword contents of GPR rt are placed into FPR fs.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register emulation
mode in a 64-bit processor), FPR fs is held in an even/odd register pair. The low word is placed in the even
register fs and the high word is placed in fs+1.

Restrictions:

If fs does not specify an FPR that can contain a doubleword, the result is undefined.

For MIPS III, the contents of FPR fs are undefined for the instruction immediately following DMTC1.

Operation: MIPS I - III

I : data ← GPR[rt]
I +1: if SizeFGR() = 64 then /* 64-bit wide FGRs */

FGR[fs] ← data
elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */

FGR[fs+1] ← data63..32
FGR[fs] ← data31..0

else /* undefined result for odd 32-bit FGRs */
UndefinedResult()

endif

Operation: MIPS IV

data ← GPR[rt]
if SizeFGR() = 64 then /* 64-bit wide FGRs */

FGR[fs] ← data
elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */

FGR[fs+1] ← data63..32
FGR[fs] ← data31..0

else /* undefined result for odd 32-bit FGRs */
UndefinedResult()

endif

Exceptions:
Reserved Instruction
Coprocessor Unusable

fs

11 10

5

31 2526 2021 1516 0

COP1 DMT rt 0

6 5 5 11
0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 00
� � �	

FLOOR.L.fmt Floating-Point Floor Convert to Long Fixed-Point
Format: FLOOR.L.S fd, fs MIPS III
FLOOR.L.D fd, fs

Purpose: To convert an FP value to 64-bit fixed-point, rounding down.

Description: fd ← convert_and_round(fs)

The value in FPR fs in format fmt, is converted to a value in 64-bit long fixed-point format rounding
toward -∞ (rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result
cannot be represented correctly and an IEEE Invalid Operation condition exists. The result depends on the
FP exception model currently active.

◆ Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid Operation
enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 263–1, is written to fd.

◆ Imprecise exception model (R8000 normal mode): The default result, 263–1, is written to fd. No
FCSR flag is set. If the Invalid Operation enable bit is set in the FCSR, an Invalid Operation excep-
tion is taken, imprecisely, at some future time.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed-point. If they are not
valid, the result is undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Invalid Operation Unimplemented Operation
Inexact Overflow

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd FLOOR.L

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1
� � �

FLOOR.W.fmt Floating-Point Floor Convert to Word Fixed-Point
Format: FLOOR.W.S fd, fs MIPS II
FLOOR.W.D fd, fs

Purpose: To convert an FP value to 32-bit fixed-point, rounding down.

Description: fd ← convert_and_round(fs)

The value in FPR fs in format fmt, is converted to a value in 32-bit word fixed-point format rounding
toward –∞ (rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result
cannot be represented correctly and an IEEE Invalid Operation condition exists. The result depends on the
FP exception model currently active.

◆ Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid Operation
enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 231–1, is written to fd.

◆ Imprecise exception model (R8000 normal mode): The default result, 231–1, is written to fd. No
FCSR flag is set. If the Invalid Operation enable bit is set in the FCSR, an Invalid Operation excep-
tion is taken, imprecisely, at some future time.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed-point. If they are not
valid, the result is undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Invalid Operation Unimplemented Operation
Inexact Overflow

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd FLOOR.W

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 1 1 1 10 0 0 0 0
� � ��

LDC1 Load Doubleword to Floating-Point
Format: LDC1 ft, offset(base) MIPS II

Purpose: To load a doubleword from memory to an FPR.

Description: ft ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address
are fetched and placed in FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the
effective address.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register emulation
mode in a 64-bit processor), FPR ft is held in an even/odd register pair. The low word is placed in the even
register ft and the high word is placed in ft+1.

Restrictions:

If ft does not specify an FPR that can contain a doubleword, the result is undefined.

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

MIPS IV: The low-order 3 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
data ← LoadMemory(uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SizeFGR() = 64 then /* 64-bit wide FGRs */

FGR[ft] ← data
elseif ft0 = 0 then /* valid specifier, 32-bit wide FGRs */

FGR[ft+1] ← data63..32
FGR[ft] ← data31..0

else /* undefined result for odd 32-bit FGRs */
UndefinedResult()

endif

Exceptions:
Coprocessor unusable
Reserved Instruction
TLB Refill, TLB Invalid
Address Error

31 2526 2021 1516 0

LDC1 base ft offset

6 5 5 16

1 1 0 1 0 1
� � ��

LDXC1 Load Doubleword Indexed to Floating-Point
Format: LDXC1 fd, index(base) MIPS IV

Purpose: To load a doubleword from memory to an FPR (GPR+GPR addressing).

Description: fd ← memory[base+index]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address
are fetched and placed in FPR fd. The contents of GPR index and GPR base are added to form the effec-
tive address.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register emulation
mode in a 64-bit processor), FPR fd is held in an even/odd register pair. The low word is placed in the even
register fd and the high word is placed in fd+1.

Restrictions:

If fd does not specify an FPR that can contain a doubleword, the result is undefined.

The Region bits of the effective address must be supplied by the contents of base. If

EffectiveAddress63..62 ≠ base63..62, the result is undefined.

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

MIPS IV: The low-order 3 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr2..0 ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
mem ← LoadMemory(unchched, DOUBLEWORD, pAddr, vAddr, DATA)
if SizeFGR() = 64 then /* 64-bit wide FGRs */

FGR[fd] ← data
elseif fd0 = 0 then /* valid specifier, 32-bit wide FGRs */

FGR[fd+1] ← data63..32
FGR[fd] ← data31..0

else /* undefined result for odd 32-bit FGRs */
UndefinedResult()

endif

Exceptions:
TLB Refill, TLB Invalid
Address Error
Reserved Instruction
Coprocessor Unusable

31 2526 2021 1516

COP1X base index

6 5 5

0 fd LDXC1

5 5 6

11 10 6 5 0

0 0 0 0 0 10 1 0 0 1 1
� � ��

LWC1 Load Word to Floating-Point
Format: LWC1 ft, offset(base) MIPS I

Purpose: To load a word from memory to an FPR.

Description: ft ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are
fetched and placed into the low word of coprocessor 1 general register ft. The 16-bit signed offset is added
to the contents of GPR base to form the effective address.

If coprocessor 1 general registers are 64-bits wide, bits 63..32 of register ft become undefined.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

MIPS IV: The low-order 2 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 32-bit Processors

I : /* “mem” is aligned 64-bits from memory. Pick out correct bytes. */
vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
mem ← LoadMemory(uncached, WORD, pAddr, vAddr, DATA)

I +1: FGR[ft] ← mem

Operation: 64-bit Processors

/* “mem” is aligned 64-bits from memory. Pick out correct bytes. */
vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
mem ← LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
bytesel ← vAddr2..0 xor (BigEndianCPU || 02)
if SizeFGR() = 64 then /* 64-bit wide FGRs */

FGR[ft] ← undefined32 || mem31+8*bytesel..8*bytesel
else /* 32-bit wide FGRs */

FGR[ft] ← mem31+8*bytesel..8*bytesel
endif

Exceptions:
Coprocessor unusable
Reserved Instruction
TLB Refill, TLB Invalid
Address Error

LWC1

6

1 1 0 0 0 1

31 2526 2021 1516 0

base ft offset

5 5 16
� � ��

LWXC1 Load Word Indexed to Floating-Point
Format: LWXC1 fd, index(base) MIPS IV

Purpose: To load a word from memory to an FPR (GPR+GPR addressing).

Description: fd ← memory[base+index]

The contents of the 32-bit word at the memory location specified by the aligned effective address are
fetched and placed into the low word of coprocessor 1 general register fd. The contents of GPR index and
GPR base are added to form the effective address.

If coprocessor 1 general registers are 64-bits wide, bits 63..32 of register fd become undefined.

Restrictions:

The Region bits of the effective address must be supplied by the contents of base. If

EffectiveAddress63..62 ≠ base63..62, the result is undefined.

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

MIPS IV: The low-order 2 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr1..0 ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
/* “mem” is aligned 64-bits from memory. Pick out correct bytes. */
mem ← LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
bytesel ← vAddr2..0 xor (BigEndianCPU || 02)
if SizeFGR() = 64 then /* 64-bit wide FGRs */

FGR[fd] ← undefined32 || mem31+8*bytesel..8*bytesel
else /* 32-bit wide FGRs */

FGR[fd] ← mem31+8*bytesel..8*bytesel
endif

Exceptions:
TLB Refill, TLB Invalid
Address Error
Reserved Instruction
Coprocessor Unusable

31 2526 2021 1516

COP1X base index

6 5 5

0 fd LWXC1

5 5 6

11 10 6 5 0

0 0 0 0 0 00 1 0 0 1 1
� � ��

MADD.fmt Floating-Point Multiply Add
Format: MADD.S fd, fr, fs, ft MIPS IV
MADD.D fd, fr, fs, ft

Purpose: To perform a combined multiply-then-add of FP values.

Description: fd ← (fs × ft) + fr

The value in FPR fs is multiplied by the value in FPR ft to produce a product. The value in FPR fr is
added to the product. The result sum is calculated to infinite precision, rounded according to the current
rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

The accuracy of the result depends which of two alternative arithmetic models is used by the implemen-
tation for the computation. The numeric models are explained in the section Arithmetic Instructions
towards the beginning of this Chapter.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the
result is undefined.

The operands must be values in format fmt. If they are not, the result is undefined and the value of the
operand FPRs becomes undefined.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, vfr + vfs * vft)

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Inexact Unimplemented Operation
Invalid Operation Overflow
Underflow

31 2526 2021 1516

COP1X fr ft

6 5 5

fs fd

5 5 3

11 10 6 5 0

3

fmt
0 1 0 0 1 1

MADD

3 2

1 0 0
� � ��

MFC1 Move Word From Floating-Point
Format: MFC1 rt, fs MIPS I

Purpose: To copy a word from an FPU (CP1) general register to a GPR.

Description: rt ← fs

The low word from FPR fs is placed into the low word of GPR rt. If GPR rt is 64 bits wide, then the value
is sign extended.

Restrictions:

For MIPS I, MIPS II, and MIPS III the contents of GPR rt are undefined for the instruction immediately
following MFC1.

Operation: MIPS I - III

I : word ← FGR[fs]31..0
I +1: GPR[rt] ← sign_extend(word)

Operation: MIPS IV

word ← FGR[fs]31..0
GPR[rt]← sign_extend(word)

Exceptions:
Coprocessor Unusable

11

31 2526 2021 1516

COP1 MF rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
� � ��

MOV.fmt Floating-Point Move
Format: MOV.S fd, fs MIPS I
MOV.D fd, fs

Purpose: To move an FP value between FPRs.

Description: fd ← fs

The value in FPR fs is placed into FPR fd. The source and destination are values in format fmt.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is
undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented Operation

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd MOV

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 1 00 0 0 0 0
� � ��

MOVF Move Conditional on FP False
Format: MOVF rd, rs, cc MIPS IV

Purpose: To test an FP condition code then conditionally move a GPR.

Description: if (cc = 0) then rd ← rs

 If the floating-point condition code specified by cc is zero, then the contents of GPR rs are placed into
GPR rd.

Restrictions:

None

Operation:

active ← FCC[cc] = tf
if active then

GPR[rd] ← GPR[rs]
endif

Exceptions:
Reserved Instruction
Coprocessor Unusable

31 2526 1516 0

6 35

6 5

6

SPECIAL

5

11 1021 20 18 17

5 1 1

0 MOVCItf0ccrs
00 0 0 0 0 0 0 0 0 0 0 10 0 0 0 00

rd

5

� � �	

MOVF.fmt Floating-Point Move Conditional on FP False
Format: MOVF.S fd, fs, cc MIPS IV
MOVF.D fd, fs, cc

Purpose: To test an FP condition code then conditionally move an FP value.

Description: if (cc = 0) then fd ← fs

If the floating-point condition code specified by cc is zero, then the value in FPR fs is placed into FPR fd.
The source and destination are values in format fmt.

If the condition code is not zero, then FPR fs is not copied and FPR fd contains its previous value in
format fmt. If fd did not contain a value either in format fmt or previously unused data from a load or move-to
operation that could be interpreted in format fmt, then the value of fd becomes undefined.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is
undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

if FCC[cc] = tf then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented operation

31 2526 1516 0

6 35

6 5

6

COP1

5

11 1021 20 18 17

5 1 1

fd
MOVCFtf0ccfmt

00 1 0 0 0 1 0 1 0 0 0 10
fs

55
� � �

MOVN.fmt Floating-Point Move Conditional on Not Zero
Format: MOVN.S fd, fs, rt MIPS IV
MOVN.D fd, fs, rt

Purpose: To test a GPR then conditionally move an FP value.

Description: if (rt ≠ 0) then fd ← fs

If the value in GPR rt is not equal to zero then the value in FPR fs is placed in FPR fd. The source and
destination are values in format fmt.

If GPR rt contains zero, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If
fd did not contain a value either in format fmt or previously unused data from a load or move-to operation
that could be interpreted in format fmt, then the value of fd becomes undefined.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must s.pecify FPRs valid for operands of type fmt. If they are not valid, the result is
undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

if GPR[rt] ≠ 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented operation

31 2526 1516 0

6 5 5

6 5

6

COP1

5

11 1021 20

5

fd MOVNfsrtfmt
0 1 0 0 0 1 0 1 0 0 1 1
� � ��

MOVT Move Conditional on FP True
Format: MOVT rd, rs, cc MIPS IV

Purpose: To test an FP condition code then conditionally move a GPR.

Description: if (cc = 1) then rd ← rs

If the floating-point condition code specified by cc is one then the contents of GPR rs are placed into
GPR rd.

Restrictions:

None

Operation:

if FCC[cc] = tf then
GPR[rd] ← GPR[rs]

endif

Exceptions:
Reserved Instruction
Coprocessor Unusable

31 2526 1516 0

6 3 5

6 5

6

SPECIAL

5

11 1021 20 18 17

5 1 1

0 MOVCIrdtf0ccrs
10 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0
� � ��

MOVT.fmt Floating-Point Move Conditional on FP True
Format: MOVT.S fd, fs, cc MIPS IV
MOVT.D fd, fs, cc

Purpose: To test an FP condition code then conditionally move an FP value.

Description: if (cc = 1) then fd ← fs

If the floating-point condition code specified by cc is one then the value in FPR fs is placed into FPR fd.
The source and destination are values in format fmt.

If the condition code is not one, then FPR fs is not copied and FPR fd contains its previous value in
format fmt. If fd did not contain a value either in format fmt or previously unused data from a load or move-to
operation that could be interpreted in format fmt, then the value of fd becomes undefined.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is
undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

if FCC[cc] = tf then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented operation

31 2526 1516 0

6 3 5

6 5

6

COP1

5

11 1021 20 18 17

5 1 1

fd
MOVCFfstf0ccfmt

10 1 0 0 0 1 0 1 0 0 0 10
� � ��

MOVZ.fmt Floating-Point Move Conditional on Zero
Format: MOVZ.S fd, fs, rt MIPS IV
MOVZ.D fd, fs, rt

Purpose: To test a GPR then conditionally move an FP value.

Description: if (rt = 0) then fd ← fs

If the value in GPR rt is equal to zero then the value in FPR fs is placed in FPR fd. The source and desti-
nation are values in format fmt.

If GPR rt is not zero, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If fd
did not contain a value either in format fmt or previously unused data from a load or move-to operation that
could be interpreted in format fmt, then the value of fd becomes undefined.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is
undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

if GPR[rt] = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented operation

31 2526 1516 0

6 5 5

6 5

6

COP1

5

11 1021 20

5

fd MOVZfsrtfmt
0 1 0 0 0 1 0 1 0 0 1 0
� � ��

MSUB.fmt Floating-Point Multiply Subtract
Format: MSUB.S fd, fr, fs, ft MIPS IV
MSUB.D fd, fr, fs, ft

Purpose: To perform a combined multiply-then-subtract of FP values.

Description: fd ← (fs × ft) - fr

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The value in
FPR fr is subtracted from the product. The subtraction result is calculated to infinite precision, rounded
according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are
values in format fmt.

The accuracy of the result depends which of two alternative arithmetic models is used by the implemen-
tation for the computation. The numeric models are explained in the section Arithmetic Instructions
earlier on in this Chapter.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the
result is undefined.

The operands must be values in format fmt. If they are not, the result is undefined and the value of the
operand FPRs becomes undefined.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs * vft) - vfr)

Exceptions:
Reserved Instruction
Coprocessor Unusable
Floating-Point

Inexact Unimplemented Operation
Invalid Operation Overflow
Underflow

31 2526 2021 1516

COP1X fr ft

6 5 5

fs fd

5 5 3

11 10 6 5 0

3

fmt
0 1 0 0 1 1

MSUB

3 2

1 0 1
� � ��

MTC1 Move Word to Floating-Point
Format: MTC1 rt, fs MIPS I

Purpose: To copy a word from a GPR to an FPU (CP1) general register.

Description: fs ← rt

The low word in GPR rt is placed into the low word of floating-point (coprocessor 1) general register fs. If
coprocessor 1 general registers are 64-bits wide, bits 63..32 of register fs become undefined.

Restrictions:

For MIPS I, MIPS II, and MIPS III the value of FPR fs is undefined for the instruction immediately
following MTC1.

Operation: MIPS I - III

I : data ← GPR[rt]31..0
I +1: if SizeFGR() = 64 then /* 64-bit wide FGRs */

FGR[fs] ← undefined32 || data
else /* 32-bit wide FGRs */

FGR[fs] ← data
endif

Operation: MIPS IV

data ← GPR[rt]31..0
if SizeFGR() = 64 then /* 64-bit wide FGRs */

FGR[fs] ← undefined32 || data
else /* 32-bit wide FGRs */

FGR[fs] ← data
endif

Exceptions:
Coprocessor Unusable

11

31 2526 2021 1516

COP1 MT rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0
� � ��

MUL.fmt Floating-Point Multiply
Format: MUL.S fd, fs, ft MIPS I
MUL.D fd, fs, ft

Purpose: To multiply FP values.

Description: fd ← fs × ft

The value in FPR fs is multiplied by the value in FPR ft. The result is calculated to infinite precision,
rounded according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result
are values in format fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result
is undefined.

The operands must be values in format fmt. If they are not, the result is undefined and the value of the
operand FPRs becomes undefined.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) * ValueFPR(ft, fmt))

Exceptions:
Coprocessor Unusable
Reserved Instruction
 Floating-Point

Inexact Unimplemented Operation
Invalid Operation Overflow
Underflow

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd MUL

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 1 0
� � ��

NEG.fmt Floating-Point Negate
Format: NEG.S fd, fs MIPS I
NEG.D fd, fs

Purpose: To negate an FP value.

Description: fd ← - (fs)

The value in FPR fs is negated and placed into FPR fd. The value is negated by changing the sign bit
value. The operand and result are values in format fmt.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is
undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented Operation
Invalid Operation

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd NEG

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 1 10 0 0 0 0
� � ��

NMADD.fmt Floating-Point Negative Multiply Add
Format: NMADD.S fd, fr, fs, ft MIPS IV
NMADD.D fd, fr, fs, ft

Purpose: To negate a combined multiply-then-add of FP values.

Description: fd ← - ((fs × ft) + fr)

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The value in
FPR fr is added to the product. The result sum is calculated to infinite precision, rounded according to the
current rounding mode in FCSR, negated by changing the sign bit, and placed into FPR fd. The operands
and result are values in format fmt.

The accuracy of the result depends which of two alternative arithmetic models is used by the implemen-
tation for the computation.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the
result is undefined.

The operands must be values in format fmt. If they are not, the result is undefined and the value of the
operand FPRs becomes undefined.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, -(vfr + vfs * vft))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Inexact Unimplemented Operation
Invalid Operation Overflow
Underflow

31 2526 2021 1516

COP1X fr ft

6 5 5

fs fd

5 5 3

11 10 6 5 0

3

fmt
0 1 0 0 1 1

NMADD

3 2

1 1 0
� � �	

NMSUB.fmt Floating-Point Negative Multiply Subtract
Format: NMSUB.S fd, fr, fs, ft MIPS IV
NMSUB.D fd, fr, fs, ft

Purpose: To negate a combined multiply-then-subtract of FP values.

Description: fd ← - ((fs × ft) - fr)

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The value in
FPR fr is subtracted from the product. The result is calculated to infinite precision, rounded according to the
current rounding mode in FCSR, negated by changing the sign bit, and placed into FPR fd. The operands
and result are values in format fmt.

The accuracy of the result depends which of two alternative arithmetic models is used by the implemen-
tation for the computation. The numeric models are explained in the section Arithmetic Instructions
earlier on in this Chapter.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the
result is undefined.

The operands must be values in format fmt. If they are not, the result is undefined and the value of the
operand FPRs becomes undefined.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, -((vfs * vft) - vfr))

Exceptions:
Reserved Instruction
Coprocessor Unusable
Floating-Point

Inexact Unimplemented Operation
Invalid Operation Overflow
Underflow

31 2526 2021 1516

COP1X fr ft

6 5 5

fs fd

5 5 3

11 10 6 5 0

3

fmt
0 1 0 0 1 1

NMSUB

3 2

1 1 1
� � �

PREFX Prefetch Indexed
Format: PREFX hint, index(base) MIPS IV

Purpose: To prefetch locations from memory (GPR+GPR addressing).

Description: prefetch_memory[base+index]

PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address.
It advises that data at the effective address may be used in the near future. The hint field supplies informa-
tion about the way that the data is expected to be used.

PREFX is an advisory instruction. It may change the performance of the program. For all hint values, it
neither changes architecturally-visible state nor alters the meaning of the program. An implementation may
do nothing when executing a PREFX instruction.

If MIPS IV instructions are supported and enabled and Coprocessor 1 is enabled (allowing access to
CP1X), PREFX does not cause addressing-related exceptions. If it raises an exception condition, the
exception condition is ignored. If an addressing-related exception condition is raised and ignored, no data
will be prefetched. Even if no data is prefetched in such a case, some action that is not architecturally-
visible, such as writeback of a dirty cache line, might take place.

PREFX will never generate a memory operation for a location with an uncached memory access type.

If PREFX results in a memory operation, the memory access type used for the operation is determined
by the memory access type of the effective address, just as it would be if the memory operation had been
caused by a load or store to the effective address.

PREFX enables the processor to take some action, typically prefetching the data into cache, to improve
program performance. The action taken for a specific PREFX instruction is both system and context depen-
dent. Any action, including doing nothing, is permitted that does not change architecturally-visible state or
alter the meaning of a program. It is expected that implementations will either do nothing or take an action
that will increase the performance of the program.

For a cached location, the expected, and useful, action is for the processor to prefetch a block of data
that includes the effective address. The size of the block, and the level of the memory hierarchy it is fetched
into are implementation specific.

The hint field supplies information about the way the data is expected to be used. No hint value causes
an action that modifies architecturally-visible state. A processor may use a hint value to improve the effec-
tiveness of the prefetch action. The defined hint values and the recommended prefetch action are shown in
the table below. The hint table may be extended in future implementations.

31 2526 2021 1516

COP1X base index

6 5 5

hint 0 PREFX

5 5 6

11 10 6 5 0

0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1
� � ��

PREFX Prefetch Indexed

Restrictions:

The Region bits of the effective address must be supplied by the contents of base. If

EffectiveAddress63..62 ≠ base63..62, the result of the instruction is undefined.

Operation:

vAddr ← GPR[base] + GPR[index]
(pAddr, uncached) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(uncached, pAddr, vAddr, DATA, hint)

Exceptions:
Reserved Instruction
Coprocessor Unusable

Programming Notes:

Prefetch can not prefetch data from a mapped location unless the translation for that location is present
in the TLB. Locations in memory pages that have not been accessed recently may not have translations in
the TLB, so prefetch may not be effective for such locations.

Prefetch does not cause addressing exceptions. It will not cause an exception to prefetch using an
address pointer value before the validity of a pointer is determined.

Implementation Notes:

It is recommended that a reserved hint field value either cause a default prefetch action that is expected
to be useful for most cases of data use, such as the “load” hint, or cause the instruction to be treated as a
NOP.

Table 0-1 Values of Hint Field for Prefetch Instruction

����� ��� !��� ��� ��� ������� ���"���# ������

0 load Data is expected to be loaded (not modified).
Fetch data as if for a load.

1 store Data is expected to be stored or modified.
Fetch data as if for a store.

2-3 Not yet defined.

4 load_streamed Data is expected to be loaded (not modified) but not reused extensively; it will “stream”
through cache.
Fetch data as if for a load and place it in the cache so that it will not displace data
prefetched as “retained”.

5 store_streamed Data is expected to be stored or modified but not reused extensively; it will “stream”
through cache.
Fetch data as if for a store and place it in the cache so that it will not displace data
prefetched as “retained”.

6 load_retained Data is expected to be loaded (not modified) and reused extensively; it should be
“retained” in the cache.
Fetch data as if for a load and place it in the cache so that it will not be displaced by
data prefetched as “streamed”.

7 store_retained Data is expected to be stored or modified and reused extensively; it should be
“retained” in the cache.
Fetch data as if for a store and place it in the cache so that will not be displaced by
data prefetched as “streamed”.

8-31 Not yet defined.
� � ��

RECIP.fmt Reciprocal Approximation
Format: RECIP.S fd, fs MIPS IV
RECIP.D fd, fs

Purpose: To approximate the reciprocal of an FP value (quickly).

Description: fd ← 1.0 / fs

The reciprocal of the value in FPR fs is approximated and placed into FPR fd.
The operand and result are values in format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy
specified by the IEEE 754 Floating-Point standard. The computed result differs from the both the exact
result and the IEEE-mandated representation of the exact result by no more than one unit in the least-
significant place (ulp).

It is implementation dependent whether the result is affected by the current rounding mode in FCSR.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is
undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Inexact Unimplemented Operation
Division-by-zero Invalid Operation
Overflow Underflow

31 2526 2021 1516

COP1 fmt 0

6 5 5

fs fd RECIP

5 5 6

11 10 6 5 0

0 1 0 0 0 1 0 1 0 1 0 10 0 0 0 0
� � ��

ROUND.L.fmt Floating-Point Round to Long Fixed-Point
Format: ROUND.L.S fd, fs MIPS III
ROUND.L.D fd, fs

Purpose: To convert an FP value to 64-bit fixed-point, rounding to nearest.

Description: fd ← convert_and_round(fs)

The value in FPR fs in format fmt, is converted to a value in 64-bit long fixed-point format rounding to
nearest/even (rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result
cannot be represented correctly and an IEEE Invalid Operation condition exists. The result depends on the
FP exception model currently active.

◆ Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid Operation
enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 263–1, is written to fd.

◆ Imprecise exception model (R8000 normal mode): The default result, 263–1, is written to fd. No
FCSR flag is set. If the Invalid Operation enable bit is set in the FCSR, an Invalid Operation excep-
tion is taken, imprecisely, at some future time.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed-point. If they are not
valid, the result is undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Inexact Unimplemented Operation
Overflow Invalid Operation

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ROUND.L

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
� � ��

ROUND.W.fmt Floating-Point Round to Word Fixed-Point
Format: ROUND.W.S fd, fs MIPS II
ROUND.W.D fd, fs

Purpose: To convert an FP value to 32-bit fixed-point, rounding to nearest.

Description: fd ← convert_and_round(fs)

The value in FPR fs in format fmt, is converted to a value in 32-bit word fixed-point format rounding to
nearest/even (rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result
cannot be represented correctly and an IEEE Invalid Operation condition exists. The result depends on the
FP exception model currently active.

◆ Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid Operation
enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 231–1, is written to fd.

◆ Imprecise exception model (R8000 normal mode): The default result, 231–1, is written to fd. No
FCSR flag is set. If the Invalid Operation enable bit is set in the FCSR, an Invalid Operation excep-
tion is taken, imprecisely, at some future time.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed-point. If they are not
valid, the result is undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Inexact Unimplemented Operation
Invalid Operation Overflow

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ROUND.W

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 1 1 0 00 0 0 0 0
� � ��

RSQRT.fmt Reciprocal Square Root Approximation
Format: RSQRT.S fd, fs MIPS IV
RSQRT.D fd, fs

Purpose: To approximate the reciprocal of the square root of an FP value (quickly).

Description: fd ← 1.0 / sqrt(fs)

The reciprocal of the positive square root of the value in FPR fs is approximated and placed into FPR fd.
The operand and result are values in format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy
specified by the IEEE 754 Floating-Point standard. The computed result differs from the both the exact
result and the IEEE-mandated representation of the exact result by no more than two units in the least-
significant place (ulp).

It is implementation dependent whether the result is affected by the current rounding mode in FCSR.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is
undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Inexact Unimplemented Operation
Division-by-zero Invalid Operation
Overflow Underflow

31 2526 2021 1516

COP1 fmt 0

6 5 5

fs fd RSQRT

5 5 6

11 10 6 5 0

0 1 0 1 1 00 1 0 0 0 1 0 0 0 0 0
� � ��

SDC1 Store Doubleword from Floating-Point
Format: SDC1 ft, offset(base) MIPS II

Purpose: To store a doubleword from an FPR to memory.

Description: memory[base+offset] ← ft

The 64-bit doubleword in FPR ft is stored in memory at the location specified by the aligned effective
address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register emulation
mode in a 64-bit processor), FPR ft is held in an even/odd register pair. The low word is taken from the even
register ft and the high word is from ft+1.

Restrictions:

If ft does not specify an FPR that can contain a doubleword, the result is undefined.

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

MIPS IV: The low-order 3 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation(vAddr, DATA, STORE)
if SizeFGR() = 64 then /* 64-bit wide FGRs */

data ← FGR[ft]
elseif ft0 = 0 then /* valid specifier, 32-bit wide FGRs */

data ← FGR[ft+1] || FGR[ft]
else /* undefined for odd 32-bit FGRs */

UndefinedResult()
endif
StoreMemory(uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:
Coprocessor unusable
Reserved Instruction
TLB Refill, TLB Invalid
TLB Modified
Address Error

31 2526 2021 1516 0

SDC1 base ft offset

6 5 5 16

1 1 1 1 0 1
� � ��

SDXC1 Store Doubleword Indexed from Floating-Point
Format: SDXC1 fs, index(base) MIPS IV

Purpose: To store a doubleword from an FPR to memory (GPR+GPR addressing).

Description: memory[base+index] ← fs

The 64-bit doubleword in FPR fs is stored in memory at the location specified by the aligned effective
address. The contents of GPR index and GPR base are added to form the effective address.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register emulation
mode in a 64-bit processor), FPR fs is held in an even/odd register pair. The low word is taken from the
even register fs and the high word is from fs+1.

Restrictions:

If fs does not specify an FPR that can contain a doubleword, the result is undefined.

The Region bits of the effective address must be supplied by the contents of base. If

EffectiveAddress63..62 ≠ base63..62, the result is undefined.

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

MIPS IV: The low-order 3 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr2..0 ≠ 03 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation(vAddr, DATA, STORE)
if SizeFGR() = 64 then /* 64-bit wide FGRs */

data ← FGR[fs]
elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */

data ← FGR[fs+1] || FGR[fs]
else /* undefined for odd 32-bit FGRs */

UndefinedResult()
endif
StoreMemory(uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Address Error
Reserved Instruction
Coprocessor Unusable

31 2526 2021 1516

COP1X base index

6 5 5

fs 0 SDXC1

5 5 6

11 10 6 5 0

0 0 1 0 0 10 1 0 0 1 1
� � ��

SQRT.fmt Floating-Point Square Root
Format: SQRT.S fd, fs MIPS II
SQRT.D fd, fs

Purpose: To compute the square root of an FP value.

Description: fd ← SQRT(fs)

The square root of the value in FPR fs is calculated to infinite precision, rounded according to the
current rounding mode in FCSR, and placed into FPR fd. The operand and result are values in format fmt.

If the value in FPR fs corresponds to –0, the result will be –0.

Restrictions:

If the value in FPR fs is less than 0, an Invalid Operation condition is raised.

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is
undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Unimplemented Operation
Invalid Operation
Inexact

31 0

6 5 5 5 5 6

COP1 fmt fs fd SQRT

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 0 0
0

0 0 0 0 0
� � �	

SUB.fmt Floating-Point Subtract
Format: SUB.S fd, fs, ft MIPS I
SUB.D fd, fs, ft

Purpose: To subtract FP values.

Description: fd ← fs - ft

The value in FPR ft is subtracted from the value in FPR fs. The result is calculated to infinite precision,
rounded according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result
are values in format fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result
is undefined.

The operands must be values in format fmt. If they are not, the result is undefined and the value of the
operand FPRs becomes undefined.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) – ValueFPR(ft, fmt))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Inexact Unimplemented Operation
Invalid Operation Overflow
Underflow

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd SUB

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 1
� � �

SWC1 Store Word from Floating-Point
Format: SWC1 ft, offset(base) MIPS I

Purpose: To store a word from an FPR to memory.

Description: memory[base+offset] ← ft

The low 32-bit word from FPR ft is stored in memory at the location specified by the aligned effective
address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

MIPS IV: The low-order 2 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation: 32-bit Processors

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
data ← FGR[ft]
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Operation: 64-bit Processors

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
bytesel ← vAddr2..0 xor (BigEndianCPU || 02)
/* the bytes of the word are moved into the correct byte lanes */
if SizeFGR() = 64 then /* 64-bit wide FGRs */

data ← 032-8*bytesel || FGR[ft]31..0 || 08*bytesel/* top or bottom wd of 64-bit data */
else /* 32-bit wide FGRs */

data ← 032-8*bytesel || FGR[ft] || 08*bytesel /* top or bottom wd of 64-bit data */
endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:
Coprocessor unusable
Reserved Instruction
TLB Refill, TLB Invalid
TLB Modified
Address Error

31 2526 2021 1516 0

SWC1 base ft offset

6 5 5 16

1 1 1 0 0 1
� � ��

SWXC1 Store Word Indexed from Floating-Point
Format: SWXC1 fs, index(base) MIPS IV

Purpose: To store a word from an FPR to memory (GPR+GPR addressing).

Description: memory[base+index] ← fs

The low 32-bit word from FPR fs is stored in memory at the location specified by the aligned effective
address. The contents of GPR index and GPR base are added to form the effective address.

Restrictions:

The Region bits of the effective address must be supplied by the contents of base. If

EffectiveAddress63..62 ≠ base63..62, the result is undefined.

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

MIPS IV: The low-order 2 bits of the offset field must be zero. If they are not, the result of the instruction
is undefined.

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr1..0 ≠ 02 then SignalException(AddressError) endif
(pAddr, uncached) ← AddressTranslation(vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
bytesel ← vAddr2..0 xor (BigEndianCPU || 02)
/* the bytes of the word are moved into the correct byte lanes */
if SizeFGR() = 64 then /* 64-bit wide FGRs */

data ← 032-8*bytesel || FGR[fs]31..0 || 08*bytesel/* top or bottom wd of 64-bit data */
else /* 32-bit wide FGRs */

data ← 032-8*bytesel || FGR[fs] || 08*bytesel /* top or bottom wd of 64-bit data */
endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Address Error
Reserved Instruction
Coprocessor Unusable

31 2526 2021 1516

COP1X base index

6 5 5

fs 0 SWXC1

5 5 6

11 10 6 5 0

0 0 1 0 0 00 1 0 0 1 1
� � ��

TRUNC.L.fmt Floating-Pt Truncate to Long Fixed-Pt
Format: TRUNC.L.S fd, fs MIPS III
TRUNC.L.D fd, fs

Purpose: To convert an FP value to 64-bit fixed-point, rounding toward zero.

Description: fd ← convert_and_round(fs)

The value in FPR fs in format fmt, is converted to a value in 64-bit long fixed-point format rounding
toward zero (rounding mode 1). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result
cannot be represented correctly and an IEEE Invalid Operation condition exists. The result depends on the
FP exception model currently active.

◆ Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid Operation
enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 263–1, is written to fd.

◆ Imprecise exception model (R8000 normal mode): The default result, 263–1, is written to fd. No
FCSR flag is set. If the Invalid Operation enable bit is set in the FCSR, an Invalid Operation excep-
tion is taken, imprecisely, at some future time.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed-point. If they are not
valid, the result is undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Inexact Unimplemented Operation
Invalid Operation Overflow

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd TRUNC.L

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 01
� � ��

TRUNC.W.fmt Floating-Point Truncate to Word Fixed-Point
Format: TRUNC.W.S fd, fs MIPS II
TRUNC.W.D fd, fs

Purpose: To convert an FP value to 32-bit fixed-point, rounding toward zero.

Description: fd ← convert_and_round(fs)

The value in FPR fs in format fmt, is converted to a value in 32-bit word fixed-point format using
rounding toward zero (rounding mode 1)). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result
cannot be represented correctly and an IEEE Invalid Operation condition exists. The result depends on the
FP exception model currently active.

◆ Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid Operation
enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is taken
immediately. Otherwise, the default result, 231–1, is written to fd.

◆ Imprecise exception model (R8000 normal mode): The default result, 231–1, is written to fd. No
FCSR flag is set. If the Invalid Operation enable bit is set in the FCSR, an Invalid Operation excep-
tion is taken, imprecisely, at some future time.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed-point. If they are not
valid, the result is undefined.

The operand must be a value in format fmt. If it is not, the result is undefined and the value of the
operand FPR becomes undefined.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point

Inexact Invalid Operation
Overflow Unimplemented Operation

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd TRUNC.W

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 1 1 0 10 0 0 0 0
� � ��

TRUNC.W.fmt Floating-Point Truncate to Word Fixed-Point
� � ��

TRUNC.W.fmt Floating-Point Truncate to Word Fixed-Point
� � ��

�����

� � �
������� 	
��� ����	
�����

�������
An FPU instruction is a single 32-bit aligned word. The distinct FP instruction layouts are shown
below. Variable information is in lower-case labels, such as “offset”. Upper-case labels and any
numbers indicate constant data. A table follows all the layouts that explains the fields used in them.
Note that the same field may have different names in different instruction layout pictures. The field
name is mnemonic to the function of that field in the instruction layout. The opcode tables and the
instruction decode discussion use the canonical field names: opcode, fmt, nd, tf, and function. The
other fields are not used for instruction decode.

31 25 21 20 16 015

offset

26

ftbaseopcode

6 5 5 16

Immediate: load/store using register + offset addressing.

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd function

11 1021 20 16 1526 25 6 5

Register: 2-register and 3-register formatted arithmetic operations.

31 0

6 5 5 5 11

COP1 sub rt fs 0

11 1021 20 16 1526 25

Register Immediate: data transfer -- CPU ´ FPU register.

 15

BC

31 2526

COP1

6

0

16

offset

21 20

5 3

ndcc

1 1

tf

18

Condition code, Immediate: conditional branches on FPU cc using PC + offset.

17 16

31 0

6 5 5 5 3

COP1 fmt ft fs cc

11 1021 20 16 1526 25 6 5

0

2

 78

4

Register to Condition Code: formatted FP compare.

function

31 0

6 5 5 5 5 6

COP1 fmt cc fs fd MOVCF

11 1021 20 1526 25 6 5

11

18

0 tf

Condition Code, Register FP: FPU register move-conditional on FP cc.

17 16

FPU Instructions Encoding
31 0

6 5 5 5 5 3

COP1X fr ft fs fd op4

11 1021 20 16 1526 25 6 5

fmt3

3

 23
function

Register-4: 4-register formatted arithmetic operations.

31 0

6 5 5 5 5 6

COP1X base index 0 fd function

11 1021 20 16 1526 25 6 5

Register Index: Load/store using register + register addressing.

31 0

6 5 5 5 5 6

COP1X base index hint 0 PREFX

11 1021 20 16 1526 25 6 5

Register Index hint: Prefetch using register + register addressing.

31 0

6 5 5 5 5 6

SPECIAL rs cc rd 0 MOVCI

11 1021 20 1526 25 6 5

11

18

0 tf

Condition Code, Register Integer: CPU register move-conditional on FP cc.

17 16
� � �

FPU Instructions Encoding FPU (CP1) Instruction Opcode Bit Encoding
���
��� ����������� ������ ��� ��������
This section describes the encoding of the Floating-Point Unit (FPU) instructions for the four levels of

the MIPS architecture, MIPS I through MIPS IV. Each architecture level includes the instructions in the

previous level;1 MIPS IV includes all instructions in MIPS I, MIPS II, and MIPS III. This section presents
eight different views of the instruction encoding.

◆ Separate encoding tables for each architecture level.
◆ A MIPS IV encoding table showing the architecture level at which each opcode was originally

defined and subsequently modified (if modified).
◆ Separate encoding tables for each architecture revision showing the changes made during that revi-

sion.

����������� ������
Instruction field names are printed in bold in this section.

BC Branch Conditional instruction subcode (op=COP1)

base CPU register: base address for address calculations

COP1 Coprocessor 1 primary opcode value in op field.

COP1X Coprocessor 1 eXtended primary opcode value in op field.

cc condition code specifier. For architecture levels prior to MIPS IV it must be zero.

fd FPU register: destination (arithmetic, loads, move-to) or source (stores, move-from)

fmt destination and/or operand type (“format”) specifier

fr FPU register: source

fs FPU register: source

ft FPU register: source (for stores, arithmetic) or destination (for loads)

function function field specifying a function within a particular op operation code.

function: op4 +
fmt3

op4 is a 3-bit function field specifying which 4-register arithmetic operation for COP1X, fmt3 is a 3-bit
field specifying the format of the operands and destination. The combinations are shown as several dis-
tinct instructions in the opcode tables.

hint hint field made available to cache controller for prefetch operation

index CPU register, holds index address component for address calculations

MOVC
Value in function field for conditional move. There is one value for the instruction with op=COP1, another
for the instruction with op=SPECIAL.

nd
nullify delay. If set, branch is Likely and delay slot instruction is not executed. This must be zero for MIPS
I.

offset signed offset field used in address calculations

op primary operation code (COP1, COP1X, LWC1, SWC1, LDC1, SDC1, SPECIAL)

PREFX Value in function field for prefetch instruction for op=COP1X

rd CPU register: destination

rs CPU register: source

rt CPU register: source / destination

SPECIAL SPECIAL primary opcode value in op field.

sub Operation subcode field for COP1 register immediate mode instructions.

tf true/false. The condition from FP compare is tested for equality with tf bit.

1. An exception to this rule is that the reserved, but never implemented, Coprocessor 3 instructions were
removed or changed to another use starting in MIPS III.
� � �

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors
The primary opcode field is decoded first. The opcode values LWC1, SWC1, LDC1, and SDC1 fully
specify FPU load and store instructions. The opcode values COP1, COP1X, and SPECIAL specify instruc-
tion classes. Instructions within a class are further specified by values in other fields.

�
�� ���������� �����

The opcode=COP1 instruction class encodes most of the FPU instructions. The class is further
decoded by examining the fmt field. The fmt values fully specify the CPU ↔ FPU register move instruc-
tions and specify the S, D, W, L, and BC instruction classes.

The opcode=COP1 + fmt=BC instruction class encodes the conditional branch instructions. The class
is further decoded, and the instructions fully specified, by examining the nd and tf fields.

The opcode=COP1 + fmt=(S, D, W, or L) instruction classes encode instructions that operate on
formatted (typed) operands. Each of these instruction classes is further decoded by examining the function
field. With one exception the function values fully specify instructions. The exception is the MOVCF
instruction class.

The opcode=COP1 + fmt=(S or D) + function=MOVCF instruction class encodes the MOVT.fmt and
MOVF.fmt conditional move instructions (to move FP values based on FP condition codes). The class is
further decoded, and the instructions fully specified, by examining the tf field.

�
��� ���������� �����

The opcode=COP1X instruction class encodes the indexed load/store instructions, the indexed
prefetch, and the multiply accumulate instructions. The class is further decoded, and the instructions fully
specified, by examining the function field.

������ ���������� �����

The opcode=SPECIAL instruction class is further decoded by examining the function field. The only
function value that applies to FPU instruction encoding is the MOVCI instruction class. The remainder of
the function values encode CPU instructions.

The opcode=SPECIAL + function=MOVCI instruction class encodes the MOVT and MOVF conditional
move instructions (to move CPU registers based on FP condition codes). The class is further decoded, and
the instructions fully specified, by examining the tf field.

����������� ������� �� ���� ��� ��� ���� � ����������
MIPS III processors, such as the RC4000, RC4200, RC4300, RC4400, and RC4600, have a processor

mode in which only the MIPS II instructions are valid. The MIPS II encoding table describes the MIPS II-
only mode.

MIPS IV processors, such as the R8000 and R10000, have processor modes in which only the MIPS II
or MIPS III instructions are valid. The MIPS II encoding table describes the MIPS II-only mode. The MIPS III
encoding table describes the MIPS III-only mode.
� � �

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors

Instructions encoded by the opcode field.

opcode bits 28..26

bits
31..29

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 c

1 001

2 010 COP1 δ

3 011

4 100

5 101

6 110 LWC1

7 111 SWC1

fmt bits 23..21

bits
25..24

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 00 MFC1 * CFC1 * MTC1 * CTC1 *

1 01 BC δ * * * * * * *

2 10 S δ D δ * * W δ * * *

3 11 * * * * * * * *

Instructions encoded by the tf field when opcode=COP1 and fmt=BC.

t
f

bit 16

0 1

BC1F BC1T

31 26

opcode

0

31 26
opcode

 25 21

fmt

0

= COP1

31 26
opcode

 25 21
fmt

16
t
f

0

= BC= COP1
� � �

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors

Instructions encoded by the function field when opcode=COP1 and fmt = S, D, or W

encoding when
fmt = S

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV * ABS MOV NEG

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 * CVT.D * * CVT.W * * *

5 101 * * * * * * * *

6 110 C.F α C.UN α C.EQ α C.UEQ α C.OLT α C.ULT α C.OLE α C.ULE α

7 111 C.SF α C.NGLE α C.SEQ α C.NGL α C.LT α C.NGE α C.LE α C.NGT α

encoding when
fmt = D

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV * ABS MOV NEG

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S * * * CVT.W * * *

5 101 * * * * * * * *

6 110 C.F α C.UN α C.EQ α C.UEQ α C.OLT α C.ULT α C.OLE α C.ULE α

7 111 C.SF α C.NGLE α C.SEQ α C.NGL α C.LT α C.NGE α C.LE α C.NGT α

encoding when
fmt = W

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

31 26
opcode

 25 21
fmt

0

= COP1 = S function

31 26
opcode

 25 21
fmt

0

= COP1 = D function

31 26
opcode

 25 21
fmt

0

= COP1 = W function
� � �

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors

Instructions encoded by the opcode field.

opcode bits 28..26

bits
31..29

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 c

1 001

2 010 COP1 δ

3 011

4 100

5 101

6 110 LWC1 LDC1

7 111 SWC1 SDC1

fmt bits 23.21

bits
25..24

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 00 MFC1 * CFC1 * MTC1 * CTC1 *

1 01 BC δ * * * * * * *

2 10 S δ D δ * * W δ * * *

3 11 * * * * * * * *

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

t
f

bit 16

n
d

0 1

0 BC1F BC1T

bit 17 1 BC1FL BC1TL

31 26

opcode

0

31 26
opcode

 25 21

fmt

0

= COP1

31 26
opcode

 25 21
fmt

17 16
n t
d f

0

= BC= COP1
� � 	

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors

Instructions encoded by the function field when opcode=COP1 and fmt = S, D, or W

encoding when
fmt = S

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 * * * *
ROUND.
W

TRUNC.W CEIL.W FLOOR.W

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 * CVT.D * * CVT.W * * *

5 101 * * * * * * * *

6 110 C.F α C.UN α C.EQ α C.UEQ α C.OLT α C.ULT α C.OLE α C.ULE α
7 111 C.SF α C.NGLE α C.SEQ α C.NGL α C.LT α C.NGE α C.LE α C.NGT α

encoding when
fmt = D

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 * * * *
ROUND.
W

TRUNC.W CEIL.W FLOOR.W

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S * * * CVT.W * * *

5 101 * * * * * * * *

6 110 C.F α C.UN α C.EQ α C.UEQ α C.OLT α C.ULT α C.OLE α C.ULE α
7 111 C.SF α C.NGLE α C.SEQ α C.NGL α C.LT α C.NGE α C.LE α C.NGT α

31 26
opcode

 25 21
fmt

0

= COP1 = S function

31 26
opcode

 25 21
fmt

0

= COP1 = D function
� �

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors

encoding when
fmt = W

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Instructions encoded by the opcode field.

opcode bits 28..26

bits
31..29

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000

c

1 001
2 010 COP1 δ

3 011
4 100
5 101
6 110 LWC1 LDC1

7 111 SWC1 SDC1

fmt bits 23..21

bits
25..24

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 00 MFC1 DMFC1 CFC1 * MTC1 DMTC1 CTC1 *

1 01 BC δ * * * * * * *

2 10 S δ D δ * * W δ L δ * *

3 11 * * * * * * * *

31 26
opcode

 25 21
fmt

0

= COP1 = W function

31 26

opcode

0

31 26
opcode

 25 21

fmt

0

= COP1
� � �

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

t
f

bit 16

n
d

0 1
0 BC1F BC1T

bit 17 1 BC1FL BC1TL

Instructions encoded by the function field when opcode=COP1 and fmt = S, D, W, or L

encoding when
fmt = S

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L TRUNC.L CEIL.L FLOOR.L
ROUND.
W

TRUNC.W CEIL.W FLOOR.W

2 010 * * * * * * *

3 011 * * * * * * * *

4 100 * CVT.D * * CVT.W CVT.L * *

5 101 * * * * * * * *

6 110 C.F α C.UN α C.EQ α C.UEQ α C.OLT α C.ULT α C.OLE α C.ULE α
7 111 C.SF α C.NGLE α C.SEQ α C.NGL α C.LT α C.NGE α C.LE α C.NGT α

encoding when
fmt = D

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L TRUNC.L CEIL.L FLOOR.L
ROUND.
W

TRUNC.W CEIL.W FLOOR.W

2 010 * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S * * * CVT.W CVT.L * *

5 101 * * * * * * * *

6 110 C.F α C.UN α C.EQ α C.UEQ α C.OLT α C.ULT α C.OLE α C.ULE α
7 111 C.SF α C.NGLE α C.SEQ α C.NGL α C.LT α C.NGE α C.LE α C.NGT α

31 26
opcode

 25 21
fmt

17 16
n t
d f

0

= BC= COP1

31 26
opcode

 25 21
fmt

0

= COP1 = S function

31 26
opcode

 25 21
fmt

0

= COP1 = D function
� � ��

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors
encoding when
fmt = W or L

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Instructions encoded by the opcode field.

opcode bits 28..26

bits
31..29

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 SPECIAL δ, β

c

1 001
2 010 COP1 δ COP1X δ,λ

3 011
4 100
5 101
6 110 LWC1 LDC1

7 111 SWC1 SDC1

fmt bits 23..21

bits
25..24

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 00 MFC1 DMFC1 CFC1 * MTC1 DMTC1 CTC1 *

1 01 BC δ * * * * * * *

2 10 S δ D δ * * W δ L δ * *

3 11 * * * * * * * *

31 26
opcode

 25 21
fmt

0

= COP1 = W, L function

31 26

opcode

0

31 26
opcode

 25 21

fmt

0

= COP1
� � ��

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

t
f

bit 16

n
d

0 1
0 BC1F BC1T

bit 17 1 BC1FL BC1TL

Instructions encoded by the function field when opcode=COP1 and fmt = S, D, W, or L

encoding when
fmt = S

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L TRUNC.L CEIL.L FLOOR.L
ROUND.
W

TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCF δ MOVZ MOVN * RECIP RSQRT
3 011 * * * * * * * *

4 100 * CVT.D * * CVT.W CVT.L * *

5 101 * * * * * * * *

6 110 C.F α C.UN α C.EQ α C.UEQ α C.OLT α C.ULT α C.OLE α C.ULE α
7 111 C.SF α C.NGLE α C.SEQ α C.NGL α C.LT α C.NGE α C.LE α C.NGT α

encoding when
fmt = D

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L TRUNC.L CEIL.L FLOOR.L
ROUND.
W

TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCF δ MOVZ MOVN * RECIP RSQRT
3 011 * * * * * * * *

4 100 CVT.S * * * CVT.W CVT.L * *

5 101 * * * * * * * *

6 110 C.F α C.UN α C.EQ α C.UEQ α C.OLT α C.ULT α C.OLE α C.ULE α
7 111 C.SF α C.NGLE α C.SEQ α C.NGL α C.LT α C.NGE α C.LE α C.NGT α

31 26
opcode

 25 21
fmt

17 16
n t
d f

0

= BC= COP1

31 26
opcode

 25 21
fmt

0

= COP1 = S function

31 26
opcode

 25 21
fmt

0

= COP1 = D function
� � ��

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors

encoding when
fmt = W or L

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Instructions encoded by the function field when opcode=COP1X.

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 LWXC1 LDXC1 * * * * * *

1 001 SWXC1 SDXC1 * * * * * PREFX
2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 MADD.S MADD.D * * * * * *

5 101 MSUB.S MSUB.D * * * * * *

6 110 NMADD.S NMADD.D * * * * * *

7 111 NMSUB.S NMSUB.D * * * * * *

Instructions encoded by the tf field when opcode=COP1, fmt = S or D, and function=MOVCF.

t
f

 bit 16 0 1 These are the MOVF.fmt and MOVT.fmt instructions.
They should not be confused with MOVF and MOVT.MOVF (fmt) MOVT (fmt)

31 26
opcode

 25 21
fmt

0

= COP1 = W, L function

31 26
opcode

function

 5 0

= COP1X

31 26
opcode function

 5 0

= COP1 = MOVCF

16
t
f

 25 21
fmt

= S, D
� � ��

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors
.

Instruction class encoded by the function field when opcode=SPECIAL.

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 MOVCI δ
c...

7 111

Instructions encoded by the tf field when opcode = SPECIAL and function=MOVCI.

t
f

 bit 16 0 1 These are the MOVF and MOVT instructions. They should
not be confused with MOVF.fmt and MOVT.fmt.MOVF MOVT

The architecture level in which each MIPS IVencoding was defined is indicated by a subscript 1, 2, 3, or 4
(for architecture level I, II, III, or IV). If an instruction or instruction class was later extended, the extending
level is indicated after the defining level.

Instructions encoded by the opcode field.

opcode bits 28..26 Architecture level is shown by a subscript 1, 2, III, or 4.

bits
31..29

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 SPECIAL β 4

c

1 001
2 010 COP1 1,2,3,4 COP1X 4

3 011
4 100
5 101
6 110 LWC1 1 LDC1 2

7 111 SWC1 1 SDC1 2

31 26
opcode

function

 5 0

= SPECIAL

31 26
opcode function

 5 0

= SPECIAL = MOVCI

16
t
f

31 26

opcode

0

� � ��

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors

fmt bits 23..21 Architecture level is shown by a subscript 1, 2, 3, or 4.

bits
25..24

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 00 MFC1 1 DMFC1 3 CFC1 1 * 1 MTC1 1 DMTC1 3 CTC1 1 * 1

1 01 BC 1,2,4 * 1 * 1 * 1 * 1 * 1 * 1 * 1

2 10 S 1,2,3,4 D 1,2,3,4 * 1 * 1 W 1,2,3,4 L 3,4 * 1 * 1

3 11 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

t
f

bit 16 Architecture level is shown by a subscript 1, 2, 3, or 4.

n
d

0 1
0 BC1F 1, 4 BC1T 1, 4

bit 17 1 BC1FL 2, 4 BC1TL 2, 4

Instructions encoded by the function field when opcode=COP1 and fmt = S, D, W, or L

encoding when
fmt = S

function bits 2..0 Architecture level is shown by a subscript 1, 2, 3, or 4.

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 ADD 1 SUB 1 MUL 1 DIV 1 SQRT 2 ABS 1 MOV 1 NEG 1

1 001
ROUND.L

3

TRUNC.L

3
CEIL.L 3

FLOOR.L

3

ROUND.W

2

TRUNC.W

2
CEIL.W 2

FLOOR.W

2

2 010 * 1 MOVCF 4 MOVZ 4 MOVN 4 * 1 RECIP 4 RSQRT 4 * 1
3 011 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

4 100 * 1 CVT.D 1, 3 * 1 * 1 CVT.W 1 CVT.L 3 * 1 * 1

5 101 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

6 110 C.F 1, 4 C.UN 1, 4 C.EQ 1, 4 C.UEQ 1, 4 C.OLT 1, 4 C.ULT 1, 4 C.OLE 1, 4 C.ULE 1, 4

7 111 C.SF 1, 4
C.NGLE 1,

4
C.SEQ 1, 4 C.NGL 1, 4 C.LT 1, 4 C.NGE 1, 4 C.LE 1, 4 C.NGT 1, 4

31 26
opcode

 25 21

fmt

0

= COP1

31 26
opcode

 25 21
fmt

17 16
n t
d f

0

= BC= COP1

31 26
opcode

 25 21
fmt

0

= COP1 = S function
� � ��

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors
encoding when
fmt = D

function bits 2..0 Architecture level is shown by a subscript 1, 2, 3, or 4.

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 ADD 1 SUB 1 MUL 1 DIV 1 SQRT 2 ABS 1 MOV 1 NEG 1

1 001
ROUND.L

3

TRUNC.L

3
CEIL.L 3

FLOOR.L

3

ROUND.W

2

TRUNC.W

2
CEIL.W 2

FLOOR.W

2

2 010 * 1 MOVCF 4 MOVZ 4 MOVN 4 * 1 RECIP 4 RSQRT 4 * 1
3 011 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

4 100 CVT.S 1, 3 * 1 * 1 * 1 CVT.W 1 CVT.L 3 * 1 * 1

5 101 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

6 110 C.F 1, 4 C.UN 1, 4 C.EQ 1, 4 C.UEQ 1, 4 C.OLT 1, 4 C.ULT 1, 4 C.OLE 1, 4 C.ULE 1, 4

7 111 C.SF 1, 4
C.NGLE 1,

4
C.SEQ 1, 4 C.NGL 1, 4 C.LT 1, 4 C.NGE 1, 4 C.LE 1, 4 C.NGT 1, 4

encoding when
fmt = W or L

function bits 2..0 Architecture level is shown by a subscript 1, 2, 3, or 4.

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

1 001 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

2 010 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

3 011 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

4 100 CVT.S 1, 3 CVT.D 1, 3 * 1 * 1 * 1 * 1 * 1 * 1

5 101 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

6 110 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

7 111 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

31 26
opcode

 25 21
fmt

0

= COP1 = D function

31 26
opcode

 25 21
fmt

0

= COP1 = W, L function
� � ��

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors

Instructions encoded by the function field when opcode=COP1X.

function bits 2..0 Architecture level is shown by a subscript 1, 2, 3, or 4.

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 LWXC1 4 LDXC1 4 * 4 * 4 * 4 * 4 * 4 * 4

1 001 SWXC1 4 SDXC1 4 * 4 * 4 * 4 * 4 * 4 PREFX 4
2 010 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4

3 011 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4

4 100 MADD.S 4 MADD.D 4 * 4 * 4 * 4 * 4 * 4 * 4

5 101 MSUB.S 4 MSUB.D 4 * 4 * 4 * 4 * 4 * 4 * 4

6 110 NMADD.S 4 NMADD.D 4 * 4 * 4 * 4 * 4 * 4 * 4

7 111 NMSUB.S 4 NMSUB.D 4 * 4 * 4 * 4 * 4 * 4 * 4

Instructions encoded by the tf field when opcode=COP1, fmt = S or D, and function=MOVCF.

t
f

 bit 16 0 1 These are the MOVF.fmt and MOVT.fmt instructions.
They should not be confused with MOVF and MOVT.MOVF (fmt) 4 MOVT (fmt) 4

Instruction class encoded by the function field when opcode=SPECIAL.

function bits 2..0 Architecture level is shown by a subscript 1, 2, 3, or 4.

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 MOVCI 4
c...

7 111

Instructions encoded by the tf field when opcode = SPECIAL and function=MOVCI.

t
f

 bit 16 0 1 These are the MOVF and MOVT instructions. They should
not be confused with MOVF.fmt and MOVT.fmt.MOVF 4 MOVT 4

31 26
opcode

function

 5 0

= COP1X

31 26
opcode function

 5 0

= COP1 = MOVCF

16
t
f

 25 21
fmt

= S, D

31 26
opcode

function

 5 0

= SPECIAL

31 26
opcode function

 5 0

= SPECIAL = MOVCI

16
t
f

� � �	

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors

An instruction encoding is shown if the instruction is added or extended in this architecture revision. An
instruction class, like COP1, is shown if the instruction class is added in this architecture revision.

Instructions encoded by the opcode field.

opcode bits 28..26

bits
31..29

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000
1 001
2 010
3 011
4 100
5 101
6 110 LDC1

7 111 SDC1

fmt bits 23..21

bits
25..24

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 00
1 01
2 10
3 11

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

t
f

bit 16

n
d

0 1
0

bit 17 1 BC1FL BC1TL

31 26

opcode

0

31 26
opcode

 25 21

fmt

0

= COP1

31 26
opcode

 25 21
fmt

17 16
n t
d f

0

= BC= COP1
� � �

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors
.

Instructions encoded by the function field when opcode=COP1 and fmt = S, D, or W

encoding when
fmt = S

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 SQRT

1 001
ROUND.
W

TRUNC.W CEIL.W FLOOR.W

2 010
3 011
4 100
5 101
6 110
7 111

encoding when
fmt = D

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 SQRT

1 001
ROUND.
W

TRUNC.W CEIL.W FLOOR.W

2 010
3 011
4 100
5 101
6 110
7 111

31 26
opcode

 25 21
fmt

0

= COP1 = S function

31 26
opcode

 25 21
fmt

0

= COP1 = D function
� � ��

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors

encoding when
fmt = W

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

An instruction encoding is shown if the instruction is added or extended in this architecture revision. An
instruction class, like COP1, is shown if the instruction class is added in this architecture revision.

Instructions encoded by the opcode field.

opcode bits 28..26

bits
31..29

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Instructions encoded by the fmt field when opcode=COP1.

fmt bits 23..21

bits
25..24

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 00 DMFC1 DMTC1

1 01
2 10 L δ

3 11

31 26
opcode

 25 21
fmt

0

= COP1 = W function

31 26

opcode

0

31 26
opcode

 25 21

fmt

0

= COP1
� � ��

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors
.

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

t
f

bit 16

n
d

0 1
0

bit 17 1 BC1FL BC1TL

Instructions encoded by the function field when opcode=COP1 and fmt = S, D, or L.

encoding when
fmt = S

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000
1 001 ROUND.L TRUNC.L CEIL.L FLOOR.L
2 010
3 011
4 100 CVT.L
5 101
6 110
7 111

encoding when
fmt = D

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000
1 001 ROUND.L TRUNC.L CEIL.L FLOOR.L
2 010
3 011
4 100 CVT.L
5 101
6 110
7 111

31 26

opcode
 25 21

fmt
17 16

n t
d f

0

= BC= COP1

31 26
opcode

 25 21
fmt

0

= COP1 = S function

31 26
opcode

 25 21
fmt

0

= COP1 = D function
� � ��

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors
.

encoding when
fmt = L

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

An instruction encoding is shown if the instruction is added or extended in this architecture revision. An
instruction class, like COP1X, is shown if the instruction class is added in this architecture revision.

Instructions encoded by the opcode field.

opcode bits 28..26

bits
31..29

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000
1 001
2 010 COP1X δ

3 011
4 100
5 101
6 110
7 111

Instructions encoded by the fmt field when opcode=COP1.

fmt bits 23..21

bits
25..24

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 00
1 01
2 10
3 11

31 26
opcode

 25 21
fmt

0

= COP1 = L function

31 26

opcode

0

31 26
opcode

 25 21

fmt

0

= COP1
� � ��

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors
Table 6-15 (cont.)

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

t
f

bit 16

n
d

0 1
0 BC1F BC1T

bit 17 1 BC1FL BC1TL

Instructions encoded by the function field when opcode=COP1 and fmt = S, D, W, or L.

encoding when
fmt = S

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000
1 001
2 010 MOVCF δ MOVZ MOVN RECIP RSQRT
3 011
4 100
5 101
6 110 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE
7 111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

encoding when
fmt = D

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000
1 001
2 010 MOVCF δ MOVZ MOVN RECIP RSQRT
3 011
4 100
5 101
6 110 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE
7 111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

31 26
opcode

 25 21
fmt

17 16
n t
d f

0

= BC= COP1

31 26
opcode

 25 21
fmt

0

= COP1 = S function

31 26
opcode

 25 21
fmt

0

= COP1 = D function
� � ��

FPU Instructions Encoding Instruction Subsets of MIPS III and MIPS IV Processors
Table 6-15 (cont.) FPU Instruction Encoding Changes - MIPS IV Revision.

encoding when
fmt = W or L

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Instructions encoded by the function field when opcode=COP1X.

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 LWXC1 LDXC1 * * * * * *

1 001 SWXC1 SDXC1 * * * * * PREFX
2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 MADD.S MADD.D * * * * * *

5 101 MSUB.S MSUB.D * * * * * *

6 110 NMADD.S NMADD.D * * * * * *

7 111 NMSUB.S NMSUB.D * * * * * *

Instructions encoded by the tf field when opcode=COP1, fmt = S or D, and function=MOVCF.

t
f

 bit 16 0 1 These are the MOVF.fmt and MOVT.fmt instructions.
They should not be confused with MOVF and MOVT.MOVF (fmt) MOVT (fmt)

31 26
opcode

 25 21
fmt

0

= COP1 = W, L function

31 26
opcode

function

 5 0

= COP1X

31 26
opcode function

 5 0

= COP1 = MOVCF

16
t
f

 25 21
fmt

= S, D
� � ��

FPU Instructions Encoding Key to all FPU (CP1) instruction encoding tables:
!�" �� �## ���
��� ����������� �������� ���#��$

* This opcode is reserved for future use. An attempt to execute it causes either
a Reserved Instruction exception or a Floating Point Unimplemented Operation
Exception. The choice of exception is implementation specific.

α The table shows 16 compare instructions with values named C.condition where
“condition” is a comparison condition such as “EQ”. These encoding values are
all documented in the instruction description titled “C.cond.fmt”.

β The SPECIAL instruction class was defined in MIPS I for CPU instructions. An
FPU instruction was first added to the instruction class in MIPS IV.

δ (also italic opcode name) This opcode indicates an instruction class. The
instruction word must be further decoded by examining additional tables that
show values for another instruction field.

λ The COP1X opcode in MIPS IV was the COP3 opcode in MIPS I and II and a
reserved instruction in MIPS III.

χ These opcodes are not FPU operations. For further information on them, look
in the CPU Instruction Encoding information Chapter 3.

(fmt) This opcode is a conditional move of formatted FP registers - either MOVF.D,
MOVF.S, MOVT.D, or MOVT.S. It should not be confused with the similarly-
named MOVF or MOVT instruction that moves CPU registers.

Instruction class encoded by the function field when opcode=SPECIAL.

function bits 2..0

bits
5..3

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 000 MOVCI δ
c...

7 111

Instructions encoded by the tf field when opcode = SPECIAL and function=MOVCI.

t
f

 bit 16 0 1 These are the MOVF and MOVT instructions. They should
not be confused with MOVF.fmt and MOVT.fmt.MOVF MOVT

31 26
opcode

function

 5 0

= SPECIAL

31 26
opcode function

 5 0

= SPECIAL = MOVCI

16
t
f

� � ��

FPU Instructions Encoding Key to all FPU (CP1) instruction encoding tables:
� � ��

�����

�����
Numerics
64-bit RISController Family Primary Cache Indexing 2-25
A
About This Manual i
ABS.fmt 5-2
Access Functions for Floating-Point Registers 1-19
AccessLength Specifications for Loads/Stores 1-18
ADD 2-2
Add Immediate Unsigned Word 2-4
Add Immediate Word 2-3
Add Unsigned Word 2-5
Add Word 2-2
ADD.fmt 5-3
ADDI 2-3
ADDIU 2-4
ADDU 2-5
ALU Instructions With an Immediate Operand 1-5
AND 2-6
And 2-6
And Immediate 2-7
ANDI 2-7
Architecture Level in Which CPU Instructions are Defined or Extended 3-8
Arithmetic Instructions 4-2
Arithmetic Logic Unit 1-4
Assembler Format 1-13
Atomic Update CPU Load/Store Instructions 1-4
Atomic Update Loads and Stores 1-4
B
BC1F 5-4
BC1FL 5-6
BC1T 5-8
BC1TL 5-10
BEQ 2-8
BEQL 2-9
BGEZ 2-10
BGEZAL 2-11
BGEZALL 2-12
BGEZL 2-13
BGTZ 2-14
BGTZL 2-15
BLEZ 2-16
BLEZL 2-17
����� � �

Index
BLTZ 2-18, 2-21
BLTZAL 2-19
BLTZALL 2-20
BNE 2-22
BNEL 2-23
Branch on Equal 2-8
Branch on Equal Likely 2-9
Branch on FP False 5-4
Branch on FP False Likely 5-6
Branch on FP True 5-8
Branch on FP True Likely 5-10
Branch on Greater Than or Equal to Zero 2-10
Branch on Greater Than or Equal to Zero and Link 2-11
Branch on Greater Than or Equal to Zero and Link Likely 2-12
Branch on Greater Than or Equal to Zero Likely 2-13
Branch on Greater Than Zero 2-14
Branch on Greater Than Zero Likely 2-15
Branch on Less Than or Equal to Zero 2-16
Branch on Less Than or Equal to Zero Likely 2-17
Branch on Less Than Zero 2-18
Branch on Less Than Zero And Link 2-19
Branch on Less Than Zero And Link Likely 2-20
Branch on Less Than Zero Likely 2-21
Branch on Not Equal 2-22
Branch on Not Equal Likely 2-23
BREAK 2-24
Breakpoint 2-24
Bytes Loaded by LDL Instruction 2-68, 2-78
Bytes Loaded by LDR Instruction 2-70, 2-80
Bytes Loaded by LWL Instruction 2-91
Bytes Loaded by LWR Instruction 2-94
Bytes Stored by SDL Instruction 2-127
Bytes Stored by SDR Instruction 2-129
Bytes Stored by SWL Instruction 2-147
Bytes Stored by SWR Instruction 2-150
C
C.cond.fmt 5-12
CACHE 2-25
Cache 2-25
Cache Coherence Algorithms and Access Types 1-11
CEIL.L.fmt 5-17
CEIL.W.fmt 5-18
CFC1 2-28, 5-19
CLO 2-29
CLZ 2-30
Computational Instructions 1-4
Conditional Branch Instructions 4-5
Conditional Move Instructions 1-8
����� � 	

Index
Conversion Instructions 4-3
COP0 2-31
Coprocessor 0 - COP0 3-2
Coprocessor 1 - COP1, COP1X, MOVCI, and CP1 load/store 3-3
Coprocessor 2 - COP2 and CP2 load/store 3-3
Coprocessor 3 - COP3 and CP3 load/store 3-3
Coprocessor Definition and Use in the MIPS Architecture 1-9
Coprocessor General Register Access Functions 1-16
Coprocessor Instructions 1-9
Coprocessor Load and Store Instructions 1-4, 1-10
Coprocessor Load/Store Instructions 1-4
Coprocessor Operation 2-31
Coprocessor Operation Instructions 1-10
Coprocessor Operations 1-10
Count Leading Ones 2-29
Count Leading Zeros 2-30
CPU Conditional Move Instructions 1-9
CPU Conditional Move on FPU True/False Instructions 4-5
CPU Functional Instruction Groups 1-1
CPU Instruction Encoding 3-1, 3-2

immediate 3-1
jump 3-1
register 3-1

CPU Instruction Encoding - MIPS I Architecture 3-4
CPU Instruction Encoding - MIPS II Architecture 3-5
CPU Instruction Encoding - MIPS III Architecture 3-6
CPU Instruction Encoding - MIPS IV Architecture 3-7
CPU Instruction Encoding Changes - MIPS II Revision 3-9
CPU Instruction Encoding Changes - MIPS III Revision 3-10
CPU Instruction Encoding Changes - MIPS IV Revision 3-11
CPU Instruction Formats 3-1
CPU Instructions Basics 1-1
CPU Loads and Stores 1-3
CTC1 2-32, 5-20
CVT.D.fmt 5-21
CVT.L.fmt 5-22
CVT.S.fmt 5-23
CVT.W.fmt 5-24
D
DADD 2-33
DADDI 2-34
DADDIU 2-35
DADDU 2-36
Data Transfer Instructions 4-1
DDIV 2-37
DDIVU 2-38
Delayed Loads 1-3
Description of an Instruction 4-6
����� �

Index
DIV 2-39
DIV.fmt 5-25
Divide Unsigned Word 2-40
Divide Word 2-39
DIVU 2-40
DMFC1 2-43, 5-26
DMFCO 2-41
DMTC0 2-42
DMTC1 2-44, 5-27
DMULT 2-45
DMULTU 2-46
Doubleword Add 2-33
Doubleword Add Immediate 2-34
Doubleword Add Immediate Unsigned 2-35
Doubleword Add Unsigned 2-36
Doubleword Divide 2-37
Doubleword Divide Unsigned 2-38
Doubleword Move From Floating-Point 2-43, 5-26
Doubleword Move From System Control Coprocessor 2-41
Doubleword Move To Floating-Point 2-44, 5-27
Doubleword Move to System Control Coprocessor 2-42
Doubleword Multiply 2-45
Doubleword Multiply Unsigned 2-46
Doubleword Shift Left Logical 2-47
Doubleword Shift Left Logical Plus 32 2-48
Doubleword Shift Left Logical Variable 2-49
Doubleword Shift Right Arithmetic 2-50
Doubleword Shift Right Arithmetic Plus 32 2-51
Doubleword Shift Right Arithmetic Variable 2-52
Doubleword Shift Right Logical 2-53
Doubleword Shift Right Logical Plus 32 2-54
Doubleword Shift Right Logical Variable 2-55
Doubleword Subtract 2-56
Doubleword Subtract Unsigned 2-57
DSLL 2-47
DSLL32 2-48
DSLLV 2-49
DSRA 2-50
DSRA32 2-51
DSRAV 2-52
DSRL 2-53
DSRL32 2-54
DSRLV 2-55
DSUB 2-56
DSUBU 2-57
E
ERET 2-58
Error Exception Trap 2-58
����� � �

Index
Exception Instructions 1-8
Exclusive OR 2-174
Exclusive OR Immediate 2-175
F
Floating-Point Absolute Value 5-2
Floating-Point Add 5-3
Floating-Point Ceiling Convert to Long Fixed-Point 5-17
Floating-Point Ceiling Convert to Word Fixed-Point 5-18
Floating-Point Compare 5-12
Floating-Point Convert to Double Floating-Point 5-21
Floating-Point Convert to Long Fixed-Point 5-22
Floating-Point Convert to Single Floating-Point 5-23
Floating-Point Convert to Word Fixed-Point 5-24
Floating-Point Divide 5-25
Floating-Point Floor Convert to Long Fixed-Point 5-28
Floating-Point Floor Convert to Word Fixed-Point 5-29
Floating-Point Move 5-36
Floating-Point Move Conditional on FP False 5-38
Floating-Point Move Conditional on FP True 5-41
Floating-Point Move Conditional on Not Zero 5-39
Floating-Point Move Conditional on Zero 5-42
Floating-Point Multiply 5-45
Floating-Point Multiply Add 5-34
Floating-Point Multiply Subtract 5-43
Floating-Point Negate 5-46
Floating-Point Negative Multiply Add 5-47
Floating-Point Negative Multiply Subtract 5-48
Floating-Point Round to Long Fixed-Point 5-52
Floating-Point Round to Word Fixed-Point 5-53
Floating-Point Subtract 5-58
Floating-Point Truncate to Word Fixed-Point 5-62
Floating-Pt Truncate to Long Fixed-Pt 5-61
FLOOR.L.fmt 5-28
FLOOR.W.fmt 5-29
Formatted Operand Value Move Instructions 4-4
FPU Approximate Arithmetic Operations 4-3
FPU Comparisons With Special Operand Exceptions for QNaNs 5-14
FPU Comparisons Without Special Operand Exceptions 5-13
FPU Conditional Branch Instructions 4-5
FPU Conditional Move on True/False Instructions 4-4
FPU Conditional Move on Zero/Nonzero Instruction 4-4
FPU Conversion Operations Using a Directed Rounding Mode 4-4
FPU Formatted Operand Move Instructions 4-4
FPU IEEE Arithmetic Operations 4-3
FPU Instruction Set Details 4-1
FPU Instructions 4-1
FPU Instructions Basics 4-1
FPU Loads and Stores Using Register + Offset Address Mode 4-2
����� � �

Index
FPU Loads and Stores Using Register + Register Address Mode 4-2
FPU Move To/From Instructions 4-2
FPU Multiply-Accumulate Arithmetic Operations 4-3
FPU Operand Format Field (fmt, fmt3) Decoding 4-5
I
Implementation-Specific Access Types 1-11
Individual CPU Instruction Descriptions 1-21
Individual FPU Instruction Descriptions 4-7
Instruction Decode 3-2
Instruction Description 1-13
Instruction Descriptions 1-12
Instruction Encoding Picture 1-12
Instruction Exceptions 1-14
Instruction Mnemonic and Name 1-12
Instruction Operation 1-13
Instruction Purpose 1-13
Instruction Restrictions 1-13
Instruction Subsets of MIPS III and MIPS IV Processors 3-2
J
J 2-59
JAL 2-60
JALR 2-61, 2-71
JR 2-62, 2-72
Jump 2-59
Jump and Branch Instructions 1-6
Jump And Link 2-60
Jump And Link Register 2-61, 2-71
Jump Instructions Jumping Within a 256 Megabyte Region 1-7
Jump Instructions to Absolute Address 1-7
Jump Register 2-62, 2-72
L
LB 2-63, 2-73
LBU 2-64
LD 2-65, 2-75
LDC1 2-66, 2-76, 5-30
LDL 2-67, 2-77
LDR 2-69, 2-79
LDXC1 5-31
LH 2-81
LHU 2-82
LL 2-83
LLD 2-85
Load and Store Instructions 1-2
Load and Store Memory Functions 1-17
Load Byte 2-63
Load Byte Unsigned 2-64, 2-74
Load Doubleword 2-65, 2-75
Load Doubleword Indexed to Floating-Point 5-31
����� �

Index
Load Doubleword Left 2-67, 2-77
Load Doubleword Right 2-69, 2-79
Load Doubleword to Coprocessor 2-66, 2-76
Load Doubleword to Floating-Point 5-30
Load Halfword 2-81
Load Halfword Unsigned 2-82
Load Linked Doubleword 2-85
Load Linked Word 2-83
Load Upper Immediate 2-86
Load Word 2-87
Load Word Indexed to Floating-Point 5-33
Load Word Left 2-90
Load Word Right 2-93
Load Word To Coprocessor 2-88
Load Word to Floating-Point 5-32
Load Word Unsigned 2-96
Load/Store Operations Using Register + Offset Addressing Mode 1-2
Load/Store Operations Using Register + Register Addressing Mode 1-2
LUI 2-86
LW 2-87
LWC1 2-88, 5-32
LWL 2-90
LWR 2-93
LWU 2-96
LWXC1 5-33
M
MAD 2-97
MADD.fmt 5-34
MADU 2-98
Memory Access Types 1-10

cached coherent 1-10
cached noncoherent 1-10
uncached 1-10

MFC1 5-35
MFCz 2-99
MFHI 2-100
MFLO 2-101
MIPS Architecture Extensions 1-1
Miscellaneous Functions 1-20
Miscellaneous Instructions 1-8, 4-5
Mixing References with Different Access Types 1-10
MOV.fmt 5-36
Move Conditional on FP False 5-37
Move Conditional on FP True 5-40
Move Conditional on Not Zero 2-102
Move Conditional on Zero 2-103
Move Control Word from Floating-Point 2-28, 5-19
Move Control Word to Floating-Point 5-20
����� � �

Index
Move Control word to Floating-Point 2-32
Move From Coprocessor 2-99
Move From HI Register 2-100
Move From LO Register 2-101
Move To Coprocessor 2-106
Move To HI Register 2-107
Move To LO Register 2-108
Move Word From Floating-Point 5-35
Move Word to Floating-Point 5-44
MOVF 5-37
MOVF.fmt 5-38
MOVN 2-102
MOVN.fmt 5-39
MOVT 5-40
MOVT.fmt 5-41
MOVZ 2-103
MOVZ.fmt 5-42
MSUB 2-104, 2-105
MSUB.fmt 5-43
MTC1 5-44
MTCz 2-106
MTHI 2-107
MTLO 2-108
MUL 2-109
MUL.fmt 5-45
MULT 2-110
Multiply 2-109
Multiply Accumulate 2-97
Multiply and Divide Instructions 1-6
Multiply Subtract 2-104
Multiply Subtract Unsigned 2-105
Multiply Unsigned Word 2-111
Multiply Word 2-110
Multiply/Add Unsigned 2-98
Multiply/Divide Instructions 1-6
MULTU 2-111
N
NEG.fmt 5-46
NMADD.fmt 5-47
NMSUB.fmt 5-48
Non-CPU Instructions 3-2
NOR 2-112
Normal CPU Load/Store Instructions 1-3
Not Or 2-112
O
Operand ALU Instructions 1-5
Operation Notation Conventions and Functions 4-7
Operation Section Notation and Functions 1-14
����� � �

Index
OR 2-113
Or 2-113
Or Immediate 2-114
ORI 2-114
P
PC-Relative Conditional Branch Instructions, Comparing 2 Registers 1-7
PC-Relative Conditional Branch Instructions, Comparing Against Zero 1-7
PFU Load/Store Instructions Using Register + Register Addressing 1-4
PREF 2-115
Prefetch 2-115
Prefetch Indexed 5-49
Prefetch Instructions 1-9
Prefetch Using Register + Offset Address Mode 1-9
Prefetch Using Register + Register Address Mode 1-9
PREFX 5-49
Probe TLB for Matching Entry 2-168
Programming and Implementation Notes 1-14
Pseudocode Functions 1-16
Pseudocode Language 1-14
Pseudocode Symbols 1-14
R
RECIP.fmt 5-51
Reciprocal Approximation 5-51
Reciprocal Square Root Approximation 5-54
REGIMM Instruction Class 3-2
Restore From Exception 2-117
RFE 2-117
ROUND.L.fmt 5-52
ROUND.W.fmt 5-53
RSQRT.fmt 5-54
S
SC 2-119
SCD 2-122
SD 2-124
SDC1 2-125, 5-55
SDL 2-126
SDR 2-128
SDXC1 5-56
Serialization Instructions 1-8
Set On Less Than 2-133
Set on Less Than Immediate 2-134
Set on Less Than Immediate Unsigned 2-135
Set on Less Than Unsigned 2-136
SH 2-130
Shift Instructions 1-5
Shift Word Left Logical 2-131
Shift Word Left Logical Variable 2-132
Shift Word Right Arithmetic 2-137
����� � �

Index
Shift Word Right Arithmetic Variable 2-138
Shift Word Right Logical 2-139
Shift Word Right Logical Variable 2-140
SLL 2-131
SLLV 2-132
SLT 2-133
SLTI 2-134
SLTIU 2-135
SLTU 2-136
SPECIAL Instruction Class 3-2
SQRTfmt 5-57
SRA 2-137
SRAV 2-138
SRL 2-139
SRLV 2-140
Store Conditional Doubleword 2-122
Store Conditional Word 2-119
Store Doubleword 2-124
Store Doubleword From Coprocessor 2-125
Store Doubleword from Floating-Point 5-55
Store Doubleword Indexed from Floating-Point 5-56
Store Doubleword Left 2-126
Store Doubleword Right 2-128
Store Halfword 2-130
Store Word 2-143
Store Word From Coprocessor 2-144
Store Word Indexed from Floating-Point 5-60
Store Word Left 2-146
Store Word Right 2-149
SUB 2-141
SUB.fmt 5-58
Subtract Unsigned Word 2-142
Subtract Word 2-141
SUBU 2-142
Summary of Manual Contents i
SW 2-143
SWC1 2-144
SWL 2-146
SWR 2-149
SWXC1 5-60
Symbols in Instruction Operation Statements 1-14
SYNC 2-152
Synchronize Shared Memory 2-152
SYSCALL 2-155
System Call 2-155
System Call and Breakpoint Instructions 1-8
T
TEQ 2-156
����� � ��

Index
TEQI 2-157
TGE 2-158
TGEI 2-159
TGEIU 2-160
TGEU 2-161
TLBP 2-168
TLBWR 2-171
TLT 2-162
TLTI 2-163
TLTIU 2-164
TLTU 2-165
TNE 2-166
TNEI 2-167
Trap if Equal 2-156
Trap if Equal Immediate 2-157
Trap if Greater or Equal 2-158
Trap if Greater or Equal Immediate 2-159
Trap If Greater Or Equal Immediate Unsigned 2-160
Trap If Greater or Equal Unsigned 2-161
Trap if Less Than 2-162
Trap if Less Than Immediate 2-163
Trap if Less Than Immediate Unsigned 2-164
Trap if Less Than Unsigned 2-165
Trap if Not Equal 2-166
Trap if Not Equal Immediate 2-167
Trap-on-Condition Instructions, Comparing an Immediate 1-8
Trap-on-Condition Instructions, Comparing Two Registers 1-8
TRUNC.L.fmt 5-61
TRUNC.W.fmt 5-62
U
Unaligned CPU Load/Store Instructions 1-3
Unaligned Doubleword Load using LDL and LDR 2-67, 2-77
Unaligned Doubleword Load using LDR and LDL 2-69, 2-79
Unaligned Doubleword Store with SDL and SDR 2-126
Unaligned Doubleword Store with SDR and SDL 2-128
Unaligned Word Load using LWL and LWR 2-90
Unaligned Word Load using LWR and LWL 2-93
Unaligned Word Store using SWL and SWR 2-146
Unaligned Word Store using SWR and SWL 2-149
V
Valid Formats for FPU Operations 4-6
Valid Operands for FP Instructions 4-5
Values of Hint Field for Prefetch Instruction in RC32364 2-115
Values of Hint Field for Prefetch Instruction in RC5000 2-116
W
WAIT 2-173
Wait 2-173
Write Random TLB Entry 2-171
����� � ��

Index
X
XOR 2-174
XORI 2-175
����� � �	

	Version 3.0
	December 1998
	IDT Assembler Software Reference Guide
	Volume 2
	2-abou.pdf
	Summary of Contents
	About This Manual

	sw2toc.pdf
	1 About This Manual
	2 CPU Instructions Basics
	3 CPU Instruction Reference
	4 CPU Instructions Encoding
	5 FPU Instructions Basics
	6 FPU Instructions Reference
	7 FPU Instructions Encoding
	8 Index
	Table of Contents

	sw2lot.pdf
	List of Tables

	sw2lof.pdf
	List of Figures

	sw2-ch01.pdf
	CPU Instructions Basics
	Introduction
	Figure 1.1 MIPS Architecture Extensions

	Functional Instruction Groups
	Load and Store Instructions

	I
	I
	I
	I
	I
	I
	I
	III
	I
	I
	I
	III
	III
	II
	II
	I
	I
	III
	III
	II
	II
	III
	III
	Table 1.1 Load/Store Operations Using Register + Offset Addressing Mode
	Table 1.2 Load/Store Operations Using Register + Register Addressing Mode
	Delayed Loads
	CPU Loads and Stores

	LB
	I
	LBU
	I
	SB
	I
	LH
	I
	LHU
	I
	SH
	I
	LW
	I
	LWU
	III
	SW
	I
	LD
	III
	SD
	III
	Table 1.3 Normal CPU Load/Store Instructions

	LWL
	I
	LWR
	I
	SWL
	I
	SWR
	I
	LDL
	III
	LDR
	III
	SDL
	III
	SDR
	III
	Table 1.4 Unaligned CPU Load/Store Instructions
	Atomic Update Loads and Stores

	LL
	II
	SC
	II
	LLD
	III
	SCD
	III
	Table 1.5 Atomic Update CPU Load/Store Instructions
	Coprocessor Load and Store Instructions

	LWCz
	I
	SWCz
	I
	LDCz
	II
	SDCz
	II
	Table 1.6 Coprocessor Load/Store Instructions

	LWXC1
	IV
	SWXC1
	IV
	LDXC1
	IV
	SDXC1
	IV
	Table 1.7 PFU Load/Store Instructions Using Register�+�Register Addressing
	Computational Instructions
	Arithmetic Logic Unit

	ADDI
	I
	ADDIU
	I
	SLTI
	I
	SLTIU
	I
	ANDI
	I
	ORI
	I
	XORI
	I
	LUI
	I
	DADDI
	III
	DADDIU
	III
	Table 1.8 ALU Instructions With an Immediate Operand

	ADD
	I
	ADDU
	I
	SUB
	I
	SUBU
	I
	DADD
	III
	DADDU
	III
	DSUB
	III
	DSUBU
	III
	SLT
	I
	SLTU
	I
	AND
	I
	OR
	I
	XOR
	I
	NOR
	I
	Table 1.9 Operand ALU Instructions
	Shift Instructions

	SLL
	I
	SRL
	I
	SRA
	I
	SLLV
	I
	SRLV
	I
	SRAV
	I
	DSLL
	III
	DSRL
	III
	DSRA
	III
	DSLL32
	III
	DSRL32
	III
	DSRA32
	III
	DSLLV
	III
	DSRLV
	III
	DSRAV
	III
	Table 1.10 Shift Instructions
	Multiply and Divide Instructions

	MAD
	IDT extension
	MADU
	IDT extension
	MUL
	IDT extension
	MULT
	MIPS I
	MULTU
	MIPS I
	DIV
	I
	DIVU
	I
	DMULT
	III
	DMULTU
	III
	DDIV
	III
	DDIVU
	III
	MFHI
	I
	MTHI
	I
	MFLO
	I
	MTLO
	I
	Table 1.11 Multiply/Divide Instructions�
	Jump and Branch Instructions

	J
	I
	JAL
	I
	Table 1.12 Jump Instructions Jumping Within a 256 Megabyte Region

	JR
	I
	JALR
	I
	Table 1.13 Jump Instructions to Absolute Address

	BEQ
	I
	BNE
	I
	BLEZ
	I
	BGTZ
	I
	BEQL
	II
	BNEL
	II
	BLEZL
	II
	BGTZL
	II
	Table 1.14 PC-Relative Conditional Branch Instructions, Comparing 2 Registers

	BLTZ
	I
	BGEZ
	I
	BLTZAL
	I
	BGEZAL
	I
	BLTZL
	II
	BGEZL
	II
	BLTZALL
	II
	BGEZALL
	II
	Table 1.15 PC-Relative Conditional Branch Instructions, Comparing Against Zero
	Miscellaneous Instructions
	Exception Instructions

	SYSCALL
	I
	BREAK
	I
	Table 1.16 System Call and Breakpoint Instructions

	II
	II
	II
	II
	II
	II
	Table 1.17 Trap-on-Condition Instructions, Comparing Two Registers

	TGEI
	II
	TGEIU
	II
	TLTI
	II
	TLTIU
	II
	TEQI
	II
	TNEI
	II
	Table 1.18 Trap-on-Condition Instructions, Comparing an Immediate
	Serialization Instructions

	SYNC
	II
	Table 1.19 Serialization Instructions
	Conditional Move Instructions

	MOVN
	IV
	MOVZ
	IV
	Table 1.20 CPU Conditional Move Instructions
	Prefetch Instructions

	PREF
	IV
	Table 1.21 Prefetch Using Register + Offset Address Mode

	PREFX
	IV
	Table 1.22 Prefetch Using Register + Register Address Mode
	Coprocessor Instructions

	0
	1
	2
	3
	Table 1.23 Coprocessor Definition and Use in the MIPS Architecture
	Coprocessor Load and Store Instructions
	Coprocessor Operations

	COPz
	I
	Table 1.24 Coprocessor Operation Instructions
	Memory Access Types
	Uncached
	Cached Noncoherent
	Cached Coherent
	Cached

	Mixing References with Different Access Types
	Cache Coherence Algorithms and Access Types
	Implementation-Specific Access Types
	Instruction Descriptions
	Figure 1.2 Example Instruction Description
	Instruction Mnemonic and Name
	Instruction Encoding Picture
	Format
	Purpose
	Description
	Restrictions
	Operation
	Exceptions
	Programming and Implementation Notes
	Operation Section Notation and Functions
	Pseudocode Language
	Pseudocode Symbols
	Table 1.25 Symbols in Instruction Operation Statements (Page 2 of 2)

	Pseudocode Functions
	Coprocessor General Register Access Functions
	Table 1.26 Coprocessor General Register Access Functions

	Load and Store Memory Functions

	7
	6
	5
	4
	3
	2
	1
	0
	Table 1.27 AccessLength Specifications for Loads/Stores
	Access Functions for Floating-Point Registers
	Miscellaneous Functions
	Individual CPU Instruction Descriptions

	sw2-ch02.pdf
	CPU Instruction Reference
	Format: ADD rd, rs, rt MIPS I
	Description: rd ¨ rs + rt
	Restrictions:
	Operation:
	Programming Notes:

	Format: ADDI rt, rs, immediate MIPS I
	Description: rt ¨ rs + immediate
	Restrictions:
	Operation:
	Programming Notes:

	Format: ADDIU rt, rs, immediate MIPS I
	Description: rt ¨ rs + immediate
	Restrictions:
	Operation:
	Programming Notes:

	Format: ADDU rd, rs, rt MIPS I
	Description: rd ¨ rs + rt
	Restrictions:
	Operation:
	Programming Notes:

	Format: AND rd, rs, rt MIPS I
	Description: rd ¨ rs AND rt
	Restrictions:
	Operation:

	Format: ANDI rt, rs, immediate MIPS I
	Description: rt ¨ rs AND immediate
	Restrictions:
	Operation:

	Format: BEQ rs, rt, offset MIPS I
	Description: if (rs = rt) then branch
	Restrictions:
	Operation:
	Programming Notes:

	Format: BEQL rs, rt, offset MIPS II
	Description: if (rs = rt) then branch_likely
	Restrictions:
	Operation:
	Programming Notes:

	Format: BGEZ rs, offset MIPS I
	Description: if (rs ³ 0) then branch
	Restrictions:
	Operation:
	Programming Notes:

	Format: BGEZAL rs, offset MIPS I
	Description: if (rs ³ 0) then procedure_call
	Restrictions:
	Operation:
	Programming Notes:

	Format: BGEZALL rs, offset MIPS II
	Description: if (rs ³ 0) then procedure_call_likely
	Restrictions:
	Operation:
	Programming Notes:

	Format: BGEZL rs, offset MIPS II
	Description: if (rs ³ 0) then branch_likely
	Restrictions:
	Operation:
	Programming Notes:

	Format: BGTZ rs, offset MIPS I
	Description: if (rs > 0) then branch
	Restrictions:
	Operation:
	Programming Notes:

	Format: BGTZL rs, offset MIPS II
	Description: if (rs > 0) then branch_likely
	Restrictions:
	Operation:
	Programming Notes:

	Format: BLEZ rs, offset MIPS I
	Description: if (rs £ 0) then branch
	Restrictions:
	Operation:
	Programming Notes:

	Format: BLEZL rs, offset MIPS II
	Description: if (rs £ 0) then branch_likely
	Restrictions:
	Operation:
	Programming Notes:

	Format: BLTZ rs, offset MIPS I
	Description: if (rs < 0) then branch
	Restrictions:
	Operation:
	Programming Notes:

	Format: BLTZAL rs, offset MIPS I
	Description: if (rs < 0) then procedure_call
	Restrictions:
	Operation:
	Programming Notes:

	Format: BLTZALL rs, offset MIPS II
	Description: if (rs < 0) then procedure_call_likely
	Restrictions:
	Operation:
	Programming Notes:

	Format: BLTZ rs, offset MIPS II
	Description: if (rs < 0) then branch_likely
	Restrictions:
	Operation:
	Programming Notes:

	Format: BNE rs, rt, offset MIPS I
	Description: if (rs ¹ rt) then branch
	Restrictions:
	Operation:
	Programming Notes:

	Format: BNEL rs, rt, offset MIPS II
	Description: if (rs ¹ rt) then branch_likely
	Restrictions:
	Operation:
	Programming Notes:

	Format: BREAK MIPS I
	Description:
	Restrictions:
	Operation:

	Format: CACHE op, offset(base)
	Description:
	RC4640/RC4650
	VAddr12
	11..5
	RC4700
	VAddr13
	12..5
	RC5000
	VAddr14
	13..5
	Table 2.28 64-bit RISController Family Primary Cache Indexing

	0
	I
	1
	D
	2
	NA
	3
	SC
	Operation:

	Format: CFC1 rt, fs MIPS I
	Description: rt ¨ FP_Control[fs]
	Restrictions:
	Operation: MIPS I - III
	Operation: MIPS IV

	Format: CLO rt, rs RC32364
	Description:
	Operation:
	Programming Notes:

	Format: CLZ rt, rs RC32364
	Description:
	Operation:
	Programming Notes:

	Format: COP0 cop_fun MIPS I
	Description:
	Restrictions:
	Operation:

	Format: CTC1 rt, fs MIPS I
	Description: FP_Control[fs] ¨ rt
	Restrictions:
	Operation: MIPS I - III
	Operation: MIPS IV

	Format: DADD rd, rs, rt MIPS III
	Description: rd ¨ rs + rt
	Restrictions:
	Operation: 64�bit processors
	Programming Notes:

	Format: DADDI rt, rs, immediate MIPS III
	Description: rt ¨ rs + immediate
	Restrictions:
	Operation: 64�bit processors
	Programming Notes:

	Format: DADDIU rt, rs, immediate MIPS III
	Description: rt ¨ rs + immediate
	Restrictions:
	Operation: 64�bit processors
	Programming Notes:

	Format: DADDU rd, rs, rt MIPS III
	Description: rd ¨ rs + rt
	Restrictions:
	Operation: 64�bit processors
	Programming Notes:

	Format: DDIV rs, rt MIPS III
	Description: (LO, HI) ¨ rs / rt
	Restrictions:
	Operation: 64�bit processors
	Programming Notes:

	Format: DDIVU rs, rt MIPS III
	Description: (LO, HI) ¨ rs / rt
	Restrictions:
	Operation: 64�bit processors
	Programming Notes:

	Format: DIV rs, rt MIPS I
	Description: (LO, HI) ¨ rs / rt
	Restrictions:
	Operation:
	Programming Notes:

	Format: DIVU rs, rt MIPS I
	Description: (LO, HI) ¨ rs / rt
	Restrictions:
	Operation:

	Format: DMFCO rt, rd RC5000
	Description:
	Operation:

	Format: DMTC0 rt, rd RC5000
	Description:
	Operation:

	Format: DMFC1 rt, fs MIPS III
	Description: rt ¨ fs
	Restrictions:
	Operation: MIPS I - III
	Operation: MIPS IV

	Format: DMTC1 rt, fs MIPS III
	Description: fs ¨ rt
	Restrictions:
	Operation: MIPS I - III
	Operation: MIPS IV

	Format: DMULT rs, rt MIPS III
	Description: (LO, HI) ¨ rs ¥ rt
	Restrictions:
	Operation: 64�bit processors
	Programming Notes:

	Format: DMULTU rs, rt MIPS III
	Description: (LO, HI) ¨ rs ¥ rt
	Restrictions:
	Operation: 64�bit processors

	Format: DSLL rd, rt, sa MIPS III
	Description: rd ¨ rt << sa
	Restrictions:
	Operation: 64�bit processors

	Format: DSLL32 rd, rt, sa MIPS III
	Description: rd ¨ rt << (sa+32)
	Restrictions:
	Operation: 64�bit processors

	Format: DSLLV rd, rt, rs MIPS III
	Description: rd ¨ rt << rs
	Restrictions:
	Operation: 64�bit processors

	Format: DSRA rd, rt, sa MIPS III
	Description: rd ¨ rt >> sa (arithmetic)
	Restrictions:
	Operation: 64�bit processors

	Format: DSRA32 rd, rt, sa MIPS III
	Description: rd ¨ rt >> (sa+32) (arithmetic)
	Restrictions:
	Operation: 64�bit processors

	Format: DSRAV rd, rt, rs MIPS III
	Description: rd ¨ rt >> rs (arithmetic)
	Restrictions:
	Operation: 64�bit processors

	Format: DSRL rd, rt, sa MIPS III
	Description: rd ¨ rt >> sa (logical)
	Restrictions:
	Operation: 64�bit processors

	Format: DSRL32 rd, rt, sa MIPS III
	Description: rd ¨ rt >> (sa+32) (logical)
	Restrictions:
	Operation: 64�bit processors

	Format: DSRLV rd, rt, rs MIPS III
	Description: rd ¨ rt >> rs (logical)
	Restrictions:
	Operation: 64�bit processors

	Format: DSUB rd, rs, rt MIPS III
	Description: rd ¨ rs - rt
	Restrictions:
	Operation: 64�bit processors
	Programming Notes:

	Format: DSUBU rd, rs, rt MIPS III
	Description: rd ¨ rs - rt
	Restrictions:
	Operation: 64�bit processors
	Programming Notes:

	Format: ERET
	Description:
	Operation:

	Format: J target MIPS I
	Description:
	Restrictions:
	Operation:
	Programming Notes:

	Format: JAL target MIPS I
	Description:
	Restrictions:
	Operation:
	Programming Notes:

	Format: JALR rs (rd = 31 implied) MIPS I
	Description: rd ¨ return_addr, PC ¨ rs
	Restrictions:
	Operation:
	Programming Notes:

	Format: JR rs MIPS I
	Description: PC ¨ rs
	Restrictions:
	Operation:

	Format: LB rt, offset(base) MIPS I
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: LBU rt, offset(base) MIPS I
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: LD rt, offset(base) MIPS III
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 64�bit processors

	Format: LDC1 rt, offset(base) MIPS II
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: LDL rt, offset(base) MIPS III
	Description: rt ¨ rt MERGE memory[base+offset]
	Figure 2.3 Unaligned Doubleword Load using LDL and LDR
	Figure 2.4 Bytes Loaded by LDL Instruction
	Restrictions:
	Operation: 64�bit processors

	Format: LDR rt, offset(base) MIPS III
	Description: rt ¨ rt MERGE memory[base+offset]
	Figure 2.5 Unaligned Doubleword Load using LDR and LDL
	Figure 2.6 Bytes Loaded by LDR Instruction
	Restrictions:
	Operation: 64�bit processors

	Format: JALR rs (rd = 31 implied) MIPS I
	Description: rd ¨ return_addr, PC ¨ rs
	Restrictions:
	Operation:
	Programming Notes:

	Format: JR rs MIPS I
	Description: PC ¨ rs
	Restrictions:
	Operation:

	Format: LB rt, offset(base) MIPS I
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: LBU rt, offset(base) MIPS I
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: LD rt, offset(base) MIPS III
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 64�bit processors

	Format: LDC1 rt, offset(base) MIPS II
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: LDL rt, offset(base) MIPS III
	Description: rt ¨ rt MERGE memory[base+offset]
	Figure 2.7 Unaligned Doubleword Load using LDL and LDR
	Figure 2.8 Bytes Loaded by LDL Instruction
	Restrictions:
	Operation: 64�bit processors

	Format: LDR rt, offset(base) MIPS III
	Description: rt ¨ rt MERGE memory[base+offset]
	Figure 2.9 Unaligned Doubleword Load using LDR and LDL
	Figure 2.10 Bytes Loaded by LDR Instruction
	Restrictions:
	Operation: 64�bit processors

	Format: LH rt, offset(base) MIPS I
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: LHU rt, offset(base) MIPS I
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: LL rt, offset(base) MIPS II
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors
	Programming Notes:
	Implementation Notes:

	Format: LLD rt, offset(base) MIPS III
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 64�bit processors
	Programming Notes:
	Implementation Notes:

	Format: LUI rt, immediate MIPS I
	Description: rt ¨ immediate || 016
	Restrictions:
	Operation:

	Format: LW rt, offset(base) MIPS I
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: LWC1 rt, offset(base) MIPS I
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: LWL rt, offset(base) MIPS I
	Description: rt ¨ rt MERGE memory[base+offset]
	Figure 2.11 Unaligned Word Load using LWL and LWR
	Figure 2.12 Bytes Loaded by LWL Instruction
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors
	Programming Notes:

	Format: LWR rt, offset(base) MIPS I
	Description: rt ¨ rt MERGE memory[base+offset]
	Figure 2.13 Unaligned Word Load using LWR and LWL
	Figure 2.14 Bytes Loaded by LWR Instruction
	Restrictions:
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors
	Programming Notes:

	Format: LWU rt, offset(base) MIPS III
	Description: rt ¨ memory[base+offset]
	Restrictions:
	Operation: 64�bit processors

	Format: MAD rs, rt
	Description:
	Operation:
	Programming Notes:

	Format: MADU rs, rt
	Description:
	Operation:
	Programming Notes:

	Format: MFCz rt, rd
	Description:
	Operation:

	Opcode Bit Encoding:

	Format: MFHI rd MIPS I
	Description: rd ¨ HI
	Restrictions:
	Operation:

	Format: MFLO rd MIPS I
	Description: rd ¨ LO
	Restrictions:
	Operation:

	Format: MOVN rd, rs, rt MIPS IV,RC32364
	Description: if (rt ¹ 0) then rd ¨ rs
	Restrictions:
	Operation:
	Programming Notes:

	Format: MOVZ rd, rs, rt MIPS IV,RC32364
	Description: if (rt = 0) then rd ¨ rs
	Restrictions:
	Operation:
	Programming Notes:

	Format: MSUB rs, rt RC32364
	Description:
	Operation:
	Programming Notes:

	Format: MSUB rs, rt RC32364
	Description:
	Operation:
	Programming Notes:

	Format: MTCz rt, rd
	Description:
	Operation:

	Format: MTHI rs MIPS I
	Description: HI ¨ rs
	Restrictions:
	Operation:

	Format: MTLO rs MIPS I
	Description: LO ¨ rs
	Restrictions:
	Operation:

	Format: MUL rd, rs, rt
	Description:
	Operation:
	Programming Notes:

	Format: MULT rs, rt MIPS I
	Description: (LO, HI) ¨ rs ¥ rt
	Restrictions:
	Operation:
	Programming Notes:

	Format: MULTU rs, rt MIPS I
	Description: (LO, HI) ¨ rs ¥ rt
	Restrictions:
	Operation:
	Programming Notes:

	Format: NOR rd, rs, rt MIPS I
	Description: rd ¨ rs NOR rt
	Restrictions:
	Operation:

	Format: OR rd, rs, rt MIPS I
	Description: rd ¨ rs OR rt
	Restrictions:
	Operation:

	Format: ORI rt, rs, immediate MIPS I
	Description: rd ¨ rs OR immediate
	Restrictions:
	Operation:

	Format: PREF hint, offset(base) MIPS IV,RC32364
	Description: prefetch_memory(base+offset)
	0
	1
	31
	Table 2.29 Values of Hint Field for Prefetch Instruction in RC32364

	0
	1
	2-3
	4
	5
	6
	7
	8-31
	Table 2.30 Values of Hint Field for Prefetch Instruction in RC5000
	Restrictions:
	Operation:
	Programming Notes:
	Implementation Notes:

	Format: RFE
	Description:
	Operation:

	Format: SB rt, offset(base) MIPS I
	Description: memory[base+offset] ¨ rt
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: SC rt, offset(base) MIPS II
	Description: if (atomic_update) then memory[base+offset] ¨ rt, rt ¨ 1 else rt ¨ 0
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors
	Programming Notes:
	Implementation Notes:

	Format: SCD rt, offset(base) MIPS III
	Description: if (atomic_update) then memory[base+offset] ¨ rt, rt ¨ 1 else rt ¨ 0
	Restrictions:
	Operation: 64�bit processors
	Programming Notes:
	Implementation Notes:

	Format: SD rt, offset(base) MIPS III
	Description: memory[base+offset] ¨ rt
	Restrictions:
	Operation: 64�bit processors

	Format: SDC1 rt, offset(base) MIPS II
	Description: memory[base+offset] ¨ rt
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: SDL rt, offset(base) MIPS III
	Description: memory[base+offset] ¨ Some_Bytes_From rt
	Figure 2.15 Unaligned Doubleword Store with SDL and SDR
	Table 2.31 Bytes Stored by SDL Instruction
	Restrictions:
	Operation: 64�bit processors

	Format: SDR rt, offset(base) MIPS III
	Description: memory[base+offset] ¨ Some_Bytes_From rt
	Figure 2.16 Unaligned Doubleword Store with SDR and SDL
	Table 2.32 Bytes Stored by SDR Instruction
	Restrictions:
	Operation: 64�bit processors

	Format: SH rt, offset(base) MIPS I
	Description: memory[base+offset] ¨ rt
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: SLL rd, rt, sa MIPS I
	Description: rd ¨ rt << sa
	Restrictions:
	Operation:
	Programming Notes:

	Format: SLLV rd, rt, rs MIPS I
	Description: rd ¨ rt << rs
	Restrictions:
	Operation:
	Programming Notes:

	Format: SLT rd, rs, rt MIPS I
	Description: rd ¨ (rs < rt)
	Restrictions:
	Operation:

	Format: SLTI rt, rs, immediate MIPS I
	Description: rt ¨ (rs < immediate)
	Restrictions:
	Operation:

	Format: SLTIU rt, rs, immediate MIPS I
	Description: rt ¨ (rs < immediate)
	Restrictions:
	Operation:

	Format: SLTU rd, rs, rt MIPS I
	Description: rd ¨ (rs < rt)
	Restrictions:
	Operation:

	Format: SRA rd, rt, sa MIPS I
	Description: rd ¨ rt >> sa (arithmetic)
	Restrictions:
	Operation:

	Format: SRAV rd, rt, rs MIPS I
	Description: rd ¨ rt >> rs (arithmetic)
	Restrictions:
	Operation:

	Format: SRL rd, rt, sa MIPS I
	Description: rd ¨ rt >> sa (logical)
	Restrictions:
	Operation:

	Format: SRLV rd, rt, rs MIPS I
	Description: rd ¨ rt >> rs (logical)
	Restrictions:
	Operation:

	Format: SUB rd, rs, rt MIPS I
	Description: rd ¨ rs - rt
	Restrictions:
	Operation:
	Programming Notes:

	Format: SUBU rd, rs, rt MIPS I
	Description: rd ¨ rs - rt
	Restrictions:
	Operation:
	Programming Notes:

	Format: SW rt, offset(base) MIPS I
	Description: memory[base+offset] ¨ rt
	Restrictions:
	Operation: 32�bit Processors
	Operation: 64�bit Processors

	Format: SWC1 rt, offset(base) MIPS I
	Description: memory[base+offset] ¨ rt
	Restrictions:
	Operation: 32�bit processors
	Operation: 64�bit processors

	Format: SWL rt, offset(base) MIPS I
	Description: memory[base+offset] ¨ rt
	Table 2.33 Unaligned Word Store using SWL and SWR
	Table 2.34 Bytes Stored by SWL Instruction
	Operation: 32�bit Processors
	Operation: 64�bit Processors

	Format: SWR rt, offset(base) MIPS I
	Description: memory[base+offset] ¨ rt
	Figure 2.17 Unaligned Word Store using SWR and SWL
	Table 2.35 Bytes Stored by SWR Instruction
	Restrictions:
	Operation: 32�bit Processors
	Operation: 64�bit Processors

	Format: SYNC (stype = 0 implied) MIPS II
	Description:
	A Simple Description:
	A Precise Description:
	Restrictions:
	Operation:

	Programming Notes:
	Implementation Notes:

	Format: SYSCALL MIPS I
	Description:
	Restrictions:
	Operation:

	Format: TEQ rs, rt MIPS II
	Description: if (rs = rt) then Trap
	Restrictions:
	Operation:

	Format: TEQI rs, immediate MIPS II
	Description: if (rs = immediate) then Trap
	Restrictions:
	Operation:

	Format: TGE rs, rt MIPS II
	Description: if (rs ³ rt) then Trap
	Restrictions:
	Operation:

	Format: TGEI rs, immediate MIPS II
	Description: if (rs ³ immediate) then Trap
	Restrictions:
	Operation:

	Format: TGEIU rs, immediate MIPS II
	Description: if (rs ³ immediate) then Trap
	Restrictions:
	Operation:

	Format: TGEU rs, rt MIPS II
	Description: if (rs ³ rt) then Trap
	Restrictions:
	Operation:

	Format: TLT rs, rt MIPS II
	Description: if (rs < rt) then Trap
	Restrictions:
	Operation:

	Format: TLTI rs, immediate MIPS II
	Description: if (rs < immediate) then Trap
	Restrictions:
	Operation:

	Format: TLTIU rs, immediate MIPS II
	Description: if (rs < immediate) then Trap
	Restrictions:
	Operation:

	Format: TLTU rs, rt MIPS II
	Description: if (rs < rt) then Trap
	Restrictions:
	Operation:

	Format: TNE rs, rt MIPS II
	Description: if (rs ¹ rt) then Trap
	Restrictions:
	Operation:

	Format: TNEI rs, immediate MIPS II
	Description: if (rs ¹ immediate) then Trap
	Restrictions:
	Operation:

	Format: TLBP
	Description:
	Operation:

	Format: TLBR
	Description:
	Operation:

	Format: TLBWI
	Description:
	Operation:

	Format: TLBWR
	Description:
	Operation:

	Format: WAIT
	Description:
	Operation:

	Format: XOR rd, rs, rt MIPS I
	Description: rd ¨ rs XOR rt
	Restrictions:
	Operation:

	Format: XORI rt, rs, immediate MIPS I
	Description: rt ¨ rs XOR immediate
	Restrictions:
	Operation:

	sw2-ch03.pdf
	CPU Instructions Encoding
	Table 3.1 CPU Instruction Formats

	CPU Instruction Encoding
	Instruction Decode
	SPECIAL Instruction Class
	REGIMM Instruction Class
	Instruction Subsets of MIPS�III and MIPS�IV Processors
	Non-CPU Instructions in the Tables
	Coprocessor 0 - COP0
	Coprocessor 1 - COP1, COP1X, MOVCI, and CP1 load/store
	Coprocessor 2 - COP2 and CP2 load/store
	Coprocessor 3 - COP3 and CP3 load/store
	Table 3.2 CPU Instruction Encoding - MIPS I Architecture
	Table 3.3 CPU Instruction Encoding - MIPS II Architecture
	Table 3.4 CPU Instruction Encoding - MIPS III Architecture
	Table 3.5 CPU Instruction Encoding - MIPS IV Architecture
	Table 3.6 Architecture Level in Which CPU Instructions are Defined or Extended
	Table 3.7 CPU Instruction Encoding Changes - MIPS II Revision
	Table 3.8 CPU Instruction Encoding Changes - MIPS III Revision
	Table 3.9 CPU Instruction Encoding Changes - MIPS IV Revision

	sw2-ch04.pdf
	FPU Instructions Basics
	FPU Instruction Set Details
	FPU Instructions
	Data Transfer Instructions
	LWC1
	I
	SWC1
	I
	LDC1
	III
	SDC1
	III
	Table 4.10 FPU Loads and Stores Using Register + Offset Address Mode

	LWXC1
	IV
	SWXC1
	IV
	LDXC1
	IV
	SDXC1
	IV
	Table 4.11 FPU Loads and Stores Using Register + Register Address Mode

	MTC1
	I
	MFC1
	I
	DMTC1
	III
	DMFC1
	III
	CTC1
	I
	CFC1
	I
	Table 4.12 FPU Move To/From Instructions
	Arithmetic Instructions

	ADD.fmt
	I
	SUB.fmt
	I
	MUL.fmt
	I
	DIV.fmt
	I
	ABS.fmt
	I
	NEG.fmt
	I
	SQRT.fmt
	II
	C.cond.fmt
	I
	Table 4.13 FPU IEEE Arithmetic Operations

	RECIP.fmt
	IV
	RSQRT.fmt
	IV
	Table 4.14 FPU Approximate Arithmetic Operations

	MADD.fmt
	IV
	MSUB.fmt
	IV
	NMADD.fmt
	IV
	NMSUB.fmt
	IV
	Table 4.15 FPU Multiply-Accumulate Arithmetic Operations
	Conversion Instructions

	CVT.S.fmt
	I
	CVT.D.fmt
	I
	CVT.W.fmt
	I
	CVT.L.fmt
	I
	ROUND.W.fmt
	II
	ROUND.L.fmt
	III
	TRUNC.W.fmt
	II
	TRUNC.L.fmt
	III
	CEIL.W.fmt
	II
	CEIL.L.fmt
	III
	FLOOR.W.fmt
	II
	FLOOR.L.fmt
	III
	Table 4.16 FPU Conversion Operations Using a Directed Rounding Mode
	Formatted Operand Value Move Instructions

	MOV.fmt
	I
	Table 4.17 FPU Formatted Operand Move Instructions

	MOVT.fmt
	IV
	MOVF.fmt
	IV
	Table 4.18 FPU Conditional Move on True/False Instructions

	MOVZ.fmt
	IV
	MOVN.fmt
	IV
	Table 4.19 FPU Conditional Move on Zero/Nonzero Instructions
	Conditional Branch Instructions

	BC1T
	I
	BC1F
	I
	BC1TL
	II
	BC1FL
	II
	Table 4.20 FPU Conditional Branch Instructions
	Miscellaneous Instructions

	MOVZ
	IV
	MOVN
	IV
	Table 4.21 CPU Conditional Move on FPU True/False Instructions
	Valid Operands for FP Instructions

	0-15
	-
	Reserved
	16
	0
	S
	single
	32
	floating-point
	17
	1
	D
	double
	64
	floating-point
	18-19
	2-3
	Reserved
	20
	4
	W
	word
	32
	fixed-point
	21
	5
	L
	long
	64
	fixed-point
	22–31
	6-7
	Reserved
	Table 4.22 FPU Operand Format Field (fmt, fmt3) Decoding

	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	U
	·
	·
	·
	·
	U
	U
	U
	·
	·
	·
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	·
	·
	U
	U
	Table 4.23 Valid Formats for FPU Operations �
	Description of an Instruction
	Operation Notation Conventions and Functions
	Individual FPU Instruction Descriptions

	sw2-ch05.pdf
	FPU Instructions Reference
	Format: ABS.S fd, fs MIPS I
	Description: fd ¨ absolute(fs)
	Restrictions:
	Operation:

	Format: ADD.S fd, fs, ft MIPS I
	Description: fd ¨ fs + ft
	Restrictions:
	Operation:

	Format: BC1F offset (cc = 0 implied) MIPS I
	Description: if (cc = 0) then branch
	Restrictions:
	Operation:
	Programming Notes:

	Format: BC1FL offset (cc = 0 implied) MIPS II
	Description: if (cc = 0) then branch_likely
	Restrictions:
	Operation:
	Programming Notes:

	Format: BC1T offset (cc = 0 implied) MIPS I
	Description: if (cc = 1) then branch
	Restrictions:
	Operation:
	Programming Notes:

	Format: BC1TL offset (cc = 0 implied) MIPS II
	Description: if (cc = 1) then branch_likely
	Restrictions:
	Operation:
	Programming Notes:

	Format: C.cond.S fs, ft (cc = 0 implied) MIPS I
	Description: cc ¨ fs compare_cond ft
	F
	F
	F
	F
	F
	F
	No
	0
	0
	T
	T
	T
	T
	UN
	F
	F
	F
	T
	T
	1
	T
	T
	T
	F
	F
	EQ
	F
	F
	T
	F
	T
	2
	T
	T
	F
	T
	F
	UEQ
	F
	F
	T
	T
	T
	3
	T
	T
	F
	F
	F
	OLT
	F
	T
	F
	F
	T
	4
	T
	F
	T
	T
	F
	ULT
	F
	T
	F
	T
	T
	5
	T
	F
	T
	F
	F
	OLE
	F
	T
	T
	F
	T
	6
	T
	F
	F
	T
	F
	ULE
	F
	T
	T
	T
	T
	7
	T
	F
	F
	F
	F
	key: “?” = unordered, “>” = greater than, “<” = less than, “=” is equal, “T” = True, “F” = False
	Table 5.24 FPU Comparisons Without Special Operand Exceptions

	SF
	F
	F
	F
	F
	F
	Yes
	1
	0
	T
	T
	T
	T
	NGLE
	F
	F
	F
	T
	T
	1
	T
	T
	T
	F
	F
	SEQ
	F
	F
	T
	F
	T
	2
	T
	T
	F
	T
	F
	NGL
	F
	F
	T
	T
	T
	3
	T
	T
	F
	F
	F
	LT
	F
	T
	F
	F
	T
	4
	T
	F
	T
	T
	F
	NGE
	F
	T
	F
	T
	T
	5
	T
	F
	T
	F
	F
	LE
	F
	T
	T
	F
	T
	6
	T
	F
	F
	T
	F
	NGT
	F
	T
	T
	T
	T
	7
	T
	F
	F
	F
	F
	Table 5.25 FPU Comparisons With Special Operand Exceptions for QNaNs
	Restrictions:
	Operation:
	Programming Notes:

	Format: CEIL.L.S fd, fs MIPS III
	Description: fd ¨ convert_and_round(fs)
	Restrictions:
	Operation:

	Format: CEIL.W.S fd, fs MIPS II
	Description: fd ¨ convert_and_round(fs)
	Restrictions:
	Operation:

	Format: CFC1 rt, fs MIPS I
	Description: rt ¨ FP_Control[fs]
	Restrictions:
	Operation: MIPS I - III
	Operation: MIPS IV

	Format: CTC1 rt, fs MIPS I
	Description: FP_Control[fs] ¨ rt
	Restrictions:
	Operation: MIPS I - III
	Operation: MIPS IV

	Format: CVT.D.S fd, fs MIPS I
	Description: fd ¨ convert_and_round(fs)
	Restrictions:
	Operation:

	Format: CVT.L.S fd, fs MIPS III
	Description: fd ¨ convert_and_round(fs)
	Restrictions:
	Operation:

	Format: CVT.S.D fd, fs MIPS I
	Description: fd ¨ convert_and_round(fs)
	Restrictions:
	Operation:

	Format: CVT.W.S fd, fs MIPS I
	Description: fd ¨ convert_and_round(fs)
	Restrictions:
	Operation:

	Format: DIV.S fd, fs, ft MIPS I
	Description: fd ¨ fs / ft
	Restrictions:
	Operation:

	Format: DMFC1 rt, fs MIPS III
	Description: rt ¨ fs
	Restrictions:
	Operation: MIPS I - III
	Operation: MIPS IV

	Format: DMTC1 rt, fs MIPS III
	Description: fs ¨ rt
	Restrictions:
	Operation: MIPS I - III
	Operation: MIPS IV

	Format: FLOOR.L.S fd, fs MIPS III
	Description: fd ¨ convert_and_round(fs)
	Restrictions:
	Operation:

	Format: FLOOR.W.S fd, fs MIPS II
	Description: fd ¨ convert_and_round(fs)
	Restrictions:
	Operation:

	Format: LDC1 ft, offset(base) MIPS II
	Description: ft ¨ memory[base+offset]
	Restrictions:
	Operation:

	Format: LDXC1 fd, index(base) MIPS IV
	Description: fd ¨ memory[base+index]
	Restrictions:
	Operation:

	Format: LWC1 ft, offset(base) MIPS I
	Description: ft ¨ memory[base+offset]
	Restrictions:
	Operation: 32-bit Processors
	Operation: 64-bit Processors

	Format: LWXC1 fd, index(base) MIPS IV
	Description: fd ¨ memory[base+index]
	Restrictions:
	Operation:

	Format: MADD.S fd, fr, fs, ft MIPS IV
	Description: fd ¨ (fs ¥ ft) + fr
	Restrictions:
	Operation:

	Format: MFC1 rt, fs MIPS I
	Description: rt ¨ fs
	Restrictions:
	Operation: MIPS I - III
	Operation: MIPS IV

	Format: MOV.S fd, fs MIPS I
	Description: fd ¨ fs
	Restrictions:
	Operation:

	Format: MOVF rd, rs, cc MIPS IV
	Description: if (cc = 0) then rd ¨ rs
	Restrictions:
	Operation:

	Format: MOVF.S fd, fs, cc MIPS IV
	Description: if (cc = 0) then fd ¨ fs
	Restrictions:
	Operation:

	Format: MOVN.S fd, fs, rt MIPS IV
	Description: if (rt ¹ 0) then fd ¨ fs
	Restrictions:
	Operation:

	Format: MOVT rd, rs, cc MIPS IV
	Description: if (cc = 1) then rd ¨ rs
	Restrictions:
	Operation:

	Format: MOVT.S fd, fs, cc MIPS IV
	Description: if (cc = 1) then fd ¨ fs
	Restrictions:
	Operation:

	Format: MOVZ.S fd, fs, rt MIPS IV
	Description: if (rt = 0) then fd ¨ fs
	Restrictions:
	Operation:

	Format: MSUB.S fd, fr, fs, ft MIPS IV
	Description: fd ¨ (fs ¥ ft) - fr
	Restrictions:
	Operation:

	Format: MTC1 rt, fs MIPS I
	Description: fs ¨ rt
	Restrictions:
	Operation: MIPS I - III
	Operation: MIPS IV

	Format: MUL.S fd, fs, ft MIPS I
	Description: fd ¨ fs ¥ ft
	Restrictions:
	Operation:

	Format: NEG.S fd, fs MIPS I
	Description: fd ¨ - (fs)
	Restrictions:
	Operation:

	Format: NMADD.S fd, fr, fs, ft MIPS IV
	Description: fd ¨ - ((fs ¥ ft) + fr)
	Restrictions:
	Operation:

	Format: NMSUB.S fd, fr, fs, ft MIPS IV
	Description: fd ¨ - ((fs ¥ ft) - fr)
	Restrictions:
	Operation:

	Format: PREFX hint, index(base) MIPS IV
	Description: prefetch_memory[base+index]
	0
	1
	2-3
	4
	5
	6
	7
	8-31
	Restrictions:
	Operation:
	Programming Notes:
	Implementation Notes:

	Format: RECIP.S fd, fs MIPS IV
	Description: fd ¨ 1.0 / fs
	Restrictions:
	Operation:

	Format: ROUND.L.S fd, fs MIPS III
	Description: fd ¨ convert_and_round(fs)
	Restrictions:
	Operation:

	Format: ROUND.W.S fd, fs MIPS II
	Description: fd ¨ convert_and_round(fs)
	Restrictions:
	Operation:

	Format: RSQRT.S fd, fs MIPS IV
	Description: fd ¨ 1.0 / sqrt(fs)
	Restrictions:
	Operation:

	Format: SDC1 ft, offset(base) MIPS II
	Description: memory[base+offset] ¨ ft
	Restrictions:
	Operation:

	Format: SDXC1 fs, index(base) MIPS IV
	Description: memory[base+index] ¨ fs
	Restrictions:
	Operation:

	Format: SQRT.S fd, fs MIPS II
	Description: fd ¨ SQRT(fs)
	Restrictions:
	Operation:

	Format: SUB.S fd, fs, ft MIPS I
	Description: fd ¨ fs - ft
	Restrictions:
	Operation:

	Format: SWC1 ft, offset(base) MIPS I
	Description: memory[base+offset] ¨ ft
	Restrictions:
	Operation: 32-bit Processors
	Operation: 64-bit Processors

	Format: SWXC1 fs, index(base) MIPS IV
	Description: memory[base+index] ¨ fs
	Restrictions:
	Operation:

	Format: TRUNC.L.S fd, fs MIPS III
	Description: fd ¨ convert_and_round(fs)
	Restrictions:
	Operation:

	Format: TRUNC.W.S fd, fs MIPS II
	Description: fd ¨ convert_and_round(fs)
	Restrictions:
	Operation:

	sw2-ch06.pdf
	FPU Instructions Encoding
	FPU (CP1) Instruction Opcode Bit Encoding
	Instruction Decode
	COP1 Instruction Class
	COP1X Instruction Class
	SPECIAL Instruction Class

	Instruction Subsets of MIPS�III and MIPS�IV Processors
	opcode
	bits 28..26
	bits 31..29
	0
	1
	2
	3
	4
	5
	6
	7
	000
	001
	010
	011
	100
	101
	110
	111
	0
	000
	c
	1
	001
	2
	010
	COP1 d
	3
	011
	4
	100
	5
	101
	6
	110
	LWC1
	7
	111
	SWC1
	fmt
	bits 23..21
	bits 25..24
	0
	1
	2
	3
	4
	5
	6
	7
	000
	001
	010
	011
	100
	101
	110
	111
	0
	00
	MFC1
	*
	CFC1
	*
	MTC1
	*
	CTC1
	*
	1
	01
	BC d
	*
	*
	*
	*
	*
	*
	*
	2
	10
	S d
	D d
	*
	*
	W d
	*
	*
	*
	3
	11
	*
	*
	*
	*
	*
	*
	*
	*
	t f
	bit 16
	0
	1
	BC1F
	BC1T
	function
	bits 2..0
	bits 5..3
	0
	1
	2
	3
	4
	5
	6
	7
	000
	001
	010
	011
	100
	101
	110
	111
	0
	000
	ADD
	SUB
	MUL
	DIV
	*
	ABS
	MOV
	NEG
	1
	001
	*
	*
	*
	*
	*
	*
	*
	*
	2
	010
	*
	*
	*
	*
	*
	*
	*
	*
	3
	011
	*
	*
	*
	*
	*
	*
	*
	*
	4
	100
	*
	CVT.D
	*
	*
	CVT.W
	*
	*
	*
	5
	101
	*
	*
	*
	*
	*
	*
	*
	*
	6
	110
	C.F a
	C.UN a
	C.EQ a
	C.UEQ a
	C.OLT a
	C.ULT a
	C.OLE a
	C.ULE a
	7
	111
	C.SF a
	C.NGLE a
	C.SEQ a
	C.NGL a
	C.LT a
	C.NGE a
	C.LE a
	C.NGT a
	function
	bits 2..0
	bits 5..3
	0
	1
	2
	3
	4
	5
	6
	7
	000
	001
	010
	011
	100
	101
	110
	111
	0
	000
	ADD
	SUB
	MUL
	DIV
	*
	ABS
	MOV
	NEG
	1
	001
	*
	*
	*
	*
	*
	*
	*
	*
	2
	010
	*
	*
	*
	*
	*
	*
	*
	*
	3
	011
	*
	*
	*
	*
	*
	*
	*
	*
	4
	100
	CVT.S
	*
	*
	*
	CVT.W
	*
	*
	*
	5
	101
	*
	*
	*
	*
	*
	*
	*
	*
	6
	110
	C.F a
	C.UN a
	C.EQ a
	C.UEQ a
	C.OLT a
	C.ULT a
	C.OLE a
	C.ULE a
	7
	111
	C.SF a
	C.NGLE a
	C.SEQ a
	C.NGL a
	C.LT a
	C.NGE a
	C.LE a
	C.NGT a
	function
	bits 2..0
	bits 5..3
	0
	1
	2
	3
	4
	5
	6
	7
	000
	001
	010
	011
	100
	101
	110
	111
	0
	000
	*
	*
	*
	*
	*
	*
	*
	*
	1
	001
	*
	*
	*
	*
	*
	*
	*
	*
	2
	010
	*
	*
	*
	*
	*
	*
	*
	*
	3
	011
	*
	*
	*
	*
	*
	*
	*
	*
	4
	100
	CVT.S
	CVT.D
	*
	*
	*
	*
	*
	*
	5
	101
	*
	*
	*
	*
	*
	*
	*
	*
	6
	110
	*
	*
	*
	*
	*
	*
	*
	*
	7
	111
	*
	*
	*
	*
	*
	*
	*
	*
	opcode
	bits 28..26
	bits 31..29
	0
	1
	2
	3
	4
	5
	6
	7
	000
	001
	010
	011
	100
	101
	110
	111
	0
	000
	c
	1
	001
	2
	010
	COP1 d
	3
	011
	4
	100
	5
	101
	6
	110
	LWC1
	LDC1
	7
	111
	SWC1
	SDC1
	fmt
	bits 23.21
	bits 25..24
	0
	1
	2
	3
	4
	5
	6
	7
	000
	001
	010
	011
	100
	101
	110
	111
	0
	00
	MFC1
	*
	CFC1
	*
	MTC1
	*
	CTC1
	*
	1
	01
	BC d
	*
	*
	*
	*
	*
	*
	*
	2
	10
	S d
	D d
	*
	*
	W d
	*
	*
	*
	3
	11
	*
	*
	*
	*
	*
	*
	*
	*
	t f
	bit 16
	n d
	0
	1
	0
	BC1F
	BC1T
	bit 17 1
	BC1FL
	BC1TL
	Key to all FPU (CP1) instruction encoding tables:

	sw2ix.pdf
	Numerics
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Index

