tel.

1960®° CA/CF Microprocessor
User’s Manual

March 1994
Order Number: 270710-003



Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.
MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark or
products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641
or call 1-800-879-4683

© INTEL CORPORATION 1994



Intel® CONTENTS

CHAPTER 1
INTRODUCTION
11 i960®° MICROPROCESSOR ARCHITECTURE .....oovuvevceeeeeeeeeeeeee e 1-1
11.1 Parallel INStruction EXECULION .......cvviiiiiieiiiiieeee et 1-1
11.2 Full Procedure Call MOUEI .........coociiiiiieiee e e 1-3
1.1.3 Versatile Instruction Set and AdAreSSING .......ooieiiiiiiiieiiiii e 1-3
114 Integrated Priority Interrupt Model ...........ooiiiiii e 1-3
1.15 Complete Fault Handling and Debug Capabilities ..........cccco i 1-4
1.2 SYSTEM INTEGRATION ...ttt 1-4
121 Pipelined Burst Bus Control UNIt .............ooiioiiiiiieeiiee e 1-4
1.2.2 Flexible DMA CONIOIET .....ooiiiieiiii e e
1.2.3 Priority Interrupt CONrOIEI .........eeiiiei e a e
1.3 ABOUT THIS MANUAL.......ccccevverne
14 NOTATION AND TERMINOLOGY
14.1 Reserved and PreSErved .........oooiiviiiieiie et
1.4.2 Specifying Bit and Signal ValUEs ..........ccuuiiiiiiiiiiii e 1-7
1.4.3 Representing NUMDEIS ...t 1-7
1.4.4 REGISIEI INAMES ... ettt e e ettt e e e e et e e e e e antbeeee e e anbeeeaaeanes 1-7
CHAPTER 2
PROGRAMMING ENVIRONMENT
2.1 OVERVIEW ...ttt ettt e e e s 2-1
2.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS ......cccoiiiiieenieeesieeens 2-1
221 GlODAI REGISIEIS ...ttt e e et e e e e et e e e s enbaeeaeeannes
222 (o Tox: 1l =T 1) (=] USRI
223 Special Function RegisSters (SFRS) ..c.coiiuiiiiiiiiiie e
224 Register SCOreboarding .........ooiueiiiii e
225 LITEIAIS o
2.2.6 Register and Literal Addressing and Alignment
2.3 CONTROL REGISTERS ..ot
2.4 ARCHITECTURE-DEFINED DATA STRUCTURES
25 MEMORY ADDRESS SPACE........cooiiiiiieiiii ettt e e
251 MEmMOry REQUIFEMENTS .......iiiiiiiiiiiie et e e ettt e e e ettt e e e e et e e e e e aebeee e e s anbeeeaeeanns
252 Data and Instruction Alignment in the Address Space ..........cccccevriiiieeeiiiiiieeeene 2-11
253 Byte, Word and Bit AAAre@SSING ....cooeiiieiiieiiiiiii et e e 2-11
254 INternal Data RAM .......ooiiiiiiiiie ettt 2-12
255 INSErUCLION CACNE ...oiiiiiie e 2-13
256 Data Cache (B0960CKF ONIY) ..ottt e e e e enee 2-14
2.6 PROCESSOR-STATE REGISTERS ..ottt 2-14
26.1 Instruction Pointer (IP) REQISIEY ......ooi i 2-15
2.6.2 Arithmetic Controls (AC) REQISIEI ....ooueiiiiieiiiiiiee e e e 2-15
26.2.1 Initializing and Modifying the AC REQISIEN ..........coveiiiiiniieenie e 2-16
2.6.2.2 CONAItION COUE ...t 2-16




CONTENTS Intel®

2.6.3 Process Controls (PC) REGISLEN .........uiiiiiiiiiiiiee et 2-17
2.6.31 Initializing and Modifying the PC ReQISter ..........oviiiiiiiiiiiiiiiiiee e 2-19
26.4 Trace Controls (TC) REGISLEN .......ueiiieeiiiiie e e e e e 2-20
2.7 USER SUPERVISOR PROTECTION MODEL.......cccciiiiiiiieeiree e 2-20
27.1 SUPErVISOr MOUAE RESOUICES .....ueeiiiieiiiiiii et e ettt e e ettt e e et e e e e s aneeeeaaeenes 2-20
2.7.2 Using the User-Supervisor Protection Model ............ccooooiiiiiiiiiiiiiiie e 2-21
CHAPTER 3
DATA TYPES AND MEMORY ADDRESSING MODES
3.1 DATATYPES....
3.1.1 INEEOETS .ttt e e e e e e e e e e e e e s e bbb e e e e e e e e e e e e aeaaaeaaaaan
3.1.2 OFTINAIS ..ottt n e e s n e e e e
3.1.3 Bits @nd Bit FIEIAS ......ooiiiiiiiieei e
3.14 Triple and QUAM WOIAS ........oiiiiiiiiii et ee e e e e e
3.15 (D= = WY o] 142 1T o | PP
3.2 BYTE ORDERING ...ttt ettt
3.3 MEMORY ADDRESSING MODES .......cooiiiiiiiiieiiie e
3.3.1 ADSOIULE ..
3.3.2 Register Indirect ..............
3.3.3 Index with Displacement ....................
3.34 IP with Displacement ............cccccceeeee
3.35 Addressing Mode EXamPIES ....ooooiiiiiiieie e
CHAPTER 4
INSTRUCTION SET SUMMARY
4.1 INSTRUCTION FORMATS ...ttt
41.1 Assembly Language FOIMAL .......oooueiiiiiiiiii e
4.1.2 Branch PrediClion ..........ccvoiiioiie e e
4.1.3 Instruction Encoding Formats
41.4 INSTFUCLION OPEIANGS ....eeiiieiiiiiiie ettt ettt e e e et e e e e s esba e e e e e eannneeaaean
4.2 INSTRUCTION GROUPS ...ttt
421 Data Movement ...........ccccceeeviinnenne
421.1 Load and Store Instructions
4212 MOVE ..o
4.2.1.3 LOAA AQAIESS ..ottt
422 ATNMETIC e
4.2.2.1 Add, Subtract, Multiply and Divide ...........cooceiiiiiiiiie e 4-7
4222 Extended ArthMetiC .......ocvve i
4.2.2.3 Remainder and Modulo
4224 Shift @aNA ROTALE .......viiiiiiiiieec e
4.2.3 [0 o (o | SR ERR T
424 Bit @nd Bit FIEIU ....ccoiiiiiiie e
4241 2 A @ o 1T = 1 o] oI RO
4242 Bit Field OPErationNsS ........c..ueiiiiiiiiiiie et a e




Intel® CONTENTS

425 |23 (@] o 1= = 11T ] L U EPUOURSRN

4.2.6 Comparison
426.1 Compare and Conditional Compare
4.2.6.2 Compare and Increment or DECrement ...........ccooiiiiiiiieiiiiiiie e 4-13
4.2.6.3 Test CoNAItioN COUES ........evviiiiieriiie e 4-13
4.2.7 BIANCR o e s 4-13
4.2.7.1 Unconditional BranCh ..........cccoooiiiiiiiii e e 4-14
4.2.7.2 Conditional Branch
4273 Compare and BranCh ........oooiuiiiioii e 4-15
4238 Call ANA RELUM ..ot
4.2.9 CoNAItioNAl FAUILS ......oovieiiiiiie e
4.2.10 (572 o]0 T PP RTUPURRRN
4211 Atomic Instructions ...........c.........
4.2.12 Processor Management
4.3 SYSTEM CONTROL FUNCTIONS .....oiiiiiiiiiiie et 4-19
43.1 SYSCH INSTIUCHION SYNTAX .oieiiiiiiee et e e 4-19
4.3.2 SyStemM CONrOl MESSAGES ...eeeieiieiiieieeiiiiiie e e ettt e ettt e e e e e e e e e e anbee e e e s aannneeaaeas 4-20
4321 Request Interrupt
4322 Invalidate INSruction CAChE ..........cccveiiiiiiiiie e 4-21
4.3.2.3 Configure INStruction Cache ..........oocueiiiiiiiie e 4-21
4324 REINItIANIZE PrOCESSON .. .veiiiiiiiiieie ittt 4-22
4.3.25 Load CONtrol REGISLEIS ........eeiieiiiiiiiee e eiiiiee e et ee e et e e e et ie e e e e enaeeeaeeenes 4-23
CHAPTER 5
PROCEDURE CALLS
5.1 OVERVIEW ....ooiiiiiiiiic e
5.2 CALL AND RETURN MECHANISM
5.2.1 Local Registers and the Procedure Stack ..........ccccoiiuiiiiiiiiiiiiieeeeee i 5-2
5.2.2 Local Register and Stack Management ...........ccccooeiiiiiiieeeiiiiiee e 5-4
5221 Frame POINTEE ......ooiiiiiiiie et 5-4
5222 Stack Pointer
5.2.2.3 Previous Frame POINTET .........oooiiiiiiiieiiie et
5.2.2.4 RetUrN TYPE Fel ...t e
5.2.25 Return INStruction POINEET ........ceeiiiiiiiiii e
5.2.3 Call and REtUIN ACHON .....ooiiiiiiiieei et
5.231 Call Operation ............c........
5.2.3.2 Return Operation ..................
5.2.4 Caching of Local Register Sets
5.25 Mapping Local Registers to the Procedure Stack
5.3 PARAMETER PASSING ...ttt ettt e s
5.4 LOCAL CALLS ...ttt ettt nn e e s
5.5 SYSTEM CALLS .ottt ettt s
55.1 System Procedure Table ..........oo i
55.1.1 Procedure ENrIES ......oocviiiiiiieie et
55.1.2 SUpervisor Stack POINTET .........ueiiiiiiee e



CONTENTS

55.1.3 Trace CONIOl Bit .......cooiiiiiiiieeie e
5.5.2 System Call to a Local Procedure
5.5.3 System Call to a Supervisor Procedure
5.6 USER AND SUPERVISOR STACKS .....ooiiiiieiiiieiiee et
5.7 INTERRUPT AND FAULT CALLS.....oiiiiiiiiie et
5.8 RETURNS L.ttt s e e st e e e e e s nr e e e e e e
5.9 BRANCH-AND-LINK ...ttt
CHAPTER 6
INTERRUPTS
6.1 OVERVIEW ...ttt et s e s 6-1
6.2 SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING .....ccccovieieiriieneeee 6-2
6.3 INTERRUPT PRIORITY
6.4 INTERRUPT TABLE.............
6.4.1 Vector Entries ..................
6.4.2 Pending INterrupts ......ccccoeeiiiiiiie e
6.4.3 Caching Portions of the Interrupt Table ... 6-5
6.5 REQUESTING INTERRUPTS ...ttt 6-6
6.5.1 POSHING INTEITUPLS .ottt e et ee e e e e e naneeaa s 6-6
6.5.2 Posting Interrupts Directly to the Interrupt Table ..., 6-7
6.6 SYSTEM CONTROL INSTRUCTION (SYSCH) ....vvveiiiieeiiiierieee e 6-8
6.7 INTERRUPT STACK AND INTERRUPT RECORD ......cvviiiieeiiiii e 6-9
6.8 INTERRUPT SERVICE ROUTINES.......ciiiiiiiiiiieiie e 6-10
6.9 INTERRUPT CONTEXT SWITCH.....coiiiiiiiiieiiie e 6-11
6.9.1 EXeCUting-State INEITUPL .......eeiieeiiiiiie ettt e e eeeeas 6-12
6.9.2 Interrupted-State INTEITUPL .......eeiiieeee e e 6-13
CHAPTER 7
FAULTS
7.1 FAULT HANDLING FACILITIES OVERVIEW .....cocoiiiiiiieieee e 7-1
7.2 FAULT TYPES
7.3 FAULT TABLE
7.4 STACK USED IN FAULT HANDLING
7.5 FAULT RECORD......coitiiiiiii ettt ettt e as
7.5.1 Fault RECOIA DAA ......cocveeiiiiieiiiie ettt
7.5.2 Return Instruction Pointer (RIP) ......ueiiiiiiie e
7.5.3 Fault RECOrd LOCALION .....ccoiiiiiiiiiiie ettt
7.6 MULTIPLE AND PARALLEL FAULTS ...oiiiiiiieee e
7.6.1 Multiple Faults ...
7.6.2 Multiple Trace Fault Conditions Only
7.6.3 Multiple Trace Fault Conditions with Other Fault Conditions ...
7.6.4 Parallel FAUIS ......oooiiiee et

vi




Intel® CONTENTS

7.6.5 Faults in One Parallel INSTTUCHION ........ccveiiiiiiiiiiee e
7.6.6 Faults in Multiple Parallel Instructions
7.6.7 Fault Record for Parallel FAUItS ..........cccoiiiiiiiiee e

7.7 FAULT HANDLING PROCEDURES. .........cciiiiiiiiiiiineie e
7.7.1 Possible Fault Handling Procedure ACtIONS .........coooiiiiiiiiiiiiiiee e eieeee e 7-12
7.7.2 Program Resumption Following a Fault ..............cccoiiiiii e 7-12
7.7.3 Returning to the Point in the Program Where the Fault Occurred ............cccccce... 7-13
7.7.4 Returning to a Point in the Program Other Than Where the Fault Occurred ......... 7-13
7.7.5 FaUIE CONEIOIS ..o

7.8 FAULT HANDLING ACTION ...ciitiieitiie ittt
7.8.1 Local Fault Call ...........cceevenrennee.
7.8.2 System-Local Fault Call .............
7.8.3 System-Supervisor Fault Call
7.8.4 Faults and INTEITUPLS ..ottt e e ee e e

7.9 PRECISE AND IMPRECISE FAULTS ....ooiiiiiiiiie et 7-17
7.9.1 PrecCiSe FAUILS ..o 7-18
7.9.2 IMPrECISE FAUILS ...ttt e e e 7-18
7.9.3 ASYNCroNOUS FAUILS .......oeiiiiiiee e e a e 7-18
79.4 No Imprecise Faults (NIF) Bit .......coooiiiiiiieiiiiee e 7-18
795 Controlling Fault PreCiSION .......ooeeeiiioiiiieee e 7-19

7.10 FAULT REFERENCE........ciiiiiiiiii ettt 7-20
7.10.1 AtAMETIC FAUILS ...eeiiiiii e 7-21
7.10.2 CONSEFAINE FAUILS ....ooiiiiieiic e 7-22
7.10.3 OPperation FAUILS ..........ooiiiiiii e 7-23
7.10.4 Parallel FAUILS ........oeiiieiee e 7-24
7.10.5 ProteCtion FAUIS .....cocviiiieieiei e 7-25
7.10.6 TrACE FAUILS .....eeeeiiieieeec et 7-26
7.10.7 Type Faults

CHAPTER 8

TRACING AND DEBUGGING

8.1 TRACE CONTROLS ...ttt as 8-1
8.1.1 Trace Controls (TC) REGISLEN .....coiiieiiiee et a e e e s 8-2
8.1.2 Trace Enable Bit and Trace-Fault-Pending Flag .........cocoociiiiiiiiiieen 8-3
8.1.3 Trace Control on SUPErVISOr CallS .......coooiiiiiiiieiiiiee e 8-3

8.2 TRACE MODES ...ttt e et e s e e ane e s e s nnnee s 8-4
8.2.1 INSEFUCHION TFACE ....viiiiiiieiiiee et s 8-4
8.2.2 BranCh TIACE ...ooiiiiiiiiiiii ettt e e s 8-4
8.2.3 (071 I I =T ST PPPR 8-4
8.2.4 RELUIM TIACE ..o e e e e e e e 8-4
8.2.5 Prereturn TIACE ..o 8-5
8.2.6 SUPEIVISOE TTACE ...ieieiiieeiitieiee ettt e e ettt e e e e ettt e e e e e ettt e e e e e aneeeeeeesansaeeeeeeansaeeaaesanes 8-5
8.2.7 BreakpOint TIACE .....coiiiiiiiiiie ettt ettt e e e e et e e e e e st e e e e e e annbeeeaeeannes 8-5

vii



CONTENTS Intel®

8.2.7.1 Software BreakpOintS .........eeiiiiiiiiiiie et 8-5
8.2.7.2 Hardware Breakpoints .........coooiiiiiiioiiiiii e 8-5
8.3 SIGNALING A TRACE EVENT ..ooiiiiieiit ettt 8-7
8.4 HANDLING MULTIPLE TRACE EVENTS .....oi it 8-8
8.5 TRACE FAULT HANDLING PROCEDURE ......cocciiiiiiieciiee e 8-8
8.6 TRACE HANDLING ACTION ...ttt e e
8.6.1 Normal Handling of Trace Events
8.6.2 Prereturn Trace Handling ..................
8.6.3 Tracing and Interrupt Procedures
CHAPTER 9
INSTRUCTION SET REFERENCE
9.1 INTRODUCTION
9.2 NOTATION ..ttt ettt et e e s e e e s e e e e ne e e nnnee s nnnee s
9.2.1 AlphabetiC REFEIENCE .....ooiiiee e
9.2.2 YT T=T o 0T o oSSR PRSP
9.2.3 FOIMAL ..o e e e s
9.2.4 [D=2od g1 ) o] E PP
9.25 XX 1o ] o PR PP PPPR
9.2.6 FAUIES e
9.2.7 [T 4] ][ PP
9.2.8 Opcode and INStrUCtion FOMMAL ........c.uiiiiiiiiii e
9.2.9 SBE AISO i
9.3 INSTRUCTIONS. ...ttt ettt e e e e e e s
9.3.1 =T [0 o OO PUPUP R PPRRPPPI
9.3.2 F=To [0 [ IF=To Fo Lo TR
9.3.3 AIEEIDIT oo
9.34 and, andnot
9.35 atadd ...,
9.3.6 atmod ...........
9.3.7 b, bx ...........
9.3.8 bal, balx ......
9.3.9 bbc, bbs .
9.3.10 BRANCH IF .....occviiiiee
9.3.11 (o3 11 PO SP PRSI
9.3.12 (o3 11 PSR P PP
9.3.13 (o3 11 PSSP PP
9.3.14 CRKDIT e
9.3.15 (0] 1 o | S UPTP PP UPR
9.3.16 (o] g g oo [=Tod T o] 41 o o L= od o OO PR RUPPRPTN
9.3.17 (o] 407 o T o3 11 1o NPT PRP T RPPPRPTN
9.3.18 CMPINCE, CMPINCO eeiiiiiiiiiiee ettt e e e ettt e e e e e sab e e e e e e amnbeeeaesaneneeaaeanes
9.3.19 COMPARE AND BRANGCH ..ottt

viii



In

9.3.20
9.3.21
9.3.22
9.3.23
9.3.24
9.3.25
9.3.26
9.3.27
9.3.28
9.3.29
9.3.30
9.3.31
9.3.32
9.3.33
9.3.34
9.3.35
9.3.36
9.3.37
9.3.38
9.3.39
9.3.40
9.3.41
9.3.42
9.3.43
9.3.44
9.3.45
9.3.46
9.3.47
9.3.48
9.3.49
9.3.50
9.3.51
9.3.52
9.3.53
9.3.54
9.3.55
9.3.56
9.3.57
9.3.58
9.3.59
9.3.60
9.3.61

@ CONTENTS

CONCMPI, CONMCMPO .tiiiitieiiieitee et et ettt et e st et e e sab ekt e sbe e sb e e sbeeenbeesbeesnneennee e
divi, divo .....ceeeeeee.
L= L PP PPPR
EIMUD ettt
eshro (80960Cx Processor Only)
EXETACT .ttt etttk b b et b et n e e e
FAULT IF ottt ettt b ettt se bttt esbe e et e e st e e snne e b s
L LTS 11 T TSP PPR R PPPPRPN
FIMAIK e e

L1 =T Yo IR RTURURN

[ L0] SR g [0 =12 Vo [T
[0 0] 4 o 11 PPN

(o] oY [0} ST
(R0 T T =] 01 T

FOTALE .eiietiett ettt ettt ettt b et e b e bbb e e h e b e Rttt e b b nn e n e e
scanbit ..o

scanbyte
sdma (80960Cx Processor Only)
setbit

spanbit ...,
STORE ...coovvvieeinn
SUDIC ittt e e
L 0T o IRETU] o 1o
£S37 1o SRR ERR T
sysctl
LI =251 I TP PP U R OPPTRUPTPPRUR
udma (80960Cx Processor Only)
D4 [0 ] G Co ] S TP O PP OV UPRPPRTR



CONTENTS Intel®

CHAPTER 10
THE BUS CONTROLLER
10.1 OVERVIEW ...ttt et b ettt et b s bttt e nneebe e e
10.2 MEMORY REGION CONFIGURATION .....coiiiiiiiiitiiiieeite sttt
10.2.1 Data BUS WL ....ccoiiiiiiccee e
10.2.2 Burst and Pipelined REad ACCESSES .....oiiiiiuiiiiaiiiiiiee e
10.2.3 WAL STALES ...ttt e et e e s e e e
10.2.4 (234 (@] (o [=T 0o [ PR U P ERR T
10.3 PROGRAMMING THE BUS CONTROLLER .......oiiiiiiiiiieiiee e
10.3.1 Memory Region Configuration Registers (MCON 0-15)
10.3.2 Bus Configuration Register (BCON)

10.3.3 Configuring the BUS CONIOIEr ........coiiiiiiiiiiiiii e
10.4 DATA ALIGNMENT .ottt
10.5 INTERNAL DATA RAM ...ttt e e
10.6 BUS CONTROLLER IMPLEMENTATION.....cciiiiiiiiiieesiii e
10.6.1 BUS QUEBUE ...ttt et e ettt e e e e e e e e e e e e e et e e e e e e e e e e e e e e nnnn s
10.6.2 Data Packing UNt ...t e et e e e
10.6.3 Bus Translation Unit and SEQUENCET .........ccuuiiiiiiiiiiiiiae e
CHAPTER 11
EXTERNAL BUS DESCRIPTION
11.1 OVERVIEW ...ttt ettt st nnn e e s anne e e 11-1
1111 Terminology: Requests and ACCESSES .....cciiiiiiiiiieaiiiiieeee et e e e e e 11-1
11111 REQUEST ..ottt e et e e e e e e e e e e e e s nane 111
11.1.1.2 ACCESS ... 11-2
11.1.2 CONFIGUIALION ..ttt e e et e e e e et e e e e e e e nbeeeaeeannes 11-2
11.2 BUS OPERATION ...ttt 11-2
11.2.1 WAL STALES ..ottt e e s e e st nnn e e e e e e 11-4
11.2.2 BUS WIALN ..ot 11-10
11.2.3 NON-BUISE REQUESTES ....eeiiiiiiiiieee ettt r e e e e e e e e e e e e 11-12
11.2.4 BUISE ACCESSES ...t e e e 11-13
11.2.5 Pipelined Read ACCESSES .......ueiiieieiiiiiee et a e e e 11-21
11.3 LITTLE OR BIG ENDIAN MEMORY CONFIGURATION ......ccoociiiiiiieniiie e 11-24
11.4 ATOMIC MEMORY OPERATIONS (The LOCK Signal) .......cocoeeivriiinieeiiiecnncee 11-26
11.5 EXTERNAL BUS ARBITRATION ....coiiiiiiiiiie it 11-28
11.5.1 Bus Backoff FUNCLION (BOFF PINY ......c.covvvvieieieieieeeeeeseseeeeesesesenenssenensnessesenens 11-29
CHAPTER 12
INTERRUPT CONTROLLER
12.1 OVERVIEW ...ttt ettt e nnn e e e e e 12-1
12.2 MANAGING INTERRUPT REQUESTS. ...ttt 12-2
12.2.1 Interrupt CoNtroller MOGES ........ooiiiiiiei et 12-3
12.2.1.1 Dedicated MOUE .......cccoviiiiiieiiiec e 12-4



Intel® CONTENTS

12.2.1.2 EXPANded MOAE .......ceeeiiiiiiiiiie ettt a e 12-5
12.2.1.3 MIXEA MOTE ...ttt e e 12-7
12.2.2 Non-Maskable INterrupt (NMI) ........coooeieeeeeeeeeeeeeeee et es e en e 12-7
12.2.3 Saving the Interrupt Mask ........ooo i 12-7
12.3 EXTERNAL INTERFACE DESCRIPTION .....oviiiiiiiiiiieesree e 12-8
12.3.1 PinN DESCHPLIONS ...ttt e e e e e et e e e e e e aatb e e e e e e enbeeeaeeanns 12-9
12.3.2 Interrupt Detection OPLIONS .....ooieeiiieiiiiiie ettt e e et e e e enaeeeeeeanes 12-9
12.3.3 Programmer’s INTEIACE .........oouueiiii it a e 12-11
12.3.4 Interrupt Control Register (ICON) .....cooiiiiiieiiiei e 12-11
12.3.5 Interrupt Mapping Registers (IMAPO-IMAP2) .......cooiiiiiiiiiiiee e 12-12
12.3.6 Interrupt Mask and Pending Registers (IMSK, IPND) .......ccccooeiiiiiiiiiiiiiieeeeee 12-14
12.3.7 Default and Reset Register ValUES .........coooiiiiiiiiiiiiiiiiee e 12-15
12.3.8 Setting Up the Interrupt CoNtroller ..........c..eoiiiiiiiiiie e 12-16
12.3.9 IMPIEMENTALION ...ttt e e e e e enes 12-16
12.3.10  INterrupt SErviCe LAtENCY .......coiiiiiiiiiie ittt e e e e ea s 12-17
12.3.11  Optimizing Interrupt Performance ...........cccccoiiiiiiiiiiiiiiiee e 12-19
12.3.12  Vector Caching OPtiON .........eiiiiiiiiiiie e ea s 12-20
12.3.13  DMA SuSpension ON INTEITUPLS ......eiiiiiiiiiieieeeiiieee e eiieee e e e e e e eeeeeae s 12-21
12.3.14  Caching Interrupt-Handling Procedures .............ccccceoiiiiiiiieiiiiiiee e 12-21
CHAPTER 13
DMA CONTROLLER
13.1 OVERVIEW ...ttt ettt e st e s
13.2 DEMAND AND BLOCK MODE DMA ...ttt
13.3 SOURCE AND DESTINATION ADDRESSING
13.4 DMA TRANSFERS ..ottt e s
13.4.1 MUIti-CYClE TraNSTEIS ...t et e et e e e
13.4.2 Fly-By Single-Cycle Transfers ...
13.4.3 Source/Destination Request LENGLh ...........ooiiiiiiiiiiiie e
13.4.4 Assembly and Disassembly ...
13.4.5 Data AlIGNMENT ... e et e e e st e e e e s e tbee e e e e ennneeaeeanes
13.5 DATA CHAINING ..ottt
13.6 DMA-SOURCED INTERRUPTS ...ttt
13.7 SYNCHRONIZING A PROGRAM TO CHAINED BUFFER TRANSFERS................ 13-17
13.8 TERMINATING A DMA ..ottt e e 13-18
13.9 CHANNEL PRIORITY ittt 13-20
13.10 CHANNEL SETUP, STATUS AND CONTROL ..ottt 13-20
13.10.1 DMA Command RegiSter (DMAQC) ....ccooi ittt 13-21
13.10.2  Set Up DMA INStrUCtion (SAMA) ....eeeeiieiiiiiiiee et e et e e ee s 13-24
13.10.3  DMA CONrOI WO ...ocoiieiiiiiiiiec ettt e e 13-25
13.10.4  DMA DAtA RAM ..ottt 13-27
13.10.5 Channel Setup EXAMPIES .......coiiiiiiiiiiaiiieie et e e 13-29
13.11 DMA EXTERNAL INTERFACE ......coi ittt 13-30

Xi



CONTENTS

IR 700 It A = I T~ T 1T PRSP
13.11.2 Demand Mode Request/Acknowledge Timing
13.11.3  End Of Process/Terminal Count TiMiNG ........ccccevieiiiiimiianiiiieiee e e eeiieeee e
13.11.4  BIoCk MOdE TranSFEIS ...coueiiiiiieiii et
13.11.5 DMA BUS REQUESE PIN ..ottt e e
13.11.6  DMA Controller Implementation ..............oueoiiuiiereeeiiiee e ee e
13.11.7 DMA and User Program PrOCESSES ........ceiieiiuuiiieaiiiiieeaaaaiiieeaasaaieeeaesssnseeeaasanns
13.11.8  BUS CONrOller UNIL .....ooiiiiiiiiiieeciie e
13.11.9  DMA CONrOEI LOGIC ..ueteeiieeiiiieiee e ettt e e ettt e e e st e e e e ettt e e e e e atbe e e e e s enneeeaaeanes
13.11.10 DMA PerfOrMAaNCE ......oooiiuiieiiiieiiiii ettt
13.11.11 DMA TRrOUGNPUL ..ooiiieii ettt e e e et e e e e s enneeeaeeenes
13.11.12 DMA LAIENCY .oiiiieiiiiiiiieiiiittit ettt ettt e e e e e e e e e e e e s e et bbb e e e e e e eaeaeaeeaeaaaaaaannnenrnnne
CHAPTER 14
INITIALIZATION AND SYSTEM REQUIREMENTS
14.1 OVERVIEW ...ttt ettt et e e nnne e
14.2 INITIALIZATION ..ttt e e s
1421 R @] o1=T = Vi{o o H SR PERR
14.2.2  Self Test FUNCHON (STEST, FAIL) ..oovivivieieieieeeeeeeeeeeeee e
14.2.3 ON-CirCUit EMUIALION ...ooiiiiiiiieccee et
14.2.4 Initial Memory Image (IMI) ...
14.2.5 Initialization Boot Record (IBR) ........ueiiiiiiiiii e
14.2.6 Process Control BIOCK (PRCB) .....coiuiiiiiaiiiieiea ettt
14.3 REQUIRED DATA STRUCTURES ......ooiiiiiii e
14.3.1 Reinitializing and Relocating Data Structures
14.3.2 INILANIZALION FIOW .o
14.3.3 Startup Code EXaMPIE .....ooiiiiiii e
14.4 SYSTEM REQUIREMENTS ...ttt
14.4.1 1] 010 A oo S (O I | RSP
14.4.2 Power and Ground Requirements (Voc, VGg) «reerrreerrreerieeneee it 14-27
14.4.3 Power and Ground PIANES .........ccooiiiiiiiiieiii e 14-27
14.4.4 Decoupling Capacitors
1445 I/0 Pin Characteristics
14.45.1 Output Pins ..............
14.45.2 INPUL PINS ..
14.4.6 High Frequency Design Considerations
14.4.7 LiNe TermMINALION .....cvviiiiiieiieie ettt e s
14.4.8 [ L o3 11 o 1 PRSP
14.4.9 INEEITEIENCE ...t

Xii




Intel® CONTENTS

APPENDIX A
INSTRUCTION EXECUTION AND PERFORMANCE OPTIMIZATION
Al INTERNAL PROCESSOR STRUCTURE........ciitiiiiiiiieiienee ittt A-2

Al1l INStruction SCheAUIET (IS) ...eeiieiiiiie e e e A-3

A.l2 INSTFUCHION FIOW ...t e e e et e e e e neaeeas A-4

A.13 REQISTEr FIlE (RF) ..eeieiiiii ittt ettt e e st e e e e e neeeeas A-6

Al4 EXecUution UNit (EU) ..ooooiiie ettt e et e e e A-7

A.l5 Multiply/Divide Unit (MDU) ....ocoiiiiiiieeiiiiee ettt e et e e e e neeeas A-7

A.1.6 Address Generation UNit (AGU) ......ooo it A-7

A.l.7 Data RAM and Local Register Cache ..........ooocuiiiiiiiiiiiiieiiieiee e A-7

A.1.8 Data Cache (B0960CKF ONIY) ...ttt e et e e e e eeeeas A-8
A.18.1 Data Cache OrganiZation .............coeeoiiiiiire e e e eeeeeee s A-8
A.1.8.2 Bus Configuration
A.1.8.3 Global Control of the CaChe .......oocuueiiiiie e
A.1.8.4 Data FEtCh POlICY .....coiiiiiiiieie e
A.1.85 Write Policy .......occoeveeeninnnen.

A.1.8.6 Data Cache COherency .........cccoccoeeeeeiniiiieneeeiiieeeeenne
A.1.8.7 BCU Pipeline and Data Cache Interaction ..................
A.1.8.8 BCU Queues and Cache CONErency .........cccooouieiioiiiiiiieeieiiie e
A.1.89 DMA Operation and Data CONEIENCY .......cccoiiuiiirieiiiiiiiee e
A.1.8.10 External 1/0 and Bus Masters and Cache Coherency

A2 PARALLEL INSTRUCTION PROCESSING......cccttitiiitiaitieiiieniie ettt

A21 PArallel ISSUE ...ttt e et e e e e enae e e e e e e

A.2.2 Parallel EXECULION ......ooiiiiiiiiie ettt e e e et e e e e enaeeea e enes

A.2.3 Yool ¢=T o oF=T (o |1 Vo H PSPPSR
A2.3.1 Register Scoreboarding
A.2.3.2 Resource Scoreboarding
A.2.3.3 Prevention of Pipeline Stalls
A2.3.4 Additional Scoreboarded Resources Due to the Data Cache ..............ccee.ee... A-19

A2.4 Processing UNILS .......eiiiiiiiiiiiie ettt e e et e e e et e e e e e s enneeeaeeanes A-20
A241 EXxecution Unit (BU) ...ttt A-20
A2.4.2 Multiply/Divide Unit (MDU) ... A-22
A2.43 Data RAM (DR) ....coevviiiiiiiiieniecieeniee e A-24
A2.4.4 Address Generation Unit (AGU) A-25
A.2.45 Effective Address (efa) Calculations A-26
A.2.4.6 Bus Control Unit (BCU)

A2.4.7 Control Pipeline .....................
A.2.4.8 Unconditional Branches
A.2.49 Conditional Branches ..........cccccccooviiienenn.

A.25 Instruction Cache And Fetch EXECULION .........oouiiiiiiiiiiiiie e A-33
A251 Instruction Cache Organization ............cceeeieiiiiiiiee e A-33
A.25.2 Fetch Strategy
A.253 Fetch Latency
A254 Cache Replacement

A.2.6 MICTO-fIOW EXECULION ...ttt e e et e e e e e e e
A.2.6.1 Invocation and EXECULION .........ocuueiiiiiiiiiiie e A-37

Xiii



CONTENTS

A.2.6.2 Data MOVEMENT ...
A.2.6.3 Bit @nd Bit FIEIA .......eeeiiiiieii e
A.2.6.4 (0] ] o =T [<To ] o PSPPI
A.2.6.5 BranCh ..o e
A.2.6.6 Call AN RELUIN ..eiiiiiie e
A2.6.7 Conditional Faults ....
A.2.6.8 (3= o U o RSP UUUTUOTPRPN
A.2.6.9 ALOMIC ottt
A.2.6.10 Processor Management .........oooiiiiiiiiiiiiiiiiei et
A.2.7 Coding OPLIMIZALIONS ...ttt e e et e e e e et e e e e e e aeaeeas
A271 Loads and Stores ..........cccceeeveens
A2.7.2 Multiplication and Division ...........
A.2.7.3 Advancing Comparisons .............
A2.7.4 UNTOING LOOPS -eeieieiiiiiiee ettt ettt ettt e ettt e e e s et e e e e ennneeaeeennns
A.2.75 Enabling Constant Parallel ISSUE ..........coooiiiiiiiiiii e
A.2.7.6 Alternating from Side to Side
A2.7.7 Branch PrediCtion ..ot
A.2.7.8 Branch Target AIGNMENT ........ooiiiiiiiie e e e
A.2.79 Replacing Straight-Line Code and Calls
A.2.8 Utilizing ON-Chip STOFAQgE ..coooiieiiiei et e e
A28.1 Instruction Cache .........ccccovciiiiiciiec
A.2.8.2 Data Cache (1960 CF Processor Only)
A.2.8.3 Register Cache ........occocceeiiiiiiiiiiiiiiee e
A.284 DAtA RAM ..ottt
A.2.9 SUIMIMAIY ittt et e e e e e e e e e e e s s s s bbbt bbbttt e e et e e e eaeeaaesasasaaannnbnebbbesreeeeeaeeeas
APPENDIX B
BUS INTERFACE EXAMPLES
B.1 NON-PIPELINED BURST SRAM INTERFACE ........ccoiiiiiiiiiiree e
B.1.1 BaCKGrOUNG ... .ottt e e e e e e e e e aeean
B.1.2 IMPIEMENTALION ....eiii e e e e et e e e e e eaeeeee s
B.1.3 2] (oTod Q1 =T | = o o PRSPPI
B.1.3.1 (04 01T o JST= (= Tox o o | oS PRSP
B.1.3.2 State Machine PLD
B.1.3.3 Write Enable Generation LOGQIC ..........eviiaiiiiiiiiaiiiiiee e et e e
B.1.3.4 Chip Select GENEIAtION ......cooiiiiiiiie et
B.1.4 WAVETOIMS .ottt e st nnn e as
B.1.4.1 Walit STAte SEIECHON ....ceviiiiieeeeii e
B.1.4.2 Output Enable and Write Enable Logic
B.1.4.3 State Machine Descriptions
B.1.5 Trade-offs and AEINALIVES .......cooviiiiiiiieiee e
B.2 PIPELINED SRAM READ INTERFACE
B.2.1 Block Diagram ..........ccccceeeeeiiiiiineaennnns
B.2.1.1 Address Latch ...........
B.2.1.2 State Machine PLD ..
B.2.1.3 WIit€ ENADIE LOGIC ....evieiieeiiiiiiie ettt ettt e e e e e

Xiv



Intel® CONTENTS

B.2.2 WAVETOIMS ..ottt et e s e e e e e
B.2.2.1 State MACKINES ......oeieiiie e
B.2.3 Trade-offs and AREINALIVES .......coviiiiieiiie e
B.3 INTERFACING TO DYNAMIC RAM....coitiiiiiaiiiiii ettt ettt
B.3.1 DRAM Access Modes ..................
B.3.1.1 Nibble Mode DRAM .............
B.3.1.2 Fast Page Mode DRAM ........cccccceeveeninne
B.3.1.3 Static Column Mode DRAM
B.3.2 DRAM REfreSh MOUES ......oviiiiiiecii e
B.3.3 Address Multiplexer Input CONNECLIONS ..........eeiiiiiiiiiee e B-20
B.3.4 Series DampinNg RESISIOIS .....ooeiiiiiiiieaeiiiiee ettt e e e eeee e e e eneeeeaeeanes B-20
B.3.5 SYSEEM LOAAING ..eiiiiiiiiiie ettt ettt e e e et e e e e e ebe e e e e e enbneeaeeanes B-21
B.3.6 Design Example: Burst DRAM with Distributed RAS Only Refresh Using DMA ..... B-21
B.3.7 DRAM Address GENEIAtION .......ccovvviiireeeiriieeiree e sree e e e e B-23
B.3.8 DRAM Controller State Maching .........ccccooiiiiiiiiiee e B-25
B.3.9 DRAM Refresh Request and Timer LOGIC ......ocuveiiieiiiiiiiiee e B-28
B.3.10 DMA Programming for RefreSh ...........ooiiiiii e B-29
B.3.11  MEMOIY REAAY ...eeiiiiiiiiiii ittt e et e e e e ettt e e e e st e e e e e enneneaaean B-29
B.3.12 Region Table ProgrammMing ........ooc.eciiooiiiiiiee e esieee e et a e e eneeeea e s sanneeeaee s B-29
B.3.13  Design Example: Burst DRAM with Distributed CAS-Before-RAS Refresh
USIiNg READY CONLIOl ...ttt e e e e e B-32
B.3.14 DRAM Controller State Maching ..........cccoorieiiiiiieiie e B-33
B.4 INTERLEAVED MEMORY SYSTEMS ...ttt sttt B-37

B.5 INTERFACING TO SLOW PERIPHERALS USING THE INTERNAL
WAIT STATE GENERATOR

B.5.1 Implementation
B.5.2 Yol 1= 1. = L1 oSSR
B.5.3 R TAT A=Y (0] o 1

APPENDIX C
CONSIDERATIONS FOR WRITING PORTABLE CODE

C.1 CORE ARCHITECTURE........c.ccceenunne
C.2  ADDRESS SPACE RESTRICTIONS
c21 RESEIVEA MEMIOIY ..ottt e e e et e e e e e et e e e e e enbee e e e e e anneeeas
c22 INternal Data RAM .......ooiiiiiiiiie ettt e e
c.23 INSEFUCHION CACKNE ..o e
Cc.24 Data Cache (80960CF ProceSSOr ONIY) ....cccoiiiiiiiiiiiiiee et e e e C-3
Cc.25 Data and Data Structure AIGNMENT ..........ooiiiiiiiiie e C-3
C.3 RESERVED LOCATIONS IN REGISTERS AND DATA STRUCTURES..........cccceeeeninene C-4
C.4 INSTRUCTION SET ...ciiiiitieiiiiaiiestie ettt sttt ettt et e sbe e bt e sbe e asseebeesbbeabeesaeesbeenneenaneen
C41 Instruction Timing
C.4.2 Implementation-Specific Instructions
C.5  EXTENDED REGISTER SET ......otiitiiiiiiieiee ittt sttt sttt sne s sieenane e
C.6  INITIALIZATION ...ttt ettt ettt sttt sat ekt e s it b e sbe e et e e st e e bt e nbeesnbeenbeenaneen

XV



CONTENTS Intel®

C.7  INTERRUPTS ittt b ettt b et e st b e s bt e bt e s bneeneenaneen C-5

C.8 OTHER i960 CA/CF PROCESSOR IMPLEMENTATION-SPECIFIC FEATURES.......... C-6
cs81 Data Control Peripheral UNItS .........c..eiiiiiiiiiiiee e
c.8.2 Fault IMpIemMEeNntation ...

C.9  BREAKPOINTS ...ttt ettt b ettt b e bt et e e ea e e bt e eabeebe e sbneenneenaneen

[0 T T 0 T = OO TUSTR

C.10.1 External System Requirements

APPENDIX D
MACHINE-LEVEL INSTRUCTION FORMATS

D.1 GENERAL INSTRUCTION FORMAT
D.2  REG FORMAT ..ottt ettt b ettt b e bt e b e e e bbb e e st e e be e aneenne et
D.3  COBR FORMAT ..ttt ettt ettt b et b e bt e b e bt be e st e e nbeesaneene e e
D.4  CTRL FORMAT
D.5  MEM FORMAT L.tttk h ettt bttt sb et be e ettt esane e b e neee
D.5.1 MEMA Format Addressing .........c.cc.......
D.5.2 MEMB FOrmat AdAreSSING ......ueeieeiiiiiiie e ettt e e e et e e e s enaeeeeaeas

APPENDIX E
MACHINE LANGUAGE INSTRUCTION REFERENCE

E.l INSTRUCTION REFERENCE BY OPCODE........coiiiiieieee e E-1

APPENDIX F
REGISTER AND DATA STRUCTURES

F.1 Data Structures
F.2 Registers

GLOSSARY

INDEX

XVi



intel.
FIGURES

Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 4-1
Figure 4-2
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6
Figure 11-1
Figure 11-2
Figure 11-3

CONTENTS
i960® CA/CF Superscalar Microprocessor ArchiteCture ...........cccoeevevveveeeieiiieenn. 1-2
i960® Cx Microprocessor Programming Environment ............ccoccceeviiiineeiniiee.n. 2-2

CONLIOl TADIE ...t
Address Space
Arithmetic Controls (AC) Register

Process Controls (PC) REQISLET ...c..ueiiiieiiiiiiie e
Example Application of the User-Supervisor Protection Model .......................... 2-22
Data TYPes and RANGES .........ueiiiai it e et e et e e e et e e e e e aneeeeeaeeaneeeas 3-1
Data Placement in REQISIEIS ......coi it 3-5
Machine-Level INStruction FOMMALS .........cccooiviiiiiiiiiee e 4-3
Source Operands fOr SYSCL .......uiiii i 4-20
Procedure Stack Structure and Local RegIStersS.........cooiiiiiiieiiiiieiieeeiiiee e 5-3
Frame SPill ... ...
FIameE Fill.......ooiiee e

System Procedure Table
Previous Frame Pointer Register (PFP) (r0)
Interrupt Handling Data Structures
INterrupt TabIe .....ooo e
Storage of an Interrupt Record on the Interrupt Stack
Flowchart for Worst Case Interrupt LatenCy .........occcueeeieiiiiiiiieiiiiiiee e
Fault-Handling Data StrUCLUIES ..........eeeiiiiiiiiee et e e
Fault Table and Fault Table ENtries ........ccccooiiiriie e
FAUIE RECOI ...ttt e e s
Storage of the Fault Record on the Stack ...
Fault Record for Parallel FAultS ..o
Trace Controls (TC) REGISLEN .....ouuueiiieiiiiiiee et e e e
Instruction Address Breakpoint Registers (IPBO - IPB1) .......cccoiiiiiieeiiiiiieeeenne. 8-6
Data Address Breakpoint Registers (DABO - DABL) .......cuevviiiiiiiieieeeiiiee e
Hardware Breakpoint Control Register (BPCON)..........
MCON 0-15 Registers Configure External Memory..........ccccccoviiieieeiiiiiiieneene
Memory Region Configuration Register (MCON 0-15)
Bus Configuration Register (BCON) .......ccoccvveeeeinuenennn.
Summary of Aligned-Unaligned Transfers for Little Endian Regions................ 10-11
Summary of Aligned-Unaligned Transfers for Little Endian Regions (cont) ..... 10-12
Bus Controller BIOCK DIagram ..........c..eeiieiiiiiiiieeiaiiieea et eieee e 10-14
Internal Programmable Walit States............cueiiiiiiiiiiiiei e 11-6
Quad-word Read from 32-bit Non-burst Memory ..........ccccoveiiiiiiiiiieeeee 11-8
Bus Request with READY and BTERM CoNtrol ...........coooceiiiiiiiiiiieiiiieeeeeee 11-9

XVi



CONTENTS

Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 11-9
Figure 11-10
Figure 11-11
Figure 11-12
Figure 11-13
Figure 11-14
Figure 11-15
Figure 11-16
Figure 11-17
Figure 11-18
Figure 11-19
Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 12-5
Figure 12-6
Figure 12-7
Figure 12-8
Figure 12-9
Figure 13-1
Figure 13-2
Figure 13-3

Figure 13-4
Figure 13-5
Figure 13-6
Figure 13-7
Figure 13-8
Figure 13-9
Figure 13-10
Figure 13-11
Figure 13-12
Figure 13-13
Figure 13-14

XVii

intgl.

Data Width and Byte Enable Encodings 11-10

Basic Read Request, Non-Pipelined, Non-Burst, Wait-States 11-12
Read / Write Requests, Non-Pipelined, Non-Burst, No Wait States 11-14
32-Bit-Wide Data Bus Bursts 11-16

16-Bit Wide Data Bus Bursts 11-17

8-Bit Wide Data Bus Bursts 11-17

32-Bit Bus, Burst, Non-Pipelined, Read Request with Wait States 11-19
32-Bit Bus, Burst, Non-Pipelined, Write Request without Wait States 11-20
Pipelined Read Memory System 11-21

Non-Burst Pipelined Read Waveform 11-22

Burst Pipelined Read Waveform 11-23

Pipelined to Non-Pipelined Transitions 11-24

The LOCK Signal 11-27

HOLD/HOLDA Bus Arbitration 11-29

Operation of the Bus Backoff Function 11-31

Example Application of the Bus Backoff Function 11-32

Interrupt Controller 12-3

Dedicated Mode 12-4

Expanded Mode 12-5

Implementation of Expanded Mode Sources 12-6

Interrupt Sampling 12-10

Interrupt Control (ICON) Register 12-11

Interrupt Mapping (IMAPO-IMAP2) Registers 12-13

Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers 12-15
Calculation of Worst Case Interrupt Latency - N, 12-19

Source Data Buffering for Destination Synchroniged DMAs 13-5
Example of Source Synchronized Fly-by DMA 13-6

Source Synchronized DMA Loads from an 8-bit, Non-burst,
Non-pipelined Memory Region 13-7

Byte to Word Assembly 13-9

Optimization of an Unaligned DMA 13-13

DMA Chaining Operation 13-14

Source Chaining 13-15

Synchronizing to Chained Buffer Transfers 13-17

DMA Command Register (DMAC) 13-22

Setup DMA (sdma) Instruction Operands 13-25

DMA Control Word 13-26

DMA Data RAM 13-28

DMA External Interface 13-30

DMA Request and Acknowledge Timing 13-32




intgl.

Figure 13-15
Figure 13-16
Figure 13-17
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 14-6
Figure 14-7
Figure 14-8
Figure 14-9
Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8
Figure A-9
Figure A-10
Figure A-11
Figure A-12
Figure A-13
Figure A-14
Figure A-15
Figure A-16
Figure A-17
Figure A-18
Figure A-19
Figure B-1
Figure B-2
Figure B-3
Figure B-4
Figure B-5
Figure B-6
Figure B-7
Figure B-8
Figure B-9

CONTENTS
EOPB:0 TIMING ..ottt ee et eeenees 13-33
DMA and User Requests in the BUuS QUEUE .........cccueeiiiiiiiiiiiie e 13-36
DMA Throughput and LateNCY ........cccuueeiieiiiiiiiie et 13-38
FAIL TIMING ettt ettt en s s s s s e e enen s e 14-4
Initial Memory Image (IMI) and Process Control Block (PRCB) .........cccccceenne. 14-6
Process Control Block Configuration WOrds...........cceeeieiiiiiiiieiiiiiiee e 14-9

Processor Initialization Flow
Veeprr Lowpass Filter.......ooovvveveecineenn.
Reducing Characteristic Impedance
Series Termination
AC Termination..........ccccccvvennne.

Avoid Closed-Loop Signal Paths ...
C-Series Core and Peripherals...........oo.uiiiiiiiii e
1960 CA/CF Microprocessor Block Diagram ...........occcueiieiiiiieiieiiiiieiee e A-3
INSErUCLION PIPEIINE .....eeeeiiie e e
SIX-POrt REGISIEr Fle ... ..
Data Cache Organization ..............oouueiieiiiiiiiea et e e ateee e e e e neeeas
BCU and Data Cache INtEraction ............ceverriierieierreee e
ISSUE PALNS ...t

EU EXeCUtiON PIPEINE ....ooiiiiiiiii e
MDU EXECULION PIPEINE ...ttt e
MDU Pipelined Back-To-Back Operations
Data RAM Execution PIipeline ..........c..oiiiiiiiiiie e
The 1da PIPEIINE ... e e e
Back-t0-BaCk BCU ACCESSES .....c.vvierieiiiiiieiiiee s
CTRL Pipeline for Branches to BranChes...........ccocceeiiaiiiiiiieiiiiiee e
Branch in First Executable GroUP...........cooiiiiiia i
Branch in Second Executable GroUpP ..........cccueeiieiiiiirie i
Branch in Third Executable Group ..o
FELCh EXECULION ....ceiiiii ittt
MICrO-fIOW INVOCALION .......vviiiiieiiiii e
Non-Pipelined Burst SRAM INtErface ..........cceiiiiiiiiiiioiiiiie e
Non-Pipelined SRAM Read Waveform ...
Non-Pipelined SRAM Write Waveform ...
Chip Enable State MacChine ............ooiiiiiiiiii e
A3:2 Address Generation State Machine
Pipelined Read Address and Data ..........ccoocuueiieaiiiiiiiee et
Pipelined SRAM Interface Block Diagram
Pipelined Read WavefOrm ...........ooo e
Pipelined Read Chip Enable State Machine...........ccccceeiiiiiiiiiiiiiiiiee e B-13

Xix



CONTENTS

Figure B-10
Figure B-11
Figure B-12
Figure B-13
Figure B-14
Figure B-15
Figure B-16
Figure B-17
Figure B-18
Figure B-19
Figure B-20
Figure B-21
Figure B-22
Figure B-23
Figure B-24
Figure B-25
Figure B-26
Figure B-27
Figure B-28
Figure B-29
Figure B-30
Figure B-31
Figure B-32
Figure D-1

Figure F-1

Figure F-2

Figure F-3

Figure F-4

Figure F-5

Figure F-6

Figure F-7

Figure F-8

Figure F-9

Figure F-10
Figure F-11
Figure F-12
Figure F-13
Figure F-14
Figure F-15
Figure F-16

XX

Pipelined Read PA3:2 State Machine Diagram B-14
Nibble Mode Read B-16

Fast Page Mode DRAM Read B-17

Static Column Mode DRAM Read B-18

RAS-only DRAM Refresh B-19

CAS-before-RAS DRAM Refresh B-19

Address Multiplexer Inputs B-20

DRAM System with DMA Refresh B-22

DRAM Address Generation State Machine B-23
DRAM Controller State Machine B-26

DMA Request and Acknowledge Signals B-28

DMA Chaining Description B-29

DRAM System Read Waveform B-30

DRAM System Write Waveform B-31

Memory System Block Diagram B-32

DRAM State Machine B-34

Two-Way Interleaved Read Access Overlap B-37
Two-Way Interleaved Memory System B-39
Two-Way Interleaved Read Waveforms B-40

8-bit Interface Schematic B-42

Read Waveforms B-43

Write Waveforms B-44

State Machine Diagram B-45

Instruction Formats D-2

Control Table F-2

Fault Record F-3

Fault Table and Fault Table Entries F-4

Initial Memory Image (IMI) and Process Control Block (PRCB) F-5
Storage of an Interrupt Record on the Interrupt Stack F-6
Interrupt Table F-7

Procedure Stack Structure and Local Registers F-8
System Procedure Table F-9

Arithmetic Controls Register (AC) F-10

Bus Configuration Register (BCON) F-10

Data Address Breakpoint Registers F-11

DMA Command Register (DMAC) F-11

DMA Control Word F-12

Hardware Breakpoint Control Register (BPCON) F-13
Instruction Address Breakpoint Registers (IPBO - IPB1) F-13
Interrupt Control (ICON) Register F-14



intgl.

Figure F-17
Figure F-18
Figure F-19
Figure F-20
Figure F-21
Figure F-22
Figure F-23

CONTENTS
Interrupt Map (IMAPOQ - IMAP2) REQISLEIS ... .uuiiiiiiiiiiiie et F-15
Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers.........cccccceeenne. F-16
Memory Region Configuration Register (MCON 0-15)........ccccoviiiieieeiiiiiiiieeeene F-17
Previous Frame Pointer Register (PFP) (F0)......ccouiiuieiiaiiiiiiee e F-18
Process Controls (PC) REQISLET ...c..ueiiiieiiiiiiie et F-18
Trace Controls (TC) REGISLEN ...c.uueiiie et a e eiaeee e F-19
Process Control Block Configuration WOrds...........cceeeioiiiiiiieiiiieiee e F-20

XXi



CONTENTS

XXii

TABLES

Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 5-1
Table 5-2
Table 5-3
Table 7-1
Table 7-2
Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 9-5
Table 10-1
Table 10-2
Table 11-1
Table 11-2
Table 11-3
Table 11-4
Table 12-1
Table 12-2
Table 13-1
Table 13-2

Register Terminology CONVENTIONS .........couuiiiaeiiiiiieae e eiiiee e e e 1-8
Registers and Literals Used as Instruction Operands ...........cccoccoveeeiiiiiieeeeennne. 2-3
Allowable Register Operands
Data Structure DescCriptions.........cccooocveeeeeiiiiieeeesiiieeen.
Alignment of Data Structures in the Address Space
Condition Codes for True or False Conditions ............cccveviireiniieniiie s
Condition Codes for Equality and Inequality Conditions..............cccceeeiriiiienenne 2-16
Condition Codes for Carry Out and OVErfloW ...........ccceeeeiiiiiereiiiiiieee e 2-17
Supervisor-Only Operations and Faults Generated in User Mode ..................... 2-21
SUPPOIEA INTEGET SIZES ...eiiiiiiiiie ettt e et e e e ebeeeaeeenes 3-2
SUPPOrted OrdiNal SIZES....c.coi i e e e enes 3-3
Memory Contents For Little and Big Endian Example............c.ocoooieiiiiieeiinnne. 3-5
Byte Ordering for Little and Big Endian ACCESSES ........ccoiiuuiiieeiiiiiiiiaeeiiiieea e
Memory AddresSing MOAES .........oooiiiiiiieaiiie et e e
i960® Cx Microprocessor Instruction Set Summary
ArthmMEtic OPEratiONS ......coiiiiiiiiie et e et e e e ab e e e e e e eeeeeas
System Control Message Types and Operand Fields
Cache Configuration Modes .........ccccocieiieiiiiiiieeeenee,
Control Register Table and Register Group Numbers
PRCB Cache Configuration Word and Internal Data RAM............ccccooiiiieeeenne. 5-9
Encodings of Entry Type Field in System Procedure Table ...............cccccoee. 5-14
Encoding of Return Status Field...........cooiiiiiiiiie e 5-17
i960® Cx Processor Fault Types and SUbtypes ......c..eeeiiiiiiiiiiee e 7-3
Fault FIags 0r MASKS .......oooiiiiiiiiieei ettt e e e
Abbreviations iN PSEUAO-COUE ..........c.eeiiiiiiiieie et
Pseudo-code Symbol DefinitioNS..........coooiiiiiiiiiiiiee e
Fault Types and SUDLYPES ... ...uuiiiiiiiiee et
Common Possible Faulting Conditions
Cache Configuration Modes...............cc.......
MCONO-15 Programmable Bits
BCON Register Bit DefinitioNS .........ccuueiiiiiiiiiiee e

Bus Controller PinS.........ccccvoveviieeiieeenne

Byte Enable ENCOAING ......ccoiiuiiiiieeiiiii ettt

Burst Transfers and Bus WIdthS ............oocviiiiiiniee e

Byte Ordering on Bus TranSfers ...
Location of Cached Vectors in Internal RAM ..o 12-20
Cache Configuration MOES ..........ccooiiiiiiiiia e 12-22
Transfer TYPE OPLIONS ...t e et e e e neae e e e e ennaeeeaeas 13-4
DMA Configuration and Byte Count AlIignment ...........cccoiiiieiieniiiiiieee e 13-10




Intel® CONTENTS

Table 13-3
Table 13-4
Table 13-5
Table 13-6

Table 13-7
Table 13-8
Table 14-1
Table 14-2
Table 14-3
Table A-1
Table A-2
Table 1-3
Table A-4
Table A-5
Table A-6
Table A-7
Table A-8
Table A-9
Table A-10
Table A-11
Table A-12
Table A-13
Table A-15
Table A-14
Table A-16
Table A-17
Table A-18
Table A-19
Table A-20
Table A-21
Table D-1
Table D-2
Table D-3
Table E-1
Table E-2
Table E-3
Table E-4
Table E-5

DMA Transfer Alignment Requirements 13-11
Rotating Channel Priority 13-20
DMA Transfer Clocks - Nypgr 13-39

Base Values of Worst-case DMA Throughput used for
DMA Latency Calculation 13-42

DMA Latency Components 13-43

Values of DMA Latency Components 13-43

Pin Reset State 14-3

Register Values After Reset 14-3

i960® Cx Processor Input Pins 14-29

BCU Instructions for the i960 CF Processor A-12
Machine Type Sequences Which Can Be Issued In Parallel A-16
Scoreboarded Register Conditions A-18
Scoreboarded Resource Conditions A-19
Scoreboarded Resource Conditions Due to the Data Cache A-20
EU Instructions A-21

MDU Instructions A-23

Data RAM Instructions A-24

AGU Instructions A-25

BCU Instructions for the i960 CA Processor A-27
CTRL Instructions A-29

Cache Configuration Modes A-34

Fetch Strategy A-34

Store Micro-flow Instruction Issue Clocks A-39
Load Micro-flow Instruction Issue Clocks A-39
Bit and Bit Field Micro-flow Instructions A-40

bx and balx Performance A-40

callx Performance A-41

sysctl Performance A-43

Creative Uses for the Ida Instruction A-49

Code Optimization Summary A-57

Encoding of SRC/DST Field in REG Format D-2
Addressing Modes for MEM Format Instructions D-4
Encoding of Scale Field D-5

Miscellaneous Instruction Encoding Bits E-1
REG Format Instruction Encodings E-2

COBR Format Instruction Encodings E-4

CTRL Format Instruction Encodings E-5

MEM Format Instruction Encodings E-6

XXiii






intgl.

INTRODUCTION






intgl.

CHAPTER 1
INTRODUCTION

The i960®° CA and CF superscalar microprocessors represent Intel's commitment to provide a
spectrum of reliable, cost-effective, high-performance processors that satisfy the requirements of
today's innovative microprocessor-based products. The i960 Cx* processors are designed for appli-
cations which require greater performance on a single chip than is usually found in an entire
embedded system. The sheer speed of the 960 Cx processors enriches traditional embedded appli-
cations and makes many new functions possible at a reduced cost. These embedded processors are
versatile; they are found in diverse products such as laser printers, X-terminals, bridges, routers,
PC add-in cards and server motherboards.

Figure 1-1 identifies the processors’ most notable features, including the multiple-instruction per
clock C-series core, two-way set associative instruction cache, programmable register cache, on-
chip data RAM, multi-mode programmable bus controller for its demultiplexed bus, four-channel
59 Mbyte per second DMA controller and high-speed interrupt controller.

11 i960° MICROPROCESSOR ARCHITECTURE

The 1960 architecture provides a high-performance computing model. The architecture profits
from reduced instruction set computer (RISC) concepts and — through superscalar implementa-
tions — includes refinements for execution of more than one instruction per clock. The archi-
tecture provides a high-speed procedure call/return model, a powerful instruction set suited to
parallelism and integrated interrupt- and fault-handling models appropriate in a parallel execution
environment.

1.1.1 Parallel Instruction Execution

To sustain execution of multiple instructions in each clock cycle, a processor must decode multiple
instructions in parallel and simultaneously issue these instructions to parallel processing units. The
various processing units must then be able to independently access instruction operandsin parallel
from a common register set.

The on-chip instruction cache enables parallel decode by constantly providing the next four
unexecuted instructions to the processor's instruction scheduler. In a single clock cycle, the
scheduler inspects all four instructions and issues one, two or three of these instructions in the
same clock cycle.

1. Throughout thismanual, “Cx” refersto both thei960 CA and CF microprocessors. Information that is specific to each is
clearly indicated.
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Figure 1-1. i960® CA/CF Superscalar Microprocessor Architecture

Parallel decode also speeds conditional operations such as branches. These instructions are
decoded and executed ahead of the current instruction pointer while maintaining the logical
control flow of the sequential program.

Once the scheduler issues an instruction or group of instructions, one of six parallel processing
units begins to execute each instruction. Each parallel unit handles a different subset of the
instruction set, enabling multiple instructions to be issued and executed every clock cycle. Each
unit executes itsinstructions in parallel with other processor operations.

The 1960 Cx processors 32 general-purpose 32-bit registers are each six-ported to alow
unimpeded parallel access to independent processing units. To maintain the logical integrity of
sequential instructions which are being executed in parallel, the processor implements register

scoreboarding and resource scoreboarding interlocks.
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The superscalar 1960 Cx processors can decode multiple instructions at once and issue them to
independent processing units where they are executed in parallel. As a result, the processors
deliver sustained execution of multiple instructions per clock from a sequential instruction stream.

1.1.2 Full Procedure Call Model

These processors support two types of procedure calls: an integrated call-and-return mechanism
and a RISC-style branch-and-link instruction. The integrated call-and-return mechanism automati-
cally saves local registers when a call instruction executes and restores them when a ret (return)
instruction executes. The RISC-style branch-and-link is a fast call that does not save any of the
registers. These mechanisms result in high performance and reduced code size, while maintaining
assembly-level compatibility.

To attain the highest performance for procedure calls and returns, the processors integrate a
programmable depth register cache. The register cache internally saves the local registers for
procedure calls, rather than actually writing the data to the external procedure stack. This caching
greatly reduces the external bus traffic associated with procedure context saving and restoring.

1.1.3 Versatile Instruction Set and Addressing

The 1960 Cx microprocessors offer afull set of load, store, move, arithmetic, shift, comparison and
branch instructions and support operations on both integer and ordinal data types. They aso
provide acomplete set of Boolean and bit-field instructions to simplify manipulation of bits and bit
strings.

Most instructions are typical RISC operations. However, several commonly used complex instruc-
tions are also part of the instruction set. Performance is optimized by implementing these
commonly used functions with parallel hardware. For instance, the 32x32 multiply operation — a
single instruction — takes less than five clocks to execute: 150 ns or less at 33 MHz. Furthermore,
the multiplier is aparallel unit; this alows instructions that follow a multiply to execute before the
multiplication is complete. In fact, if several unrelated instructions follow a multiply, the multipli-
cation consumes only one clock of execution.

1.1.4 Integrated Priority Interrupt Model

The 1960 Cx microprocessors provide a priority-based mechanism for servicing interrupts. The
mechanism transparently manages up to 248 distinct sources with 31 levels of priority. Interrupt
requests may be generated from external hardware, internal hardware or software.

The interrupt mechanism is managed by hardware which operates in parallel with program
execution. This reduces interrupt latency and overhead and provides flexible interrupt handling
control.
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1.15 Complete Fault Handling and Debug Capabilities

To aid in program development, the 1960 Cx processors detect faults (exceptions). When afault is
detected, the processors make an implicit call to afault handling routine. Information collected for
each fault allows a program developer to quickly correct faulting code. The processors also allow
automatic recovery from most faults.

To support system debug, the 1960 architecture provides a mechanism for monitoring processor
activities through a software tracing facility. Thei960 Cx processors can be configured to detect as
many as seven different trace events, including breakpoints, branches, calls, supervisor calls,
returns, prereturns and the execution of each instruction (for single-stepping through a program).
The processors also provide four breakpoint registers that allow break decisions to be made based
upon instruction or data addresses.

1.2 SYSTEM INTEGRATION

The 1960 Cx microprocessors are based on the C-series core, which is object code compatible with
the 32-bit 1960 microprocessor core architecture. Additionally, the i960 Cx devices integrate three
peripherals around the core: bus control unit, DMA controller and interrupt controller.

1.2.1 Pipelined Burst Bus Control Unit

The 1960 Cx processors integrate a 32-bit high-performance bus controller for interfacing to
external memory and peripherals. The bus control unit incorporates full wait state logic and bus
width control to provide high system performance with minimal system design complexity. The
bus control unit features a maximum transfer rate of 132 Mbytes per second (at 33 MHz).
Internally programmable wait states and 16 separately configurable memory regions alow the
processor to interface with a variety of memory subsystems with minimum complexity and
maximum performance.

1.2.2 Flexible DMA Controller

A four-channel DMA controller provides high-speed DMA data transfers. Source and destination
can be any combination of internal RAM, externa memory or peripherals. DMA channels
perform single-cycle or multi-cycle transfers and can perform data packing and unpacking
between peripherals and memory with varying bus widths. Also provided are block transfers, in
addition to source- or destination-synchronized transfers.

The DMA supports various transfer types such as high speed fly-by, quad-word transfers and data
chaining with the use of linked descriptor lists. The high performance fly-by mode is capable of
transfer speeds of up to 59 Mbytes per second at 33 MHz.
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1.2.3 Priority Interrupt Controller

The interrupt controller provides full programmability of 248 interrupt sources into 31 priority
levels. The interrupt controller handles prioritization of software interrupts, hardware interrupts
and process priority. In addition, it also manages four internal sources from the DMA controller
and a single non-maskabl e interrupt input.

1.3 ABOUT THIS MANUAL

This 1960® CA/CF Microprocessor User’s Manual provides detailed programming and hardware
design information for the i960 Cx microprocessors. It is written for programmers and hardware
designers who understand the basic operating principles of microprocessors and their systems.

This manual does not provide electrical specifications such as DC and AC parametrics, operating
conditions and packaging specifications. Such information is found in the 80960CA/CF micropro-
cessor data sheets (80960CA order number is 270727; 80960CF is 272187). To obtain updates and
errata, call Intel’s FaxBack data-on-demand system (1-800-628-2283 or 916-356-3105).

For information on other 1960 processor family products or the architecture in general, refer to
Intel's Solutions960® catalog (order number is 270791). It lists all current 1960 microprocessor
family-related documents, support components, boards, software development tools, debug tools
and more. Other information can be obtained from Intel’ s technical BBS (916-356-3600).

This manual is organized in three parts; each part comprises multiple chapters and/or appendices.
The following briefly describes each part:

e Part | - Programming the i960 Cx Microprocessor (Chapters 2-9) details the programming
environment for the 1960 Cx devices. Described here are the processor's registers, instruction
set, data types, addressing modes, interrupt mechanism, external interrupt interface and fault
mechanism.

* Part Il - System Implementation (Chapters 10-14) identifies requirements for designing a
system around the i960 Cx components, such as external businterface, interrupt controller and
integrated DMA controller. Also described are programming requirements for the DMA
controller, bus controller and processor initialization.

e Part Ill - Appendices includes quick references for hardware design and programming.
Appendices are a so provided which describe the internal architecture, how to write assembly-
level code to exploit the parallelism of the processor and considerations for writing software
which is portable among al members of the i960 microprocessor family.
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1.4 NOTATION AND TERMINOLOGY

This section defines terminology and textual conventions that are used throughout the manual.

1.4.1 Reserved and Preserved

Certain fields in registers and data structures are described as being either reserved or preserved:

» Arreserved field is one that may be used by other 1960 architecture implementations. Correct
treatment of reserved fields ensures software compatibility with other i960 processors. The
processor uses these fields for temporary storage; as a result, the fields sometimes contain
unusual values.

» A preserved field is one that the processor does not use. Software may use preserved fields for
any function.

Reserved fields in certain data structures should be set to O (zero) when the data structure is
created. Set reserved fields to O when creating the Control Table, Initialization Boot Record,
Interrupt Table, Fault Table, System Procedure Table and Process Control Block. Software should
not modify or rely on these reserved field values after a data structure is created. When the
processor creates the Interrupt or Fault Record data structure on the stack, software should not
depend on the value of the reserved fields within these data structures.

Some bits or fields in data structures and registers are shown as requiring specific encoding. These
fields should be treated as if they were reserved fields. They should be set to the specified value
when the data structure is created or when the register is initialized and software should not
modify or rely on the value after that.

Reserved bits in the Special Function Registers and Arithmetic Controls (AC) register can be set
to O after initialization to ensure compatibility with future implementations. Reserved bits in the
Process Controls (PC) register and Trace Controls (TC) register should not be initialized.

When the AC, PC and TC registers are modified using modac, modpc or modtc instructions, the
reserved locations in these registers must be masked.

Certain areas of memory may be referred to as reserved memory in this reference manual.
Reserved — when referring to memory locations — implies that an implementation of the 1960
architecture may use this memory for some special purpose. For example, memory-mapped
peripherals would be located in reserved memory areas on future implementations. Programs may
use reserved memory just like any other memory unless it is specifically documented otherwise.
The 1960 Cx processors' Initialization Boot Record must be located in reserved memory at address
FFFF FFOOH. System designers typically map the entire boot ROM into the reserved memory to
reduce the complexity of the select decoding.

1-6
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1.4.2 Specifying Bit and Signal Values

The terms set and clear in this manual refer to bit values in register and data structures. If a bit is
set, itsvalue is 1; if the bit is clear, itsvalue is 0. Likewise, setting a bit means giving it a value of
1 and clearing a bit means giving it avalue of 0.

The terms assert and deassert refer to the logically active or inactive value of a signal or bit,
respectively. A signal is specified as an active 0 signal by an overbar. For example, the input is
active low and is asserted by driving the signal to alogic 0 value.

1.4.3 Representing Numbers

All numbers in this manual can be assumed to be base 10 unless designated otherwise. In text,
binary numbers are sometimes designated with a subscript 2 (for example, 001,). If it is obvious
from the context that a number is a binary number, the “2" subscript may be omitted.

Hexadecimal numbers are designated in text with the suffix H (for example, FFFF FF5AH). In
pseudo-code action statements in the instruction reference section and occasionally in text,
hexadecimal numbers are represented by adding the C-language convention “0x” as a prefix. For
example “FF7AH" appears as “OxFF7A” in the pseudo-code.

1.4.4 Register Names

Specia function registers and several of the global and local registers are referred to by their
generic register names, as well as descriptive names which describe their function. The global
register numbers are g0 through g15; local register numbers are rO through r15; special function
registers are sf0, sf1 and sf2. However, when programming the registers in user-generated code,
make sure to use the instruction operand. 1960 microprocessor compilers recognize only the
instruction operands listed in Table 1-1. Throughout this manual, the registers descriptive names,
numbers, operands and acronyms are used interchangeably, as dictated by context.

Groups of bits and single bits in registers and control words are called either bits, flags or fields.
These terms have a distinct meaning in this manual:

bit Controls a processor function; programmed by the user.

flag Indicates status. Generally set by the processor; certain flags are user program-
mable.

field A grouping of bits (bit field) or flags (flag field).

1-7
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Table 1-1. Register Terminology Conventions

Register Descriptive Name Register Number Irl)s;reur(;tri]zn Acronym
Global Registers g0 -gl5 g0 -gl4
Frame Pointer g15 fp FP
Local Registers r0-rl5 r3-rl5
Previous Frame Pointer r0 pfp PFP
Stack Pointer rl sp SP
Return Instruction Pointer r2 rip RIP
Interrupt Pending Register sfo sfo IPND
Interrupt Mask Register sfl sfl IMSK
DMA Command Register sf2 sf2 DMAC

Specific bits, flags and fields in registers and control words are usually referred to by a register
abbreviation (in upper case) followed by a bit, flag or field name (in lower case). These items are
separated with a period. A position number designates individual bitsin afield. For example, the
return type (rt) field in the previous frame pointer (PFP) register is designated as “PFPrt”. The
least significant bit of the return type field is then designated as “ PFP.rt0”.
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CHAPTER 2
PROGRAMMING ENVIRONMENT

This chapter describes the i960® Cx microprocessors programming environment including global
and local registers, specia function registers, control registers, literals, processor-state registers
and address space.

2.1 OVERVIEW

The 1960 architecture defines a programming environment for program execution, data storage and
data manipulation. Figure 2-1 shows the programming environment elements which include a
4 Gbyte (232 byte) flat address space, an instruction cache, global and local general-purpose
registers, a set of literals, special function registers, control registers and a set of processor state
registers. A register cache saves the 16 procedure-specific local registers.

The processor defines several data structures located in memory as part of the programming
environment. These data structures handle procedure calls, interrupts and faults and provide
configuration information at initialization. These data structures are:

* interrupt stack » control table »  system proceduretable

» local stack « faulttable »  process control block

e supervisor stack * interrupt table » initialization boot record
2.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS

The 1960 Cx processors use only simple load and store instructions to access memory; all
operations take place at the register level. The processors use 16 global registers, 16 local registers,
three special function registers and 32 literals (constants 0-31) as instruction operands.

The global register numbers are g0 through g15; local register numbers are r0 through r15; special
function registers are sf0, sf1 and sf2. Several of these registers are used for a dedicated function.
For example, register rO is the previous frame pointer, sometimes referred to as pfp. Some
assemblers and compilers only recognize one form of aregister operand. 1960 processor compilers
recognize only the instruction operands listed in Table 2-1. Throughout this manual, the registers
descriptive names, numbers, operands and acronyms are used interchangeably, as dictated by
context.
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Figure 2-1. 960 Cx Microprocessor Programming Environment
221 Global Registers

Global registers are general-purpose 32-bit data registers that provide temporary storage for a
program’s computational operands. These registers retain their contents across procedure
boundaries. As such, they provide a fast and efficient means of passing parameters between

procedures.
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Table 2-1. Registers and Literals Used as Instruction Operands

Instruction Operand Register Name (number) Function Acronym
g0 -gl4 global (g0-g14) general purpose
fp global (g15) frame pointer FP
pfp local (r0) previous frame pointer PFP
sp local (r1) stack pointer SP
rip local (r2) return instruction pointer RIP
r3-rl5 local (r3-r15) general purpose
sfo special function 0 interrupt pending IPND
sfl special function 1 interrupt mask IMSK
sf2 special function 2 DMA command DMAC
0-31 literals

The 1960 architecture supplies 16 global registers, designated g0 through g15. Register g15 is
reserved for the current Frame Pointer (FP) which contains the address of the first byte in the
current (topmost) stack frame. See section 5.2, “CALL AND RETURN MECHANISM” (pg. 5-2)
for a description of the FP and procedure stack.

After the processor is reset, register g0 contains die stepping information. Software must read the
value of g0 before any action is taken to modify this register. The Stepping Register Information
section in the 80960CA and CF data sheets describes the die stepping information contained in gO.

222 Local Registers

The 1960 architecture provides a separate set of 32-bit local data registers (r0 through r15) for each
active procedure. These registers provide storage for variables that are local to a procedure. Each
time aprocedureis called, the processor allocates a new set of local registers for that procedure and
saves the calling procedure’s local registers on the procedure stack. The processor performs local
register management; a program need not explicitly save and restore these registers.

r3 through r15 are general purpose registers; r0 through r2 are reserved for special functions: r0
contains the Previous Frame Pointer (PFP); rl1 contains the Stack Pointer (SP); r2 contains the
Return Instruction Pointer (RIP). These are discussed in CHAPTER 5, PROCEDURE CALLS.

NOTE:

The processor does not always clear or initialize the set of local registers
assigned to a new procedure. Therefore, initial register contents are unpre-
dictable. Also, because the processor does not initialize the local register save
area in the newly created stack frame for the procedure, its contents are equally
unpredictable.
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2.2.3 Special Function Registers (SFRs)

The 1960 architecture provides a mechanism to expand its architecture-defined register set with up
to 32 additional 32-bit registers. On the 1960 Cx microprocessor, three special function registers
(SFRs) are provided as an extension to the architectural register model. These registers are
designated sf0, sf1, sf2 (see Table 2-1). Registers sf3 — sf31 are not implemented on the i960 Cx
processors. Reading or modifying unimplemented registers causes the operation-invalid-opcode
fault to occur. SFRs provide a means to configure and monitor the interrupt controller and DMA
controller status; for the i960 CF processor, SFRs are used to control the data cache.

The processor provides a mechanism which allows only privileged access to SFRs. These registers
can only be accessed while the processor isin supervisor execution mode. See section 2.7, “USER
SUPERVISOR PROTECTION MODEL” (pg. 2-20). A type-mismatch fault occurs if an
instruction with a SFR operand is executed in user mode.

SFRs are not used as operands for instructions whose machine-level instruction format is of type
MEM or CTRL. Such instructions include |oads, stores and those which cause program redirection
(call, return and branches). APPENDIX D, MACHINE-LEVEL INSTRUCTION FORMATS
describes machine-level encoding for operands. Table 2-2 summarizes the use of SFRs as
instruction operands.

2.2.4 Register Scoreboarding

Register scoreboarding allows concurrent execution of sequential instructions. When an
instruction executes, the processor sets a register-scoreboard bit to indicate that a particular
register or group of registers is being used in an operation. If the instructions that follow do not
target registers already in use, the processor can execute those instructions before the prior
instruction execution completes.

A common application of this feature is to execute one or more single-cycle instructions concur-
rently with a multi-cycle instruction (e.g., multiply or divide). Example 2-1 shows a case where
register scoreboarding prevents a subsequent instruction from executing. It aso illustrates
overlapping instructions which do not have register dependencies.

Register scoreboarding is implemented for global and local registers but not for SFRs. When a
SFR isthe destination of amulti-cycle instruction, the programmer must prevent access to the SFR
until the multi-clock instruction returns aresult to the SFR.
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Example 2-1. Register Scoreboarding

mul i r4,r5,r6 # r6 i s scoreboarded
addi r6,r7,r8 # add nust wait for the previous multiply
# to conplete

mul i r4,r5,r10 # r10 i s scoreboarded; and instruction

and ré,r7,r8 # is executed concurrently with multiply
225 Literals

The architecture defines a set of 32 literals which can be used as operands in many instructions.
These literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used
as an operand, the processor expands it to 32 bits by adding leading zeros. If the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If
aliteral isused in an instruction that requires integer operands, the processor treats the literal as a
positive integer value.

2.2.6 Register and Literal Addressing and Alighment

Several instructions operate on multiple-word operands. For example, the load long instruction
(1dl) loads two words from memory into two consecutive registers. The register for the less-
significant word is specified in the instruction; the more-significant word is automatically |oaded
into the next higher-numbered register.

In cases where an instruction specifies a register number and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an
integral multiple of 4 if three or four registers are accessed (e.g., g0, g4). If aregister reference for
a source value is not properly aligned, the source value is undefined and an operation-invalid-
operand fault is generated. If aregister reference for a destination value is not properly aligned, the
registers to which the processor writes and the values written are undefined. The processor then
generates an operation-invalid-operand fault. The assembly language code in Example 2-2 shows
an example of correct and incorrect register alignment.

Example 2-2. Register Alignment
movl g3, g8 # | NCORRECT ALI GNMENT - resulting val ue
. # in registers g8 and g9 is
# unpredi ctabl e (non-aligned source)

movl g4, g8 # CORRECT ALI GNMENT

2-5
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Global registers, local registers, special function registers and literals are used directly as
instruction operands. Table 2-2 lists instruction operands for each machine level instruction format
and positions which can befilled by each register or literal.

Table 2-2. Allowable Register Operands

Operand (1)
Instruction . Local Global Extended .
Encoding Operand Field Register Register Register (SFR) Literal
REG srcl X X X X
src2 X X X X
src/DST (as src) X X X
src/DST (as DST) X X X
src/DST (as both) X X 2)
MEM src/DST X X
abase X X
index X X
COBR srcl X X
src2 X X X
DST X (3) X (3) X (3)
NOTES:

1. “X"denotes the register can be used as an operand in a particular instruction field.

2. Extended registers cannot be addressed in the src/DST field of REG format instructions in which this
field is used as both source and destination (e.g., extract and modify).

3. The COBR destination operands apply only to TEST instructions.

2.3 CONTROL REGISTERS

Control registers are used to configure on-chip peripherals: DMA controller, interrupt controller
and bus controller. A program cannot access control registers directly as instruction operands.
Instead, control registers are loaded from a data structure called the control table (see Figure 2-2).

The system control (sysctl) instruction moves control table values to on-chip control registers.
The control table comprises seven quad-word groups; each group is assigned a group number from
zero to six. When sysctl executes, the load control register message type and group number are
specified. sysctl moves the quad-word group of register values from the control table in memory
and writes the values to on-chip registers. See section 4.3, “SYSTEM CONTROL FUNCTIONS’

(pg. 4-19).

At initialization, the control table is automatically loaded into the on-chip control registers. This
action simplifies the user’'s startup code by providing a transparent setup of the processor’s
peripherals at initialization. See CHAPTER 14, INITIALIZATION AND SYSTEM REQUIRE-
MENTS.
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31

IP Breakpoint 0 (IPB0)

00H

IP Breakpoint 1 (IPB1)

04H

Data Address Breakpoint 0 (DABO)

08H

Data Address Breakpoint 1 (DAB1)

OCH

Interrupt Map 0 (IMAPO)

10H

Interrupt Map 1 (IMAP1)

14H

Interrupt Map 2 (IMAP2)

18H

Interrupt Control (ICON)

1CH

Memory Region 0 Configuration (MCONO)

20H

Memory Region 1 Configuration (MCON1)

24H

Memory Region 2 Configuration (MCONZ2)

28H

Memory Region 3 Configuration (MCON3)

2CH

Memory Region 4 Configuration (MCON4)

30H

Memory Region 5 Configuration (MCONS5)

34H

Memory Region 6 Configuration (MCONG)

38H

Memory Region 7 Configuration (MCON?7)

3CH

Memory Region 8 Configuration (MCONS)

40H

Memory Region 9 Configuration (MCON9)

44H

Memory Region 10 Configuration (MCON10)

48H

Memory Region 11 Configuration (MCON11)

4CH

Memory Region 12 Configuration (MCON12)

50H

Memory Region 13 Configuration (MCON13)

54H

Memory Region 14 Configuration (MCON14)

58H

Memory Region 15 Configuration (MCON15)

5CH

Reserved (Initialize to 0)

60H

Breakpoint Control (BPCON)

64H

Trace Controls (TC)

68H

Bus Configuration Control (BCON)

6CH

F_CAQ002A

Figure 2-2. Control Table
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2.4 ARCHITECTURE-DEFINED DATA STRUCTURES

The architecture defines a set of data structures including stacks, interfaces to system procedures,
interrupt handling procedures and fault handling procedures. Table 2-3 defines the data structures

and references other sections of this manual where detailed information can be found.

Table 2-3. Data Structure Descriptions

Structure (see also)

Description

user stack

section 5.6, “USER AND SUPERVISOR
STACKS” (pg. 5-15)

The processor uses this stack when executing application code.

system procedure table

section 2.7, “USER SUPERVISOR
PROTECTION MODEL” (pg. 2-20)

section 5.5, “SYSTEM CALLS” (pg. 5-12)

Contains pointers to system procedures. Application code uses
the system call instruction (calls) to access system procedures
through this table. A specific type of system call — a system
supervisor call — switches execution mode from user mode to
supervisor mode. When the processor switches to supervisor
mode, it also switches to a new stack: the supervisor stack.

interrupt table
section 6.4, “INTERRUPT TABLE” (pg.
6-3)

Contains vectors (pointers) to interrupt handling procedures.
When an interrupt is serviced, a particular interrupt table entry is
specified. A separate interrupt stack is provided to ensure that
interrupt handling does not interfere with application programs.

fault table
section 7.3, “FAULT TABLE" (pg. 7-4)

Contains pointers to fault handling procedures. When the
processor detects a fault, the processor selects a particular entry
in the fault table. The architecture does not require a separate fault
handling stack. Instead, a fault handling procedure uses the
supervisor stack, user stack or interrupt stack, depending on
processor execution mode when the fault occurred and type of call
made to the fault handling procedure.

control table

section 2.3, “CONTROL REGISTERS"
(pg. 2-6)

section 4.3, “SYSTEM CONTROL
FUNCTIONS” (pg. 4-19)

Contains on-chip control register values. Control table values are
moved to on-chip registers at initialization or with sysctl.

The 1960 Cx processors define two initialization data structures: initialization boot record (IBR)
and processor control block (PRCB). These structures provide initialization data and pointers to
other data structuresin memory. When the processor isinitialized, these pointers are read from the
initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control table
are specified in the processor control block. Supervisor stack location is specified in the system
procedure table. User stack location is specified in the user’s startup code. Of these structures, the
system procedure table, fault table, control table and initialization data structures may bein ROM;
the interrupt table and stacks must be in RAM. The interrupt table must be in RAM because the
processor sometimes writesto it.
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2.5 MEMORY ADDRESS SPACE

Address space is byte-addressable with addresses running contiguously from 0 to 2%2.1. Some of
this address space is reserved or assigned special functions as shown in Figure 2-3.

Address
1 0
0000 0000H 0
NMI Vector

0000 0004H 4

2 Internal Data RAM (optional interrupt vectors) 2
0000 003FH 64
0000 0040H

2 Internal Data RAM (optional DMA registers) 2
0000 00BFH
0000 00COH 192

2 Internal Data RAM (user mode write protected) 2
0000 00FFH
0000 0100H 256

2 Internal Data RAM (optional user mode write protection) Z
0000 03FFH
0000 0400H 1024

Code/Data
2 Architecturally Defined Data Structures 2
(external memory)

FEFF FFFFH
FFO0 0000H

2 Reserved Memory 2
FFFF FFEFH
FFFF FFOOH

Initialization Boot Record (IBR)
FFFF FF2CH
FFFF FF2DH
F_CA021A
Reserved Memory
2321
FFFF FFFFH
(4 Gbytes)

Figure 2-3. Address Space

Address space can be mapped to read-write memory, read-only memory and memory-mapped 1/O.
The architecture does not define a dedicated, addressable I/O space. There are no subdivisions of
the address space such as segments. For memory management, an external memory management
unit (MMU) may subdivide memory into pages or restrict access to certain areas of memory to
protect akernel’s code, data and stack. However, the processor views this address space as linear.

An address in memory is a 32-bit value in the range OH to FFFF FFFFH. Depending on the
instruction, an address can reference in memory a single byte, half-word (2 bytes), word (4 bytes),
double-word (8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Refer to load and store
instruction descriptions in CHAPTER 9, INSTRUCTION SET REFERENCE for multiple-byte
addressing information.

2-9
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251 Memory Requirements

The architecture requires that external memory has the following properties:
*  Memory must be byte-addressable.
*  Memory must support burst transfers (i.e., transfer blocks of up to 16 contiguous bytes).

» No memory is mapped at reserved addresses which are specifically used by an implemen-
tation.

* Memory must guarantee indivisible access (read or write) for addresses that fall within 16-
byte boundaries.

*  Memory must guarantee atomic access for addresses that fall within 16-byte boundaries.

The latter two capabilities — indivisible and atomic access — are required only when multiple
processors or other external agents, such as DMA or graphics controllers, share a common
memory.

indivisible access Guarantees that a processor, reading or writing a set of memory locations,
compl etes the operation before another processor or external agent can read
or write the same location. The processor requires indivisible access within
an aligned 16-byte block of memory.

atomic access A read-modify-write operation. Here the external memory system must
guarantee that — once a processor begins a read-modify-write operation on
an aligned, 16-byte block of memory — it is alowed to complete the
operation before another processor or external agent is allowed access to
the same location. An atomic memory system can be implemented by using
the LOCK signal to qualify hold requests from external bus agents. LOCK
is asserted for the duration of an atomic memory operation.

The upper 16 Mbytes of the address space — addresses FFO0 0000H through FFFF FFFFH — are
reserved for implementation-specific functions. In general, programs can access this address space
section unless an implementation specifically uses the memory or forbids access.

Thisaddressrange istermed “reserved” so future i960 architecture implementations may use these
addresses for special functions such as mapped registers or data structures. Therefore, to ensure
complete object-level compatibility, portable code must not access or depend on values in this
region. As shown in Figure 2-3, the initialization boot record is located in the i960 Cx processors
reserved memory.

The 1960 Cx processors require some special consideration when using the lower 1 Kbyte of
address space (addresses 0000H-03FFH). Loads and stores directed to these addresses access
internal memory; instruction fetches from these addresses are not allowed for the i960 Cx
processors. See section 2.5.4, “Internal Data RAM” (pg. 2-12).
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25.2 Data and Instruction Alignment in the Address Space

Instructions, program data and architecturally defined data structures can be placed anywhere in

non-reserved address space while adhering to these alignment requirements:

» Align instructions on word boundaries.

» Align all architecturally defined data structures on the boundaries specified in Table 2-4.

» Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries in
memory.

The 960 Cx processors do not require that load and store data be aligned in memory. It can handle

anon-aligned load or store request by either of two methods:

e It can automatically service a non-aligned memory access with microcode assistance as
described in section 10.4, “DATA ALIGNMENT” (pg. 10-9).

» |t can generate an operation unaligned fault when a non-aligned access is detected.

The method for handling non-aligned accesses is selected at initialization based on the value of the
Fault Configuration Word in the Process Control Block. See section 14.2.6, “Process Control
Block (PRCB)” (pg. 14-8).

Table 2-4. Alignment of Data Structures in the Address Space

Data Structure Alignment
System Procedure Table 4 byte
Interrupt Table 4 byte
Fault Table 4 byte
Control Table 16 byte
User Stack 16 byte
Supervisor Stack 16 byte
Interrupt Stack 16 byte
Process Control Block 16 byte
Initialization Boot Record Fixed at FFFF FFOOH
253 Byte, Word and Bit Addressing

The processor provides instructions for moving data blocks of various lengths from memory to
registers (LOAD) and from registers to memory (STORE). Allowable sizes for blocks are bytes,
half-words (2 bytes), words (4 bytes), double words, triple words and quad words. For example, stl
(store long) stores an 8 byte (double word) data block in memory.

2-11
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The most efficient way to move data blocks longer than 16 bytes is to move them in quad-word
increments, using quad-word instructions Idg and stq.

When a data block is stored in memory, normally the block’s least significant byte is stored at a
base memory address and the more significant bytes are stored at successively higher byte
addresses. This method of ordering bytesin memory is referred to as “little endian” ordering.

The 1960 Cx processors aso provide the option for ordering bytes in an opposite manner in
memory. The block’s most significant byte is stored at the base address and the less significant
bytes are stored at successively higher addresses. This byte ordering scheme — referred to as “big
endian” — applies to data blocks which are short words or words. For more about byte ordering,
see section 10.4, “DATA ALIGNMENT” (pg. 10-9).

When loading a byte, half word or word from memory to aregister, the block’s least significant bit
is always loaded in register bit 0. When loading double words, triple words and quad words, the
least significant word is stored in the base register. The more significant words are then stored at
successively higher numbered registers. Bits can only be addressed in data that resides in a
register; bit 0 in aregister isthe least significant bit, bit 31 is the most significant hit.

254 Internal Data RAM

Internal data RAM is mapped to the lower 1 Kbyte (0000H to 03FFH) of the address space. Loads
and stores, with target addresses in internal data RAM, operate directly on the internal data RAM;
no external bus activity is generated. Data RAM allows time-critical data storage and retrieval
without dependence on external bus performance. The lower 1 Kbyte of memory is data memory
only. Instructions cannot be fetched from the internal data RAM. Instruction fetches directed to the
data RAM cause a type mismatch fault to occur.

Some internal data RAM locations are reserved for functions other than general data storage
(Figure 2-4). When the DMA controller is active, 32 bytes of data RAM are reserved for each
channel in use. Additionally, 64 bytes of data RAM may be used to cache specific interrupt
vectors. The word at location 0000H is aways reserved for the cached NMI vector. With the
exception of the cached NMI vector, other reserved portions of the data RAM can be used for data
storage when the alternate function is not used.

As described in section 14.2.6, “Process Control Block (PRCB)” (pg. 14-8), local register cache
size is specified by the value of the Process Control Block’s Register Cache Configuration Word.
The first five local register sets are cached internaly; if more than five sets are to be cached, the
local register cache can be extended into the internal data RAM. Up to ten more sets — occupying
up to 640 bytes of data RAM — can be used. When the local register cache is extended, each new
register set consumes 16 words of internal data RAM beginning at the highest data RAM address.
The user program is responsible for preventing corruption to the internal RAM areas set aside for
the register cache. See CHAPTER 5, PROCEDURE CALLS.
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Internal RAM’s first 256 bytes (0000H to OOFFH) are user mode write protected. This data RAM
can be read while executing in user or supervisor mode; however, RAM can only be modified in
supervisor mode. Writes to these locations while in user mode cause a type mismatch fault to be
generated. This feature provides supervisor protection for DMA and Interrupt functions which use
internal RAM. See section 2.7, “USER SUPERVISOR PROTECTION MODEL" (pg. 2-20). User
mode write protection is optionally selected for the rest of the data RAM (0100H to 03FFH) by
setting the Bus Configuration Register (BCON) RAM protection bit.

255 Instruction Cache

The instruction cache enhances performance by reducing the number of instruction fetches from
external memory. The cache provides fast execution of cached code and loops of code in the cache
and also provides more bus bandwidth for data operations in external memory. The 1960 Cx
processors instruction cache is a two-way set associative cache, organized in two sets of eight-
word lines. Each line is composed of four two-word blocks which can be replaced independently.

» Thei960 CA processor cacheis 1 Kbyte, organized as two sets of 16 eight-word lines.

» Thei960 CF processor cacheis 4 Kbytes, organized as two sets of 64 eight-word lines.

To optimize cache updates when branches or interrupts execute, each word in the line has a
separate valid bit. Cache misses cause the processor to issue either double- or quad-word fetchesto
update the cache. Refer to APPENDIX A, INSTRUCTION EXECUTION AND
PERFORMANCE OPTIMIZATION for athorough discussion of the instruction cache operation.

Bus snooping is not implemented with the i960 Cx processors cache. The cache does not detect
modification to program memory by loads, stores or actions of other bus masters. Several
situations may require program memory modification, such as uploading code at initialization or
uploading code from a backplane bus or a disk.

To achieve cache coherence, instruction cache contents can be invalidated after code modification
is complete. The sysctl instruction is used to invalidate the instruction cache for the i960 Cx
component. sysctl is issued with an invalidate-instruction-cache message type. See section 4.3,
“SYSTEM CONTROL FUNCTIONS’ (pg. 4-19).

The user program is responsible for synchronizing a program with code modification and cache
invalidation. In general, a program must ensure that modified code space is not accessed until
modification and cache-invalidate is completed.

Instruction cache can be turned off, causing all instruction fetches to be directed to external
memory. Disabling the instruction cache is useful for debugging or monitoring a system at the
instruction prefetch level. To disable the instruction cache, sysctl is executed with the configure-
instruction-cache message.
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When the cache is disabled, the processor depends on a 16-word instruction buffer to provide
decoding instructions. The instruction buffer is organized as two sets of two-way set associative
cache with a four word line size. When the main cache is disabled, small loops of code may still
execute entirely within the instruction buffer.

The processor can be directed to load a block of instructions into the cache and then disable all
normal updates to this load cache portion. This cache load-and-lock mechanism is provided to
optimize interrupt latency and throughput. The first instructions of time-critical interrupt routines
are loaded into the locked cache. The interrupt, when serviced, is directed to the locked cache
portion. No external accesses are required for these instructions when the interrupt is serviced.

Only interrupts can be directed to fetch instructions from the instruction cache’s locked portion.
Other causes of program redirection always fetch from the norma memory hierarchy, even if the
target address of the redirection is represented in the locked cache. When bit 1 of an interrupt
vector is set to 1, the interrupt is fetched from the instruction cache’'s locked portion. Execution
continues from the locked cache until a miss occurs, such as a branch, cal or return to code
outside of the locked space. If an interrupt directed to the locked cache results in a miss, the
targeted instruction is fetched from the normal memory hierarchy.

Either the full cache or half the cache can be configured to load and lock. When only half of the
cache is loaded and locked, the other half acts as a normal two-way set associative cache.
Normally, an application locks only half the cache. Locking the full cache means that all
instruction fetches — except interrupts directed to the locked cache — come from external
memory. See section 12.3.14, “Caching Interrupt-Handling Procedures’ (pg. 12-21) for more
details on the cache load and lock feature.

sysctl is issued with a configure-instruction-cache message type to select the load and lock
mechanism. When the lock option is selected, an address is specified which points to a memory
block to be loaded into the locked cache.

256 Data Cache (80960CF Only)

The 1960 CF processor has a 1 Kbyte direct-mapped data cache which enhances performance by
reducing the number of load and store accesses to external memory. The data cache can return up
to a quad word (128 bits) to the register file in a single clock cycle on a cache hit. section A.1.8,
“Data Cache (80960CF Only)” (pg. A-8) fully describes the data cache.

2.6 PROCESSOR-STATE REGISTERS

The architecture defines four 32-bit registers that contain status and control information:

* Instruction Pointer (IP) register » Arithmetic Controls (AC) register
»  Process Controls (PC) register »  Trace Controls (TC) register
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26.1 Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This address is
32 hitslong; however, since instructions are required to be aligned on word boundaries in memory,
the IP' s two least-significant bits are always O (zero).

All 1960 processor instructions are either one or two words long. The IP gives the address of the
lowest-order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mode
allows the IP to be used as an offset into the address space. This addressing mode can also be used
with the Ida (load address) instruction to read the current |P value.

When a break occurs in the instruction stream — due to an interrupt, procedure call or fault — the
I P of the next instruction to be executed is stored in local register r2 which isusually referred to as
the return IP or RIP register. Refer to CHAPTER 5, PROCEDURE CALLS for further discussion
of this operation.

2.6.2 Arithmetic Controls (AC) Register

The AC register (Figure 2-4) contains condition code flags, integer overflow flag, mask bit and a
bit that controls faulting on imprecise faults. Unused AC register bits are reserved.

31 28 24 20 16 12 8 4 0
n o o clc|c
i m f clc|c
f 21110

No-Imprecise-Faults Bit- AC.nif 4T

(0) Some Faults are Imprecise
(1) All Faults are Precise

Integer Overflow Mask Bit - AC.om
(0) No Mask
(1) Mask

Integer-Overflow Flag - AC.of
(0) No Overflow
(1) Overflow

Condition Code Bits - AC.cc
Reserved
(Initialize to 0) F_CA004A

Figure 2-4. Arithmetic Controls (AC) Register




PROGRAMMING ENVIRONMENT In e ©

26.2.1 Initializing and Modifying the AC Register

At initialization, the AC register is loaded from the Initial AC image field in the Process Control
Block. Reserved bits are set to 0 in the AC Register Initial Image. Refer to CHAPTER 14,
INITIALIZATION AND SYSTEM REQUIREMENTS.

After initialization, software must not modify or depend on the AC register’s reserved location.
The modify arithmetic controls (modac) instruction can be used to examine and/or modify any of
the register bits. This instruction provides a mask operand that can be used to limit access to the
register’s specific bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrupt or
handles a fault. The processor saves the current AC register state in an interrupt record or fault
record, then restores the register upon returning from the interrupt or fault handler.

2.6.2.2 Condition Code

The processor setsthe AC register’s condition code flags (bits 0-2) to indicate the results of certain
instructions — usually compare instructions. Other instructions, such as conditional branch
instructions, examine these flags and perform functions as dictated by the state of the condition
code. Once the processor sets the condition code flags, the flags remain unchanged until another
instruction executes that modifies the field.

Condition code flags show true\false conditions, inequalities (greater than, equal or less than
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show true
or false conditions, the processor sets the flags as shown in Table 2-5. To show equality and
inequalities, the processor sets the condition code flags as shown in Table 2-6.

Table 2-5. Condition Codes for True or False Conditions

Condition Code Condition
010, true
000, false

Table 2-6. Condition Codes for Equality and Inequality Conditions

Condition Code Condition
000, unordered (false)
001, greater than (true)
010, equal
100, less than
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Some 1960 architecture implementations provide integrated floating point processing. The terms
ordered and unordered are used when comparing floating point numbers. If, when comparing two
floating point values, one of the values is a NaN (not a number), the relationship is said to be
“unordered.” Thei960 Cx processors do not implement on-chip floating point processing.

To show carry out and overflow, the processor sets the condition code flags as shown in Table 2-7.

Table 2-7. Condition Codes for Carry Out and Overflow

Condition Code Condition
01X, carry out
0X1, overflow

Certain instructions, such as the branch-if instructions, use a 3 bit mask to evaluate the condition
code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask of 011, to
determine if the condition code is set to either greater-than or equal. These masks cover the
additional conditions of greater-or-equal (011,), less-or-equal (110,) and not-equal (101,). The
mask is part of the instruction opcode; the instruction performs a bitwise AND of the mask and
condition code.

The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in
conjunction with the arithmetic-integer-overflow fault. The mask bit disables fault generation.
When the fault is masked and integer overflow is encountered, the processor — instead of
generating afault — setsthe integer overflow flag. If the fault is not masked, the fault is allowed to
occur and the flag is not set.

Once the processor setsthisflag, it never implicitly clearsit; the flag remains set until the program
clearsit. Refer to the discussion of the arithmetic-integer-overflow fault in CHAPTER 7, FAULTS
for more information about the integer overflow mask bit and flag.

The no imprecise faults bit (bit 15) determines whether or not faults are allowed to be imprecise. If
set, all faults are required to be precise; if clear, certain faults can be imprecise. See section 7.9,
“PRECISE AND IMPRECISE FAULTS’ (pg. 7-17) for more information.

2.6.3 Process Controls (PC) Register

The PC register (Figure 2-5) is used to control processor activity and show the processor’s current
state.PC register execution mode flag (bit 1) indicates that the processor is operating in either user
mode (0) or supervisor mode (1). The processor automatically sets this flag on a system call when
a switch from user mode to supervisor mode occurs and it clears the flag on a return from
supervisor mode. (User and supervisor modes are described in section 2.7, “USER SUPERVISOR
PROTECTION MODEL” (pg. 2-20)).
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Trace-Enable Bit - PC.te
(0) no trace faults
(1) generated trace faults

Execution-Mode Flag - PC.em
(0) user mode
(1) supervisor mode

Trace-Fault-Pending PC.tfp
(0) no fault pending

(1) fault pending
State Flag - PC.s

(0) executing

(1) interrupted

Priority Field - PC.p
(0-31) process priority l
1
pop|p|prfp : e |t
a3 |2]1fo s f m|e
p
31 28 24 20 16 12 8 4 0
Reserved
(Do not modify) F_CROO5A

Figure 2-5. Process Controls (PC) Register

PC register state flag (bit 13) indicates processor state: executing (0) or interrupted (1). If the
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor’'s state is
executing.

While in the interrupted state, the processor can receive and handle additional interrupts. When
nested interrupts occur, the processor remains in the interrupted state until all interrupts are
handled, then switches back to executing state on the return from the initial interrupt procedure.

PC register priority field (bits16 through 20) indicates the processor's current executing or
interrupted priority. The architecture defines a mechanism for prioritizing execution of code,
servicing interrupts and servicing other implementation-dependent tasks or events. This
mechanism defines 32 priority levels, ranging from O (the lowest priority level) to 31 (the highest).
The priority field always reflects the current priority of the processor. Software can change this
priority by use of the modpc instruction.

The processor uses the priority field to determine whether to service an interrupt immediately or to
post the interrupt. The processor compares the priority of a requested interrupt with the current
process priority. When the interrupt priority is greater than the current process priority or equal to
31, the interrupt is serviced; otherwise it is posted. When an interrupt is serviced, the process
priority field is automatically changed to reflect interrupt priority. See CHAPTER 6,
INTERRUPTS.
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PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing function.
The trace enable bit determines whether trace faults are to be generated (1) or not generated (0).
The trace fault pending flag indicates that a trace event has been detected (1) or not detected (0).

2
26.3.1 Initializing and Modifying the PC Register -

Any of the following three methods can be used to change bitsin the PC register:
» Maodify process controls instruction (modpc)
» Alter the saved process controls prior to areturn from an interrupt handler

»  Alter the saved process controls prior to areturn from a fault handler

modpc directly reads and modifies the PC register. The processor must be in supervisor mode to
execute this instruction; atype-mismatch fault is generated if modpc is executed in user mode. As
with modac, modpc provides a mask operand that can be used to limit access to specific bits or
groups of bitsin the register.

In the latter two methods, the interrupt or fault handler changes process controlsin the interrupt or
fault record that is saved on the stack. Upon return from the interrupt or fault handler, the modified
process controls are copied into the PC register. The processor must be in supervisor mode prior to
return for modified process controlsto be copied into the PC register.

When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: if modpc is used to change the trace enabl e bit, the processor
may not recognize the change before the next four instructions are executed.

After initialization (hardware reset), the process controls reflect the following conditions:

e priority =31 *  execution mode = supervisor
» trace enable = off » dtate = interrupted

When the processor is reinitialized via the system control instruction and reinitialize message, the
PC register reflects the same conditions, except that the processor retains the same priority as
before reinitialization.

The reserved bits indicated in Figure 2-5 should never be set to zero; user software should not
depend on the value of the reserved bits. Normally, modpc is not used to directly modify execution
mode, trace fault pending and state flags except under special circumstances, such as in initial-
ization code.
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2.6.4 Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enable bits and trace event flags which are used to enable specific tracing
modes and record trace events, respectively. Trace controls are described in CHAPTER 8,
TRACING AND DEBUGGING.

2.7 USER SUPERVISOR PROTECTION MODEL

The capability of a separate user and supervisor execution mode creates a code and data protection
mechanism referred to as the user supervisor protection model. This mechanism allows code, data
and stack for a kernel (or system executive) to reside in the same address space as code, data and
stack for the application. The mechanism restricts access to al or parts of the kernel by the
application code. This protection mechanism prevents application software from inadvertently
altering the kernel.

2.7.1 Supervisor Mode Resources

The processor can be in either of two execution modes: user or supervisor. Supervisor mode is a
privileged mode which provides several additional capabilities over user mode.

*  When the processor switches to supervisor mode, it also switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel’s integrity. For example, it allows
system debugging software or a system monitor to be accessed, even if an application’s
program destroys its own stack.

* When an instruction executed in supervisor mode causes a bus access to occur, an external
supervisor pin SUP is asserted for loads, stores and instruction fetches. Hardware protection
of system code or data can be implemented by using the supervisor pin to qualify write
accesses to the protected memory.

* Insupervisor mode, the processor is allowed access to a set of supervisor-only functions and
instructions. For example, the processor uses supervisor mode to handle interrupts and trace
faults. Operations which can modify DMA or interrupt controller behavior or reconfigure bus
controller characteristics can only be performed in supervisor mode. These functions include
modification of SFRs, control registers or internal data RAM which is dedicated to the DMA
and interrupt controllers. A fault is generated if supervisor-only operations are attempted
while the processor is in user mode. Table 2-8 lists supervisor-only operations and the fault
which is generated if the operation is attempted in user mode.

The PC register execution mode flag specifies processor execution mode. The processor automati-
cally sets and clears this flag when it switches between the two execution modes.
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Table 2-8. Supervisor-Only Operations and Faults Generated in User Mode

Supervisor-Only Operation User-Mode Fault
modpc (modify process controls) type-mismatch
sysctl (system control) constraint-privileged
sdma (setup DMA) constraint-privileged
SFR as instruction operand type-mismatch
Protected internal data RAM write type-mismatch
2.7.2 Using the User-Supervisor Protection Model

A program switches from user mode to supervisor mode by making a system-supervisor call (also
referred to as a supervisor cal). A system-supervisor cal is a call executed with the call-system
instruction (calls). With the calls instruction, the IP for the called procedure comes from the
system procedure table. An entry in the system procedure table can specify an execution mode
switch to supervisor mode when the called procedure is executed. The calls instruction and the
system procedure table thus provide a tightly controlled interface to procedures which can execute
in supervisor mode. Once the processor switches to supervisor mode, it remains in that mode until
areturnis performed to the procedure that caused the original mode switch.

Interrupts and some faults also cause the processor to switch from user to supervisor mode. When
the processor handles an interrupt, it automatically switches to supervisor mode. However, it does
not switch to the supervisor stack. Instead, it switchesto the interrupt stack.

Figure 2-6 shows a system which implements the user-supervisor protection model to protect
kernel code and data. The code and data structures in the shaded areas can only be accessed in
supervisor mode.

In this example, kernel procedures are accessed through the system procedure table with system-
supervisor calls. These procedures execute in supervisor mode. Some application procedures are
also called through the system procedure table using a system-local call. Fault procedures are
executed in supervisor mode by directing the faults through the system procedure table. Interrupt
procedures, which are likely to modify SFRs, process controls or use other supervisor operations,
are executed in supervisor mode. The interrupt stack and supervisor stack are insulated from the
user stack in this system.

If an application does not require a user-supervisor protection mechanism, the processor can
always execute in supervisor mode. At initialization, the processor is placed in supervisor mode
prior to executing the first instruction of the application code. The processor then remains in
supervisor mode indefinitely, aslong as no action is taken to change execution mode to user mode.
The processor does not need a user stack in this case.
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Application User
—>
Program Stack
System K M
Calls erne Supervisor
— | Procedure |—— » System Exec. gtack
Fault Handlers
Table
Fault Fault
_—
Table
Interrupt inierrupt Interrupt Interrupt
" N
Table Handlers Stack
|:| Indicates data structure in protected memory F_CAOOGA

Figure 2-6. Example Application of the User-Supervisor Protection Model
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CHAPTER 3

DATA TYPES AND MEMORY ADDRESSING MODES

3.1 DATA TYPES

Theinstruction set references or produces several datalengths and formats. The i960® architecture
defines the following data types:

* Integer (8, 16, 32 and 64 bits) » Ordinal (unsigned integer 8, 16, 32 and 64 bits)
* Triple Word (96 bits) *  Quad Word (128 hits)
* Bit » BitField

Figure 3-1 shows 960 architecture data types and the length and numeric range of each.

8
| Bit Field | Bits
0
31 — Length - 0 L
° 1 Bits
LSB of 15 0
Bit Field 32
Bits Word |
31 0
64
Bits Long |
63 0
96 B
Bits | | Triple Word |
95 0
élztg | | | Quad Word |
127 0
Class Data Type Length Range
Byte Integer 8 Bits 2"t027-1
Numeric Short Integer 16 Bits 2102151
(Integer) Integer 32 Bits 23110281 1
Long Integer 64 Bits 26310 2631
_ Byte Ordinal 8 Bits Oto28-1
Numeric Short Ordinal 16 Bits 0t02%-1
(Ordinal)
Ordinal 32 Bits 0t02%2-1
Long Ordinal 64 Bits 0to2%4-1
Bit i
! . 1 Bit N/A
. Bit Field 1-32 Bits
Non-Numeric Triple Word 96 Bite
Quad Word 128 Bits
F_CA008A

Figure 3-1. Data Types and Ranges

3-1



DATA TYPES AND MEMORY ADDRESSING MODES Intel®

3.1.1 Integers

Integers are signed whole numbers which are stored and operated on in two’s complement format
by the integer instructions. Most integer instructions operate on 32-bit integers. Byte and short
integers are only referenced by the byte and short classes of the load and store instructions. None
of the 1960 Cx processor instructions reference or produce the long-integer data type. Table 3-1
shows the supported integer sizes.

Table 3-1. Supported Integer Sizes

Integer size Descriptive name
8 bit byte integers
16 bit short integer
32 bit integers
64 bit long integers
NOTE:

HLL compilers may define long integer types differently than the i960 archi-
tecture.

Integer load or store size (byte, short or word) determines how sign extension or data truncation is
performed when data is moved between registers and memory.

For instructions Idib (load integer byte) and Idis (load integer short), a byte or short word in
memory is considered atwo's complement value. The valueis sign-extended and placed in the 32-
bit register which is the destination for the load.

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two's complement
number in aregister is stored to memory as a byte or short-word. If register datais too large to be
stored as a byte or short word, the value is truncated and the integer overflow condition is
signalled. When an overflow occurs, either an AC register flag is set or the integer overflow fault
is generated. CHAPTER 7, FAULTS describes the integer overflow fault.

For instructions Id (load word) and st (store word), data is moved directly between memory and a
register with no sign extension or data truncation.
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3.1.2 Ordinals

Ordinals — unsigned integer data types — are stored and operated on as positive binary values.
Table 3-2 shows the supported ordinal sizes.

Table 3-2. Supported Ordinal Sizes

Ordinal size Descriptive name
8 bit byte ordinals
16 bit short ordinals
32 bit ordinals
64 bit long ordinals

The large number of instructions that perform logical, bit manipulation and unsigned arithmetic
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean values,
1=TRUE and 0 = FALSE. Several extended arithmetic instructions reference the long ordinal data
type. Only load and store instructions reference the byte and short ordinal data types.

Sign and sign extension is not a consideration when ordinal loads and stores are performed; the
values may, however, be zero extended or truncated. A short word or byte load to aregister causes
the value loaded to be zero extended to 32 bits. A short word or byte store to memory may cause an
ordinal value in aregister to be truncated to fit its destination in memory. No overflow condition is
signalled in this case.

3.1.3 Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit fields
within register operands. An individual bit is specified for a bit operation by giving its bit number
and register. The least significant bit of a 32-bit register is bit 0; the most significant bit is bit 31.

A bit field is a contiguous sequence of bits within aregister operand. Bit fields do not span register
boundaries. A bit field is defined by giving its length in bits (0-31) and the bit number of its lowest
numbered bit (0-31). In other words, the bit field is any contiguous group of bits (up to 31 bits
long) in a 32-bit register.

Loading and storing of bit and bit field datais normally performed using the ordinal load and store
instructions. Integer load and store instructions operate on two's complement numbers. Depending
on the value, a byte or short integer load can result in sign extension of datain aregister. A byte or
short store can signal an integer overflow condition.
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3.14 Triple and Quad Words

Triple- and quad-words refer to consecutive words in memory or in registers. Triple- and quad-
word loads, stores and move instructions use these data types. These instructions facilitate data
block movement. No data manipulation (sign extension, zero extension or truncation) is
performed in these instructions.

Triple- and quad-word data types can be considered a superset of — or as encompassing — the
other data types described. The datain each word subset of a quad word is likely to be the operand
or result of an ordinal, integer, bit or bit field instruction.

3.15 Data Alignment

Datain registers and memory must adhere to specific alignment requirements:

» Align long-word operands in registers to double-register boundaries.

» Aligntriple- and quad-word operands in registers to quad-register boundaries.

For the 1960 Cx processors, data alignment in memory is not required. Unaligned memory
accesses — by programmable option — can either cause afault or be handled automatically. Refer

to section 2.5.2, “Data and Instruction Alignment in the Address Space” (pg. 2-11) for a complete
description of alignment requirements for data and instructions.

3.2 BYTE ORDERING

The 1960 Cx processors can be programmed to use little- or big endian-byte ordering for memory
accesses. Byte ordering refers to how data items larger than one byte are assembled:

*  For little-endian byte order, the byte with the lowest address in a multi-byte data item has the
least significance.

»  For big-endian byte order, the byte with the lowest address in a multi-byte data item has the
most significance.

For example, Table 3-3 shows 4 bytes of datain memory. Table 3-4 shows the differences between
little- and big-endian accesses for byte, short and word data. Figure 3-2 shows the resultant data
placement in registers.

Once data is read into registers, byte order is no longer relevant. The lowest significant bit is
always bit 0. The most significant bit is always bit 31 for words, bit 5 for short words, and bit 7 for
bytes.
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Table 3-3. Memory Contents For Little and Big Endian Example

ADDRESS DATA
100H 12H
101H 34H
102H 56H
103H 78H

Table 3-4. Byte Ordering for L

ittle and Big Endian Accesses

Access Example Little Endian Big Endian
Byte at 100H Idob 0x100, r3 12H 12H
Short at 102H Idos 0x102, r3 7856H 5678H
Word at 100H Id 0x100, r3 78563412H 12345678H
31 24 23 16 15 87 0
XX XX XX DD
31 24 23 16 15 87 0
SHORT XX XX DD DD
31 24 23 16 15 87 0
WORD DD DD DD DD

NOTES:

D’s are data transferred to/from memory
X's are O's for ordinal data
X’s are sign bit extensions for integer data

Figure 3-2. Data Placement in Registers

3.3 MEMORY ADDRESSING MODES

The processor provides nine modes for addressing operands in memory. Each addressing mode is
used to reference a byte in the processor’s address space. Table 3-5 shows the memory addressing
modes, a brief description of each mode’ s address el ements and assembly code syntax.
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Table 3-5. Memory Addressing Modes

Mode Description Assembler Syntax
Absolute offset offset exp
displacement displacement exp
Register Indirect abase (reg)
with offset abase + offset exp (reg)
with displacement abase + displacement exp (reg)
with index abase + (index*scale) (reg) [reg*scale]
with index and displacement abase + (index*scale) + displacement exp (reg) [reg*scale]
Index with displacement (index*scale) + displacement exp [reg*scale]
IP with displacement IP + displacement + 8 exp (IP)

NOTE: reg is register and exp is an expression or symbolic label.

3.3.1 Absolute

Absolute addressing modes allow a memory location to be referenced directly as an offset from
address OH. At the instruction encoding level, two absolute addressing modes are provided:
absolute offset and absol ute displacement, depending on offset size.

»  For the absolute offset addressing mode, the offset is an ordinal number ranging from 0 to
4095. The absolute offset addressing mode is encoded in the MEMA machine instruction
format.

» For the absolute displacement addressing mode the offset is an integer (a displacement)
ranging from -231 to 231-1. The absolute displacement addressing mode is encoded in the
MEMB format.

Encoding level addressing modes and instruction formats are described in CHAPTER 9,
INSTRUCTION SET REFERENCE.

At the assembly language level, the two absolute addressing modes are combined into one. Both
modes use the same syntax. Typically, development tools allow absolute addresses to be specified
through arithmetic expressions (e.g., X + 44) or symbolic labels. After evaluating an address
specified with the absolute addressing mode, the assembler converts the address into an offset or
displacement and selects the appropriate instruction encoding format and addressing mode.

3.3.2 Register Indirect

Register indirect addressing modes use a register’s 32-bit value as a base for address calculation.
Theregister value isreferred to as the address base (designated abase in Table 3-5). Depending on
the addressing mode, an optional scaled-index and offset can be added to this address base.
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Register indirect addressing modes are useful for addressing elements of an array or record
structure. When addressing array elements, the abase value provides the address of the first array
element; an offset (or displacement) selects a particular array element.

In register-indirect-with-index addressing mode, the index is specified using a value contained in a
register. Thisindex value is multiplied by a scale factor; allowable factorsare 1, 2, 4, 8 and 16.

The two versions of register-indirect-with-offset addressing mode at the instruction encoding level
are register-indirect-with-offset and register-indirect-with-displacement. As with absolute
addressing modes, the mode selected depends on the size of the offset from the base address.

At the assembly language level, the assembler allows the offset to be specified with an expression
or symbolic label, then evaluates the address to determine whether to use register-indirect-with-
offset (MEMA format) or register-indirect-with-displacement (MEMB format) addressing mode.

Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a
displacement to the address base. There is only one version of this addressing mode at the
instruction encoding level; it is encoded in the MEMB instruction format.

3.3.3 Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and multiplied by a scaling constant before displacement is added.

3.34 IP with Displacement

This addressing mode is used with load and store instructions to make them IP relative. |P-with-
displacement addressing mode references the next instruction’s address plus the displacement plus
a constant of 8. The constant is added because — in a typical processor implementation — the
address has incremented beyond the next instruction address at the time of address calculation. The
constant simplifies |P-with-displacement addressing mode implementation.

3.35 Addressing Mode Examples

The following examples show how 1960 addressing modes are encoded in assembly language.
Example 3-1 shows addressing mode mnemonics. Example 3-2 illustrates the usefulness of scaled
index and scaled index plus displacement addressing modes. In this example, a procedure named
array_op uses these addressing modes to fill two contiguous memory blocks separated by a
constant offset. A pointer to the top of the block is passed to the procedure in g0, the block sizeis
passed in gl and thefill datain g2.
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Example 3-1. Addressing Mode Mnemonics

st g4, xyz absol ute; word fromg4 stored at nmenory
| ocation designated with | abel xyz.
register indirect; ordinal byte from
menory | ocation given in r3 | oaded

into register r4 and zero extended.
register indirect with displacenment;
doubl e word from g6,g7 stored at nenory
| ocation xyz + g5.

register indirect with index; quad-word
begi nning at nmenory location r8 + (r9
scaled by 4) loaded into r4 through r7.
register indirect with index and

di spl acenent; word in g3 | oaded to nem
| ocation g4 + xyz + (g5 scaled by 2).
index with displacenent; |oad short
integer at menory |location xyz + ri2
into r13 and sign extended.

IP with displacenment; store word in r4
at nenory location IP + xyz + 8.

| dob (r3),r4

st g6, xyz(g5b)

I dq (r8)[r9*4],r4

st 03, xyz(g4) [ g5*2]

Idis xyz[r12*1],r13

st rd, xyz(1P)

HHHFHHHHF R HH

Example 3-2. Use of Index Plus Scaled Index Mode

array_op:
nmv g0, r4 # pointer to array is nmoved to r4
subi 1,91,r3 # calcul ate index for the last array
b . 133 # elenment to be filled.

.1 34:
st g2, (rd)[r3*4] # fill array at index
st g2, 0x30(r4)[r3*4] #fill array at index+constant offset
subi 1,r3,r3 # decrenent index

.133:
cnpible 0,r3,.134 # store next array elements if
ret # index is not O

3-8
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CHAPTER 4
INSTRUCTION SET SUMMARY

This chapter overviews the i960® microprocessor family’s instruction set and {960 Cx processor-
specific instruction set extensions. Also discussed are the assembly-language and instruction-
encoding formats, various instruction groups and each group’ s instructions.

CHAPTER 9, INSTRUCTION SET REFERENCE describes each instruction — including
assembly language syntax — and the action taken when the instruction executes and examples of
how to use the instruction.

4.1 INSTRUCTION FORMATS

Instructions described in this manual are in two formats: assembly language and instruction
encoding. The following subsections briefly describe these formats.

41.1 Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonics. For
example, the add ordinal instruction is referred to as addo. Examples use Intel 80960 assembler
assembly language syntax which consists of the instruction mnemonic followed by zero to three
operands, separated by commas. In the following assembly language statement example for addo,
ordinal operandsin global registers g5 and g9 are added together; the result is stored in g7:

addo g5, g9, g7 # 97 - g9 + g5

In the assembly language listings in this chapter, registers are denoted as:

g global register r local register
sf  special function register #  pound sign precedes a comment

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal
numbers are denoted with a “0x” prefix (e.g., Oxffff0012). Several assembly language instruction
statement examples follow. Additional assembly language examples are given in section 3.3.5,
“Addressing Mode Examples’ (pg. 3-7). Further information about assembly language syntax can
be found in Intel’si960® Processor Assembler User’s Guide (order #485276).

subi r3, r5, r6 #r6 - r5 - 3

sethit 13, g4, g5 #g5 - g4 with bit 13 set

| da Oxfab3, rl12 #r12- Oxfab3

ld (r4), g3 #93 - menory location that g4 points to

st gl1l0, (r6)[r7*2] #gl0- nenory location that r6+2*r7 points to
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4.1.2 Branch Prediction

Branch prediction is an implementation-specific feature of the 1960 Cx processors. Not every
implementation of the i960 architecture uses the branch prediction bit.

Since branch instruction actions depend on the result of a previous comparison, the architecture
allows a programmer to predict the likely result of the branch operation for increased performance.
The programmer’s prediction is encoded in one bit of the machine language instruction. 80960
assemblers encode the prediction with a mnemonic suffix: .t = true, .f = false. Use the .t suffix to
speed up execution when an instruction usually takes a branch; use the .f suffix when an
instruction usually does not take a branch.

Because test and conditional-fault instructions also use condition codes, prediction suffixes are
also implemented on these instructions. Refer to section A.2.7.7, “Branch Prediction” (pg. A-53).

4.1.3 Instruction Encoding Formats

All instructions are encoded in one 32-bit machine language instruction — aso known as an
opword — which must be word aligned in memory. An opword's most significant eight bits
contain the opcode field. The opcode field determines the instruction to be performed and how the
remainder of the machine language instruction is interpreted. Instructions are encoded in opwords
in one of four formats (see Figure 4-1).

Instruction Type Format  Description

register REG Most instructions are encoded in this format. Used primarily
for instructions which perform register-to-register operations.

compare and branch COBR An encoding optimization which combines compare and
branch operations into one opword. Other compare and
branch operations are aso provided as REG and CTRL
format instructions.

control CTRL Used for branches and calls that do not depend on registers for
address cal cul ation.

memory MEM Used for referencing an operand which is a memory address.
Load and store instructions — and some branch and call
instructions — use this format. MEM format has two

encodingss. MEMA or MEMB. Usage depends upon the
addressing mode selected. MEMB-formatted addressing
modes use the word in memory immediately following the
instruction opword as a 32-bit constant.
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31 0
OPCODE SRC/DST SRC2 OPCODE SRC1 REG
31 0
OPCODE SRC1 SRC2 Displacement COBR
31 0
OPCODE Displacement CTRL
31 0
OPCODE SRC/DST Address Offset MEMA
Base
31 0
opcopE | SRC/DST Address Scale Index MEMB
32-Bit Displacement F_CAO009A

Figure 4-1. Machine-Level Instruction Formats

41.4 Instruction Operands

This section identifies and describes operands that can be used with the instruction formats.

Format  Operand(s)
REG srcl, sre2, srefdst

CTRL displacement

COBR srcl, src2, displacement

MEM src/dst, efa

Description

srcl and src2 can be global registers, local registers, special
function registers or literals. src/dst is either a global, local
or special function register.

CTRL format is used for branch and call instructions.
displacement value indicates the target instruction of the
branch or call.

srcl, src2 indicate values to be compared; displacement
indicates branch target. srcl can specify a global register,
local register or aliteral. src2 can specify a global, local or
special function register. See section 2.2.3, “Specia
Function Registers (SFRs)” (pg. 2-4).

Specifies source or destination register and an effective
address (efa) formed by using the processor’s addressing
modes as described in section 3.3, “MEMORY
ADDRESSING MODES’ (pg. 3-5). Registers specified in a
MEM format instruction must be either a global or local
register.
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4.2

INSTRUCTION GROUPS

intgl.

The 1960 processor instruction set can be categorized into the following functional groups:

Table 4-1 shows the instructions in these groups. The actual number of instructions is greater than
those shown in thislist because — for some operations — several unique instructions are provided
to handle various operand sizes, data types or branch conditions. The following sections briefly

Data Movement

Bit, Bit Field and Byte

Call/Return
Atomic

e Arithmetic (Ordinal and Integer) .
» Comparison

 Fault

*  Processor Management

overview the instructions in each group.

Logical
» Branch
» Debug

Table 4-1. i960% Cx Microprocessor Instruction Set Summary

Data Movement Arithmetic Logical Bit, Bit Field, Byte
Load Add AND Set Bit
Store Subtract NOT AND Clear Bit
Move Multiply AND NOT Not Bit
Load Address Divide OR Alter Bit
Add with carry Exclusive OR Scan For Bit
Subtract with carry NOT OR Span Over Bit
Extended Multiply OR NOT Extract
Extended Divide NOT Modify
Remainder Exclusive NOR Scan Byte For Equal
Modulo NOR
Shift NAND
*Extended Shift
Rotate
Comparison Branch Call/Return Fault
Compare Unconditional Branch Call Conditional Fault
Conditional Compare Conditional Branch Call Extended Synchronize Faults
Check Bit Compare and Branch Call System
Compare and Increment Return
Compare and Decrement Branch and Link
Test Condition Code

Debug Atomic Processor
Modify Trace Controls Atomic Add Flush Local Registers
Mark Atomic Modify Modify Arithmetic Controls

Force Mark

Modify Process Controls
*System Control
*DMA Control

NOTE: Asterisk (*) denotes

instructions that are i960

processor family’s instruction set.

Cx processor-specific extensions to the 960
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42.1 Data Movement

These instructions are used to move data from memory to global and local registers; from global
and local registers to memory; and data among local, global and special function registers.

Rules for register alignment must be followed when using load, store and move instructions that
move 8, 12 or 16 bytes at atime. See section 2.5, “MEMORY ADDRESS SPACE” (pg. 2-9) for
alignment requirements for code portability across implementations.

4211 Load and Store Instructions

Load instructions listed below copy bytes or words from memory to local or global registersor to a
group of registers. Each load instruction requires a corresponding store instruction to copy to
memory bytes or words from a selected local or global register or group of registers. All load and
store instructions use the MEM format.

Id load word st store word

Idob load ordinal byte stob store ordinal byte
Idos load ordinal short stos store ordinal short
Idib load integer byte stib store integer byte
Idis load integer short stis store integer short
Idl load long stl store long

Idt load triple stt storetriple

Idq load quad stq store quad

Id copies 4 bytes from memory into successive registers; |dl copies 8 bytes; Idt copies 12 bytes;
Idg copies 16 bytes.

st copies 4 bytes from successive registers into memory; stl copies 8 bytes; stt copies 12 bytes;
stq copies 16 bytes.

For Id, Idob, Idos, Idib and Idis, the instruction specifies a memory address and register; the
memory address value is copied into the register. The processor automatically extends byte and
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; integers
are sign-extended.

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the
register value is copied into memory. For byte and short instructions, the processor automatically
reformats the source register’s 32-bit value for the shorter memory location. For stib and stis, this
reformatting can cause integer overflow if the register value is too large for the shorter memory
location. When integer overflow occurs, either an integer-overflow fault is generated or the
integer-overflow flag in the AC register is set, depending on the integer-overflow mask bit setting
inthe AC register.
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For stob and stos, the processor truncates the operand and does not create a fault if truncation
resulted in the loss of significant bits.

4.2.1.2 Move

Move instructions copy data from alocal, global, special function register or group of registers to
another register or group of registers. These instructions use the REG format.

mov move word

movl move long word

movt move triple word
movq move quad word

4.2.1.3 Load Address

The Load Address instruction (Ida) computes an effective address in the address space from an
operand presented in one of the addressing modes. Ida is commonly used to load a constant into a
register. Thisinstruction uses the MEM format and can operate upon local or global registers.

On the 1960 Cx processors, Ida is useful for performing simple arithmetic operations. The
processor’s parallelism allows Ida to execute in the same clock as another arithmetic or logical
operation.

4.2.2 Arithmetic

Table 4-2 lists arithmetic operations and data types for which the i960 Cx processors provide
instructions. “X” in this table indicates that the microprocessor provides an instruction for the
specified operation and data type. Extended shift right operation is an i960 Cx processor-specific
extension to the 1960 processor family’s instruction set. All arithmetic operations are carried out
on operands in registers. Refer to section 4.2.11, “Atomic Instructions’ (pg. 4-18) for instructions
which handle specific requirements for in-place memory operations.

All arithmetic instructions use the REG format and can operate on local, global or special function
registers. The following subsections describe arithmetic instructions for ordinal and integer data

types.
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Table 4-2. Arithmetic Operations

Data Types
Arithmetic Operations

Integer Ordinal

Add X
Add with Carry
Subtract

x

Subtract with Carry

X | X | X[ X

Multiply

Extended Multiply
Divide
Extended Divide

x

XX | X[ X[ X]|X]|X|X

Remainder
Modulo
Shift Left
Shift Right
*Extended Shift Right X
Shift Right Dividing Integer X

x

X[ X | X[ X

x

NOTE: *i960 Cx processor-specific extension to the 80960
instruction set.

4221 Add, Subtract, Multiply and Divide

These instructions perform add, subtract, multiply or divide operations on integers and ordinals:

addi add integer
addo add ordinal
subi subtract integer
subo subtract ordinal
muli multiply integer
mulo multiply ordinal
divi divide integer
divo divide ordinal

addi, subi, muli and divi generate an integer-overflow fault if the result istoo largeto fit in the 32-
bit destination. divi and divo generate a zero-divide fault if the divisor is zero.

4-7
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4222 Extended Arithmetic

These instructions support extended-precision arithmetic; i.e., arithmetic operations on operands
greater than one word in length:

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply

ediv extended divide

addc adds two word operands (literals or contained in registers) plus the AC Register condition
code bit 1 (used here as a carry bit). If the result has a carry, bit 1 of the condition code is set;
otherwise, it is cleared. This instruction’s description in CHAPTER 9, INSTRUCTION SET
REFERENCE gives an example of how this instruction can be used to add two long-word (64-bit)
operands together.

subc is similar to addc, except it is used to subtract extended-precision values. Although addc
and subc treat their operands as ordinals, the instructions also set bit O of the condition codes if the
operation would have resulted in an integer overflow condition. This facilitates a software imple-
mentation of extended integer arithmetic.

emul multiplies two ordinals (each contained in aregister), producing along ordinal result (stored
in two registers). ediv divides along ordinal by an ordinal, producing an ordinal quotient and an
ordinal remainder (stored in two adjacent registers).

4223 Remainder and Modulo

These instructions divide one operand by another and retain the remainder of the operation:

remi remainder integer
remo remainder ordinal
modi modul o integer

The difference between the remainder and modulo instructions lies in the sign of the result. For
remi and remo, the result has the same sign as the dividend; for modi, the result has the same sign
asthe divisor.

4-8
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4224 Shift and Rotate

These shift instructions shift an operand a specified number of bits left or right:

shlo shift left ordinal
shro shift right ordinal
shli shift left integer

shri shift right integer
shrdi shift right dividing integer
rotate rotate left

eshro extended shift right ordinal

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zerosin from the least significant bit; shro shifts zeros in from the most significant bit.
These instructions are equivalent to mulo and divo by the power of 2, respectively.

shli shifts zerosin from the least significant bit. If a shift of the specified places would result in an
overflow, an integer-overflow fault is generated (if enabled). The destination register is written
with the source shifted as much as possible without overflow and an integer-overflow fault is
signaled.

shri performs a conventional arithmetic shift right operation by shifting the sign bit in from the
most significant bit. However, when thisinstruction is used to divide a negative integer operand by
the power of 2, it may produce an incorrect quotient. (Discarding the bits shifted out has the effect
of rounding the result toward negative.)

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added to the
result if the bits shifted out are non-zero and the operand is negative, which produces the correct
result for negative operands. shli and shrdi are equivalent to muli and divi by the power of 2,
respectively.

rotate rotates operand bits to the left (toward higher significance) by a specified number of bits.
Bits shifted beyond register’ s left boundary (bit 31) appear at the right boundary (bit 0).

eshro is an 1960 Cx processor-specific extension to the i960 processor family’s instruction set.
This instruction performs an ordinal right shift of a source register pair (64 bits) by as much as 32
bits and stores the result in a single (32-bit) register. This instruction is equivalent to an extended
divide by a power of 2, which produces no remainder. The instruction is also the equivalent of a
64-bit extract of 32 bits.

4-9
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4.2.3 Logical

These instructions perform bitwise Boolean operations on the specified operands:

and src2 AND srel
notand  (NOT src2) AND srcl
andnot  src2 AND (NOT srcl)

xor src2 XOR srcl

or src2 OR srcl

nor NOT (src2 OR srcl)
xnor src2 XNOR srcl

not NOT srcl

notor (NOT src2) or srel
ornot src2 or (NOT srcl)
nand NOT (src2 AND srcl)

These all use the REG format and can specify literals or local, global or special function registers.

The processor provides logical operationsin addition to and, or and xor as a performance optimi-
zation. This optimization reduces the number of instructions required to perform a logical
operation and reduces the number of registers and instructions associated with bitwise mask
storage and creation.

4.2.4 Bit and Bit Field

These instructions perform operations on a specified bit or bit field in an ordinal operand. All use
the REG format and can specify literals or local, global or special function registers.

4.2.4.1 Bit Operations

These instructions operate on a specified bit:

setbit set bit

clrbit clear bit
notbit not bit
alterbit ater bit
scanbit  scan for bit
spanbit  span over bit

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal.



In e © INSTRUCTION SET SUMMARY

alterbit alters the state of a specified bit in an ordinal according to the condition code. If the
condition code is 010, the bit is set; if the condition code is 000, the bit is cleared.

chkbit, described in section 4.2.6, “Comparison” (pg. 4-12), can be used to check the value of an
individual bit in an ordinal.

scanbit and spanbit find the most significant set bit or clear bit, respectively, in an ordinal.

4.2.4.2 Bit Field Operations
The two bit field instructions are extract and modify.

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In essence,
thisinstruction shifts right a bit field in aregister and fills in the bits to the left of the bit field with
zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits).

modify copies bits from one register, under control of a mask, into another register. Only
unmasked bits in the destination register are modified. modify is equivalent to a bit field move.

An application that uses little-endian memory regions may need to access 32-bit big-endian data.
The 1960 Cx processors do not have a byte swap instruction; however, a byte swap can be
performed in five clocks by use of the modify and rotate instructions. Example 4-1 shows
assembly language instructions that can be used in assembly language programs or in programs
written in high level languages that support in-line assembly code, such as the GNU960 and Intel
C-tools C compilers.

Example 4-1. Byte Swap

/* Assume g0 contains value to swap; result witten to r3. */
rotate 16,90,r3

| dconst Oxf f 00f f 00, r 4

nodi fy r4,g90,r3

rotate 8,r3,r3

For example, if register g0 contains 0x12345678, the final result in r3 should be 0x78563412 after
the byte swap. The following shows how each instruction works in this example.

Instruction g0 r3
rotate 16,90,r3 0x12345678 0x56781234
| dconst OxffOOff00,r4 0x12345678 0x56781234
nodi fy r4,g90,r3 0x12345678 0x12785634
rotate 8,r3,r3 0x12345678 0x78563412
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4.2.5 Byte Operations

scanbyte performs a byte-by-byte comparison of two ordinals to determine if any two corre-
sponding bytes are equal. The condition code is set based on the results of the comparison.
scanbyte uses the REG format and can specify literals or local, global or special function
registers.

4.2.6 Comparison

The processor provides several types of instructions for comparing two operands, as described in
the following subsections.

4.2.6.1 Compare and Conditional Compare

These instructions compare two operands then set the condition code bits in the AC register
according to the results of the comparison:

cmpi compare integer

cmpo compare ordinal

concmpi conditional compare integer
concmpo  conditional compare ordinal
chkbit check bit

These al use the REG format and can specify literals or local, global or special function registers.
The condition code bits are set to indicate whether one operand is less than, equal to or greater
than the other operand. See section 2.6.2, “Arithmetic Controls (AC) Register” (pg. 2-15) for a
description of the condition codes for conditional operations.

cmpi and cmpo simply compare the two operands and set the condition code bits accordingly.
concmpi and concmpo first check the status of condition code bit 2:

» If not set, the operands are compared as with cmpi and cmpo.

» If set, no comparison is performed and the condition code flags are not changed.

The conditional-compare instructions are provided specifically to optimize two-sided range
comparisonsto check if A isbetween B and C (i.e., B £ A £ C). Here, acompare instruction (cmpi
or cmpo) checks one side of the range (e.g., A 3 B) and a conditiona compare instruction
(concmpi or concmpo) checks the other side (e.g., A £ C) according to the result of the first
comparison. The condition codes following the conditional comparison directly reflect the results
of both comparison operations. Therefore, only one conditional branch instruction is required to
act upon the range check; otherwise, two branches would be needed.

chkbit checks a specified bit in a register and sets the condition code flags according to the bit
state. The condition code is set to 010, if the bit is set and 000, otherwise.
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4.2.6.2 Compare and Increment or Decrement

These instructions compare two operands, set the condition code bits according to the results, then
increment or decrement one of the operands:

cmpinci compare and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer

cmpdeco  compare and decrement ordinal

These all use the REG format and can specify literals or local, global or special function registers.
They are an architectural performance optimization which allows two register operations (e.g.,
compare and add) to execute in a single cycle. These are intended for use at the end of iterative
loops.

4.2.6.3 Test Condition Codes

These test instructions allow the state of the condition code flags to be tested:

teste test for equal

testne test for not equal

testl test for less

testle test for less or equal
testg test for greater

testge test for greater or equal
testo test for ordered

testno test for unordered

If the condition code matches the instruction-specified condition, these cause a TRUE (01H) to be
stored in a destination register; otherwise, a FALSE (00H) is stored. All use the COBR format and
can operate on local, global and special function registers.

Since test instruction actions depend on a comparison, the architecture allows a programmer to
predict the likely result of the operation for higher performance. The programmer’s prediction is
encoded in one bit of the opword. Intel 80960 assemblers encode the prediction with a mnemonic
suffix of .t for true and .f for false. Refer to section A.2.7.7, “Branch Prediction” (pg. A-53).

4.2.7 Branch

Branch instructions alow program flow direction to be changed by explicitly modifying the IP.
The processor provides three branch instruction types:

» unconditional branch e conditional branch e compare and branch
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Most branch instructions specify the target |P by specifying a signed displacement to be added to
the current IP. Other branch instructions specify the target IP's memory address, using one of the
processor’s addressing modes. This latter group of instructions is called extended addressing
instructions (e.g., branch extended, branch-and-link extended).

Since branch instruction actions depend on the result of a previous comparison, the architecture
allows a programmer to predict the likely result of the branch operation for higher performance.
The programmer’s prediction is encoded in one bit of the opword. The Intel 80960 assembler
encodes the prediction with a mnemonic suffix of .t for true and .f for false.

4271 Unconditional Branch

These instructions are used for unconditional branching:

b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

b and bal use the CTRL format. bx and balx use the MEM format and can specify local or global
registers as operands. b and bx cause program execution to jump to the specified target IP. These
two instructions perform the same function; however, their determination of the target IP differs.
Thetarget IP of ab instruction is specified at link time as a relative displacement from the current
IP. Thetarget IP of the bx instruction is the absolute address resulting from the instruction’ s use of
amemory addressing mode during execution.

bal and balx store the next instruction’s address in a specified register, then jump to the specified
target IP. (For bal, the RIP is automatically stored in register g14; for balx, the RIP location is
specified with an instruction operand.) As described in section 5.9, “BRANCH-AND-LINK” (pg.
5-18), branch and link instructions provide a method of performing procedure calls that do not use
the processor’s integrated call/return mechanism. Here, the saved instruction address is used as a
return |P. Branch and link is generally used to call leaf procedures (that is, procedures that do not
call other procedures).

bx and balx can make use of any memory addressing mode.
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4.2.7.2 Conditional Branch

With conditional branch (BRANCH IF) instructions, the processor checks the AC register condition
code flags. If these flags match the value specified with the instruction, the processor jumps to the
target |P. These instructions use the displacement-plus-1P method of specifying the target IP:

be{.t|.f} branch if equal/true
bne{.t|.f} branch if not equal
bl{.t.f} branch if less
ble{.t|.f} branch if less or equal

bg{.t|.f} branch if greater

bge{.t|.f} branch if greater or equal

bo{.t].f} branch if ordered

bno{.t|.f} branch if unordered/false

All use the CTRL format. bo and bno are used with real numbers. Refer to section 2.6.2.2,
“Condition Code” (pg. 2-16) for adiscussion of the condition code for conditional operations.

4.2.7.3 Compare and Branch

These instructions compare two operands then branch according to the comparison result. Three
instruction subtypes are compare integer, compare ordinal and branch on bit:

cmpibe{.t | .f} compare integer and branch if equal
cmpibne{.t | .f} compare integer and branch if not equal
cmpibl{.t | .f} compare integer and branch if less
cmpible{.t| .f} compare integer and branch if less or equal
cmpibg{.t| .f} compare integer and branch if greater
cmpibge{.t | .f} compare integer and branch if greater or equal
cmpibo{.t| .f} compare integer and branch if ordered
cmpibno{.t | .f} compare integer and branch if unordered
cmpobe{.t | .f} compare ordinal and branch if equal
cmpobne{.t].f} compare ordinal and branch if not equal
cmpobl{.t | .f} compare ordinal and branch if less
cmpoble{.t | .f} compare ordina and branch if less or equal

cmpobg{.t | .f} compare ordinal and branch if greater
cmpobge{.t | .f} compare ordinal and branch if greater or equal
bbs{.t|.f} check bit and branch if set

bbc{.t|.f} check bit and branch if clear
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All use the COBR machine instruction format and can specify literals, local, global and special
function registers as operands. With compare ordinal and branch and compare integer and branch
instructions, two operands are compared and the condition code bits are set as described in section
4.2.6, “Comparison” (pg. 4-12). A conditional branch is then executed as with the conditional
branch (BRANCH IF) instructions.

With check bit and branch instructions, one operand specifies a bit to be checked in the other
operand. The condition code flags are set according to the state of the specified bit: 010 (true) if
the bit is set and 000 (false) if the bit is clear. A conditional branch is then executed according to
condition code bit settings.

These instructions optimize execution performance time. When it is not possible to separate
adjacent compare and branch instructions with other unrelated instructions, replacing two instruc-
tions with a single compare and branch instruction increases performance.

4.2.8 Call and Return

The processor offers an on-chip call/return mechanism for making procedure calls. Refer to
section 5.2, “CALL AND RETURN MECHANISM” (pg. 5-2). These instructions support this
mechanism:

call call

callx call extended
calls call system
ret return

call and ret use the CTRL machine-instruction format. callx usesthe MEM format and can specify
local or global registers. calls uses the REG format and can specify local, global or special
function registers.

call and callx make local callsto procedures. A local call isacall that does not require a switch to
another stack. call and callx differ only in the method of specifying the target procedure’ s address.
The target procedure of acall is determined at link time and is encoded in the opword as a signed
displacement relative to the call IP. callx specifies the target procedure as an absolute 32-bit
address calculated at run time using any one of the addressing modes. For both instructions, a new
set of local registers and a new stack frame are allocated for the called procedure.

calls is used to make calls to system procedures — procedures that provide a kernel or system-
executive services. This instruction operates similarly to call and callx, except that it gets its
target-procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.
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Depending on the type of entry being pointed to in the system procedure table, calls can cause
either a system-supervisor call or a system-local call to be executed. A system-supervisor cal isa
call to a system procedure that also switches the processor to supervisor mode and the supervisor
stack. A system-local call isacall to a system procedure that does not cause an execution mode or
stack change. Supervisor mode is described throughout CHAPTER 5, PROCEDURE CALLS.

ret performs a return from a called procedure to the calling procedure (the procedure that made the
call). ret obtains its target IP (return I1P) from linkage information that was saved for the calling
procedure. ret is used to return from all calls — including local and supervisor calls — and from
implicit callsto interrupt and fault handlers.

4.2.9 Conditional Faults

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling procedures are then invoked to handle various fault types without explicit intervention by
the currently running program. These conditional fault instructions permit a program to explicitly
generate a fault according to the state of the condition code flags.

faulte{.t|.f} fault if equal
faultne{.t|.f} fault if not equal
faultl{.t.f} fault if less
faultle{.t|.f} fault if less or equal
faultg{.t|.f} fault if greater
faultge{.t|.f} fault if greater or equal
faulto{.t].f} fault if ordered

faultno{.t|.f} fault if unordered

All use the CTRL format. Since the actions of these instructions are dependent upon the result of a
previous comparison, the architecture alows a programmer to predict the likely result of the
conditional fault instructions for higher performance. The programmer’s prediction is encoded in
one bit of the opword. The Intel 80960 assembler encodes the prediction with a mnemonic suffix
of .t for true and .f for false.

4.2.10 Debug

The processor supports debugging and monitoring of program activity through the use of trace
events. These instructions support these debugging and monitoring tools:

modpc modify process controls
modtc modify trace controls
mark mark

fmark force mark

4-17
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These al use the REG format. Trace functions are controlled with bits in the Trace Control (TC)
register which enable or disable various types of tracing. Other TC register flags indicate when an
enabled trace event is detected. Refer to CHAPTER 8, TRACING AND DEBUGGING.

modpc can enable/disable trace fault generation; modtc permits trace controls to be modified.
mark causes a breakpoint trace event to be generated if breakpoint trace mode is enabled. fmark
generates a breakpoint trace independent of the state of the breakpoint trace mode bits.

The 1960 Cx processor-specific sysctl instruction, described in section 4.3, “SYSTEM
CONTROL FUNCTIONS' (pg. 4-19), also provides control over breakpoint trace event
generation. This instruction is used, in part, to load and control the 1960 Cx microprocessors
breakpoint registers.

4.2.11 Atomic Instructions

Atomic instructions perform read-modify-write operations on operands in memory. They allow a
system to ensure that, when an atomic operation is performed on a specified memory location, the
operation completes before another agent is allowed to perform an operation on the same memory.
These instructions are required to enable synchronization between interrupt handlers and
background tasksin any system. They are also particularly useful in systems where several agents
— processors, coprocessors or external logic — have access to the same system memory for
communication.

The atomic instructions are atomic add (atadd) and atomic modify (atmod). atadd causes an
operand to be added to the value in the specified memory location. atmod causes bits in the
specified memory location to be modified under control of a mask. Both instructions use the REG
format and can specify literals or local, global or special function registers.

4.2.12 Processor Management

These instructions control processor-related functions:

modpc modify the process controls register

flushreg flush cached local register sets to memory
modac modify the AC register

sysctl perform system control function

sdma set up aDMA controller channel

udma copy current DMA pointersto internal data RAM

All use the REG format and can specify literals or local, global or special function registers.

modpc provides a method of reading and modifying PC register contents. Only programs
operating in supervisor mode may modify the PC register; however, any program may read it.
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The processor provides a flush local registers instruction (flushreg) to save the contents of the
cached local registers to the stack. The flush local registers instruction automatically stores the
contents of al the local register sets — except the current set — in the register save area of their
associated stack frames.

The modify arithmetic controls instruction (modac) allows the AC register contents to be copied
to a register and/or modified under the control of a mask. The AC register cannot be explicitly
addressed with any other instruction; however, it isimplicitly accessed by instructions that use the
condition codes or set the integer overflow flag.

sysctl isan 1960 Cx processor-specific extension to the 1960 family’ s instruction set which is used
to configure the on-chip bus controller, interrupt controller, breakpoint registers and instruction
cache. It also permits software to signal an interrupt or cause a processor reset and reinitialization.
sysctl may only be executed by programs operating in supervisor mode.

sdma and udma are 1960 Cx processor-specific extensions to the i960 family’s instruction set
which configure and monitor the on-chip DMA controller. These instructions may only be
executed by programs operating in supervisor mode. Refer to CHAPTER 9, INSTRUCTION SET
REFERENCE and CHAPTER 13, DMA CONTROLLER for a description of these instructions.

4.3 SYSTEM CONTROL FUNCTIONS

System control functions are a group of operations specific to the i960 Cx processor. These
operations are performed by issuing the system control (sysctl) instruction. sysctl is a general-
purpose instruction which performs a variety of functions. A message type field — an operand of
the instruction — determines which function is performed. The system control functions include
posting interrupts, configuring the instruction cache, invalidating the instruction cache, software
reinitialization and loading control registers.

4.3.1 sysctl Instruction Syntax

sysctl instruction syntax is generalized because the function of the operands differ, depending on
message type selection. As shown in Figure 4-2, the instruction takes three source operands. The
message type field is aways the second byte of the source 1 operand. The instruction’s generalized
operand fields — designated as fields 1 through 4 — are interpreted differently or may not be used
depending on the function selected in the message type field (see Table 4-3).

sysctl isasupervisor-only instruction. Executing this instruction while in user mode generates the
type-mismatch fault.
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31 16 15 8 7 0
SRC1 Field 2 Message Type Field 1
31 0
SRC2 Field 3
31 0
SRC/DST .
(Used as SRC) Field 4
F_CA007A

Figure 4-2. Source Operands for sysctl

Table 4-3. System Control Message Types and Operand Fields

SRC1 SRC2 SRC3
Message
Type Field 1 Field 2 Field 3 Field 4
Request Interrupt 00H vector # unused unused unused
Invalidate Cache 01H unused unused unused unused
Configure Cache Mode Cache load
02H (see Table 4-4) unused address unused
Reinitialize 03H unused unused first instruction PRCB address
address
Load Control Register 04H register group # unused unused unused

NOTE: The processor ignores unused sources and fields.

4.3.2 System Control Messages

The five system control messages, defined in the following subsections, are:

e request interrupt: causes an interrupt to be serviced or posted.

» configureinstruction cache: disables or locksinstructionsin a portion of the instruction cache.
» invalidate instruction cache: causes the contents of the instruction to be purged.

* renitialize: restarts the processor.

» load control register: loads the on-chip control registers.

4-20
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43.2.1 Request Interrupt

Executing sysctl with a message type of 00H causes an interrupt to be requested. Field 1 of the
instruction specifies the vector number of the interrupt requested. The remaining fields are not
defined. Requesting an interrupt with sysctl causes the following actions to occur:

» The core performs an atomic write to the interrupt table and sets the bits in the pending
interrupts and pending priorities fields that correspond to the requested interrupt. This action
posts the software-requested interrupt.

»  The core updates the software priority register with the value of the highest pending priority
from the interrupt table. This may be the priority of the interrupt which was just posted. This
action causes the interrupt to be serviced if its priority is greater than the current process
priority or equal to 31.

Requesting an interrupt with a priority = 0 causes the interrupt table to be checked for posted
interrupts. See section 6.5, “REQUESTING INTERRUPTS’ (pg. 6-6) for information about
software-requested interrupts.

4.3.2.2 Invalidate Instruction Cache

Executing sysctl with a message type of 01H invalidates all cache entries. This mode clears all
valid cache bits. After the operation, the cache is updated normally as misses occur. The mode is
provided to allow a program to load or modify program space; it ensures that instructions are
fetched from the modified space and not the cache.

4.3.2.3 Configure Instruction Cache

The 1960 CA processor contains an instruction cache which supports pre-load and lock of either
none, half, or all of the instruction cache. However, only interrupt procedures can be locked into
the cache. The 960 CF processor cache locking scheme has fewer restrictions: any section of code
can be locked into half of the instruction cache — not just the interrupt procedures.

Executing sysctl with a message type of 02H selects cache mode. One of four cache modes are
selected with the configure instruction cache message:

* norma cache » |oad and lock half the cache
* |oad and lock entire cache » cachedisabled

The sysctl field 1 value determines which configure cache operation is performed (see Table 4-4).
Field 3 is a word-aligned 32-bit address when a load and lock mode is selected; otherwise, this
field isignored. Text following the table further defines the modes.
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Table 4-4. Cache Configuration Modes

Mode Field Mode Description 80960CA 80960CF
000, normal cache enabled 1 Kbyte 4 Kbytes
XX1, full cache disabled 1 Kbyte 4 Kbytes
100, Load and lock full cache (execute off-chip) 1 Kbyte! 4 Kbytes?
102 | o inder o nomal cache enabled S2bytes | 2Kbytes
010, Reserved 1 Kbyte 4 Kbytes

NOTES:
1. On the CA, only interrupt procedures can execute in the locked portion of the cache.
2. On the CF, interrupt procedures and other code can operate in the locked portion of the cache.

Mode 000, configures the cache as two way set associative. Mode X X1, completely disables the
cache. Either of these cache configurations can be specified when the processor initializes by
programming the Cache Configuration Word in the PRCB. See section 14.2.6, “Process Control
Block (PRCB)” (pg. 14-8). The modes alow the cache to be turned off temporarily to aid in
debugging.

When the cache is disabled, the processor depends on a 16 word instruction buffer to provide
decoding instructions. The instruction buffer operates as a small cache, organized as two sets of
two way set associative cache, with a four word line size. When the main cache is disabled, small
code loops may still execute entirely within the instruction buffer.

Modes 100, and 110, select cache load-and-lock options. These modes determine whether half or
all of the cache is loaded with instructions and locked against further updates. The sysctl instruc-
tion'sfield 3 must contain an address; this address points to a quad-word aligned block of memory
in the external address space. Instructions starting at this address are loaded into the cache. These
instructions can only be accessed by selected interrupts which vector to these instructions
addresses. The load-and-lock mechanism selectively optimizes latency and throughput for
interrupts.

4.3.2.4 Reinitialize Processor

Executing sysctl with message type 03H reinitializes the processor. sysctl fields 3 and 4 must
contain, respectively, the First Instruction Pointer and the PRCB Pointer. Reinitialization bypasses
the i960 Cx processors’ built-in self-test. The PRCB is processed and the processor branchesto the
first instruction. See section 14.2, “INITIALIZATION” (pg. 14-2) for a complete description of
the processor reinitialization steps.
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The reinitialize message is useful for changing the Initial Memory Image. For example, at initial-
ization, the interrupt table is moved to RAM so the interrupts may be posted in the table's pending
interrupts and priorities fields. In this case, the reinitialize message specifies a new PRCB which
contains a pointer to the new interrupt table in RAM. See section 14.3.1, “Reinitializing and
Relocating Data Structures’ (pg. 14-11).

4.3.2.5 Load Control Registers

Executing sysctl with message type 04H causes the on-chip control registers to be loaded with
data from external memory. Each sysctl invocation causes four words from the Control Register
Table in external memory to be read and then placed in their respective internal control registers.
Field 1 must contain the number of the register group to be loaded. Table 4-5 shows the register
group number and the registers represented in the Control Register Table.

At initialization, or when the processor is reinitialized, all groupsin the control table are automati-
cally loaded into the on-chip control registers.
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Table 4-5. Control Register Table and Register Group Numbers
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Group Byte Offset in Table Control Register Loaded
00H Data Address Breakpoint 0 (DABO)
00H 04H IP Breakpoint Register 0 (IPBO)
08H IP Breakpoint Register 1 (IPB1)
OCH Data Address Breakpoint 1 (DAB1)
10H Interrupt Map Register 0 (IMAPO)
01H 14H Interrupt Map Register 1 (IMAP1)
18H Interrupt Map Register 2 (IMAP2)
1CH Interrupt Control Register (ICON)
20H Memory Region 0 Configuration (MCONO)
02H 24H Memory Region 1 Configuration (MCON1)
28H Memory Region 2 Configuration (MCONZ2)
2CH Memory Region 3 Configuration (MCON3)
30H Memory Region 4 Configuration (MCON4)
34H Memory Region 5 Configuration (MCONS5)
03H 38H Memory Region 6 Configuration (MCONG)
3CH Memory Region 7 Configuration (MCON?7)
40H Memory Region 8 Configuration (MCONS8)
04H 44H Memory Region 9 Configuration (MCON9)
48H Memory Region 10 Configuration (MCON10)
4CH Memory Region 11 Configuration (MCON11)
50H Memory Region 12 Configuration (MCON12)
05H 54H Memory Region 13 Configuration (MCON13)
58H Memory Region 14 Configuration (MCON14)
5CH Memory Region 15 Configuration (MCON15)
60H Reserved
06H 64H Breakpoint Control Register (BPCON)
68H Trace Controls Register (TC)
6CH Bus Configuration Control (BCON)
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CHAPTER 5
PROCEDURE CALLS

This chapter describes mechanisms for making procedure calls, which include branch-and-link
instructions, built-in call and return mechanism, call instructions (call, callx, calls), return
instruction (ret) and call actions caused by interrupts and faults.

51 OVERVIEW

The 1960® architecture supports two methods for making procedure calls:

» A RISC-style branch-and-link: a fast call best suited for calling procedures that do not call
other procedures.

* Anintegrated call and return mechanism: a more versatile method for making procedure calls,
providing a highly efficient means for managing a large number of registers and the program
stack.

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register. The
called procedure uses the same set of registers and the same stack as the calling procedure. On a
call (call, callx, calls) or when an interrupt or fault occurs, the processor also branches to a target
instruction and saves areturn IP. Additionally, the processor saves the local registers and allocates
anew set of local registers and a new stack for the called procedure. The saved context is restored
when the return instruction (ret) executes.

In many RISC architectures, a branch-and-link instruction is used as the base instruction for coding
aprocedure call. The user program then handles register and stack management for the call. Since
the 1960 architecture provides a fully integrated call and return mechanism, coding calls with
branch-and-link is not necessary. Additionally, the integrated call is much faster than typical RISC-
coded calls.

The branch-and-link instruction in the 1960 processor family, therefore, is used primarily for
calling leaf procedures. Leaf procedures call no other procedures. They are called “leaf
procedures’ because they reside at the “leaves’ of the call tree.

In the 1960 architecture the integrated call and return mechanism is used in two ways:

» explicit callsto proceduresin a user’s program

» implicit callsto interrupt and fault handlers

The remainder of this chapter explains the generalized call mechanism used for explicit and
implicit calls and call and return instructions.
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The processor performs two call actions:

local When alocal call is made, execution mode remains unchanged and the stack
frame for the called procedure is placed on the local stack. The local stack refers
to the stack of the calling procedure.

supervisor When a supervisor call is made, execution mode is switched to supervisor and
the stack frame for the called procedure is placed on the supervisor stack.

Explicit procedure calls can be made using several instructions. Local call instructions call and
callx perform alocal call action. With call and callx, the called procedure's IP is included as an
operand in the instruction.

A system call is made with calls. This instruction is similar to call and callx, except that the
processor obtains the called procedure’s | P from the system procedure table. A system call, when
executed, is directed to perform either the local or supervisor call action. These calls are referred
to as system-local and system-supervisor calls, respectively. A system-supervisor call is also
referred to as a supervisor call.

5.2 CALL AND RETURN MECHANISM

At any point in a program, the i960 processor has access to the global registers, alocal register set
and the procedure stack. A subset of the stack allocated to the procedure is called the stack frame.

*  When acall executes, a new stack frame is allocated for the called procedure. The processor
also saves the current local register set, freeing these registers for use by the newly called
procedure. In thisway, every procedure has a unique stack and a unique set of local registers.

*  When areturn executes, the current local register set and current stack frame are deall ocated.
The previouslocal register set and previous stack frame are restored.

5.2.1 Local Registers and the Procedure Stack

The processor automatically allocates a set of 16 local registers for each procedure. Since local
registers are on-chip, they provide fast access storage for local variables. Of the 16 local registers,
13 are available for general use; r0, rl and r2 are reserved for linkage information to tie procedures
together.

NOTE:

The processor does not always clear or initialize the set of local registers
assigned to a new procedure. Therefore, initial register contents are unpre-
dictable. Also, because the processor does not initialize the local register save
areain the newly created stack frame for the procedure, its contents are equally
unpredictable.
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The procedure stack can be located anywhere in the address space and grows from low addresses
to high addresses. It consists of contiguous frames, one frame for each active procedure. Local
registers for a procedure are assigned a save area in each stack frame (Figure 5-1). The procedure
stack, available to the user, begins after this save area.

To increase procedure call speed, the architecture allows an implementation to cache the saved
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of
local registers often does not have to be written out to the save area in the stack frame in memory.
Refer to section 5.2.4, “Caching of Local Register Sets’ (pg. 5-6) and section 5.2.5, “Mapping
Local Registers to the Procedure Stack” (pg. 5-9) for more about local registers and procedure
stack interrelations.

Procedure Stack
Current Register Set Previous Frame Pointer (PFP) r0
go — Stack Pointer (SP) 1 )
Previous
Return Instruction Pointer (RIP) r2 Stack
Frame
rl5
Frame Pointer (FP) g15
user allocated stack
padding area
Previous Frame Pointer (PFP)  r0 |—
Stack Pointer (SP) 1]
register Current
reserved for RIP r2 save area Stack
Frame
rl5
user allocated stack
unused stack
stack growth
(toward higher addresses)
F_CA010A

Figure 5-1. Procedure Stack Structure and Local Registers
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5.2.2 Local Register and Stack Management

Global register g15 (FP) and local registers rO (PFP), rl1 (SP) and r2 (RIP) contain information to
link procedures together and link local registers to the procedure stack (Figure 5-1). The following
subsections describe this linkage information.

5.2.2.1 Frame Pointer

The frame pointer is the current stack frame’'s first byte address. It is stored in global register g15,
the frame pointer (FP) register. The FP register is aways reserved for the frame pointer; do not use
015 for general storage. In the 1960 Cx processors, frames are aligned on 16-byte boundaries
(Figure 5-1). When the processor creates a new frame on a procedure call — if necessary — it
adds a padding area to the stack so that the new frame starts on a 16-byte alignment boundary.

Stack frame alignment is defined for each implementation of the i960 processor family. This
alignment boundary is calculated from the relationship SALIGN*16. For the 1960 Cx processors,
SALIGN=1 and stacks are aligned on 16-byte boundaries.

5.2.2.2 Stack Pointer

The stack pointer is the byte-aligned address of the stack frame's next unused byte. The stack
pointer value is stored in local register r1, the stack pointer (SP) register. The procedure stack
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor
automatically adds 64 to the frame pointer value and stores the result in the SP register. This action
creates the register save areain the stack frame for the local registers.

The user must modify the SP register value when data is stored or removed from the stack. The
1960 architecture does not provide an explicit push or pop instruction to perform this action. This
istypically done by adding the size of all pushes to the stack in one operation.

5.2.2.3 Previous Frame Pointer

The previous frame pointer is the previous stack frame’ s first byte address. This address' upper 28
bits are stored in local register rO, the previous frame pointer (PFP) register. The four least-
significant bits of the PFP are used to store the return-type field.

5.2.2.4 Return Type Field

PFP register bits O through 3 contain return type information for the calling procedure. When a
procedure call is made — either explicit or implicit — the processor records the call type in the
return type field. The processor then uses this information to select the proper return mechanism
when returning to the calling procedure. The use of this information is described section 5.8,
“RETURNS’ (pg. 5-16).
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5.2.2.5 Return Instruction Pointer

When a call is made, the processor saves the address of the instruction after the call, providing are-
entry point when the return instruction is executed. This address is automatically stored in local
register r2 of the calling frame. Register r2 is referred to as the return instruction pointer (RIP)
register. The RIP register isaspecial register; do not use r2 to hold operand values. Since interrupts
and faults trigger an implicit call action, the RIP register may be written at any time with the return
pointer associated with the interrupt or fault event.

5.2.3 Call and Return Action

To clarify how procedures are linked and how the local register and stack are managed, the
following sections describe a general call and return operation and the operations performed with
the FP, SP, PFP and RIP registers described in the preceding sections.

The events for call and return operations are given in a logical order of operation. The i960 Cx
processors can execute independent operationsin parallel; therefore, many of these events execute
simultaneously. For example, to improve performance, the processors often begin prefetch of the
target instruction for the call or return before the operation is complete.

5.23.1 Call Operation

When acall instruction is executed or an implicit call is triggered:

1 The processor stores the instruction pointer for the instruction following the call in the
current stack’s RIP register (r2).

2. The current local registers — including the PFP, SP and RIP registers — are saved, freeing
these for use by the called procedure. Because saved local registers are cached on the 1960
Cx processors, the registers are always saved in the on-chip local register cache at thistime.

3. The frame pointer (g15) for the calling procedureis stored in the current stack’ s PFP register
(r0). The return type field in the PFP register is set according to the call type which is
performed. See section 5.8, “RETURNS’ (pg. 5-16).

4. A new stack frameis allocated by using the stack pointer value saved in step 3. Thisvalueis
first rounded to the next 16-byte boundary to create a new frame pointer, then stored in the
FP register. Next, 64 bytes are added to create the new frame' sregister save area. Thisvalue
isstored in the SP register.

5. The instruction pointer is loaded with the address of the first instruction in the called
procedure. The processor gets the new instruction pointer from the call, the system
procedure table, the interrupt table or the fault table, depending on the type of call executed.

Upon completion of these steps, the processor begins executing the called procedure.
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5.2.3.2 Return Operation

A return from any call type — explicit or implicit — is always initiated with a return (ret)
instruction. On areturn, the processor performs these operations:

1 The current stack frame and local registers are deallocated by |oading the FP register with
the value of the PFP register.

2. The local registers for the return target procedure are retrieved. The registers are usually
read from the local register cache; however, in some cases, these registers have been
flushed from register cache to memory and must be read directly from the save areain the
stack frame.

3. The processor sets the instruction pointer to the value of the RIP register.

Upon compl etion of these steps, the processor executes the procedure to which it returns.

5.2.4 Caching of Local Register Sets

The 1960 architecture provides a local register cache to improve call and return performance.
Local registers are typically saved and restored from the local register cache when calls and
returns are executed. For the 1960 Cx microprocessors, movement of alocal register set between
local registers and cache takes only four clock cycles. Other overhead associated with a call or
return is performed in parallel with this data movement.

When the number of nested procedures exceeds local register cache size, local register sets must at
times be saved or restored to their associated save areas in the procedure stack. Because these
operations require access to external memory, this local cache miss impacts call and return
performance.

When a call is made and the register cache is full, a register set in the cache must be saved to
external memory to make room for the current set of local registers in the cache. This action is
referred to as a frame spill. The oldest set of local registers stored in the cache is spilled to the
associated local register save area in the procedure stack. Figure 5-2 illustrates a call operation
with and without a frame spill.

Similarly, when areturn is made and the local register set for the target procedure is not available
in the cache, these local registers must be retrieved from the procedure stack in memory. This
operation is referred to as a frame fill. Figure 5-3 illustrates a return operation with and without a
frame fill.

Register cache size is specified at initialization by the register cache configuration word value in
the PRCB. The i960 Cx register cache sizeis adjustable to hold from 1 to 14 sets of local registers.
See section 14.2.6, “ Process Control Block (PRCB)” (pg. 14-8) for more information about initial-
ization and the PRCB.
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Procedure stack
(0 = Main, successive

numbers indicate nested
procedure level)

call with no frame spill
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F_CAO011A

Figure 5-2. Frame Spill
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return with no frame fill return with frame fill
\ T\
Procedure stack 0 0 0
(0 = Main, successive
numbers indicate nested 1 1 1
procedure level)
2 2 2
3 3 1

FRAME
1 FILL

local register cache
(default depth = 5 sets)

L.

current local

register set 3 \
2

local register user reserved
set n stored |:| stack m for local
on procedure stack space register set n

F_CA012A

Figure 5-3. Frame Fill

Up to five local register sets are cached by default with no impact to the processor’'s available
resources. When the cache is configured for 6 to 14 sets, part of the internal data RAM is used to
expand the cache. Data RAM usage begins at the highest address of internal RAM (03FFH) and
grows downward.

As indicated in Table 5-1, the programmed value of the cache configuration word (CCW) in the
PRCB determines the number of register sets cached and the amount of internal data RAM used.
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Table 5-1. PRCB Cache Configuration Word and Internal Data RAM

CCW Value # of Cached Sets Internal(iaagitleA)M Used
0 1 0
1ECCWES CCW 0
6 £CCW £ 15 CCW-1 (CCW-5)*16

Register cache cannot be disabled. Register cache size equals 1 when the cache configuration word
is programmed to a value of 0. Also, a value of 5 or 6 produces the same cache number of cache
sets; however, when programmed to 6, 16 bytes of internal data RAM is used; when programmed
to 5, no internal data RAM is used.

The user program is responsible for preventing any corruption to the areas of internal RAM which
are used for the register cache. In a typical program, most procedure calls and returns cause
procedure depth to oscillate a few levels around a median call depth. The cache tends to be
partialy filled at the median call depth. Cache flushes occur when oscillations around the median
depth are larger than the cache size can accommodate. Configuring local register cache to hold five
sets of local registers avoids numerous cache fills and spills for most applications and does not use
any of the data RAM which is available for general data storage. It is recommended to configure
the cache for a minimum of five register sets.

5.2.5 Mapping Local Registers to the Procedure Stack

Each local register set is mapped to a register save area of its respective frame in the procedure
stack (Figure 5-1). Saved local register sets are frequently cached on-chip rather than saved to
memory. This caching is performed non-transparently. Local register set contents are not saved
automatically to the save area in memory when the register set is cached. This would cause a
significant performance loss for call operations.

Also, no automatic update policy is implemented for register cache. If the register save area in
memory for a cached register set is modified, there is no guarantee that the modification will be
reflected when the register set is restored. The set must be written (or flushed) to memory because
of aframe spill prior to the modification for the modification to be valid.

flushreg causes the contents of al cached local register sets to be written (flushed) to their
associated stack frames in memory. The register cache is then invalidated, meaning that all flushed
register sets are restored from their save areas in memory. The current set of local registers is not
written to memory. flushreg is commonly used in debuggers or fault handlers to gain accessto all
saved local registers. In this way, call history may be traced back through nested procedures.
flushreg is also used when implementing task switches in multitasking kernels. The procedure
stack is changed as part of the task switch. To change the procedure stack, flushreg is executed to
update the current procedure stack and invalidate all entries in the local register cache. Next, the
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procedure stack is changed by directly modifying the FP and SP registers and executing a call
operation. After flushreg executes, the procedure stack may also be changed by modifying the
previous frame in memory and executing a return operation.

NOTE:

When a set of local registers is assigned to a new procedure, the processor may
or may not clear or initialize these registers. Therefore, initial register contents
are unpredictable. Also, the processor does not initialize the local register save
area in the newly created stack frame for the procedure; its contents are equally
unpredictable.

5.3 PARAMETER PASSING

Parameters are passed between procedures in two ways:

value Parameters are passed directly to the calling procedure as part of the call and
return mechanism. This is the fastest method of passing parameters.

reference Parameters are stored in an argument list in memory and a pointer to the
argument list is passed in aglobal register.

When passing parameters by value, the calling procedure stores the parameters to be passed in
global registers. Since the calling procedure and the called procedure share the global registers, the
called procedure has direct access to the parameters after the call.

When a procedure needs to pass more parameters than will fit in the global registers, they can be
passed by reference. Here, parameters are placed in an argument list and a pointer to the argument
list is placed in aglobal register.

The argument list can be stored anywhere in memory; however, a convenient place to store an
argument list isin the stack for acalling procedure. Space for the argument list is created by incre-
menting the SP register value. If the argument list is stored in the current stack, the argument list is
automatically deallocated when no longer needed.

A procedure receives parameters from — and returns values to — other calling procedures. To do
this successfully and consistently, all procedures must agree on the use of the global registers.

Parameter registers pass values into a function. Up to 12 parameters can be passed by value using
the global registers. If the number of parameters exceeds 12, additional parameters are passed
using the calling procedure’s stack; a pointer to the argument list is passed in a pre-designated
register. Similarly, several registers are set aside for return arguments and a return argument block
pointer is defined to point to additional parameters. If the number of return arguments exceeds the
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available number of return argument registers, the calling procedure passes a pointer to an
argument list on its stack where the remaining return values will be placed. Example 5-1 illustrates
parameter passing by value and reference.

Local registers are automatically saved when a call is made. Because of the local register cache,
they are saved quickly and with no external bus traffic. The efficiency of the local register
mechanism plays an important role in two cases when calls are made:

1.  When aprocedure is called which contains other calls, global parameter registers are moved
to working local registers at the beginning of the procedure. In this way, parameter registers
are freed and nested calls are easily managed. The register move instruction necessary to
perform this action is very fast; the working parameters — now in local registers — are
saved efficiently when nested calls are made.

2. When other procedures are nested within an interrupt or fault procedure, the procedure must
preserve al normally non-preserved parameter registers. This is necessary because the
interrupt or fault occurs at any point in the user’s program and a return from an interrupt or
fault must restore the exact processor state. The interrupt or fault procedure can move non-
preserved global registersto local registers before the nested call.

Example 5-1. Parameter Passing Code Example

# Exanpl e of parameter passing
# C-source: int a,b[10];
# a = procl(a,l,’'x' ,&[0]);
# assenmbles to ...
nov r3,g0 # value of a
| dconst 1,91 # value of 1
| dconst 120, g2 # val ue of “x”
| da 0x40(fp), g3 # reference to b[10]
cal _procl
nov g0, r3 #save return value in “a”
_procl:
nmov(q g0,r4 # save paraneters
# other instructions in
procedure
. # and nested calls
nov r3,g0 # |l oad return paraneter
ret
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54 LOCAL CALLS

A local call does not cause a stack switch. A local call can be made two ways:
* with thecall and callx instructions; or
» withasystem-local call as described in section 5.5, “SYSTEM CALLS’ (pg. 5-12).

call specifiesthe address of the called procedures as the |P plus a signed, 24-bit displacement (i.e.,
223 t0 2% - 4). callx allows any of the addressing modes to be used to specify the procedure
address. The | P-with-displacement addressing mode allows full 32-bit | P-relative addressing.

When a local call is made with a call or callx, the processor performs the same operation as
described in section 5.2.3.1, “Call Operation” (pg. 5-5). The target IP for the call is derived from
the instruction’ s operands and the new stack frame is allocated on the current stack.

55 SYSTEM CALLS

A system call is a call made viathe system procedure table. It can be used to make a system-local
call — similar to alocal call made with call and callx — or a system supervisor call.

A system call isinitiated with calls, which requires a procedure number operand. The procedure
number provides an index into the system procedure table, where the processor finds IPs for
specific procedures.

Using an 1960 processor language assembler, a system procedure is directly declared using the
.sysproc directive. At link time, the optimized call directive, callj, is replaced with a calls when a
system procedure target is specified. (Refer to current 1960 processor assembler documents for a
description of the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software portability.
System calls are commonly used to call kernel services. By calling these services with a procedure
number rather than a specific I P, applications software does not need to be changed each time the
implementation of the kernel services is modified. Only the entries in the system procedure table
must be changed.

Second, the ability to switch to a different execution mode and stack with a system supervisor call
allows kernel procedures and data to be insulated from applications code. This benefit is further
described in section 2.7, “USER SUPERVISOR PROTECTION MODEL" (pg. 2-20).
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5.5.1 System Procedure Table

The system procedure table is a data structure for storing 1Ps to system procedures. These can be
procedures which software can access through (1) a system call or (2) fault handling procedures,
which the processor can access through its fault handling mechanism. Using the system procedure
table to store IPs for fault handling is described in section 7.1, “FAULT HANDLING FACILITIES
OVERVIEW” (pg. 7-1).

Figure 5-4 shows the system procedure table structure. It is 1088 bytesin length and can have up to
260 procedure entries. At initialization, the processor caches a pointer to the system procedure
table. This pointer islocated in the PRCB. The following subsections describe this table’ s fields.

31 0
000H
008H
supervisor stack pointer base T] OOCH
010H Trace
Control
Bit
02CH
procedure entry 0 030H
procedure entry 1 034H
procedure entry 2 038H
03CH
438H
procedure entry 259 43CH
31 Procedure Entry 210
| address | | |
L
Reserved 1 Entry Type:
(Initialize to 0) 00 - Local
10-Supervisor
. Preserved
F_CAO013A

Figure 5-4. System Procedure Table
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5,5.1.1 Procedure Entries

A procedure entry in the system procedure table specifies a procedure’s location and type. Each
entry is one word in length and consists of an address (or IP) field and a type field. The address
field gives the address of the first instruction of the target procedure. Since all instructions are
word aligned, only the entry’s 30 most significant bits are used for the address. The entry’s two
least-significant bits specify entry type. The procedure entry type field indicates call type: system-
local call or system-supervisor call (Table 5-2). On a system call, the processor performs different
actions depending on the type of call selected.

Table 5-2. Encodings of Entry Type Field in System Procedure Table

Encoding Call Type
000 System-Local Call
001 Reserved
010 System-Supervisor Call
011 Reserved

5.5.1.2 Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack called the
supervisor stack, if not already in supervisor mode. The processor gets a pointer to this stack from
the supervisor stack pointer field in the system procedure table (Figure 5-4) during the reset initial-
ization sequence and caches the pointer internaly. Only the 30 most significant bits of the
supervisor stack pointer are given. The processor aligns this value to the next 16 byte boundary to
determine the first byte of the new stack frame.

5.5.1.3 Trace Control Bit

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC
register (PC.te) when a system-supervisor call causes a switch from user mode to supervisor
mode. Setting this bit to 1 enables tracing in the supervisor mode; setting it to O disables tracing.
The use of this bit is described in section 8.1.2, “Trace Enable Bit and Trace-Fault-Pending Flag”

(pg. 8-3).
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5.5.2 System Call to a Local Procedure

When acalls instruction references an entry in the system procedure table with an entry type of 00,
the processor executes a system-local call to the selected procedure. The action that the processor
performsisthe same as described in section 5.2.3.1, “ Call Operation” (pg. 5-5). The call’ starget IP
is taken from the system procedure table and the new stack frame is allocated on the current stack.
The calls algorithm is described in section 9.3.12, “calls’ (pg. 9-22).

5.5.3 System Call to a Supervisor Procedure

When a calls instruction references an entry in the system procedure table with an entry type of
010, the processor executes a system-supervisor call to the selected procedure. The call’ starget 1P
is taken from the system procedure table.

The processor performs the same action as described in section 5.2.3.1, “Call Operation” (pg. 5-5),
with the following exceptions:

» If the processor isin user mode, it switches to supervisor mode.
» Thenew frame for the called procedure is placed on the supervisor stack.

» If amode switch occurs, the state of the trace enable bit in the PC register is saved in the return
type field in the PFP register. The trace enable bit is then loaded from the trace control bit in
the system procedure table.

When the processor switches to supervisor mode, it remains in that mode and creates new frames
on the supervisor stack until a return is performed from the procedure that caused the original
switch to supervisor mode. While in supervisor mode, either the local call instructions (call and
callx) or calls can be used to call procedures.

The user-supervisor protection model and its relationship to the supervisor call are described in
section 2.7, “USER SUPERVISOR PROTECTION MODEL” (pg. 2-20).

5.6 USER AND SUPERVISOR STACKS

When using the user-supervisor protection mechanism, the processor maintains separate stacks in
the address space. One of these stacks—the user stack—is for procedures executed in user mode;
the other stack—the supervisor stack—is for procedures executed in supervisor mode.

The user and supervisor stacks are identical in structure (Figure 5-1). The base stack pointer for the
supervisor stack is automatically read from the system procedure table and cached internally at
initialization or when the processor is reinitialized with sysctl. Each time a user-to-supervisor
mode switch occurs, the cached supervisor stack pointer base is used for the starting point of the
new supervisor stack. The base stack pointer for the user stack is usually created in the initial-
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ization code. See section 14.2, “INITIALIZATION” (pg. 14-2). The base stack pointers must be
aligned to a 16-byte boundary; otherwise, the first frame pointer in the stack is rounded up to the
next 16-byte boundary.

5.7 INTERRUPT AND FAULT CALLS

The architecture defines two types of implicit calls that make use of the call and return
mechanism: interrupt handling procedure calls and fault handling procedure calls. A call to an
interrupt procedure is similar to a system-supervisor call. Here, the processor obtains pointers to
the interrupt procedures through the interrupt table. The processor always switches to supervisor
mode on an interrupt procedure call.

A call to afault procedure is similar to a system call. Fault procedure calls can be local calls or
supervisor calls. The processor obtains pointers to fault procedures through the fault table and
(optionally) through the system procedure table.

When afault call or interrupt call is made, a fault record or interrupt record is placed in the newly
generated stack frame for the call. These records hold the machine state and information to
identify the fault or interrupt. When areturn from an interrupt or fault is executed, machine stateis
restored from these records. See CHAPTER 7, FAULTS and CHAPTER 6, INTERRUPTS for
more information on the structure of the fault and interrupt records.

5.8 RETURNS

The return (ret) instruction provides a generalized return mechanism that can be used to return
from any procedure that was entered by call, calls, callx, an interrupt call or afault call. When ret
executes, the processor uses the information from the return-type field in the PFP register (Figure
5-5) to determine the type of return action to take.

Return Status
Return-Type Field - PFP.rt
Pre-Return-Trace Flag - PFP.p

Previous Frame Pointer

Address-PFP.a i
a a r r r
3 tftf t
1 o 2 1fo
31 28 24 20 16 12 8 4 0

F_CAO014A

Figure 5-5. Previous Frame Pointer Register (PFP) (r0)
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return-type field indicates the type of call which was made. Table 5-3 shows the return-type field
encoding for the various calls: local, supervisor, interrupt and fault.

trace-on-return flag (PFP.rt0 or bit O of the return-type field) stores the trace enable bit value when
a system-supervisor call is made from user mode. When the call is made, the PC register trace
enable bit is saved as the trace-on-return flag and then replaced by the trace controls bit in the
system procedure table. On a return, the trace enable bit's original value is restored. This
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch occurs.

prereturn-trace flag (PFPp) is used in conjunction with call-trace and prereturn-trace modes. If
call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;

otherwise it clears the flag. Then, if thisflag is set and prereturn-trace mode is enabled, a prereturn
trace event is generated on a return, before any actions associated with the return operation are

performed. See section 8.2, “TRACE MODES’ (pg. 8-4) for a discussion of interaction between

call-trace and prereturn-trace modes with the prereturn-trace flag.

Table 5-3. Encoding of Return Status Field

Return
Status Call Type Return Action
Field
Local call
000 (system-local call or system-supervisor call Local return
P made from supervisor mode) (return to local stack; no mode switch)
p001 Fault call Fault return
Supervisor return
01t Svstem-supervisor from user mode (return to user stack, mode switch to user
P Y P mode, trace enable bit is replaced with the t bit
stored in the PFP register on the call)
pl00 reserved
plo1 reserved
pl10 reserved
plil Interrupt call Interrupt return

NOTE: “p”is PFP.p (prereturn trace flag).
“t” denotes the trace-on-return flag; used only for system supervisor calls which cause a user-to-
supervisor mode switch.
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5.9 BRANCH-AND-LINK

A branch-and-link is executed using either the branch-and-link instruction (bal) or branch-and-
link-extended instruction (balx). When either instruction executes, the processor branches to the
first instruction of the called procedure (the target instruction), while saving a return IP for the
calling procedure in aregister. The called procedure uses the same set of local registers and stack
frame as the calling procedure. For bal, the return IP is automatically saved in global register g14;
for balx, the return IP instruction is saved in a register specified by one of the instruction’s
operands.

A return from a branch-and-link is generally carried out with a bx (branch extended) instruction,
where the branch target is the address saved with the branch-and-link instruction. The branch-and-
link method of making procedure calls is recommended for calls to leaf procedures. Leaf
procedures typically call no other procedures. Branch-and-link is the fastest way to make a call,
providing the calling procedure does not require its own registers or stack frame.
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CHAPTER 6
INTERRUPTS

This chapter describes how a programmer uses the processor’s interrupt mechanism, defines data
structures used for interrupt handling and describes actions that the processor takes when handling
an interrupt.

CHAPTER 12, INTERRUPT CONTROLLER describes the mechanism for signaling and posting
interrupts; it is best suited for a system implementor.

6.1 OVERVIEW

An interrupt is an event that causes a temporary break in program execution so the processor can
handle another chore. Interrupts commonly request 1/0 services or synchronize the processor with
some external hardware activity. For interrupt handler portability across the i960° processor
family implementations, the architecture defines a consistent interrupt state and interrupt-priority-
handling mechanism. To manage and prioritize interrupt requests in parallel with processor
execution, the 1960 Cx processors provide an on-chip programmable interrupt controller.

Requests for interrupt service come from many sources. These requests are prioritized so that
instruction execution is redirected only if an interrupt request is of higher priority than that of the
executing task.

When the processor is redirected to service an interrupt, it uses a vector number that accompanies
the interrupt request to locate the vector entry in the interrupt table. From that entry, it gets an
address to the first instruction of the selected interrupt procedure. The processor then makes an
implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. A new frame is
created for the interrupt on this stack and a new set of local registers is allocated to the interrupt
procedure. The interrupted program’s current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program’s state,
switches back to the stack that the processor was using prior to the interrupt and resumes program
execution.

Since interrupts are handled based on priority, requested interrupts are often saved for later service
rather than being handled immediately. The mechanism for saving the interrupt is referred to as
interrupt posting. The mechanism the 1960 Cx processors use for posting interrupts is described in
section 12.2, “MANAGING INTERRUPT REQUESTS’ (pg. 12-2).
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On the 1960 Cx processors, interrupt requests may originate from external hardware sources,
internal DMA sources or from software. External interrupts are detected with the chip’'s 8-bit
interrupt port and with a dedicated NMT input. Interrupt requests originate from software by the
sysctl instruction which signals interrupts. To manage and prioritize all possible interrupts, the
microprocessor integrates an on-chip programmable interrupt controller. Integrated interrupt
controller configuration and operation is described in CHAPTER 12, INTERRUPT
CONTROLLER.

The 1960 architecture defines two data structures to support interrupt processing (see Figure 6-1):
the interrupt table and interrupt stack. The interrupt table contains 248 vectors for interrupt
handling procedures and an area for posting software requested interrupts. The interrupt stack
prevents interrupt handling procedures from overwriting the stack in use by the application
program. It also alows the interrupt stack to be located in a different area of memory than the user
and supervisor stack (e.g., fast SRAM).

IF “““ 1 :"M_enTorV _________________ R
| |
| | | Interrupt nterruot |
Interrupt : i960® Cx | : Table Handlir?g I
Request I Processor : i Interrupt Pointer Procedure :
| [ | |
| [ I |
L — 0 — — — . L -
F_CAO015A
Figure 6-1. Interrupt Handling Data Structures
6.2 SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING

To use the processor’s interrupt handling facilities, software must provide the following items in
memory:

* Interrupt Table

» Interrupt Handler Routines

* Interrupt Stack

These items are generally established in memory as part of theinitialization procedure. Once these

items are present in memory and pointers to them have been entered in the appropriate system data
structures, the processor handles interrupts automatically and independently from software.
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6.3 INTERRUPT PRIORITY

Each interrupt procedure pointer is eight bits in length, which allows up to 256 unique procedure
pointers to be defined. Each procedure pointer’'s priority is defined by dividing the procedure
pointer number by eight. Thus, at each priority level, there are eight possible procedure pointers
(e.g., procedure pointers 8 through 15 have a priority of 1 and procedure pointers 246 through 255
have a priority of 31). Procedure pointers O through 7 cannot be used. Since O priority is the lowest
priority, a priority-0 interrupt will never successfully stop execution of a program of any priority.

The processor compares its current priority with the interrupt request priority to determine whether
to service the interrupt immediately or to delay service. Theinterrupt is serviced immediately if the
interrupt request priority is higher than the processor’s current priority (the priority of the program
or interrupt the processor is executing). If the interrupt priority is less than or equal to the
processor’s current priority, the processor does not service the request. When multiple interrupt
requests are pending at the same priority level, the request with the highest vector number is
serviced first.

Priority-31 interrupts are handled as a special case. Even when the processor is executing at
priority level 31, a priority-31 interrupt will interrupt the processor. On the i960 Cx processor
implementations, the non-maskable interrupt (NMT) interrupts priority-31 execution; no interrupt
can interrupt an NMT handler.

The processor may post requests for later servicing. Interrupts waiting to be serviced — called
pending interrupts — are discussed in section 6.4.2, “Pending Interrupts’ (pg. 6-5).

6.4 INTERRUPT TABLE

Theinterrupt table (Figure 6-2), 1028 bytes in length, can be located anywhere in the non-reserved
address space. It must be aligned on a word boundary. The processor reads a pointer to interrupt
table byte O during initialization. The interrupt table must be located in RAM since the processor
must be able to read and write the table’s pending interrupt section.

The interrupt table is divided into two sections: vector entries and pending interrupts. Each are
described in the subsections that follow.
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31
Pending Priorities 000H
004H
Pending Interrupts
P 9 p
020H
Entry 8 024H (Vector 8)
Entry 9 028H (Vector 9)
Entry 10 02CH (Vector 10)
< : ;
Entry 243 3DOH (Vector 243)
3D4H (Vector 244)
<z
3EOH (Vector 247)
Reserved For NMI 3E4H (Vector 248)
3E8H (Vector 249)
< ;
3FOH (Vector 251)
Entry 252 3F4H (Vector 252)
T Entry 255 T4OOH (Vector 255)
Vector Entry 210
| Instruction Pointer |X| Xl
[—

:| Reserved (Initialize to 0)
- Preserved

t Entry Type:

00 Normal

01 Reserved

10 Targetin Cache
11 Reserved

F_CAO016A

Figure 6-2. Interrupt Table

6.4.1 Vector Entries

A vector entry contains a specific interrupt handler’s address. When an interrupt is serviced, the
processor branches to the address specified by the vector entry.

Each interrupt is associated with an 8-bit vector number which points to a vector entry in the
interrupt table. The vector entry section contains 248 one-word entries. Vector numbers 8 through
243 and 252 through 255 and their associated vector entries are used for conventional interrupts.
Vector number 244 through 247 and 249 through 251 are reserved. Vector number 248 and its
associated vector entry is used for the non-maskable interrupt (NMT).
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Vector entry 248 contains the NMI handler address. When the processor is initialized, the NMT
vector located in the interrupt table is automatically read and stored in location OH of internal data
RAM. The NMI vector is subsequently fetched from internal data RAM to improve thisinterrupt’s
performance.

Vector entry structure is given at the bottom of Figure 6-2. Each interrupt procedure must begin on
aword boundary, so the processor assumes that the vector’'s two least significant bits are 0. Bits 0
and 1 of an entry indicate entry type: type 000 indicates that the interrupt procedure should be
fetched normally; type 010 indicates that the interrupt procedure should be fetched from the locked
partition of the instruction cache. Refer to section 12.3.14, “Caching Interrupt-Handling
Procedures’ (pg. 12-21). The other possible entry types are reserved and must not be used.

6.4.2 Pending Interrupts

The pending interrupts section comprises the interrupt table's first 36 bytes, divided into two
fields: pending priorities (byte offset O through 3) and pending interrupts (4 through 35).

Each of the 32 bitsin the pending priorities field indicate an interrupt priority. When the processor
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt’s priority is
set. For example, if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is set.

Each of the pending interrupts field’' s 256 bits represent an interrupt procedure pointer. Byte offset
5isfor vectors 8 through 15, byte offset 6 isfor vectors 16 through 23, and so on. Byte offset 4, the
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its corresponding
bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to first
check if there are any pending interrupts with a priority greater than the current program and then
determine the vector number of the interrupt with the highest priority.

6.4.3 Caching Portions of the Interrupt Table

The architecture alows all or part of the interrupt table to be cached internally to the processor.
The purpose of caching these fields is to reduce interrupt latency by allowing the processor access
to certain interrupt procedure pointers and to the pending interrupt information without having to
make memory accesses. The microprocessor caches the following:

* Thevalue of the highest priority posted in the pending priorities field.
* A predefined subset of interrupt procedure pointers (entries from the interrupt table).

* Pending interrupts received from external interrupt pins and on-chip DMA controller
(hardware requested interrupts).
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This caching mechanism is non-transparent; in other words, the processor may modify fieldsin a
cached interrupt table without modifying the same fields in the interrupt table itself. Vector
caching is described in section 12.3.12, “Vector Caching Option” (pg. 12-20).

6.5 REQUESTING INTERRUPTS

On the 1960 Cx microprocessors, interrupt requests may originate from external hardware sources,
internal DMA sources or from software. External interrupts are detected with the chip’'s 8-bit
interrupt port and with a dedicated NMI input. Interrupt requests originate from software by the
sysctl instruction which signals interrupts. To manage and prioritize all possible interrupts, the
microprocessor integrates an on-chip programmable interrupt controller. The configuration and
operation of the integrated interrupt controller is described in section 12.2, “MANAGING
INTERRUPT REQUESTS’ (pg. 12-2).

Interrupts may be requested directly by a user’'s program. This mechanism is often useful for
requesting and prioritizing low-level tasksin areal time application.

Software can request interrupts in the following two ways: with the sysctl instruction or by
posting an interrupt in the interrupt table’ s pending-interrupts and pending-priorities fields.

6.5.1 Posting Interrupts

For the 1960 Cx processors, only software-requested interrupts are posted in the interrupt table;
hardware-requested interrupts are posted in the interrupt pending (IPND) register. This register
and the mechanism for requesting and posting hardware interrupts is described in section 12.3.6,
“Interrupt Mask and Pending Registers (IMSK, IPND)” (pg. 12-14). Software posting of interrupts
in the interrupt table can assist an application in prioritizing processing demands as follows:

» By posting interrupt requests in the interrupt table, the application can delay the servicing of
low priority tasks which were signaled by a higher priority interrupt.

* Insystemswith more than one processor, both processors can post and service interrupts from
a shared interrupt table. This interrupt table sharing alows processors to share the interrupt
handling load or provide a communication mechanism between the processors.

To post a pending interrupt in the memory-resident interrupt table, the processor performs the
atomic read/write operation that locks the interrupt table until the posting operation has completed
(see Example 6-1).
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Example 6-1. Atomic Read/Write Operation

# x and z are tenporary registers

X = atom c_read(pending_priorities); # assert TOCK pin
z - read(pending_interrupts(vector_numnber/8));
x(vector_number/8) - 1;

z(vector _nunmber nod 8) - 1;
write(pending_interrupts(vector_number/8)) - z;
atomic_wite(pending_priorities) - Xx; # deassert L[OCK

The LOCK pin can be used to prevent other agents on the bus from accessing the interrupt table
during the posting operation. On the 1960 Cx microprocessor, posting software interrupts is
performed by sysctl.

6.5.2 Posting Interrupts Directly to the Interrupt Table

The 960 Cx processors — or external agent that is sharing memory with the microprocessor (such
as an 1/0 processor or another 1960 Cx processor) — can post pending interrupts directly in the
interrupt table by setting the appropriate bitsin the pending priorities and pending interrupts fields.
This action, however, does not ensure that the core will handle the interrupt immediately, nor does
it cause the core to update the value in the software priority register. To do this, the sysctl
instruction should be used as described in the preceding sections.

sysctl can be used at any time to explicitly force the core to check the interrupt table for pending
interrupts. Thisis done by specifying an invalid vector number in the range of 0 to 7. For example,
when an external agent is posting interrupts to a shared interrupt table, sysctl could be executed
periodically to guarantee recognition of pending interrupts which were posted in the table by the
external agent.

An external 1/0 agent or a coprocessor posts interrupts to a processor’s interrupt table in memory
in the same manner described above, providing it has the capability to perform atomic operations
on memory. When interrupts are posted in this manner, pending interrupts and pending priorities
must be modified in specific order and not allow access by the processor or other external agents
during the atomic modify operations.

The processor automatically checks the memory-based interrupt table when the processor posts an
interrupt using sysctl with a post interrupt message type.

When the processor finds a pending interrupt, it handlesiit asif it had just received the interrupt. If
the processor finds two pending interrupts at the same priority, it services the interrupt with the
highest vector number first.
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Example 6-2. Modifying Pending Interrupts

#set pending interrupt bit

at onmi c_nodi fy(pendi ng_i nterrupts(vector_nunber/8));
#set pending priority bit

atomi c_nodi fy(pending_priorities);

6.6 SYSTEM CONTROL INSTRUCTION (sysctl)

sysctl is typically used to request an interrupt in a program (see Example 6-3). The request
interrupt message type (00H) is selected and the interrupt procedure pointer number is specified in
the least significant byte of the instruction operand. See section 4.3, “SYSTEM CONTROL
FUNCTIONS’ (pg. 4-19) for a complete discussion of sysctl.

Example 6-3. Using sysctl to Request an Interrupt

| dconst 0x53, g5 # Vector nunber 53H is | oaded
# into byte 0 of register g5 and
# the value is zero extended into
# byte 1 of the register

sysct | g5, g5, g5 # Vector nunber 53H is posted

A literal can be used to post an interrupt with a vector number from 8 to 31. Here, the required
value of O0OH in the second byte of aregister operand isimplied.

The action of the core when it executes the sysctl instruction is as follows:

1 The core performs an atomic write to the interrupt table and sets bits in the pending-
interrupts and pending-priorities fields that correspond to the requested interrupt.

2. The core updates the internal software priority register with the value of the highest pending
priority from the interrupt table. This may be the priority of the interrupt that was just
posted.

The interrupt controller continuously compares the following three values: software priority
register, current process priority, priority of the highest pending hardware-generated interrupt.
When the software priority register value is the highest of the three, the following actions occur:

1 The interrupt controller signals the core that a software-generated interrupt is to be
serviced.
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2. The core checks the interrupt table in memory, determines the vector number of the highest
priority pending interrupt and clears the pending-interrupts and pending-priorities bitsin the
table that correspond to that interrupt.

3. The core detects the interrupt with the next highest priority which is posted in the interrupt
table (if any) and writes that value into the software priority register.

4. The core services the highest priority interrupt.

If more than one pending interrupt is posted in the interrupt table at the same interrupt priority, the
core handles the interrupt with the highest vector number first. The software priority register is an
internal register and, as such, is not visible to the user. The core only updates this register’s value
when sysctl requests an interrupt or when a software-generated interrupt is serviced.

6.7 INTERRUPT STACK AND INTERRUPT RECORD

The interrupt stack can be located anywhere in the non-reserved address space. The processor
obtains a pointer to the base of the stack during initialization. The interrupt stack has the same
structure as the local procedure stack described in section 5.2.1, “Local Registers and the
Procedure Stack” (pg. 5-2). Aswith the local stack, the interrupt stack grows from lower addresses
to higher addresses.

The processor saves the state of an interrupted program — or an interrupted interrupt procedure —
in arecord on the interrupt stack. Figure 6-3 shows the structure of thisinterrupt record.

Theinterrupt record is always stored on the interrupt stack adjacent to the new framethat is created
for the interrupt handling procedure. It includes the state of the AC and PC registers at the time the
interrupt was received and the interrupt procedure pointer number used. Referenced to the new
frame pointer address (designated NFP), the saved AC register is located at address NFP-12; the
saved PC register islocated at address NFP-16.
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Current Stack
31 (local, supervisor, or interrupt stack) 0
FP
current frame
31 Interrupt Stack 0
L padding area L
optional data
gSr:)av(\;tkh (not implemented for i960® Cx processor)
saved Process Controls Register NFP-16
Interrupt
saved Arithmetic Controls Register NFP-12 | Record
vector number NFP-8
NFP
new frame
T 2 I:I Reserved
l F_CAO17A
Figure 6-3. Storage of an Interrupt Record on the Interrupt Stack
6.8 INTERRUPT SERVICE ROUTINES

An interrupt handling procedure performs a specific action that is associated with a particular
interrupt procedure pointer. For example, one interrupt handler task might be to initiate a DMA
transfer. The interrupt handler procedures can be located anywhere in the non-reserved address
space. Since instructions in the 1960 processor family architecture must be word aligned, each
procedure must begin on aword boundary.

When an interrupt handling procedure is called, the processor allocates a new frame on the
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode, the
processor always switches to supervisor mode while an interrupt is being handled. It also saves the
states of the AC and PC registers for the interrupted program. The interrupt procedure shares the
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remainder of the execution environment resources (namely the global registers, special function
registers and the address space) with the interrupted program. Thus, interrupt procedures must
preserve and restore the state of any resources shared with a non-cooperating program.

CAUTION!

Interrupt procedures must preserve and restore the state of any resources shared with a
non-cooperating program. For example, an interrupt procedure which uses a global register
which is not permanently allocated to it should save the register's contents before it uses
the register and restore the contents before returning from the interrupt handler.

instruction cache. See section 12.3.14, “ Caching Interrupt-Handling Procedures’ (pg. 12-21) for a

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into the
complete description. _

6.9 INTERRUPT CONTEXT SWITCH

When the processor services an interrupt, it automatically saves the interrupted program state or
interrupt procedure and calls the interrupt handling procedure associated with the new interrupt
request. When the interrupt handler compl etes, the processor automatically restores the interrupted
program state.

The method that the processor uses to service an interrupt depends on the processor state when the
interrupt isreceived. If the processor is executing a background task when an interrupt request isto
be serviced, the interrupt context switch must change stacks to the interrupt stack. Thisiscalled an
executing-state interrupt. If the processor is already executing an interrupt handler, no stack switch
is required since the interrupt stack will already be in use. This is called an interrupted-state
interrupt.

The following subsections describe interrupt handling actions for executing-state and interrupted-
state interrupts. In both cases, it is assumed that the interrupt priority is higher than that of the
processor and thus is serviced immediately when the processor receivesit.



INTERRUPTS Intel®

6.9.1

Executing-State Interrupt

When the processor receives an interrupt while in the executing state (i.e., executing a program), it
performs the following actions to service the interrupt. This procedure is the same regardless of
whether the processor is in user or supervisor mode when the interrupt occurs. The processor:

1.

switches to the interrupt stack (as shown in Figure 6-3). The interrupt stack pointer
becomes the new stack pointer for the processor.

saves the current state of process controls and arithmetic controls in an interrupt record on
the interrupt stack. The processor also saves the interrupt procedure pointer number.

allocates a new frame on the interrupt stack and loads the new frame pointer (NFP) in
global register g15.

switches to the interrupted state.

sets the state flag in its internal process controls to interrupted, its execution mode to
supervisor and its priority to the priority of the interrupt. Setting the processor's priority to
that of the interrupt ensures that lower priority interrupts cannot interrupt the servicing of
the current interrupt.

clears the trace-fault-pending and trace-enable flags in its internal process controls.
Clearing these flags allows the interrupt to be handled without trace faults being raised.

sets the frame return status field (associated with the PFP in register r0) to 111,.

performs a call operation as described in CHAPTER 5, PROCEDURE CALLS. The
address for the called procedure is specified in the interrupt table for the specified interrupt
procedure pointer.

Once the processor completes the interrupt procedure, it performs the following return actions:

1

copies the arithmetic controls field and the process controls field from the interrupt record
into the arithmetic controls register and process controls, respectively. It aso returns the
trace-fault-pending flags and trace-enable bit to their values before the interrupt occurred.

deallocates the current stack frame and interrupt record from the interrupt stack and
switches to the local stack or the supervisor stack (the one it was using when it was
interrupted).

performs a return operation as described in CHAPTER 5, PROCEDURE CALLS. This
causes the processor to switch back to the local or supervisor stack (whichever it was using
before the interrupt).

switches to the executing state and resumes work on the program, if there are no pending
interrupts to be serviced or trace faults to be handled.
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6.9.2 Interrupted-State Interrupt

If the processor receives an interrupt while it is servicing another interrupt, and the new interrupt
has a higher priority than the interrupt currently being serviced, the current interrupt-handler
routine is interrupted. Here, the processor performs the same interrupt-servicing action as is
described in section 6.9.1, “ Executing-State Interrupt” (pg. 6-12) to save the state of the interrupted
interrupt-handler routine. The interrupt record is saved on the top of the interrupt stack prior to the
new frame that is created for use in servicing the new interrupt.

On the return from the current interrupt handler to the previous interrupt handler, the processor
deallocates the current stack frame and interrupt record, and stays on the interrupt stack.
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set bit in IPND get vector encoded get vector in field 1 vector = 248

on XINT pins

set corresponding
pending bits in
interrupt table

|

SIPR =
interrupt priority

continue normal

ICON.gie .
operation

=1?

. is .
int.prio

continue normal
>PC.p

operation
or=31?
FP = SP aligned to
next 16 byte boundary
- +16
signal core to ‘
process interrupt +
in interrupt table, N
read pending interrupt bits; store interrupt
clear pending interrupt bits record at FP - 16

i

update SIPR with New PC =
next highest priority

clear trace fault pending bit (TC.tfp)
| clear trace enable bit (TC.te)
state = interrupted (PC.s = 1)

mode = supervisor (PC.em =1
pes=1 \NO p: ( )
, . i
SP = interrupt
| YES stack pointer get interrupt procedure pointer
SP=FP + 64
L IP = interrupt procedure pointer
PFP =
FP|7
NOTES:

1. “Is ICON Register global interrupts enable bit set to 1” (If yes, external interrupt pins are enabled)
2. “Is interrupt priority greater than process priority or equal to 31?”
3. “Is PC Register state bit set to 1?” (if yes, processor is interrupted; if no, processor is executing)

Figure 6-4. Flowchart for Worst Case Interrupt Latency
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CHAPTER 7
FAULTS

This chapter describes the i960® Cx processors’ fault handling facilities. Subjects covered include
the fault handling data structures and fault handling mechanism. See section 7.10, “FAULT
REFERENCE”" (pg. 7-20) for detailed information on each fault type.

7.1 FAULT HANDLING FACILITIES OVERVIEW

The 1960 processor architecture defines various conditions in code and/or the processor’s internal
state that could cause the processor to deliver incorrect or inappropriate results or that could cause
it to head down an undesirable control path. These are called fault conditions. For example: for
inappropriate operand values and for invalid opcodes and addressing modes, the architecture
defines faults for divide-by-zero and overflow conditions on integer calculations.

As shown in Figure 7-1, the architecture defines a fault table, a system procedure table, a set of
fault handling procedures and a stack (user stack, supervisor stack or both) to handle processor-
generated faults.

Fault
Processor Fault Fault
Table Handling
L Procedures
L, System ]
Procedure > Supervisor

Table Stack

User Stack

F_CAO18A

Figure 7-1. Fault-Handling Data Structures
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The fault table contains pointers to fault handling procedures. The system procedure table
optionally provides an interface to any fault handling procedure and allows faults to be handled in
supervisor mode. Stack frames for fault handling procedures are created on either the user or
supervisor stack, depending on the mode in which the fault is handled.

Once these data structures and the code for the fault procedures are established in memory, the
processor handles faults automatically and independently from application software.

The processor can detect afault at any time while executing instructions: whether from a program,
interrupt handling procedure or fault handling procedure. If a fault occurs during program
execution, the processor determines the fault type and selects a corresponding fault handling
procedure from the fault table. It then invokes the fault handling procedure by means of an implicit
call. Asdescribed later in this chapter, the fault handler call can be:

» alocal call (call-extended operation)

» asystem-local cal (local call through the system procedure table)

» asystem-supervisor call (also through the system procedure table)

As part of the implicit call to the fault handling procedure, the processor creates a fault record on

the stack that the fault handling procedure is using. This record includes information on the fault
and the processor’ s state when the fault was generated.

After the fault record is created, the processor executes the selected fault handling procedure. If
the fault handling procedure recovers from the fault, the processor then restores itself to its state
prior to the fault and resumes program execution with no break in program control flow. If the
fault handling procedure cannot recover from the fault, the fault handler can call a debug monitor
or perform an action such as resetting the processor.

This procedure call mechanism handles faults that occur:
*  whilethe processor is servicing an interrupt

»  whilethe processor is working on another fault handling procedure

7.2 FAULT TYPES

The 1960 architecture defines a basic set of faults which are categorized by type and subtype. Each
fault has a unique type and subtype number. When the processor detects afault, it records the fault
type and subtype numbers in a fault record. It then uses the type number to select a fault handling
procedure.
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The fault handling procedure can optionally use the subtype number to select a specific fault
handling action. The i960 Cx processor recognizes 960 architecture-defined faults and a new fault
subtype for detecting unaligned memory accesses. Table 7-1 lists all faults that the i960 Cx
processor detects, arranged by type and subtype. Text that follows the table gives column

definitions.
Table 7-1. 1960%® Cx Processor Fault Types and Subtypes
Fault Type Fault Subtype Fault Record
Number Name I;\lit”}::;;ig:l Name

1H Trace Bit 1 Instruction Trace XX01 XX02H
Bit 2 Branch Trace XX01 XX04H
Bit 3 Call Trace XX01 XX08H
Bit 4 Return Trace XX01 XX10H
Bit 5 Prereturn Trace XX01 XX20H
Bit 6 Supervisor Trace XX01 XX40H
Bit 7 Breakpoint Trace XX01 XX80H

2H Operation 1H Invalid Opcode XX02 XX01H
2H Unimplemented XX02 XX02H
3H Unaligned? XX02 XX03H
4H Invalid Operand XX02 XX04H

3H Arithmetic 1H Integer Overflow XX03 XX01H
2H Arithmetic Zero-Divide XX03 XX02H

4H Reserved (Floating Point)

5H Constraint 1H Constraint Range XX05 XX01H
2H Privileged XX05 XX02H

6H Reserved

7H Protection Bit 1 Length XX07 XX01H

8H Reserved

9H Reserved

AH Type 1H Type Mismatch XX0A XX01H

BH - FH Reserved

NOTE:

1. The operation-unaligned fault is an i960 Cx processor-specific extension.
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InTable 7-1:
»  Thefirst (Ieft-most) column contains the fault type numbers in hexadecimal.
»  The second column shows the fault type name.

»  Thethird column gives the fault subtype number as either: (1) a hexadecimal number or (2) as
a bit position in the fault record’s 8-bit fault subtype field. The bit position method of
indicating a fault subtype is used for certain faults — such as trace faults — in which two or
more fault subtypes may occur simultaneously.

» The fourth column gives the fault subtype name. For convenience, individual faults are
referred to in this manual by their fault-subtype name. Thus an operation-invalid-operand
fault is referred to as simply an invalid-operand fault; an arithmetic-integer-overflow fault is
referred to as an integer-overflow fault.

» The fifth column shows the encoding of the word in the fault record that contains the fault
type and fault subtype numbers.

Other 1960 processor family members may provide extensions that recognize additional fault
conditions. Fault type and subtype encoding allows all faultsto beincluded in the fault table: those
which are common to all 1960 processors and those which are specific to one or more family
members. The fault types are used consistently for all family members. For example, Fault Type 4
isreserved for floating point faults. Any 1960 processor with floating point operations uses Entry 4
to store the pointer to the floating point fault handling procedure.

7.3 FAULT TABLE

The fault table (Figure 7-2) is the processor’s pathway to the fault handling procedures. It can be
located anywhere in the address space. The processor obtains a pointer to the fault table during
initialization.

The fault table contains one entry for each fault type. When a fault occurs, the processor uses the
fault type to select an entry in the fault table. From this entry, the processor obtains a pointer to the
fault handling procedure for the type of fault that occurred. Once called, a fault handling
procedure has the option of reading the fault subtype or subtypes from the fault record when
determining the appropriate fault recovery action.
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31 Fault Table 0
Parallel Fault Entry 00H
Trace Fault Entry 08H
Operation Fault Entry 10H
Arithmetic Fault Entry 18H
20H
Constraint Fault Entry 28H
30H
Protection Fault Entry 38H
40H
48H
Type Fault Entry 50H
< <
FCH
31 Local-Call Entry 10
Fault-Handler Procedure Address | 0 | o "
n+4
31 System-Call Entry 10
Fault-Handler Procedure Number | 1 | ol n
0000 027FH n+4
|:| Reserved (Initialize to 0) F_CAOL9A

Figure 7-2. Fault Table and Fault Table Entries
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Asindicated in Figure 7-2, two fault table entry types are allowed: local-call entry and system-call
entry. Each istwo words in length. The entry type field (bits 0 and 1 of the entry’s first word) and
the value in the entry’ s second word determine the entry type.

local-call entry Provides an instruction pointer for the fault handling procedure. The
(type 000) processor uses this entry to invoke the specified procedure by means of an

implicit local-call operation. The second word of a local procedure entry is
reserved; it must be set to zero when the fault table is created and not

accessed after that.
system-call entry  Provides a procedure number in the system procedure table. This entry must
(type 010) have an entry type of 010 and a value in the second word of 0000 027FH.

Using this entry, the processor invokes the specified fault handling procedure
by means of an implicit call-system operation similar to that performed for
the calls instruction. A fault handling procedure in the system procedure
table can be called with a system-local call or a system-supervisor call,
depending on the entry type in the system-procedure table.

To summarize, a fault handling procedure can be invoked through the fault table in any of three
ways: alocal call, asystem-local call or a system-supervisor call.

7.4 STACK USED IN FAULT HANDLING

The architecture does not define a dedicated fault handling stack. Instead, to handle a fault, the
processor uses either the user, interrupt or supervisor stack — whichever is active when the fault is
generated — with one exception: if the user stack is active when a fault is generated and the fault
handling procedure is called with an implicit supervisor call, the processor switches to the
supervisor stack to handle the fault.

7.5 FAULT RECORD

When afault occurs, the processor records information about the fault in a fault record in memory.
The fault handling procedure uses the information in the fault record to correct or recover from the
fault condition and, if possible, resume program execution. The fault record is stored on the stack
that the fault handling procedure will use to handle the fault.

751 Fault Record Data

Figure 7-3 shows the fault record’ s structure. In this record, the fault’ s type number is stored in the
fault type field and the fault’s subtype number (or bit positions for multiple subtypes) is stored in
the fault subtype field. The address-of-faulting-instruction field contains the IP of the instruction
which caused the processor to fault.
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When a fault is generated, the existing PC and AC register contents are stored in their respective
fault record fields. The processor uses this information to resume program execution after the fault
ishandled. In the case of parallel instruction execution, these fields contain register states that were
pending when the processor completed execution of all parallel and out-of-order instructions.

31 0
2 Optional Data
| Parallel Type No. | | No. Parallel Faults | NFP-20
Process Controls NFP-16
Arithmetic Controls NFP-12
| Fault Type | | Fault Subtype NFP-8
Address of Faulting Instruction NFP-4
:I Reserved F_CA020A

Figure 7-3. Fault Record

Optional datafields are defined for certain faults. These fields contain additional information about
the faulting conditions, usually to assist resumption. The i960 Cx processor uses these optional
data fields for two fault types only: parallel faults and operation-unaligned faults. The processor
can generate parallel faults when instructions are executed in parallel. section 7.6.1, “Multiple
Faults’ (pg. 7-9), describes optional data field usage for parallel faults; section 7.10.3, “Operation
Faults” (pg. 7-23), describes optional data field usage for operation-unaligned faults. All unused
bytesin the fault record are reserved.

7.5.2 Return Instruction Pointer (RIP)

When a fault handling procedure is called, a return instruction pointer (RIP) is saved in the RIP
register (r2). The RIP points to an instruction where program execution can be resumed with no
break in the program’s control flow. It generally points to the faulting instruction or to the next
instruction to be executed. In some instances, however, the RIP is undefined. section 7.10,
“FAULT REFERENCE” (pg. 7-20), defines the RIP content for each fault.
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7.5.3 Fault Record Location

The fault record is stored in the stack that the processor uses to execute the fault handling
procedure. As shown in Figure 7-4, this stack can be the user stack, supervisor stack or interrupt
stack. The fault record begins at byte address NFP-1. NFP refers to the new frame pointer which is
computed by adding the memory size allocated for padding and the fault record to the new stack
pointer (NSP).

The processor automatically determines the number of bytes required for the fault record and
increments the FP by that amount, rounding it off to the next highest 16-byte boundary. Fault
record size is variable, based on the size of the optional fault-data portion of the fault record.

Stack frame alignment is defined for each implementation of the 1960 architecture. This alignment
boundary is calculated from the relationship SALIGN*16. For example, if SALIGN is selected to
be 4, stack frames are aligned on 64-byte boundaries. In the 1960 Cx processors, SALIGN=1.

Current Stack
(User, Supervisor, or Interrupt Stack)

31 0
FP
Current Frame
l i SP
31 Local Stack or Supervisor Stack? 0
NSP!
} Padding Area é
Stack
Growth 2 Fault Record Z ;aeil(t)rd
NFP-4
NFP

New Frame T

}
NOTES:

1. If the call to the fault handler procedure does not require a stack switch, the new stack pointer
(NSP) is the same as SP.

2. If the processor is in user mode and the fault handler procedure is called with a system
supervisor call, the processor switches to the supervisor stack. E CAO21A

<A

Figure 7-4. Storage of the Fault Record on the Stack
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7.6 MULTIPLE AND PARALLEL FAULTS

Multiple fault conditions can occur during a single instruction execution and during multiple
instruction execution when the instructions are executed by parallel execution units within the
processor. The following sections describe how faults are handled under these conditions.

7.6.1 Multiple Faults

Multiple fault conditions can occur during a single instruction execution. For example, an
instruction can have an invalid operand and unaligned address. When this situation occurs, the
processor is required to recognize and generate at least one of the fault conditions. The processor
may not detect all fault conditions and may not report all detected faults.

In a multiple fault situation, the reported fault condition is left to the implementation. The archi-
tecture, however, does define the criteria for determining which fault to report when trace fault
conditions are one or more of the fault conditions.

7.6.2 Multiple Trace Fault Conditions Only

Multiple trace fault conditions that single instruction executions generate are reported in a single
trace fault. To support this multiple fault reporting, the trace fault uses bit positions in the fault-
subtype field to indicate occurrences of multiple faults of the same type (Table 7-1).

For example, when instruction tracing is enabled, an instruction trace fault condition is detected on
each instruction that is executed, along with other trace fault conditions that are enabled (e.g., a
call trace fault or a branch trace fault.) The processor generates a trace fault after each instruction
and sets the appropriate bit or bits in the fault-subtype field to indicate the instruction trace fault
and any other trace fault subtypes that occurred.

7.6.3 Multiple Trace Fault Conditions with Other Fault Conditions

The execution of a single instruction can create one or more trace fault conditions in addition to
multiple non-trace fault conditions. When this occurs, the processor generates at least two faults: a
non-trace fault and a trace fault.

The non-trace fault is handled first and the trace fault is triggered immediately after executing the
return instruction (ret) at the end of the non-trace fault handler.

7.6.4 Parallel Faults
The 1960 Cx processors exploit the architecture’ s tolerance of parallel and out-of-order instruction

execution by issuing instructions to multiple, independent execution units on the chip. The
following sub-sections describe how the processor handles faults in this environment.
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7.6.5 Faults in One Parallel Instruction

When a fault occurs during the execution of a particular instruction, it is not possible to suspend
other instructions that are already executing in other execution units. To handle the fault, the
processor continues executing instructions until each execution unit instruction and all out-of-
order instructions are executed. For example, if an integer overflow occurs during the addition in
the following code example, the fault is detected before the multiply has completed execution.
Before invoking the integer-overflow fault handling procedure, the processor waits for the
multiply to complete.

muli g2, g4, ¢6;
addi g8, g9, gl0; # results in integer overfl ow

7.6.6 Faults in Multiple Parallel Instructions

When executing instructionsin parallel, it is possible for faults to occur in more than one currently
executing instruction. In the code sequence above, for example, an integer overflow fault could
occur for both the muli and addi instructions, with the fault from the addi instruction being
recognized by the processor first. To report multiple parallel faults, the architecture provides the
parallel fault type.

In these parallel fault situations, the processor saves the fault type and subtype of the second and
subsequent faults detected in the optional data field of the fault record. The fault handling
procedure for parallel faults can then analyze the fault record and handle the faults. The fault
record for parallel faultsis described in the next section.

The existence of multiple parallel faultsis often catastrophic. Multiple parallel faults are generated
as imprecise faults, which means that recovery from the faults is normally not possible. Imprecise
faults are described in section 7.9, “PRECISE AND IMPRECISE FAULTS’ (pg. 7-17). Unless
imprecise faults are disallowed, a parallel-fault-handling procedure generally does not attempt to
recover from the faults, but instead calls a debug monitor to analyze the faults. If recovery from
every parallel fault is possible, the RIP allows the processor to resume executing the program
when the fault handling has compl eted.

Even though multiple faults can be generated by multiple instructions executing in paralel, only
one fault is ordinarily generated per instruction, as described in section 7.6.1, “Multiple Faults’

(pg. 7-9).

7.6.7 Fault Record for Parallel Faults

Figure 7-5 shows the structure of the fault record for parallel faults.
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31 0
Fault Type n Fault Subtype n NFP-8-((n+1)«32)
Address of Faulting Instruction (n) NFP-4-((n+1).32)
Fault Type 2 Fault Subtype 2 NFP-104
Address of Faulting Instruction 2 NFP-100
| Parallel Type No. | | No. Parallel Faults | NFP-20
Process Controls NFP-16
Arithmetic Controls NFP-12
| Fault Type 1 | | Fault Subtype 1 NFP-8
Address of Faulting Instruction NFP-4
|:| Reserved F_CA022A

Figure 7-5. Fault Record for Parallel Faults

To calculate byte offsets, “n” indicates fault number. Thus, for the second fault recorded (n=2), the
relationship (NFP - 4 - ((n+1) * 32)) reduces to NFP-100. For the i960 Cx processors, humber of
parallel faults allowed is2 or 3.

When multiple parallel faults occur, the processor selects one of the faults and recordsit in the first
16 bytes of the fault record as described in section 7.5.1, “Fault Record Data’ (pg. 7-6) for the
remaining parallel faults is then written to the fault record’s optional data field and the fault
handling procedure for parallel faultsisinvoked.

The first word in the fault record’s optional data field (NFP-20) contains information about the
parallel faults. The byte at offset NFP-18 contains 00H (encoding for the parallel fault type); the
byte at NFP-20 contains the number of parallel faults. The optional data field also contains a 32-
byte parallel fault record for each additional fault. These parallel fault records are stored incremen-
tally in the fault record starting at byte offset NFP-97. The fault record for each additional fault
contains only the fault type, fault subtype and address-of-faulting-instruction field. (AC and PC
register values are not given for these faults; these are given in the fault record for the first fault.)
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7.7 FAULT HANDLING PROCEDURES

The fault handling procedures can be located anywhere in the address space. Each procedure must
begin on a word boundary. The processor can execute the procedure in user mode or supervisor
mode, depending on the type of fault table entry.

To resume work on a program at the point where a fault occurred (following the recovery action of
the fault handling procedure), the fault handling procedure must be executed in supervisor mode.
The reason for this requirement is described in section 7.7.3, “Returning to the Point in the
Program Where the Fault Occurred” (pg. 7-13).

7.7.1 Possible Fault Handling Procedure Actions

The processor allows easy recovery from many faults that occur. When fault recovery is possible,
the processor’s fault handling mechanism allows the processor to automatically resume work on
the program or interrupt pending when the fault occurred. Resumption is initiated with a ret
instruction in the fault handling procedure.

If recovery from the fault is not possible or not desirable, the fault handling procedure can take one
of the following actions, depending on the nature and severity of the fault condition (or conditions,
in the case of multiple faults):

* Returnto apoint in the program or interrupt code other than the point of the fault.
e Call adebug monitor.

» Explicitly write the processor state and fault record into memory and perform processor or
system shutdown.

»  Perform processor or system shutdown without explicitly saving the processor state or fault
information.

When working with the processor at the development level, a common fault handling procedure
action is to save the fault and processor state information and make a call to a debugging device
such as a debugging monitor. This device can then be used to analyze the fault information.

7.7.2 Program Resumption Following a Fault

Because of the 1960 Cx processors' multi-stage execution pipeline, faults can occur:

»  before execution of the faulting instruction (i.e., the instruction that causes the fault)
* during instruction execution

» immediately following execution

When the fault occurs before the faulting instruction is executed, the faulting instruction may be
re-executed upon return from the fault handling procedure.
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When a fault occurs during or after execution of the faulting instruction, the fault may be
accompanied by a program state change such that program execution cannot be resumed after the
fault is handled. For example, when an integer overflow fault occurs, the overflow value is stored
in the destination. If the destination register is the same as one of the source registers, the source
valueislost, making it impossible to re-execute the faulting instruction.

In general, resumption of program execution with no changes in the program’s control flow is
possible with the following fault types or subtypes:

»  All Operation Subtypes » Arithmetic Zero Divide
» All Constraint Subtypes »  All Trace Subtypes
* Length

Resumption of the program may or may not be possible with the following fault subtype:

* Integer Overflow

The effect of specific fault types on a program is defined in section 7.10, “FAULT REFERENCE"
(pg. 7-20) under the heading Program Sate Changes.

7.7.3 Returning to the Point in the Program Where the Fault Occurred

Asdescribed in section 7.7.2, “Program Resumption Following a Fault” (pg. 7-12), most faults can
be handled such that program control flow is not affected. In this case, the processor allows work
on a program to be resumed at the point where the fault occurred, following a return from a fault
handling procedure (initiated with a ret instruction). The resumption mechanism used here is
similar to that provided for returning from an interrupt handler.

To use this mechanism, the fault handling procedure must be invoked using a supervisor call. This
method is required because — to resume work on the program at the point where the fault occurred
— the saved process controls in the fault record must be copied back into the PC register upon
return from the fault handling procedure. The processor only performs this action if the processor
isin supervisor mode when the return is executed.

7.7.4 Returning to a Point in the Program Other Than Where the Fault
Occurred

A fault handling procedure can also return to a point in the program other than where the fault
occurred. To do this, the fault procedure must ater the RIP.
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To predictably perform a return from a fault handling procedure to an alternate point in the
program, the fault handling procedure should perform the following four steps:

1. Flushthelocal register setsto the stack with aflushreg instruction,

2. Modify the RIP in the previous frame,

3. Clear the trace-fault-pending flag in the fault record’ s process controls field before the return,
4. Execute areturn with the ret instruction.

Use this technique carefully and only in situations where the fault handling procedure is closely
coupled with the application program. Also, a return of this type can only be performed if the
processor isin supervisor mode prior to the return.

7.7.5 Fault Controls

Certain fault types and subtypes employ mask bits or flags that determine whether or not afault is
generated when a fault condition occurs. Table 7-2 summarizes these flags and masks, data
structures in which they are located, fault subtypes they affect and where more information about
each can be found.

The integer overflow mask bit inhibits the generation of integer overflow faults. The use of this
mask is discussed in section 7.10, “FAULT REFERENCE” (pg. 7-20).

The no-imprecise-faults (NIF) bit controls the synchronizing of faults for a category of faults
called imprecise faults. The function of this bit is described in section 7.9, “PRECISE AND
IMPRECISE FAULTS’ (pg. 7-17).

TC register trace mode bits and PC register trace enable bit support trace faults. Trace mode bits
enable trace modes; the trace enable bit enables trace fault generation. The use of these bits is
described in the trace faults description in section 7.10, “FAULT REFERENCE" (pg. 7-20).
Further discussion of these flagsis provided in CHAPTER 8, TRACING AND DEBUGGING.

The unaligned fault mask bit is located in the process control block (PRCB), which is read during
initialization. It controls whether unaligned memory accesses are handled by the processor or
generate a fault. See section 10.4, “DATA ALIGNMENT” (pg. 10-9).

7.8 FAULT HANDLING ACTION

Once a fault occurs the processor saves the program state, calls the fault handling procedure and
— when the fault recovery action completes — restores the program state (if possible). No
software other than the fault handling proceduresiis required to support this activity.
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Table 7-2. Fault Flags or Masks

Flag or Mask Name Location Faults Affected
Integer Overflow Mask Bit Arithmetic Controls (AC) Register Integer Overflow
No Imprecise Faults Bit Arithmetic Controls (AC) Register All Imprecise Faults
Trace Enable Bit Process Controls (PC) Register All Trace Faults
Trace Mode Flags Trace Controls (TC) Register All Trace Faults
Unaligned Fault Mask Process Control Block (PRCB) Unaligned Fault
NOTE:

The unaligned fault, unaligned fault mask and the processor control block are i960 Cx processor
extensions to the i960 architecture.

Three different types of implicit procedure calls can be used to invoke the fault handling procedure
according to the information in the selected fault table entry: alocal call, a system-local call and a
system-supervisor call.

The following sections describe actions the processor takes while handling faults. It is not
necessary to read these sections to use the fault handling mechanism or to write a fault handling
procedure. This discussion is provided for those readers who wish to know the details of the fault
handling mechanism.

7.8.1 Local Fault Call

When the selected fault handler entry in the fault table is an entry type 000 (local procedure), the
processor operates as described in section 5.2.3.1, “Call Operation” (pg. 5-5), with the following
exceptions:

» A new frameis created on the stack that the processor is currently using. The stack can be the
user stack, supervisor stack or interrupt stack.

» Thefault record is copied into the area allocated for it in the stack, beginning at NFP-1. (See
Figure 7-4.)

» The processor gets the IP for the first instruction in the called fault handling procedure from
the fault table.

*  The processor stores the fault return code (001,) in the PFP return type field.

If the fault handling procedure is not able to perform a recovery action, it performs one of the
actions described in section 7.7.2, “ Program Resumption Following a Fault” (pg. 7-12).
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If the handler action results in recovery from the fault, a ret instruction in the fault handling
procedure alows processor control to return to the program that was pending when the fault
occurred. Upon return, the processor performs the action described in section 5.2.3.2, “Return
Operation” (pg. 5-6), except that the arithmetic controls field from the fault record is copied into
the AC register. Since the call made is local, the process controls field from the fault record is not
copied back to the PC register.

7.8.2 System-Local Fault Call

When the fault handler selects an entry for alocal procedure in the system procedure table (entry
type 10,), the processor performs the same action as is described in the previous section for alocal
fault call or return. The only difference is that the processor gets the fault handling procedure's
address from the system procedure table rather than from the fault table.

7.8.3 System-Supervisor Fault Call

When the fault handler selects an entry for a supervisor procedure in the system procedure table,
the processor performs the same action described in section 5.2.3.1, “Call Operation” (pg. 5-5),
with the following exceptions:

» If in user mode when the fault occurs: the processor switches to supervisor mode, reads the
supervisor stack pointer from the system procedure table and switches to the supervisor stack.
A new frameis then created on the supervisor stack.

» If in supervisor mode when the fault occurs: the processor creates a new frame on the current
stack. If the processor is executing a supervisor procedure when the fault occurred, the current
stack isthe supervisor stack; if it is executing an interrupt handler procedure, the current stack
isthe interrupt stack. (The processor switches to supervisor mode when handling interrupts.)

» The fault record is copied into the area allocated for it in the new stack frame, beginning at
NFP-1. (See Figure 7-4.)

» The processor gets the IP for the first instruction of the fault handling procedure from the
system procedure table (using the index provided in the fault table entry).

*  The processor stores the fault return code (001,) in the PFP register return type field. If the
fault is not a trace fault, it copies the state of the system procedure table trace control flag
(byte 12, bit 0) into the PC register trace enable bit. If the fault is atrace fault, the trace enable
bit is cleared.

On a return from the fault handling procedure, the processor performs the action described in
section 5.2.3.2, “Return Operation” (pg. 5-6) with the following exceptions:
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»  Thefault record arithmetic controlsfield is copied into the AC register.

- If the processor isin supervisor mode prior to the return from the fault handling procedure
(which it should be), the fault record process controls field is copied into the PC register.

- If the PC register resume flag is set, the processor reads the resumption record from the
stack. (Restoring the PC register restores the trace-fault-pending flag and trace enable bit
values to their pre-fault values.)

- If the processor was in user mode when the fault occurred, the mode is set back to user
mode; otherwise, the processor remains in supervisor mode.

» The processor switches back to the stack it was using when the fault occurred. (If the
processor was in user mode when the fault occurred, this operation causes a switch from the
supervisor stack to the user stack.)

» |If thetrace-fault-pending flag and trace enable bit are set, the trace fault is also handled at this
time.

PC register restoration causes any changes to the process controls caused by the fault handling
procedure to be lost. In particular, if the ret instruction from the fault handling procedure caused
the PC register trace-fault-pending flag to be set, this setting would be lost upon return.

7.8.4 Faults and Interrupts

If an interrupt occurs during:

e aninstruction that will fault; or

e aninstruction that has already faulted; or
» fault handling procedure selection

the processor handles the interrupt in the following way: It completes the selection of the fault
handling procedure, then services the interrupt just prior to executing the first instruction of the
fault handling procedure. The fault is handled upon return from the interrupt. Handling the
interrupt before the fault reduces interrupt latency.

7.9 PRECISE AND IMPRECISE FAULTS

As described in section 7.6.4, “Parallel Faults’ (pg. 7-9), the i960 architecture — to support
parallel and out-of-order instruction execution — allows some faults to be generated together and
not in sequence. When this situation occurs, it may be impossible to recover from some faults,
because the state of the instructions surrounding the faulting instruction has changed or the RIP is
unpredictable.
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The processor provides two mechanisms for controlling the circumstances under which faults are
generated: the AC register no-imprecise-faults bit (NIF bit) and the synchronize-faults instruction
(syncf). Faults are categorized as precise, imprecise and asynchronous. The following subsections
describe each.

7.9.1 Precise Faults

Precise faults are those intended to be software recoverable. For any instruction that can generate a
precise fault, the processor:

» does not execute the instruction if an unfinished prior instruction will fault, and

» does not execute subsequent out-of-order instructions that will fault.

Also, the RIP points to an instruction where the processor can resume program execution without
breaking program control flow. Two faults are always precise: trace faults and protection faults.

7.9.2 Imprecise Faults

Imprecise faults are those where the architecture does not guarantee that sufficient information is
saved in the fault record to allow recovery from the fault. For imprecise faults, the faulting
instruction address is correct, but the state of execution of instructions surrounding the faulting
instruction may be unpredictable. Also, the architecture allows imprecise faults to be generated
out of order, which means that the RIP may not be of any value for recovery. Faults that the archi-
tecture allows to be imprecise include:

e operation » arithmetic

e constraint o type

Refer to section 7.10, “FAULT REFERENCE” (pg. 7-20) to determine which faults are precise.

7.9.3 Asynchronous Faults

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. The 1960 architecture does not define any faults in this category.

7.9.4 No Imprecise Faults (NIF) Bit

The NIF bit controls imprecise fault generation. When this bit is set, all faults generated are
precise. This means the following conditions hold true:

* All faults are generated in order.

* A precisefault record is provided for each fault: the faulting instruction address is correct and
the RIP provides avalid re-entry point into the program.
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When the NIF bit is clear, imprecise faults are allowed to be generated: in parallel, out of order and
with an imprecise RIP. Here, the following conditions hold true:

»  When an imprecise fault occurs, the faulting instruction addressin the fault record is valid, but
the saved IP is unpredictable.

» If instructions are executed out of order and parallel faults occur, recovery from some faults
may not be possible because the faulting instruction’ s source operands may be modified when
subsequent instructions are executed out of order.

7.9.5 Controlling Fault Precision

The syncf instruction forces the processor to complete execution of all instructions that occur prior
to syncf and to generate all faults before it begins work on instructions that occur after syncf. This
instruction has two uses:

» forcesfaults to be precise when the NIF bit is clear.

e ensures that all instructions are complete and all faults are generated in one block of code
before executing another block of code.

Compiled code should execute with the NIF bit clear, using syncf where necessary to ensure that
faults occur in order. In this mode, imprecise faults are considered as catastrophic errors from
which recovery is not needed.

The NIF bit should be set if recovery from one or more imprecise faults is required. For example,
the NIF bit should be set if a program needs to handle — and recover from — unmasked integer-
overflow faults and the fault handling procedure cannot be closely coupled with the application to
perform imprecise fault recovery.
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7.10 FAULT REFERENCE

This section describes each fault type and subtype and gives detailed information about what is
stored in the various fields of the fault record. The section is organized alphabetically by fault
type. The following paragraphs describe the information that is provided for each fault type.

Fault Type and Subtype:

Function:

RIP:

Program State Changes:

7-20

Gives the number which appears in the fault record fault-type field
when the fault is generated. The fault-subtype section lists fault
subtypes and number associated with each fault subtype.

Describes the purpose of fault type and fault subtype. It also
describes how the processor handles each fault subtype.

Describes the value saved in the RIP register of the stack frame that
the processor was using when the fault occurred. In the RIP
definitions, “next instruction” refers to: (1) the instruction directly
after the faulting instruction or (2) an instruction to which the
processor can logically return when resuming program execution.

Describes the effect(s) that a fault subtype causes in a program’s
control flow.
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7.10.1 Arithmetic Faults

Fault Type: 3H
Fault Subtype: Number Name
OH Reserved
1H Integer Overflow
2H Arithmetic Zero Divide
3H-FH Reserved
Function: Indicates a problem with an operand or the result of an arithmetic

instruction. An integer overflow fault is generated when the result
of an integer instruction overflows its destination and the AC
register integer overflow mask is cleared. Here, the result’s n least
significant bits are stored in the destination, where n is destination
size. Instructions that generate this fault are:

addi subi

stib shli

An arithmetic zero-divide fault is generated when the divisor
operand of an ordinal- or integer-divide instruction is zero. Instruc-
tions that generate this fault are:

divo divi
ediv remi
remo
RIP: IP for next-executed instruction if afault had not occurred.
Program State Changes: Faults may be imprecise when executing with the NIF bit cleared.

An integer overflow fault may not be recoverable because the result
is stored in the destination before the fault is generated; e.g., the
faulting instruction cannot be re-executed if the destination register
was also a source register for the instruction. An arithmetic zero-
divide fault is generated before execution of the faulting instruction.
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7.10.2 Constraint Faults

Fault Type: 5H

Fault Subtype: Number Name
OH Reserved
1H Constraint Range
2H Privileged
3H-FH Reserved

Function: Indicates the program or procedure violated an architectural
constraint.
A constraint-range fault is generated when a fault-if instruction is
executed and the AC register condition code field matches the
condition required by the instruction.
A privileged fault is also generated when the program or procedure
attempts to use a privileged (supervisor-mode only) instruction
while the processor is in user mode. Privileged instructions for the
1960 Cx processor are:

sdma sysctl
RIP: No defined value.

Program State Changes:
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These faults may be imprecise when executing with the NIF bit
cleared. No changes in the program’ s control flow accompany these
faults. A constraint-range fault is generated after the fault-if
instruction executes; the program state is not affected. A privileged
fault is generated before the faulting instruction executes.
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7.10.3 Operation Faults
Fault Type: 2H
Fault Subtype: Number Name
OH Reserved
1H Invalid Opcode
2H Unimplemented-Reserved
3H
4H Invalid Operand
5H - FH Reserved
Function: Indicates the processor cannot execute the current instruction

because of invalid instruction syntax or operand semantics.

An invalid-opcode fault is generated when the processor attempts to
execute an instruction containing an undefined opcode or addressing
mode. An unimplemented fault is generated when processor
attempts to execute an instruction fetched from on-chip data RAM.

An unaligned fault is generated when the following conditions are
present: (1) the processor attempts to access an unaligned word or

group of words in memory; and (2) a fault is enabled by the
unaligned-fault mask bit in the PRCB fault configuration word.

The 1960 Cx processors handle unaligned accesses to little endian
regions of memory in microcode and carry out the access regardless
of the unaligned-fault mask bit setting. The processors do not
support unaligned accesses to big endian regions; such attempts
result in incoherent data in memory. Enabling the unaligned fault
when using big endian byte ordering provides a means of detecting
unsupported unaligned accesses.

When an unaligned fault is signaled, the effective address of the
unaligned accessis placed in the fault record’ s optional data section,
beginning at address NFP-24. This address is useful to debug a
program that is making unintentional unaligned accesses.

An invalid-operand fault is generated when the processor attempts
to execute an instruction that has one or more operands having
special requirements which are not satisfied. A fault is caused by
specifying a non-existent SFR or non-defined sysctl and/or
references to an unaligned long-, triple- or quad-register group.

RIP: No defined value.

Program State Changes: Faults may be imprecise when executing with the NIF bit cleared. A
change in the program'’s control flow does not accompany operation
faults; faults occur before instruction execution.
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7.10.4 Parallel Faults

Fault Type:
Fault Subtype:

Function:

RIP:

Program State Changes:

7-24
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See section 7.6.4, “Parallel Faults’ (pg. 7-9).
None; see Figure 7-5., Fault Record for Parallel Faults (pg. 7-11).

Indicates that one or more faults occurred when the processor was
executing instructions in parallel in different execution units. This
fault type can occur only when the AC register NIF bit is cleared.

If parallel faults occur, the number-of-parallel-faults field in the
fault record is a non-zero value which indicates the number of
parallel faults recorded. This field is located in the fault record at
location NFP-20.

A fault record is saved for each parallel fault detected. Information
contained in these records is the same as described in this section
for specific fault types.

IP of instruction that would execute next if faults were not
generated.

Precision of faultsrecorded in aparallel fault record depends on the
fault types detected. A change in the program’s control flow may or
may not accompany parallel faults, depending on fault types
detected.
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7.10.5 Protection Faults
Fault Type: ™
Fault Subtype: Number Name
OH-1H Reserved
2H Length
3H Reserved
4H SRAM Protection
5-FH Reserved
Function: Indicates a program or procedure is attempting to perform an illegal

RIP:

Program State Changes:

operation that the architecture protects against.

A length fault is generated when the index operand used in a calls
instruction points to an entry beyond the extent of the system

procedure table.

SRAM protection is generated when awrite to the on-chip SRAM is

attempted while in user mode.

Same as the address-of-faulting-instruction field.

This fault type is always precise, regardless of the NIF bit value. A
change in the program’s control flow does not accompany a length

fault; afault is generated before the faulting instruction.
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7.10.6 Trace Faults
Fault Type:
Fault Subtype:

Function:

7-26

1H

Number Name

Bit0 Reserved

Bit1 Instruction Trace
Bit 2 Branch Trace

Bit 3 Call Trace

Bit4 Return Trace
Bit5 Prereturn Trace
Bit 6 Supervisor Trace
Bit 7 Breakpoint Trace

Indicates the processor detected one or more trace events. The event
tracing mechanism is described in CHAPTER 8, TRACING AND
DEBUGGING.

A trace event is the occurrence of a particular instruction or
instruction type in the instruction stream. The processor recognizes
seven different trace events: instruction, branch, call, return,
prereturn, supervisor, breakpoint. It detects these events only if the
TC register mode bit is set for the event. If the PC register trace
enable bit is also set, the processor generates a fault when a trace
event is detected.

A trace fault is generated following the instruction that causes a
trace event (or prior to the instruction for the prereturn trace event).
The following trace modes are available:

Instruction Generates a trace event following every
instruction.
Branch Generates a trace event following any branch

instruction when the branch is taken (a branch
trace event does not occur on branch-and-link
or call instructions).

Call Generates a trace event following any call or
branch-and-link instruction or any implicit
procedure call (i.e., fault- or interrupt-call).

Return Generates a trace event following aret.

Prereturn Generates a trace event prior to any ret
instruction, providing the PFP register prereturn
trace flag is set (the processor sets the flag
automatically when prereturn tracing is
enabled).



RIP:

Program State Changes:

FAULTS

Supervisor Generates a trace event following any calls
instruction that references a supervisor
procedure entry in the system procedure table
and on a return from a supervisor procedure
where the return status type in the PFP register
is 010, or 011,.

Breakpoint Generates a trace event following any processor
action that causes a breakpoint condition (such
asamark or fmark instruction or a match of the
instruction-address breakpoint register or the
data-address breakpoint register).

Trace fault subtype and fault subtype field bits are associated with
each mode. Multiple fault subtypes can occur simultaneously; the
fault subtype bit is set for each subtype that occurs.

When a fault type other than a trace fault is generated during
execution of an instruction that causes a trace event, a non-trace
fault is handled before a trace fault. An exception is the prereturn-
trace fault, which occurs before the processor detects a non-trace
fault and is handled first.

Similarly, if an interrupt occurs during an instruction that causes a
trace event, the interrupt is serviced before the trace fault is handled.
Again, the prereturn trace fault is an exception. Sinceit is generated
before the instruction, it is handled before any interrupt that occurs
during instruction execution.

The address of the faulting instruction field in the fault record
contains the I P for the instruction that causes the trace event. For the
prereturn trace fault, this field has no defined value.

IP for the instruction that would have executed next if the fault had
not occurred.

This fault type is always precise, regardless the NIF bit value. A
change in the program’s control flow accompanies all trace faults
(except the prereturn trace fault), because events that can cause a
trace fault to occur after the faulting instruction is completed. As a
result, the faulting instruction cannot be re-executed upon returning
from the fault handling procedure.

Since the prereturn trace fault is generated before ret executes, a
change in the program'’s control flow does not accompany this fault;
the faulting instruction can be executed upon returning from the
fault handling procedure.
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7.10.7 Type Faults
Fault Type:
Fault Subtype:

Function:

RIP:

Program State Changes:

7-28

AH

Number Name

OH Reserved

1H Type Mismatch
2H-FH Reserved

Indicates a program or procedure attempted to perform an illegal
operation on an architecture-defined data type or a typed data
structure. A type-mismatch fault is generated when attempts are
made to:

» Modify the PC register with modpc while the processor is
in user mode.

» Write to on-chip data RAM while the processor is in user
mode.

» Access a specia function register while the processor isin
user mode.

No defined value.

These faults may be imprecise when executing with the NIF bit
cleared. A change in the program’s control flow does not
accompany the type-mismatch fault because the fault occurs before
execution of the faulting instruction.
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CHAPTER 8
TRACING AND DEBUGGING

This chapter describes the i960® Cx processors’ facilities for runtime activity monitoring.

The 1960 architecture provides facilities for monitoring processor activity through trace event
generation. A trace event indicates a condition where the processor has just completed executing a
particular instruction or type of instruction or where the processor is about to execute a particular
instruction. When the processor detects a trace event, it generates a trace fault and makes an
implicit call to the fault handling procedure for trace faults. This procedure can, in turn, call
debugging software to display or analyze the processor state when the trace event occurred. This
analysis can be used to locate software or hardware bugs or for general system monitoring during
program devel opment.

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mode bits
in the trace controls (TC) register. Alternatively, the mark and fmark instructions can be used to
generate trace events explicitly in the instruction stream.

The 1960 Cx processors also provide four hardware breakpoint registers that generate trace events m
and trace faults. Two registers are dedicated to trapping on instruction execution addresses, while

the remaining two registers can trap on the addresses of various types of data accesses.

8.1 TRACE CONTROLS

To use the architecture’s tracing facilities, software must provide trace fault handling procedures,
perhaps interfaced with a debugging monitor. Software must also manipulate the following
registers and control bits to enable the various tracing modes and enable or disable tracing in
general. These controls are described in the following sub-sections.

*  TCregister mode bits » PCregister trace enable bit
» PCregister trace fault pending flag »  PFPregister return status field prereturn
trace flag (bit 0)
»  System procedure table supervisor- »  BPCON register breakpoint mode bits and
stack-pointer field trace control bit enable bits (in the control table)
* |PBO-IPB1 registers addressfield  DABO-DAB1 registers addressfield and
(in the control table) enable bit (in the control table)
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8.1.1 Trace Controls (TC) Register

The TC register (Figure 8-1) allows software to define conditions which generate trace events.

Trace Mode Bits
Instruction Trace Mode - TC.i
Branch Trace Mode - TC.b
Call Trace Mode -TC.c
Return Trace Mode - TC.r
Pre-Return Trace Mode - TC.p
Supervisor Trace Mode - TC.s
Breakpoint Trace Mode - TC.br

31 28 24 20 16
djdlifi]b
1010r??¥??:{ bsprcb|
N RARERE Bi r

12 8 4 0

Trace Event Flags
Instruction - TC.if
Branch - TC.bf
Call - TC.cf

Return - TC.rf
Pre-Return - TC.pf
Supervisor - TC.sf
Breakpoint - TC.brf

Hardware Breakpoint Event Flags
Instruction-Breakpoint O - TC.iOf
Reserved Instruction-Address Breakpoint 1 - TC.ilf
Data-Address Breakpoint 0 - TC.dOf
Data-Address Breakpoint 1 - TC.d1f

F_CA023A

Figure 8-1. Trace Controls (TC) Register

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions
that the processor can detect. For example, when the call-trace mode bit is set, the processor
generates a trace event when a call or branch-and-link operation executes. See section 8.2 (pg.
8-4). The processor uses event flags to monitor which trace events are generated.

A special instruction, the modify-trace-controls (modtc) instruction, allows software to modify
the TC register. On initialization, all TC register bits and flags are cleared. modtc can then be used
to set or clear trace mode bits as required. Software can also access event flags using modtc;
however, thisis generally not necessary. The processor automatically sets and clears these flags as
part of its trace handling mechanism. TC register bits 0, 8 through 16 and 28 through 31 are
reserved. Software must initialize these bits to zero and not modify them afterwards.
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8.1.2 Trace Enable Bit and Trace-Fault-Pending Flag

The PC register trace enable bit and the trace-fault-pending flag — located in the process controls
register — control tracing. The trace enable bit enables the processor’s tracing facilities; when set,
the processor generates trace faults on all trace events.

Typically, software selects the trace modes to be used through the TC register. It then sets the trace
enable bit to begin tracing. This bit is also altered as part of some call and return operations that the
processor performs as described in section 8.6.3, “ Tracing and Interrupt Procedures’ (pg. 8-9).

The trace-fault-pending flag allows the processor to track when a trace event is detected for an
enabled trace condition. The processor uses this flag as follows:

1 When the processor detects a trace event and tracing is enabled, it sets the flag.
2. Before executing an instruction, the processor checks the flag.
3. If the flag is set and tracing is enabled, it signals a trace fault.

By providing a means to record trace event occurrences, the trace-fault-pending flag allows the
processor to service an interrupt or handle a fault other than atrace fault before handling the trace
fault. Software should not modify this flag.

8.1.3 Trace Control on Supervisor Calls

The trace control bit allows tracing to be enabled or disabled when a call-system instruction (calls)
executes, which results in a switch to supervisor mode. This action occurs independent of whether
or not tracing is enabled prior to the call. A supervisor call is a callsinstruction that references an
entry in the system procedure table with an entry type 010,. When a supervisor call executes, the
processor:

1 Saves current PC register trace enable bit status in the PFP register return-type field bit O.

2. Sets the PC register trace enable bit to the value of the trace control bit. The processor gets
the trace control bit from bit O of the supervisor stack pointer, which is cached during the
reset initialization sequence.

When the trace control bit is set, tracing is enabled on supervisor calls; when cleared, tracing is
disabled on supervisor calls. Upon return from the supervisor procedure, the PC register trace
enable bit is restored to the value saved in the PFP register return-type field.
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8.2 TRACE MODES

This section defines trace modes enabled through the TC register. These modes can be enabled
individually or several modes can be enabled at once. Some modes overlap, such as call-trace
mode and supervisor-trace mode. section 8.4, “HANDLING MULTIPLE TRACE EVENTS’ (pg.
8-8) describes processor function when multiple trace events occur.

* Instructiontrace ¢ Branchtrace ¢ Breakpointtrace ¢  Prereturntrace
o Cadll trace  Returntrace «  Supervisor trace

8.2.1 Instruction Trace

When the instruction-trace mode is enabled, the processor generates an instruction-trace event
each time an instruction executes. A debug monitor can use this mode to single-step the processor.

8.2.2 Branch Trace

When the branch-trace mode is enabled, the processor generates a branch-trace event when a
branch instruction executes and the branch is taken. A branch-trace event is not generated for
conditional-branch instructions that do not branch for branch-and-link, call or return instructions.

8.2.3 Call Trace

When the call-trace mode is enabled, the processor generates a call-trace event when a call
instruction (call, callx or calls) or a branch-and-link instruction (bal or balx) executes. An
implicit call — such as the action used to invoke a fault handling or an interrupt handling
procedure — also causes a call-trace event to be generated.

When the processor detects a call-trace event, it sets the prereturn-trace flag (PFP register bit 3) in
the new frame created by the call operation or — if a branch-and-link operation was performed —
it sets this flag in the current frame. The processor uses this flag to determine when to signal a
prereturn-trace event on aret instruction.

8.2.4 Return Trace

When the return-trace mode is enabled, the processor generates a return-trace event any time aret
instruction executes.
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8.2.5 Prereturn Trace

The prereturn-trace mode causes the processor to generate a prereturn-trace event prior to ret
execution, providing the PFP register prereturn-trace flag is set. (Prereturn tracing cannot be used
without enabling call tracing.) The processor sets the prereturn-trace flag whenever it detects a
call-trace event as described above for call-trace mode. This flag performs a prereturn-trace-
pending function.

If another trace event occurs at the same time as the prereturn-trace event, the processor generates
afault on the non-prereturn-trace event first. Then, on areturn from that fault handler, it generates
afault on the prereturn-trace event. The prereturn trace is the only trace event that can cause two
successive trace faults to be generated between instruction boundaries.

8.2.6 Supervisor Trace

When supervisor-trace mode is enabled, the processor generates a supervisor-trace event when:

» acal-system instruction (calls) executes, where the procedure table entry is for a system-
supervisor call; or

* aret instruction executes and the return-type field is set to 010, or 011, (i.e, return from
supervisor mode).

When these procedures are called with supervisor calls, this trace mode alows a debugging
program to determine kernel-procedure call boundaries within the instruction stream.

8.2.7 Breakpoint Trace

Breakpoint trace mode allows trace events to be generated at places other than those specified with
the other trace modes. This mode is used in conjunction with mark and fmark.

8.2.7.1 Software Breakpoints

mark and fmark allow breakpoint trace events to be generated at specific points in the instruction
stream. When breakpoint trace mode is enabled, the processor generates a breakpoint trace event
any time it encounters a mark. fmark causes the processor to generate a breakpoint trace event
regardless of whether or not breakpoint trace mode is enabled.

8.2.7.2 Hardware Breakpoints

The hardware breakpoint registers are provided to enable generation of trace events and trace faults
on instruction addresses and data access addresses.
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Breakpoint trace events can be generated when the processor executes an instruction with an IP
that matches one of the addresses programmed into the two instruction breakpoint registers (1PBO-
IPB1). Each instruction address breakpoint may be enabled or disabled individually by
programming the two least significant bitsin IPBO or IPB1. Figure 8-2 describes the instruction
address breakpoint registers.

Instruction-Address Breakpoint Enable - IPB.e
(00) disable
(11) enable
Instruction Address l
I 1
ele
1]o0
31 28 24 20 16 12 8 4 0
F_CA024A

Figure 8-2. Instruction Address Breakpoint Registers (IPBO - IPB1)

Breakpoint trace events may also be generated when a memory access is issued which matches
conditions programmed in one of two data address breakpoint registers (DABO - DAB1, see
Figure 8-3). Each breakpoint register is programmed to fault when the address of an access
matches the breakpoint register and the access is one of four types: (1) any store, (2) any load or
store, (3) any dataload or store or any instruction fetch or (4) any memory access.

Data Address

31 28 24 20 16 12 8 4 0
F_CAQ025A

Figure 8-3. Data Address Breakpoint Registers (DABO - DAB1)

The programmer configures the BPCON register to set the data address breakpoint mode which
corresponds to one of these access types (Figure 8-4). Each data address breakpoint may also be
enabled or disabled individually by programming the BPCON enable bits.

The instruction-address breakpoint, data-address breakpoint and breakpoint control registers are
on-chip control registers. These are loaded from the control table in memory at initialization or
may be modified using sysctl. Control registers are described in section 2.3, “CONTROL
REGISTERS’ (pg. 2-6); sysctl is further described in section 4.3, “SYSTEM CONTROL
FUNCTIONS" (pg. 4-19).
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A breakpoint trace event is signalled when the processor attempts an access which is set for
detection (instruction or data breakpoint). Breakpoint trace is enabled by setting the appropriate
field in the IPBO, IPB1 and BPCON registers. If breakpoint trace is enabled, the appropriate TC
register hardware breakpoint trace event flags are set. If tracing is enabled, a trace fault is
generated after the faulting instruction completes execution.

31 28 24 20 16 12 8 4 0
ele el|le
111 0fo0
110 110

|
T— Data-Address 0 Breakpoint Enable - BPCON.e0

Reserved (00) disable
|: (Initialize to 0) (11) enable
L DABO Mode (See Note)
Data-Address 1 Breakpoint Enable - BPCON.el
(00) disable
(11) enable
NOTE: . DAB1 Mode (See Note)
Data-Address Breakpoint (DABO-DAB1) Modes
Break on:
00 store only F_CA026A

01 data only (load or store)
10 data or instruction fetch
11 any access

Figure 8-4. Hardware Breakpoint Control Register (BPCON)

8.3 SIGNALING A TRACE EVENT

To summarize the information presented in the previous sections, the processor signals a trace
event when it detects any of the following conditions:

An instruction included in a trace mode group executes or is about to execute (in the case of a
prereturn trace event) and the trace mode for that instruction is enabled.

Animplicit call operation executed and the call-trace mode is enabled.
A mark instruction executed and the breakpoint-trace mode is enabled.
An fmark instruction executed.

The processor is executing an instruction at an 1P matching an enabled instruction address
breakpoint register.

The processor hasissued a memory access matching the conditions of an enabled data address
breakpoint register.
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When the processor detects a trace event and the PC register trace enable bit is set, the processor
performs the following action:

1 The processor sets the appropriate TC register trace event flag. If a trace event meets the
conditions of more than one of the enabled trace modes, a trace event flag is set for each
trace mode condition that is met.

2. The processor sets the PC register trace-fault-pending flag. The processor may set a trace
event flag and trace-fault-pending flag before completing execution of the instruction that
caused the event. However, the processor only handles trace events between instruction
executions.

If — when the processor detects a trace event — the PC register trace enable bit is clear, the
processor sets the appropriate event flags but does not set the PC register trace-fault-pending flag.

8.4 HANDLING MULTIPLE TRACE EVENTS

If the processor detects multiple trace events, it records one or more of them based on the
following precedence, where 1 is the highest precedence:

1 Supervisor-trace event

2. Breakpoint- (from mark or fmark instruction or from a breakpoint register), branch-, call-
or return-trace event

3. I nstruction-trace event

When multiple trace events are detected, the processor may not signal each event; however, it
always signals the one with the highest precedence.

8.5 TRACE FAULT HANDLING PROCEDURE

The processor calls the trace fault handling procedure when it detects a trace event. See section
7.7, “FAULT HANDLING PROCEDURES’ (pg. 7-12) for general requirements for fault
handling procedures.

The trace fault handling procedure is involved in a specific way and is handled differently than
other faults. A trace fault handler must be involved with an implicit system-supervisor call. When
the call is made, the PC register trace enable bit in is cleared. This disables trace faults when the
trace fault handler is executing. Recall that, for all other implicit or explicit system-supervisor
cals, the trace enable bit is replaced with the system procedure table trace control bit. The
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exceptional handling of trace enable for trace faults ensures that tracing is turned off when atrace
fault handling procedure is being executed. This is necessary to prevent an endless loop of trace
fault handling calls.

8.6 TRACE HANDLING ACTION

Once atrace event is signaled, the processor determines how to handle the trace event, according
to the PC register trace enable bit and trace fault pending flag settings and to other events that
might occur simultaneously with the trace event, such as an interrupt or non-trace fault. Sub-
sections that follow describe how the processor handles trace events for various situations.

8.6.1 Normal Handling of Trace Events
Before the processor executes an instruction:
1 The processor checks the state of the trace fault pending flag:
« If clear, the processor begins execution of the next instruction.
* If set, the processor performs the following actions. _
2. The processor checks the PC register trace enable bit state:
« If clear, the processor clears any trace event flags that are set prior executing the next

instruction.

* If set, the processor signals atrace fault and begins fault handling action as described in
section 7.7, “FAULT HANDLING PROCEDURES’ (pg. 7-12).

8.6.2 Prereturn Trace Handling

The processor handles a prereturn trace event the same as described above except when it occurs at
the same time as a non-trace fault. In this case, the non-trace fault is handled first. On returning
from the fault handler for the non-trace fault, the processor checks the PFP register prereturn trace
flag. If set, the processor generates a prereturn trace event, then handles it as described in section
8.6.1, “Normal Handling of Trace Events’ (pg. 8-9).

8.6.3 Tracing and Interrupt Procedures

When the processor invokes an interrupt handling procedure to service an interrupt, it disables
tracing. It does this by saving the PC register’s current state, then clearing the PC register trace
enable bit and trace fault pending flag.
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On returning from the interrupt handling procedure, the processor restores the PC register to the
state it was in prior to handling the interrupt, which restores the trace enable bit and trace fault
pending flag states. If these two flags were set prior to calling the interrupt procedure, a trace fault
issignaled on return from the interrupt procedure.

NOTE:

On areturn from an interrupt handling procedure, the trace fault pending flag is
restored. If this flag was set as aresult of the interrupt procedure’ sret instruction
(i.e., indicating a return trace event), the detected trace event is lost. Thisis also
true on a return from a fault handler, when the fault handler is called with an

implicit supervisor call.
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CHAPTER 9
INSTRUCTION SET REFERENCE

This chapter provides detailed information about each instruction available to the i960° Cx
processors. Instructions are listed alphabetically by assembly language mnemonic. Format and
notation used in this chapter are defined in section 9.2, “NOTATION" (pg. 9-1).

9.1 INTRODUCTION

Information in this chapter is oriented toward programmers who write assembly language code for
the 1960 Cx processors. The information provided for each instruction includes:

» Alphabetic listing of all instructions » Assembly language mnemonic, name and
format

» Description of the instruction’s operation » Action (or algorithm) and other side effects
of executing an instruction

» Faultsthat can occur during execution » Assembly language example

» Opcode and instruction encoding format » Related instructions

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

» CHAPTER 4, INSTRUCTION SET SUMMARY - Summarizes the instruction set by group
and describes the assembly language instruction format.

* APPENDIX D, MACHINE-LEVEL INSTRUCTION FORMATS - Describes instruction set
opword encodings.

* APPENDIX E, MACHINE LANGUAGE INSTRUCTION REFERENCE - A quick-reference
listing of instruction encodings assists debug with alogic analyzer.

* INSTRUCTION SET QUICK REFERENCE - (order #272220; included as an addendum to
this manual) A tabular quick reference of each instruction’s operation.

9.2 NOTATION
In general, notation in this chapter is consistent with usage throughout the manual; however, there

are a few exceptions. Read the following subsections to understand notations that are specific to
this chapter.
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9.2.1 Alphabetic Reference

Instructions are listed alphabetically by assembly language mnemonic. If severa instructions are
related and fall together alphabetically, they are described as a group on a single page.

The instruction’s assembly language mnemonic is shown in bold at the top of the page (e.g.,
subc). Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the
name of the instruction group is shown in capital letters (e.g., BRANCH IF or FAULT IF).

The 1960 Cx processor-specific extensions to the 1960 microprocessor instruction set are indicated
with a box around the instruction’s alphabetic reference. The following 1960 Cx processor’'s
instructions are such extensions:

‘ eshro ‘ ‘ sdma ‘

‘ sysctl ‘ ‘ udma ‘

Instruction set extensions are generally not portable to other i960 processor family implementa-
tions.

9.2.2 Mnemonic
The Mnemonic section gives the mnemonic (in boldface type) and instruction name for each
instruction covered on the page, for example:

subi Subtract Integer
CTRL and COBR format instructions also allow the programmer to specify optional .t or .f
mnemonic suffixes for branch prediction:
» .tindicatesto the processor that the condition the instruction is testing for is likely to be true.
» findicatesthat the condition is likely to be false.
The processor uses the programmer’s prediction to prefetch and decode instructions along the
most likely execution path when the actual path is not yet known. If the prediction was wrong, all

actions along the incorrect path are undone and the correct path is taken. For further discussion,
see section A.2.7.7, “Branch Prediction” (pg. A-53).

When the programmer provides no suffix with an instruction which supports a suffix, the
assembler makes its own prediction.

When an instruction supports prediction, the mnemonic listing includes the notation {.t|.f} to
indicate the option, for example:

be{.t].f} Branch If Equal
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9.2.3 Format
The Format section gives the instruction’ s assembly language format and allowable operand types.
Format is given in two or three lines. The following isatwo line format example:

sub* srcl src2 dst
reg/lit/sfr reg/lit/sfr reg/sfr

Thefirst line gives the assembly language mnemonic (boldface type) and operands (italics). When
the format is used for two or more instructions, an abbreviated form of the mnemonic isused. An*
(asterisk) at the end of the mnemonic indicates a variable: in the above example, sub* is either
subi or subo.

Operand names are designed to describe operand function (e.g., src, len, mask).

The second line shows allowable entries for each operand. Notation is as follows:

reg Global (g0 ... g15) or local (r0 ... r15) register

lit Literal of therangeO ... 31

sfr Specia Function Register (sf0 ... sf2)

disp Signed displacement of range (-222 . 222 1)

mem Address defined with the full range of addressing modes
NOTE:

For future implementations, the i960 architecture will allow up to 32 Special
Function Registers (SFRs). However, sfO, sf1 and sf2 are the only SFRs
implemented on the i960 Cx processors.

In some cases, athird line is added to show register or memory location contents. For example, it
may be useful to know that aregister is to contain an address. The notation used in thisline is as
follows:

addr Address
efa Effective Address
9.2.4 Description

The Description section is a narrative description of the instruction’s function and operands. It also
gives programming hints when appropriate.
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9.25 Action

The Action section gives an agorithm written in a pseudo-code that describes direct effects and
possible side effects of executing an instruction. Algorithms document the instruction’s net effect
on the programming environment; they do not necessarily describe how the processor actually
implements the instruction. For example, shli requires seven lines of pseudo-code to completely
describe its function. Although it might appear from the algorithm that the instruction should take
multiple clocks to execute, the 1960 Cx processors execute the instruction in a single clock.

The following is an example of the action algorithm for the alterbit instruction:

if (AC.cc1=0)=0)
dst = src andnot (2*(bitpos mod 32));
elsedst - srcor (27(bitpos mod 32));

2(bitpos mod 32) is equivalent to 2(PitPos mod 32)

Table 9-1 defines each abbreviation used in the instruction reference pseudo-code. Table 9-2
explains the symbols used in the pseudo-code.

Since special function registers (sfr) may change independent of instruction execution, the
following distinctions are important when interpreting the algorithm of any instruction which
references a sfr.

1. When asource operand is a sfr and referenced more than once in an algorithm, the operand’'s
value at every reference is the same as the first reference. In other words, the instruction
operates as if the sfr was actually read only once, at the beginning of the instruction.

2. When the same sfr is specified as the source for multiple operands of the sameinstruction, the
instruction operates as if the source sfr was actually read only once, at the beginning of the
instruction. When either source operand appears in the action agorithm, the single operand
valueis used.

3. When asfr is specified as a destination and the algorithm indicates more than one modifi-
cation of the destination, the instruction operates as if the sfr were written only once, at the
end of the instruction.
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Table 9-1. Abbreviations in Pseudo-code

AC.xXxx Arithmetic Controls Register fields
AC.cc Condition Code flags (AC.cc2:0)
AC.ccO Condition Code Bit 0
AC.ccl Condition Code Bit 1
AC.cc2 Condition Code Bit 2
AC.nif No Imprecise Faults flag
AC.of Integer Overflow flag
AC.om Integer Overflow Mask Bit

PC.xxx Process Controls Register fields
PC.em Execution Mode flag
PC.s State Flag
PC.tfp Trace Fault Pending flag
PC.p Priority Field (PC.p5:0)
PC.te Trace Enable Bit

TC.xxX Trace Controls Register fields
TC.i Instruction Trace Mode Bit
TC.c Call Trace Mode Bit
TC.p Pre-return Trace Mode Bit
TC.br Breakpoint Trace Mode Bit
TC.b Branch Trace Mode Bit
TC.r Return Trace Mode Bit
TC.s Supervisor Trace Mode Bit
TC.if Instruction Trace Event flag
TC.cf Call Trace Event flag
TC.pf Pre-return Trace Event flag
TC.brf Breakpoint Trace Event flag
TC.bf Branch Trace Event flag
TC.rf Return Trace Event flag
TC.sf Supervisor Trace Event flag

PFP.xxx Previous Frame Pointer (r0)
PFP.add Address (PFP.add31:4)
PFP.rt Return Type Field (PFP.rt2:0)
PFP.p Pre-return Trace flag

sp Stack Pointer (r1)

fp Frame Pointer (g15)

rip Return Instruction Pointer (r2)

SPT System Procedure Table

SPT.base
SPT(targ)

Supervisor Stack Base Address
Address of SPT Entry targ
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Table 9-2. Pseudo-code Symbol Definitions

- Assignment

=1 Comparison: equal, not equal

<, > less than, greater than

£3 less than or equal to, greater than or equal to

<<, >> Logical Shift

n Exponentiation

and, or, not, xor Bitwise Logical Operations

mod Modulo

+, - Addition, Subtraction

* Multiplication (Integer or Ordinal)

/ Division (Integer or Ordinal)

#.. Comment delimiter

memory() Memory access of specified width
memory_{byte|short|word|long|triple|quad}()
memory() Width implied by context

9.2.6 Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution. Table
9-3 shows two possible faulting conditions that are common to the entire instruction set and could
directly result from any instruction. These fault types are not included in the instruction reference.
Table 9-4 shows three possible faulting conditions that are common to large subsets of the
instruction set. Other instructions can generate faults in addition to those shown in the following
tables. If an instruction can generate a fault, it is noted in that instruction’s Faults section.

Table 9-3. Fault Types and Subtypes

Fault Type Subtype Description
Instruction An Instruction Trace Event is signaled after instruction completion. A
Trace fault is generated if both PC.te and TC.i=1.
Trace A Breakpoint Trace Event is signaled after completion of an
Breakpoint instruction for which there is a hardware breakpoint condition match
P and TC.br is set. A Trace fault is generated if PC.te and TC.br are
both=1.
. . An attempt to execute any instruction fetched from internal data
Operation Unimplemented

RAM causes an operation unimplemented fault.
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Table 9-4. Common Possible Faulting Conditions

Fault Type Subtype Description

Any instruction that references a special function register while not in

Mismatch . .
supervisor mode causes a type mismatch fault.

Type
Any instruction that attempts to write to internal data RAM while not in

Mismatch . .
supervisor mode causes a type mismatch fault.

Any instruction that causes an unaligned memory access causes an
Operation Unimplemented operation unimplemented fault if unaligned faults are not masked in the
Processor Control Block (PRCB).

9.2.7 Example

The Example section gives an assembly |language example of an application of the instruction.

9.2.8 Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction encoding format for
each instruction, for example:

subi 593H REG

The opcodeis given in hexadecimal format.The instruction encoding format is one of four possible _
formats. REG, COBR, CTRL and MEM. Refer to APPENDIX D, MACHINE-LEVEL

INSTRUCTION FORMATS for more information on the formats.

9.2.9 See Also

The See Also section gives the mnemonics of related instructions which are also alphabetically
listed in this chapter.

9.3 INSTRUCTIONS

This section contains reference information on the processor’ s instructions. It is arranged al phabet-
ically by instruction or instruction group.
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9.3.1 addc
Mnemonic: addc Add Ordinal With Carry
Format: addc srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr
Description: Adds src2 and srcl values and condition code bit 1 (used here as a carry in)

and stores the result in dst. If ordinal addition results in a carry, condition
code hit 1 is set; otherwise, bit 1 is cleared. If integer addition results in an
overflow, condition code bit 0 is set; otherwise, bit 0 is cleared. Regardless of
addition results, condition code bit 2 is always set to 0.

addc can be used for ordinal or integer arithmetic. addc does not distinguish
between ordinal and integer source operands. Instead, the processor evaluates
the result for both data types and sets condition code bits 0 and 1 accordingly.

An integer overflow fault is never signaled with this instruction.

Action: dst - src2 + srcl + AC.ccl;
AC.cc— 0CVy;
# Ciscarry from ordinal addition
#V = 1if integer addition would have generated an overflow.

Faults: Type Mismatch. Non-supervisor reference of a sfr.

Example: # Exanpl e of doubl e-precision arithnetic
# Assune 64-bit source operands
# in g0,gl and g2, g3

cnpo 1, O # clears Bit 1 (carry bit) of
# the AC. cc
addc g0, g2, g0 # add | oworder 32 bits;
# 90 - g2 + g0 + Carry Bit
addc g1, g3, 91 # add hi gh-order 32 bits;
# gl - g3 + gl + Carry Bit
# 64-bit result is in g0, gl
Opcode: addc 5BOH REG
See Also: addi, addo, subc, subi, subo
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9.3.2 addi, addo

Mnemonic: addi Add Integer
addo Add Ordinal
Format: add* srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr
Description: Adds src2 and srcl values and stores the result in dst. The binary results from

these two instructions are identical. The only differenceisthat addi can signal
an integer overflow.

Action: dst— src2 + srcl;
Faults: Type Mismatch. Non-supervisor reference of a sfr.
Arithmetic  Integer Overflow. Result too large for destination register (addi
only). If overflow occursand AC.om =1, fault is suppressed and
AC.of is set to 1. Least significant 32-bits of the result are
stored in dst.
Example: addi r4, g5, r9 #r1r9 - g5 +r4
Opcode: addi 591H REG
addo 590H REG
See Also: addc, subi, subo, subc
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9.3.3
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

alterbit

alterbit Alter Bit

alterbit bitpos, s, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Copies src value to dst with one bit altered. bitpos operand specifies bit to be
changed; condition code determines value to which the bit is set. If condition
codeis X1X, bit 1 =1, selected bit is set; otherwise, it is cleared.
if (AC.cc1=0)

dst = srcandnot 2*(bitposmod 32);
else

dst- srcor 27(bitpos mod 32);

Type Mismatch. Non-supervisor reference of a sfr.

# assume AC.cc = 010,
alterbit 24, g4,99 # 099 - g4, with bit 24 set

alterbit 58FH REG
chkbit, clrbit, notbit, setbit
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9.3.4 and, andnot

Mnemonic: and And
andnot And Not
Format: and srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr
andnot srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr
Description: Performs a bitwise AND (and) or AND NOT (andnot) operation on src2 and

srcl values and stores result in dst. Note in the action expressions below, src2
operand comes first, so that with andnot the expression is evaluated as:

{src2 andnot (srcl)}

rather than
{srcl andnot (src2)}.

Action: and: dst = src2 and srcl;

andnot: dst = src2 andnot (srcl);
Faults: Type Mismatch. Non-supervisor reference of a sfr.
Example: and 0x17, g8, g2 # g2 - g8 AND 0x17

andnot r3, ri12, r9 #r9 - r12 AND NOT r3
Opcode: and 581H REG

andnot 582H REG
See Also: nand, nor, not, notand, notor, or, ornot, xnor, xor
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9.3.5
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

atadd

atadd Atomic Add

atadd src/dst, s, dst
reg/sfr reg/lit/sfr reg/sfr
addr

Adds src value (full word) to value in the memory location specified with
src/dst operand. Initial value from memory is stored in dst.

Memory read and write are done atomically (i.e., other processors must be
prevented from accessing the word of memory containing the word specified
by src/dst operand until operation completes).

Memory location in src/dst is the word’ s first byte (LSB) address. Addressis
automatically aligned to aword boundary. (Note that src/dst operand maps to
srcl operand of the REG format.)

tempa - src/dst andnot (0x3); # force alignment to word boundary
temp - memory_word (tempa); # LOCK asserted at begin of read
memory_word (tempa) —= temp + src;  # ordinal addition

# LOCK deasserted after memory write
dst - temp;

Type Mismatch. Non-supervisor reference of a sfr. And/or non-
supervisor attempt to write to internal data RAM.

atadd r8, r2, r11 # r8 = r2 + address r8, where
# r8 specifies the address of a
# word in nmenory;
#rl1l1 - initial value, stored
# at address r8 in nenory

atadd 612H REG

atmod
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9.36 atmod

Mnemonic: atmod Atomic Modify
Format: atmod src mask, src/dst
reg/sfr reg/lit/sfr reg/sfr
addr
Description: Copies the selected bits of src/dst value into memory location specified in src.

Bits set in mask operand select bits to be modified in memory. Initial value
from memory is stored in src/dst.

Memory read and write are done atomically (i.e., other processors must be
prevented from accessing the quad-word of memory containing the word
specified with the src/dst operand until operation completes).

Memory location in src is the modified word's first byte (LSB) address.
Addressis automatically aligned to aword boundary.

Action: tempa- src andnot (0x3); # force alignment to word boundary
temp - memory_word(tempa);  # LOCK asserted at
# beginning of memory read
memory_word(tempa) - (src/dst and mask) or (temp and not(mask));

#L.OCK deasserted during memory write after the memory write completes
sre/dst = temp;

Faults: Type Mismatch. Non-supervisor reference of a sfr and/or non-
supervisor attempt to write to internal data RAM.

Example: atnod g5, g7, gl0 # g5 = g5 masked by g7, where g5
# specifies the address of a
# word in nmenory;
# gl0 - initial value, stored
# at address g5 in nenory

Opcode: atmod 610H REG
See Also: atadd
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9.3.7

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

b, bx

b Branch
bx Branch Extended
b targ
disp
bx targ
mem

Branches to the specified target.

With the b instruction, IP specified with targ operand can be no farther than
2% 10 (223- 4) bytes from current IP. When using the Intel 1960 processor
assembler, targ operand must be a label which specifies target instruction’s
IP.

bx performs the same operation as b except the target instruction can be
farther than -223 to (223- 4) bytes from current IP. Here, the target operand is
an effective address, which allows the full range of addressing modes to be
used to specify target instruction’s IP. The “IP + displacement” addressing
mode alows the instruction to be IP-relative. Indirect branching can be
performed by placing target address in aregister then using aregister-indirect
addressing mode.

Refer to section 3.3, “MEMORY ADDRESSING MODES’ (pg. 3-5) for a
complete discussion of the addressing modes.

b: IP- IP + displacement; # resume execution at new 1P
bx: IP- targ; # resume execution at new 1P
Trace Instruction. Branch.

Instruction and Branch Trace Events are signaled after
instruction completion. Trace fault is generated if PC.te=1 and
TC.ior TC.b=1.

Operation  Unimplemented. Execution from on-chip data RAM.
Operand. Invalid operand value encountered. (bx only)
Opcode. Invalid operand encoding encountered (bx only)

b xyz # 1P -~ xyz;

bx 1332 (ip) # 1P - IP + 8 + 1332;
# this exanple uses |P-relative addressing
b 08H CTRL

bx 84H MEM

bal, balx, BRANCH IF, COMPARE AND BRANCH, bbc, bbs
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Mnemonic:

Format:

Description:

Action:

Faults:

INSTRUCTION SET REFERENCE

bal, balx

bal Branch and Link
balx Branch and Link Extended
bal targ
disp
balx targ, dst
mem reg

Stores address of instruction following bal or balx in aregister then branches
to the instruction specified with the targ operand.

Thebal and balx instructions are used to call leaf procedures (procedures that
do not call other procedures). The |P saved in the register provides areturn |P
that the leaf procedure can branch to (using ab or bx instruction) to perform a
return from the procedure. Note that these instructions do not use the
processor’s call-and-return mechanism, so the calling procedure shares its
local-register set with the called (leaf) procedure.

With bal, address of next instruction is stored in register g14. targ operand
value can be no farther than -222 to (223- 4) bytes from current |P. When using
the Intel 1960 processor assembler, targ must be a label which specifies the
target instruction’s I P.

balx performs same operation as bal except next instruction address is stored
in dst (allowing the return I P to be stored in any available register). With balx,
target instruction can be farther than -223 to (223- 4) bytes from current IP.
Here, the target operand is a memory type, which allows full range of
addressing modes to be used to specify target IP. “IP + displacement”
addressing mode allows instruction to be IP-relative. Indirect branching can
be performed by placing target address in aregister and then using a register-
indirect addressing mode.

Refer to section 3.3, “MEMORY ADDRESSING MODES’ (pg. 3-5) for a
complete discussion of addressing modes available with memory-type
operands.

bal: gl4- IP+4; # next | P destination is always g14
IP- IP + displacement; # resume execution at new I1P
balx:  dst— IP+instlength; #instruction length is 4 or 8 bytes
IP- targ; # resume execution at the new |P
Trace Instruction. Branch.

Instruction and Branch Trace Events are signaled after
instruction completion. Trace fault is generated if PC.te=1 and
TC.ior TC.br=1.
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Operation  Unimplemented. Execution from on-chip data RAM.
Operand. Invalid operand val ue encountered.
Opcode. Invalid operand encoding encountered.

Example: bal xyz # 1P -~ xyz;
bal x (g2), 94 # 1P - (g2);
# address of return instruction
# is stored in g4,
# exanpl e of indirect addressing

Opcode: bal 0BH CTRL
balx 85H MEM
See Also: b, bx, BRANCH IF, COMPARE AND BRANCH, bbc, bbs
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Mnemonic:
Format:

Description:

Action:

bbc, bbs

bbc{.t.f}
bbs{.t|.f}

bb*{.t].f}

Checks bit in src (designated by bitpos) and sets AC register condition code
according to src value. The processor then performs conditional branch to

INSTRUCTION SET REFERENCE

Check Bit and Branch If Clear
Check Bit and Branch If Set

bitpos,
reg/lit

s, targ
reg/sfr disp

instruction specified with targ, based on condition code state.

Optional .t or .f suffix may be appended to mnemonic. Use .t to speed-up
execution when these instructions usually take the branch; use .f to speed-up
execution when these instructions usually do not take the branch. If suffix is

not provided, assembler is free to provide one.

For bbc, if selected bit in src is clear, the processor sets condition code to
000, and branches to instruction specified with targ; otherwise, it sets

condition code to 010, and goes to next instruction.

For bbs, if selected bit is set, the processor sets condition code to 010, and
branches to targ; otherwise, it sets condition code to 000, and goes to next

instruction.

targ can be no farther than -212 to (212 - 4) bytes from current |P. When using
the Intel 1960 processor assembler, targ must be a label which specifies target
instruction’s IP.

bbc:

bbs:

if ((srcand 2*(bitpos mod 32)) = 0)

else

AC.cc- 000,
IP = 1P+ displacement;
# resume execution at new |P

AC.cc—- 010,;
# resume execution at next |P

if ((srcand 2*(bitpos mod 32)) = 1)

else

AC.cc—- 010,;
IP = 1P+ displacement;
# resume execution at new |P

AC.cc— 000;
# resume execution at next |P
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Faults: Trace Instruction. Branch (if taken).
Instruction and Branch Trace Events are signaled after
instruction completion. Trace fault is generated if PC.te=1 and
TC.ior TC.b=1.

Operation  Unimplemented. Execution from on-chip data RAM.
Type Mismatch. Non-supervisor reference of a sfr.

Example: # assune bit 10 of r6 is clear
bbc 10, r6, xyz # bit 10 of r6 is checked
# and found cl ear;
# AC.cc - 000

# 1P - xyz;
Opcode: bbc 30H COBR
bbs 37H COBR
See Also: chkbit, COMPARE AND BRANCH, BRANCH IF
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9310 BRANCH IF

Mnemonic: be{.t|.f} Branch If Equal/True
bne{.t|.f} Branch If Not Equal
bl{.t.f} Branch If Less

ble{.t].f} Branch If Less Or Equal
bg{.t|.f} Branch If Greater
bge{.t|.f} Branch If Greater Or Equal
bo{.t|.f} Branch If Ordered
bno{.t|.f} Branch If Unordered/False

Format: b*{.t].f} targ
disp
Description: Branches to instruction specified with targ operand according to AC register

condition code state.

Optional .t or .f suffix may be appended to mnemonic. Use .t to speed-up
execution when these instructions usually take the branch; use .f to speed-up
execution when these instructions usually do not take the branch. If a suffix is
not provided, assembler is free to provide one.

For all branch-if instructions except bno, the processor branches to
instruction specified with targ, if the logical AND of condition code and
mask-part of opcode is not zero. Otherwise, it goes to next instruction.

For bno, the processor branches to instruction specified with targ if the
condition codeis zero. Otherwise, it goes to next instruction.

For instance, bno (unordered) can be used as a branch-if false instruction
when coupled with chkbit. For bno, branch is taken if condition code equals
000,. be can be used as branch-if true instruction.

NOTE:

bo and bno are used by implementations that include floating point
coprocessor for branch operations involving real numbers. bno can be
used as branch-if-false instruction when used after chkbit. be can be
used as branch-if-true instruction when following chkbit.

The targ operand value can be no farther than 2% to (223- 4) bytes from
current IP.
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Action:

Faults:

Example:

Opcode:

See Also:

9-20

The following table shows condition code mask for each instruction. The
mask isin opcode bits 0-2.

Instruction Mask Condition
bno 000, Unordered
bg 001, Greater
be 010, Equal
bge 011, Greater or equal
bl 100, Less
bne 101, Not equal
ble 110, Less or equal
bo 111, Ordered

For all instructions except bno:

bno:

Trace

Operation

if ((mask and AC.cc) * 000,) IP - P + displacement;
# resume execution at new |P

if (AC.cc =000,) IP— P+ displacement;
# resume execution at new |P
else # resume execution at next |P

Instruction. Branch (if taken). Breakpoint

Instruction and Branch Trace Events are signaled after
instruction completion. Trace fault is generated if PC.te=1 and
TC.ior TC.b=1.

Unimplemented. Execution from on-chip data RAM.

# assume (AC.cc AND 100,) * O

bl xyz

be
bne
bl
ble
bg
bge
bo
bno

# 1P - xyz;
12H CTRL
15H CTRL
14H CTRL
16H CTRL
11H CTRL
13H CTRL
17H CTRL
10H CTRL

b, bx, bbc, bbs, COMPARE AND BRANCH, bal, balx, BRANCH IF
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9.3.11 call
Mnemonic: call Call
Format: call targ
disp
Description: Callsanew procedure. targ operand specifiesthe | P of called procedure’ sfirst
instruction. When using the Intel 1960 processor assembler, targ must be a

label.

In executing this instruction, the processor performs alocal call operation as
described in section 5.4, “LOCAL CALLS" (pg. 5-12). As part of this
operation, the processor saves the set of local registers associated with the
calling procedure and allocates a new set of local registers and a new stack
frame for the called procedure. Processor then goes to the instruction
specified with targ and begins execution.

targ can be no farther than -223 to (22 - 4) bytes from current IP.

Action: wait for any uncompleted instructions to finish;
temp - (SP + Oxf andnot (Oxf);  # round to next boundary,
memory (FP) - r0:15; # these accesses are cached in
RIP - nextIP #local register cache

PFP - FP;

PRIt - 0005 _
FP - temp;

SP - temp + 64;

IP- IP+ displacement;

Faults: Trace Instruction. Call. Breakpoint.
Instruction and Call Trace Events are signaled after instruction
completion. Trace fault is generated if PC.te=1 and TC.i or
TC.c=1.

Operation  Unimplemented. Execution from on-chip data RAM.

Example: call xyz # 1P - xyz
Opcode: call O09H CTRL
See Also: bal, calls, callx
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9.3.12
Mnemonic:

Format:

Description:

Action:

9-22

calls

calls Call System

calls targ
reg/lit

Calls asystem procedure. targ specifies called procedure’ s number. For calls,
the processor performs system call operation described in section 5.5,
“SYSTEM CALLS’ (pg. 5-12). targ provides an index to a system procedure
table entry from which the processor gets the called procedure’s IP.

The called procedure can be a local or supervisor procedure, depending on
system procedure table entry type. If it is a supervisor procedure, the
processor switches to supervisor mode (if not already in this mode).

Processor also allocates a new set of local registers and new stack frame for
called procedure. If the processor switches to supervisor mode, the new stack
frameis created on the supervisor stack.

if (targ> 259) Protection-length fault;
wait for any uncompleted instructions to finish;
temp_entry = memory_word(SPT(targ));
# SPT(targ) is the address of the system procedure table entry targ.
RIP = next IP;
if ((temp_entry.type = local) or (PC.em = supervisor))
# no stack switch required
# round to next boundary,
temp_FP - (SP + 0x10) andnot(0xf);

temp_rt = 000,; # return typeislocal
}
else
{ # stack switch to supervisor stack

# required; read supervisor
temp_FP - memory_word(cached(SPT);

# stack pointer

# set return type to supervisor
if (PC.te=0) temp_rt = 010,; # with trace disabled

elsetemp_rt - 011,; # with trace enabled

PC.em - supervisor; # Trace enable bit of the supervisor
PC.te- temp FPT; # stack pointer iswritten to PC.te

}
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Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

# These accesses are cached in the local register cache.
memory(FP) = r0:15

PFP - FP,

PFRft = temp_rt;

FP - temp_FP;

SP - temp_FP + 64;

IP - temp_entry andnot (0x3);

Trace Instruction. Call. Supervisor. Breakpoint
Instruction, Call and Supervisor Trace Events are signaled after
instruction completion. Trace fault is generated if PC.te=1 and
TC.i, TC.cor TC.s=1.

Operation ~ Unimplemented. Execution from on-chip data RAM.
Type Mismatch. Non-supervisor reference of a sfr.
Protection  Length. Specifies a system procedure number greater than 259.

calls ri12 # | P - value obtained from
# procedure table for procedure
# nunmber given in rl2

calls 660H REG

bal, call, callx
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9.3.13
Mnemonic:

Format:

Description:

Action:

Faults:

9-24

callx

callx Call Extended

callx targ
mem

Calls new procedure. targ specifies | P of called procedure’ sfirst instruction.

In executing callx, the processor performs alocal call as described in section
5.4, “LOCAL CALLS’ (pg. 5-12). As part of this operation, the processor
allocates a new set of local registers and a new stack frame for the called
procedure. Processor then goes to the instruction specified with targ and
begins execution of new procedure.

callx performs the same operation as call except the target instruction can be
farther than -223 to (223 - 4) bytes from current IP.

Thetarg operand is amemory type, which allows the full range of addressing
modes to be used to specify the IP of the target instruction. The “IP +
displacement” addressing mode allows the instruction to be IP-relative.
Indirect calls can be performed by placing the target address in a register and
then using one of the register-indirect addressing modes.

Refer to CHAPTER 3, DATA TYPES AND MEMORY ADDRESSING
MODES for a complete discussion of addressing modes.

wait for any uncompleted instructions to finish;

temp - (SP + 0x10) andnot (0xf); # round to next boundary

RIP -~ next IP,

memory(FP) = r0:15 # these accesses are cached in
#local register cache

PFP - FP,

PFPrt = 000,

FP - temp;

SP - temp + 64;

IP- targ;

Trace Instruction. Call.
Instruction and Call Trace Events are signaled after instruction
completion. Trace fault is generated if PC.te=1 and TC.i, or
TC.c=1.

Operation  Unimplemented. Execution from on-chip data RAM.
Operand. Invalid operand val ue encountered.

Opcode. Invalid operand encoding encountered.
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Example: cal I x (g5) # 1P - (g5), where the address
#1in g5 is the address of the new
# procedure

Opcode: callx 86H MEM

See Also: call, calls, bal

9-25



INSTRUCTION SET REFERENCE In e ©

9314 Chkbit

Mnemonic: chkbit Check Bit
Format: chkbit bitpos, src
reg/lit/sfr reg/lit/sfr
Description: Checks bit in src designated by bitpos and sets condition code according to

value found. If bit is set, condition codeis set to 010,; if bit is clear, condition
code s set to 000,.

Action: if ((src and 2*(bitpos mod 32)) = 0)

AC.cc = 000y;

else

AC.cc—- 010,;
Faults: Type Mismatch. Non-supervisor reference of a sfr.
Example: chkbit 13, g8 # checks bit 13 in g8 and

# sets AC. cc according to the result

Opcode: chkbit 5AEH REG
See Also: alterbit, clrbit, notbit, setbit, cmpi, cmpo
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9.3.15 clrbit

Mnemonic: clrbit Clear Bit
Format: clrbit bitpos, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr
Description: Copies src value to dst with one bit cleared. bitpos operand specifies bit to be
cleared.
Action: dst = srcandnot(2*(bitpos mod 32));
Faults: Type Mismatch. Non-supervisor reference of a sfr.
Example: clrbit 23, g3, g6 # g6 = g3 with bit 23 cleared
Opcode: clrbit 58CH REG
See Also: alterbit, chkbit, notbit, setbit
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9.3.16

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

9-28

cmpdeci, cmpdeco

cmpdeci Compare and Decrement Integer
cmpdeco  Compare and Decrement Ordinal

cmpdec* srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Compares src2 and srcl values and sets condition code according to
comparison results. src2 is then decremented by one and result is stored in
dst. The following table shows condition code setting for the three possible
results of the comparison.

Condition Code Comparison
100, srcl < src2
010, srcl = src2
001, srcl > src2

These instructions are intended for use in ending iterative loops. For
cmpdeci, integer overflow is ignored to alow looping down through the
minimum integer values.

if (srcl <src2) AC.cc— 100;
elseif (srcl=src2) AC.cc~ 010,;

else

AC.cc— 001,
dst- src2-1; #overflow suppressed for cmpdeci instruction
Type Mismatch. Non-supervisor reference of a sfr.

cnpdeci 12, g7, gl # conpares g7 with 12 and sets
# AC.cc to indicate the result;
# gl - g7 -1

cmpdeci 5A7H REG
cmpdeco 5A6H REG

cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH
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9317 CMpI, cMpo

Mnemonic: cmpi Compare Integer
cmpo Compare Ordinal
Format: cmp* srcl, src2
reg/lit/sfr reg/lit/sfr
Description: Compares src2 and srcl values and sets condition code according to

comparison results. The following table shows condition code settings for the
three possible comparison results.

Condition Code Comparison
100, srcl <src2
010, srcl =src2
001, srcl > src2

cmpi followed by a branch-if instruction is equivalent to a compare-integer-
and-branch instruction. The latter method of comparing and branching
produces more compact code; however, the former method can result in faster
running code if used to take advantage of pipelining in the architecture. Same
istrue for cmpo and the compare-ordinal-and-branch instructions.

Action: if (srcl <src2) AC.cc- 100,
elseif (srcl=src2) AC.cc— 010,;
else AC.cc— 001,
Faults: Type Mismatch. Non-supervisor reference of a sfr.
Example: crmpo r9, 0x10 # conpares the value in r9 with 0x10
# and sets AC.cc to indicate the
# result
bg xyz # branches to xyz if the value of r9
# was greater than 0x10
Opcode: cmpi 5A1H REG
cmpo 5A0H REG
See Also: COMPARE AND BRANCH, cmpdeci, cmpdeco, cmpinci, cmpinco,

concmpi, concmpo
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9.3.18

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

9-30

cmpinci, cmpinco

cmpinci Compare and Increment Integer
cmpinco Compare and Increment Ordinal

cmpinc* srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Compares src2 and srcl values and sets condition code according to
comparison results. src2 is then incremented by one and result is stored in
dst. The following table shows condition code settings for the three possible
comparison results.

Condition Code Comparison
100, srcl <src2
010, srcl =src2
001, srcl > src2

These instructions are intended for use in ending iterative loops. For
cmpinci, integer overflow is ignored to allow looping up through the
maximum integer values.

if (srcl <src2) AC.cc— 100;
elseif (srcl=src2) AC.cc~ 010,;
else AC.cc— 001,
dst- src2 +1,; # overflow suppressed for cmpinci instruction

Type Mismatch. Non-supervisor reference of a sfr.

cnpinco r8, g2, g9 # conpares the values in g2
# and r8 and sets AC.cc to
# indicate the result;
#9099 - g2 + 1

cmpinci 5A5H REG
cmpinco 5A4H REG

cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH
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9.3.19

Mnemonic:

Format:

Description:

cmpibe{.t].f}
cmpibne{.t|.f}
cmpibl{.t|.f}
cmpible{.t].f}
cmpibg{.t|.f}
cmpibge{.t|.f}
cmpibo{.t|.f}
cmpibno{.t].f}

cmpobe{.t|.f}
cmpobne{.t].f}
cmpobl{.t].f}
cmpoble{.t|.f}
cmpobg{.t|.f}
cmpobge{.t].f}

cmpib*{.t|.f}

cmpob*{.t].f}

INSTRUCTION SET REFERENCE

COMPARE AND BRANCH

Compare Integer and Branch If Equal

Compare Integer and Branch If Not Equal
Compare Integer and Branch If Less

Compare Integer and Branch If Less Or Equal
Compare Integer and Branch If Greater
Compare Integer and Branch If Greater Or Equal
Compare Integer and Branch If Ordered
Compare Integer and Branch If Not Ordered

Compare Ordinal and Branch If Equal

Compare Ordinal and Branch If Not Equal
Compare Ordinal and Branch If Less

Compare Ordinal and Branch If Less Or Equal
Compare Ordinal and Branch If Greater
Compare Ordinal and Branch If Greater Or Equal

srcl, src2, targ
reg/lit reg/sfr disp
scl, sre2, targ
reg/lit reg/sfr disp

Compares src2 and srcl values and sets AC register condition code according
to comparison results. If logical AND of condition code and mask part of
opcode is not zero, the processor branches to instruction specified with targ;
otherwise, the processor goes to next instruction.

Optional .t or .f suffix may be appended to mnemonic. Use .t to speed-up
execution when these instructions usually take the branch. Use .f to speed-up
execution when these instructions usually do not take the branch. If suffix is
not provided, assembler is free to provide one.

targ can be no farther than -212 to (212 - 4) bytes from current |P. When using
the Intel 1960 processor assembler, targ must be a label which specifies target
instruction’s IP.

The following table shows the condition-code mask for each instruction. The
mask isin bits 0-2 of the opcode.

Functions these instructions perform can be duplicated with a cmpi or cmpo
followed by a branch-if instruction, as described in section 9.3.17, “cmpi,
cmpo” (pg. 9-29).
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Instruction Mask Branch Condition
cmpibno 000, No Condition
cmpibg 001, srcl > src2
cmpibe 010, srcl = src2
cmpibge 011, srcl 3 src2
cmpibl 100, srcl < src2
cmpibne 101, srcl? src2
cmpible 110, srcl £ src2
cmpibo 111, Any Condition
cmpobg 001, srcl > src2
cmpobe 010, srcl = src2
cmpobge 011, srcl 3 src2
cmpobl 100, srcl < src2
cmpobne 101, srcl® src2
cmpoble 110, srcl £ src2

NOTE: cmpibo always branches; cmpibno never branches.

Action: if (srcl <src2) AC.cc— 100;
elseif (srcl=src2) AC.cc~ 010,;
else AC.cc - 001,
if ((maskand AC.cc)* 000,) IP - IP + displacement;
# resume execution at the new IP
elselP- IP+4; # resume execution at the next IP

Faults: Trace Instruction. Branch (if taken).
Instruction and Branch Trace Events are signaled after
instruction completion. Trace fault is generated if PC.te=1 and
TC.ior TC.br=1.

Operation  Unimplemented. Execution from on-chip data RAM.

Type Mismatch. Non-supervisor reference of a sfr.
Example: # assunme g3 < g9
crmpi bl g3, g9, xyz # g9 is conpared with g3;
# 1P - xyz.

# assume 19 3 r7
cnpobge 19, r7, xyz # 19 is conpared with r7
# 1P - xyz.
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Opcode: cmpibe 3AH COBR
cmpibne 3DH COBR
cmpibl 3CH COBR
cmpible 3EH COBR
cmpibg 39H COBR
cmpibge 3BH COBR
cmpibo 3FH COBR
cmpibno 38H COBR
cmpobe 32H COBR
cmpobne  35H COBR
cmpobl 34H COBR
cmpoble 36H COBR
cmpobg 31H COBR
cmpobge  33H COBR

See Also: BRANCH IF, cmpi, cmpo, bal, balx
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9.3.20

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

9-34

concmpi, concmpo

concmpi Conditional Compare Integer

concmpo  Conditional Compare Ordinal

concmp* srcl, src2
reg/lit/sfr reg/lit/sfr

Compares src2 and srcl vaues if condition code bit 2 is not set. If
comparison is performed, condition code is set according to comparison
results. Otherwise, condition codes are not altered.

These instructions are provided to facilitate bounds checking by means of
two-sided range comparisons (e.g., is A between B and C?). They are
generally used after a compare instruction to test whether a value is
inclusively between two other values.

The example below illustrates this application by testing whether g3 value is
between g5 and g6 values, where g5 is assumed to be less than g6. First a
comparison (cmpo) of g3 and g6 is performed. If g3 is less than or equal to
g6 (i.e., condition code is either 010, or 001,), a conditional comparison
(concmpo) of g3 and g5 is then performed. If g3 is greater than or equal to
g5 (indicating that g3 is within the bounds of g5 and g6), condition code is
set to 010,; otherwise, it is set to 001,.

if (AC.cc2=0)
if (srcl<src2) AC.cc— 010,
else AC.cc~ 001,;

Type Mismatch. Non-supervisor reference of a sfr.

cnpo g6, g3 # conmpares g6 and g3 and
# sets AC. cc

concnpo g5, g3 #if AC cc2 t 1,
# g5 is conpared with g3

concmpi 5A3H REG
concmpo  5A2H REG

cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE AND
BRANCH
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9.3.21 diVi, divo

INSTRUCTION SET REFERENCE

Mnemonic: divi Divide Integer
divo Divide Ordinal
Format: div* srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr
Description: Divides src2 value by srcl value and stores the result in dst. Remainder is
discarded.

For divi, an integer-overflow fault can be signaled.

Action: dst = quotient(src2 / srcl);
# src2, srel and dst are 32-bits

Faults: Type Mismatch. Non-supervisor reference of a sfr.
Arithmetic  Zero Divide. The srcl operand is 0.
Integer Overflow. Result too large for destination register (divi
only). If overflow occurs and AC.om=1, fault is suppressed and
AC.of isset to 1. Result’s least significant 32-bits are stored in
dst.
Example: divor3, r8, r13 #r13 - r8/r3
Opcode: divi 74BH REG
divo 70BH REG
See Also: ediv, mulo, muli, emul
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9.3.22
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

9-36

ediv

ediv Extended Divide

ediv srcl, sre2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Divides src2 by srcl and stores result in dst. The src2 value is along ordinal
(64 bits) contained in two adjacent registers. src2 specifies the lower
numbered register which contains operand’s least significant bits. src2 must
be an even numbered register (i.e., r0, r2, r4, ... or g0, g2, ... or sf0, sf2, ...).
srcl valueisanormal ordina (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quotient.
Remainder is stored in the register designated by dst; quotient is stored in the
next highest numbered register. dst must be an even numbered register (i.e.,
ro, r2, r4, ... or g0, g2, ... or sf0, sf2, ...).

Thisinstruction performs ordinal arithmetic.

If this operation overflows (quotient or remainder do not fit in 32 hits), no
fault israised and the result is undefined.

dst - (src2-(src2/srcl) * srcl);  #remainder
dst+1- (src2/srcl); # quotient
# src2 is 64-bits; srcl, dst and dst+1 are 32-bits

Type Mismatch. Non-supervisor reference of a sfr.
Arithmetic  Zero Divide. The srcl operand is 0.

ediv g3, g4, 910 # g10 - remainder of g4, g5/g3
# gll1 - quotient of g4, g5/g3

ediv 671H REG

emul, divi, divo
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9.3.23 emul
Mnemonic: emul Extended Multiply
Format: emul srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr
Description: Multiplies src2 by srcl and stores the result in dst. Result isalong ordinal (64

bits) stored in two adjacent registers. dst specifies lower numbered register,
which receives the result's least significant bits. dst must be an even
numbered register (i.e, r0, r2, r4, ... or g0, g2, ... or sf0, sf2, ...).

Thisinstruction performs ordinal arithmetic.

Action: dst- src2* srcl; # srcl and src2 are 32-bits; dst is 64-hits.
Faults: Type Mismatch. Non-supervisor reference of a sfr.

Example: emul r4, r5, g2 # 092,93 - r4 * r5

Opcode: emul 670H REG

See Also: ediv, muli, mulo
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9.3.24
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

9-38

es h ro (80960Cx Processor Only)

eshro Extended Shift Right Ordinal
eshro srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Shifts sre2 right by (srcl mod 32) places and stores the result in dst. Bits
shifted beyond the least-significant bit are discarded.

src2 valueis along ordinal (i.e., 64 bits) contained in two adjacent registers.
src2 operand specifies the lower numbered register, which contains operand’ s
least significant bits. src2 operand must be an even numbered register (i.e.,
ro, r2, r4, ... or g0, g2, ... or sf0, sf2, ...).

srcl operand is a single 32-bit register, literal, or sfr, where the lower 5-bits
specify the number of places that the src2 operand isto be shifted.

The shift operation result's least significant 32 bits are stored in dst.

dst = src2 >> (srcl mod 32);
# src2 is 64 bits, srcl and dst are 32 bits

Type Mismatch. Non-supervisor reference of a sfr.

eshro g3, g4, gll1 # gll1 - g4,5 shifted right by
# (g3 MOD 32)

eshro 5D8H REG
SHIFT, extract
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9.3.25 extract

Mnemonic: extract Extract
Format: extract bitpos, len, src/dst
reg/lit/sfr reg/lit/sfr reg
Description: Shifts a specified bit field in src/dst right and zero fills bits to left of shifted bit

field. bitpos value specifies the least significant bit of the bit field to be
shifted; len value specifies bit field length.

Action: sre/dst = (src/dst >> (bitposmod 32)) and (2Men - 1);

Faults: Type Mismatch. Non-supervisor reference of a sfr.

Example: extract 5, 12, g4 # g4 - g4 with bits 5 through
# 16 shifted right

Opcode: extract 651H REG

See Also: modify
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FAULT IF

9.3.26

Mnemonic:

Format:

Description:

Action:

Faults:

9-40

faulte{.t|.f} Fault If Equal
faultne{.t|.f} Fault If Not Equal
faultl{.t|.f}  Fault If Less
faultle{.t|.f} Fault If LessOr Equal
faultg{.t|.f} Fault If Greater
faultge{.t|.f} Fault If Greater Or Equal
faulto{.t|.f}  Fault If Ordered
faultno{.t|.f} Fault If Not Ordered

fault*{ t|.f}

Raises a constraint-range fault if the logical AND of the condition code and
opcode’s mask-part is not zero. For faultno (unordered), fault is raised if
condition code is equal to 000,.

Optional .t or .f suffix may be appended to the mnemonic. Use .t to speed-up
execution when these instructions usually fault; use .f to speed-up execution
when these instructions usually do not fault. If a suffix is not provided, the
assembler is free to provide one.

faulto and faultno are provided for use by implementations with a floating
point coprocessor. They are used for compare and branch (or fault)
operations involving real numbers.

The following table shows the condition-code mask for each instruction. The
mask is opcode bits 0-2.

Instruction Mask Condition
faultno 000, Unordered
faultg 001, Greater
faulte 010, Equal
faultge 011, Greater or equal
faultl 100, Less
faultne 101, Not equal
faultle 110, Less or equal

faulto 111, Ordered

For all instructions except faultno:

if ((mask and AC.cc) ! 000,) Constraint-range fault;
faultno:

if (AC.cc=000,) Constraint-range fault;

Constraint  Range. If condition being tested is true.
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Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

# assume (AC.cc AND 110,)u 000,

faultle

faulte 1AH
faultne 1DH
faultl 1CH
faultle 1EH
faultg 19H
faultge 1BH
faulto 1FH
faultno 18H

BRANCH IF, TEST

# Constraint Range Fault

CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL

i s generated
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0327 flushreg

Mnemonic: flushreg Flush Local Registers
Format: flushreg
Description: Copies the contents of every cached register set—except the current set—to

its associated stack frame in memory. The entire register cache is then
marked as purged (or invalid). On a return to a stack frame for which the
local registers are not cached, the processor rel oads the locals from memory.

flushreg is provided to allow a debugger or application program to
circumvent the processor’'s normal call/return mechanism. For example, a
debugger may need to go back several frames in the stack on the next return,
rather than using the normal return mechanism that returns one frame at a
time. Since the local registers of an unknown number of previous stack
frames may be cached, a flushreg must be executed prior to modifying the
PFP to return to a frame other than the one directly below the current frame.

Action: Write all cached local register sets — except the current set — to memory;
Invalidate the local register cache.
Faults: Type Mismatch. Non-supervisor attempt to write to internal data
RAM.
Example: flushreg
Opcode: flushreg 66D REG
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9.3.28 fmark

Mnemonic: fmark Force Mark
Format: fmark
Description: Generates a breakpoint trace event. Causes a breakpoint trace event to be

generated, regardless of breakpoint trace mode flag setting, providing the PC
register trace enable bit (bit 0) is set.

When a breakpoint trace event is detected, the PC register trace-fault-pending
flag (bit 10) and the TC register breakpoint-trace-event flag (bit 23) are set.
Then, a breakpoint-trace fault is generated before the next instruction
executes.

For more information on trace fault generation, refer to CHAPTER 7,

FAULTS.
Action: if (PC.te=1)
TC.bte- 1;
Trace Breakpoint trace fault
Faults: Trace Instruction. Breakpoint.

Instruction and Breakpoint Trace Events are signaled after

instruction completion. Trace fault is generated if PC.te=1.
Operation  Unimplemented. Execution from on-chip data RAM.

Example: ld xyz, r4
addi r4, r5, r6
f mar k

# Breakpoint trace event is generated at
# this point in the instruction stream

Opcode: fmark 66CH REG

See Also: mark
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9320 LOAD
Mnemonic: Id Load
Idob Load Ordinal Byte
Idos Load Ordina Short
Idib Load Integer Byte
Idis Load Integer Short
Idl Load Long
Idt Load Triple
Idq Load Quad
Format: Id* src, dst
mem reg
Description: Copies byte or byte string from memory into aregister or group of successive
registers.

The src operand specifies the address of first byte to be loaded. The full range
of addressing modes may be used in specifying src. Refer to section 3.3,
“MEMORY ADDRESSING MODES’ (pg. 3-5).

dst specifies a register or the first (lowest numbered) register of successive
registers.

Idob and Idib load abyte and Idos and Idis load a half word and convert it to
a full 32-bit word. Data being loaded is sign-extended during integer loads
and zero-extended during ordinal |oads.

Id, Idl, Idt and Idq instructions copy 4, 8, 12 and 16 bytes, respectively, from
memory into successive registers.

For Idl, dst must specify an even numbered register (e.g., g0, g2, ... or r0,
r2,...). For Idt and Idq, dst must specify aregister number that is a multiple of
four (e.g., g0, g4, g8, ... or r0, r4, 18, ...). Results are unpredictable if registers
are not aligned on the required boundary or if data extends beyond register
g15 or r15for Idl, Idt or Idg.

Action: Id: dst = memory_word (src);
Idob: dst = memory_byte (src) zero-extended to 32 bits;
Idos: dst = memory_short (src) zero-extended to 32 bits;
Idib: dst = memory_byte (src) sign-extended to 32 hits;
Idis: dst = memory_short (src) sign-extended to 32 hits;
Idl: dst = memory_long (src);
Idt: dst = memory_triple (src);
Idqg: dst = memory_quad (src);
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Faults: Operation  Unaligned. An unaligned src was referenced and bit 30 of the
Fault Configuration Word is 0.

Invalid Operand. Invalid operand val ue encountered.

Opcode. Invalid opcode encoding encountered.

Example: ldl 2450 (r3), r10 # r10, r11 - r3 + 2450 in
# menory

Opcode: Id 90H MEM
Idob 80H MEM
Idos 88H MEM
Idib COH MEM
Idis C8H MEM
Idl 98H MEM
Idt AOH MEM
Idq BOH MEM

See Also: MOVE, STORE
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9.3.30
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

9-46

lda

Ida Load Address

Ida sc, dst
mem reg
efa

Computes the effective address specified with src and storesit in dst. The src
address is not checked for validity. Any addressing mode may be used to
calculate efa.

An important application of thisinstruction isto load a constant longer than 5
bits into a register. (To load a register with a constant of 5 bits or less, mov
can be used with aliteral asthe src operand.)

dst - efa(src);
Operation  Operand. Invalid operand val ue encountered.

Opcode. Invalid opcode encoding encountered.

lda 58 (g9), g1 # gl - g9+58
| da 0x749, r8 # r8 = 0x749

Ida 8CH MEM
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9.3.31 mark

Mnemonic: mark Mark

Format: mark

Description: Generates breakpoint trace event if breakpoint trace mode is enabled.

Breakpoint trace mode is enabled if the PC register trace enable bit (bit 0) and
the TC register breakpoint trace mode bit (bit 7) are set.

When a breakpoint trace event is detected, the PC register trace-fault-pending
flag (bit 10) and the TC register breakpoint-trace-event flag (bit 23) are set.
Then, before the next instruction is executed, a breakpoint trace fault is
generated.

If breakpoint trace mode is not enabled, mark behaves like a no-op.

For more information on trace fault generation, refer to CHAPTER 8§,
TRACING AND DEBUGGING.

Action: if (PC.te=1) and (TC.br=1))
PCtfp- 1,
TC.bte- 1;
Trace Breakpoint trace fault;
Faults: Trace Instruction. Breakpoint (if enabled).
Instruction and Breakpoint Trace Events are signaled after
instruction completion. Trace fault is generated if PC.te=1 and
TC.ior TC.br=1.

Operation  Unimplemented. Execution from on-chip data RAM.

Example: # Assune that the breakpoint trace node is enabl ed.
ld xyz, r4
addi r4, r5, r6
mar k

# Breakpoint trace event is generated at this point
# in the instruction stream

Opcode: mark 66BH REG

See Also: fmark, modpc, modtc
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9.3.32
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

9-48

modac

modac Modify AC

modac mask, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Reads and modifies the AC register. src contains the value to be placed in the
AC register; mask specifies bits that may be changed. Only bits set in mask
are modified. Once the AC register is changed, its initial state is copied into
dst.

temp- AC
AC - (srcand mask) or (AC andnot mask);
dst - temp;

Type Mismatch. Non-supervisor reference of a sfr.

nodac g1, g9, gl2 # AC - g9, masked by gl
# gl2 - initial value of AC

modac 645H REG

modpc, modtc
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9.3.33 modi

Mnemonic: modi Modulo Integer

Format: modi srcl, src2, dst

reg/lit/sfr reg/lit/sfr reg/sfr

Description: Divides src2 by srcl, where both are integers and stores the modulo
remainder of the result in dst. If the result is nonzero, dst has the same sign as
srcl.

Action: if (src1=0) Arithmetic Zero Divide fault;

dst = src2 - ((src2/srel) * srcl);
if ((src2* srcl<0)and (dstt 0)) dst — dst + srcl;
# srcl, src2 and dst are 32 bits

Faults: Type Mismatch. Non-supervisor reference of a sfr.

Arithmetic  Zero Divide. The srcl operand is 0.

Example: nmodi r9, r2, r5 #r5 - nmodulo (r2/r9)
Opcode: modi 749H REG
See Also: divi, divo, remi, remo
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9.3.34
Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

9-50

modify

modify Modify
modify mask, sc, src/dst
reg/lit/sfr reg/lit/sfr reg

Modifies selected bitsin src/dst with bits from src. The mask operand selects
the bits to be modified: only bits set in the mask operand are modified in
src/dst.

sre/dst = (srcand mask) or (src/dst andnot mask);

Type Mismatch. Non-supervisor reference of a sfr.

nodi fy g8, 910, r4 # r4 - g10 nmasked by @8
modify 650H REG

alterbit, extract
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9335 modpc

Mnemonic: modpc Modify Process Controls
Format: modpc sre, mask, src/dst
reg/lit/sfr reg/lit/sfr reg
Description: Reads and modifies the PC register as specified with mask and src/dst. src/dst

operand contains the value to be placed in the PC register; mask operand
specifies bits that may be changed. Only bits set in the mask are modified.
Once the PC register is changed, itsinitial valueis copied into src/dst. The src
operand is a dummy operand that should specify aliteral or the same register
as the mask operand.

The processor must be in supervisor mode to use this instruction with a non-
zero mask value. If mask=0, this instruction can be used to read the process
controls, without the processor being in supervisor mode.

If the action of this instruction results in processor priority being lowered, the
interrupt table is checked for pending interrupts.

Changing the PC register reserved fields can lead to unpredictable behavior as
described in section 2.6.3, “ Process Controls (PC) Register” (pg. 2-17).

Action: if (mask* 0)
if (PC.em?® supervisor)) Type-mismatch fault;
temp -~ PC;
PC - (mask and src/dst) or (PC andnot mask);
sre/dst = temp;
if (temp.p > PC.p) check_pending_interrupts;
elsesrc/dst - PC;

Faults: Type Mismatch. Non-supervisor reference of a sfr.

Mismatch. Attempted to execute instruction with non-zero
mask value while not in supervisor mode.

Example: nodpc g9, g9, g8 # process controls - g8
# masked by g9

Opcode: modpc 655H REG

See Also: modac, modtc

When a modify-process-controls (modpc) instruction causes a program’s priority to be lowered,
other 1960 processor family members check for pending interrupts in the memory-based interrupt
table; the 1960 Cx devicesinternally store the priority of the highest pending interrupt found in the
interrupt table' s pending interrupts field. To improve performance, the stored priority is checked —
rather than the memory-based interrupt table — when modpc changes a process priority. The
internal priority value is updated each time an interrupt is posted using sysctl.
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9.3.36
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

9-52

modtc

modtc Modify Trace Controls

modtc mask, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Reads and modifies TC register as specified with mask and src. The src
operand contains the value to be placed in the TC register; mask operand
specifies bits that may be changed. Only bits set in mask are modified. mask
must not enable modification of reserved bits. Once the TC register is
changed, itsinitial stateis copied into dst.

The changed trace controls may take effect immediately or may be delayed.
If delayed, the changed trace controls may not take effect until after the first
non-branching instruction is fetched from memory or after four non-
branching instructions are executed.

For more information on the trace controls, refer to CHAPTER 7, FAULTS
and CHAPTER 8, TRACING AND DEBUGGING.

temp- TC;
mask - TC;
TC - (maskand src) or (temp andnot mask);
dst - temp;

Type Mismatch. Non-supervisor reference of a sfr.

nodtc g12, 910, g2 # trace controls - gl10 nasked
# by gl2; previous trace
# controls stored in g2

modtc 654H REG

modac, modpc
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9337  MOVE

Mnemonic: mov Move
movl Move Long
movt Move Triple
movq Move Quad
Format: mov* sre, dst
reg/lit/sfr reg/sfr
Description: Copies the contents of one or more source registers (specified with src) to one

or more destination registers (specified with dst).

For movl, movt and movq, src and dst specify the first (lowest numbered)
register of severa successive registers. src and dst registers must be even
numbered (e.g., g0, g2, ... or r0, r2, ... or f0, sf2, ...) for movl and an integral
multiple of four (e.g., g0, g4, ... or r0, r4, ... or sfO, sf4, ...) for movt and
movq.

The moved register values are unpredictable when: 1) the src and dst
operands overlap; 2) registers are not properly aligned.

Action: dst - src;
Faults: Type Mismatch. Non-supervisor reference of a sfr.
Example: movt g8, r4 #r4, r5 r6 - g8, g9, gl0
Opcode: mov 5CCH REG

movl 5DCH REG

movt 5ECH REG

movq 5FCH REG
See Also: LOAD, STORE, Ida
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9.3.38 muIi, mulo

Mnemonic: muli Multiply Integer
mulo Multiply Ordinal
Format: mul* srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr
Description: Multiplies the src2 value by the srcl value and stores the result in dst. The

binary results from these two instructions are identical. The only differenceis
that muli can signal an integer overflow.

Action: dst = src2 * srcl;
# srcl, src2 and dst are 32 bits

Faults: Type Mismatch. Non-supervisor reference of a sfr.

Arithmetic  Integer Overflow. Result is too large for destination register
(muli only). If overflow occurs and AC.om=1, the fault is
suppressed and AC.of is set to 1. Result’s least significant 32
bits are stored in dst.

Example: muli r3, r4, r9 #r9 - r4 TIMES r3
Opcode: muli 741H REG

mulo 701H REG
See Also: emul, ediv, divi, divo
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9.3.39 nand

Mnemonic: nand Nand

Format: nand srcl, src2, dst

reg/lit/sfr reg/lit/sfr reg/sfr

Description: Performs a bitwise NAND operation on src2 and srcl values and stores the
result in dst.

Action: dst = not (src2 and srcl);

Faults: Type Mismatch. Non-supervisor reference of a sfr.

Example: nand g5, r3, r7 #r7 - r3 NAND g5

Opcode: nand 58EH REG

See Also: and, andnot, nor, not, notand, notor, or, ornot, xnor, xor
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9.3.40
Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

9-56

nor Nor
nor srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Performs a bitwise NOR operation on the src2 and srcl values and stores the
resultin dst.

dst = not (src2 or srcl);

Type Mismatch. Non-supervisor reference of a sfr.
nor g8, 28, r5 #r5 - 28 NOR g8
nor 588H REG

and, andnot, nand, not, notand, notor, or, ornot, xnor, xor
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9.3.41

Mnemonic:

Format:

Description:
Action:

Faults:

Action:
Opcode:

See Also:

INSTRUCTION SET REFERENCE

not, notand

not Not

notand Not And

not sre, dst
reg/lit/sfr reg/sfr

notand srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Performs a bitwise NOT (not instruction) or NOT AND (notand instruction)
operation on the src2 and srcl values and stores the result in dst.

not: dst = not (src);

notand: dst = (not (src2)) and srcl;

Type Mismatch. Non-supervisor reference of a sfr.
not g2, g4 #9g4- NOT g2

notand r5, r6, r7 #r7- NOT r6 AND r5
not 58AH REG

notand 584H REG

and, andnot, nand, nor, notor, or, ornot, xnor, xor
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9.3.42
Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:

See Also:

9-58

notbit

notbit Not Bit

notbit bitpos, s, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Copies the src value to dst with one bit toggled. The bitpos operand specifies
the bit to be toggled.

dst = src xor 27(bitpos mod 32);
Type Mismatch. Non-supervisor reference of a sfr.

notbit r3, r12, r7 #1r7 - rl2 with the bit
# specified in r3 toggled

notbit 580H REG
alterbit, chkbit, clrbit, setbit
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9.3.43 notor

Mnemonic: notor Not Or
Format: notor srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr
Description: Performs a bitwise NOTOR operation on src2 and srcl values and stores
resultin dst.
Action: dst = (not (src?)) or srcl;
Faults: Type Mismatch. Non-supervisor reference of a sfr.
Example: notor gl2, g3, g6 # g6 - NOT g3 OR gl2
Opcode: notor 58DH REG
See Also: and, andnot, nand, nor, not, notand, or, ornot, xnor, xor
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9.3.44

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

9-60

or, ornot
or Or
ornot Or Not
or srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr
ornot srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Performs a bitwise OR (or instruction) or ORNOT (ornot instruction)
operation on the src2 and srcl values and stores the result in dst.

or: dst — src2 or srcl;

ornot: dst = src2 or (not (srcl));

Type Mismatch. Non-supervisor reference of a sfr.

or 14, g9, g3 #9093 - g9 OR 14
ornot r3, r8, rll #rl1ll - r8 OR NOT r3
or 587H REG

ornot 58BH REG

and, andnot, nand, nor, not, notand, notor, xnor, xor
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0345 remi, remo

Mnemonic: remi Remainder Integer
remo Remainder Ordinal
Format: rem* srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr
Description: Divides src2 by srcl and stores the remainder in dst. The sign of the result (if

nonzero) is the same as the sign of src2.

Action: if (src1=0) Arithmetic Zero Divide fault;
dst - src2 - ((src2/ srel) * srcl);
# srcl, src2 and dst are 32 bits

Faults: Type
Arithmetic
Example: reno r4,
Opcode: remi
remo
See Also: modi

Mismatch. Non-supervisor reference of a sfr.

Zero Divide. The srcl operand is 0

Integer Overflow. Result is too large for destination register
(remi only). If overflow occurs and AC.om=1, the fault is

suppressed and AC.of isset to 1. The least significant 32 bits of
theresult are stored in dst.

r5 r6 #r6 - r5remr4

748H REG
708H REG
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9.3.46 ret

Mnemonic:
Format:

Description:

Faults:

9-62

ret Return
ret
Returns program control to the calling procedure. The current stack frame

(i.e., that of the called procedure) is deallocated and the FP is changed to
point to the calling procedure’s stack frame. Instruction execution is
continued at the instruction pointed to by the RIP in the calling procedure's
stack frame, which is the instruction immediately following the call
instruction.

As shown in the action statement bel ow, the return-status field and prereturn-
trace flag determine the action that the processor takes on the return. These
fields are contained in bits O through 3 of register r0 of the called procedure's
local registers.

Refer to section 5.2.3, “Call and Return Action” (pg. 5-5) for discussion of
ret.

wait for any uncompleted instructions to finish;
casereturn_typeis

if ((PFPrt=001,) or (PFPrt=111,))

# return from fault or interrupt handler
AC - memory(FP - 12);
if (PC.em=supervisor) PC = memory(FP - 16);

}
elseif ((PFRrt=010,) or (PFP.rt=011,))
{ # return to non-supervisor procedure

PC.te-~ PFPIrto;
PC.em - user;

}

elseif (PFRPrt=000,)

{ # return from local
}

else Operation Unimplemented fault;
FP- PFP;

# these accesses are cached in the local register cache

r0:15 - memory(FP);

IP- RIP

Tracelnstruction. Return. Pre-Return.

Instruction, Return and Pre-Return Trace Events are signaled
after instruction completion. Trace fault is generated if PC.te=1
and TC.i or TC.r or TC.p=1.
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Operation  Unimplemented. Execution from on-chip data RAM.

Unimplemented. Reserved return type encountered.

Example: ret # program control returns to context of
# calling procedure

Opcode: ret OAH CTRL

See Also: call, calls, callx
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9.3.47
Mnemonic:

Format:

Description:

Faults:

Example:

Opcode:

See Also:

9-64

rotate

rotate Rotate

rotate len, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Copies src to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). (Bits shifted off left end of word are inserted at
right end of word.) The len operand specifies number of bits that the dst
operand isrotated.

This instruction can also be used to rotate bits to the right. Here, the number
of bits the word is to be rotated right is subtracted from 32 to get the len
operand.

Type Mismatch. Non-supervisor reference of a sfr.

rotate 13, r8, rl2 # r12 = r8 with bits rotated
# 13 bits to left

rotate 59DH REG
SHIFT, eshro



In e e INSTRUCTION SET REFERENCE

9.3.48 scanbit

Mnemonic: scanbit Scan For Bit
Format: scanbit sre, dst
reg/lit/sfr reg/sfr
Description: Searches src value for most-significant set bit (1 bit). If a most significant 1

bit isfound, its bit number is stored in dst and condition code is set to 010,. If
src valueis zero, all 1's are stored in dst and condition code is set to 000,.

Action: tempsrc - SC;

if (tempsrc=0)
dst - OXFFFFFFFF;
AC.cc = 000y;

else
i- 31
while ((tempsrc and 27i)=0)
i-i-1
dst— i;
AC.cc - 010;

Faults: Type Mismatch. Non-supervisor reference of a sfr.

Example: # assume g8 i s nonzero
scanbit g8, g10 # g1l0 = bit nunber of nost-
# significant set bit in g8;
# AC.cc - 010,

Opcode: scanbit 641H REG

See Also: spanbit, setbit
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9.3.49
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

9-66

scanbyte
scanbyte  Scan Byte Equal
scanbyte srcl, src2
reg/lit/sfr reg/lit/sfr

Performs byte-by-byte comparison of srcl and src2 and sets condition code
to 010, if any two corresponding bytes are equal. If no corresponding bytes
are equal, condition code is set to 000,.

tmpsrcl - srcl;
tmpsrc2 - srcz;
if ((tmpsrcl and 000000FFH) = (tmpsrc2 and 000000FFH)
or

(tmpsrcl and 0000FFOOH) = (tmpsrc2 and 0000FFO0H)
or

(tmpsrcl and O0OFFOO00H) = (tmpsrc2 and OOFFO000H)
or

(tmpsrcl and FFOO0000H) = (tmpsrc2 and FFOOO000H))

AC.cc - 010;
else
AC.cc— 000y;
Type Mismatch. Non-supervisor reference of a sfr.

# assume r9 = 0x11AB1100
scanbyte 0x00AB0011, r9 # AC.cc - 010,

scanbyte 5ACH REG
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9.3.50

Sd Mma (80960Cx Processor Only)

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

sdma Setup DMA Channel
sdma srcl, src2, src3
reg/lit/sfr reg/lit/sfr reg/lit

The DMA channel specified by srcl is set up using the control word in src2.
Dedicated data RAM for the specified DMA channel is written with src3
value. First two bits of srcl specify channel; src2 specifies DMA control
word as aliteral or single 32-bit register; src3 specifies asingle 32-bit register
if channel is data-chaining. This register contains the address of the first
chaining descriptor in memory. src3 must specify a register with a register
number divisible by four.

If channel is not data chaining, src3 specifies a triple word contained in
registers src3, src3+1 and sre3+2. sre3 contains byte count for DMA; sre3+1
contains source address; src3+2 contains destination address.

dma_control_for_channel[srcl mod 4] = src2;
if (not chaining mode)

dma ram[srcl mod 4] = src3;  #triple-word store
else dma_ram[srcl mod 4] = src3;  #word store
start_dma_channel[srcl mod 4];

Constraint  Privileged. Attempt to execute while not in supervisor mode.

| dconst 3,r6; # set channe
| dconst Channel _3_Mbdes, r7; # |l oad controls
[ dg Channel _3 transfer, r8; # |load pointers
sdma r6, r7, r8 # and byte count
# from menory
# configure dm
# channel 3
sdma 630H REG
udma
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9.3.51
Mnemonic:

Format:

Description:
Action:
Faults:
Example:
Opcode:

See Also:

9-68

setbit

setbit Set Bit

setbit bitpos, s, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Copies src value to dst with one bit set. bitpos specifies bit to be set.
dst = srcor 2/\(bitpos mod 32);

Type Mismatch. Non-supervisor reference of a sfr.
setbit 15, r9, r1 #rl1 - r9 with bit 15 set
setbit 583H REG

alterbit, chkbit, clrbit, notbit
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9352  SHIFT

Mnemonic: shlo Shift Left Ordinal
shro Shift Right Ordinal
shli Shift Left Integer
shri Shift Right Integer
shrdi Shift Right Dividing Integer
Format: sh* len, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr
Description: Shifts src left or right by the number of bits indicated with the len operand

and stores the result in dst. Bits shifted beyond register boundary are
discarded. For values of len greater than 32, the processor interprets the value
as 32.

shlo shifts zeros in from the least significant bit; shro shifts zerosin from the
most significant bit. These instructions are equivalent to mulo and divo by the
power of 2, respectively.

shli shifts zeros in from the least significant bit. An overflow fault is
generated if the bits shifted out are not the same as the most significant bit (bit
31). If overflow occurs, dst will equal src shifted left as much as possible
without overflowing.

shri performs a conventional arithmetic shift-right operation by shifting in the
most significant bit (bit 31). When thisinstruction is used to divide a negative
integer operand by the power of 2, it produces an incorrect quotient

(discarding the bits shifted out has the effect of rounding the result toward
negative).

shrdi is provided for dividing integers by the power of 2. With this
instruction, 1 is added to the result if the bits shifted out are non-zero and the
src operand was negative, which produces the correct result for negative
operands.

shli and shrdi are equivalent to muli and divi by the power of 2.

eshro is provided for extracting a 32-bit value from a long ordinal (i.e., 64
bits), which is contained in two adjacent registers.

Action: shlo: if len<32)dst— src<<len;
elsedst - O;

shro: if len<32)dst—= src>>len;
elsedst - O;
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Faults:

Example:

9-70

shli:

shri:

shrdi:

Type

Arithmetic

shl i

13,

if len>32)i- 32

elsei - len;

temp- s

s sign- temp.bit31

while ((temp.bit31 = s _sign) and (i * 0))

temp - temp<<1,
i-i-1

}

dst - temp;

if len>32)i - 32

elsei = len;

temp - gc;

while (it 0)

{

temp - temp >> 1; # shift temp right one bit
temp.bit31 — temp.bit30; # extend temp’ s sign bit
i-i-1

}

dst = temp;

i— len;

if (i>32)i- 32

temp- s

s sign- temp.bit31

lost_bit - O;

while (i * 0)

{

lost_bit = lost_bit or temp.bit0;

temp - temp >> 1; # shift temp right one bit
temp.bit31 - temp.bit30; # extend temp’ s sign bit
i-i-1

}

if ((s_sign=1) and (lost_bit = 1)) temp -~ temp + 1;
dst - temp;

Mismatch. Non-supervisor reference of a sfr.

Integer Overflow. Result istoo large for the destination register
(shli only). If overflow occurs and AC.om is a 1, the fault is
suppressed and AC.of is set to a 1. After an overflow, dst will
equal src shifted left as much as possible without overflowing.

g4, r6 # g6 - g4 shifted left 13 bits
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Opcode

See Also

shlo
shro
shli
shri
shrdi

divi, muli, rotate, eshro

59CH
598H
59EH
59BH
59AH

REG
REG
REG
REG
REG

INSTRUCTION SET REFERENCE
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9.3.53
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

9-72

spanbit

spanbit Span Over Bit
spanbit sre, dst
reg/lit/sfr reg/sfr

Searches src value for the most significant clear bit (0 bit). If a most
significant 0 bit is found, its bit number is stored in dst and condition code is
set to 010,. If srcvalueisall 1's, all 1'sare stored in dst and condition code is
set to 000,.

if (src = FFFFFFFFH)
dst - FFFFFFFFH;
AC.cc = 000y;
else
i- 31
while ((src and 27i) 1 0)
i-i-1
dst— i;
AC.cc - 010;

Type Mismatch. Non-supervisor reference of a sfr.

# assume r2 is not Oxffffffff

spanbit r2, r9 # 19 - bit nunber of nost-
# significant clear bit in r2;
# AC.cc - 010,

spanbit 640H REG

scanbit
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9354 STORE

Mnemonic: st Store
stob Store Ordinal Byte
stos Store Ordinal Short
stib Store Integer Byte
stis Store Integer Short
stl Store Long
stt Store Triple
stq Store Quad
Format: st* sre, dst
reg mem
Description: Copies a byte or group of bytes from a register or group of registers to

memory. src specifies a register or the first (lowest numbered) register of
successive registers.

dst specifies the address of the memory location where the byte or first byte or
a group of bytes isto be stored. The full range of addressing modes may be
used in specifying dst. Refer to section 3.3, “MEMORY ADDRESSING
MODES’ (pg. 3-5) for a complete discussion.

stob and stib store a byte and stos and stis store a half word from the src
register's low order bytes. Data for ordinal stores is truncated to fit the
destination width. If the data for integer stores cannot be represented correctly
in the destination width, an Arithmetic Integer Overflow fault is signaled.

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from successive
registers to memory.

For stl, src must specify an even numbered register (e.g., g0, g2, ... or r0, r2,
...). For stt and stq, src must specify a register number that is a multiple of
four (e.g., 90, g4, @8, ... or r0, r4, 18, ...).

Action: st: memory_word (dst) = src;
stob: memory_byte (dst) - src truncated to 8 bits;
stib: memory_byte (dst) = src truncated to 8 bits;
stos: memory_short (dst) - src truncated to 16 bits;
stis: memory_short (dst) = src truncated to 16 bits;
stl: memory_long (dst) = src;
stt: memory_triple (dst) - src;
stq: memory_quad (dst) = src;
Faults: Operation  Unaligned. An unaligned dst was referenced and bit 30 of the

Fault Configuration Word is 0.

Invalid Operand. Invalid operand val ue encountered.
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Opcode. Invalid opcode encoding encountered.

Arithmetic  Integer Overflow. Result is too large for destination (stib and
stis only). If overflow occurs and AC.om=1, the fault is
suppressed and AC.of is set to 1. After an overflow,
destination contains the least significant n bits of the store,
where n isthe transfer width (8 or 16 bits).

Type Mismatch. Non-supervisor attempt to write to internal data
RAM.
Example: st g2, 1254 (g6) # word begi nning at offset
#1254 + (g6) - g2
Opcode: st 92H MEM
stob 82H MEM
stos 8AH MEM
stib C2H MEM
stis CAH MEM
stl 9AH MEM
stt A2H MEM
stq B2H MEM
See Also: LOAD, MOVE
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9355 Subc
Mnemonic: subc Subtract Ordinal With Carry
Format: subc srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr
Description: Subtracts srcl from src2, then subtracts not (AC.ccl) and stores the result in

dst. If the ordinal subtraction resultsin a carry, AC.ccl is set to 1, otherwise
AC.cclissettoO.

This instruction can also be used for integer subtraction. Here, if integer
subtraction results in an overflow, condition code bit 0 is set.

subc does not distinguish between ordinals and integers: it sets condition
code bits 0 and 1 regardless of datatype.

Action: dst— src2-srcl + AC.ccl;
AC.cc— 0CVy;
#Vis 1if integer subtraction would have generated an overflow,
# 0 otherwise
#Cis Carry out of the ordinal addition of src2 to not (srcl) and
# carry in.
Faults: Type Mismatch. Non-supervisor reference of a sfr.
Example: subc g5, g6, g7 # g7 - g6 - g5 - not(Carry Bit)
Opcode: subc 5B2H REG
See Also: addc, addi, addo, subi, subo
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9.3.56

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

9-76

subi, subo
subi Subtract Integer
subo Subtract Ordinal
sub* srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Subtracts srcl from src2 and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that subi can
signal an integer overflow.

dst = src2 - srcl;

Type
Arithmetic

subi g6,

subi
subo

Mismatch. Non-supervisor reference of a sfr.

Integer Overflow. Result too large for destination register (subi
only). Result’s least significant 32 bits are stored in dst. If
overflow occurs and AC.om=1, the fault is suppressed and
AC.of issettoal. Theleast significant 32 bits of the result are
stored in dst.

09, gl2 # gl12 - g9 - g6

593H REG
592H REG

addi, addo, subc, addc
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0357  Ssyncf

Mnemonic: syncf Synchronize Faults

Format: syncf

Description: Waits for al faults to be generated that are associated with any prior
uncompleted instructions.

Action: if (AC.nift 1)

wait until no imprecise faults can occur associated with
instructions which have begun, but are not completed.;

Faults:

Example: ld xyz, g6
addi r6, r8, r8
syncf
and g6, OxFFFF, @8
# the syncf instruction ensures that any faults
# that may occur during the execution of the
# 1d and addi instructions occur before the
# and instruction is executed

Opcode: syncf 66FH REG

See Also: mark, fmark
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9.3.58 SyS Ctl (80960Cx Processor Only)
Mnemonic: sysctl System Control
Format: sysctl srcl, src2, src3;
reg/lit/sfr reg/lit/sfr reg/lit
message, type
Description: Processor control function specified by the message field of srcl is executed.
The type field of srcl is interpreted depending upon the command.
Remaining srcl bits are reserved. The src2 and src3 operands are also
interpreted depending upon the command.
The srcl operand is interpreted as follows:
31 16 15 8 70
srcl FIELD 2 MESSAGE TYPE FIELD 1

The following table lists i960 Cx processor commands.

Srcl Src2 Src3
Message

Type Field 1 Field 2 Field 3 Field 4
Request 00H Vector Number N/U N/U N/U
Interrupt
Invalidate 01H N/U N/U N/U N/U
Cache
Configure 02H Cache Mode Configuration (see N/U Cache load N/U
Cache table) N/U address
Reinitialize 03H N/U N/U 1st Inst. PRCB

address address

Load Control 04H Register Group Number N/U N/U N/U
Register

NOTE: Sources and fields which are not used (designated N/U) are ignored.

When executing a sysctl instruction to load and lock either half or all of the cache, it is necessary
to provide a cache load address. The last two bits of the cache load address must be 10, for the
cache locking mechanism to work properly.
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Table 9-5. Cache Configuration Modes

Mode Field Mode Description CA CF
000, normal cache enabled 1 Kbyte 4 Kbytes
XX1, full cache disabled 1 Kbyte 4 Kbytes
100, Load and lock full cache (execute off-chip) 1 Kbyte 4 Kbytes
Load and lock half the cache;
110, remainder is normal cache enabled 512 bytes 2 Kbytes
010, Reserved 1 Kbyte 4 Kbytes
Action: temp - srcl;

tmpmessage = (temp and 0xf0) >> 8;
switch (tmpmessage)

case 0:

case 1:

case 2:

# Signal an Interrupt
post_interrupt(temp and Oxf);
break;

# Invalidate the I nstruction Cache
invalidate instruction_cache;
break;

# Configure Instruction Cache

tmptype = (srcl and 0xff);

if (tmptype.bitO = 1) disable_instruction_cache;
elseif (tmptype = 0x0) enable_1k_instruction_cache;
elseif (tmptype = 0x4)

{ # Load and freeze 1k cache

instr_cache = memory_1k(src2); # load 1k bytes
freeze 1k instruction_cache;

}
elseif (tmptype =0x 6)
{ # Load and freeze 512 bytes of cache

instr_cache = memory_512(src2) # load 512 bytes
freeze 512 instruction cache;

}

else Reserved;
break;
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Faults:

Example:

Opcode:

case 3:

case 4.

default:

| dconst Cl ear_cache, g6
sysctl r6,r7,r8

be upl oaded_code

sysctl

# Software Reset

temp - src2;

load PRCB pointed to by src3;
IP - temp;

break;

# Load One Group of Control Registers

# from the Control Table

temp [0-3] = memory_quad (Control Table Base + group
offset);

for (i— 0;i<3;i- i+1) control_reg[i] = temp[i];
break

Operation invalid-operand fault;

Unimplemented. Attempted to execute unimplemented
command.

set clear cache nessage
execut e cache inval
dation

r7, r8 are dumm es here
branch to code whi ch was
upl oaded

H O HHHF R

659H REG

NOTE:

When a modify-process-controls (modpc) instruction causes a program’s
priority to be lowered, other 1960 processor family members check for pending
interrupts in the memory-based interrupt table; the 1960 Cx device internally
stores the priority of the highest pending interrupt found in the interrupt table's
pending interrupts field. To improve performance, the stored priority is checked
— rather than the memory-based interrupt table — when modpc changes a
process priority. The internal priority value is updated each time an interrupt is
posted using sysctl.
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Mnemonic:

Format:

Description:

Action:

Faults:

INSTRUCTION SET REFERENCE

TEST

teste{.t|.f}  Test For Equa
testne{.t|.f} Test For Not Equal
testl{.t|.f} Test For Less

testle{.t|.f} Test For Less Or Equal
testg{.t|.f}  Test For Greater
testge{.t|.f} Test For Greater Or Equal
testo{.t|.f}  Test For Ordered
testno{.t|.f} Test For Not Ordered

test*{.t|.f}  dst
reg/sfr

Storesatrue (01H) in dst if the logical AND of the condition code and opcode
mask-part is not zero. Otherwise, the instruction stores a false (O0OH) in dst.
For testno (Unordered), a true is stored if the condition code is 000,,
otherwise afalseis stored.

The following table shows the condition-code mask for each instruction. The
mask isin bits 0-2 of the opcode.

Instruction Mask Condition
testno 000, Unordered
testg 001, Greater
teste 010, Equal
testge 011, Greater or equal
testl 100, Less
testne 101, Not equal
testle 110, Less or equal
testo 111, Ordered

The optional .t or .f suffix may be appended to the mnemonic. Use .t to speed-
up execution when these instructions usually store atrue (1) condition in dst.
Use .f to speed-up execution when these instructions usually store a false (0)
condition in dst. If a suffix is not provided, the assembler is free to provide
one.

For all instructions except testno:
if ((mask and AC.cc) = 000,) dst = 0x1;
elsedst - OxO;

testno:
if (AC.cc =000,) dst ~ 0x1;
elsedst— OxO;

Type Mismatch. Non-supervisor reference of a sfr.
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Example:

Opcode:

See Also:

9-82

# assume AC.cc = 100,

testl g9 # g9 -
teste 22H
testne 25H
testl 24H
testle 26H
testg 21H
testge 23H
testo 27H
testno 20H

cmpi, cmpdeci, cmpinci

0x00000001

COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR

tel.
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9.3.60 u d ma (80960Cx Processor Only)

Mnemonic: udma Update DMA-Channel RAM

Format: udma

Description: The current status of the DMA channels is written to the dedicated DMA
RAM.

Action: for (i =0to 3) dma ram[i] = dma_status channel[i];

Example: udma # update status to dma ram
I dq Channel _3 ramr4 # read current pointers

# and byte count for dma
# channel 3

Opcode: udma 631H REG

See Also: sdma

9-83



INSTRUCTION SET REFERENCE In e ©

9.3.61

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

9-84

Xnor, Xor

xnor Exclusive Nor

xor Exclusive Or

xnor srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

xor srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)
operation on the src2 and srcl values and stores the result in dst.

xnor: dst = not (src2 xor srcl);

XOr: dst = src2 xor srcl;

Type Mismatch. Non-supervisor reference of a sfr.
xnor r3, r9, rl2 #1rl12 = r9 XNOR r3
xor gl, g7, g4 # g4 - g7 XOR gl
xnor 589H REG

xor 586H REG

and, andnot, nand, nor, not, notand, notor, or, ornot
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CHAPTER 10
THE BUS CONTROLLER

This chapter serves as a guide for a software developer when configuring the bus controller. It
overviews bus controller capabilities and implementation and describes how to program the bus
controller. System designers should reference CHAPTER 11, EXTERNAL BUS DESCRIPTION
for afunctional description of the bus controller.

10.1 OVERVIEW

The bus controller supports a synchronous, 32-bit wide, demultiplexed external bus which consists
of 30 address lines, four byte enables, 32 data lines, two clock outputs and control and status
signals. The bus controller manages instruction fetches, data loads/stores and DMA transfer
requests. Bus management is accomplished by queuing bus requests; this effectively decouples
instruction execution speed from external memory access time.

Load and store instructions — the program’s interface to the bus controller — work on ordinal
(unsigned) or integer (signed) data. A single load or store instruction can move from 1 to 16 bytes
of data. The bus controller also handles instruction fetches, which read either 8 bytes (two words)
or 16 bytes (four words).

The bus controller divides the flat 4 Gbyte memory space into 16 regions; each region has
independent software programmable parameters that define data bus width, ready control, number
of wait states, pipeline read mode, byte ordering and burst mode. These parameters are stored in
the memory region configuration registers MCON 0-15. Each memory region is 228 bytes
(256 Mbytes).

The purpose of configurable memory regions is to provide system hardware interface support.
Regions are transparent to the software. The address’ upper four bits (A31:28) indicate which
region is enabled.

A data bus width parameter in each MCON register configures the external data bus as an 8-, 16-
or 32-bit bus for aregion. This parameter determines byte enable signal encoding and the physical
location of data on data bus pins.

When a burst bus mode is enabled, a single address cycle can be followed with up to four data
cycles. This mode enables very high speed data bus transfers. When disabled, accesses appear as
one data cycle per address cycle. The burst bus mode can be enabled or disabled on a region-by-
region basis.
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A programmable wait state generator inserts a programmed number of wait states into any
memory access. These wait states, independently programmable by region, can be specified
between:

»  address and data cycles

e consecutive data cycles of burst accesses

» thelast data cycle and the address cycle of the next request

An external, memory-ready input permits the user’'s hardware to insert wait states into any

memory cycle. This pin works with the wait state generator and is enabled or disabled on aregion-
by-region basis.

Pipelined read mode provides the highest data bandwidth for reads and instruction fetches. When a
region is programmed for pipelined reads, the next read’ s address cycle overlaps the current read’s
data cycle.

The bus controller supports big and little endian byte ordering for memory operations. Byte
ordering determines how data is read from or written to the bus and ultimately how data is stored
in memory.

10.2 MEMORY REGION CONFIGURATION

Programmable memory region configurations simplify external memory system designs and
reduce system parts count. Certain bus access characteristics may be programmed. This
programmed bus scheme allows accesses made to different areas (or regions) in memory to have
different characteristics. For example, one area in memory can be configured for slow 8-bit
accesses, this is optimal for peripherals. Another area in memory can be configured for 32-bit
wide burst accesses; this is optimal for fast DRAM interfaces. Bus function in each region is
determined by the memory region configuration. The following bus characteristics are selected for
each region:

»  Selectable 8-, 16- or 32-bit-wide data bus

*  Programmable high performance burst access

» Fivewait state parameters

»  Memory-ready and burst cycle terminate for dynamic access control
*  Programmable pipelined reads

* Bigor little endian byte order
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These characteristics can be programmed independently for accesses made to each of 16 different
regions in memory. The value of the memory address upper four bits (A31:28) determine the
selected region. Memory region configuration affects all accesses to the addressed memory region.
L oads, stores, DMA transfers and instruction fetches all use the parameters defined for the region.

Programming region characteristics is accomplished by setting values in the memory region
configuration (MCON) registers. A separate register allows the user to program the characteristics
for each of the 16 memory regions. Memory region configuration registers are described in section
10.3, “PROGRAMMING THE BUS CONTROLLER” (pg. 10-5). The following subsections
describe the i960 Cx processors programmable bus characteristics.

10.2.1 Data Bus Width

Each region’s data bus width is programmed in the memory region configuration table. The i960
CX processors allow an 8-, 16- or 32-bit-wide data bus for each region. Byte enable signals
encoded in each region provide the proper address for 8-, 16- or 32-bit memory systems. The i960
CX processors use the lower order data lines when reading and writing to 8- or 16-bit memory.

10.2.2 Burst and Pipelined Read Accesses

To improve bus bandwidth, the i960 CX devices provide a burst access and pipelined read access.
These burst and pipelining modes are separately enabled or disabled for each memory region by
programming the memory region configuration table.

When burst access is enabled, the bus controller generates an address — the burst address —
followed by one to four data transfers. The lower two address bits (A3:2) are incremented for each
consecutive data transfer. Burst accesses facilitate the interface to fast page mode DRAM; wait
states following the address cycle and wait states between data cycles can be controlled indepen-
dently. Data cycle timeis typically afraction of address cycle time. This provides an optimal wait
state profile for fast page mode DRAM.

When address pipelining is enabled, the next read address is asserted in the last data cycle of the
current read access. Pipelining makes the address cycle invisible for back-to-back read accesses.

10.2.3 Wait States

A wait state generator within the bus controller generates wait states for a memory access. For
many memory interfaces, the internal wait state generator eliminates the necessity to externally
generate a memory ready signal to indicate avalid data transfer.

Typically, extra clock cycles — wait states — are associated with each data cycle. Wait states
provide the required access times for external memory or peripheras. Five parameters,
programmed for each region define wait state generator operation. These parameters are:
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NRrAD Number of wait cycles for Read Address-to-Data. The number of wait states
between address cycle and first read data cycle. Programmable for 0-31 wait
states.

NrpD Number of wait cycles for Read Data-to-Data. The number of wait states
between consecutive data cycles of a burst read. Programmable for 0-3 wait
states.

Nwabp Number of wait cycles for Write Address-to-Data. The number of wait states
that data is held after the address cycle and before the first write data cycle.
Programmable for 0-31 wait states.

Nwbb Number of wait cycles for Write Data-to-Data. The number of wait states that
datais held between consecutive data cycles of a burst write. Programmable for
0-3 wait states.

Nxpa Number of wait cycles for X (read or write) Data-to-Address. The minimum

number of wait states between the last data cycle of a bus regquest to the address
cycle of the next bus request. Nypa appliesto read and write requests. Program-
mable for 0-3 clocks.

Nrap @nd Nywap describe address-to-data wait states. Ngpp and Nypp specify the number of
wait states between consecutive data when burst mode is enabled. Nrpp and Nyypp are not used
in non-burst memory regions.

Nxpa describes the number of wait states between consecutive bus requests. Nypa is the bus
turnaround time. An external device's ability to relinquish the bus on a read access (read
deasserted to data float) determines the number of Nypa cycles.

NOTE:

For pipelined read accesses, the bus controller uses avalue of zero (0) for Nypa,
regardless of the parameter's programmed value. A non-zero Nypp value
defeats the purpose of pipelining. The programmed value of Nypa is used for
write requests to pipelined memory regions, as the 1960 CX processor does not
support pipelined write accesses.

The ready (READY) and burst terminate (BTERM) inputs dynamically control bus accesses.
These inputs are enabled or disabled for each memory region. READY extends accesses by
forcing wait states. BTERM allows a burst access to be broken into multiple accesses, with no lost
data. The memory region registers are programmed to enable or disable these inputs for each
region.
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READY and BTERM work with the programmed internal wait state counter. If READY and
BTERM are enabled in aregion, these pins are sampled only after the programmed number of wait
states expire. If the inputs are disabled in aregion, the inputs are ignored and the internal wait state
counter alone determines access wait states. Refer to section 11.2.1, “Wait States’ (pg. 11-4) for
details on the operation of the READY and BTERM inputs.

NOTE:

READY and BTERM must be disabled in regions where pipelined reads are
enabled.

10.2.4 Byte Ordering

Byte ordering determines how data is read from or written to the bus and ultimately how data is
stored in memory. Byte ordering can be individually selected for each memory region by setting a
bit in the corresponding MCON register. The bus controller supports big endian and little endian
byte ordering for memory operations:

little endian The controller reads or writes a data word’s least-significant byte to the bus
eight least-significant data lines (D7:0). Little endian systems store a word’s
least-significant byte at the lowest byte address in memory. For example, if a
little endian ordered word is stored at address 600, the least-significant byte is
stored at address 600 and the most-significant byte at address 603.

big endian The controller reads or writes a data word’s least-significant byte to the bus
eight most-significant data lines (D31:24). Big endian systems store the least-
significant byte at the highest byte address in memory. So, if a big endian
ordered word is stored at address 600, the least-significant byte is stored at
address 603 and the most-significant byte at address 600.

10.3 PROGRAMMING THE BUS CONTROLLER

The bus controller is programmed using 17 control registers, 16 of which are MCONO-15; the
remaining one is the Bus Configuration (BCON) register. Control registers are automatically
loaded at initialization from the control table in external memory. Control registers are modified by
using the load control registers message of the system control (sysctl) instruction. See section 2.3,
“CONTROL REGISTERS’ (pg. 2-6) for control register definition.
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10.3.1 Memory Region Configuration Registers (MCON 0-15)

The control table contains 16 memory region control registers MCON 0-15. Each specifies:

* number of wait states * burst mode
» databuswidth » pipeline mode
» byte ordering » external ready mode for the region that it controls

An address' four most-significant bits indicate which region is being accessed. Each MCON
register is 32 bits wide (see Figure 10-1 and Figure 10-2); however, not all bits are currently used.
Table 10-1 defines MCON 0-15 register’ s programmabl e bits.

Address Address Space Memory Region Table Entry
Configuration 31 0
0000 0000H Region 0 Table
(256 MBytes)
\\ —7
1000 0000H ~o f _—
Regions 1-12 b Entry 0 / -
% % Entries 1-12 / ////
< : Y -
/'//
D000 0000H Region 13 -« -
——— Entry 13
(256 MBytes) il -
E Entry 14
E000 0000H Region 14 - ny
(256 MBytes) L Entry 15
F000 0000H Region 15 -
EEFF FFEFH (256 MBytes) 4~ F_CAQ027A

Figure 10-1. MCON 0-15 Registers Configure External Memory
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Burst Enable
(0) disabled
(1) enabled

READY/BTERM Enable
(0) disabled
(1) enabled

Read Pipelining Enable
(0) disabled
(1) enabled

Ngrap Wait States
0-31 wait states

Nrpp Wait States
0-3 wait states
Nxpa Wait States
0-3 wait states
Nwap Wait States
0-31 wait states
Nwpp Wait States
0-3 wait states

31 28 24 20 [ I Il

L 16 12 8 4 0
Reserved T Bus Width
(Initialize To 0) (00) 8-bit bus
— (01) 16-bit bus
(10) 32-bit bus
(11) reserved
Byte Order
(0) little endian
(1) big endian
Data Cache Enable (1960 CF processor only)
_ ) ) (0) disabled
Memory Region Configuration (1) enabled
Register (MCON 0-15) F_CA028A

Figure 10-2. Memory Region Configuration Register (MCON 0-15)
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Table 10-1. MCONO-15 Programmable Bits

Entry Name Bit # Definition
Burst Enable 0 | Enables or disables burst accesses for the region.
READY/BTERM Enables or disables region’s READY and BTERM inputs. If disabled, READY and
1 )
Enable BTERM are ignored.
Read Pipelining 2 Enables or disables address pipelining of region’s read accesses. READY and
Enable BTERM are ignored during pipelined reads.
Ngap Wait States 3.7 Nurpber of Read Address-to-Data wait states in the region. (Programmed for 0-31
Wait States)
Ngpp Wait States 8-9 Number of Read Data-to-Data wait states in the region. (Programmed for 0-3 Wait
States)
Number of X (read or write) Data-to-Address wait states in the region.
Nypa Wait States | 10-11 | (Programmed for 0-3 Wait States). Nypa wait states are only inserted at the end
of a bus request.
. Number of Write Address-to-Data wait states in the region. (Programmed for 0-31
Nwap Wait States | 12-16 Wait States)
Nyop Wait States | 17-18 Number of Write Data-to-Data wait states in the region. (Programmed for 0-3 Wait
States)
Bus Width 19-20 Dete.rmlnes region’s data bus width. Effects encoding of byte-enable signals
BE3:0
Byte Ordering 22 | Selects region’s byte ordering: little endian or big endian.

10.3.2

Bus Configuration Register (BCON)

The Bus Configuration (BCON) register (Figure 10-3) is a 32-bit register that controls MCON 0-
15 and internal data RAM protection. Table 10-2 defines the BCON register’ s programmabl e bits.

Configuration Table Valid (BCON.ctv)
(0) table not valid
(1) table valid

Internal RAM Protection Enabled (BCON.irp)
(0) protection OFF
(1) protection ON

31 28

Reserved

24

Bus Configuration Register (BCON)

(Initialize to 0)

20 16 12 8 4 0

F_CA029A
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Table 10-2. BCON Register Bit Definitions

Entry Name Bit # Definition

When BCON.ctv bit is clear, all memory is accessed as defined by

Configuration Table Valid 0 MCON 0. When BCON.ctv bit is set, MCON 0-15 are used.

Enables supervisor write protection for internal data RAM at

Internal RAM Protection 1 address 100H to 3FFH.

10.3.3 Configuring the Bus Controller

The bus controller is configured automatically when the processor initializes. All MCON 0-15
values are loaded from the control table and the BCON.ctv hit is set (table valid) before the first
instruction of application code executes. The user only has to supply the correct value in the
control table in external memory. See CHAPTER 14, INITIALIZATION AND SYSTEM
REQUIREMENTS for more details on the processor’ s actions at initialization.

MCON 0-15 values may be altered after initialization by use of the sysctl instruction. It is
important to avoid altering an enabled MCON register while a bus access to that region is in
progress. It is acceptable, however, to write the same data to an enabled MCON register while a
bus access to that region is in progress. This consideration is especially important for MCON O,
when it is the master entry (BCON.ctv = 0).

10.4 DATA ALIGNMENT

Aligned bus reguests generate an address that occurs on a data type's natural boundary. Quad
words and triple words are aligned on 16-byte boundaries; double words on 8-byte boundaries;
words on 4-byte boundaries; short words (half words) on 2-byte boundaries; bytes on 1-byte
boundaries.

Unaligned bus requests do not occur on these natural boundaries. Any unaligned bus request to a
little endian memory region is executed; however, unaligned reguests to big endian regions are
supported only if software adheres to particular address alignment restrictions.

The processor handles all unaligned bus requests to little endian memory regions. It executes
unaligned little endian requests as several aligned requests. This method of handling an unaligned
bus request results in some performance loss compared to aligned requests: microcode uses CPU
cycles to generate aligned requests and more bus cycles are used to transfer unaligned data.

The processor may generate an operation-unaligned fault when any unaligned request is
encountered. This fault can be masked with the PRCB fault configuration word.
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When the processor encounters an unaligned request, microcode breaks the unaligned request into
a series of aligned requests. For example, if a read request is issued to read a little endian word
from address XX XX XXX1H (unaligned), a byte request followed by a short request followed by
a byte request is executed. Figure 10-4 and Figure 10-5 show how aligned and unaligned bus
transfers are carried out for memory regions that use little endian byte ordering.

If the unaligned fault is not masked, the bus controller executes the unaligned access — the same
as it does when the fault is masked — and signals an operation-unaligned fault. The unaligned
access fault can be used as a debug feature. Removing unaligned memory accesses from an
application increases performance.

NOTE:

When an unsupported unaligned bus request to a big endian region is attempted,
the bus controller handles the transfer exactly the same asit does for little endian
regions; that is, it treats the data as little endian data. Thus, the data is not stored
coherently in memory.
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Byte Offset 0 4 8 12 16 20 24
T " T " T "1 "T1T "1 "1 "1 "1 "1 T
Word Offset 1 2 3 4 5 6
Short Request (Aligned)
Byte, Byte Requests
Short-Word
Load/Store .
Short Request (Aligned)
Byte, Byte Requests
Word Request (Aligned)
Byte, Short, Byte, Requests
Word
Load/Store
Short, Short Requests
Byte, Short, Byte Requests
One Double-Word Burst (Aligned)
Byte, Short, Word, Byte Requests
Short, Word, Short Requests
Double-Word
Load/Store Byte, Word, Short, Byte Requests
Word, Word Requests
One Double-Word
Request (Aligned)
- F_CX048A

Figure 10-4. Summary of Aligned-Unaligned Transfers for Little Endian Regions
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0
Byteoffsetlll,|,||||||||||||

Word Offset 0 1 2 3

One Three-Word
Request (Aligned)

Byte, Short, Word,
Word, Byte Requests

Triple-Word Short, Word, Word,
Load/Store Short Requests

Byte, Word, Word,
Short, Byte Requests

Word, Word,
Word Requests

Word, Word,
Word Requests

Word,
Word,
Word
Requests

One Four-Word
Request (Aligned)

Byte, Short, Word, Word,
Word, Byte Requests

Quad-Word Short, Word, Word, Word,
Load/Store Short Requests

Byte, Word, Word, Word,
Short, Byte Requests

Word, Word, Word,
Word Requests

Double-Word,
Double-Word
Requests

F_CXO049A

Figure 10-5. Summary of Aligned-Unaligned Transfers for Little Endian Regions (continued)
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10.5 INTERNAL DATA RAM

The 1960 Cx processor contains 1 Kbyte of user-visible internal data RAM which is mapped into
the first 1 Kbyte of the address space (addresses 00H — 3FFH). Internal data RAM is accessed only
by loads, stores or DMA transfers. Instruction fetches directed to these addresses cause an
operation-unimplemented fault to occur.

A portion of this internal data RAM is optionally used to store DMA status, cached interrupt
vectors and, in some applications, cached local registers. The remaining data RAM can be used by
application software. Refer to section 2.5.4, “Internal Data RAM” (pg. 2-12).

Internal data RAM interfaces directly to an internal 128-bit bus. This bus is the pathway between
registers and data RAM. Because of the wide internal path, a quad word read or write is usually
performed in a single clock.

10.6 BUS CONTROLLER IMPLEMENTATION

The bus controller consists of four units (see Figure 10-6):
*  busqueue

» datapacking unit

e trangdlation unit

*  sequencer

The 1960 Cx processors’ instruction fetch unit, execution unit and DMA unit all pass memory

requests to the bus controller unit which arbitrates, queues and executes these requests.
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Queue Unit
128
Store Data —4—>
128 32, Packing 32 Data
/ .
Load Data <—f— Unit
32 Address
A 7
| v
— Address Bus
32 Sequencer Pin
Address Translation | Unit <] Control |«—> Data Bus
Unit
<—> Control
A31:28],
Control I: 1 Configuration
Data

. > Memory Region
16 Entries Configuration Table

(MCON 0-15)

- F_CAO032A

Figure 10-6. Bus Controller Block Diagram

10.6.1 Bus Queue

The bus controller has a queue which contains entries for up to three bus requests. Each queue
entry consists of a 32-bit address, up to 128 bits of data (four words) and control information. The
bus queue decouples high bandwidth (128-bit-wide data) internal data buses from the lower
bandwidth (32-bit-wide data) external bus.

Two of these queue entries are reserved for bus requests generated from user code. The third queue
entry is used by the DMA controller. If no DMA channels are set up, the third slot is also used by
user code. User requests are serviced in a first-in, first-out (FIFO) manner. The DMA does not
issue back-to-back requests; therefore, the CPU is guaranteed access to the external bus between
DMA accesses, thus allowing the user and DMA processes to execute concurrently while sharing
the external bus.

Queue depth affects bus request and interrupt latency. Queued requests must be serviced before
the pending request can be serviced. If aninterrupt occurs when all three bus queue entries are full,
the three outstanding requests must be serviced before the first interrupt instruction may be
fetched from memory.
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10.6.2 Data Packing Unit

The data packing unit handles data movement between queues and external bus. It controls data
alignment and data packing:

» Dataisunpacked when data store request width exceeds physical bus width

» Datais packed when data load request width exceeds physical bus width

If a word load is issued to an 8-bit bus, the bus controller issues four 1-byte reads and the data
packing unit assembles incoming datainto a single word. If a quad word-store isissued to an 8-bit

bus, the bus controller issues four 4-byte writes and the data packing unit unpacks the outgoing
data.

10.6.3 Bus Translation Unit and Sequencer

The bus translation unit is responsible for looking up the memory configuration in the region table.
The look-up is based on the bus request’ s address. The bus request and region table data are passed
to the bus sequencer when the external busis available. The sequencer then breaks the request into
a set of bus accesses; this generates the signals on the external bus pins.

10-15
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CHAPTER 11
EXTERNAL BUS DESCRIPTION

This chapter discusses the bus pins, bus transactions and bus arbitration. It shows waveforms to
illustrate some common bus configurations. This chapter serves as a guide for the hardware
designer when interfacing memory and peripherals to the i960® Cx processors. For further details
on external bus operation, refer to APPENDIX B, BUS INTERFACE EXAMPLES. For
information on bus controller configuration, refer to CHAPTER 10, THE BUS CONTROLLER.
For pin descriptions, refer to the 80960CA and CF data sheets.

111 OVERVIEW

The 1960 Cx processors' integrated bus controller and external bus provide a flexible, easy-to-use
interface to memory and peripherals. All bus transactions are synchronized with the processor
clock outputs (PCLK2:1); therefore, most memory system control logic can be implemented as
state machines. The internal programmable wait state generator, external ready control signals, bus
arbitration signals, data transceiver control signals and programmable bus width parameters all
combine to reduce system component count and ease the design task.

1112 Terminology: Requests and Accesses

The terms request and access are used frequently when referring to bus controller operation. The
description of the bus modes and burst bus operation is simplified by defining these terms.

11111 Request

The terms request, bus request or memory request describe interaction between the core and bus
controller. The bus controller is designed to decouple, as much as possible, bus activity from
instruction execution in the core. When aload or store instruction or instruction prefetch is issued,
the core delivers a bus request to the bus controller unit.

The bus controller unit independently processes the request and retrieves data from memory for
load instructions and instruction prefetches. The bus controller delivers data to memory for store
instructions. The 1960 architecture defines byte, short word, word, double word, triple word and
guad word data lengths for load and store instructions.

When aload or store instruction is encountered, the core issues to the bus controller a bus request
of the appropriate data length: for example, Idq requests that four words of data be retrieved from
memory; stob requests that a single byte is delivered to memory.
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The processor fetches instructions using double or quad word bus requests. Its microcode issues
load and store requests to perform DMA transfers.

11.1.1.2 Access

The terms access, bus access or memory access describe the mechanism for moving data or
instructions between the bus controller and memory. An access is bounded by the assertion of
ADS (address strobe) and BLAST (burst last) signals, which are outputs from the processor. ADS
indicates that a valid memory address is present and an access has started. BLAST indicates that
the next data which is transferred is the end of access. The bus controller can be configured to
initiate burst, non-burst or pipelined accesses. A burst access begins with ADS followed by two to
four data transfers. The last data transfer is indicated by assertion of BLAST. Non-burst accesses
begin with assertion of ADS followed by a single data transfer. Pipelined accesses begin on the
same clock cycle in which the previous cycle completes. This is accomplished by asserting ADS
and avalid address during the last data transfer of the previous cycle. Pipelined accesses may also
be burst or non-burst.

The bus controller can be configured for various modes to optimize interfaces to external memory.
Access type — burst, non-burst or pipelined — is selected when the bus controller is configured.

11.1.2 Configuration

The bus controller can be configured in various ways. Bus width and access type can be set based
on external memory system requirements. For example, peripheral devices commonly have slow,
non-burst, 8-bit buses. The bus controller can be configured to make memory accesses to these 8-
bit non-burst devices. Each memory access to the peripheral begins with assertion of ADS and a
valid address. BLAST is asserted and, after the desired number of wait states, eight bits of dataare
transferred.

A peripheral device is accessed as described above regardless of which bus reguest type is issued.
For example, if a program includes a Id (word load instruction) from the peripheral, the load is
executed as four 8-bit accesses to the peripheral.

11.2 BUS OPERATION

As described in Table 11-1, the i960 Cx processor bus consists of 30 address signals, four byte
enables, 32 data lines and various control and status signals. Some signals are referred to as status
signals. A status signal is valid for the duration of a bus request. Other signals are referred to as
control signals. Control signals are used to define and manage a bus request. This chapter defines
the bus pins and pin function.
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Table 11-1. Bus Controller Pins

Pin Name Description Input/Output
PCLK2:1 Processor Output Clocks (0]
D31:0 Data Bus 110
A31:2 Address Bus O

Control Signals:
BE3:0 Byte Enables o}
ADS Address Strobe o)
WAIT Wait States o)
BLAST Burst Last o)
READY Memory Ready I
BTERM Burst Terminate [
DEN Data Enable o)

Status Signals:
W/R Write/Read o)
DTR Data Transmit/Receive o)
D/IC Data/Code Request o}
DMA DMA Request o}
SuP Supervisor Mode Request o)

Bus Arbitration:
HOLD Hold Request |
HOLDA Hold Acknowledge (0]
LOCK Locked Request o)
BREQ Bus Request Pending (0]
BOFF Bus Backoff I

A bus access starts with an address cycle; address cycle is defined by the assertion of address
strobe (ADS). Address and byte enables (A31:2 and BE3:0 are also presented in the address cycle.

After the address cycle, extra clock cycles called wait states may be inserted to accommodate the
access time for external memory or peripherals. For write accesses, the data lines are driven during
wait states. For read accesses, data lines float. Wait states are discussed in section 11.2.1, “Wait
States’ (pg. 11-4).

A data cycle follows wait states. For write accesses, the data cycle is the last clock cycle in which
valid datais driven onto the data bus. For read accesses, external memory must present valid data
on therising edge of PCLK2:1 during the data cycle. Setup and hold time for input datais specified
in the 80960CA and CF data sheets.
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A bus access may be either non-burst or burst. A non-burst access ends after one data cycle to a
single memory location. A burst access involves two to four data cycles to consecutive memory
locations. BLAST — the burst last signal — is asserted to indicate the last data cycle of an access.
section 10.2.2, “Burst and Pipelined Read Accesses’ (pg. 10-3) explains how to configure the bus
controller for burst or non-burst accesses.

Read accesses may be pipelined. (Write accesses are not pipelined in thei960 CX architecture.) In
a pipelined access, the data cycle and address cycle of two accesses overlap. This is possible
because address and data lines are not multiplexed. A valid address can be presented on the
address bus while a previous access ends with a data transfer on the data bus. section 10.2.2,
“Burst and Pipelined Read Accesses’ (pg. 10-3) explains how to configure the bus for pipelined
accesses.

WI/R is a status signal which discerns between a write request (store) or a read request (load or
prefetch).

DT/R and DEN pins are used to control data transceivers. Data transceivers may be used in a
system to isolate a memory subsystem or control loading on data lines. DT/R is used to control
transceiver direction; the signal is low for read requests and high for write requests. DT/R is valid
on the falling PCLK 2:1 edge during the address cycle. DEN is used to enable the transceivers; it is
asserted on the rising PCLK2:1 edge following the address cycle. DT/R and DEN timings ensure
that DT/R does not change when DEN is asserted.

D/C, DMA and SUP provide information about the source of bus request. D/C indicates that the
current request is data or a code fetch. DMA indicates that the current request is a DMA access.
SUP indicates that the current request was originated by a supervisor mode process. When used
with alogic analyzer, these signals aid in software debugging.

D/C may also be used to implement separate external data and instruction memories. SUP can be
used to protect hardware from accesses while the processor is not in user mode.

The busisin the idle state between bus requests. Idle bus state begins after Ny, cycles and ends
when ADS is asserted.

The bus controller aligns all bus accesses; non-aligned accesses are translated into a series of
smaller aligned accesses. Alignment is described in section 10.4, “DATA ALIGNMENT” (pg.
10-9).

11.2.1 Wait States

In non-burst mode, it is possible to insert wait states between the address and data cycle. In aburst
mode access, it is possible to insert wait states between the address cycle and data cycle and
between subsequent data cycles for a burst access. It is also possible to insert wait states between
bus accesses which occur back-to-back.
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The 1960 Cx processors bus controller provides an internal counter for automatically inserting
wait states. The bus controller provides control of five different wait state parameters. Figure 11-1
and the following text describe each parameter.

NraD

Nrpp

Nwab

Nwpb

Nxpa

Number of wait cycles for Read Address-to-Data. The number of wait states
between the address cycle and first read data cycle. Ngap can be programmed
for 0-31 wait states.

Number of wait cycles for Read Datato-Data. The number of wait states
between consecutive data cycles of aburst read. Ngpp can be programmed for O-
3 wait states.

Number of wait cyclesfor Write Address-to-Data. The number of wait states that
data is held after the address cycle and before the first write data cycle. N\yap
can be programmed for 0-31 wait states.

Number of wait cycles for Write Data-to-Data. The number of wait states that
data is held between consecutive data cycles of a burst write. Ny,pp can be
programmed for 0-3 wait states.

Number of wait cycles for X (read or write) Data to Address. The minimum
number of wait states between the last data cycle of a bus request to the address
cycle of the next busrequest. Ny, appliesto read and write requests. Nypa can
be programmed for 0-3 clocks.

Nrap ad Nyap describe address-to-datawait states, Ngpp and Nypp specify the number of wait
states between consecutive data when burst mode is enabled. Ngpp and Nypp are not used in non-
burst memory regions.

Nxpa describes the number of wait states between consecutive bus requests. Nypa 1S the bus
turnaround time. An external device's ability to relinquish the bus on a read request (read
deasserted to data-float) determines the number of Nypa cycles.

NOTE:

Nxpa States are only inserted after the last data transfer of a bus request.
Therefore, for requests composed of multiple accesses, Nyp, States do not
appear between each access. For example, on an 8-bit burst bus, Nypa states are
inserted only after the fourth byte of a word request rather than after every byte.
(See Figure 11-2.)

11-5



EXTERNAL BUS DESCRIPTION In e ©

|
A31:2 * A3:2=00 X A3:2=01 X Invalid X

w [ _
—\

BLAST

WAIT

A31:2 B ] A3:2=00 X A3:2=01 X Invalid X
D31:0 [ —< Valid (00) X Valid (01) >
= [\ \_

s [ \J

WATT : _\ /—\ / F_CAO033A

Figure 11-1. Internal Programmable Wait States

For pipelined read accesses, the bus controller uses a value of zero for the Nypa parameter,
regardless of the programmed value for the parameter. A non-zero Nypa value defeats the purpose
of pipelining. The programmed value of Nypa is used for write requests to pipelined memory
regions.
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The processor asserts the WAIT signal when Ngap, Nwap, Nrpp O N\wpp are inserted. WAIT
can be used as aread or write strobe for the external memory system.

Wait states can also be controlled with READY and BTERM. These inputs are enabled or disabled
in aregion by programming the memory region configuration table. Refer to section 10.2.3, “Wait
States’ (pg. 10-3) for details on setting up bus controller for wait states.

When enabled, READY indicates to the processor that read data on the busis valid or awrite data
transfer has completed. The READY pin value is ignored until the Ngrap, Nrpps Nwap O Nwop
wait states expire. At thistime, if READY is deasserted (high), wait states continue to be inserted
until READY is asserted (low).

Nxpa Wait states cannot be extended by READY. The READY input is ignored during the idle
cycles, the address cycle and Nypa cycles. READY is also ignored in memory regions where
pipelining is enabled, regardless of memory region programming. For proper operation, the
READY inputs should be disabled in regions that have pipelining enabled.

The burst terminate signal (BTERM) breaks up a burst access. Asserting BTERM (low) for one
clock cycle completes the current data transfer and invokes another address cycle. This allows a
burst access to be dynamically broken into smaller accesses. The resulting accesses may also be
burst accesses. For example, if BTERM is asserted after the first word of aquad word burst, the bus
controller initiates another access by asserting ADS. The accompanying address is the address of
the second word of the burst access (A3:2 = 01,). The bus controller then bursts the remaining
three words. The BLAST (burst last) signal indicates the last data transfer of the access.

Read data is accepted on the clock edge that asserts BTERM; write data is assumed written.
BTERM effectively overrides the memory ready (READY') signal when it is asserted. In this way,
no data is lost when the current access is terminated. When BTERM is asserted, READY is
ignored until after the address cycle which resumes the burst. Aswith READY, BTERM isignored
when pipelining is enabled in a region, regardiess of how the region is programmed. For proper
operation, the BTERM inputs should be disabled in regions that have pipelining enabled.
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. § Byte § Bus Pipe- External
Function 3 Order 3 width | Nwop | Nwap | Nxpa | Nroo | Nrao | Lining ggﬁt%l Burst
Bit | 31.23 22 21 20-19 | 1817 | 16-12 | 11-10 9-8 7-3 2 1 0
Value 0 X 0 32-bit X X 1 X 0 OFF ]Disabled | Disabled
0..0 X 0 10 XX XXXXX 01 XX 00000 0 0 0
T Ti A D A D A D A D 1 A
rere [\_/—\_/_\_/_\_/—\_/_\_/—\_/_\_/_\_/_\_/_\_/_\I
ADS \ / \ ’ \ ’ \ ’ \
A31:4, SU_P Valid
DMA, D/C,
BE3:0, LOCK
WIR \ ,
BLAST \ ’ \ ’ \ ’ \ ’
DT/R \ /
DEN \ ’
WAIT Errata 10/31/94 SRB.
_ Wait signal incorrectly shown
as transitioning; it now correctly
A3:2 x A ;
X 00 X 01 X 10 X 1 X shows that the signal is
- asserted high throughout.
D31:0 ,‘ ( INO > \ IN1 )———-( IN2 )———-( IN3> ———————
F_CA039A
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. § Byte § Bus Pipe- External
Function 3 Order 2 width | Nwoo | Nwap | Nxoa | Nroo | Nrap | Lining gsﬁgé Burst
Bits | 5105 | 22 21 | 2019 | 1817 | 1612 | 11-10 | 98 7-3 2 1 0
Value 0 X 0 32-bit X X 1 1 2 OFF ) Enabled | Enabled
0..0 X 10 XX XXXXX 01 01 00010 0 1 1
Not Ready Burst Ready
Ready Terminate Ready
NrAD=2 l Nrpp=1 NRrAD=2 Nrop=1
A 2 1 W, D 1 D, A 2 1 D 1, w,6 D
AP _\_/ L/
A31:4,SUP [
DMA, D/C,
BE3:.0, LOCK
D31:0 X X X X
=L ./ U S\
READY /\ / \ ’ \ '
se| [0\ A
BLAST

Note: BLAST is asserted in the last data transfer when WAIT is deasserted;

BLAST stays asserted until the end of the data cycle.

F_CA033A

Figure 11-3. Bus Request with READY and BTERM Control
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11.2.2 Bus Width

Each region’s data bus width is programmed in the memory region configuration table. The i960
Cx processors allow an 8-, 16- or 32-bit-wide data bus for each region. The i960 Cx processors
place 8- and 16-bit data on low order data pins. This simplifies interface to external devices. As
shown in Figure 11-4, 8-bit data is placed on lines D7:0; 16-bit datais placed on lines D15:0; 32-
bit data is placed on lines D31:0.

D31:24

D23:16 A
D15:8 A
D7:0
i960° CA/CF
Microprocessor
| I

y 4
A31:2 : > sBiT :> 16-BIT > 32-BIT

Al
A0
Al BHE | BLE
BEO | | BEL BEL |BE3 | BEO BE3 |BE2 |BEL |BEO

BE3:0 |

F_CAOQ034A

Figure 11-4. Data Width and Byte Enable Encodings
The four byte enable signals are encoded in each region to generate proper address signals for 8-,
16- or 32-bit memory systems:
»  8-hitregion: BEO isaddressline AO; BE1 is address line Al

+  16-hit region: BE1 is address line A1; BE3 isthe byte high enable signal (BHE); BEO is
the byte low enable signal (BLE).

»  32-bit region: byte enables are not encoded. Byte enables BE3:0 select byte 3 to byte O,
respectively. Address lines A31:2 provide the most significant portion of the address.
(See Table 11-2.)
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For regions configured for 8- and 16-bit bus widths, data is repeated on the upper data lines for
aligned store operations. When storing a value to an 8-bit bus region, the processor drives the same
byte-wide data onto lines D7:0, D15:8, D23:16 and D31:24 simultaneously. When storing a value
to memory in a 16-bit bus region, the processor drives the same short-word data onto lines D15:0
and D31:16 simultaneously.

Table 11-2. Byte Enable Encoding

8-Bit Bus Width:

BYTE BE3 (X) BE2 (X) BEL (A1) BEO (A0)
0 X X 0 0
1 X X 0 1
2 X X 1 0
3 X X 1 1
16-Bit Bus Width:

BYTE BE3 (BHE) BE2 (X) BEL (A1) BEO (BLE)
0.1 0 X 0 0
23 0 X 1 0

0 1 X 0 0

1 0 X 0 1

2 1 X 1 0

3 0 X 1 1
32-Bit Bus Width:

BYTE BE3 BE2 BE1 BEO

0,1,2,3 0 0 0 0
23 0 0 1 1
0.1 1 1 0 0

0 1 1 1 0
1 1 1 0 1
2 1 0 1 1
3 0 1 1 1
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11.2.3 Non-Burst Requests
A basic request (non-burst, non-pipelined; see Figure 11-5) is an address cycle followed by a

single data cycle, including any optional wait states associated with the request. Wait states may be
generated internally by the wait state generator or externally using the i960 Cx processors

READY input.
Byte Bus Pipe- Egtergal
Order width | Nwop | Nwao | Nxoa | Nroo | Nrap | Lining Cgﬁrgl Burst

reserved'

reserved

Function
Bit 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 1 0
0 X 0 X X X 1 X 3 OFF jDisabled jDisabled
Value 0..0 X 0 XX XX XXXXX 01 XX 00011 0 0 0
A 3 2 1 D 1 A

SV AVAVAVAVAVAUAY
A\ |

m —
A31:2, BE3:0 : i Valid X
WIR : /
e S
DTRR : F

DEN / \ /
DMA, D/C, Valid
SUP, LOCK all
WAIT I: \ /
. 4 - -=-1-=- =4 - — —1—- - - L - - In - - - = -
D310 I: . F_CX027A

Figure 11-5. Basic Read Request, Non-Pipelined, Non-Burst, Wait-States
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Non-burst accesses and non-pipelined reads are the most basic form of memory access. Non-burst
regions may be used to memory map peripherals and memory that cannot support burst accesses.
Ready control may be enabled or disabled for the region.

Nraps Nwap and Ny pa wait state fields of aregion table entry control basic accesses:

*  NRgap specifies the number of wait states between address and data cycles for read
accesses.

*  Nyap Specifies the number of wait states between address and data cycle for write
accesses.

*  Nypa specifies the number of wait states between data cycle and next address cycle.
Data-to-data wait states (Nrpp, Nwpp) are not used if burst accesses are not enabled.

A read access begins by asserting the proper address and status signals (ADS, A31:2, BE3:0, SUPR,
D/C, DMA, W/R) on the rising clock edge that begins the address cycle (marked as “A” on the
figures). Assertion of ADS indicates the beginning of an access.

DT/R is driven on the clock’s next falling edge. This signal is asserted early to ensure that DT/R
does not change while DEN is asserted. DEN is asserted on the clock’ s next rising edge (the rising
edge in which ADS is deasserted and the address cycle ends). DEN can be used to control external
data transceivers.

The cycles that follow are Nrap wait states. WAIT is asserted while the internal wait state
generator is counting. If READY/BTERM control is enabled in this region and READY is not
asserted after the wait state generator has finished counting, wait states continue to beinserted until
READY is asserted.

BLAST assertion indicates end of data transfer cycles for this access. DEN is deasserted. Nypa
wait states (turnaround wait states) follow BLAST; a new address cycle may start after Nypa
cyclesexpire. Nypa states allow time for slow devicesto get off the bus. For thisfigure, this access
isthe last access of abus request because Nypp Wait states are inserted and DEN is deasserted.

11.2.4 Burst Accesses

A burst access is an address cycle followed by two to four data cycles. The two least-significant
address signals automatically increment during a burst access.

Maximum burst size is four data cycles. This maximum is independent of bus width. A byte-wide
bus has a maximum burst size of four bytes; a word-wide bus has a maximum of four words. If a
quad word load request (e.g., Idq) is made to an 8 bit data region, it results in four 4-byte burst
accesses. (See Table 11-3.)
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reserved '
reserved '

Byte Bus Pipe- EX[G’(;W
Order width | Nwop | Nwap | Nxoa | Nroo | Nrap | Lining (F:leay Burst

Function
ontrol
Bit | 31-23 22 21 20-19 | 18-17 | 16-12 | 11-10 9-8 7-3 2 1 0
0 X 0 X X 0 0 X 0 OFF [Disabled fDisabled
Value \ 0.0 X 0 XX XX 00000 00 XX 00000 0 0 0

>
w)

—

PCLK _/—\_/—\_/
- [\

A3L4,50P, [
DMA, D/C, Valid Valid
BE3:.0, LOCK —

W/R

BLAST

~ ™S

DTIR

DEN
A3:2 Valid X Valid

o [
[

Valid

= |

D31:0

F_CXO026A

Figure 11-6. Read / Write Requests, Non-Pipelined, Non-Burst, No Wait States
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Table 11-3. Burst Transfers and Bus Widths

Number of Burst Number of Number of

Request Bus Width Accesses Transfers / Burst Transfers

Quad Word 8 bit
16 bit
32 bit

Triple Word 8 it
16 bit
32 bit

Double Word 8 bit
16 bit
32 bit

Word 8 bit
16 bit
32 bit

Short 8 bit
16 bit
32 bit

Byte 8 bit
16 bit
32 bit

N

4-4-4-4 16
4-4 8
4

4-4-4

N

N

N
=
N

PRrPR|lPRPN[PNMARAMMER| W]

PrRrPR|lPRPRRPRIPRPRPRI[PRPN|PMN®|RLN
PrRrPR|PRPN[PNNRAMPO| WO

Burst accesses increase bus bandwidth over non-burst accesses. The 1960 Cx processors burst
access allows up to four consecutive data cycles to follow a single address cycle. Compared to non-
burst memory systems, burst mode memory systems achieve greater performance out of slower
memory. SRAM, interleaved SRAM, Static Column Mode DRAM and Fast Page Mode DRAM
may be easily designed into burst-mode memory systems.

A burst read or write access consists of: a single address cycle, 0 to 31 address-to-data wait states
(Nrap or Nwap) and one to four data cycles, separated by zero to three data-to-data wait states
(Nrpp Of Nywpp)- If READY/BTERM control is enabled in the region, Nrap, Nwap: Nrpp @nd
Nwpp Wait states may all be extended by not asserting READY. BTERM may be used to break a
burst access into smaller accesses.

The address’ two least-significant bits automatically increment after each burst data cycle. Thisis
true for 8-, 16- and 32-bit-wide data buses. When a memory region is configured for a 32-bit data
bus width, address pins A3:2 increment. For a 16-bit memory region, BE1 is encoded as A1 and
address pins A2:1 increment. When a memory region is configured for an 8-bit data bus width,
BEO and BE1 — acting as the lower two bits of the address — increment.

Maximum burst size is four data transfers per access. For an 8- or 16-bit bus, this means that some
bus requests may result in multiple burst accesses. For example, a quad-word (16 byte) request to
an 8 bit memory resultsin four 4-byte burst accesses. Each burst accessis limited to four byte-wide
datatransfers.
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Burst accesses on a 32-bit bus are always aligned to even-word boundaries. Quad-word and triple-
word accesses always begin on quad-word boundaries (A3:2=00); double-word transfers always
begin on double-word boundaries (A2=0); single-word transfers occur on single word boundaries.
(See Figure 11-7.)

00 01 10 11

Quad-Word Burst
32-Bit Burst Bus

Triple-Word Burst

Double-Word Burst

Double-Word Burst

32-Bit

F_CAOQ36A

Figure 11-7. 32-Bit-Wide Data Bus Bursts

Burst accesses for a 16-bit bus are always aligned to even short-word boundaries. A four short-
word burst access aways begins on a four short-word boundary (A2=0, A1=0). Two short-word
burst accesses always begin on an even short-word boundary (A1=0). Single short-word transfers
occur on single short-word boundaries (see Figure 11-8). For a 16-bit bus, data is transferred on
data pins D15:0. Datais also driven on upper datalines D31:16.

Burst accesses for an 8-bit bus are always aligned to even byte boundaries. Four-byte burst
accesses always begin on a 4-byte boundary (A1=0, A0=0). Two-byte burst accesses always begin
on an even byte boundary (A0=0) (see Figure 11-9). For an 8-bit bus, data is transferred on data
pins D7:0. Datais also driven on the upper bytes of the data bus D15:8, D23:16 and D31:24.
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A2:1 = (A2, BE1)
00 01 10 11
4 Short-Word Burst
16-Bit Burst Bus
2 Short-Word Burst
2 Short-Word Burst
16-Bit
<>
F_CA037A
Figure 11-8. 16-Bit Wide Data Bus Bursts
A1:0 = (BE1:0)
00 01 10 11
4 Byte Burst
8-Bit Burst Bus 11
2 Byte Burst
2 Byte Burst
8-Bit
>
F_CAO038A

Figure 11-9. 8-Bit Wide Data Bus Bursts

11-17



EXTERNAL BUS DESCRIPTION In e ©

Figure 11-10 shows a quad-word read on a 32-bit bus; Figure 11-11 shows a write. Burst access
begins by asserting the proper address and status signals (ADS, A31:2, BE3:0, SUP, D/C, DMA,
WI/R). Thisis done on the rising edge that begins the address cycle (“A” on the figures). Word read
asserts all byte enable signals BE3:0. ADS assertion indicates beginning of access.

DT/R isdriven on the clock’s next falling edge to ensure that DT/R does not change while DEN is
asserted. DEN is asserted on the clock’s next rising edge — the rising edge that ends the address
cycle. ADS is deasserted on this clock edge. DEN is used to control external data transceivers.
DEN and DT/R remain asserted throughout the burst access.

Wait-state cycles that follow an address are Ngap Wait states. WAIT is asserted while the internal
wait-state generator is counting. If READY/BTERM control is enabled in this region and READY
and BTERM are not asserted after the wait-state generator has finished counting, wait states
continue to be inserted until READY is asserted. If BTERM is asserted, READY isignored. Data
isthen read and a new address cycle is generated.

The data cycle is followed by Ngpp wait states. These wait states separate burst data cycles and
can be used to extend data access time of reads and data setup and hold times for writes.

BLAST assertion indicates the end of data transfer cycles for this access. At this time, DEN is
deasserted.

Nxpa Wait states (turnaround wait states) are inserted after the last access of a bus request. Nypa
wait states follow BLAST only when BLAST is asserted for the last access of abusrequest. A new
address cycle may start after Nypa cycles have expired. Nypa states allow slow devices to get off
the bus.
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. § Byte § Bus Pipe- JExternal
Function a Order 3 width | Nwoo | Nwap | Nxpa | Nroo | Nrap | Lining ggr?t%l Burst
Bit| 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 1 0
0 X 0 -bi X X 1 2 i Enabled
Value \ 0.0 X 35" A x Ao Ao 01 Aoooio \ OFF JDisabled) Enaple
A 2 1 D 1 D 1 D 1 D 1 A
S N AVAVAVAVAVAVAVAVAVAVAVAY
ADS \ ’ ~
A31:4, SUP, — —
DMA, D/C, Valid ><
BE3:0, LOCK L—
W/R /
BLAST ~ ’
DT/R /
DEN
A3:2 x
WAIT
D31:0 I ( In0 ) ( In1 )'——'< In2 )———'< In3 >__
F_CXO030A

Figure 11-10. 32-Bit Bus, Burst, Non-Pipelined, Read Request with Wait States
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reserved'

Byte Bus Pipe- E&(tergal
Order width | Nwoo | Nwap | Nxoa | Nroo | Nrao | Lining Ceay Burst

E)

Function 5
o ontrol
Bit] 31.23 22 21 | 2019 | 18-17 | 1612 | 11-10 | 9-8 7-3 2 1 0
0 0 i X X ,
Value \ 0.0 X 0 32bit A O Noodo A & X A odx \_OFF Joisabled] Enabled
A D D D D
AN AVAVAVAVAY
ADS \ ,
A314,50P, [ _
DMA, D/C, valid
BE3:0, LOCK —

WR

BLAST

B

]

"7
7

ST S S €

o [
paL0 [ ----- ( X X X |> ______

Figure 11-11. 32-Bit Bus, Burst, Non-Pipelined, Write Request without Wait States
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11.25 Pipelined Read Accesses

Pipelined read accesses provide the maximum data bandwidth. For pipelined reads, the next
address is output during the current data cycle. This effectively removes the address cycle from
consecutive pipelined accesses.

A pipelined read memory system is implemented by adding an address latch to the design (see
Figure 11-12). The address latch holds the address for the current read access while the processor
outputs the address for the next access. This allows the next address to be available during the data
cycle of the current access. Overlapping address and data cycles improves data bandwidth.

Write accesses to a pipelined region act the same as writes to a non-pipelined region. This means
that the address for a write access is not pipelined. Similarly, the address for a read access
following awrite is not pipelined.

NOTE:

When pipelining is enabled in a region, READY and BTERM are ignored for
read and write cycles. These must be disabled in regions that use pipelining.

For pipelined reads, the bus controller uses a value of zero for the Nypa parameter, regardless of
the parameter’ s programmed value. A non-zero Ny pa value defeats the purpose of pipelining. The
programmed value of Ny ppa is used for write accesses to pipelined memory regions.

Address

PCLK i Address Latch
Pipeline Interface Memory Array
Data |

e [ O
s | IR

Data * 0 x 1 X 2 x 3 X F_CA041A

Figure 11-12. Pipelined Read Memory System
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(DY T Yo o Y Y )
Function FD Order 3 width | Nwop | Nwap | Nxoa | Nroo | Nrab | Lining ggﬁt‘?,gl Burst
Bit | 31-23 22 21 20-19 18-17 | 16-12 11-10 9-8 7-3 2 1 0
0 X 0 X X X 0 Disabled|
Value \_0..0 X 0 k >é< ) XX XXXXX, ;; xx 00000/ O]_N >>§ IS% ©
A A’ A" A" A™ D™
D D' D" D"
PeLK _/—\_/_\_/—\_/—\_/—\_/—\_/
ADS ~ , ;
A31:4,SUP, [~
DMA, D/C, Valid Valid Valid Valid Valid Invalid
LOCK L—
W/R \ ’ Invalid x
_A32 Valid Valid Valid valid } Valid } Invalid
BE3:0
ol N _. IN \_f IN \_f IN \_{ IN _ IN \.__
D310 ( D > DI ) ( D" > -< Dmﬁ D”“>
WAIT
BLAST ,
DT/R /
DEN ? \ ’
non-pipelined request concludes pipelined reads conclude,
pipelined reads begin. non-pipelined requests begin.
F_CXO035A
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} : Byte (_1_’ Bus v v Pipe- \rExtemaIV 1
Function (_E Order 3 width | Nwop | Nwap | Nxoa | Nroo | Nrao | Lining gg&% Burst
Bit | 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 1 0
0 X 0 -bi X X 0 0 i Enabled
Value \ 0.0 2 0 32163” X oo ;; & A oodoo C%_N DISaob|ed nable
A D D D A D D
D
peLk ,_\_/—\_/—\_/—\_/—\_/—\_/—\_l _/
ADS \ , \
A31:4, SUP, — u
__DMA, DIC, Valid Valid i
BE3:0, LOCK al
WIR ’ In- x
Valid
A3:2
D31:0
WAIT
BLAST / \ f\_ /
DT/R \ /
DEN ; \ ’
|
(non—p\peli_ned request concludes pipelined reads conclude,
pipelined reads begin. non-pipelined requests begin.

F_CXO037A

Figure 11-14. Burst Pipelined Read Waveform
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o Pipelined il
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D00 D01 D10 D11 D12 D13 A20 D20 D30 D31 , D32 | D33 D34 | D35

<L U\ U
we| 0\
B

O

F_CAO044A

BLAST

A31:4 Valid

=

Figure 11-15. Pipelined to Non-Pipelined Transitions

11.3 LITTLE OR BIG ENDIAN MEMORY CONFIGURATION

The bus controller supports big endian and little endian byte ordering for memory operations. Byte
ordering determines how data is read from or written to the bus and ultimately how data is stored
in memory. Little endian systems store aword’ s least significant byte at the lowest byte addressin
memory. For example, if alittle endian ordered word is stored at address 600, the least significant
byteis stored at address 600 and the most significant byte at address 603. Big endian systems store
the least significant byte at the highest byte addressin memory. So, if abig endian ordered word is
stored at address 600, the least significant byte is stored at address 603 and the most significant
byte at address 600.

The 1960 Cx processors use little endian byte ordering internally for data-in registers and data-in
internal data RAM. Data-in memory (except for internal data RAM) can be stored in either little or
big endian order. A bit in the region table entry for a memory region determines the type of byte
ordering used in that region. Data and instructions can be located in either big or little endian
regions.

Both byte ordering methods are supported for short-word and word data types. Table 11-4 shows
how aword, half-word and byte data types are transferred on the bus according to the type of byte
ordering used for the selected memory region and bus width (32, 16 or 8 bits). All transfers shown
in the table are aligned memory accesses.
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For the word data type, assume that a hexadecimal value of aabbceddH is stored in an internal 1960
Cx processor register, where aa is the word’'s most significant byte and dd is the least significant
byte. Table 11-4 shows how thisword is transferred on the bus to either alittle endian or big endian
region of memory.

For the half-word data type, assume that a hexadecimal value of ccddH is stored in one of the 1960
Cx processors' internal registers. Note that the half-word goes out on different data lines on a 32-
bit bus depending on whether addressline Al is odd or even.

Table 11-4 also shows that the 1960 Cx processors handle byte data types the same regardless of
byte ordering type. Multiple word bus requests (bursts) to a big endian region are handled as
individual words. Bytes in each word are stored in big endian order. Big endian data types that
exceed 32 bits are not supported and must be handled by software.
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Word Data Type

Table 11-4. Byte Ordering on Bus Transfers

Bus Pins (Data Lines 31:0)

Bus Addr Bits Little Endian Big Endian
Width AL:0 Xfer
! ) 31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0
32 bit 00 1st aa bb cc dd dd cc bb aa
16 bit 00 1st - - cc dd - - bb aa
00 2nd - - aa bb - - dd cc
8 hit 00 1st -- -- -- dd -- -- -- aa
00 2nd -- -- -- cc -- -- -- bb
00 3rd -- -- -- bb -- -- -- cc
00 4th -- -- -- aa -- -- -- dd
Half-Word Data Typ Bus Pins (Data Lines 31:0)
Bus Addr Bits Little Endian Big Endian
Width AL:0 xfer
! ) 31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0
32 bit 00 1st - - cc dd - - dd cc
10 1st cc dd - - dd cc - -
16 bit X0 1st - - cc dd - - dd cc
8 hit X0 1st -- -- -- dd -- -- -- cc
2nd -- -- -- cc -- -- -- dd
Byte Data Type Bus Pins (Data Lines 31:0)
Bus Addr Bits f Little and Big Endian
i ) er
Width AL:0 31:24 23:16 15:8 7:0
32 bit 00 1st -- -- -- dd
01 1st -- -- dd --
10 1st -- dd -- --
11 1st dd -- -- --
16 bit X0 1st -- -- -- dd
X1 1st -- -- dd --
8 hit XX 1st -- -- -- dd
11.4 ATOMIC MEMORY OPERATIONS (The LOCK Signal)

LOCK output assertion indicates that the processor is executing an atomic read-modify-write
operation. Atomic instructions (atadd, atmod) require indivisible memory access. That is, another
bus agent must not access the target of the atomic instruction between read and write cycles.

LOCK can be used to implement indivisible accesses to memory.
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Atomic instructions consist of a load and store request to the same memory location. LOCK is
asserted in the first address cycle of the load request and deasserted in the cycle after the last data
transfer of the store request. The LOCK pin is not active during the Ny, States for the store
request.

When implementing a locked memory subsystem, consider the interaction that the following
mechanisms may have with the system. A system must account for these conditions during locked
accesses:

*  HOLD requests are acknowledged while LOCK is asserted.

» Anatomic load or store may be suspended using the BOFF input.

» A DMA request may occur between the atomic load and store requests.

LOCK indicates that other agents should not write data to any address falling within the quad word
boundary of the address on the bus when LOCK was asserted. LOCK is deasserted after the write

portion of an atomic access. It is the responsibility of external arbitration logic to monitor the
LOCK pin and enforce its meaning for atomic memory operations. (See Figure 11-16.)

Read Write

A D A D
— l
_ l
ADS \ ,
_ {1
A31:4, SUP
DMA, D/C, :X Valid X :X Valid X
BE3:0 L— 11
— i1
o A ] U
- {1
BLAST \ , \ /
LOCK _\ ’
{1

Figure 11-16. The LOCK Signal

F_CA045A
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11.5 EXTERNAL BUS ARBITRATION

The 1960 Cx processors provide a shared bus protocol to allow another bus master to access the
processors’ bus. The processor enters the hold state when an external bus master is granted bus
control. In the hold state, the processors’ data, address and control lines are floated (high Z) to
allow the external bus master to control the bus and memory interface.

The HOLD input signal is asserted to indicate that another processor or peripheral is attempting to
control the bus. The HOLDA (Hold Acknowledge) output signal acknowledges that the i960 Cx
processors have relinquished the bus. Bus pins float on the same clock cycle in which the hold
request is granted (HOLDA asserted). When the i960 Cx processors need to access the bus, they
use the bus request signal (BREQ) to signal the other processor or peripheral.

When the HOLD signal is asserted, the i960 Cx processors grant the hold request (asserts
HOLDA) and relinquishes control as follows:

» If thebusisintheidle state, the hold request is granted immediately.

» If abusrequest isbeing serviced, the hold request is granted at the end of the current bus
request.

» If the processor isin the backoff state BOFF pin asserted), the hold request is granted
after BOFF is deasserted and the resumed request has compl eted.

The hold request may be acknowledged between internal DMA load and store operations and
atomic requests (read-modify-write accesses that assert LOCK).

When the HOLD signal is removed, HOLDA is deasserted on the following PCLK2:1 cycle and
the bus and control signals are driven. The HOLD signal is a synchronous input. Setup and hold
times for this input are given in the 80960CA and CF data sheets.

BREQ indicates that the bus controller queue contains one or more pending bus requests. The bus
controller can queue up to three bus requests (refer to section 10.6.1, “Bus Queue” (pg. 10-14) for
a complete description of the bus queue). When the bus queue is empty, the BREQ pin is
deasserted. BREQ determines bus queue state during a hold state or before the hold state is
requested. It may be useful to use BREQ to qualify hold requests and optimize the processor’ s use
of the bus when shared by external masters. Because the hold request is granted between bus
requests, the bus controller queue may contain one or more entries when the request is granted.
BREQ can be used to delay a hold request until all pending bus requests are complete. The
processor may continue executing from on-chip cache; therefore, it is possible that bus requests
may be posted in the queue after the hold request is granted. In this case, BREQ can be used to
relinquish the hold request when the processor needs the bus.

11-28



In e © EXTERNAL BUS DESCRIPTION

HOLD and HOLDA arbitration can also function during the reset state. The bus controller
acknowledges HOLD while RESET is asserted. If RESET is asserted while HOLDA is asserted
(the processor has acknowledged the HOLD), the processor remains in the HOLDA state. The
processor does not go into the reset state until HOLD is removed and the processor removes
HOLDA.

Word Read
Word Read Request Request
Nrap=1, Nypa=1 Hold State Nrap=0, Hold State
Nxpa=0

w0\ [T e [T

A31:2, SUP,

DMA, D/C, (V2 R Y — Valid  Jemmmtmmmmalen
BE3.0, WA,

DEN, DT/R

siast : u W /—\_[ ___________
wow | J \ [

F_CXO044A

Figure 11-17. HOLD/HOLDA Bus Arbitration

1151 Bus Backoff Function (BOFF pin)

The bus backoff input (BOFF) suspends a bus request aready in progress and alows another bus
master to temporarily take control of the bus. The BOFF pin causes the current bus request to be
suspended. When BOFF is asserted, the processor’ s address, data and status pins are floated on the
following clock cycle. At this time, an alternate bus master may take control of the local system
bus. When the alternate bus master has completed its accesses, BOFF is deasserted and the
suspended request is resumed upon assertion of ADS on the following clock cycle. (Figure 11-18).
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The backoff function differs from the bus hold mechanism. The backoff function suspends a bus
request which has already started. The request is later resumed when the pin is deasserted. The bus
hold mechanism allows another bus master to control the bus only after all executing bus requests
have completed.

Backoff can only be used for requests to regions which have the READY/BTERM inputs enabled,
with the Nrap, Nrpps Nwap @nd Ny pp parameters programmed to O.

BOFF may only be asserted during a bus access. Recall that a bus access includes and is bounded
by clock cyclesin which ADS s valid and the clock cycle in which BLAST is vaid and READY
input is asserted. External logic responsible for asserting BOFF must ensure that the signal is not
asserted during idle bus cycles or during bus turnaround (Nypa) cycles. Unpredictable behavior
may occur if BOFF is subsequently deasserted during an idle bus or turnaround cycle.

Itispossible for HOLD and BOFF to be asserted in the same clock cycle. In this case, BOFF takes
precedence. The busis relinquished to a hold request only after the current request is complete.

Bus backoff isintended for use with special multiprocessor designs or bus architectures that do not
implement “collision free” bus arbitration schemes (such as VME and MULTIBUS ). A collision
occurs when multiple processors begin a bus access simultaneously and a conflict for control of
one of the processor’slocal memory occurs.

Figure 11-19 illustrates a bus collision. In this system, several processors share a common bus.
Each processor has local memory which is connected directly to that processor’ s address, data and
control lines. Each processor can access another processor’s local memory over the bus.

Processor A has highest priority and Processor B has lowest priority for use of the bus. Processor
A and B simultaneously request an access over the bus. Processor A attempts to access Processor
B’slocal memory and Processor B attempts to access another memory on the bus. Use of the busis
granted to Processor A because it is the highest priority. For Processor A to complete its access,
the local bus for Processor B must be relinquished (floated). Thisis accomplished by asserting the
BOFF pin for Processor B.

When BOFF is asserted, external memory is responsible for gracefully cancelling the current
access. This means that the memory control state machine should cancel write cycles and return to
an idle state after BOFF is asserted. The processor ignores read data after BOFF is asserted.
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Figure 11-18. Operation of the Bus Backoff Function
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Figure 11-19. Example Application of the Bus Backoff Function
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CHAPTER 12
INTERRUPT CONTROLLER

This chapter contains interrupt controller information that is of particular importance to the system
implementor. The method for handling interrupt requests from user code is described in
CHAPTER 6, INTERRUPTS. Specifically, this chapter describes the i960® Cx processors
facilities for requesting and posting interrupts, the programmer’s interface to the on-chip interrupt
controller, implementation, latency and how to optimize interrupt performance.

12.1 OVERVIEW

The interrupt controller’s primary functions are to provide a flexible, low-latency means for
requesting and posting interrupts and to minimize the core’'s interrupt handling burden. The
interrupt controller handles the posting of interrupts requested by hardware and software sources.
The interrupt controller, acting independently from the core, compares the priorities of posted
interrupts with the current process priority, off-loading this task from the core.

The interrupt controller provides the following features for managing hardware-requested
interrupts:

* Low latency, high throughput handling.

*  Support of up to 248 external sources.

» Eight external interrupt pins, one non-maskable interrupt pin, four internal DMA sources for
detection of hardware-requested interrupts.

» Edgeor level detection on external interrupt pins.

»  Debounce option on external interrupt pins.

The user program interfaces to the interrupt controller with four control registers and two special
function registers. The interrupt control register (ICON) and interrupt map control registers
(IMAPO-IMAP2) provide configuration information. The interrupt pending (IPND) special

function register posts hardware-requested interrupts. The interrupt mask (IMSK) special function
register selectively masks hardware-requested interrupts.
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12.2 MANAGING INTERRUPT REQUESTS

The 1960 processor architecture provides a consistent interrupt model, as required for interrupt
handler compatibility between various implementations of the i960 processor family. The archi-
tecture, however, leaves the interrupt request management strategy to the specific 1960 processor
family implementations. In the i960 Cx processors, the programmable on-chip interrupt controller
transparently manages all interrupt requests (Figure 12-1). These requests originate from:

e 8-hit external interrupt pins XINT7:0
» four DMA controller channels
* non-maskableinterrupt pin NMI

» sysctl instruction execution

External interrupt pins can be programmed to operate in three modes:
1.  dedicated mode: the pins may beindividually mapped to interrupt vectors.

2. expanded mode: the pins may be interpreted as a bit field which can request any of the 248
possible interrupts that the i960 processor family supports.

3. mixed mode: five pins operate in expanded mode and can request thirty-two different
interrupts, and three pins operate in dedicated mode.

Dedicated-mode requests are posted in the Interrupt Pending Register (IPND). The processor does
not post expanded-mode requests.

The NMI pin alows a highest-priority, non-maskable and non-interruptible interrupt to be
requested. NMI is always a dedicated-mode input.

Each of the four DMA channels has an associated interrupt request to allow the application to
synchronize with the DMA operations of each channel. DMA interrupt requests are aways
handled as dedicated-mode interrupt requests.

The application program may use the sysctl instruction to request interrupt service. The vector
that sysctl requests is serviced immediately or posted in the interrupt table’s pending interrupts
section, depending upon the current processor priority and the request’s priority. The interrupt
controller caches the priority of the highest priority interrupt posted in the interrupt table.

The interrupt controller continuously compares the priorities of the highest-posted software
interrupt and the highest-pending hardware interrupt to the processor’'s priority. The core is
interrupted when a pending interrupt request is higher than the processor priority or a priority 31.
In the event that both hardware- and software-requested interrupts are posted at the same level, the
hardware interrupt is serviced before the software interrupt, when the priority is 1 to 30. At
priority 31, the software interrupt is serviced first.
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Figure 12-1. Interrupt Controller
12.2.1 Interrupt Controller Modes

The eight external interrupt pins can be configured for one of three modes: expanded, dedicated
and mixed. Each mode is described in the subsections that follow.

12-3



INTERRUPT CONTROLLER In e ©

12.2.1.1 Dedicated Mode

In dedicated mode, each external interrupt pin is assigned a vector number. Vector numbers that
may be assigned to a pin are those with the encoding PPPP 0010, (Figure 12-2), where bits
marked P are programmed with bits in the interrupt map (IMAP) registers. This encoding of
programmable bits and preset bits can designate 15 unique vector numbers, each with a unique,
even-numbered priority. (Vector 0000 0010, is undefined; it has a priority of 0.)

Dedicated-mode interrupts are posted in the interrupt pending (IPND) register. Single bits in the
IPND register correspond to each of the eight dedicated external interrupt inputs, plus the four
DMA inputsto theinterrupt controller. The interrupt mask (IMSK) register selectively masks each
of the dedicated-mode interrupts. The IMSK register can optionally be saved and cleared when a
dedicated interrupt is serviced. This allows other hardware-generated interrupts to be locked out
until the mask is restored. See section 12.3.3, “Programmer’s Interface” (pg. 12-11) for a further
description of the IMSK, IPND and IMAP registers.

Interrupt vectors are assigned to DMA inputs in the same way external pins are assigned
dedicated-mode vectors. The DMA interrupts are always dedi cated-mode interrupts.

IMAP Control Registers hard-wired vector offset

XINTQ = PPPP 0010
XINT] ey PPPP 0010
XINT2 = PPPP 0010

[ ] L [ ]

[ ] L | L ]

[ ] L | L ]
XINT7 ——p] PPPP 0010
DMAQ ey PPPP 0010
DMALl ———> PPPP 0010
DMA2 =————p PPPP 0010
DMA3 ———> PPPP 0010

/
/|awmss 4LSB
ya highest selected
/73 vector number
F_CAO50A

Figure 12-2. Dedicated Mode
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12.2.1.2 Expanded Mode

In expanded mode, up to 248 interrupts can be requested from external sources. Multiple external
sources are externally encoded into the 8-bit interrupt vector number. This vector number is then
applied to the external interrupt pins (Figure 12-3), with the XINTO pin representing the least-
significant bit and XINT7 the most significant bit of the number. Note that external interrupt pins
are active low; therefore, the inverse of the vector number is actually applied to the pins.

In expanded mode, external logic is responsible for posting and prioritizing external sources.
Typically, this scheme isimplemented with a simple configuration of external priority encoders. As
shown in Figure 12-4 simple, combinational logic can handle prioritization of the external sources
when more than one expanded interrupt is pending.

NOTE:

The interrupt source, as shown in Figure 12-4, must remain asserted until the
processor services the interrupt and explicitly clears the source. External-
interrupt pins in expanded mode are always active low and level-detect.

The interrupt controller ignores vector numbers 0 though 7. The output of the external priority
encodersin Figure 12-4 can use the 0 vector to indicate that no external interrupts are pending.

IMSK register bit O provides a global mask for all expanded interrupts. The remaining bits (1-7)
should be set to 0 in expanded mode. The mask bit can optionally be saved and cleared when an
expanded mode interrupt is serviced. This alows other hardware-requested interrupts to be locked
out until the mask is restored. IPND register bits 0-7, in expanded mode, have no function since
external logic isresponsible for posting interrupts.

IMAP Control Registers hard-wired vector offset
DMAQ = PPPP 0010
DMALl = PPPP 0010
DMA2 ———> PPPP 0010
DMA3 =y PPPP 0010
4 MSB 4LSB
Y highest selected
XINT7:0 b
/8 vector number F_CAOS1A

Figure 12-3. Expanded Mode
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Figure 12-4. Implementation of Expanded Mode Sources
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12.2.1.3 Mixed Mode

In mixed mode, pins XINTO through XINT4 are configured for expanded mode. These pins are
encoded for the five most-significant bits of an expanded-mode vector humber; the three least-
significant bits of the vector number are set internally to be 010,. Pins XINT5 through XINT7 are
configured for dedicated mode.

IMSK register bit 0 isaglobal mask for the expanded-mode interrupts; bits 5 through 7 mask the
dedicated interrupts from pins XINT5 through XINT7, respectively. IMSK register bits 1-4 must
be set to 0 in mixed mode. The IPND register posts interrupts from the dedicated-mode pins
XINT7:5. IPND register bits that correspond to expanded-mode inputs are not used.

CAUTION
When setting IMSK register bits in mixed mode, make sure IMSK register bits 1-4 are set to 0.

12.2.2 Non-Maskable Interrupt (NMI)

The NMI pin generates an interrupt for implementation of critical interrupt routines. NMI provides
an interrupt that cannot be masked and that has a higher priority than priority-31 interrupts and
priority-31 process priority. The interrupt vector for NMI resides in the interrupt table as vector
number 248. During initialization, the core caches the vector for NMI on-chip, to reduce NMI
latency. The NMI vector is cached in location OH of internal data RAM.

The core immediately services NMI requests. While servicing NMI, the core does not respond to
any other interrupt requests — even another NMI request — until it returns from the NMI handling
procedure. An interrupt request on the NMI pin is always falling-edge detected.

12.2.3 Saving the Interrupt Mask
12
The IMSK register is automatically saved in register r3 when a hardware-requested interrupt is -

serviced. After the mask is saved, the IMSK register isoptionally cleared. Thisallowsall interrupts
except NMTs to be masked while an interrupt is being serviced. Since the IMSK register value is
saved, the interrupt procedure can restore the value before returning. The option of clearing the
mask is selected by programming the ICON register as described in section 12.3.4, “Interrupt
Control Register (ICON)” (pg. 12-11). Several options are provided for interrupt mask handling:

1 Mask is unchanged.

2 Clear for dedicated-mode sources only.

3. Clear for expanded-mode sources only.

4 Clear for al hardware-requested interrupts (dedicated and expanded mode).
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Options 2 and 3 are used in mixed mode, where both dedicated-mode and expanded-mode inputs
are alowed. DMA interrupts are always dedicated-mode interrupts.

NOTE:

If the same interrupt is requested simultaneously by a dedicated- and an
expanded-mode source, the interrupt is considered an expanded-mode interrupt
and the IMSK register is handled accordingly.

The IMSK register must be saved and cleared when expanded mode inputs request a priority-31
interrupt. Priority-31 interrupts are interrupted by other priority-31 interrupts. In expanded mode,
the interrupt pins are level-activated. For level-activated interrupt inputs, instructions within the
interrupt handler are typically responsible for causing the source to deactivate. If these priority-31
interrupts are not masked, another priority-31 interrupt will be signaled and serviced before the
handler is able to deactivate the source. The first instruction of the interrupt handling procedure is
never reached, unless the option is selected to clear the IMSK register on entry to the interrupt.

Another use of the mask is to lock out other interrupts when executing time-critical portions of an
interrupt handling procedure. All hardware-generated interrupts are masked until software
explicitly replaces the mask.

The processor does not restore r3 to the IMSK register when the interrupt return is executed. If the
IMSK register is cleared, the interrupt handler must restore the IMSK register to enable interrupts
after return from the handler.

12.3 EXTERNAL INTERFACE DESCRIPTION

This section describes the physical characteristics of the interrupt inputs. The i960 Cx processors
provide eight external interrupt pins and one non-maskable interrupt pin for detecting external
interrupt requests. The eight external pins can be configured as dedicated inputs, where each pin is
capable of requesting a single interrupt. The external pins can aso be configured in an expanded
mode, where the value asserted on the external pins represents an interrupt vector number. In this
mode, up to 248 values can be directly requested with the interrupt pins. The external interrupt
pins can be configured in mixed mode. In this mode, some pins are dedicated inputs and the
remaining pins are used in expanded mode.
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12.31 Pin Descriptions

The interrupt controller provides nine interrupt pins:

XINT7:0 External Interrupt (input) - These eight pins cause interrupts to be requested.
Pins are software configurable for three modes: dedicated, expanded, mixed.
Each pin can be programmed as an edge- or level-detect input. Also, a debounce
sampling mode for these pins can be selected under program control.

NMI Non-Maskable Interrupt (input) - This edge-activated pin causes a non-maskable
interrupt event to occur. NMI is the highest priority interrupt recognized. A
debounce sampling mode for NMI can be selected under program control. These
pins are internally synchronized.

12.3.2 Interrupt Detection Options

The XINT7:0 pins can be programmed for level-low or falling-edge detection when used as
dedicated inputs. All dedicated inputs plus the NMI pin are programmed (globally) for fast
sampling or debounce sampling. Expanded-mode inputs are always sampled in debounce mode.
Pin detection and sampling options are selected by programming the ICON register.

» When a pin is programmed for falling-edge detection, the corresponding pending bit in the
IPND register is set when a high-to-low transition is detected.

*  When apinis programmed for low-level detection, the corresponding pending bit in the IPND
register is set when alow-level is detected.

Even for the level detect mode, the pending bits are “sticky” and remain set after the interrupt
source removes the active level from the interrupt pin.

The processor attempts to clear the pending bit on entry into the interrupt handler. Edge- and level-
detect modes are distinguished by the way software must deal with the external interrupt source on
entry into the handler.

»  For the edge-detect mode, the pending bit is cleared when the handler is entered. In this mode,
software is not required to clear the interrupt source.

» Inthelevel-detect mode, the pending bit remains set if the external source is till active. This
means that software must explicitly clear the interrupt source before returning from the
interrupt handler. Otherwise, the handler is re-entered after the return is executed.

Example 12-1 demonstrates how alevel detect interrupt istypically handled. The example assumes
that the Id from address “timer_0,” deactivates the interrupt input.
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Example 12-1. Return from a Level-detect Interrupt

# Clear level-detect interrupts before return from handl er

Id timer_0, g0 # CGet tinmer value and cl ear XI NTO
wai t :

clrbit 0,sfO0,sfO # Attenpt to clear bit

bbs 0,sf0, wait # Retry if not clear

ret # Return from handl er

The debounce sampling mode provides a built-in filter for noisy or slow-falling inputs. The
debounce sampling mode requires that alow level is stable for approximately 6 PCLK?2:1 periods
before the interrupt input is detected. Expanded mode interrupts are always sampled using the
debounce sampling mode. This mode provides time for interrupts to trickle through external
priority encoders.

Figure 12-5 shows how a signal is detected in each mode debounce and fast sample mode. The
debounce-sampling option adds several clocks to an interrupt’s latency due to the multiple clocks
of sampling. Interrupt pins are asynchronous inputs and are synchronized internally by the
processor. If the input width is sufficient, the input is detected correctly regardless of setup and
hold time relative to PCLK2:1.

Theinterrupt inputs are internally sampled once every two PCLK2:1 falling edges. Setup and hold
specifications are provided in the data sheet which guarantee detection of the interrupt on
particular edges of PCLK2:1. These specification are useful in designs which use synchronous
logic to generate interrupt signals to the processor. These specification must also be used to
calculate the minimum signal width, as shown in Figure 12-5.

PCLK [

XINT 7:0
(fast sampled) |: : ; \ "— 3Cyc|e min —>/ /
\ detect
XINT 7:0 \ \ ' 7 eycle min |merrupt: .
(debounce) : " . . : / 7

detect '
interrupt

* Denotes sampling clock edge. interrupt pins are sampled one time for every 2 PCLK cycles
F_CAO052A

Figure 12-5. Interrupt Sampling
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12.3.3 Programmer’s Interface

The programmer’s interface to the interrupt controller is through four control registers and two
special function registers (all described in this section): ICON control register, IMAPO-IMAP2
control registers, IMSK special-function register (sf1) and IPND special function register(sf0).

12.34 Interrupt Control Register (ICON)

The ICON register (Figure 12-6) is a 32-bit control register that sets up the interrupt controller.
Software can load this register using the sysctl instruction. The ICON register is also automati-
cally loaded at initialization from the control table in external memory.

Interrupt Mode - ICON.im
(00) dedicated
(01) expanded
(10) mixed
(11) reserved
Signal Detection Mode - ICON.sdm
(0) level-low activated
(1) falling-edge activated
Global Interrupts Enable - ICON.gie
(0) enabled
(1) disabled
Mask Operation - ICON.mo
(00) move to R3, mask unchanged
(01) move to R3 and clear for dedicated mode interrupts
(10) move to R3 and clear for expanded mode interrupts
(11) move to R3 and clear for dedicated and expanded
mode interrupts
Vector Cache Enable - ICON.vce
(0) fetch from external memory
(1) fetch from internal RAM
Sampling Mode -ICON.sm
(0) debounce
(1) fast
DMA Suspension - ICON.dmas
(0) run on interrupt
(1) suspend on interrupt

d s|{s]s|s]|s|s]s]|s
mis|E|™IM 9 (d]d|d]|s|[d|d]d|d|m]|m
ajlm e 1lole mimpmmimimjgm|m 1|0
s 7l6]5]4(3]2]1f|0
31 28 24 20 16 12 8 4 0
Interrupt Control Register (ICON)
F_CA053A

Reserved
(Initialize to 0)

Figure 12-6. Interrupt Control (ICON) Register

12-11

Errata (12-06-94 SRB)
Vector Cache Enable
bits (ICON.vce)
incorrectly defined.

Bit 0 was “debounce”;
it now is correctly
defined as “Fetch From
External Memory”.

Bit 1 was “Fast”; is now
correctly defined as
“Fetch From Internal
RAM".

12
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The interrupt mode field (bits 0 and 1) determines the operation mode for the external interrupt
pins (XINT7:0) — dedicated, expanded or mixed.

The signal-detection-mode bits (bits 2 - 9) determine whether the signals on the individual external
interrupt pins (XINT7:0) are level-low activated or falling-edge activated. Expanded-mode inputs
are aways level-detected; the NMI input is always edge-detected — regardless of the bit's value.

The global-interrupts enable bit (bit 10) globally enables or disables the external interrupt pins
and DMA inputs. It does not affect the NMI pin. This bit performs the same function as clearing
the mask register.

The mask-operation field (bits 11, 12) determines the operation the core performs on the mask
register when a hardware-generated interrupt is serviced. On an interrupt, the IMSK register is
either unchanged; cleared for dedicated-mode interrupts; cleared for expanded-mode interrupts; or
cleared for both dedicated- and expanded-mode interrupts.

The vector cache enable bit (bit 13) determines whether interrupt table vector entries are fetched
from the interrupt table or from internal data RAM. Only vectors with four least-significant bits
equal to 0010, may be cached in internal data RAM.

The sampling-mode bit (bit 14) determines whether dedicated inputs and NMI pin are sampled
using debounce sampling or fast sampling. Expanded-mode inputs are always detected using
debounce mode.

The DMA-suspension bit (bit 15) determines whether DMA continues running or is suspended
while an interrupt procedure is being called.

Bits 16 through 31 are reserved and must be set to O at initialization.

12.35 Interrupt Mapping Registers (IMAPO-IMAP2)

The IMAP registers (Figure 12-7) are three 32-bit registers (IMAPO through IMAP2). These
register’ s bits are used to program the vector number associated with the interrupt source when the
source is connected to a dedicated-mode input. IMAPO and IMAP1 contain mapping information
for the external interrupt pins (four bits per pin); IMAP2 contains mapping information for the
DMA-interrupt inputs (four bits per input).

Each set of four bits contains a vector number’'s four most-significant bits; the four least-
significant bits are always 0010,. In other words, each source can be programmed for a vector
number of PPPP 0010,, where “P" indicates a programmable bit. For example, IMAPO bits 4
through 7 contain mapping information for the XINT1 pin. If these bits are set to 0110, the pin is
mapped to vector number 0110 0010, (or vector number 98).
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Software can load the mapping registers using the sysctl instruction. The mapping registers are
also automatically loaded at initialization from the control table in external memory. Note that bits
16 through 31 of each register are reserved and should be set to O at initialization.

External Interrupt O Field - IMAPO.x0
External Interrupt 1 Field - IMAPO.x1
External Interrupt 2 Field - IMAPO.x2
External Interrupt 3 Field - IMAPO.x3

XXX x x| x| x| x x| x| x| x| x| x| x]x
3(3|3f3]2]2|2|2f21]2]2]1fo]o]ofo0
7{6|s|4a]7]|6|s5|4a)7]|6]|5]|4]7]|6]5]4

31 28 24 20 16 12 8 4 0

Interrupt Map Register 0 (IMAPO)

External Interrupt 4 Field - IMAP1.x4

External Interrupt 5 Field - IMAP1.x5

External Interrupt 6 Field - IMAP1.x6

External Interrupt 7 Field - IMAP1.x7 ﬁ
XX x| x x| x| x| x| x| x| x| x| x| x| x]x
7{7]17]7|6|6|6|6]5]|5|5|5)4]4]4|4
7{e]s]4al7|6|5]4)7]|6]|5|4]7]|6]5|4

31 28 24 20 16 12 8 4 0

Interrupt Map Register 1 (IMAP1)

DMA Interrupt O Field - IMAP2.d0
DMA Interrupt 1 Field - IMAP2.d1
DMA Interrupt 2 Field - IMAP2.d2 12
DMA Interrupt 3 Field - IMAP2.d3

iN
-
[N

w
w
w
A wo
N
N
N

~

o

o
X®lrana

~

o

o
Ploara

~

o

o
Olro

31 28 24 20 16 12

Interrupt Map Register 2 (IMAP2)

Reserved
(Initialize to 0)

F_CA054A

Figure 12-7. Interrupt Mapping (IMAPO-IMAP2) Registers
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12.3.6 Interrupt Mask and Pending Registers (IMSK, IPND)

The IMSK and IPND registers (Figure 12-8) are special-function registers (sf1 and sf0, respec-
tively). Bits O through 7 of these registers are associated with the external interrupt pins (XINT7:0)
and bits 8 through 11 are associated with the DM A-interrupt inputs (DMA3:0). Bits 12 through 31
are reserved and should be set to O at initialization.

The IPND register posts dedicated-mode interrupts originating from the eight external dedicated
sources (when configured in dedicated mode) and the four DMA sources. Asserting one of these
inputs causes a 1 to be latched into its associated bit in the IPND register. In expanded mode, bits 0
through 7 of thisregister are not used and should not be modified; in mixed mode, bits O through 4
are not used and should not be modified.

The IMSK register provides a mechanism for masking individual bits in the IPND register. An
interrupt sourceis disabled if its associated mask bit is set to 0.

IMSK register bit 0 has two functions: it masks interrupt pin XINTO in the dedicated mode and it
globally masks all expanded-mode interrupts in the expanded and mixed modes. In expanded
mode, bits 1 through 7 are not used and should only contain zeros; in mixed mode, bits 1 through
4 are not used and should only contain zeros.

Software can read and write the IPND and IMSK registers, using any instruction that can use
special-function registers as operands.

When the core handles a pending interrupt, it attempts to clear the bit that is latched for that
interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated with
an interrupt source that is programmed for level detection and the true level is still present, the bit
remains set. Because of this, the interrupt routine for a level-detected interrupt should clear the
external interrupt source and explicitly clear the IPND bit before return from handler is executed.

An aternative method of posting interrupts in the IPND register (other than through the external
interrupt pins and DMA-interrupt inputs) is to set bits in the register directly using an instruction
— such as a move instruction. This operation has the same effect as requesting an interrupt
through the external interrupt pins or DMA-interrupt inputs. The bit set in the IPND register must
be associated with an interrupt source that is programmed for dedicated-mode operation.
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External Interrupt Pending Bits - IPND.xip
(0) no interrupt
(1) pending interrupt

DMA Interrupt Pending Bits - IPND.dip
(0) no interrupt
(1) pending interrupt

wo -
NT—Q
ro—Q
~NT - X%
SR
"o - x
AT - X
wWoT - x
N T — X%
P o — X
[SR-E

o |eT—2

31 28 24 20 16 12
Interrupt Pending Registers (IPND) - SFO

Internal Interrupt Mask Bits - IMSK.xim
(0) masked
(1) not masked

DMA Interrupt Mask Bits - IMSK.dim
(0) masked
(1) not masked

w3 —a
N3 -
k3 -0
o3 —a
~N3 - x
o3 —x
g3 =%
w3 —x
N3 =%
P 3 =X

a3z —x
O lo3 —x

¢4}

31 28 24 20 16 12

Interrupt Mask Register (IMSK) - SF1

Reserved
(Initialize to 0)

Figure 12-8. Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers

F_CAOQ55A

12.3.7 Default and Reset Register Values

The ICON and IMAP2:0 control registers are loaded from the control table in external memory
when the processor is initialized or reinitialized. The control table is described in section 2.3,
“CONTROL REGISTERS’ (pg. 2-6). The IMSK register is set to 0 when the processor is
initialized (RESET is deasserted). The IPND register value is undefined after a power-up initial-
ization (cold reset). The user is responsible for clearing this register before any mask register bits
are set; otherwise, unwanted interrupts may be triggered. For a reset while power is ON (warm
reset), the pending register value is retained.
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12.3.8 Setting Up the Interrupt Controller

This section provides several examples of setting up the interrupt controller. Recall that the IMAP
and ICON registers are control registers. When the entire control table is automatically read at
initialization, the ICON and IMAP registers are loaded with the values pre-programmed in the
table. In many applications, setting these register valuesin theinitial control tableisthe only setup
required. The following examples describe how the interrupt controller can be dynamically
configured after initialization.

Example 12-2 sets up the interrupt controller for expanded-mode operation. Here, a value which
selects expanded-mode operation is loaded into the ICON register. The sysctl instruction isissued
with the load-control register message type (04H) and selecting group number O1H from the
control table. Group O1H contains the ICON and IMAP registers. Note that the IMAP registers, as
well asthe ICON register, are reloaded with this operation.

Modifying the control table implies that the table (or part of it) must reside in RAM. If the control
registers are modified after initialization, the control register must be relocated to RAM by reini-
tializing. See section 14.3.1, “Reinitializing and Relocating Data Structures’ (pg. 14-11).

Example 12-2. Programming the Interrupt Controller for Expanded Mode

# Exanpl e expanded npde setup .
nmv 0,sf1l

| dconst 0x01, gO # clear | MSK register
# (mask all interrupts)
st g0,ctrl _table_ ICON # store npde information to
# control table
| dconst 0x401,r4 # create operand for sysctl,
# selects | oad control
# regi ster nessage type,
# selects register group 1
sysctl r4, r4, r4 # load control register
nmov 1,sf1 # unmask expanded interrupts
12.3.9 Implementation

The interrupt controller, microcode and core resources handle all stages of interrupt service.
Interrupt service is handled in the following stages:

Requesting Interrupts — In the 1960 Cx processors, the programmable on-chip interrupt
controller transparently manages all interrupt requests. Interrupts are generated by hardware
(external events) or software (the user program). Hardware requests are signaled on the 8-bit
external interrupt port XINT7:0, the non-maskable interrupt pin NMT or the four DMA controller
channels. Software interrupts are signaled with the sysctl instruction with post-interrupt message

type.
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Posting I nterrupts — When an interrupt is requested, the interrupt is either serviced immediately
or saved for later service, depending on the interrupt’s priority. Saving the interrupt for later service
is referred to as posting. An interrupt, once posted, becomes a pending interrupt. Hardware and
software interrupts are posted differently:

» hardware interrupts are posted by setting the interrupt’s assigned bit in the interrupt pending
(IPND) special function register

» software interrupts are posted by setting the interrupt’s assigned bit in the interrupt table’s
pending priorities and pending interrupts fields

Checking Pending Interrupts — Interrupts posted for later service must be compared to the
current process priority. If process priority changes, posted interrupts of higher priority are then
serviced. Comparing the process priority to posted interrupt priority is handled differently for
hardware and software interrupts. Each hardware interrupt is assigned a specific priority when the
processor is configured. The priority of al posted hardware interrupts is continually compared to
the current process priority. Software interrupts are posted in the interrupt table in external
memory. The highest priority posted in this table is also saved in an on-chip software priority
register; this register is continually compared to the current process priority.

Servicing Interrupts — If the process priority falls below that of any posted interrupt, the
interrupt is serviced. The comparator signals the core to begin a microcode sequence to perform
the interrupt context switch and branch to the first instruction of the interrupt routine.

Figure 12-9 illustrates interrupt controller function. For best performance, the interrupt flow for
hardware interrupt sources isimplemented entirely in hardware.

The comparator only signals the core when a posted interrupt is a higher priority than the process
priority. Because the comparator function isimplemented in hardware, microcode cycles are never
consumed unless an interrupt is serviced.

12.3.10 Interrupt Service Latency

The time reguired to perform an interrupt task switch is referred to as interrupt service latency.
Latency is the time measured between activation of an interrupt source and execution of the first
instruction for the accompanying interrupt-handling procedure. In the following discussion,
interrupt service latency is derived in number of PCLK2:1 cycles. The established measure of
interrupt service latency (in units of seconds) is derived with the following equation:

N, .
Interrupt Service Latency (in seconds) = fL'm Equation 12-1
Cc

where: fo = PCLK2:1 frequency (Hz)
N int = Nnumber of PCLK2:1 cycles
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For real-time applications, worst-case interrupt latency must be considered for critical handling of
external events. For example, an interrupt from a FIFO buffer may need service to prevent the
FIFO from an overrun condition. For many applications, typical interrupt latency must be
considered in determining overall system performance. For example, a timer interrupt may
frequently trigger atask switch in amulti-tasking kernel.

The flowchart in Figure 12-9 can be used to determine worst-case interrupt latency. Flowchart
values are based on the assumption that the interrupt controller is configured in the following way:
» Hardwareinterrupt is requested XINT7:0 pins or NMI

»  Fast sample mode - Fast sample mode is selected (ICON.sm=1)

e Cached interrupt vector - Interrupt vector is fetched from internal data RAM. This is
automatic for the NMI vector or is selected in the ICON register (ICON.vce=1)

»  Cached interrupt handler - Cache hit for interrupt call target
»  DMA suspended on interrupt - DMA suspend on interrupt is enabled (ICON.dmas=1)

*  Minimum Bus Latency - All memory is configured as zero wait state and burst access mode.

NOTE:

The worst-case interrupt latency value does not account for interaction of faults
and interrupts. It is assumed that faults are not signaled in a stable system.

Because of the processor’s instruction mix and the nature of on-chip register cache, typical
interrupt latency is derived assuming that the interrupt occurs under the following constraints, in
addition to those listed above:

» Interrupts asingle cycle RISC instruction
»  Frame flush does not occur

* Busqueueisempty

The value for typical interrupt latency (Ni__jpy) is:

N__int (typical) = 30 PCLK2:1 cycles Equation 12-2
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12.3.11 Optimizing Interrupt Performance

The 1960 Cx processor has several features aimed at reducing the time required to respond to and
service interrupts. The following section describes three methods for reducing interrupt latency:

» caching interrupt vectors on-chip

»  DMA suspension while servicing interrupts

» caching of interrupt handling procedure code

Figure 12-9 shows that controlling the use of long instructions may aso be used to optimize
interrupt performance.
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12.3.12 Vector Caching Option

To reduce interrupt latency, the 1960 Cx processors allow some interrupt table vector entries to be
cached in internal data RAM. When the vector cache option is enabled and an interrupt request is
serviced which has a cached vector, the controller fetches the associated vector from internal RAM
rather than from the interrupt table in memory.

Interrupts with a vector number with four least-significant bits equal to 0010, can be cached. The
vectors that can be cached coincide with the vector numbers that are selected with the mapping
registers and assigned to dedicated-mode inputs. The vector caching option is selected when
programming the ICON register; software must explicitly store the vector entriesin internal RAM.

Since the internal RAM is mapped directly to the address space, this operation can be performed
using the core's store instructions. Table 12-1 shows the required vector mapping to specific
locations in internal RAM. For example, the vector entry for vector number 18 must be stored at
RAM location 04H, and so on.

The NMI vector is also shown in Table 12-1. This vector is always cached in internal data RAM at
location 0000H. The processor automatically loads this location at initialization with the value of
vector number 248 in the interrupt table.

Table 12-1. Location of Cached Vectors in Internal RAM

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address

(NMI) 248 0000H
0001 0010, 18 0004H
0010 0010, 34 0008H
0011 0010, 50 000CH
0100 0010, 66 0010H
0101 0010, 82 0014H
0110 0010, 98 0018H
0111 0010, 114 001CH
1000 0010, 130 0020H
1001 0010, 146 0024H
1010 0010, 162 0028H
1011 0010, 178 002CH
1100 0010, 194 0030H
1101 0010, 210 0034H
1110 0010, 226 0038H
1111 0010, 242 003CH
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12.3.13 DMA Suspension on Interrupts

Core resources required to execute a DMA operation may impact interrupt latency. A DMA
operation may be temporarily suspended to reduce the effects of the DMA when interrupt-response
timeis critical. The DMA suspension option is programmed in the ICON register. When the option
is selected, the core suspends DMA processing while executing a call to an interrupt-handling
procedure for a hardware-requested interrupt. Once the core begins executing the interrupt
procedure, it restores DMA processing.

To improve interrupt throughput, DMA processing can be suspended until the execution of an
interrupt-handling procedure is complete. To accomplish this, the interrupt procedure must
explicitly suspend DMA operation by clearing the DMA command register’s channel enable field.
See section 13.10.1, “DMA Command Register (DMAC)” (pg. 13-21) for more information.

12.3.14 Caching Interrupt-Handling Procedures

Fetching the first instructions of an interrupt-handling procedure from external memory impacts
interrupt latency and throughput. The controller eliminates the fetch time by providing a
mechanism to lock procedures— or portions of procedures — in the processor’ s instruction cache.
Using this cache locking feature, particular interrupt handlers can always be fetched from on-chip
instruction cache, eliminating the latency incurred from fetching the handlers from external
memory. Paragraphs that follow describe cache locking of interrupt procedures.

All, half, or none of the instruction cache can be pre-loaded and locked. Typically, one half is used
as normal instruction cache and the other half for locking instructions. The i960 CA processor
allows only interrupt procedures to be locked in the cache. An improved mechanism on the 1960
CF processor has fewer restrictions: any section of code can be locked into the cache — not just
interrupt procedures.

sysctl provides the mechanism for locking sections of procedures into the cache. Instructionsto be
locked must first be linked to a contiguous block in external memory. The block must be aligned to
aquad-word address. Next, sysctl isissued with the configure instruction cache message type. The
starting address of the block in memory is specified as an operand of the instruction.
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The 1960 CA processor supports 512 bytes or 1 Kbytes of locked cache. The i960 CF processor,
with larger instruction cache, supports 2 Kbytes or 4 Kbytes of locked cache. Asindicated in Table
12-2, the mode field of the sysctl instruction specifies the size of locked cache.

Table 12-2. Cache Configuration Modes

Mode Field Mode Description 80960CA 80960CF
000, normal cache enabled 1 Kbyte 4 Kbytes
XX1, full cache disabled 1 Kbyte 4 Kbytes
100, Load and lock half cache (execute off-chip) 1 Kbyte! 2 Kbytes?

Load and lock half the cache;

110 . .
2 remainder is normal cache enabled

512 bytes 2 Kbytes

010, Reserved 1 Kbyte 4 Kbytes

NOTES:
1. On the CA, only interrupt procedures can execute in the locked portion of the cache.
2. On the CF, interrupt procedures and other code can operate in the locked portion of the cache.

When sysctl executes (mode 110,) with acommand to lock half of the instruction cache, one way
of the 1960 CF processor's two-way set associative cache is preloaded and locked from the
specified address. The other half of the instruction cache functions as a 2 Kbyte direct-mapped
instruction cache. On the 1960 CA processor, the instruction cache’ s unlocked portion functions as
a 512 byte two-way set associative cache.

The 1960 CF processor’ sinstruction scheduler checks both ways of the cache for every instruction
fetched. If an instruction is not found in either way, it is fetched from external memory and cached
in the unlocked way.

The 1960 CA processor only alows interrupt handlers to be locked in the cache. The interrupt
vector’s two least-significant bits must be set to 010, to cause the processor to fetch the interrupt
procedure from locked cache rather than the normal memory/cache hierarchy. The interrupt
procedure executes from the locked cache until a miss occursin the locked section.

The cache remains locked until the cache mode is changed by the next sysctl instruction. The
invalidate instruction cache sysctl message invalidates both the locked and unlocked halves of the
cache. Refer to section 4.3, “SYSTEM CONTROL FUNCTIONS’ (pg. 4-19) for details on using
the sysctl instruction to configure the instruction cache.
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CHAPTER 13
DMA CONTROLLER

This chapter describes the i960® Cx processor’s integrated Direct Memory Access (DMA)
Controller: its operation modes, setup, external interface and DMA controller implementation.

13.1 OVERVIEW

The DMA controller concurrently manages up to four independent DMA channels. Each channel
supports memory-to-memory transfers where the source and destination can be any combination of
internal data RAM or external memory. The DMA mechanism provides two unique methods for
performing DMA transfers:

» Demand-mode transfers (synchronized to external hardware). Typically used for transfers
between an external device and memory. In demand mode, external hardware signals for each
channel are provided to synchronize DMA transfers with external requesting devices.

» Block-mode transfers (non-synchronized). Typically used to move blocks of data within
memory.

To perform a DMA operation, the DMA controller uses microcode, the core’'s multi-process
resources, the bus controller and internal hardware dedicated to the DMA controller. Loads and
stores execute in DMA microcode to perform each transfer. The bus controller, directed by DMA
microcode, handles data transactions in external memory. DMA controller hardware synchronizes
transfers with external devices or memory, provides the programmer’s interface to the DMA
controller and manages the priority for servicing the four DMA channels.

The DMA controller uses multi-process resources, designed into the core, to enable DMA
operations to execute in microcode concurrently with the user’s program. This sharing of core
resources is accomplished with hardware-implemented processes for each of the four DMA
channels (the DMA processes) and a separate process for the user’s program (the user process).
Alternating between DMA processes and the user process enables a user’s program and up to four
DMASs (one per channel) to run at the same time.

To execute a DMA operation, a DMA process issues memory load or store requests. The bus
controller executes these memory processes as it would a load, store or prefetch request from the
user process. External bus access is shared egually between the user and DMA process. The bus
controller executes bus requests by each process in alternating fashion.
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The DMA controller is configurable to best exploit the core’ s processing capabilities and external
bus performance. Source and destination request lengths are programmed for each DMA channel.
Based on request length, the DMA controller optimizes transfer performance between source and
destination with different external data bus widths. A DMA can be programmed for quad-word
transfers, taking best advantage of external bus burst capabilities. The DMA controller can also
efficiently execute transfers of unaligned data.

A single cycle “fly-by” transfer mode gives the highest performance transfers for a DMA. In this
mode, a single bus request executes a transfer of data from source to destination.

A data-chaining mode simplifies several commonly-performed DMA operations such as scatter or
gather. Data-chained DM As are configured with a series of descriptorsin memory. Each descriptor
describes the transfer of a single buffer or portion of the entire DMA. These descriptors can be
dynamically changed as the chained DMA progresses.

DMA setup and control is simple and efficient. The setup DMA (sdma) instruction sets up aDMA
operation. sdma specifies addressing, transfer type and DMA modes. A special-function register
— the DMA command register (DMAC) — is an interface for commonly-used command and
status functions for each channel.

Flexibility and a high degree of programmability for a DMA operation create a number of options
for balancing DMA and processor performance and DMA latency. This flexibility enables the
programmer to select the best DMA configuration for a particular application.

13.2 DEMAND AND BLOCK MODE DMA

A channel can be configured as a demand mode or block mode DMA channel. Demand mode
DMAs move data between memory and an external 1/0O device; block mode DMAs typically move
blocks of data from memory to memory.

When a channel is configured for demand mode, an external device requests a DMA transfer with
aDMA request input DREQ3:0. The DMA controller acknowledges the requesting device with a
DMA acknowledge signal DACK3:0. The DACK3:0 signal is asserted during the bus request
which the DMA controller makes to the requesting device. Specific DREQ3:0 and DACK3:0
signal relationships are described in section 13.11, “DMA EXTERNAL INTERFACE" (pg.
13-30). After aDMA channel is configured, the channel must be enabled by software through the
DMA command register (DMAC). The DMA operation continues until it:

» isterminated (by an external source with EOP)
» issuspended (by software)

» ends because of a zero byte count

An interrupt may be generated to detect any of these three cases.
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13.3 SOURCE AND DESTINATION ADDRESSING

When a DMA operation is set up, it is described with a source address, destination address and
byte count. For each channel, an address is either held fixed or incremented after each transfer. A
fixed address is used for addressing external 1/O devices; an address which incrementsis used for
the memory side of a DMA transfer. When a channel is set up, address increment or hold is
selected separately for the source and destination address.

Source and destination address and byte count are 32-bit values. Source and destination are byte
addressable over the entire address space. DMA operation length can be up to 4 Gbytes
(232 Bytes). Source and destination address and byte count are specified when sdma executes.

13.4 DMA TRANSFERS

The following sections explain DMA transfer characteristics, especially those transfer character-
istics affected by channel setup. Intelligent selection of transfer characteristics works to balance
DMA performance and functionality with the performance of the user’s program.

Source/destination request length selects the bus request types which the DMA microcode issues
when executing a DMA transfer. To perform a transfer, combinations of byte, short-word, word
and quad-word load and store requests are issued. Refer to section 11.2, “BUS OPERATION” (pg.
11-2) for a detailed description of bus request.

Asindicated in Table 13-1, transfer type is specified when a channel is set up using sdma. Transfer
type specifies source/ destination request length for a DMA operation and whether DMA transfer
is performed as amultiple-cycle transfer or as afly-by (1 bus cycle) transfer. Multi-cycletransfer is
performed with two or more bus requests; fly-by transfer with a single bus request. Fly-by and
multi-cycle transfers are described in the following sections.

13.4.1 Multi-Cycle Transfers

Multi-cycle DMA transfer comprises two or more bus requests. For these multi-cycle transfers,
loads from a source address are followed by stores to a destination address. To execute the transfer,
DMA microcode issues the proper combination of bus requests. For example, atypical multi-cycle
DMA transfer could appear as a single byte load request followed by a single byte store request.
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Table 13-1. Transfer Type Options

intgl.

Source Request Length Destination Request Length Transfer Type

Byte (8 bits) Byte (8 bits) Multi-Cycle
Byte (8 bits) Byte (8 bits) Fly-by

Byte (8 bits) Short (16 bits) Multi-Cycle
Byte (8 bits) Word (32 bits) Multi-Cycle
Short (16 bits) Byte (8 bits) Multi-Cycle
Short (16 bits) Short (16 bits) Multi-Cycle
Short (16 bits) Short (16 bits) Fly-by

Short (16 bits) Word (32 bits) Multi-Cycle
Word (32 bits) Byte (8 bits) Multi-Cycle
Word (32 bits) Short (16 bits) Multi-Cycle
Word (32 bits) Word (32 bits) Multi-Cycle
Word (32 bits) Word (32 bits) Fly-by

Quad-Word (128 bits) Quad-Word (128 bits) Multi-Cycle
Quad-Word (128 bits) Quad-Word (128 bits) Fly-by

For amulti-cycle transfer, source datais first loaded into on-chip DMA registers beforeiit is stored
to the destination. The processor effectively buffers the data for each transfer. When a DMA
transfer is configured for destination synchronization, the DMA controller buffers source data,
waiting for the request (active DREQ3:0 signal) from the destination requestor. This operation
reduces latency. The initial DMA request, however, still requires the source data to be loaded
before the request is acknowledged. Source data buffering is shown in Figure 13-1. The DMA
controller does not perform multi-cycle transfers atomically. A DMA transfer does not cause the
processor’s LOCK output to be asserted. A bus hold request may also be acknowledged between
the bus requests which make up a multi-cycle transfer.
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Figure 13-1. Source Data Buffering for Destination Synchronized DMAs

13.4.2 Fly-By Single-Cycle Transfers

Fly-by transfers are executed with only a single load or store request. Source data is not buffered

internally; instead, the data passes directly between source and destination via the external data

bus. This makes fly-by the fastest DMA transfer type.

Fly-by transfers are commonly used for high-performance peripheral to memory transfers. The fly-

by mechanism is best described by giving an example of a source-synchronized demand mode

DMA (Figure 13-2). In the example, a peripheral at a fixed address is the source of a DMA and
memory is the destination. Each transfer is synchronized with the source.

The source requests atransfer by asserting the request pin DREQ3:0. When the request is serviced,
a store is issued to the destination memory while the requesting device is selected by the DMA

acknowledge pin DACK3:0. The source device, when selected, must drive the data bus for the store

instead of the processor. (The processor floats the data bus for a fly-by transfer.)
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Figure 13-2. Example of Source Synchronized Fly-by DMA

If the destination of afly-by is the requestor (destination synchronization), aload is issued to the
source while the destination is selected with the acknowledge pin. The destination, when selected,
reads the load data; the processor ignores the data from the load.

NOTE:
Fly-by mode may not access internal data RAM.

A fly-by DMA in block mode is started by software, asis any block-mode operation. Request pins
DREQ3:0 are ignored in block mode. Fly-by block-mode DMAS can be used to implement high-
performance memory-to-memory transfers where source and destination addresses are fixed at
block boundaries. In this case, the acknowledge pin must be used in conjunction with external
hardware to uniquely address the source and destination for the transfer.

13.4.3 Source/Destination Request Length

Source and destination request length is selected when a DMA channel is configured. Request
length determines bus request types that the DMA microcode issues. Byte, short-word or quad-
word bus requests are issued by the DMA controller microcode. Figure 13-3 illustrates source-
synchronized DMA |oads.
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Figure 13-3. Source Synchronized DMA Loads from an 8-bit, Non-burst, Non-pipelined
Memory Region
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The request length selected for a DMA operation — byte, short-word, word or quad-word —
should not be confused with external data bus width or other characteristics programmed in the
memory region configuration table. Request length dictates the type of bus request issued by DMA
controller microcode, while the region configuration of a DMA'’s source and destination memory
control how that bus request is executed on the external bus.

As an example, consider a system in which a DMA source memory region is configured for 8-bit,
non-burst accesses and a word source request length is selected. DMA microcode issues word
loads (identical to the Id instruction) to DMA addresses in the source region. Since the source
memory region is configured as 8 hits, the bus controller handles the word loads as four 8-bit
accesses in that region. To contrast this example, if the DMA is configured for a byte source
request length, DMA microcode issues byte loads (identical to the Idob instruction) to DMA
addresses in the source region. The byte load to this region is executed as a single 8-bit access.
CHAPTER 11, EXTERNAL BUS DESCRIPTION fully describes bus configuration and how the
bus controller executes bus requests.

In demand mode transfers, DREQ3:0 is asserted to request a DMA transfer. DACK3:0 is asserted
during the bus request issued in response to the DMA request. Continuing the example started
above: if the DMA controller is set up for source synchronized demand mode, DREQ3:0 causes a
word (Id) request to be issued when source request length equals word and causes a byte (Idob)
request to be issued when the source request length equals byte. DACK3:0 is asserted for the
duration of the bus request for each case.

For demand mode transfers, the request length is typically selected to match the external bus width
of the external DMA device. If request length is greater than bus width, the DMA device must be
designed to support multiple data cycles for each DMA transfer requested. This may be accom-
plished by using a small FIFO and an external circuit to load and unload the FIFO. This method
reduces bus loading by the DMA process.

For block mode transfers, source and destination request lengths are typically selected to match
external data bus width. This configuration uses the external bus most efficiently and also reduces
latency for bus requests issued by the user process.

In instances where source and destination bus widths are different, DMA performance may be
increased by setting up the DMA with matching source and destination request lengths. This
configuration reduces DMA microcode overhead required to pack or unpack data between unequal
request lengths. Packing/unpacking is handled more efficiently by the bus controller unit.
Matching the request lengths may increase latency for bus requests issued by the user process.

Quad-word source and destination request lengths are used for highest DMA performance. Quad
transfers use the external bus most efficiently when the source or destination memory regions
support burst accesses. Since the request length for quad word transfers is always greater than the
bus width, DMA devices must support multiple data cycles for each requested DMA transfer.
Using quad-word request lengths may increase bus latency for loads, stores and instruction fetches
that the user’s program generates.
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In cases where source address, destination address or byte count are unaligned, requests shorter
than the selected request length are issued to align the transfers. Refer to section 13.4.5, “Data
Alignment” (pg. 13-10).

DMA CONTROLLER

13.4.4 Assembly and Disassembly

The DMA controller internally assembles or disassembles data between different source and
destination request lengths. Assembly refers to the packing of narrow data into wider data.
Disassembly refers to the unpacking of wide data into narrow data. Assembly and disassembly is
performed automatically when a channel is set up with different source and destination request
lengths. Assembly and disassembly are performed for al aligned transfers configured with combi-
nations of byte, short-word and word request lengths. Quad-word DMA transfers require that
source and destination request lengths equal quad word; therefore, data assembly and disassembly
are not applicable to this DMA mode.

Figure 13-4 shows a typical demand mode configuration in which an 8-bit device is the source
requestor for a DMA and 32-bit memory is the destination. If byte source and word destination
request length is selected for this DMA, data from four source requests is buffered before aload to
the 32-bit memory is executed. This configuration represents an optimal use of bus resources for a
DMA between an 8-bit device and 32-bit memory.
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Figure 13-4. Byte to Word Assembly

13-9



DMA CONTROLLER Intel®

Microcode algorithms which perform assembly and disassembly are less efficient than algorithms
which perform transfers between source and destination with equal request lengths. DMA
controller assembly and disassembly is provided for convenience and for most efficient external
bus usage. For example, the system shown in Figure 13-4 functions the same when source and
destination request lengths are both byte-long. In this case, each transfer is performed with a byte
load followed by a byte store. DMA throughput is increased; however, the DMA makes more bus
requests to transfer the same amount of data.

13.45 Data Alignment

The DMA controller can handle fully unaligned DMA transfers under most circumstances. When
both the source and destination address increment, there are no alignment requirements for byte,
short or word transfers. The byte count may also be unaligned, or any value. Addresses for all
quad-word reguest transfer modes must always be quad-word aligned and the byte count must
always be evenly divisible by 16.

To interface to external DMA devices, the source or destination address may be set up as fixed.
Fixed addresses must always be aligned to the request-length boundary. The byte count for the
fixed addressing mode must be evenly divisible by the width of the fixed transfer. For example, a
32-16 transfer with a fixed destination address must have the byte count evenly divisible by two.
Table 13-3 summarizes the alignment requirements for all DMA transfers.

The byte count alignment depends on DMA controller configuration (see Table 13-2). For proper
operation, the byte count must be evenly divisible by the byte count alignment value. For example,
the byte count for a 32-bit fly-by transfer must be evenly divisible by four.

Table 13-2. DMA Configuration and Byte Count Alignment

Configuration Byte Count Alignment

Multi-cycle block mode with byte, short-word or word long source

S 1
or destination request length

All quad word transfers 16

Multi-cycle mode at least one address fixed smallest fixed transfer length (bytes)
Multi-cycle mode both addresses incrementing 1

All fly-by mode transfers transfer length (bytes)

Multi-cycle DMAS to aligned memory blocks perform better than DMAS to unaligned memory
blocks. Additional microcode cycles are required to access the unaligned memory.
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Most unaligned DMA transfers, however, use the external bus almost as efficiently as aligned
DMAs. Multi-cycle DMA configurations which use the bus efficiently when memory blocks are
unaligned are:

*  Word-to-Word * Byteto-Short

* Byteto-Word *  Short-to-Byte

*  Word-to-Byte

Table 13-3. DMA Transfer Alignment Requirements

Boundary Alignment Requirements

Transfer Types Source Address Destination
(Source-to-Destination) or Fly-by Address Address
Fixed Incr. Fixed Incr.

Byte-to-Byte (8/8 bit)

Multi-cycle Byte Byte Byte Byte
Fly-by Byte Byte N/A N/A
Byte-to-Short (8/16 bit)
Multi-cycle Byte Byte Short Byte
Byte-to-Word (8/32 bit)
Multi-cycle Byte Byte Word Byte
Short-to-Byte (16/8 bit)
Multi-cycle Short Byte Byte Byte
Short-to-Short (16/16 bit)
Multi-cycle Short Byte Short Byte
Fly-by Short Short N/A N/A
Short-to-Word (16/32 bit)
Multi-cycle Short Byte Word Byte

Word-to-Byte (32/8 bit) 1
Multi-cycle Word Byte Byte Byte 3

Word-to-Short (32/16 bit)

Multi-cycle Word Byte Short Byte
Word-to-Word (32/32 bit)
Multi-cycle Word Byte Word Byte
Fly-by Word Word N/A N/A
Quad-to-Quad (128/128 bit)
Multi-cycle Quad Quad Quad Quad
Fly-by Quad Quad N/A N/A
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Unaligned transfers are best utilized for block mode memory-to-memory transfers. However, the
synchronizing modes can also be fully unaligned given the restrictions in Table 13-3. These
optimized unaligned transfers are executed by performing byte requests until alignment is
enforced. At thistime, aligned source and destination requests are executed. At end of transfer,
the DMA may revert to byte transfers to complete the DMA. While aligning the addresses, the
same location may be read more than once. Also, the synchronizing device may be required to
supply fewer or more bytes per transfer. For example, in 32-32 destination synchronized demand
mode the destination could be written with 1 to 7 bytes per DREQ.

When unaligned, the number of DREQs required to complete a transfer is very difficult to
calculate, given the large number of permutations. It may be greater than the byte count divided by
the transfer width. Each DREQ will generate a single DACK. This makes it much easier for
external hardware to assert DREQ, based on the DACK output.

This alignment mechanism is shown in Figure 13-5. Thisis an example of a 32-32 source synchro-
nized transfer with source at 0x201, destination at 0x303 and a byte count of 12. It takes five
DREQs to complete this transfer, with DACK asserted for every access to the source.

Alignment overhead occurs at the beginning and end of the DMA operation and, depending on
DMA byte count, may be negligible. For short-short, short-to-word and word-to-short multi-cycle
transfers, the DMA performs byte requests when a memory block is unaligned.
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memory
LSB
MSB
ADDRESS
3 2 1 0000 0200H
source
[——1 memory . . . 0000 0204H
region 4
0000 0208H
11 10 9 8
12 0000 020CH
1 0000 0300H
destination
_> memory 5 4 3 ,| 0000 0304H
region
0000 0308H
9 8 7 6
12 11 0 0000 030CH
10
bus operation I— byte number
DREQ SOURCE DESTINATION
1. byte load @ 0201 byte store @ 0303
2. word load @ 0200
3. word load @ 0204  word store 304
4. word load @ 0208  word store 308
5. word load @ 020C  byte store 30C
byte store 30D
byte store 30E
F_CA062A 13

Figure 13-5. Optimization of an Unaligned DMA

135 DATA CHAINING

Data chaining can generate complex DMAs by linking together multiple transfer operations and is
accomplished by using memory-based chaining descriptors to describe component parts of a more
complex DMA operation.
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The component parts of the chained DMA are referred to as chaining buffers. To describe asingle
DMA chaining buffer, a chaining descriptor (Figure 13-6) supplies source address (SA),
destination address (DA) and byte count (BC). Chaining buffers are linked together with the value
of the next pointer (NPTR) field in the chaining descriptor. NPTR contains the chaining descriptor
address which describes the next part of the chained DMA operation. DMA operation ends when a
NPTR of 0 (null pointer) is encountered.

Internal Register

First Descriptor Pointer —|

Linked Descriptors In Memory Buffer Trans
| uffer Transfers

Byte Count (BC)

Source Address (SA) First

Buffer
Transfer

Destination Address (DA)

Next Descriptor Pointer (NPTR) 7
BC

SA Second
Buffer
DA Transfer
NPTR
| |
BC
Nth
SA Buffer
DA Transfer
OH - Null Pointer

F_CA063A

Figure 13-6. DMA Chaining Operation
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A chained DMA operation is started by specifying a pointer to the first chaining descriptor when
sdma is used to configure the DMA channel. Initial source address, destination address and byte
count are taken from the first chaining descriptor. Chained DMAs are configured such that
subsequent buffer transfers use either source, destination or both of these addresses to continue the
chained DMA. These modes are referred to as source chaining, destination chaining or source/des-
tination chaining. For example, if a channel is configured for source chaining (Figure 13-7), the
source address for the DM A operation is updated to the value specified in each new descriptor. The
destination address is continually incremented from the address specified in the DA field of the
first descriptor or isheld fixed at that address. (Addresses may be incremented or held fixed for any
DMA operation.)

Each buffer transfer is handled as if it were a single non-chained DMA. Data alignment require-
ments for each buffer are identical to the requirements for any other DMA. See section 13.4.5,
“Data Alignment” (pg. 13-10). Since each buffer is considered a single DMA, data is never
internally buffered when moving from one buffer to another for unaligned DMAs.

Internal Register

First Descriptor Pointer

user loads .
descriptors

/\ source buffers
destination

BC | sA | bA | NPTR buffer

l /\ .

BC SA DAl | NPTR

/

BC SA DA | NPTR

BC SA DA | 0000

Terminate
BC = Byte Count

SA = Source Address
DA = Destination Address
NPTR = Next Pointer

= not used F_CA064A

Figure 13-7. Source Chaining
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Depending on DMA channel configuration and the chaining mode selected, certain fields in the
chaining descriptor are ignored, but must be set to zero for future compatibility:

1 When a channel is source chained, the DA field of the first descriptor specifies the
destination address; the DA field in subsequent descriptorsisignored.

2. When a channel is destination chained, the SA field of the first descriptor specifies the
source address; the SA field in subsequent descriptorsisignored.

3. When a channel is configured for chained fly-by mode, the SA field aways contains the
fly-by address; the DA field isignored.

When descriptors are read from external memory, bus latency and memory speed affect chaining
latency. Chaining latency is defined as the time required for the DMA controller to access the next
descriptor plus the time required to set up for the next buffer transfer. Chaining latency is reduced
by placing descriptorsin internal data RAM or fast memory.

13.6 DMA-SOURCED INTERRUPTS

Each DMA channel is the source for one interrupt. When a DMA channel signals an interrupt, the
DMA interrupt-pending bit corresponding to that channel is set in the interrupt-pending (IPND)
register. Each channel’ s interrupt can be selectively masked in the interrupt mask (IMSK) register
or handled as a dedicated hardware-requested interrupt. Refer to CHAPTER 6, INTERRUPTS for
a complete description of hardware-requested interrupts.

The interrupt-pending bit for aDMA channel is set for the following conditions:

1 A non-chained DMA terminates because byte count reaches zero (0) or a chained DMA
terminates because the null chaining pointer is reached.

2. EOP3:0 pin is programmed as an input and asserted after a sdma is performed.

For a chained DMA, the interrupt-on-buffer-complete function is enabled and the end of a
chaining buffer is reached.
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13.7 SYNCHRONIZING A PROGRAM TO CHAINED BUFFER TRANSFERS

When any of the conditions listed above occur, the current DMA request is completed before the
pending bit in the IPND register is set. Two mechanisms, illustrated in Figure 13-8, enable a

program to synchronize with a completed chained buffer transfer. With either mechanism, an

interrupt is generated when the chained buffer is complete. The distinction between the

mechanisms are:

1 DMA operation continues with no delay on the next chaining buffer. The interrupt service

routine may process the data transferred for the completed buffer.

2. DMA waits until the user program processes the first chaining buffer and sets up the next
buffer transfer by modifying the chaining descriptors. DMA continues with the next buffer
transfer when a bit in the DMA control register (DMAC) is cleared.

These options are selected when the DMA channel is set up with the sdma instruction.

chaining buffers chaining buffers
Buffer 1 Buffer 1
interrupt procedure interrupt procedure
L >
- [ ]
| CLRBIT 16,sf2, sf2
RET
RET .
Buffer 2
Buffer 2
[ ]
[ ]
[ ]
[ ]
[ ]
. F_CA065A

Figure 13-8. Synchronizing to Chained Buffer Transfers
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13.8 TERMINATING A DMA

A DMA operation normally ends when one of the following eventsis encountered:
»  DMA byte count reaches zero (0) for a non-chained DMA mode.

» EOP3:0 pin programmed as an input becomes active for a channel that is non-chained, source-
only chained or destination-only chained.

 EOP3:0 pin programmed as an input becomes active during the last buffer transfer for a
channel which is source/destination chained.

»  Thenull chaining pointer is encountered in any chaining mode.

The DMA takes the following actions when any one of these events occur:
 DMAC register channel done flag is set.

» DMAC register channel terminal count flag is set, only if the byte count has reached zero (0)
(non-chained) or the null chaining pointer is reached (chaining).

» DMAC register channel active bit is reset after al channel activity has completed.

» |IPND register channel interrupt pending bit is set. If the corresponding bit in the IMSK is
cleared, an interrupt is signaled.

When a chained DMA channel is set up for source/destination chaining, the EOP3:0 inputs are
designed to terminate only the current chaining buffer. The DMA controller continues normally
with the next buffer transfer. The DMA ends as described above if the EOP3:0 pin is asserted
during the last buffer transfer.

When EOP3:0 is asserted, the entire DMA bus request compl etes before the DMA terminates. For
example, assume the DMA is programmed for quad-word transfers. If EOP3:0 is asserted, the
entire quad-word is transferred before the DMA terminates.

The DMA controller may be configured to generate an interrupt when a DMA terminates. A
program may determine how a DMA has ended by reading the DMAC register channel terminal
count and channel done flag values:

e If achannel’s terminal count flag and done flag are set, the DMA has ended due to a byte
count of 0 (non-chaining) or anull chaining pointer reaching 0 (chaining).

» If only the done flag is set for the channel, the DMA has ended because of an active EOP3:0
input.

For source/destination chained DMAS, an interrupt is generated by asserting EOP3:0 to terminate
the current chaining buffer.
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NOTE:
An interrupt is generated when:
. EOP3:0 is asserted; or

. when a buffer transfer is complete and the interrupt-on-buffer complete mode is
enabled.

There is no way in software to distinguish between these two interrupt sources. If this
distinction is necessary, the EOP3:0 pin may be connected to a dedicated external
interrupt source.

A DMA operation can be suspended at any time by clearing the DMAC register channel-enable bit.
It may be necessary to synchronize software to the completion of a channel’s bus activity after the
enable bit is cleared. Thisis accomplished by polling the DMA channel active bit as shown in the
following assembly code segment:

clrbit 0,sf2,sf2 # di sabl e channel 0
sel f: bbs 4,sf2,self # wait for channel
# activity to conplete

DMA operation is restarted by setting the channel enable bit. A channel may be suspended to allow
asection of time-critical user code to execute with the maximum core and bus resources available.

To reduce interrupt latency, all DMAS can be suspended when an interrupt is serviced. This option
is set in the Interrupt Control (ICON) register. When the option is selected, all DMA operations are
suspended during the time that the core processes the interrupt context switch. DMAs are restarted
before the interrupt procedure’s first instruction is encountered. This option reduces interrupt
latency by providing full processor resources to the interrupt context switch.

DMA operations can be suspended by user code in an interrupt procedure to increase procedure
throughput. Thisis accomplished by clearing the DMAC register channel enable field. See section
13.10.1, “DMA Command Register (DMAC)” (pg. 13-21). The interrupt procedure should re-
enable all suspended channels before returning.

Issuing sdma for an active channel causes the current DMA transfer to abort. Current DMA
operation is terminated and the channel is set up with the newly-issued sdma instruction. Do not
terminate a DMA operation with sdma; this instruction causes a “non-graceful” termination of a
DMA transfer. In other words, the transfer may be aborted between a source and destination
access, potentially losing part of the source data. Additionaly, status information for the
terminated DMA is lost when the new sdma instruction reconfigures the channel. The channel
done bit is not set when sdma terminatesa DMA.
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13.9 CHANNEL PRIORITY

Each DMA channel is assigned a priority. When more than one DMA channel is enabled, channel
priority determines the order in which transfers execute for each channel. Channel priority can be
programmed in one of two modes: fixed priority or rotating priority mode. The mode is selected
with the priority mode bit in DMAC register.

When fixed mode is selected, each channel has a set priority. Channel 0 has the highest priority,
followed by Channel 1, 2 and 3; Channel 3 has the lowest priority. In this mode, low-priority
DMAs assigned to Channels 1-3 can be locked out while atime-critical DMA assigned to Channel
O receives all of the DMA controller’s attention.

When rotating priority is selected, a channel’s priority depends on the last channel serviced (see
Table 13-4). After achannel is serviced, the priority of that channel isautomatically changed to the
lowest channel priority. The priority of the remaining enabled channels is increased with a new
channel becoming the highest priority. Rotating mode ensures that no single channel is locked out
for an extended period of time.

Table 13-4. Rotating Channel Priority

Last Channel Priority
Serviced Lowest Highest
0 0 3 2 1
1 1 0 3 2
2 2 1 0 3
3 3 2 1 0

Rotating priority is useful for producing auniform latency for every DMA channel. When rotating
mode is selected, the maximum latency for a single channel is the total of al latencies associated
with all enabled channels. When fixed mode is enabled, latency for any channel is dependent on
the activity of all channels of higher priority.

13.10 CHANNEL SETUP, STATUS AND CONTROL

The DMA controller uses the DMA command register (DMAC) and setup DMA instruction
(sdma) to configure and control the four DMA channels. The update DMA instruction (udma)
monitors the status of an in-progress DMA operation.

The DMAC register is a specia function register (sf2). This register enables or disables each
channel and holds frequently-accessed status and control bits for the DMA controller, including
idle or active status and termination status for a channel.
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sdma configures each channel. sdma specifies source address, destination address, byte count,
transfer type, chained or non-chained operation.

When a channel is set up using sdma, an eight-word (32-byte) block of internal data RAM is
allocated for the channel. Channel state is stored in this section of data RAM when operation is
preempted by another DMA channel. The user can access the current status for any active or idle
DMA operation by examining data RAM assigned to a channel. This status includes the current
source and destination addresses and the remaining byte count. udma copies the state of an active
DMA channel to internal RAM.

These actions are usually taken to set up and start a DM A operation on the i960 Cx processors:
1 A channel is set up using the sdma instruction.

2 DMAC register is modified to enable the DMA.

3. DMAC register is then read to monitor the activity of the DMA operation.

4 udma can be issued and DMA data RAM examined for the current DMA status.

13.10.1 DMA Command Register (DMAC)

The DMA command register (Figure 13-9) is a 32-bit special function register (SFR) specified as
sf2 in assembly language. Bits 21-0 are used for DMA status and configuration; the remaining bits
(bits 31-22) are reserved. These reserved bits should be programmed to zero (0) at initialization
and not modified thereafter. These reserved bits are not implemented on the i960 Cx processors,
clearing these bits at initialization is only required for portability to other i960 processor family
products.
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Channel Enable Bits - DMAC.ce

(0) suspend
(1) enable

Channel Terminal Count Flags - DMAC.ctc

(0) non-zero byte count

(1) zero byte count (software must reset)

Channel Active Flags - DMAC.ca
(0) idle
(1) active

Channel Done Flags - DMAC.cd
(0) not done
(1) done (software must reset)

31 28 24 20 Il Il Il

d g t [+ [+ [+ c c [+ c|c c|c (l: (l: (l: (l: Cc Cc Cc Cc
clg ﬂ’?1 wlw|wfd]d dlalalala clclclelelele
ild 2l1lo0]3]2 ol3f2]1]o g slilol3]2f2]o

Reserved

DMA Command Register (DMAC)
(Initialize to 0)

12 8 4 0
Channel Wait Bits - DMAC.cw

(0) read next descriptor
(1) descriptor has been read

Priority Mode Bit - DMAC.pm
(0) fixed
(1) rotating

Throttle Bit - DMAC.t
(0) 4 DMA to 1 user clock max
(1) 1 DMA to 1 user clock max

Data Cache Global Disable - DMAC.dcgd
(0) Enabled
(1) Disabled
Data Cache Invalidate - DMAC.dci
(0) Enabled
(1) Invalidate

ERRATA:
7/11/94

DMA Command
Register bits 30
(Data Cache Global
Disable) and 31 (Data
Cache Invalidate) not
defined in Figure 13-9
or in the text that
follows the figure.

These were correctly
defined in the i960®
CF Microprocessor
Reference Manual
Supplement and
unintentionally
omitted from this
manual.

Figure 13-9. DMA Command Register (DMAC)

The channel enable bits (bits 3-0) enable (1) or suspend (0) aDMA after a channel is set up. Bits0
through 3 enable or disable channels 0 through 3, respectively. If an enable bit for a channel is
cleared when a channel is active, the DMA is suspended after pending DMA requests for the
channel are completed and all bus activity for the pending request is complete. The channel active
bitsindicate the channel is suspended. DM A operation resumes at the point it was suspended when
the channel enable bit is set. To ensure that a DMA channel does not start immediately after it is
set up, the enable bit for the channel must be cleared by software before sdma isissued. Thisis
necessary because the DMA controller does not explicitly clear the enable bit after a DMA has

completed.
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The channel terminal count flags (bits 7-4) are set when a DMA has stopped because:
»  byte count has reached zero for a non-chained DMA; or

» anull pointer in achaining descriptor is encountered in data chaining mode.

Flags 4 through 7 indicate terminal count for channels O through 3, respectively. A terminal count
flag is set only after the last request for the channel is serviced and all bus activity for that request
iscomplete. A channel’s terminal count flag must be cleared by software before the DMA channel
is enabled. This is because the DMA controller does not explicitly clear the terminal count flags
after aDMA has completed — this action must be performed by software. The terminal count flags
indicate status only. Modifying these bits by software has no effect on aDMA operation.

The channel active flags (bits 11-8) indicate that a channel is either idle (0) or active (1). Bits 8
through 11 indicate active channels 0 though 3, respectively. For demand mode, the active bit is set
when the DMA request is recognized by internal hardware and remains set until all bus activity for
that request is complete. In block mode, the channel active bit remains set for the duration of the
block mode DMA.. Channel active flags indicate status only. These flags cannot be modified by
software; attempts to modify these bits by software has no effect on aDMA operation.

The channel done flags (bits 15-12) indicate that a channel’s DMA has finished. Bits 12 through 15
indicate a completed DMA on channels 0 through 3, respectively. The DMA controller sets a
channel done flag when a DMA operation has finished in one of three ways:

»  byte count reached zero in a non-chaining mode
» null pointer reached in a chaining mode
» EOP3:0signal is asserted which ends the DMA operation

DMA controller channel done flags are not cleared when a channel is set up or enabled. This action
must be performed by software. Channel done flags indicate status only; modifying these flags
does not affect DMA controller operation.

The channel wait bits (bits 19-16) signal that a chaining descriptor was read and, optionally,
enables a read of the next chaining descriptor in memory. Channel wait bits only enable the
descriptor read when the channel is set up with the channel wait function enabled. See section
13.10.2, “Set Up DMA Instruction (sdma)” (pg. 13-24).

This function provides synchronization for programs which dynamically change chaining
descriptors when a DMA is in progress. The DMA controller sets a channel wait bit when a
chaining descriptor is read from memory. If the channel wait function is enabled, the DMA
controller waits for the channel wait bit to be cleared by software before the next descriptor is read.
See section 13.5, “DATA CHAINING” (pg. 13-13).

The priority mode bit (bit 20) selects fixed (0) or rotating (1) priority mode. The priority mode

determines the order in which DMA channels are serviced if more than one request is pending. See
section 13.9, “CHANNEL PRIORITY” (pg. 13-20).
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throttle bit (bit 21) selects the maximum ratio of DMA process time to user process time. If the
throttle bit is set, the DMA process can take up to one clock for every one clock of the user
process. If the bit is clear, the DMA process can take up to four clocks for every one user process
clock. The effect of the throttle bit on DMA performance is fully described in section 13.11.10,
“DMA Performance” (pg. 13-36).

Data cache global disable bit (bit 30) controls the global enabling and disabling of the data cache.
After each region is configured as either cacheable or non-cacheable through the Region Table
entries, the data cache must still be globally enabled. Set this bit to O to enable the data cache; set
to 1 to globally disable the data cache. Setting this bit only disables the data cache; it does not
invalidate any of the entries. When the data cache is disabled, all loads and stores are treated as
non-cacheable. Data is not written into the cache for either aload or store. After reset, the data
cacheisinitialy disabled and invalidated with this bit set to 1.

Due to implementation reasons, the data cache is not actually disabled until the second clock
following execution of the instruction which setsthis bit. Any load/store issued in parallel or in the
clock after thisinstruction is still directed to the data cache. The following code can be used to
dynamically disable the data cache:

setbit 30,sf2, sf2 # set the bit to dynanmically disable data cache
nmov g0, g0 # wait two clocks before executing any code
nmov g0, g0 # which accesses the data cache

Data cache invalidate bit (bit 31) is set to invalidate the entire data cache. Setting this bit clears all
valid bits in the data cache array. This provides a quick method of invalidating all the data cache.
The same restrictions apply to setting the data cache invalidate bit that apply to the data cache
globa disable bit: the data cache is not actualy disabled until the second clock following
execution of the instruction which sets this bit.

The cache invalidate logic transparently manages the case where multiple pending cacheable loads
are in the Bus Controller Unit (BCU) queues when the data cache is invalidated. The logic
continually invalidates the data cache until all loads have returned from the BCU. This ensures that
loads issued before the cache is invalidated are not written to the data cache.

The data cache invalidate bit remains set until all pending loads have returned and the cache is
invalidated. At that time, the bit is cleared.

13.10.2 Set Up DMA Instruction (sdma)

sdma configures a DMA channel. The sdma instruction has the following format:
sdma opl, op2, op3
reg/lit/sfr reg/lit/sfr reg
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The three operands are described in Figure 13-10 and in the following text:

opl: This operand is the channel number (0-3) which is set up with sdma. Values
other than the valid channel numbers are reserved and can cause unpredictable
resultsif used.

op2: This operand isthe DMA control word for the channel. The control word selects

the modes and options for a DMA. The value of this operand is described in
section 13.10.3, “DMA Control Word” (pg. 13-25).

op3: This operand is used differently depending on the DMA configuration and must
be a quad-aligned register (r4, r8, r12, g0, g4, g8 or g12):

* Non-chaining multi-cycle DMAs: op3 isthefirst of three consecutive 32-bit
registers. The first register must be programmed with byte count; the
second, the source address; the third, the destination address.

* Non-chained fly-by DMAs: op3 is the first of two consecutive 32-bit
registers. The first register must be programmed with byte count; the
second, the fly-by address.

* All chained DMAs: op3 isasingle 32-bit register. op3 must be programmed
with a pointer to the first chaining descriptor. See section 13.5, “DATA
CHAINING” (pg. 13-13) for more information on chaining descriptors.

The channel setup mechanism, started with the sdma instruction, is two-part. sdma is a multi-
cycleinstruction. When sdma isissued:

1 the instruction executes — reading the register operands for the DMA operation — then
completes, freeing these registers for use by other instructions.

2. a DMA setup process is triggered to complete the channel setup. The setup process runs
concurrently with the execution of the user’s program.

After the setup process is started, it is possible to enable a channel through the DMAC register
before the setup completes. In this case, the DMA controller waits for the setup to complete before
the DMA operation begins. The result is the potential for additional latency on the first DMA
request. To decrease this additional latency, issue the sdma instruction well in advance of enabling
the DMA channel.

A second sdma can be issued before a previously-issued DMA setup event completes. The second
sdma must wait for the first event to complete, preventing other instructions from executing. If the
segment of code which issues the sdma is time-critical, it may be beneficial to overlap other
operations — other than sdma — with the setup event and space the sdma instructions in the code
instead of issuing them back-to-back. A waiting sdma instruction is interruptible; therefore, back-
to-back sdma instructions do not adversely increase interrupt latency.
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Internal Register
non-chained non-chained
multl-cycle DMA fly-by DMA any chained DMA

| Channel No. (0-3) opl | Channel No. (0-3) opl | Channel No. (0-3) opl
| DMA Control Word op 2 | DMA Control Word op2 | DMA Control Word op 2
Byte Count op3 Byte Count op3 | Pointer To 1st Descriptor op3

Source Address Fly-By Address

Destination Address
Note: op3 must be a quad-aligned register (r4, r8, r12, g0, g4, g8, or g12). F_CA067A

Figure 13-10. Setup DMA (sdma) Instruction Operands

13.10.3

DMA Control Word

DMA control word (Figure 13-11) specifies DMA modes and options. The control word is an
operand (op2) of the sdma instruction. Paragraphs that follow the figure define the register’s bit

and field settings.
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Transfer Type Field
00H 8-to-8 bits
01H 8-to-16 bits
02H reserved
03H 8-to-32 bits
04H 16-to-8 bits
05H 16-to-16 bits
06H reserved
07H 16-to-32 bits
08H 8 bits fly-by
09H 16 bits fly-by
OAH 128 bits fly-by quad
0BH 32 bits fly-by
OCH 32-to-8 bits
ODH 32-to-16 bits
OEH 128-t0-128 bits quad
OFH 32-t0-32 bits

Destination Addressing

(0) increment
(1) hold

Source Addressing

(0) increment
(1) hold

Synchronization Mode Bit
(0) source synchronized
(1) destination synchronized

Synchronization Select Bit
(0) block (non-synchronized)
(1) demand (synchronized)

EOP/TC Select Bit

(0) End Of Process
(1) Terminal Count

Destination Chaining Select Bit

(0) no chaining
(1) chained destination

Source Chaining Select Bit
(0) no chaining
(1) chained source

Interrupt-on-chaining-buffer Select Bit
(0) no interrupt
(1) interrupt

Chaining Wait Select Bit
(0) Wait function disabled
(1) Wait function enabled

31 28 24 20 16 12 8 4 0
DMA Control Word (Instruction Operand for SDMA Instruction)
Reserved
(Initialize To 0) E CAO068A

Figure 13-11. DMA Control Word
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The transfer type field (bits 3-0) specifies the request length of bus requests issued by the DMA
controller and selects between multi-cycle and fly-by transfers.

The source/destination addressing bits (bits 4-5) determine if the source or destination address for
achannel isheld fixed (1) or incremented (0) during a DMA. Bit 5 controls the source address and
bit 4 controls the destination address. The source addressing hit (bit 5) controls address increment
and hold for fly-by transfers.

The synchronization mode bit (bit 6) specifies that a multi-cycle demand mode transfer is synchro-
nized with the source (0) or the destination (1). In fly-by mode, the bit specifies whether fly-by
stores (0) or fly-by loads (1) are performed. Fly-by stores are source synchronized; fly-by loads
are destination synchronized. For non-fly-by block mode transfers, this bit isignored.

The synchronization select bit (bit 7) determines whether a transfer is demand (1) or block mode
(0).

The EOP/TC select bit (bit 8) selects EOP/TC3:0 pin function. If the EOP/TC3:0 select bit is
cleared (0), the pins are configured as end-of-process inputs EOP3:0. If set (1), the pin is
configured as a terminal count output TC3:0.

The following bits in the DMA control word control data chaining. If chaining mode is not used,
the source/destination chaining select bits (bits 9 and 10) must be set to 0.

The source/destination chaining select bits (bits 9-10) are set to enable data chaining mode.
Setting bit 9 enables destination chaining; setting bit 10 enables source chaining. Setting bits 9 and
10 enables source/destination chaining. Non-chaining mode is selected if both bits are clear.

The interrupt-on-chaining-buffer select bit (bit 11) is set to cause an interrupt to be generated
when byte count for a chained buffer reaches 0. Bit isignored in a non-chaining mode.

The chaining-wait select bit (bit 12) is set to enable the channel-wait function. When the wait
enable function is selected, DMAC register channel-wait bits must be cleared before a chaining
descriptor is read. This channel-wait function —together with the interrupt-on, buffer-complete
function— allows chaining descriptors to be dynamically changed during the course of a chained
DMA operation. This bit is ignored when a non-chaining mode is selected. See section 13.5,
“DATA CHAINING” (pg. 13-13).

13.10.4 DMA Data RAM

The DMA controller uses up to 32 words of internal data RAM to swap service between active
channels. When a channel is set up, the DMA controller dedicates 8 words of data RAM to that
channel (see Figure 13-12). When channel service swaps from one channel to another, the active
channel’s state is saved in data RAM. The state is retrieved when the channel is again serviced.
DMA data RAM for a channel is only updated when service swaps to another channel or udma
executes.
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NOTE:

Channel swapping occurs when channel priority for a pending DMA request is
higher than that of the currently active or last-serviced channel.

Address
Internal SRAM
0000 0000H DMA Working Registers
P / Byte Count OH
/ Source Address 4H
0000 0040H Ch?;‘g%ﬁfs?t“” / < Destination Address 8H
0000 0060H Channel 1 Setup Next Pointer (Chaining Mode) CH
(32 Bytes) Reserved 10H
0000 0080H Channel 2 Setup N Reserved 14H
(32 Bytes) N
N Reserved 18H
0000 00AOH Channel 3 Setup N N
(32 Bytes) Reserved 1CH
0000 00COH
T T F_CA069A

Figure 13-12. DMA Data RAM

udma flushes the state of a currently executing channel to data RAM. Additional DMA transfers
can occur between the time that udma executes and a program reads the locations in data RAM.
The channel may be suspended before udma executes to ensure coherence between the values read
from data RAM and actual DMA progress.

DMA data RAM is 128 bytes of internal RAM located at 0000 0040H to 0000 OOBFH (See Figure
13-12). This memory is read/write in supervisor mode and read only in user mode. This supervisor
protection prevents errant modification of the DMA data RAM by a program.

DMA data RAM for any channel can be used for general purpose storage when the channel is not
in use. A program, however, must not modify data RAM dedicated for a channel which is already
set up and awaiting activity. In general, any modification of DMA data RAM for an active or idle
channel may cause unpredictable DMA controller operation. Conversely, executing sdma may
cause previously stored datato be overwritten in the data RAM.
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13.10.5 Channel Setup Examples

Example 13-1. Simple Block Mode Setup

tel.

## Bl ock node setup .

nmov Oxc, g4 # Byte count = 12
| dconst cO_src_addr,g5 # Source address for channel O
| dconst cO_dest _addr,g6 # Destination addr for channel O
| dconst Ooxf, g3 # DMA ctl word (32/32 std-source
# inc. - dest. inc. - block)
sdma 0,93,94 # Setup channel O
# Other instructions (optional)
setbit 0,sf2,sf2 # enabl e channel 0

Example 13-2. Chaining Mode Setup

## Chai ni ng node setup .
| dconst ptrl,g4
| dconst 0Oxla6f, g3

Initial descriptor pointer

DMA ctl word (32/32 std-source)
hol d-dest inc. -demand source
sync. -dest. chai n, channel wait,
interrupt on buffer conplete)
Setup channel 1

H O HH H H

sdma 1, 93,94

H*

O her instructions (optional)

enabl e channel 1

setbit 1,sf2,sf2 #
# Descriptor list in nenmory for
#

chai ni ng
ptrl:
.word 0x100, bO_src_addr, bl dest_addr, ptr3
ptr2:
.word 0x200, 0Ox0, bO_dest addr, O0xO
ptr3:

.word 0x100, Ox0, b2 _dest_addr, ptr2
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13.11

DMA EXTERNAL INTERFACE

DMA CONTROLLER

DMA signal characteristics DACK3:0, DREQ3:0, EOP/TC3:0 and DMA and DMA transfer timing
requirements are described in the following sections. Figure 13-13 illustrates the external interface.
Refer to thei960 Cx microprocessor data sheets for AC specifications.

External Interface

System Bus (Address/Data/Control)

DREQO

DACKO

EOPO / TCO

DREQL

Peripheral 0

DACK1

e EOP1/TC1
i960% CA/CF

Microprocessor

Peripheral 1

DREQ2

DACK2

EOP2 / TC2

DREQ3

Peripheral 2

DACK3

EOP3/TC3

+ dedicated control for each channel
« data passes over system bus

Peripheral 3

F_CAO070A

13.11.1
DREQ3.0

DACK3:.0

Figure 13-13. DMA External Interface

Pin Description

13
DMA Request (input) - DMA request pins are individual, asynchronous -

channel-request inputs used by peripheral circuits to obtain DMA service. In
fixed priority mode, DREQO has the highest priority; DREQ3 has the lowest
priority. A request is generated by asserting the DREQ3:0 pin for a channel.

DMA Acknowledge (output) - notifies an external DMA device that atransfer is
taking place. The pin is active during the bus request issued to the DMA device.
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EOP/TC3:.0 End of Process (input EOP3:0) or Terminal Count (output TC3:0) - As an
output, the pin is driven active (low) during the last transfer for a DMA and has
the same timing as the DACK3:0 signals. TC3:0 pins are asserted when byte
count reaches zero for a chained or non-chained DMA. As an input, an
asynchronous active (low) signal on the pin for a minimum of two clock cycles
causes DMA to terminate as described in section 13.8, “TERMINATING A
DMA” (pg. 13-18).

DMA DMA Bus Request (output) - This pin indicates that a bus request is issued by
the DMA controller. The pin is active during a bus request originating from the
DMA controller and inactive during all other bus requests. DMA pin value is
indeterminate during idle bus cycles. The DMA pin is not active when chaining
descriptors are loaded from memory.

13.11.2 Demand Mode Request/Acknowledge Timing

Demand-mode transfers require that the DMA request DREQ3:0 signal is asserted before the
transfer is started. Demand mode transfers should satisfy two requirements:

1 After the transfer is requested, the DMA controller must be fast in responding to the
requesting device. This characteristic isreferred to as latency.

2. The requesting device must be given enough time to deassert the request signal to prevent
an unwanted DMA transfer.

The timing for demand mode transfers is described in the following sections. Latency character-
istics of aDMA transfer are described in section 13.11.10, “DMA Performance” (pg. 13-36).

An external device initiates a demand mode transfer by asserting (active low) one of the DMA
request pins. The acknowledge pin is driven active by the DMA controller during the bus request
issued to access the DMA requestor. Figure 13-14 shows DACK3:0 output timings.

To start ademand mode DMA, DREQ3:0 must be held asserted until the acknowledge bus request
is started. EOP3:0 pins do not require external synchronization; however, to guarantee detection
on aparticular PCLK2:1 cycle, setup and hold requirements must be satisfied.

At the end of the acknowledge bus request, DREQ3:0 may be held active to initiate further DMA
transfers or DREQ3:0 may be driven inactive to prevent further transfers. Depending on DMA
mode, arbitration for the next DMA transfer begins:

Case 1 Onthe PCLK2:1 cyclein which DACK3:0 is deasserted - Thistiming appliesto
demand mode fly-by transfers — and multi-cycle packing or unpacking modes
— with adjacent request loads or adjacent request stores.

Case 2: Two PCLK2:1 cycles after DACK3:0 is deasserted - This timing applies to
demand mode multi-cycle transfers with alternating request 1oads and stores.
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NOTE:

When a DMA operation is destination-synchronized, the next load access is
performed even if the request input is deasserted. This “prefetch” isimplemented
to increase performance. If the following DMA cycle is prevented, prefetch data
is saved internally and stored when the next transfer is requested. The entire
DMA cycle is not repeated.

S U U e B e B =

1 Start DMA
Bus Request

| (BLAST 1) End DMA
((
& READY \ / Bus Request
& IWAIT)
DMA
DACKX (see Note) / Acknowledge
(All Modes)
( high to prevent next bus cycle
DREQXx /
(Case 1)

Request

<
/"55 tins j|DMA

high to prevent next bus cycle

DREQXx \/ >
(Case 2) ‘ liss | tiys
Note:

1. Case 1: DREQ must deassert before DACK deasserts. This applies to all Fly-By modes: source synchronized
packing modes and destination synchronized unpacking modes.

2. Case 2: DREQ must be deasserted by the second clock (rising edge) after DACK is driven high.
This applies to all other DMA transfers.

3. DACKXx is asserted for the duration of a DMA bus request. The request may consist of multiple bus F_CX018A
accesses (defined by ADS and BLAST).

PRISE DI S e
—_— T Tl

Figure 13-14. DMA Request and Acknowledge Timing

13.11.3 End Of Process/Terminal Count Timing

EOP/TC3:0 can be programmed as an input EOP3:0 or output TC3:0 for each channel. EOP/TC3:0
pins are configured when a channel is setup using sdma.

TC3:0 is asserted when byte count reaches zero (0) for a chained or non-chained DMA. A TC3:0
pin for a channel is driven active during the last acknowledge bus request for a non-chained DMA
or during the last acknowledge bus request of each buffer for a chained DMA. TC3:0 pins have the
same timing as DACK3.0.
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EOP3:0 pins are asserted to terminate a DMA. EOP3:0 pins are active-level detected. For proper
internal detection, EOP3:0 pins must be asserted for a minimum of two and maximum of 17
PCLK2:1 cycles (See Figure 13-15). EOP3:0 pins do not require external synchronization;
however, to guarantee detection on a particular PCLK?2:1 cycle, setup and hold requirements must
be satisfied. The maximum pulse width requirement for the EOP3:0 pin is to prevent more than
one buffer transfer to terminate in the source/destination chaining mode. EOP3:0 inputs adhere to
the same timing requirements as DREQ3:0 for arbitration of the next DMA transfer.

= 7\ / i I

-—
15 CLKs max

-

A~

2 CLKs min

Note: EOP has the same AC timing requirements as DREQ to prevent unwanted DMA requests. EOP is NOT edge
triggered. EOP must be held for a minimum of 2 clock cycles, then deasserted within 15 clock cycles.
F_CX045A

Figure 13-15. EOP3:0 Timing

13.11.4 Block Mode Transfers

Block mode DMAS require no synchronization with a source or a destination device. DREQ3:0
inputs are ignored during block mode DMAs. The acknowledge signal DACK3:0 is driven active
when the source is accessed. EOP/TC3:0 pins have the same function as described in section
13.11.3, “End Of Process/Terminal Count Timing” (pg. 13-32).

13.11.5 DMA Bus Request Pin

The DMA request pin DMA indicates that the DMA controller initiated a bus access. The pin is
asserted (low) for any DMA load or store bus request. DMA is deasserted (high) for other bus
requests. The DMA pin has the same timing as the W/R pin. The DMA pin is not active when
chaining descriptors are fetched from memory.
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13.11.6 DMA Controller Implementation

Thei960 Cx processors DMA functions are implemented primarily in microcode. Processor clock
cycles are required to setup and execute a DMA operation. DMA features — including data
chaining, data alignment, byte assembly and disassembly — are implemented in microcode. DMA
hardware arbitrates channel requests, handles the DMA external hardware interface and interfaces
to microcode for most efficient use of core resources.

When considering whether to use the DMA controller, two questions generally arise:

1 When a DMA transfer is executing, how many internal processor clock cycles does the
DMA operation consume?

2. When a DMA transfer is executing, how much of the total bus bandwidth is consumed by
the DMA bus operations?

These questions are addressed in the following sections.

13.11.7 DMA and User Program Processes

The 1960 Cx processors allow DMA operations to be executed in microcode while providing core
bandwidth for the user’ s program. This sharing of core resources is accomplished by implementing
separate hardware processes for each DMA channel and for the user’'s program. Alternating
between the DMA and the user process enables the user code and up to four DMA processes (one
per channel) to run concurrently.

The environments for the DMA and user processes are implemented entirely in internal hardware,
as well as the mechanism for switching between processes. This hardware implementation enables
the 1960 Cx processors to switch processes on clock boundaries; no instruction overhead is
necessary to switch the process. With this switching mechanism, DMA microcode and the user
program can freguently alternate execution with absolutely no performance loss caused by the
process switching.

A process switch from user process to DMA process occurs as a result of a DMA event. A DMA
event issignaled when aDMA channel requires service or isin the process of setting up a channel.
Signaling the DMA event is controlled by DMA logic.

After aDMA event is signaled, the DMA process takes a certain number of clock cycles and then
the user processis restored. The maximum ratio of DMA-to-user cyclesis 4:1. This means that, at
most, the DMA process takes four clock cycles to every single-user process clock. The ratio of
DMA to user cycles can also be selected as 1:1 to increase execution speed of the user process
while a DMA isin progress. The user-to-DMA cycle ratio is controlled by the throttle bit in the
DMA command register (DMAC.1).
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A DMA rarely uses the maximum available cycles for the DMA process. Actual cycle alocation
between user process and DMA process depends on the type of DMA operation performed, DMA
channel activity and external bus loading and performance. Maximum allocation of internal
processor clocks to DMA processes are specified in section 13.11.10, “DMA Performance” (pg.
13-36).

13.11.8 Bus Controller Unit

The bus controller unit (BCU) accesses memory and devices which are source and destination of a
transfer. When the DMA process is active, DMA microcode issues |oad or store requests to the bus
controller to perform DMA data transfers. The DMA and user processes equally share access to
the bus on a request-by-request basis. If both processes attempt to flood the bus controller with
memory requests, the bus is shared equally; this prevents lockout of either process. If either
process does require the bus, the bus controller resource may be used entirely by either process.

The BCU contains a queue which accepts up to three pending requests for bus transactions (Figure
13-16). When a DMA channel is set up, the queue is divided such that one slot is dedicated for
DMA process requests and two slots are dedicated for user process requests. DMA and core
entries are arranged in such a way that when both a user and DMA dlot are filled, bus request
servicing alternates between requests issued by the user and DMA processes.

13.11.9 DMA Controller Logic

DMA controller logic manages the execution of DMA operations independently from the core. It:
»  Synchronizes DMA transfers with external request/acknowledge signals.

*  Providesthe program interface to set up each of the four DMA channels.

*  Providesthe program interface to monitor the status of the four channels.

»  Arbitrates requests between multiple DMA channels by managing channel priority.

*  Producesthe DMA event which causes DMA microcode to execute.
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User
Program

DMA

user program
~and
DMA issue requests

Request Queue
user program requests

DMA requests

______________ Service
Requests

| |
.
- F_CAO073A

Figure 13-16. DMA and User Requests in the Bus Queue

13.11.10 DMA Performance

DMA performance is characterized by two values: throughput and latency (Figure 13-17).
Throughput measurement is needed as a measure of the DMA transfer bandwidth. Worst-case

latency is required to determine if the DMA is fast enough in responding to transfer requests from
DMA devices.

13-37



DMA CONTROLLER Intel®

Throughput describes how fast datais moved by DMA operations. In this discussion, throughput is
the measure of how often DMA requests are serviced. DMA throughput, denoted as Nyggq, is
measured in PCLK2:1 clocks per DMA request. As Figure 13-17 shows, Nyrgq is the time
measured between adjacent assertions of DACK3:0. The established measure of throughput, in
units of bytes/second, is derived with the following equation:

_ aEBREQ ] fc? .
Throughput (bytes/second) = QN—- Equation 13-1
€ NTreq 9
where:
NTREQ = throughput clocks per DMA request (PCLK2:1 cycles)
Breo = bytes per DMA request
fc = PCLK2:1 frequency

Latency is defined as the maximum time delay measured between the assertion of DREQ3:0 and
the assertion of the corresponding DACK3:0 pin. In this section, latency is derived in number of
PCLK2:1 cycles. This value is denoted by the symbol N atency- The established measure of
DMA latency, in units of seconds, is derived with this equation:

NLATENCY

DMA Latency (seconds) = ————— Equation 13-2
c
where:
N ATENCY = Latency (PCLK2:1 cycles)
fc = PCLK2:1 frequency
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meew [ Ny SN
wn [T\

—_—

NLATENCY NLATENCY

Nrpgg ——>

N Breof
Latency = LATENCY (sec) Throughput = REQC (Bytes/Sec)
c NTREQ
N_arency = Number of Latency Clocks
Ntreq = Number of Clocks Per DMA Request
Breq = Number of Bytes Per DMA Request
fe = PCLK2:1 Frequency F_CA074A

Figure 13-17. DMA Throughput and Latency

13.11.11 DMA Throughput

DMA throughput (Ntrgg) for aparticular system is governed by the following factors:

» DMA transfer type *  Memory system configuration
» Busactivity generated by the user process « DMA throttle bit value

derived assuming:

Ntreq is derived from the transfer clocks (Nxpgr) provided in Table 13-5. Valuesin this table are -
13

» No bus activity is generated by the user process.

» DMA transfer source and destination memory are zero wait states or internal data RAM.

Table 13-5 provides the number of PCLK2:1 cycles required for each unit DMA transfer. Transfer
clock values, denoted by the symbol Nyger, are provided in the two boldface columns. These
columns show transfer clocks for the DMA throttle bit set to 1:1 and 4:1 configuration. Transfer
clocks are given in pairs separated by a“/”: the number on the left is the value for source synchro-
nized demand mode transfers; the number on the right is the value for destination synchronized
demand mode transfers.
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Table 13-5 aso shows the number of bytes per transfer. This is the number of bytes which are
transferred in Nyper clock cycles. Bytes per transfer is denoted by the symbol Bypgr. DMA
throughput (Ntrgg) is calculated as shown in Equation 13-3.

Br EQ .
NTREQ = NXFER * (B Equat'on 13'3
XFER
where:
NxFer = number of PCLK2:1 cycles per transfer
Breo = number of bytes transferred per DMA request
BxFER = number of bytes per DMA transfer
Table 13-5. DMA Transfer Clocks - Nxggr
Transfer Clocks
Nyrer in PCLK2:1 cycles
(Source Sync./Destination Sync.)
Transfer Type Bytes per Throttle = 4:1 Throttle = 1:1
(source-to-destination Transfer DMA User N User N
data length) (Bxrer) Process | Process XFER Process XFER
8-t0-8 Multi-Cycle 1 4/4 6/6 10/10 717 11/11
8-t0-16 Multi-Cycle 2 11/11 10/11 21/22 18/19 29/30
8-t0-32 Multi-Cycle 4 23/25 16/15 39/40 30/29 53/54
16-to-8 Multi-Cycle 2 10/10 8/8 18/18 14/13 24/23
16-to-16 Multi-Cycle 2 4/4 6/6 10/10 717 11/11
16-to-32 Multi-Cycle 4 9/12 11/8 20/20 17/14 26/26
32-to0-8 Multi-Cycle 4 22/22 13/13 35/35 26/23 48/45
32-t0-16 Multi-Cycle 2 10/11 8/8 18/19 14/13 24/24
32-t0-32 Multi-Cycle (aligned) 4 4/4 6/6 10/10 717 11/11
82-t0-32 Multi-Cycle 4 6/6 6/6 12/12 9/9 15/15
(unaligned)
128-t0-128 Multi-Cycle 16 6/7 9/9 15/16 10/10 16/17
8-bit Fly-by 1 3/3 3/3 6/6 4/4 717
16-bit Fly-by 2 3/3 3/3 6/6 4/4 717
32-bit Fly-by 4 3/3 3/3 6/6 4/4 717
128-bit Fly-by 16 3/3 6/6 9/9 6/6 9/9

The columns in Table 13-5 labeled DMA Process and User Process show the number of clock
cycles alocated to either these processes during a single DMA transfer. Equation 13-4 provides
the minimum fraction of processor bandwidth remaining for the user process during a DMA
transfer.
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UserP:\(l)cessCIocks «100% Equation 13-4
XFER

Minimum User Process Bandwidth =

Transfer types that do not perform assembly or disassembly always have Ntreqg equal to Ny regr.
For example, Byrgr for a 32 to 32 bit multi-cycle transfer has a value of 4, which means that each
transfer moves 4 bytes. Bgrgq is 4 which indicates that 4 bytes of data is transferred every DMA
request. This means that every DMA request will cause a transfer. Throughput per DMA request
(NTReQ), found by using Equation 13-3, is equal to Nyrgg; 10 clocks.

In some cases atransfer does not occur every DMA request. For exampl e, a source synchronized 8-
to-32 bit transfer requires 4 DMA requests before the transfer is complete. In this case Bypgr=4,
Nxrer=39 clocks, but Breg=1. Breg =1 because the source of this source-synchronized transfer
is only 8 bits (1 byte) wide. Thisleadsto a Nyrgq of 39/4 clocks. By changing this example from
source-synchronized to destination-synchronized, Ntrgq becomes 39 clocks. This is due to the
fact that the destination is 32 bits (4 bytes) wide, and a complete transfer occurs every DMA
request.

13.11.12 DMA Latency

DMA latency in a system depends on the following factors:

 DMA transfer type and subsequently the worst-case throughput value calculated for that
transfer

»  Number of channels enabled and the priority of the requesting channel
e Status of the suspend DMA on interrupt bit in the Interrupt Control register (ICON.dmas)

DMA latency is the sum of the worst-case throughput for the channel plus added components
which are dependent on the configuration of the DMA controller. DMA latency is denoted as
N aTency in the following discussion and is measured in number of PCLK2:1 cycles.

Table 13-6 shows the values for worst-case throughput. Nyreq, N7 firge @d Ny _cpgn describe
DMA throughput. Nyrgq, derived in Equation 13-3, describes the average DMA throughput,
measured for atransfer whichisin progress. Nt i, 8d Nt nainy represent boundary conditions of
throughput for the following conditions: B B

First DMA transfer in non-chained modes — N ;.4 is the throughput of the first transfer of anon-
chained DMA operation. After the setup microcode compl etes, additional microcode is required to
start the first DMA transfer.
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First DMA transfer of a chained DMA buffer — Nt 4 1S the throughput between chained
buffers (chaining mode only). The time required to arbitrate another buffer transfer in chaining
mode, read the next chaining descriptor from memory and acknowledge the first transfer of the
new buffer. Two values are given in Table 13-6 for Nt 44 tO account for differences in
throughput for EOP chaining mode. EOP chaining occurs when the DMA controller is configured
for both source and destination chaining, the EOP/TC3:0 pins are configured as inputs and
EOP3:0 is asserted by the external system to cause chaining to the next buffer transfer.

N7 firgt @d Nt _chqin are calculated as shown in Equations 13-5 and 13-6.

NT first = [NTO_first + N0 _first *(0.6*throttle)] Equation 13-5
NT chain = [NTO_chain + NTo_first *(0.6*throttle)] Equation 13-6
where:
throttle =0 for 4:1 throttle mode; 1 for 1:1 throttle mode

The factor of 0.6 is used to characterize the effect on the worst-case base throughput value of
disabling the throttle mode. For determination of Nyggq, Table 13-5 provides separate measure-
ments with the throttle bit both enabled and disabled.
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Table 13-6. Base Values of Worst-case DMA Throughput used for DMA Latency Calculation

Base worst-case throughput per request (PCLK2:1 cycles)
(Source Synchronized/Destination Synchronized)
Transfer Type Nen « NT0_chain NT0_chain
(source-to-dest. data length) TO_first (no EOP) (with EOP)
8-to-8 Multi-Cycle 15/22 61/63 85/84
8-t0-16 Multi-Cycle
aligned 17/32 63/71 95/92
unaligned 20/32 62/69 98/92
8-t0-32 Multi-Cycle
aligned 18/53 63/90 96/113
unaligned 18/53 60/90 96/113
16-to-8 Multi-Cycle
aligned 20/23 69/62 108/81
unaligned 20/23 62/60 108/81
16-to-16 Multi-Cycle
aligned 20/24 90/89 114/112
unaligned 35/50 112/117 129/138
16-t0-32 Multi-Cycle
aligned 35/42 104/103 150/127
unaligned 55/73 123/136 170/158
32-t0-8 Multi-Cycle
aligned 21/25 92/64 87/83
unaligned 21/28 63/65 87/86
32-t0-16 Multi-Cycle
aligned 20/26 93/89 110/110
unaligned 52/66 120/129 142/150
32-t0-32 Multi-Cycle
aligned 24/33 92/74 94/95
unaligned 30/52 118/93 114/114 13
128-t0-128 Multi-Cycle 19/29 63/68 67/75
8-bit Fly-by 27127 59/59 88/80
16-bit Fly-by 27127 59/59 88/80
32-bit Fly-by 27127 59/59 88/80
128-bit Fly-by 27127 59/59 88/80

Additional components of worst-case DMA latency depend on DMA controller configuration.
These components are defined in Table 13-7 and their values are given in Table 13-8.
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Table 13-7. DMA Latency Components

Set up Describes the time required for microcode to complete channel setup after
Nsetup DMA sdma executes. This latency component may be ignored if the channel is
channel enabled Ngy, clock cycles after sdma is executed.
Swap Time required for a higher priority channel to preempt a lower priority channel
Nswap DMA and the time required to copy the associated DMA working registers to internal
channel data RAM. If only one channel is enabled in a system, then Ng5, €quals 0.
Lower Latency of lower priority channels which are preempted when a DMA for the
Niower Priority highest priority channel is requested. A transfer on the lower priority channel
Channels must complete before the higher priority channel is serviced.
N: Interrupt Latency caused by servicing an interrupt with the suspend DMA mode enabled.
int Latency Nint is the same as the worst case interrupt latency for the system.
Table 13-8. Values of DMA Latency Components
Latency . Value
Component Condition (PCLK2:1 Cycles) Notes
Non-chained DMA modes 36
Chained DMA modes 44
N
setup Channel enable delayed from sdma execution
by > 36 clock cycles in non-chaining mode or 0
> 44 clock cycles in a chained DMA mode.
Single DMA channel enabled - No channel 0
N preemption
swap .
Multlple'Dl\./IA channels enabled - Preempt 5*(# of channels preempted)
lower priority channels
Single DMA channel enabled - No channel 0
N preemption
tower Multiple DMA channels enabled - Preempt NE Q)
lower priority channel L
N DMA suspend on interrupt disabled W (t)
int . orst-case
DMA suspend on interrupt enabled Interrupt Latency

NOTES:

1. N is the sum of maximum latencies of all channels which may be preempted by the requesting channel.
For example, with four DMA channels enabled and rotating priority mode, a channel request may be
required to preempt three other channels with pending requests. In this case, the N;’ component is the
sum of all of these latencies.
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As shown in Equations 13-7 and 13-8, worst-case DMA latency is finally calculated as the sum of
the individual latency components plus the worst-case throughput condition:

Non-chaining modes:
NLATENCY (worst case) = max(NT, NT_first) + Nsetup + Nswap + Njower * Nint Equation 13-7
Chaining modes:

NLATENCY (worst case) = NT_chain + Nsetup + Nswap + Niower * Nint Equation 13-8
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CHAPTER 14
INITIALIZATION AND SYSTEM REQUIREMENTS

This chapter describes the steps that the i960® Cx processors take during initialization. Discussed
are the RESET pin, the reset state, built-in self test (BIST) features and on-circuit emulation
function (ONCE). The chapter also describes the processor’'s basic system requirements —
including power, ground and clock — and concludes with some general guidelines for high-speed
circuit board design.

14.1 OVERVIEW

During the time that the RESET pin is asserted, the processor is in a quiescent reset state. All
external pins are inactive and the internal processor state is forced to a known condition. The
processor begins initialization when the RESET pin is deasserted.

When initialization begins, the processor uses an Initial Memory Image (IM1) to establish its state.
The IMI includes:

» Initialization Boot Record (IBR) — contains the addresses of the first instruction of the user’s
code and the PRCB.

»  Process Control Block (PRCB) — contains pointers to system data structures; also contains
information used to configure the processor at initialization.

»  System data structures — several data structure pointers are cached internally at initialization.

The i960 Cx processors may be reinitialized by software. When a reinitialization takes place, a
new PRCB and reinitiaization instruction pointer are specified. Reinitialization is useful for
relocating data structures from ROM to RAM after initialization.

The processor supports several facilities to assist in system testing and startup diagnostics. The
ONCE mode €electrically removes the processor from a system. This feature is useful for system-
level testing where a remote tester exercises the processor system. During initialization, the
processor performs an internal functional self test and external bus self test. These features are
useful for system diagnostics to ensure basic CPU and system bus functionality.

The processor is designed to minimize the requirements of its external system. The processor
requires an input clock (CLKIN) and clean power and ground connections (Vgg and V). Since
the processor can operate at a high frequency, the external system must be designed with consider-
ations to reduce induced noise on signals, power and ground.
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14.2 INITIALIZATION

Initialization describes the mechanism that the processor usesto establish itsinitial state and begin
instruction execution. Initialization begins when RESET is deasserted. At this time, the processor
automatically configures itself with information specified in the IMI and performs its built-in self
test. The processor then branches to the first instruction of user code.

The objective of theinitialization sequence isto provide a complete, working initial state when the
first user instruction executes. The user’s startup code has only to perform several base functions
to place the processor in a configuration for executing application code.

14.2.1 Reset Operation

The RESET pin, when asserted (active low), causes the processor to enter the reset state. All
external signals go to a defined state (Table 14-1); internal logic isinitialized; and certain registers
are set to defined values (Table 14-2). When the RESET pin is deasserted, the processor begins
initialization as described later in this chapter. RESET is alevel-sensitive, asynchronous input.

The RESET pin must be asserted when power is applied to the processor. The processor then
stabilizes in the reset state. This power-up reset is referred to as cold reset. To ensure that all
internal logic has stabilized in the reset state, a valid input clock (CLKIN) and V¢ must be
present and stable for a specified time before RESET can be deasserted.

The processor may also be cycled through the reset state after execution has started. This is
referred to as warm reset. For a warm reset, the RESET pin must be asserted for a minimum
number of clock cycles. Specifications for a cold and warm reset can be found in the i960 CA/CF
microprocessor data sheets.

The reset state cannot be entered under direct control from a program. No reset instruction — or
other condition which forces a reset — exists on the 1960 Cx processors. The RESET pin must be
asserted to enter the reset state. The processor does, however, provide a means to reenter the
initialization process. See section 14.3.1, “Reinitializing and Relocating Data Structures’ (pg.
14-11).
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Table 14-1. Pin Reset State

Pins® Reset State Pins® Reset State
A31:2 Floating DMA Floating
D31:0 Floating SuP Floating
BE3:0 High (inactive) FAIL Low (active)
WR Low (read) DACK3 High (inactive)
ADS High (inactive) DACK2 High (inactive)
WAIT High (inactive) DACK1 High (inactive)
BLAST High (inactive) DACKO High (inactive)
DTIR Low (receive) EOP/TC3 Floating (input)
DEN High (inactive) EOP/TC2 Floating (input)
LOCK High (inactive) EOP/TC1 Floating (input)
BREQ Low (inactive) EOP/TCO Floating (input)
DIC Floating

NOTE:

(1) Pin states shown assume HOLD and ONCE pins are not asserted. If HOLD is asserted during reset,
the hold is acknowledged by asserting HOLDA and the processor pins are configured in the Hold
Acknowledge state (See CHAPTER 10, THE BUS CONTROLLER.) If the ONCE pin is asserted, the
processor pins are all floated.

Table 14-2. Register Values After Reset

Register(l) Value after cold reset Value after warm reset
AC AC initial image in PRCB AC initial image in PRCB
PC CO01F2002H CO01F2002H
TC TC initial image in PRCB TC initial image in PRCB
FP (g15) interrupt stack base interrupt stack base
PFP (r0) undefined undefined
SP (r1) interrupt stack base+64 interrupt stack base+64
RIP (r2) undefined undefined 14
IPND (sf0) undefined value before warm reset
IMSK (sf1) 00H 00H
DMAC (sf2) 00H 00H
NOTE:

(1) All control registers (not listed) are configured with their respective values from the control table after

reset.
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14.2.2 Self Test Function (STEST, FAIL)

As part of initialization, the 1960 Cx processors execute a bus confidence self test and, optionally,
an internal self test program. The self test (STEST) pin enables or disables internal self test. The
FAIL pinindicates that either of the self tests passed or failed.

Internal self test checks basic functionality of internal data paths, registers and memory arrays on-
chip. Internal self test is not intended for a full validation of the processor’s functionality. Internal
self test detects catastrophic internal failures and complements a user’s system diagnostics by
ensuring a confidence level in the processor before any system diagnostics are executed.

Internal self test is disabled with the STEST pin. Internal self test can be disabled if the initial-
ization time needs to be minimized or if diagnostics are simply not necessary. The STEST pin is
sampled on the rising edge of the RESET input. If asserted (high), the processor executes the
internal self test; if deasserted, the processor bypasses internal self test. The external bus
confidence test is always performed regardless of STEST pin value.

The external bus confidence self test checks external bus functionality; it reads eight words from
the Initialization Boot Record (IBR) and performs a checksum on the words and the constant
FFFF FFFFH. If the processor calculates a sum of zero (0), the test passes. The external bus
confidence test can detect catastrophic bus failures such as shorted address, data or control linesin
the external system. See section 14.2.4, “Initial Memory Image (IM1)” (pg. 14-5).

The FAIL pin signals errors in either the internal self test or bus confidence self test. FAIL is
asserted (low) for each self test (Figure 14-1). If the test fails, the pin remains asserted and the
processor attempts to stop at the point of failure. If the test passes, FAIL is deasserted. When the
internal self test is disabled (with the STEST pin), FAIL still toggles at the point where the internal
self test would occur even though the internal self test is not executed. FAIL is deasserted after the
bus confidence test passes. In Figure 14-1, all transitions on the FAIL pin are relative to PCLK2:1
as shown in the 80960CA or CF data sheets.

)). )).
0 0
RESET |:
(Internal Self-Test) (Bus Test)
Pass Pass
FAIL |: Fail Fail
H—------ -
Cycles? | 5 Cycles | 102 Cycles |
NOTE:
On the 80960CA, cycles = ~60,000
On the 80960CF, cycles = ~280,000 F_CAO075A

Figure 14-1. FAIL Timing
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14.2.3 On-Circuit Emulation

On-circuit emulation aids board level testing. This feature allows a mounted 1960 Cx processor to
electrically remove itself from a circuit board. In ONCE mode, the processor presents a high
impedance on every pin, nearly eliminating the processor’s power demands on the circuit board.
Once the processor is electrically removed, a functional tester can take the place of (emulate) the
mounted processor and execute a test of the 1960 Cx processor system.

The on-circuit emulation mode is entered by asserting (low) the ONCE pin while the i960 Cx
processor is in the reset state. ONCE pin value is latched on RESET signd’s rising edge. The
ONCE pin should be left unconnected in an i960 Cx processor system. The pin is connected to
V¢ through an internal pull-up resistor, causing the unconnected pin to remain in the inactive
state. To enter on-circuit emulation mode, an external tester simply drives the ONCE pin low
(overcoming the pull-up resistor) and initiates areset cycle. To exit on-circuit emulation mode, the
reset cycle must be repeated with the ONCE pin deasserted prior to the rising edge of RESET. (See
the 1960 CA/CF microprocessor data sheets for specific timing of the ONCE pin and the character-
istics of the on-circuit emulation mode.)

14.2.4 Initial Memory Image (IMI)

The IMI comprises the minimum set of data structures that the processor needs to initialize its
system. The IMI performs three functions for the processor:

e it providesinitial configuration information for the core and integrated peripherals

» it provides pointers to the system data structures and the first instruction to be executed after
the processor’ sinitialization

» it provides checksum words that the processor uses in its self test routine at startup

The IMI is made up of three components: the initialization boot record (IBR), process control
block (PRCB) and system data structures. Figure 14-2 shows the IMI components. The IBR is
fixed in memory; the other components are referenced directly or indirectly by pointersin the IBR
and the PRCB.

14.2.5 Initialization Boot Record (IBR)

The IBR isthe primary data structure required to initialize the 1960 Cx processor. The IBR isa 12-
word structure which must be located at address FFFF FFOOH (see Figure 14-2). The IBR is made
up of four components: the initial bus configuration data, the first instruction pointer, the PRCB
pointer and the self test checksum data.
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Address

FFFFFFOOH

FFFFFF10H

FFFFFF14H
FFFFFF18H

FFFFFF2CH

Fixed Data Structures

Initialization Boot Record:

Initial Bus Configuration

(least significant byte of each word)

Relocatable Data Structures

User Code:

First Instruction Pointer

PRCB Pointer

6 check words

(for bus confidence self-test)

Process Control Block (PRCB):

Fault Table base address

Control Table base address

AC Register initial image

Fault Configuration Word

Interrupt Table base address

System Procedure Table base address

Reserved

Interrupt Stack Pointer

Instruction Cache Configuration Word

Register Cache Configuration Word

Control Table

Interrupt Table

System Procedure Table

<

other architecturally-defined
data structures
(not required as part of IMI)

00H

04H

08H

OCH

10H

14H

18H

1CH

20H

24H

F_CA135A

Figure 14-2. Initial Memory Image (IMI) and Process Control Block (PRCB)
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When the processor reads the IMI during initialization, it must know the bus characteristics of
external memory where the IMI islocated. This bus configuration is read from the IBR' sfirst three
words. At initialization, the processor performs loads from the lower order byte of the IBR’s first
three words. These three bytes are combined and loaded into the memory region 0 configuration
register (MCONO) to program the initial bus characteristics for the system.

The byte in IBR word 0 is loaded into the lowest byte position of the MCONO register; the next
two bytes from word 1 and word 2 are loaded into successively higher byte positions. The byte in
IBR word 4 isreserved and must be set to 00H. This byteis not loaded at initialization. See section
10.2, “MEMORY REGION CONFIGURATION" (pg. 10-2).

When initialization begins, the region configuration table valid bit (BCON.ctv) is cleared. This
means that every bus request issued takes configuration information from the MCONO register,
regardless of the memory region associated with the request. The MCONO register isinitially set
by microcode to a value which allows the bus configuration datain the IBR to be loaded regardless
of actual memory configuration. Thisis done by configuring the external bus with its most relaxed
options:

*  Non-burst * Ngap=31
*  Non-pipelined * Ngrpp=3
*  Ready disabled * Npyap=31
*  Buswidth = 8 hits * Nwpp=3
» Littleendian byte order * Nxpa=3

With this region configuration, the first byte of bus configuration dataisloaded from the IBR. This
byte is immediately placed into the lower byte of the MCONO register. This action provides the
user-specified Nrap, pipeline control, ready control and burst control values for bus configuration.
The remaining configuration data bytes are then read with requests which use the new Ngap value.
Once all three bytes are read, MCONQO is rewritten and initialization continues. This reduces the
number of clocks required to load the bus configuration data.

The configuration data in MCONO controls all memory regions. The bus configuration data is
typically programmed for a system’s region 15 bus characteristics. This is done because the
remainder of the IBR and the data structures must be loaded using the new bus characteristics and
the IBR isfixed in region 15.

The processor loads the remainder of the IBR which consists of the first instruction pointer, the
PRCB pointer and six checksum words. The PRCB pointer and the first instruction pointer are
internally cached. The six checksum words — along with the PRCB pointer and the first
instruction pointer — are used in a checksum calculation which implements a confidence test of
the external bus. The sum of these eight words plus FFFF FFFFH must equal O.
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After the checksum is computed, initialization continues. This includes caching various fields
from the PRCB, caching the NMI vector entry, caching the supervisor stack pointer and
computing the frame pointer and stack pointer.

As part of initialization, the processor loads the remainder of the memory region configuration
table from the external control table. The Bus Configuration (BCON) register is also loaded at this
time. The control table valid (BCON.ctv) bit can be set in the control table to validate the region
table after it is loaded. In this way, the bus controller is completely configured during initial-
ization. See section 10.2, “MEMORY REGION CONFIGURATION” (pg. 10-2) for a discussion
of memory regions and section 10.3, “PROGRAMMING THE BUS CONTROLLER” (pg. 10-5)
for information about configuring the bus controller.

Example 14-1. Algorithm for Computing the Checksum

x- nenory (FFFF FF10H); read 8 words from physi cal
address FFFF FF10H

chksum = FFFFFFFFH add_wi th_carry x(0);

chksum

= chksum add_wi th_carry x(1);
chksum = chksum add_wi th_carry x(2);
chksum = chksum add_wi th_carry x(3);
chksum = chksum add_wi th_carry x(4);
chksum = chksum add_wi th_carry x(5);
chksum = chksum add_wi th_carry x(6);
chksum = chksum add_wi th_carry x(7);
14.2.6 Process Control Block (PRCB)

The PRCB contains base addresses for system data structures and initial configuration information
for the core and integrated peripherals (see Figure 14-2). The base address pointers are cached in
internal registers at initialization. The base addresses are accessed from these internal registers
until the processor isreset or reinitialized.

The initial configuration information is programmed in the arithmetic controls (AC) initial image,
the register cache configuration word, the fault configuration word and the instruction cache
configuration word. Figure 14-3 shows these configuration words.
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AC Register Initial Image
Condition Code Bits - AC.cc
Integer-Overflow Flag - AC.of
(0) no overflow
(1) overflow
Integer Overflow Mask Bit - AC.om
(0) enable overflow faults
(1) mask overflow faults
No-Imprecise-Faults Bit - AC.nif
(0) allow imprecise fault conditions
(1) prevent imprecise fault conditions
31 28 24 20 16
n o o clceje
; m f HHE
12 8 4 0
Fault Configuration Word
Must be setto 1
31 28 24 20 16 l
1
T 12 8 4 0
Mask Non-Aligned Bus Request Fault
(0) enable the fault
(1) mask the fault
Instruction Cache Configuration Word
Disable Instruction Cache
(0) enable cache
(1) disable cache
31 28 24 20 16 12 8 4 0
Register Cache Configuration Word
Number of cached register sets (0-15) 1
31 28 24 20 16 12 8 4 0
Reserved
(Initialize to 0) F_CRO76A

Figure 14-3. Process Control Block Configuration Words
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The AC initial image is loaded into the on-chip AC register during initialization. The AC initial
image allows the initial value of the overflow mask, no imprecise faults bit and condition code bits
to be selected at initialization.

The AC initial image condition code bits can be used to specify the source of an initialization or
reinitialization when a single instruction entry point to the user startup code is desirable. Thisis
accomplished by programming the condition code in the AC initial image to a different value for
each different entry point. The user startup code can detect the condition code values — and thus
the source of the reinitialization — by using the compare or compare-and-branch instructions.

The fault configuration word allows the operation-unaligned fault to be masked when a non-
aligned memory request is issued. (See section 10.4, “DATA ALIGNMENT” (pg. 10-9) for a
description of non-aligned memory requests.) If bit 30 in the fault configuration word is set, afault
is not generated when a non-aligned bus request is issued. The i960 Cx processor, in this case,
automatically performs the required sequence of aligned bus requests. An application may elect to
generate a fault to detect unwanted non-aligned accesses by initializing bit 30 to O, thus enabling
the fault.

The instruction cache configuration word allows the instruction cache to be enabled or disabled at
initialization. If bit 16 in the instruction cache configuration word is set, the instruction cache is
disabled and all instruction fetches are directed to external memory. Disabling the instruction
cache is useful for tracing execution in a software debug environment. Instruction cache remains
disabled until one of two operationsis performed:

» The processor isreinitialized with a new value in the instruction cache configuration word

» sysctl isissued with the configure instruction cache message type and a cache configuration
mode other than disable cache

The register cache configuration word specifies the number of register sets cached on-chip. The
integrated procedure call mechanism saves the local register set when a call executes. Local
registers are saved to the local register cache. When this cache is full, the oldest set of local
registersis flushed to the stack in external memory.

The register cache configuration word's least four bits specify the number of local register sets
internally cached. The number programmed in this word specifies from 0 to 15 register sets. When
more than five register sets are selected, space is taken from internal data RAM for the register
cache. See section 5.2, “CALL AND RETURN MECHANISM” (pg. 5-2) for a complete
description of the register caching mechanism.
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14.3 REQUIRED DATA STRUCTURES

Several data structures are typically included as part of the IMI because values in these data
structures are accessed by the processor during initialization. These data structures are usually
programmed in the system’s boot ROM, located in memory region 15 of the address space. The
required data structures are:

* PRCB »  system procedure table
* IBR » control table
* interrupt table

At initialization, the processor loads the supervisor stack pointer from the system procedure table
and caches the pointer in an internal register. The supervisor stack pointer is located in the
preamble of the system procedure table at byte offset 12 from the base address. System procedure
table base address is programmed in the PRCB. See section 5.5.1, “ System Procedure Table” (pg.
5-13).

The control table is the data structure that contains the on-chip control register values. It is
automatically loaded during initialization and must be completely constructed in the IMI. See
section 2.3, “CONTROL REGISTERS’ (pg. 2-6) for a description of the control table.

At initialization, the NMI vector is loaded from the interrupt table and saved at location 0000H of
the internal data RAM. The interrupt table is typically programmed in the boot ROM and then
relocated to RAM by reinitializing the processor. See CHAPTER 6, INTERRUPTS for a
description of NMI and the interrupt table.

The remaining data structures which an application may need are the fault table, user stack,
supervisor stack and interrupt stack. The necessary stacks must be located in a system’sRAM. The
fault table istypically located in boot ROM. If it is necessary to locate the fault table in RAM, the
processor must be reinitialized.

1431 Reinitializing and Relocating Data Structures

Reinitialization can reconfigure the processor and change pointers to data structures. The processor
is reinitialized by issuing the sysctl instruction with the reinitialize processor message type. (See
section 4.3, “SYSTEM CONTROL FUNCTIONS’ (pg. 4-19) for a description of sysctl.) The
reinitialization instruction pointer and a new PRCB pointer are specified as operands to the sysctl
instruction. When the processor is reinitialized, the fields in the newly specified PRCB are |oaded
as described in section 14.2.6, “ Process Control Block (PRCB)” (pg. 14-8).
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Reinitialization is useful for relocating data structures to RAM after initialization. The interrupt
table must be located in RAM: to post software-generated interrupts, the processor writes to the
pending priorities and pending interrupts fields in this table. It may also be necessary to relocate
the control tableto RAM: it must bein RAM if the control register values are to be changed by the
user program. In some systems, it is necessary to relocate other data structures (fault table and
system procedure table) to RAM because of poor load performance from ROM.

After initialization, the user program is responsible for copying data structures from ROM into
RAM. The processor is then reinitialized with a new PRCB which contains the base addresses of
the new data structuresin RAM.

Reinitialization is required to relocate any of several data structures since the processor caches the
pointers to the structures. The processor caches the following pointers during its initialization:

* Interrupt Table Address »  System Procedure Table Address
*  Supervisor Stack Pointer * Interrupt Stack Pointer
*  Fault Table Address *  Control Table Address

* PRCB Address
14.3.2 Initialization Flow

This section summarizes initiaization by presenting a flow of the steps that the processor takes
during initialization (Figure 14-4). The entry point for reinitialization is aso shown.
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Hardware Reset

| Reset state -—

RESET
Asserted
?

| Assert FAIL pin |

TC = 0
enable faults

STEST
asserted on
rising edge of
reset
2

Perform internal self-test |

Software Reset

Executing program

SYSCTL
reinitialize
?

Get PRCB pointer and start
IP from SYSCTL operands

{

Process PRCB

cache data structure pointers;
read configuration words
and configure processor

¥

Cache NMI vector from
vector location 248 in
interrupt table

Internal
self-test pass

STOP

!

Deassert FAIL pin |

!

Configure status
& control registers
AC

PC 0
PC.em <€——————— Supervisor
PC.s «—————— Interrupted
pPCp — 3]

¥

Set up bus controller
Load byte at FFFF FFOOH
into byte 0 of MCONO

!

Load byte at FFFF FFO4H into byte 1
and FFFF FFO8H into byte 2
of MCONO

[}

Assert FAIL pin

]

Compute checksum for
bus confidence self-test
Load words FFFF FF10H
through FFFF FF2CH
start IP is word at FFFF FF10H

YES

Cache supervisor stack pointer
from offset 12
in system-procedure table

{

FP = interrupt stack pointer
SP =FP + 64

¥

Load control registers with
data in the control table

¥

Execute user code;
branch to start IP

Deassert FAIL pin |

F_CAQ0077A

Figure 14-4. Processor Initialization Flow
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14.3.3 Startup Code Example

After initialization is complete, user startup code typically copies initialized data structures from
ROM to RAM, reinitializes the processor, sets up the first stack frame, changes the execution state
to non-interrupted and calls the _mai n routine. This section presents an example startup routine
and associated header file. This simplified startup file can be used as a basis for more complete
initialization routines. The MON960 debug monitor’ s source code serves as an example of a more
completeinitialization.

The examples in this section are useful for creating and evaluating startup code. The following
lists the exampl€' s number, name and page.

* Example 14-2., Startup Routine (init.s) (pg. 14-14)

» Example 14-3., High-Level Startup Code (initmain.c) (pg. 14-20)

» Example 14-5,, Initialization Boot Record File (rom_ibr.c) (pg. 14-21)

» Example 14-6., Linker Directive File (init.Id) (pg. 14-23)

» Example 14-7., Makefile (pg. 14-24)

* Example 14-8,, Initialization Header File (init.h) (pg. 14-25)

Example 14-2. Startup Routine (init.s) (Sheet 1 of 6)

/25522 * [
/* init.s */
| * o e e e o e e e e e e e e e e e e e mee e oo * [

/* initial PRCB */

.globl _romprcb
.align 4

_rom prch:
.word boot flt table # 0 - Fault Table
.word _boot _control _table # 4 - Control Table
.word 0x00001000 # 8 - AC reg mask overflow fault
.word 0x40000001 # 12 - FIt CFG All ow Unaligned
.word boot intr_table # 16 - Interrupt Table
.word romsys_proc_table # 20 - System Procedure Tabl e
.word 0 # 24 - Reserved
.word _intr_stack # 28 - Interrupt Stack Pointer
.word 0x00000000 # 32 - Inst. Cache - enable cache
.word 5 # 36 - Reg. Cache - 5 sets cached
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Example 14-2. Startup Routine (init.s) (Sheet 2 of 6)

/* ROM system procedure table */

.equ supervi sor _proc, 2
. text
.align 6

romsys_proc_tabl e:
.space 12 # Reserved
.word _supervisor_stack # Supervi sor stack poi
.space 32 # Preserved
.word _defaul t _sysproc # sysproc O
.word _defaul t _sysproc # sysproc 1
.word _defaul t _sysproc # sysproc 2
.word _defaul t _sysproc # sysproc 3
.word _defaul t _sysproc # sysproc 4
.word _defaul t _sysproc # sysproc 5
.word _defaul t _sysproc # sysproc 6
.word _fault_handl er + supervisor_proc # sysproc 7
.word _defaul t _sysproc # sysproc 8
.Space 251*4 # sysproc 9-

/* Fault Table */

. equ syscall, 2

. equ fault _proc, 7
. text

.align 4

nt er

259
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Example 14-2.

Startup Routine (init.s) (Sheet 3 of 6)

boot flt table:
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
. space

/*

Boot

t ext

(fault_proc<<2)
0x27f
(fault_proc<<2)
0x27f
(fault_proc<<2)
0x27f
(fault_proc<<2)
0x27f
(fault_proc<<2)
0x27f
(fault_proc<<?2)
0x27f
(fault_proc<<2)
0x27f
(fault_proc<<?2)
0x27f
(fault_proc<<2)
0x27f
(fault_proc<<2)
0x27f
(fault_proc<<2)
0x27f

21*8

Interrupt Table */

boot intr_table:
.word
.word
.word
.word
.word

.word
.word
.word
.word
.word
.word
.word

+ syscal |
+ syscal |
+ syscal |
+ syscal |
+ syscal |
+ syscal |
+ syscal |
+ syscal |
+ syscal |
+ syscal |

+ syscal |

0
0o, 0,0 0,0 00 00 00,0
_intx, _intx,
_intx, _intx, _
_intx, _intx, _
_intx, _intx,
_intx, _intx,
_intx, _intx,
_intx, _intx,
_intx, _intx,
_intx, _intx,
intx, _intx,

ntx, _intx,
intx, _intx,
ntx, _intx,
ntx, _intx,
ntx, _intx,
ntx, _intx,
ntx, _intx,
ntx, _intx,
ntx, _intx,
ntx, _intx,

#

_intx,
_intx,
_intx,

_intx,
_intx,
_intx,

O-Parall el Fault
1-Trace Fault
2-Operation Fault
3-Arithnetic Fault
4- Reserved
5-Constrai nt Faul t
6- Reserved
7-Protection Fault
8- Reserved
9- Reserved
Oxa- Type Faul t
reserved
_intx, _intx, _intx,
_intx, _intx, _intx,
_intx, _intx, _intx,
_intx, _intx,
_intx, _intx,
_intx, _intx,
_intx, _intx, _intx,
_intx, _intx,
_intx, _intx,
intx, _intx,

nt x
nt x
nt x

nt x
nt x
nt x
nt x
nt x
nt x
nt x
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Example 14-2. Startup Routine (init.s) (Sheet 4 of 6)

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx
/* START */
/* Processor starts execution here after reset. */
.text
.globl _start_ip
.globl _reinit
_start_ip:
nmv 0, gl4 /* g14 nust be 0 for ic960 C compiler */
/* Copy the .data area into RAM It has been packed in the ROM
* after the code area. |If the copy is not needed (RAM based nonitor),

* the synbol romdata can be defined as 0 in the linker directives file.
*/

| da romdata, gl # | oad source of copy
cnpobe 0, g1, 1f
| da __Bdata, g2 # | oad destination
| da __Edata, g3
init_data:
I dq (91), r4
addo 16, g1, 91
stq r4, (g2)

addo 16, 92, g2
cmpobl g2, g3, init_data
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Example 14-2. Startup Routine (init.s) (Sheet 5 of 6)

tel.

/* Initialize the BSS area of RAM */

| da __Bbss, g2 # start of bss
| da __Ebss, g3 # end of bss
nmovq 0,r4

bss fill:
stq r4, (g92)

addo 16, g2, g2
crmpobl g2, g3, bss_fill
/* Save initial value of gO; it contains the stepping nunber. */

st g0, _conponentid
_reinit:
| dconst 0x300, r4 # reinitialize sys control
| da 1f, r5
| da _romprch, r6
sysctl r4, r5, ré6
1:
nmov 0, gl4
| da _user_stack, g0 [* new fp */
| da _user_stack, g1 /* new pfp */
cal l move_franme
| dconst 0x001f 2403, r3 /* PC mask */
| dconst 0x000f 0003, r4 /* PC val ue */
nmodpc r3, r3, r4 /* out of interrupted state */
cal l _main # to main routine

t erm nat ed:
f mar k # cause breakpoint trace fault
b term nat ed
/* nove frame -
g0 - new franme pointer (FP)
gl - new previous frane pointer (PFP)

This routine switches stacks. It should be called using a "local"

call. The new stack pointer (SP) is calculated by finding the
relative offset between the old FP and old SP, then adding this
offset to the new FP.

*/
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Example 14-2.

INITIALIZATION AND SYSTEM REQUIREMENTS

Startup Routine (init.s) (Sheet 6 of 6)

nove_frane:

andnot Oxf, pfp, r3 /* old FP */
nmv g0, r6 /* new FP */
flushreg
Id 4(r3), r4 /* old SP */
subo r3, r4, r5 /* old SP offset fromFP */
1:
I dq (r3), r8 /[* fromold frame */
addo 16, r3, r3
stq r8, (r6) /[* to new frane */
addo 16, r6, r6
cmpobl  r3, r4, 1b
addo g0, r5, r4 /* new SP */
st gl, (g0) /* store new PFP in new frame */
st r4, 4(g0) /* store new SP in new frame */
nmv g0, pfp [* new FP */
ret
.globl _intr_stack
.globl _user_stack
.globl _supervisor_stack
. bss _user _stack, 0x0200, 6 # default application stack
. bss _intr_stack, 0x0200, 6 # interrupt stack
. bss _supervisor_stack, 0x0600, 6 # fault (supervisor) stack
.text

_fault_handl er:
I dconst 'F', g0
cal _co
ret

_default_sysproc:
ret

_intx:
I dconst "I', g0
cal _co
ret
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Example 14-3. High-Level Startup Code (initmain.c)

unsi gned conponentid = O;

mai n()

{ /* system or board-specific code goes here */

} /* this code is called by init.s */

co()

{ /* system or board-specific output routine goes here */
}

Example 14-4. Control Table (ctltbl.c) (Sheet 1 of 2)
/25522 * [
/* ctlthl.c */
| * o e e e o e e e e e e e e e e e e e mee e oo * [

#include "init.h"

t ypedef struct
{
unsi gned control _reg[28];
} CONTROL_TABLE;
const CONTROL_TABLE boot_control _table = {
/* -- Group O -- Breakpoint Registers */
o, 0, 0, O,
/* -- Group 1 -- Interrupt Map Registers */
0, 0, 0,/* Interrupt Map Regs (set by code as needed) */
0xc3bc, /* | CON

* - dedi cat ed node,

* - enabl ed

* sdmO0 - falling edge actived,
* sdm1 - falling edge actived,
* sdm2 - falling edge actived,
* sdm 3 - falling edge actived,
*

sdm 4 - level -l ow acti vated,

* sdm5 - falling edge actived,
* sdm 6 - falling edge actived,
* sdm7 - falling edge actived,
* - mask unchanged,

* - not cached,

* - fast,

* - DMA suspended

*/
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Example 14-4. Control Table (ctltbl.c) (Sheet 2 of 2)

/* -- Groups 2-5 -- Bus Configuration Registers */

DEFAULT, /* Region 0 */

DEFAULT, /* Region 1 */

DEFAULT, /* Region 2 */

DEFAULT, /* Region 3 */

DEFAULT, /* Region 4 */

DEFAULT, /* Region 5 */

DEFAULT, /* Region 6 */

DEFAULT, /* Region 7 */

DEFAULT, /* Region 8 */

DEFAULT, /* Region 9 */

DEFAULT, /* Region 10 */

DEFAULT, /* Region 11 */

DEFAULT, /* Region 12 */

I O /* Region 13 */

DRAM /* Region 14 */

FLASH, /* Region 15 */

/* -- Group 6 -- Breakpoint, Trace and Bus Control Registers */

0, /* Reserved */

0, /* BPCON Register (reserved by nonitor) */

0, /* Trace Controls */

1 /* BCON Register (Region config. valid) */
i

Example 14-5. Initialization Boot Record File (rom_ibr.c) (Sheet 1 of 2)

#include "init.h"

/*

* NOTE: The ibr nust be l|ocated at OxFFFFFF00. Use the |linker to
* |ocate this structure.

* The boot configuration is al nost always region F, since the IBR
* must be located there

*/

#defi ne BOOT_CONFI GFLASH

extern void start_ip();

extern unsigned rom prchb;

extern unsigned checksum

#define CS 6 (int) &checksum /* value calculated in |inker */
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Example 14-5. Initialization Boot Record File (rom_ibr.c) (Sheet 2 of 2)

const IBR init_boot record =

{

BYTE_N( 0, BOOT_CONFI G ,

0, 0, 0,

BYTE_N( 1, BOOT_CONFI G ,

0, 0, 0,

BYTE_N( 2, BOOT_CONFI G ,

0, 0, 0,

BYTE_N( 3, BOOT_CONFI G ,

0, 0, 0,

start_ip,

& om prch,

- 2,

0,

0,

0,

0,

CS_ 6

b

Example 14-6. Linker Directive File (init.ld) (Sheet 1 of 2)

/* __________________________________________________________ */
/* init.ld */
/* __________________________________________________________ */
MEMORY
{

/~k

Enough space must be reserved in ROM after the text
section to hold the initial values of the data section.

*/

rom o=0xf f f f 0000, | =0xf c00

rom dat: o=0xfffffc00,=0x0300 /* placehol der for .data image */

ibr: o=0xffffff0oO, | =0x00ff

dat a: 0=0xe0000000, | =0x1000
}
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Example 14-6. Linker Directive File (init.ld) (Sheet 2 of 2)

SECTI ONS
{
Libr
{
romibr.o
} >ibr
. text
{
*(.text)
. =ALI GN(0x10) ;
} > rom
.data :

{
} > data

. bss :

{
} > data

}
romdata = __ Etext; /* used in init.s as source of .data
section initial values. ROW60
"move" command pl aces the .data
section right after the .text section */

_checksum = -(_romprcb + _start_ip);

/*

#*nmove $0 .text O
#*nmove $0

#*nmove $0 .ibr OxFF0OO
#*map $0

#* ki mage $0 $0.im
#*qui t

*/

Example 14-7. Makefile (Sheet 1 of 2)

/2522 * [
/* makefile */
| * o o e o e o e e e e e e e e e e e e e e e o * [
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Example 14-7. Makefile (Sheet 2 of 2)

LDFILE = init

FINALOBJ = init

OBJS = init.o ctltbl.o initmain.o
IBR = romibr.o

LDFLAGS = - ACA -Fcoff -T$(LDFILE) -m
ASFLAGS = -ACA -V
CCFLAGS = -ACA -Fcoff -V -c¢

init.im: $(FlNALOBJ)
romd60 $(LDFI LE) $( FI NALOBJ)

init: $(0BIS) $(IBR
gl d960 $(LDFLAGS) -0 $< $(OBJS)

.S.0:
0as960c $( ASFLAGS) $<

.C.0:
gcc960 $( CCFLAGS) $<
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Example 14-8. Initialization Header File (init.h) (Sheet 1 of 2)

/5522 *]
/* init.h */
| * o o e o e o e e e e e e e e e e e e e e e o * [

#define BYTE_N(n,data) (((unsigned)(data) >> (n*8)) & OXFF)
t ypedef struct
{
unsi gned charbus_byte_0;
unsi gned charreserved_0O[ 3] ;
unsi gned charbus_byte_1;
unsi gned charreserved_1[ 3];
unsi gned charbus_byte_2;
unsi gned charreserved_2[ 3];
unsi gned char bus_byte_3;
unsi gned charreserved_3[ 3];
voi d (*first_inst)();
unsi gned *prchb_ptr;
i nt check_suni 6] ;
}1 BR;

#def i ne BURST( on) ((on) ?0x1: 0)
#def i ne READY( on) ((on) ?20x2: 0)
#defi ne Pl PELI NE( on) ((on) ?20x4: 0)
#define Bl G_ENDI AN(on) ((on)?(0x1<<22):0)

/* Bus Wdth can be 8,16 or 32, default to 8 */
#define BUS_WDTH(bw) ((bw==16)?(1<<19):(0)) | ((bw==32)7?(2<<19):(0))

/* Wit States */

#def i ne NRAD(ws) ((ws>-1 & & ws<32)?(ws<<3 ):0) /* ws can be 0-31 */
#defi ne NRDD( ws) ((ws>-1 && ws<4 )?(ws<<8 ):0) /* ws can be 0-3 */
#def i ne NXDA(ws) ((ws>-1 && ws<4 )?(ws<<10):0) /* ws can be 0-3 */
#def i ne NWAD( ws) ((ws>-1 && ws<32)?(ws<<12):0) /* ws can be 0-31 */
#defi ne NVWDD( ws) ((ws>-1 && ws<4 )?(ws<<17):0) /* ws can be 0-3 */

/* Bus configuration */
#defi ne DEFAULT (BUS_WDTH(8) | READY(0) | BURST(0)

BI G_ ENDI AN(O) | \

PI PELI NE(0) | NRAD(8) | NRDD(0) | NXDA(1) |\
NWAD( 8) | NVDD(0) )

#define | _O (BUS W DTH(8) | READY(0) | BURST(0) | BIG ENDIAN(0) | \
PI PELI NE(0) | NRAD(13) | NRDD(0) | NXDA(3) |\
NWAD( 13) | NVDD(0) )
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Example 14-8. Initialization Header File (init.h) (Sheet 2 of 2)

#define DRAM (BUS WDTH(32)| READY(1) | BURST(1) | BIG ENDIAN(O) | \
PI PELI NE(0) | NRAD(2) | NRDD(1) | NXDA(1) |\
NWAD( 2) | NVDD(1))

#define FLASH  (BUS_WDTH(8) | READY(0) | BURST(0) | BI G ENDI AN(O) | \
PI PELI NE(0) | NRAD(4) | NRDD(0) | NXDA(1) |
NWAD( 4) | NVDD(0))

—

14.4 SYSTEM REQUIREMENTS

The following sections discuss generic hardware requirements for a system built around the 1960
Cx processor. This section describes electrical characteristics of the i960 Cx processor’s interface
to the externa circuit. The CLKIN, RESET, STEST, FAIL, ONCE, Vgg and V¢ pins are
described in detail. Specific signal functions for the external bus signals, DMA signas and
interrupt inputs are discussed in their respective sections in this manual.

14.4.1 Input Clock (CLKIN)

The clock input (CLKIN) determines processor execution rate and timing. The clock input is
internally divided by two — or used directly — to produce the external processor clock outputs,
PCLK1 and PCLK2. The CLKMODE pin state determines whether the input clock isin two-X or
one-X mode. When CLKMODE s tied to ground or left floating, the CLKIN input is internally
divided by two to produce PCLK2:1 (2X mode). When CLKMODE is pulled to alogic 1 (high),
the CLKIN input is used to create PCLK2:1 at the same frequency, using an internal phase-locked
loop circuit (1X mode). Refer to thei960 CA/CF microprocessor data sheets for CLKIN specifica
tions.

The clock input is designed to be driven by most common TTL crystal clock oscillators. The clock
input must be free of noise and conform with the specifications listed in the data sheet. CLKIN
input capacitance is minimal; for this reason, it may be necessary to terminate the CLKIN circuit
board trace at the processor to prevent overshoot and undershoot. Additionally, a series-damping
resistor may be required to damp ringing on the input.
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14.4.2 Power and Ground Requirements (V¢c, Vgs)

The large number of Vg5 and V¢ pins effectively reduces the impedance of power and ground
connections to the chip and reduces transient noise induced by current surges. The 1960 Cx
processor is implemented in CHMOS 1V technology. Unlike NMOS processes, power dissipation
in the CHMOS process is due to capacitive charging and discharging on-chip and in the
processor’s output buffers; there is aimost no DC power component. The nature of this power
consumption results in current surges when capacitors charge and discharge. The processor’s
power consumption depends mostly on frequency. It also depends on voltage and capacitive bus
load (see the 1960 CA/CF microprocessor data sheets).

To reduce clock skew on later versions of the i960 Cx processor, the V ¢ pin for the Phase Lock
Loop (PLL) circuit isisolated on the pinout. The lowpass filter, as shown in Figure 14-5, reduces
CLKIN to PCLK2:1 skew in system designs. This circuit is compatible with those 1960 Cx
processor versions which do not implement isolated PLL power.

100w

— AN | —

V, . CCPLL
ce (On 1960 Cx processors)

(Board Plane) i 22 pyf

Figure 14-5. VccpLL Lowpass Filter

F_CAQ78A

14.4.3 Power and Ground Planes

Power and ground planes must be used in i960 Cx processor systems to minimize noise. Justifi-
cation for these power and ground planes is the same as for multiple V gg and V o pins. Power and
ground lines have inherent inductance and capacitance; therefore, an impedance Z:(L/C)ll 2 Total
characteristic impedance for the power supply can be reduced by adding more lines. This effect is
illustrated in Figure 14-6, which shows that two lines in parallel have half the impedance of one.
To reduce impedance even further, add more lines. Ideally, a plane — an infinite number of parallel
lines — results in the lowest impedance. Fabricate ground planes with a minimum of 2 oz. copper.

All power and ground pins must be connected to a plane. Ideally, the i960 Cx processor should be
located at the center of the board to take full advantage of these planes, simplify layout and reduce
noise.
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Figure 14-6. Reducing Characteristic Impedance

14.4.4 Decoupling Capacitors

Decoupling capacitors placed across the device between V¢ and V g5 reduce voltage spikes by
supplying the extra current needed during switching. Place these capacitors close to their devices
because connection line inductance negates their effect. Also, for this reason, the capacitors should
be low inductance. Chip capacitors (surface mount) exhibit lower inductance and require less
board space than conventional |eaded capacitors.

14.4.5 I/0 Pin Characteristics

The i960 Cx processor interfaces to its system through its pins. This section describes the general
characteristics of the input and output pins.

14.45.1  Output Pins

All output pins on the i960 Cx processor are three-state outputs. Each output can drive a logic 1
(low impedance to V¢¢); alogic 0 (low impedance to V gg); or float (present a high impedance to
Ve and Vgg). Each pin can drive an appreciable external load. The i960 CA/CF microprocessor
data sheets describe each pin’s drive capability and provide timing and derating information to
calculate output delays based on pin loading.

Output drivers on the i960 Cx processor are specially designed to provide a uniform drive current
over the entire range of operating temperatures and voltages. This feature eliminates excess noise
produced by output drivers under adverse operating conditions.
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14.45.2
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Input Pins

All 1960 Cx processor inputs are designed to detect TTL thresholds, providing compatibility with
the vast amount of available random logic and peripheral devicesthat use TTL outputs.

Most 1960 Cx processor inputs are synchronous inputs (Table 14-3). A synchronous input pin must
have a valid level (TTL logic 0 or 1) when the value is used by internal logic. If the value is not
valid, it is possible for a metastable condition to be produced internally. The metastable condition
isavoided by qualifying the synchronous inputs with the rising edge of PCLK2:1 or a derivative of
PCLK2:1. The i960 CA/CF microprocessor data sheets specify input valid setup and hold times
relative to PCLK for the synchronized inputs.

Table 14-3. 1960 Cx Processor Input Pins

Svnchronous Inouts Asynchronous Inputs Asynchronous Inputs
y P (sampled by PCLK2:1) (sampled by RESET)
RESET

D31:0 _
_ XINT7:0 STEST
READY — R
_ NMI ONCE
BTERM _
DREQ3:0 CLKMODE
HOLD _
EOP3:0

1960 Cx processor inputs which are considered asynchronous are internally synchronized to the
rising edge of PCLK2:1. Since they are internally synchronized, the pins only need to be held long
enough for proper internal detection. In some cases, it is useful to know if an asynchronous input
will be recognized on a particular PCLK2:1 cycle or held off until a following cycle. The i960
CA/CF microprocessor data sheets provide setup and hold requirements relative to PCLK2:1
which ensure recognition of an asynchronous input on a particular clock. The data sheets also
supply hold times required for detection of asynchronous inputs.

The ONCE, CLKMODE and STEST inputs are asynchronous inputs. These signals are sasmpled
and latched on the rising edge of the RESET input instead of PCLK2:1.

14.4.6 High Frequency Design Considerations

At high signal frequencies and/or with fast edge rates, the transmission line properties of signa
paths in a circuit must be considered. Reflections, interference and noise become significant in
comparison to the high-frequency signals. These errors can be transient and therefore difficult to
debug. In this section, some high-frequency design issues are discussed; for more information,
consult areference book on high-frequency design.
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14.4.7 Line Termination

Input voltage level violations are usually due to voltage spikes that raise input voltage levels above
the maximum limit (overshoot) and below the minimum limit (undershoot). These voltage levels
can cause excess current on input gates, resulting in permanent damage to the device. Even if no
damage occurs, many devices are not guaranteed to function as specified if input voltage levels are
exceeded.

Signal lines are terminated to minimize signal reflections and prevent overshoot and undershoot.
Terminate the line if the round-trip signal path delay is greater than signal rise or fall time. If the
line is not terminated, the signal reaches its high or low level before reflections have time to
dissipate and overshoot or undershoot occurs.

For the 1960 Cx processor, two termination methods are attractive: AC and series. An AC
termination damps the signal at the end of the series line; termination compensates for excess
current before the signal travels down the line.

Series termination decreases current flow in the signal path by adding a seriesresistor as shown in
Figure 14-7. The resistor increases signal rise and fall times so that the change in current occurs
over alonger period of time. Because the amount of voltage overshoot and undershoot depends on
the change in current over time (V = L di/dt), the increased time reduces overshoot and
undershoot. Place the series resistor as close as possible to the signal source. Series termination,
however, reduces signal rise and fall times, so it should not be used when these times are critical .

AC termination is effective in reducing signal reflection (ringing). This termination is accom-
plished by adding an RC combination at the signa’s destination (Figure 14-8). While the
termination provides no DC load, the RC combination damps signal transients.

Selection of termination methods and values is dependent upon many variables, such as output
buffer impedance, board trace impedance and length and timings that must be met.

Rs

W

Source F_CAO80A

Figure 14-7. Series Termination
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Figure 14-8. AC Termination

14.4.8 Latchup

Latchup is a condition in a CMOS circuit in which V ¢ becomes shorted to Vg Intel’s CHMOS
IV process is immune to latchup under normal operation conditions. Latchup can be triggered
when the voltage limits on 1/O pins are exceeded, causing internal PN junctions to become forward
biased. The following guidelines help prevent latchup:

»  Observe the maximum rating for input voltage on 1/O pins.

*  Never apply power to an i960 Cx processor pin or a device connected to an i960 Cx processor
pin before applying power to the 1960 Cx processor itself.

»  Prevent overshoot and undershoot on 1/O pins by adding line termination and by designing to
reduce noise and reflection on signal lines.

14.4.9 Interference

Interference is the result of electrical activity in one conductor that causes transient voltages to
appear in another conductor. Interference increases with the following factors:

»  Frequency Interference is the result of changing currents and voltages. The more frequent the
changes, the greater the interference.

»  Closeness-of-two-conductors Interference is due to electromagnetic and electrostatic fields
whose effects are weaker further from the source.
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Two types of interference must be considered in high frequency circuits: electromagnetic inter-
ference (EMI) and electrostatic interference (ESI).

EMI (also called crosstalk) is caused by the magnetic field that exists around any current-carrying
conductor. The magnetic flux from one conductor can induce current in another conductor,
resulting in transient voltage. Several precautions can minimize EMI:

* Run ground lines between two adjacent lines wherever they traverse a long section of the
circuit board. The ground line should be grounded at both ends.

* Run ground lines between the lines of an address bus or a data bus if either of the following
conditions exist:
— Thebusison an external layer of the board.
— Thebusison aninternal layer but not sandwiched between power and ground planes that
are at most 10 mils away.

» Avoid closed loops in signa paths (Figure 14-9). Closed loops cause excessive current and
create inductive noise, especialy in the circuitry enclosed by aloop.

F_CAO082A

Figure 14-9. Avoid Closed-Loop Signal Paths

ESl is caused by the capacitive coupling of two adjacent conductors. The conductors act as the
plates of a capacitor; a charge built up on one induces the opposite charge on the other.

The following steps reduce ESI:
»  Separate signal lines so that capacitive coupling becomes negligible.

* Runaground line between two lines to cancel the electrostatic fields.
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APPENDIX A
INSTRUCTION EXECUTION
AND PERFORMANCE OPTIMIZATION

This appendix describes the i960% Cx processors core architecture and core features which
enhance the processors performance and paralelism. This appendix also describes assembly
language techniques for achieving the highest instruction-stream performance.

The 1960 core architecture defines the programming environment, basic interrupt mechanism and
fault mechanism for all members of the i960 microprocessor family. The C-series core is a high-
performance, highly parallel implementation. The i960 Cx processors integrate a bus controller,
DMA controller and interrupt controller around the core architecture (Figure A-1).

DMA
Controller

C-Series
Core

Bus
Control

Unit

Interrupt
Unit

F_CAO083A

Figure A-1. C-Series Core and Peripherals
State-of-the-art silicon technology and innovative microarchitectural constructs achieve high
performance due to these features:

» Pardlel instruction decoding allows sustained, simultaneous execution of two instructions in
every clock cycle.

* Most instructions execute in asingle clock cycle.
»  Multiple, independent execution units enable multi-clock instructions to execute in parallel.

» Resource and register scoreboarding provide efficient and transparent management for parallel
execution.

» Branch look-ahead and branch prediction features enable branches to execute in parallel with
other instructions.
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» Alocal register cache permits fast calls, returns, interrupts and faults to be implemented.

» A 1Kbyte (80960CA) or 4 Kbyte (80960CF) two-way set associative instruction cache is
integrated on-chip.

» A 1Kbytedirect-mapped data cache is integrated on-chip (80960CF only).
* 1 Kbyte of static data RAM isintegrated on-chip.

A.1 INTERNAL PROCESSOR STRUCTURE

The i960 Cx processor core contains the following main functional units:

» Instruction Scheduler (1S) » Multiply/Divide Unit (MDU)
* Register File (RF) » Address Generation Unit (AGU)
» Execution Unit (EU) » DataRAM/Local Register Cache

Figure A-2 shows the i960 Cx processor block diagram. The IS and RF are the “heart” of the
processor. Other core functional units — referred to as coprocessors — interface to the IS and RF,
connecting to either the register (REG) side or the memory (MEM) side of the processors.

The IS issues directives via the REG and MEM interfaces which target a specific coprocessor.
That coprocessor then executes an express function virtually decoupled from the IS and the other
coprocessors. The REG and MEM data buses transfer data between the common RF and the
COProcessors.

The i960 Cx processors are designed to allow application specific coprocessors to interface to the
IS in the same way as core-defined coprocessors. The integrated peripherals — bus controller,
interrupt controller and DMA controller — interface to the i960 Cx processors REG and MEM
sides.
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Figure A-2. i960® CA/CF Microprocessor Block Diagram

A.1.1 Instruction Scheduler (IS)

The IS decodes the instruction stream and drives the decoded instructions onto the machine bus,
which is the major control bus. The IS can decode up to three instructions at a time, one from each
of three different classes of instructions: one REG format, one MEM format and one CTRL format
instruction. The IS directly executes the CTRL format instruction (branches), manages the
instruction pipeline and keeps track of which instructions are in the pipeline so faults can be
detected.

The IS is assisted by three associated functional blocks: instruction fetch unit, instruction cache
and microcode ROM.
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The instruction fetch unit provides the IS with up to four words of instructions each cycle. It
extracts instructions from the instruction cache, microcode ROM and its instruction fetch queue
for presentation to the scheduler. The instruction fetch unit requests external fetch operations from
the bus controller whenever a cache miss occurs.

The instruction cache is 1 Kbyte (80960CA) or 4 Kbyte (80960CF), two-way set associative. This
cache delivers to the IS up to four instructions per clock. The cache alows many inner loops of
code to execute with no external instruction fetches; this maximizes the core's performance.

The 960 Cx processors use a microcode engine to implement complex instructions and functions.
This includes implicit and explicit calls, returns, DMA assists and initialization sequences.
Microcode provides a method for implementing complex instructions in the processors’ RISC
environment. Unlike conventional microcode, i960 Cx processor microcode uses a RISC subset of
the instruction set in addition to specific micro-instructions. Microcode, therefore, can be thought
of as a RISC program containing operational routines for complex instructions. When the
instruction pointer references a microcoded instruction, the instruction fetch unit automatically
branches to the appropriate microcode routine. The 1960 Cx processors perform this microcode
branch in O clocks.

A.1.2 Instruction Flow

Most instructions flow through a three-stage pipeline (Figure A-3):

»  The decode stage calcul ates the address used to fetch the next instruction from the instruction
cache. Additionally, this stage starts decoding the instruction.

» Theissue stage completes instruction decode and sends it to the appropriate execution unit.

»  During the execute stage, the operation is performed and the result is returned to the RF.

State 1 2 3 4

Decode A B C D

Issue XXXXX A B c

Execute XXXXX XXXXX A B
F_CAO85A

Figure A-3. Instruction Pipeline

A4



Intel® INSTRUCTION EXECUTION AND PERFORMANCE OPTIMIZATION

In the decode stage, the | S decodes the instruction and cal culates the next instruction address. This
could be a macro- or micro-instruction address. It is either the next sequential address or the target
of a branch. For conditional branches, the IS uses condition codes or internal hardware flags to
determine which way to branch. If branch conditions are not valid when the IS sees a branch, the
processor guesses the branch direction, using the branch prediction specified in the instruction. If
the guess was wrong, the IS cancels the instructions on the wrong path and begins fetching along
the correct path.

In the issue stage, instructions are emitted or issued to the rest of the machine via the machine bus.
The machine bus consists of three parts: REG format instruction portion, MEM format instruction
portion and CTRL format portion. Each part of the machine bus goes to the coprocessor that
executes the appropriate instruction. The RF supplies operands and stores results for REG and
MEM format instructions. For this reason, the RF is connected to both the REG and MEM portions
of the machine bus. The CTRL portion stays within the instruction sequencer since it directly
executes the branch operations. Several events occur when an instruction is issued:

1. Theinformation isdriven onto the machine bus.

2. The IS reads the source operands and checks that all resources needed to execute the
instruction are available.

3. Theinstruction is cancelled if any resource that the instruction requires is busy. The resource
is busy if a previous, incomplete instruction reserved it or the resource is already working on
an instruction.

4. ThelSthen attempts to re-issue the instruction on the next clock; the same sequence of events
is repeated.

This processor resource management mechanism is called resource scoreboarding. A specific form
of resource scoreboarding is register scoreboarding. When an instruction’s computation stage takes
more than one clock, the result registers are scoreboarded. A subseguent operation needing that
particular register is delayed until the multi-clock operation completes. Instructions which do not
use the scoreboarded registers can execute in parallel.

The execute stage performs the instruction. This stage is handled by the coprocessors which
connect to the REG- and MEM-side buses. In this stage, the coprocessor has received operands
from the RF and recognized opcode which tells the coprocessor which instruction to execute.
Execution begins and aresult is returned in this stage for single clock instructions.

The execute stage is asingle- or multi-clock pipeline stage, depending on the operation performed
and the coprocessor targeted. For single-clock coprocessors—such as the integer execution unit—
the result of an operation is always returned immediately. Because of the three-stage pipeline
construction and the register bypassing mechanism, no conflicts between source access and result
return can occur. For multi-clock coprocessors—such as the multiply/divide unit—the coprocessor
must arbitrate access to the return path.
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A.1.3 Register File (RF)

The RF contains the 16 local and 16 global registers and has six ports (Figure A-4). This allows
several of the core's coprocessors to access the register set in parallel. This parallel access results
in an ability to execute one simple logic or arithmetic instruction, one memory operation
(LOAD/STORE) and one address cal culation per clock.

REG Data Buses MEM Data Buses

64 128
" 47; Load
SRC1 Six-Ported Register File

SRC2 # 16 Local Registers 7&% Store

64, ; 32 Address
DST <+ 16 Global Registers +> Base

F_CAOQ86A

Figure A-4. Six-Port Register File

MEM coprocessors interface to the RF with a 128-bit wide load bus and a 128-bit wide store bus.
An additional 32-bit port allows the Address Generation Unit to simultaneously fetch an address
or address reduction operand. These wide load and store data paths:

» enable up to four words of source data and four words of destination data to simultaneously
pass between the RF and a MEM coprocessor in a single clock.

» provide a high-bandwidth path between data RAM, data cache (80960CF only) and local
register cache to implement high-speed data operations.

» provide a highly efficient means for moving load, store and fetch data between the bus
controller and the RF.

REG coprocessors interface to the RF with two 64-bit source buses and a single 64-bit destination
bus. The source and result from different REG coprocessors can access the RF simultaneously
using this bus structure. The 64-bit source and destination buses allow the eshro, mov and mov!
instructions to execute in asingle cycle.
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To manage register dependencies during parallel register accesses, register bypassing (result
forwarding) is implemented. The register bypassing mechanism is activated whenever an instruc-
tion’s source register is the same as the previous instruction’s destination register. The instruction
pipeline allows no time for the contents of a destination register to be written before it is read again
by another instruction. Because of this, the RF forwards the result data from the return bus directly
to the source bus without reading the source register.

A.1.4 Execution Unit (EU)

The EU isthe 960 Cx processor core’ s 32-bit arithmetic and logic unit. The EU can be viewed asa
self-contained REG coprocessor with its own instruction set. As such, the EU is responsible for
executing or supporting the execution of all integer and ordinal arithmetic instructions, logic and
shift instructions, move instructions, bit and bit-field instructions and compare operations. The EU
performs any arithmetic or logical instructionsin asingle clock.

A.1.5 Multiply/Divide Unit (MDU)

The MDU is a REG coprocessor which performs integer and ordinal multiply, divide, remainder
and modulo operations. The MDU detects integer overflow and divide by zero errors. The MDU is
optimized for multiplication, performing extended multiplies (32 by 32) in four to five clocks. The
MDU performs multiplies and divides in parallel with the main execution unit.

A.1.6 Address Generation Unit (AGU)

The AGU isa MEM coprocessor which computes the effective addresses for memory operations.
It directly executes the load address instruction (Ida) and calculates addresses for loads and stores
based on the addressing mode specified in these instructions. Address calculations are performed
in parallel with the main execution unit (EU).

A.1.7 Data RAM and Local Register Cache

The data RAM and local register cache are part of a 1.5 Kbyte block of on-chip Static RAM
(SRAM). One Kbyte of this SRAM is mapped into the i960 Cx processors address space from
location 00000000H to 000003FFH. A portion of the remaining 512 bytes is dedicated to the local
register cache. This part of internal SRAM is not directly visible to the user. Loads and stores—
including quad-word accesses—to the internal data RAM are typically performed in only one
clock. The complete local register set, therefore, can be moved to the local register cache in only
four clocks.
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A.1.8 Data Cache (80960CF Only)

The 1960 CF processor has a 1 Kbyte direct-mapped data cache which enhances performance by
reducing the number of load and store accesses to external memory. The data cache can return up
to aquad word (128 bits) to the register file in asingle clock cycle on a cache hit.

External memory is configured as cacheable or non-cacheable on a region-by-region basis, using
special bits in the memory region configuration registers MCONO-15. This makes it easy to
partition a system into cacheabl e regions (local memory) and non-cacheable regions.

The 1960 CF processor implements a simple coherency mechanism. The data cache can also be
enabled, disabled or invalidated on a global basis through programming.

A.1.8.1 Data Cache Organization

The data cache has a four-word line size (see Figure A-5). Each of the 64 cache lines has an
associated cache tag containing the 22 most significant bits of the address and a valid bit. Each
line is further subdivided into single-word blocks, each with its own valid bit. This subblock
placement technique reduces latency on cache misses.

Data accesses result in cache hits and misses. Accesses that match valid address tags and word(s)
marked as valid are cache hits; other data accesses are misses.

Valid Valid Valid Valid Valid
Bit 31 10 Bit Bit Bit Bit
Line O Cache Tag Word @ Offset0 Word @ Offset 1 Word @ Offset 2 Word @ Offset 3|
Line 1
Line 2
L] L] L] L] L]
L] L] L] L] L]
L] . . . L]
Line 62
Line 63

Figure A-5. Data Cache Organization
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A.1.8.2 Bus Configuration

Certain data accesses are implicitly non-cacheable. All DMA and atomic (atmod, atadd) accesses
are non-cacheable. User settings in the memory region configuration registers MCONO-15
determine which data accesses are cacheable or non-cacheable. Registers MCONO-15 divide
memory into 16 blocks whose characteristics are programmed through sysctl instructions. Refer to
section 4.3, “SYSTEM CONTROL FUNCTIONS’ (pg. 4-19).

Micro-flow execution breaks unaligned accesses into aligned accesses; cacheability is determined
as described in the preceding paragraph. Data objects that cross programming boundaries may be
only partially in the data cache, resulting in a combination of cache hits and misses.

Upon reset or initialization, the processor clears all valid bits to zero to ensure that accesses are not
made to a cache line that may contain invalid data.

A.1.8.3 Global Control of the Cache

The data cache is globally enabled or disabled by a bit in the DMA Command Register. The
following example code shows how to disable the cache. Setting the data cache disable bit does not
take effect until the second clock after the setbit instruction is executed. Any load/store issued in
parallel with setbit or on the following clock will be directed to the data cache. Disabling the cache
does not invalidate any of its entries.

sethit 30,sf2,sf2 # set the bit to dynam cally disable
# data cache
nov g0, g0 # wait two cl ocks before executing
nov g0, g0 # any code which accesses the data cache

The DMA Control Register's data cache invalidate bit can be set to quickly invalidate the entire
cache. This invalidation clears all the individual valid bits in the data cache array. The effect of
changing this bit is also delayed by two clocks. If multiple cacheable loads are pending in the BCU
gueues when the cache is invalidated, the processor continuously invalidates the cache until the
loads are finished. Once all cacheable loads are complete and all valid bits have been cleared, the
data cache invalidate bit revertsto 0.

Upon reset or initialization, the data cache is globally disabled and invalidated to ensure that
accesses are not made to a cache line that may contain invalid data.
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A.1.8.4 Data Fetch Policy

Datafetch policy determines what happensfor aload that misses the cache. Thei960 CF processor
employs a natural fetch policy. Word, double-word, triple-word and quad-word loads are issued to
the bus control logic in their origina widths. Byte and short-word loads are promoted to word bus
requests. Because most applications have 32-bit data buses, there is seldom a bandwidth penalty
for promoting a byte or short word load to a full word bus operation.

A.1.8.5 Write Policy

Write policy determines what happens on cacheable store operations. The write policy for the i960
CF processor is write-through and write-allocate. For cacheable stores, data is written into both
the cache and external memory simultaneously, regardless of whether the write is a hit or miss.
This maintains coherency between the data cache and external memory.

For cacheable stores that are equal to or greater than a word in length, cache tags and appropriate
valid bits are updated whenever data is written into the cache. Consider a word store as an
example. The tag is aways updated and its valid bit is set. The appropriate valid bit for that word
isalways set and the other three valid bits are always cleared.

Cacheable stores that are less than a word in length are handled differently. Byte and short-word
stores that hit the cache (i.e., are contained in valid words within valid cache lines) do not change
the tag and valid bits. The processor writes the data into the cache and external memory as usual.
A byte or short-word store to an invalid word within a valid cache line leaves the word valid bit
cleared because therest of theword is till invalid. In al cases the processor simultaneously writes
the data into the cache and the external memory.

A.1.8.6 Data Cache Coherency

DMA cycles and atomic accesses from the atmod and atadd instructions are implicitly non-
cacheable. Otherwise, entire memory regions would have to be programmed as non-cacheable to
support routine DMA and semaphore operations.

Whenever the cacheability of a region is changed, cache coherency becomes an immediate issue.
The coherency mechanism solves this issue directly. The processor compares a non-cacheable
store to the relevant tag in the data cache. If the store address matches the tag, the processor
invalidates the entire cache line. In a single processor system, this guarantees that the data cache
never contains stale data. When the data cache is globally disabled, al stores are non-cacheable
and the processor invalidates rel evant tags whenever addresses match.
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BCU Pipeline and Data Cache Interaction

The BCU'’s interaction with the data cache affects overall bus throughput. Figure A-6 shows how
the BCU and data cache process a series of hits and misses for cacheable loads and stores.

Id (g0),01 :data cache hit
Id (92),04 :data cache miss
Id (93),08 :data cache hit
st 91,(g0) :store is scoreboarded
Instruction
Scheduler Id d —— Idg — | == st
Address|
2 0
Out Bus 9 9
B.CU . St Bus gl
Pipeline
External >
Address Bus 9 g0
External ©2) gl
Data Bus
LD Bus 947 (92)
g0 g2 g3
Address Out Bus Fit Miss ot g0
Data St Bus Cache— gl
Cache
Pipeline quad Cache
p LD Bus| g1~ (g0) e

Figure A-6. BCU and Data Cache Interaction

During the first issue clock, the data cache receives the first load address and recognizes a cache
hit. The following clock is an execute clock; the cache returns data to the register file over the LD
bus. In the next issue clock the cache receives the second load address and recognizes a miss. It is
passed on to the BCU in the following clock. The BCU then processes the load as if there were no
data cache. Note that the following load quad instruction is scoreboarded for a single clock while
the previous cache missisissued to the BCU. The load quad instruction is determined to be a hit in
the third issue clock and its full 128 bits of data is returned to the register file in the following
execute clock.

The 1960 CF microprocessor scoreboards the store instruction until the pending load returns data to
the cache. The processor writes the data to the register file and the cache in the same clock,
updating the cache tag and valid bits. In the next clock, the store instruction isissued. For the store,
the processor writes unconditionally into the cache during the issue clock.

When using the i960 CF processor, refer to Table A-13 and Table A-10 for a listing of the single
clock load and store instructions. The table is valid when offset, displacement or indirect
addressing modes are used over an external bus with the following characteristics:

Nxap =Nxpp=Nxpa=0, Burst On, Pipelining On, Ready Disabled
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For other addressing modes, information in section A.2.6, “Micro-flow Execution” (pg. A-36) still
applies.

For each instruction that requires multiple reads on the external bus, such as Idq, the BCU buffers
the return data until all data is returned from the bus. This optimization reduces the internal load
bus overhead to a minimum and allows the processor to access the MEM-side while external loads
are in progress. If instructions are issued back-to-back with no register dependencies and hit the
cache, execution can proceed at the rate of one instruction per clock. For cache misses, the
processor issues instructions until the cacheis full. Subsequent back-to-back execution proceeds at
bus bandwidth.

Table A-1. BCU Instructions for the i960 CF Processor

LZ?;:(IL Back-to-Back LZ?S:(I:; Back-to-Back

. Issue

Mnemonic Clocks Clocks Throughput Clocks Throughput
Hits Hits Misses Misses

Id 1 1 1 4 2

Idob

Idib

Idos

Idis

Idl 1 1 3

Idt 1 1 4

Idq 1 1 5

st 1 N/A 2 N/A 2

stob

stib

stos

stis

stl 1 N/A 3 N/A

stt N/A 4 N/A

stq N/A 5 N/A

A.1.8.8 BCU Queues and Cache Coherency

The bus control unit is implemented as a coprocessor. Many clock cycles can pass after a
cacheable load instruction isissued before data is returned to the data cache and registers. Because
of this delay, the BCU was modified to support data cache operation. The processor scoreboards
all stores when cacheable |oads are present in the BCU queue. Consider the following case:

I d xyz, RO # load from address xyz m sses the data cache
st r4,xyz # store is issued to the sane address
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The load instruction misses the data cache and is then issued to the bus control unit. It can take
several clocks before data is actually written to rO and the data cache. If the store were issued
before the load returns data, an inconsistency would result. External memory would receive correct
data from the store, but the data cache would contain incorrect data from the load. The processor
prevents this inconsistency by stalling the store until the load returns data.

Since typical programs are not rich in store instructions, the policy of scoreboarding stores on
outstanding cacheable loads decreases overall processor performance less than one percent.

A.1.8.9 DMA Operation and Data Coherency

The policy of scoreboarding stores on cacheable loads does not apply to stores that the DMA
controller generates. A DMA store is issued to the BCU regardless of any cacheable loads in the
bus request queues.

DMA processes and user processes share core resources. The core alternates CPU cycles between
the DMA processes and the user processes. If a DMA store waited for all cacheable loads to
complete, large numbers of sequential cacheable loads from a user process could lock out the
DMA store indefinitely. This condition would be compounded by the fact that two of the three
BCU queues are assigned to the user process when DMA is active.

Allowing DMA stores to be unconditionally issued makes the DMA process more deterministic,
but it poses one potential data cache coherency issue. When the user process has a cacheable |oad
pending in the BCU and the DMA issues a store to the same address, stale data can end up in the
cache. It is up to the user to synchronize such operations in software. There are three possible
solutions:

»  Wait for the entire DMA transfer to complete before reading the data.

*  Check the DMA destination address to ensure that the DMA has progressed beyond the
address in question before reading it.

» Disable the data cache for the memory region while the DMA operation is underway.

A.1.8.10 External I/O and Bus Masters and Cache Coherency

The 1960 CF processor implements a single processor coherency mechanism. Thereis no hardware
mechani sm—such as bus snooping—to support multiprocessing. If another bus master can change
shared memory, there is no guarantee that the data cache contains the most recent data. The user
must manage such data coherency issues in software.

Users typically program the MCONO-15 registers such that 1/O regions are non-cacheable. Parti-
tioning the system this way eliminates 1/O as a source of coherency problems.
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A.2 PARALLEL INSTRUCTION PROCESSING

At the center of the i960 Cx processor core is a set of parallel processing units capable of
executing multiple single-clock instructions in every clock. To support this rate, the IS can issue
up to three new instructions in every clock. Each processing unit has access to the multiple ports
of the chip’s six-ported register file; therefore, each processing unit can execute instructions
independently and in parallel.

In general, the register file, instruction scheduler, cache and fetch unit keep the parallel processing
units busy, given the typical diversity of instructions found in a rolling quad-word group of
instructions. To achieve highly optimized performance for critical code sequences, the user must
understand how instructions execute on the processor.

The following section describes instruction execution on the 1960 Cx processors with the goal of
instruction stream optimization in mind. See section A.2.7, “ Coding Optimizations” (pg. A-43) for
specific optimization techniques applicable to the 1960 Cx processors.

A.2.1 Parallel Issue

The IS looks at a rolling quad-word group of unexecuted instructions every clock and issues all
instructions which can be executed in that clock. The scheduler can issue up to three instructions
every clock to the processing units and can sustain an issue rate of two instructions per clock. To
achieve parallelism, the IS detects to which machine “side” — REG, MEM or CTRL — each
instruction in the current quad-word group belongs.

When the IS issues a group of instructions, the appropriate parallel processing units acknowledge
receipt and begin execution. However, register and resource dependencies can delay instruction
execution. The processor transparently manages these interactions through register scoreboarding
and register bypassing.

To maximize the |S's ability to issue instructions in parallel, the instruction cache is organized to
provide three or four instructions per clock to the scheduler. To minimize the cost of a cache miss,
the instruction fetch unit constantly checks whether a cache miss will occur on the next clock. If a
missisimminent, an instruction fetch isissued.

The following discussions assume that instructions are always available from the instruction
cache. For a discussion of cache organization and the impact of cache misses, see section A.2.5,
“Instruction Cache And Fetch Execution” (pg. A-33).
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A.2.2 Parallel Execution

Six parallel processing units are attached to the six-ported register file:

MEM-side: Three units are attached to the machine’'s memory side. MEM-side instructions
are dispatched over the MEM machine-bus.

BCU  Bus Control Unit executes memory reads and writes for instructions
which reference an operand in external memory.

DR Data RAM handles memory reads and writes for instructions which
reference on-chip data RAM.

AGU  Address Generation Unit executes the Ida, callx, bx and balx instruc-
tions and assists address calculation for all loads and stores.

REG-side: Two units are attached to the register side. REG-side instructions are dispatched
over the REG machine bus.

MDU  Multiply/Divide Unit executes the multiply, divide, remainder, modulo
and extended multiply and divide instructions.

EU Execution Unit executes all other arithmetic, logical, shift, comparison,
bit, bit field, move instructions and the scanbyte instruction.
CTRL-side: One unit is on the control side.
IS Instruction Scheduler directly executes control instructions by

modifying the next instruction pointer given to the instruction cache.

The processor uses on-chip ROM to execute instructions not directly executed by one of the
parallel processing units. This ROM contains a sequence of RISC instructions for each complex
instruction not directly executable in one of the parallel processing units. When the scheduler
encounters a complex instruction, the appropriate sequence of RISC instructions is issued for
execution. This sequence of instructionsis called a micro-flow.

The IS can issue multiple instructions in every clock when the instructions decoded in that clock
can be executed by different machine sides. For example, an add can begin in the same clock as a
load since the addition is performed by the EU on the REG side, while the load is executed by the
BCU on the MEM side. Furthermore, a branch can be issued in the same clock as the add and load
since the IS executes it directly (three instructions per clock). The IS does not exploit every
possible combination of three instruction types in four consecutive words. Table A-2 summarizes
the segquences of instruction machine types that can be issued in parallel. A group of one or more
instructions which can be issued in the same clock is referred to in this appendix as an executable
group of instructions. Figure A-7 shows the paths that the IS has available for dispatching each
word of the rolling quad-word to the three machine sides.
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Table A-2. Machine Type Sequences Which Can Be Issued In Parallel

Sequence Description

R M x x REG-side followed immediately by a MEM-side instruction

R M C x REG-side followed immediately by a MEM-side followed immediately by a CTRL
instruction

RMxC REG-side followed immediately by a MEM-side followed by a CTRL instruction in the
same rolling quad-word

R C xx REG-side followed immediately by a CTRL instruction

R x C x REG-side followed by a CTRL instruction in the same rolling quad-word

RxxC

M C x x MEM-side followed immediately by a CTRL instruction

M x C x MEM-side followed by a CTRL instruction in the same rolling quad-word

MxxC

Control
Il
Instruction Cache**
2-Way Set Associative /
Presents 4 words per clock to the Instruction Scheduler / )
nex
P P
rolling
quad-word Word (IP) Word (IP + 4) Word (IP + 8) Word (IP + 12) Instruction
instruction Fetch Unit
window
Instruction
Scheduler
parallel issue paths
Execution
Pipelines
REG MEM CTRL
Pipelines Pipelines Pipelines
NOTE: Instruction Cache Size: E CAOSTA
CA=1KByte  CF=4KByte -

Figure A-7. Issue Paths
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A.2.3 Scoreboarding

When the scheduler issues a group of instructions, the targeted parallel processing units
immediately acknowledge receipt of instructions and the scheduler begins considering the next
four unexecuted words of the instruction stream. The scheduler checks for register dependencies
between instructions before issuing them. The scheduler does not issue a group of instructionsif:

1. aregister is specified as a destination more than once, or

2. aregister is specified as a destination in one instruction and a source in a subsequent
instruction

A single register may, however, be specified as a source in multiple instructions or as a source in
one instruction and a destination in a subsequent instruction. The six-port register set supports
these cases. For example, the following instructions cannot be issued in parallel due to register
dependencies:

addo g0, gl, g2 # g2 is a destination
st 02, (g3) # g2 is a source;
# store nust wait for addo to conplete

or:

addo g0, gl, g2 # g2 is a destination
I d (93), 92 # g2 is also a destination;
# load nust wait for addo to conplete

However, the following instructions can beissued in parallel:

addo g0, gl, g2 # g0 is a source for both instructions
st 90, (g3)
or:
addo g0, gl, g2 # g0 is a source for addo and
Id (g3), g0 # a destination for |oad

In all cases of parallel instruction issue, the IS ensures that the program operates as if the instruc-
tions were actually issued sequentially.

Two conditions can delay the execution of one or more of the instructions that the scheduler
attempted to issue: a scoreboarded register or a scoreboarded resource.
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A.2.3.1 Register Scoreboarding

If an instruction’s source (or destination) register is the destination of a prior incomplete multi-
clock instruction (such as aload), the instruction is delayed. The scheduler attempts to reissue the
instruction every clock until the scoreboarded register is updated and the delayed instruction can
be executed. Table 1-3 summarizes conditions which cause a delay due to a scoreboarded register.

Table 1-3. Scoreboarded Register Conditions

Condition Description

src busy One or both of the registers specified as a source for the instruction was referenced as
a destination of a prior instruction which has not completed.

dst busy The destination referenced by the instruction was referenced as a destination of a prior
instruction which has not completed.

cc busy AC register condition codes are not valid. Correct branch prediction eliminates dead
clocks due to condition code dependencies.

A.2.3.2 Resource Scoreboarding

A scoreboarded resource also defeats the scheduler’ s attempt to issue an instruction. A resource is
scoreboarded when it is needed to execute the instruction but is not available. The parallel
processing units are the resources. Table A-4 lists cases which cause an instruction to be delayed
due to a scoreboarded resource. Text that follows the table describes what happens to an
instruction once it isissued to a processing unit.

A.2.3.3  Prevention of Pipeline Stalls

To maintain the logica intent of the sequential instruction stream, the 1960 Cx processors
implement register scoreboarding and register bypassing. Examples of each are demonstrated in
the descriptions and examples in this appendix. These mechanisms eliminate possible pipeline
stalls due to parallel register access dependencies. It is not necessary to perform any code optimi-
zations to take advantage of this parallel support hardware.

Register scoreboarding maintains register coherency by preventing parallel execution units from
accessing registers for which there is an outstanding operation. When the IS issues an instruction
which requires multiple clocks to return a result, the instruction’s destination register is locked to
further accesses until it is updated. To manage this destination register locking, the processors use
a 33rd bit in each register to indicate whether the register is available or locked. This bit is called
the scoreboard bit. There is a scoreboard bit for each of the 32 registers.
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Table A-4. Scoreboarded Resource Conditions

Condition Description
BCU Queue Full Bus Controller queues are full and the scheduler is attempting to issue a memory
request.
MDU Busy The Multiply/Divide Unit is busy executing a previously issued instruction and the

scheduler is attempting to issue another instruction for which the MDU is responsible.

DR Busy On-chip data RAM can support one 128-bit load or store every clock. However, the data
RAM has no queues for storing requests. The unit stalls execution if a new request is
issued to it when it has not been allowed to return data from a prior instruction.

For example, if the DR and BCU attempt to return results over the load bus in the same
clock, the BCU wins the arbitration. This delays the DR result by one clock. If, simulta-
neously, the IS is attempting to issue another instruction to the data RAM, the DR stalls

the processor for one clock.

Register bypassing eliminates a pipeline stall that would otherwise occur when one parallel
processing unit is returning a result to a register over one port while, in the same clock, another
unit is assessing the same register over a different port. Register bypassing logic constantly
monitors all register addresses being written and read. If aregister is being read and written in the
same clock, bypass logic routes incoming data from the write port directly to the read port.

A.2.3.4 Additional Scoreboarded Resources Due to the Data Cache

In general, when the scheduler issues a group of instructions, the targeted parallel processing units
immediately acknowledge receipt of instructions and the scheduler begins considering the next
four unexecuted words of the instruction stream. There are, however, two conditions in which the
execution of one or more of the instructions that the scheduler attempted to issue would be
delayed. These conditions are: a scoreboarded register or a scoreboarded resource.

Because of the addition of the data cache to the MEM-side, there are afew additional scoreboarded
resources on the 1960 CF processor. A scoreboarded resource thwarts the scheduler’s attempt to
issue an instruction. A resource is scoreboarded when it is needed to execute the instruction but is
not available. The parallel processing units are the resources.

To maintain cache coherency, the IS does not issue any user-process stores to the BCU until all
pending cacheable loads have returned to the data cache. The BCU is scoreboarded for user
process stores when its queues contain one or more cacheable loads. DMA stores are alowed to be
issued to the BCU. See section A.1.8.8, “BCU Queues and Cache Coherency” (pg. A-12).
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A cacheable load is checked to see if it hits the data cache in the issue stage of the instruction
pipeline and returns data to the register file in the execute state. If the load missed the data cache,
it must be issued to the BCU to fetch the data from external memory. The missed load is not issued
to the BCU until the execute state, which is also the issue stage for the next instruction in the
pipeline. Because only one instruction can be issued to the BCU at a time, the BCU is score-
boarded for one clock cycle. Any instruction directed at the BCU in the clock cycle immediately
following a data cache missis scoreboarded for one cycle.

For cache misses, the data cache is a multi-clock processor which must interact with the BCU to
return the load to the data cache. Because the data cache is a multi-clock processor, it must
arbitrate for access to the return path to the data cache. There is a conflict between any new load or
store being issued to the data cache and a load returning to the data cache from the BCU. In this
case, the IS stalls for one clock while the returning load is written into the data cache. Table A-5
summarizes the additional scoreboarded resources due to the i960 CF processor’ s data cache unit.

Table A-5. Scoreboarded Resource Conditions Due to the Data Cache

Condition Description
BCU queues contain One or more of the BCU queues contains a cacheable load. The machine does
cacheable load not issue any user process stores until all cacheable loads have returned to the
data cache.
BCU busy The BCU can only support one access on every clock. If the BCU is processing

a load from a cache miss on the previous cycle, it cannot process an instruction
on the current cycle. The IS stalls issuance of the instruction to the BCU for one
clock in this case.

Data cache busy The data cache is a resource which is shared between returning loads from the
BCU and the IS issuing loads/stores. The IS stalls issuance of a load or store for
one clock so the returning load form the BCU can be written into the data cache.

A.2.4 Processing Units

Once the IS issues a group of instructions, the appropriate processing units begin instruction
execution in parallel with al other processor operations. The following sections describe each
unit’s pipelines and execution times of the instructions they process.

A.2.4.1 Execution Unit (EV)
The EU performs arithmetic, logical, move, comparison, bit and bit-field operations. The EU

receives itsinstructions over the REG-machine bus and receives source operands over the srcl and
src2 buses and returns its result over the dst bus.
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The EU pipeline is shown in Figure A-8. In the clock in which an EU instruction isissued, the EU
latches the source operands and begins performing the operation. In the following clock, the
instruction completes and the result is written to the destination register. When an instruction
immediately follows an EU operation that references the EU’s destination register, the new
instruction isissued in the clock following the EU operation.

INSTRUCTION EXECUTION AND PERFORMANCE OPTIMIZATION

The EU directly executes the instructions listed in Table A-6. The EU is pipelined such that back-
to-back EU operations execute at a one-clock sustained rate. The EU returns its result to the
destination register in the clock following the clock in which the instruction was issued. If a fixup
is needed during shrdi execution, the processor executes a four-clock micro-flow. See section
A.2.6, “Micro-flow Execution” (pg. A-36).

addo g0, gl, g2
shl o 03, g4, d5
subo g5, g6, g7
shro 08, g9, gl10
Instruction
Scheduler lssue addo shlo subo shro
EU Read src 1, src2 g0, 91 g3, 04 g5, g6 g8, g9
Pipeline Execute and g2- g0+gl g5- g4<<g3 g7- g6-g5 g10- g9>>g8
Write dst
Figure A-8. EU Execution Pipeline
Table A-6. EU Instructions
addo shlo mov and
addi shro movl andnot
addc shri cmpo notand
subo shli cmpi nand
subi shrdi cmpdeco or
subc eshro cmpdeci nor
ornot
setbit alterbit scanbyte notor
clrbit chkbit xnor
notbit xor
not
rotate
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A.2.4.2  Multiply/Divide Unit (MDU)

The MDU performs multiplication, division, remainder and modulo operations. The MDU
receives its instructions over the REG-machine bus and source operands over the srcl and src2
buses and returns its result over the dst bus. Once the IS issues an MDU instruction, the MDU
performs its operations in parallel with all other execution.

The MDU pipeline for the 32x32 mulo instruction is shown in Figure A-9. In the clock in which
the multiply is issued, the MDU latches the source operands and begins the operation. The
multiply completes and the result is written to the destination register in the fifth clock following
the clock in which the instruction was issued. When an instruction immediately follows a multiply
which references the multiply’s destination, the instruction is not issued until the clock in which
the multiply result is returned. For example, an addo which follows a multiply and references the
destination of the multiply is delayed until the fourth clock after the processor issues the multiply.
This five-clock multiply latency is easily hidden; four to eight instructions could be placed
between the multiply and add without increasing the total number of processor clocks used.

addo g0, gl, g2

mul o 03, g4, d5
addo g5, g6, g7
Instruction
Scheduler Issue | addo mulo —_ | — | = | —— addo
EU Read srcl, src2 | g0, g1 g5, g6
ineli E te and
Pipeline Xe\‘;\;’ri‘feznst g2~ go+gl g7~ g5+g6
Read srcl, src2 g3, g4
MDU
. . E t
Pipeline xecute C D)
Write dst | | | g5 - g3*g4d

Figure A-9. MDU Execution Pipeline

The MDU incorporates a one-clock pipeline unless integer overflow faults are enabled. The IS can
issue a new MDU instruction one clock before the previous result is written. For example, back-
to-back 32x32 multiply throughput is four clocks per multiply versus a five-clock multiply
latency. Figure A-10 shows the execution pipeline for back-to-back multiplies in which adjacent
instructions do not have a register dependency between them.
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addo g0, g1, g2
mul o g2, 93, g4
mul o g5, g6, g7
addo 98, g9, glo0
Instruction Issue | addo mulo —— | —— | —— | mulo addo
Scheduler
EU Read srcl, src2 | g0, g1 08, g9
Pipeline Execute and g2~ go+g1l 910~ g8+g9
Read srcl, src2 92,93 g5, g6
MDU
Pipeline Execute C )| C ;
Write dst | | | g4- g2*g3 | |

Figure A-10. MDU Pipelined Back-To-Back Operations

The MDU directly executes instructions listed in Table A-7. The scheduler issues an MDU
instruction in one clock. The table also shows the length of the execution stage (latency) for each
instruction. Subsequent instructions not dependent upon MDU results are issued and executed in
parallel with the MDU. If instructions in the table are issued back-to-back and they have no
register dependency between them, the MDU pipeline improves throughput by one clock per
instruction.

Table A-7. MDU Instructions

Back-to-Back Back-to-Back
. Issue Result
Mnemonic Clocks Latenc Throughput Throughput
y (AC.om = 1) (AC.om = 0)
muli 32x32 1 5 4 5
16x32 1 3 2 3
mulo 32x32 1 5 4 4
16x32 1 3 2 3
emul 32x32 1 6 5 6
16x32 1 3 2 3
divi 13 37 36 36
divo 3 36 35 35
ediv 3 36 35 35
remi
remo
modi
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A.2.43 Data RAM (DR)

On-chip data RAM (DR), described in section 2.5.4, “Internal Data RAM” (pg. 2-12), is single-
ported and 128-bits wide to support accesses of up to one quad-load or quad-store per clock. The
DR receives instructions over the MEM-machine bus, stores addresses over the 32-bit Address
Out bus and stores data over the 128-hit store bus. The DR returns data over the 128-bit load bus.

The one-clock DR pipeline for reads is shown in Figure A-11. When the IS issues a load from the
DR, load datais written to the destination register in the following clock.

An instruction which immediately follows aload from the DR and references the load destination
cannot execute in the same clock as the load. As shown in the figure, the instruction is issued in
the clock in which the load data is returning.

Table A-8 lists the instructions executed directly in most addressing modes (without micro-flow
execution) using the DR. As seen in Figure A-11, if these instructions are issued back-to-back,
they execute at a one-clock sustained rate, with or without register dependencies.

addo gl6, g0, g0
| dg (g0), g4
addo g4, g5, g6
| dt (g7), 08
| dg (98), g0
Igz;r;;::ll(;? Issue addo Idg aﬁﬁo Idq
EU Read srcl, src2 16, g0 94,95
Pipeline Exe\‘;\;‘rtife%“g g0~ go+16 g6~ g4+g5

Figure A-11. Data RAM Execution Pipeline

Table A-8. Data RAM Instructions

Load Latency =1 clock Store Latency =1 clock

Id st

Idob stob

Idib stib

Idos stos

Idis stis

Idl stl

Idt stt

Idg stq
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Address Generation Unit (AGU)

The AGU contains a 32-bit parallel shifter-adder to speed memory address calculations. It also
directly executes the Ida instruction. The AGU receives instructions over the MEM-machine bus
and offset and displacement values over the address out bus from the | S. The AGU reads the global
and local registers over the 32-bit base bus register port and writes the registers over the 128-bit
load bus.

The AGU calculates an effective address (efa) which is either written to a destination register in
(the case of an Ida instruction) or used as a memory address (in the case of loads, stores, extended
branches or extended calls). When an Ida instruction is issued, the AGU returns the efa to the
destination register in the following clock for most addressing modes. An instruction which
immediately follows the Ida and references the Ida destination is not issued in the same clock as
the Ida. As shown in Figure A-12, it isissued in the clock in which Ida is writing the destination
register.

Table A-9 lists the Ida addressing mode combinations that the AGU executes directly. As seen in
the figure, if Ida instructions are issued back-to-back using one of the addressing modes in the
table, the instructions execute at a one-clock sustained rate with or without register dependencies.

addo 16, g0, goO
| da 16 (g0), 94
addo g4, 95, g6
| da 16 [g7 * 4], g8
| da 16 (g8), g0
Instruction addo
Scheduler Issue addo lda Ida lda
EU Read srcl, src2 16, g0 94, g5
i i Execute and
Pipeline Write dot g0- g0+16 g6- g4+g5
Read over
AGU Base Bus 9 g7 98
Pipeline
P Write ecute and g4~ gO+16 | g8~ (g7+4)+16 | g0~ g8+16
Figure A-12. The lda Pipeline
Table A-9. AGU Instructions
Mnemonic Issue Clocks Addressing Mode Result Latency Clocks
Ida 1 offset 1
disp
(reg)
offset(reg)
disp(reg)
disp[reg * scale]
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A.2.45 Effective Address (efa) Calculations

The AGU calculates the efa for instructions which require one. When the addressing mode
specified by an instruction is the offset, disp or (reg) mode, the AGU generates the efa in parallel
with the instruction’ sissuance. As shown in the previous pipeline figure for the DR (Figure A-11),
load and store instructions begin immediately for these addressing modes with no delay for
address generation. See section A.2.6, “Micro-flow Execution” (pg. A-36) for a description of
how other addressing modes are handled.

A.2.4.6 Bus Control Unit (BCU)

The BCU executes memory operations for load and store instructions, instruction fetches, micro-
flows and DMA operations. It executes memory load requests in two clocks (zero wait states) and
returns aresult on the third clock. Using address pipelining and on-chip request queuing, the BCU
can accept a load or store from the IS every clock and return load data every clock. The BCU
receives instructions over the MEM-machine bus, stores addresses over the 32-bit address out bus
and stores data over the 128-bit store bus. The BCU returns data over the 128-bit load bus.

The BCU receives aload address during the “issue” clock. The addressis placed on the system bus
during the next clock (the first BCU execute stage). The system returns data at the end of the
following clock (the second BCU execute stage). On the next clock the BCU writes the data to the
destination register. This write is bypassed to the REG-side and MEM-side source buses and the
scoreboarded instruction isissued in the same clock.

The zero wait state load causes a two clock execution delay of the next instruction because the
load data is referenced immediately after the load is issued. If the memory system has wait states,
the load data delay would be longer. If the load is advanced in the code such that it is separated
from the instruction which uses the data, the load delay could be completely overlapped with the
execution of other instructions.

Store instruction execution would proceed as does the load, except that there would be no return
clock and no instructions could be stalled due to a scoreboarded register.

Table A-10 lists instructions that the i960 CA processor’'s BCU executes directly. For each
instruction that requires multiple reads (such as Idq) the BCU buffers the return data until all data
isreturned. This optimization reduces the internal load bus overhead to the minimum, giving more
clocks to the processor to access the DR and perform Ida operations while external loads are in
progress. The table is valid when offset, displacement or indirect memory addressing modes are
used over an external bus with the following characteristics:

Nxap = Nxpp = Nxpa = 0, Burst On, Pipelining On, Ready Disabled

For other addressing modes, see section A.2.6, “Micro-flow Execution” (pg. A-36).
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If instructions listed in the table are issued back-to-back with no register dependencies, they will
execute at a rate of one instruction per clock until the BCU queues are full. Once the queues are
full, further back-to-back BCU instructions execute at the bus bandwidth. Figure A-13 shows
back-to-back loads being executed.

Table A-10. BCU Instructions for the i960 CA Processor

Mnemonic Issue Clocks | Result Latency Clocks Back-to-Back
Throughput
Id 1 3 1
Idob
Idib
Idos
Idis
Idl 1 4 2
Idt 1 5 3
Idg 1 4
st 1 N/A 2
stob
stib
stos
stis
stl 1 N/A
stt 1 N/A
stq 1 N/A

To allow programs to issue load requests before the data is needed — and thus decouple memory
speeds from instruction execution — the BCU contains three queue entries. Each entry stores all
the information needed for a memory request:

»  For loads, the BCU contains the source address, destination register number and load type

»  For stores, BCU contains the destination address, store type and the store data

If astq is executed, all four registers are written to the BCU queue in one clock. The BCU
performs the actual bus request without taking any further clocks from instruction execution. BCU

gueues maintain memory requests in order. The requests are executed on the bus in the order that
they are issued from the instruction stream.
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| d (g0), 91
I d (92), 93
| d (94), 95
addo gl, g6, g7
Instruction
Scheduler Issue Id Id Id addo
Address Out bus
St bus g0 92 g4
BCU External
90 92 g4
Pipeline Address Bus
External Data Bus (go) (92) (g4)
LD Bus 91~ (g0) | 93~ (92) | 95~ (94)
Read srcl, src2 1, g6
EU _ gL, 9
Pineline Execute an o
P Write dst 97~ gl+ge

Figure A-13. Back-to-Back BCU Accesses

When the DMA controller is enabled, one of the three queue entries is dedicated for DMA
operations. This improves DMA performance and latency at the expense of loads and stores. See
CHAPTER 13, DMA CONTROLLER.

A.2.4.7 Control Pipeline

The IS directly executes program flow control instructions. Branches take two clocks to execute in
the CTRL pipeline; however, the IS is able to see branches as many as four instructions ahead of
the current instruction pointer. This allows the scheduler to issue the branch early and, in most
cases, execute the branch without inserting adead clock in the REG and MEM instruction streams.

Table A-11 lists the instructions that the IS executes directly, without the aid of micro-flows. For
information on other control flow instructions, see section A.2.6, “Micro-flow Execution” (pg.
A-36).

A.2.4.8 Unconditional Branches

Figure A-15 shows the IS issue stage and the CTRL pipeline for the case where the branch target
is another branch, disabling the I1S's ability to look ahead. The IS issues the branch in one clock;
the branch is executed in the next clock. The branch target is another branch, which the schedul er
issues immediately. Hence, branch instructions have a two-clock sustained rate when issued back-
to-back.
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Table A-11. CTRL Instructions

Back-to-Back Throughput

Mnemonic Issue Clocks Latency Clocks
Clocks

bbe 1 2 2
bne
bl
ble
bg
bge
bo
bno

w. b X
x: b y
y: b z

z: b w

Instruction

Issue b :b :b :b b
Scheduler . W X Y z W

CTRL Execute | ( ) | @ )| C )| ¢ ) | ¢

Pipeline |

Figure A-14. CTRL Pipeline for Branches to Branches

Figures A-15, A-16 and A-17 show the IS issue stage and the CTRL pipeline for each case of
possible IS branch lookahead detection. Assuming that the IS can see four instructions every clock
from the instruction cache, the branch can be in the first, second or third group of instructions seen.

An executable group of instructions is a group of sequential instructions in the currently visible
quad-word which can be issued in the same clock. See section A.2, “PARALLEL INSTRUCTION
PROCESSING” (pg. A-14).

Figure A-15 shows the cases where a branch, when first seen by the IS, is in the first executable
group of instructions. The IS issues the branch immediately, along with the first one (or two)
instruction(s) ahead of it. Since the branch takes two clocks in the CTRL pipeline to execute, a
one-clock break in the 1S's ability to issue instructions occurs. On the next clock, the IS issues a
new group of instructions from the branch target.

A-29



INSTRUCTION EXECUTION AND PERFORMANCE OPTIMIZATION Intel®

In the figure, two other instructions were issued simultaneously with the branch. Hence, the
branch could be said to have taken one clock to execute. When the branch is the first instruction in
the group (the branch is a branch target) no other instructions are issued in parallel with the branch
and it takes afull two clocks to execute (as seen in Figure A-15).

b X
X: addo g0, gl, g2
| da 2(g3), g4
b y
y: addo g5, g6, g7
| da 2(g8), g9
Instruction lssue alz(;o addo
Scheduler b Ida
CTRL
Pipeline Execute )| C D)
EU Read srcl, src2 g0, g1 g5, g6
Pipeline Exe\‘;\;‘rtiteeagg g2- go+gl g7- g5+g6
Read over
AGU Base Bus e 98
Pipeline Execute and
Write over Ldbus 94~ 2+g3 99~ g8+2

Figure A-15. Branch in First Executable Group

Figure A-16 shows the case where a branch, when first seen by the IS, isin the second executable
group (B) of instructions in the rolling quad-word, not the first executable group (A) which is
about to be issued. The I Sissues the branch immediately, along with the first group of instructions
ahead of it (A). Since the branch takes two clocks in the CTRL pipeline to execute, there is no
break in the 1S's ability to issue instructions. On the next clock, the IS issues a new group of
instructions from the branch target.

In the figure, two other instructions were issued simultaneously with the branch and one
instruction was issued during the clock in which the branch was executing. Hence, it can be said
that this branch takes zero clocks to execute.

Figure A-17 shows the case where a branch, when first seen by the IS, is in the third executable
group (C) of instructions of the rolling quad-word, not the first executable group (A) which is
about to be issued. The IS issues group A, then issues the branch and group B simultaneously.
Since the branch takes two clocks in the CTRL pipeline to execute, there is no break in the IS's
ability to issue instructions. On the clock following the issuance of group B, the IS issues a new
group of instructions from the branch target.
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b X
X addo g0, g1, g2 }
| da 2(g3), g4 }
| da 2(g5), g6 1B
b y
y: C
addo g7, 98, g9
| da 2(g10), gl1
Group: A B
Instruction s al?jio " addo
Scheduler ) da
CTRL
Pipeline Execute )| C D
EU Read srcl, src2 g0, g1 g7, g8
Pipeline Exewrti?e%ng 42 gorgl 1o g7egs
Read over
AGU Base Bus g3 g5 g10
Pipeline
P WriteE éSEt‘tfd%L“i g4~ g3+2 | g6- g5+2 | g11- g10+2

Figure A-16. Branch in Second Executable Group
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b X
X: | da 2(g3), g4 A
addo g0, g1, g2 B
addo g5, g6, g7 C
b y
y: addo g8, g9, glo
| da 2(g11), 912
Group: A B C
Instruction Issue da addo addo addo
Scheduler b Ida
CTRL
pineline Execute | D) G
EU Read srcl, src2 g0, g1 g5, g6 98, 99
Pipeline Exe\‘/:\;jrti?eadnsdt g2~ gO+gl | g7~ g5+g6 | g10- g8+g9
Read over
AGU Base BuS g3 ol1
Pipeline
P Writs bver Labus g g3+2 012~ gl1+2
Figure A-17. Branch in Third Executable Group
A.2.49 Conditional Branches

When the IS sees a conditional branch instruction, the condition codes are sometimes not yet
determined. For example, a conditional branch which immediately follows a compare instruction
cannot be allowed to compl ete execution until the result of the comparison is known. However, the
processor begins to execute the branch based upon the branch prediction bit set by the programmer
for that branch.

When one or more executable instruction groups separate the conditional instruction from the
instruction that changed the condition code, the condition code will have already settled in the
pipeline by the time the prefetch mechanism sees the conditional instruction. This situation allows
the branch to execute in zero clock cycles, as described in Figure A-17.

If the conditional instruction and the instruction that sets the condition codes are in the same
executable group or in consecutive groups, the condition code is not valid when the IS sees the
branch; a guess is required. If the prediction turns out to be correct, the branch executes in its
normal amount of time, as described in the previous section. If the prediction is wrong, the
pipeline is flushed. Any erroneously started single- or multiple-cycle instructions are killed and
the branch executes as if there had been no lookahead or prediction. In other words:
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» the branch takes two clocks out of the IS s issue stage if it is in the same executable group as
the instruction which modified the condition codes; or

» the branch takes one clock if it isin the executable group adjacent to the group that modifies
the condition codes.

A.2.5 Instruction Cache And Fetch Execution

The instruction cache provides three or four consecutive opcode words to the IS on every clock.
This capability alows the processor to dispatch instructions from the processor’s sequential
instruction stream to multiple independent parallel processing units. When a cache miss occurs or
is about to occur, the Instruction Fetch Unit issues instruction fetch requests to the BCU.

A.2.5.1 Instruction Cache Organization

The 1960 Cx processors’ instruction cache is a two-way set associative cache, organized in two sets
of eight-word lines.

* Thei960 CA processor cacheis 1 KByte, organized as two sets of 16 eight-word lines.

» Thei960 CF processor cacheis 4 KBytes, organized as two sets of 64 eight-word lines.
Each line is composed of four two-word blocks which can be replaced independently.

On every clock, the cache accesses one or two lines and multiplexes the correct three or four words
to the IS. Three words are valid if the requested address is for an odd word in memory (A2=1).
Four words are valid if the requested addressis for an even word of memory (A2=0).

Thei960 CA processor’s instruction cache supports pre-loading and locking of none, half or all of
the instruction cache. However, only interrupt procedures can be locked into the cache. The cache
locking scheme is improved on the 1960 CF processor and has fewer restrictions. Any section of
code can be locked into half of the instruction cache, not just the interrupt procedures.

When the 1960 CF processor executes sysctl (modes 100, 110) with a command to lock the
instruction cache, one way of the two-way set associative cache is pre-loaded and locked from the
specified address. The other half of the instruction cache now functions as a 2 Kbyte direct-
mapped instruction cache except for those instructions that sysctl locks. (The unlocked portion of
the 1960 CA processor’s instruction cache functions as two-way set associative.) This mode of
operation continues until the cache mode is changed by the next sysctl instruction. As on the i960
CA processor, the invalidate instruction cache sysctl message invalidates both the locked and
unlocked halves of the cache.

The instruction scheduler checks al ways of the cache for every instruction fetched. If an
instruction is not found, it is fetched from external memory and loaded into the unlocked portion of
the instruction cache.
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Table A-12. Cache Configuration Modes

Mode Field Mode Description CA CF
000, normal cache enabled 1 Kbyte 4 Kbytes
XX1, full cache disabled 1 Kbyte 4 Kbytes
100, Load and lock full cache (execute off-chip) 1 Kbyte! 4 Kbytes?

Load and lock half the cache;

110 . .
2 remainder is normal cache enabled

512 bytes 2 Kbytes

010, Reserved 1 Kbyte 4 Kbytes
NOTES:
1. On the CA, only interrupt procedures can execute in the locked portion of the cache.

2. On the CF, interrupt procedures and other code can operate in the locked portion of the cache.

A.25.2 Fetch Strategy

When any of the three or four words presented to the scheduler are invalid, a cache miss is
signaled and an instruction fetch isissued. The Instruction Fetch Unit makes the fetch and prefetch
decisions.

Since the cache supports two-word and quad-word replacement within a line, instruction fetches
can be issued in either size. The conditions of the cache miss determine which fetch is issued.
Table A-13 describes the fetch decision.

Table A-13. Fetch Strategy

Words Provided To Scheduler Fetch Initiated
P IP+4 IP+8 IP+12 A3:2 of requested IP = 0X, A3:2 of requested IP = 1X,
Hit Hit Hit Hit no fetch no fetch
Hit Miss Hit Hit fetch two words at IP fetch two words at IP
Miss Hit Hit Hit
Miss Miss Hit Hit
Hit Hit Hit Miss fetch two words at IP+8 fetch two words at IP+8
Hit Hit Miss Hit
Hit Hit Miss Miss
All other cases fetch four words at IP fetch two words at IP
and four words at IP+8

A.25.3 Fetch Latency

The Instruction Fetch Unit initiates an instruction fetch by requesting quad-word or long-word
loads from the BCU. These fetches differ from actual instruction stream loads in two ways: load
destination and load data buffering.
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First, the load destination of an instruction fetch is the instruction fetch buffer, not the register file.
Since fetch data goes directly from the BCU to the instruction fetch buffer and IS, the scheduler
can issue fetched instructions during the clock after they are read from external memory.

Second, to reduce fetch latency, the BCU buffers fetch data differently than a regular load
instruction. Instead of buffering four words of instructions before sending data to the fetch unit, the
BCU sends each word as it isreceived over the bus. If the fetches are from 8- or 16-bit memory, the
BCU collects 32 bits before sending the word to each fetch unit.

Figure A-18 shows the execution of a two-word fetch that resulted from a cache miss. The fetch
unit detects the cache miss at the end of the clock in which instructions would be issued had a hit
occurred. The fetch unit issues the instruction fetch in the following clock. Assuming that the BCU
is not busy with another operation, the request begins on the external bus in the next clock. The
first word of the fetch is returned to the fetch unit in the clock in which it is received from the
memory system; the IS attempts to issue the instruction to an execution unit in that same clock.
The remaining words of a fetch are returned as they are received from the system (i.e., one each
clock).

If the fetch request is the result of a prefetch decision, the IS is not stalled unless it needs an
instruction from the prefetch request.

If the processor is executing straight-line code which always misses the cache, the IS is only able
to issue instructions at a one-instruction-per-clock rate. It is never able to see multiple instructions
in one clock. The bus bandwidth of the memory subsystem containing the code limits the applica
tion’s performance.
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Figure A-18. Fetch Execution

A.25.4 Cache Replacement

Data fetched as a result of a cache miss is written to the cache when and if the fetched data is
requested by the IS. This optimization keeps unexecuted prefetched data from taking up valuable
cache space.

As the fetches come in from the BCU, the fetch unit stores incomplete fetch blocks in a queue. If
the IS reguests one or more instructions which are in the queue, the fetch unit satisfies the queue
request. If the queue entry that the scheduler requests contains a full group (two words) of instruc-
tions, the valid groups in the queue are aso written to the cache in the same clock that they are
given to the scheduler. The least-recently used set is updated.

A.2.6 Micro-flow Execution

The 1960 Cx processors parallel processing units directly execute about half of the processor’s
instructions. The processor services the remaining complex instructions by executing a sequence
of simple instructions from an on-chip ROM. Complex instructions are detected in the clock in
which they are fetched. This information becomes part of the instruction encoding stored in the
instruction fetch unit queue and/or instruction cache.
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Micro-flow instruction sequences are written to enable the parallel processing unitsto perform the
required function as fast as possible. Micro-flows use instructions described in prior sections of
this appendix (machine types REG, MEM and CTRL) and some special paralel circuitry to carry
out the complex instructions. An instruction which cannot be directly issued to a paralel
processing unit is said to have the machine type .

A.2.6.1 Invocation and Execution

Invocating a micro-flow can be considered analogous to the processor’s execution of an uncondi-
tional branch into the on-chip ROM. However, pre-decoding and optimized |ookahead |ogic makes
the micro-flow invocation more efficient than a branch instruction.

While the IS isissuing one group of instructions, parallel decode circuitry checks to see if the next
executable instruction is a L instruction (Figure A-19). If so, the opcode words presented to the IS
in the next clock come from the on-chip ROM location that contains the micro-flow for the
detected complex instruction. The IS actually never attempts to issue a complex encoding. The
processor detects the encoding when the instruction is fetched, then traps during the clock in which
the instruction is presented to the IS.

Generally, no clocks are lost when switching to a micro-flow. However, two conditions can defeat
the lookahead logic:

e branches to REG-, CTRL- or COBR-format instructions which are implemented as micro-
flows (); or

e cache misses from straight-line code execution.

Under these conditions, the switch to on-chip ROM causes a one-clock break in the IS's ability to
issue instructions.

Complex instructions encoded with the MEM-format do not require lookahead detection to trap to
the ROM without overhead. Therefore, MEM-format instructions of machine type 1 do not see a
one-clock performance loss even when lookahead logic is defeated. Furthermore, micro-flows
return to general execution with no overhead; back-to-back micro-flows do not incur the one-clock
defeated |ookahead penalty.
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Figure A-19. Micro-flow Invocation

When micro-flows execute, they consume the instruction scheduler’ s activity. From the first clock
through the last clock of amicro-flow, the ISistypically issuing two instructions per clock. MEM-
side micro-flows — such as loads and stores — can be issued in parallel with REG-side instruc-
tions. Performance of micro-flowed instructions is measured by the number of clocks taken to
issue instructions.

A.2.6.2 Data Movement

Data movement instructions supported as micro-flows include the triple and quad-word register
move instructions and the Ida, load and store instructions which use complex addressing modes.

movt and movq each take two clocks to execute.

Ida takes two clocks to execute for the (reg)[reg * scale] and disp(reg)[reg * scal€] addressing
modes and can be issued in paralel with an instruction of machine type REG. Ida using the
disp(IP) addressing mode takes four clocks to execute and can beissued in parallel with a machine
type REG instruction. The AGU executes Ida directly for all other addressing modes.
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Load and store instructions are summarized in Table A-14 and Table A-15. The number of clocks
shown is the additional number of issue clocks consumed for address calculation prior to the load
or store being issued to the BCU or DR. These instructions can beissued in parallel with a machine
type REG instruction. To find the result latency of the BCU or DR, see the appropriate section

INSTRUCTION EXECUTION AND PERFORMANCE OPTIMIZATION

earlier in this appendix.

Table A-14. Load Micro-flow Instruction Issue Clocks

The following load instructions consume n additional issue clocks for address
calculation before initiating a load request to the BCU or DR, where n for each

addressing mode is as follows:

Idos, Idis, Idl, Idt,
Idq

disp(reg) (reg)[reg * scale] disp(IP)
Mnemonic offset(reg) disp(reg)[reg * scale]
disp[reg * scale]
Id, Idob, Idib,

NOTE: offset, disp and (reg) memory addressing modes incur no address calculation overhead.

A.2.6.3

Bit and Bit Field

scanbit, spanbit, extract and modify are executed as micro-flows. Table A-16 lists their
execution times. For these instructions, the IS issues n clocks of instructions in place of the single-
word 1960 Cx processor instruction encoding, where n is shown in the table.

Table A-15. Store Micro-flow Instruction Issue Clocks

The following store instructions consume n additional issue clocks for address
calculation prior to initiating a store request to the BCU or DR, where n for each
addressing mode is as follows:

Mnemonic

disp(reg)
offset(reg)
disp[reg * scale]

(reg)[reg * scale]
disp(reg)[reg * scale]

disp(IP)

stis, stl, stt, stq

st, stob, stib, stos,

1

2

4

NOTE: offset, disp and (reg) memory addressing modes incur no address calculation overhead.
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Table A-16. Bit and Bit Field Micro-flow Instructions

Mnemonic Execution Clocks (n)
scanbit 1
spanbit 2
extract 4
modify 3

A.2.6.4 Comparison

test* instructions are executed as micro-flows. Execution time depends upon condition code
validity and prediction bit settings. When condition codes are valid or the prediction bit is set
correctly, atest* instruction takes one issue clock if its correct result isa 1 and two issue clocks if
its correct result is a 0. Otherwise, the test* instruction takes three issue clocks to execute.

A.2.6.5 Branch

Compare and branch, extended branch, branch and link and extended branch and link instructions
are implemented with micro-flows.

cmpib* and cmpob* instructions take one issue clock if the prediction was correct and two issue
clocksiif the prediction was incorrect, assuming a cached branch target.

bal takes two issue clocks to execute, assuming a cache hit.

bx and balx are summarized in Table A-17. The number of clocks shown is the total number of
issue clocks consumed by the instruction prior to the code at the branch target being issued. Times
shown assume instruction cache hits and a DR-based link target. These instructions may be issued
in parallel with a machine-type R instruction.

Table A-17. bx and balx Performance

The following instructions consume n issue clocks before target code is issued, where
n for each addressing mode is as follows:
disp
offset

. (reg)

Mnemonic disp(reg)
offset(reg) (reg)[reg * scale]
disp[reg * scale] disp(reg)[reg * scale] disp(IP)
bx, balx 4 4 6
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Call and Return

Procedure call, return and system procedure call instructions are implemented as micro-flows. call
consumes four issue clocks when the target is cached and a register cache location is available.
When a frame spill is required, an additional 22 issue clocks are consumed in a zero-wait-state
system before the target code begins execution. The worst-case memory activity for a call with a
frame spill and a cache miss is one quad-word instruction fetch followed by four quad-word stores.
Wait states in the instruction fetch directly impact call speed, while wait states in the frame stores
are decoupled from internal execution by the BCU queues.

ret consumes four issue clocks when the target and the previous register set are both cached. When
a frame fill is required, an additional 38 issue clocks are consumed in a zero-wait-state system
before the target code begins execution. The worst-case memory activity for a return with aframe
fill and a cache missis four quad-word reads followed by one quad-word fetch. Wait states in the
instruction fetch or the frame fill directly impact return speed.

calls consumes up to 56 issue clocks if the call isto a supervisor procedure. If the call isto a non-
supervisor procedure, calls takes 38 issue clocks. These times assume an available register cache
location and a cached target. During calls execution, the processor accesses the system procedure
table with a single-word read and a long-word read. The presence of severa wait states in these
reads directly affects the instruction’s performance. The impact of non-cached target code or a
frame spill on the calls instruction isidentical to the impact on the call instruction.

callx timing is similar to call instruction timing with the exception of issue clocks. Table A-18
shows total issue clocks for callx.

Table A-18. callx Performance

The following instruction consumes n issue clocks before target code is
issued, where n for each addressing mode is as follows:
disp
offset

. (reg)

Mnemonic disp(req)
offset(reg) (reg)[reg * scale]
disp[reg * scale] disp(reg)[reg * scale] disp(IP)
callx 7 9 9

Times shown assume instruction cache hits.
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A.2.6.7 Conditional Faults

fault* instructions are implemented with micro-flows and require one issue clock if the prediction
bit is correct and no fault occurs. If the prediction bit is incorrect and no fault occurs, the instruc-
tions require two issue clocks. The time it takes to enter a fault handler varies greatly depending
upon the state of the processor’s parallel processing units.

A.2.6.8 Debug

mark and fmark are implemented with micro-flows. mark takes oneissue clock if no trace fault is
signaled. If atrace fault issignaled or fmark is executed, the processor performs an implicit call to
the trace fault handler. As with conditional faults, the time required to enter a fault handler varies
gresatly.

A.2.6.9 Atomic

Atomic instructions are implemented with micro-flows. atadd takes seven issue clocks and atmod
takes eight issue clocks to execute with an idle bus in a zero-wait state system. Memory wait states
directly affect execution speed.

A.2.6.10 Processor Management

Processor management instructions implemented as micro-flows include: modpc, modac, modtc,
syncf, flushreg, sdma, udma and sysctl.

modpc requires 17 clocks to execute if process priority is changed and 12 clocks if
process priority is not changed.

modac requires 9 clocks.

modtc requires 15 clocks.

syncf takes 4 issue clocks if there are no possible outstanding faults. Otherwise, the

instruction locks the IS until it is certain that no prior instruction will fault.

flushreg requires 24 clocks for each frame that is flushed. This translates to 120 cyclesto
flush five frames. Wait states in the memory being written affect this instruc-
tion’s performance.

sdma executes in 22 clocks. In the case of back-to-back sdma instructions, 40 clocks
are required.

udma requires 4 clocks.

sysctl Timings shown in Table A-19 assume a zero wait-state memory system.
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Table A-19. sysctl Performance

Message Message Type Issue Clocks
Request Interrupt 00H 37 + bus wait states
Invalidate Cache 01H 38
Configure Cache 02H 52 with 1 Kbyte cache enabled;

48 with 1Kbyte cache disabled.
2078 + bus wait states with load and lock 1Kbyte;
1103 + bus wait states with load and lock 512

bytes.
Reinitialize 03H 243 + bus wait states
Load Control Register Group 04H 42 + bus wait states

A.2.7 Coding Optimizations

Embedded applications often benefit from hand-optimized interrupt handlers and critical
primitives. This section reviews coding optimizations which arise due to the microarchitecture of
the 1960 Cx instruction set processor. The examples in this section are constructed to illustrate

particular optimization tricks. In general, every example could be further optimized by applying
several techniques instead of one.
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A.2.7.1

Separate load instructions from instructions that use load data. Remember that store instructions
can also be reordered. Although it returns no resultsto aregister, a poorly placed storein front of a
critical load slows down the load. Reorder to issue the load first. Example A-1 shows a simple

Loads and Stores

change that saved one clock from afive-clock loop.

Example A-1. Overlapping Loads (Checksum)

intgl.

| oop: opt _| oop:
| dob (g0), 01 | dob (g0), 01
addo gl, g2, g2 cnpi nco g0, g3, g0
cnpi nco g0, g3, g0 addo gl, g2, g2
bl .t | oop bl .t opt _| oop
Executi on: Execut i on:
Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop
1 Idob 1 Idob
2 2 cmpinco
3 3 bl.t
4 addo bl.t 4 addo
5 cmpinco 5 Idob
6 Idob
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A.2.7.2  Multiplication and Division

Begin multiply and divide instructions several cycles before instructions that use their results.
MDU instructions consume less than one clock if they are sufficiently separated from the instruc-
tions that use their results. Also remember to use shift instructions to replace multiplication and
division by powers of two. Example A-2 shows overlapping pointer math and a comparison with
the 32x32 multiply time in a simple multiply-accumulate loop.

Example A-2. Overlapping MDU Operations (Multiply-Accumulate)

| oop: opt _| oop:
I d (g0), 92 I d (g0), 92
I d (91), 93 I d (91), 93
mul i g2, g3, g4 mul i g2, 93, g4
addi g4, g5, @5 addo 4, g0, g0
addo 4, g0, g0 cnpo g0, g6
addo 4, g1, 91 addo 4, g1, 91
crpobl . t g0, g6, |oop addi g4, g5, @5
bl .t opt _| oop
Execution (from DR): Execution (from DR):

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop

1 Id 1 Id

2 Id 2 Id

3 muli 3 muli

4 4 : addo

5 5 : cmpo

6 6 : addo

7 . 7 . bl.t

8 addi 8 addi

9 addo 9 Id

10 addo bl.t

11 cmpo :

12 Id
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A.2.7.3 Advancing Comparisons

Where possible, instructions which change condition codes should be separated from instructions
that use condition codes. Although correct branch prediction gives the same performance as
separating the compare from the branch, prediction is statistical while separation is deterministic.
In the previous example, optimized code advanced the comparison enough that branch prediction
is not being relied upon to keep the branch-true path executing at nine clocks. Furthermore, the
branch-false path does not take extra clocks since the condition codes are known when the branch
is encountered.

In a situation where the comparison and a branch cannot be separated to achieve a performance
advantage, use the combined compare and branch instructions. This is likely to lead to faster
execution since the two instructions are encoded in a single word. This code economy frees
another location in the cache and the IS may be able to see the branch earlier because the branch is
encoded in the same opcode word.

A.2.7.4 Unrolling Loops

Expand small loops into larger loops which fill the cache, use more registers and pipeline their
memory operations. The strategy is to begin accessing the memory system as soon asthe routineis
entered and to make the best use of the bus. Less bus bandwidth is used for the same operations if
the algorithm is implemented with quad |oads and/or stores.

The large register set allows an unrolled loop to have multiple sets of working temporary registers
for operations in various stages. For example, the previous checksum example is repeated in
Example A-3. Theloop is unrolled to perform checksums nearly twice as fast as the simple loop.
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Example A-3. Unrolling Loops (Checksum)

INSTRUCTION EXECUTION AND PERFORMANCE OPTIMIZATION

-- initialize -- -- initialize --
| oop: opt _| oop:
| dob (g0), 01 | dob (g0), 01
addo gl, g2, g2 cnpi nco g0, g3, g0
cnpi nco g0, g3, g0 addo g4, g2, g2
bl .t | oop bge. f exitl
ret | dob (g0), o4
cnpi nco g0, g3, g0
addo gl, g2, g2
bl .t opt _| oop
exit2:
addo g4, g2, g2
ret
exitl:
addo g1, g2, g2
ret
Executi on: Executi on
Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop
1 Idob 1 ldob g1
2 2 cmpinco : bge.f
3 3 addo g4 : :
4 addo bl.t 4 Idob g4
5 cmpinco 5 cmpinco : bl.t
6 Idob 6 addo g1 :
7 ldob g1
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A.2.7.5 Enabling Constant Parallel Issue

As described in section A.2.1, “Parallel Issue” (pg. A-14), certain sequences of machine-type
instructions can be executed in paralel, such as REG-MEM, REG-MEM-CTRL, MEM-CTRL. In
Example A-4 the checksum loop is repeated. Another clock is eliminated by reordering code for
parallel issue.

Example A-4. Order for Parallelism (Checksum)

-- initialize -- -- initialize --
| oop: opt _| oop:
| dob (g0), 01 addo g4, g2, g2
addo gl, g2, g2 | dob (g0), 01
cnpi nco g0, g3, g0 cnpi nco g0, g3, g0
bl .t | oop bge. f exitl
ret | dob (g0), o4
cnpi nco g0, g3, g0
addo gl, g2, g2
bl .t opt _| oop
exit2:
addo g4, g2, g2
ret
exitl:
addo g1, g2, g2
ret
Executi on: Executi on
Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop
1 Idob 1 addo g4 Idob g1 bge.f
2 : 2 cmpinco : :
3 : 3 Idob g4
4 addo bl.t 4 cmpinco : bl.t
5 cmpinco : 5 addo g1 :
6 Idob 6 addo g4 Idob g1
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A.2.7.6 Alternating from Side to Side

The 1960 Cx processor can sustain execution of two instructions per clock. To maximize this
capability, try to start instructions in two of the three pipelines each clock. To increase parallelism,
move an instruction from a unit which has become a critical path to a unit with available clocks.
The AGU performs shifts, additions and moves that can replace EU operations. Literal addressing
mode, in combination with EU or AGU operations, provides some freedom in deciding which side
loads constants into registers. Remember to use addressing modes that the AGU executes directly
(machine type M, not ).

Table A-20 lists several conversions that can move an instruction to the AGU from either the EU or
MDU. Example A-5 exploits the Ida instruction to increase a 3x3 lowpass filter’ s performance by
approximately 30 percent.

Table A-20. Creative Uses for the Ida Instruction

Operation Equivalent Ida instruction
addo 5, g0, gl # constant addition I da 5(g0), 91
shlo 2, gl, g2 # shifts by a constant lda [ g1 * 4], g2
nov 31, g0 # constant | oad I da 31, gO
shlo 2, gl, g2 # shift/add conbination |lda 5[ gl * 4], g2
addo 5, g2, g2
nov g0, gl # regi ster nove Ida (g0), g1
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Example A-5. Change the Type of Instruction Used (3x3 Lowpass Mask)

In

tel.

Y[I=X[1*M[]

121
16 16 16
M= 15 5 5
121
16 16 16
# initial values # initial values
# g0 points to X(0,0) # g0 points to X(0,0)
# gl points to Y(1,1) # gl points to Y(1,0)
# g2 contains imax # g2 contains inmax
#r4 load tenp #r4 load tenp
# r5 accunul at or # r5 accunul at or
#r6 = imx (i count tenp) #r6 = imx (i count tenp)
#r7 = jmax (j count tenp) #r7 = jmax (j count tenp)
#r8 = imx-1 #r8 = imax-1
# (new mask row of fset) # (new mask row of fset)
#r9 = 2*imax - 2 #r9 = 2*imax - 2
# (new i offset) # (new i offset)
#r10 is 2*imax + 1 #r10 is 2*imax + 1
# (new j offset) # (new j offset)
b next j new _next i:
next i: new _next j:
subo ro, go, go
next _j: # first mask row
# first mask row addo 1, 91, g1
| dob (g0), r5 | dob (g0), r5
addo 1, g0, g0 addo 1, g0, g0
| dob (g0), r4 | dob (g0), r4
addo 1, g0, g0 addo 1, g0, g0
shl o 1, r4, r4 | da [ra * 2], r4
addo r4, r5, rb5 addo r4, r5, rb5
| dob (g0), r4 | dob (g0), r4
addo r4, r5, rb5 addo r4, r5, rb5
addo r8, go, go addo r8, go, go
# second mask row # second mask row
| dob (g0), r4 | dob (g0), r4
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addo 1, g0, g0
shl o 1, r4, r4
addo rd, r5, r5
| dob (g0), r4
addo 1, g0, g0
shl o 2, r4, r4
addo rd, r5, r5
| dob (g0), r4
shl o 1, r4, r4
addo rd, r5, r5
addo r8, g0, go
# third mask row
| dob (g0), r4
addo 1, g0, g0
addo rd, r5, r5
| dob (g0), r4
addo 1, g0, g0
shl o 1, r4, r4
addo rd, r5, r5
| dob (g0), r4
addo ra, r5, r5
shro 4, r5, r5
st ob r5, (gl)
addo 1, 91, g1
# updat e pointers
cnpdeco 2, r6, r6
bg next i
nmov g2, r6
cnpdeco 2, r7, r7
subo r10, g0, goO
addo 2, g1, g1
bg next _j
ret

Execution from DR (new | oop):

addo 1, g0, g0
addo r4, r5, rb5
| da [rda * 2], r4

| dob (g0), r4
addo 1, g0, g0
| da [r4a * 4], r4
addo r4, r5, rb5

| dob (g0), r4
addo r8, g0, go
| da [rda * 2], r4
addo r4, r5, rb5

# third mask row

| dob (g0), r4
addo 1, g0, g0
addo r4, r5, rb5

| dob (g0), r4
addo 1, g0, g0
| da [rda * 2], r4
addo r4, r5, rb5

| dob (g0), r4
addo r4, r5, rb5
shro 4, r5, r5
cnpdeco 2, r6, r6
st ob r5, (gl)
subo ro, go, go

# updat e pointers

bg. t new next i
addo ro, go, go
| da (g2), r6
cnpdeco 2, r7, r7
| da 2(gl), 91
subo r10, g0, go
bg. t new_next _j
ret

Execution from DR (| oop):

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop
1 subo 1 addo Idob
2 Idob 2 addo
3 addo 3 Idob
4 Idob 4 addo Ida
5 addo 5 addo Idob
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A-52

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop
6 shlo 6 addo
7 addo 7 addo Idob
8 Idob 8 addo lda
9 addo 9 addo Idob
10 addo 10 addo lda
11 Idob 11 addo Idob
12 addo 12 addo lda
13 shlo 13 addo Idob
14 addo 14 addo
15 Idob 15 addo Idob
16 addo 16 addo lda
17 shlo 17 addo Idob
18 addo 18 addo
19 Idob 19 shro
20 shlo 20 cmpdeco stob bg.t
21 addo 21 subo :
22 addo 22 addo Idob
23 Idob
24 addo
25 addo
26 Idob
27 addo
28 shlo
29 addo
30 Idob
31 addo
32 shro
33 stob
34 addo bg.t
35 cmpdeco :
36 subo
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A.2.7.7 Branch Prediction

Conditional branches execute faster if the branch direction is correctly predicted using the branch
prediction bits on conditional instructions. This is particularly true when a comparison cannot be
separated from the test in a conditional instruction. When the prediction is correct, branches
generally execute in parallel with other execution. If prediction is not correct, the worst case
branch time for cached execution is still two clocks.

Although prediction bits are most likely set to gain maximum throughput, different strategies can
be used for setting the prediction bits. A code sequence dominated by comparisons and conditional
branches might see large differences between execution time of the fastest path and slowest path.
Prediction bits can be set to provide the best average throughput to ensure the fastest worst case
execution or to minimize deviation between slowest and fastest times.

A.2.7.8 Branch Target Alignment

Branch target code executes with more parallelism in the first clock if the branch target is long-
word or quad-word aligned. Quad-word alignment is preferable for prefetch efficiency.

The IS sees four words in a clock when the requested IP is long-word aligned and three words
when the requested IP is not on a long-word boundary. Aligned branch targets give the scheduler
another word to examine on the first clock following a branch. However, there are only afew cases
where this optimization pays off.

The IS takes advantage of seeing four words on the first clock after a branch when the fourth word
isabranch or micro-flow and all three previous opcodes are executable in one clock. Example A-6
shows a three-word executable group (add followed by Ida with 32-bit constant) followed by a
micro-flow. The sequence executes one clock faster when the branch target is long-word aligned.
The reason for the extra clock is described in section A.2.6, “Micro-flow Execution” (pg. A-36).
Since optimization can save one clock under such circumstances, it could be worthwhile in small,
frequently executed loops.
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Example A-6. Align Branch Targets

-- initialize -- -- initialize --
.align 2 .align 2
mov g0, g0 #nop target:
target: add g0, gl
add g0, gl | da oxffffffff, g2
| da oxffffffff, g2 scanbi t 03, g4
scanbi t g3, g4 addo g5, g6
addo g5, g6 - nore -
- nore -
Executi on: Executi on:
Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop
1 b target 1 b target
2 : 2
3 addo Ida 3 addo lda
ua scanbit ua scanbit
[T83) : 5 addo
addo 6 more
more

A.2.7.9 Replacing Straight-Line Code and Calls

bal takes three or four clocks to execute and does not cause a frame spill to memory. Replacing
calls with branch and link instructions is an obvious optimization. However, a not-so-obvious but
equally beneficial optimization is to use branches and bal to reduce a critical procedure’s code
size.

When porting optimized algorithms originally written for other processors, the software engineer
often expands the code in a straight-line fashion due to branch speed penalties of the original
target and the lack of on-chip caching. On the i960 Cx processors, branches are virtually free in
cached programs and cached program execution is dramatically faster than non-cached execution.
Therefore, branches and the branch-and-link instruction should be used to compress algorithms
into the cache. For example, the previous low-pass filter routine could be modified to use coeffi-
cients from registers instead of literals. A short code piece could then sequence different filter
coefficients through the registers and branch (using bal) to thefilter loop. The entire routine would
fit in the instruction cache and could perform a chain of linear filters without a procedure call.
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A.2.8 Utilizing On-chip Storage

The processor has the ability to consume instructions and execute quad-word memory operations
in parallel with arithmetic operations every clock. The instruction cache, data cache (1960 CF
processor only), register cache and on-chip data RAM are valuable resources for sustaining such
optimized execution.

Compiler experimentation is an important aid to maximize utilization of on-chip storage resources.
Compiler optimization is not limited to instruction caching. In particular, execution profiling will
automate assignment of frequently used data to the data RAM. Availability of data RAM provides
more options for partitioning data between context-based storage (register cache), general storage
(data cache where available) and static caching (data RAM).

A.2.8.1 Instruction Cache

If an algorithm fits into the instruction cache, it generally executes faster than if it did not fit. This
is true even if the compressed code contains more comparisons and branches than uncompressed
code contains.

If aloop fitsin the cache but is not capable of executing two instructions per clock due to memory
or resource dependencies, keep unrolling the loop and pipelining operations until the cache is full.
To increase performance of loops with multiple iterations and memory operations, unroll the loops
until all registers are used or the cacheisfull.

If the system is interrupt-intensive, consider locking interrupt service routines into the cache. On
the 1960 CF microprocessor, cache locking is extended to any frequently executed code segments.
Some experimentation may be necessary to determine if cache locking impacts performance of
remaining non-locked code.

Finally, as mentioned in a previous section on branches, aligning branch targets can improve
performance. While long-word aligned branch targets improve the scheduler’ s lookahead ability in
the first clock of the branch, quad-word aligned branch targets reduce the number of long-word
instruction fetches issued. Although the long-word fetch is implemented to reduce cache miss
latency for many cases, the quad-word instruction fetch is more efficient for system throughput.

A.2.8.2 Data Cache (i960 CF Processor Only)

The 1960 CF microprocessor has a 1 Kbyte, direct-mapped data cache. The effect of data caching
on performance is usually not as great as the effect of instruction caching because the processor
often accesses data in a random, occasional pattern compared to the repetitive, looping pattern
commonly seen with instruction execution.
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The data cache behaves like SRAM for cache hits, delivering data in a single clock. Data cache
misses require BCU interaction, as do all stores to external memory addresses. Data caching can
be enabled for particular memory regions. In most cases, programmers will use this function only
to distinguish non-cacheable memory-mapped /O space from ordinary data memory. Once the
data cache is enabled, its operation is transparent as there are no further programming options.

A.2.8.3 Register Cache

Register cache can be thought of as a data cache which selectively caches only that data related to
procedure context. section 5.2, “CALL AND RETURN MECHANISM” (pg. 5-2) describes the
1960 Cx processors' register cache.

The register cache/data RAM partition is programmable. Therefore, the user can determine the
trade-off between procedural context caching and static caching of procedure variables in the on-
chip data RAM. Experiments can be run to measure the sensitivity of system performance to
register cache depth of afixed program. Minimizing register cache depth maximizes on-chip data
RAM for variable caching.

Some situations exist where flushreg can optimize register cache usage. When an application
crosses the boundary between non-real-time processing and real-time processing, it might be
desirable to flush the register set. Flushing the register set at the beginning of a routine saves time
that would otherwise be spent on frame spills later in the routine. However, this approach may
actually result in a greater number of spills occurring than would otherwise have occurred without
the premature flush.

This technique may be used to control interrupt latency within sections of background code. For
example, it may be advantageous to execute a flush at the beginning of a routine which executes
many loads from very slow memory. This reduces interrupt latency within that code section since
there is no possibility of the interrupt’ s frame spill being impeded by slow memory operations.

A.2.8.4 Data RAM

On every clock, 128 bits of data can be loaded from or stored to the data RAM. This rate is
sustained simultaneously with single-clock arithmetic operations executing from the independent
REG-side register ports.

Allocated correctly, this resource dramatically increases performance of critical application
algorithms. If data RAM space is scarce, locations can be dynamically allocated. If data RAM
space is plentiful, locations can be globally allocated to achieve minimum latency to critical
variables.
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Variables which are used heavily over short periods of time or are used heavily by one procedure
should be dynamically allocated. Such variables could be DMA descriptors for the currently active
packets or coefficients for filters which process large images on command. Dynamically allocated
data RAM space would be loaded from main memory at the onset of intense processing and
restored to main memory as the activity subsides.

Global allocation of DR space should be saved for storing variables which are heavily used by a
variety of procedures over along period of time or for storing variables needed by latency-critical
activities. For example, the programmer may wish to allocate space for coefficients of a continu-
ously operating filter or standard DMA descriptor templates from which run-time descriptors are
built in data RAM.

A.2.9 Summary

Table A-21 summarizes code optimization tactics presented in the previous sections. Optimizing
compilers for the 1960 processor family are designed to exploit most of these techniques.
Advanced compilers also incorporate profiling features to automate much of the experimentation
process.

Table A-21. Code Optimization Summary

Tactic Description

Advance “long” operations Separate comparisons, loads, stores and MDU operations from the
instructions that use their results.

Unroll loops Unroll time-consuming loops until:

1) processor executes loop with two instructions per clock;
2) bus is saturated with quad operations;

3) no registers are left;

4) loop does not fit in the cache.

Order for parallelism Alternate REG-side instructions with MEM-side instructions so they may
be issued in parallel.

Migrate the operation To enable parallelism, move EU and MDU operations to the AGU or vice
versa.

Use branch prediction Set prediction bits correctly in conditional instructions.

Align branch targets Align branch targets of critical loops on an even-word or quad-word
boundary.

Compress code to fit If loop does not fit in cache, use branches, branch-and-links or calls to

compress code size so it fits. Use code size optimization instructions
(e.g., cmpobe) where possible.

Use data RAM Use high-bandwidth data RAM space for performance-critical and/or
latency-critical variables
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APPENDIX B
BUS INTERFACE EXAMPLES

This appendix describes how to interface the processor to external memory systems. Also
discussed are non-pipelined and pipelined burst SRAM, non-pipelined burst DRAM, slow 8-bit
memory systems and high performance pipelined burst EPROM. All issues discussed in each
example are independent of operating frequency.

Design examples, state machines and pseudo-code are for example only; refer to the EP80960Cx
Evaluation Platform User's Guide (order number 272456) for actual programmable logic
equations.

B.1 NON-PIPELINED BURST SRAM INTERFACE

This appendix uses a simple SRAM design to demonstrate how the bus and control signals are
used. The design also demonstrates the internal wait state generator. The basic SRAM interface
provides the basic information needed to design most I/O and memory interfaces. The design
supports burst and non-burst bus accesses. The SRAM interface is important for shared memory
systems; variations can be used to communicate with external memory mapped peripherals.

B.1.1 Background

SRAM devices are available in a wide variety of packages and densities. SRAM address pins are
always dedicated as inputs. Data pins may be configured in two ways:

» each pin can be dedicated as an input or an output

» aset of data pins may be used for both data in and data out

Control signals usually found on SRAM include: Chip Enable (CE), Output Enable (OE) and

Write Enable (WE). The following example deals with a SRAM that has CE, OE and WE control
signals, address inputs and data input/output pins.

Memory isread when CE and OE are asserted and WE is not asserted. Memory iswritten when CE
and WE are asserted. The OE input becomes don't care when WE is asserted. However, it is
recommended that OE is not asserted at the beginning or end of a write cycle; this can lead to bus
contention.

B.1.2 Implementation

Figure B-1 illustrates a 32-bit burst access SRAM interface. The design may be simplified if burst
access modes are not required; it is easily modified for 8- or 16-bit buses.
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WAIT generated by the internal wait state generator, is used to generate write strobes at the proper
place in the write cycle. WAIT is used in the address generation circuit to generate mid-burst
addresses. External address generation improves performance in burst accesses.

B.1.3 Block Diagram

The 32-bit burst SRAM interface consists of chip select logic, a state machine Programmable
Logic Device (PLD) and write enable logic.

A31:4 @ @ 4
Chip
Select
Logic \
CS BA3:2
A32 ADR ADR ADR ADR
) State E SRAM SRAM SRAM SRAM
ADS M?)c:tne — ol ce ol ce ol ce olce
BLAST ———OQ| OF |—Q| OE —Q| OE —O| OE
WAT Py —O|WE O WE Q| WE O WE
WI/R D7:0 D7:0 D7:0 D7:0
PCLK
a® ) i
WE
0 )C WEO
BEO Q
. r o
BE1 Q
o—a WE2
BE2 Q )
—Q WE3
BE3 q
D7:0 D15:8 D23:16 D31:24
D31:0 /
F_CA101A

Figure B-1. Non-Pipelined Burst SRAM Interface
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B.1.3.1  Chip Select Logic

Chip select logic is a simple asynchronous data selector; it can be implemented with an external
state machine or PLD. Chip select (CS) is based only on the address and is not qualified with any
other signals. The state machine PLD qualifies CSwith ADS. See section B.2.2, “Waveforms® (pg.
B-13) for amore in-depth discussion of chip select generation.

B.1.3.2 State Machine PLD

The SRAM state machine PLD generates the CE and OE signals to the SRAM. This PLD also
contains the next-address generation logic; this logic improves burst access performance. The
improvement occurs because the 1960 Cx processors’ worst-case address valid delay is longer than
the PLD’s worst-case delay.

B.1.3.3  Write Enable Generation Logic

The write enable generation logic generates the WE signal to the SRAM. WE signals are
conditioned on the 1960 Cx processor byte enables (BE3:0), the write/read signal (W/R) and the
wait signal (WAIT).

There is a write enable signal (WE3:0) for each byte position corresponding to the byte enable
signals (BE3:0); this allows byte, short-word and word-wide writes. Read accesses to this memory
system always result in word reads. The 1960 Cx devices— in the case of byte- or short-word reads
— read the data from the correct place on the data bus.

B.1.3.4 Chip Select Generation

ADS assertion during the PCLK rising edge indicates the address is valid. Address setup time to
this clock edge is PCLK period (Tpp), minus address output delay (Tgy). CS signal generation
time (CS_gen) must satisfy the input setup time of the State Machine PL D(TpLD_setup)- Therefore:

C_S_gen = Tpp - TOV - TPLD_setup Equation B-1
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B.1.4 Waveforms

Figure B-2 shows a Non-Pipelined SRAM Read Waveform; Figure B-3 shows a Non-Pipelined
SRAM Write Waveform.

CLK

ADS

A3:2

A31:4

DATA

W/R

BLAST

Nrap =0
/— Nrpp =0

Nypa =0

0 - Wait State

Burst Read

N T R

e
=R

F_CA102A

B-4

Figure B-2. Non-Pipelined SRAM Read Waveform

ERRATA (10-31-94) SRB
On pg B-5, Fig B-3, the
ADS# signal incorrectly
showed a deassertion in
the 6th cycle and the 3rd
deassertion in the 11th
cycle.

It now correctly shows
NO deassertion in the 6th
cycle and the last
deassertion in the 10th
cycle. (2nd deassertion
removed; 3rd deassertion
shifted left 1 cycle).
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— ADS# clock

A31:4

incorrectly goes low in
ADS _\_/ \ / the sixth and eleventh
— cycles.
— Nwap= 1
— Nuwo = 1 It now correctly goes
CS 'WDD . .
Nypa =0 low in the first and
_ 1 - Wait State tenth cycles.
A3:2 x 0 X 1 X 2 X 3 X 0 x Burst Write

D
SO S G N O
[ u
e [ Wi

-

Figure B-3. Non-Pipelined SRAM Write Waveform

B.1.4.1 Wait State Selection

The 1960 Cx processors incorporate an internal wait state generator; wait state selection is dictated
by the memory system. The number of Nrap Wait states required is a function of output enable
access time, chip enable access time or address access time. Ngap must be selected so the wait

states and data cycle accommodate the longest of these times. It is important to consider PLD
output delay.
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The number of Ngpp wait states required is a function of address access time. Ngpp must be
selected so that the wait states and data cycle accommodate the memory system’s address to data
time. If the memory system is using the burst addresses provided by the i960 Cx processors, it is
important to consider address output delay from the 1960 Cx devices. If external address
generation is used, PLD delay isimportant.

The number of Nywap and Nypp wait states required is a function of memory write cycle time.
The number of Nypa wait states required is a function of the memory system’s output-to-float
time. Nypa determines how soon read data from the memory must be off the data bus before any
other device asserts data on the data bus. This could be a read from another memory system or a
write from the 1960 Cx processors.

B.1.4.2 Output Enable and Write Enable Logic
The output enable signal is simply (see Figure B-1):

OE = W/R Equation B-2
The PLD is used to buffer the W/R signal; this may be necessary to reduce the load on the W/R
signal.

The write enable signals are:
WE = (WAIT & W/R);

WEO = (WE & BEQ);
WE1=!(WE& BEY);
WE2 = (WE & BE2);
WE3 =!(WE & BES3);
The WAIT signal is used to create the write strobe. When W/R indicates a write and BEx and

WAIT are asserted, the logic asserts WE. The 1960 CA/CF Microprocessor Data Sheets guarantee
arelationship from WAIT high to write datainvalid.

B.1.4.3 State Machine Descriptions

The state machine PLD incorporates two state machines: one controls SRAM chip enable (CE);
the other generates the A3:2 address signals for multiple word burst accesses.
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The chip enable state machine (Figure B-4) controls the CE signal. CE is normally not enabled, but
when both ADS and BSRAM_CS are asserted, CE is asserted and remains asserted until BLAST is
asserted. BLAST indicates the access is complete. CE is the output of the state register; therefore,
the CE output delay is the clock-to-output time of the PLD. Minimizing CE delay provides more
memory access time.

The A3:2 address generation state machine (Figure B-5) generates consecutive addresses for
multiple word burst accesses. The address generation state machine is not necessary if the memory
region is defined in the region configuration table as non-burst.

The burst address outputs (BA3:2) correspond to registers within the PLD. Address generation
time then corresponds to the clock-to-output time of the PLD. The BA3:2 signals are forced to 0
when BLAST is asserted.

The pseudo-code descriptions that follow the figures are provided only to describe the state
machine diagrams. They are not intended to be PLD equations. A trailing # indicates a signal is
asserted low.

In the pseudo-code description, the assertion of ADS and SRAM_CS indicates the beginning of an
access. The state machine jumps to the proper state based on A3:2. The assertion of CE indicates
that an access is underway. The assertion of CE, !WAIT and !BLAST indicates that the current
transfer is complete and it is time to generate the next address. The assertion of BLAST indicates

the access is complete.

ADS & CS

BLAST

U

Assert CE

F_CA104A

Figure B-4. Chip Enable State Machine
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@(ADS & CS & IA3 & A2) |(CE & ! WAIT & ! BLAST) @ Access 01 first or next access

‘ ADS & CS & A3 & |A2 ‘ Access 01

@ ADS & CS & A2 & A3 @ Access 11

@ BLAST @ Access completed

@ CE& 'WAIT & IBLAST @ Next access F_CA105A

Figure B-5. A3:2 Address Generation State Machine

Pseudo-code Key
# signal is asserted low == equality test
! logical NOT = clocked assignment
& logical AND = value assignment
| logical OR X Don't Care
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STATE_O:

STATE_1:

STATE_2:

STATE_3:

/* BA3:2 = 00 */

IF /* access 01 OR Next access */
(ADS && SRAM CS && (A3:2 == 01))]||(CE & 'WAIT & ! BLAST);
THEN
next state is STATE 1;
ELSE I F /* access 10 */
ADS && SRAM CS && (A3:2 == 10);
THEN
next state is STATE 2;
ELSE I F /* access 11 */
ADS && SRAM CS && (A3:2 == 11);
THEN
next state is STATE 3;
ELSE /* Idle or access 00 */
next state is STATE O;
/* BA3:2 = 01 */
IF /* Next access */
CE & 'WAIT & ! BLAST;
THEN
next state is STATE 2;
ELSE | F /* Done */
BLAST;
THEN
next state is STATE O;
ELSE /* Just Wait */
next state is STATE 1;
/* BA3:2 = 10 */
IF /* Next access */
CE & 'WAIT & ! BLAST;
THEN
next state is STATE 3;
ELSE | F /* Done */
BLAST;
THEN
next state is STATE O;
ELSE [* Just Wait */
next state is STATE 2;
/* BA3:2 = 11 */
IF /* Done */
BLAST;
THEN
next state is STATE O;
ELSE
next state is STATE 3;
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B.1.5 Trade-offs and Alternatives

The SRAM example just described demonstrates a burst SRAM memory interface. If a non-burst
interface is desired, the address generation section of the state machine PLD may be removed. The
design is also easily expanded to accommodate multiple banks of SRAM.

The i960 Cx processors’ integrated bus controller simplifies external memory system design. The
internal wait state generator decouples the memory speed from the memory controller. The
memory control PLD does not use any of the memory access parameters. So, operation of the
memory control PLD is independent of memory access times. Memory access parameters are
entered into the memory region configuration table via software.

B.2 PIPELINED SRAM READ INTERFACE

The following example illustrates the implementation of a pipelined read SRAM system. A zero
wait state pipelined read memory system will have a 20 percent improvement in read data
bandwidth over a non-pipelined memory system using the same memory devices. The pipelined
read memory system is similar in design to the burst memory system.

A pipelined read memory system is the highest performance memory system that can be interfaced
to the 1960 Cx processors. The address cycle of consecutive accesses is overlapped with the data
cycle of the previous access. This results in the maximum bandwidth utilization of the bus. (See
Figure B-6.)

L B
Memory ADR Xo X ) X ’ X 5
o)

DATA

F_CA106A

Figure B-6. Pipelined Read Address and Data
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B.2.1 Block Diagram

The same SRAM used in a non-pipelined read memory system can be used in a pipelined read
memory system. Figure B-7 shows a 32-bit-wide burst read pipelined memory system. Burst mode
is used to speed write accesses.

The design of a pipelined read SRAM interface is very similar to the design of a non-pipelined
SRAM interface. The differenceisthat an address latch and a W/R latch have been added.

Chip select logic is a simple asynchronous data selector. Chip select (CS) is based only on the
address and is not qualified with any other signals. See section B.1, “NON-PIPELINED BURST
SRAM INTERFACE” (pg. B-1) for moreinformation on chip select generation.

. PA
A31:4 | -
Select Latch
_1 Logic
80960Cx 9
WiR oe
PCLK
cs PA3:2
ADR ADR ADR ADR
ez State | — SRAM SRAM SRAM SRAM
ADS M%cLhSne CE —QacE dcE dce —qce
BLAST ¢EqoE | —qoE  [—qoe  —qoE
WA —gWwE —QWE —gWE —oWE
WIR D7:0 D7:0 D7:0 D7:0
PCLK
‘H:} WE
L WEQ
BEO
. =D
BEL
- F{ O
BE2
S
BE3 D7:0 D15:8 D23:16 D31:24
: /
D31L:0 /
F_CAL07A

Figure B-7. Pipelined SRAM Interface Block Diagram



In

BUS INTERFACE EXAMPLES tel®

B.2.1.1 Address Latch

During pipelined reads, the 1960 Cx processors output the next address during the last data cycle of
the current access. This requires either an address latch or memory devices that are designed to
work with the pipelined bus.

B.2.1.2 State Machine PLD

The state machine PLD contains logic to control CE and address signals A3:2. CE is controlled by
asimple state machine; A3:2 automatically increment during burst accesses. The A3:2 signals are
pipelined; they must be latched for read accesses. Write accesses are not pipelined; therefore it is
necessary for burst writes to latch A3:2 on reads and pass A3:2 through. The A3:2 generation is
implemented as a state machine to achieve minimum address delay out of the PLD. PA3:2
(pipelined address 3:2) outputs are also the state bit of the PLD. This ensures that the address
delay is only the clock-to-output time for the PLD.

B.2.1.3  Write Enable Logic

Write enable logic uses the byte enable signals (BE3:0), the WAIT signal and a latched version of
the W/R signal (OE). Therefore:

or.:

WED = IOE | WAIT | BED;
WET = IOE | WAIT | BEL,
WE? = IOE | WAIT | BEZ;
WE3 =OE | WAIT | BE3;

DEN remains asserted as long as consecutive pipelined read accesses continue. DEN and DT/R
are related to the data, not the address; therefore, DEN and DT/R are not pipelined and retain the
same timing for pipelined and non-pipelined reads.

In the pipelined read mode, a series of non-burst accesses results in ADS remaining asserted for
several clock cycles. Similarly, BLAST remains asserted for several clock cycles.

WI/R behaves slightly differently for pipelined reads than for non-pipelined reads. W/R is not valid
for the last cycle of a pipelined read. This requires that W/R be latched for pipelined reads similar
to A31:2. The following signals are pipelined during pipelined read accesses: A31:2, BE3:0, SUP,
DMA and D/C. All of these pipelined signals are invalid during the last cycle of a pipelined read.

Address delay time for the pipelined read is the output valid time of the address latch (or the PA3:2
generation PLD). Minimizing address delay maximizes access time.
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B.2.2 Waveforms

A31:2 | 00 01 03} 10 11 20 30 31
DATA ﬂ 01 02 03 { 10 12 13 30 31 32

| Uity

F_CA108A

Figure B-8. Pipelined Read Waveform

B.2.2.1 State Machines

Chip enable (CE) is controlled by a simple state machine. The state machineis normally in theidle
state and CE is not asserted. When ADS and PSRAM_CS are asserted, the CE state machine goes
to the active state. CE remains active until BLAST is asserted.

ADS & PSRAM_CS

BLAST & ! (ADS & PSRAM_CS)

Assert CE E CA109A

Figure B-9. Pipelined Read Chip Enable State Machine
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The PA3:2 state machine latches the A3:2 address bits on read and generates the low address bit
for writes. During read, PA3:2 is a latched version of A3:2. If a write access occurs, the state
machine generates the proper PA3:2 addresses.

® BLAST State Bits
XXX
@ IWAIT & |BLAST X A3 A2

(@) ADS WR Cs 1A3 142
(B) ADS WR CS 1A3 A2
(©) ADS WR Cs A3 1A2
(@ ADS WR CS A3 A2

F_CA0110A

Figure B-10. Pipelined Read PA3:2 State Machine Diagram

In the READ_STATE, the state machine simply latches A3:2 and outputs them as PA3:2. On a
write, the state machine jumps to the appropriate state based on the value of A3:2. When in awrite
state, the state machine will advance to the next write state if WAIT and BLAST are not asserted.
The state machine can advance from any write state to the READ_STATE.
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B.2.3 Trade-offs and Alternatives

The example described above demonstrates a burst pipelined read SRAM memory interface. Burst
mode is used to improve write performance. If write performanceis not critical (i.e., if theregionis
used only for code), the next address generation PLD can be removed. The design is easily
expanded to accommodate multiple SRAM banks.

B.3 INTERFACING TO DYNAMIC RAM

This section provides an overview of DRAM and DRAM access modes and describes an 1960 Cx
processor-specific DRAM interface. Two specific design examples are also included: one design
uses the integrated DMA unit to refresh the DRAM, the other example uses the CAS-before-RAS
method of refresh. Both designs illustrate the advantage of the i960 Cx processors’ burst bus and
the fast column address access times available on many modern DRAMs.

The burst bus and memory region configuration tables simplify DRAM interface to the i960 Cx
processors. DRAM systems can be designed in many ways — there are memory access options,
memory system configuration options and refresh mode options.

DRAM offers high data density, fast access times and low cost per bit. DRAM is available in a
wide variety of packages, making it easy to pack a lot of memory into a small space. DRAM
features described here are provided as general information. (See specific data sheets for detailed
information.)

The 1960 Cx processors burst mode bus is well suited to the high speed multiple column access
modes found in DRAM. Nibble, fast page and static column modes of DRAM can easily be
exploited to improve i960 Cx processor memory system performance.

All DRAMSs have a multiplexed address bus, a write enable input (WE) and two address strobes:
row address strobe (RAS) and column address strobe (CAS). Some DRAMSs also have an output
enable input (OE). DRAMSs are accessed by placing a valid row address on the address input pins
and asserting RAS; then the column address is driven onto the DRAM address pins and CAS is
asserted. Write enable (WE) input on the DRAM determines whether the access is aread or write.
Output enable input (OE) — found on some DRAMs — controls the DRAM output buffers and
can be useful for multibanked and interleaved designs.

B.3.1 DRAM Access Modes

The modes discussed in the following subsections are:

» section B.3.1.1, “Nibble Mode DRAM” (pg. B-16)

e section B.3.1.2, “Fast Page Mode DRAM” (pg. B-17)

e section B.3.1.3, “ Static Column Mode DRAM” (pg. B-18)
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B.3.1.1 Nibble Mode DRAM

Nibble mode DRAM (Figure B-11) allows up to four consecutive columns within a selected row to
be read or written at a high datarate. A read or write cycle starts by asserting RAS. Strobing CAS
accesses the consecutive column data. The input address is ignored after the first column access.

ADR Row X Colo X

=[ 7\ I

\

Figure B-11. Nibble Mode Read
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B.3.1.2 Fast Page Mode DRAM

Fast page mode DRAM (Figure B-12) is similar to nibble mode DRAM, except fast page mode
allows any column within a selected row to be read or written at a high data rate. A read or write
cycle starts by asserting RAS. Strobing CAS accesses the selected column data. During reads, the
CAS falling edge latches the address (internal to the DRAM) and enables the output. The
processor’s four word burst bus can easily take advantage of the faster column access times
provided by fast page mode DRAM.

T o e e
w[ 7 r
«[ 7]

¥

ADR

F_CAl112A

Figure B-12. Fast Page Mode DRAM Read
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B.3.1.3 Static Column Mode DRAM

Static column mode DRAM write accesses (Figure B-13) are similar to fast page mode writes.
Static column read cycles start by asserting RAS. Accesses to any column within the selected row
may be treated as static RAM, using CAS as an output enable. The fastest DRAM read accesses
are achieved with static column DRAM. The i960 Cx processors’ four word burst bus can easily
take advantage of the fast column access times provided by nibble mode, fast page mode or static
column mode DRAM.

or | Xcmo X con Xcmz XCOBX

[T I
S N
«[ 7] T
O —

DATA

F_CAl113A

Figure B-13. Static Column Mode DRAM Read

B.3.2 DRAM Refresh Modes

All DRAMs require periodic refresh to retain data. DRAMs may be refreshed in one of two ways:
RAS-only refresh or CAS-before-RAS refresh. RAS-only refresh (Figure B-14) is realized by
asserting a row address on the address pins and asserting RAS. CAS is not asserted. A single,
RAS-only refresh cycle refreshes all columns within the selected row. CAS-before-RAS refreshes

(Figure B-15) do not require an address to be generated; DRAM generates the row address with an
internal counter.
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Figure B-14. RAS-only DRAM Refresh

F_CAl114A

ADR

W[ T I
) T

F_CA115A

CAS

Figure B-15. CAS-before-RAS DRAM Refresh

DRAM may be refreshed in either a distributed or a burst manner. Burst refresh does not refer to
the burst access bus. The term simply means that all memory rows are sequentially accessed when
the refresh interval time expires. Distributed refresh implies that refresh cycles are distributed
within the refresh interval required by the memory.

B-19
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Distributed refresh cycles are spread out over the refresh interval, reducing possible access latency.
Burst refreshing may lock the processor out of the DRAM for alonger period of time; it may be
inappropriate for some applications. Burst refreshing, however, guarantees that no refresh activity
occurs between refresh intervals. Some applications may take advantage of thisto burst refresh the
DRAM during atime it will not be accessed, making refresh invisible to the application.

B.3.3 Address Multiplexer Input Connections

Address multiplexer inputs can be ordered such that 256 Kbyte through 4 Mbyte DRAM can be
supported. Interleaving the upper address signals provides compatibility with al these memory
densities. Figure B-16 illustrates this arrangement. Availability of DRAM modules with standard
pinouts makes this an attractive way to ensure future memory expansion.

PROCESSOR ADDRESS
DRAM ADR coL ROW

0 I T T A2 All
1 A3 AlL2
2 A4 A13
3 256K 1M am A5 Al4
4 A6 Al5
5 A7 Al6
6 A8 AL7
7 A9 Al8
8 4 A10 Al9
9 1 A20 A21
10 € A22 A23

F_CA116A

Figure B-16. Address Multiplexer Inputs

B.3.4 Series Damping Resistors

Series-damping resistors are recommended on all DRAM control and address inputs. Series-
damping resistors prevent overshoot and undershoot on input lines. Damping is required because
of the large capacitive load present when many DRAMSs are connected together, combined with
circuit board trace inductance. Damping resistor values are typically between 15 and 100 Ohms,
depending on the load; the lower the load, the higher the required damping resistor value. If the
damping resistor value is too high, the signal will be overdamped, extending memory cycle time.
If the damping resistor value istoo low, overshoot or undershoot is not sufficiently damped.

B-20
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B.3.5 System Loading

The 1960 Cx processors can drive a large capacitive load. However, systems with many DRAM
banks may require data buffers and — for interleaved designs— multiplexersto isolate the DRAM
load from the 1960 Cx processors or other system components with less drive capability (e.g., high
speed SRAM).

RAS and CAS inputsto the DRAM should also be designed with consideration for capacitive load.
When many DRAMs are connected to common RAS and CAS signals, the capacitive load can
become considerable.

B.3.6 Design Example: Burst DRAM with Distributed RAS Only Refresh Using
DMA

The goal of this design is to illustrate a DRAM interface controller that provides good memory
performance while maintaining controller independence with respect to memory speed and
processor clock frequency. One of the four on-chip integrated DMA channels is used for DRAM
refresh. The region table, DMA and the 1960 Cx processor bus signals are used to develop a
transparent DRAM controller that does not require any information about the memory subsystem.

Figure B-17 shows the DRAM system design. The DRAM is configured as a single, byte
accessible, 32-bit-wide bank. RAS is common to the entire bank; CAS3:0 serve as byte selects
within the bank. WE is common to all the DRAM. The byte accessible bank can be built from four
8-bit-wide DRAM modules; eight 4-bit-wide DRAM modules; eight 4-bit-wide DRAM chips; or
32 1-bit-wide DRAM devices.

B-21
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Figure B-17. DRAM System with DMA Refresh

Control logic is divided into three logical blocks: DRAM control logic, DRAM address generation
logic and refresh request timer logic. DRAM control logic is the main controller. It controls the
address multiplexer and all DRAM control lines during norma and refresh accesses. Address
generation logic serves as a multiplexer and an address generator. The refresh request timer logic
generates the periodic refresh request to the DMA unit.

B-22
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B.3.7 DRAM Address Generation

DRAM address generation logic speeds burst accesses for static column mode and fast page mode
DRAM. This is accomplished by reducing the time required to present the consecutive column
addresses during a burst access. If the address generator is not present, the address valid delay time
consists of the worst-case address valid delay time plus the worst-case propagation delay through
the input address multiplexer.

DRAM address generation logic must control the DRAM address two least significant bits. During
theinitial DRAM access, address generation logic acts like a multiplexer. During column accesses
within a burst, address generation logic generates consecutive addresses. Therefore, DRAM
address generation logic is designed to function as a multiplexer and an address generator.

If an address generator is used, address valid delay time is equal to address generation time.
Address generation delay time consists of the clock-to-feedback and feedback-to-output delays for
the selected device.

Figure B-18 illustrates the requirements for address generation logic. Signals into the DRAM logic
are: ADR2, ADR3, ADR12, ADR13, WAIT and BLAST from the processor and COL_ADR from
the DRAM controller logic. COL_ADR indicates if the DRAM controller is requesting the row
address (COL_ADR not asserted) or column address (COL_ADR asserted). Signals output from
DRAM address generation logic are the DRAM address two least significant bits,
DRAM_ADR2:3. The pseudo-code following the figure is provided only to describe the state
machine diagram. It is not intended for direct use as PLD equations.

State:

@ IBLAST & IWAIT & !A3 & A2 0: Add Multiol
: ress Multiplexer

IBLAST & IWAIT & A3 & IA2
IF(COL_ADR)

@ IBLAST & 'WAIT DRAM_ADR 3:2 = ADR 3:2

© BLAST —
IF(COL_ADR)
0 DRAM_ADR 3:2 = ADR 12:11

1: DRAM_ADR 3:2=0:1
2: DRAM_ADR 3:2=1:0
3: DRAM_ADR 3:2=1:1

F_CAl118A

Figure B-18. DRAM Address Generation State Machine
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STATE_O: I Multirplexer Enulation *7/
DRAM ADR2 = (! COL_ADR && A2) || (COL_ADR && All);
DRAM ADR3 = (! COL_ADR && A3) || (COL_ADR && Al2);

I F /* address generation */
WAI T &8 ! BLAST && COL_ADR
&% (ADR3 == 0) && (ADR2 == 0);
THEN
next state is STATE 1;
ELSE I F
WAI T &% BLAST && COL_ADR
&% (ADR3 == 1) && (ADR2 == 0);
THEN
next state is STATE 3;
ELSE
next state is STATE O;

STATE 1: /* Generate address 01 */

DRAM ADR2 = 1;

DRAM ADR3 = 0;
IF

BLAST;
THEN

next state is STATE O;
ELSE | F

BLAST && WAIT;
THEN

next state is STATE 2;
ELSE

next state is STATE 1

STATE 2: /* Generate address 10 */

DRAM ADR2 = 0;

DRAM ADR3 = 1;

BLAST;
THEN

next state is STATE O;
ELSE | F

BLAST && WAIT;
THEN

next state is STATE 3;
ELSE

next state is STATE 2

STATE_3: /* Generate address 11 */

DRAM ADRO = 1;

DRAM ADR1 = 1;
I F

BLAST;
THEN

the next state is STATE O;
ELSE

next state is STATE 3

B-24
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B.3.8 DRAM Controller State Machine

Figure B-19 is a state machine that describes DRAM control logic. The state machine shown, or
subsets thereof, may be implemented in a variety of ways depending on the application’s require-
ments. PLD implementations are the easiest and the design may fit into a variety of high speed
PLDs.

Signals going into the DRAM control logic are: ADS, PCLK, W/R, BLAST, WAIT, BE3:0 from
the bus controller; DACKO, the DMA acknowledge signal; and DRAM_CS, a system generated
chip select that indicates a DRAM access. DRAM control logic generates RAS, CAS3:0, WE and
COL_ADR. Control signal for the address multiplexer is COL_ADR.

Controller logic relies on the wait state region table and DMA controller. Programming these on-

chip peripherals is described later. DMA acknowledge, DACKO, indicates a DRAM refresh cycle.
The DRAM WE signal is generated with combinatorial logic (WE =!(W/R)).

B-25
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N

@ ADS & DRAM_CS & !DACKO
IW/R - READ ACCESS
@ WI/R - WRITE ACCESS

@ BLAST

@ ADS &DRAM_CS & DACKO

REF
6

F_CAl119A

Figure B-19. DRAM Controller State Machine

STATE_O:

[* Tdle */
RAS is not asserted;
CAS3: 0 is not asserted;
COL_ADR is not asserted;
I F /* menory access */

ADS && DRAM CS && ! DACKO;
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STATE_1:

STATE_2:

STATE_3:

STATE_4:

STATE_5:

THEN
the next state is STATE 1;
ELSE I F /* refresh access */
ADS && DRAM CS && DACKO;
THEN
the next state is STATE 5;
ELSE
the next state is STATE O;
/* Assert RAS */

RAS is asserted;
CAS3: 0 is not asserted;
COL_ADR is not asserted;
IF
WRI TE; /* wite */
THEN
the next state is STATE 3;
ELSE /* read */

the next state is STATE 2;
/*Static Colum Mdde Read, Assert CTAS */

RAS is asserted;
CAS3: 0 is asserted;
COL_ADR is asserted;
IF

BLAST;
THEN

the next state is STATE O;
ELSE

the next state is STATE 2;
/* Sel ect Columm Address */
RAS is asserted;
CAS3: 0 is not asserted;
COL_