

Version 1.1
April 1999

6024 Silver Creek Valley Road, San Jose, California 95138
Telephone: (800) 345-7015 • (408) 284-8200 • FAX: (408) 284-2775

Printed in U.S.A.
©2005 Integrated Device Technology, Inc.

IDT79RC32364 RISControllerTM
Advanced Architecture

32-bit Embedded Microprocessor,
 User’s Reference Manual

Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without
notice, in order to improve design or performance and to supply the best possible product. IDT does not assume any re-
sponsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes
no representations that circuitry described herein is free from patent infringement or other rights of third parties which may
result from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights, of In-
tegrated Device Technology, Inc.

LIFE SUPPORT POLICY
Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems
unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of
IDT.
1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b)
support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided
in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any components of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

The IDT logo is a registered trademark, and BiCameral, BurstRAM, BUSMUX, CacheRAM, DECnet, Double-Density, FASTX, Four-Port, FLEXI-CACHE, Flexi-
PAK, Flow-thruEDC, IDT/c, IDTenvY, IDT/sae, IDT/sim, IDT/ux, MacStation, MICROSLICE, PalatteDAC, REAL8, R3041, R3051, R3052, R3071, R3081, R36100,
R3721, R4600, R4640, R4650, R4700, R5000, RISController, RISCore, RISC Subsystem, RC32364, RISC Windows, SARAM, SmartLogic, SyncFIFO, SyncBiFIFO,
SPC, TargetSystem and WideBus are trademarks of Integrated Device Technology, Inc.
MIPS is a registered trademark, and RISCompiler, RISComponent, RISComputer, RISCware, RISC/os, R3000, and R3010 are trademarks of MIPS Computer Systems,
Inc. Postscript is a registered trademark of Adobe Systems, Inc. AppleTalk, LocalTalk, and Macintosh are registered trademarks of Apple Computer, Inc. Centronics
is a registered trademark of Genicom, Inc. Ethernet is a registered trademark of Digital Equipment Corp. PS2 is a registered trademark of IBM Corp.

�����

���������
��
 ����

��������	
���
���
�����������������	
�	
�	
�	
��������������������

This user reference manual includes hardware and software information on the RC32364, the first 32-bit
low-cost, low-powered member of the Integrated Device Technology (IDT) RISController Series of
Embedded Microprocessors. Operational overviews, functional descriptions and diagrams are provided in
each chapter to assist system developers in obtaining optimum device performance.

����������
����
�����

Information not included in this manual such as mechanicals, package pin-outs and electrical character-
istics can be found in the data sheet for this device, which is available from the IDT website (www.idt.com)
as well as through your local IDT sales representative.

��������������������������������

��������������������

Chapter 1, “RC32364 Device Overview,” provides an introduction to the performance capabilities of
the 32-bit RC32364 microprocessor. Included in this chapter are performance and device overviews, a list
of features and a block diagram. Chapter 1 also includes an explanation on the Byte ordering conventions
used for this device.

Chapter 2, “CPU Instruction Set Overview,” presents a general overview on the three CPU instruc-
tion formats as well as the computational instructions of the MIPS architecture. Instruction set summary
tables are also provided.

Chapter 3, “CPU Pipeline Architecture,” discusses pipeline features as well as interlock and excep-
tion handling of the device’s RISCore32300.

Chapter 4, “Memory Management,” contains a discussion on the virtual-to-physical address transla-
tion technique, TLB management, and operation modes for the RC32364. Register formats and field
description tables are also provided in this chapter.

Chapter 5, “CPU Exception Processing,” defines and describes the various exception types and
handling processes for the RC32364. Also provided in this chapter are the CPO register formats, their field
descriptions and general exception handling flowcharts.

Chapter 6, “Cache Organization, Operation and Coherency,” includes a general discussion on the
operation of cache as well as the more specific cache attributes of the RC32364. Flowcharts and various
diagrams are provided to clarify the concepts discussed in this chapter.

Chapter 7, “Processor Signal Descriptions,” contains easy reference tables on the various interface
signals used by and in conjunction with the RC32364 processor. Functionally grouped, each table provides
signal information such as name, definition, direction, and description.

Chapter 8, “Clocking, Reset and Initialization Interfaces,” discusses the basic system clocks used
by the processor. A general overview on the Phase-locked loop operation and power management features
are also introduced in this chapter.

Chapter 9, “Bus Interface Overview,” provides explanations on the interface control registers used by
the RC32364. Tables containing field descriptions are included as well as timing diagrams for the various
addressing, interfacing, and DMA operations.

Appendix A, “RC32364 Enhancements to MIPS 32 ISA,” describes the MIPS 32 enhancements
implemented on the RC32364.

Appendix B, “RC32364 Opcode Map,” provides the opcode map for this device.

Appendix C, “The Timing of Cache Operations,” lists primary cache operation cycle times.
���� ������ � ��������
 �� ����

�������� ����
!

���������
��
 ����

�����
 Appendix D, “RC32364 Standby Mode Operation,” provides a flowchart and explanation of the
standby mode operation implemented in the RC32364 processor.

Appendix E, “Coprocessor 0 Hazards,” identifies the coprocessor 0 hazards for the RC32364.

Appendix F, “Integer Multiply Scheduling,” defines the multiplication performance enhancements of
the RC32364.

Appendix G, “EJTAG (In-circuit Emulator) Interface,” describes the protocols and capabilities of the
serial interface that enables access to internal CPU units. This allows the programmer visibility of register
and cache status information and control over the CPU’s operation, to simplify the system debug process.

��

May 1998: Initial publication.

April 2000: Second edition.

September 5, 2000: Revised Appendix G: EJTAG Interface.
���� ������ �� ��������
 �� ����

�����

���������
��
 ����

�����������
��
�

About This Manual
Introduction .. i

Additional Information... i

Content Summary.. i

Revision History.. ii

1 RC32364 Device Overview
Introduction ..1-1

Signal Terminology ...1-1

Performance Overview ..1-2

Features...1-2

Device Overview..1-3
CPU Registers..1-3
Configuration ..1-4

CP0 Considerations...1-5

Memory Management Unit (MMU) ..1-5

On-chip Instruction and Data Caches..1-5

Bus Interface Unit (BIU)...1-5

Pin Description Table ...1-6

Address/Data Interfaces ..1-9
Read Control Interface ...1-9
Write Control Interface ...1-9
Bus Retry..1-9
Bus Error ..1-9

DMA Mastership Interface ...1-9

Clocking Interface ..1-9

Reset Interface ..1-9

Power Reduction Modes..1-10
Standby Mode Operation ...1-10

2 CPU Instruction Set Overview
Introduction ..2-1

CPU Instruction Formats ...2-1

Load and Store Instructions (I-type) ..2-2
Scheduling a Load Delay Slot ..2-2
Defining Access Types ...2-2

Computational Instructions (R-type and I-type) ...2-3
Operations with 32-bit Operands..2-3
Cycle Timing for Multiply and Divide Instructions...2-3

Jump & Branch Instructions (J-type and R-type) ...2-4
Overview of Jump Instructions ...2-4
���� ������ ��� ��������
 �� ����

���������
��
 ����

�����
 Overview of Branch Instructions ..2-4

Special Instructions (R-type)..2-4

Exception Instructions..2-4

Coprocessor Instructions (I-type)...2-4

Summary of CPU Supported Instruction Sets ...2-5

3 CPU Pipeline Architecture
Introduction ..3-1

CPU Pipeline Stages ...3-2
1I - Instruction Fetch, Phase One ..3-2
2I - Instruction Fetch, Phase Two...3-2
1R - Register Fetch, Phase One ..3-2
2R - Register Fetch, Phase Two ..3-2
1A - Execution, Phase One..3-2
2A - Execution, Phase Two ..3-2
1D - Data Fetch, Phase One..3-3
2D - Data Fetch, Phase Two ..3-3
1W - Write Back, Phase One ...3-3
2W - Write Back, Phase Two..3-3

Branch Delay ...3-4

Load Delay...3-4

Interlock and Exception Handling ..3-5
Exception Conditions ...3-5
Stall Conditions ..3-6
Slip Conditions ...3-7

4 Memory Management
Introduction ..4-1

Virtual-to-Physical Address Translation ...4-1

TLB Management ..4-2

MMU Register Descriptions ...4-3
Index Register (0)...4-3
Random Register (1) ..4-4
EntryLo0 (2), and EntryLo1 (3) Registers...4-4
Context Register (4) ...4-5
PageMask Register (5) ..4-6
Wired Register (6) ..4-7
Bad Virtual Address Register (BadVAddr) (8) ..4-8
EntryHi Register (10)..4-8

Kernel/User Operating Modes and Addressing ...4-9
User Mode..4-9
Kernel Mode...4-9

5 CPU Exception Processing
Introduction ..5-1

Exception Processing Registers ..5-2
Count Register (9) ..5-3
���� ������ �� ��������
 �� ����

���������
��
 ����

�����
 Compare Register (11) ...5-3
Status Register (12) ...5-3
Status Register Modes and Access States ..5-5
Cause Register (13) ...5-6
Exception Program Counter (EPC) Register (14) ..5-7
Processor Revision Identifier (PRId) Register (15) ..5-7
Config Register (16) ...5-8
IWatch Register (18) ..5-9
DWatch Register (19)...5-9
Debug Exception Program Counter (DebugEPC) Register (23)5-10
Debug Register (24) ...5-10
Error Checking and Correcting (ECC) Register (26) ..5-10
Cache Error (CacheErr) Register (27).. 5-11
TagLo Register (28).. 5-11
Error Exception Program Counter (Error EPC) Register (30) ..5-12

Processor Exceptions ..5-13
Exception Types...5-13
General Exception Process..5-13
Priority of Exceptions ...5-13
Exception Vector Locations ..5-14
Reset Exception ...5-15
Debug Exception ..5-16
Soft Reset Exception..5-16
Nonmaskable Interrupt (NMI) Exception ..5-17
Address Error Exception ..5-17

TLB Exceptions..5-18
TLB Refill Exception ...5-18
TLB Invalid Exception ..5-18
TLB Modified Exception ...5-19
Cache Error Exception ...5-19
Bus Error Exception ...5-20
Integer Overflow Exception ..5-20
Trap Exception ...5-21
System Call Exception ...5-21
Breakpoint Exception ...5-21
Reserved Instruction Exception ...5-22
Coprocessor Unusable Exception..5-22
Interrupt Exception ...5-22
DWatch Exception..5-23
IWatch Exception ...5-23
Exception Handling and Servicing Flowcharts ...5-23

6 Cache Organization, Operation and Coherency
Introduction ..6-1

Cache Operation Overview ..6-1

RC32364 Cache Description ...6-2
RC32364 Cache Attributes ..6-2

Cache Organization and Accessibility ...6-3
Organization of the Primary Instruction Cache (I-Cache)...6-3
Organization of the Primary Data Cache (D-Cache) ..6-4
���� ������ � ��������
 �� ����

���������
��
 ����

�����
 Accessing the Primary Caches..6-5

Primary Cache States..6-6
Primary Cache States ..6-6

Cache Line Ownership ..6-7

Cache Write Policy ..6-7
Store Buffer ..6-7

Cache Replacement Policy..6-8

Cache Initialization...6-8

Cache Locking ...6-8
When to use Cache Locking ..6-8
Example: Data Cache Locking...6-9
Example: Instruction Cache Locking..6-10

7 Processor Signal Descriptions
Introduction ..7-1

System Interface Signals ...7-2

Clock/Control Interface Signals ...7-3

Interrupt Interface Signals..7-3

Initialization Interface Signals ..7-4

DMA Interface Signals ...7-4

Handshake Interface..7-4

Debug Emulator Interface..7-5

8 Clocking, Reset and Initialization Interfaces
Introduction ..8-1

Signal Terminology ..8-1

Basic System Clocks ...8-2
MasterClock ...8-2
PClock ..8-2

Phase-Locked Loop (PLL) Operation ..8-3
PLL Components and Operation..8-3

PLL Analog Power Filtering ...8-4

Reset and Initialization Interface..8-4
Boot-Mode Configuration Settings ...8-5
Reset Interface ...8-6

9 Bus Interface Overview
Introduction ..9-1

Feature Overview ..9-1

Data Interfaces ..9-1

Variable Port-Width Interface...9-1

Interface Control Registers ..9-3
The Port-Width Control Register: Virtual Address 0xFFFF_E200......................................9-3
The Bus Turnaround (BTA) Control Register: Virtual Address 0xFFFF_E2049-5
The Bus Error Address Register (Read Only): Virtual Address 0xFFFF_E208..................9-6

The Address Interface ...9-7
���� ������ �� ��������
 �� ����

���������
��
 ����

�����
 Address Signal Description ..9-7
Valid Transfer Sizes ...9-8
Memory Port Width Encodings...9-8
Address Generation Timing..9-8

Read Control Interface...9-9
Read Control Interface Signals ..9-9
Read Interface Timing Diagrams..9-9

Write Control Interface...9-12
Timing Diagrams for Write Interface Operations ..9-12

Bus Retry ...9-16
Bus Error ..9-18
DMA Mastership Interface..9-18
DMA Mastership Initiation ..9-19
Relinquishing Mastership Back to the CPU..9-20
CPU Initiated Bus Grant De-Assertion ...9-20

Appendix A RC32364 Enhancements to MIPS 32 ISA
Introduction ... A-1

Prefetch (PREF) ... A-1

Elimination of 64-bit instructions ... A-3

Conditional Move Operations ... A-3
Move Conditional on Not Zero .. A-3
Move Conditional on Zero ... A-3

Instructions for DSP Support .. A-4
Multiply Add... A-4
Multiply Add Unsigned .. A-4
Multiply Subtract ... A-5
Multiply Subtract Unsigned ... A-5
Count Leading Zeros... A-6
Count Leading Ones ... A-6

Appendix B RC32364 Opcode Map

Appendix C The Timing of Cache Operations
Introduction ... C-1

Caveats About Cache Operations .. C-1

Cache Operations Tables ... C-2

Fill_I Equation Definitions ... C-3

Appendix D RC32364 Standby Mode Operation
Introduction ... D-1

Power Management.. D-1
Power Reduction Modes ... D-1

Entering Standby Mode .. D-2

Appendix E Coprocessor 0 Hazards
Introduction ... E-1
���� ������ ��� ��������
 �� ����

���������
��
 ����

�����
 List of Hazards .. E-1

Appendix F Integer Multiply Scheduling
Introduction ..F-1

Appendix G EJTAG (In-circuit Emulator) Interface
Introduction ... G-1

Overview... G-1

Block Diagrams... G-2

Debug Support Unit .. G-3
Instruction Address Match Logic ... G-3
Data Address & Data Value Match Logic .. G-3
Processor Address Bus & Processor Data Bus Match Logic .. G-3

EJTAG Interface ... G-4
Operating Modes... G-5

JTAG Operation .. G-6
Test Interface and Boundary-Scan Architecture.. G-6
Test Access Port Operation... G-6
TAP Controller State Assignments .. G-8
Instruction Register (IR) .. G-9
Test Data Register (DR) .. G-9
Implementation Register ... G-10
Processor Access ... G-16
Reset Overview... G-17
EJTAG Module Clocking ... G-18
Instruction Register ... G-18
The Debug Unit ... G-20

Extended Instructions ... G-20
SDBBP (Software Debug Breakpoint)... G-20
DERET (Debug Exception Return).. G-21

Extended CP0 Registers (Debug Registers) .. G-21
Debug Register ... G-21
Debug Exception Program Counter Register (DEPC)... G-23
Debug Exception Save Register (DESAVE).. G-24

Register Map .. G-24
Debug Control Register... G-25
Instruction Address Match Registers... G-26
Data Address and Data Match registers ... G-27
Processor Bus Match Registers.. G-28

Debug Exception .. G-31
Debug Exception Causes.. G-31
Debug Exception Enabling/Disabling .. G-31
Debug Exception Handling.. G-31
Exception Handling when in Debug Mode (DM bit is set) ... G-32
Servicing the Debug Exception ... G-32

PC Trace... G-32

Instruction Trace Method .. G-33

PC Status and Exception Vector Encoding... G-33
���� ������ ���� ��������
 �� ����

���������
��
 ����

�����
 PC Status Encoding .. G-33
Exception Vector Encoding ... G-34

External Interface Definition.. G-35
EJTAG... G-35

Priority of Target Address Output (TPC) ... G-35
Real Time TPC Output (TM=‘0’ in DCR[0]) ... G-35
Non-Real Time TPC Output (TM=‘1’ in DCR[0]) ... G-36

Examples of PC Trace Output .. G-36
Conditional PC Relative Jump Instruction ... G-36
Indirect Jump Instruction ... G-36
PC Trace Of An Exception Followed By A Jump Indirect Instruction G-37
PC Trace of an Indirect Instruction Followed by an Exception.. G-37

Examples of Trace Trigger Output .. G-38
Instruction Address Trace Trigger ... G-38
Trace Trigger and General Exception at the Same Time .. G-38
Jump Indirect Causes Trace Trigger ... G-39
Instruction after Jump Indirect Causes Trace Trigger ... G-39

Switching from Real-Time Trace to Debug ... G-39
Real-Time Trace Mode to Debug Mode (No TPC Output) .. G-39
Real-Time Trace Mode to Debug Mode .. G-40

Pin Out of the Standard EJTAG.. G-40

EJTAG Application Information... G-41
Using JTAG Boundary Scan and EJTAG .. G-41
Hot Plug-In of the EJTAG Probe to Target System ... G-42

Index ... I-1
���� ������ �" ��������
 �� ����

���������
��
 ����

�����
���� ������ " ��������
 �� ����

�����

���������
��
 ����

�	
����������

Table 2.1 Performance Levels of MUL/DIV and New Instructions..2-3
Table 2.2 Load and Store Instructions ...2-5
Table 2.3 Arithmetic Instructions (ALU Immediate) ..2-5
Table 2.4 Arithmetic Instructions (3-Operand, R-Type) ..2-5
Table 2.5 Multiply, Divide and DSP Instructions ...2-6
Table 2.6 Jump and Branch Instructions ..2-6
Table 2.7 Shift Instructions ...2-7
Table 2.8 Coprocessor Instructions ..2-7
Table 2.9 Special Instructions...2-8
Table 2.10 Exception Instructions...2-8
Table 2.11 CP0 Instructions ...2-8
Table 4.1 TLB Register Field Descriptions ..4-2
Table 4.2 RC32364 MMU Registers...4-3
Table 4.3 Index Register Field Descriptions ...4-3
Table 4.4 Random Register Field Descriptions ..4-4
Table 4.5 EntryLo0 and EntryLo1 Register Field Descriptions ...4-5
Table 4.6 TLB Page Coherency Attributes ...4-5
Table 4.7 Context Register Field Descriptions ...4-5
Table 4.8 PageMask Register Field Descriptions...4-6
Table 4.9 Wired Register Field Descriptions ..4-7
Table 4.10 EntryHi Register Field Content Descriptions ..4-8
Table 5.1 Basic CP0 Registers ...5-2
Table 5.2 Status Register Field Descriptions ..5-4
Table 5.3 Cause Register Field Descriptions ...5-6
Table 5.4 Cause Register ExcCode Field ..5-6
Table 5.5 PRid Register Field Descriptions ..5-7
Table 5.6 Config Register Field Content Descriptions ..5-8
Table 5.7 Watch Register Field Description..5-9
Table 5.8 DWatch Register Field Descriptions ...5-10
Table 5.9 ECC Register Field Descriptions ..5-10
Table 5.10 Cache Error Register Field Descriptions .. 5-11
Table 5.11 TagLo Register Field Descriptions ...5-12
Table 5.12 Primary Cache State Values...5-12
Table 5.13 Exception Priority Order (highest to lowest) ...5-13
Table 5.14 Base Address Vector Offset..5-14
Table 5.15 List of RC32364 Exception vectors...5-14
Table 5.16 RC32364 Exception Vectors ...5-15
Table 5.17 List of Exception Handling Flowchart Types ...5-23
Table 6.1 RC32364 Cache Attributes ...6-2
Table 6.2 Primary I-Cache Register Field Descriptions..6-3
Table 6.3 Primary D-cache Field Description ...6-4
Table 6.4 Primary Cache States...6-6
Table 7.1 System Interface Pin Descriptions ..7-2
Table 7.2 Clock/Control Interface Signals ..7-3
Table 7.3 Interrupt Interface Signals...7-3
Table 7.4 Initialization Interface Signals ...7-4
Table 7.5 DMA Interface Signals ..7-4
Table 7.6 Handshake Interface Signals..7-4
Table 7.7 ICE/Debug Interface Signals ...7-5
���� ������ "� ��������
 �� ����

���������
��
 ����

�����
 Table 8.1 Boot-Mode Configuration Settings ..8-5
Table 9.1 Data Interface Pin Description ..9-1
Table 9.2 Port Width Assignments to Data Lines ...9-1
Table 9.3 Data Transfer Sequences for 8-bit Port Width ..9-2
Table 9.4 Data Transfer Sequences for 16-bit Port Width..9-2
Table 9.5 Data Transfer Sequences for 32-bit Port Width ..9-2
Table 9.6 Port Width Control Register Field Definition ...9-4
Table 9.7 Encoding of 8-, 16-, and 32-bit Port Widths..9-4
Table 9.8 Memory Region Address Ranges ...9-5
Table 9.9 Bus Turnaround (BTA) Control Register Field Descriptions ...9-5
Table 9.10 Width Encoding of Bus Turnaround Cycles ..9-6
Table 9.11 Addressing Interface Signals ..9-7
Table 9.12 Encoding for Valid Transfer Sizes ...9-8
Table 9.13 Encoding of 8-, 16-, and 32-bit Port Widths..9-8
Table 9.14 DMA Interface Pin Descriptions..9-18
Table A.1 Value of Hint Field for the Prefetch Instruction .. A-2
Table C.1 Primary Data Cache Operations.. C-2
Table C.2 Primary Instruction Cache Operations... C-3
Table F.1 Integer Multiply and Divide Performance..F-2
Table G.1 EJTAG Pins ... G-4
Table G.2 CPU Core Device Identification Register... G-10
Table G.3 Implementation Register ... G-11
Table G.4 EJTAG_Control_Register .. G-13
Table G.5 Instruction Decoding .. G-18
Table G.6 Debug Register .. G-22
Table G.7 Debug Exception Program Counter... G-23
Table G.8 Debug Exception Save Register.. G-24
Table G.9 32-bit Register Map (Base Address = 0xff30 0000) ... G-24
Table G.10 Debug Control Register - DCR .. G-25
Table G.11 Instruction Address Break Status Register - IBS... G-26
Table G.12 Instruction Address Break Register n - IBAn ... G-26
Table G.13 Instruction Address Break Mask Register n - IBMn... G-26
Table G.14 Instruction Address Break Control n Register - IBCn .. G-27
Table G.15 Data Address Break Status - DBS ... G-27
Table G.16 Data Address Break n Register - DBAn... G-28
Table G.17 Processor Bus Break Status - PBS ... G-28
Table G.18 Processor Address Bus Break Register n - PBAn... G-28
Table G.19 Processor Data Bus Break n Register - PBDn .. G-29
Table G.20 Processor Data Bus Mask n Register - PBMn... G-29
Table G.21 Processor Bus Break Control and Address Mask n - PBCn .. G-29
Table G.22 Dynamic Trace Information.. G-33
Table G.23 PC Trace Status Information ... G-33
Table G.24 Exception and Exception Codes at TPC .. G-34
Table G.25 Pin Numbering of the JTAG and EJTAG Target Connector ... G-41
���� ������ "�� ��������
 �� ����

�����

���������
��
 ����

�	
������	����

Figure 1.1 Signal Transitions ...1-1
Figure 1.2 Clock-to-Q Delay ..1-1
Figure 1.3 RC32364 Block Diagram ..1-3
Figure 1.4 RC32364 CPU Registers..1-3
Figure 1.5 Big-Endian Byte Ordering Convention..1-4
Figure 1.6 Little-Endian Byte Ordering Convention ...1-4
Figure 2.1 CPU Instruction Formats ..2-1
Figure 3.1 Instruction Pipeline Stages ...3-1
Figure 3.2 Pipeline Activities..3-3
Figure 3.3 CPU Pipeline Branch Delay..3-4
Figure 3.4 CPU Pipeline Load Delay ...3-4
Figure 3.5 Exception Detection..3-5
Figure 3.6 Data Cache Miss ..3-6
Figure 3.7 Instruction Cache Miss ...3-7
Figure 4.1 Overview of a 32-bit Virtual Address Translation..4-1
Figure 4.2 TLB Register Format ..4-2
Figure 4.3 Index Register Format ..4-3
Figure 4.4 Random Register Format ...4-4
Figure 4.5 EntryLo0 and EntryLo1 Register Formats ..4-4
Figure 4.6 Context Register Format...4-5
Figure 4.7 PageMask Register Format ..4-6
Figure 4.8 Diagram Showing Ranges of Wired and Random Entries..4-7
Figure 4.9 Wired Register Format..4-7
Figure 4.10 Bad Virtual Address Register (BadVAddr) Format ...4-8
Figure 4.11 EntryHi Register Format ...4-8
Figure 4.12 Illustration of RC32364 User Mode Address Space ...4-9
Figure 4.13 Illustration of RC32364 Kernel Mode Address Space ..4-10
Figure 5.1 Count Register Format ...5-3
Figure 5.2 Compare Register Format ..5-3
Figure 5.3 Status Register Format...5-4
Figure 5.4 Cause Register Format...5-6
Figure 5.5 EPC Register Format..5-7
Figure 5.6 PRId Register Format ...5-7
Figure 5.7 Config Register Format...5-8
Figure 5.8 IWatch Register Format..5-9
Figure 5.9 DWatch Register Format ..5-9
Figure 5.10 ECC Register Format ...5-10
Figure 5.11 CacheErr Register ..5-11
Figure 5.12 TagLo Register Format...5-12
Figure 5.13 ErrorEPC Register ..5-12
Figure 5.14 General Exception Process ..5-13
Figure 5.15 Process of the Reset Exception..5-16
Figure 5.16 Process of the Soft Reset and NMI Exceptions..5-17
Figure 5.17 Process of the Cache Error Exception..5-20
Figure 5.18 General Exception Handling (HW)..5-24
Figure 5.19 General Exception Servicing Guideline (SW) ...5-25
Figure 5.20 TLB Refill Exception Handling (HW)...5-26
Figure 5.21 TLB Refill Exception Servicing Guideline (SW) ..5-27
Figure 5.22 Cache Error Exception Handling (HW) and Servicing Guidelines (SW)5-28
���� ������ "��� ��������
 �� ����

���������
��
 ����

�����
 Figure 5.23 Reset, Soft Reset & NMI Exception Handling (HW) and Servicing
Guidelines (SW)..5-29

Figure 6.1 Logical Hierarchy of Memory ..6-1
Figure 6.2 Primary I-Cache Line Format and Field Descriptions ...6-3
Figure 6.3 Primary D-cache Register Format ..6-4
Figure 6.4 Conceptual Primary Cache Lookup Sequence...6-5
Figure 6.5 Primary Cache Data and Tag Organization..6-5
Figure 7.1 IDT79RC32364 Processor Signals...7-1
Figure 8.1 Signal Transitions ...8-1
Figure 8.2 Clock-to-Q Delay ..8-1
Figure 8.3 System Clocks Data Setup, Output, and Hold timing ...8-2
Figure 8.4 Timing Illustration of MasterClock-to-PClock Multiply by 2...8-2
Figure 8.5 PLL Passive Components ..8-3
Figure 8.6 PLL Filter Circuit for Noisy Environments ...8-4
Figure 8.7 Mode Configuration Interface Reset Sequence..8-4
Figure 8.8 Timing of Cold Reset Signal ...8-6
Figure 8.9 Timing of Warm-Reset Signal...8-6
Figure 9.1 Format of Port Width Control Register..9-3
Figure 9.2 Bus Turnaround (BTA) Control Register Format ..9-5
Figure 9.3 Timing of Bus Turnaround Cycle(s) ..9-6
Figure 9.4 Address Generation at Start of Transfer...9-8
Figure 9.5 Address Toggling Mid-Transfer ..9-9
Figure 9.6 Data Retrieval in a Subblock Order ..9-9
Figure 9.7 Single-Word Back-to-Back Read Cycles ..9-10
Figure 9.8 Cache Line Read from a 32-bit Port Device ...9-10
Figure 9.9 Cache Refill Using an Eight-Halfword Subblock Ordered Sequence from

16-bit Port Device (Part 1) ..9-11
Figure 9.10 Cache Refill Using an Eight-Halfword Subblock Ordered Sequence from

16-bit Port Device (Part 2) ..9-11
Figure 9.11 Single-Word Back-to-Back Write Cycles ..9-12
Figure 9.12 Single-Word Back-to-Back Read, Followed by a Write Cycle ..9-13
Figure 9.13 Burst Write to a 32-bit Port ...9-13
Figure 9.14 Write Throttle Timing Diagram..9-14
Figure 9.15 Eight HalfWords Sequential Ordering Write (Part 1) ..9-14
Figure 9.16 Eight HalfWords Sequential Ordering Write (Part 2) ..9-15
Figure 9.17 Bus Retry with Pending BusReq* ...9-16
Figure 9.18 Bus Retry without a Pending BusReq* ...9-17
Figure 9.19 Assertion of Retry* along with Ack* Asserted ...9-17
Figure 9.20 Bus Error...9-18
Figure 9.21 Bus Grant and Start of DMA Transaction ...9-19
Figure 9.22 Regaining Bus Mastership..9-20
Figure 9.23 DMA Protocol BusGNT* De-assertion ..9-20
Figure A.1 Format of Prefetch Instruction ... A-1
Figure A.2 Flowchart for Prefetch Operation... A-2
Figure D.1 Flowchart for Standby Mode Operation ... D-2
Figure G.1 Block Diagram ... G-2
Figure G.2 Simplified EJTAG Block Diagram .. G-3
Figure G.3 RC32364 Debug Operating Modes ... G-6
Figure G.4 TAP Controller State Diagram ... G-7
Figure G.5 CPU Core Device ID Instruction Format.. G-10
Figure G.6 Byte Organization in a 32-bit EJTAG Data Register.. G-12
Figure G.7 Examples of Byte Organization in a 32-bit EJTAG Data Register G-13
Figure G.8 Examples of the Sync Operation ... G-15
Figure G.9 EJTAG Processor Access ... G-17
Figure G.10 Reset Overview ... G-18
���� ������ "�� ��������
 �� ����

���������
��
 ����

�����
 Figure G.11 Shift Order Sequence of the JTAG_All_IR Register .. G-20
Figure G.12 Trace of Conditional PC Relative Jump Instruction ... G-36
Figure G.13 Trace of Indirect Jump Instruction ... G-37
Figure G.14 Trace of an Exception Followed by a Jump Indirect Instruction G-37
Figure G.15 Trace of Indirect Jump Instruction Followed by an Exception G-37
Figure G.16 instruction Address Trace Trigger.. G-38
Figure G.17 Trace Trigger and General Exception at the Same Time .. G-38
Figure G.18 Jump Indirect Causes Trace Trigger ... G-39
Figure G.19 Instruction after Jump Indirect Causes Trace Trigger.. G-39
Figure G.20 Real-Time Trace Mode to Debug Mode (No Tpc Output).. G-39
Figure G.21 Real Time Trace Mode to Debug Mode (Debug Exception in

Branch Delay Slot)... G-40
Figure G.22 Timing Diagram of the EJTAG Interface Signals ... G-40
Figure G.23 Application Diagram of Target Board and EJTAG Connection...................................... G-41
���� ������ "� ��������
 �� ����

���������
��
 ����

�����
���� ������ "�� ��������
 �� ����

�����

���������
��
 ����
���� ������ # $ # ������
������� �
�����������	��������	��
�����������������	
�	
�	
�	
��������������������

Targeted to a variety of software intensive embedded applications, the RC32364 is a member of the
Integrated Device Technology, Inc. (IDT) RISCOntroller series of Embedded Microprocessors. The
RC32364 continues IDT’S tradition of high-performance through high-speed pipelines, high-bandwidth
caches and bus interface, MIPS application specific architectural extensions, and careful attention to effi-
cient control. IDT’s proprietary RISCore32300 CPU core provides low-powered operations, while main-
taining high performance.

The RC32364 supports a wide variety of embedded processor-based applications, such as internet-
working equipment (low-end routers and switches), telecommunications equipment (cellular base stations)
and consumer multimedia game systems.

������ ���
�������

Throughout this manual, when describing signal transitions, the following terminology is used:
◆ Rising edge indicates a low-to-high (0 to 1) transition.
◆ Falling edge indicates a high-to-low (1 to 0) transition.
◆ Clock-to-Q delay is the amount of time it takes for a signal to move from the input of a device (clock)

to the output of the device (Q).

These terms are illustrated in Figure 1.1 and Figure 1.2.

Figure 1.1 Signal Transitions

Figure 1.2 Clock-to-Q Delay

1 2 3 4

high-to-low
transition low-to-high

transition

single clock cycle

clock input

Q
data in

data out

Clock-to-Q delay
��
 �� ����

������� %����� &��
���' (�
��
����� &��
���'

���������
��
 ����

�����
 ��

The RC32364 brings RISCore4000TM family performance levels to lower cost systems. High perfor-
mance is preserved by retaining large on-chip two-way set-associative caches, a streamlined high-speed
pipeline, high-bandwidth and facilities such as early restart for data cache misses. These techniques
combine to allow the system designer more than 1 GB/sec aggregate internal cache bandwidth, 300MB/sec
external bus bandwidth, 175 Dhrystone MIPS.

An array of development tools as well as integrated in-circuit emulation support facilitates rapid develop-
ment of RC32364-based systems, allowing a wide variety of customers to take advantage of the
processor’s high-performance capabilities while maintaining short time-to-market goals. Also, being
upwardly software compatible with the RISCore3000TM family, the RC32364 will serve in many of the same
applications. The RC32364 also supports applications that require integer digital signal processing (DSP)
functions.

����������������

������������
◆ High-performance embedded 32-bit RISCore32300TM microprocessor

– Based on MIPS-II RISC architecture with enhancements
– Scalar 5-stage pipeline minimizes branch and load delays
– DSP engine capable of doing 1 Mul_Acc instruction every 2 clock cycles

◆ Enhanced MIPS-II instruction set architecture
– MIPS-IV compatible conditional move instructions
– MIPS-IV superset PREF (prefetch) instruction
– Fast multiplier with atomic multiply-add, multiply-sub
– Count leading zero/one instructions

◆ Large, efficient on-chip caches
– Separate 8KB Instruction cache and 2KB Data cache
– 2-way set associative
– Write-back and write-through support on a per page basis
– Optional cache locking, with per line resolution, to facilitate deterministic response
– Simultaneous instruction and data fetch in each clock cycle, achieves over l GB/sec bandwidth

◆ Flexible RC4000 compatible MMU with 32-page TLB
– Variable page size
– Enhanced write algorithm support
– Variable number of locked entries
– No performance penalty for address translation

◆ Flexible bus interface allows simple, low-cost designs
– Bus interface runs at a fraction of pipeline rate
– Programmable port-width interface (8-,16-, 32-bit memory and

I/O regions)
– Programmable bus turnaround (BTA) times
– Supports single datum or burst transactions
– Selectable system byte-ordering

◆ Improved real-time support
– Fast interrupt decode

◆ Low-power operation
– Active power management: powers down inactive units
– Active mode <1W, typical
– Stand-by mode <20mW

◆ Enhanced JTAG interface, for low-cost In-circuit Emulation (ICE)
◆ MIPS architecture ensures applications software compatibility throughout the RISController series

of embedded processors.
◆ Industrial temperature range support
◆ Windows® CE compatible
���� ������ # $ � ��������
 �� ����

������� %����� &��
���' %����� &��
���'

���������
��
 ����

�����
 ��

The RC32364 has a level of integration designed for high-performance and high bandwidth computing.
Key elements of the RC32364 are illustrated in the block diagram provided in Figure 1.3. An overview on
these features follows, with more detailed explanations provided in subsequent chapters.

Figure 1.3 RC32364 Block Diagram

��� ���������

The RC32364 has thirty-two general-purpose 32-bit registers. These registers are used for scalar
integer operations and address calculation.

The register file consists of two read ports and two write ports, and it is fully bypassed to minimize oper-
ation latency in the pipeline.

Figure 1.4 RC32364 CPU Registers

Two of the CPU general purpose registers have the following assigned functions:
◆ r0 is hardwired to a value of zero and can be used as the target register for any instruction whose

result is to be discarded. r0 can also be used as a source when a zero value is required.
◆ r31 is used as an implicit return destination address register by the JAL and BAL series of instruc-

tions.

System Control
Coprocessor (CP0)

2kB D-Cache, 2-set,

Clock

Enhanced JTAG
 (ICE Interface)

TLB

lockable, write-back/

Generation
Unit

 write-through

RC32364 Bus Interface Unit

8kB I-Cache,
lockable2-set,

RISCore4000 Compatible
w/

RISCore32300TM Internal Bus Interface

MMURISCore32300TM

Extended MIPS-II
Integer CPU Core

r0

r1

r2

r31

M ultiply and Divide Registers

Program Counter

0

0

0

HI

LO

0

G eneral Purpose Registers

PC

•
•
•
•

r29

r30

31

31

31

31
���� ������ # $ � ��������
 �� ����

������� %����� &��
���' %����� &��
���'

���������
��
 ����

�����
 Also, two multiply/divide registers (HI/LO) store the product of integer multiply operations or the quotient
(in LO) and remainder (in HI) of integer divide operations. The RISCore32300 processor does not have a
Program Status Word (PSW) register, so the function traditionally covered by PSW is handled by the Cause
and Status registers in the System Control Coprocessor (CPO). CPO also has a number of special purpose
registers that are used in conjunction with the memory management system and during exception
processing.

The RISCore32300 implements the MIPS-II instruction set architecture (ISA) with enhancements that
include:

◆ addition of MIPS-IV PREF operation, with various hint subfields
◆ addition of MIPS-IV conditional move instructions
◆ addition of MAD, MUL and MSUB instructions to the integer multiply units, used to perform multiply

accumulate and multiply subtract operations
◆ addition of two new instructions: Count Leading Ones (CLO) and Count Leading Zeros (CLZ).

These features come together to make the CPU well suited to DSP applications.

�������������

During hardware reset, the RC32364’s byte ordering is configurable into either a big-endian or little-
endian convention. When con

d as a big-endian system, byte 0 is always the most significant (leftmost) byte in a word (see Figure 1.5).
However, when configured as a little-endian system, byte 0 is always the least significant (rightmost) byte in
a word (see Figure 1.6).

Figure 1.5 Big-Endian Byte Ordering Convention

Figure 1.6 Little-Endian Byte Ordering Convention

)�*$+�,���)!�� &
,�
��*

31 24 23 16 15 8 7 0

8 9 A B

4 5 8 7

0 1 2 3

Higher
Address

Lower
Address

Word
Address

8

4

0

* Most significant byte (MSB) is at lowest address
** Word is addressed by byte address of MSB

-�����$+�,���)!�� &
,�
��*

31 24 23 16 15 8 7 0

B A 9 8

7 6 5 4

3 2 1 0

Higher
Address

Lower
Address

Word
Address

8

4

0

* Least significant byte (LSB) is at lowest address
** Word is addressed by byte address of LSB
���� ������ # $ � ��������
 �� ����

������� %����� &��
���' �(� �����,�
������

���������
��
 ����

�����

������������

����������������				��������������������������������

CP0 is responsible for address translation as well as cache attribute and exception management, and in
the MIPS architecture, CP0 functions are allowed to vary by implementation. The RC32364 implements an
RISCore4000 family compatible CP0. Specific details on the CP0 registers implemented by the RC32364
are provided in Chapter 5, “CPU Exception Processing.”

�� ������������!!!!

The RC32364’s MMU is modeled after the MMU found in the RISCore4000 family and includes the
Translation Lookaside Buffer (TLB). This MMU offers the following advantages, relative to the traditional
RISCore3000 family MMU:

◆ Variable page size
◆ Enhanced Write Algorithm support
◆ Mapping of a larger portion of the virtual address space
◆ Variable number of locked entries

��������""""����####����$$$$������������������������

��������������������������������				������������������������

��������####��������

The RC32364 incorporates separate instruction (I-cache) and data caches (D-cache) that can be
accessed in a single processor cycle. Each cache has its own 32-bit data path and can be accessed in the
same pipeline clock cycle. The RC32364 supports a cache-locking feature, which is implemented on a “per-
line basis,” enabling the system designer to maximize the system’s cache efficiency.

For more specific details on the characteristics and organization of these caches, refer to Chapter 6 of
this manual, “Cache Organization, Operation and Coherency.”

%%%%

�� %%%%��������!!!!

The RC32364 system interface is through a multiplexed data bus. The RC32364 implements special
techniques for byte-enable generation and for low-order address bits in block refills. The data interface is
32-bits wide with a variable port width interface, including 8-bit boot-prom support.

The system interface unit is 32-bits wide and includes features such as multiple pipeline-to-system clock
ratios support; DMA arbiter interface; variable port-width interface, including 8-bit boot prom; sub-block
ordering read and sequential ordering write. To simplify design, the same data lines are used for a given
width of memory, regardless of memory byte-ordering (endianness). A complete pin description table
follows and is also provided in Chapter 9, “Bus Interface Overview.”

Note: Although the internal cache is parity protected, parity for the external bus is not supported.
Parity is generated into the cache on refill and checked when the data is brought to the execution
core.
���� ������ # $ � ��������
 �� ����

������� %����� &��
���' (�� %���
������ .����

���������
��
 ����

�����
 ��$�$�$�$�����������������&&&&����''''((((����

The following is a list of bus interface pins that are available on the RC32364. Pin names followed by an
asterisk (*) are active when low.

(�� .!�� %���
������

System Interface

AD(31:4) I/O Addr(31:4)/Data(31:4)
High-order multiplexed address and data bits. Regardless of system byte ordering, AD(31) is
the MSB of the address.

AD(3:0) I/O Size(3:0)/Data(3:0)
Valid sizes for the RC32364 are as follows:

Other encodings allow future generations to service other transfer sizes. During the data phase,
AD[3:0] represents the Data(3:0).

Addr(3:2) O Addr(3:2)
Non-multiplexed address lines. These serve as the word within block address for cache refills
(Addr(3:2)). The word within block address bits count in a sub-block ordering.

ALE O Address Latch Enable
This signal provides set-up and hold times around the address phase of the AD bus.

ADS* O Address Strobe
This active-low signal indicates valid address and the start of a new bus transaction. The pro-
cessor asserts ADS* for the entire address cycle. This is the inverse of the ALE signal.

Width(1:0) O Bus Width
Indicates the Physical Memory/IO data bus size as follows:

BE*(3:0) O ByteEnables(3:0)/Addr(1:0)
Indicates which byte lanes are expected to participate in the transfer.

Table 1 System Interface Pin Descriptions (Part 1 of 3)

Size(3) Size(2) Size(1) Size(0) Transfer Width

0 0 0 0 16 bytes

0 0 0 1 1 byte

0 0 1 0 2 bytes

0 0 1 1 3 bytes

0 1 0 0 4 bytes

Width(1) Width(0) Port Width

0 0 8 bits

0 1 16 bits

1 0 32 bits

1 1 Reserved

Byte Lanes Enabled In Data Transfer

Port Width BE(3) BE(2) BE(1) BE(0)

32-bit Used Used Used Used

16-bit Byte High Enable Not Used Address Bit 1 (A1) Byte Low Enable

8-bit Not Used (Driven
High)

Not Used
(Driven High)

Address Bit 1 (A1) Address Bit 0 (A0)
���� ������ # $ � ��������
 �� ����

������� %����� &��
���' (�� %���
������ .����

���������
��
 ����

�����
CIP* O Cycle-in-progress
Denotes that a cycle is in progress. Asserted in the address phase and continue asserted until
the ACK* for the last data is sampled.

I/D* O I/D*
Indicates that the current cycle is for an instruction (active high) or data (active low) transaction.

Rd* O Read
This active-low signal indicates that the current transaction is a read.

Wr* O Write
This active-low signal indicates that the current cycle transaction is a write.

DataEn* O Data Enable
This active-low signal indicates that the AD bus is in data cycle. DEN* is asserted after the
address cycle (starting of data cycle), and deasserted at the end of the last data cycle.

DT/R* O Data Transmit/Receive
This active-low signal indicates the current cycle transaction of data direction. “High” is for a
write cycle and “Low” is for a read cycle.

Ack* I Acknowledge Receiving Data
On read transactions, this signal indicates to the RC32364 that the memory system has placed
valid data on the A/D bus, and that the processor may move the data into the on-chip Read
Buffer. On a write transaction, this indicates to the RC32364 that the memory system has
accepted the data on the A/D bus.

Last* O Last Data
This active-low output is used to indicate the last data phase of a transfer.

Handshake Interface

BusErr* I Bus Error
Indicates that a bus error has occurred.

Retry* I Retry
Indicates that the current bus cycle must be terminated. Retry* is ignored after acceptance of
the first data during a read cycle. During a write, Retry* is recognized in all data cycles.

Initialization Interface

ColdReset* I ColdReset
This active-low signal is used for power-on reset.

Reset* I Reset
This active-low signal is used for both power-on and warm reset.

DMA Interface

BusReq* I Bus Request
This active-low signal is an input to the processor that is used to request mastership of the
external interface bus. Mastership is granted according to the assertion of this input, taken back
based on its negation.

BusGnt* I/O Bus Grant/ModeBit(5)
This active-low signal is an output from the processor and is used to indicate that the CPU has
relinquished mastership of the external interface bus. BusGnt* goes low initially for at least 2
clocks to indicate that the CPU has relinquished mastership of the external interface bus. After
going low, BusGnt* returns high, either when the CPU makes an internal request for the bus or
after BusReq* is de-asserted.During the power-on reset (Cold Reset), BusGnt* is an input,
ModeBit(5).

Interrupt Interface

NMI* I Non-Maskable Interrupt
NMI is falling edge sensitive and an asynchronous signal.

Int*(5:0) I Interrupt/ModeBit(9:6)
These interrupt inputs are active low to the CPU. During power-on, Int*(3:0) serves as
ModeBit(9:6).

(�� .!�� %���
������

Table 1 System Interface Pin Descriptions (Part 2 of 3)
���� ������ # $ � ��������
 �� ����

������� %����� &��
���' (�� %���
������ .����

���������
��
 ����

�����
Debug Emulator Interface

Tclk I Testclock
An input test clock, used to shift into or out of the Boundary-Scan register cells. Tclk is indepen-
dent of the system and the processor clock with nominal 50% duty cycle.

TDI/DINT* I TDI/DINT*
On the rising edge of Tclk, serial input data are shifted into either the Instruction or Data register,
depending on the TAP controller state. During Real Mode, this input is used as an interrupt line
to stop the debug unit from Real Time mode and return the debug unit back to Run Time Mode
(standard JTAG). Requires an external pull-up on the board.

TDO/TPC O TDO/TPC
The TDO is serial data shifted out from instruction or data register on the falling edge of Tclk.
When no data is shifted out, the TDO is tri-stated. During Real Time Mode, this signal provides
a non-sequential program counter at the processor clock or at a division of processor clock.

TMS I TMS
The logic signal received at the TMS input is decoded by the TAP controller to control test oper-
ation. TMS is sampled on the rising edge of the TCLK. Requires an external pull-up on the
board.

TRST* I TRST*
The TRST* pin is an active-low signal for asynchronous reset of the debug unit, independent of
the processor logic. Requires an external pull-down on the board.

DCLK O DCLK
Processor Clock. During Real Time Mode, this signal is used to capture address and data from
the TDO signal at the processor clock speed or any division of the internal pipeline.

PCST(2:0) I/O PCST(2:0)/ModeBit(2:0)
PC Trace Status Information
111 (STL) Pipe line Stall
110 (JMP) Branch/Jump forms with PC output
101 (BRT) Branch/Jump forms with no PC output
100 (EXP) Exception generated with an exception vector code output
011 (SEQ) Sequential performance
010 (TST) Trace is outputted at pipeline stall time
001 (TSQ) Trace trigger output at performance time
000 (DBM) Run Debug Mode
During power-on reset (cold reset), PCST(2:0) serves as ModeBit(2:0).

PCST(4:3) I/O PCST(4:3)/ModeBit(4:3)
PC Trace Status Information. Reserved Pins for future expansion. During power-on reset,
PCST(4:3) serves as ModeBit(4:3).

DebugBoot I DebugBoot
The Debug Boot input is used during reset and forces the CPU core to take a debug exception
at the end of the reset sequence instead of a reset exception. This enables the CPU to boot
from the ICE probe without having the external memory working. This input signal is level sen-
sitive and is not latched internally. This signal will also set the JtagBrk bit in the
JTAG_Control_Register[12].

Clock/Control Interface

MasterClk I MasterClock
This input clock is the bus clock. The core frequency is derived by multiplying this clock up.

VccP I VccP
Quiet Vcc for PLL.

VssP I VssP
Quiet Vss for PLL.

Vcc I/O I Supply voltage for output buffers.

Vcc Core I Supply voltage for internal logic.

Vss I Ground.

(�� .!�� %���
������

Table 1 System Interface Pin Descriptions (Part 3 of 3)
���� ������ # $ / ��������
 �� ����

������� %����� &��
���' 0,,
���1%��� 2���
�����

���������
��
 ����

�����
))))								����������������****��

The RC32364 supports a 32-bit wide system data interface through a multiplexed address/data bus.
The RC32364 implements special techniques for byte-enable generation and for low-order address bits in
block refills. The data interface is 32-bits wide. There is no parity support for the bus, although the internal
cache is parity protected. Parity is generated into the cache on refill and then checked when the data is
brought to the execution core. The RC32364 supports a variable port-width interface.

���� �������
��������

The read control interface is designed to easily support a variety of read transactions:
◆ a single data read that can be satisfied in one data phase
◆ a single data read that requires multiple data phases (i.e. data is wider than the port)
◆ a cache-block read to any of the valid port widths
◆ sub-block ordering accessing among the words

����� �������
��������

Writes can be single data (including mini-bursts to narrow ports) or cache-line write-backs. For the case
of cache line writebacks, data is written using sequential ordering, starting from word 0 of the line.

��� �����

External devices can force the RC32364 bus to terminate the current bus transaction by asserting
Retry* (without asserting Ack*), during the first data phase. On a read operation, once the first data is
accepted (by sampling the Ack*), Retry* will be ignored.

��� �����

If the RC32364 tries to access a memory region that does not have any device connect to it or if external
logic detects a condition such as a parity error, BusErr* can then be asserted, which forces RC32364 into
taking the bus error exception. BusErr* is ignored after the acceptance of the first data. If BusErr* and Ack*
are both sampled asserted in the first data phase, Ack* will be ignored, and the bus error exception will be
taken.

��������))))��������������������������������####����$$$$��

The DMA interface uses a simple two signal protocol to allow an external agent mastership of the
system bus. Logic internal to the CPU synchronizes the external interface to the internal arbiter unit to
insure that no conflicts occur between the internal synchronous requesters (read and write engines) and the
external asynchronous (DMA) requester.

((((��������++++��

All bus timings are with respect to an external input clock, which is provided as the bus interface clock.
An on-chip PLL multiplies this input clock by a factor selected at device reset, to provide the pipeline clock.
Thus, MasterClk is the only relevant clock to a system designer.

��

The RC32364 processor has two types of resets that use the ColdReset* and Reset* input signals:
Power-on reset and Warm reset. During a Warm reset, the processor preserves the internal state and
takes the reset exception. During the power-on reset sequence, the RC32364 obtains configuration infor-
mation using its mode configuration interface.

The RC32364’s initialization values are obtained from PCST[4:0], BusGnt and Int*[4:0] and are the
same as ModeBit[9:0] during the power-on reset. The values of ModeBit[9:0] are latched with the Cold-
Reset* signal.
���� ������ # $ � ��������
 �� ����

������� %����� &��
���' (�'�
 ��,������ ��,��

���������
��
 ����

�����
 ��������������������������������	
��	
��	
��	
�����������������������	��	��	��	�����

The RISCore32300 is a static design and supports a WAIT instruction that is designed to signal the rest
of the chip that execution and clocking should be halted, reducing system power consumption during idle
periods.

����� � !��� "��������

Executing the WAIT instruction enables interrupts and enters Standby Mode. When the WAIT instruction
finishes the W pipe-stage, if the bus is currently idle, the internal clocks will shut down, thus freezing the
pipeline. The PLL, internal timer, and some of the input pins (Int[5:0]*, NMI*, Reset*, and ColdReset*) will
continue to run. If the bus is not idle when the WAIT instruction finishes the W pipe-stage, the WAIT is
treated as a NOP. Once the CPU is in Standby Mode, any interrupt, including the internally generated timer
interrupt, will cause the CPU to exit Standby Mode.
���� ������ # $ #� ��������
 �� ����

�����

���������
��
 ����
���� ������ � $ # ������
������� #
� !�"

�����	�
�#��

�����	��
�����������������	
�	
�	
�	
��������������������

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architec-
ture: Immediate, Jump, and Register. For more details on a specific CPU core instruction, refer to the IDT
MIPS Microprocessor Family Software Reference Manual. For descriptions of the new instruction sets
implemented in this device, refer to Appendix A of this manual.

��������������������������������

��

Each CPU instruction consists of a single 32-bit opcode, aligned on a word (4-byte) boundary. As shown
in Figure 2.1, there are three CPU instruction formats:

◆ Immediate (I-type)
◆ Jump (J-type)
◆ Register (R-type)

Limiting instruction format types to three simplifies instruction decoding (thus higher frequency opera-
tions) and allows the compiler to synthesize more complicated (and less frequently used) operations and
addressing modes.

Figure 2.1 CPU Instruction Formats

For all MIPS processors, system control is implemented as Coprocessor 0 (CP0), the System Control
Coprocessor. In the MIPS architecture, coprocessor instructions are implementation dependent. For
detailed descriptions of individual Coprocessor 0 instructions, refer to the IDT MIPS Microprocessor Family
Software Reference Manual.

Key to Figure:

op 6-bit operation code

rs 5-bit source register specifier

rt 5-bit target (source/destination) register or branch condition

immediate 16-bit immediate value, branch displacement or address displacement

target 26-bit jump target address

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
11 10 6 5

rd sa

R-Type (Register)

J-Type (Jump)

I-Type (Immediate)
��
 �� ����

�(
 2���
������ ��� &��
���' -��, ��, ���
� 2���
������� 32$�!��4

���������
��
 ����

�����
 ,,,,�����	�	�	�	������	��	��	��	��
��
��
��
���������������������� � � � �"�"�"�"�����$$$$����!!!!����

 Load and store are immediate (I-type) instructions that move data between memory and the general
registers. The only addressing mode that load and store instructions directly support is base register plus
16-bit signed immediate offset.

���������� � $��� %���� ����

A load instruction that does not allow its result to be used by the instruction immediately following is
called a delayed load instruction. The instruction slot immediately following this delayed load instruction is
referred to as the load delay slot.

In the RC32364 processor, the instruction immediately following a load instruction can request the
contents of the loaded register; however, in such cases, hardware interlocks may insert additional real
cycles. Consequently, scheduling load delay slots can be desirable, both for performance and RC3000
processor family (e.g., R3051) compatibility. However, the scheduling of load delay slots is not absolutely
required.

%������� ������ �����

Access type indicates the size of an RC32364 processor data item to be loaded or stored, set by the
load or store instruction opcode. Access types are defined in Appendix A of the IDT MIPS Microprocessor
Family Software Reference Manual.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte
in the addressed field. For a big-endian configuration, the low-order byte is the most-significant byte; for a
little-endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within
the addressed doubleword, which is shown in Table 2.1. Only the combinations shown in this table are
permitted. Other combinations will cause address error exceptions.

0����� .!��

��������

3�����4

-�' &
,�

0,,
���)���

)!��� 0������,

)�* +�,���

3�#5555555555�4

)!��

-����� +�,���

3�#555555555555�4

)!��
� # �

Word (3) 0 0 0 0 1 2 3 3 2 1 0

Triplebyte (2) 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

Halfword (1) 0 0 0 0 1 1 0

0 1 0 2 3 3 2

Byte (0) 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3
���� ������ � $ � ��������
 �� ����

�(
 2���
������ ��� &��
���' ������������� 2���
������� 3�$�!�� ��, 2$�!��4

���������
��
 ����

�����

��������$
�$
�$
�$
�������������������������((((������������������������

���������������������������� ����"�"�"�"�����$�$�$�$�������������				��������"�"�"�"�����$�$�$�$�!!!!

Computational instructions can be in either the register (R-type) or immediate (I-type) formats. In the R-
type format, both operands are registers; in the I-type format, one operand is a 16-bit immediate.

Computational instructions perform arithmetic, logical, shift, multiply, and divide operations on register
values and fit in the following four categories:

◆ ALU Immediate instructions
◆ three-Operand Register-Type instructions
◆ shift instructions
◆ multiply and divide instructions

"��������� &��� '#(�� "�������

Operands to 32-bit operand opcodes must be in sign-extended form. 32-bit operand opcodes include all
non-doubleword operations, such as: ADD, ADDU, SUB, SUBU, ADDI, SLL, SRL, SRA, SLLV, etc. The
result of operations that use incorrect sign-extended 32-bit values is unpredictable.

����� ��
��� ��� !������� ��� %�)���
�����������

 If necessary, RC32364 hardware interlocks to allow complete execution of the multiply and divide
instructions. For example, MFHI and MFLO instructions are interlocked so that any attempt to read or
execute them prior to the completion of previously issued multiply or divide instructions will be delayed.

Table 2.1 lists the number of processor cycles (PCycles) required to resolve an interlock or stall between
various multiply or divide instructions and a subsequent MFHI or MFLO instruction. Specific details on the
MFHI or MFLO instructions are provided in the IDT MIPS Microprocessor Family Software Reference
Manual.

&���,� &��
��, ��6� -�����!�

1. Latency refers to the number of cycles before a result is available.

�������

2. Repeat refers to the number of cycles before an operation can be re- issued.

������

3. Stall refers to the number of cycles that the CPU delays the pipeline.

MULT/U, MAD/U,
MSUB/U

16-bit 3 2 0

32-bit 4 3 0

MUL
16-bit 3 2 1

32-bit 4 3 2

DIV, DIVU any 36 36 0

CLZ 32-bit 1 1 0

CLO 32-bit 1 1 0

Table 2.1 Performance Levels of MUL/DIV and New Instructions
���� ������ � $ � ��������
 �� ����

�(
 2���
������ ��� &��
���' 7��� 8)
���9 2���
������� 37$�!�� ��, �$�!��4

���������
��
 ����

�����

����$$$$����....����%%%%����������������####������������������������

���������������������������� ----"�"�"�"�����$�$�$�$�������������				��������"�"�"�"�����$$$$����!!!!

Jump and Branch instructions change a program’s control flow. All jump and branch instructions occur
with a delay of one instruction: The instruction immediately following the jump or branch (known as the
instruction in the delay slot) always executes while the target instruction is being fetched from storage.

")��)��& �� *�
�
�����������

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instruc-
tions, both of which are J-type instructions. In the J-type format, the 26-bit target address shifts left 2 bits
and combines with the high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or
Jump and Link Register instructions (both of which are R-type instructions that take the 32-bit or 64-bit byte
address contained in one of the general purpose registers).

")��)��& �� ������
�����������

A branch instruction is a jump to a specified memory location and has an architectural delay of one
instruction. All branch instruction target addresses are computed by adding the address of the instruction in
the delay slot to the 16-bit offset (shifts left 2 bits and is sign-extended to 32 bits).

When a branch is taken, the instruction immediately following the branch instruction, in the branch delay
slot, is executed before the branch to the target instruction takes place. There are two versions of Condi-
tional branches, and each one treats the instruction in the delay slot differently. The “branch” instructions
will execute the instruction in the delay slot, but the “branch likely” instructions do not. If a conditional
branch likely is not taken, the instruction in the delay slot is nullified. For regular conditional branches, the
delay slot is always executed.

����$$$$����������������((((������������������������

���������������������������� ����"�"�"�"�����$�$�$�$�!!!!

Special instructions allow the software to initiate traps. Trap instructions cause exceptions conditionally
based upon the result of a comparison. These special instructions are always R-type. For more information
about special instructions, refer to the individual instruction as described in Appendix A of the IDT MIPS
Microprocessor Family Software Reference Manual.

////0000��$���$���$���$�������������������������������������
��
��
��
������������������

Exception instructions are extensions to the MIPS ISA and cause an exception that will transfer control
to a software exception handler in the kernel. System call and breakpoint instructions cause exceptions
unconditionally. For more information about specific exception instructions, refer to the individual instruction
as described in Appendix A of the IDT MIPS Microprocessor Family Software Reference Manual.

����$$$$��
��
��
��
���������������������� � � � �"�"�"�"�����$�$�$�$�!!!!

Coprocessor instructions perform operations in their respective coprocessors. Coprocessor loads and
stores are I-type, and coprocessor computational instructions have coprocessor-dependent formats.

CP0 instructions perform operations specifically on the System Control Coprocessor registers to manip-
ulate the memory management and exception handling facilities of the processor.
���� ������ � $ � ��������
 �� ����

�(
 2���
������ ��� &��
���' �����
! �� �(
 �����
��, 2���
������ ����

���������
��
 ����

�����
 ����

������������������������������������

����������������

$$�$$�$$�$$����������	�	�	�	������������������������

��

The tables that follow list instructions supported by the RC32364 core. Load and Store Instructions are
listed in Table 2.2, Arithmetic Instructions (ALU Immediate) in Table 2.3, Arithmetic Instructions (3-Operand,
R-Type) in Table 2.4, Multiply, Divide and DSP Instructions are in Table 2.5, Jump and Branch Instructions
are in Table 2.6, Shift Instructions are in Table 2.7, Coprocessor Instructions are in Table 2.8, Special
Instructions are listed in Table 2.9, Exception and CP0 Instructions are listed in Table 2.10 and Table 2.11.

&���,� %���
������ �2(� 2�0 -����

LB Load Byte I

LBU Load Byte Unsigned I

LH Load Halfword I

LHU Load Halfword Unsigned I

LW Load Word I

LWL Load Word Left I

LWR Load Word Right I

SB Store Byte I

SH Store Halfword I

SW Store Word I

SWL Store Word Left I

SWR Store Word Right I

LL Load Linked II

SC Store Conditional II

SYNC Sync II

PREF Prefetch IV

Table 2.2 Load and Store Instructions

&���,� %���
������ �2(� 2�0 -����

ADDI Add Immediate I

ADDI Add Immediate Unsigned I

SLTI Set on Less Than Immediate I

SLTIU Set on Less Than Immediate Unsigned I

ANDI AND Immediate I

ORI OR Immediate I

XORI Exclusive OR Immediate I

LUI Load Upper Immediate I

Table 2.3 Arithmetic Instructions (ALU Immediate)

&���,� %���
������ �2(� 2�0 -����

ADD Add I

ADDU Add Unsigned I

SUB Subtract I

Table 2.4 Arithmetic Instructions (3-Operand, R-Type) (Part 1 of 2)
���� ������ � $ � ��������
 �� ����

�(
 2���
������ ��� &��
���' �����
! �� �(
 �����
��, 2���
������ ����

���������
��
 ����

�����

SUBU Subtract Unsigned I

SLT Set on Less Than I

SLTU Set on Less Than Unsigned I

AND AND I

OR OR I

XOR Exclusive OR I

NOR NOR I

MOVN Move Conditional on Not Zero IV

MOVZ Move Conditional on Zero IV

&���,� %���
������ �2(� 2�0 -����

MULT Multiply I

MULTU Multiply Unsigned I

DIV Divide I

DIVU Divide Unsigned I

MFHI Move From HI I

MTHI Move To HI I

MFLO Move From LO I

MTLO Move To LO I

MUL Multiply with destination register writeback RC4650, RISCore32300, RC64574/575

MAD Multiply Add RC4650, RISCore32300, RC64574/575

MADU Multiply Add Unsigned RC4650, RISCore32300, RC64574/575

MSUB Multiply Subtract RC32364, RC64574/575

MSUBU Multiply Subtract Unsigned RC32364, RC64574/575

CLZ Count Leading Zeros RC32364, RC64574/575

CLO Count Leading Ones RC32364, RC64574/575

Table 2.5 Multiply, Divide and DSP Instructions

&���,� %���
������ �2(� 2�0 -����

J Jump I

JAL Jump And Link I

JR Jump Register I

JALR Jump And Link Register I

BEQ Branch on Equal I

BNE Branch on Not Equal I

BLEZ Branch on Less Than or Equal to Zero I

Table 2.6 Jump and Branch Instructions (Part 1 of 2)

&���,� %���
������ �2(� 2�0 -����

Table 2.4 Arithmetic Instructions (3-Operand, R-Type) (Part 2 of 2)
���� ������ � $ � ��������
 �� ����

�(
 2���
������ ��� &��
���' �����
! �� �(
 �����
��, 2���
������ ����

���������
��
 ����

�����
BGTZ Branch on Greater Than Zero I

BLTZ Branch on Less Than Zero I

BGEZ Branch on Greater Than or Equal to Zero I

BLTZAL Branch on Less Than Zero and Link I

BGEZAL Branch on Greater Than or Equal to Zero and Link I

BCzT Branch on Coprocessor z True I

BCzF Branch on Coprocessor z False I

BEQL Branch on Equal Likely II

BNEL Branch on Not Equal Likely II

BLEZL Branch on Less Than or Equal to Zero Likely II

BGTZL Branch on Greater Than Zero Likely II

BLTZL Branch on Less Than Zero Likely II

BGEZL Branch on Greater Than or Equal to Zero Likely II

BLTZALL Branch on Less Than Zero And Link Likely II

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely II

BCzTL Branch on Coprocessor z True Likely II

BCzFL Branch on Coprocessor z False Likely II

&���,� %���
������ �2(� 2�0 -����

SLL Shift Left Logical I

SRL Shift Right Logical I

SRA Shift Right Arithmetic I

SLLV Shift Left Logical Variable I

SRLV Shift Right Logical Variable I

SRAV Shift Right Arithmetic Variable I

Table 2.7 Shift Instructions

&���,� %���
������ �2(� 2�0 -����

LWCz Load Word to Coprocessor z I

SWCz Store Word from Coprocessor z I

MTCz Move To Coprocessor z I

MFCz Move From Coprocessor z I

CTCz Move Control To Coprocessor z I

CFCz Move Control From Coprocessor z I

COPz Coprocessor Operation z I

Table 2.8 Coprocessor Instructions

&���,� %���
������ �2(� 2�0 -����

Table 2.6 Jump and Branch Instructions (Part 2 of 2)
���� ������ � $ � ��������
 �� ����

�(
 2���
������ ��� &��
���' �����
! �� �(
 �����
��, 2���
������ ����

���������
��
 ����

�����
 &���,� %���
������ �2(� 2�0 -����

SYSCALL System Call I

BREAK Break I

DRET Debug Exception Return RC32364, RISCore32300

SDBBP Software Debug Breakpoint RC32364, RISCore32300

Table 2.9 Special Instructions

&���,� %���
������ �2(� 2�0 -����

TGE Trap if Greater Than or Equal II

TGEU Trap if Greater Than or Equal Unsigned II

TLT Trap if Less Than II

TLTU Trap if Less Than Unsigned II

TEQ Trap if Equal II

TNE Trap if Not Equal II

TGEI Trap if Greater Than or Equal Immediate II

TGEIU Trap if Greater Than or Equal Immediate Unsigned II

TLTI Trap if Less Than Immediate II

TLTIU Trap if Less Than Immediate Unsigned II

TEQI Trap if Equal Immediate II

TNEI Trap if Not Equal Immediate II

Table 2.10 Exception Instructions

&���,� %���
������ �2(� 2�0 -����

MTC0 Move To CP0 I

MFC0 Move From CP0 I

TLBR Read Indexed TLB Entry I

TLBWI Write Indexed TLB Entry I

TLBWR Write Random TLB Entry I

TLBP Probe TLB for Matching Entry I

CACHE Cache Operation RISCore4000, RISCore32300

ERET Exception Return RISCore4000, RISCore32300

WAIT Enter Standby mode RISCore4000, RISCore32300

Table 2.11 CP0 Instructions
���� ������ � $ / ��������
 �� ����

�����

���������
��
 ����
���� ������ � $ # ������
������� '
� !� 	$��	
������	�������
�����������������	
�	
�	
�	
��������������������

The RISCore32300 uses a 5-stage instruction pipeline, similar to the RISCore3000 and RISCore4000
families. The simplicity of this pipeline enables the processor to achieve high frequency while minimizing
device complexity.

The RISCore32300 pipeline also performs virtual-to-physical address translation in parallel with cache
access. Additional enhancements such as prefetch operations and two new instructions allow the RC32364
to be a lower cost and lower power device than super-scalar or super-pipelined processors.

The 5-stage instruction pipeline is illustrated in Figure 3.1.

Figure 3.1 Instruction Pipeline Stages

I0 1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

I1 1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

I2 1I 2I 1R 2R 1A 2A 1D 2D 1W •••

I3 1I 2I 1R 2R 1A 2A 1D •••

I4 1I 2I 1R 2R 1A •••

one cycle

Key to Figure:

1I-1R Instruction cache access 2R Instruction decode

1I-2I Instruction virtual to physical address translation 1A-2A Integer add, logical, shift

2A-2D Data cache access and load align 1A Data virtual address calculation

1D-2D Data virtual to physical address translation 2A Store align

2R Register file read 1A Branch decision

2R Bypass calculation 2W Register file write
��
 �� ����

�(
 (������� 0
�9������
� �(
 (������� ���*��

���������
��
 ����

�����

��������������������$�$�$�$�(�(�(�(�������������������������������������

This section describes each of the phases of the five pipeline stages. Each stage has 2 phases:
◆ 1I - Instruction Fetch, Phase one
◆ 2I - Instruction Fetch, Phase two
◆ 1R - Register Fetch, Phase one
◆ 2R - Register Fetch, Phase two
◆ 1A - Execution, Phase one
◆ 2A - Execution, Phase two
◆ 1D - Data Fetch, Phase one
◆ 2D - Data Fetch, Phase two
◆ 1W - Write Back, Phase one
◆ 2W - Write Back, Phase two

�
 (
���������� +����, ����� "��

The instruction address translation begins during the 1I phase.

#
 (
���������� +����, ����� �&�

During the 2I phase, the instruction cache fetch begins and the instruction address translation
continues.

�� (�������� +����, ����� "��

During the 1R phase, the following occurs:
◆ The instruction cache fetch finishes.
◆ The instruction cache tag is checked against the physical page frame number obtained from the

address translation.

#� (�������� +����, ����� �&�

During the 2R phase, the following occurs:
◆ The instruction decoder decodes the instruction.
◆ Any required operands are fetched from the register file.
◆ Make a decision to either issue or slip (for an interlock condition).
◆ For a branch, the branch address is calculated.

�� (�-�������, ����� "��

During the 1A phase, one of the following occurs:
◆ Any result from the A or D stages are bypassed.
◆ The arithmetic logic unit (ALU) starts the integer arithmetic, logical or shift operation.
◆ The ALU calculates the data virtual address for load and store instructions.
◆ The ALU determines whether the branch condition is true.

#� (�-�������, ����� �&�

During the 2A phase, one of the following occurs:
◆ The integer arithmetic, logical or shift operation will complete.
◆ A data cache access will start.
◆ Store data is shifted to the specified byte position(s).
◆ The data virtual to physical address translation will start.
���� ������ � $ � ��������
 �� ����

�(
 (������� 0
�9������
� �(
 (������� ���*��

���������
��
 ����

�����
 �% (%��� +����, ����� "��

During the 1D phase, one of the following occurs:
◆ The data cache access will continue.
◆ The data address translation completes.

#% (%��� +����, ����� �&�

During the 2D phase, the data cache access will finish and the data is then shifted down and extended.
The data cache tag is checked against the physical address for any data cache access.

�� (����� ���., ����� "��

The processor uses this phase internally to resolve all exceptions in preparation for the register file
write.

#� (����� ���., ����� �&�

For register-to-register and load instructions, the result is written back to the register file during the 2W
stage. Branch instructions perform no operation during this stage.

Figure 3.2 shows the activities occurring during each ALU pipeline stage, for load, store, and branch
instructions.

Figure 3.2 Pipeline Activities

Branch

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

ITM

ICD ICA

DCAD DCAA DCLA

DTC

RF

IDEC

BAC

EX1

DVA

SA

W B

ITC

W B

IFetch
and

Decode

ALU

Load/Store

EX2

Stage

C lock

Key to Figure:

ICD Instruction cache address decode ICA Instruction cache array access

ITM Instruction translation match RF Register operand fetch

ITC Instruction tag check EX1 Operation stage 1

IDEC Instruction decode WB Write back to register file

EX2 Operation stage 2 DCAD Data cache address decode

DVA Data virtual address calculation DCLA Data cache load align

DCAA Data cache array access DTM Data translation match

DTC Data tag check SA Store align

DCW Data cache write BAC Branch address calculation

DTM

DCW
���� ������ � $ � ��������
 �� ����

�(
 (������� 0
�9������
�)
���9 %���!

���������
��
 ����

�����
 %%%%����������������####������������((((��������

The CPU pipeline has a branch delay of one cycle and a load delay of one cycle. The one-cycle branch
delay is a result of the branch decision logic operating during the 1A pipeline phase of the branch instruc-
tion. This allows the branch target address calculated in the previous phase to be used for the instruction
access in the following “1I” phase.

The pipeline will begin the fetch of the branch path as well as the fall-through path in the cycle following
the delay slot. After the branch decision is made, the processor will continue with the fetch of either the
branch path (for a taken branch) or the fall-through path (for the non-taken branch).

Figure 3.3 illustrates the branch delay.

Figure 3.3 CPU Pipeline Branch Delay

,,,,�����	�	�	�	������������((((��������

The completion of a load at the end of the 2D pipeline phase produces an operand that is available for
the 1A pipeline phase of the instruction following the load delay slot.

Figure 3.4 shows the load delay of one pipeline cycle.

Figure 3.4 CPU Pipeline Load Delay

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

One C ycle One Cycle O ne Cycle One CycleOne C ycle

Branch
Delay *Branch and fa ll-through address calcu lated

 **Address selection m ade

*

**

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

One Cycle One Cycle One Cycle One CycleOne Cycle

Load Delay
���� ������ � $ � ��������
 �� ����

�(
 (������� 0
�9������
� 2���
���: ��, +"������� ��,���*

���������
��
 ����

�����
 ��������������������((((��������++++������������				����////0000��������$�$�$�$�����������������������������				(�(�(�(���������

When cache misses or exceptions occur or when data dependencies are detected, smooth pipeline flow
is interrupted. These interruptions are either handled through hardware or software methods. Software-
managed interruptions are known as exceptions; hardware-handled interruptions—such as cache misses—
are referred to as interlocks and occur as either stalls or slips.

Resolving a stall requires halting the pipeline; slips require the back end of the pipeline to advance while
the front end of the pipeline is held static.

During all active instructions, exception and interlock conditions are checked for at each pipeline cycle.
Because each exception or interlock condition corresponds to a particular pipeline stage, a condition can be
traced back to the particular instruction in the exception/interlock stage. For instance, a Reserved Instruc-
tion (RI) exception is raised in the execution (A) stage.

�-������� ����������

When an exception condition occurs, the relevant instruction and all instructions that follow are
cancelled. Accordingly, any stall conditions—and any later exception conditions that may have referenced
this instruction—are inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exceptional condition is detected for an instruction, the RC32364 kills it and all instructions that
follow. When this instruction reaches the W stage, the exception flag causes it to write various CP0 regis-
ters with the exception state, change the current PC to the appropriate exception vector address, and clear
the exception bits of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subse-
quent instructions from completing. Thus, the value in the EPC is sufficient to restart execution. It also
ensures that exceptions are taken in the order of execution; an instruction taking an exception may itself be
killed by an instruction further down the pipeline that takes an exception in a later cycle.

Figure 3.5 shows the exception detection procedure (for example, a reserved instruction exception).

Figure 3.5 Exception Detection

1I 2 I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2 I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

Exc

I1

I2

I3

Exception Vecto r

Excep tion Vecto r Address

K ill
���� ������ � $ � ��������
 �� ����

�(
 (������� 0
�9������
� 2���
���: ��, +"������� ��,���*

���������
��
 ����

�����
 ����� ����������

Stalls are used to stop the pipeline for conditions detected after the R pipe-stage. When a stall occurs,
the processor will resolve the condition and then the pipeline will continue. Figure 3.6 illustrates a data
cache miss stall.

Figure 3.6 Data Cache Miss

As shown, the data cache miss is detected in the D pipe stage. If the cache line to be replaced is dirty—
the W bit is set—the data is moved to the internal write buffer in the next cycle.

The first doubleword of data is returned to the cache in 3 and the pipeline will then restart. The
remainder of the cache line is returned in the subsequent cycles. The data to be written back will be
returned to memory some time after the entire new cache line is returned.

I R A D W W W W W

I R A D D D D D W

I R A A A A A D W

I R R R R R A D W

Detect Cache Miss

1 2 3 4

1

2

3

4

Start moving dirty cache line data to write buffer

Get first doubleword into cache and restart pipeline

Load remainder of cache line into cache

...

...

...

...
���� ������ � $ � ��������
 �� ����

�(
 (������� 0
�9������
� 2���
���: ��, +"������� ��,���*

���������
��
 ����

�����
 ���� ����������

During the 2R and 1A pipe-stages, internal logic will determine whether it is possible to start the current
instruction in this cycle. If all of the source operands are available (either from the register file or via the
internal bypass logic) and all the hardware resources necessary to complete the instruction will be available
at the necessary time(s), then the instruction “issues”; otherwise, the instruction will “slip”.

Slipped instructions are retried on subsequent cycles until they issue. The back end of the pipeline
(stages D and W) will advance normally during slips in an attempt to resolve the conflict. “NOPS” will be
inserted into the bubble in the pipeline. Instructions killed by branch likely instructions, ERET or exceptions
will not cause slips. Figure 3.7 shows an instruction cache miss.

Figure 3.7 Instruction Cache Miss

As shown in Figure 3.7, instruction cache misses are detected in the R stage and the pipeline slips in its
A stage. There can never be a write-back required for an instruction cache miss since dirty data can not
exist in the I cache.

Writes are not allowed to the I-cache. Note that early restart is not employed for instruction cache
misses. The requested cache line will be loaded into the cache in its entirety and, after that, the pipeline will
restart.

I R R R R R A D W

I R A D W

I R A D W

Detect Cache M iss

1 2 3

1

2
3

G et en tire cache line into cache

Continue pipeline

I R A D W

I R A D W

I R A D W

*NO P

*NO P

*NO P

*NO P

*NO P - Inserted NO P instructions

A D W

R A D W

W

D W

CYCLE Issue S lipIssue Slip S lip Slip Issue Issue Issue
Pr

ev
io

us
 In

st
ru

ct
io

ns
���� ������ � $ � ��������
 �� ����

�(
 (������� 0
�9������
� 2���
���: ��, +"������� ��,���*

���������
��
 ����

�����
���� ������ � $ / ��������
 �� ����

�����

���������
��
 ����
���� ������ � $ # ������
������� /
��%��&���
���%�
�
�����������������	
�	
�	
�	
��������������������

The Memory Management Unit (MMU) of the RC32364 is modeled after the MMU found in the R4000
families and generates typical translation lookaside buffer (TLB) exceptions such as TLB refill, TLB invalid,
and TLB modified to the Integer Unit and offers the following advantages (relative to the traditional 32-bit
R3000 style MMU):

◆ Variable page size
◆ Enhanced Write Algorithm support
◆ Mapping of a larger portion of the virtual address space
◆ Variable number of locked entries

1111������������

����("�("�("�("�����""""����####��������������������((((����))))								��������������������&&&&����������������((((��������������������

Figure 4.1 illustrates the virtual-to-physical address translation of a 32-bit virtual address. The top
section of the drawing shows a virtual address with a 12-bit—or 4Kbyte—page size labelled Offset. The
remaining 20 bits of the address represent the virtual page number (VPN) and index the 1M-entry page
table.

The lower section of the drawing shows a virtual address with a 24-bit—or 16Mbyte—page size labelled
Offset. The remaining 8 bits of the address represent the VPN and index a 256-entry memory-resident page
table.

Figure 4.1 Overview of a 32-bit Virtual Address Translation

28 11 0

 20 12

 2931

VPN Offset

3239

ASID

 8

Virtual Address with 1M (220) 4-Kbyte pages

23 0

 8 24

Offset

39

Virtual Address with 256 (28)16-Mbyte pages

8 bits = 256 pages

20 bits = 1M 12

ASID
 8

28 293132

VPN

24

Virtual-to-
physical transla-
tion in TLB

Bits 31, 30 and 29 of the
virtual address select user, super-
visor, or kernel address spaces.

Offset passed
unchanged to
physical memory

Virtual-to-physical-
translation in TLB

 TLB

 TLB

 3 1 0
PFN O ffset

32-bit Physical Address

Offset passed
unchanged to physical
memory.
��
 �� ����

����
! ����*����� .-) ����*�����

���������
��
 ����

�����
 &&&&,,,,%%%%��

For fast virtual-to-physical address decoding, the RC32364 TLB is a fully associative on-chip memory
device that contains 16 entries, to provide mapping to 16 odd and even page pairs of sizes varying from 4
KBytes to 16 MBytes. Each entry logically occupies a portion of a 128-bit frame work. Each field of a TLB
entry has a corresponding field in the EntryHi, EntryLo0, EntryLo1, or PageMask registers.

The RC32364’s TLB also contains information to control the cache coherency protocol for each page.
Specifically, each page has attribute bits to determine whether the coherency algorithm is uncached,
noncoherent write-back, or non-coherent write-through no write-allocate.

Figure 4.2 TLB Register Format

;���, %���
������

MASK Page comparison mask

VPN2 Virtual Page Number divided by two (maps to two pages)

ASID Address Space ID

G Global. If this bit set, then ignore the ASID

PFN Page Frame Number. Upper bit of physical address

C Specifies the Cache Algorithm to be used, as shown below:

D Dirty bit. This bit serves as a “write protect” bit

V Valid bit. It set, TLB is valid. Otherwise a TLB Miss occurs

MCAT Memory Controller Attributes. Reserved in RC32364 and must be written as ‘0’.

Table 4.1 TLB Register Field Descriptions

M ASK

127 121 120 109 108 96

VPN 2 G _ ASID
95 77 76 75 72 71 64

7 12 13

19 1 4 8

_ PFN C D V _
63 58 57 38 37 35 34 33 32

6 20 3 1 1 1

_
PFN C D V _

6 20 3 1 1 1

31 26 25 6 5 3 2 01

M C AT M CAT

C Value Page Coherency Attribute

0 Cacheable, noncoherent, write-through, no write allocate

1 Cacheable, noncoherent, write-through, write allocate

2 Uncached

3 Cacheable, noncoherent, write-back

4:7 Reserved
���� ������ � $ � ��������
 �� ����

����
! ����*����� ��
 ��*����
 %���
�������

���������
��
 ����

�����
 ��$�$�$�$�����������������

 The CP0 registers required to implement the RC32364 memory management unit are listed in Table
4.2. For each register, format illustrations and complete descriptions follow the table.

���- �������� 012

The Index register is a 32-bit, read/write register containing six bits to index an entry in the TLB. The
high-order bit of the register shows the success or failure of a TLB Probe (TLBP) instruction. The Index
register also specifies the TLB entry affected by TLB Read (TLBR) or TLB Write Index (TLBWI) instructions.

Note that the RC32364 contains a 16 entry TLB, while the Index register contains the capability to point
to 64 TLB entries. In programming, the value written to the Index register must be in the valid range of the
number of entries of the current device.

RC32364 implements additional bits in anticipation of derivative products. Figure 4.3 shows the format
of the Index register; Table 4.3, which follows the figure, describes the contents of the Index register fields.

Figure 4.3 Index Register Format

<����
 ��*����
 %���
������

0 Index Programmable pointer into TLB array

1 Random Pseudorandom pointer into TLB array (read only)

2 EntryLo0 Low half of TLB entry for even virtual page (VPN)

3 EntryLo1 Low half of TLB entry for odd virtual page (VPN)

4 Context Pointer to kernel virtual page table entry (PTE)

5 PageMask TLB Page Mask to support variable page size.

6 Wired Number or wired TLB entries

8 BadVaddr Bad Virtual Address

10 Entry Hi Holds the high-order bits of a TLB entry for TLB read and write oper-
ations and is accessed by the TLB Probe, TLB Write Random, TLB
Write Indexed, and TLB Read Indexed instructions.

Table 4.2 RC32364 MMU Registers

;���, %���
������

P Probe failure. Set to 1 when the previous TLBProbe (TLBP) instruction was unsuccessful.

Index Index to the TLB entry affected by the TLBRead and TLBWrite instructions

0 Reserved. Must be written as zeroes, returns zeroes when read.

Table 4.3 Index Register Field Descriptions

31

1

30 6 5 0

25 6

 IndexP 0
���� ������ � $ � ��������
 �� ����

����
! ����*����� ��
 ��*����
 %���
�������

���������
��
 ����

�����
 �����
 �������� 0�2

The Random register is a read-only register of which 4 bits index an entry in the TLB. This register
decrements as each instruction executes, and its values range between an upper and a lower bound, as
follows:

◆ A lower bound is set by the number of TLB entries reserved for exclusive use by the operating sys-
tem (the contents of the Wired register).

◆ An upper bound is set by the total number of TLB entries. Thus the upper bound is 15 (The TLB
entries are numbered from 0 to 15).

Note: The RC32364 implements this register differently from the RC4000 family of processors.
The R4C000 counts both valid and invalid instructions, the RC32364 counts only valid
instructions.

The Random register specifies the entry in the TLB that is affected by the TLB Write Random instruc-
tion. The register does not need to be read for this purpose (it is implicit in the instruction itself); however,
the register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound upon system reset. This
register is also set to the upper bound when the Wired register is written. Figure 4.4 shows the format of the
Random register. Table 4.4 describes the contents of the Random register fields.

Figure 4.4 Random Register Format

�����$�1 0#2, ��� �����$�� 0'2 ���������

The EntryLo register consists of two registers with identical formats:
◆ EntryLo0 is used for even virtual pages.
◆ EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers. They hold the physical page frame
number (PFN) of the TLB entry for even and odd pages, respectively, when performing TLB read and write
operations.

 Figure 4.5 shows the format of this register. Table 4.5 provides descriptions for the fields of this register.

Figure 4.5 EntryLo0 and EntryLo1 Register Formats

;���, %���
������

Random TLB random index

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 4.4 Random Register Field Descriptions

31 4 3 0

28 4

 Random0

D

31 0

 20

PFN

26 25

6

C V

3 1 1

12356

G

1

0

���� ������ � $ � ��������
 �� ����

����
! ����*����� ��
 ��*����
 %���
�������

���������
��
 ����

�����

The TLB page coherency attribute (C) bits specify whether references to the page should be cached. If
cached, the algorithm selects between several coherency attributes.

Table 4.6 lists the coherency attributes that can be selected by the C bits.

�����-� �������� 0/2

The Context register is a read/write register that contains the pointer to an entry in the page table entry
(PTE) array. This array is an operating system data structure that stores virtual-to-physical address transla-
tions. When there is a TLB miss, the CPU loads the TLB with the missing translation from the PTE array.

Normally, the operating system uses the Context register to address the current page map that resides
in the kernel-mapped segment. The Context register duplicates some of the information provided in the
BadVAddr register, but the information is arranged in a form that is more useful for a software TLB excep-
tion handler.

Figure 4.6 illustrates the format of the Context register. Table 4.7 provides the descriptions of the
Context register fields.

Figure 4.6 Context Register Format

;���, %���
������

PFN Page frame number: the upper bits of the physical address.

C Specifies the TLB page coherency attribute.

D Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is actually a write-
protect bit that software can use to prevent alteration of data.

V Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS miss occurs.

G Global. If this bit is set in both Lo0 and Lo1, then the processor ignores the ASID during TLB lookup.

0 Reserved. Must be written as zeroes, returns zeroes when read.

Table 4.5 EntryLo0 and EntryLo1 Register Field Descriptions

� =���� (�*� ��9�
���! 0��
�����

0 Cacheable, noncoherent, write-through, no write allocate

1 Cacheable, noncoherent, write-through, write allocate

2 Uncached

3 Cacheable, noncoherent, write-back

4:7 Reserved

Table 4.6 TLB Page Coherency Attributes

;���, %���
������

BadVPN2 This field is written by hardware on a miss. It contains the virtual page number (VPN) pair of the most
recent virtual address that did not have a valid translation.

PTEBase This field is a read/write field for use by the operating system. It is normally written with a value that allows
the operating system to use the Context register as a pointer into the current PTE array in memory.

Table 4.7 Context Register Field Descriptions

23 22 4 331 0

9

PTEBase BadVPN2

19 4

0

���� ������ � $ � ��������
 �� ����

����
! ����*����� ��
 ��*����
 %���
�������

���������
��
 ����

�����
 The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused the TLB miss. Bit 12 is
excluded because a single TLB entry maps to an even/odd page pair. For a 4-Kbyte page size, this format
can directly address the pair-table of 8-byte PTEs. For other page and PTE sizes, shifting and masking this
value produces the appropriate address.

����!��. �������� 032

The PageMask register is a read/write register used for reading from or writing to the TLB; it holds a
comparison mask that sets the variable page size for each TLB entry, as shown in the following table.

TLB read and write operations use this register as either a source or a destination. When virtual
addresses are presented for translation into physical address, the corresponding bits in the TLB identify
which virtual address bits, among bits 24:13, are to be used in the comparison. When the Mask field is not
one of the values shown below, the operation of the TLB is undefined.

Figure 4.7 PageMask Register Format

Note: For the RC32364 the Memory Controller Attributes (MCAT) fields perform no user valid
function. For this device, these bit fields must be written as ‘0’.

(�*���6�
)��

�� �� �� �# �� #� #/ #� #� #� #� #�

4 Kbytes 0 0 0 0 0 0 0 0 0 0 0 0

16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1

64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1

256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1

1 Mbyte 0 0 0 0 1 1 1 1 1 1 1 1

4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbytes 1 1 1 1 1 1 1 1 1 1 1 1

;���, %���
������

Mask Page comparison mask

MCAT Memory controller attributes.

Table 4.8 PageMask Register Field Descriptions

 12

31

13

0

MASK
7

25 24 13 12

MCAT MCAT
���� ������ � $ � ��������
 �� ����

����
! ����*����� ��
 ��*����
 %���
�������

���������
��
 ����

�����
 ����� �������� 042

The Wired register is a read/write register that specifies the boundary between the wired and random
entries of the TLB, as shown in Figure 4.8. “Wired” entries are nonreplaceable entries, which cannot be
overwritten by a TLB write random operation. “Random” entries can be overwritten. Thus, the Wired
register specifies the smallest value taken by the Random register.

Note: The Index register is not affected by the Wired register. The Index register can still point to
and be used to overwrite either “Random” or “Wired” TLB entries.

Figure 4.8 Diagram Showing Ranges of Wired and Random Entries

The Wired register is set to 0 upon system reset. Writing to this register also sets the Random register to
the value of its upper bound (see Random register format in Figure 4.4 and Table 4.4). Figure 4.9 shows the
format of the Wired register, and Table 4.9 lists the contents of this register’s fields.

Figure 4.9 Wired Register Format

Note that the RC32364 contains a 16 entry TLB and that the Wired register contains the capability of
indicating up to 64 TLB entries. In programming, the value written to the Wired register must be within the
valid range of the number of entries of the current device. For future versions of this device, the RC32364
implements additional bits.

;���, %���
������

Wired TLB Wired boundary (the number of wired TLB entries)

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 4.9 Wired Register Field Descriptions

15

Wired

Range of “Random” entries

0

TLB

Register

Range of “Wired” entries

31 6 5 0

26 6

 Wired0
���� ������ � $ � ��������
 �� ����

����
! ����*����� ��
 ��*����
 %���
�������

���������
��
 ����

�����
 ��� 5������ ������� �������� 0���5����2 062

The Bad Virtual Address register (BadVAddr) is a read-only register that displays the most recent virtual
address that caused one of the following exceptions:

◆ Address Error (for example, unaligned access)
◆ TLB Invalid
◆ TLB Modified
◆ TLB Refill
◆ Virtual Coherency Data Access
◆ Virtual Coherency Instruction Fetch

The processor does not write to the BadVAddr register when the EXL bit in the Status register is set to 1.

 Figure 4.10 shows the format of the BadVAddr register.

Figure 4.10 Bad Virtual Address Register (BadVAddr) Format

Note: The BadVAddr register does not retain information for bus errors, since bus errors are not
addressing errors.

�����7� �������� 0�12

The EntryHi register holds the high-order bits of a TLB entry for TLB read and write operations and is
accessed by the TLB Probe, TLB Write Random, TLB Write Indexed, and TLB Read Indexed instructions.

When either a TLB refill, TLB invalid, or TLB modified exception occurs, the EntryHi register is loaded
with the virtual page number pair (VPN2) and the ASID of the virtual address that did not have a matching
TLB entry. Table 4.10 shows the Entry Hi register format and lists the field content descriptions.

Figure 4.11 EntryHi Register Format

;���, %���
������

VPN2 Virtual page number divided by two (maps to two pages).

ASID Address space ID field. An 8-bit field that lets multiple processes share the TLB; each
process has a distinct mapping of otherwise identical virtual page numbers.

0 Reserved. Must be written as zeroes, returns zeroes when read.

Table 4.10 EntryHi Register Field Content Descriptions

31 0

32

Bad V irtual Address

31

VPN2

 19

0

5 8
ASID

1213 8 7

0

���� ������ � $ / ��������
 �� ����

����
! ����*����� >�
���1
��
 &��
����* ��,�� ��, 0,,
�����*

���������
��
 ����

�����
 2222����������������((((****������������������������$$$$�������������������������������������	��	��	��	�����������������				����))))								����������������������������

The RC32364 supports both the Kernel and User operating modes. The operating system uses Kernel
mode for privileged programs; User mode executes non-privileged programs. The CPU enters Kernel mode
whenever an exception occurs and remains in this mode until the ERET (Exception Return) instruction is
executed.

���� !���

The CPU is in User mode when the Status register has the following values:
◆ UM bit is 1
◆ EXL bit is 0
◆ ERL bit is 0

While in user mode, a single, uniform virtual address space of 2 Gbytes is available for the user’s
program. All references to this address space are mapped by the virtual address mapping mechanism
described earlier. The cacheability is controlled by “cache mode” bits in the TLB.

Figure 4.12 Illustration of RC32364 User Mode Address Space

8����� !���

The CPU is in Kernel mode when the status register contains any one of the following bit-settings:
◆ UM bit is 0
◆ EXL bit is 1
◆ ERL bit is 1

While in Kernel Mode, the virtual address space is partitioned into the following segments:
◆ kuseg

 This virtual address space is selected if the most significant bit of the virtual address is cleared.
This space covers the full 2 GBytes of the current user address space. The virtual address is
extended with the contents of the ASID field to form unique virtual addresses.

◆ kseg0

This virtual address space is selected if the most significant three bits of virtual address are 1002.
References to kseg0 are not “mapped”; the physical address is calculated by subtracting
0x8000_0000 from the virtual address. Cacheability and coherency are controlled by the K0C field
of the Configuration Register.

◆ kseg1

This virtual address space is selected if the most significant three bits of virtual address are 1012.
References to kseg1 are not mapped; the physical address is calculated by subtracting
0xa000_0000 from the virtual address. Caches are always disabled for accesses to this space, and
physical memory (or memory-mapped I/O device registers) are accessed directly.

2GB
Translated

Address
Error

0x0000 0000

0x7ffff ffff
0x8000 0000

0xffff ffff

useg

RC32364 User Mode
���� ������ � $ � ��������
 �� ����

����
! ����*����� >�
���1
��
 &��
����* ��,�� ��, 0,,
�����*

���������
��
 ����

�����

◆ kseg2

This virtual address space is selected if the most significant 8 bits of virtual address are from c016 to
fe16. This space covers the upper 1008 MBytes of kernel virtual address space. The virtual address
is extended with the contents of the ASID field to form unique virtual addresses. These addresses
are translated to a physical address through the TLB.

◆ On-chip/ICE Registers (if the configuration register bit 3 is set to 0)

The upper-most 16 MBytes of the virtual address is reserved for memory-mapped on-chip registers
and In-Circuit Emulator space. On-chip memory controller and peripheral have their register set
mapped into this address space.

If the configuration register bit 3 is set to 1, this space is considered as kseg2, and the on-chip reg-
isters cannot be accessed.

Figure 4.13 Illustration of RC32364 Kernel Mode Address Space

For complete field and content descriptions as well as virtual address locations for the Port Width and
Bus Turnaround control registers, refer to Chapter 9 of this manual.

16MB uncached,
unmapped

1008 MB

mapped, cached

512 MB

uncached, unmapped

512 MB
cached, unmapped

2GB

mapped, cached

0x0000_0000

0x7fff_ffff
0x8000_0000

0x9fff_ffff
0xa000_0000

0xbfff_ffff

0xc000_0000

0xfeff_ffff
0xff00_0000

0xffff_ffff On-chip
Registers/ICE

kseg2

kseg1

kseg0

kuseg

RC32364 Kernel Mode

(if config [3] is0)
���� ������ � $ #� ��������
 �� ����

�����

���������
��
 ����
���� ������ � $ # ������
������� 3
� !�'(��$�	�
� ����

	
�
�����������������	
�	
�	
�	
��������������������

The CPU exception process begins when the processor receives and detects exceptions from sources
such as address translation errors, arithmetic overflows, I/O interrupts, and system calls.

Once an interrupt is detected, the processor suspends the normal instruction sequence and enters
Kernel mode (information on system operating modes is located in Chapter 4). The processor then disables
interrupts and forces execution of a software exception processor (known as a handler), which is located at
a fixed address.

The handler may save the context of the processor—including the program counter contents, the current
operating mode (User or Kernel mode), and the interrupt status (enabled or disabled)—so it can be restored
when the exception has been serviced.

The RC32364 supports the following basic exceptions, which are listed from the highest to the lowest
priority order:

◆ Reset
◆ In-Circuit Emulation
◆ Soft Reset
◆ Nonmaskable Interrupt (NMI)
◆ Address Error caused by Instruction fetch
◆ Watch exception caused by Instruction fetch
◆ Cache Error caused by Instruction fetch
◆ Bus Error caused by Instruction fetch
◆ Integer Overflow, Trap, System Call, Breakpoint, Reserved Instruction, Coprocessor Unusable
◆ Address Error caused by Data access
◆ Cache Error caused by Data access
◆ Watch exception caused by Data access
◆ Bus Error caused by Data access
◆ Interrupt
��
 �� ����

�(
 +"������� (
�������* +"������� (
�������* ��*����
�

���������
��
 ����

�����
 ////0000��$���$���$���$���

Support for the basic exceptions listed above is implemented through the CP0 exception processing
registers, which assist by retaining address, cause and status information.

For example, when an exception occurs, the CPU loads register 14—the Exception Program Counter
(EPC) register—with a location from which execution can restart after the exception has been handled. The
restart location loaded into the EPC register is either the address of the instruction that caused the excep-
tion or the address of the branch instruction immediately preceding the delay slot, if the instruction was
executing in a branch delay slot.

A list of basic CP0 registers is given in Table 5.1. Following the table, a brief operational description of
each exception register is provided. Those listed as MMU registers are discussed further in Chapter 4,
“Memory Management.”

<����
 ��*����
 %���
������

0 - 8 ___ Used for MMU registers. (See Chapter 4 for register descriptions)

9 Count Timer Count

10 ___ Used for MMU. (See Chapter 4 for register descriptions)

11 Compare Timer Compare

12 Status Status Register

13 Cause Cause of last exception

14 EPC Exception Program Counter

15 PRId Processor Revision Identifier

16 Config Configuration register

17 ___ Reserved

18 IWatch Instruction Breakpoint Virtual address

19 DWatch Data Breakpoint Virtual address

20-21 ___ Reserved

23 DEPC Debug Exception Program Counter

24 Debug Debug control/status register.

25 — Reserved

26 ECC Primary cache Parity

27 CacheErr Cache Error and Status register

28 TagLo Cache Tag register

29 ___ Reserved

30 ErrorEPC Error Exception Program Counter

31 ___ Reserved

Table 5.1 Basic CP0 Registers
���� ������ � $ � ��������
 �� ����

�(
 +"������� (
�������* +"������� (
�������* ��*����
�

���������
��
 ����

�����
 ����� �������� 092

The Count register is a read/write register that acts as a timer, incrementing at a constant rate—half the
maximum instruction issue rate—whether or not an instruction is executed, retired, or any forward progress
is made through the pipeline.

This register can be written to for either diagnostic purposes or system initialization; for example, to
synchronize processors. Figure 5.1 shows the format of the Count register.

Figure 5.1 Count Register Format

��
���� �������� 0��2

The Compare register acts as a timer (also see the Count register), and it maintains a stable value that
does not change on its own.

When the value of the Count register equals the value of the Compare register, interrupt bit IP(7) in the
Cause register is set to initiate a timer interrupt, which causes an interrupt as soon as it’s enabled.

Writing a value to the Compare register clears the timer interrupt. For diagnostic purposes, the Compare
register is both a read and write register. However, during normal operations, the Compare register is a
write only. The format of the compare register is shown in Figure 5.2.

Figure 5.2 Compare Register Format

������ �������� 0�#2

The Status register (SR) is a read/write register that contains the operating mode, interrupt enabling,
and the diagnostic states of the processor. Figure 5.3 shows the format of the entire register. The following
bulleted items provide details on the more important Status register fields:

◆ The 8-bit Interrupt Mask (IM) field controls the individual enabling of eight interrupt conditions. Inter-
rupts must be generally enabled before they can cause the exception (IE set), and the correspond-
ing bits are set in both the Interrupt Mask field of the Status register and the Interrupt Pending (IP)
field of the Cause register (for more information, refer to the Interrupt Pending (IP) field of the
Cause register).IM[1:0] are the masks for the two software interrupts and IM[7:2] correspond to
Int[5:0].

◆ The 4-bit Coprocessor Usability (CU) field controls the usability of 4 possible coprocessors.
Regardless of the CU0 bit setting, CP0 is always usable in Kernel mode. For all other cases, an
instruction for or access to an unusable coprocessor causes an exception.

◆ The 9-bit Diagnostic Status (DS) field (Status[24:16]) is used for self-testing and checks the cache
and virtual memory system.

◆ The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the machine. At system reset, the
processor can be configured as either little-endian or big-endian. This selection is always used in
Kernel and Supervisor modes, and also in User mode when the RE bit is 0. Setting the RE bit to 1
inverts the User mode endianness.

31 0

32

 Count

31 0

32

Compare
���� ������ � $ � ��������
 �� ����

�(
 +"������� (
�������* +"������� (
�������* ��*����
�

���������
��
 ����

�����

Figure 5.3 Status Register Format

Table 5.2 lists the descriptions for the Status register’s fields.

;���, %���
������

CU Controls the usability of each of the four coprocessor unit numbers. CP0 is always usable when in Kernel
mode, regardless of the setting of the CU0 bit.
1 → usable
0 → unusable

RE Reverse-Endian, valid in User mode.

DL Data Cache Lock enable. This bit enables the data cache lock function. If this bit is set during Data cache
fill, the cache line at that particular set will be locked. Please refer to the “Cache Operation” section for
more detail
0 → disable Data cache locking
1 → enable Data cache locking

IL Instruction Cache Lock enable. This bit enables the instruction cache lock function. If this bit is set during
Instruction cache fill, the cache line at that particular set will be locked. Please refer to the “Cache Opera-
tion” section for more detail
0 → disable Instruction cache locking
1 → enable Instruction cache locking

BEV Controls the location of TLB refill and general exception vectors.
0 → normal
1 → bootstrap

SR 1→ Indicates a soft reset or NMI has occurred.

CE Contents of the ECC register set or modify the check bits of the caches when CE = 1; see description of
the ECC register.

DE Specifies that cache parity errors cannot cause exceptions.
0 → parity remains enable
1 → disables parity

0 Reserved. Must be written as zeroes, and returns zeroes when read.

IM Interrupt Mask: controls the enabling of each of the external, internal, and software interrupts. An interrupt
is taken if interrupts are enabled, and the corresponding bits are set in both the Interrupt Mask field of the
Status register and the Interrupt Pending field of the Cause register. IM[7:2] correspond to interrupts
Int[5:0] and IM[1:0] to the software interrupts.
0 → disabled
1 → enabled

UM User Mode bits
1 → User
0 → Kernel

ERL Error Level
0 → normal
1 → error

EXL Exception Level
0 → normal
1 → exception
Note: When going from 0 to 1, IE should be disabled (0) first. This would be done when preparing to
return from the exception handler, such as before executing the ERET instruction.

IE Interrupt Enable
0 → disable interrupts
1 → enables interrupts

Table 5.2 Status Register Field Descriptions

CU

 4

IM

31 1528 27 25 24 16 8 7 5 4 3 2 1 0

UM ERL EXL IE

8 1 1 1

(Cu3:.Cu0) RE

26

1

0 0

3 1 111

0 DECE00SR0BEV

1 1 1 1 1 1 1

23 22 21 20 19 18 17

DS

0 DL IL

1 1
���� ������ � $ � ��������
 �� ����

�(
 +"������� (
�������* +"������� (
�������* ��*����
�

���������
��
 ����

�����
 ������ �������� !���� ��� ������ ������

Fields of the Status register set the modes and access states as described in the following sections:

Interrupts are enabled when all of the following conditions are true:

IE = 1
EXL = 0
ERL = 0

If these conditions are met, the settings of the IP bits identify the interrupt.

Note: Setting the IE bit may be delayed by up to 3 cycles. If performing nested interrupts, re-
enable the IE bit first.

Data cache locking is enabled when all of the following conditions are true:

DL = 1
EXL = 0
ERL = 0

If these conditions are met, the filled data cache line at the currently selected set will be locked.

Note: Setting the DL bit may be delayed by as many as 3 cycles.

Instruction cache locking is enabled when all of the following conditions are true:

IL = 1
EXL = 0
ERL = 0

If these conditions are met, the filled instruction cache line at the currently selected set will be locked.

Note: Setting the IL bit may be delayed by as much as 3 cycles.

For User and Kernel modes, the following CPU Status register bit settings are required:

The processor is in User mode when the User Mode, Exception Level and Error Level bits are set as
follows:

UM = 1 AND
EXL = 0 AND
ERL = 0

When the User Mode, Exception Level and Error Level bits are set as follows, the processor is in Kernel
mode:

UM = 0 OR
EXL = 1 OR
ERL = 1

Access to the kernel address space is allowed when the processor is in Kernel mode.

Access to the user address space is allowed in any of the three operating modes.

At reset, the contents of the Status register are undefined, except for the following bits:

ERL = 1
BEV = 1
NB = 0

The SR bit distinguishes between Reset and Soft Reset (Nonmaskable Interrupt [NMI]).
���� ������ � $ � ��������
 �� ����

�(
 +"������� (
�������* +"������� (
�������* ��*����
�

���������
��
 ����

�����
 ����� �������� 0�'2

The 32-bit read/write Cause register describes the cause of the most recent exception. Figure 5.4 shows
the fields of this register, and Table 5.3 describes the contents of the Cause register fields. As listed in
Table 5.3, a 5-bit exception code (ExcCode) indicates the cause of the most recent exception. All bits in the
Cause register—with the exception of the IP(1:0) bits—are read-only. The IP(1:0) bits are used for software
interrupts.

Figure 5.4 Cause Register Format

;���, %���
������

BD Indicates whether the last exception taken occurred in a branch delay slot.
1 → delay slot
0 → normal

CE Coprocessor unit number referenced when a Coprocessor Unusable exception is taken.

IPE Indicates the last exception is imprecise.
1 → imprecise exception
0 → precise exception

DW On a Watch exception, indicates that the DWatch register matched. On other exceptions this field is undefined.

IW On a Watch exception, indicates that the IWatch register matched. On other exceptions this field is undefined.

IV Enable the dedicated interrupt vector.
1 → interrupts use new exception vector (200)
0 → interrupts use dedicated common exception vector (180)

IP Indicates an interrupt is pending.
1 → interrupt pending
0 → no interrupt

ExcCode Exception code field

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.3 Cause Register Field Descriptions

+"������� ��,� =���� �������� %���
������

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

Table 5.4 Cause Register ExcCode Field (Part 1 of 2)

 1

IP

31 1527 16

2 7

8 7 6 2 0

8 1 251

0Exc
Code

1

00

282930

BD 0 CE 0

1 1

26

IPE DW IW IV

1 1 1

25 24 23 22
���� ������ � $ � ��������
 �� ����

�(
 +"������� (
�������* +"������� (
�������* ��*����
�

���������
��
 ����

�����
�-������� ������
 ������� 0���2 �������� 0�/2

The Exception Program Counter (EPC) is a read/write register that contains the address from which
processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:
◆ the virtual address of the instruction that was the direct cause of the exception, or
◆ the virtual address of the immediately preceding branch or jump instruction (when the instruction is

in a branch delay slot, and the Branch Delay bit in the Cause register is set).
◆ For an imprecise exception, EPC contains the instruction of the address that recognized the excep-

tion and the address at which execution may be resumed.

When the EXL bit in the Status register is set to 1, the processor does not write to the EPC register.
Figure 5.5 shows the format of the EPC register.

Figure 5.5 EPC Register Format

��������� ��)�����
��������� 0��
�2 �������� 0�32

The 32-bit, read-only Processor Revision Identifier (PRId) register contains information identifying the
implementation and revision level of the CPU and CP0.

Figure 5.6 illustrates the format of the PRId register.

Figure 5.6 PRId Register Format

Table 5.5 describes the contents of the PRId register fields.

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 — Reserved

15:22 — Reserved

23 Watch Watch Exception

24:31 — Reserved

;���, %���
������

Imp Implementation number
RC32364: Imp = 2616

Rev Revision number

0 Reserved. Must be written as zeroes, returns zeroes when read.

Table 5.5 PRid Register Field Descriptions

+"������� ��,� =���� �������� %���
������

Table 5.4 Cause Register ExcCode Field (Part 2 of 2)

31 0

EPC

32

16 1531 0

16

Imp

8 8

0
8

Rev
7

���� ������ � $ � ��������
 �� ����

�(
 +"������� (
�������* +"������� (
�������* ��*����
�

���������
��
 ����

�����
 The low-order byte (bits 7:0) of the PRId register is interpreted as a revision number, and the high-order
byte (bits 15:8) is interpreted as an implementation number.

The implementation number of the RC32364 processor is 2616. The content of the high-order halfword
(bits 31:16) of the register is reserved and will return ‘0’ when read. The revision number is stored as a
value in the form y.x, where y is a major revision number in bits 7:4 and x is a minor revision number in bits
3:0.

The revision number can distinguish some chip revisions; however, there is no guarantee that changes
to the chip will be reflected in the PRId register, or that changes to the revision number necessarily reflects
software-visible chip changes. For this reason, these values are not listed and software should not rely on
the revision number in the PRId register to characterize the chip. Certain attributes, such as cache size, are
independent of implementation number.

������ �������� 0�42

The Config register specifies various configuration options selected on the RC32364 processor.

Some configuration options, as defined by Config bits 31:3, are set by the hardware during reset and are
included in the Config register as read-only status bits for software access. The K0 field is the only read/
write field (as indicated by Config register bits 2:0) and is controlled by software. On reset, these fields are
undefined.

Figure 5.7 shows the format of the Config register.

Figure 5.7 Config Register Format

Table 5.6 describes the contents of the Config register fields.

;���, %���
������

ICE In-Circuit Emulator existence
0 → No ICE hardware connected to the CPU
1 → ICE hardware connected to the CPU
These states are determined through an EJTAG Control Register bit.

EC External Clock:
Indicates the relationship of the execution core pipeline clock to the input system clock, as determined at reset:
0 → system clock frequency multiplied by 2
1 → system clock frequency multiplied by 3
2 → system clock frequency multiplied by 4
3 → system clock frequency multiplied by 5
4 → system clock frequency multiplied by 6
5 → system clock frequency multiplied by 7
6 → system clock frequency multiplied by 8
7 Reserved

BE Big Endian Memory.
0 → Little endian
1 → Big endian
The endianness is determined at reset.

IC Primary I-cache Size (I-cache size = 29+IC bytes). In the RC32364 processor, this is set to 8 Kbytes (IC = 4)

DC Primary D-cache Size (D-cache size = 29+DC bytes). In the RC32364 processor, this is set to 2 Kbytes (DC = 2)

IB Primary I-cache line size
0 → 16 bytes (4 Words)

Table 5.6 Config Register Field Content Descriptions (Part 1 of 2)

31

5 1

1 00000

1

18 1617 815

1 3

D BIB

1

4 2 0

IC E E C

1 3

30 28 27

4

24 23 22

00000

1

BE

1

14

1

1

13

1

1

0

12

1

11

IC

3

9 6

D C

5 3

31

D O M K00
���� ������ � $ / ��������
 �� ����

�(
 +"������� (
�������* +"������� (
�������* ��*����
�

���������
��
 ����

�����

����� �������� 0�62

The IWatch register is a read/write register that specifies an Instruction virtual address that causes a
Watch exception. When VAddr31..2 of an instruction fetch matches IvAddr of this register, and the I bit is set,
a Watch exception is taken. Matches that occur when EXL=1 or ERL=1 do not take the exception immedi-
ately and are instead postponed until both EXL and ERL are cleared. The priority of an IWatch exception is
just below an Instruction Address Error exception. Figure 5.8 shows the format of the IWatch register.

Figure 5.8 IWatch Register Format

Table 5.7 describes the IWatch register fields

%����� �������� 0�92

The DWatch register is a read/write register that specifies the Data virtual address that caused a Watch
exception. When VAddr31..3 of a load matches DvAddr of this register and the R bit is set, or when
VAddr31..3 of a store matches DvAddr of this register and the W bit is set, a Data Watch exception is taken.

Matches that occur when EXL=1 or ERL=1 do not immediately take the exception but are instead post-
poned until both EXL and ERL are cleared. The priority of a DWatch exception is just below a Data Address
Error exception. DWatch exceptions do not occur on CACHE operations. The format of the DWatch register
is shown in Figure 5.9.

Figure 5.9 DWatch Register Format

DB Primary D-cache line size
0 → 16 bytes (4 Words)

DOM Disable On-chip register Mapping
0 → Use the upper-most 16MB of virtual address as memory-mapped on chip register.
1 → Use the upper-most 16MB of virtual address as kseg2.

K0 kseg0 coherency algorithm (uses same encodings as EntryLo0 and EntryLo1 registers, as described in
Chapter 4, “Memory Management”.)

Others Reserved. Returns indicated values when read. Should be written with indicated values.

;���, %���
������

IvAddr Instruction virtual address that causes a watch exception [bit 31:2].

I 0 ---> IWatch disable,
1 ---> IWatch enable.

0 reserved for future use.

Note: IWatch.I is cleared on Reset.

Table 5.7 Watch Register Field Description

;���, %���
������

Table 5.6 Config Register Field Content Descriptions (Part 2 of 2)

IWatch Register31 0

30

IvAddr 0 I

12

11

31 0

29

DvAddr W 0

12

11

3

R

1

���� ������ � $ � ��������
 �� ����

�(
 +"������� (
�������* +"������� (
�������* ��*����
�

���������
��
 ����

�����
 Table 5.8 lists the contents of the DWatch register’s fields.

%� �� �-������� ������
 ������� 0%� �����2 �������� 0#'2

This register contains the address of the instruction to resume after the ICE Debug exception is handled.

%� �� �������� 0#/2

This register contains status and control bits for the ICE debug operation.

����� ����.��� ��� ���������� 0���2 �������� 0#42

The 8-bit Error Checking and Correcting (ECC) register reads or writes primary-cache data parity bits for
cache initialization, cache diagnostics, or cache error processing. (Tag parity is loaded from and stored to
the TagLo register). The ECC register is loaded by the Index Load Tag CACHE operation. The value of the
ECC register is:

◆ written into the primary data cache on store instructions (instead of the computed parity) when the
CE bit of the Status register is set

◆ substituted for the computed instruction parity for the CACHE operation Fill

To force a cache parity value, use the Status CE bit and the ECC register. Figure 5.10 shows the format
of the ECC register.

Figure 5.10 ECC Register Format

Table 5.9 describes the contents of the ECC register fields

;���, %���
������

DvAddr Data virtual address that causes a watch exception.

R 0 ---> DWatch disable for loads
1 ---> DWatch enable for loads.

W 0 ---> DWatch disable for stores
1 ---> DWatch enable for stores.

0 reserved for future use.

Note: DWatch.R and DWatch.W are cleared on Reset.

Table 5.8 DWatch Register Field Descriptions

;���, %���
������

ECC An 8-bit field specifying the parity bits read from or written to a primary cache.

0 Reserved. Must be written as zeroes and returns zeroes when read.

Table 5.9 ECC Register Field Descriptions

31

24 8

8 07

0 ECC
���� ������ � $ #� ��������
 �� ����

�(
 +"������� (
�������* +"������� (
�������* ��*����
�

���������
��
 ����

�����
 ����� ����� 0��������2 �������� 0#:2

The 32-bit read-only CacheErr register processes parity errors in the primary cache. Parity errors cannot
be corrected automatically.

The CacheErr register holds cache index and status bits that indicate the source and nature of the error.
This register is loaded when a Cache Error exception is asserted. When a read response returns with bad
parity this exception is also asserted. Figure 5.11 shows the format of the CacheErr register.

Figure 5.11 CacheErr Register

Table 5.10 provides descriptions on the contents of the CacheErr register fields.

���$� �������� 0#62

The TagLo register is a 32-bit read/write register that holds the primary cache tag and parity during
cache initialization, cache diagnostics, or cache error processing. The TagLo register is written by the
CACHE and MTC0 instructions. The P field of this register is ignored on Index Store Tag operations. Parity
is computed by the store operation.

Figure 5.12 shows the format of the TagLo register, for primary cache operations.

;���, %���
������

ER Indicates the type of reference as follows:
0 → instruction
1 → data

EC Cache level of the error
0 → primary

ED Indicates if a data field error occurred
0 → no error
1 → error

ET Indicates if a tag field error occurred
0 → no error
1 → error

ES Reserved

EE Reserved

EB Set if a data error occurred in addition to the instruction error (indicated by the remainder of the
bits). If so, this requires flushing the data cache after fixing the instruction error.
0 → no additional data error
1 → additional data error

SIdx Physical address 21:3 of the reference that encountered the error.

PIdx Virtual address 13:12 of the double word in error.
To be used with SIdx to construct a virtual index for the primary caches. Only the lower two bits
(bits 1 and 0) are vAddr; the high bit (bit 2) is zero.

0 Reserved. Must be written as zeroes and returns zeroes when read.

Table 5.10 Cache Error Register Field Descriptions

31

0

19

2 0

ER ES

1

30 28 25

1

24 23 22 21

0

1 1 2

EBEE

111

E TE DE C

1 1

262729

1

0 S Idx PIdx

3

0

���� ������ � $ ## ��������
 �� ����

�(
 +"������� (
�������* +"������� (
�������* ��*����
�

���������
��
 ����

�����

Figure 5.12 TagLo Register Format

Table 5.11 lists the field definitions of the TagLo register.

����� �-������� ������
 ������� 0����� ���2 �������� 0'12

The register is similar to the EPC register, except that ErrorEPC is used on parity error exceptions
(EXL set) and is also used to store the program counter (PC) on Reset, Soft Reset, and nonmaskable inter-
rupt (NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction processing can
resume after servicing an error. This address can be:

◆ the virtual address of the instruction that caused the exception
◆ the virtual address of the immediately preceding branch or jump instruction, when this address is in

a branch delay slot.

There is no branch delay slot indication for the ErrorEPC register.

Figure 5.13 shows the format of the ErrorEPC register.

Figure 5.13 ErrorEPC Register

;���, %���
������

PTagLo In the case of Data Cache, the PTagLo field specifies the physical address bits 31:9.
In the case of Instruction Cache (8kbytes), the PTagLo field specifies the physical address bits 31:11.
The 2 least significant bits are undefined.

PState Specifies the primary cache state.

P Specifies the primary tag even parity bit.

F The FIFO bit used to implement FIFO refill of the cache. For software, there is no particular use of this bit.

Rsvd Reserved. Must be written as zeroes.

L Lock bit used to implement cache line lock function.

Table 5.11 TagLo Register Field Descriptions

=���� ���9� ����� 0��
�����

0 Invalid

1 Shared

2 Clean Exclusive

3 Dirty Exclusive

Table 5.12 Primary Cache State Values

TagLo
31

1

0

23

P
8 7

PState
6 5 1

32

PTagLo F
23
LRsvd

11

0

1

31 0

ErrorEPC

32
���� ������ � $ #� ��������
 �� ����

�(
 +"������� (
�������* (
������
 +"��������

���������
��
 ����

�����
 ��////0000��$���$���$���$�����������������

This section describes the processor exceptions: the cause of each exception, its processing by the
hardware, and servicing by a handler (software). The types of exception, with exception processing opera-
tions, are described in the next section.

�-������� �����

This section gives sample exception handler operations for the following exception types:
◆ reset
◆ soft reset
◆ nonmaskable interrupt (NMI)
◆ cache error
◆ remaining processor exceptions

When the EXL bit in the Status register is 0, either User or Kernel operating mode is specified by the UM
bits in the Status register. When the EXL bit or the ERL bit is a 1, the processor is in Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, which means the system is in Kernel
mode. After saving the appropriate state, the exception handler typically resets the EXL bit back to 0. When
restoring the state and restarting, the handler sets the EXL bit back to 1, to inhibit subsequent interrupts.
Returning from an exception also resets the EXL bit to 0.

In the following sections, sample hardware processes for various exceptions, are shown together with
the servicing required by the handler (software).

;������ �-������� �������

Figure 5.14 shows the process used for exceptions other than Reset, Soft Reset, NMI, and Cache Error.

Figure 5.14 General Exception Process

�������� �� �-��������

Although more than one exception can occur for a single instruction, only the exception with the highest
priority will be reported. After the highest priority exceptions have been serviced, if lower priority exception
conditions remain, they will be signalled and serviced at that time.

The remainder of this chapter describes exceptions—in the order of their priority—as shown in
Table 5.13.

+"������� (
��
��!

1 Reset (highest priority) 11 Bus error –– Instruction fetch

2 Debug (ICE) 12 Integer overflow, Trap, System Call, Breakpoint, Reserved
Instruction, Coprocessor Unusable, or Floating-Point Exception

Table 5.13 Exception Priority Order (highest to lowest) (Part 1 of 2)

T: Cause ¨ BD || 0 || CE || 012 || Cause15:8 || 0 || ExcCode || 02

if SR1 = 0 then /* system in User mode with no current exception */

 EPC ¨ PC
endif
SR ¨ SR31:2 || 1 || SR0 / + set Exl */
if SR22 = 1 then /* What is the BEV bit setting */
 PC ¨ 0xBFC0 0200 + vector /* access to uncached space */
else
 PC ¨ 0x8000 0000 + vector /* access to cached space */
endif
���� ������ � $ #� ��������
 �� ����

�(
 +"������� (
�������* (
������
 +"��������

���������
��
 ����

�����
Generally speaking, the exceptions that will be described in the following sections are handled
(“processed”) by hardware; these exceptions are then serviced by software.

�-������� 5����� $��������

The Reset, Soft Reset, and NMI exceptions are always vectored to location 0xBFC0 0000 (virtual
address), corresponding to kseg0.

The debug exception for In-Circuit Emulator (ICE) is vectored to location 0xFF20_0200 (virtual address),
corresponding to ICE space, if the ICE hardware is connected to the CPU (i.e. Configuration register ICE bit
is set). Otherwise, this exception is vectored to location 0xBFC0_0480.

Addresses for all other exceptions are a combination of a vector offset and a base address. The base
address is determined by the BEV bit of the Status register, as shown in Table 5.16. Table 5.14 lists the
vector offset that is added to the base address to create the exception address.

As shown in Table 5.15, when BEV = 0, the vector base for the Cache Error exception changes from
kseg0 (0x8000 0000) to kseg1 (0xA000 0000).

When BEV = 1, the vector base for the Cache Error exception is 0xBFC00200. This is an uncached and
unmapped space, allowing the exception to bypass the cache and TLB.

3 Soft Reset 13 Address error –– Data access

4 Nonmaskable Interrupt (NMI) 14 TLB refill –– Data access

5 Imprecise Bus Error 15 TLB invalid –– Data access

6 Address error –– Instruction fetch 16 TLB modified –– Data write

7 TLB refill –– Instruction fetch 17 Cache error –– Data access

8 TLB invalid –– Instruction fetch 18 Watch -- Data access

9 Watch -- Instruction fetch 19 Bus error –– Data access (precise)

10 Cache error –– Instruction fetch 20 Interrupt (lowest priority)

)+= <�
��� +"�������)��� ���9� +

�
)���

0 0x8000 0000 0xA000 0000

1 0xBFC0 0200 0xBFC0 0200

Table 5.14 Base Address Vector Offset

+"������� ������� (
������
 =����
 &�����

TLB refill, EXL = 0 0x000

Cache Error 0x100

Interrupt1

1. If cause.IV = 1. Otherwise interrupts use general vector offset.

0x200

Others 0x180

Table 5.15 List of RC32364 Exception vectors

+"������� (
��
��!

Table 5.13 Exception Priority Order (highest to lowest) (Part 2 of 2)
���� ������ � $ #� ��������
 �� ����

�(
 +"������� (
�������* (
������
 +"��������

���������
��
 ����

�����

����� �-�������

Cause: The Reset exception occurs when the ColdReset*1 signal is asserted and then deasserted.

Processing: The CPU provides a special exception vector for this exception of: 0xBFC0 0000

The Reset vector resides in unmapped and uncached CPU address space, so the hardware need not
initialize the TLB or the cache to process this exception. It also means the processor can fetch and execute
instructions while the caches and virtual memory are in an undefined state.

Maskable: No

The contents of all registers in the CPU are undefined when this exception occurs, except for the
following register fields:

◆ In the Status register, SR is cleared to 0, and ERL and BEV are set to 1. All other bits are unde-
fined.

◆ The Random register is initialized to the value of its upper bound.
◆ The Wired register is initialized to 0.
◆ Iwatch.I,Dwatch.W and Dwatch.R are cleared.
◆ Some of the Config Register bits are initialized from the boot-time mode stream.

The Reset exception is serviced by:
◆ initializing all processor registers, coprocessor registers, caches, and the memory system
◆ performing diagnostic tests
◆ bootstrapping the operating system

The Reset exception process is as shown in Figure 5.15.

+"�������)+= +?- 2= 2�+ ������� (
������
 =����

Reset, Soft Reset, NMI X X X X 0xBFC0 0000

Debug (ICE) X X X 1 0xFF20 0200

Debug (ICE) X X X 0 0xBFC0 0480

TLB refill 1 0 X X 0xBFC0 0200

TLB refill 1 1 X X 0xBFC0 0380

TLB refill 0 0 X X 0x8000 0000

TLB refill 0 1 X X 0x8000 0180

Cache Error 1 X X X 0xBFC0 0300

Cache Error 0 X X X 0xA000 0100

Interrupt 1 X 1 X 0xBFC0 0400

Interrupt 1 X 0 X 0xBFC0 0380

Interrupt 0 X 1 X 0x8000 0200

Interrupt 0 X 0 X 0x8000 0180

Others 1 X X X 0xBFC0 0380

Others 0 X X X 0x8000 0180

Note: X means don’t care

Table 5.16 RC32364 Exception Vectors

1. In the following sections (and throughout this manual) a signal reference that is followed by an asterisk (for
example, Reset*) is active when low.
���� ������ � $ #� ��������
 �� ����

�(
 +"������� (
�������* (
������
 +"��������

���������
��
 ����

�����

Figure 5.15 Process of the Reset Exception

%� �� �-�������

Cause: The Debug exception occurs either when the ICE Breakpoint signal is asserted from the ICE
hardware or when the processor executes the SDBBP instruction.

Processing: The CPU provides a special exception vectors for this exception at:
◆ 0xFF20 0200 if the ICE hardware is connected to the CPU.
◆ 0xBFC0 0480 if the ICE hardware is not connected to the CPU.

The Debug exception vectors reside in unmapped and uncached CPU address space, so the hardware
need not initialize the TLB or the cache to process this exception. It also means the processor can fetch and
execute instructions while the caches and virtual memory are in an undefined state.

Servicing: The Reset exception is serviced by the ICE software, to assist the user in a system level
debug.

Maskable: No

���� ����� �-�������

Cause: The Soft Reset exception occurs in response to the Reset* input signal, and execution begins at
the Reset vector when Reset* is deasserted.

Processing: The Reset exception vector is used for this exception, located within unmapped and
uncached address space so that the cache and TLB need not be initialized to process this exception. When
a Soft Reset occurs, the SR bit of the Status register is set to distinguish this exception from a Reset excep-
tion.

The primary purpose of the Soft Reset exception is to reinitialize the processor after a fatal error during
normal operations. Unlike an NMI, all cache and bus state machines are reset by this exception.

Like Reset, Soft Reset can be used on the processor in any state. The caches, TLB, and normal excep-
tion vectors need not be properly initialized. Soft Reset preserves the state of the caches and memory
system, while resetting the bus state and cache state machine.

When this exception occurs, the contents of all registers are preserved except for:
◆ ErrorEPC register, which contains the restart PC
◆ ERL bit of the Status register, which is set to 1
◆ SR bit of the Status register, which is set to 1
◆ BEV bit of the Status register, which is set to 1

Because the Soft Reset can abort cache and bus operations, cache and memory state is undefined
when this exception occurs.

Servicing: The Soft Reset exception is serviced by saving the current processor state for diagnostic
purposes, and reinitializing for the Reset exception.

Maskable: No

The Soft Reset and NMI exception processes are as shown in Figure 5.16.

T: undefined
Random ¨ TLBENTRIES–1
Wired ¨ 0
Config <- ICE || EC || EP || 00000000 || BE || 110 || 100 || 010 || 0 || 0 || 0 || 000
ErrorEPC ¨ PC
SR ¨ SR31:23 || 1 || 0 || 0 || SR19:3 || 1 || SR1:0 / * ERL¨ 1, BEV ¨ 1 * /
PC ¨ 0xBFC0 0000
���� ������ � $ #� ��������
 �� ����

�(
 +"������� (
�������* (
������
 +"��������

���������
��
 ����

�����

Figure 5.16 Process of the Soft Reset and NMI Exceptions

<��
��.� ��
�������� 0<!
2 �-�������

Cause: The Nonmaskable Interrupt (NMI) exception occurs in response to the asserting edge of the
NMI pin. Unlike all other interrupts, this interrupt is not maskable; it occurs regardless of the settings of the
EXL, ERL, and the IE bits in the Status register.

Processing: The Reset exception vector is used for this exception. This vector is located within
unmapped and uncached address space so that the cache and TLB need not be initialized to process an
NMI interrupt. When an NMI exception occurs, the SR bit of the Status register is set to differentiate this
exception from a Reset exception. Because an NMI can occur in the midst of another exception, it is not
normally possible to continue program execution after servicing an NMI.

Unlike Reset and Soft Reset, but like other exceptions, NMI is taken only at instruction boundaries. The
state of the caches and memory system are preserved by this exception.

To terminate a pending read that has hung the best approach is to return a bus error. However, if you
wish to use a CPU exception to indicate a hung read, Soft Reset is preferable to NMI.

When this exception occurs, the contents of all registers are preserved except for the following:
◆ ErrorEPC register, which contains the restart PC
◆ ERL bit of the Status register, which is set to 1
◆ SR bit of the Status register, which is set to 1
◆ BEV bit of the Status register, which is set to 1

Servicing: The NMI exception is serviced by saving the current processor state for diagnostic purposes,
and reinitializing the system for the Reset exception.

Maskable: No.

������� ����� �-�������

Cause: The Address Error exception occurs when an attempt is made to execute one of the following:
◆ load, fetch, or store a word that is not aligned on a word boundary (except for use of special instruc-

tion)
◆ load or store a halfword that is not aligned on a halfword boundary
◆ reference the kernel address space from User mode

Processing: The common exception vector is used for the address error exception. If the AdEL or
AdES code in the Cause register is set, this indicates how the instruction (shown by the EPC register and
the BD bit in the Cause register) caused the exception: through an instruction reference, a load operation,
or a store operation.

When this exception occurs, the BadVAddr register retains the virtual address that was not properly
aligned or had referenced protected address space. The contents of the VPN field of the Context and
EntryHi registers are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless this instruc-
tion is in a branch delay slot. If it is in a branch delay slot, the EPC register contains the address of the
preceding branch instruction and the BD bit of the Cause register is set as indication.

Servicing: Typically, the process executing at the time is handed a segmentation violation signal. This
error is usually fatal to the process incurring the exception. To resume execution, the EPC register or the
load/store target address must be altered so that the unaligned reference instruction does not re-execute;
this is accomplished by adding a value of 4 to the EPC register (EPC register + 4) before returning.

T: ErrorEPC ¨ PC
SR ¨ SR31:23 || 1 || 0 || 1 || SR19:3 || 1 || SR1:0 /* BEV¨ 1, SR ¨ 1, ERL ¨ 1 */
PC ¨ 0xBFC0 0000
���� ������ � $ #� ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����
 If an unaligned reference instruction is in a branch delay slot, interpretation of the branch instruction is
required to resume execution.

Maskable: No

&&&&,,,,%%%%����////0000��������$�$�$�$�����������������

This section explains the TLB Exceptions. Three types of TLB exceptions can occur:
◆ TLB Refill occurs when there is no TLB entry that matches an attempted reference to a mapped

address space.
◆ TLB Invalid occurs when a virtual address reference matches a TLB entry that is marked invalid.
◆ TLB Modified occurs when a store operation virtual address reference to memory matches a TLB

entry which is marked valid but is not dirty (the entry is not writable).

For specifics on the exceptions listed here, refer to the appropriate subsection.

�$� ������ �-�������

Cause: The TLB refill exception occurs when there is no TLB entry to match a reference to a mapped
address space.

Processing: This exception sets the TLBL or TLBS code in the ExcCode field of the Cause register.
This code indicates whether the instruction, as shown by the EPC register and the BD bit in the Cause
register, caused the miss by an instruction referenced load operation or by a store operation.

When this exception occurs, the BadVAddr, Context, and EntryHi registers hold the virtual address that
failed the address translation. The EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally suggests a valid location in which to place the replacement TLB
entry.

The contents of the EntryLo registers are undefined. The EPC register contains the address of the
instruction that caused the exception, unless this instruction is in a branch delay slot, in which case the EPC
register contains the address of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing: To service this exception, the content of the Context register is used as a virtual address to
fetch memory locations containing the physical page frame and access control bits for a pair of TLB entries.
The two entries are placed into the EntryLo0/EntryLo1 register; the EntryHi and EntryLo registers are
written into the TLB, typically with a TLBWR instruction.

It is possible that the virtual address used to obtain the physical address and access control information
is on a page that is not resident in the TLB. This condition is processed by allowing a TLB refill exception in
the TLB refill handler. This second exception goes to the common exception vector because the EXL bit of
the Status register is set.

Maskable: No.

�$�
�)���� �-�������

Cause: The TLB invalid exception occurs when a virtual address reference matches a TLB entry that is
marked invalid (TLB valid bit cleared).

Processing: The common exception vector is used for this exception. The TLBL or TLBS code in the
ExcCode field of the Cause register is set, which indicates whether the instruction—shown by the EPC
register and BD bit in the Cause register—caused the miss by an instruction referenced load operation or
by a store operation.

When this exception occurs, the BadVAddr, Context, and EntryHi registers contain the virtual address
that failed address translation. The EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally contains a valid location in which to put the replacement TLB
entry. The contents of the EntryLo registers are undefined.
���� ������ � $ #/ ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����
 The EPC register contains the address of the instruction that caused the exception unless this instruc-
tion is in a branch delay slot, in which case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing: A TLB entry is typically marked invalid when one of the following is true:
◆ a virtual address does not exist
◆ the virtual address exists, but is not in main memory (a page fault)
◆ a trap is desired on any reference to the page (for example, to maintain a reference bit or

during debug)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with TLBP (TLB Probe),
and replaced by an entry with that entry’s Valid bit set.

Maskable: No.

�$� !������� �-�������

Cause: The TLB modified exception occurs when a store operation virtual address reference to memory
matches a TLB entry that is marked valid but is not dirty and therefore is not writable.

Processing: The common exception vector is used for this exception, and the Mod code in the Cause
register is set. When the TLB Modified Exception occurs, the BadVAddr, Context, and EntryHi registers
contain the virtual address that failed address translation. The EntryHi register also contains the ASID from
which the translation fault occurred. The contents of the EntryLo registers are undefined.

The EPC register contains the address of the instruction that caused the exception unless that instruc-
tion is in a branch delay slot, in which case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing: The kernel uses the failed virtual address or virtual page number to identify the corre-
sponding access control information. The page identified may or may not permit write accesses; if writes
are not permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the kernel in its own data
structures. The TLBP instruction places the index of the TLB entry that must be altered into the Index
register. The EntryLo register is loaded with a word containing the physical page frame and access control
bits (with the D bit set), and the EntryHi and EntryLo registers are written into the TLB.

Maskable: No

����� ����� �-�������

Cause: The Cache Error exception occurs when a primary cache parity error is detected.

Processing: The processor sets the ERL bit in the Status register, saves the exception restart address
in ErrorEPC register, and then transfers to a special vector in uncached space:

◆ If the BEV bit = 0, the vector is 0xA000 0100.
◆ If the BEV bit = 1, the vector is 0xBFC0 0300.

No other registers are changed.

Servicing: All errors should be logged. To correct cache parity errors, the system uses the CACHE
instruction to invalidate the cache block, overwrites the old data through a cache miss, and resumes execu-
tion with an ERET. Other errors are not correctable and are likely to be fatal to the current process.

Maskable: Yes, by the DE bit of the Status register.

The Cache Error exception process is as shown in Figure 5.17.
���� ������ � $ #� ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����

Figure 5.17 Process of the Cache Error Exception

��� ����� �-�������

Cause: A Bus Error exception is raised by board-level circuitry for events such as bus time-out, back-
plane bus parity errors, and invalid physical memory addresses or access types. A Bus Error exception will
occur only when a cache miss refill or uncached reference occurs synchronously. A Bus Error exception
resulting from a buffered write transaction must be reported using the general interrupt mechanism.

Processing: The common interrupt vector is used for a Bus Error exception. The IBE or DBE code in
the ExcCode field of the Cause register is set, signifying whether the instruction (as indicated by the EPC
register and BD bit in the Cause register) caused the exception by an instruction referenced load operation
or store operation.

The EPC register contains the address of the instruction that caused the exception, unless it is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Servicing: The physical address at which the fault occurred can be computed from information avail-
able in the CP0 registers.

If the IBE code in the Cause register is set (indicating an instruction fetch reference), the virtual address
is contained in the EPC register. If the DBE code is set (indicating a load or store reference), then the
instruction that caused the exception is located at the virtual address contained in the EPC register (or 4+
the contents of the EPC register if the BD bit of the Cause register is set).

Note: The IPE bit should be checked first. If this bit is set, refer to the servicing section for the
Imprecise Bus Error Exception.

The virtual address of the load and store reference can then be obtained by interpreting the instruction.
The physical address can be obtained by using the TLBP instruction and reading the EntryLo register to
compute the physical page number. The process that is executing at the time of this exception is handed a
bus error signal, which is usually fatal.

Maskable: No.

������ ")�����& �-�������

Cause: An Integer Overflow exception occurs when an ADD, ADDI, SUB1, or instruction results in a 2’s
complement overflow.

Processing: The common exception vector is used for this exception, and the OV code in the Cause
register is set.

The EPC register contains the address of the instruction that caused the exception unless the instruction
is in a branch delay slot, in which case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing: The process executing at the time of the exception is handed a floating-point exception/
integer overflow signal. This error is usually fatal to the current process.

Maskable: No.

1. See Appendix A for instruction description.

T: ErrorEPC ¨ PC
CacheErr ¨ ER || EC || ED || ET || ES || EE || EB || 025

SR ¨ SR31:3 || 1 ||SR1:0 /* Set ERL */
if SR22 = 1 then /* What is the BEV bit setting */
 PC ¨ 0xBFC0 0200 + 0x100 /* access boot-PROM area */
else
 PC ¨ 0xA000 0000 + 0x100 /* access main memory area */
endif
���� ������ � $ �� ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����
 ���� �-�������

Cause: The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI,

TLTUI, TEQI, or TNEI1 instruction results in a TRUE condition.

Processing: The common exception vector is used for this exception, and the Tr code in the Cause
register is set.

The EPC register contains the address of the instruction causing the exception unless the instruction is
in a branch delay slot, in which case the EPC register contains the address of the preceding branch instruc-
tion and the BD bit of the Cause register is set.

Servicing: The process executing at the time of a Trap exception is handed a floating-point exception/
integer overflow signal. This error is usually fatal.

Maskable: No.

�����
 ���� �-�������

Cause: The execution of the SYSCALL instruction causes a System Call exception to occur.

Processing: The common exception vector is used for this exception, and the Sys code in the Cause
register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in a branch delay slot, in
which case the EPC register contains the address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status register is set; otherwise,
this bit is cleared.

Servicing: When this exception occurs, control is transferred to the applicable system routine. To
resume execution, the EPC register must be altered so that the SYSCALL instruction does not re-execute;
this is accomplished by adding a value of 4 to the EPC register (EPC register + 4) before returning. If a
SYSCALL instruction is in a branch delay slot, a more complicated algorithm, beyond the scope of this
description, may be required.

Maskable: No.

����.����� �-�������

Cause: A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction.

Processing: The common exception vector is used for this exception, and the BP code in the Cause
register is set. The EPC register contains the address of the BREAK instruction unless it is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch instruction. If the
BREAK instruction is in a branch delay slot, the BD bit of the Status register is set, otherwise the bit is
cleared.

Servicing: When the Breakpoint exception occurs, control is transferred to the applicable system
routine. Additional distinctions can be made by analyzing the unused bits of the BREAK instruction (bits
25:6), and loading the contents of the instruction whose address the EPC register contains. A value of 4
must be added to the contents of the EPC register (EPC register + 4) to locate the instruction if it resides in
a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction does not re-
execute. This is accomplished by adding a value of 4 to the EPC register (EPC register + 4) before
returning. If a BREAK instruction is in a branch delay slot, interpretation of the branch instruction is required
to resume execution.

Maskable: No.
���� ������ � $ �# ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����
 �����)��
���������� �-�������

Cause: The Reserved Instruction exception occurs when one of the following conditions occurs:
◆ an attempt is made to execute an instruction with an undefined major opcode (bits 31:26)
◆ an attempt is made to execute a SPECIAL instruction with an undefined minor opcode (bits 5:0)
◆ an attempt is made to execute a REGIMM instruction with an undefined minor opcode (bits 20:16)
◆ an attempt is made to execute a 64-bit operation

Processing: The common exception vector is used for this exception, and the RI code in the Cause
register is set. The EPC register contains the address of the reserved instruction unless it is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch instruction.

Servicing: No instructions in the RC32364 ISA are interpreted. The process executing at the time of this
exception is handed an illegal instruction/reserved operand fault signal. This error is usually fatal.

Maskable: No.

����������� ����� �� �-�������

Cause: The Coprocessor Unusable exception occurs when an attempt is made to execute a copro-
cessor instruction for either:

◆ a corresponding coprocessor unit that has not been marked usable, or
◆ CP0 instructions, when the unit has not been marked usable and the process executes in User

mode.

Processing: The common exception vector is used for this exception, and the CPU code in the Cause
register is set. The contents of the Coprocessor Usage Error field of the coprocessor Control register indi-
cate which of the four coprocessors was referenced. The EPC register contains the address of the unus-
able coprocessor instruction unless it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

Servicing: The coprocessor unit to which an attempted reference was made is identified by the Copro-
cessor Usage Error field, which results in one of the following situations:

◆ If the process is entitled access to the coprocessor, the coprocessor is marked usable and the cor-
responding user state is restored to the coprocessor.

◆ If the process is entitled access to the coprocessor, but the coprocessor does not exist or has failed,
interpretation of the coprocessor instruction is possible.

◆ If the BD bit is set in the Cause register, the branch instruction must be interpreted; then the copro-
cessor instruction can be emulated and execution resumed with the EPC register advanced past
the coprocessor instruction.

◆ If the process is not entitled access to the coprocessor, the process executing at the time is handed
an illegal instruction/privileged instruction fault signal. This error is usually fatal.

Maskable: No.

�������� �-�������

Cause: The Interrupt exception occurs when one of the eight interrupt conditions is asserted. The signif-
icance of these interrupts is dependent upon the specific system implementation.

Processing: The RC32364 may use the common exception vector or a dedicated vector for this excep-
tion, determined by the Cause Register IV bit. The Int code in the Cause register is set. The IP field of the
Cause register indicates current interrupt requests. It is possible that more than one of the bits can be
simultaneously set (or even no bits may be set if the interrupt is asserted and then deasserted before this
register is read).

Servicing: If the interrupt is caused by one of the two software-generated exceptions (SW1 or SW0),
the interrupt condition is cleared by setting the corresponding Cause register bit to 0. If the interrupt is hard-
ware-generated, the interrupt condition is cleared by correcting the condition causing the interrupt pin to be
asserted.
���� ������ � $ �� ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����
 Maskable: Yes. Each of the eight interrupts can be masked by clearing the corresponding bit in the Int-
Mask field of the Status register, and all of the eight interrupts can be masked at once by clearing the IE bit
of the Status register.

Note: Due to the write buffer, a store to an external device will not necessarily occur until after
completion of other instructions in the pipeline. Thus, the user must ensure that the store occurs
before the return from exception (ERET) instruction is executed; otherwise, the interrupt may be
serviced again, although there should be no interrupt pending. The Sync instruction can be used
to achieve this.

%����� �-�������

Cause: DWatch is a read-write register that specifies a data virtual address that causes a Watch excep-
tion. This exception occurs either when the program does a load and the target address matches DWatch
and DWatch.R is set or when the program does a store and the target address matches DWatch and
DWatch.W is set.

Processing: The common exception vector is used for this exception. The Watch code of the Cause
register is set with the DW bit set.

Servicing: This exception is typically used during system debug. Servicing is system-specific.

Maskable: No. Enabled or disabled through bits in the DWatch register (19). Refer to Table 5.8 for
settings and descriptions.

����� �-�������

Cause: IWatch is a read-write register that specifies an instruction virtual address that causes a Watch
exception. The exception occurs when the program address matches the IWatch Register, and IWatch.I is
set.

Processing: The common exception vector is used for this exception. The Watch code of the Cause
register is set with the IW bit set.

Servicing: Typically, this exception is used during system debug. Servicing is system-specific.

Maskable: No. Enabled or disabled through bits in the IWatch register (18). Refer to Table 5.7 for
settings and descriptions.

�-������� 7������� ��� ���)����� +��&������

The remainder of this chapter contains flowcharts for the exceptions described in Table 5.13 as well as
guidelines for their handlers.

In general, exceptions are handled by hardware (HW) and serviced by software (SW).

;�*�
� %���
������

Figure 5.18
Figure 5.19

General exceptions and their exception handler (HW)
General exceptions and their exception handler (SW)

Figure 5.20
Figure 5.21

TLB miss exception and their exception handler (HW)
TLB refill exception servicing guideline (SW)

Figure 5.22 Cache error exception and its handler

Figure 5.23 Reset, soft reset and NMI exceptions, and a guideline to their handler.

Table 5.17 List of Exception Handling Flowchart Types
���� ������ � $ �� ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����

Figure 5.18 General Exception Handling (HW)

* 200 for interrupts if Cause.IV is set.

PC ← 0x8000 0000

EXL ← 1; 0

PC ← 0xBFC0 0200

BEV
=1 (bootstrap)=0

To G enera l Exception Serv ic ing G uidelines

(unm apped, cached) (unmapped, uncached)

N o te : Interrup ts can be m asked by IE or IM s

(normal)

EXL
(SR1)

=1

=0

EPC ← PC

Instr. in Yes

No

EPC ← (PC - 4)

Br.D ly. Slot?

EXL
(SR1)

=1

=0

Set BadVA Set BadVA

Cause 31 (BD) ← 1 Cause 31 (BD) ← 0

Set Cause Register

Enhi ← VPN2, ASID
Context ← VPN2

EXCCode, CE

Exception

another exception

TLB- Invalid, M odified,
& Refill exceptions

+ 180* + 180*

is disabled

Comments

Check if exception within

Processor forced to Kernel Mode,

BadVA is set only for
TLB- Invalid, Modified,

Note: not set if Bus Error
Refill- and VCED/I exceptions

interrupt

E xceptions other than R eset, So ft R eset, N M I, C acheErr or firs t-level TLB m iss

*EnHi, Context are set only for
���� ������ � $ �� ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����
Figure 5.19 General Exception Servicing Guideline (SW)

M FC 0 ←
Context
EPC
Status
Cause

EXL ← 0

Check C AUSE REG. & Jum p to
appropriate Service Code

EXL = 1

M TC0 ←
EPC
STATUS

ERET

* Unm apped vector so TLBM od, TLBInv,
TLB Refill exceptions not possible

* EXL=1 so Interrupt exceptions d isabled

*Only CacheErr, Reset, Soft Reset, N M I

* OS/System to avoid all o ther exceptions

* A fter EXL=0, a ll exceptions a llowed.
(except interrupt if m asked by IE or IM
and C acheErr if m asked by DE)

Comments

 exceptions possible.

KSU ← 00
(optional - on ly to enable In terrupts while keeping Kernel M ode)

M TC 0 ←
(Set Status Bits:)

& IE=1

* PC ← EPC; EXL ← 0

* LLbit ← 0

* ERET is not a llowed in the branch delay slot of

* Processor does not execute the instruction which is
in the ER ET’s branch delay slot

another Jum p Instruction

Service CodeService Code
���� ������ � $ �� ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����

Figure 5.20 TLB Refill Exception Handling (HW)

EXL
(SR bit 1)

EXL ← 1

=1

=0

PC ← 0xBFC0 0200PC ← 0x8000 0000

=0 (norm al) =1

To TLB Exception Servicing Guide lines

(unm apped, cached) (unm apped, uncached)

BEV
(SR bit 22)

Vec. O ff. = 0x000 Vec. Off. = 0x180

Instr. in Yes

Processor forced to Kernel Mode &

Check to see if exception is w ith in

(bootstrap)

Br.D ly. Slot?

EXL
(SR bit 1)

=1

=0

Points to General Exception

Points to Refill Exception

No

Set Cause Reg.

Enhi ← VPN2, AS ID
Context ← VPN2

EXCCode, CE and
Cause bit 31 (BD) ← 1

Set Cause Reg.

Enhi ← VPN2, ASID
Context ← VPN2

EXCCode, CE and
Cause bit 31 (BD) ← 0

EPC ← PCEPC ← (PC - 4)

Set BadVA Set BadVA

another exception

interrupt disabled

+ Vec.O ff. + Vec.Off.

���� ������ � $ �� ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����

Figure 5.21 TLB Refill Exception Servicing Guideline (SW)

MFC0 ←

CONTEXT

Service Code

ERET

* Unmapped vector so TLBMod, TLBInv,
TLB Refill or VCEP exceptions

* EXL=1 so Interrupt exceptions disabled

*Only CacheErr, Reset, Soft Reset, NMI

* OS/System to avoid all other exceptions

* PC ← EPC; EXL ← 0

* LLbit ← 0

Comments

 exceptions possible.

* There could be a TLB miss again during the mapping

not possible

of the data or instruction address. The processor will
jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

* ERET is not allowed in the branch delay slot of

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

another Jump Instruction

exception handler or ERET to the original instruction
and take the exception again)
���� ������ � $ �� ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����

Figure 5.22 Cache Error Exception Handling (HW) and Servicing Guidelines (SW)

Set C acheErr R eg.

ER L ← 1

PC ← 0xBFC0 0200

BEV

PC ← 0xA000 0000

=1=0

(unm apped, uncached) (unm apped, uncached)

Note: Can be masked/disabled by DE (SR16) b it = 1

(bootstrap)(norm al)

ErrEPC ← PC

Instr. in Yes

No

ErrEPC ← (PC - 4)

B r. D ly. S lot?

Service C ode

ERET

* ERET is not a llowed in the branch delay s lot of

* U nm apped Uncached vector so
TLB related & Cache Error Exception not possible

* ERL=1 so Interrupt exceptions disabled

*O nly Reset, Soft R eset, NM I

* O S/System to avoid all other exceptions

* P rocessor does not execute the instruction w hich is

* PC ← E rrorEPC; ERL ← 0

* LLbit ← 0

Comments

 exceptions possible.

in the ERET’s branch delay slot

another Jum p Instruction

+ 100 + 100

Se
rv

ic
in

g
G

ui
de

lin
es

 (S
W

)
Ca

ch
e

Er
ro

r E
xc

ep
tio

n
H

an
dl

in
g

(H
W

)

���� ������ � $ �/ ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����

Figure 5.23 Reset, Soft Reset & NMI Exception Handling (HW) and Servicing Guidelines (SW)

Re
se

t,
So

ft
R

es
et

 &
 N

M
I E

xc
ep

tio
n

Ha
nd

lin
g

(H
W

) Random ← TLBENTRIES - 1
W ired ← 0
Config ← Update(31:6)|| Undef(5:0)

Status:

BEV ← 1

SR ← 0

ERL ← 1

ErrorEPC ← PC

PC ← 0xBFC0 0000

Status:

BEV ← 1

SR ← 1

ERL ← 1

Soft Reset or NMI Exception Reset Exception

NMI Service Code

Soft Reset Service Code

NMI?

Reset Service Code

Yes

No

Status bit 20

= 1

=0

ERET

(Optional)

Note: There is no indication from the
processor to differentiate between

there must be a system level indication.

(SR)

R
es

et
, S

of
t R

es
et

 &
 N

M
I

Se
rv

ic
in

g
G

ui
de

lin
es

 (S
W

)

NMI & Soft Reset;
���� ������ � $ �� ��������
 �� ����

�(
 +"������� (
�������* .-) +"��������

���������
��
 ����

�����
���� ������ � $ �� ��������
 �� ����

�����

���������
��
 ����
���� ������ � $ # ������
������� 4
���������
)��	�
*

�$����	�
��
+�������
�&
�����������������	
�	
�	
�	
��������������������

Caches are small, high speed memories used to buffer the central processing unit from slower, larger
storage devices such as those found in main memory. Caches are used to store the data or instructions that
a program is currently using while the majority of the data remains in the slower memory, thus providing
quick, temporary storage.

In the logical memory hierarchy, caches reside between the CPU and main memory. The increased
memory access speed made possible through caches is usually transparent to the programmer.

Each functional block shown in Figure 6.1 has the capacity to hold more data than the block above it.
For example, physical main memory has a larger capacity than the primary cache. However, each func-
tional block requires longer access times than any block above it; therefore, it takes longer to access data in
main memory than in the CPU on-chip registers.

Figure 6.1 Logical Hierarchy of Memory

����� "�������� ")��)��&

To support high-performance RISC designs, the primary cache is made up of an Instruction cache
(holds instructions) and a Data cache (holds data). This arrangement allows the processor simultaneous
access to both instructions and data, thereby doubling the effective cache-memory bandwidth.

In general, during cache operations, the processor accesses cache-resident instructions/data when the
on-chip cache controller detects valid information in the cache by an address match. Figure 6.4 shows the
primary cache lookup sequence.

RegistersRegisters

Main Memory

Primary Cache

RC32364 CPU

I-cache D-cache

Increasing Data
Capacity

Disk, CD-ROM,
Tape, etc.

R
eg

is
te

rs
C

ac
he

s
M

em
or

y
Pe

rip
he

ra
ls

Faster Access
TimeOptional

Secondary
Cache

External
��
 �� ����

���9�&
*���6������ &��
����� ��, ��9�
���! ������� ���9� %���
������

���������
��
 ����

�����
 If valid instruction or data is present, the processor retrieves it from cache memory and is then known as
a primary-cache hit. If the instruction/data is not present, a cache miss has occurred. The cache line must
then be retrieved from slower main memory.

For a cache hit, the processor retrieves the instruction/data from the (high-speed) primary cache and the
operation continues. In the case of a cache miss, the processor can restart the pipeline after the first
doubleword is retrieved (the one at the miss address) and continues the cache line refill in parallel.

 It is possible for the same data to simultaneously be in main memory and primary cache. The data is
kept consistent through the use of either a write-back or a write-through methodology. For a write-back
cache, the modified data is not written back to memory until the cache line is replaced. In a write-through
cache, the data is written to memory as the cached data is modified (with a possible delay due to the write
buffer).

����

34356343563435634356����

��������####��������������������������������$�$�$�$�����������������

Details of the RC32364’s cache memory are provided in the remainder of this chapter. Throughout this
text, the following terminology will be used:

◆ The primary cache may also be referred to as the P-cache
◆ The primary data cache may also be referred to as the D-cache
◆ The primary instruction cache may also be referred to as the I-cache

These terms will also be used interchangeably throughout the manual.

��'#'4/ ����� ����� ����

Table 6.1 highlights the user attributes of the RC32364 caches.

0��
����� 2���
������ %���

size 8kB 2kB

organization 2-way set-associative 2-way set associative

line size 16 Bytes 16 Bytes

read unit 32-bits 32-bits

write policy n.a. write-back or write-through, as specified in CP0.

line transfer order sub-block order sub-block order

miss restart after transfer of entire line miss word

Cache-locking per line per line

parity per-word per-byte

Table 6.1 RC32364 Cache Attributes
���� ������ � $ � ��������
 �� ����

���9�&
*���6������ &��
����� ��, ��9�
���! ���9� &
*���6����� ��, 0�����������!

���������
��
 ����

�����

��������#�#�#�#�����������������������������7777��������������������������	��	��	��	����))))������������������������''''����((((������������

This section describes the organization of the primary cache, including the manner in which it is
mapped, the addressing used to index the cache, and composition of the cache lines. The primary instruc-

tion and data caches are indexed with a virtual address (VA).1

"�����=����� �� ��� ���
���
���������� ����� 0
(�����2

Each line of primary I-cache data (although the field actually contains an instruction, it is referred to as
data to distinguish it from the tag field) has an associated 25-bit tag that contains a 21-bit physical address,
a single valid bit, a single parity bit, a lock bit, and the FIFO replacement bit. Word parity is used on I-cache
data.

The primary I-cache of the RC32364 processor has the following characteristics:
◆ two-way set associative
◆ indexed with a virtual address
◆ checked with a physical tag
◆ organized with 4-word (16-byte) cache line
◆ lockable on a per-line basis

Figure 6.2 shows the format of a primary I-cache register, and Table 6.2 lists field content descriptions.

Figure 6.2 Primary I-Cache Line Format

Note: The Physical tag field contains 21 bits (bit [31:11]) of the physical address, to support the
smaller I-cache size of 4KB (2KB per set) in the future. For the current version of 3200 core with
8KB of I-cache, just bits [31:12] are valid, bit 11 is ignored.

1. Because the size of one set of primary caches is 8KB for ICache and 2KB for DCache, the virtual offset equals
the physical offset. Logically, however, the cache index is pre-translation and thus considered virtual.

;���, %���
������

PTag Physical tag (bits 31:11 of the physical address)

F FIFO Replacement Bit. Complemented on refill

V Valid bit

P Even parity for the PTag and V fields

L Lock bit

DataP Even parity; 1 parity bit per word of data

Data Cache data

Table 6.2 Primary I-Cache Line Field Descriptions

 21

22 0

1

P

2021

F PTag

1

 1

03132

 32

DataP D ata

D ata

DataP D ata

DataP D ata

DataP

L

1

23

V

1

24
���� ������ � $ � ��������
 �� ����

���9�&
*���6������ &��
����� ��, ��9�
���! ���9� &
*���6����� ��, 0�����������!

���������
��
 ����

�����
 "�����=����� �� ��� ���
��� %��� ����� 0%(�����2

Each line of primary D-cache data has an associated 30-bit tag that contains a 23-bit physical address,
2-bit cache line state, a write-back bit, a parity bit for the physical address and cache state fields, a parity bit
for the write-back bit, the FIFO replacement bit, and a lock bit.

The primary D-cache of the RC32364 processor has the following characteristics:
◆ write-back or write-through on a per-page basis
◆ two-way set associative
◆ indexed with a virtual address
◆ checked with a physical tag
◆ organized with 4-word (16-byte) cache line
◆ Lockable on a per-line basis

Figure 6.3 shows the format of a primary D-cache line, Table 6.3 provides the field content descriptions.

Figure 6.3 Primary D-Cache Line Format

Note: The physical tag field contains 23 bits (bits [31:9]) of the physical address to support the
smallest D-cache size of 1KB (512B per set) in the future. For the current version of 3200 core
with 2KB of D-cache, just bits [31:10] are valid, bit 9 is ignored.

;���, %���
������

PTag Physical tag (bits 31:9 of the physical address)

F FIFO Replacement Bit

CS Primary cache state:
0 = Invalid, 1 = Shared,
2 = Clean Exclusive, 3 = Dirty Exclusive

P Even parity for the PTag and CS fields

L Lock bit

W Write-back bit (set if cache line has been written)

W Write-back bit (set if cache line has been written)

DataP Even parity for the data; 1-bit per byte

Data Cache data

Table 6.3 Primary D-Cache Line Field Description

 23

27 0

1

L

2526

P PTag

1

FCS

12

23 22

 4

35 03132

 32

DataP Data

Data

DataP Data

DataP Data

DataP Data

DataP Data

DataP Data

36

1

W

24

37

W’

1

���� ������ � $ � ��������
 �� ����

���9�&
*���6������ &��
����� ��, ��9�
���! 0�������* �9� (
���
! ���9��

���������
��
 ����

�����
 In the RC32364, the W (write-back) bit—not the cache state—indicates whether or not the primary
cache contains modified data that must be written back to memory.

Note: There is no hardware support for cache coherency. The only cache states used are Dirty
Exclusive and Invalid.

Figure 6.4 Conceptual Primary Cache Lookup Sequence

))))��#�#�#�#�������������������������������������

��������#�#�#�#�����
Figure 6.5 shows the virtual address (VA) index into the primary caches. For the RC32364 an instruc-

tion cache is 8kb and the data cache is 2kb.

Figure 6.5 Primary Cache Data and Tag Organization

Select

Select

Translation Lookaside
Buffer(TLB)

ASID Virtual
Address

T
a
g

T
a
g

Present?
ASID Match?
Valid?

Data Data

?

Data

Cache Hit

TLB Miss

ASID Virtual
Address

Ta
g

Ta
gData Data

? =

=

Tags

VA(9:4)

VA(9:4)

Data

State

Data

32

Tag line

Data line

Tag

PWW
���� ������ � $ � ��������
 �� ����

���9�&
*���6������ &��
����� ��, ��9�
���! (
���
! ���9� ������

���������
��
 ����

�����
 ��������������������������������

��������#�#�#�#�����������������������������

The terms below are used to describe the state of a cache line1:
◆ Exclusive: a cache line that is present in exactly one cache in the system is exclusive. This is

always the case for the RC32364. All cache lines are in an exclusive state.
◆ Dirty: a cache line that contains data that has changed since it was loaded from memory is dirty.
◆ Clean: a cache line that contains data that has not changed since it was loaded from memory is

clean.
◆ Shared: a cache line that is present in more than one cache in the system. The RC32364 does not

provide for hardware cache coherency. This state will not occur during normal operations.

The RC32364 supports the four cache states shown in Table 6.4. Under normal operations, the only
states that will occur in the RC32364, are the Dirty Exclusive and Invalid states.

Note: Although valid data is in the Dirty Exclusive state, it may still be consistent with memory.
One must look at the dirty bit, W, to determine if the cache line is to be written back to memory
when it is replaced.

Each primary cache line in the RC32364 system is in one of the states described in Table 6.4.

���
��� ����� ������

Each primary data cache line is normally in one of the following states:
◆ invalid
◆ dirty exclusive

Each primary instruction cache line is in one of the following states:
◆ invalid
◆ valid

1. A cache line is the smallest unit of information that can be fetched from memory to be filled into the cache. A
primary cache line is 16 bytes (4 words) in length and is represented by a single tag. Upon a cache miss in the
primary cache, the missing cache line is loaded from main memory into the primary cache.

���9� -��� ����� %���
������

Invalid A cache line that does not contain valid information must be marked invalid, and can-
not be used. A cache line in any other state than invalid is assumed to contain valid
information.

Shared A cache line that is present in more than one cache in the system is shared. This state
will not occur for normal operations.

Clean Exclusive A clean exclusive cache line contains valid information and this cache line is not
present in any other cache. The cache line is consistent with memory and is not owned
by the processor (see “Cache Line Ownership” on page -7 in this chapter). This state
will not occur for normal operations.

Dirty Exclusive A dirty exclusive cache line contains valid information and is not present in any other
cache. The cache line may or may not be consistent with memory and is owned by the
processor (see “Cache Line Ownership” on page -7 in this chapter). Use the W bit to
determine if the line must be written back on replacement.

Table 6.4 Primary Cache States
���� ������ � $ � ��������
 �� ����

���9�&
*���6������ &��
����� ��, ��9�
���! ���9� -��� &'��
�9��

���������
��
 ����

�����

��������#�#�#�#�����,,,,��####����$$$$

The processor is the owner of a cache line when it is in the dirty exclusive state, and is responsible for
the contents of that line. There can only be one owner for each cache line.

The ownership of a cache line is set and maintained through the rules described below.
◆ A processor assumes ownership of the cache line if the state of the primary cache line is dirty

exclusive.
◆ A processor that owns a cache line is responsible for writing the cache line back to memory if the

line is replaced during the execution of a Write-back or Write-back Invalidate cache instruction if the
line is in a write-back page. The Cache instruction is explained in Appendix A.

◆ Memory always owns clean cache lines
◆ The processor gives up ownership of a cache line when the state of the cache line changes to

invalid.

Therefore, based on these rules and that any valid data cache line is in the Dirty Exclusive state (under
normal operating conditions), the processor is considered to be the owner of the cache line.

��������#�#�#�#�����8888����������������������������(�(�(�(���������

The RC32364 caches use the same write algorithms defined for the RC4700. These algorithms are

specified by the “C” bits1 of a TLB entry or through the K0 field of the status register.

The RC32364 processor manages its primary data cache by using either a write-back or a write-through
policy selected on a per-page basis through the TLB. In a write-back cache, the data is not written back to
memory until the cache line is replaced.

A write-through policy means the store data is written to the cache and to memory. Due to the write
buffer, the write of the data to memory may not occur at the same time as the write to cache.

For a write-back entry, if the cache line is valid and has been modified (the W bit is set), the processor
writes this cache line back to memory when the line is replaced, either in the course of satisfying a cache
miss or during the execution of a Write-back or Write-back Invalidate CACHE instruction.

For a write-through entry, whenever a store hits in the cache line, the data is also written to memory via
the write buffer. The store will not set or clear the W bit for a write-through cache line. This is to allow a
different virtual address that maps to the same physical address and with a write-back policy to still set the
W bit.

For a miss to a write-through line, the action taken will be determined by the write-allocation policy. For a
write-allocate entry, the cache line is first retrieved from memory and the store will then continue. A no write-
allocate entry will just post the write to the system interface, via the write buffer, in the same manner as an
uncached write.

����� ������

To implement the write-back cache, the store instructions to cacheable memory operation must include
a read/write sequence to the cache; the read first determines whether the line is cache resident; the subse-
quent write updates the appropriate bytes, dirty bit, and parity bits.

To allow back-to-back data cache access, the RC32364 implements the same store buffer concept that
is found in the RC4000. This avoids extra stalls after store instructions to complete the read-modify-write
sequence required to update the cache line.

1. See Table 4.1 in Chapter 4 of this manual for bit values and attribute assignment.
���� ������ � $ � ��������
 �� ����

���9�&
*���6������ &��
����� ��, ��9�
���! ���9� ����������� (����!

���������
��
 ����

�����

��������#�#�#�#����������$�$�$�$((((��(�(�(�(���������

The RC32364 uses the following algorithm to select a cache line from the available sets for replace-
ment:

◆ If both lines are invalid, select set A.
◆ If only one set is marked invalid, select that set.
◆ If one set is locked, select the other set.
◆ If both sets are locked, select set A1.
◆ If both sets are valid and unlocked, select the line which has been in the cache the longest. Each

cache line contains a “FIFO” bit to help determine which line was least recently replaced.

��������#�#�#�#�����������������������������(�(�(�(�7777��������������������

The RC32364 includes 2kB of 2-way set associative data cache that corresponds to an address range
between 0x000 and 0x7fc. The address offset for set A is 0x000, while the address offset for set B is
0x1000. To avoid any cache initialization problems, please select one of the following two initialization
methods:

1. Initialize index location 0x000-0x3fc for set A and then 0x1000-0x13fc for set B.

or
2. Initialize as if the data cache were at least 8K large.

The I-cache tag should also be initialized using "cache op" instruction with the index location 0x0000-
0x0FFC for set A, and then 0x1000-0x1FFC for set B.

��������#�#�#�#�����,,,,��������++++������������

The RC32364 also supports a cache-locking feature that can be used to lock critical sections of code
and/or data into on-chip caches to guarantee quick access.

A portion of a cache is said to be locked when a particular piece of code or data is loaded into a cache
location that will not be selected later for refill by other data. The locking feature of the RC32364 is on a per-
line basis; that is, the kernel may set status register control bits that allow individual cache lines to be locked
in the cache.

Locked cache lines can be changed by any of the following operations or conditions:
◆ cache operations
◆ store operations to cached virtual address
◆ if they become valid

���� �� ��� ����� $��.���

Cache locking is useful in the following cases:
◆ a portion of code must reside in cache permanently (for example, time-critical exception vectors) for

real-time performance
◆ a given section of code is executed frequently and can fit inside a portion of the instruction cache
◆ a given section of data is accessed frequently and can fit inside the data cache (for example, tables

containing routing information in an embedded network application)

In the RC32364, both the Instruction and Data cache are two-way set associative, with set A and set B.
By setting the DL or IL bit in the Status register of CP0, a refilled cache line of a selected set, at that time,
can be locked in the appropriate cache; therefore, a future fill into this cache line will always use the other
set. Furthermore, if one set of a cache line has already been locked, the second attempt to lock this cache
line will be ignored.

1. This is an erroneous condition; however, the RC32364 handles this case deterministically.
���� ������ � $ / ��������
 �� ����

���9�&
*���6������ &��
����� ��, ��9�
���! ���9� -��:��*

���������
��
 ����

�����
 As previously noted, a Data store operation to locked data will update the D-cache contents; locking
merely prevents the cache line contents from being replaced by the contents of a different physical location.
The locked cache line can be unlocked by using a Cache operation to invalidate that line. Anytime the valid
bit of a cache line is cleared, the lock bit is cleared simultaneously. The basic algorithm presented here
consists of the following three steps.

1. Set the appropriate cache-lock enable bit(s).
2. Load the critical code/data into the cache(s).
3. Clear the appropriate cache lock enable bit(s).

�-�
���> %��� ����� $��.���

For this example, assume an application in which a table must be kept in cache. After completing the
initialization of data structures, etc., in the start-up code, the DL bit in the Status register can be set to
enable the cache line locking, perform reads through cached addresses to load the data into the data
cache, and then—to prevent further cache locking— clear the DL bit. A sample code fragment for the Data
Cache Locking operation follows:

.set noreorder

jal flush_cache /* Flush the cache */

mfc0 a0, C0_SR /* Get old SR value */

li a1, SR_SET_DL /* SR_SET_DL = 0x00100000 */

or a0, a0, a1

mtc0 a0, CO_SR /* Set the Lock bit for data cache */

nop

nop

nop /* 3 nops: safety against CP0 hazard */

la t0, critical_table /* This table should always be in cache */

li t1, table_size /* Size of table in bytes */

li t2, 0 /* Number of bytes read into cache */

1: lw a0, 0(t0)

addiu t2, 4

bneq t2, t1, 1b /* Loop back till done */

addiu t0, 4 /* bump read address */

mfc0 a0, C0_SR /* Get old SR value */

li a1, SR_CLR_DL /* SR_CLR_DL = 0xffefffff */

and a0, a0, a1

mtc0 a0, C0_SR /* Clear the Lock bit for data cache */

nop

nop

nop /* 3 nops: safety against CP0 hazard */
���� ������ � $ � ��������
 �� ����

���9�&
*���6������ &��
����� ��, ��9�
���! ���9� -��:��*

���������
��
 ����

�����
 �-�
���>
���������� ����� $��.���

For this example, assume an application in which a critical function must be kept in cache. Also assume
that the size of the function is known. (If not known, the size can be determined by generating a disas-
sembly of the object file.)

After completing the initialization of data structures, etc., in the start-up code, the IL bit of the Status
register can be set to enable cache line locking, perform the FILL operation in the CACHE instruction that
will fill the instruction cache with the critical function, and then—to prevent further cache locking—clear the
IL bit.

A sample code fragment for the Instruction Cache Locking operation follows:

.set noreorder

jal flush_cache /* Flush the cache */

la t0, 1f /* Get address of label ‘1’ */

li t1, 0xA0000000

or t0, t0, t1

jr t0 /* Uncached execution from now onwards */

nop

1: la t0, func_start_addr /* Start address of critical code */

li t1, func_size /* Critical code size */

li t2, 0 /* Number of words read into cache */

mfc0 a0, C0_SR /* Get old SR value */

li a1, SR_SET_IL /* SR_SET_IL = 0x00080000 */

or a0, a0, a1

mtc0 a0, C0_SR /* Set Lock bit for instruction cache */

nop

nop

nop

2: cache Fill_I, 0(t0) /* Fill Operation */

addiu t2, 4

bneq t2, t1, 2b /* Loop back till done */

addiu t0, 4 /* bump read address */

mfc0 a0, C0_SR /* Get old SR value */

li a1, SR_CLR_IL /* SR_CLR_IL = 0xfff7ffff */

and a0, a0, a1

mtc0 a0, C0_SR /* Clear Lock bit for instruction cache */

nop

nop

nop

nop

nop /* 5 nops: safety against CP0 hazard */

la v0, 3f

jr v0

nop

3: /* Resume execution in mode as linked */
���� ������ � $ #� ��������
 �� ����

�����

���������
��
 ����
���� ������ � $ # ������
������� :
 ����

���#	�
��

��
��	$�	�

�����������������	
�	
�	
�	
��������������������

This chapter provides easy reference tables on the signals used by and in conjunction with the RC32364
processor. For this device, these signals include the System Interface, the Clock/Control Interface, the
Interrupt Interface, Handshake, DMA Interface, and the Initialization Interface.

 In this chapter, as well as throughout the manual, active-low signals are denoted with a trailing asterisk;
for example, the active-low Cycle-in-progress signal is listed as CIP*. The tables or figures that follow also
identify the signal type as Input (the processor receives it), Output (the processor sends it out) or both (Input
and Output).

Figure 7.1 illustrates the functional groupings of the processor signals.

Figure 7.1 IDT79RC32364 Processor Signals

AD(31:4)

ALE
ADS*

W idth(1:0)

BE(3:0)*

 C IP*

M asterC lk

ColdReset*

Reset*

VCCP

VSSP

In
iti

al
iz

at
io

n
In

te
rru

pt

R C32364

Logic

Sym bol

28

6

In
te

rfa
ce

AD(3:0)

 Addr(3:2)

4

 I/D*

 Rd*
 W r*

 DataEn*

 DT/R*

 Ack*

 Last*

2

NMI*

Int*(5:0)

D
M

A
In

te
rfa

ce

BusReq*

BusGnt*

Tclk

TDI/D INT*

TMS

TRST*

DCLK

PCST(2:0)

PCST(4:3)

DebugBoot

TDO/TPC

Bus Err*

Retry*

H
an

ds
ha

ke

Si
gn

al
s

4

2

3

2

In
te

rfa
ce

D
eb

ug
 E

m
ul

at
or

 I
nt

er
fa

ce
C

lo
ck

/C
on

tro
l I

nt
er

fa
ce

Sy
st

em
 In

te
rfa

ce

Vcc I/O

Vcc Core

Vss
��
 �� ����

(
������
 ��*��� %���
������� �!���� 2���
���� ��*����

���������
��
 ����

�����
 ��((((����
System interface signals provide the connection between the RC32364 processor and the other system

components. Table 7.1 lists the system interface signals.

(��
<���

%��������� %�
������ ��*��� %���
������

AD(31:4) Address/Data Input/Output Addr(31:4)/Data(31:4)
High-order multiplexed address and data bits. Regardless of system
byte ordering, AD(31) is the MSB of the address.

AD(3:0) Address/ Data Input/Output Size(3:0)/Data(3:0)
Transfer size encoding of valid transfer sizes.
For the RC32364, valid sizes are shown below.

Other encodings allow future generations to service other transfer
sizes. During the data phase, AD[3:0] represents the Data(3:0).

Addr(3:2) Address Output Non-multiplexed address lines. These serve as the word within block
address for cache refills (Addr(3:2)). The word within block address bits
count in a sub-block ordering. The data retrieval sub-block order algo-
rithm is given in Chapter 9, “Processor Signal Descriptions.”

ALE Address Latch
Enable

Output This signal provides set-up and hold times around the address phase of
the AD bus.

ADS* Address Strobe Output This active-low signal indicates valid address and the start of a new bus
transaction. The processor asserts ADS* for the entire address cycle.
This is the inverse of the ALE signal.

Width(1:0) Bus Width Output Indicates the Physical Memory/IO data bus size for the correct address.
Valid encodings are as follows:

BE*(3:0) ByteEnables/
Addr(1:0)

Output This active-low signal indicates which byte lanes are expected to partic-
ipate in the data transfer.

For information on the endianness, byte addresses and data line usage,
refer to the data transfer sequence tables given in Chapter 9.

Table 7.1 System Interface Pin Descriptions (Part 1 of 2)

Size(3) Size(2) Size(1) Size(0) Transfer Width

0 0 0 0 16 bytes

0 0 0 1 1 byte

0 0 1 0 2 bytes

0 0 1 1 3 bytes

0 1 0 0 4 bytes

Width(1) Width(0) Port Width

0 0 8 bits

0 1 16 bits

1 0 32 bits

1 1 Reserved

Byte Lanes Enabled In Data Transfer

Port Width BE(3) BE(2) BE(1) BE(0)

32-bit Used Used Used Used

16-bit Byte High
Enable

Not Used Address Bit
1 (A1)

Byte Low
Enable

8-bit Not Used
(Driven
High)

Not Used
(Driven
High)

Address Bit
1 (A1)

Address Bit
0 (A0)
���� ������ � $ � ��������
 �� ����

(
������
 ��*��� %���
������� ����:1����
�� 2���
���� ��*����

���������
��
 ����

�����

((((��������++++****

��������������������((((��((((����

The Clock/Control interface signals make up the interface for clocking and maintenance. Table 7.2 lists
the Clock/Control interface signals.

������������������������
$�
$�
$�
$���((((����

The Interrupt interface signals make up the interface that is used by external agents to interrupt the
RC32364 processor. Six external interrupts (Int*(5:0)) and one NMI are available on the RC32364. Table
7.3 lists the Interrupt Interface signals.

CIP* Cycle-in-
progress

Output This active-low signal denotes that a cycle is in progress. Asserted in
the address phase and continue asserted until the ACK* for the last
data is sampled.

I/D* Instruction/Data Output Indicates that the current cycle is for an instruction (active- high) or data
(active-low) transaction.

Rd* Read Output This active-low signal indicates that the current transaction is a read.

Wr* Write Output This active-low signal indicates that the current cycle transaction is a
write.

DataEn* Data Enable Output This active-low signal indicates that the AD bus is in a data cycle. DEN*
is asserted after the address cycle (starting of data cycle), and deas-
serted at the end of the last data cycle.

DT/R* Data Transmit/
Receive

Output This active-low signal indicates the current direction of the A/D bus dur-
ing the current data cycle. “High” indicates it is sourced by the CPU,
and “Low” indicates an external source (read response data).

Ack* Acknowledge
Data Phase

Input On read transactions, this active-low signal indicates to the RC32364
that the memory system has placed valid data on the A/D bus, and that
the processor may move the data into the on-chip Read Buffer. On a
write transaction, this indicates to the RC32364 that the memory sys-
tem has accepted the data on the A/D bus.

Last* Last Data
Phase

Output This active-low output signals the last data transfer of a transaction.

<��� %��������� %�
������ %���
������

MasterClk Master clock Input MasterClock is the input clock that is the bus clock. The core fre-
quency is derived by multiplying this clock up.

VccP VccP Input Quiet Vcc for PLL.

VssP VssP Input Quiet Vss for PLL.

Table 7.2 Clock/Control Interface Signals

<��� %��������� %�
������ %���
������

NMI* Non-Maskable
Interrupt

Input The Non-Maskable Interrupt signal is an asynchronous falling-edge-
sensitive signal.

Int*(5:0) Interrupt/
ModeBit(9:6)

Input These interrupt inputs are active low to the CPU. During power-on,
Int*(3:0) serves as ModeBit(9:6).

Table 7.3 Interrupt Interface Signals

(��
<���

%��������� %�
������ ��*��� %���
������

Table 7.1 System Interface Pin Descriptions (Part 2 of 2)
���� ������ � $ � ��������
 �� ����

(
������
 ��*��� %���
������� 2�������6����� 2���
���� ��*����

���������
��
 ����

�����
 ������������������������(�(�(�(�7777��((((����

The Initialization Interface signals make up the interface by which an external agent initializes the
processor operating parameters. Table 7.4 lists the Initialization Interface signals.

��������))))��((((����

To share the system interface bus, the RC32364 provides the BusReq* and BusGnt* signals to interface
external DMA masters. A DMA arbiter provides the external master control of the external bus.

������������				����#�#�#�#�++++��

The process of asking a question of a device and receiving information in return is called handshaking.
Every communication protocol between one device and the next will implement some form of handshaking.
In the RC32364, this type of bus activity is indicated through several signals, including Ack*, Retry* and
BusErr*. Also, as noted in the system interface signals, this device provides I/D* signals, to indicate whether
an instruction or data is being transferred.

<��� %��������� %�
������ %���
������

Cold-
Reset*

Cold reset Input This signal must be asserted for a power on reset or a cold reset.
ColdReset* must be deasserted synchronously with MasterClock.

Reset* Reset Input This signal must be asserted for any reset sequence. It can be
asserted synchronously or asynchronously for a cold reset, or syn-
chronously to initiate a warm reset. Reset* must be deasserted
synchronously with MasterClock.

Table 7.4 Initialization Interface Signals

<��� %��������� %�
������ %���
������

BusReq* Bus Request Input This active-low signal is an input to the processor and is used to
request mastership of the external interface bus. Mastership is
granted according to the assertion of this input and taken back
based on its negation.

BusGnt* Bus Grant Input/Output This active-low signal is an output from the processor and is used to
indicate that the CPU has relinquished mastership of the external
interface bus. BusGnt* goes low initially for at least 2 clocks to indi-
cate that the CPU has relinquished mastership of the external inter-
face bus. After going low, BusGnt* returns high, either when the
CPU makes an internal request for the bus or after BusReq* is de-
asserted. During the power-on reset (Cold Reset), BusGnt* is an
input, ModeBit(5).

Table 7.5 DMA Interface Signals

<��� %��������� %�
������ %���
������

BusErr* Bus Error Input Indicates that a bus error has occurred.

Retry* Retry Input Indicates that the current bus cycle must be terminated. Retry*
is ignored after acceptance of the first data during a read cycle.
During a write, Retry* is recognized in all data cycles.

Table 7.6 Handshake Interface Signals
���� ������ � $ � ��������
 �� ����

(
������
 ��*��� %���
������� %���* +������
 2���
����

���������
��
 ����

�����
 ��������''''
�
�
�
�����////����

((((��

The RC32364 features on-chip support for low-cost in-circuit emulation equipment and implements the
standard MIPS enhanced JTAG interface. This interface uses MasterClock and other signals as described
in Table 7.7.

<��� %��������� %�
������ %���
������

Tclk Test Clock Input An input test clock, used to shift into or out of the boundary-
Scan register cells. Tclk is independent of the system and the
processor clock with nominal 50% duty cycle.

TDI/DINT* Test Data Input/
DINT*

Input On the rising edge of Tclk, serial input data is shifted into either
the Instruction or Data register, depending on the TAP control-
ler state.
During Real Mode, this input is used as an interrupt line to stop
the debug unit from Real Time mode and return the debug unit
back to Run Time Mode (standard JTAG)

TDO/TPC Test Data Output/
TPC

Output The TDO signal provides serial data shifted out from the
instruction or data register on the falling edge of Tclk. When no
data is shifted out, the TDO is tri-stated.
During Real Time Mode, this signal provides a non-sequential
program counter at the processor clock or at a division of pro-
cessor clock.

TMS Test Mode Select Input The logic signal received at the TMS input is decoded by the
TAP controller to control test operation. TMS is sampled on the
rising edge of the TCLK.

TRST* Test Reset Input Input The TRST* pin is an active-low signal for asynchronous reset
of the debug unit, independent of the processor logic. Requires
an external pull-down on the board.

DCLK Processor Clock Output During Real Time Mode, this signal is used to capture address
and data from the TDO signal at the processor clock speed or
any division of the internal pipeline. DCLK will be at 1/3 of the
pipeline clock.

PCST(2:0)/
ModeBit(2:0)

PC Trace Status
Information

Input/Output These bits indicate processor clock activity as follows:

During power-on reset (cold reset), PCST(2:0) serves as
ModeBit(2:0).

Table 7.7 ICE/Debug Interface Signals (Part 1 of 2)

Bit Value Operation

111 Pipeline Stall (STL)

110 Branch/Jump forms with PC output (JMP)

101 Branch/Jump forms with no PC output (BRT)

100 Exception generated with an exception vector
code output (EXP)

011 Sequential performance (SEQ)

010 Trace is outputted at pipeline stall time (TST)

001 Trace trigger output at performance time (TSQ)

000 Run Debug Mode (DBM)
���� ������ � $ � ��������
 �� ����

(
������
 ��*��� %���
������� %���* +������
 2���
����

���������
��
 ����

�����
PCST(4:3/
ModeBit(4:3)

PC Trace
Status Information

Input/Output Reserved. During power-on reset, PCST(4:3) serves as
ModeBit(4:3).

DebugBoot Debug Boot Unit Input The Debug Boot signal is used during reset and forces the
CPU core to take a debug exception at the end of the reset
sequence, instead of a reset exception.
This enables the CPU to boot from an ICE probe without hav-
ing the external memory working. This input signal is level sen-
sitive and is not latched internally. This signal will also set the
JtagBrk bit in the JTAG_Control_Register[12].

<��� %��������� %�
������ %���
������

Table 7.7 ICE/Debug Interface Signals (Part 2 of 2)
���� ������ � $ � ��������
 �� ����

�����

���������
��
 ����
���� ������ / $ # ������
������� 6
����,	
�*���
����
+

"
	�	��)��	�
�"
�������

�����������������	
�	
�	
�	
��������������������

This chapter provides a description of the clock signals (“clocks”) that are used on the RC32364
processor and includes a discussion on the basic system clocks and system timing parameters. A brief
explanation on the power reduction modes for this device is also presented.

The reset and initialization interface is also discussed and includes tables listing boot-mode configura-
tion settings with timing diagrams for the warm and cold sequences.

��������������������((((����&&&&������������������������((((������������

In this chapter and throughout the manual, when describing signal transitions, the following terminology
is used:

◆ Rising edge indicates a low-to-high (0 to 1) transition.
◆ Falling edge indicates a high-to-low (1 to 0) transition.
◆ Clock-to-Q delay is the amount of time it takes for a signal to move from the input of a device (clock)

to the output of the device (Q).

These terms are illustrated in Figure 8.1 and Figure 8.2.

Figure 8.1 Signal Transitions

Figure 8.2 Clock-to-Q Delay

1 2 3 4

high-to-low
transition low-to-high

transition

single clock cycle

clock input

Q
data in

data out

Clock-to-Q delay
��
 �� ����

����:��*� ����� ��, 2�������6����� 2���
�����)���� �!���� ����:�

���������
��
 ����

�����
 %%%%��

((((��������++++����

The RC32364 processor has a single input clock, MasterClock, and no output clocks.

!���������.

The MasterClock input must meet the maximum rise time (TMCRise), maximum fall time (TMCfall),
minimum clock high (TMHIGH) time, minimum clock low (TMCLOW) time, and input jitter (TJitterIn) parameters
for proper phase locked loop (PLL) operation.

The processor bases all internal clocking on the single MasterClock (MClk) input signal. The RC32364
uses MasterClock to sample data at the system interface and to clock data into the processor system inter-
face output register.

The external agent should use MasterClock for the global system clock and for clocking the output
registers of an external agent. Figure 8.3 shows the input, output and hold time parameters measured at
the midpoint of the rising clock edge.

Figure 8.3 System Clocks Data Setup, Output, and Hold timing

�����.

By multiplying MasterClock 2, 3, 4, 5, 6, 7, or 8 times (programmed during the reset or initialization
sequence through the Clock Multiplier configuration mode bits), the processor generates the internal pipe-
line clock rate, PClock, which is used by all internal registers and latches.

Figure 8.4 shows the clocks for a MasterClock-to-PClock multiply by 2.

Figure 8.4 Timing Illustration of MasterClock-to-PClock Multiply by 2

tDS

tDHtDO

tDO

tDOA

tDSS

tDH

MasterClock

Input

Output

ALE

Ack*
Retry*
BusErr*

tDOH

Cycle 1 2 3 4

MasterClock
tMCkHigh

tMCkLow

tMCkP

PClock
���� ������ / $ � ��������
 �� ����

����:��*� ����� ��, 2�������6����� 2���
����� (9���$-��:�, -��� 3(--4 &��
�����

���������
��
 ����

�����
 ����####������������"""",�,�,�,�����++++����				����,��$,��$,��$,��$���� ����,,,,,,,,!!!!��������$$$$����������������������������

The processor aligns the pipeline clock, PClock, to the MasterClock by using an internal phase-locked
loop (PLL) circuit that generates aligned clocks. By their nature, PLL circuits are only capable of generating
aligned clocks for MasterClock frequencies within a limited range.

Clocks generated using PLL circuits contain some inherent inaccuracy, or jitter; a clock aligned with
MasterClock by the PLL can lead or trail MasterClock by as much as the maximum clock jitter specified in
the clock parameters table in the data sheet for this device.

�$$ ��
������� ��� "��������

The storage capacitor required for the Phase-Locked Loop circuit is contained in the RC32364.
However, it is recommended that the system designer provide a filter network of passive components for
the PLL power supply.

The Phase Locked Loop circuit requires several passive components for proper operation, which are
connected to Vcc, Vss, VccP, and VssP, as illustrated in Figure 8.5.

Figure 8.5 PLL Passive Components

It is essential to isolate the analog power and ground for the PLL circuit (VccP/VssP) from the regular
power and ground (Vcc/Vss). Initial evaluations have yielded good results with the following values:

C1 = 1 nF

C2 = 3.3 µ F

C3 = 10 µ F

Because the optimum values for the filter components depend upon the application and the system
noise environment, these values should be considered as starting points for further experimentation within
your specific application.

Vcc

VccP

VssP

Vss

CPU Board

RC32364

C1 C2

Note: C1 and C2 are Board
Caps.

C3
���� ������ / $ � ��������
 �� ����

����:��*� ����� ��, 2�������6����� 2���
����� (-- 0����* (�'�
 ;����
��*

���������
��
 ����

�����
 ����,,,,,,,,����))))��������((((���(��(��(��(���������������������

For noisy module environments, a filter circuit of the following form is recommended as shown in Figure
8.6.

Figure 8.6 PLL Filter Circuit for Noisy Environments

��������������������������������				����������������������������(�(�(�(�7777��

During the reset sequence, the RC32364 obtains configuration information using its mode configuration
interface. The initialization values for the RC32364 are obtained from PCST[4:0], BusGnt* and Int*[4:0],
which are ModeBit[9:0] during the power-on reset. The ModeBit[9:0] are latched with the rising edge
(negating edge) of the ColdReset* signal. Timing of the mode configuration interface reset sequence is
shown in Figure 8.7 on page 8-4.

Note: All signals, except Bus Request and Bus Grant, are tristated during cold reset.

The boot-mode configuration settings are listed in Table 8.1.

Figure 8.7 Mode Configuration Interface Reset Sequence

10 uF 0.1 uF 100 pF

Vcc

Vss

VccP

VssP

10 ohm

VCC

ColdReset*

ModeBit[9:0]

Reset*

>= 100 ms

MasterClock

>= 10 ms

(MClk)

>= 64 MClk
cycles
���� ������ / $ � ��������
 �� ����

����:��*� ����� ��, 2�������6����� 2���
����� ����� ��, 2�������6����� 2���
����

���������
��
 ����

�����
 ����(!��� ������������� ��������

(�� ��,�)�� %���
������ =���� ��,� ������*

PCST[2:0] 2:0
MSB (2)

Clock Multiplier
MasterClock is multiplied internally to
generate PClock

0 Multiply by 2

1 Multiply by 3

2 Multiply by 4

3 Multiply by 5

4 Multiply by 6

5 Multiply by 7

6 Multiply by 8

7 Reserved

PCST[3] 3 EndBit 0 Little-endian ordering

1 Big-endian ordering

PCST[4] 4 Reserved 0

BusGnt* 5 Reserved 0

Int*[0] 6 TmrIntEn
Enables/Disables the timer interrupt on Int*[5]

0 Enables timer interrupt

1 Disables timer interrupt

Int*[1] 7 Reserved for future use. 1

Int*[3:2] 9:8
MSB (9)

Boot-Prom Width
Specifies the memory port width of the
memory space which contains the boot prom.

00 8 bits

01 16 bits

10 32 bits

11 Reserved

Table 8.1 Boot-Mode Configuration Settings
���� ������ / $ � ��������
 �� ����

����:��*� ����� ��, 2�������6����� 2���
����� ����� ��, 2�������6����� 2���
����

���������
��
 ����

�����
 �����
��������

The RC32364 processor has the following two types of resets, which use the ColdReset* and Reset*
input signals:

◆ Power-on reset starts when the power supply is turned on and completely reinitializes the internal
state machine of the processor without saving any state information. Then, the ModeBit[9:0]are
read, and the processor allows its internal phase locked loops to lock, stabilizing the processor
internal clock. After the internal clock is stabilized, the reset exception will be taken. The timing of
the cold reset signal is illustrated in Figure 8.8.

◆ Warm reset restarts the processor but does not affect the clocks. The processor preserves the
internal state and takes the reset exception. Timing of the warm reset operation is illustrated in Fig-
ure 8.9.

Figure 8.8 Timing of Cold Reset Signal

Figure 8.9 Timing of Warm-Reset Signal

VCC

ColdReset*

ModeBit[9:0]

Reset*

>= 100 ms

MasterClock

>= 10 ms

(MClk)

>= 64 MClk
cycles

VCC

ColdReset*

ModeBit[9:0]

Reset*

MasterClock
(MClk)

>= 64 MClk cycles
���� ������ / $ � ��������
 �� ����

�����

���������
��
 ����
���� ������ � $ # ������
������� 9
-�
�"
�������������	��
�����������������	
�	
�	
�	
��������������������

 The RC32364’s 32-bit data interface is through a multiplexed address and data bus. As with the
RC32300 family, the RC32364 implements special techniques for byte-enable generation as well as for low-
order address bits in block refills.

Parity is not supported for the bus; however, the internal cache is parity protected. Parity is generated
into the cache on refill and then checked when the data is brought to the execution core.

����������������

��

The following features are enabled by the RC32364 bus interface unit:
◆ Support of multiple pipeline-to-system clock ratios
◆ Support of variable port-width interface, including 8-bit boot prom
◆ Multiplexed address and data bus
◆ Sub-block ordering read and sequential ordering write
◆ DMA arbiter interface
◆ Input clock is bus clock: core frequency derived from there

��

Table 9.1 lists the signal names and descriptions for the data interface pins of the RC32364.

1111����������������''''((((������������������������""""8888����	�	�	�	�####��

The RC32364 supports a variable port-width interface. The technique used to determine the port width
is a start-up and software mechanism that assigns attributes to a region of physical (not virtual) memory.
The RC32364 reset-mode initialization interface supports the setting of the boot-prom port width.

To simplify design, the RC32364 elects to use the same data lines, for a given width of memory, regard-

less of memory byte-ordering (endianness1). Table 9.2 lists which byte lanes are used and Table 9.3, Table
9.4, and Table 9.5 list the data transfer sequences for 8-, 16-, and 32-bit port widths.

(�� ��*��� %���
������

AD(31:0) Data(31:0) 32 data bits multiplexed on to the same bus as the address bus.

Table 9.1 Data Interface Pin Description

1. Little/big-endian byte ordering conventions are discussed in Chapter 1 of this manual.

(�
� @�,�9 %��� -����

8-bit D(7:0)

16-bit D(15:0)

32-bit D(31:0)

Table 9.2 Port Width Assignments to Data Lines
��
 �� ����

)�� 2���
���� &��
���' =�
����� (�
�$@�,�9 2���
����

���������
��
 ����

�����

(�
� @�,�9 .
�����
 ��6�)!�� 0,,
��� +�,������� %��� -����

8-bit 1 byte 0, 1, 2, 3 Big D(7:0)

8-bit 2 bytes 0, 2 Big D(7:0) 2 times

8-bit 3 bytes 0, 1 Big D(7:0) 3 times

8-bit 4 bytes 0 Big D(7:0) 4 times

8-bit 16 bytes 0 Big D(7:0) 16 times

8-bit 1 byte 0, 1, 2, 3 Little D(7:0)

8-bit 2 bytes 1, 3 Little D(7:0) 2 times

8-bit 3 bytes 3, 2 Little D(7:0) 3 times

8-bit 4 bytes 3 Little D(7:0) 4 times

8-bit 16 bytes 3 Little D(7:0) 16 times

Table 9.3 Data Transfer Sequences for 8-bit Port Width

(�
� @�,�9 .
�����
 ��6�)!�� 0,,
��� +�,������� %��� -����

16-bit 1 byte 0, 2 Big D(15:8)

16-bit 1 byte 1, 3 Big D(7:0)

16-bit 1 byte 0, 2 Little D(7:0)

16-bit 1 byte 1, 3 Little D(15:8)

16-bit 2 bytes 0, 2 Big D(15:0)

16-bit 2 bytes 0, 2 Little D(15:0)

16-bit 3 bytes 0 Big D(15:0), D(15:8)

16-bit 3 bytes 1 Big D(7:0), D(15:0)

16-bit 3 bytes 0 Little D(15:0), D(7:0)

16-bit 3 bytes 1 Little D(15:8), D(15:0)

16-bit 4 bytes 0 Big D(15:0) 2 times

16-bit 4 bytes 0 Little D(15:0) 2 times

16-bit 16 bytes 0 Big D(15:0) 8 times

16-bit 16 bytes 0 Little D(15:0) 8 times

Table 9.4 Data Transfer Sequences for 16-bit Port Width

(�
� @�,�9 .
�����
 ��6�)!�� 0,,
��� +�,������� %��� -����

32-bit 1 byte 0 Big D(31:24)

32-bit 1 byte 1 Big D(23:16)

32-bit 1 byte 2 Big D(15:8)

32-bit 1 byte 3 Big D(7:0)

32-bit 1 byte 0 Little D(7:0)

32-bit 1 byte 1 Little D(15:8)

Table 9.5 Data Transfer Sequences for 32-bit Port Width (Part 1 of 2)
���� ������ � $ � ��������
 �� ����

)�� 2���
���� &��
���' 2���
���� ����
�� ��*����
�

���������
��
 ����

�����
��

��������������������((((��

The following three interface control registers are used in the RC32364:
◆ The Port-Width Control register controls attributes of the various memory systems and is used to

interface the RC32364 to varying width memory regions.
◆ The Bus Turnaround (BTA) control register controls the bus turnaround cycle(s) for the various

memory systems. The RC32364 divides the physical address space into various sub-regions, each
of which features independently programmable bus turnaround cycle(s).

◆ The Bus Error Address Register holds the physical address of the transfer that signalled the most
recent bus error.

��� ����(����� ������� ��������> 5������ ������� 1-++++?�#11

The RC32364 divides the physical address space into various sub-regions, each of which features inde-
pendently programmable port widths. At reset, all memory widths are set to the width of the boot prom. Soft-
ware may then re-program the widths of various regions to meet the actual system implementation.

Using the Port Width Control register allows software to be fully independent of the actual system imple-
mentation; software may then treat all references as if the memory was 32-bits wide and relies on the
RC32364 to manage the bus interaction with the actual memory system to satisfy this model.

The format of the Port Width Control register is shown in Figure 9.1. Table 9.6 lists the register’s fields
and content descriptions.

Figure 9.1 Format of Port Width Control Register

32-bit 1 byte 2 Little D(23:16)

32-bit 1 byte 3 Little D(31:24)

32-bit 2 bytes 0 Big D(31:16)

32-bit 2 bytes 2 Big D(15:0)

32-bit 2 bytes 0 Little D(15:0)

32-bit 2 bytes 2 Little D(31:16)

32-bit 3 bytes 0 Big D(31:8)

32-bit 3 bytes 1 Big D(23:0)

32-bit 3 bytes 0 Little D(23:0)

32-bit 3 bytes 1 Little D(31:8)

32-bit 4 bytes 0 Big D(31:0)

32-bit 4 bytes 0 Little D(31:0)

32-bit 16 bytes 0 Big D(31:0) 4 times

32-bit 16 bytes 0 Little D(31:0) 4 times

(�
� @�,�9 .
�����
 ��6�)!�� 0,,
��� +�,������� %��� -����

Table 9.5 Data Transfer Sequences for 32-bit Port Width (Part 2 of 2)

31

221

30

0

29 28

R eg ion A

27 26

R eg ion B

25 24

R egion C

23 22

R eg ion D

21 20

R eg ion E

19 18

R egion F

17 16

R eg ion G

15 14

R eg ion H

13 12

R egion I R eg ion J

11 10

1 2 2 2 2 2 2 2 2

6 4 3 2

Mem
Region FR egion K R egion L R eg ion M

9 8 7

R eg ion O

5 1 0

2 2 2 2 2

R egion N

R SV D
���� ������ � $ � ��������
 �� ����

)�� 2���
���� &��
���' 2���
���� ����
�� ��*����
�

���������
��
 ����

�����

Width fields are encoded as shown in Table 9.7.

The address ranges served by each named region are listed in Table 9.8. The memory space is divided
as follows:

◆ The 512MB of kseg0/1 are divided into eight 64MB sub-regions, each of which can have indepen-
dent widths. Thus, four widths can be reached cacheably, and four widths can be reached uncache-
ably. The cache management algorithm for kseg0 is specified in the k0 field of the status register.

◆ The remaining memory space—3.5GB—is divided into seven equal sections of 512MB, each of
which can have independent widths. In addition, the cache attributes of each page within the region
can be controlled using the TLB.

;���, %���
������

0 Reserved

0 Reserved

RegionA Width of region RegionA

RegionB Width of region RegionB

RegionC Width of region RegionC

RegionD Width of region RegionD

RegionE Width of region RegionE

RegionF Width of region RegionF

RegionG Width of region RegionG

RegionH Width of region RegionH

RegionI Width of region RegionI

RegionJ Width of region RegionJ

RegionK Width of region RegionK

RegionL Width of region RegionL

RegionM Width of region RegionM

RegionN Width of region RegionN

RegionO Width of region RegionO

Table 9.6 Port Width Control Register Field Definition

@�,�93#4 3��)4 @�,�93�4 3-�)4 (�
� @�,�9

0 0 8 bits

0 1 16 bits

1 0 32 bits

1 1 Reserved

Table 9.7 Encoding of 8-, 16-, and 32-bit Port Widths
���� ������ � $ � ��������
 �� ����

)�� 2���
���� &��
���' 2���
���� ����
�� ��*����
�

���������
��
 ����

�����
��� ��� ���������� 0���2 ������� ��������> 5������ �������
1-++++?�#1/

At reset, all memory sub-regions will be programmed to the maximum of 3 turnaround cycles, and soft-
ware may then re-program this register to achieve maximum system performance.

The format of the BTA register is shown in Figure 9.2. This register’s fields and content descriptions are
listed in Table 9.9.

Figure 9.2 Bus Turnaround (BTA) Control Register Format

��*��� <��� (9!����� 0,,
��� 3�#A��4 ��������

RegionA 0000 00 64MB

RegionB 0000 01 64MB

RegionC 0000 10 64MB

RegionD 0000 11 64MB

RegionE 0001 00 64MB

RegionF 0001 01 64MB

RegionG 0001 10 64MB

RegionH 0001 11 64MB

RegionI 001x xx 512MB

RegionJ 010x xx 512MB

RegionK 011x xx 512MB

RegionL 100x xx 512MB

RegionM 101x xx 512MB

RegionN 110x xx 512MB

RegionO 111x xx 512MB

Table 9.8 Memory Region Address Ranges

;���, %���������

0 Reserved

0 Reserved

RegionA Turnaround cycle(s) of region RegionA

RegionB Turnaround cycle(s) of region RegionB

RegionC Turnaround cycle(s) of region RegionC

RegionD Turnaround cycle(s) of region RegionD

Table 9.9 Bus Turnaround (BTA) Control Register Field Descriptions (Part 1 of 2)

31

22

0

1

30

0

29 28

R egion A
27 26

R egion B

25 24

R eg ion C

23 22

R egion D
21 20

R egion E
19 18

R egion F
17 16

R egion G
15 14

R egion H
13 12

R eg ion I R eg ion J
11 10

1 2 2 2 2 2 2 2 2

6 4 3 2
M em

R egion FR eg ion K R eg ion L R egion M

9 8 7

R eg ion O

5 1 0

2 2 2 2 2

R eg ion N
���� ������ � $ � ��������
 �� ����

)�� 2���
���� &��
���' 2���
���� ����
�� ��*����
�

���������
��
 ����

�����
The turnaround cycle(s) is encoded as shown in Table 9.10. Figure 9.3 shows the timing of the BTA
cycle.

Figure 9.3 Timing of Bus Turnaround Cycle(s)

��� ��� ����� ������� �������� 0���� "���2> 5������ �������
1-++++?�#16

This is a read only register that holds the address that caused the bus error. Any attempts to write to this
register will not change its value, which is not defined before the Bus Error is sampled.

RegionE Turnaround cycle(s) of region RegionE

RegionF Turnaround cycle(s) of region RegionF

RegionG Turnaround cycle(s) of region RegionG

RegionH Turnaround cycle(s) of region RegionH

RegionI Turnaround cycle(s) of region RegionI

RegionJ Turnaround cycle(s) of region RegionJ

RegionK Turnaround cycle(s) of region RegionK

RegionL Turnaround cycle(s) of region RegionL

RegionM Turnaround cycle(s) of region RegionM

RegionN Turnaround cycle(s) of region RegionN

RegionO Turnaround cycle(s) of region RegionO

.03#4 3��)4 .03�4 3-�)4 .�
��
���, �!���3�4

0 0 0 cycle

0 1 1 cycle

1 0 2 cycles

1 1 3 cycles

Table 9.10 Width Encoding of Bus Turnaround Cycles

;���, %���������

Table 9.9 Bus Turnaround (BTA) Control Register Field Descriptions (Part 2 of 2)

MasterC lock

AD(31:0)

Ack*

CIP*

Last*

T recoveryT data T addr T data

Data Addr Data

T TA
���� ������ � $ � ��������
 �� ����

)�� 2���
���� &��
���' .9� 0,,
��� 2���
����

���������
��
 ����

�����
 &&&&####��������))))								��

The address information of a transfer is primarily presented on the same multiplexed address/data bus
as the data lines. However, additional information is provided to simplify system design.

This information relates to low order address bits (byte within word for narrow interfaces; word within
block for cache refill); transfer size information; byte-enable signals; address demux control; etc.

������� ������ %����������

Table 9.11 lists the signals provided for addressing operations. Pin names followed by an asterisk (*) are
active when low.

(�� ��*��� %���
������

AD(31:4) Addr(31:4)/
Data(31:4)
(I/O)

High-order multiplexed address and data bits.
Regardless of system byte ordering, AD(31) is the MSB of the address.

AD(3:0) Size(3:0)
(I/O)

Transfer size encoding of valid transfer sizes. For the RC32364, valid sizes are
shown in the table below.

Addr(3:2) Addr(3:2)
(O)

Non-multiplexed address lines. These also serve as the word within block address
for cache refills (Addr(3:2)). The word within block address bits count in sub-block
ordering for read and sequential for write.

ALE ALE
(O)

Address Latch Enable. This signal provides set-up and hold time around the
address phase of the AD bus.

Width(1:0) Bus Width
(O)

Indicates the Physical Memory/IO data bus size.
Valid sizes are shown in Table 9.13 on page 9-8.

CIP* Cycle-in-progress
(O)

Denotes that a cycle is in progress. Asserted in the address phase and continues
asserted until the ACK* for the last data is sampled.

I/D* I/D*
(O)

Indicates that the current cycle is for an instruction (active high) or data (active low)
transaction.

Rd* Read
(O)

This active-low signal indicates that the current transaction is a read.

Wr* Write
(O)

This active-low signal indicates that the current cycle transaction is a write.

DT/R* Data Transmit/
Receive
(O)

This active-low signal indicated the current direction of the A/D bus during the cur-
rent data cycle. “High” indicates it is sourced by the CPU, and “Low” indicates an
external source (read response data).

DataEn* Data Enable
(O)

This active-low signal indicates that the AD bus is in a data cycle.
DEN* is asserted after the address cycle (start of 1st data cycle), and deasserted at
the end of the last data cycle.

BE*(3:0) Byte Enables/
Addr(1:0)
(O)

Byte enable (3:0)
This active-low signal indicates which byte lanes are expected to participate in the
data transfer.

Table 9.11 Addressing Interface Signals

Byte Lanes Enabled In Data Transfer

Port Width BE*(3) BE*(2) BE*(1) BE*(0)

32-bit Used Used Used Used

16-bit Byte High
Enable

Not Used
(Driven High)

Address Bit 1
(A1)

Byte Low
Enable

8-bit Not Used
(Driven High)

Not Used
(Driven High)

Address Bit 1
(A1)

Address Bit 0
(A0)
���� ������ � $ � ��������
 �� ����

)�� 2���
���� &��
���' .9� 0,,
��� 2���
����

���������
��
 ����

�����
 5���� �������� ��=��

Table 9.12 lists the encoding for the “Size” (AD(3:0)) field:

!�
��� ���� ����� ���������

Table 9.13 lists the encoding for 8-,16- and 32- port widths:

������� ;��������� ��
���

Figure 9.4 shows the address generation phase at the beginning of a transfer.

Figure 9.4 Address Generation at Start of Transfer

��6�3�4 ��6�3�4 ��6�3#4 ��6�3�4 .
�����
 @�,�9

0 0 0 0 16 bytes

0 0 0 1 1 byte

0 0 1 0 2 bytes

0 0 1 1 3 bytes

0 1 0 0 4 bytes

All other encodings are reserved for future use.

Table 9.12 Encoding for Valid Transfer Sizes

@�,�93#4 @�,�93�4 (�
� @�,�9

0 0 8 bits

0 1 16 bits

1 0 32 bits

1 1 Reserved

Table 9.13 Encoding of 8-, 16-, and 32-bit Port Widths

A D (31 :0)
Addr

A ddr(3 :0)

A LE

R d*

D ataEn*

A ck*

Last*

M aste rC lock

C IP*

I/D *

D T /R *

W idth(1 :0)
���� ������ � $ / ��������
 �� ����

)�� 2���
���� &��
���' ���, ����
�� 2���
����

���������
��
 ����

�����
 Figure 9.5 shows the toggling of Addr(3:0) in the middle of a multiple data transfer.

Figure 9.5 Address Toggling Mid-Transfer

������	��	��	��	����

��������������������((((��

The read control interface is designed to easily support the following read transactions:
◆ a single data read that can be satisfied in one data phase
◆ a single data read that requires multiple data phases (the data is wider than the port)
◆ a cache block read to any of the valid port widths
◆ subblock ordering, accessing among the words of a cache refill

– allows the system to define the order in which the data elements are retrieved (see Figure 9.61)

Figure 9.6 Data Retrieval in a Subblock Order

���� �������
�������� �������

The read interface uses the same address and data signals previously described; however, read trans-
actions can be identified by the states of the Rd* and Wr* pins, as noted in the address generation section.

����
�������� ��
��� %�����
�

Cache refills occur using a 4-word subblock ordered sequence. In subblock ordering, the processor
delivers the address of the requested word within the block. An external agent must return the block of data
using subblock ordering, starting with the addressed word.

In general, a block of data elements (whether bytes, halfwords, words, or doublewords) can be retrieved
from storage in a subblock ordered sequence, as shown in Figure 9.6.

Various read operations are shown in the following timing diagrams: Figure 9.7, a single-word back-to-
back read cycle; Figure 9.8, a cache line read from a 32-bit port device; Figure 9.9,

1. Using the subblock ordering shown in Figure 9.6, the word at the target address is retrieved first (Word 2),
followed by the remaining word (Word 3) in this doubleword. Next, the doubleword that fills out the quadword is
retrieved in the same order as the prior doubleword (in this case, Word 0 is followed by Word 1).

M aste rC lock

AD (31 :0) Data
Input

A ddr(3:0) C urren t W ord Address N

Ack*

W0 W1 W2 W3

W0
taken third

W1
taken fourth W2

taken first

W3
taken second

2 3 0 1Order of retrieval

doubleword

quadword
���� ������ � $ � ��������
 �� ����

)�� 2���
���� &��
���' ���, ����
�� 2���
����

���������
��
 ����

�����

Figure 9.7 Single-Word Back-to-Back Read Cycles

Figure 9.8 Cache Line Read from a 32-bit Port Device

M aste rC lock

A D (31 :0)
Addr Data Input

A ddr(3 :2)

A LE

D ataEn*

A ck*

Last*

R d*

C IP*

I/D *

D T /R *

W r*

Addr Data Inpu t

W idth(1 :0)

M asterC lock

A D (31 :0) Addr,4 W ords W ord 2 W ord 3 W ord 0 W ord 1

A LE

A ddr(3 :2) “10” “11” “00” “01”

D ataE n*

A ck*

Last*

B E *(3 :0) “0 0 0 0”

R d*

C IP*

D T /R *

I/D *

W idth (1 :0) “10 ”
���� ������ � $ #� ��������
 �� ����

)�� 2���
���� &��
���' ���, ����
�� 2���
����

���������
��
 ����

�����
 The timing of a cache line read operation, from a 32-bit port device, is shown in Figure 9.8. The timing of
a cache refill using an eight-halfword subblock ordered sequence is shown in Figure 9.9.

Figure 9.9 Cache Refill Using an Eight-Halfword Subblock Ordered Sequence from 16-bit Port Device (Part 1)

Figure 9.10 Cache Refill Using an Eight-Halfword Subblock Ordered Sequence from 16-bit Port Device (Part 2)

M asterC lock

A D (31 :0) Addr

A LE

A ddr(3 :2) “10” “11”

D ataE n*

A ck*

Last*

B E *(3 :0)

R d*

C IP*

D T /R *

I/D *

H W 4 H W 5 H W 6 H W 7 H W 0

“00”

H W 1

“0100” “0110” “0110” “0100”“0100”

W idth (1 :0) “01”

M aste rC lock

A D (31:0)

A LE

A ddr(3:2)

D ataEn*

A ck*

Last*

B E *(3:0)

R d*

C IP*

D T /R *

I/D *

H W 2H W 0 H W 1 H W 3

“00” “01”

“0100” “0110” “0100” “0110”

W id th(1:0) “01”
���� ������ � $ ## ��������
 �� ����

)�� 2���
���� &��
���' @
��� ����
�� 2���
����

���������
��
 ����

�����
 8888��������������������

��������������������((((��

Writes can be single-data (including mini-bursts to narrow ports) or cache-line writebacks. In the case of
cache line writebacks, data is written using subblock ordering, beginning from word 0 of the line. Figure
9.11, Figure 9.12, Figure 9.13, Figure 9.15 and Figure 9.16 illustrate the timings of various write control
operations.

��
��� %�����
� ��� �����
�������� "���������

Throughout the following tables and figures, pin names followed by an asterisk are active when low.

Figure 9.11 Single-Word Back-to-Back Write Cycles

M aste rC lock

AD (31:0) Addr Data O utput Addr Data O utput

A ddr(3:2)

A LE

W r*

D ataEn*

A ck*

Last*

Trecovery

C IP*

D T /R *

W idth(1:0)

I/D *
���� ������ � $ #� ��������
 �� ����

)�� 2���
���� &��
���' @
��� ����
�� 2���
����

���������
��
 ����

�����

Figure 9.12 Single-Word Back-to-Back Read, Followed by a Write Cycle

Figure 9.13 Burst Write to a 32-bit Port

M aste rC lock

A D (31:0) Addr Data Input

A ddr(3:0)

A LE

D ataEn*

A ck*

Last*

R d*

C IP*

I/D *

D T /R *

W r*

Addr Data Input

W idth(1:0)

M aste rC lock

AD (31:0) Addr,4 Words Word 0 Word 1 Word 2 Word 3

W idth(1:0)

A ddr(3:2) “00” “01” “10” “11”

D ataEn*

A ck*

Last*

B E *(3:0) “ 0 0 0 0”

W r*

C IP*

D T /R *

I/D *

“10”

A LE
���� ������ � $ #� ��������
 �� ����

)�� 2���
���� &��
���' @
��� ����
�� 2���
����

���������
��
 ����

�����

Figure 9.14 Write Throttle Timing Diagram

Figure 9.15 Eight HalfWords Sequential Ordering Write (Part 1)

M aste rC lock

A D (31:0) Addr,4 Words Word 0 Word 1

W idth(1:0)

A ddr(3:2)

D ataEn*

A ck*

Last*

B E *(3:0) “ 0 0 0 0”

W r*

C IP*

D T /R *

I/D *

“10”

A LE

W ord 2 W ord 3

“00” “01” “10” '11'

Throttle write

M asterC lock

A D (31 :0)
Addr

A LE

A ddr(3 :2) “00” “01”

D ataE n*

A ck*

Last*

B E *(3 :0)

W r*

C IP*

D T /R *

I/D *

HW0 HW1 HW 2 HW 3 HW4

“10”

HW 5

“0100” “0110” “0100” “0110” “0100”

W idth (1 :0) “01”
���� ������ � $ #� ��������
 �� ����

)�� 2���
���� &��
���' @
��� ����
�� 2���
����

���������
��
 ����

�����

Figure 9.16 Eight HalfWords Sequential Ordering Write (Part 2)

M aste rC lock

A D (31:0)

A LE

A ddr(3:2)

D ataEn*

A ck*

Last*

B E*(3:0)

W r*

C IP*

D T /R *

I/D *

HW 7H W 5 HW 6 HW 8

“10” “11”

“0100” “0110” “0100” “0110”

W idth(1:0) “01”
���� ������ � $ #� ��������
 �� ����

)�� 2���
���� &��
���')�� ���
!

���������
��
 ����

�����
 %%%%

����������������������������

During the first data phase, external devices can force the RC32364 bus to terminate the current bus
transaction by asserting Retry* (without asserting Ack*). Once Ack* is sampled and the first data has been
accepted, Retry* will be ignored.

If BusReq* was also sampled asserted, the processor relinquishes bus ownership by asserting BusGnt*.
If both Retry* and Ack* are sampled asserted, RC32364 will ignore the Retry* and complete the current
transaction.

If Retry* is sampled asserted while both Ack* and BusReq* are de-asserted, then the RC32364 will
terminate the current transaction and immediately retry the transaction.

The timing of a bus retry with a pending BusReq* is illustrated in Figure 9.17. The timing of a bus retry
without a pending BusReq* is shown in Figure 9.18. Figure 9.19 illustrates the timing of an operation with
both the Retry* and Ack* signals asserted.

Figure 9.17 Bus Retry with Pending BusReq*

M aste rC lock

A D (31:0) Addr

R e try*

A LE

D ataEn*

A ck*

R d*

D T /R *

C IP*

B usR eq*

B usG nt*
���� ������ � $ #� ��������
 �� ����

)�� 2���
���� &��
���')�� ���
!

���������
��
 ����

�����

Figure 9.18 Bus Retry without a Pending BusReq*

Figure 9.19 Assertion of Retry* along with Ack* Asserted

M aste rC lock

A D (31:0) Addr 0

R e try*

A LE

A ck*

W r*

D T /R *

C IP*

B usR eq*

B usG nt*

Addr 0Data 0 Data 0

D ataEn*

M aste rC lock

AD (31:0) Addr 0

R e try*

A LE

D ataEn*

R d*

D T /R *

C IP*

Data 0 Addr 1 D ata 1

A ck*

W r*
���� ������ � $ #� ��������
 �� ����

)�� 2���
���� &��
���')�� ���
!

���������
��
 ����

�����
 ��� �����

If the RC32364 tries to access a memory region that does not have any device connect to it, or the
external controller finds a parity error, BusErr* can be asserted, which forces the RC32364 into taking the
bus error exception. BusErr* is ignored after the acceptance of the first data. If BusErr* and Ack* are both
sampled asserted in the first data phase, Ack* will be ignored, and the bus error exception will be taken.

The timing of the BusErr* operation is illustrated in Figure 9.20.

Figure 9.20 Bus Error

%!� !���������
��������

The DMA interface uses a simple two signal protocol, to allow an external agent mastership of the
system bus. Internal CPU Logic synchronizes the external interface to the internal arbiter unit. This insures
that no conflicts occur between the internal synchronous requesters (read and write engines) and the
external asynchronous (DMA) requester. Table 9.14 lists the pin names and descriptions for the two DMA
interface signals. Both signals are active when low.

(�� ��*��� %���
������

BusReq* Bus Request
(I)

This active low signal is an input to the processor, used to request mastership of the
external interface bus. Mastership is granted according to the assertion of this input, and
taken back based on its negation.

BusGnt* Bus Grant
(O)

This active low signal is an output from the processor. It is used to indicate that the CPU
has relinquished mastership of the external interface bus. BusGnt* goes low initially for at
least 2 clocks to indicate that the CPU has relinquished mastership of the external inter-
face bus. After going low, BusGnt* returns high either when the CPU makes an internal
request for the bus or after BusReq* is de-asserted.

Table 9.14 DMA Interface Pin Descriptions

M aste rC lock

AD (31:0) Addr 0

B usE rr*

A LE

D ataEn*

A ck*

W r*

D T /R *

C IP*

B usR eq*

B usG nt*

Addr Data 0 Data

Starting Exception Process
���� ������ � $ #/ ��������
 �� ����

)�� 2���
���� &��
���')�� ���
!

���������
��
 ����

�����
 %!� !���������
���������

Figure 9.21 shows the beginning of a DMA cycle. Note that if BusReq* is asserted while the processor
was performing a read or write operation, BusGnt* would be delayed until the next bus slot after the read or
write operation is completed.

To initiate DMA, the processor must detect the assertion of BusReq* with proper set-up time to Master-
Clock. Once BusReq* is detected, and the bus is free, the processor will grant control to the requesting
agent by asserting its BusGnt* output, and tri-stating its output drivers. The bus will remain under the
control of the external master until it negates BusReq*, indicating that the processor is once again the bus
master. BusReq* needs to assert and de-assert for at least 2 cycles.

Figure 9.21 Bus Grant and Start of DMA Transaction

M asterC lock

B usR eq*

B usG nt*

A D (31 :0)

A LE

R d*
W r*

C IP*
D T /R *

I/D *
D ataE n*
���� ������ � $ #� ��������
 �� ����

)�� 2���
���� &��
���')�� ���
!

���������
��
 ����

�����
 �����@������� !��������� ���. �� ��� ���

 The next rising edge of MasterClock—after the negation of BusReq* is sampled—may actually be the
beginning of a processor read or write operation. To terminate DMA, the external master must negate the
processor BusReq* input.

Once this is detected (with proper setup and hold time), the processor will negate its BusGnt* output on
the next rising edge of MasterClock, if it hasn’t already done so. It will also re-enable its output drivers.
Thus, the external agent must disable its output drivers by this clock edge, to avoid bus conflict.

 Figure 9.22 shows the end of a DMA cycle.

Figure 9.22 Regaining Bus Mastership

���
�������� ��� ;���� %�(���������

Figure 9.23 indicates the middle of a DMA cycle, where the processor generates an internal request for
the external bus. If BusGnt* has been low for at least 2 clock periods, and the CPU has a pending external
request, then on the next rising edge of MasterClock, BusGnt* will be de-asserted. This signals to the
external agent that the CPU could benefit from bus usage. However, the external agent remains in control
of the bus until it negates BusReq*.

Figure 9.23 DMA Protocol BusGNT* De-assertion

M aste rC lock

BusR eq*

BusG nt*

A D (31 :0)

A LE

R d*
W r*

C IP*
D T /R *

I/D *

D ataEn*
A ck*

Last*

M aste rC lock

B usR eq*

B usG nt*

A D (31:0)

C PU Bus R eq
���� ������ � $ �� ��������
 �� ����

�����

���������
��
 ����
���� ������ 0 $ # ������
�������- �
��������'
��
��%�
�
���

�" #����"#�
�����������������	
�	
�	
�	
��������������������

The RC32300 execution unit implements an extended version of the MIPS 32 ISA. These architectural
enhancements include the addition of a MIPS-IV prefetch operation that incorporates various hint subfields,
conditional move instructions that are MIPS-IV compatible, additional integer multiply unit instructions, and
two new instructions designed to enhance the performance levels of certain DSP algorithms.

These features combine to make the CPU well suited to applications that require high bandwidth, rapid
computation, and/or DSP capability. A discussion of each new integer unit feature implemented in the
RC32364 follows. General instruction set information can be found in the IDT MIPS Microprocessor Family
Software Reference Manual.

����������������������������####���� ��������////����!!!!

In general, PREF is an advisory instruction that may change the performance of the program but will not
cause addressing related exceptions. If the PREF instruction raises an exception condition, the exception
condition is ignored.

If an addressing-related exception condition is raised and ignored, no data will be prefetched. In such a
case, if no data is prefetched, some action that is not architecturally-visible—such as writeback of a dirty
cache line or invalidate a cache line (in the case of “ignorehit” hint)—might take place.

PREF will not generate a memory operation for a location with an uncached memory access type. As
noted in Table A.1, the hint field supplies information about the way the data is expected to be used. For
data movement, the MIPS IV PREF instruction is implemented with multiple hints.

The load operations in the RC32364 are blocking, which means that prefetch load operations will also
be blocking.

Figure A.1 Format of Prefetch Instruction

Format: PREF hint, offset(base)

Description: To form an effective byte address, PREF adds the 16-bit signed offset to the content of
GPR base. It advises that data at the effective address may be used in the near future. The hint field
supplies information about the way the data is expected to be used. The format of the Prefetch Instruction is
shown in Figure A.1. Figure A.2 provides a diagram of the Prefetch operation flow.

31 26 25 21 20 16 15 0

PREF
110011

base hint

16556

offset
��
 �� ����

������� +�9��������� �� �2(� �� 2�0 (
�����9 3(�+;4

���������
��
 ����

�����
Figure A.2 Flowchart for Prefetch Operation

The defined hint values and prefetch actions are listed in Table A.1.

=���� ��� ;���, <��� ��, %��������� (
�����9 0�����

0 Load
Informs the CPU to process the PREF as if the cause were a cache miss on a load
instruction. As such, the TLB coherency algorithm rules that apply to a load cache
miss are applied. For example, if the TLB and chip were to support multi-process-
ing, the resulting read could be marked as “coherent” or not, depending upon the
translation.

Data is expected to be
loaded (not modified).
Fetch data as if for a
load.

1 Store
Informs the CPU to process the PREF as if the cause were a cache miss on a load
instruction. As such, the rules with respect to coherency, write allocation, etc. may
be applied to the resulting bus transaction.

Data is expected to be
stored or modified.
Fetch data as if for a
store.

31 Ignore hit (Kernel Mode only)
Causes the PREF to perform a cache refill, even if the target address currently hits
in the cache. The MIPS-IV ISA allows PREF to revert to a NOP operation under
exceptional conditions, etc., since the program will be semantically correct,
although lower performance, if the cache miss processing occurs later. However,
the “ignore hit” option carries an implicit invalidation of the current cache line. As
such, even if the PREF/ignore-hit generates an exception, the cache line invali-
date occurs when the PREF is encountered so that the program does run correctly
later (that is, old cache contents are not used).

Invalidate the cache line
and bring in the new
data from memory
regardless of the state of
the valid bit.

Table A.1 Value of Hint Field for the Prefetch Instruction

Begin

Operation
Prefetch

Ignore H it
Set?

Cache Hit?

Exception?

Complete
Prefetch

Cache Hit?

Is Modified?

Invalidate Cache
Line

Write Back
Modified

Cache Line

Yes Yes

No

No

Yes

Yes

No

Terminate
Prefetch

No

No

Yes
���� ������ 0 $ � ��������
 �� ����

������� +�9��������� �� �2(� �� 2�0 +���������� �� ��$��� ����
�������

���������
��
 ����

�����
 Operation:

Exception: Reserved Instruction, if “Ignore hit” is used in User Mode.

////(�(�(�(���56565656""""''''��������������������������������
��
��
��
������������������

When an instruction requests 64-bit data operations, the RC32364 signals a trap. This includes both the
MIPS-III 64-bit instructions and the MIPS-II 64-bit coprocessor operations. The trap signal occurs in both
user and kernel modes.

�����	�	�	�	������������������������((((����������������������������$�$�$�$�����������������������������

In addition to the prefetch instruction, the RC32300 core implements the conditional move instructions
found in the MIPS-IV architecture.

!�)� ����������� �� <�� A���

Format: MOVN rd,rs,rt

Description: If the value in rt is not equal to zero, then the content of rs is placed into rd.

Operation:

Exception: Reserved Instruction.

!�)� ����������� �� A���

Format: MOVZ rd,rs,rt

Description: If the value in rt is equal to zero, then the content of rs is placed into rd.

Operation:

Exception: Reserved Instruction.

vAddr <-- GPR[base] + sign_extend(offset)
(pAddr, uncache) <-- Address Translation(vAddr, DATA, LOAD)
Prefetch(uncache, pAddr, vAddr, DATA, hint)

T: if GPR[rt] 0 then GPR[rd] <-- GPR[rs]

T: if GPR[rt] = 0 then GPR[rd] <-- GPR[rs]

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00000

M O VN

001011

6556 5 5

rd

1011

≠

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00000

MO VZ

001010

6556 5 5

rd

1011
���� ������ 0 $ � ��������
 �� ����

������� +�9��������� �� �2(� �� 2�0 2���
������� ��
 %�(�����
�

���������
��
 ����

�����
 ��������������������

��

$$$$$�$�$�$���������

The RC32364 adds new instructions to the MIPS 32 ISA, intended to enhance the performance of
certain types of DSP algorithms.

Specifically, enhancements in the multiplier have been added to allow fast fused multiply-adds and
multiply-subtracts. In addition, RC32364 adds the three operand multiply operations originally found in the
1st RC4650 and adds instructions to help normalize values (count-leading-1’s or 0’s).

!������� ���

Format: MAD rs, rt

Description: The content of general registers rs and rt are multiplied— treating both operands as 32-bit
two’s complement values—and the result is added to HI/LO. Overflow exceptions do not occur under any
circumstances.

Once the operation is complete, the low-order word of the double result is loaded in LO, and the high-
order word of the double result is loaded in HI.

Operation:

Exception: None

!������� ��� ��������

Format: MADU rs,rt

Description: The content of general registers rs and rt are multiplied, treating both operands as 32-bit
unsigned values, and the result is added to HI/LO. No overflow exception occur under any circumstances.

When the operation completes, the low-order word of the double result is loaded in LO, and the high-
order word of the double result is loaded in HI. The instruction is not interlocked so any attempt to read HI/
LO before the operation completes returns undefined value.

Operation:

Exception: None

T: temp <-- (HI || LO) + GPR[rs] * GPR[rt]

LO <-- temp31..0

HI <-- temp63..32

T: temp <-- (HI || LO) + (0||GPR[rs]) * (0||GPR[rt])

LO <-- temp31..0

HI <-- temp63..32

31 26 25 21 20 16 15 6 5 0

SPECIAL2

011100
rs rt

0

00000

M AD

000000

65556

1011

5

0
00000

rt

31 26 25 21 20 16 15 6 5 0

SPECIAL2

011100
rs rt

0

00000

M ADU

000001

6556 55

11 10

0
00000
���� ������ 0 $ � ��������
 �� ����

������� +�9��������� �� �2(� �� 2�0 2���
������� ��
 %�(�����
�

���������
��
 ����

�����
 !������� �� �����

Format: MSUB rs,rt

Description: The content of general registers rs and rt are multiplied, treating both operands as 32-bit
two’s complement values, and the result is subtracted from HI/LO. No overflow exception occur under any
circumstances.

When the operation is complete, the low-order word of the double result is loaded in LO, and the high-
order word of the double result is loaded into HI. The instruction is not interlocked so any attempt to read HI/
LO before the operation completes returns undefined value.

Operation:

Exception: None

!������� �� ����� ��������

Format: MSUBU rs,rt

Description: The content of general registers rs and rt are multiplied, treating both operand as 32-bit
unsigned values, and the result is subtracted from HI/LO. No overflow exception occur under any circum-
stances.

When the operation completes, the low-order word of the double result is loaded in LO, and the high-
order word of the double result is loaded in HI. The instruction is not interlocked so any attempt to read HI/
LO before the operation completes returns undefined value.

Operation:

Exception: None

T: temp <-- (HI || LO) - GPR[rs] * GPR[rt]

LO <-- temp31..0

HI <-- temp63..32

T: temp <-- (HI || LO) - (0||GPR[rs]) * (0||GPR[rt])

LO <-- temp31..0

HI <-- temp63..32

31 26 25 21 20 16 15 6 5 0

SPECIAL2

011100
rs rt

0

00000

M SUB

000100

65556

1011

5

0

00000

31 26 25 21 20 16 15 6 5 0

SPECIAL2

011100
rs rt

0

00000

M SUBU

000101

6556 55

11 10

0
00000
���� ������ 0 $ � ��������
 �� ����

������� +�9��������� �� �2(� �� 2�0 2���
������� ��
 %�(�����
�

���������
��
 ����

�����
 ����� $������ A����

Format: CLZ rs,rt

Description: The content of general register rs is scanned from the most significant bit to the least
significant bit, and the number of leading zeros is written into general register rt. If no bits were set in
general register rs, i.e. rs=0, the content of general register rt is 32.

Operation:

Exception: None

����� $������ "���

Format: CLO rs,rt

Description: The content of general register rs is scanned from most significant bit to least significant
bit, the number of leading ones is written into general register rt. If no bits were cleared in general register
rs, i.e. rs=0xffffffff, the content of general register rt is 32.

Operation:

Exception: None

T: rt <-- Leading_zeros(rs)

T: rt <-- Leading_ones(rs)

31 26 25 21 20 16 15 6 5 0

SPECIAL2

011100
rs rt

0

0000000000

CLZ

100000

610556

31 26 25 21 20 16 15 6 5 0

SPECIAL2

011100
rs rt

0

0000000000

CLO

100001

610556
���� ������ 0 $ � ��������
 �� ����

�����

���������
��
 ����
���� ������) $ # ������
�������- �
���������$��+����$

 SPECIAL
ADDI
COP0

* Special2 * * *
BEQL BNEL BLEZL BGTZL

LB
SB CACHE

*

*

LL * * *
SC * * *

* * * * * * * *
TGE TGEU TLT TLTU TEQ TNE

2..0

SLL
 JR

MFHI
MULT
ADD

SLT

SDBBP
* * * *
* * * *

* * * ** *

*

SPECIAL function
0 1 2 3 4 5 6 7

31..29
0
1
2
3
4
5
6

 5..3
0
1
2
3
4
5
6
7

7

28..26 Opcode
0 1 2 3 4 5 6 7

SYSCALL BREAK

SH SWL SW SWR
LWC1 LWC2 PREF
SWC1 SWC2 *

LH LWL LW LBU LHU LWR

SRL SRA SLLV SRLV SRAV
 JALR
MTHI MFLO MTLO

MULTU DIV DIVU
ADDU SUB SUBU AND OR XOR NOR

SLTU

COP1 COP2 *
ADDIU SLTI SLTIU ANDI ORI XORI LUI

REGIMM J JAL BEQ BNE BLEZ BGTZ

* *

2

MUL

3

*

*
*
*

*

MOVZ MOVN SYNC

δ

* * * *

5 6 7
2..0

1

SPECIAL function2

5..3 40
0

1

2

3

4

5

6

7

MAD MADU

* * * *

* *

*

CLZ

*

CLO

*

*

* * *

* * * *

* *

* * * * * *

*

*

*

*

*

*

*

* *

*
*

* * * * *

* * *

* * *

*

*

* MSUB MSUBU * *

* * *
��
 �� ����

������� &���,� ���

���������
��
 ����

�����

2..0
0 1 2 3 4 5 6 7

0
1
2
3

TLBW ITLBR TLBW R
TLBP

f

4
5
6
7

ERET

φ φφ

φ φ φ φ φ φ φφ

φφ

φ φ φ φ φ φ φφ
φ φ φ φ φ φ φφ
φ φ φ φ φ φ φW AIT
φ φ φ φ φ φ DRET
φ φ φ φ φ φ φ
φ φ φ φ φ φ φ

CP0 Function

COPz rt

M F DM F CF γ M T DM T CT γ

COPz rs

BC γ γ γ γ γ γ γ

0 1 3 4 5 6 72

CO

23..21

25,24
0
1
2

3

5..3

REGIMM rt

20..19

18 ..16
1 2 3 4 5 6 70

0
1

2

3

BLTZ BG EZ BLTZL BG EZL * * * *

TG EI TG EIU TLTI TLT IU TEQ I TNEI * *
BLTZAL BG EZAL BLTZALL BGEZALL * * * *

* * * * * * * *

BCF

18..16
0 1 2 3 4 5 6 720..19

0

1

2

3

BCFL
γ γ γ γ γ γ γ

γ γBCT BCTL γ γ

γ
γ γ γ γ γ γ γγ

γ γ γ γ γ γ γγ
���� ������) $ � ��������
 �� ����

�����

���������
��
 ����
���� ������ � $ # ������
�������- �
�����	%	
����������

�$����	�

�����������������	
�	
�	
�	
��������������������

Cache holds a copy of recently read or written to memory data so that it can be quickly returned to the
CPU. To double the effective cache-memory bandwidth, IDT CPUs implement separate on-chip instruction
(I cache) and data (D-cache) caches. Within the RC32364, both an I-cache and D-cache access can occur
simultaneously; cache accesses take one processor clock to complete.

Information specific to the RC32364’s cache organization and operation is provided in Chapter 6 of this
manual.

����������������������������))))'�
�'�
�'�
�'�
�����

��������#�#�#�#���������$$$$��������������������������������
◆ All cycle counts are in processor cycles.
◆ All cache operations have a lower priority than cache misses, write backs and external requests. If

the write back buffer contains unwritten data when a cache op is executed, the write back buffer will
be retired before the cache op is started.

If an instruction cache miss occurs at the same time a cache op is executed, the instruction cache miss
will be handled first. Cache operations are mutually exclusive with respect to data cache misses. Before
beginning any cache operation, external requests will be completed first.

◆ For all data cache ops the cache op state machine waits for the store buffer and response buffer to
empty before beginning the cache op. This can add 3 cycles to any data cache op if there is data in
the response buffer or store buffer. The response buffer contains data from the last data cache miss
that has not yet been written to the data cache. The store buffer contains delayed store data waiting
to be written to the data cache.

◆ Cache ops of the form xxxx_Writeback_xxxx may perform a write back which will fill the write back
buffer. Write backs can affect subsequent cache ops, since they will stall until the write back buffer
is written back to memory. Cache ops which fill the write back buffer are noted as (writeback) in the
following tables.

◆ All cycle counts are best case assuming no interference from the mechanisms described above.
��
 �� ����

.9� .����* �� ���9� &��
������ ���9� &��
������ .�����

���������
��
 ����

�����

��������#�#�#�#���������$$$$������������������������������������&&&&�'�'�'�'((((��������

Table C.1 and Table C.2 show data cache and instruction cache operation’s information. A detailed
explanation of the Fill_I equation follows Table C.2.

<��� &��
����� <����
 �� �!����

Index_Writeback_Invalidate_D Examine the cache state and W bit of the pri-
mary data cache block at the index specified
by the virtual address. If the state is not Invalid
and the W bit is set, then write back the block
to memory. The address to write is taken from
the primary cache tag. Set cache state of pri-
mary cache block to Invalid.

10 cycles, if the cache line is clean.
12 cycles, if the cache line is dirty
(Writeback).

Index_Load_Tag_D Read the tag for the cache block at the speci-
fied index and place it into the TagLo CPO reg-
ister, ignoring parity errors. Also load the data
parity bits into the ECC register.

7 cycles.

Index_Store_Tag_D Write the tag for the cache block at the speci-
fied index from the TagLo and TagHi CPO reg-
isters

8 cycles.

Create_Dirty_Exclusive_D This operation is used to avoid loading data
needlessly from memory when writing new
contents into an entire cache block. If the
cache block does not contain the specified
address, and the block is dirty, write it back to
the memory. In all cases, set the cache block
tag to the specified physical address and set
the cache state to Dirty Exclusive.

10 cycles, for a cache hit.
13 cycles, for a cache miss if the
cache line is clean.
15 cycles, for a cache miss if the
cache line is dirty (Writeback).

Hit_Invalidate_D If the cache block contains the specified
address, mark the cache block invalid.

7 cycles, for a cache miss.
9 cycles, for a cache hit.

Hit_Writeback_Invalidate_D If the cache block contains the specified
address, write back the data if it is dirty and
mark the cache block invalid.

7 cycles, for a cache miss.
12 cycles, for a cache hit if the
cache line is clean.
14 cycles, for a cache hit if the
cache line is dirty (Writeback).

Hit_Writeback_D If the cache block contains the specified
address, and the W bit is set, write back the
data to memory and clear the W bit.

7 cycles, for a cache miss.
10 cycles, for a cache hit if the
cache line is clean.
14 cycles, for a cache hit if the
cache line is dirty (Writeback).

Table C.1 Primary Data Cache Operations
���� ������ � $ � ��������
 �� ����

.9� .����* �� ���9� &��
������ ;���B2 +C������ %����������

���������
��
 ����

�����

�����((�((�((�((9999��������////:
:
:
:
��

The following definitions apply to the Fill_I equation listed in Table C.2:

SYSDIV:Number of processor cycles per system cycle: range is between 2 and 8.

ML: Number of system cycles of memory latency, defined as the number of cycles the AD bus is
driven by the external agent before the first word of data appears.

 D:Number of system cycles required to return the block of data, defined as the number of cycles begin-
ning when the first word of data appears on the AD bus and ending when the last word of data appears on
the AD bus, inclusive.

<��� &��
����� <����
 �� �!����

Index_Invalidate_I Set the cache state of the cache block to
Invalid. Index_Invalidate_I writes the physical
address of the cache operation into the tag
when it clears the valid bit, which is different
from the RC4000 family.

7 cycles.

Index_Load_Tag_I Read the tag for the cache block at the speci-
fied index and place it into the TagLo CPO reg-
ister, ignoring parity errors. Also load the data
parity bits into the ECC register.

7 cycles.

Index_Store_Tag_I Write the tag for the cache block at the speci-
fied index from the TagLo and TagHi CPO reg-
isters.

8 cycles.

Hit_Invalidate_I If the cache block contains the specified
address, mark the cache block invalid.

7 cycles for a cache miss.
9 cycles for a cache hit.

Fill_I Fill the primary instruction cache block from
memory. If the CE bit of the Status register is
set, the contents of the ECC register are used
instead of the computed parity bits for an
addressed doubleword, when written to the
instruction cache.

Cycle number must be calculated based on the
system response to a memory access, because
Fill_I causes an instruction cache refill from
memory.
The number of processor cycles for a Fill_I
cache op is calculated as follows:
Number_of_cycles_for_a_Fill_I_CacheOp = 10
+ {0 - (SYSDIV - 1)} + (2 x SYSDIV) +
(ML x SYSDIV) + (D x SYSDIV)

Hit_Writeback_I If the cache block contains the specified
address, write back the data unconditionally.

7 cycles, for a cache miss.
20 cycles, for a cache hit (Writeback).

Table C.2 Primary Instruction Cache Operations
���� ������ � $ � ��������
 �� ����

.9� .����* �� ���9� &��
������ ;���B2 +C������ %����������

���������
��
 ����

�����
���� ������ � $ � ��������
 �� ����

�����

���������
��
 ����
���� ������ % $ # ������
�������- %
��������#��
+�&

��+���$����	�

�����������������	
�	
�	
�	
��������������������

The Standby Mode operation is a means of reducing the internal core’s power consumption when the
CPU is in a “standby” state. In this section, the Standby Mode operation is explained.

��

The RC32364 offers a number of features relevant to low-power systems, including low-power design,
active power management, and a power-down operating mode.

��&�� ��������� !����

The RISCore32300TM core is a static design, and products based on this core, such as the RC32364,
offer various power reduction modes. In addition, the RISCore32300TM supports a “Wait” instruction that is
designed to signal the chip’s other resources that execution and clocking should be halted.

The “Wait” instruction (illustrated and defined below) is used to halt the internal pipeline thus dramati-
cally reducing the power consumption of the CPU.

Format: WAIT

Description: Used to halt the internal pipeline and reduce the power consumption of the CPU.

Operation:

Exceptions: Coprocessor unusable exception.

0

6

6 531 25 2426

COP0

6

0

WAIT

191

CO
0 1 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

T: if AD bus is idle then
StopPipeline

endif
��
 �� ����

������� ����,�! ��,� &��
����� +���
��* ����,�! ��,�

���������
��
 ����

�����
 ////���	'�	'�	'�	'����������������	�	�	�	�

To enter standby mode, first execute the WAIT instruction. When the WAIT instruction finishes the W
pipe-stage, if the AD bus is currently idle, the internal clocks will shut down, thus freezing the pipeline. The
PLL, internal timer, some of the input pin clocks (Int[5:0]*, NMI*, Reset* and ColdReset*) will continue to
run.

If the conditions are not correct when the WAIT instruction finishes the W pipe-stage (such as the AD
bus is not idle), the WAIT is treated as a NOP. Once the CPU is in standby mode, any interrupt—including
the internally generated timer interrupt—will cause the CPU to exit standby mode. Figure D.1 illustrates the
flow of the Standby Mode Operation.

Figure D.1 Flowchart for Standby Mode Operation

When “WAIT” instructions fin ish the W -stage, the R3600 core will
check for BUS ACTIVITY.

“W ait” instruction is treated
as a ”NOP” instruction

Once in Standby Mode, the PC lock will shutdown, freezing

 remain active:

 PLL
Internal Timer Int(5:0)*

NMI*
Reset*
ColdReset*

If bus activity
 detected

the pipeline; however, these signals and internal blocks will

If Int(5:0)*, NMI*, Reset*, or an internal timer
interrupt signal occurs, RC32364 will exit Standby Mode.

AD

Int(5:0)*
NMI*

Reset*
ColdReset*

If bus activity not
detected

ALE

Ack*

Rd*

Wr*

CIP*

After exiting Standby Mode, RC32364 does not sam ple any control/

 AD bus signals on the first rising edge. Also, bus activity and
other internal processes will resume by using the latched inform ation
that existed before entering Standby Mode.

Note: During standby mode, all control signals for the CPU must be deasserted or
put into the appropriate state, and all input signals, except Int(5:0)*, NMI*,Reset*, and
ColdReset* must remain unchanged. If a change occurs, the signal will be unaffected.
���� ������ % $ � ��������
 �� ����

�����

���������
��
 ����
���� ������ + $ # ������
�������- �
��$����

���.�/�)��+

�����������������	
�	
�	
�	
��������������������

This appendix identifies the RC32364 Coprocessor 0 hazards. Certain instruction combinations are not
permitted because the results are unpredictable when combined with events such as pipeline delays, cache
misses, interrupts and exceptions.

Most hazards result from instructions modifying and reading state in different pipeline stages. Such
hazards are defined between pairs of instructions, not on any single instruction. Other hazards are associ-
ated with the restartability of instructions in the presence of exceptions. Refer to the IDT MIPS Micropro-
cessor Family Software Developer’s Guide for more information.

$��� �� 7�=����

RC32364 CP0 hazards are as follows:
◆ An mtc0 followed by an mfc0 is undefined. A one instruction delay between mtc0 and mfc0 is

needed for proper operation.
◆ When DWatch is enabled, the two instructions immediately following may not be checked for a

match with the watch value.
◆ When IWatch is enabled, the five instructions that follow may not be checked for a match with the I

match value.
◆ When bit 23 of the Status register is changed, refills to set A may not be disabled until five instruc-

tions later.
◆ When bit 24 of the Status register is changed, refills to set A may not be disabled until three instruc-

tions later.
◆ Cannot clear UM, ERL, and EXL simultaneously. Must clear UM first, then ERL and EXL can be

cleared simultaneously.
◆ A minimum of two NOP instructions should be inserted between the ERET instruction and the

MTC0 instruction to ensure the EXL and ERL bits are changed correctly.

Example:

MTC0 CO_STATUS, R5

NOP

NOP

ERET
��
 �� ����

���
������
 � �6�
,� 2��
�,������

���������
��
 ����

�����
���� ������ + $ � ��������
 �� ����

�����

���������
��
 ����
���� ������ ; $ # ������
�������- +
"
����������	$�&�#���+��	
�
�����������������	
�	
�	
�	
��������������������

Integer multiply performance is substantially enhanced in the RC32364. The RC32364 adds a MAD
instruction (multiply-accumulate, with HI and LO as the accumulator). Multiply performance is 2 cycles
repeat, 3 cycles of latency for 16-bit operands (-216 to 216-1).

The MAD (multiply/add), MADU (multiply/add unsigned) MSUB (multiply/subtract) and MSUBU
(multiply/subtract unsigned) are defined as follows, where HI and LO act as a 64-bit accumulator. These
instructions do not trap on addition overflow.

After executing this instruction, the HI and LO registers are undefined. For 16-bit operands, the latency
of MUL is 3 cycles, with a repeat rate of 2 cycles. The MUL instruction will also unconditionally slip or stall
for all but 2 cycles of its latency.

The performance of integer multiply and divide is summarized in Table F.1.

In addition, the RC32364 implements another new multiply opcode that allows the multiply result to
be returned directly to the primary register file:

MAD rs, rt temp ← (HI|| LO) + rs * rt
HI ← temp 63 . . 32
LO ← temp 31 . . 0

MADU rs, rt temp ← (HI|| LO) 31. .0) + (0|| rs) * (0|| rt)
HI ← temp 63 . . 32
LO ← temp 31 . . 0

MSUB rs, rt temp ← (HI || LO) - rs * rt
HI ← temp 63 . . 32
LO ← temp 31 . . 0

MSUBU rs, rt temp ← (HI || LO) - (0|| rs) * (0|| rt)
HI ← temp 63 . . 32
LO ← temp 31 . . 0

MUL rd, rs, rt temp ← rs 31 . . . 0 * rt 31 . . 0
rd ← temp 31. . . 0
HI ← undefined
LO ← undefined
��
 �� ����

2���*�
 �������! ��9�,����* 2��
�,������

���������
��
 ����

�����

As a special case, a MAD or MADU that is followed by a MUL instruction has one additional cycle of
repeat above the value specified in the table.

On the RC32364, the result is available immediately and there is no slip.

&���,�� ���,����� -�����! ������ �����

MULT, MAD -215 ≤ rt ≤ 215-1 3 2 0

MULT, MAD rt < -215 or rt > 215-1 4 3 0

MULTU, MADU 0 ≤ rt ≤ 216-1 3 2 0

MULTU, MADU rt > 216-1 4 3 0

MUL -215 ≤ rt ≤ 215-1 3 2 1

rt < -215 or rt > 215-1 4 3 2

DIV, DIVU any 36 36 0

Table F.1 Integer Multiply and Divide Performance
���� ������ ; $ � ��������
 �� ����

�����

���������
��
 ����
���� ������ D $ # ������
�������-;
'0��1�2"
3�	���	��'%������4

"
�������
�����������������	
�	
�	
�	
��������������������

The RC32364 TAP Controller is used to provide access to the EJTAG interface on the CPU core.

On-chip support for low-cost in-circuit emulation (ICE) equipment is featured on the RC32364. The
RC32300 CPU core on the RC32364 implements the standard MIPS Enhanced JTAG (EJTAG) interface,
which includes the following key ICE interface capabilities:

◆ Breakpoints
◆ Debug exception handlers
◆ Execution trace capability

��������������������������������

The following features are supported by the EJTAG:
◆ Two additional instructions are added to the RC32300 CPU core: Set Software Debug Breakpoints

(SDBBP) and Return from Debug Exception (DERET).
◆ The EJTAG module doesn’t support single step execution in hardware. However, it can be accom-

plished in software.
◆ Hardware breakpoints can be set at:

– Virtual instruction address (with address bit masking)
– Virtual data address (with address bit masking) and data value (with byte lane masking)
– Physical processor core address (with lower address bit masking) and physical processor core

data (with data bit masking)
◆ Trace Trigger points can be specified instead of hardware breakpoints. The trace trigger is limited

by the maximum speed of the DCLK that the EJTAG probe can sustain.
◆ Debug breaks can be initiated by the EJTAG Probe via a JTAG pin (TDI/DINT*).
◆ PC Trace information is provided by additional status pins and the processor clock.

Bypass Register

Instruction Register Decoder

4-Bit Instruction Register

Tap Controller

m
u
x

m
u
x

Device ID Register

Boundary Scan Register

jt_tdi

jt_tms

jt_tck

jt_trst_n

jt_tdo
��
 �� ����

+7.0D 32�$��
���� +������
4 2���
����)���: %��*
���

���������
��
 ����

�����
 The EJTAG unit on the RC32300 CPU core is used for debugging the state of the CPU core and is
unaware of the peripherals around the core (memory controller, DRAM controller, etc.). To access the
peripherals around the CPU core, the ICE probe must execute standard load and store instructions to inter-
rogate the register contents of these modules.

The block diagram of the EJTAG Unit on the RC32300 CPU is given in Figure G.1, and the simplified
block diagram is shown in Figure G.2.

The following main blocks provide debug functionality:
◆ Instruction Address Match Logic
◆ Data Address & Data Value Match Logic
◆ Processor Address Bus & Processor Data Bus Match Logic
◆ PC Trace Logic
◆ Software Debug Breakpoint (SDBBP) instruction and Debug Exception Return (DERET) instruction
◆ Debug Registers

%%%%((((��������++++������������������������������������

Figure G.1 Block Diagram

MIPS core

Instruction Cache Data Cache

Instr. Address Instr./DataInstr. Data Address Data

r0

r31
hi
lo
pc

 status
 cause

badva
epc

prid

desave
debug
depc

ALU/shifter

on chip Bus M/S interface

Proc. Address Proc. Data

Instruction
Address
Match
Logic

Data Address
& Data Value
Match Logic

Proc. Address
Bus &
Proc. Data Bus
Match Logic

MIPS Processor Core

DSU Slave Interface (read/write DSU registers)

DSU

on chip Bus

 bus interface unit

Inst.Addr.Brk Data Brk

OR

Sstep

JTAG
Brk

Debug
ExceptionExcep.

Cntl

SDBBP
DERET

other
exceptions

DM (debug mode)

DM

Load DataStore Data

pc trace
logic

TPC

PCST
[2:0]
DCLK

DM

DSU

OR

Trace
Trigger

Trace
Trigger

instr
type

Inst.Addr
Trigger

Data
Trigger

DSU_TIF

DSU_TOF

TM

setTIF

rstTOF

DmaAcc

rstJtagBrk

JtagRst

ProbEn

Doze

PrRst

Run

RealTimeclrRealTime

R C 32300 core
���� ������ D $ � ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� %���* �����
�
���

���������
��
 ����

�����
Figure G.2 Simplified EJTAG Block Diagram

��������''''
�
�
�
���������
$
$
$
$$$$$��������������������������������

This section describes the EJTAG Debug Support unit. It covers the debug instructions added to the
RC32300 CPU core instruction set as well as support functions and registers for debugging.

The debug unit is used to access the internal state of the RC32300 CPU Core, through a standard JTAG
interface that is compatible with the IEEE Std. 1149.1 specification. Additional status pins (for Run-time and
Real-time data collection) along with external third-party hardware and software creates an enhanced JTAG
interface - referred to as EJTAG - which provides a Real-Time debugging system.

 Information on instructions that have been added to the MIPS ISA instruction set and Real-time debug-
ging register descriptions are also included.

���������� ������� !���� $����

If a match occurs between the processor’s virtual Instruction Address and the address value set in the
Instruction Address Break register, a Debug Exception is generated to the core and/or a Trace Trigger code
is applied to the PCST(2:0) lines. Address bits can be excluded from comparison by setting mask bits in a
Mask register.

%��� ������� B %��� 5���� !���� $����

If a match occurs between the processor’s virtual Data Address and the address value set in the Data
Address Break register, then a Debug Exception is generated to the core and/or a Trace Trigger code is
applied to the PCST(2:0) lines. Status bits in the Debug register indicate load or store access. Address bits
can be excluded from comparison by setting mask bits in a Mask register.

��������� ������� ��� B ��������� %��� ��� !���� $����

If a match occurs between the Processor’s physical Address Bus and the address value set in the
Processor Address Bus Break register and there is also a match between the processor’s accompanying
data and the value in the Processor Data Bus Break register, then a Debug Exception is generated to the
core and/or a Trace Trigger code is applied to the PCST(2:0) lines. The lower 24 Address bits can be
excluded from comparison by setting mask bits in a Mask register; the Processor Data Bus bits can be
excluded from comparison by setting mask bits in a Mask register.

The hardware Match Logic is not the only way to generate a Debug Exception. It can also be accom-
plished by the SDBBP instruction and by the EJTAG Probe (through JTAG).

The cause of the Debug Exception can be found in status bits of the Debug Register.

CPU
Core
CPU
Core

Inst. Addr Bkpoint.Inst. Addr Bkpoint.

Debug
Control

Unit

Debug
Control

Unit

=

Data Addr Bkpoint.Data Addr Bkpoint.

=

Phys. Addr Bkpoint.Phys. Addr Bkpoint.

=

JTAG ControlJTAG Control

To BIU TDO TDI

VA 0000_0000 to
FF00_0000

VA FF00_0000
to FFFF_FFFF

Inst. VA

Data VA
���� ������ D $ � ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� +7.0D 2���
����

���������
��
 ����

�����
 ////----&&&&))));;;;��

The EJTAG interface consists of the standard JTAG signals (i.e. TCK, TMS, TDI, TDO, TRST*),
extended with extra signals that provide real time program counter output. A description of the EJTAG pins
is shown in Table G.1.

Note: All input signals require pull-ups at the bonding pads per the JTAG specifications.
Note: The sharing of the JTAG pins for scan chain and debug requires that the scan chain of the
board, if used, is disconnected from the EJTAG interface when it is being used for debugging.

(���
2����1

&�����
%���
������

TCK I Test Clock Input
Input clock used to shift data into or out of the JTAG Instruction or Data register. The TCK
clock may be independent of the processor clock.

TDI/DINT* I Test Data Input / Debug Interrupt
PC Trace mode off: serial input data (TDI) is shifted into the JTAG Instruction register or
Data register on the rising edge of the TCK clock, depending on the TAP controller state.
PC Trace mode on: an active LOW level at this input (DINT*) is used as interrupt to switch
the PC Trace mode off (see DCLK description). This signal is sampled at the TCK positive
edge or asynchronous to TCK.

TDO/TPC O Test Data Output / Target PC Output
PC Trace mode off: serial output data is shifted from the JTAG Instruction or Data register to
the TDO/TPC pin at the falling edge of the TCK clock. When no data is shifted out, the TDO/
TPC is tri-stated.
PC Trace mode on: this pin provides non-sequential program counter output (TPC) at the
processor clock (DCLK).

TMS I Test Mode Select Input
The TMS input signal is decoded by the TAP controller to control test operation. TMS is sam-
pled on the rising edge of TCK.

TRST* I Test Reset Input
The TRST* pin is an active-low signal for asynchronous reset of the EJTAG Module, inde-
pendent of the processor logic. Requires an external pull-down on the board.

RST* I Reset Input for Board
The RST* pin is an active-low signal for asynchronous reset of the entire target board. It is
not implemented directly in the EJTAG module on the RC32364, but it is rather a pin of the
EJTAG connector that goes to the target board.

DCLK O Processor Clock
During PC Trace mode this signal is used to capture address and data from the TDO/TPC pin
at the processor clock speed. This pin may not be needed if there is already a clock output
pin on the processor. The clock at the DCLK pin is the CPU clock. DCLK is disabled (tri-
stated or made 0) via ClkEn bit in EJTAG_Control_register[0] or when no probe is present
(ProbEn=0 in EJTAG_Control_register[15]).
The DCLK is at the same frequency as the CPU pipeline frequency. It has a limit of 100MHz.

PCST [2:0] I/O PC Trace Status Information
More information on the PC Trace Status Information is in the PC Trace section.

DebugBoot I Debug Boot
The Debug Boot input is used during reset and forces the CPU core to take a debug excep-
tion at the end of the reset sequence instead of a reset exception. This enables the CPU to
boot from the ICE probe without having the external memory working. This input signal is
level sensitive and is not latched internally.
This will also set the JtagBrk bit in the EJTAG_Control_Register[12].

PCST[4:3] I/O Reserved

Table G.1 EJTAG Pins
���� ������ D $ � ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� +7.0D 2���
����

���������
��
 ����

�����
 "�������� !����

The RC32300 CPU core has two operating modes: Normal mode and Debug mode. The Normal mode
is when the processor is not executing the debug exception handler routine.

Figure G.3 shows a state diagram where the processor modes and the EJTAG interface functions are
indicated.

The Debug mode is entered after a Debug Exception (derived from hardware breakpoints, single step
etc.) is taken and continues until the Debug Exception Return (DERET) has been executed. In this time the
processor is executing the Debug Exception handler routine.

In Debug Mode, the ProbEn bit determines the debug exception vector address: in case ProbEn=0 the
debug exception handler starts at 0xBFC0-0480 and a debug monitor program will be entered and
executed through regular system memory. When ProbEn=1, the debug exception vector address is
0xFF20-0200 and a debug monitor program can be executed in a “serial” way through the EJTAG protocol.
(In this case, the monitor program is located on the EJTAG Probe, not requiring any physical EPROM on
the target board).

In Debug Mode mode the standard IEEE 1149.1 Test Access Port (TAP) interface (referred to as JTAG)
is used to control the on-chip debug support unit block (DSU). All operations such as read and write to
internal registers, to external system memories and to other on-chip peripherals is performed by the EJTAG
protocol. In this case, the pins TDI/DINT* and TDO/TPC function as TDI input and TDO output.

By executing a PC Trace instruction, defined as an extended JTAG instruction, the PC Trace mode is
entered. This can only be done in Debug Mode and when the EJTAG Probe is present (ProbEn=1). Prior to
execution of the PC Trace instruction the TAP controller must be placed in Run-Test/Idle state by toggling
the TMS signal. In PC Trace mode, Program counter trace information is output via additional status pins in
conjunction with the JTAG pins TDI/DINT* and TDO/TPC. These pins now function as DINT* input and TPC
output. Non-sequential program counter data is available at the TDO/TPC pin clocked out at the processor
speed using the DCLK pin. The type of execution is available as status at the PCST(2:0) pins. The PC
Trace mode can be switched off by a Debug Exception caused e.g. by a breakpoint or when the EJTAG
Probe activates the interrupt signal at the TDI/DINT* pin (which sets the JtagBrk bit in the
EJTAG_Control_register[12]). When the PC Trace mode is switched off by a debug exception, the JTAG
instruction register will be set to the BYPASS code (0x1F).
���� ������ D $ � ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����
 ----&&&&))));;;;��������$�$�$�$�������������������������

Figure G.3 RC32364 Debug Operating Modes

����
�������� ��� ��������(���� ������������

The IEEE 1149.1 architecture is shown in the shaded part of Figure G.1. It consists of an Instruction
Register, a Bypass Register, a Device ID register, an Implementation register and several User Data Regis-
ters (like the EJTAG Address/Data/Control registers) and a test interface referred to as a Test Access Port
(TAP) controller.

The Instruction Register and Data Registers are separate scan paths arranged between the primary
Test Data Input (TDI) pin and primary Test Data Output (TDO) pin. This architecture allows the TAP
controller to select and shift data through one of the two types of scan paths, instruction or data, without
accessing the other scan path.

���� ������ ���� "��������

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two
inputs determine whether an Instruction Register scan or Data Register scan is performed. The TAP
consists of a small controller design, driven by the TCK input, which responds to the TMS input as shown in
the state diagram in Figure G.4. The IEEE 1149.1 test bus uses both clock edges of TCK. TMS and TDI are
sampled on the rising edge of TCK, while TDO changes on the fall

The state diagram for the TAP Controller is shown in Figure G.4.

%���* ��,�

<�
��� ��,�

PC = 0xBFC0 0480
PC Trace Mode off
TDI/DINT* pin: TDI input
TDO/TPC pin: TDO output
DM = 1 (Debug Mode)
"Normal" Memory Execution
No CPU access to Probe Mem.

PC = 0xFF20 0200
PC Trace Mode off
TDI/DINT* pin: TDI input
TDO/TPC pin: TDO output
DM = 1 (Debug Mode)
CPU access Probe Memory
.
If EJTAG PC Trace Inst.:

PC Trace Mode On
TDI/DINT* pin: DINT*
TDO/TPC pin: TPC

DERET Debug Exception

PC = application program
No CPU access to Probe Mem.
DM = 0 (Normal Mode)
PC Trace Mode off

TDI/DINT* pin: TDI input
TDO/TPC pin: TDO output

PC Trace Mode on
TDI/DINT* pin: DINT*
TDO/TPC pin: TPC output

(
���+�E� (
���+�E#

instruction
���� ������ D $ � ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����
Figure G.4 TAP Controller State Diagram

Refer to IEEE Standard Test Access port (IEEE Std. 1149.1), for the full state diagram.

The main state diagram consists of six steady states: Test-Logic-Reset, Run-Test/Idle, Shift-DR, Pause-
DR, Shift-IR, and Pause-IR. A unique feature of this protocol is that only one steady state exists for the
condition when TMS is set high: the Test-Logic-Reset state. This means that a reset of the test logic can be
achieved within five TCK(s) or less by setting the TMS input high.

At power up or during normal operation of the processor, the TAP is forced into the Test-Logic-Reset
state by driving TMS high and applying five or more TCK(s). In this state, the TAP issues a reset signal that
places all test logic in a condition that does not impede normal operation of the processor. When test
access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit the Test-
Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction
Register scan or a Data Register scan can be issued to transition the TAP through the appropriate states
shown in Figure G.4.

The states of the Data and Instruction Register scan blocks are mirror images of each other adding
symmetry to the protocol sequences. The first action that occurs when either block is entered is a capture
operation. For the Data Registers, the Capture-DR state is used to capture (or parallel load) the data into
the selected serial data path. In the Instruction Register, the Capture-IR state is used to capture status infor-
mation into the Instruction Register.

From the Capture state, the TAP transitions to either the Shift or Exit1 state. Normally the Shift state
follows the Capture state so that test data or status information can be shifted out for inspection and new
data shifted in. Following the Shift state, the TAP either returns to the Run-Test/Idle state via the Exit1 and
Update states or enters the Pause state via Exit1. The reason for entering the Pause state is to temporarily
suspend the shifting of data through either the Data or Instruction Register while a required operation, such
as refilling a host memory buffer, is performed. From the Pause state shifting can resume by re-entering the
Shift state via the Exit2 state or terminated by entering the Run-Test/Idle state via the Exit2 and Update
states.

Test- Logic
Reset

Run-Test/
Idle

Select-
DR-Scan

Capture-DR

Shift-DR

Exit1 -DR

Pause-DR

Exit2-DR

Select-
IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-DR Update-IR

1 10 00

11

0

0

1

1

0
1

0

1

0

0

1

1

1

0
0

1 1

0

1

0

1

1

0

0 0

0

���� ������ D $ � ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����
 Upon entering the Data or Instruction Register scan blocks, shadow latches in the selected scan path
are forced to hold their present state during the Capture and Shift operations. The data being shifted into
the selected scan path is not output through the shadow latch until the TAP enters the Update-DR or
Update-IR state. The Update state causes the shadow latches to update (or parallel load) with the new data
that has been shifted into the selected scan path. Limitations of TAP controller are RC32300 CPU core as
part of KOA.

��� ���������� ����� ������
����

All state transitions within the TAP controller occur at the rising edge of the TCLK pulse and—depending
on the TMS signal level (0 or 1)—it proceeds to the next state.

◆ Test-Logic-Reset
– The test logic is disabled so that normal operation of the on-chip system logic can continue unhin-

dered.
◆ Run-Test/Idle

– A controller state between scan operations.
◆ Select-DR-Scan

– This is a temporary controller state in which all test data registers selected by the current instruc-
tion retain their previous state.

◆ Capture-DR
– In this controller state, data may be parallel-loaded into test data registers selected by the current

instruction on the riding edge of TCLK.
◆ Shift-DR

– In this controller state, the test data register connected between TDI and TDO, as a result of the
current instruction, shifts data one stage towards its serial output on each rising edge of TCLK.
The test data register content is being shifted out serially, LSB first, at the falling edge of TCLK
towards the TDO output.

◆ Exit1-DR
– This is a temporary controller state. If TMS is held high, a rising edge applied to TCLK while in this

state causes the controller to enter the Update-DR state, which terminates the scanning process.
If TMS is held low and a rising edge is applied to TCLK, the controller enters the Pause-DR state.

◆ Pause-DR
– This controller state allows shifting of the test data register in the serial path between TDI and TDO

to be temporarily halted.
◆ Exit2-DR

– This is a temporary controller state. If TMS is held high and a rising edge is applied to TCLK while
in this state, the scanning process terminates and the TAP controller enters the Update-DR state.

◆ Update-DR
– Data is latched onto the parallel output of these test data registers from the shift-register path on

the falling edge of TCLK.
◆ Select-IR-Scan

– This is a temporary controller state in which all test data registers selected by the current instruc-
tion retain their previous state.

◆ Capture-IR
– In this controller state, the shift-register contained in the instruction register loads a pattern of fixed

logic values on the rising edge to TCLK.
◆ Shift-IR

– In this controller state, the shift-register contained in the instruction register is connected between
TDI and TDO and shifts data one stage towards its serial output on each rising edge to TCLK. The
instruction shift register content is being shifted out serially, LSB first, at the falling edge of TCLK
towards the TDO output.
���� ������ D $ / ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����

◆ Exit1-IR

– This is a temporary controller state. While in this state, if TMS is held high, a rising edge applied
to TCLK causes the controller to enter the Update-DR state, which terminates the scanning
process. If TMS is held low and a rising edge is applied to TCLK, the controller enters the Pause-
DR state.

◆ Pause-IR
– This controller state allows shifting of the instruction register to be halted temporarily.

◆ Exit2-IR
– This is a temporary controller state. While in this state, if TMS is held high and rising edge is

applied to TCLK termination of the scanning process occurs. The TAP controller then enters the
Update-IR controller state. If TMS is held low and a rising edge is applied to TCLK, the controller
enters the Shift-IR state.

◆ Update-IR
– The instruction shifted into the instruction register is latched to the parallel output from the shift-

register path on the falling edge of TCLK, in this controller state. Once the new instruction has
been latched, it becomes the current instruction.

���������� �������� 0
�2

The Instruction Register is responsible for providing the address and control signals required to access
a particular Data Register in the scan path. The Instruction Register is accessed when the TAP receives an
Instruction Register scan protocol. During an Instruction Register scan operation, the TAP controller selects
the output of the Instruction Register to drive the TDO pin. The Instruction Register consists of an instruc-
tion shift register and an instruction shadow latch. The instruction shift register consists of a series of shift
register bits arranged to form a single scan path between TDI and TDO. During Instruction Register scan
operations, the TAP controls the instruction shift register to capture status information and shift data from
TDI to TDO. Both the capture and shift operations occur on the rising edge of TCK; however, the data
shifted out from the TDO occurs on the falling edge of TCK. The status inputs are user-defined observability
inputs, except for the two least significant bits, which are always 01 for scan-path testing purposes. (The
Instruction Register has a minimum length of two bits.) In the Test-Logic-Reset state, the instruction shift
register is set to all ones. This forces the device into the functional mode and selects the Bypass Register
(or the Device Identification Register if one is present).

The instruction shadow register consists of a series of latches, one latch for each instruction shift
register bit. During an Instruction Register scan operation, the latches remain in their present state. At the
end of the Instruction Register scan operation, the Instruction Register update input updates the latches
with the new instruction installed in the instruction shift register. In the Test-Logic-Reset state, the latches
are set to all ones.

���� %��� �������� 0%�2

The IEEE 1149.1 standard requires two Data Registers: Boundary-Scan Register and Bypass Register,
with a third, optional, Device Identification Register. Additional user-defined Data Registers may be
included. The Data Registers are arranged in parallel from the primary TDI input to the primary TDO output.
The Instruction Register supplies the address that allows one of the Data Registers to be accessed during a
Data Register scan operation. During a Data Register scan operation, the addressed scan register receives
TAP control signals to pre-load test response and shift data from TDI to TDO. During a Data Register scan
operation, the TAP selects the output of the Data Register to drive the TDO pin. When one scan path in the
Data Register is being accessed, all other scan paths remain in their present state.

However, additional specific test data registers are available for various operations during Run-Time and
Real-Time debugging. These registers are connected in parallel between a common serial input and a
common serial data output.

The following sections provide a brief description of these elements. For a complete description, refer to
IEEE Standard Test Access port (IEEE Std. 1149.1 - 1990).
���� ������ D $ � ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����
 Bypass Register

The Bypass Register is used to allow test data to flow through the device from TDI to TDO. It contains a
single-stage shift register for a minimum length in serial path. When an instruction selects the bypass
register and the TAP controller is in the Capture-DR state, the shift register stage is set to a logic zero on
the rising edge of TCLK. Bypass register operations should not have any effect on the device’s operation in
response to the BYPASS instruction.

Boundary Scan Register

The Boundary Scan Register allows serial data to be loaded into or read out of the processor input/
output ports. The Boundary Scan Register is a part of the IEEE 1149.1 - 1990 Standard JTAG Implementa-
tion. The boundary scan register for the internal CPU core must never be used.

Device Identification Register

The Device Identification Register is an optional register defined by IEEE 1149.1, to identify the device's
manufacturer, part number, revision, and other device-specific information. Table G.2 shows the bit assign-
ments defined for the (read only) Device Identification Register. These bits can be scanned out of the Iden-
tification Register after being selected. Although the Device Identification Register is optional, IEEE 1149.1
specification has dedicated an instruction to select this register. The Device Identification Register is
selected when the Instruction Register is loaded with the IDCODE instruction.

.

���
�������� ��������

This is a 32-bit read only register to identify the features of the Debug Support Unit which are imple-
mented by the RC32364.

)��3�4 �������� %���
������ �1@ �����

0 reserved reserved 0x1 R 1

11:1 Manuf_ID Manufacturer Identity (11 bits)
IDT 0x33

 R 0x33

27:12 Part_number Part Number (16 bits)
This field identifies the part number of the processor derivative.
For the RC32300 CPU core implemented in the RC32364, this
value is: 0x0026

 R impl.
dep.

31:28 Version Version (4 bits)
This field identifies the version number of the processor derivative.
For the RC32300 CPU core implemented in the RC32364, this
value is 0x0

 R impl.
dep.

Table G.2 CPU Core Device Identification Register

=�
���� (�
� <����
 =��,�
 2% -�)

0000 0000|0000|0010|0110 0000|0110|011 1

Figure G.5 CPU Core Device ID Instruction Format
���� ������ D $ #� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����

)��3�4 �������� %���
������ �1@ �����

 0 MIPS32/64 MIPS 32-bit or 64 indicates the type of MIPS CPU, informing the
width of the MIPS CPU datapath, the debug registers implemented
in the DSU, and the EJTAG_Data_register.
0: 32-bit wide data registers
1: 64-bit wide data registers
Set to 0 for RC32364

 R 0

 4..1 Ch[3:0] Number of Break Channels: these 4 bits used to indicate the
number of break channels implemented in the DSU.
Debug SW should check InstrBrk, DataBrk and ProcBrk to know
what break types are implemented.
0000 = no break channels
0001 = 1 break channel (Default)
...
1111 = 15 break channels

 R 0001

 5 NoInstBrk Instruction Address Break: this bit indicates if the Instruction
Address Break function is implemented in the DSU.
0: Instruction Address Break is implemented
1: Instruction Address Break is not implemented

 R 0

 6 NoDataBrk Data Address Break: this bit indicates if the Data Address Break
function is implemented in the DSU.
0: Data Address Break is implemented
1: Data Address Break is not implemented

 R 0

 7 NoProcBrk Processor Bus Break: this bit indicates if the Processor Bus
Break function is implemented in the DSU.
0: Processor Bus Break is implemented
1: Processor Bus Break is not implemented

 R 0

 10..8 PCSTW PCST Width and DCLK Division Factor
000,111 3 bits (DCLK is 1/1 of CPU pipeline CLK)
001 6 bits (DCLK is 1/2 of CPU pipeline CLK)
010 9 bits (DCLK is 1/3 of CPU pipeline CLK)
011 12 bits (DCLK is 1/4 of CPU pipeline CLK)
others reserved

 R 000

13..11 TPCW TPC Width
000,111 1 bit 000 is Standard EJTAG
001 2 bits Reserved
010 4 bits Reserved
011 8 bits Reserved
others reserved

 R 000

 14 NoDMA No EJTAG DMA Support
0: EJTAG DMA is supported by implementation
1: EJTAG DMA is not supported by implementation

R 1

 15 NoPCTrace No PC Trace Support
0: PC Trace is supported by implementation
1: PC Trace is not supported by implementation

R 0

 16 MIPS16 MIPS16 Support
0: MIPS CPU does not support MIPS16
1: MIPS CPU supports MIPS16

R 0

 17 ICacheC Instruction Cache Coherency
0: Instruction Cache does not keep DMA coherency
1: Instruction Cache keeps coherency with DMA

R 0

 18 DCacheC Data Cache Coherency
0: Data Cache does not keep coherency with DMA
1: Data Cache keeps coherency with DMA

R 0

Table G.3 Implementation Register (Part 1 of 2)
���� ������ D $ ## ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����
EJTAG Address Register

The length of the EJTAG Address Register is 32 bits. The length is identical to the length of the physical
processor address bus, and is determined by shifting a pattern through the register. This register can be
used as follows:

◆ Processor Access: In this mode the RC32364 can access memory on the EJTAG Probe in a serial
way through the JTAG interface. A 32 bit address is captured and is shifted out via the TDO/TPC
pin to the EJTAG Probe. Depending on the direction of the access, data is shifted into the TDI pin
(processor read) or shifted out of the TDO/TPC pin (processor write).

EJTAG Data Register

This register is used with the EJTAG_Address_register in the following mode:
◆ Processor Access: In this mode the RC32364 can access memory located on the EJTAG Probe in

a serial way through the JTAG interface. A 32 bit data word is captured and is shifted out via the
TDO/TPC pin to the EJTAG Probe for a Processor Write action; for a Processor Read action 32 bits
of data is shifted into the TDI /DINT* pin and is made available to the processor.

The organization of the bytes in the 32 bit EJTAG Data Register depends on the endianess of the CPU,
as shown in Figure G.6 and Figure G.7.

Figure G.6 Byte Organization in a 32-bit EJTAG Data Register

 19 PhysAW Physical Address Width
Informs the size of EJTAG_Address_register
0: Physical addresses are 32-bit in length
1: Physical addresses is from 33 to 64-bits in length The exact
length of can be determined by shifting a pattern through the
EJTAG Address Register.

R 0

22..20 reserved reserved, EJTAG Probe must shift 0s in R 0

23 SDBBPCode SDBBP uses Special2 Opcode (for MIPS-I/II/II/IV)
0: SDBBP is encoded according to EJTAG rw 1.3 specification
1: SDBBP is encoded using a Special2 Opcode

R 0

31..24 reserved reserved, EJTAG Probe must shift 0s in R 0

)��3�4 �������� %���
������ �1@ �����

Table G.3 Implementation Register (Part 2 of 2)

L e a s t s i g n i f i c a n t b y t e i s a t l o w e s t a d d r e s s
W o r d i s a d d r e s s e d b y b y t e a d d r e s s o f l e a s t s i g n i f i c a n t b y t e

b i t 3 1 2 32 4 1 51 6 8 7 0

A [n : 0] = 4

L S B

L I T T L E - E N D I A N

b i t 3 1 2 32 4 1 51 6 8 7 0
M S B L S B

M S B

A [n : 0] = 0

 5 6 7

 3 2 1

A [n : 2] = 0

A [n : 2] = 1A [n : 0] = 7 6 5 4

A [n : 0] = 3 2 1 0

A [n : 2] = 0

A [n : 2] = 1
B I G - E N D I A N

M o s t s i g n i f i c a n t b y t e i s a t l o w e s t a d d r e s s
W o r d i s a d d r e s s e d b y b y t e a d d r e s s o f m o s t s i g n i f i c a n t b y t e
���� ������ D $ #� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����
Figure G.7 Examples of Byte Organization in a 32-bit EJTAG Data Register

EJTAG Control Register

This is a 32 bit register to control the various operations of the debug support and the JTAG unit. This
register is selected by shifting in the JTAG_CONTROL_IR instruction. Bits in the EJTAG_Control_register
can be set/cleared by shifting in data; status is read by shifting out this register.

This EJTAG_Control_register, shown in Table G.4, can only be accessed by the JTAG interface.

)��3�4 �������� %���
������ �1@ �����

 0 ClkEn DCLK output Enable bit
When this bit is set to 0 it disables the DCLK output (making it high
impedance or 0). When it is set to 1 it will enable the DCLK output dur-
ing Real Time Tracing mode.

R/W 0

 1 Unused
This bit is always 0.

W0/R 0

 2 Unused
This bit is always 0.

W1/R 0

 3 BrkSt Break Status
This bit is set to 1 when the processor takes a debug exception and is
cleared when the processor executes the DERET instruction. This bit is
the same as the DM (Debug Mode) bit in Debug Register [30].

 R 0

 4 Unused
This bit is always 0.

R/W 0

 5 Unused
This bit is always 0.

R/W 0

 6 reserved R 0

 8,7 Dsz[1:0] Unused
These bits are always 00.

R/W 00

Table G.4 EJTAG_Control_Register (Part 1 of 3)

EJtag_Data_Reg bit 0bit 31

bit 7 0 Memory

address 2

address 3

address 0

address 1

MIPS CPU Litlle Endian
Transfer size = Byte
EJtag_Address_Reg[1:0] = 11
Dsz[1:0]=00

a

b

c

d

d

EJtag_Data_Reg bit 0bit 31

bit 7 0 Memory

address 2

address 3

address 0

address 1

MIPS CPU Big Endian
Transfer size = Byte
EJtag_Address_Reg[1:0 = 11
Dsz[1:0]=00

a

b

c

d

d

bit 0EJtag_Data_Regbit 31

bit 7 0 Memory

address 2

address 3

MIPS CPU Big Endian
Transfer size = Half word
EJtag_Address_Reg[1:0] = 10
Dsz[1:0]=01

address 1

address 0 a

b

c

d

c d

EJtag_Data_Reg bit 0bit 31

bit 7 0 Memory

address 2

address 3

address 0

address 1

MIPS CPU Litlle Endian
Transfer size = Byte
EJtag_Address_Reg[1:0] = 00
Dsz[1:0]=00

a

b

c

d

a

EJtag_Data_Reg bit 0bit 31

bit 7 0 Memory

address 2

address 3

address 0

address 1

MIPS CPU Big Endian
Transfer size = Byte
EJtag_Address_Reg[1:0] = 00
Dsz[1:0]=00

a

b

c

d

a

bit 0EJtag_Data_Regbit 31

bit 7 0 Memory

address 2

address 3

MIPS CPU Little Endian
Transfer size = Half word
EJtag_Address_Reg[1:0] = 10
Dsz[1:0]=01

address 1

address 0 a

b

c

d

d c
���� ������ D $ #� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����
 9 Unused
This bit is always 0.

R/W 0

 10 Unused
This bit is always 0.

 R 0

 11 Unused
This bit is always 0.

W1/R 0

 12 JtagBrk JTAG Break
Setting this bit to 1 causes a debug exception to the processor. This bit
is also set by activating the TDI/DINT* pin (stopping the PC Trace
mode). When the debug exception occurs, the processor core will be
waken up if it was in sleep mode. This bit is cleared by hardware when
the debug exception is taken. JTAG Break is ignored if the CPU is in
debug mode.

W1/R 0

14..13 reserved reserved R 00

 15 ProbEn EJTAG Probe Enable
This bit must be set to 1 by the probe’s software to indicate that a probe
is present and active. If it is set to 0, it indicates that the probe is not
present or inactive and the EJTAG module will not allow the processor
to access the probe, and the result is undefined (may result in bus
error). The clock at the DCLK pin is disabled in this case.
The debug exception is set at 0xBFC0-0480.

R/W 0

 16 PrRst Processor Reset
When this bit is set to 1, a soft reset exception is forced to the proces-
sor. The reset is sustained as long as the PrRst bit is 1. The processor
will set the SR bit in the processor’s status register. The Processor
Reset bit is not masked by MRst* in Debug Control Register[1].

R/W 0

 17 Unused
This bit is always 0.

R/W 0

 18 PrAcc Processor Access
This bit is set to 1 by hardware when the processor accesses the
probe’s reserved addresses (0xFF20-0000 through 0xFF2F-FFFF). The
probe’s software must set this bit to 0 to indicate the end of the access
action.

W0/R 0

 19 PRnW Processor Access Read not Write
Internal hardware sets this bit to 1 when the Processor Access action is
a write action, it is set to 0 for a read action.

 R 0

 20 PerRst Peripheral Reset
When this bit is set to 1 it will force a reset to all the peripherals of the
processor (except for the EJTAG interface and the Debug Support Unit).

R/W 0

 21 Run Run
When this bit is read as 1, the processor was in the run state (the pro-
cessor clock was running) at the moment that the
EJTAG_Control_register was captured.

 R 1

 22 Unused
This bit is always 0.

 R 0

)��3�4 �������� %���
������ �1@ �����

Table G.4 EJTAG_Control_Register (Part 2 of 3)
���� ������ D $ #� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����
Figure G.8 shows examples of the Sync Operation.

Figure G.8 Examples of the Sync Operation

PC Trace Instruction (only if PC Trace is supported)

This JTAG instruction is used to enable PC Trace mode. The Real-Time Trace mode is set when the
TAP controller has reached the Run-Test/Idle state. In this mode, the TDO/TPC pin provides non-sequential
program counter output at the DCLK speed. The PCST(2:0) pins are used to show the type of instruction
execution. A debug exception disables the PC Trace mode. The instruction register will be set to BYPASS
code (0x1F).

 23 Sync Sync (only used when PCTRACE is supported)
This bit will synchronize the end of the Processor read access (instruc-
tion fetch) with the setting of the PC Trace mode. When this bit is set,
the processor will be stalled for the last processor read access until the
EJTAG module has been placed into the PC Trace Mode (i.e. the PC
Trace instruction is in the instruction register and the TAP controller is in
the Run-Test/idle state). This bit can only be set at the end of a proces-
sor read access, i.e. the PrAcc bit was 1 and is written with a 0 and
PRnW is 0. In all other cases, writing a 1 will be ignored. The bit is
cleared by hardware when the PC Trace mode is entered. The bit can
also be cleared by writing a 0 to it: this will then also generate the
acknowledge for the processor read. This bit is read-only 0 when PC
Trace is not supported (NoPCTrace = 1).

W/R 0

25..24 PCLen Target PC Output Length
Set to 00 for RC32364.

R 0

31..26 reserved reserved R 0

)��3�4 �������� %���
������ �1@ �����

Table G.4 EJTAG_Control_Register (Part 3 of 3)

PrAcc

PRnW

Sync

Trace mode

Debug mode

TDI input

TDO/TPC

by processor; address latched

Processor fetches instruction prior
to DERET

-5 bits sel EJTAG_Ctrl_reg
-32 bits EJTAG_Ctrl_reg shift
-5 bits sel EJTAG_Address_reg
-32 bits EJTAG_Address_reg
-5 bits sel EJTAG_Data_reg
-32 bits EJTAG_Data_reg
-5 bits sel EJTAG_Control_reg
-32 bits EJTAG_Control_reg

Processor Probe resets PrAcc

Processor executes
instruction prior
to DERET

Processor fetches
DERET instruction

Processor
executes
DERET

Processor
Probe shifts
in PC Trace
instruction into
TAP IR

Processor is stalled

Debug Exception

TDI/DINT* DINT* input TDI input

TDO output TPC output TDO output

Processor Probe resets PrAcc
and sets Sync

Synchronisation of processor Access and setting of Trace mode

TDI
DINT*

TDO
TPC

TDI

TDO

TDI

TDO

DINT*

TPC

Synchronization of processor Access and setting of Trace mode
���� ������ D $ #� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����
 ��������� ������

The CPU can then execute code taken from the EJTAG Probe and it can access data (via load or store)
which is located on the EJTAG Probe. This occurs in a serial way through the EJTAG interface: the core can
thus execute instructions e.g. debug monitor code, without occupying the user’s memory.

Accessing the EJTAG Probe’s memory can only be done when the processor accesses an EJTAG
address (which is in the range from 0xFF20-0000 to 0xFF2F-FFFF), when the ProbEn bit is set and when
the processor is in debug mode (DM=1).

When a debug exception is taken, while the ProbEn bit is set, the processor will start fetching instruc-
tions from address 0xFF20-0200.

Instruction Fetch/Read from the EJTAG Probe
1. The internal hardware latches the requested address into the JTAG_Address_Capture Register (in

case of the Debug exception: 0xFF20-0200).
2. The internal hardware sets the following bits in the EJTAG_Control_register:

PrAcc = 1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Dsz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG_Control_register, shifts out this control register’s data and
tests the PrAcc status bit (Processor Access): when the PrAcc bit is found 1, it means that the
requested address is available and can be shifted out.

4. The EJTAG Probe checks the PRnW bit to determine the required access and shifts in a DmaAcc =
0 bit into the EJTAG_Control_register.

5. The EJTAG Probe selects the EJTAG_Address_register and shifts out the requested address.
6. The EJTAG Probe selects the EJTAG_Data_register and shifts in the instruction corresponding to

this address.
7. The EJTAG Probe selects the EJTAG_Control_register and shifts a PrAcc = 0 bit into this register to

indicate to the processor that the instruction is available.
8. The instruction becomes available in the instruction register and the processor starts executing.
9. The processor increments the program counter and outputs an instruction read request for the next

instruction. This will start the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG
Probe’s memory. For this to happen, the processor must execute e.g. a lw, lb,... instruction with the target
address in the appropriate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory. The
store address must be in the range: 0xFF20-0000 to 0xFF2F-FFFF, the ProbEn bit must be set, and the
processor has to be in debug mode (DM=1). The sequence of actions is found below.

Processor Write Access
1. The internal hardware latches the requested address into the JTAG_Address_Capture Register
2. The internal hardware latches the data to be written into the JTAG_Data_Capture Register.
3. The internal hardware sets the following bits in the EJTAG_Control_register:

PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Dsz[1:0] = value depending on the transfer size

4. The EJTAG Probe selects the EJTAG_Control_register, shifts out this control register’s data and
tests the PrAcc status bit (Processor Access): when the PrAcc bit is found 1, it means that the
requested address is available and can be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access and shifts in a DmaAcc=0
bit into the EJTAG_Control_register.

6. The EJTAG Probe selects the EJTAG_Address_register and shifts out the requested address.
7. The EJTAG Probe selects the EJTAG_Data_register and shifts out the data to be written.
8. The EJTAG Probe selects the EJTAG_Control_register and shifts a PrAcc = 0 bit into this register to

indicate to the processor that the write access is finished.
9. The EJTAG Probe writes the data to the requested address in its memory.
10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.
���� ������ D $ #� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����
 Figure G.9 depicts the processor and probe actions for the Processor Read and Processor Write
Access.
.

Figure G.9 EJTAG Processor Access

����� ")��)��&

The processor core, processor peripherals, EJTAG module and the DSU can be reset as follows (see
also Figure G.10):

◆ The hard reset (general reset) signal resets the processor, the EJTAG, the DSU and the peripher-
als.

◆ The EJTAG Probe can Soft Reset the processor core by setting the PrRst bit in the
EJTAG_Control_register.

◆ The EJTAG Probe can reset the peripherals on the processor by setting the PerRst bit in the
EJTAG_Control_register.

◆ The processor can reset both the EJTAG Module and the DSU by setting the JtagRst bit in the
Debug Register.

A System reset can be provided by the EJTAG Probe by activating the combination. of reset control bits:
PrRst and PerRst.

A full system reset through the EJTAG is by the JTAG reset pin to the master reset on the board.

Probe detects PrAcc=1

Processor hardware:
- address -->JTAG_Address_
 Capture_Reg
- data --> JTAG_Data_Capture
 Register
- PrAcc=1, PRnW=1, Psz=xy

PrAcc

Probe shifts
 out address

Probe shifts
out data

Probe clears
PrAcc bit

Probe writes
data to its
memory

Processor Write Access

Probe detects PrAcc=1

Processor hardware:
- address -->JTAG_Address_
 Capture_Reg
- PrAcc=1, PRnW=0, Psz=xy

PrAcc

Probe shifts
 out address.
Probe reads
instruction

Probe shifts in
read
instruction

Probe clears
PrAcc bit

Processor
executes
instruction

Processor Read Access
���� ������ D $ #� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����

.

Figure G.10 Reset Overview

�*��; !����� ����.���

The bus clock may be used to clock all registers within the EJTAG Module which are not part of the TAP-
controller or the JTAG registers (e.g. used for Processor Access or DMA access). These latter registers are
clocked by TCK.

���������� ��������

The instruction Register is a 5-bit field (such as IR4, IR3, IR2, IR1, IR0) that is used to decode 32
different possible instructions and allows instructions to be serially input to the device, when the TAP
controller is in the Shift-IR state.

Instructions are decoded to perform the following tasks:
◆ To select test data registers that may operate while the instruction is current. The other test data

registers should not interfere with chip operation and selected data registers.
◆ To define the serial test data register path that is used to shift data between TDI and TDO during

data register scanning.

Instructions are decoded as shown in Table G.5. Brief descriptions of each instruction are included in the
table, but for a more complete description, refer to IEEE Standard Test Access port (IEEE Std. 1149.1-
1990).

 �" =���� 2���
������ <���1%���
������ ;�������

0x00 EXTEST
Extest is a mandatory instruction provided for external circuitry
and board level interconnection check.

Select Boundary Scan Register.

0x01 IDCODE
Selects the Device Identification Register to read out manufac-
ture’s identity, part number, and version number.

Select Chip Identification Data
Register.

0x02 SAMPLE/PRELOAD
SAMPLE instruction allows a snapshot of data flowing from the
system pins to the on-chip logic, or vice versa.
Preload allows data values to be loaded onto the latched parallel
outputs of the boundary-scan shift register, prior to selection of
the other boundary-scan test instruction.

Select Boundary Scan Register.

Table G.5 Instruction Decoding (Part 1 of 2)

EJTAG
module DSU

MIPS
Processor
Core

OROR

hard
reset

hard
reset

JtagRst

JtagRst

OR
PerRst

hard
reset

PrRst

P
er

ip
he

ra
ls

MIPS Processor

soft
reset

Jtag
reset
(TRST*)

periph.
reset

MIPS Processor

RC32300
���� ������ D $ #/ ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 7.0D &��
�����

���������
��
 ����

�����
0x03 ImpCode Select Implementation Register.

0x04 INTEST
Tests the processor’s internal logic. Test simulations are shifted
in one at a time and applied to the on-chip system logic. The test
results are captured into the Boundary-scan register and exam-
ined by subsequent shifting.

JTAG

0x05 HI-Z
Places all of the device’s output pins into a high impedance state.
An external ICE can then drive all of the pins, and would not
damage on-chip logic as well as the input pins.

JTAG

0x06 CLAMP
Allows the state of the signals driven from the IC pins to be deter-
mined from the boundary-scan register, while the bypass register
is selected as the serial path between TDI and TDO.

JTAG

0x07 BYPASS Bypass mode

0x08 JTAG_ADDRESS_IR
Selects the JTAG_Address_Register from external ICE probe to
load 32-bits of TDI data into the JTAG_Address_Register. At the
DR-Update moment, the shifting stops and the 320bits of data
are then loaded into the update register for the internal bus.

Select JTAG_Address Register.

0x09 JTAG_DATA_IR
Selects the JTAG_Data_Register from external ICE probe to
load 32-bits of TDI data into the JTAG_Data_Register. In addi-
tion, data written to external ICE probe are captured from the
processor or any slave at Data_Capture register. Data latched
are at Capture_DR stage are shifted out via TDO.

Select JTAG_Data Register.

0x0A JTAG_CONTROL_IR
Select the JTAG_Control_Register from the external ICE probe,
to load 32-bits of TDI data into JTAG_Control_Register bits or
read the JTAG_Control_Register bits.

Select JTAG_Control register

0x0B JTAG_ALL_IR
This register is the concatenation of the Address_Shift,
Data_Shift and JTAG_Contrl_Register. It can be used if switch-
ing instructions in the instruction register cost too many TCLK
cycles. The first bit shifted out is bit 0 as shown in Figure G.11

Select JTAG_All register

0x10 PCTRACE
Decoded to switch from Run-Time mode to Real-Time mode.
After executing this instruction, the PCST[2:0] pins, in conjunc-
tion with TDO, provides a non-sequential program counter at the
DCLK speed. TDI/DINT* is used in Real-time mode to switch
back to Run-Time Mode by setting the JtagBrk bit. The instruc-
tion register will be set to BYPASS code (0x1F). Prior to execut-
ing the PCTRACE instruction, the TAP controller is placed into
the Run-Test/Idle state.

PCTRACE Instruction

0x1F BYPASS
Contains a single shift-register stage and is set to provide a mini-
mum-length serial path between TDI and the TDO pins of the
device, when no device test operations are required. Any unused
instruction is defaulted to the BYPASS instruction.

Bypass mode

 �" =���� 2���
������ <���1%���
������ ;�������

Table G.5 Instruction Decoding (Part 2 of 2)
���� ������ D $ #� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� +"���,�, 2���
�������

���������
��
 ����

�����
 Note: As mentioned in the definition of the BYPASS instruction, any unused instruction will
default to the BYPASS instruction.

Figure G.11 Shift Order Sequence of the JTAG_All_IR Register

��� %� �� ����

The Debug Unit section describes the debug unit implemented in the processor, and covers the
extended instruction to MIPS ISA instruction set as well as support functions and registers for Real Time
Debugging.

Note: The EXTERNAL INSTRUCTIONS are slightly different from the original definition.
Similarly, the DEBUG REGISTER is also different.

////0���	�	0���	�	0���	�	0���	�	������������������������

������������������������

The following instructions are added to the standard MIPS ISA instruction set to provide a software
debug breakpoint exception and debug exception return.

�%��� 0����&��� %� �� ����.�����2

Format SDBBP Code

Description This instruction raises a Debug Breakpoint exception, passing control to an exception handler. The
code field can be used for passing information to the exception handler, but the only way to have the
code field retrieved by the exception handler is to load the contents of the memory word containing
this instruction, using the DEPC register. The SDBBP instruction is NOP when it is used in debug
mode (DM=‘1’). The CODE field of the SDBBP is available for use as a software parameter only, and
is retrieved by the debug exception handler only by loading the contents of the memory work contain-
ing the instruction. The CODE field is not used in any way by the hardware.

Operation T: IF not in Debug Mode
 PC <− <− <− <− ExceptionHandlerVector
 if DBD = ‘0’, DEPC <- Address of SDBBP instruction
 else DEPC <- Address of branch (taken) instruction
 DM <- ‘1’
 BrkSt, DBp <- ‘1’
ELSE NOP

Exceptions Debug Breakpoint Exception
Note: The RC32364 implements the following opcode

Address_Shift

Data_Shift

JTAG_Control

Shift 0

0

0

31 026

31 0151628 347811121920232427

 11110000 00 CODE 11
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� +"���,�, �(� ��*����
� 3%���* ��*����
�4

���������
��
 ����

�����
%���� 0%� �� �-������� ������2

////0���	�	0���	�	0���	�	0���	�	����

�� ��������''''

��!!!!

The Standard EJTAG Specification (Version 1.5.3) defines three registers to be added to the CP0 regis-
ters to support debug exceptions:

◆ Debug Register
◆ Debug Exception PC
◆ Debug Exception Save Register

The RC32364 only implements the Debug register and the Debug Exception PC register in the CP0.
The Debug Exception Save Register is implemented as an on-chip register located at physical address
0xFFFF-E210

%� �� ��������

Debug Register, CPO register 24

The Debug Register is used to control the debug exception and provide status information about the
cause of the debug exception. The read only status bits are automatically updated every time the debug
exception is taken.

Description The opcode above was used by MIPS CPUs following EJTAG specification 1.3.1, and its use is dis-
couraged because it may conflict with a future MIPS ISA.

Format DERET

Description This instruction executes a return from a debug exception. It has a branch delay slot, the same as the
branch or jump instruction cycle, executing with a delay of one instruction cycle. The DERET instruc-
tion can not be used in the delay slot itself. The return address stored in the DEPC register is copied
to the PC and processing returns to the original program. The Debug Mode bit (DM in Debug [30])
and the BrkSt bit (EJTAG_Control_Register[3]) are reset.
Note: If a MTC0 instruction was used to set the return address in the DEPC register, a minimum of
two instructions must be executed before executing the DERET.

Operation T: temp <- DEPC
T+1: PC <- temp
 DM <- ‘0’
 BrkSt <- ‘0’

Exceptions Coprocessor Unusable Exception

31 026

31 0151628 347811121920232427

 11100000 00 CODE 00

31 026 2425

31 0151628 347811121920232427

 1111000110100 00 00000000 0000 00000
���� ������ D $ �# ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� +"���,�, �(� ��*����
� 3%���* ��*����
�4

���������
��
 ����

�����
)��3�4 �������� %���
������ �1@ �����

0 Unused
This bit is always 0.

R 0

1 DBp Debug Breakpoint exception status
This bit is set to ‘1’ when a debug exception occurred due to execution of
the SDBBP instruction.

R 0

2 DDBL Debug Data Address Break Load Exception Status
This bit is set to ‘1’ when a Data Address Break caused the debug excep-
tion during execution of a Load Memory instruction.

R 0

3 DDBS Debug Data Address Break Store Exception Status
This bit is set to ‘1’ when a Data Address Break caused the debug excep-
tion during execution of a Store Memory instruction.

R 0

4 DIB Debug Instruction Address Break Exception Status
This bit is set to ‘1’ when an Instruction Address Break caused the debug
exception.

R 0

5 DINT Debug Processor Bus Break Exception Status
This bit is set to ‘1’ when a Processor Bus Break or a JTAG Break (from
the EJTAG Probe) caused the debug exception.

R 0

6 DBES Debug Boot Bit
This bit is set to ‘1’ when Debug Boot is active during reset and forces the
CPU to take the Debug Exception at the end of the reset sequence. It is
cleared by software.

W0/
R

0

7 JtagRst JTAG Reset
Setting this bit to ‘1’ will reset both the EJTAG module and the DSU.

R/W 0

8 Unused
This bit is always 0.

R 0

9 reserved reserved R 0

10 BsF Bus Error Exception Flag
This bit is set to ‘1’ when a bus error exception occurred during a Load or
Store instruction while the debug exception handler was running (DM=‘1’).
The Bus error Exception will set this bit to ‘1’ regardless of writing a ‘0’. It is
cleared by writing a ‘0’ and writing ‘1’ is ignored.

W0/R 0

11 TLF TLB Exception Flag
This bit is set to ‘1’ when a TLB related exception occurs during the Load
or Store instruction while the debug exception handler is running (DM=‘1’).
The TLB exception will set this bit to ‘1’, and it is cleared by writing ‘0’. Writ-
ing ‘1’ is ignored.

W0/R 0

12 OES Other Exception Status
When this bit is set it indicates an exception other than Reset, cache error,
NMI or UTLB Miss/TLB Refill was raised at the same time as a debug
exception. In this case the Status, Cause, EPC and BadVaddr registers
assume the usual status after occurrence of such an exception, but the
address in the DEPC is not the ‘other exception’ vector address. In this
case the proper exception handler address has to be placed in DEPC by
the debug exception handler software, after which processing returns
directly from the debug exception to the other exception handler.

R 0

13 TRS TLB Refill Miss Status
This bit is the same as OES, but it is set when TLB refill occurs at the same
time as a debug exception. DEPC must be set to TLB Refill exception vec-
tor, that is, 0xBFC0_0200 (BEV=1) or 0x8000_0000 (BEV=0), by debug
exception handler software, after which processing returns directly from the
debug exception to the TLB Refill exception handler.
For a description of the exception vector locations for the RC32364,
refer to the Exception Vector Locations section in Chapter 5 (Table
5.16) of this manual.

R 0

Table G.6 Debug Register (Part 1 of 2)
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� +"���,�, �(� ��*����
� 3%���* ��*����
�4

���������
��
 ����

�����
%� �� �-������� ������
 ������� �������� 0%���2

For the RC32364, DEPC is CP0 Register 23.
.

14 NIS Non Maskable Interrupt Status
When this bit is set it indicates that a non-maskable interrupt has occurred
at the same time as a debug exception. In this case the Status, Cause,
EPC and BadVAddr registers assume the usual status after occurrence of
a non-maskable interrupt, but the address in DEPC is not the non-
maskable exception vector address (0xBFC0-0000). Instead, 0xBFC0-
0000 has to be placed in DEPC by the debug exception handler software,
after which processing returns directly from the debug exception to the
non-maskable interrupt handler.

R 0

15 CES Cache Error Status: This bit indicates that a Debug exception and a Cache
Error occurred at the same time.
0: No Cache Error.
1; Cache Error occurred at the same time with Debug exception.

R 0

16 Itrpt Interrupt when Cause.IV is set: This bit indicates that a Debug exception
and an interrupt with the Cause.IVbit set occurred at the same time.
0: No interrupt with Cause.IV bit set.
1; Interrupt with Cause.IV bit set.

R 0

17-29 reserved reserved R 0

30 DM Debug Mode Status
When this bit is set it indicates that a debug exception has been taken. It is
cleared upon return from the debug exception (execution of DERET).
While this bit is set all interrupts (including NMI), TLB exception, Bus error
exception and debug exception are masked and the cache line locking
function is disabled. A copy of the DM status is available in the BrkSt bit
(EJTAG_Control_Register[3]) and the PCST(2:0) status lines (DBM code).

R 0

31 DBD Debug Branch Delay
This bit is set to ‘1’ when a debug exception occurs while an instruction in
the branch delay slot is executing. The DEPC points to the branch or jump
instruction preceding the instruction causing the debug exception.

R 0

)��3�4 �������� %���
������ �1@ �����

31:0 DEPC The DEPC register holds the address where processing resumes after
the debug exception routine has finished. The address that has been
loaded in the DEPC register is the virtual address of the instruction that
caused the debug exception.
If the instruction is in the branch delay slot, the virtual address of the
immediately preceding branch or jump instruction is placed in this reg-
ister. If the preceding instruction was a branch not taken, DEPC may be
implemented point directly to the instruction in the delay slot.
Execution of the DERET instruction causes a jump to the address in
the DEPC.
If the DEPC is both written from software (by MTC0) and by hardware
(debug exception) then the DEPC is loaded by the value generated by
the hardware.
Bit 0 of the DEPC indicates the MIPS16 mode, and is 1 when the inter-
rupted instruction is a MIPS16 instruction. Bit 0 always set to 0 for
RC32364.

 R/W Undefined

Table G.7 Debug Exception Program Counter

)��3�4 �������� %���
������ �1@ �����

Table G.6 Debug Register (Part 2 of 2)
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� ��*����
 ���

���������
��
 ����

�����
 %� �� �-������� ��)� �������� 0%���5�2

In the RC32364, this register is external to the core and implemented at physical address 0xFFFF-E210.

��$$$$

The following registers are implemented in a Debug Support Unit. These registers contain the data,
address, control and status of the break channels, and are only accessible for read when the processor is
executing in Debug Mode (DM=‘1’) and for write when DM=1 and the memory protection bit is switched off
(MP=‘0’). When these conditions are not met, an attempt to access will cause an undefined result, e.g.,
invalid data may be read or a bus/address error exception may be raised. The DSU registers are non-
cached memory locations, although they are in the kseg2 area. Only word/double word accesses are
allowed to these registers. The base address for all of these registers is: 0xFF300000 and the actual
address can be obtained by adding the offset value in Table G.9.

)��3�4 �������� %���
������ �1@ �����

31:0 DESAVE This register is used by the debug exception handler to save one of
the GPRs, that is then used to save the rest of the context to a pre-
determined memory are, e.g. in the EJTAG Probe. This register allows
the safe debugging of exception handlers and other types of code
where the existence of a valid stack for context saving cannot be
assumed.

 R/W Undefined

Table G.8 Debug Exception Save Register

&����� �������� %���
������

0000 DCR Debug Control Register

0004 IBS Instruction Address Break Status

0008 DBS Data Break Status

000C PBS Processor Break Status

...

0100 IBA0 Instruction Address Break 0

0104 IBC0 Instruction Address Break Control 0

0108 IBM0 Instruction Address Break Mask 0

0110 IBA1 Instruction Address Break 1

0114 IBC1 Instruction Break Control 1

0118 IBM1 Instruction Address Break Mask 1

...

0200 DBA0 Data Address Break 0

0204 DBC0 Data Break Control 0

0208 DBM0 Data Address Break Mask 0

...

0300 PBA0 Processor Address Bus Break 0

0304 PBD0 Processor Data Bus Break 0

0308 PBM0 Processor Data Bus Mask 0

030C PBC0 Processor Bus Break Control 0 and Address Mask

Table G.9 32-bit Register Map (Base Address = 0xff30 0000)
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� ��*����
 ���

���������
��
 ����

�����
 %� �� ������� ��������

The Debug Control Register is located at address-offset 0x0000.

)��3�4 �������� %���
������ �1@ �����

 0 TM Trace Mode
0: This mode will output PC trace information at the TDO/TPC pin in
real-time. The serial address output may be incomplete.
1: This mode will output the complete PC address as trace information
at the TDO/TPC pin. The real-time behavior of the processor is not
guaranteed. The RC32364 implements a single level deep buffer to
store PC trace information.

R/W 0

 1 MRst* Mask Soft Reset
0: Soft Reset to the core is masked during debug mode

 (DM=‘1’)
1: No effect
Soft Reset is always permitted during normal mode. This bit will not
mask the Processor reset bit PrRst in EJTAG_Control_Register[16].

R/W 1

 2 MP Memory Protection
0: Write to the DSU + EJTAG reserved area (0xFF20-0000
 - 0xFF3F-FFFF) is possible in debug mode.
1: Write to the DSU + EJTAG reserved area (0xFF20-0000

- 0xFF3F-FFFF) is protected in debug mode, except for
 the Debug Control Register (DCR).

When the processor is not in debug mode, accesses to this area are
NOT allowed.

R/W 1

 3 MNmi Mask Non-Maskable Interrupt (in non debug mode)
0: Mask the NMI signal to the core.
1: Enable the NMI signal to the core.
In debug mode all interrupt inputs to the core are masked

R/W 1

 4 MInt Mask Interrupt (in non debug mode)
0: Mask the interrupt inputs [int(5:0)] to the core
1: Enable the interrupt inputs [int(5:0)] to the core
In debug mode all interrupt inputs to the core are masked.

R/W 1

 5 Unused W1/R 0

 6 Unused W0/R 0

7.28 reserved reserved R 0

 29 ENM Endianess
This bit indicates the default endianess. For some implementations it
is a copy of the END bit in the core’s CONFIG register.
0: Little Endian
1: Big Endian

R 0

 30 HIS Halt Status
It indicates the sleeping state (power-down) when the debug excep-
tion was taken. The precise definition of this power down mode is
implementation specific.
0: Processor was not in sleeping state
1: Processor was in sleeping state
When the RC32364 executes the WAIT instruction, this bit is set.

R 0

 31 Unused R 0

Table G.10 Debug Control Register - DCR
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� ��*����
 ���

���������
��
 ����

�����

���������� ������� !���� ���������

Instruction Address Break Status

Instruction Address Break n

This register contains the upper 30/62 bits of the Instruction Address Break. Table G.12 shows the
format of the Instruction Address Break n register. This address is a virtual address.

Instruction Address Break Mask n

These registers specifies the mask value for the Instruction Address Break Register n (IBAn). Each bit
corresponds to a bit in the address register, and when:

◆ 0: Address bit is not masked, address bit is compared.
◆ 1: Address bit is masked, address bit is not compared.

)��3�4 �������� %���
������ �1@ �����

 0 BS0 Break Status 0
This bit, when set, indicates that an instruction address break or
instruction address trigger has occurred. BS0 can be cleared by
activating JtagRst, hard reset and also by writing a ‘0’ to it.

 R//W 0

14..1 BS[1]
BSn

Break Status [1]
These bits are similar to the BS0 bit and are implemented accord-
ing to the number of channels available.

 R//W 0

23..15 reserved reserved R 0

27..24 BCN Break Channel Number:
These bits indicate the total number of channels implemented for
instruction address break.
0000: Reserved
0001: Channel 1
...
1111: Channel 15

 R 0010

31..28 reserved reserved R 0

Table G.11 Instruction Address Break Status Register - IBS

)��3�4 �������� %���
������ �1@ �����

 0 - Zero R 0

1
1

reserved reserved R 0

 31..2 IBAn[31..2] Instruction Address Break n R/W ?

Table G.12 Instruction Address Break Register n - IBAn

)��3�4 �������� %���
������ �1@ �����

 0 Zero R 0

1
1

reserved reserved R 0

 31..2 IBMn[31..2] Instruction Address Break Mask n R/W ?

Table G.13 Instruction Address Break Mask Register n - IBMn
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� ��*����
 ���

���������
��
 ����

�����
 Instruction Address Break Control n

This register selects the instruction address match function to enable debug break or trace trigger.

%��� ������� ��� %��� !���� ���������

Data Address Break Status
This register provides the status of the possible 15 Data Breakpoints.

)��3�4 �������� %���
������ �1@ �����

 0 BE Break Enable
This bit enables the Instruction Address break function.
0: Instruction Address break function is disabled
1: Instruction Address break function is enabled
If the Instruction Address break function is valid and the processor’s
virtual Instruction Address and the address set by the IBAn register
(masked by IBMn) match, a debug exception to the processor is
generated. The BSn bit in the Instruction Address Break Status reg-
ister is set and the DIB bit in the Debug Register is set to identify the
cause of the debug exception.
When the Instruction Address break occurs, the debug exception
happens just before the instruction is executed. If the debug excep-
tion handler is already running (DM=‘1’), then the debug exception
will not be taken.

R/W 0

 1 reserved reserved R 0

 2 TE Trace Trigger Enable
This bit enables the Trace Trigger function.
0: Instruction Address trace trigger function is disabled
1: Instruction Address trace trigger function is enabled.
If the Trace Trigger function is valid and the processor’s virtual
Instruction Address and the address set by the IBAn register
(masked by IBMn) match, the trace trigger information TST(010) or
TSQ(001) is output to the PCST(2:0) pins; also the BS0 bit in the
Instruction Address Break Status register bit is set.
When an address match occurs with both BE=‘1’ and TE=‘1’, the
Instruction Address break exception is taken after the trace trigger
information is output to the PCST(2:0) pins.

R/W 0

31..3 reserved reserved R 0

Table G.14 Instruction Address Break Control n Register - IBCn

)��3�4 �������� %���
������ �1@ �����

 0 BS0 Break Status 0
This bit, when set, indicates that a data address break or data
address trigger has occurred. BS0 can be cleared by activating
JtagRst, hard reset and also by writing a ‘0’ to it.

R/W 0

14..1 BS[1]
BSn

Break Status [1]
These bits are similar to the BS0 bit and are implemented accord-
ing to the number of channels available.

R/W 0

23..15 reserved reserved R 0

27..24 BCN Break Channel Number
These bits indicate the total number of channels implemented for
data address break.
0000: Reserved
0001: Channel 1
.......
1111: Channel 15

R 0001

31..28 reserved reserved R 0

Table G.15 Data Address Break Status - DBS
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� ��*����
 ���

���������
��
 ����

�����
 Data Address Break n

This register contains the upper 30 bits of the Data Address Break DBAn. This address is a virtual
address.

��������� ��� !���� ���������

The Processor Bus Match registers monitor the bus interface of the MIPS CPU and provide debug
exception or trace trigger for a given physical address and data. Since the CPU bus is implementation
specific, Processor Bus Breaks may not work identically for different MIPS CPUs.

Processor Bus Break Status

The following table shows the format of the Processor Bus Break Status register.

Processor Address Bus Break n

This register contains the bits of the physical Processor Address Bus Break.

)��3�4 �������� %���
������ �1@ �����

0 W Data break match on write
0: Data Address break disable for writes
1: Data Address break enabled for writes

R 0

 1 R Data break match on reads
0: Data Address break disable for reads
1: Data Address break enabled for reads

R 0

 31..2 DBAn[31..2] Data Address Break n R/W ?

Table G.16 Data Address Break n Register - DBAn

)��3�4 �������� %���
������ �1@ �����

 0 BS0 Break Status 0
This bit, when set, indicates that a processor bus break or proces-
sor bus trigger has occurred. BS0 can be cleared by activating
JtagRst, hard reset and also by writing a ‘0’ to it.

R/W 0

14..1 BS[14..1]
BSn

Break Status [14..1]
These bits are similar to the BS0 bit and are implemented accord-
ing to the number of channels available.

R/W 0

23..15 reserved reserved R 0

27..24 BCN Processor Bus Break Channel Number
These bits indicate the total number of channels implemented for
Processor Bus Break.
0000: Reserved
0001: Channel 1
.......
1111: Channel 15

R 0001

31..28 reserved reserved R 0

Table G.17 Processor Bus Break Status - PBS

)��3�4 �������� %���
������ �1@ �����

 0 reserved reserved R 0

1
1

reserved reserved R
R/W

0
?

 31..2 PBAn[31..2] Processor Address Bus Break n R/W ?

Table G.18 Processor Address Bus Break Register n - PBAn
���� ������ D $ �/ ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� ��*����
 ���

���������
��
 ����

�����
 Processor Data Bus Break n
This register specifies the data value for the Processor Data Bus match.

Processor Data Bus Mask n
This register specifies the mask value for the Processor Data Bus Break register. Each bit corresponds

to a bit in the data register:
◆ 0: Data bit is not masked, data bit is compared
◆ 1: Data bit is masked, data bit is not compared

Processor Bus Break Control and Address Mask n
This register selects the Processor Bus match function to enable debug break or trace trigger. It also

includes control bits to enable comparison as well as mask bits to exclude address bits from comparison.

)��3�4 �������� %���
������ �1@ �����

 31..0 PBDn[31..0] Processor Data Bus Break n R/W ?

Table G.19 Processor Data Bus Break n Register - PBDn

)��3�4 �������� %���
������ �1@ �����

31..0 PBMn[31..0] Processor Data Bus Mask n R/W ?

Table G.20 Processor Data Bus Mask n Register - PBMn

)��3�4 �������� %���
������ �1@ �����

0 BE Break Enable
This bit enables the Processor Bus break function.
0: Processor Bus break function is disabled
1: Processor Bus break function is enabled
If the Processor Bus break function is valid and the Processor’s physical
Address = PBAn register (masked by LAM) and the Processor’s Data bus
= PBDn register (masked by PBMn), then a debug exception to the pro-
cessor is generated. The BSn bit in the Processor Bus Break Status regis-
ter is set and the DINT bit in the Debug Register is set to identify the
cause of the debug exception.
If the debug exception handler is already running (DM=‘1’), then the
debug exception will not be taken.

R/W 0

1 reserved reserved R 0

2 TE Trace Trigger Enable
This bit enables the Trace Trigger function.
0: Processor Bus trace trigger function is disabled
1: Processor Bus trace trigger function is enabled.
If the Trace Trigger function is valid and the Processor’s physical Address
= PBAn register (masked by LAM) and the Processor’s Data bus = PBDn
register (masked by PBM0), then the trace trigger information TST(010) or
TSQ(001) is output to the PCST(2:0) pins; also the BSn bit in the proces-
sor Bus Break Status register is set. When a processor bus match occurs
with both BE=‘1’ and TE=‘1’, the Processor Bus break exception is taken
after the trace trigger information is output to the PCST(2:0) pins.

R/W 0

 3 reserved reserved R 0

 4 IFUC Instruction Fetch From Un-cached Area
This bit enables the comparison on Processor Address and Data Bus for
Instruction Fetches in the un-cached area.
0: Processor Address and Data Bus is not compared

for Instruction Fetches in the un-cached area.
1: Processor Address and Data Bus is compared for

Instruction Fetches in the un-cached area.
When BE=‘1’ and IFUC=‘1’ the debug break exception is taken on the
same instruction.

R/W 0

Table G.21 Processor Bus Break Control and Address Mask n - PBCn (Part 1 of 2)
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� ��*����
 ���

���������
��
 ����

�����
Processor Bus Break Function

Processor bus break becomes effective by setting Processor Bus Control Register bits. The Debug Unit
will monitor the processor bus and, depending on the bit setting for instruction fetch from Uncache area or
data load/store in Uncache or Cache region (i.e., IFUC, DLUC, DSUX, PBCO bits), address and data
comparison is performed. PBAO, PBDO, and PBM are holding the address, data, and mask value to be
compared for debug interruption.

Processor Bus Trace Trigger Function

By setting TE=1 bit in the Processor Control register, the processor bus trace trigger becomes effective.
The Debug Unit will monitor the processor bus and, depending on the bit setting for instruction fetch from
Uncache area or Data load/store in Uncache or Cache region (i.e., IFUC, DLUC, DSUC, PBCO bits),
address and data comparison is performed. When the address set by PBA0register and the data set by
PBD0 register matches according to data mask value, Trace Information TST(010) or TSQ(001) is output to
PCST[2:0].

 5 DLUC Data Load from un-cached Area
This bit enables the comparison on Processor Address and Data Bus for
Data Loads in the un-cached area.
0: Processor Address and Data is not compared for

Data Load in the un-cached area.
1: Processor Address and Data is compared for Data

Load in the un-cached area.
When BE=‘1’ and DLUC=‘1’ the debug break exception is taken after the
next instruction.

R/W 0

 6 DSUC Data Store to un-cached Area
This bit enables the comparison on Processor Address and Data Bus for
Data Store to the un-cached area.
0: Processor Address and Data is not compared for

storing data into the un-cached area.
1: Processor Address and Data is compared for storing

data into the un-cached area.
When BE=‘1’ and DSUC=‘1’ the debug break exception is taken after the
next instruction.

R/W 0

 7 DSCA Data Store to Cached Area
This bit enables the comparison on Processor Address and Data Bus for
Data Store to the Cached area.
0: Processor Address and Data is not compared for

storing data to the Cached area.
1: Processor Address and Data is compared for storing

 data to the Cached area.
When BE=‘1’ and DSCA=‘1’ the break exception is taken after the next
instruction.

R/W 0

31..8 LAM Lower Address Mask
These bits specify the mask value for the 24 bit lower bits of the Proces-
sor Address Bus Break register (PBAn[23..0]). Each bit corresponds to
the same bit in PBAn.
0: Address bit is not masked, address bit is compared.
1: Address bit is masked, address bit is not compared.

R/W 0x000

)��3�4 �������� %���
������ �1@ �����

Table G.21 Processor Bus Break Control and Address Mask n - PBCn (Part 2 of 2)
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� %���* +"�������

���������
��
 ����

�����
 ��������''''
�
�
�
�����////0000�����$��$��$��$�������������

The debug exception has priority over all exceptions, except the reset exception.

%� �� �-������� ������

There are several causes of the Debug Exception:
◆ Software Debug Breakpoint (SDBBP) instruction execution
◆ Match on Hardware DSU registers
◆ Debug Exception from the JTAG port. This is caused by the EJTAG Probe setting the Jtagbrk bit in

the EJTAG_Control_Register.

During debug mode no other debug exception can be taken.

%� �� �-������� ��� ����C%��� ����

The causes of the Debug Exception can be masked as follows:
◆ The Software Debug Breakpoint (SDBBP) instruction execution is masked in debug mode.
◆ The Match on Hardware DSU registers is enabled by setting the BE bit in the corresponding Control

register.
◆ Debug Exceptions from the JTAG port are only masked in debug mode.

%� �� �-������� 7�������

When the debug exception is raised, the processor jumps to the debug exception handler.
◆ If the ProbEn bit in the EJTAG_Control_Register[15] is set, the debug exception vector is located at

address location: 0xFF20-0200. (This is mapped in un-cacheable address space).
◆ If the ProbEn bit in the EJTAG_Control_Register[15] is cleared, the debug exception vector is

located at address location: 0xBFC0-0480. (This is mapped in un-cacheable address space).
◆ Only the contents of the Debug register and the DEPC will be affected by the debug exception.
◆ The Debug Mode bit (DM) in the Debug register is set to ‘1’.
◆ One (or more) of the following bits in the Debug Register are set to identify the cause of the debug

exception:
– DSS: after single step execution of an instruction and the SSt bit in the Debug register is set.
– DBp: after execution of the SDBBP instruction.
– DDBL: Data Address match during a Load memory instruction.
– DDBS: Data Address match during a Store memory instruction.
– DIB: Instruction Address match.
– DINT: Processor Bus match or JtagBrk.
– DBD: Set to ‘1’ when the exception was raised for an instruction in the branch delay slot.
– NIS: Set to ‘1’ if a non-maskable interrupt occurred at the same time as the debug exception.
– UMS: Set to ‘1’ when the TLB exception occurred at the same time as the debug exception.
– OES: Set to ‘1’ if another exception (other than reset, TLB, NMI) was raised at the same time as

the debug exception.

Exception priorities: DIB have a higher priority than DBp, and Jtagbrk has the lowest priority.

In case of SDBBP caused exception:
◆ The DEPC register points to the SDBBP instruction, unless that instruction is in the branch delay

slot, in which case the DEPC register points to the branch instruction and DBD bit is set to ‘1’.

In case the debug exception had other cause besides SDDBP:
◆ The DEPC register points to the address of the instruction where the exception was raised (for sin-

gle step exception, this is the instruction to be executed).
◆ A single step exception is not raised for an instruction in the branch delay slot.
◆ When the DERET instruction is executed, a single step exception is not raised for an instruction at

the return destination. If the return destination is a branch instruction, a single step exception is not
raised for that branch instruction or for the instruction in the branch delay slot.
���� ������ D $ �# ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� (� .
���

���������
��
 ����

�����
 �-������� 7������� &��� �� %� �� !��� 0%! �� �� ���2

In Debug Mode, the processor core can only take reset type exceptions, all other exceptions are not
taken. All interrupts including NMI are masked. When the NMI interrupt occurred during Debug mode it is
stored internally and the NMI interrupt is taken after debug handler is finished (DM = ‘0’).

A Load or Store Instruction which generated a TLB related exception during Debug Mode is not taken
and is not executed. Only the TLF bit in Debug Register[11] will be set.

When a Load or Store instruction causes a bus error exception when the processor is in Debug Mode,
no exception is taken and the BsF bit in the Debug Register is set. The result of Load/Store operation is
discarded.

The debug mode has the same privileges as the kernel mode, i.e. access to all physical memory, the
complete instruction set and all registers including GPR and Coprocessor 0 instructions, regardless of the
value of the Kuc bit.

���)����� ��� %� �� �-�������

When a debug exception occurs, the debug exception handler should save the context of the program
that was executing. For that, it can use the DESAVE register. After that, the service routine should deter-
mine the nature of the exception from the Debug Register bits and invoke the corresponding exception
handler.

The DEPC register holds the address to where processing resumes after the debug exception routine
has finished. The address that has been loaded in the DEPC register is the virtual address of the instruction
that caused the debug exception. If the instruction is in the branch delay slot, the virtual address of the
immediately preceding branch or jump instruction is placed in this register and the DBD bit is set. Execution
of the DERET instruction causes a jump to the address in the DEPC.

In case of SDBBP caused exception: the unused bits of the SDBBP instruction (indicated as CODE) can
be used for passing additional information to the exception handler. In order to allow these bits to be viewed
at, the user program should load the contents of the memory word containing this instruction, using the
DEPC register. When the DBD bit in the Debug register is set to ‘1’, the SDBBP instruction is in the branch
delay slot, therefore the value in the DEPC register should be added with 4.

����

����&&&&����������������

The basic idea of the instruction trace method is to output the virtual address of an instruction only when
the program flow is changed by a jump instruction or exception. Jump instructions can be divided into the
following two groups:

◆ PC Relative Jump and Direct Jump: the target address of these instructions is fixed and identified
by the source program. The target address is usually specified by a “label” in assembly language
e.g. j label1 (jump to label1).

◆ Indirect Jump: the indirect jump instruction jumps to an address contained in a general register.
This instruction is usually used for a subroutine call or table jump. The target address is determined
during program execution, e.g. jr r1 (jump to contents of register r1). Note that the ERET instruction
is treated as an indirect jump too.

A target address of a PC relative or direct jump instruction can be determined by the instruction itself.
However, a target address of an indirect jump depends on the contents of a register when the instruction is
executed. Therefore the processor should output a target address of an indirect jump for real-time trace
information.

Jump instructions are also classified into conditional and unconditional jumps. The dynamic information
whether the conditional branch is taken or not taken is necessary for instruction trace.
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� 2���
������ .
��� ���9�,

���������
��
 ����

�����
��������������������

������������������������&&&&��������������������������������####�	�	�	�	

The EJTAG module requires output pin(s) for the PC trace information. EJTAG uses at least the data
output TDO/TPC for that. More pins can be dedicated for PC output if the Extended EJTAG interface is
used (see PC Status and Exception Vector Encoding section).

The other signals (PCST) show the status of execution and also show when one of the break channels
(when programmed to output a trigger) has found a match.

In the RC32364, the number of TPC bits output is 30. To reduce the information at the TPC pin(s), the
processor only outputs a target address of a Direct Jump, an Indirect Jump, a Branch instruction and (part
of) exception vector addresses. However, there is the possibility that the target address output is not
complete.

The target address of an indirect jump may take 30 cycles to output the target address at the 1 bit TDO/
TPC pin. If the next indirect jump is executed in 30 cycles, then the first target address is not output
completely.

In PC Trace mode, non-sequential Program Counter Address information (PC Trace) is output at the
TPC pin(s), in conjunction with trace information at the PCST pins. Non-sequential PC trace is output when
there is a change in the program flow, caused by:

◆ Direct Jump Instructions (J and JAL) where the target address is defined.
◆ Indirect Jump Instructions (JR, JALR and ERET) where the target address is contained in a register.
◆ Branch Instructions (BEQ, BNE, BLEZ, BGTZ, BGEZ, BLTZ, BLTZAL, BCzT, BCzF, BEQL, BNEL,

BLEZL, BGTZL, BLTZL, BGEZLL, BGEZAL, BLTZALL, BCzTL and BCzFL) where a branch target
address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset.

◆ Interrupts and exceptions: an exception code is then output at the TPC pin(s).

����

��������������������

�������������	�	�	�	����////0000�����$��$��$��$�����������������1111������������������������////������������				������������

�� ������ ��������

The PC Trace Status (PCST) Information is output at the same rate as the CPU pipeline clock. The PC
status is only active in Real-Time mode. The PCST encodes the status of the MIPS CPU execution as
follows.

7���� ���,�������
����,�������

PC Relative instruction
Direct Jump instruction

Taken / Not Taken -

Indirect Jump instruction Target Address
Taken / Not Taken

Target Address

Table G.22 Dynamic Trace Information

(��. �!���� ;�������

1 1 1 STL Pipeline stall. During this state there is no Trace Trigger output.

1 1 0 JMP Execution of a Taken Jump Instruction. This status indicates that the jump instruction is taken
and also indicates the start of the target PC address output. In this case the target PC
address of this jump will be output.

1 0 1 BRT Execution of a Taken Direct Jump Instruction or PC Relative instruction. This status indicates
the direct or PC relative jump is taken. In this case there is no PC trace output of this jump’s
target address.

1 0 0 EXP Exception generated. This status indicates that an exception occurred, and an exception
code is output at the TPC pin(s).

Table G.23 PC Trace Status Information (Part 1 of 2)
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� (� ������ ��, +"������� =����
 +���,��*

���������
��
 ����

�����
Status Output on Delay Slots

All jump and branch instructions have a delay slot. The instruction in the delay slot is normally executed
prior to the jump/branch target instruction, however, some instructions nullifies (kills) the delay slot instruc-
tion rather than executing it. These instructions are:

◆ Branch like ly not taken instructions.
◆ The ERET instruction.

For the nullified delay slot instructions the STL (or TST) code is output since the instruction is not part of
the actual instruction flow; for executed delay slot instructions the SEQ (or TSQ) code is output.

For the jump/branch instruction itself JMP/BRT is output when the jump/branch is taken, and SEQ (or
TSQ) is output for the branch when it is not taken. JMP is always output for the ERET instruction. For a
branch likely not taken instruction SEQ is output for the branch likely and STL is output for its nullified delay
slot.

Note that the PC Trace interpreting software may not be able to determine the exact target of a jump/
branch/ERET instruction unless the source is known; this is true even if a complete PC is output for the
target. The reason for this, is that an instruction resulting in a JMP code may or may not have an executed
delay slot (only known if source is known), and thus it will either be the first or the second significant code
(code other than STL or TST) after the JMP which will represent the instruction at the target PC. The PC
Trace interpreting software will however in most cases be able resolve this uncertainty when the first JMP
or BRT is met in the program code at the target PC.

�-������� 5����� ��������

When an instruction receives an exceptional event, either due to an external source (e.g. interrupt) or as
part of the execution flow (SYSCALL, overflow etc.), the EXP code is output for that instruction instead of
what would otherwise have been output.

During an exception, when PCST shows the EXP code, the TPC pins output a exception vector code,
starting from the LSB of the code. Instructions that generate a Debug Exception will not output the EXP
code nor the exception code at the TPC pin(s).

Exception Vector Encoding for RC32364:

Table G.24 shows the 4 bit exception code output at the TPC pin(s) during the EXP code at the PCST
pins.

0 1 1 SEQ Execution of non Jump instructions. This status information indicates that the processor has
executed one instruction of sequential (in line) code. This status also indicates that the condi-
tional jump is not taken.

0 1 0 TST Trace Trigger information is output when the pipeline is stalled. This condition shows that an
Address, Data or Processor Bus trace trigger has occurred before the time that the pipeline is
stalled.

0 0 1 TSQ Trace Trigger output at execution time. This condition shows that an Address, Data or Pro-
cessor Bus trace trigger has occurred during processor execution.

0 0 0 DBM Debug Mode. This condition is active when the Debug Mode is on (DM = ‘1’). This code may
also be output when trace in not on and the CPU is in Normal Mode.

+"�������)+= +?- 0F��G 0F�G 0F/G 0F�G

Reset, Softreset, NMI - - 1 0 0 0

TLB Refill 0 0 0 0 0 0

Table G.24 Exception and Exception Codes at TPC (Part 1 of 2)

(��. �!���� ;�������

Table G.23 PC Trace Status Information (Part 2 of 2)
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� +"��
��� 2���
���� %���������

���������
��
 ����

�����
////0��0��0��0��������������((((��

�*��;

The following signals are used during the PC Trace mode (Table G.25 shows the complete list of EJTAG
interface signals).

◆ TDO/TPC: During PC Trace Mode, the TDO/TPC provides a non-sequential PC (TPC) at the pro-
cessor clock. TPC is output simultaneously with the Program Counter Trace Status Signals
PCST(2:0), starting with PC address 2 or 1. depending on the support of MIPS16 or not.

◆ PCST(2:0): PC Status Trace Information, with the encoding described in Table G.23.
◆ DCLK: Processor Clock: This signal is used by the external EJTAG Probe to capture the TPC and

PCST signals at the MIPS CPU clock rate. The TPC and PCST signals are output at the positive
edge of DCLK.

��&&&&������������������������))))								������������������������
�
�
�
�$$$$
�
�
�
����� &�&�&�&�

!!!!

The target address output at TDO/TPC may change due to occurrence of an exception or of a next
Jump or Branch instruction. There are priorities specified at which the TPC output will change. The Trace
Mode (TM) bit in the Debug Control Register (DCR[0]) determines if the current target PC output is stopped
and the new target PC started instead, or that the current target PC is completely finished.

���� ��
� ��� "����� 0�!DE1F �� %��G1H2

During real-time TPC output, the PC trace information is output at the processor clock and the PC trace
information is in sync. with the program execution. The target PC address output may be incomplete. The
priorities for target PC output in this mode are:

1. If there is no TPC being output, the target address of a taken jump will be output at TDO/TPC, also
when it is a Direct Jump. The PCST pins will show the JMP code (see Figure G.12).

2. If a new indirect jump is executed while the previous target PC is being output, the new indirect jump
target PC will always start and the previous target PC output will be aborted (see Figure G.13).

3. If an exception occurs while the previous target PC is being output, an exception vector code is
output and then the previous discontinued PC output is resumed (see Figure G.15).

4. If an exception occurs while a previous exception vector code is being output, the previous exception
vector code output is aborted and the new exception vector code output is started.

5. If a new direct jump or branch is executed while the previous target PC is being output, then this new
direct jump or branch target PC will not be output. Instead the PCST code will indicate the BRT code.
The target PC for the direct jump or branch is only output when there is no PC trace output for
another jump/branch going on (see Figure G.12). If an exception vector code output is gong on but
no jump/branch target PC is pending, then JMP is output for the direct jump and the target PC output
for the direct jump starts once the exception vector code has been output.

6. If a jump occurs after exception, TPC outputs exception code first and then the target address.

Cache Error 0 - 0 0 1 0

Other 0 - 0 0 1 1

Interrupt (Cause.IV=1) 0 0 0 1 0 1

TLB Refill 1 0 1 1 0 0

Cache Error 1 - 1 1 1 0

Interrupt (Cause.IV=1) 1 0 1 0 0 1

Other 1 - 1 1 1 1

+"�������)+= +?- 0F��G 0F�G 0F/G 0F�G

Table G.24 Exception and Exception Codes at TPC (Part 2 of 2)
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� +"������ �� (� .
��� &�����

���������
��
 ����

�����
 <��(���� ��
� ��� "����� 0�!DE�F �� %��G1H2

During non-real time trace mode the 30 bit target PC for indirect jumps and the 3 bit exception vector
code is always output completely. In this mode, it is only guaranteed that all indirect jump target addresses
and exception vector codes are fully output on TPC, this is however enough information to completely
reconstruct the program execution flow. The RC32364 implements a single level deep buffer to store the
PC trace address.

The priorities for the PC trace output are:
1. If there is no TPC being output, the target address of a taken jump will be output at TDO/TPC, also

when it is a Direct Jump. The PCST pins will show the JMP code.
2. If an exception occurs while the target PC is being output, the exception vector code is output first

and then the previous discontinued PC output is resumed. The Processor core is not stalled in this
case.

3. If an exception occurs while a previous exception vector code is being output, the pending exception
vector code is output first and then the new exception vector code is output. The Processor core is
stalled in this case.

4. a. If an indirect jump instruction is executed while the previous target PC is being output, then the
Processor Core is stalled until the previous target PC is completely output.
b. If an indirect jump instruction is executed while the previous target PC from a direct jump is being
output, the RC32364 uses the 1 level deep buffer to store the PC trace address.

5. If a new direct jump or branch is executed while the previous target PC is being output, then this new
direct jump or branch target PC will not be output. Instead the PCST code will indicate the BRT code.
The target PC for the direct jump or branch is only output when there is no PC trace output going
on (see Figure G.12).

6. If a jump occurs after exception, TPC outputs exception code first and then the target address.

////0000��������$$$$((((����������������������������

����&&&&������������������������
�
�
�
�$$$$
�
�
�
�

����������� �� ������)� *�
�
����������

Figure G.12 indicates the execution of conditional PC relative instructions. The beq and bne instructions
are conditional PC relative jumps. Because the first jump instruction (beq) is taken and the TPC output is
not in use, the target PC of the beq starts to output and the PCST status is the ‘JMP’. The jump status
corresponding to the second jump (bne) is the ‘SEQ’ which indicates the jump is not taken. The third jump
(bne) is taken, the PCST lines show ‘BRT’ but there is no TPC output from its target address since it is a
Direct Jump and the TPC line is already outputting.

Figure G.12 Trace of Conditional PC Relative Jump Instruction

������� *�
�
����������

The execution of an indirect instruction is shown in Figure G.13. When the first indirect jump (jr1) instruc-
tion is executed, the processor outputs the ‘JMP’ code at the PCST pins and starts to output its target
address from the lower bit at the TPC pin. The lower bit is A2. When the second indirect jump instruction
(jr2) is executed, the processor stops outputting the target address of the first indirect jump and starts
outputting the second target address. In this case, the target address of the first indirect jump is incomplete.

Instruction

DCLK

PCST[2:0]

TPC

STL SEQ SEQ JMP SEQ SEQ SEQ SEQSEQ BRT SEQ SEQ SEQ SEQ

 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

sub add
 beq
 (T) nop add

 bne
 (NT) nop add

 bne
 (T) nop add

Branch is taken (JMP).
TPC is output

Branch is not taken
(SEQ)

Branch is taken (BRT).
No TPC is output,
since it is a Direct Jump

add -

DCLK

PCST (2:0)

TPC
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� +"������ �� (� .
��� &�����

���������
��
 ����

�����
Figure G.13 Trace of Indirect Jump Instruction

�� ����� "� �� �-������� +����&�� �� � *�
�
�������
����������

In Figure G.14, the Break instruction is executed and causes an exception. This is indicated by the ‘EXP’
code at PCST and the TPC starts outputting the 3-bit exception code ‘001’ starting with the LSB. The taken
Jr2 instruction causes the JMP code at PCST and the outputting of its target address at TPC.

Figure G.14 Trace of an Exception Followed by a Jump Indirect Instruction

�� ����� �� ��
�������
���������� +����&�� � �� �-�������

In Figure G.15, the indirect jump Jr1 starts the TPC output, but the target address output is stopped to
allow exception code bits of the exception to be output. After this the target address output is continued
again.

Figure G.15 Trace of Indirect Jump Instruction Followed by an Exception

Instruction

DCLK

PCST[2:0]

TPC

STL SEQ SEQ JMP SEQ SEQ SEQ SEQSEQ JMP SEQ SEQ SEQ SEQ

 A2 A3 A4 A5 A6 A7 A2 A3 A4 A5 A6

subadd
 jr1
 (T) nop add

 bne
 (NT) nop add

 jr2
 (T) nop add

Branch is taken (JMP).
TPC is output

Branch is not taken
(SEQ)

Branch is taken (JMP).
New TPC is output,
since it is an Indirect Jum p.
Jr1 TPC output aborted

add -

DCLK

PCST (2:0)

TPC

Instruction

DCLK

PCST[2:0]

TPC

STL SEQ SEQ STL EXP STL STL SEQSEQ JMP SEQ SEQ SEQ SEQ

 A2 A3 A4 A5 A6

sub add
 Break
 (T) - - nop add

 Jr2
 (T) nop add

Branch is taken (JMP).
TPC is output.

add - -

e0 e1 e2

Exception code 001
is output at TPC.
Output of 3 bit code
starts with LSB

DCLK

PCST (2:0)

TPC

Instruction

DCLK

PCST[2:0]

TPC

STL SEQ SEQ JMP SEQ SEQ EXP STLSTL SEQ SEQ SEQ SEQ SEQ

 A2 A3 A4 e0 A5 A6 A7 A8 A9

addadd
 Jr1
 (T) nop andi - - mult add

Branch is taken (JMP).
TPC is output

 - - add sll

 e1 e2

Exception code
is output at TPC.
Output of 3 bit code
starts with LSB

Branch target address
is continued

DCLK

PCST (2:0)

TPC
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� +"������ �� .
��� .
�**�
 &�����

���������
��
 ����

�����
 ////0000��������$$$$((((������������������������&&&&��������������������&&&&��������������������������������
�$
�$
�$
�$
�
�
�
�

Trace trigger information is output at the PCST pins when an instruction address, data or processor bus
trigger occurred.

In general trace triggers should be indicated on the instruction which caused the trigger. However, since
trigger indications can only be indicated in the PC Trace output on SEQ or STL codes (by replacing these
codes with TSQ or TST) the trace trigger indication cannot be exactly defined. If JMP, BRT or EXP needs to
be output, a simultaneous trigger indication must be output on another code and thus the EJTAG Probe
cannot accurately determine the instruction that generated the trigger.

���������� ������� ����� �������

Figure G.16 shows the occurrence of the Trace Trigger TSQ code at the PCST pins for the instruction
address that matches the required conditions.

Figure G.16 instruction Address Trace Trigger

����� ������� ��� ;������ �-������� �� ��� ��
� ��
�

In Figure G.17, both the Trace Trigger and an exception occur at the same moment, then the PCST pins
show the TST code, followed by the EXP code. The 3 bit exception code is output at TPC.

Figure G.17 Trace Trigger and General Exception at the Same Time

Instruction

DCLK

PCST[2:0]

TPC

STL SEQ SEQ SEQ SEQ TSQ SEQ SEQSEQ JMP SEQ SEQ SEQ SEQ

 A2 A3 A4 A5 A6

sub add nop add
 Jr2
 (T) nop add

Branch is taken (JMP).
TPC is output.

add - add sub add
 bne
 (NT)

Instruction which
generates Trace
Trigger. TSQ is output
in the W stage

DCLK

PCST (2:0)

TPC

Instruction

DCLK

PCST[2:0]

TPC

STL SEQ SEQ TST EXP STL STL SEQSEQ JMP SEQ SEQ SEQ SEQ

 subadd
 Break
 (T) - - nop add nop add

Instruction which
generates Trace Trigger
and also exception

 add - -
 Jr2
 (T)

 e0 A2 A3 A4 e1 e2 A5 A6

DCLK

PCST (2:0)

TPC
���� ������ D $ �/ ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� �'���9��* �
�� ����$.��� .
��� �� %���*

���������
��
 ����

�����
 *�
�
������� ������ ����� �������

In Figure G.18 the Jump Indirect (Jr2) is the instruction that generates the Trace Trigger. This indicated
by the TSQ code at the PCST pins.

Figure G.18 Jump Indirect Causes Trace Trigger

���������� ����� *�
�
������� ������ ����� �������

In Figure G.19 the Trace Trigger is caused by the instruction following the Jr2. The resulting trace trigger
output information however is the same. The EJTAG Probe can not accurately determine the instruction
that generated the trigger.

Figure G.19 Instruction after Jump Indirect Causes Trace Trigger

��������������������####��("("("("&&&&����������������&&&&��'
�'
�'
�'
�

����(��
� ����� !��� �� %� �� !��� 0<� ��� "�����2

In Figure G.20, the debug exception occurs in the instruction following the NOP instruction. In this case
there is no target PC output going on. The debug mode is entered directly after the debug exception. When
the instruction causing the debug exception is also set up for generating Trace Trigger, then the TST code
is output at PCST just before debug mode is entered.

Figure G.20 Real-Time Trace Mode to Debug Mode (No Tpc Output)

Instruction

DCLK

PCST[2:0]

TPC

STL SEQ SEQ SEQ SEQ TSQ SEQ SEQSEQ JMP TSQ SEQ SEQ SEQ

 A2 A3 A4 A5 A6

sub add nop add
 Jr2
 (T) nop add

Instruction which
generates Trace Trigger

add - add sub add
 bne
 (NT)

Trace Trigger code TSQ is
output one clock after JMP

DCLK

PCST (2:0)

TPC

Instruction

DCLK

PCST[2:0]

TPC

STL SEQ SEQ STL EXP STL STL SEQSEQ JMP TSQ SEQ SEQ SEQ

 subadd
 Break
 (T) - - nop add nop add add - -

 Jr2
 (T)

 e0 A2 A3 A4 e1 e2 A5 A6

Instruction which
generates Trace Trigger

DCLK

PCST (2:0)

TPC

SEQ

 RF IF ALU MEM WB

 IF RF ALU MEM WB

NOP instruction

Instruction causing debug exception

Debug exception handler IF RF ALU MEM WB

STL DBM (000)

DCLK

PCST[2:0]

TDO/TPC

TDI/DINT

DM

DINT TDI

TDO
TPC

Debug exception

DCLK

PCST (2:0)

TDO/

TDI/

TPC

DINT*
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� (�� &�� �� �9� ����,�
, +7.0D

���������
��
 ����

�����
 ����(��
� ����� !��� �� %� �� !���

In Figure G.21, the target PC is being output (e.g. due to execution of an indirect JR instruction) when a
debug exception occurs. In this case the Debug Mode is entered after the trace output is finished. During
this time the STL code is output at PCST; the debug mode entry is indicated by the DBM code. In debug
mode, the TDO/TPC pin function changes from TPC to TDO; TDI/DINT* pin function changes from DINT* to
TDI.

Figure G.21 Real Time Trace Mode to Debug Mode (Debug Exception in Branch Delay Slot)

��������������������
�
�
�
���������������������####������������������	��	��	��	��������				����////----&&&&))));;;;����

Figure G.22 represents the timing diagram for the EJTAG interface signals.

The standard EJTAG connector (without PC Trace signals) is a 12-pin connector. For Standard EJTAG,
a 24-pin connector has been chosen, providing 12 signal pins and 12 ground pins. This guarantees elimina-
tion of noise problems by incorporating signal-ground type arrangement.

Figure G.22 Timing Diagram of the EJTAG Interface Signals

JMP

 RF IF ALU MEM WB

 IF RF ALU MEM WB

JR instruction

 NOP (delay slot)

Debug exception handler IF stall

SEQ DBM (000)

DCLK

PCST[2:0]

TDO/TPC

TDI/DINT

DM

DINT TDI

TDO
TPC

Debug exception

STL

 A2 A3 A4 A5 A31

 stall

STL STL

DCLK

PCST (2:0)

TDO/

TDI/

TPC

DINT*

TD I/D IN T*
TM S

TD O /TP C ,
TP C [8 :2]

TD O TD O TP C

P C S T(2 :0)

TR S T *

TC K

D C LK

P C S T

t3

t14 t14

t1 t2

t15 t15

t9 t10

t5 t6

t4 t8

t7

t13

t12

t11

TP C ,P C S T (2 :0) cap tu re

Notes to diagram:
t1 = tTCKlow
t2 = tTCKHIGH
t3 = tTCK
t4 = tTDODO
t5 = tTDIS
t6 = tTDIH
t7 = tPCSTDO
t8 = tTPCDO

t9 = tDCKHIGH
t10 = tDCKLOW
t11 = tDCK
t12 = tTRSTDO
t13 = tTRSTR
t14 = tTCK RISE, tTCK FALL
t15 = tDCK RISE, tDCK FALL
���� ������ D $ �� ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� +7.0D 0���������� 2���
������

���������
��
 ����

�����
 Table G.25 shows the pin numbering for the Standard EJTAG (EJT) connector. All the even numbered
pins are connected to GROUND. The last columns show the target signal direction and the recommended
termination at the target. Target termination resistors may be internally in the chip or externally on the
board.

////----&&&&))));;;;����))))$$$$$$$$(�(�(�(���

����� *��; �������� ���� ��� �*��;

Figure G.23 gives an application diagram of a target board showing how the processor’s EJTAG signals
are connected to the Target Connector and to the other (boundary Scan) IC’s on the board.

Figure G.23 Application Diagram of Target Board and EJTAG Connection

(2< �2D<0- .0�D+. 21& .+��2<0.2&<�

a. The value of the series resistor may depend on the actual PCB layout situation.

1 TRST* (optional) Input 10 kΩ pull-up resistor

3 TDI, DINT* Input 10 kΩ pull-up resistor

5 TDO/TPC Output 33 Ω series resistor

7 TMS Input 10 kΩ pull-up resistor

9 TCK Input 10 kΩ pull-up resistorb

b. TCK pull-up resistor is not required according to the JTAG (IEEE1149) standard. It is indicated here to prevent a floating CMOS
input when the EJTAG connector is unconnected.

11 TRST* Input 10 kΩ pull-up resistor

13 PCST[0] Output 33 Ω series resistor

15 PCST[1] Output 33 Ω series resistor

17 PCST[2] Output 33 Ω series resistor

19 DCLK Output 33 Ω series resistor

21 DebugBoot Input 10 kΩ pull-down resistor

23 VIO Input Must be connected to the VCC I/O supply of the device.

Table G.25 Pin Numbering of the JTAG and EJTAG Target Connector

TD O

T
M

S

T
C

K

T
R

S
T

*

TD O TPC

T
R

S
T

*

T
M

S

T
C

K

TD I

JTAG
te stab le IC

JTA G
testab le IC

E JTA G
De bugg ing

JTA G
B ound ary
S can test

TR S T*

 TD O

TM S

TR S T*

TC K

G N D

G N D

G N D

G N D

G N D

G N D

1 2

P C S T[0]

P C S T[1]

P C S T[2]

 D CL K

G N D

G N D

G N D

G N D

 TD I/d in t

P C S T[0]

P C S T[1]
P C S T[2]

 D C LK

4x 3 3 oh m

 TD I D IN T*

V D D

R S T*

5x 10 k
(m ay be

 on-ch ip)

RC 323 00
CP U

S tandard E JTA G
C onnec tor
(m ale header p ins
2 x 1 2 p ins
p itch 1 .27 x 1 .27 m m)

X 1

V D D

**)

**) P robe ’s RS T* to be ’O R -ed ’
w ith B oard /M IP S S ystem R ese t

TARG ET BO AR D

 TD I/D IN T*
 TD O / TP C

TR S T*
TM S
TC K

TDO

D ebu gB oot G N D

 V IO G ND

TD O
TD I

T
R

S
T

*

T
M

S

T
C

K

���� ������ D $ �# ��������
 �� ����

+7.0D 32�$��
���� +������
4 2���
���� +7.0D 0���������� 2���
������

���������
��
 ����

�����
 Jumper block X1 on the Target Board provides the connection of the processor’s TDO/TPC signal to the
EJTAG connector (during EJTAG debugging) or to the other boundary scan testable IC’s on the board
(during boundary scan test). This separates the (high speed) TPC information from the other IC’s during
EJTAG emulation/debugging; after emulation/debugging is finished, the jumpers can be set such that the
processor is part of the boundary scan test chain: TDO/TPC outputs its serial data to the next following TDI
input and the TDO of the last IC in the chain gets connected to the EJTAG connector. A JTAG/Boundary
Scan tester can then be hooked to this connector (Pins 1-10 is sufficient in this case).

Since the EJTAG trace pins (TPC, PCST(2:0), DCLK) contain high speed data, the user shall take
special care in the PCB layout of these signals. The EJTAG connector has to be placed close to the EJTAG
pins of the processor chip; the PC Trace PCB tracks between connector and chip shall be short and prefer-
ably be of equal length.

The EJTAG Probe shall have a female connector that is plugged into this Target Connector. The EJTAG
Probe Connector PCB may also contain a (fast) buffer for the high-speed trace signals; this external buffer
shall be capable of driving the (short) flat cable to the EJTAG Probe box.

7�� ����(
� �� ��� �*��; ��� � �� ������ �����

In order to allow hot plug (connection while power on) the TRST, TDI/DINT*, TMS and TCK should be
tri-state in the EJTAG Probe when the connection is made to target. In this way, the connection will not reset
the target board by accident, and the input signals to the target could then be driven high to the right level
when the Vdd is known.
���� ������ D $ �� ��������
 �� ����

"
+�(
Symbols
"Ignore hit" in User Mode..A-3
Numerics
64-bit data operating requests ..A-3
A
address error exception .. 2-2
advisory instruction. See Prefetch Instruction
Aligning PClock to MasterClock.. 8-3
B
Bus interface

byte-ordering (endianness) ... 9-1
Control registers.. 9-3
data retrieval order.. 9-9
data transfer sequences (8,16,32 bit) 9-1
Variable port-widths .. 9-1

Bus parity support... 9-1
Byte-ordering conventions .. 1-4
C
C bits (TLB Page Coherency Attributes)................................... 4-5
Cache line selection algorithm.. 6-8
CACHE Ops and DWatch exception... 5-9
cache parity values ... 5-10
Cache write algorithms ... 6-7
Characteristics of Primary D-Cache ... 6-4
Characteristics of Primary I-cache.. 6-3
Computational instructions, CPU

categories of ... 2-3
Conditional move instructions

Move Conditional on Not Zero ..A-3
Move Conditional on Zero...A-3

CP0 registers for debug exceptions....................................... G-21
CPU logic.. 9-18
D
debug breakpoint ... G-20
debug exception .. G-31
debug exception return .. G-21
debug operating mode... G-5, G-6
debug registers .. G-21
Debug Support Unit (DSU) .. G-5
Debug Support Unit registers .. G-24
diagnostic states, programming.. 5-3
DMA interfacing protocol .. 9-18
DSP Support instructions

Count Leading Ones...A-6
Count Leading Zeros ..A-6
Multiply Add ..A-4
Multiply Add Unsigned ..A-4
Multiply Subtract ...A-5
���������
��
 ����
���� ������ 2 $ #
Multiply Subtract Unsigned... A-5
DWatch exception prioritizing..5-9
E
EJTAG specification

CP0 registers for debug exceptions G-21
debug exception ... G-31
debug exception return... G-21
debug operating mode ...G-5, G-6
hardware breakpoints... G-1
IEEE 1149.1 (JTAG) See IEEE 1149.1 (JTAG).
JTAG operation .. G-6
match logic ... G-3
PC trace See PC trace.
registers for a Debug Support Unit................................. G-24
software debug breakpoint ... G-20
trace trigger ..G-1, G-3

Endianness configuration..1-4
Exception

addressing...5-14
condition handling ...3-5
handler ..5-1
priority of, DWatch Register...5-9
priority order ..5-1

Exception Processing
Kernel Mode ..5-1
User Mode...5-1

exception, debug.. G-31
EXL bit... 4-8, 4-9, 5-7, 5-13
G
general exception handling (hardware and software)5-23–5-25
H
hardware

interlocks ...2-3
hardware breakpoints... G-1
hint values and prefetch actions... A-2
I
IEEE 1149.1 (JTAG) G-6, G-7, G-9, G-10
Instruction Address Error exception priority5-9
instruction cache miss.. C-1
interlock condition handling...3-5
internal cache parity protection ...9-1
IWatch exception priority ...5-9
J
JTAG operaton ... G-6
K
Kernel Mode..5-3

exception processing...5-1
kseg1...4-9
��������
 �� ����

kseg2 .. 4-9
kset0 ... 4-9
kuseg .. 4-9
on-chip/ice registers.. 4-9

L
Locked cache lines ... 6-8
M
multiplier enhancement instructionsA-4–??
O
operating modes

types of ... 4-9
P
page coherency attribute bits.. 4-5
PC trace

examples of output... G-36
exception followed by a jump indirect instruction........... G-37
indirect instruction followed by an exception.................. G-37
instruction... G-5, G-15, G-32
instruction trace method... G-33
non-real time TPC output... G-36
real time TPC output .. G-35
signals used... G-35
status information... G-33
status output on delay slots ... G-34
trace information .. G-1
trigger output.. G-38

pipeline
branch delay ... 3-4
stalling... 3-5

port width interface support .. 9-1
Powering down inactive units ...D-1
Prefetch Instruction...A-1
prefetch operation... 3-1
Processor

cycles .. 2-3
implementation number .. 5-8
modes programming... 5-3

Programming PClock.. 8-2
R
registers

Bad Virtual Address Register(8) 4-8
Bus Turnaround (BTA) Control Register 9-5
Bus-Error Address Register .. 9-6
Cache Error Register(27)...5-11
Cause Register(13)... 5-6
Compare Register(11)... 5-3
Config Register(16)... 5-8
Context Register(4)... 4-5
Count Register(9).. 5-3
Debug Exception Program Counter Register(23) 5-10
Debug Register(24)... 5-10
debug registers .. G-21
Debug Support Unit registers... G-24
DWatch Register(19) .. 5-9
���������
��
 ����
���� ������ 2 $ �
EntryHi Register(10)..4-8
EntryLo0(2)..4-4
EntryLo1(3)..4-4
Error Checking and Correcting Register(26)5-10
Error Exception Program Counter Register(30)5-12
Exception Program Counter Register (14)5-7
HI and LO Registers..F-1
Index Register(0)...4-3
IWatch Register(18)...5-9
PageMask Register(5)...4-6
Port Width Control Register...9-3
Processor Revision Identifier Register(15)........................5-7
Random Register(1) ..4-4
Status Register(12) ...5-3
TagLo Register(28).. 5-11
Wired Register(6) ..4-7

Reinitializing
reset interface..8-6

reset configuration options ..5-8
Reset configuration settings..8-5
Reset exception servicing ...5-15
Reset sequence timing... D-1
reverse endianness, programming..5-3
revision number...5-8
S
slipped instruction ...3-7
software debug breakpoint ... G-20
Software generated exceptions (SW1 or SW0).......................5-22
software interrupts...5-6
Status Register

User Mode...4-9
Sub-block ordering ..9-9
T
TAP Controller

state assignments .. G-8
state diagram.. G-6

timer interrupt, Compare Register(11).......................................5-3
Timing Diagrams

Address Generation ..9-8
Address Toggling Mid-Transfer..9-9
Bus Error ...9-18
Bus Retry Operations ...9-16–9-17
DMA Transactions ..9-19–9-20
Read Interface Operations9-9–9-11
Write Interface Operations ..9-12–??

TLB Management
attribute bits...4-2

trace trigger ..G-1, G-3
trace, PC See PC trace.
trap signal... A-3
U
User Mode...5-3

exception processing...5-1
virtual address space ..4-9

Using subblock ordering..9-9
��������
 �� ����

V
vector base for the Cache Error exception 5-14
W
WAIT instruction

inactive units ...D-1
standby mode ...D-2

Wired Register
writing to.. 4-7

Word parity ... 6-3
Write Control Interface

cache line writebacks.. 9-12
���������
��
 ����
���� ������ 2 $ �
 ��������
 �� ����

���������
��
 ����
���� ������ 2 $ �
 ��������
 �� ����

	About This Manual
	1 RC32364 Device Overview
	2 CPU Instruction Set Overview
	3 CPU Pipeline Architecture
	4 Memory Management
	5 CPU Exception Processing
	6 Cache��Organization, Operation and Coherency
	7 Processor Signal Descriptions
	8 Clocking, Reset and Initialization Interfaces
	9 Bus Interface Overview
	Appendix A RC32364 Enhancements to MIPS 32 ISA
	Appendix B RC32364 Opcode Map
	Appendix C The Timing of Cache Operations
	Appendix D RC32364 Standby Mode Operation
	Appendix E Coprocessor 0 Hazards
	Appendix F Integer Multiply Scheduling
	Appendix G EJTAG (In-circuit Emulator) Interface

	RC32364 Device Overview
	Introduction
	Signal Terminology
	Figure 1.1 Signal Transitions
	Figure 1.2 Clock-to-Q Delay

	Performance Overview
	Features
	Device Overview
	Figure 1.3 RC32364 Block Diagram
	CPU Registers
	Figure 1.4 RC32364 CPU Registers

	Configuration
	Figure 1.5 Big-Endian Byte Ordering Convention
	Figure 1.6 Little-Endian Byte Ordering Convention

	CP0 Considerations
	Memory Management Unit (MMU)
	On-chip Instruction and Data Caches
	Bus Interface Unit (BIU)
	Pin Description Table
	Address/Data Interfaces
	Read Control Interface
	Write Control Interface
	Bus Retry
	Bus Error

	DMA Mastership Interface
	Clocking Interface
	Reset Interface
	Power Reduction Modes
	Standby Mode Operation

	CPU Instruction Set Overview
	Introduction
	CPU Instruction Formats
	Figure 2.1 CPU Instruction Formats

	Load and Store Instructions (I-type)
	Scheduling a Load Delay Slot
	Defining Access Types

	Computational Instructions (R-type and I-type)
	Operations with 32-bit Operands
	Cycle Timing for Multiply and Divide Instructions
	Table 2.1 Performance Levels of MUL/DIV and New Instructions

	Jump & Branch Instructions (J-type and R-type)
	Overview of Jump Instructions
	Overview of Branch Instructions

	Special Instructions (R-type)
	Exception Instructions
	Coprocessor Instructions (I-type)
	Summary of CPU Supported Instruction Sets
	Table 2.2 Load and Store Instructions�
	Table 2.3 Arithmetic Instructions (ALU Immediate)
	Table 2.4 Arithmetic Instructions (3-Operand, R-Type) (Part 2 of 2)
	Table 2.5 Multiply, Divide and DSP Instructions
	Table 2.6 Jump and Branch Instructions (Part 2 of 2)
	Table 2.7 Shift Instructions
	Table 2.8 Coprocessor Instructions �
	Table 2.9 Special Instructions
	Table 2.10 Exception Instructions
	Table 2.11 CP0 Instructions �

	CPU Pipeline Architecture
	Introduction
	Figure 3.1 Instruction Pipeline Stages

	CPU Pipeline Stages
	1I - Instruction Fetch, Phase One
	2I - Instruction Fetch, Phase Two
	1R - Register Fetch, Phase One
	2R - Register Fetch, Phase Two
	1A - Execution, Phase One
	2A - Execution, Phase Two
	1D - Data Fetch, Phase One
	2D - Data Fetch, Phase Two
	1W - Write Back, Phase One
	2W - Write Back, Phase Two
	Figure 3.2 Pipeline Activities

	Branch Delay
	Figure 3.3 CPU Pipeline Branch Delay

	Load Delay
	Figure 3.4 CPU Pipeline Load Delay

	Interlock and Exception Handling
	Exception Conditions
	Figure 3.5 Exception Detection

	Stall Conditions
	Figure 3.6 Data Cache Miss

	Slip Conditions
	Figure 3.7 Instruction Cache Miss

	Memory Management
	Introduction
	Virtual-to-Physical Address Translation
	Figure 4.1 Overview of a 32-bit Virtual Address Translation

	TLB Management
	Figure 4.2 TLB Register Format
	Table 4.1 TLB Register Field Descriptions�

	MMU Register Descriptions
	Table 4.2 RC32364 MMU Registers
	Index Register (0)
	Figure 4.3 Index Register Format
	Table 4.3 Index Register Field Descriptions

	Random Register (1)
	Figure 4.4 Random Register Format
	Table 4.4 Random Register Field Descriptions

	EntryLo0 (2), and EntryLo1 (3) Registers
	Figure 4.5 EntryLo0 and EntryLo1 Register Formats
	Table 4.5 EntryLo0 and EntryLo1 Register Field Descriptions
	Table 4.6 TLB Page Coherency Attributes

	Context Register (4)
	Figure 4.6 Context Register Format
	Table 4.7 Context Register Field Descriptions

	PageMask Register (5)
	Figure 4.7 PageMask Register Format
	Table 4.8 PageMask Register Field Descriptions

	Wired Register (6)
	Figure 4.8 Diagram Showing Ranges of Wired and Random Entries
	Figure 4.9 Wired Register Format
	Table 4.9 Wired Register Field Descriptions

	Bad Virtual Address Register (BadVAddr) (8)
	Figure 4.10 Bad Virtual Address Register (BadVAddr) Format

	EntryHi Register (10)
	Figure 4.11 EntryHi Register Format
	Table 4.10 EntryHi Register Field Content Descriptions

	Kernel/User Operating Modes and Addressing
	User Mode
	Figure 4.12 Illustration of RC32364 User Mode Address Space

	Kernel Mode
	Figure 4.13 Illustration of RC32364 Kernel Mode Address Space

	CPU Exception Processing
	Introduction
	Exception Processing Registers
	Table 5.1 Basic CP0 Registers �
	Count Register (9)
	Figure 5.1 Count Register Format

	Compare Register (11)
	Figure 5.2 Compare Register Format

	Status Register (12)
	Figure 5.3 Status Register Format
	Table 5.2 Status Register Field Descriptions �

	Status Register Modes and Access States
	Cause Register (13)
	Figure 5.4 Cause Register Format
	Table 5.3 Cause Register Field Descriptions
	Table 5.4 Cause Register ExcCode Field (Part 2 of 2)

	Exception Program Counter (EPC) Register (14)
	Figure 5.5 EPC Register Format

	Processor Revision Identifier (PRId) Register (15)
	Figure 5.6 PRId Register Format
	Table 5.5 PRid Register Field Descriptions

	Config Register (16)
	Figure 5.7 Config Register Format
	Table 5.6 Config Register Field Content Descriptions (Part 2 of 2)

	IWatch Register (18)
	Figure 5.8 IWatch Register Format
	Table 5.7 Watch Register Field Description

	DWatch Register (19)
	Figure 5.9 DWatch Register Format
	Table 5.8 DWatch Register Field Descriptions

	Debug Exception Program Counter (DebugEPC) Register (23)
	Debug Register (24)
	Error Checking and Correcting (ECC) Register (26)
	Figure 5.10 ECC Register Format
	Table 5.9 ECC Register Field Descriptions

	Cache Error (CacheErr) Register (27)
	Figure 5.11 CacheErr Register
	Table 5.10 Cache Error Register Field Descriptions

	TagLo Register (28)
	Figure 5.12 TagLo Register Format
	Table 5.11 TagLo Register Field Descriptions�
	Table 5.12 Primary Cache State Values

	Error Exception Program Counter (Error EPC) Register (30)
	Figure 5.13 ErrorEPC Register

	Processor Exceptions
	Exception Types
	General Exception Process
	Figure 5.14 General Exception Process

	Priority of Exceptions
	Table 5.13 Exception Priority Order (highest to lowest) (Part 2 of 2)

	Exception Vector Locations
	Table 5.14 Base Address Vector Offset
	Table 5.15 List of RC32364 Exception vectors
	Table 5.16 RC32364 Exception Vectors �

	Reset Exception
	Figure 5.15 Process of the Reset Exception

	Debug Exception
	Soft Reset Exception
	Figure 5.16 Process of the Soft Reset and NMI Exceptions

	Nonmaskable Interrupt (NMI) Exception
	Address Error Exception

	TLB Exceptions
	TLB Refill Exception
	TLB Invalid Exception
	TLB Modified Exception
	Cache Error Exception
	Figure 5.17 Process of the Cache Error Exception

	Bus Error Exception
	Integer Overflow Exception
	Trap Exception
	System Call Exception
	Breakpoint Exception
	Reserved Instruction Exception
	Coprocessor Unusable Exception
	Interrupt Exception
	DWatch Exception
	IWatch Exception
	Exception Handling and Servicing Flowcharts
	Table 5.17 List of Exception Handling Flowchart Types
	Figure 5.18 General Exception Handling (HW)
	Figure 5.19 General Exception Servicing Guideline (SW)
	Figure 5.20 TLB Refill Exception Handling (HW)
	Figure 5.21 TLB Refill Exception Servicing Guideline (SW)
	Figure 5.22 Cache Error Exception Handling (HW) and Servicing Guidelines (SW)
	Figure 5.23 Reset, Soft Reset & NMI Exception Handling (HW) and Servicing Guidelines (SW)

	Cache��Organization, Operation and Coherency
	Introduction
	Figure 6.1 Logical Hierarchy of Memory
	Cache Operation Overview

	RC32364 Cache Description
	RC32364 Cache Attributes
	Table 6.1 RC32364 Cache Attributes

	Cache Organization and Accessibility
	Organization of the Primary Instruction Cache (I-Cache)
	Figure 6.2 Primary I-Cache Line Format
	Table 6.2 Primary I-Cache Line Field Descriptions

	Organization of the Primary Data Cache (D-Cache)
	Figure 6.3 Primary D-Cache Line Format
	Table 6.3 Primary D-Cache Line Field Description
	Figure 6.4 Conceptual Primary Cache Lookup Sequence

	Accessing the Primary Caches
	Figure 6.5 Primary Cache Data and Tag Organization

	Primary Cache States
	Table 6.4 Primary Cache States
	Primary Cache States

	Cache Line Ownership
	Cache Write Policy
	Store Buffer

	Cache Replacement Policy
	Cache Initialization
	1. Initialize index location 0x000-0x3fc for set A and then 0x1000-0x13fc for set B.
	2. Initialize as if the data cache were at least 8K large.

	Cache Locking
	When to use Cache Locking
	1. Set the appropriate cache-lock enable bit(s).
	2. Load the critical code/data into the cache(s).
	3. Clear the appropriate cache lock enable bit(s).
	Example: Data Cache Locking
	Example: Instruction Cache Locking

	Processor Signal Descriptions
	Introduction
	Figure 7.1 IDT79RC32364 Processor Signals

	System Interface Signals
	Table 7.1 System Interface Pin Descriptions (Part 2 of 2)

	Clock/Control Interface Signals
	Table 7.2 Clock/Control Interface Signals

	Interrupt Interface Signals
	Table 7.3 Interrupt Interface Signals

	Initialization Interface Signals
	Table 7.4 Initialization Interface Signals

	DMA Interface Signals
	Table 7.5 DMA Interface Signals

	Handshake Interface
	Table 7.6 Handshake Interface Signals

	Debug Emulator Interface
	Table 7.7 ICE/Debug Interface Signals (Part 2 of 2)

	Clocking, Reset and Initialization Interfaces
	Introduction
	Signal Terminology
	Figure 8.1 Signal Transitions
	Figure 8.2 Clock-to-Q Delay

	Basic System Clocks
	MasterClock
	Figure 8.3 System Clocks Data Setup, Output, and Hold timing

	PClock
	Figure 8.4 Timing Illustration of MasterClock-to-PClock Multiply by 2

	Phase-Locked Loop (PLL) Operation
	PLL Components and Operation
	Figure 8.5 PLL Passive Components

	PLL Analog Power Filtering
	Figure 8.6 PLL Filter Circuit for Noisy Environments

	Reset and Initialization Interface
	Figure 8.7 Mode Configuration Interface Reset Sequence
	Boot-Mode Configuration Settings
	Table 8.1 Boot-Mode Configuration Settings �

	Reset Interface
	Figure 8.8 Timing of Cold Reset Signal
	Figure 8.9 Timing of Warm-Reset Signal

	Bus Interface Overview
	Introduction
	Feature Overview
	Data Interfaces
	Table 9.1 Data Interface Pin Description

	Variable Port-Width Interface
	Table 9.2 Port Width Assignments to Data Lines
	Table 9.3 Data Transfer Sequences for 8-bit Port Width �
	Table 9.4 Data Transfer Sequences for 16-bit Port Width
	Table 9.5 Data Transfer Sequences for 32-bit Port Width (Part 2 of 2)

	Interface Control Registers
	The Port-Width Control Register: Virtual Address 0xFFFF_E200
	Figure 9.1 Format of Port Width Control Register
	Table 9.6 Port Width Control Register Field Definition
	Table 9.7 Encoding of 8-, 16-, and 32-bit Port Widths
	Table 9.8 Memory Region Address Ranges �

	The Bus Turnaround (BTA) Control Register: Virtual Address 0xFFFF_E204
	Figure 9.2 Bus Turnaround (BTA) Control Register Format
	Table 9.9 Bus Turnaround (BTA) Control Register Field Descriptions (Part 2 of 2)
	Table 9.10 Width Encoding of Bus Turnaround Cycles
	Figure 9.3 Timing of Bus Turnaround Cycle(s)

	The Bus Error Address Register (Read Only): Virtual Address 0xFFFF_E208

	The Address Interface
	Address Signal Description
	Table 9.11 Addressing Interface Signals �

	Valid Transfer Sizes
	Table 9.12 Encoding for Valid Transfer Sizes �

	Memory Port Width Encodings
	Table 9.13 Encoding of 8-, 16-, and 32-bit Port Widths

	Address Generation Timing
	Figure 9.4 Address Generation at Start of Transfer
	Figure 9.5 Address Toggling Mid-Transfer

	Read Control Interface
	Figure 9.6 Data Retrieval in a Subblock Order
	Read Control Interface Signals
	Read Interface Timing Diagrams
	Figure 9.7 Single-Word Back-to-Back Read Cycles
	Figure 9.8 Cache Line Read from a 32-bit Port Device
	Figure 9.9 Cache Refill Using an Eight-Halfword Subblock Ordered Sequence from 16-bit Port Device...
	Figure 9.10 Cache Refill Using an Eight-Halfword Subblock Ordered Sequence from 16-bit Port Devic...

	Write Control Interface
	Timing Diagrams for Write Interface Operations
	Figure 9.11 Single-Word Back-to-Back Write Cycles
	Figure 9.12 Single-Word Back-to-Back Read, Followed by a Write Cycle
	Figure 9.13 Burst Write to a 32-bit Port
	Figure 9.14 Write Throttle Timing Diagram
	Figure 9.15 Eight HalfWords Sequential Ordering Write (Part 1)
	Figure 9.16 Eight HalfWords Sequential Ordering Write (Part 2)

	Bus Retry
	Figure 9.17 Bus Retry with Pending BusReq*
	Figure 9.18 Bus Retry without a Pending BusReq*
	Figure 9.19 Assertion of Retry* along with Ack* Asserted
	Bus Error
	Figure 9.20 Bus Error

	DMA Mastership Interface
	Table 9.14 DMA Interface Pin Descriptions

	DMA Mastership Initiation
	Figure 9.21 Bus Grant and Start of DMA Transaction

	Relinquishing Mastership Back to the CPU
	Figure 9.22 Regaining Bus Mastership

	CPU Initiated Bus Grant De-Assertion
	Figure 9.23 DMA Protocol BusGNT* De-assertion

	RC32364 Enhancements to MIPS 32 ISA
	Introduction
	Prefetch (PREF)
	Figure A.1 Format of Prefetch Instruction
	Figure A.2 Flowchart for Prefetch Operation
	Table A.1 Value of Hint Field for the Prefetch Instruction �

	Elimination of 64-bit instructions
	Conditional Move Operations
	Move Conditional on Not Zero
	Move Conditional on Zero

	Instructions for DSP Support
	Multiply Add
	Multiply Add Unsigned
	Multiply Subtract
	Multiply Subtract Unsigned
	Count Leading Zeros
	Count Leading Ones

	RC32364 Opcode Map
	The Timing of Cache Operations
	Introduction
	Caveats About Cache Operations
	Cache Operations Tables
	Table C.1 Primary Data Cache Operations
	Table C.2 Primary Instruction Cache Operations

	Fill_I Equation Definitions
	RC32364 Standby Mode Operation
	Introduction
	Power Management
	Power Reduction Modes

	Entering Standby Mode
	Figure D.1 Flowchart for Standby Mode Operation

	Coprocessor 0 Hazards
	Introduction
	List of Hazards
	Example:

	Integer Multiply Scheduling
	Introduction
	Table F.1 Integer Multiply and Divide Performance

	EJTAG (In-circuit Emulator) Interface
	Introduction
	Overview
	Block Diagrams
	Figure G.1 Block Diagram
	Figure G.2 Simplified EJTAG Block Diagram

	Debug Support Unit
	Instruction Address Match Logic
	Data Address & Data Value Match Logic
	Processor Address Bus & Processor Data Bus Match Logic

	EJTAG Interface
	Table G.1 EJTAG Pins��
	Operating Modes

	JTAG Operation
	Figure G.3 RC32364 Debug Operating Modes
	Test Interface and Boundary-Scan Architecture
	Test Access Port Operation
	Figure G.4 TAP Controller State Diagram

	TAP Controller State Assignments
	Instruction Register (IR)
	Test Data Register (DR)
	Bypass Register
	Boundary Scan Register
	Device Identification Register
	Table G.2 CPU Core Device Identification Register
	Figure G.5 CPU Core Device ID Instruction Format
	Implementation Register
	Table G.3 Implementation Register� (Part 2 of 2)

	EJTAG Address Register
	EJTAG Data Register
	Figure G.6 Byte Organization in a 32-bit EJTAG Data Register
	Figure G.7 Examples of Byte Organization in a 32-bit EJTAG Data Register

	EJTAG Control Register
	Table G.4 EJTAG_Control_Register� (Part 3 of 3)
	Figure G.8 Examples of the Sync Operation

	PC Trace Instruction (only if PC Trace is supported)
	Processor Access

	Instruction Fetch/Read from the EJTAG Probe
	1. The internal hardware latches the requested address into the JTAG_Address_Capture Register (in...
	2. The internal hardware sets the following bits in the EJTAG_Control_register: PrAcc = 1 (select...
	3. The EJTAG Probe selects the EJTAG_Control_register, shifts out this control register’s data an...
	4. The EJTAG Probe checks the PRnW bit to determine the required access and shifts in a DmaAcc = ...
	5. The EJTAG Probe selects the EJTAG_Address_register and shifts out the requested address.
	6. The EJTAG Probe selects the EJTAG_Data_register and shifts in the instruction corresponding to...
	7. The EJTAG Probe selects the EJTAG_Control_register and shifts a PrAcc = 0 bit into this regist...
	8. The instruction becomes available in the instruction register and the processor starts executing.
	9. The processor increments the program counter and outputs an instruction read request for the n...
	Processor Write Access

	1. The internal hardware latches the requested address into the JTAG_Address_Capture Register
	2. The internal hardware latches the data to be written into the JTAG_Data_Capture Register.
	3. The internal hardware sets the following bits in the EJTAG_Control_register: PrAcc = 1 (select...
	4. The EJTAG Probe selects the EJTAG_Control_register, shifts out this control register’s data an...
	5. The EJTAG Probe checks the PRnW bit to determine the required access and shifts in a DmaAcc=0 ...
	6. The EJTAG Probe selects the EJTAG_Address_register and shifts out the requested address.
	7. The EJTAG Probe selects the EJTAG_Data_register and shifts out the data to be written.
	8. The EJTAG Probe selects the EJTAG_Control_register and shifts a PrAcc = 0 bit into this regist...
	9. The EJTAG Probe writes the data to the requested address in its memory.
	10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.
	Figure G.9 EJTAG Processor Access
	Reset Overview
	Figure G.10 Reset Overview

	EJTAG Module Clocking
	Instruction Register
	Table G.5 Instruction Decoding (Part 2 of 2)
	Figure G.11 Shift Order Sequence of the JTAG_All_IR Register

	The Debug Unit

	Extended Instructions
	SDBBP (Software Debug Breakpoint)
	DERET (Debug Exception Return)

	Extended CP0 Registers (Debug Registers)
	Debug Register
	Debug Register, CPO register 24
	Table G.6 Debug Register (Part 2 of 2)
	Debug Exception Program Counter Register (DEPC)
	Table G.7 Debug Exception Program Counter

	Debug Exception Save Register (DESAVE)
	Table G.8 Debug Exception Save Register

	Register Map
	Table G.9 32-bit Register Map (Base Address = 0xff30 0000) �
	Debug Control Register
	Table G.10 Debug Control Register - DCR �

	Instruction Address Match Registers
	Instruction Address Break Status
	Table G.11 Instruction Address Break Status Register - IBS

	Instruction Address Break n
	Table G.12 Instruction Address Break Register n - IBAn

	Instruction Address Break Mask n
	Table G.13 Instruction Address Break Mask Register n - IBMn

	Instruction Address Break Control n
	Table G.14 Instruction Address Break Control n Register - IBCn �
	Data Address and Data Match registers

	Data Address Break Status
	Table G.15 Data Address Break Status - DBS �

	Data Address Break n
	Table G.16 Data Address Break n Register - DBAn
	Processor Bus Match Registers

	Processor Bus Break Status
	Table G.17 Processor Bus Break Status - PBS �

	Processor Address Bus Break n
	Table G.18 Processor Address Bus Break Register n - PBAn

	Processor Data Bus Break n
	Table G.19 Processor Data Bus Break n Register - PBDn

	Processor Data Bus Mask n
	Table G.20 Processor Data Bus Mask n Register - PBMn

	Processor Bus Break Control and Address Mask n
	Table G.21 Processor Bus Break Control and Address Mask n - PBCn (Part 2 of 2)

	Processor Bus Break Function
	Processor Bus Trace Trigger Function

	Debug Exception
	Debug Exception Causes
	Debug Exception Enabling/Disabling
	Debug Exception Handling
	Exception Handling when in Debug Mode (DM bit is set)
	Servicing the Debug Exception

	PC Trace
	Table G.22 Dynamic Trace Information

	Instruction Trace Method
	PC Status and Exception Vector Encoding
	PC Status Encoding
	Table G.23 PC Trace Status Information (Part 2 of 2)

	Status Output on Delay Slots
	Exception Vector Encoding

	Exception Vector Encoding for RC32364:
	Table G.24 Exception and Exception Codes at TPC (Part 2 of 2)

	External Interface Definition
	EJTAG

	Priority of Target Address Output (TPC)
	Real Time TPC Output (TM=‘0’ in DCR[0])
	1. If there is no TPC being output, the target address of a taken jump will be output at TDO/TPC,...
	2. If a new indirect jump is executed while the previous target PC is being output, the new indir...
	3. If an exception occurs while the previous target PC is being output, an exception vector code ...
	4. If an exception occurs while a previous exception vector code is being output, the previous ex...
	5. If a new direct jump or branch is executed while the previous target PC is being output, then ...
	6. If a jump occurs after exception, TPC outputs exception code first and then the target address.
	Non-Real Time TPC Output (TM=‘1’ in DCR[0])

	1. If there is no TPC being output, the target address of a taken jump will be output at TDO/TPC,...
	2. If an exception occurs while the target PC is being output, the exception vector code is outpu...
	3. If an exception occurs while a previous exception vector code is being output, the pending exc...
	4. a. If an indirect jump instruction is executed while the previous target PC is being output, t...
	5. If a new direct jump or branch is executed while the previous target PC is being output, then ...
	6. If a jump occurs after exception, TPC outputs exception code first and then the target address.

	Examples of PC Trace Output
	Conditional PC Relative Jump Instruction
	Figure G.12 Trace of Conditional PC Relative Jump Instruction

	Indirect Jump Instruction
	Figure G.13 Trace of Indirect Jump Instruction

	PC Trace Of An Exception Followed By A Jump Indirect Instruction
	Figure G.14 Trace of an Exception Followed by a Jump Indirect Instruction

	PC Trace of an Indirect Instruction Followed by an Exception
	Figure G.15 Trace of Indirect Jump Instruction Followed by an Exception

	Examples of Trace Trigger Output
	Instruction Address Trace Trigger
	Figure G.16 instruction Address Trace Trigger

	Trace Trigger and General Exception at the Same Time
	Figure G.17 Trace Trigger and General Exception at the Same Time

	Jump Indirect Causes Trace Trigger
	Figure G.18 Jump Indirect Causes Trace Trigger

	Instruction after Jump Indirect Causes Trace Trigger
	Figure G.19 Instruction after Jump Indirect Causes Trace Trigger

	Switching from Real-Time Trace to Debug
	Real-Time Trace Mode to Debug Mode (No TPC Output)
	Figure G.20 Real-Time Trace Mode to Debug Mode (No Tpc Output)

	Real-Time Trace Mode to Debug Mode
	Figure G.21 Real Time Trace Mode to Debug Mode (Debug Exception in Branch Delay Slot)

	Pin Out of the Standard EJTAG
	Figure G.22 Timing Diagram of the EJTAG Interface Signals
	Table G.25 Pin Numbering of the JTAG and EJTAG Target Connector

	EJTAG Application Information
	Using JTAG Boundary Scan and EJTAG
	Figure G.23 Application Diagram of Target Board and EJTAG Connection

	Hot Plug-In of the EJTAG Probe to Target System

	Symbols
	Numerics
	A
	B
	C
	D
	E
	G
	H
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	Index

	32364title.pdf
	Version 1.1
	April 1999
	IDT79RC32364 RISControllerTM Advanced Architecture 32-bit Embedded Microprocessor,
	User’s Reference Manual

