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Introduction 1

Intel’s i960® Hx processor provides higher performance levels while maintaining backward 
compatibility (pin1 and software) with the i960 CA/CF processors. This member of the family of 
i960 32-bit, RISC-style, embedded processors allows customers to create scalable designs to meet 
multiple price and performance points. This easy upgrade path is accomplished by providing 
processors that can run at the bus speed or faster using Intel’s clock multiplying technology 
(Table 1-1). The i960 Hx processor is capable of executing 150 million instructions per secon
using a sophisticated instruction scheduler that allows the processor to sustain execution of 
instructions every core clock with a peak performance of three instructions per clock. 

1. Though not drop-in replaceable. Customers can design systems that accept either i960 Hx or Cx processors. 

Figure 1-1. i960® Hx Processor Functional Block Diagram

Execution Unit

Programmable

Bus Controller

Bus Request Queues

Six-Port Register File

32-bit Base Bus

Instruction Cache

128-Bit Cache Bus

Instruction Prefetch Queue

Interrupt Controller

Control

Address

Data

Memory-Side

Machine Bus

Register-Side

Machine Bus

Memory Region Configuration

Multiply/Divide Unit

Interrupt 

Port

Address Generation Unit

Data Cache

16 Kbyte, four-way set associative

8 Kbyte, four-way set associative

Guarded Memory Unit

Timers

JTAG Port

Parallel Instruction Scheduler 

Data RAM - 2 Kbyte

Register Cache - 5 to 15 sets

64-bit src1 Bus

64-bit src2 Bus

64-bit dst Bus

128-bit Load Bus

128-bit Store Bus
i960® Hx Microprocessor Developer’s Manual 1-1



Introduction
The three i960 H-series processors differ in the ratio of core clock speed versus the external bus 
speed:

In addition to expanded clock frequency options, the i960 Hx processor provides essential 
enhancements for an emerging class of high-performance embedded applications. Features include 
increased instruction cache, data cache and data RAM. It also boasts a 32-bit demultiplexed and 
pipelined burst bus, fast interrupt mechanism, guarded memory unit, wait state generator, dual 
programmable timers, ONCE and IEEE 1149.1-compliant boundary-scan test and debug support, 
and new instructions. 

1.1 The i960® Processor Family

The i960 processor family is a 32-bit RISC architecture created by Intel especially to serve the 
needs of embedded applications. The embedded market includes applications as diverse as 
industrial automation, avionics, medical instrumentation, image processing, graphics and 
communications. The i960 Hx processor meets the needs of these segments by providing fast event 
handling, efficient data processing and high-bandwidth packet movement.

Because all members of the i960 processor family share a common core architecture, i960 
applications are code compatible. Each new processor in the family adds its own special set of 
functions to the core to satisfy the needs of a specific application or range of applications in the 
embedded market. 

1.2 i960® Hx Processor Key Features

1.2.1 Execution Architecture

Resource scoreboarding allows simultaneous multiple instruction execution per clock without 
conflict. To sustain execution of multiple instructions in each clock cycle, the processor decodes 
multiple instructions in parallel and simultaneously issues these instructions to parallel processing 
units. The various processing units are then able to independently access instruction operands in 
parallel from a common register set. 

Table 1-1. i960® Hx Processor Product Description

Product Core Voltage

80960HA 1x 3.3 V†

80960HD 2x 3.3 V†

80960HT 3x 3.3 V†

† The processor inputs are 5 Volt tolerant.
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A local register cache integrated on-chip provides automatic register management on call/return 
instructions. Upon a call instruction, the processor allocates a set of 16 local registers for the called 
procedure and stores the previous procedure’s registers in the on-chip register cache. As ad
procedures are called, the cache stores the associated registers such that the most recently
procedure is the first available by the next return (ret) instruction. The processor can store up to 
fifteen register sets, after which the oldest sets are stored (spilled) into external memory.

The i960 Hx processor supports the architecturally-defined branch prediction mechanism. Th
feature allows many branches to execute with no pipeline break. The i960 Hx processor’s ef
pipeline results in a branch taking as few as zero clocks to execute. The maximum incorrect
prediction penalty is two core clocks.

1.2.2 Pipelined, Burst Bus

A 32-bit high performance bus controller interfaces the 80960Hx core to the external memor
peripherals. The Bus Control Unit features a maximum transfer rate of 160 Mbytes per seco
an external bus clock frequency of 40 MHz). One of the key advantages of this design is its 
versatility. The user can program system memory’s physical and logical attributes independe
Physical attributes include wait state profile, bus width and parity. Logical attributes include 
cacheability and big or little endian byte order. Internally programmable wait states and 
16 separately configurable physical memory regions allow the processor to interface with a v
of memory subsystems with minimum system complexity. To reduce the effect of wait states
bus design is decoupled from the core with a buffer queue. This lets the processor execute 
instructions while the bus performs memory accesses independently.

The bus controller’s key features include:

• Demultiplexed, burst bus to support most efficient DRAM access modes

• Address pipelining to reduce memory cost while maintaining performance

• 32-, 16- and 8-bit modes for I/O interfacing ease

• Full internal wait state generation to reduce system cost

• Little and big endian support

• Unaligned access support implemented in hardware

• Three-deep request queue to decouple the bus from the core

• Independent physical and logical address space characteristics
i960® Hx Microprocessor Developer’s Manual 1-3
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1.2.3 On-Chip Caches and Data RAM

As shown in Figure 1-1, the i960 Hx processor provides generous on-chip cache and storage 
features to decouple CPU execution from the external bus. The processor includes a 16 Kbyte 
instruction cache, an 8 Kbyte data cache and 2 Kbytes of data RAM. The caches are organized as 
4-way set associative. Stores that hit the data cache are written through to memory. The data cache 
performs write allocation on cache misses. A fifteen-set stack frame cache allows the processor to 
rapidly allocate and deallocate local registers. The on-chip caches and data RAM sustain a 4-word 
(128-bit) access every clock cycle. 

1.2.4 Priority Interrupt Controller

The interrupt controller provides the mechanism for the low latency and high throughput interrupt 
service essential for embedded applications. A priority interrupt controller provides full 
programmability of 240 interrupt sources with a typical interrupt task switch (latency) time of 
17 bus clocks. The controller supports 31 priority levels. Interrupts are prioritized and signaled 
within 10 bus clocks of the request. If the interrupt is a higher priority than the processor priority, 
the context switch to the interrupt routine typically completes in another 7 bus clocks.

External agents post interrupts via the 8-bit external interrupt port. The interrupt controller also 
handles the two internal sources from the Timers. Interrupts can be level- or edge-triggered.

1.2.5 Guarded Memory Unit

The Guarded Memory Unit (GMU) provides memory protection without the address translation 
found in memory management units. The GMU contains two memory protection schemes:

• preventing illegal memory accesses

• detecting memory access violations

Both signal a fault to the processor. The programmable protection modes are:

• user read, write or execute

• supervisor read, write or execute

1.2.6 Dual-Programmable Timers

The processor provides two independent 32-bit timers that can be programmed to count at a rate 
equal to the bus clock frequency, or the bus clock divided by 2, 4 or 8. The user configures the 
timers via the Timer Unit registers. These registers are memory-mapped within the i960 Hx 
processor, addressable on 32-bit boundaries. The timers have a single-shot mode and auto-reload 
capabilities for continuous operation. Each timer has an independent interrupt request to the 
processor’s interrupt controller. 
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1.3 About this Manual

This i960® Hx Microprocessor User’s Manual provides detailed programming and hardware 
design information for the i960 Hx processor. It is written for programmers and hardware designers 
who understand the basic operating principles of microprocessors and their systems.

This manual does not provide electrical specifications such as DC and AC parametrics, operating 
conditions and packaging specifications. Such information is found in the 80960HA/HD/HT 
Embedded 32-bit Microprocessor datasheet (order number 272495). 

For information on other i960 processor family products or the architecture in general, refer to 
Intel’s Solutions960® catalog (order number 270791). It lists all current i960 microprocessor 
family-related documents, support components, boards, software development tools, debug tools 
and more. 

This manual is organized into these chapters and appendices:

• Chapter 1, “Introduction”: Provides a features list of the i960 processor architecture and th
i960 Hx processor. It also provides an overview of this manual, notation conventions and
of additional references for the i960 processor.

• Chapter 2, “Data Types and Memory Addressing Modes”: Describes the processor’s supporte
data types and addressing modes.

• Chapter 3, “Programming Environment”: Describes the i960 Hx processor’s programming 
environment including global and local registers, special function registers, control regist
literals, processor-state registers and address space.

• Chapter 4, “Cache and On-Chip Data RAM”: Describes the structure and user configuration 
all forms of on-chip storage, including caches (data, local register and instruction) and d
RAM.

• Chapter 5, “Instruction Set Overview”: Provides an overview of the i960 microprocessor 
family’s instruction set and i960 Hx processor-specific instruction set extensions. Also 
discussed are the assembly-language and instruction-encoding formats, various instruct
groups and each group’s instructions.

• Chapter 6, “Instruction Set Reference”: Provides detailed information about each instruction
available to the i960  processors. Instructions are listed alphabetically by assembly langu
mnemonic.

• Chapter 7, “Procedure Calls”: Describes mechanisms for making calls and returns, which 
include branch-and-link instructions, call instructions (call, callx, calls), return instruction 
(ret) and call actions caused by interrupts and faults.

• Chapter 8, “Faults”: Describes the i960 processor’s fault handling facilities. Subjects cove
include the fault handling data structures and fault handling mechanisms.
i960® Hx Microprocessor Developer’s Manual 1-5
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• Chapter 9, “Tracing and Debugging”: Describes the facilities for runtime activity monitoring.

• Chapter 10, “Timers”: Describes the dual, independent 32-bit timers. Topics include timer 
registers (TMRx, TCRx and TRRx), timer operation, timer interrupts, and timer register va
at initialization.

• Chapter 11, “Interrupts”: Describes the i960 processor core architecture interrupt mechani
and the i960 Hx processor interrupt controller. Key topics include the processor’s facilitie
requesting and posting interrupts, the programmer’s interface to the on-chip interrupt 
controller, implementation, latency and how to optimize interrupt performance.

• Chapter 12, “Guarded Memory Unit (GMU)”: Provides information about the Guarded 
Memory Unit including memory protection and detection schemes and programming the u
memory-mapped registers.

• Chapter 13, “Initialization and System Requirements”: Describes the steps performed during
initialization. Discussed are the RESET# pin, the reset state and built-in self test (BIST) 
features. This chapter also describes the processor’s basic system requirements, includ
power, ground and clock, and concludes with some general guidelines for high-speed ci
board design.

• Chapter 14, “Memory Configuration”: Describes how to program the Bus Control Unit (BCU
to control many common types of memory and I/O subsystems.

• Chapter 15, “External Bus Description”: This chapter serves as a guide for the hardware 
designer when interfacing memory and peripherals to the i960 processors. 

• Chapter 16, “Test Features”: Describes the test features, including ONCE (On-Circuit 
Emulation) and boundary-scan (JTAG).

• Appendix A, “Considerations for Writing Portable Code”: Describes the aspects of the 
microprocessor that are implementation dependent, and is intended as a guide for writin
application code that is directly portable to other i960 processor architecture implementa

• Appendix B, “Opcodes and Execution Times”: Lists the instruction encoding for each i960 
processor instruction.

• Appendix C, “Machine-Level Instruction Formats”: Describes the encoding format for 
instructions used by the i960 processors. Included is a description of the four instruction
formats and how the addressing modes relate to these formats.

• Appendix D, “Register and Data Structures”: Provides a compilation of all register and data 
structure figures described throughout the manual. Following each figure is a reference 
indicates the section that discusses the figure.

• Appendix E, “Instruction Execution and Performance Optimization”: Describes the i960 Hx 
processors’ core architecture and core features that enhance the processors’ performan
parallelism. This appendix also describes assembly language techniques for achieving t
highest instruction-stream performance.

• Appendix F, “Bus Interface Examples”: Describes how to interface the processor to externa
memory systems. Also discussed are non-pipelined and pipelined burst SRAM, non-pipe
burst DRAM, slow 8-bit memory systems and high performance pipelined burst EPROM
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1.4 Notation and Terminology

This section defines terminology and textual conventions that are used throughout the manual. 

1.4.1 Reserved and Preserved

Certain fields in registers and data structures are described as being either reserved or preserved:

• A reserved field is one that may be used by other i960 processor architecture implementations. 
Correct treatment of reserved fields ensures software compatibility with other i960 processors. 
The processor uses these fields for temporary storage; as a result, the fields sometimes contain 
unusual values.

• A preserved field is one that the processor does not use. Software may use preserved fields for 
any function.

Reserved fields in certain data structures must be set to 0 (zero) when the data structure is created. 
Set reserved fields to 0 when creating the Interrupt Table, Fault Table and System Procedure Table. 
Software must not modify or rely on these reserved field values after a data structure is created. 
When the processor creates the Interrupt or Fault Record data structure on the stack, software 
should not depend on the value of the reserved fields within these data structures.

Some bits or fields in data structures and registers are shown as requiring specific encoding. These 
fields should be treated as if they were reserved fields. They must be set to the specified value 
when the data structure is created or when the register is initialized and software must not modify 
or rely on the value after that.

Reserved bits in the Arithmetic Controls (AC) register can be set to 0 after initialization to ensure 
compatibility with other i960 processor implementations. Reserved bits in the Process Controls 
(PC) register and Trace Controls (TC) register must not be initialized. When the AC, PC and TC 
registers are modified using modac, modpc or modtc instructions, the reserved locations in these 
registers must be masked.

Certain areas of memory may be referred to as reserved memory in this reference manual. Reserved 
— when referring to memory locations — implies that an implementation of the i960 architec
may use this memory for some special purpose. For example, memory-mapped peripherals 
be located in reserved memory areas on future implementations.
i960® Hx Microprocessor Developer’s Manual 1-7
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1.4.2 Specifying Bit and Signal Values

The terms set and clear in this manual refer to bit values in register and data structures. If a bit is 
set, its value is 1; if the bit is clear, its value is 0. Likewise, setting a bit means giving it a value of 1 
and clearing a bit means giving it a value of 0. 

The terms assert and deassert refer to the logically active or inactive value of a signal or bit, 
respectively. A signal is specified as an active 0 signal by an overbar. For example, the input is 
active low and is asserted by driving the signal to a logic 0 value.

1.4.3 Representing Numbers

All numbers in this manual can be assumed to be base 10 unless designated otherwise. In text, 
binary numbers are sometimes designated with a subscript 2 (for example, 0012). If it is obvious 
from the context that a number is a binary number, the “2” subscript may be omitted.

Hexadecimal numbers are designated in text with the suffix H (for example, FFFF FF5AH). I
pseudo-code action statements in the instruction reference section and occasionally in text, 
hexadecimal numbers are represented by adding the C-language convention “0x” as a prefix
example “FF7AH” appears as “0xFF7A” in the pseudo-code. 

1.4.4 Register Names

Special function registers and several of the global and local registers are referred to by thei
generic register names, as well as descriptive names which describe their function. The glob
register numbers are g0 through g15; local register numbers are r0 through r15; special func
registers are sf0 through sf4. Howeverm when programming the registers with instruction co
make sure to use the instruction operand. i960 microprocessor compilers recognize only the 
instruction operands listed in Table 1-2. Throughout this manual, the registers’ descriptive name
numbers, operands and acronyms are used interchangeably, as dictated by context.
1-8 i960® Hx Microprocessor Developer’s Manual
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Groups of bits and single bits in registers and control words are called either bits, flags or fields. 
These terms have a distinct meaning in this manual:

Specific bits, flags and fields in registers and control words are usually referred to by a register 
abbreviation (in upper case) followed by a bit, flag or field name (in lower case). These items are 
separated with a period. A position number designates individual bits in a field. For example, the 
return type (rt) field in the previous frame pointer (PFP) register is designated as “PFP.rt”. The
significant bit of the return type field is then designated as “PFP.rt0”.

1.5 Related Documents

The following is a list of additional documentation that is useful when designing with and 
programming the i960 Hx processor. Contact your local Intel representative for more informa
on obtaining Intel documents.

• 80960HA/HD/HT Embedded 32-bit Microprocessor datasheet 
Intel order number 272495

• AP-506: Designing for 80960Cx and 80960Hx Compatibility
Intel Order No. 272559

Table 1-2. Register Terminology Conventions

Instruction Operand Register Name (number) Function Acronym

g0 - g14 global (g0-g14) general purpose

fp global (g15) frame pointer FP

pfp local (r0) previous frame pointer PFP

sp local (r1) stack pointer SP

rip local (r2) return instruction pointer RIP

r3 - r15 local (r3-r15) general purpose

sf0 special function 0 interrupt pending IPND

sf1 special function 1 interrupt mask IMSK

sf2 special function 2 cache control CCON

sf3 special function 3 interrupt control ICON

sf4 special function 4 GMU control GCON

0-31 literals

bit Controls a processor function; programmed by the user.

flag Indicates status. Generally set by the processor; certain flags are user 
programmable.

field A grouping of bits (bit field) or flags (flag field).
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2.1 Data Types

The instruction set references or produces several data lengths and formats. The i960® Hx 
processor supports the following data types: 

Figure 2-1 illustrates the class, data type and length of each type supported by i960 processors.

• Integer (signed 8, 16 and 32 bits) • Ordinal (unsigned integer 8, 16, and 32 bits)

• Long-Word (64 bits) • Triple-Word (96 bits)

• Quad-Word (128 bits) • Bit Field

• Bit

Figure 2-1. Data Types and Ranges

Byte

Short

Word

Triple-Word

Quad-Word

8 
Bits

16
Bits

32
Bits

64
Bits

96
Bits

128
Bits

Numeric
(Integer)

Numeric
(Ordinal)

Non-Numeric

Byte Integer
Short Integer

Integer

Byte Ordinal 

Short Ordinal

Ordinal

Bit

Bit Field

Triple-Word

Quad-Word

8 Bits
16 Bits

32 Bits

8 Bits 

16 Bits

32 Bits

1 Bit

1-32 Bits

96 Bits

128 Bits

-27 to 27 -1
-215 to 215 -1

-231 to 231 -1

0 to 28 -1

0 to 216 -1

0 to 232 -1

N/A

Bit Field

Length

LSB of
Bit Field

0

0

0

0

7

15

31

63

Class Data Type Length Range

0

0

95

127

031

Long-Word 64 Bits

Long

Long Ordinal 64 Bits 0 to 264 - 1
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2.1.1 Integers

Integers are signed whole numbers that are stored and operated on in two’s complement for
the integer instructions. Most integer instructions operate on 32-bit integers. Byte and short 
integers are referenced by the byte and short classes of the load, store and compare instruc
only.

Integer load or store size (byte, short or word) determines how sign extension or data trunca
performed when data is moved between registers and memory. 

For instructions ldib (load integer byte) and ldis (load integer short), a byte or short word in 
memory is considered a two’s complement value. The value is sign-extended and placed in 
bit register that is the destination for the load.

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two’s complement
number in a register is stored to memory as a byte or short word. If register data is too large
stored as a byte or short word, the value is truncated and the integer overflow condition is 
signalled. When an overflow occurs, either an AC register flag is set or the 
ARITHMETIC.INTEGER_OVERFLOW fault is generated, depending on the Integer Overflow
Mask bit (AC.om) in the AC register. Chapter 8, “Faults” describes the integer overflow fault.

For instructions ld (load word) and st (store word), data is moved directly between memory and
register with no sign extension or data truncation.

2.1.2 Ordinals

Ordinals or unsigned integer data types are stored and treated as positive binary values. Figure 2-1 
shows the supported ordinal sizes.

The large number of instructions that perform logical, bit manipulation and unsigned arithme
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean 
1 = TRUE and 0 = FALSE. Most extended arithmetic instructions reference the long ordinal d
type. Only load (ldob and ldos), store (stob and stos), and compare ordinal instructions referenc
the byte and short ordinal data types. 

Example 2-1. Sign Extensions on Load Byte and Load Short

ldib

7AH is loaded into a register as 0000 007AH

FAH is loaded into a register as FFFF FFFAH

ldis

05A5H is loaded into a register as 0000 05A5H

85A5H is loaded into a register as FFFF 85A5H
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Sign and sign extension are not considered when ordinal loads and stores are performed; the values 
may, however, be zero-extended or truncated. A short word or byte load to a register causes the 
value loaded to be zero-extended to 32 bits. A short word or byte store to memory will truncate an 
ordinal value in a register to fit the destination memory. No overflow condition is signalled in this 
case. 

2.1.3 Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit fields 
within register operands. An individual bit is specified for a bit operation by giving its bit number 
and register. Internal registers always follow little endian byte order; the least significant bit is bit 0 
and the most significant bit is bit 31.

A bit field is any contiguous group of bits (up to 32 bits long) in a 32-bit register. Bit fields do not 
span register boundaries. A bit field is defined by giving its length in bits (1-32) and the bit number 
of its lowest numbered bit (0-31). 

Loading and storing bit and bit-field data is normally performed using the ordinal load (ldo) and 
store (sto) instructions. When an ldi instruction loads a bit or bit field value into a 32-bit register, 
the processor appends sign extension bits. A byte or short store can signal an integer overflow 
condition.

2.1.4 Triple- and Quad-Words

Triple- and quad-words refer to consecutive words in memory or in registers. Triple- and quad-
word load, store and move instructions use these data types to accomplish block movements. No 
data manipulation (sign extension, zero extension or truncation) is performed in these instructions.

Triple- and quad-word data types can be considered a superset of the other data types described. 
The data in each word subset of a quad-word is likely to be the operand or result of an ordinal, 
integer, bit or bit field instruction.

2.1.5 Register Data Alignment

Several of the processor’s instructions operate on multiple-word operands. For example, the
long instruction (ldl) loads two words from memory into two consecutive registers. Here the 
register number for the least significant word is automatically loaded into the next higher-
numbered register.

In cases where an instruction specifies a register number (and multiple, consecutive register
implied), the register number must be even if two registers are accessed (e.g., g0, g2) and a
integral multiple of four if three or four registers are accessed (e.g., g0, g4). If a register refer
for a source value is not properly aligned, the registers that the processor writes to are unde
i960® Hx Microprocessor Developer’s Manual 2-3
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The i960 Hx processor does not require data alignment in external memory; the processor 
hardware handles unaligned memory accesses automatically. Optionally, user software can 
configure the processor to generate a fault on unaligned memory accesses.

2.1.6 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions. These 
literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used as an 
operand, the processor expands it to 32 bits by adding leading zeros. If the instruction requires an 
operand larger than 32 bits, the processor zero-extends the value to the operand size. If a literal is 
used in an instruction that requires integer operands, the processor treats the literal as a positive 
integer value.

2.2 Bit and Byte Ordering in Memory

All occurrences of numeric and non-numeric data types, except bits and bit fields, must start on a 
byte boundary. Any data item occupying multiple bytes is stored as big endian or little endian. The 
following sections further describe byte ordering.

2.2.1 Bit Ordering

Bits within bytes are numbered such that if the byte is viewed as a value, bit 0 is the least 
significant bit and bit 7 is the most significant bit. For numeric values spanning several bytes, bit 
numbers higher than 7 indicate successively higher bit numbers in bytes with higher addresses. 
Unless otherwise noted, bits in illustrations in this manual are ordered such that the higher-
numbered bits are to the left.

2.2.2 Byte Ordering

The i960 Hx processor can be programmed to use little or big endian byte ordering for memory 
accesses. Byte ordering refers to how data items larger than one byte are assembled:

• For little endian byte order, the byte with the lowest address in a multi-byte data item has the 
least significance.

• For big endian byte order, the byte with the lowest address in a multi-byte data item has the 
most significance.

For example, Table 2-1 shows eight bytes of data in memory. Table 2-2 shows the differences 
between little and big endian accesses for byte, short, word and long-word data. Figure 2-2 shows 
the resultant data placement in registers.
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Once data is read into registers, byte order is no longer relevant. The lowest significant bit is 
always bit 0. The most significant bit is always bit 31 for words, bit 15 for short words, and bit 7 
for bytes. 

Byte ordering affects the way the i960 Hx processor handles bus accesses. See Section 14.1.2.1, 
“Byte Ordering” on page 14-5 for more information.

Table 2-1. Memory Contents for Little and Big Endian Example

ADDRESS DATA

1000H 12H

1001H 34H

1002H 56H

1003H 78H

1004H 9AH

1005H BCH

1006H DEH

1007H F0H

Table 2-2. Byte Ordering for Little and Big Endian Accesses

Access Example  Register Contents 
(Little Endian)

Register Contents 
(Big Endian)

Byte at 1000H ldob 0x1000, r3 12H 12H

Short at 1002H ldos 0x1002, r3 7856H 5678H

Word at 1000H ld 0x1000, r3 78563412H 12345678H

Long-Word at 1000H ldl 0x1000, r4
78563412H (r4)

F0DEBC9AH (r5)

12345678H (r4)

9ABCDEF0H (r5)
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2.3 Memory Addressing Modes

The processor provides nine modes for addressing operands in memory. Each addressing mode is 
used to reference a byte location in the processor’s address space. Table 2-3 shows the memory 
addressing modes and a brief description of each mode’s address elements and assembly c
syntax.

Figure 2-2. Data Placement in Registers

Byte

Short

Word

XX XX XX DD0

XX XX DD1 DD0

DD3 DD2 DD1 DD0

08 716 1524 2331

08 716 1524 2331

08 716 1524 2331

NOTES:
D’s are data transferred to/from memory
X’s are zeros for ordinal data
X’s are sign bit extensions for integer data

Table 2-3. Memory Addressing Modes

Mode Description Assembler Syntax Inst. 
Type

Absolute offset offset (smaller than 4096) exp MEMA

displacement displacement (larger than 4095) exp MEMB

Register Indirect abase (reg) MEMA

with offset abase + offset exp (reg) MEMA

with displacement abase + displacement exp (reg) MEMB

with index abase + (index*scale) (reg) [reg*scale] MEMB

with index and displacement abase + (index*scale) + displacement exp (reg) [reg*scale] MEMB

Index with displacement (index*scale) + displacement exp [reg*scale] MEMB

instruction pointer (IP) with 
displacement IP + displacement + 8 exp (IP) MEMB

NOTE: reg is register, exp is an expression or symbolic label, and IP is the instruction pointer.
2-6 i960® Hx Microprocessor Developer’s Manual



Data Types and Memory Addressing Modes

pically, 

ssing 
ropriate 

lation. 

ase.

 
t array 

d in a 
. The 

 level 

ss.
See Table B-9 in Appendix B for more on addressing modes. For purposes of this memory 
addressing modes description, MEMA format instructions require one word of memory and 
MEMB usually require two words and therefore consume twice the bus bandwidth to read. 
Otherwise, both formats perform the same functions.

2.3.1 Absolute

Absolute addressing modes allow a memory location to be referenced directly as an offset from 
address 0H. At the instruction encoding level, two absolute addressing modes are provided: 
absolute offset and absolute displacement, depending on offset size.

• For the absolute offset addressing mode, the offset is an ordinal number ranging from 
0 to 4095. The absolute offset addressing mode is encoded in the MEMA machine instruction 
format.

• For the absolute displacement addressing mode, the offset value ranges from 0 to 232-1. The 
absolute displacement addressing mode is encoded in the MEMB format.

Addressing modes and encoding instruction formats are described in Chapter 6, “Instruction Set 
Reference”.

At the assembly language level, the two absolute addressing modes use the same syntax. Ty
development tools allow absolute addresses to be specified through arithmetic expressions 
(e.g., x + 44) or symbolic labels. After evaluating an address specified with the absolute addre
mode, the assembler converts the address into an offset or displacement and selects the app
instruction encoding format and addressing mode.

2.3.2 Register Indirect

Register indirect addressing modes use a register’s 32-bit value as a base for address calcu
The register value is referred to as the address base (designated “abase” in Table 2-3). Depending 
on the addressing mode, an optional scaled index and offset can be added to this address b

Register indirect addressing modes are useful for addressing elements of an array or record
structure. When addressing array elements, the abase value provides the address of the firs
element. An offset (or displacement) selects a particular array element. 

In register-indirect-with-index addressing mode, the index is specified using a value containe
register. This index value is multiplied by a scale factor. Allowable factors are 1, 2, 4, 8 and 16
register-indirect-with-index addressing mode is encoded in the MEMB format.

The two versions of register-indirect-with-offset addressing mode at the instruction encoding
are register-indirect-with-offset and register-indirect-with-displacement. As with absolute 
addressing modes, the mode selected depends on the size of the offset from the base addre
i960® Hx Microprocessor Developer’s Manual 2-7
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At the assembly language level, the assembler allows the offset to be specified with an expression 
or symbolic label, then evaluates the address to determine whether to use register-indirect-with-
offset (MEMA format) or register-indirect-with-displacement (MEMB format) addressing mode.

Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a 
displacement to the address base. There is only one version of this addressing mode at the 
instruction encoding level, and it is encoded in the MEMB instruction format.

2.3.3 Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a 
register and multiplied by a scaling constant before displacement is added. This mode uses MEMB 
format.

2.3.4 IP with Displacement

This addressing mode is used with load and store instructions to make them instruction pointer (IP) 
relative. IP-with-displacement addressing mode references the next instruction’s address plu
displacement plus a constant of 8. The constant is added because, in a typical processor 
implementation, the address has incremented beyond the next instruction address at the tim
address calculation. The constant simplifies IP-with-displacement addressing mode 
implementation. This mode uses MEMB format.

2.3.5 Addressing Mode Examples

The following examples show how i960 processor addressing modes are encoded in assem
language. Example shows addressing mode mnemonics. Example 2-3 illustrates the usefulness of
scaled index and scaled index plus displacement addressing modes. In this example, a proc
named array_op uses these addressing modes to fill two contiguous memory blocks separat
constant offset. A pointer to the top of the block is passed to the procedure in g0, the block s
passed in g1 and the fill data in g2. Refer to Appendix C, “Machine-Level Instruction Formats”.
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Example 2-2. Addressing Mode Mnemonics

st g4,xyz # Absolute; word from g4 stored at memory

# location designated with label xyz.

ldob(r3),r4 # Register indirect; ordinal byte from 

# memory location given in r3 loaded 

# into register r4 and zero extended.

stl g6,xyz(g5) # Register indirect with displacement; 

# double word from g6,g7 stored at memory

# location xyz + g5.

ldq (r8)[r9*4],r4 # Register indirect with index; quad-word

# beginning at memory location r8 + (r9

# scaled by 4) loaded into r4 through r7.

st g3,xyz(g4)[g5*2] # Register indirect with index and 

# displacement; word in g3 stored to mem

# location g4 + xyz + (g5 scaled by 2).

ldisxyz[r12*2],r13 # Index with displacement; load short 

# integer at memory location xyz + r12 

# into r13 and sign extended.

st r4,xyz(IP) # IP with displacement; store word in r4 

# at memory location IP + xyz + 8.

Example 2-3. Scaled Index and Scaled Index Plus Displacement Addressing Modes

array_op:

mov g0,r4 # Pointer to array is copied to r4.

subi 1,g1,r3 # Calculate index for the last array

b .I33 # element to be filled

.I34:

st g2,(r4)[r3*4] # Fill element at index

st g2,0x30(r4)[r3*4] # Fill element at index+constant offset

subi 1,r3,r3 # Decrement index

.I33:

cmpible 0,r3,.I34 # Store next array elements if

ret # index is not 0
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Programming Environment 3

This chapter describes the i960® Hx processor’s programming environment including global and
local registers, special function registers, control registers, literals, processor-state registers 
address space.

3.1 Overview

The i960 processor architecture defines a programming environment for program execution,
storage and data manipulation. Figure 3-1 shows the programming environment elements that 
include a 4 Gbyte (232 byte) flat address space, an instruction cache, a data cache, global and
general-purpose registers, a register cache, a set of literals, special function registers, contro
registers and a set of processor state registers. 

The processor includes several architecturally-defined data structures located in memory as 
the programming environment. These data structures handle procedure calls, interrupts and
and provide configuration information at initialization. These data structures are:

3.2 Registers and Literals as Instruction Operands

With the exception of a few special instructions, the i960 Hx processor uses only simple load
store instructions to access memory. All operations take place at the register level. The proc
uses 16 global registers, 16 local registers, five special function registers and 32 literals 
(constants 0-31) as instruction operands.

The global register numbers are g0 through g15; local register numbers are r0 through r15; s
function registers are sf0, sf1 and sf2sf0 through sf4. Several of these registers are used for
dedicated functions. For example, register r0 is the previous frame pointer, often referred to apfp. 
i960 processor compilers and assemblers recognize only the instruction operands listed in 
Table 3-1. Throughout this manual, the registers’ descriptive names, numbers, operands and
acronyms are used interchangeably, as dictated by context.

• interrupt stack • control table • system procedure table

• local stack • fault table • process control block

• supervisor stack • interrupt table • initialization boot record
i960® Hx Microprocessor Developer’s Manual 3-1
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3.2.1 Global Registers

Global registers are general-purpose 32-bit data registers that provide temporary storage for a 
program’s computational operands. These registers retain their contents across procedure 
boundaries. As such, they provide a fast and efficient means of passing parameters between
procedures.

Figure 3-1. i960® Hx Processor Programming Environment
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The i960 architecture supplies 16 global registers, designated g0 through g15. Register g15 is 
reserved for the current Frame Pointer (FP), which contains the address of the first byte in the 
current (topmost) stack frame in internal memory. See Chapter 7, “Call and Return Mechanism” 
for a description of the FP and procedure stack.

After the processor is reset, register g0 contains device identification and stepping informatio
The Device Identification sections in the 80960HA/HD/HT Embedded 32-bit Microprocessor 
datasheet describe information contained in g0. g0 retains this information until it is written o
by the user program. The device identification and stepping information is also stored in the 
memory-mapped DEVICEID register located at FF008710H.

3.2.2 Local Registers

The i960 architecture provides a separate set of 32-bit local data registers (r0 through r15) fo
active procedure. These registers provide storage for variables that are local to a procedure.
time a procedure is called, the processor allocates a new set of local registers and saves the
procedure’s local registers. When the application returns from the procedure, the local registe
released for the next procedure call. The processor performs local register management; a p
need not explicitly save and restore these registers.

Registers r3 through r15 are general purpose registers; r0 through r2 are reserved for specia
functions; r0 contains the Previous Frame Pointer (PFP); r1 contains the Stack Pointer (SP);
contains the Return Instruction Pointer (RIP). These are discussed in Chapter 7, “Procedure Calls.”

The processor does not always clear or initialize the set of local registers assigned to a new 
procedure. Also, the processor does not initialize the local register save area in the newly cr
stack frame for the procedure. User software should not rely on the initial values of local reg

Table 3-1. Registers and Literals Used as Instruction Operands

Instruction Operand Register Name (number) Function Acronym

g0 - g14 global (g0-g14) general purpose

fp global (g15) frame pointer FP

pfp local (r0) previous frame pointer PFP

sp local (r1) stack pointer SP

rip local (r2) return instruction pointer RIP

r3 - r15 local (r3-r15) general purpose

sf0 special function 0 interrupt pending IPND

sf1 special function 1 interrupt mask IMSK

sf2 special function 2 data cache control CCON

sf3 special function 3 interrupt control ICON

sf4 special function 4 GMU control GCON

0-31 literals
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3.2.3 Special Function Registers (SFRs)

The i960 architecture provides a mechanism to expand its architecturally-defined register set with 
up to 32 additional 32-bit registers. On the i960 Hx processor, five special function registers 
(SFRs) provide an extension to the architectural register model. These registers are designated sf0 
– sf4 (see Table 3-1). Registers sf5 – sf31 are not implemented on the i960 Hx processor. Do 
attempt to read or modify unimplemented registers. SFRs provide a means to configure and
monitor the interrupt controller, D-cache and GMU.

The processor provides a mechanism that allows modification of SFRs in supervisor mode o
These registers can be accessed only while the processor is in supervisor execution mode. 
Section 3.7, “User-Supervisor Protection Model” on page 3-26. A TYPE.MISMATCH fault occurs 
if an instruction with an SFR operand is executed in user mode.

SFRs are not used as operands for instructions whose machine-level instruction format is of
MEM or CTRL. Such instructions include loads, stores and those that cause program redirec
(call, return and branches). Appendix C, “Machine-Level Instruction Formats” describes machine-
level encoding for operands. Table 3-2 summarizes the use of SFRs as instruction operands.

3.2.4 Register Scoreboarding

Register scoreboarding maintains register coherency by preventing parallel execution units f
accessing registers for which there is an outstanding operation. When an instruction that tar
destination register or group of registers executes, the processor sets a register-scoreboard 
indicate that this register or group of registers is being used in an operation. If the instruction
follow do not require data from registers already in use, the processor can execute those 
instructions before the prior instruction execution completes.

Software can use this feature to execute one or more single-cycle instructions concurrently w
multi-cycle instruction (e.g., multiply or divide). Example 3-1 shows a case where register 
scoreboarding prevents a subsequent instruction from executing. It also illustrates overlappin
instructions that do not have register dependencies.

Register scoreboarding is implemented for global and local registers but not for SFRs. When
SFR is the destination of a multi-cycle instruction, the programmer must prevent access to th
until the multi-clock instruction returns a result to the SFR.

Example 3-1. Register Scoreboarding

muli r4,r5,r6 # r6 is scoreboarded
addi r6,r7,r8 # addi must wait for the previous multiply

. # to complete

.

.
muli r4,r5,r10 # r10 is scoreboarded
and r6,r7,r8 # and instruction is executed concurrently with multiply
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3.2.5 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions. 
These literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used 
as an operand, the processor expands it to 32 bits by adding leading zeros. If the instruction 
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If 
a literal is used in an instruction that requires integer operands, the processor treats the literal as a 
positive integer value.

3.2.6 Register and Literal Addressing and Alignment

Several instructions operate on multiple-word operands. For example, the load long instruction 
(ldl) loads two words from memory into two consecutive registers. The register for the less 
significant word is specified in the instruction. The more significant word is automatically loaded 
into the next higher-numbered register.

In cases where an instruction specifies a register number and multiple consecutive registers are 
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an integral 
multiple of 4, if 3 or 4 registers are accessed (e.g., g0, g4). If a register reference for a source value 
is not properly aligned, the source value is undefined and an OPERATION.INVALID_OPERAND 
fault is generated. If a register reference for a destination value is not properly aligned, the registers 
to which the processor writes and the values written are undefined. The processor then generates an 
OPERATION.INVALID_OPERAND fault. The assembly language code in Example 3-2 shows an 
example of correct and incorrect register alignment.

t

Global registers, local registers, special function registers and literals are used directly as 
instruction operands. Table 3-2 lists instruction operands for each machine-level instruction format 
and the positions that can be filled by each register or literal.

Example 3-2. Register Alignment

movl g3,g8 # Incorrect alignment - resulting value
. # in registers g8 and g9 is
. # unpredictable (non-aligned source)
.

movl g4,g8 # Correct alignment
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3.3 Memory-Mapped Control Registers

The i960 Hx processor gives software the interface to easily read and modify internal control 
registers. Each of these registers is accessed as a memory-mapped, 32-bit register with a unique 
memory address. The processor ensures that accesses to MMRs do not generate external bus 
cycles.

3.3.1 Memory-Mapped Registers (MMR)

Portions of the i960 Hx processor address space (addresses FF00 0000H through FFFF FFFFH) are 
reserved for memory-mapped registers (see Section 13.3, “Architecturally Reserved Memory 
Space” on page 13-10. These memory-mapped registers (MMRs) are accessed through word-
operand memory instructions (atmod, atadd, sysctl, ld and st instructions) only. Accesses to this
address space do not generate external bus cycles. The latency in accessing each of these 
is one cycle.

Each register has an associated access mode (user and supervisor modes) and access type
write accesses). Table 3-4 and Table 3-5 show all the memory-mapped registers and the applicat
modes of access. 

The registers are partitioned into user and supervisor spaces based on their addresses. Add
FF00 0000H through FF00 7FFFH are allocated to user space memory-mapped registers; 
Addresses FF00 8000H to FFFF FFFFH are allocated to supervisor space registers.

Table 3-2. Allowable Register Operands

Operand (1)

Instruction 
Encoding Operand Field Local 

Register
Global 

Register Literal SFR (2)

REG

src1
src2
src/dst (as src)
src/dst (as dst)
src/dst (as both)

X
X
X
X
X

X
X
X
X
X

X
X
X

X
X
X
X

MEM
src/dst
abase
index

X
X
X

X
X
X

COBR
src1
src2
dst

X
X

X (3)

X
X

X (3)
X

X (3)

NOTES:
1. X” denotes the register can be used as an operand in a particular instruction field.
2. Special Function Registers (SFRs) cannot be used in the src/dst field of REG format instructions that use 

this field as both source and destination (e.g., extract and modify).
3. The COBR destination operands apply only to TEST instructions.
3-6 i960® Hx Microprocessor Developer’s Manual



Programming Environment

erals. 

th 
lts in 

ates an 

 

nerate 
ters 

ke 

ration 

 

3.3.1.1 Restrictions on Instructions that Access Memory-Mapped Registers

The majority of memory-mapped registers can be accessed by both load (ld) and store (st) 
instructions. However some registers have restrictions on the types of access they allow. To ensure 
correct operation, the access type restrictions for each register should be followed. The access type 
columns of Table 3-4 and Table 3-5 indicate the allowed access types for each register.

Unless otherwise indicated by its access type, the modification of a memory-mapped register by a 
st instruction takes effect completely before the next instruction starts execution.

The sysctl instruction can also modify the contents of a memory-mapped register atomically; in 
addition, sysctl is the only method to read the breakpoint registers on the i960 Hx processor; the 
breakpoints cannot be read using a ld instruction.

At initialization, the control table automatically loads into the on-chip control registers. This action 
simplifies the user’s start-up code by providing a transparent setup of the processor’s periph
See Chapter 13, “Initialization and System Requirements”.

3.3.1.2 Access Faults

Memory-mapped registers are meant to be accessed only as aligned, word-size registers wi
adherence to the appropriate access mode. Accessing these registers in any other way resu
faults or undefined operation. An access is performed using the following fault model:

1. The access must be a word-sized, word-aligned access; otherwise, the processor gener
OPERATION.UNIMPLEMENTED fault.

2. If the access is a store in user mode to an implemented supervisor location, a 
TYPE.MISMATCH fault occurs. It is unpredictable whether a store to an unimplemented
supervisor location will cause a fault.

3. If the access is neither of the above, the access is attempted. Note that an MMR may ge
faults based on conditions specific to that MMR. (Example: trying to write the timer regis
in user mode when they have been allocated to supervisor mode only.)

4. When a store access to an MMR faults, the processor ensures that the store does not ta
effect.

5. A load access of a reserved location returns an unpredictable value.

6. Avoid any store accesses to reserved locations. Such a store can result in undefined ope
of the processor if the location is in supervisor space.

Instruction fetches from the memory-mapped register space are not allowed and result in an
OPERATION.UNIMPLEMENTED fault.
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Table 3-3. Access Types 

Access Type Description

R Read Read (ld instruction) accesses are allowed.

RO Read
Only

Only Read (ld instruction) accesses are allowed. Write (st instruction) 
accesses are ignored.

W Write Write (st instruction) accesses allowed.

R/W Read/Write ld, st, and sysctl instructions are allowed access.

WwG
Write
when
Granted

Writing or Modifying (through an st or sysctl instruction) the register is only 
allowed when modification-rights to the register have been granted. An 
OPERATION.UNIMPLEMENTED fault occurs if an attempt is made to write 
the register before rights are granted. See Section 9.2.7.2, “Hardware 
Breakpoints” on page 9-5 for details about getting modification rights to 
breakpoint registers.

Sysctl-RwG
sysctl
Read when 
Granted

The value of the register can only be read by executing a sysctl instruction 
issued with the modify memory-mapped register message type. 
Modification rights to the register must be granted first or an 
OPERATION.UNIMPLEMENTED fault occurs when the sysctl is executed. 
An ld instruction to the register returns unpredictable results.

AtMod atmod
update

Register can be updated quickly through the atmod instruction. The atmod 
ensures correct operation by performing the update of the register in an 
atomic manner which provides synchronization with previous and 
subsequent operations. This is a faster update mechanism than sysctl and 
is optimized for a few special registers.
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Table 3-4. Supervisor Space Family Registers and Tables  (Sheet 1 of 4)

Register Name Memory-Mapped Address Access Type

Guarded Memory Unit (GMU)

GCON GMU Control Register (sf4) FF00 8000H R/W

Reserved FF00 8004H to FF00 800FH —

(MPAR0) Memory Protection Address Register 0 FF00 8010H R/W

(MPMR0) Memory Protection Mask Register 0 FF00 8014H R/W

(MPAR1) Memory Protection Address Register 1 FF00 8018H R/W

(MPMR1) Memory Protection Mask Register 1 FF00 801CH R/W

Reserved FF00 8020H TO FF00 807FH —

(MDUB0) Memory Detect Upper Bounds Register 0 FF00 8080H R/W

(MDLB0) Memory Detect Lower Bounds Register 0 FF00 8084H R/W

(MDUB1) Memory Detect Upper Bounds Register 1 FF00 8088H R/W

(MDLB1) Memory Detect Lower Bounds Register 1 FF00 808CH R/W

(MDUB2) Memory Detect Upper Bounds Register 2 FF00 8090H R/W

(MDLB2) Memory Detect Lower Bounds Register 2 FF00 8094H R/W

(MDUB3) Memory Detect Upper Bounds Register 3 FF00 8098H R/W

(MDLB3) Memory Detect Lower Bounds Register 3 FF00 809CH R/W

(MDUB4) Memory Detect Upper Bounds Register 4 FF00 80A0H R/W

(MDLB4) Memory Detect Lower Bounds Register 4 FF00 80A4H R/W

(MDUB5) Memory Detect Upper Bounds Register 5 FF00 80A8H R/W

(MDLB5) Memory Detect Lower Bounds Register 5 FF00 80ACH R/W

Reserved FF00 80B0H to FF00 80FFH —

Logical Memory Configuration LMCON Registers

(DLMCON) Default Logical Memory Configuration 
Register FF00 8100H R/W

Reserved FF00 8104H —

(LMADR0) Logical Memory Address Register 0 FF00 8108H R/W

(LMMR0) Logical Memory Mask Register 0 FF00 810CH R/W

(LMADR1) Logical Memory Address Register 1 FF00 8110H R/W

NOTE: Shaded rows indicate reserved areas.
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(LMMR1) Logical Memory Mask Register 1 FF00 8114H R/W

(LMADR2) Logical Memory Address Register 2 FF00 8118H R/W

(LMMR2) Logical Memory Mask Register 2 FF00 811CH R/W

(LMADR3) Logical Memory Address Register 3 FF00 8120H R/W

(LMMR3) Logical Memory Mask Register 3 FF00 8124H R/W

(LMADR4) Logical Memory Address Register 4 FF00 8128H R/W

(LMMR4) Logical Memory Mask Register 4 FF00 812CH R/W

(LMADR5) Logical Memory Address Register 5 FF00 8130H R/W

(LMMR5) Logical Memory Mask Register 5 FF00 8134H R/W

(LMADR6) Logical Memory Address Register 6 FF00 8138H R/W

(LMMR6) Logical Memory Mask Register 6 FF00 813CH R/W

(LMADR7) Logical Memory Address Register 7 FF00 8140H R/W

(LMMR7) Logical Memory Mask Register 7 FF00 8144H R/W

(LMADR8) Logical Memory Address Register 8 FF00 8148H R/W

(LMMR8) Logical Memory Mask Register 8 FF00 814CH R/W

(LMADR9) Logical Memory Address Register 9 FF00 8150H R/W

(LMMR9) Logical Memory Mask Register 9 FF00 8154H R/W

(LMADR10) Logical Memory Address Register 10 FF00 8158H R/W

(LMMR10) Logical Memory Mask Register 10 FF00 815CH R/W

(LMADR11) Logical Memory Address Register 11 FF00 8160H R/W

(LMMR11) Logical Memory Mask Register 11 FF00 8164H R/W

(LMADR12) Logical Memory Address Register 12 FF00 8168H R/W

(LMMR12) Logical Memory Mask Register 12 FF00 816CH R/W

(LMADR13) Logical Memory Address Register 13 FF00 8170H R/W

(LMMR13) Logical Memory Mask Register 13 FF00 8174H R/W

(LMADR14) Logical Memory Address Register 14 FF00 8178H R/W

(LMMR14) Logical Memory Mask Register 14 FF00 817CH R/W

Reserved FF00 8180H to FF00 83FFH —

Table 3-4. Supervisor Space Family Registers and Tables  (Sheet 2 of 4)

Register Name Memory-Mapped Address Access Type

NOTE: Shaded rows indicate reserved areas.
3-10 i960® Hx Microprocessor Developer’s Manual



Programming Environment
Breakpoint

(IPB0) Instruction Address Breakpoint Register 0 FF00 8400H Sysctl- RwG/WwG

(IPB1) Instruction Address Breakpoint Register 1 FF00 8404H Sysctl- RwG/WwG

(IPB2) Instruction Address Breakpoint Register 2 FF00 8408H Sysctl- RwG/WwG

(IPB3) Instruction Address Breakpoint Register 3 FF00 840CH Sysctl- RwG/WwG

(IPB4) Instruction Address Breakpoint Register 4 FF00 8410H Sysctl- RwG/WwG

(IPB5) Instruction Address Breakpoint Register 5 FF00 8414H Sysctl- RwG/WwG

Reserved FF00 8418H to FF00 841FH —

(DAB0) Data Address Breakpoint Register 0 FF00 8420H R/W, WwG

(DAB1) Data Address Breakpoint Register 1 FF00 8424H R/W, WwG

(DAB2) Data Address Breakpoint Register 2 FF00 8428H R/W, WwG

(DAB3) Data Address Breakpoint Register 3 FF00 842CH R/W, WwG

(DAB4) Data Address Breakpoint Register 4 FF00 8430H R/W, WwG

(DAB5) Data Address Breakpoint Register 5 FF00 8434H R/W, WwG

Reserved FF00 8438H to FF00 843FH —

(BPCON) Breakpoint Control Register FF00 8440H WwG

(XBPCON) Extended Breakpoint Control Register FF00 8444H WwG

Reserved FF00 8448H to FF00 84FFH —

Interrupts

(IPND) Interrupt Pending Register FF00 8500H R/W

(IMSK) Interrupt Mask Register FF00 8504H R/W

Reserved FF00 8508H to FF00 850FH —

(ICON) Interrupt Control Word FF00 8510H R/W

Reserved FF00 8514H to FF00 851FH —

(IMAP0) Interrupt Map Register 0 FF00 8520H R/W

(IMAP1) Interrupt Map Register 1 FF00 8524H R/W

(IMAP2) Interrupt Map Register 2 FF00 8528H R/W

Reserved FF00 852CH to FF00 85FFH —

Table 3-4. Supervisor Space Family Registers and Tables  (Sheet 3 of 4)

Register Name Memory-Mapped Address Access Type

NOTE: Shaded rows indicate reserved areas.
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Physical Memory Configuration PMCON Registers

(PMCON0) Physical Memory Control Register 0 FF00 8600H R/W

(PMCON1) Physical Memory Control Register 1 FF00 8604H R/W

(PMCON2) Physical Memory Control Register 2 FF00 8608H R/W

(PMCON3) Physical Memory Control Register 3 FF00 860CH R/W

(PMCON4) Physical Memory Control Register 4 FF00 8610H R/W

(PMCON5) Physical Memory Control Register 5 FF00 8614H R/W

(PMCON6) Physical Memory Control Register 6 FF00 8618H R/W

(PMCON7) Physical Memory Control Register 7 FF00 861CH R/W

(PMCON8) Physical Memory Control Register 8 FF00 8620H R/W

(PMCON9) Physical Memory Control Register 9 FF00 8624H R/W

(PMCON10) Physical Memory Control Register 10 FF00 8628H R/W

(PMCON11) Physical Memory Control Register 11 FF00 862CH R/W

(PMCON12) Physical Memory Control Register 12 FF00 8630H R/W

(PMCON13) Physical Memory Control Register 13 FF00 8634H R/W

(PMCON14) Physical Memory Control Register 14 FF00 8638H R/W

(PMCON15) Physical Memory Control Register 15 FF00 863CH R/W

Reserved FF00 8640H to FF00 86FBH —

Bus Configuration BCON Registers

(BCON) Bus Configuration Control Register FF00 86FCH R/W

Process Control Block Pointer

(PRCB) Processor Control Block Pointer FF00 8700H RO

(ISP) Interrupt Stack Pointer FF00 8704H R/W

(SSP) Supervisor Stack Pointer FF00 8708H R/W

Reserved FF00  870CH —

Device Identification Register

(DEVICEID) i960 Hx processor Device ID FF00 8710H RO

Reserved FF00 8714H to FFFF FFFFH —

Table 3-4. Supervisor Space Family Registers and Tables  (Sheet 4 of 4)

Register Name Memory-Mapped Address Access Type

NOTE: Shaded rows indicate reserved areas.
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Table 3-5.  User Space Family Registers and Tables 

Register Name Memory-Mapped Address Access Type

Timers

Reserved FF00 0000H to FF00 02FFH —

(TRR0) Timer Reload Register 0 FF00 0300H R/W

(TCR0) Timer Count Register 0 FF00 0304H R/W

(TMR0) Timer Mode Register 0 FF00 0308H R/W

Reserved FF00 030CH —

(TRR1) Timer Reload Register 1 FF00 0310H R/W

(TCR1) Timer Count Register 1 FF00 0314H R/W

(TMR1) Timer Mode Register 1 FF00 0318H R/W

Reserved FF00 031CH to FF00 7FFFH —
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3.4 Architecturally Defined Data Structures

The architecture defines a set of data structures including stacks, interfaces to system procedures, 
interrupt handling procedures and fault handling procedures. Table 3-6 defines the data structures 
and references other sections of this manual where detailed information can be found.

The i960 Hx processor defines two initialization data structures: the Initialization Boot Record 
(IBR) and the Process Control Block (PRCB). These structures provide initialization data and 
pointers to other data structures in memory. When the processor is initialized, these pointers are 
read from the initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control table 
are specified in the processor control block. Supervisor stack location is specified in the system 
procedure table. User stack location is specified in the user’s startup code. Of these structure
the system procedure table, fault table, control table and initialization data structures may be
ROM; the interrupt table and stacks must be in RAM. The interrupt table must be located in R
to allow posting of software interrupts. 

Table 3-6. Data Structure Descriptions

Structure (see also) Description

User and Supervisor Stacks

Section 7.6, “User and Supervisor 
Stacks” on page 7-19

The processor uses these stacks when executing application code. 

Interrupt Stack

Section 11.5, “Interrupt Stack and 
Interrupt Record” on page 11-6

A separate interrupt stack is provided to ensure that interrupt handling 
does not interfere with application programs.

System Procedure Table

Section 3.7, “User-Supervisor 
Protection Model” on page 3-26

Section 7.5, “System Calls” on 
page 7-15

Contains pointers to system procedures. Application code uses the 
system call instruction (calls) to access system procedures through 
this table. A system supervisor call switches execution mode from 
user mode to supervisor mode. When the processor switches modes, 
it also switches to the supervisor stack. 

Interrupt Table

Section 11.4, “Interrupt Table” on 
page 11-4

The interrupt table contains vectors (pointers) to interrupt handling 
procedures. When an interrupt is serviced, a particular interrupt table 
entry is specified. 

Fault Table

Section 8.3, “Fault Table” on 
page 8-5

Contains pointers to fault handling procedures. When the processor 
detects a fault, it selects a particular entry in the fault table. The 
architecture does not require a separate fault handling stack. Instead, 
a fault handling procedure uses the supervisor stack, user stack or 
interrupt stack, depending on the processor execution mode in which 
the fault occurred and the type of call made to the fault handling 
procedure. 

Control Table

Section 13.3.3, “Control Table” on 
page 13-22

Contains on-chip control register values. Control table values are 
moved to on-chip registers at initialization or with sysctl.
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3.5 Memory Address Space

The i960 Hx processor’s address space is byte-addressable with addresses running contigu
from 0 to 232-1. Some memory space is reserved or assigned special functions as shown in 
Figure 3-2.

The processor treats the entire address space as continuous and linear. There are no subdiv
the address space into arbitrary segments or dedicated I/O space. The Guarded Memory Un
(GMU) can optionally restrict access to certain areas of memory, such as to protect a kernel’s
data and stack. See Chapter 12, “Guarded Memory Unit (GMU)” for more information. 
Applications can use an external Memory Management Unit (MMU) to subdivide memory int
pages if desired.

An address in memory is a 32-bit value in the range 0H to FFFF FFFFH. Depending on the 
instruction, an address can reference in memory a single byte, short word (2 bytes), word (4 b
double word (8 bytes), triple word (12 bytes) or quad word (16 bytes). Refer to load and store
instruction descriptions in Chapter 6, “Instruction Set Reference” for multiple-byte addressing 
information.

Figure 3-2. Memory Address Space

0000 0000H

Address

0000 07FFH
0000 0800H

FFFF FFFFH

FEFF FF2FH
FEFF FF30H

FEFF FF60H
FEFF FF5FH

Code/Data 

Code/Data
Architecturally Defined Data Structures

External Memory

NMI Vector

Internal (Optional Interrupt Vectors)

FEFF FFFFH
FF00 0000H

0000 0004H
0000 003FH

0000 0040H

Memory-Mapped Register Space

(Available For Data)

Initialization Boot Record (IBR)

Shading indicates internal memory.

2 Kbytes
Data RAM

Optional Register Cache Frames

External Memory
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3.5.1 Memory Requirements

The architecture requires that external memory have the following properties:

• Memory must be byte-addressable.

• Physical memory must not be mapped to reserved addresses that are specifically used by the 
processor implementation.

• Memory must guarantee indivisible access (read or write) for addresses that fall within 16-byte 
boundaries.

• Memory must guarantee atomic access for addresses that fall within 16-byte boundaries.

The latter two capabilities, indivisible and atomic access, are required only when multiple 
processors or other external agents, such as DMA or graphics controllers, share a common 
memory.

The upper 16 Mbytes of the address space (addresses FF00 0000H through FFFF FFFFH) are 
reserved for implementation-specific functions. i960 Hx processor programs cannot use this 
address space except for accesses to memory-mapped registers. As shown in Figure 3-2, the 
initialization boot record is located just below the i960 Hx processor’s reserved memory.

The i960 Hx processor requires some special consideration when using the lower 2 Kbytes o
address space (addresses 0000H through 07FFH). Loads and stores directed to these addr
access internal memory; instruction fetches from these addresses are not allowed by the pro
See Section 4.1, “Internal Data Ram” on page 4-1. No external bus cycles are generated to this 
address space.

3.5.2 Data and Instruction Alignment in the Address Space

Instructions, program data and architecturally defined data structures can be placed anywhe
non-reserved address space while adhering to these alignment requirements:

• Align instructions on word boundaries.

• Align all architecturally defined data structures on the boundaries specified in Table 3-7.

• Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries in 
memory.

indivisible access Guarantees that a processor, reading or writing a set of memory locations, 
complete the operation before another processor or external agent can read 
or write the same location. The processor requires indivisible access within 
an aligned 16-byte block of memory.

atomic access A read-modify-write operation. Here the external memory system must 
guarantee that once a processor begins a read-modify-write operation on an 
aligned, 16-byte block of memory it is allowed to complete the operation 
before another processor or external agent can access to the same location. 
An atomic memory system can be implemented by using the LOCK# signal 
to qualify hold requests from external bus agents. The processor asserts 
LOCK# for the duration of an atomic memory operation.
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The i960 Hx processor can perform unaligned load or store accesses. The processor handles a non-
aligned load or store request by:

• Automatically servicing a non-aligned memory access with dedicated on-chip circuitry as 
described in Section 14.3.2, “Bus Transactions across Region Boundaries” on page 14-10.

• After the access is completed, the processor can generate an OPERATION.UNALIGNED 
fault, if directed to do so.

The method of handling faults is selected at initialization based on the value of the Fault 
Configuration Word in the Process Control Block. See Section 13.3.1.2, “Process Control Block 
(PRCB)” on page 13-17.

3.5.3 Byte, Word and Bit Addressing

The processor provides instructions for moving data blocks of various lengths from memory 
registers (ld) and from registers to memory (st). Supported sizes for blocks are bytes, short-word
(2 bytes), words (4 bytes), double-words, triple-words and quad-words. For example, stl (store 
long) stores an 8-byte (double-word) data block in memory.

The most efficient way to move data blocks longer than 16 bytes is to move them in quad-wo
increments, using quad-word instructions ldq and stq.

Table 3-7. Alignment of Data Structures in the Address Space

Data Structure Alignment Boundary

System Procedure Table 4 byte

Interrupt Table 4 byte

Fault Table 4 byte

Control Table 16 byte

User Stack 16 byte

Supervisor Stack 16 byte

Interrupt Stack 16 byte

Process Control Block 16 byte

Initialization Boot Record Fixed at FEFF FF30H
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Normally when a data block is stored in memory, the block’s least significant byte is stored a
base memory address and the more significant bytes are stored at successively higher byte 
addresses. This method of ordering bytes in memory is referred to as “little endian” ordering

The i960 Hx processor also provides an option for ordering bytes in the opposite manner in 
memory. The block’s most significant byte is stored at the base address and the less signific
bytes are stored at successively higher addresses. This byte-ordering scheme, referred to a
endian”, applies to data blocks which are short-words or words. For more about byte orderin
Section 14.4.2, “Selecting the Byte Order” on page 14-14.

When loading a byte, short-word or word from memory to a register, the block’s least signific
bit is always loaded in register bit 0. When loading double-words, triple-words and quad-wor
the least significant word is stored in the base register. The more significant words are then s
at successively higher-numbered registers. Individual bits can be addressed only in data that 
in a register: bit 0 in a register is the least significant bit, bit 31 is the most significant bit.

3.5.4 Internal Data RAM

Internal data RAM is mapped to the lower 2 Kbytes (0000H to 07FFH) of the address space. 
and stores, with target addresses in internal data RAM, operate directly on the internal data 
no external bus activity is generated. Data RAM allows time-critical data storage and retrieva
without dependence on external bus performance. The lower 2 Kbytes of memory is data me
only. Instructions cannot be fetched from the internal data RAM. Instruction fetches directed t
data RAM cause a TYPE.MISMATCH fault to occur.

Some internal data RAM locations are reserved for functions other than general data storage
(Table 3-7). 64 bytes of data RAM may be used to cache specific interrupt vectors. The word 
location 0000H is always reserved for the cached NMI vector. With the exception of the cach
NMI vector, software can use other reserved portions of the data RAM for data storage when
alternate function is not used.

As described in Section 13.3.1.2, “Process Control Block (PRCB)” on page 13-17, local register 
cache size is specified by the value of the Process Control Block’s Register Cache Configura
Word. The first five local register sets are cached internally; if more than five sets are to be ca
the local register cache can be extended into the internal data RAM. Up to ten more sets, occ
up to 640 bytes of data RAM, can be used. When the local register cache is extended, each 
register set consumes 16 words of internal data RAM beginning at the lowest data RAM add
The user program is responsible for preventing corruption of the internal RAM areas set asid
the register cache. See Chapter 7, “Procedure Calls”.
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Internal RAM’s first 256 bytes (0000H to 00FFH) are user mode write protected. This data R
can be read while executing in user or supervisor mode; however, RAM can be modified onl
supervisor mode. Writes to these locations while in user mode generate a TYPE.MISMATCH 
This feature provides supervisor protection for Interrupt functions that use internal RAM. See
Section 3.7, “User-Supervisor Protection Model” on page 3-26. User mode write protection is 
optionally selected for the rest of the data RAM (0100H to 07FFH) by setting the Bus 
Configuration Register (BCON) RAM protection bit.

3.5.5 Instruction Cache

The instruction cache enhances performance by reducing the number of instruction fetches f
external memory. The cache provides fast execution of cached code and frees more bus ban
for data operations in external memory. Since the internal clocks on the i960 HD and HT 
processors are multiples of the external memory bus clock, applications must use the instruc
cache to take full advantage of those processors’ power. 

The i960 Hx processor’s instruction cache is a 16-Kbyte, four-way set-associative cache, orga
as four sets of 128-word lines. The organization permits the cache to deliver up to four 32-bi
instruction words to the superscalar processor core with each cycle. 

To optimize cache updates when branches or interrupts occur, each eight-byte line has a se
valid bit. Cache misses cause the processor to issue either double- or quad-word fetches to 
the cache. For a thorough discussion of instruction cache operation, see Chapter 4, “Cache and On-
Chip Data RAM.”

i960 Hx processor’ do not implement bus snooping. The cache does not detect modification 
program memory by loads, stores or actions of other bus masters. Several situations may re
program memory modification, such as uploading code at initialization or moving code from 
backplane bus or a disk. 

To achieve cache coherence, instruction cache contents can be invalidated after code modif
is complete. The sysctl instruction is used to invalidate the instruction cache for the i960 Hx 
component. sysctl is issued with an invalidate-instruction-cache message type. See Section 6.2.67, 
“sysctl” on page 6-108.

The user program is responsible for synchronizing a program with code modification and cac
invalidation. In general, a program must ensure that modified code space is not accessed un
cache has been invalidated.

The instruction cache can be disabled, causing all instruction fetches to be directed to extern
memory. Disabling the instruction cache is useful for debugging or monitoring a system at th
instruction prefetch level. To disable the instruction cache, execute sysctl with the configure-
instruction-cache message. 
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Disabling the instruction cache also disables all instruction fetch queues within the instruction 
fetch unit. With the instruction cache disabled, every instruction generates an external bus access. 
Small code loops cannot hide in the buffers. This behavior contrasts with the so-called “baby
cache” behavior of the i960 Cx processor.

The processor can be directed to load a block of instructions into the cache and then disable
normal updates to this load cache portion. This cache load-and-lock mechanism optimizes int
latency and throughput. The first instructions of time-critical interrupt routines are loaded into
locked cache. The interrupt, when serviced, is directed to the locked cache portion. No exter
accesses are required for these instructions when the interrupt is serviced.

When bit 1 of an interrupt vector is set to 1, the interrupts fetch instructions from the instructi
cache’s locked portion. Execution continues from the locked cache until a miss occurs, such
branch, call or return to code outside of the locked space. If an interrupt directed to the locke
cache results in a miss, the processor fetches the targeted instruction from the normal memo
hierarchy.

Any number of 4-Kbyte ways can be configured to load and lock. With only a portion of the c
loaded and locked, the remaining portion acts as a normal three-, two- or one-way cache. No
an application locks only one or two ways of the cache. Locking the entire cache forces all 
instruction fetches (except interrupts directed to the locked cache) to come from external me
See Section 4.4.3, “Loading and Locking Instructions in the Instruction Cache” on page 4-5 for 
more details.

The icctl instruction is the preferred method to control the i960 Hx processor instruction cach
order to maintain backwards compatibility with the i960 Cx processors, the sysctl instruction does 
allow limited control of the cache. Using sysctl for i960 Hx processor designs is discouraged.

To load and lock all or part of the instruction cache, issue an icctl instruction with a load-and-lock 
message type. When the lock option is selected, an address is specified that points to a mem
block to be loaded into the locked cache.

3.5.6 Data Cache

The data cache on the i960 Hx processor is a write-through 8-Kbyte direct-mapped cache. F
more information, see Chapter 4, “Cache and On-Chip Data RAM.”
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3.6 Processor-State Registers

The architecture defines four 32-bit registers that contain status and control information:

3.6.1 Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This address is 
32 bits long; however, since instructions are required to be aligned on word boundaries in memory, 
the IP’s two least-significant bits are always 0 (zero).

All i960 processor instructions are either one or two words long. The IP gives the address of
lowest-order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mode
software use the IP as an offset into the address space. This addressing mode can also be u
the lda (load address) instruction to read the current IP value.

When a break occurs in the instruction stream due to an interrupt, procedure call or fault, the
processor stores the IP of the next instruction to be executed in local register r2, which is usu
referred to as the return IP or RIP register. Refer to Chapter 7, “Procedure Calls” for further 
discussion.

3.6.2 Arithmetic Controls (AC) Register

The AC register (Figure 3-3) contains condition code flags, integer overflow flag, mask bit and 
bit that controls faulting on imprecise faults. Unused AC register bits are reserved. 

• Instruction Pointer (IP) register • Arithmetic Controls (AC) register

• Process Controls (PC) register • Trace Controls (TC) register

Figure 3-3. Arithmetic Controls (AC) Register
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3.6.2.1 Initializing and Modifying the AC Register

At initialization, the AC register is loaded from the Initial AC image field in the Process Control 
Block. Set reserved bits to 0 in the AC Register Initial Image. Refer to Chapter 13, “Initialization 
and System Requirements.”

After initialization, software must not modify or depend on the AC register’s initial image in th
PRCB. Software can use the modify arithmetic controls (modac) instruction to examine and/or 
modify any of the register bits. This instruction provides a mask operand that lets user softwa
limit access to the register’s specific bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrup
handles a fault. The processor saves the current AC register state in an interrupt record or fa
record, then restores the register upon returning from the interrupt or fault handler.

3.6.2.2 Condition Code (AC.cc)

The processor sets the AC register’s condition code flags (bits 0-2) to indicate the results of certain
instructions, such as compare instructions. Other instructions, such as conditional branch 
instructions, examine these flags and perform functions as dictated by the state of the condit
code flags. Once the processor sets the condition code flags, the flags remain unchanged u
another instruction executes that modifies the field.

Condition code flags show true/false conditions, inequalities (greater than, equal or less than
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show
or false conditions, the processor sets the flags as shown in Table 3-8. To show equality and 
inequalities, the processor sets the condition code flags as shown in Table 3-9.

Table 3-8. Condition Codes for True or False Conditions

Condition Code Condition

0102 true

0002 false

Table 3-9. Condition Codes for Equality and Inequality Conditions

Condition Code Condition

0002 unordered

0012 greater than

0102 equal

1002 less than
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The term unordered is used when comparing floating point numbers. The i960 Hx processor does 
not implement on-chip floating point processing.

To show carry out and overflow, the processor sets the condition code flags as shown in Table 3-10.

Certain instructions, such as the branch-if instructions, use a 3-bit mask to evaluate the condition 
code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask of 0112 to 
determine if the condition code is set to either greater-than or equal. Conditional instructions use 
similar masks for the remaining conditions such as: greater-or-equal (0112), less-or-equal (1102) 
and not-equal (1012). The mask is part of the instruction opcode; the instruction performs a bitwise 
AND of the mask and condition code.

The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in 
conjunction with the ARITHMETIC.INTEGER_OVERFLOW fault. The mask bit disables fault 
generation. When the fault is masked and integer overflow is encountered, the processor sets the 
integer overflow flag instead of generating a fault. If the fault is not masked, the fault is allowed to 
occur and the flag is not set.

Once the processor sets this flag, the flag remains set until the application software clears it. Refer 
to the discussion of the ARITHMETIC.INTEGER_OVERFLOW fault in Chapter 8, “Faults” for 
more information about the integer overflow mask bit and flag.

The no imprecise faults (AC.nif) bit (bit 15) determines whether or not faults are allowed to be 
imprecise. If set, all faults (except a synchronous fault such as MACHINE.PARITY) are requ
to be precise; if clear, certain faults can be imprecise. See Section 8.9, “Precise and Imprecise 
Faults” on page 8-19 for more information. When set, the AC.nif bit disables the superscalar 
(parallel instruction execution) feature of the processor; therefore, no imprecise faults mode s
be invoked only during debugging when maximum processor performance is not necessary.

Table 3-10. Condition Codes for Carry Out and Overflow

Condition Code Condition

01X2 carry out

0X12 overflow
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3.6.3 Process Controls (PC) Register

The PC register (Figure 3-4) is used to control processor activity and show the processor’s cur
state. The PC register execution mode flag (bit 1) indicates that the processor is operating in eith
user mode (0) or supervisor mode (1). The processor automatically sets this flag on a system
when a switch from user mode to supervisor mode occurs and it clears the flag on a return fr
supervisor mode. (User and supervisor modes are described in Section 3.7, “User-Supervisor 
Protection Model” on page 3-26.

PC register state flag (bit 13) indicates the processor state: executing (0) or interrupted (1). If t
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor’s state is
executing. 

While in the interrupted state, the processor can receive and handle additional interrupts. Wh
nested interrupts occur, the processor remains in the interrupted state until all interrupts are 
handled, then switches back to the executing state on the return from the initial interrupt proc

Figure 3-4. Process Controls (PC) Register
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(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em
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The PC register priority field (bits 16 through 20) indicates the processor’s current executing o
interrupted priority. The architecture defines a mechanism for prioritizing execution of code, 
servicing interrupts and servicing other implementation-dependent tasks or events. This 
mechanism defines 32 priority levels, ranging from 0 (the lowest priority level) to 31 (the high
The priority field always reflects the current priority of the processor. Software can change th
priority by use of the modpc instruction.

The processor uses the priority field to determine whether to service an interrupt immediately
post the interrupt. The processor compares the priority of a requested interrupt with the curre
process priority. When the interrupt priority is greater than the current process priority or equ
31, the interrupt is serviced; otherwise it is posted. When an interrupt is serviced, the proces
priority field is automatically changed to reflect interrupt priority. See Chapter 11, “Interrupts.”

The PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing 
function. The trace enable bit determines whether trace faults are globally enabled (1) or glo
disabled (0). The trace fault pending flag indicates that a trace event has been detected (1) o
detected (0). The tracing functions are further described in Chapter 9, “Tracing and Debugging.”

3.6.3.1 Initializing and Modifying the PC Register

Any of the following three methods can be used to change bits in the PC register:

• Modify process controls instruction (modpc)

• Alter the saved process controls prior to a return from an interrupt handler or fault handler

The modpc instruction reads and modifies the PC register directly. A TYPE.MISMATCH fault 
results if software executes modpc in user mode with a non-zero mask. As with modac, modpc 
provides a mask operand that can be used to limit access to specific bits or groups of bits in the 
register. In user mode, software can use modpc to read the current PC register.

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt or 
fault record that is saved on the stack. Upon return from the interrupt or fault handler, the modified 
process controls are copied into the PC register. The processor must be in supervisor mode prior to 
return for modified process controls to be copied into the PC register.

When process controls are changed as described above, the processor recognizes the changes 
immediately except for one situation: if modpc is used to change the trace enable bit, the processor 
may not recognize the change before the next four non-branch instructions are executed.
i960® Hx Microprocessor Developer’s Manual 3-25



Programming Environment

 modes 

 a 
m 
tack for 
 for the 
de. 
el.

mode.

s 
am 
After initialization (hardware reset), the process controls reflect the following conditions:

When the processor is re-initialized with a sysctl re-initialize message, the PC register returns to 
its reset value. See Table 13-2 on page 13-6.

Software should not use modpc to modify execution mode or trace fault state flags except under 
special circumstances, such as in initialization code. Normally, execution mode is changed through 
the call and return mechanism. See Section 6.2.43, “modpc” on page 6-74 for more details.

3.6.4 Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It 
contains trace mode enable bits and trace event flags that are used to enable specific tracing
and record trace events, respectively. Trace controls are described in Chapter 9, “Tracing and 
Debugging.”

3.7 User-Supervisor Protection Model

The processor can be in either of two execution modes: user or supervisor. The capability of
separate user and supervisor execution mode creates a code and data protection mechanis
referred to as the user-supervisor protection model. This mechanism allows code, data and s
a kernel (or system executive) to reside in the same address space as code, data and stack
application. The mechanism restricts access to all or parts of the kernel by the application co
This protection mechanism prevents application software from inadvertently altering the kern

3.7.1 Supervisor Mode Resources

Supervisor mode is a privileged mode that provides several additional capabilities over user 

• When the processor switches to supervisor mode, it also switches to the supervisor stack. 
Switching to the supervisor stack helps maintain a kernel’s integrity. For example, it allow
access to system debugging software or a system monitor, even if an application’s progr
destroys its own stack.

• When an instruction executed in supervisor mode causes a bus access to occur, the processor 
asserts an external supervisor pin (SUP#) for loads, stores and instruction fetches. Hardware 
protection of system code or data can be implemented by using the supervisor pin to qualify 
write accesses to the protected memory.

• priority = 31 • execution mode = supervisor

• trace enable = disabled • state = interrupted

• trace fault pending
3-26 i960® Hx Microprocessor Developer’s Manual



Programming Environment
• In supervisor mode, the processor is allowed access to a set of supervisor-only functions and 
instructions. For example, the processor uses supervisor mode to handle interrupts and trace 
faults. Operations that can modify interrupt controller behavior or reconfigure bus controller 
characteristics can be performed only in supervisor mode. These functions include 
modification of SFRs, control registers and internal data RAM that is dedicated to interrupt 
controllers. A fault is generated if supervisor-only operations are attempted while the 
processor is in user mode. 

The PC register execution mode flag specifies processor execution mode. The processor 
automatically sets and clears this flag when it switches between the two execution modes.

Note that all of these instructions return a TYPE.MISMATCH fault if executed in user mode.

3.7.2 Using the User-Supervisor Protection Model

A program switches from user mode to supervisor mode by making a system-supervisor call (also 
referred to as a supervisor call). A system-supervisor call is a call executed with the call-system 
instruction (calls). With calls, the IP for the called procedure comes from the system procedure 
table. An entry in the system procedure table can specify an execution mode switch to supervisor 
mode when the called procedure is executed. calls and the system procedure table thus provide a 
tightly controlled interface to procedures that can execute in supervisor mode. Once the processor 
switches to supervisor mode, it remains in that mode until a return is performed to the procedure 
that caused the original mode switch.

Interrupts and faults can cause the processor to switch from user to supervisor mode. When the 
processor handles an interrupt, it automatically switches to supervisor mode. However, it does not 
switch to the supervisor stack. Instead, it switches to the interrupt stack. Fault table entries 
determine if a particular fault transitions the processor from user to supervisor mode. 

If an application does not require a user-supervisor protection mechanism, the processor can 
always execute in supervisor mode. At initialization, the processor is placed in supervisor mode 
prior to executing the first instruction of the application code. The processor then remains in 
supervisor mode indefinitely, as long as no action is taken to change execution mode to user mode. 
The processor does not need a user stack in this case.

• dcctl (data cache control) • inten (global interrupt enable)

• SFR as instruction operand • modpc (modify process controls w/ non-
zero mask)

• icctl (instruction cache control) • sysctl (system control)

• intctl (global interrupt enable and disable) • Protected internal data RAM or Supervisor 
MMR space write

• intdis (global interrupt disable) • Protected timer unit registers
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Cache and On-Chip Data RAM 4

This chapter describes the structure and user configuration of all forms of on-chip storage, 
including caches (data, local register and instruction) and data RAM.

4.1 Internal Data Ram

Internal data RAM is mapped to the lower 2 Kbytes (0 to 07FFH) of the address space. Loads and 
stores with target addresses in internal data RAM operate directly on the internal data RAM; no 
external bus activity is generated. Data RAM allows time-critical data storage and retrieval without 
dependence on external bus performance. Only data accesses are allowed to the internal data RAM; 
instructions cannot be fetched from the internal data RAM. Instruction fetches directed to the data 
RAM cause an OPERATION.UNIMPLEMENTED fault to occur.

Internal data RAM locations are never cached in the data cache. Logical Memory Template bits 
controlling caching are ignored for data RAM accesses. However, the byte ordering of the internal 
data RAM is controlled by the byte-endian control bit in the DLMCON register.

Some internal data RAM locations are reserved for functions other than general data storage. The 
first 64 bytes of data RAM may be used to cache interrupt vectors, which reduces latency for these 
interrupts. The word at location 0000H is always reserved for the cached NMI vector. With the 
exception of the cached NMI vector, other reserved portions of the data RAM can be used for data 
storage when the alternate function is not used. All locations of the internal data RAM can be read 
in both supervisor and user mode.

The first 64 bytes (0000H to 003FH) of internal RAM are always user-mode write-protected. This 
portion of data RAM can be read while executing in user or supervisor mode; however, it can be 
only modified in supervisor mode. This area can also be write-protected from supervisor mode 
writes by setting the BCON.sirp bit. See Section 14.2.1, “Bus Control (BCON) Register” on 
page 14-9. Protecting this portion of the data RAM from user and supervisor writes preserves
interrupt vectors that may be cached there. See Section 11.9.2.1, “Vector Caching Option” on 
page 11-32.
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The on-chip register cache resides in the address space above the internal data RAM. When user 
software allocates more than 5 register frames in the register cache, the cache expands downward 
into the internal data RAM. Table 13-8 shows the trade-offs between register cache size and 
available data RAM.

The remainder of the internal data RAM can always be written from supervisor mode. User mode 
write protection is optionally selected for the rest of the data RAM (40H to 3FFH) by setting the 
Bus Control Register RAM protection bit (BCON.irp). Writes to internal data RAM locations 
while they are protected generate a TYPE.MISMATCH fault. See Section 14.2.1, “Bus Control 
(BCON) Register” on page 14-9, for the format of the BCON register.

New versions of i960® processor compilers can take advantage of internal data RAM. Profiling 
compilers, such as those offered by Intel, can allocate the most frequently used variables into this 
RAM. 

Figure 4-1. Internal Data RAM and Register Cache

NMI Vector
0000 0000H

Optional Interrupt Vectors

0000 0004H

0000 003FH

0000 07FFH

Available for Data

Register Cache Growth Area

Register Cache
0000 0940H

0000 0800H
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4.2 Local Register Cache

The i960 Hx processor provides fast storage of local registers for call and return operations by 
using an internal local register cache (also known as a stack frame cache). Up to fifteen local 
register sets can be contained in the cache before sets must be saved in external memory. The 
default cache size is five register sets. The register set is all the local registers (i.e., r0 through r15). 
The processor uses a 128-bit wide bus to store local register sets quickly to the register cache. An 
integrated procedure call mechanism saves the current local register set when a call is executed. A 
local register set is saved into a frame in the local register cache, one frame per register set. When 
the sixteenth frame is saved, the oldest set of local registers is flushed to the procedure stack in 
external memory, which frees one frame.

Section 7.1.4, “Caching Local Register Sets” on page 7-7 and Section 7.1.5, “Mapping Local 
Registers to the Procedure Stack” on page 7-11 further discuss the relationship between the intern
register cache and the external procedure stack.

The branch-and-link (bal and balx) instructions do not cause the local registers to be stored.

The entire internal register cache contents can be copied to the external procedure stack thro
flushreg instruction. Section 6.2.31, “flushreg” on page 6-53 explains the instruction itself and 
Section 7.2, “Modifying the PFP Register” on page 7-11 offers a practical example when flushreg
must be used.

See Section 13.3.2.4, “Register Cache Configuration Word” on page 13-21 for more details on 
expanding the register cache size beyond five frames.

To decrease interrupt latency, software can reserve a number of frames in the local register 
solely for high priority interrupts (interrupted state and process priority greater than or equal to
The remaining frames in the cache can be used by all code, including high-priority interrupts
When a frame is reserved for high-priority interrupts, the local registers of the code interrupt
a high-priority interrupt can be saved to the local register cache without causing a frame flus
memory, providing the local register cache is not already full. Thus, the register allocation for
implicit interrupt call does not incur the latency of a frame flush.

Software can reserve frames for high-priority interrupt code by writing bits 11 through 8 of th
register cache configuration word in the PRCB. This value indicates the number of free fram
within the register cache that can be used by high-priority interrupts only. Any attempt by non
critical code to reduce the number of free frames below this value will result in a frame flush 
external memory. The free frame check is performed only when a frame is pushed, which oc
only for an implicit or explicit call. The following pseudo-code illustrates the operation of the 
register cache when a frame is pushed:

Example 4-1. Register Cache Operation

frames_for_non_critical = Total_Frames_Allocated - RCW[11:8];
if (interrupt_request)

set_interrupt_handler_PC;
push_frame;
number_of_frames = number_of_frames + 1;
if (number_of_frames = Total_Frames_Allocated + 1) {

flush_register_frame(oldest_frame);
number_of_frames = number_of_frames - 1; }

else if ( number_of_frames = (frames_for_non_critical + 1) && 
(PC.priority < 28 || PC.state != interrupted) ) {

 flush_register_frame(oldest_frame);
 number_of_frames = number_of_frames - 1; }
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The valid range for the number of reserved free frames is 0 to 15. Setting the value to 0 reserves no 
frames for exclusive use by high-priority interrupts. Setting the value to 1 reserves 1 frame for 
high-priority interrupts and up to 14 frames to be shared by all code. If the number of reserved 
high-priority frames exceeds the allocated size of the register cache, the entire cache is reserved for 
high-priority interrupts. In that case, all low-priority interrupts and procedure calls cause frame 
spills to external memory.

4.3 Big Endian Accesses to Internal Ram and Data 
Cache

The i960 Hx processor supports big-endian accesses to the internal data-RAM and data cache. The 
default byte order for data accesses is programmed in DLMCON.be to be either little or big-endian. 
The DLMCON.be controls the default byte-order for all internal (i.e., on-chip data ram and data 
cache) and external accesses. See Section 14.4, “Programming the Logical Memory Attributes” o
page 14-11 for more details.

4.4 Instruction Cache

The i960 Hx processor features a 16-Kbyte, 4-way set-associative instruction cache (I-cache
organized in lines of eight 32-bit words. The cache provides fast execution of cached code a
loops of code and provides more bus bandwidth for data operations in external memory. To 
optimize cache updates when branches or interrupts are executed, each aligned long-word (8
in the line has a separate valid bit. When requested instructions are found in the cache, the 
instruction fetch time is one cycle for up to four words. Instruction fetches replace the least rec
used line of the 4-way cache to reduce cache misses. The cache replacement algorithm stor
instructions in one of the two least recently used cache ways. The instruction cache assume
areas of memory are cacheable. 

A mechanism to load and lock critical code within a way of the cache is provided along with 
mechanism to disable the cache. The cache is managed through the icctl or sysctl instruction. The 
sysctl instruction supports the instruction cache to maintain compatibility with i960® Cx processor 
software. Using icctl is the preferred and more versatile method for controlling the instruction 
cache on the i960 Hx processor.

Unlike the i960 Cx processor, the 80960Hx does not aggressively fetch instructions that may be 
unnecessary. Since the bus speed can be half or one third of the core speed, wasted external fetches 
can severely reduce performance. Instead, the i960 Hx processor fetches only as many words as are 
necessary (in two-word increments) to fill the cache void. The processor decides whether to fetch 
based on the instruction stream. For straight-line code, the processor fetches enough words to fill 
the current cache line. For branch instructions, no fetching occurs. 
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4.4.1 Enabling and Disabling the Instruction Cache

Enabling the instruction cache is controlled on reset or initialization by the instruction cache 
configuration word in the Process Control Block (PRCB); see Figure 13-6. If bit 16 in the 
instruction cache configuration word is set, the instruction cache is disabled and all instruction 
fetches are directed to external memory. Disabling the instruction cache is useful for tracing 
execution in a software debug environment. 

The instruction cache remains disabled until one of three operations is performed:

• icctl is issued with the enable instruction cache operation (preferred method).

• sysctl is issued with the configure-instruction-cache message type and cache configuration 
mode other than disable cache (inherited method from i960 Cx processor, not the preferred 
method for i960 Hx processor).

• The processor is reinitialized with a new value in the instruction cache configuration word.

4.4.2 Operation While the Instruction Cache is Disabled

Disabling the instruction cache also disables all instruction fetch queues within the instruction 
fetch unit. With the instruction cache disabled, every instruction generates an external bus access. 
Small code loops cannot hide in the buffers. This behavior contrasts with the so-called “baby
cache” behavior of the i960 Cx processor.

4.4.3 Loading and Locking Instructions in the Instruction Cache

The processor can be directed to load a block of instructions into the cache and then lock ou
normal updates to the cache. This cache load-and-lock mechanism is provided to minimize la
on program control transfers to key operations such as interrupt service routines. The block 
that can be loaded and locked on the i960 Hx processor is any multiple of 4-Kbytes up to the
16-Kbyte capacity of the cache. Any code can be locked into the cache, not just interrupt rou

An icctl instruction invokes the load-and-lock mechanism for one, two, three, or all four 4-Kb
ways of the instruction cache. Legacy software from the i960 Cx processor can still use the sysctl 
instruction to lock the cache, but with reduced flexibility. sysctl can load and lock only one 4-
Kbyte way of the instruction cache due to backwards compatibility with the i960 Cx processo
definition of the sysctl instruction. New software for the i960 Hx processor should use icctl for all 
instruction cache manipulations. With either instruction, when the lock option is selected, the
processor loads the cache starting at an address specified as an operand to the instruction.

4.4.4 Instruction Cache Visibility

Instruction cache status can be determined by issuing icctl with an instruction-cache status 
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid
can be written to memory. This is done by issuing icctl with the store cache operation.
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4.4.5 Instruction Cache Coherency

The i960 Hx processor does not snoop the bus to prevent instruction cache incoherency. The cache 
does not detect modification to program memory by loads, stores or actions of other bus masters. 
Several situations may require program memory modification, such as uploading code at 
initialization or loading from a backplane bus or a disk drive. 

The application program is responsible for synchronizing its own code modification and cache 
invalidation. In general, a program must ensure that modified code space is not accessed until 
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache 
contents should be invalidated after code modification is complete. The icctl instruction invalidates 
the instruction cache for the i960 Hx processor. Alternately, i960 Cx processor legacy software can 
use the sysctl instruction.

4.4.6 Instruction Cache Interaction with Guarded Memory

The Guarded Memory Unit (GMU) protects only external memory accesses. Instructions executed 
from the instruction cache will not activate the GMU mechanisms since these instructions do not 
cause an external instruction fetch.

For example, consider the case of a program executing a section of code, then subsequently 
modifying the GCON register to fetch-protect that region. That block of instructions is already 
loaded into the instruction cache and can be accessed and executed again without the GMU 
signaling a fault.

To truly protect memory regions, the user must invalidate the instruction cache immediately after 
setting the GMU protection.

4.5 Data Cache

The i960 Hx processor features an 8-Kbyte, 4-way set-associative cache that enhances 
performance by reducing the number of data load and store accesses to external memory. The 
cache is write-through and write-allocate (as is the i960 CF processor data cache). It has a line size 
of 4 words and each line in the cache has a valid bit. To reduce fetch latency on cache misses, each 
word within a line also has a valid bit. Caches are managed through the dcctl instruction. 

Data loads and stores replace least recently used lines of the 4-way cache to reduce cache misses.   
The cache replacement algorithm stores new data in one of the two least recently used cache ways.

User settings in the memory region configuration registers LMCON0-15 and DLMCON determine 
which data accesses are cacheable or non-cacheable based on memory region. 
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4.5.1 Enabling and Disabling the Data Cache

To cache data, two conditions must be met:

1. The data cache must be enabled. A dcctl instruction issued with an enable data cache message 
enables the cache. On reset or initialization, the data cache is always disabled and all valid bits 
are set to zero. 

Though the dcctl instruction is the preferred method of controlling the data cache, i960 CF 
processor legacy software can still manipulate the data cache bits in the Cache Control 
(CCON) register directly, also known as sf2. Clear the data cache global disable (CCON.dcgd) 
bit (bit 30) to globally enable data caching. Set the bit to disable data caching. Invalidate the 
entire data cache by setting the data cache invalidate (CCON.dci) bit (bit 31) and polling (or 
“spinning”) on that bit until the processor clears it again, which indicates that the operatio
finished. All other bits in CCON are reserved and must not be modified by user software
Figure 4-2 shows the CCON register bits.

2. Data caching for a location must be enabled by the corresponding logical memory templa
by the default logical memory template if no other template applies. See Section 14.4, 
“Programming the Logical Memory Attributes” on page 14-11 for more details on logical 
memory templates. 

When the data cache is disabled, all data fetches are directed to external memory. Disabling
data cache is useful for debugging or monitoring a system. To disable the data cache, issue dcctl 
with a disable data cache message. The enable and disable status of the data cache and va
attributes of the cache can be determined by a dcctl issued with a data-cache status message.

Figure 4-2. Cache Control Register (CCON)

28 24 20 16 12 8 4 031

Reserved
(Initialize to 0)

Data Cache Global Disable - CCON.dcgd
(0) Enabled
(1) Disabled

Data Cache Invalidate - CCON.dci
(0) Enabled
(1) Invalidate (set by user software, 

d
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d
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cleared by processor hardware)
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4.5.2 Multi-Word Data Accesses that Partially Hit the Data Cache

The following applies only when data caching is enabled for an access.

For a multi-word load access (ldl, ldt, ldq) in which none of the requested words hit the data cache, 
an external bus transaction is started to acquire all the words of the access. 

For a multi-word load access that partially hits the data cache, the processor may either:

• Load or reload all words of the access (even those that hit) from the external bus

• Load only missing words from the external bus and interleave them with words found in the 
data cache

The multi-word alignment determines which of the above methods is used:

• Naturally aligned multi-word accesses cause all words to be reloaded

• An unaligned multi-word access causes only missing words to be loaded

If any words accessed by a ldl, ldt, or ldq instruction miss the data cache, every word accessed by 
that load instruction is updated in the cache.

In each case, the external bus accesses used to acquire the data may consist of none, one, or several 
burst accesses based on the alignment of the data and the bus-width of the memory region that 
contains the data. See Chapter 15, “External Bus Description” for more details.

A multi-word load access that completely hits in the data cache does not cause external bus
accesses.

For a multi-word store access (stl, stt, stq) an external bus transaction is started to write all wor
of the access regardless if any or all words of the access hit the data cache. External bus ac
used to write the data may consist of either one or several burst accesses based on data alig
and the bus-width of the memory region that receives the data. (See Chapter 15, “External Bus 
Description” for more details.) The cache is also updated accordingly as described earlier in t
chapter. 

4.5.3 Data Cache Fill Policy

The i960 Hx processor always uses a “natural” fill policy for cacheable loads. The processor
fetches only the amount of data that is requested by a load (i.e., a word, long-word, etc.) on 
cache miss. Exceptions are byte and short-word accesses, which are always promoted to w
This allows a complete word to be brought into the cache and marked valid. When the data ca
disabled and loads are done from a cacheable region, promotions from bytes and short-word
take place.

 Load Instruction Number of Updated 
Words

ldq 4 words

ldt 3 words

ldl 2 words
4-8 i960® Hx Microprocessor Developer’s Manual
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4.5.4 Data Cache Write Policy

The write policy determines what happens on cacheable writes (stores). The i960 Hx processor 
always uses a write-through policy. Stores are always seen on the external bus, thus maintaining 
coherency between the data cache and external memory.

The i960 Hx processor always uses a write-allocate policy for data. For a cacheable location, data 
is always written to the data cache regardless of whether the access is a hit or miss. The following 
cases are relevant to consider:

1. In the case of a hit for a word or multi-word store, the appropriate line and word(s) are updated 
with the data.

2. In the case of a miss for a word or multi-word store, a tag and cache line are allocated, if 
needed, and the appropriate valid bits, line, and word(s) are updated.

3. In the case of byte or short-word data that hits a valid word in the cache, both the word in 
cache and external memory are updated with the data; the cache word remains valid.

4. In the case of byte or short-word data that falls within a valid line but misses because the 
appropriate word is invalid, both the word and external memory are updated with the data; 
however, the cache word remains invalid.

5. In the case of byte or short-word data that does not fall within a valid line, the external 
memory is updated with the data. For data writes less than a word, the D-cache is not updated; 
the tags and valid bits are not changed. 

A byte or short-word will always be invalid in the D-cache since valid bits only apply to words. 

For cacheable stores that are equal to or greater than a word in length, cache tags and appropriate 
valid bits are updated whenever data is written into the cache. Consider a word store that misses as 
an example. The tag is always updated and its valid bit is set. The appropriate valid bit for that 
word is always set and the other three valid bits are always cleared. If the word store hits the cache, 
the tag bits remain unchanged. The valid bit for the stored word is set; all other valid bits are 
unchanged. 

Cacheable stores that are less than a word in length are handled differently. Byte and short-word 
stores that hit the cache (i.e., are contained in valid words within valid cache lines) do not change 
the tag and valid bits. The processor writes the data into the cache and external memory as usual. A 
byte or short-word store to an invalid word within a valid cache line leaves the word valid bit 
cleared because the rest of the word is still invalid. In these two cases the processor simultaneously 
writes the data into the cache and the external memory.
i960® Hx Microprocessor Developer’s Manual 4-9
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4.5.5 Data Cache Coherency and Non-Cacheable Accesses

The i960 Hx processor ensures that the data cache is always kept coherent with accesses that it 
initiates and performs. The most visible application of this requirement concerns non-cacheable 
accesses discussed below. However, the processor does not provide data-cache coherency for 
accesses on the external bus that it did not initiate. Software is responsible for maintaining 
coherency in a multi-processor environment. 

An access is defined as non-cacheable if any of the following is true: 

1. The access falls into an address range mapped by an enabled LMCON or DLMCON and the 
data-caching enabled bit in the matching LMCON is clear. 

2. The entire data cache is disabled. 

3. The access is a read operation of the read-modify-write sequence performed by an atmod or 
atadd instruction.

4. The access is an implicit read access to the interrupt table to post or deliver a software 
interrupt.

If the memory location targeted by an atmod or atadd instruction is currently in the data cache, it 
is invalidated.

If the address for a non-cacheable store matches a tag (“tag hit”), the corresponding cache l
marked invalid. This is because the word is not actually updated with the value of the store. 
behavior ensures that the data cache never contains stale data in a single-processor system
simple case illustrates the necessity of this behavior: a read of data previously stored by a n
cacheable access must return the new value of the data, not the value in the cache. Becaus
processor invalidates the appropriate word in the cache line on a store hit when the cache is
disabled, coherency can be maintained when the data cache is enabled and disabled dynam

Data loads or stores invalidate the corresponding lines of the cache even when data caching
disabled. This behavior further ensures that the cache does not contain stale data.

4.5.6 External I/O and Bus Masters and Cache Coherency

The i960 Hx processor implements a single processor coherency mechanism. There is no ha
mechanism, such as bus snooping, to support multiprocessing. If another bus master can ch
shared memory, there is no guarantee that the data cache contains the most recent data. Th
must manage such data coherency issues in software.

A suggested practice is to program the LMCON registers such that I/O regions are non-cach
Partitioning the system in this fashion eliminates I/O as a source of coherency problems. See
Section 14.4, “Programming the Logical Memory Attributes” on page 14-11 for more information 
on this subject.
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4.5.7 Quickly Invalidating Portions of Data Cache

The entire data cache can be invalidated in one instruction using dcctl. This capability supports 
efficient program-controlled coherency enforcement by user software. 

Sometimes, invalidating the entire cache is too extreme a step. In that case, user software can 
invalidate only a pre-defined region of memory selectively, leaving the rest of the cache intact and 
valid. The dcctl logical-region-invalidate command rapidly invalidates only the cache lines that 
have been earmarked for quick invalidation by the LMCON registers. Selective invalidation takes 
one clock cycle to complete.

The LMCON configuration at the time the cache line was allocated determines whether that line 
can be invalidated quickly. The LMCON value at the time of the dcctl logical-region-invalidate 
command is inconsequential.

The dcinva instruction invalidates individual quad words within the cache. See Section 6.2.24, 
“dcinva (80960Hx-Specific Instruction)” on page 6-45 for more information.

A process must have data cache write permission to invalidate one or more addresses in the
cache.

4.5.8 Data Cache Visibility

Data cache status can be determined by a dcctl instruction issued with a data-cache status messa
Data cache contents, data, tags and valid bits can be written to memory as an aid for debug
This operation is accomplished by a dcctl instruction issued with the dump cache operand. See
Section 6.2.23, “dcctl” on page 6-38 for more information. It should also be noted that the dcinva 
instruction invalidates cache data by clearing the valid bits; however, the invalidated data wor
still available in the dumped cache contents. See Section 6.2.24, “dcinva (80960Hx-Specific 
Instruction)” on page 6-45 for more information. 
i960® Hx Microprocessor Developer’s Manual 4-11
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Instruction Set Overview 5

This chapter provides an overview of the i960® microprocessor family’s instruction set and i960 
Hx processor-specific instruction set extensions. Also discussed are the assembly-language
instruction-encoding formats, various instruction groups and each group’s instructions.

Chapter 6, “Instruction Set Reference” describes each instruction, including assembly language
syntax, and the action taken when the instruction executes and examples of how to use the 
instruction.

5.1 Instruction Formats

i960 Hx processor instructions may be described in two formats: assembly language and 
instruction encoding. The following subsections briefly describe these formats.

5.1.1 Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonics
example, the add ordinal instruction is referred to as addo. Examples use Intel 80960 assembly 
language syntax which consists of the instruction mnemonic followed by zero to three opera
separated by commas. In the following assembly language statement example for addo, ordinal 
operands in global registers g5 and g9 are added together, and the result is stored in g7:
addo g5, g9, g7 # g7 = g9 + g5

In the assembly language listings in this chapter, registers are denoted as:

All numbers used as literals or in address expressions are assumed to be decimal. Hexadec
numbers are denoted with a “0x” prefix (e.g., 0xffff0012). Several assembly language instruction
statement examples follow. Additional assembly language examples are given in Section 2.3.5, 
“Addressing Mode Examples” on page 2-8.

g global register r local register

# pound sign precedes a comment sf special function register

subi r3, r5, r6 #r6 = r5 - r3

setbit 13, g4, g5 #g5 = g4 with bit 13 set

lda 0xfab3, r12 #r12 = 0xfab3

ld (r4), g3 #g3 = memory location that r4 points to

st g10, (r6)[r7*2] #g10 = memory location that r6+2*r7 points to
i960® Hx Microprocessor Developer’s Manual 5-1
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5.1.2 Instruction Encoding Formats

All instructions are encoded in one 32-bit machine language instruction — also known as an
opword — which must be word aligned in memory. An opword’s most significant eight bits 
contain the opcode field. The opcode field determines the instruction to be performed and ho
remainder of the machine language instruction is interpreted. Instructions are encoded in op
in one of four formats (see Figure 5-1). For more information on instruction formats, see 
Appendix C, “Machine-Level Instruction Formats.”

Instruction Type Format Description

register REG Most instructions are encoded in this format. Used primarily for 
instructions which perform register-to-register operations. 

compare and branch COBR
An encoding optimization that combines compare and branch 
operations into one opword. Other compare and branch operations 
are also provided as REG and CTRL format instructions.

control CTRL Used for branches and calls that do not depend on registers for 
address calculation. 

memory MEM

Used for referencing an operand which is a memory address. Load 
and store instructions — and some branch and call instructions — 
use this format. MEM format has two encodings: MEMA or MEMB. 
Usage depends upon the addressing mode selected. MEMB-
formatted addressing modes use the word in memory immediately 
following the instruction opword as a 32-bit constant. MEMA format 
uses one word and MEMB uses two words.

Figure 5-1. Machine-Level Instruction Formats
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5.1.3 Instruction Operands

This section identifies and describes operands that can be used with the instruction formats.

Format Operand(s) Description

REG src1, src2, src/dst src1 and src2 can be global registers, local registers, 
special function registers or literals. src/dst is either a 
global, local or special function register.

CTRL displacement CTRL format is used for branch and call instructions. 
displacement value indicates the target instruction of the 
branch or call.

COBR src1, src2, displacement src1, src2 indicate values to be compared; displacement 
indicates branch target. src1 can specify a global register, 
local register or a literal. src2 can specify a global, local or 
special function register.

MEM src/dst, efa Specifies source or destination register and an effective 
address (efa) formed by using the processor’s addressing
modes as described in Section 2.3, “Memory Addressing 
Modes” on page 2-6. Registers specified in a MEM format 
instruction must be either a global or local register.
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5.2 Instruction Groups

The i960 processor instruction set can be categorized into the following functional groups shown in 
Table 5-1. The actual number of instructions is greater than those shown in this list because, for 
some operations, several unique instructions are provided to handle various operand sizes, data 
types or branch conditions. The following sections provide an overview of the instructions in each 
group. For detailed information about each instruction, refer to Chapter 6. 

Table 5-1. 80960Hx Instruction Set

Data Movement Arithmetic Logical Bit / Bit Field / Byte

Load

Store

Move

Load Address

Conditional Select(1)

Add

Subtract

Multiply

Divide

Conditional Add(1)

Conditional Subtract(1)

Remainder

Modulo

Shift

Rotate

Extended Shift

Extended Multiply

Extended Divide

Add with Carry

Subtract with Carry

And

Not And

And Not

Or

Exclusive Or

Not Or

Or Not

Nor

Exclusive Nor

Not

Nand

Set Bit

Clear Bit

Not Bit

Alter Bit

Scan For Bit

Span Over Bit

Extract

Modify

Scan Byte for Equal

Byte Swap(1)

Comparison Branch Call/Return Fault

Compare

Conditional Compare

Compare byte(1)

Compare short(1)

Check Bit

Compare and Increment

Compare and Decrement

Test Condition Code

Unconditional Branch

Conditional Branch

Compare and Branch

Branch and Link

Call

Call Extended

Call System

Return

Conditional Fault

Synchronize Faults

Debug Processor Mgmt Atomic Cache Control

Modify Trace Controls

Mark

Force Mark

Flush Local Registers

Modify Arithmetic 
Controls

Modify Process Controls

Interrupt Enable/ 
Disable(1,2)

System Control(2)

HALT(1,2)

Atomic Add

Atomic Modify

Instruction Cache 
Control(1,2)

Data Cache Control(1,2)

Data Cache Invalidate by 
Address(1,2)

NOTES:
1. 80960Hx extensions to the 80960 core instruction set.
2. 80960Hx extensions to the 80960Cx instruction set.
5-4 i960® Hx Microprocessor Developer’s Manual



Instruction Set Overview

 of 
rds to 
ons 

and 
gers 

cally 

ry 
teger-
he 
5.2.1 Data Movement

These instructions are used to move data from memory to global and local registers, from global 
and local registers to memory, and between local, global and special function registers.

Rules for register alignment must be followed when using load, store and move instructions that 
move 8, 12 or 16 bytes at a time. See Section 3.5, “Memory Address Space” on page 3-15 for 
alignment requirements for code portability across implementations.

5.2.1.1 Load and Store Instructions

Load instructions copy bytes or words from memory to local or global registers or to a group
registers. Each load instruction has a corresponding store instruction to memory bytes or wo
copy from a selected local or global register or group of registers. All load and store instructi
use the MEM format.

ld copies 4 bytes from memory into a register; ldl copies 8 bytes; ldt copies 12 bytes into 
successive registers; ldq copies 16 bytes into successive registers.

st copies 4 bytes from a register into memory; stl copies 8 bytes; stt copies 12 bytes from 
successive registers; stq copies 16 bytes from successive registers.

For ld, ldob, ldos, ldib and ldis, the instruction specifies a memory address and register; the 
memory address value is copied into the register. The processor automatically extends byte 
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; inte
are sign-extended.

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the 
register value is copied into memory. For byte and short instructions, the processor automati
reformats the source register’s 32-bit value for the shorter memory location. For stib and stis, this 
reformatting can cause integer overflow if the register value is too large for the shorter memo
location. When integer overflow occurs, either an integer-overflow fault is generated or the in
overflow flag in the AC register is set, depending on the integer-overflow mask bit setting in t
AC register. 

For stob and stos, the processor truncates the register value and does not create a fault if 
truncation resulted in the loss of significant bits.

ld load word st store word
ldob load ordinal byte stob store ordinal byte
ldos load ordinal short stos store ordinal short
ldib load integer byte stib store integer byte
ldis load integer short stis store integer short
ldl load long stl store long
ldt load triple stt store triple
ldq load quad stq store quad
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5.2.1.2 Move

Move instructions copy data from a local, global, special function register or group of registers to 
another register or group of registers. These instructions use the REG format.

5.2.1.3 Load Address

The Load Address instruction (lda) computes an effective address in the address space from an 
operand presented in one of the addressing modes. lda is commonly used to load a constant into a 
register. This instruction uses the MEM format and can operate upon local or global registers.

On the i960 Hx processor, lda is useful for performing simple arithmetic operations. The 
processor’s parallelism allows lda to execute in the same clock as another arithmetic or logical 
operation.

5.2.2 Select Conditional

Given the proper condition code bit settings in the Arithmetic Controls register, these instruc
move one of two pieces of data from its source to the specified destination.

mov move word
movl move long word
movt move triple word
movq move quad word

selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge Select Based on Greater or Equal
sell Select Based on Less
selne Select Based on Not Equal
selle Select Based on Less or Equal
selo Select Based on Ordered
5-6 i960® Hx Microprocessor Developer’s Manual
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5.2.3 Arithmetic

Table 5-2 lists arithmetic operations and data types for which the i960 Hx processor provides 
instructions. “X” in this table indicates that the microprocessor provides an instruction for the
specified operation and data type. All arithmetic operations are carried out on operands in re
or literals. Refer to Section 5.2.11, “Atomic Instructions” on page 5-19 for instructions that handle 
specific requirements for in-place memory operations.

All arithmetic instructions use the REG format and can operate on local, global or special fun
registers. The following subsections describe arithmetic instructions for ordinal and integer d
types.

Table 5-2. Arithmetic Operations

Arithmetic Operations
Data Types

Integer Ordinal

Add X X

Add with Carry X X

Conditional Add X X

Subtract X X

Subtract with Carry X X

Conditional Subtract X X

Multiply X X

Extended Multiply X

Divide X X

Extended Divide X

Remainder X X

Modulo X

Shift Left X X

Shift Right X X

Extended Shift Right X

Shift Right Dividing Integer X
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5.2.3.1 Add, Subtract, Multiply, Divide, Conditional Add and Conditional 
Subtract

These instructions perform add, subtract, multiply or divide operations on integers and ordinals:

addi, ADDI<cc>, subi, SUBI<cc>, muli and divi generate an integer-overflow fault when the result 
is too large to fit in the 32-bit destination. divi and divo generate a zero-divide fault when the 
divisor is zero.

5.2.3.2 Remainder and Modulo

These instructions divide one operand by another and retain the remainder of the operation:

The difference between the remainder and modulo instructions lies in the sign of the result. For 
remi and remo, the result has the same sign as the dividend; for modi, the result has the same sign 
as the divisor.

addi Add Integer

addo Add Ordinal

subi Subtract Integer

subo Subtract Ordinal

SUB<cc> Conditional Subtract

muli Multiply Integer

mulo Multiply Ordinal

divi Divide Integer

divo Divide Ordinal

remi remainder integer

remo remainder ordinal

modi modulo integer
5-8 i960® Hx Microprocessor Developer’s Manual
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5.2.3.3 Shift, Rotate and Extended Shift

These shift instructions shift an operand a specified number of bits left or right:

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant bit. 
These instructions are equivalent to mulo and divo by the power of 2, respectively.

shli shifts zeros in from the least significant bit. If the shift operation results in an overflow, an 
integer-overflow fault is generated (if enabled). The destination register is written with the source 
shifted as much as possible without overflow and an integer-overflow fault is signaled.

shri performs a conventional arithmetic shift right operation by extending the sign bit. However, 
when this instruction is used to divide a negative integer operand by the power of 2, it may produce 
an incorrect quotient. (Discarding the bits shifted out has the effect of rounding the result toward 
negative.)

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added to the 
result if the bits shifted out are non-zero and the operand is negative, which produces the correct 
result for negative operands. shli and shrdi are equivalent to muli and divi by the power of 2, 
respectively, except in cases where an overflow error occurs.

rotate rotates operand bits to the left (toward higher significance) by a specified number of bits. 
Bits shifted beyond the register’s left boundary (bit 31) appear at the right boundary (bit 0).

The eshro instruction performs an ordinal right shift of a source register pair (64 bits) by as m
as 32 bits and stores the result in a single (32-bit) register. This instruction is equivalent to an
extended divide by a power of 2, which produces no remainder. The instruction is also the 
equivalent of a 64-bit extract of 32 bits.

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer

rotate rotate left

eshro extended shift right ordinal
i960® Hx Microprocessor Developer’s Manual 5-9
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5.2.3.4 Extended Arithmetic

These instructions support extended-precision arithmetic; i.e., arithmetic operations on operands 
greater than one word in length:

addc adds two word operands (literals or contained in registers) plus the AC Register condition 
code bit 1 (used here as a carry bit). If the result has a carry, bit 1 of the condition code is set; 
otherwise, it is cleared. This instruction’s description in Chapter 6, “Instruction Set Reference” 
gives an example of how this instruction can be used to add two long-word (64-bit) operands
together.

subc is similar to addc, except it is used to subtract extended-precision values. Although addc and 
subc treat their operands as ordinals, the instructions also set bit 0 of the condition codes if t
operation would have resulted in an integer overflow condition. This facilitates a software 
implementation of extended integer arithmetic.

emul multiplies two ordinals (each contained in a register), producing a long ordinal result (st
in two registers). ediv divides a long ordinal by an ordinal, producing an ordinal quotient and a
ordinal remainder (stored in two adjacent registers).

5.2.4 Logical

These instructions perform bitwise Boolean operations on the specified operands:

All logical instructions use the REG format and can operate on literals or local, global or spe
function registers.

addc add ordinal with carry

subc subtract ordinal with carry

emul extended multiply

ediv extended divide

and src2 AND src1
notand (NOT src2) AND src1
andnot src2 AND (NOT src1)
xor src2 XOR src1
or src2 OR src1
nor NOT (src2 OR src1)
xnor src2 XNOR src1
not NOT src1
notor (NOT src2) or src1
ornot src2 or (NOT src1)
nand NOT (src2 AND src1)
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5.2.5 Bit, Bit Field and Byte Operations

These instructions perform operations on a specified bit or bit field in an ordinal operand. All Bit, 
Bit Field and Byte instructions use the REG format and can operate on literals or local, global or 
special function registers.

5.2.5.1 Bit Operations

These instructions operate on a specified bit:

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal.

alterbit alters the state of a specified bit in an ordinal according to the condition code. If the 
condition code is 0102, the bit is set; if the condition code is 0002, the bit is cleared.

chkbit, described in Section 5.2.6, “Comparison” on page 5-12, can be used to check the value of
an individual bit in an ordinal.

scanbit and spanbit find the most significant set bit or clear bit, respectively, in an ordinal.

5.2.5.2 Bit Field Operations

The two bit field instructions are extract and modify.

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In esse
this instruction shifts right a bit field in a register and fills in the bits to the left of the bit field w
zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits).

modify copies bits from one register into another register. Only masked bits in the destination
register are modified. modify is equivalent to a bit field move.

setbit set bit
clrbit clear bit
notbit invert bit
alterbit alter bit
scanbit scan for bit
spanbit span over bit
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5.2.5.3 Byte Operations

scanbyte performs a byte-by-byte comparison of two ordinals to determine if any two 
corresponding bytes are equal. The condition code is set based on the results of the comparison. 
scanbyte uses the REG format and can specify literals or local, global or special function registers 
as arguments. 

bswap alters the order of bytes in a word, reversing its “endianess.” For more information on
subject, see Section 14.1.2.1, “Byte Ordering” on page 14-5.

5.2.6 Comparison

The processor provides several types of instructions for comparing two operands, as describ
the following subsections.

5.2.6.1 Compare and Conditional Compare

These instructions compare two operands then set the condition code bits in the AC register
according to the results of the comparison:

These all use the REG format and can specify literals or local, global or special function regi
The condition code bits are set to indicate whether one operand is less than, equal to, or gre
than the other operand. See Section 3.6.2, “Arithmetic Controls (AC) Register” on page 3-21 for a 
description of the condition codes for conditional operations.

cmpi and cmpo simply compare the two operands and set the condition code bits accordingly
concmpi and concmpo first check the status of condition code bit 2:

• If not set, the operands are compared as with cmpi and cmpo. 

• If set, no comparison is performed and the condition code flags are not changed.

The conditional-compare instructions are provided specifically to optimize two-sided range 
comparisons to check if A is between B and C (i.e., B ≤ A ≤ C). Here, a compare instruction (cmpi 
or cmpo) checks one side of the range (e.g., A ≥ B) and a conditional compare instruction 
(concmpi or concmpo) checks the other side (e.g., A ≤ C) according to the result of the first 
comparison. The condition codes following the conditional comparison directly reflect the results 
of both comparison operations. Therefore, only one conditional branch instruction is required to act 
upon the range check; otherwise, two branches would be needed.

chkbit checks a specified bit in a register and sets the condition code flags according to the bit 
state. The condition code is set to 0102 if the bit is set and 0002 otherwise.

cmpi Compare Integer
cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordinal
concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal
chkbit Check Bit
5-12 i960® Hx Microprocessor Developer’s Manual
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5.2.6.2 Compare and Increment or Decrement

These instructions compare two operands, set the condition code bits according to the compare 
results, then increment or decrement one of the operands:

These all use the REG format and can specify literals or local, global or special function registers. 
They are an architectural performance optimization which allows two register operations (e.g., 
compare and add) to execute in a single cycle. The intended use of these instructions is at the end of 
iterative loops.

5.2.6.3 Test Condition Codes

These test instructions allow the state of the condition code flags to be tested:

If the condition code matches the instruction-specified condition, a TRUE (0000 0001H) is stored 
in a destination register; otherwise, a FALSE (0000 0000H) is stored. All use the COBR format and 
can operate on local and global registers.

Using branch prediction suffixes on TEST<cc> instructions is allowed, but has no effect.

Since test instruction actions depend on a comparison, the architecture allows a programmer to 
predict the likely result of the operation for higher performance. The programmer’s prediction
encoded in one bit of the opword. Intel 80960 assemblers encode the prediction with a mnem
suffix of .t for true and .f for false.

cmpinci compare and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer
cmpdeco compare and decrement ordinal

teste{.t|.f} test for equal
testne{.t|.f} test for not equal
testl{.t|.f} test for less
testle{.t|.f} test for less or equal
testg{.t|.f} test for greater
testge{.t|.f} test for greater or equal
testo{.t|.f} test for ordered
testno{.t|.f} test for unordered
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5.2.7 Branch

Branch instructions allow program flow direction to be changed by explicitly modifying the IP. The 
processor provides three branch instruction types:

• unconditional branch

• conditional branch

• compare and branch

Most branch instructions specify the target IP by specifying a signed displacement to be added to 
the current IP. Other branch instructions specify the target IP’s memory address, using one o
processor’s addressing modes. This latter group of instructions is called extended addressin
instructions (e.g., branch extended, branch-and-link extended).

Since branch instruction actions depend on the result of a previous comparison, the architec
allows a programmer to predict the likely result of the branch operation for higher performan
The programmer’s prediction is encoded in one bit of the opword. The Intel C Tools and GNU
Tools encode the prediction with a mnemonic suffix of .t for true and .f for false. 

5.2.7.1 Branch Prediction

Branch prediction is an implementation-specific feature of the i960 Hx processors. Not every
implementation of the i960 architecture uses the branch prediction bit.

Since branch instruction actions depend on the result of a previous comparison, the architec
allows a programmer to predict the likely result of the branch operation for increased perform
The programmer’s prediction is encoded in one bit of the machine language instruction. 809
assemblers encode the prediction with a mnemonic suffix: .t = true, .f = false. Use the .t suffi
speed up execution when an instruction usually takes a branch; use the .f suffix when an instr
usually does not take a branch. See Appendix C, “Machine-Level Instruction Formats” for more on 
this subject.
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5.2.7.2 Unconditional Branch

These instructions are used for unconditional branching: 

b and bal use the CTRL format. bx and balx use the MEM format and can specify local or global 
registers as operands. b and bx cause program execution to jump to the specified target IP. These 
two instructions perform the same function; however, their determination of the target IP differs. 
The target IP of a b instruction is specified at link time as a relative displacement from the current 
IP. The target IP of the bx instruction is the absolute address resulting from the instruction’s us
a memory-addressing mode during execution.

bal and balx store the next instruction’s address in a specified register, then jump to the spec
target IP. (For bal, the RIP is automatically stored in register g14; for balx, the RIP location is 
specified with an instruction operand.) As described in Section 7.9, “Branch-and-Link” on 
page 7-21, branch and link instructions provide a method of performing procedure calls that d
use the processor’s integrated call/return mechanism. Here, the saved instruction address is 
a return IP. Branch and link is generally used to call leaf procedures (that is, procedures that 
call other procedures).

bx and balx can make use of any memory-addressing mode.

5.2.7.3 Conditional Branch

With conditional branch (BRANCH IF) instructions, the processor checks the AC register conditi
code flags. If these flags match the value specified with the instruction, the processor jumps 
target IP. These instructions use the displacement-plus-ip method of specifying the target IP:

All use the CTRL format. bo and bno are used with real numbers. bno can also be used with the 
result of a chkbit or scanbit instruction. Refer to Section 3.6.2.2, “Condition Code (AC.cc)” on 
page 3-22 for a discussion of the condition code for conditional operations.

b Branch
bx Branch Extended
bal Branch and Link
balx Branch and Link Extended

be{.t|.f} branch if equal/true
bne{.t|.f} branch if not equal
bl{.t|.f} branch if less
ble{.t|.f} branch if less or equal
bg{.t|.f} branch if greater
bge{.t|.f} branch if greater or equal
bo{.t|.f} branch if ordered
bno{.t|.f} branch if unordered/false
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5.2.7.4 Compare and Branch

These instructions compare two operands then branch according to the comparison result. Three 
instruction subtypes are compare integer, compare ordinal and branch on bit:

All use the COBR machine instruction format and can specify literals, local, global and special 
function registers as operands. With compare ordinal and branch (compob*) and compare integer 
and branch (compib*) instructions, two operands are compared and the condition code bits are set 
as described in Section 5.2.6, “Comparison” on page 5-12. A conditional branch is then executed 
as with the conditional branch (BRANCH IF) instructions.

With check bit and branch instructions (bbs, bbc), one operand specifies a bit to be checked in t
second operand. The condition code flags are set according to the state of the specified bit: 2 
(true) if the bit is set and 0002 (false) if the bit is clear. A conditional branch is then executed 
according to condition code bit settings.

These instructions can be used to optimize execution performance time. When it is not poss
separate adjacent compare and branch instructions from other unrelated instructions, replaci
instructions with a single compare and branch instruction increases performance.

cmpibe{.t | .f} compare integer and branch if equal
cmpibne{.t | .f} compare integer and branch if not equal
cmpibl{.t | .f} compare integer and branch if less
cmpible{.t | .f} compare integer and branch if less or equal 
cmpibg{.t | .f} compare integer and branch if greater
cmpibge{.t | .f} compare integer and branch if greater or equal
cmpibo{.t | .f} compare integer and branch if ordered
cmpibno{.t | .f} compare integer and branch if unordered 
cmpobe{.t | .f} compare ordinal and branch if equal
cmpobne{.t | .f} compare ordinal and branch if not equal 
cmpobl{.t | .f} compare ordinal and branch if less
cmpoble{.t | .f} compare ordinal and branch if less or equal
cmpobg{.t | .f} compare ordinal and branch if greater
cmpobge{.t | .f} compare ordinal and branch if greater or equal 
bbs{.t | .f} check bit and branch if set
bbc{.t | .f} check bit and branch if clear
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5.2.8 Call/Return

The i960 Hx processor offers an on-chip call/return mechanism for making procedure calls. Refer 
to Section 7.1, “Call and Return Mechanism” on page 7-2. The following instructions support this 
mechanism:

call and ret use the CTRL machine-instruction format. callx uses the MEM format and can specify
local or global registers. calls uses the REG format and can specify local, global or special func
registers.

call and callx make local calls to procedures. A local call is a call that does not require a switc
another stack. call and callx differ only in the method of specifying the target procedure’s addre
The target procedure of a call is determined at link time and is encoded in the opword as a s
displacement relative to the call IP. callx specifies the target procedure as an absolute 32-bit 
address calculated at run time using any one of the addressing modes. For both instructions
set of local registers and a new stack frame are allocated for the called procedure.

calls is used to make calls to system procedures; that is, procedures that provide a kernel or
system-executive service. This instruction operates similarly to call and callx, except that it gets its 
target-procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the system procedure table, calls can cause 
either a system-supervisor call or a system-local call to be executed. A system-supervisor ca
call to a system procedure that switches the processor to supervisor mode and switches to t
supervisor stack. A system-local call is a call to a system procedure that does not cause an 
execution mode or stack change. Supervisor mode is described throughout Chapter 7, “Procedure 
Calls.”

ret performs a return from a called procedure to the calling procedure (the procedure that ma
call). ret obtains its target IP (return IP) from linkage information that was saved for the callin
procedure. ret is used to return from all calls — including local and supervisor calls — and fro
implicit calls to interrupt and fault handlers.

call call
callx call extended
calls call system
ret return
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5.2.9 Faults

Generally, the processor generates faults automatically as the result of certain operations. Fault 
handling procedures are then invoked to handle various fault types without explicit intervention by 
the currently running program. These conditional fault instructions permit a program to explicitly 
generate a fault according to the state of the condition code flags.

All use the CTRL format. Since the actions of these instructions are dependent upon the result of a 
previous comparison, the architecture allows a programmer to predict the likely result of the 
conditional fault instructions for higher performance. The programmer’s prediction is encode
one bit of the opword. The Intel C Tools and GNU Tools encode the prediction with a mnemo
suffix of .t for true and .f for false. 

The syncf instruction ensures that any faults that occur during the execution of prior instructio
occur before the instruction that follows the syncf. syncf uses the REG format and requires no 
operands.

5.2.10 Debug

The processor supports debugging and monitoring of program activity through the use of tra
events. The following instructions support these debugging and monitoring tools:

These all use the REG format. Trace functions are controlled with bits in the Trace Control (T
register which enable or disable various types of tracing. Other TC register flags indicate wh
enabled trace event is detected. Refer to Chapter 9, “Tracing and Debugging”.

modtc permits trace controls to be modified. mark causes a breakpoint trace event to be genera
if breakpoint trace mode is enabled. fmark generates a breakpoint trace independent of the state
the breakpoint trace mode bits.

Other instructions that are helpful in debugging include modpc and sysctl. modpc can enable/
disable trace fault generation. The sysctl instruction also provides control over breakpoint trace 
event generation. This instruction is used, in part, to load and control the i960 Hx processor’s
breakpoint registers.

faulte{.t|.f} fault if equal
faultne{.t|.f} fault if not equal
faultl{.t|.f} fault if less
faultle{.t|.f} fault if less or equal
faultg{.t|.f} fault if greater
faultge{.t|.f} fault if greater or equal
faulto{.t|.f} fault if ordered
faultno{.t|.f} fault if unordered

modpc modify process controls
modtc modify trace controls
mark mark
fmark force mark
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5.2.11 Atomic Instructions

Atomic instructions perform an atomic read-modify-write operation on operands in memory. An 
atomic operation is one in which other memory operations are forced to occur before or after, but 
not during, the accesses that comprise the atomic operation. These instructions are required to 
enable synchronization between interrupt handlers and background tasks in any system. They are 
also particularly useful in systems where several agents — processors, coprocessors or exte
logic — have access to the same system memory for communication.

The atomic instructions are atomic add (atadd) and atomic modify (atmod). atadd causes an 
operand to be added to the value in the specified memory location. atmod causes bits in the 
specified memory location to be modified under control of a mask. Both instructions use the 
format and can specify literals or local, global or special function registers as operands.

5.2.12 Processor Management

These instructions control processor-related functions:

All use the REG format and can specify literals or local, global or special function registers. 

modpc provides a method of reading and modifying PC register contents. Only programs 
operating in supervisor mode may modify the PC register; however, any program may read i

The processor provides a flush local registers instruction (flushreg) to save the contents of the 
cached local registers to the stack. The flush local registers instruction automatically stores t
contents of all the local register sets — except the current set — in the register save area of 
associated stack frames.

The modify arithmetic controls instruction (modac) allows the AC register contents to be copied t
a register and/or modified under the control of a mask. The AC register cannot be explicitly 
addressed with any other instruction; however, it is implicitly accessed by instructions that us
condition codes or set the integer overflow flag.

sysctl is used to configure the interrupt controller, breakpoint registers and instruction cache.
also permits software to signal an interrupt or cause a processor reset and reinitialization. sysctl 
may be executed only by programs operating in supervisor mode.

intctl, inten and intdis are used to enable and disable interrupts and to determine current inte
enable status.

modpc Modify the Process Controls register
flushreg Flush cached local register sets to memory
modac Modify the Arithmetic Controls register
sysctl Perform system control function
inten Global interrupt enable
intdis Global interrupt enable and disable
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5.2.13 Cache Control

The following instructions provide instruction and data cache control functions.

icctl and dcctl provide cache control functions including: enabling, disabling, loading and locking 
(instruction cache only), invalidating, getting status and storing cache information out to memory. 
dcinva invalidates a user-specified quad word in the data cache. 

icctl Instruction cache control
dcctl Data cache control
dcinva Data cache invalidate by address
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Instruction Set Reference 6

This chapter provides detailed information about each instruction available to the i960® Hx 
processor. Instructions are listed alphabetically by assembly language mnemonic. Format and 
notation used in this chapter are defined in Section 6.1, “Notation” on page 6-1.

Information in this chapter is oriented toward programmers who write assembly language co
the i960 Hx processor. Information provided for each instruction includes:

Additional information about the instruction set can be found in the following chapters and 
appendices in this manual:

• Chapter 5, “Instruction Set Overview” - Summarizes the instruction set by group and describ
the assembly language instruction format.

• Appendix B, “Opcodes and Execution Times” - A quick-reference listing of instruction 
encodings assists debugging with a logic analyzer.

• Appendix C, “Machine-Level Instruction Formats” - Describes instruction set opword 
encodings.

• i960 Hx Processor Instuction Set Quick Reference (order number 272677) - A pocket-sized 
quick reference to all instructions.

6.1 Notation

In general, notation in this chapter is consistent with usage throughout the manual; however, there 
are a few exceptions. Read the following subsections to understand notations that are specific to 
this chapter.

6.1.1 Alphabetic Reference

Instructions are listed alphabetically by assembly language mnemonic. If several instructions are 
related and fall together alphabetically, they are described as a group on a single page.

• Alphabetic listing of all instructions • Faults that can occur during execution

• Assembly language mnemonic, name and 
format

• Action (or algorithm) and other side 
effects of executing an instruction

• Description of the instruction’s operation • Assembly language example

• Related instructions• Opcode and instruction encoding format
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The instruction’s assembly language mnemonic is shown in bold at the top of the page (e.g., subc). 
Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the name
instruction group is shown in capital letters (e.g., BRANCH<cc> or FAULT<cc>).

The i960 Hx processor-specific extensions to the i960 microprocessor instruction set are ind
in the header text for each such instruction. This type of notation is also used to indicate new
architecture instructions. Sections describing new core instructions provide notes as to which
series processors do not implement these instructions.

Generally, instruction set extensions are not portable to other i960 processor implementation
Further, new core instructions are not typically portable to earlier i960 processor family 
implementations such as the i960 Kx microprocessors.

6.1.2 Mnemonic

The Mnemonic section gives the mnemonic (in boldface type) and instruction name for each 
instruction covered on the page, for example:

This name is the actual assembly language instruction name recognized by assemblers.

CTRL and COBR format instructions also allow the programmer to specify optional .t or .f 
mnemonic suffixes for branch prediction:

• .t indicates to the processor that the condition the instruction is testing for is likely to be true. 

• .f indicates that the condition is likely to be false.

The processor uses the programmer’s prediction to prefetch and decode instructions along th
likely execution path when the actual path is not yet known. If the prediction was wrong, all ac
along the incorrect path are undone and the correct path is taken. For further discussion, se
Section E.2.7.7., “Branch Prediction” on page E-42.

When the programmer provides no suffix with an instruction which supports a suffix, the 
assembler makes its own prediction.

When an instruction supports prediction, the mnemonic listing includes the notation {.t|.f} to 
indicate the option, for example:

be{.t|.f} Branch If Equal

subi Subtract Integer
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6.1.3 Format

The Format section gives the instruction’s assembly language format and allowable operand t
Format is given in two or three lines. The following is a two-line format example:

The first line gives the assembly language mnemonic (boldface type) and operands (italics). 
the format is used for two or more instructions, an abbreviated form of the mnemonic is used
(asterisk) at the end of the mnemonic indicates a variable: in the above example, sub* is either 
subi or subo. Capital letters indicate an instruction class. For example, ADD<cc> refers to the 
class of conditional add instructions (e.g., addio, addig, addoo, addog).

Operand names are designed to describe operand function (e.g., src, len, mask).

The second line shows allowable entries for each operand. Notation is as follows:

In some cases, a third line is added to show register or memory location contents. For exam
may be useful to know that a register is to contain an address. The notation used in this line 
follows:

6.1.4 Description

The Description section is a narrative description of the instruction’s function and operands. It 
gives programming hints when appropriate.

6.1.5 Action

The Action section gives an algorithm written in a "C-like" pseudo-code that describes direct 
effects and possible side effects of executing an instruction. Algorithms document the instruc
net effect on the programming environment; they do not necessarily describe how the proce
actually implements the instruction. The following is an example of the action algorithm for th
alterbit instruction:

sub* src1 src2 dst

reg/lit/sfr reg/lit/sfr reg/sfr

reg Global (g0 ... g15) or local (r0 ... r15) register

lit Literal of the range 0 ... 31

sfr Special Function Register (sf0 ... sf4)

disp Signed displacement of range (-222 ... 222 - 1)

mem Address defined with the full range of addressing modes

addr Address

efa Effective Address
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if((AC.cc & 0102)==0)
dst = src2 & ~(2**(src1%32));

else
dst = src2 | 2**(src1%32);

Table 6-1 defines each abbreviation used in the instruction reference pseudo-code. The pseudo-
code has been written to comply as closely as possible with standard C programming language 
notation. Table 6-1 lists the pseudocode symbol definitions.

Table 6-1. Pseudo-Code Symbol Definitions 

= Assignment

==, != Comparison: equal, not equal

<, > less than, greater than

<=, >= less than or equal to, greater than or equal to

<<, >> Logical Shift

** Exponentiation

&, && Bitwise AND, logical AND

|, || Bitwise OR, logical OR

^ Bitwise XOR

~ One’s Complement

% Modulo

+, - Addition, Subtraction

* Multiplication (Integer or Ordinal)

/ Division (Integer or Ordinal)

# Comment delimiter

Table 6-2. Faults Applicable to All Instructions

Fault Type Subtype Description

OPERATION UNIMPLEMENTED
An attempt to execute any instruction fetched from internal data 
RAM or a memory-mapped region causes an operation 
unimplemented fault.

TRACE

MARK
A Mark Trace Event is signaled after completion of an instruction for 
which there is a hardware breakpoint condition match. A Trace fault 
is generated if PC.mk is set.

INSTRUCTION An Instruction Trace Event is signaled after instruction completion. 
A Trace fault is generated if both PC.te and TC.i=1.
6-4 i960® Hx Microprocessor Developer’s Manual



Instruction Set Reference

.

, 
6.1.6 Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution. 
Table 6-2 shows the possible faulting conditions that are common to the entire instruction set and 
could directly result from any instruction. These fault types are not included in the instruction 
reference. Table 6-3 shows the possible faulting conditions that are common to large subsets of the 
instruction set. If an instruction can generate a fault, it is noted in that instruction’s Faults section. 
In these sections, “Standard” refers to the faults shown in Table 6-2 and Table 6-3.

6.1.7 Example

The Example section gives an assembly language example of an application of the instruction

6.1.8 Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction format for each 
instruction, for example:

subi 593H REG

The opcode is given in hexadecimal format. The format is one of four possible formats: REG
COBR, CTRL and MEM. Refer to Appendix C, “Machine-Level Instruction Formats” for more 
information on the formats.

Table 6-3. Common Faulting Conditions

Fault Type Subtype Description

OPERATION

UNALIGNED
Any instruction that causes an unaligned memory access causes an 
operation aligned fault if unaligned faults are not masked in the fault 
configuration word in the Processor Control Block (PRCB).

INVALID_OPCODE This fault is generated when the processor attempts to execute an 
instruction containing an undefined opcode or addressing mode.

INVALID_OPERAND
This fault is caused by a non-defined operand in a supervisor mode 
only instruction, by an operand reference to an unaligned long-, triple- 
or quad-register group, or by a non-defined sfr.

UNIMPLEMENTED
This fault can occur due to an attempt to perform a non-word or 
unaligned access to a memory-mapped region or if trying to fetch 
instructions from MMR space or internal data RAM.

Type MISMATCH

Any instruction that attempts to write to supervisor protected internal 
data RAM or a memory-mapped register in supervisor space while not 
in supervisor mode causes a TYPE.MISMATCH fault. This fault is also 
generated for any non-supervisor mode reference to an SFR.
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6.1.9 See Also

The See Also section gives the mnemonics of related instructions which are also alphabetically 
listed in this chapter.

6.1.10 Side Effects

This section indicates whether the instruction causes changes to the condition code bits in the 
Arithmetic Controls.

6.1.11 Notes

This section provides additional information about an instruction such as whether it is implemented 
in other i960 processor families. 

6.2 Instructions

The processor’s instructions are arranged alphabetically by instruction or instruction group.
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6.2.1 ADD<cc>

Mnemonic addono Add Ordinal if Unordered
addog Add Ordinal if Greater
addoe Add Ordinal if Equal
addoge Add Ordinal if Greater or Equal
addol Add Ordinal if Less
addone Add Ordinal if Not Equal
addole Add Ordinal if Less or Equal
addoo Add Ordinal if Ordered
addino Add Integer if Unordered
addig Add Integer if Greater
addie Add Integer if Equal
addige Add Integer if Greater or Equal
addil Add Integer if Less
addine Add Integer if Not Equal
addile Add Integer if Less or Equal
addio Add Integer if Ordered

Format add* src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Conditionally adds src2 and src1 values and stores the result in dst based on 
the AC register condition code. If for Unordered the condition code is 0, or if 
for all other cases the logical AND of the condition code and the mask part of 
the opcode is not 0, then the values are added and placed in the destination. 
Otherwise the destination is left unchanged. Table 6-4 shows the condition 
code mask for each instruction. The mask is in opcode bits 4-6.
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Table 6-4. Condition Code Mask Descriptions

Instruction Mask Condition

addono
0002 Unordered

addino

addog
0012 Greater

addig

addoe
0102 Equal

addie

addoge
0112 Greater or equal

addige

addol
1002 Less

addil

addone
1012 Not equal

addine

addole
1102 Less or equal

addile

addoo
1112 Ordered

addio

Action addo<cc>:
if((mask & AC.cc) || (mask == AC.cc))

dst = (src1 + src2)[31:0];

addi<cc>:
if((mask & AC.cc) || (mask == AC.cc))
{

{ true_result = (src1 + src2);
dst = true_result[31:0];

}
if((true_result > (2**31) - 1) || (true_result < -2**31))

# Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
ARITHMETIC.OVERFLOW Occurs only with addi<cc>.
6-8 i960® Hx Microprocessor Developer’s Manual



Instruction Set Reference
Example # Assume (AC.cc AND 0012) ≠ 0.
addig r4, r8, r10     # r10 = r8 + r4

# Assume (AC.cc AND 1012) = 0.
addone r4, r8, r10    # r10 is not changed.

Opcode addono 780H REG
addog 790H REG
addoe 7A0H REG
addoge 7B0H REG
addol 7C0H REG
addone 7D0H REG
addole 7E0H REG
addoo 7F0H REG
addino 781H REG
addig 791H REG
addie 7A1H REG
addige 7B1H REG
addil 7C1H REG
addine 7D1H REG
addile 7E1H REG
addio 7F1H REG

See Also addc, SUB<cc>, addi, addo

Notes This class of core instructions is not implemented on 80960Cx, Kx and Sx 
processors.
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6.2.2 addc

Mnemonic addc Add Ordinal With Carry

Format addc src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Adds src2 and src1 values and condition code bit 1 (used here as a carry-in) 
and stores the result in dst. If ordinal addition results in a carry out, condition 
code bit 1 is set; otherwise, bit 1 is cleared. If integer addition results in an 
overflow, condition code bit 0 is set; otherwise, bit 0 is cleared. Regardless of 
addition results, condition code bit 2 is always set to 0.

addc can be used for ordinal or integer arithmetic. addc does not distinguish 
between ordinal and integer source operands. Instead, the processor evaluates 
the result for both data types and sets condition code bits 0 and 1 accordingly.

An integer overflow fault is never signaled with this instruction.

Action dst = (src1 + src2 + AC.cc[1])[31:0];
AC.cc[2:0] = 0002;
if((src2[31] == src1[31]) && (src2[31] != dst[31]))

AC.cc[0] = 1; # Set overflow bit.
AC.cc[1] = (src2 + src1 + AC.cc[1])[32]; # Carry out.

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example # Example of double-precision arithmetic.
# Assume 64-bit source operands
# in g0,g1 and g2,g3
cmpo 1, 0 # Clears Bit 1 (carry bit) of

# the AC.cc.
addc g0, g2, g0 # Add low-order 32 bits:

# g0 = g2 + g0 + carry bit
addc g1, g3, g1 # Add high-order 32 bits:

# g1 = g3 + g1 + carry bit
# 64-bit result is in g0, g1.

Opcode addc 5B0H REG

See Also ADD<cc>, SUB<cc>

Notes Sets the condition code in the arithmetic controls.
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6.2.3 addi, addo

Mnemonic addo Add Ordinal
addi Add Integer

Format add* src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Adds src2 and src1 values and stores the result in dst. The binary results from 
these two instructions are identical. The only difference is that addi can signal 
an integer overflow.

Action addo:
dst = (src2 +src1)[31:0];

addi:
true_result = (src1 + src2);
dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31))# Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else 

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
ARITHMETIC.OVERFLOW Occurs only with addi. 

Example addi r4, g5, r9 # r9 = g5 + r4

Opcode addo 590H REG
addi 591H REG

See Also addc, subi, subo, subc, ADD<cc>
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6.2.4 alterbit

Mnemonic alterbit Alter Bit

Format alterbit bitpos, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Copies src value to dst with one bit altered. bitpos operand specifies bit to be 
changed; condition code determines the value to which the bit is set. If 
condition code is X1X2, bit 1 = 1, the selected bit is set; otherwise, it is 
cleared. Typically this instruction is used to set the bitpos bit in the targ 
register if the result of a compare instruction is the equal condition code 
(0102).

Action if((AC.cc & 0102)==0)
dst = src & ~(2**(bitpos%32));

else
dst = src | 2**(bitpos%32);

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example # Assume AC.cc = 0102.
alterbit 24, g4,g9 # g9 = g4, with bit 24 set.

Opcode alterbit 58FH REG

See Also chkbit, clrbit, notbit, setbit
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6.2.5 and, andnot

Mnemonic and And
andnot And Not

Format and src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

andnot src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Performs a bitwise AND (and) or AND NOT (andnot) operation on src2 and 
src1 values and stores result in dst. Note in the action expressions below, src2 
operand comes first, so that with andnot the expression is evaluated as:

{src2 and not (src1)}
rather than

{src1 and not (src2)}.

Action and:
dst = src2 & src1;

andnot:
dst = src2 & ~src1;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example and 0x7, g8, g2 # Put lower 3 bits of g8 in g2.
andnot 0x7, r12, r9 # Copy r12 to r9 with lower 

# three bits cleared.

Opcode and 581H REG
andnot 582H REG

See Also nand, nor, not, notand, notor, or, ornot, xnor, xor
i960® Hx Microprocessor Developer’s Manual 6-13



Instruction Set Reference
6.2.6 atadd

Mnemonic atadd Atomic Add

Format atadd addr, src, dst
reg/sfr reg/lit/sfr reg/sfr

Description Adds src value (full word) to value in the memory location specified with addr 
operand. This read-modify-write operation is performed on the actual data in 
memory and never on a cached value on chip. Initial value from memory is 
stored in dst.

Memory read and write are done atomically (i.e., other bus masters must be 
prevented from accessing the word of memory containing the word specified 
by src/dst operand until operation completes). See Section 3.5.1, “Memory 
Requirements” on page 3-16 or more information on atomic accesses.

Memory location in addr is the word’s first byte (LSB) address. Address is 
automatically aligned to a word boundary. (Note that addr operand maps to 
src1 operand of the REG format.)

Action implicit_syncf();
tempa = addr & 0xFFFFFFFC;
temp = atomic_read(tempa);
atomic_write(tempa, temp+src);
dst = temp;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example atadd r8, r3, r11 # r8 contains the address of
# memory location.
# r11 = (r8)
# (r8) = r11 + r3.

Opcode atadd 612H REG

See Also atmod
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6.2.7 atmod

Mnemonic atmod Atomic Modify

Format atmod addr, mask, src/dst
reg/sfr reg/lit/sfr reg/sfr

Description Copies the selected bits of src/dst value into memory location specified in 
addr. The read-modify-write operation is performed on the actual data in 
memory and never on a cached value on chip. Bits set in mask operand select 
bits to be modified in memory. Initial value from memory is stored in src/dst. 
See Section 3.5.1, “Memory Requirements” on page 3-16 or more information 
on atomic accesses.

Memory read and write are done atomically (i.e., other bus masters must b
prevented from accessing the word of memory containing the word specifi
with the src/dst operand until operation completes).

Memory location in addr is the modified word’s first byte (LSB) address. 
Address is automatically aligned to a word boundary. 

Action implicit_syncf();
tempa = addr & 0xFFFFFFFC;
tempb = atomic_read(tempa);
temp = (tempb &~ mask) | (src_dst & mask);
atomic_write(tempa, temp);
src_dst = tempb;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example atmod g5, g7, g10 # tempa = (g5)
# temp = (tempa andnot g7) or
# (g10 and g7)
# (g5) = temp
# g10 = tempa

Opcode atmod 610H REG

See Also atadd
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6.2.8 b, bx

Mnemonic b Branch
bx Branch Extended

Format b targ
disp

bx targ
mem

Description Branches to the specified target.

With the b instruction, IP specified with targ operand can be no farther than   -
223 to (223- 4) bytes from current IP. When using the Intel i960 processor 
assembler, targ operand must be a label which specifies target instruction’s 

bx performs the same operation as b except the target instruction can be 
farther than -223 to (223- 4) bytes from current IP. Here, the target operand is
an effective address, which allows the full range of addressing modes to b
used to specify target instruction’s IP. The “IP + displacement” addressing
mode allows the instruction to be IP-relative. Indirect branching can be 
performed by placing target address in a register then using a register-ind
addressing mode.

Refer to Section 2.3, “Memory Addressing Modes” on page 2-6 for 
information on this subject.

Action b, bx:
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example b xyz # IP = xyz;
bx 1332 (ip) # IP = IP + 8 + 1332;
# this example uses IP-relative addressing

Opcode b 08H CTRL
bx 84H MEM

See Also bal, balx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs
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6.2.9 bal, balx

Mnemonic bal Branch and Link
balx Branch and Link Extended

Format bal targ
disp

balx targ, dst
mem reg

Description Stores address of instruction following bal or balx in a register then branches 
to the instruction specified with the targ operand.

The bal and balx instructions are used to call leaf procedures (procedures that 
do not call other procedures). The IP saved in the register provides a return IP 
that the leaf procedure can branch to (using a b or bx instruction) to perform a 
return from the procedure. Note that these instructions do not use the 
processor’s call-and-return mechanism, so the calling procedure shares its
local-register set with the called (leaf) procedure. 

With bal, address of next instruction is stored in register g14. targ operand 
value can be no farther than -223 to (223- 4) bytes from current IP. When using
the Intel i960 processor assembler, targ must be a label which specifies the 
target instruction’s IP.

balx performs same operation as bal except next instruction address is stored
in dst (allowing the return IP to be stored in any available register). With balx, 
the full address space can be accessed. Here, the target operand is an eff
address, which allows full range of addressing modes to be used to specif
target IP. “IP + displacement” addressing mode allows instruction to be IP-
relative. Indirect branching can be performed by placing target address in 
register and then using a register-indirect addressing mode.

See Section 2.3, “Memory Addressing Modes” on page 2-6 for a complete 
discussion of addressing modes available with memory-type operands.

Action bal:
g14 = IP + 4;
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;

balx:
dst = IP + instruction_length;
# Instruction_length = 4 or 8 depending on the addressing mode used.
IP[31:2] = effective_address(targ[31:2]); # 
Resume execution at new IP.
IP[1:0] = 0;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example bal xyz # g14 = IP + 4
# IP = xyz

balx (g2), g4 # g4 = IP + 4
# IP = (g2)
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Opcode bal 0BH CTRL
balx 85H MEM

See Also b, bx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs
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6.2.10 bbc, bbs

Mnemonic bbc{.t|.f} Check Bit and Branch If Clear
bbs{.t|.f} Check Bit and Branch If Set

Format bb*{.t|.f} bitpos, src, targ
reg/lit reg/sfr disp

Description Checks bit (designated by bitpos) in src and sets AC register condition code 
according to src value. The processor then performs conditional branch to 
instruction specified with targ, based on condition code state.

For bbc, if selected bit in src is clear, the processor sets condition code to 0002 
and branches to instruction specified by targ; otherwise, it sets condition code 
to 0102 and goes to next instruction.

For bbs, if selected bit is set, the processor sets condition code to 0102 and 
branches to targ; otherwise, it sets condition code to 0002 and goes to next 
instruction. 

targ can be no farther than -212 to (212 - 4) bytes from current IP. When using 
the Intel i960 processor assembler, targ must be a label which specifies target 
instruction’s IP.

Action bbs:
if((src & 2**(bitpos%32)) == 1)
{ AC.cc = 0102;

temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}
else

AC.cc = 0002;

bbc:
if((src & 2**(bitpos%32)) == 0)
{ AC.cc = 0002;

temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}
else

AC.cc = 0102;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example # Assume bit 10 of r6 is clear.
bbc 10, r6, xyz # Bit 10 of r6 is checked

# and found clear:
# AC.cc = 000
# IP = xyz;

Opcode bbc 30H COBR
bbs 37H COBR
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See Also chkbit, COMPARE AND BRANCH<cc>, BRANCH<cc>

Side Effects Sets the condition code in the arithmetic controls.
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6.2.11 BRANCH<cc>

Mnemonic be{.t|.f} Branch If Equal
bne{.t|.f} Branch If Not Equal
bl{.t|.f} Branch If Less
ble{.t|.f} Branch If Less Or Equal
bg{.t|.f} Branch If Greater
bge{.t|.f} Branch If Greater Or Equal
bo{.t|.f} Branch If Ordered
bno{.t|.f} Branch If Unordered

Format b*{.t|.f} targ
disp

Description Branches to instruction specified with targ operand according to AC register 
condition code state. 

Optional .t or .f suffix may be appended to mnemonic. Use .t to speed up 
execution when these instructions usually take the branch. Use .f to speed up 
execution when these instructions usually do not take the branch. If a suffix is 
not provided, the assembler is free to provide one.

For all branch<cc> instructions except bno, the processor branches to 
instruction specified with targ, if the logical AND of condition code and mask 
part of opcode is not zero. Otherwise, it goes to next instruction.

For bno, the processor branches to instruction specified with targ if the 
condition code is zero. Otherwise, it goes to next instruction.

For instance, bno (unordered) can be used as a branch if false instruction when 
coupled with chkbit. For bno, branch is taken if condition code equals 0002. 
be can be used as branch-if true instruction.

The targ operand value can be no farther than -223 to (223- 4) bytes from 
current IP.

The following table shows condition code mask for each instruction. The mask 
is in opcode bits 0-2.

Instruction Mask Condition

bno 0002 Unordered

bg 0012 Greater

be 0102 Equal

bge 0112 Greater or equal

bl 1002 Less

bne 1012 Not equal

ble 1102 Less or equal

bo 1112 Ordered
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Action if((mask & AC.cc) || (mask == AC.cc))
{ temp[31:2] = sign_extension(targ[23:2]);

IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example # Assume (AC.cc AND 1002) ≠ 0
bl xyz # IP = xyz;

Opcode be 12H CTRL
bne 15H CTRL
bl 14H CTRL
ble 16H CTRL
bg 11H CTRL
bge 13H CTRL
bo 17H CTRL
bno 10H CTRL

See Also b, bx, bbc, bbs, COMPARE AND BRANCH<cc>, bal, balx, BRANCH<cc>
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6.2.12 bswap

Mnemonic bswap Byte Swap

Format bswap src1:src, src2:dst
reg/lit/sfr reg/sfr

Description Alters the order of bytes in a word, reversing its “endianess.” 

Copies bytes 3:0 of src1 to src2 reversing order of the bytes. Byte 0 of src1 
becomes byte 3 of src2, byte 1 of src1 becomes byte 2 of src2, etc.

Action dst = (rotate_left(src 8) & 0x00FF00FF)
        +(rotate_left(src 24) & 0xFF00FF00);

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example # g8 = 0x89ABCDEF
bswap g8, g10 # Reverse byte order.

# g10 now 0xEFCDAB89

Opcode bswap 5ADH REG

See Also scanbyte, rotate

Notes This core instruction is not implemented on Cx, Kx and Sx 80960 process
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6.2.13 call

Mnemonic call Call

Format call targ
disp

Description Calls a new procedure. targ operand specifies the IP of called procedure’s firs
instruction. When using the Intel i960 processor assembler, targ must be a 
label.

In executing this instruction, the processor performs a local call operation 
described in Section 7.1.3.1, “Call Operation” on page 7-6. As part of this 
operation, the processor saves the set of local registers associated with th
calling procedure and allocates a new set of local registers and a new stac
frame for the called procedure. Processor then goes to the instruction spec
with targ and begins execution.

targ can be no farther than -223 to (223 - 4) bytes from current IP.

Action # Wait for any uncompleted instructions to finish.
implicit_syncf();
temp =  (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

# Round stack pointer to next boundary.
# SALIGN=1 on i960 Hx processors.       

RIP = IP; 
if (register_set_available)

allocate_new_frame( ); 
else

{ save_register_set( ); # Save register set in memory at its F
 allocate_new_frame( ); 
}
# Local register references now refer to new frame. 

IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;
PFP = FP; 
FP = temp; 
SP = temp + 64; 

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example call xyz # IP = xyz

Opcode call 09H CTRL

See Also bal, calls, callx
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6.2.14 calls

Mnemonic calls Call System

Format calls targ
reg/lit

Description Calls a system procedure. The targ operand gives the number of the procedure 
being called. For calls, the processor performs system call operation described 
in Section 7.5, “System Calls” on page 7-15. targ provides an index to a 
system procedure table entry from which the processor gets the called 
procedure’s IP.

The called procedure can be a local or supervisor procedure, depending o
system procedure table entry type. If it is a supervisor procedure, the proce
switches to supervisor mode (if not already in this mode).

As part of this operation, processor also allocates a new set of local regist
and a new stack frame for called procedure. If the processor switches to 
supervisor mode, the new stack frame is created on the supervisor stack.
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Action # Wait for any uncompleted instructions to finish.
implicit_syncf();
If (targ > 259) 

generate_fault(PROTECTION.LENGTH);
temp = get_sys_proc_entry(sptbase + 48 + 4*targ);

 # sptbase is address of supervisor procedure table.

 if (register_set_available)
allocate_new_frame( );

else 
{ save_register_set( ); # Save a frame in memory at its FP.

allocate_new_frame( );
# Local register references now refer to new frame.

}
RIP = IP;
IP[31:2] = effective_address(temp[31:2]);
IP[1:0] = 0;
if ((temp.type == local) ||  (PC.em == supervisor))

{ # Local call or supervisor call from supervisor mode.
   tempa =  (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

# Round stack pointer to next boundary.
# SALIGN=1 on i960 Hx processors.       
temp.RRR = 0002;

}
else # Supervisor call from user mode.

{ tempa = SSP; # Get Supervisor Stack pointer.
temp.RRR = 0102 | PC.te; 

 PC.em = supervisor;
 PC.te = temp.te;

}
PFP = FP;
PFP.rrr = temp.RRR;
FP = tempa;
SP = tempa + 64;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
PROTECTION.LENGTH Specifies a procedure number greater than 25

Example calls r12 # IP = value obtained from
# procedure table for procedure
# number given in r12.

calls 3 # Call procedure 3.

Opcode calls 660H REG

See Also bal, call, callx, ret
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6.2.15 callx

Mnemonic callx Call Extended

Format callx targ
mem

Description Calls new procedure. targ specifies IP of called procedure’s first instruction.

In executing callx, the processor performs a local call as described in 
Section 7.1.3.1, “Call Operation” on page 7-6. As part of this operation, the 
processor allocates a new set of local registers and a new stack frame for
called procedure. Processor then goes to the instruction specified with targ and 
begins execution of new procedure.

callx performs the same operation as call except the target instruction can
farther than -223 to (223 - 4) bytes from current IP.

The targ operand is a memory type, which allows the full range of address
modes to be used to specify the IP of the target instruction. The “IP + 
displacement” addressing mode allows the instruction to be IP-relative. 
Indirect calls can be performed by placing the target address in a register 
then using one of the register-indirect addressing modes.

Refer to Chapter 2, “Data Types and Memory Addressing Modes” for more 
information.

Action # Wait for any uncompleted instructions to finish; 
implicit_syncf();

temp =  (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)
# Round stack pointer to next boundary.
# SALIGN=1 on i960 Hx processors.       

RIP = IP; 
if (register_set_available)

allocate_new_frame( ); 
else

 { save_register_set( ); # Save register set in memory at its FP; 
allocate_new_frame( ); 

}
 # Local register references now refer to new frame. 

IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;
PFP = FP; 
FP = temp; 
SP = temp + 64;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example callx (g5) # IP = (g5), where the address in g5
# is the address of the new procedure. 

Opcode callx 86H MEM

See Also bal, call, calls, ret
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6.2.16 chkbit

Mnemonic chkbit Check Bit

Format chkbit bitpos, src2
reg/lit/sfr reg/lit/sfr

Description Checks bit in src2 designated by bitpos and sets condition code according to 
value found. If bit is set, condition code is set to 0102; if bit is clear, condition 
code is set to 0002.

Action if (((src2 & 2**(bitpos % 32)) == 0) 
AC.cc = 0002; 

else
AC.cc = 0102;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example chkbit 13, g8 # Checks bit 13 in g8 and sets
# AC.cc according to the result.

Opcode chkbit 5AEH REG

See Also alterbit, clrbit, notbit, setbit, cmpi, cmpo

Notes Sets the condition code in the arithmetic controls.
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6.2.17 clrbit

Mnemonic clrbit Clear Bit

Format clrbit bitpos, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Copies src value to dst with one bit cleared. bitpos operand specifies bit to be 
cleared.

Action dst = src & ~(2**(bitpos%32)); 

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example clrbit 23, g3, g6 # g6 = g3 with bit 23 cleared.

Opcode clrbit 58CH REG

See Also alterbit, chkbit, notbit, setbit
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6.2.18 cmpdeci, cmpdeco

Mnemonic cmpdeci Compare and Decrement Integer
cmpdeco Compare and Decrement Ordinal

Format cmpdec* src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Compares src2 and src1 values and sets the condition code according to 
comparison results. src2 is then decremented by one and result is stored in dst. 
The following table shows condition code setting for the three possible results 
of the comparison.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2

These instructions are intended for use in ending iterative loops. For cmpdeci, 
integer overflow is ignored to allow looping down through the minimum 
integer values.

Action if(src1 < src2)
AC.cc = 1002;

else if(src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

dst = src2 -1; # Overflow suppressed for cmpdeci.

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example cmpdeci 12, g7, g1 # Compares g7 with 12 and sets
# AC.cc to indicate the result
# g1 = g7 - 1.

Opcode cmpdeci 5A7H REG
cmpdeco 5A6H REG

See Also cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH<cc>

Side Effects Sets the condition code in the arithmetic controls.
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6.2.19 cmpinci, cmpinco

Mnemonic cmpinci Compare and Increment Integer
cmpinco Compare and Increment Ordinal

Format cmpinc* src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Compares src2 and src1 values and sets the condition code according to 
comparison results. src2 is then incremented by one and result is stored in dst. 
The following table shows condition code settings for the three possible 
comparison results.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2

These instructions are intended for use in ending iterative loops. For cmpinci, 
integer overflow is ignored to allow looping up through the maximum integer 
values.

Action if (src1 < src2)  
AC.cc = 1002; 

else if (src1 == src2)  
AC.cc = 0102; 

else
AC.cc = 0012;

dst = src2 + 1; # Overflow suppressed for cmpinci.

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example cmpinco r8, g2, g9 # Compares the values in g2 
# and r8 and sets AC.cc to
# indicate the result:
# g9 = g2 + 1

Opcode cmpinci 5A5H REG
cmpinco 5A4H REG

See Also cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH<cc>

Side Effects Sets the condition code in the arithmetic controls.
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6.2.20 COMPARE

Mnemonic cmpi Compare Integer
cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordinal
cmpob Compare Ordinal Byte
cmpos Compare Ordinal Short

Format cmp* src1, src2
reg/lit/sfr reg/lit/sfr

Description Compares src2 and src1 values and sets condition code according to 
comparison results. The following table shows condition code settings for the 
three possible comparison results.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2

cmpi* followed by a branch-if instruction is equivalent to a compare-integer-
and-branch instruction. The latter method of comparing and branching 
produces more compact code; however, the former method can execute byte 
and short compares without masking. The same is true for cmpo* and the 
compare-ordinal-and-branch instructions.

Action # For cmpo, cmpi, N = 31. 
# For cmpos, cmpis, N = 15.
# For cmpob, cmpib, N = 7.

if (src1[N:0] < src2[N:0])
AC.cc = 1002; 

else if (src1[N:0] == src2[N:0])
 AC.cc = 0102; 
else if (src1[N:0] > src2[N:0])

AC.cc = 0012; 

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example cmpo r9, 0x10 # Compares the value in r9 with 0x10
# and sets AC.cc to indicate the
# result.

bg xyz # Branches to xyz if the value of r9
# was greater than 0x10.
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Opcode cmpi 5A1H REG
cmpib 595H REG 
cmpis 597H REG
cmpo 5A0H REG
cmpob 594H REG
cmpos 596H REG

See Also COMPARE AND BRANCH<cc>, cmpdeci, cmpdeco, cmpinci, cmpinco, 
concmpi, concmpo

Side Effects Sets the condition code in the arithmetic controls.

Notes The core instructions cmpib, cmpis, compob and compos are not 
implemented on Cx, Kx and Sx 80960 processors.
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6.2.21 COMPARE AND BRANCH<cc>

Mnemonic cmpibe{.t|.f} Compare Integer and Branch If Equal
cmpibne{.t|.f}Compare Integer and Branch If Not Equal
cmpibl{.t|.f} Compare Integer and Branch If Less
cmpible{.t|.f}Compare Integer and Branch If Less Or Equal
cmpibg{.t|.f}Compare Integer and Branch If Greater
cmpibge{.t|.f}Compare Integer and Branch If Greater Or Equal
cmpibo{.t|.f}Compare Integer and Branch If Ordered
cmpibno{.t|.f}Compare Integer and Branch If Not Ordered

cmpobe{.t|.f}Compare Ordinal and Branch If Equal
cmpobne{.t|.f}Compare Ordinal and Branch If Not Equal
cmpobl{.t|.f}Compare Ordinal and Branch If Less
cmpoble{.t|.f}Compare Ordinal and Branch If Less Or Equal 
cmpobg{.t|.f}Compare Ordinal and Branch If Greater
cmpobge{.t|.f}Compare Ordinal and Branch If Greater Or Equal 

Format cmpib*{.t|.f} src1, src2, targ
reg/lit reg/sfr disp

cmpob*{.t|.f} src1, src2, targ
reg/lit reg/sfr disp

Description Compares src2 and src1 values and sets AC register condition code according 
to comparison results. If logical AND of condition code and mask part of 
opcode is not zero, the processor branches to instruction specified with targ; 
otherwise, the processor goes to next instruction.

Optional .t or .f suffix may be appended to mnemonic. Use .t to speed up 
execution when these instructions usually take the branch. Use .f to speed up 
execution when these instructions usually do not take the branch. If a suffix is 
not provided, the assembler is free to provide one.

targ can be no farther than -212 to (212 - 4) bytes from current IP. When using 
the Intel i960 processor assembler, targ must be a label which specifies target 
instruction’s IP.

Functions these instructions perform can be duplicated with a cmpi or cmpo 
followed by a branch-if instruction, as described in Section 6.2.20, 
“COMPARE” on page 6-32.

The following table shows the condition-code mask for each instruction. T
mask is in bits 0-2 of the opcode.

Instruction Mask Branch Condition

cmpibno 0002 No Condition

cmpibg 0012 src1 > src2

cmpibe 0102 src1 = src2

cmpibge 0112 src1 ≥ src2

cmpibl 1002 src1 < src2
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cmpibne 1012 src1 ≠ src2

cmpible 1102 src1 ≤ src2

cmpibo 1112 Any Condition

cmpobg 0012 src1 > src2

cmpobe 0102 src1 = src2

cmpobge 0112 src1 ≥ src2

cmpobl 1002 src1 < src2

cmpobne 1012 src1 ≠ src2

cmpoble 1102 src1 ≤ src2

cmpibo always branches; cmpibno never branches. 

Action if(src1 < src2)
AC.cc = 1002;

else if(src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

if((mask && AC.cc) != 0002)
IP[31:2] = efa[31:2]; # Resume execution at the new IP.
IP[1:0] = 0;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example # Assume g3 < g9
cmpibl g3, g9, xyz # g9 is compared with g3;

# IP = xyz.
# assume 19 ≥ r7
cmpobge 19, r7, xyz # 19 is compared with r7;

# IP = xyz.

Opcode cmpibe 3AH COBR
cmpibne 3DH COBR
cmpibl 3CH COBR
cmpible 3EH COBR
cmpibg 39H COBR
cmpibge 3BH COBR
cmpibo 3FH COBR
cmpibno 38H COBR
cmpobe 32H COBR
cmpobne 35H COBR
cmpobl 34H COBR
cmpoble 36H COBR
cmpobg 31H COBR
cmpobge 33H COBR

See Also BRANCH<cc>, cmpi, cmpo, bal, balx

Notes Sets the condition code in the arithmetic controls.

Instruction Mask Branch Condition
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6.2.22 concmpi, concmpo

Mnemonic concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal

Format concmp* src1, src2
reg/lit/sfr reg/lit/sfr

Description Compares src2 and src1 values if condition code bit 2 is not set. If comparison 
is performed, condition code is set according to comparison results. 
Otherwise, condition codes are not altered.

These instructions are provided to facilitate bounds checking by means of two-
sided range comparisons (e.g., is A between B and C?). They are generally 
used after a compare instruction to test whether a value is inclusively between 
two other values.

The example below illustrates this application by testing whether g3 value is 
between g5 and g6 values, where g5 is assumed to be less than g6. First a 
comparison (cmpo) of g3 and g6 is performed. If g3 is less than or equal to g6 
(i.e., condition code is either 0102 or 0012), a conditional comparison 
(concmpo) of g3 and g5 is then performed. If g3 is greater than or equal to g5 
(indicating that g3 is within the bounds of g5 and g6), condition code is set to 
0102; otherwise, it is set to 0012.

Action if (AC.cc != 1XX2) 
{ if(src1 <= src2) 

AC.cc = 0102;
else 

AC.cc  = 0012;
}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example cmpo g6, g3 # Compares g6 and g3 
# and sets AC.cc.

concmpo g5, g3 # If AC.cc < 1002 (g6 ≥ g3)
# g5 is compared with g3.

At this point, depending on the register ordering, the condition code is one
those listed on Table 6-5.

Table 6-5. concmpo example: register ordering and CC

Order CC

g5 < g6 < g3 1002

g5 < g6 = g3 0102

g5 < g3 < g6 0102

g5 = g3 < g6 0102

g3 < g5 < g6 0012
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Opcode concmpi 5A3H REG
concmpo 5A2H REG

See Also cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE AND 
BRANCH<cc>

Notes Sets the condition code in the arithmetic controls.
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6.2.23 dcctl

Mnemonic dcctl Data-cache Control

Format src1, src2, src/dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Performs management and control of the data cache including disabling, 
enabling, invalidating, ensuring coherency, getting status, and storing cache 
contents to memory. Operations are indicated by the value of src1. src2 and 
src/dst are also used by some operations. When needed by the operation, the 
processor orders the effects of the operation with previous and subsequent 
operations to ensure correct behavior.

Table 6-6. dcctl Operand Fields

Function src1 src2 src/dst

Disable D-cache 0 NA NA

Enable D-cache 1 NA NA

Global invalidate 
D-cache 2 NA NA

Ensure cache 
coherency1 3 NA NA

Get D-cache status 4 NA

src: NA
dst: Receives 
D-cache status 
(see Figure 6-1).

Reserved 5 NA NA

Store D-cache to 
memory 6

Destination 
address for cache 
sets

src: D-cache set #’s 
to be stored (see 
Figure 6-1).

Reserved 7 NA NA

Quick invalidate 8 1 NA

Reserved 9 NA NA

1. Invalidates data cache on 80960Hx.
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Figure 6-1. dcctl src1 and src/dst Formats

Table 6-7. dcctl Status Values and D-Cache Parameters

bytes per atom 4

atoms per line 4

number of sets 128 

number of ways 4

cache size 8-Kbytes

8    7 031

src1 Format

28 27 16 15 12 8 4 031

 

src/dst Format for Data Cache Status

3711

Enabled = 1
Disabled = 0

# of Ways-1

031

src/dst Format for Store Data Cache Sets to Memory

16   15

Starting Set #Ending Set #

Function Type

Reserved, 
(Initialize to 0)

log2 (# of Sets)
log2 (Atoms/Line)

log2 (Bytes/Atom)

2 2
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Figure 6-2. Store Data Cache to Memory Output Format

  Set_Data (Starting Set) Destination 
Address (DA)

Tag (Starting set) DA + 4H

Valid Bits (Starting set) DA + 8H

Word 0 DA + CH

Word 1 DA + 10H

Word 2 DA + 14H

Word 3 DA + 18H

Tag (Starting set) DA + 1CH

Valid Bits (Starting set) DA + 20H

Word 0 DA + 24H

Word 1 DA + 28H

Word 2 DA + 2cH

Word 3 DA + 30H

Tag (Starting set) DA + 34H

Valid Bits (Starting set) DA + 38H

Word 0 DA + 3CH

Word 1 DA + 40H

Word 2 DA + 44H

Word 3 DA + 48H

Tag (Starting set) DA + 4CH

Valid Bits (Starting set) DA +50H

. . . . . . 

W
ay

 0
W

ay
 1

W
ay

 2
W

ay
 3
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Figure 6-3. D-Cache Tag and Valid Bit Formats

031

80960Hx Actual Address Bits 31:11

80960Hx Cache Tag Format

031

Set_Data D-Cache Values

21 20

031

Valid_Bits Values

5

D-Cache Set Data Value

Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 3 of current Set and Way

Valid Bit for Word 1 of current Set and Way

Tag Valid Bit for current Set and Way

Valid Bit for Word 0 of current Set and Way

1 = Way 1 is least recently used
0 = Way 0 is least recently used

3 = Way 3 is least recently used
2 = Way 2 is least recently used
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Action f (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

order_wrt(previous_operations);
switch (src1[7:0]) {

case 0: # Disable data cache.
disable_Dcache( );
break;

case 1: # Enable data cache.
enable_Dcache( );
break;

case 2: # Global invalidate data cache.
invalidate_Dcache( );
break;

case 3: # Ensure coherency of data cache with memory.
# Causes data cache to be invalidated on this processor.
ensure_Dcache_coherency( );
break;

case 4: # Get data cache status into src_dst.
if (Dcache_enabled) src_dst[0] = 1;
else src_dst[0] = 0;
# Atom is 4 bytes.
src_dst[7:4] = log2(bytes per atom);
# 4 atoms per line.
src_dst[11:8] = log2(atoms per line);
src_dst[15:12] = log2(number of sets);
src_dst[27:16] = number of ways-1; # in lines per set
# cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12]).
break;
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Action 
(continued)

case 6: # Store data cache sets to memory pointed to by src2.
start = src_dst[15:0] # Starting set number.
end   = src_dst[31:16] # Ending set number. 

# (zero-origin).
if (end >= Dcache_max_sets) end = Dcache_max_sets - 1;
if (start > end) generate_fault

(OPERATION.INVALID_OPERAND);
memadr = src2;# Must be word-aligned.
if (0x3 & memadr! = 0)
generate_fault(OPERATION.INVALID_OPERAND)
for (set = start; set <= end; set++){ 

# Set_Data is described at end of this code flow.
 memory[memadr] = Set_Data[set];
 memadr += 4;
 for (way = 0; way < numb_ways; way++)
 {memory[memadr] = tags[set][way];

 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
for (word = 0; word < words_in_line; word++)

{memory[memadr] =
Dcache_line[set][way][word];

 memadr += 4;
}

 }
}
break;

case 8: # invalidate the lines that came from LMTs that had DCIIR set 
# at the time the line was allocated.
# NOTE : for compatibility with future products that have 
# several independent regions, the value of src2 should be one.

invalidate_DCIIR_lines_in_DCache;
break;

default: # Reserved.
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
order_wrt(subsequent_operations)

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
TYPE.MISMATCH Attempt to execute instruction while not in 

supervisor mode.
OPERATION.INVALID_OPERAND

Example # g0 = 6, g1 = 0x10000000,
# g2 = 0x001F0001

dcctl g0,g1,g2 # Store the status of D-cache
# sets 1-0x1F to memory starting
# at 0x10000000.

Opcode dcctl 65CH REG

See Also sysctl, dcinva
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Notes DCCTL function 6 stores data-cache sets to a target range in external memory. 
For any memory location that is cached and also within the target range for 
function 6, the corresponding word-valid bit will be cleared after function 6 
completes to ensure data-cache coherency. Thus, dcctl function 6 can alter the 
state of the cache after it completes, but only the word-valid bits. In all cases, 
even when the cache sets to store to external memory overlap the cache sets 
that map the target range in external memory, DCCTL function 6 always 
returns the state of the cache as it existed when the DCCTL was issued.

This instruction is implemented on the 80960RP, 80960Hx and 80960Jx 
processor families only, and may or may not be implemented on future i960 
processors.
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6.2.24 dcinva (80960Hx-Specific Instruction)

Mnemonic dcinva Data Cache Invalidate by Address.

Format dcinva src1
mem
efa

Description An effective linear address contained in src1 is sent to the data cache. The 
quad word of data in the data cache in which the address falls is then 
invalidated.

Action # beginning of quad word including effective_address 
line_start = effective_address & !0xF;
 invalidate_Dcache_quadword(line_start);

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example # Placing dcinva in a critical section ensures data
# coherency in case main memory is updated by an
# external agent directly.

.set mem1, 0x34504 # address to invalidate

.set mem1_sema, 1   # semaphore no. for address mem1
# label: wait_on_semaphore routine to wait on a
# semaphore 
# label: signal_semaphore routine to release a
# semaphore

# Wait on mem1_sema semaphore
lda     mem1_sema, g1
call    wait_on_semaphore

# now in critical section
dcinva  mem1

# use the resource here, taking advantage of its caching

# Signal mem1_sema
call    signal_semaphore

Opcode dcinva ADH MEM

See Also dcctl

Notes This instruction is implemented on the i960 Hx processor family only and m
or may not be implemented on future i960 processors.
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6.2.25 divi, divo

Mnemonic divi Divide Integer
divo Divide Ordinal

Format div* src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Divides src2 value by src1 value and stores result in dst. Remainder is 
discarded.

For divi, an integer-overflow fault can be signaled.

Action divo:
if (src1 == 0) 
{ dst = undefined_value;

generate_fault (ARITHMETIC.ZERO_DIVIDE);
else

dst = src2/src1;

divi:
if (src1 == 0) 
{ dst = undefined_value;

generate_fault (ARITHMETIC.ZERO_DIVIDE);}
else if ((src2 == -2**31) && (src1 == -1)) 

{ dst = -2**31

if (AC.om == 1) 
AC.of  = 1;

else
generate_fault (ARITHMETIC.OVERFLOW);

}
else

dst  = src2 / src1; 

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
ARITHMETIC.ZERO_DIVIDE The src1 operand is 0.
ARITHMETIC.OVERFLOW Result too large for destination register 

(divi only). If overflow occurs and
AC.om=1, fault is suppressed and AC.of is
set to 1. Result’s least significant 32 bits are
stored in dst.

Example  divo r3, r8, r13 # r13 = r8/r3

Opcode divi 74BH REG
divo 70BH REG

See Also ediv, mulo, muli, emul
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6.2.26 ediv

Mnemonic ediv Extended Divide

Format ediv src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Divides src2 by src1 and stores result in dst. The src2 value is a long ordinal 
(64 bits) contained in two adjacent registers. src2 specifies the lower 
numbered register which contains operand’s least significant bits. src2 must be 
an even numbered register (i.e., g0, g2, ... or r4, r6, r8... or sf0, sf2,...). src1 
value is a normal ordinal (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quotient. 
Remainder is stored in the register designated by dst; quotient is stored in the 
next highest numbered register. dst must be an even numbered register (i.e., 
g0, g2, ... r4, r6, r8, ... or sf0, sf2, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (quotient or remainder do not fit in 32 bits), no fau
is raised and the result is undefined.

Action if((reg_number(src2)%2 != 0) || (reg_number(dst)%2 != 0))
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault (OPERATION.INVALID_OPERAND);

}
else if(src1 == 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(ARITHMETIC.DIVIDE_ZERO);

}
else # Quotient
{ dst[1] = ((src2 + reg_value(src2[1]) * 2**32) / src1)[31:0];

#Remainder
dst[0] = (src2 + reg_value(src2[1]) * 2**32 

- ((src2 + reg_value(src2[1]) * 2**32 / src1) * src1);
}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
ARITHMETIC.ZERO_DIVIDE The src1 operand is 0. 

Example ediv g3, g4, g10 # g10 = remainder of g4,g5/g3
# g11 = quotient of g4,g5/g3

Opcode ediv 671H REG

See Also emul, divi, divo
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6.2.27 emul

Mnemonic emul Extended Multiply

Format emul src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Multiplies src2 by src1 and stores the result in dst. Result is a long ordinal (64 
bits) stored in two adjacent registers. dst specifies lower numbered register, 
which receives the result’s least significant bits. dst must be an even numbered
register (i.e., g0, g2, ... r4, r6, r8, ... or sf0, sf2, ...).

This instruction performs ordinal arithmetic.

Action if(reg_number(dst)%2 != 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else
{ dst[0] = (src1 * src2)[31:0];

dst[1] = (src1 * src2)[63:32];
}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example emul r4, r5, g2 # g2,g3 = r4 * r5.

Opcode emul 670H REG

See Also ediv, muli, mulo
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6.2.28 eshro

Mnemonic eshro Extended Shift Right Ordinal

Format eshro src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Shifts src2 right by (src1 mod 32) places and stores the result in dst. Bits 
shifted beyond the least-significant bit are discarded.

src2 value is a long ordinal (i.e., 64 bits) contained in two adjacent registers. 
src2 operand specifies the lower numbered register, which contains operan
least significant bits. src2 operand must be an even numbered register (i.e., 
r6, r8, ... or g0, g2).

src1 operand is a single 32-bit register or literal where the lower 5 bits spec
the number of places that the src2 operand is to be shifted.

The least significant 32 bits of the shift operation result are stored in dst.

Action if(reg_number(src2)%2 != 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else

dst = shift_right((src2 + reg_value(src2[1]) * 2**32),(src1%32))[31:0];

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example eshro g3, g4, g11 # g11 = g4,5 shifted right by
# (g3 MOD 32).

Opcode eshro 5D8H REG

See Also SHIFT, extract

Notes This core instruction is not implemented on the Kx and Sx 80960 process
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6.2.29 extract

Mnemonic extract Extract

Format extract bitpos len src/dst
reg/lit/sfr reg/lit/sfr reg

Description Shifts a specified bit field in src/dst right and zero fills bits to left of shifted bit 
field. bitpos value specifies the least significant bit of the bit field to be shifted; 
len value specifies bit field length.

Action src_dst = (src_dst >> min(bitpos, 32))
& ~ (0xFFFFFFFF << len);

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example extract 5, 12, g4 # g4 = g4 with bits 5 through
# 16 shifted right.

Opcode extract 651H REG

See Also modify
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6.2.30 FAULT<cc>

Mnemonic faulte{.t|.f} Fault If Equal
faultne{.t|.f} Fault If Not Equal
faultl{.t|.f} Fault If Less
faultle{.t|.f} Fault If Less Or Equal
faultg{.t|.f} Fault If Greater
faultge{.t|.f} Fault If Greater Or Equal
faulto{.t|.f} Fault If Ordered
faultno{.t|.f} Fault If Not Ordered

Format fault*{.t|.f}

Description Raises a constraint-range fault if the logical AND of the condition code and 
opcode’s mask part is not zero. For faultno (unordered), fault is raised if 
condition code is equal to 0002.

Optional .t or .f suffix may be appended to the mnemonic. Use .t to speed u
execution when these instructions usually fault. Use .f to speed up execut
when these instructions usually do not fault. If a suffix is not provided, the 
assembler is free to provide one.

faulto and faultno are provided for use by implementations with a floating 
point coprocessor. They are used for compare and branch (or fault) opera
involving real numbers.

The following table shows the condition-code mask for each instruction. Th
mask is opcode bits 0-2.

Instruction Mask Condition

faultno 0002 Unordered

faultg 0012 Greater

faulte 0102 Equal

faultge 0112 Greater or equal

faultl 1002 Less

faultne 1012 Not equal

faultle 1102 Less or equal

faulto 1112 Ordered

Action For all except faultno:
if(mask && AC.cc != 0002)

generate_fault(CONSTRAINT.RANGE);

faultno:
if(AC.cc == 0002)

generate_fault(CONSTRAINT.RANGE);

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
CONSTRAINT.RANGE If condition being tested is true.
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Example # Assume (AC.cc AND 1102)≠ 0002
faultle # Generate CONSTRAINT_RANGE fault

Opcode faulte 1AH CTRL
faultne 1DH CTRL
faultl 1CH CTRL
faultle 1EH CTRL
faultg 19H CTRL
faultge 1BH CTRL
faulto 1FH CTRL
faultno 18H CTRL

See Also BRANCH<cc>, TEST<cc>
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6.2.31 flushreg

Mnemonic flushreg Flush Local Registers

Format flushreg

Description Copies the contents of every cached register set, except the current set, to its 
associated stack frame in memory. The entire register cache is then marked as 
purged (or invalid). On a return to a stack frame for which the local registers 
are not cached, the processor reloads the locals from memory.

flushreg is provided to allow a debugger or application program to circumvent 
the processor’s normal call/return mechanism. For example, a debugger m
need to go back several frames in the stack on the next return, rather than 
the normal return mechanism that returns one frame at a time. Since the l
registers of an unknown number of previous stack frames may be cached,
flushreg must be executed prior to modifying the PFP to return to a frame 
other than the one directly below the current frame.

To reduce interrupt latency, flushreg is abortable. If an interrupt of higher 
priority than the current process is detected while flushreg is executing, 
flushreg flushes at least one frame and aborts. After executing the interrup
handler, the processor returns to the flushreg instruction and re-executes it. 
flushreg does not reflush any frames that were flushed before the interrup
occurred. flushreg is not aborted by high priority interrupts if tracing is 
enabled in the PC or if any faults are pending at the time of the interrupt.

Action Each local cached register set except the current one is flushed to its assoc
stack frame in memory and marked as purged, meaning that they are relo
from memory if and when they become the current local register set.

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5

Example flushreg

Opcode flushreg 66DH REG
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6.2.32 fmark

Mnemonic fmark Force Mark

Format fmark

Description Generates a mark trace event. Causes a mark trace event to be generated, 
regardless of mark trace mode flag setting, providing the trace enable bit, bit 0 
in the Process Controls, is set. 

For more information on trace fault generation, refer to Chapter 9, “Tracing 
and Debugging”.

Action A mark trace event is generated, independent of the setting of the mark-tr
mode flag.

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
TRACE.MARK A TRACE.MARK fault is generated if PC.te=1.

Example # Assume PC.te = 1
fmark
# Mark trace event is generated at this point in the
# instruction stream.

Opcode fmark 66CH REG

See Also mark
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6.2.33 icctl

Mnemonic icctl Instruction-cache Control

Format icctl src1, src2, src/dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Performs management and control of the instruction cache including 
disabling, enabling, invalidating, loading and locking, getting status, and 
storing cache sets to memory. Operations are indicated by the value of src1. 
Some operations also use src2 and src/dst. When needed by the operation, the 
processor orders the effects of the operation with previous and subsequent 
operations to ensure correct behavior. For specific function setup, see the 
following tables and diagrams:

Table 6-8. icctl Operand Fields

Function src1 src2 src/dst

Disable I-cache 0 NA NA

Enable I-cache 1 NA NA

Invalidate I-cache 2 NA NA

Load and lock
I-cache 3

src: Starting 
address of code to 
lock.

Number of ways to 
lock.

Get I-cache status 4 NA
dst: Receives 
status (see 
Figure 6-4).

Get I-cache locking 
status 5 NA

dst: Receives 
status (see 
Figure 6-4)

Store I-cache sets 
to memory 6

Destination 
address for cache 
sets

src: I-cache set #’s 
to be stored (see 
Figure 6-4).
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Figure 6-4. icctl src1 and src/dst Formats

8    7 031

Function Type

src1 Format

28 27 16 15 12 8 4 031
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Table 6-9. icctl Status Values and Instruction Cache Parameters

Value Value on 80960Hx

bytes per atom 4

atoms per line 8

number of sets 128

number of ways 4

cache size 16-Kbytes 

Status[0] (enable/disable) 0 or 1

Status[1:3] (reserved) 0

Status[7:4] (log2(bytes per atom)) 2

Status[11:8] (log2(atoms per line)) 3

Status[15:12] (log2(number of sets)) 8

Status[27:16] (number of ways - 1) 3

Lock Status[7:0] (number of blocks that lock)

Lock Status[23:8] (block size in words) 1024 

Lock Status[31:24] (number of blocks that are locked) 0-4
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Figure 6-5. Store Instruction Cache to Memory Output Format

  Set_Data [Starting Set] Destination 
Address (DA)

Tag (Starting set) DA + 4H

Valid Bits (Starting set) DA + 8H

Word 0 DA + CH

. . . . . .

Word 6 DA + 24H

Word 7 DA + 28H

Tag (Starting set) DA + 2CH

Valid Bits (Starting set) DA + 30H

Word 0 DA + 34CH

. . . . . .

Word 6 DA + 4CH

Word 7 DA + 50H

Tag (Starting set) DA + 54H

Valid Bits (Starting set) DA + 58H

Word 0 DA + 5CH

. . . . . .

Word 6 DA + 74H

Word 7 DA + 78H

Tag (Starting set) DA + 7CH

Valid Bits (Starting set) DA + 80H

Word 0 DA + 84H

. . . . . .

Word 6 DA + 9CH

Word 7 DA + A0H

Set_Data [Starting Set + 1] . . .

. . .
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Figure 6-6. I-Cache Set Data, Tag and Valid Bit Formats

031

80960Hx Actual Address Bits 31:12

80960Hx Cache Tag Format

031

Set Data I-Cache Values

20 19

031

Valid Bits Values

4

I-Cache Set Data Value

Valid Bit for Words 4 and 5 of current Set and Way

Valid Bit for Words 6 and 7 of current Set and Way

Valid Bit for Words 2 and 3 of current Set and Way

Tag Valid Bit for current Set and Way

Valid Bit for Words 0 and 1 of current Set and Way

1 = Way 1 is least recently used
0 = Way 0 is least recently used

3 = Way 3 is least recently used
2 = Way 2 is least recently used
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Action if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

switch (src1[7:0]) {
case 0: # Disable instruction cache. 

disable_instruction_cache( );
break;

case 1: # Enable instruction cache. 
enable_instruction_cache( );
break;

case 2: # Globally invalidate instruction cache.
# Includes locked lines also.
invalidate_instruction_cache( );
unlock_icache( );
break;

case 3: # Load & Lock code into Instruction-Cache
# src_dst has number of contiguous blocks to lock.
# src2 has starting address of code to lock. 
# On the i960 Hx, src2 is aligned to a quad word boundary

aligned_addr = src2 & 0xFFFFFFF0;
invalidate(I-cache); unlock(I-cache);
for (j = 0; j < src_dst; j++)

{ way = way_associated_with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i < end; i=i+4)

{ set = set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word] =

 memory[i];
update_tag_n_valid_bits(set,way,word)

lock_icache(set,way,word);
} } break;

case 4: # Get instruction cache status into src_dst. 
if (Icache_enabled) src_dst[0] = 1;

else src_dst[0] = 0;
# Atom is 4 bytes. 

src_dst[7:4] = log2(bytes per atom);
# 4 atoms per line. 

src_dst[11:8] = log2(atoms per line);
src_dst[15:12] = log2(number of sets);
src_dst[27:16] = number of ways-1; #in lines per set
# cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12]) 
break;
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Action (cont’d) case 5: # Get instruction cache locking status into dst. 
src_dst[7:0] = number_of_blocks_that_lock;
src_dst[23:8] = block_size_in_words;
src_dst[31:24] = number_of_blocks_that_are_locked;
break;

case 6: # Store instr cache sets to memory pointed to by src2.   
start = src_dst[15:0] # Starting set number    
end   = src_dst[31:16] # Ending set number 

# (zero-origin).
if (end >= Icache_max_sets) 

end = Icache_max_sets - 1;
if (start > end) 

generate_fault(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if(0x3 & memadr != 0)

generate_fault(OPERATION.INVALID_OPERAND);
for (set = start; set <= end; set++){

# Set_Data is described at end of this code flow. 
 memory[memadr] = Set_Data[set];
 memadr += 4;
 for (way = 0; way < numb_ways; way++)

{memory[memadr] = tags[set][way];
 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
 for (word = 0; word < words_in_line;

 word++)
 {memory[memadr] =

 Icache_line[set][way][word];
  memadr += 4;
 } 

clrbit 30, ccon # disable instruction cache
 } break;

default: # Reserved. 
generate_fault(OPERATION.INVALID_OPERAND);
break;}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

TYPE.MISMATCH Attempt to execute instruction while not in 
supervisor mode.

Example # g0 = 3, g1=0x10000000, g2=1
icctl g0,g1,g2 # Load and lock 1 block of cache

# (one way) with
# location of code at starting
# 0x10000000.

Opcode icctl 65BH  REG

See Also sysctl

Notes This instruction is implemented on the 80960RP, 80960Hx and 80960Jx 
processor families only, and may or may not be implemented on future i96
processors.
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6.2.34 intctl

Mnemonic intctl Global Enable and Disable of Interrupts

Format intctl src1 dst
reg/lit/sfr reg/sfr

Description Globally enables, disables or returns the current status of interrupts depending 
on the value of src1. Returns the previous interrupt enable state (1 for enabled 
or 0 for disabled) in dst. When the state of the global interrupt enable is 
changed, the processor ensures that the new state is in full effect before the 
instruction completes. (This instruction is implemented by manipulating 
ICON.gie.)

src1 Value Operation

0 Disables interrupts

1 Enables interrupts

2 Returns current interrupt enable status

Action if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

old_interrupt_enable = global_interrupt_enable;
switch(src1) {

case 0: # Disable. Set ICON.gie to one.
globally_disable_interrupts;
global_interrupt_enable = false;
order_wrt(subsequent_instructions);
break;

case 1: # Enable.  Clear ICON.gie to zero.
globally_enable_interrupts;
global_interrupt_enable = true;
order_wrt(subsequent_instructions);
break;

   case 2: # Return status. Return ICON.gie 
break;

default:
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
if(old_interrupt_enable)

dst = 1;
else

dst = 0;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.
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Example # ICON.gie = 0, interrupts enabled
intctl 0, g4 # Disable interrupts (ICON.gie = 1)

# g4 = 1

Opcode intctl 658H REG

See Also intdis, inten

Notes This instruction is implemented on the 80960RP, 80960Hx and 80960Jx 
processor families only, and may or may not be implemented on future i960 
processors.
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6.2.35 intdis

Mnemonic intdis Global Interrupt Disable

Format intdis

Description Globally disables interrupts and ensures that the change takes effect before the 
instruction completes. This operation is implemented by setting ICON.gie to 
one.

Action if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

# Implemented by setting ICON.gie to one. 
globally_disable_interrupts;
interrupt_enable = false;
order_wrt(subsequent_instructions);

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

Example # ICON.gie = 0, interrupts enabled
intdis # Disable interrupts. 

# ICON.gie = 1

Opcode intdis 5B4H REG

See Also intctl, inten

Notes This instruction is implemented on the 80960RP, 80960Hx and 80960Jx 
processor families only, and may or may not be implemented on future i96
processors.
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6.2.36 inten

Mnemonic inten global interrupt enable

Format inten

Description Globally enables interrupts and ensures that the change takes effect before the 
instruction completes. This operation is implemented by clearing ICON.gie to 
zero.

Action if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

# Implemented by clearing ICON.gie to zero. 
globally_enable_interrupts;
interrupt_enable = true;
order_wrt(subsequent_instructions);

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

Example # ICON.gie = 1, interrupts disabled.
inten # Enable interrupts. 

# ICON.gie = 0

Opcode inten 5B5H REG

See Also intctl, intdis

Notes This instruction is implemented on the 80960RP, 80960Hx and 80960Jx 
processor families only, and may or may not be implemented on future i96
processors.
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6.2.37 LOAD

Mnemonic ld Load
ldob Load Ordinal Byte
ldos Load Ordinal Short
ldib Load Integer Byte
ldis Load Integer Short
ldl Load Long
ldt Load Triple
ldq Load Quad

Format ld* src, dst
mem reg

Description Copies byte or byte string from memory into a register or group of successive 
registers.

The src operand specifies the address of first byte to be loaded. The full range 
of addressing modes may be used in specifying src. Refer to Chapter 2, “Data 
Types and Memory Addressing Modes” for more information.

dst specifies a register or the first (lowest numbered) register of successive
registers.

ldob and ldib load a byte and ldos and ldis load a half word and convert it to a
full 32-bit word. Data being loaded is sign-extended during integer loads a
zero-extended during ordinal loads.

ld, ldl, ldt and ldq instructions copy 4, 8, 12 and 16 bytes, respectively, from
memory into successive registers.

For ldl, dst must specify an even numbered register (i.e., g0, g2, ... 
or r4, r6, ...). For ldt and ldq, dst must specify a register number that is a 
multiple of four (i.e., g0, g4, g8, g12, r4, r8, r12). Results are unpredictable
registers are not aligned on the required boundary or if data extends beyo
register g15 or r15 for ldl, ldt or ldq.
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Action ld:
dst = read_memory(effective_address)[31:0];
if((effective_address[1:0] != 002 ) && unaligned _fault_enabled)

generate_fault(OPERATION.UNALIGNED);

ldob:
dst[7:0] = read_memory(effective_address)[7:0];
dst[31:8] = 0x000000;

ldib:
dst[7:0] = read_memory(effective_address)[7:0];
if(dst[7] == 0)

dst[31:8] = 0x000000;
else

dst[31:8] = 0xFFFFFF;

ldos:
dst = read_memory(effective_address)[15:0];

# Order depends on endianism. See 
# Section 2.2.2, “Byte Ordering” on page 2-4

dst[31:16] = 0x0000;
if((effective_address[0] != 02) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);

ldis:
dst[15:0] = read_memory(effective_address)[15:0];

# Order depends on endianism. See
# Section 2.2.2, “Byte Ordering” on page 2-4

if(dst[15] == 02)
dst[31:16] = 0x0000;

else
dst[31:16] = 0xFFFF;

if((effective_address[0] != 02) && unaligned_fault_enabled)
generate_fault(OPERATION.UNALIGNED);

ldl:
if((reg_number(dst) % 2) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
# dst  modified.

else
{ dst = read_memory(effective_address)[31:0];

dst_+_1 = read_memory(effective_address_+_4)[31:0];
if((effective_address[2:0] != 0002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}
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Action 
(continued)

ldt:
if((reg_number(dst) % 4) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
# dst  modified.

else
{ dst = read_memory(effective_adddress)[31:0];

dst_+_1 = read_memory(effective_adddress_+_4)[31:0];
dst_+_2 = read_memory(effective_adddress_+_8)[31:0];
if((effective_address[3:0] != 00002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}

ldq:
if((reg_number(dst) % 4) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
# dst  modified.

else
{ dst = read_memory(effective_adddress)[31:0];

# Order depends on endianism. 
# See Section 2.2.2, “Byte Ordering” on page 2-4

dst_+_1 = read_memory(effective_adddress_+_4)[31:0];
dst_+_2 = read_memory(effective_adddress_+_8)[31:0];
dst_+_3 = read_memory(effective_adddress_+_12)[31:0];
if((effective_address[3:0] != 00002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
OPERATION.UNALIGNED
OPERATION.INVALID_OPERAND

Example ldl 2450 (r3), r10 # r10, r11 = r3 + 2450 in
# memory

Opcode ld 90H MEM
ldob 80H MEM
ldos 88H MEM
ldib C0H MEM
ldis C8H MEM
ldl 98H MEM
ldt A0H MEM
ldq B0H MEM

See Also MOVE, STORE
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6.2.38 lda

Mnemonic lda Load Address

Format lda src, dst
mem reg
efa

Description Computes the effective address specified with src and stores it in dst. The src 
address is not checked for validity. Any addressing mode may be used to 
calculate efa.

An important application of this instruction is to load a constant longer than 5 
bits into a register. (To load a register with a constant of 5 bits or less, mov can 
be used with a literal as the src operand.)

Action dst = effective_address;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example lda 58 (g9), g1 # g1 = g9+58
lda 0x749, r8 # r8 = 0x749

Opcode lda 8CH MEM
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6.2.39 mark

Mnemonic mark Mark

Format mark

Description Generates mark trace fault if mark trace mode is enabled. Mark trace mode is 
enabled if the PC register trace enable bit (bit 0) and the TC register mark trace 
mode bit (bit 7) are set.

If mark trace mode is not enabled, mark behaves like a no-op.

For more information on trace fault generation, refer to Chapter 9, “Tracing 
and Debugging”.

Action if(PC.te && TC.mk)
generate_fault(TRACE.MARK)

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
TRACE.MARK Trace fault is generated if PC.te=1 and TC.mk=1.

Example # Assume that the mark trace mode is enabled.
ld xyz, r4
addi r4, r5, r6
mark
# Mark trace event is generated at this point in the
# instruction stream.

Opcode mark 66BH REG

See Also fmark, modpc, modtc
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6.2.40 modac

Mnemonic modac Modify AC

Format modac mask, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Reads and modifies the AC register. src contains the value to be placed in the 
AC register; mask specifies bits that may be changed. Only bits set in mask are 
modified. Once the AC register is changed, its initial state is copied into dst.

Action temp = AC;
AC = (src & mask) | (AC & ~mask);
dst = temp;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example modac g1, g9, g12 # AC = g9, masked by g1.
# g12 = initial value of AC.

Opcode modac 645H REG

See Also modpc, modtc

Notes Sets the condition code in the arithmetic controls.
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6.2.41 modi

Mnemonic modi Modulo Integer

Format modi src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Divides src2 by src1, where both are integers and stores the modulo remainder 
of the result in dst. If the result is nonzero, dst has the same sign as src1.

Action if(src1 == 0)
{ dst = undefined_value;

generate_fault(ARITHMETIC.ZERO_DIVIDE);
}

dst = src2 - (src2/src1) * src1;
if((src2 *src1 < 0 ) && (dst != 0))

dst = dst + src1;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
ARITHMETIC.ZERO_DIVIDE The src1 operand is zero.

Example modi r9, r2, r5 # r5 = modulo (r2/r9)

Opcode modi 749H REG

See Also divi, divo, remi, remo

Notes modi generates the correct result (0) when computing -231 mod -1, although 
the corresponding 32-bit division does overflow, it does not generate a fau
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6.2.42 modify

Mnemonic modify Modify

Format modify mask, src, src/dst
reg/lit/sfr reg/lit/sfr reg

Description Modifies selected bits in src/dst with bits from src. The mask operand selects 
the bits to be modified: only bits set in the mask operand are modified in src/
dst.

Action src_dst = (src & mask) | (src_dst & ~mask);

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example modify g8, g10, r4# r4 = g10 masked by g8.

Opcode modify 650H REG

See Also alterbit, extract
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6.2.43 modpc

Mnemonic modpc Modify Process Controls

Format modpc src, mask, src/dst
reg/lit/sfr reg/lit/sfr reg

Description Reads and modifies the PC register as specified with mask and src/dst. src/dst 
operand contains the value to be placed in the PC register; mask operand 
specifies bits that may be changed. Only bits set in the mask are modified. 
Once the PC register is changed, its initial value is copied into src/dst. The src 
operand is a dummy operand that should specify a literal or the same register 
as the mask operand.

The processor must be in supervisor mode to use this instruction with a non-
zero mask value. If mask=0, this instruction can be used to read the process 
controls, without the processor being in supervisor mode.

If the action of this instruction lowers the processor priority, the processor 
checks the interrupt table for pending interrupts.

When process controls are changed, the processor recognizes the changes 
immediately except in one situation: if modpc is used to change the trace 
enable bit, the processor may not recognize the change before the next four 
non-branch instructions are executed. For more information see Section 3.6.3, 
“Process Controls (PC) Register” on page 3-24.

Action if(mask != 0)
{ if(PC.em != supervisor)

generate_fault(TYPE.MISMATCH);
temp = PC;
PC = (mask & src_dst) | (PC & ~mask);
src_dst = temp;
if(temp.priority > PC.priority)

check_pending_interrupts;
}
else

src_dst = PC;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
TYPE.MISMATCH

Example modpc g9, g9, g8 # process controls = g8
# masked by g9.

Opcode modpc 655H REG

See Also modac, modtc

Notes Since modpc does not switch stacks, it should not be used to switch the mo
of execution from supervisor to user (the supervisor stack can get corrupte
this case). The call and return mechanism should be used instead. 
6-74 i960® Hx Microprocessor Developer’s Manual



Instruction Set Reference
6.2.44 modtc

Mnemonic modtc Modify Trace Controls

Format modtc mask, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Reads and modifies TC register as specified with mask and src2. The src2 
operand contains the value to be placed in the TC register; mask operand 
specifies bits that may be changed. Only bits set in mask are modified. mask 
must not enable modification of reserved bits. Once the TC register is 
changed, its initial state is copied into dst.

The changed trace controls may take effect immediately or may be delayed. If 
delayed, the changed trace controls may not take effect until after the first non-
branching instruction is fetched from memory or after four non-branching 
instructions are executed.

For more information on the trace controls, refer to Chapter 8, “Faults” and 
Chapter 9, “Tracing and Debugging”.

Action mode_bits = 0x000000FE;
event_flags = 0x0F00FF00
temp = TC;
tempa = (event_flags & TC & mask) | (mode_bits & mask);
TC = (tempa & src2) | (TC & ~tempa);
dst = temp;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example modtc g12, g10, g2# trace controls = g10 masked
# by g12; previous trace
# controls stored in g2.

Opcode modtc 654H REG

See Also modac, modpc
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6.2.45 MOVE

Mnemonic mov Move
movl Move Long
movt Move Triple
movq Move Quad

Format mov* src1, dst
reg/lit/sfr reg/sfr

Description Copies the contents of one or more source registers (specified with src) to one 
or more destination registers (specified with dst).

For movl, movt and movq, src1 and dst specify the first (lowest numbered) 
register of several successive registers. src1 and dst registers must be even 
numbered (e.g., g0, g2, ... or r4, r6, ... or sf0, sf2, ...) for movl and an integral 
multiple of four (e.g., g0, g4, ... or r4, r8, ... or sf0, sf4, ...) for movt and movq.

The moved register values are unpredictable when: 1) the src and dst operands 
overlap; 2) registers are not properly aligned.

Action mov:
if(is_reg(src1))

dst = src1;
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
}
movl:
if((reg_num(src1)%2 != 0) || (reg_num(dst)%2 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
}

else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;

}

6-76 i960® Hx Microprocessor Developer’s Manual



Instruction Set Reference
Action movt:
if((reg_num(src1)%4 != 0) || (reg_num(dst)%4 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
dst_+_2 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
dst_+_2 = src1_+_2;

}
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;
dst_+_2[31:0] = 0;

}
movq:
if((reg_num(src1)%4 != 0) || (reg_num(dst)%4 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
dst_+_2 = undefined_value;
dst_+_3 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
dst_+_2 = src1_+_2;
dst_+_3 = src1_+_3;

}
else
{ dst[4:0] = src1; #src1 is a 5 bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;
dst_+_2[31:0] = 0;
dst_+_3[31:0] = 0;

}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example movt g8, r4 # r4, r5, r6 = g8, g9, g10

Opcode mov 5CCH REG
movl 5DCH REG
movt 5ECH REG
movq 5FCH REG

See Also LOAD, STORE, lda 
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6.2.46 muli, mulo

Mnemonic muli Multiply Integer
mulo Multiply Ordinal

Format mul* src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Multiplies the src2 value by the src1 value and stores the result in dst. The 
binary results from these two instructions are identical. The only difference is 
that muli can signal an integer overflow.

Action mulo:
dst = (src2 * src1)[31:0];

muli:
true_result = (src1 * src2);
dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31))# Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
ARITHMETIC.OVERFLOW Result is too large for destination register 

(muli only). If a condition of overflow occurs,
the least significant 32 bits of the result are
stored in the destination register.

Example muli r3, r4, r9 # r9 = r4 * r3

Opcode muli 741H REG
mulo 701H REG

See Also emul, ediv, divi, divo
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6.2.47 nand

Mnemonic nand Nand

Format nand src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Performs a bitwise NAND operation on src2 and src1 values and stores the 
result in dst.

Action dst = ~src2 | ~src1;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example nand g5, r3, r7 # r7 = r3 NAND g5

Opcode nand 58EH REG

See Also and, andnot, nor, not, notand, notor, or, ornot, xnor, xor
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6.2.48 nor

Mnemonic nor Nor

Format nor src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Performs a bitwise NOR operation on the src2 and src1 values and stores the 
result in dst.

Action dst = ~src2 & ~src1;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example nor g8, 28, r5 # r5 = 28 NOR g8

Opcode nor 588H REG

See Also and, andnot, nand, not, notand, notor, or, ornot, xnor, xor
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6.2.49 not, notand

Mnemonic not Not
notand Not And

Format not src1, dst
reg/lit/sfr reg/sfr

notand src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Performs a bitwise NOT (not instruction) or NOT AND (notand instruction) 
operation on the src2 and src1 values and stores the result in dst.

Action not:
dst = ~src1;

notand:
dst = ~src2 & src1;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example not g2, g4 # g4 = NOT g2
notand r5, r6, r7 # r7 =  NOT r6 AND r5 

Opcode not 58AH REG
notand 584H REG

See Also and, andnot, nand, nor, notor, or, ornot, xnor, xor
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6.2.50 notbit

Mnemonic notbit Not Bit

Format notbit bitpos, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Copies the src2 value to dst with one bit toggled. The bitpos operand specifies 
the bit to be toggled.

Action dst = src2 ^ 2**(src1%32);

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example notbit r3, r12, r7# r7 = r12 with the bit
# specified in r3 toggled.

Opcode notbit 580H REG

See Also alterbit, chkbit, clrbit, setbit
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6.2.51 notor

Mnemonic notor Not Or

Format notor src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Performs a bitwise NOTOR operation on src2 and src1 values and stores result 
in dst.

Action dst = ~src2 | src1;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example notor g12, g3, g6 # g6 = NOT g3 OR g12

Opcode notor 58DH REG

See Also and, andnot, nand, nor, not, notand, or, ornot, xnor, xor
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6.2.52 or, ornot

Mnemonic or Or
ornot Or Not

Format or src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

ornot src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Performs a bitwise OR (or instruction) or ORNOT (ornot instruction) 
operation on the src2 and src1 values and stores the result in dst.

Action or:
dst = src2 | src1;

ornot:
dst = src2 | ~src1;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example or 14, g9, g3 # g3 = g9 OR 14
ornot r3, r8, r11 # r11 = r8 OR NOT r3

Opcode or 587H REG
ornot 58BH REG

See Also and, andnot, nand, nor, not, notand, notor, xnor, xor
6-84 i960® Hx Microprocessor Developer’s Manual



Instruction Set Reference
6.2.53 remi, remo

Mnemonic remi Remainder Integer
remo Remainder Ordinal

Format rem* src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Divides src2 by src1 and stores the remainder in dst. The sign of the result (if 
nonzero) is the same as the sign of src2.

Action remi, remo:
if(src1 == 0)

generate_fault(ARITHMETIC.ZERO_DIVIDE);
dst = src2 - (src2/src1)*src1;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.
ARITHMETIC.ZERO_DIVIDE The src1 operand is 0.

Example remo r4, r5, r6 # r6 = r5 rem r4

Opcode remi 748H REG
remo 708H REG

See Also modi

Notes remi produces the correct result (0) even when computing -231 remi -1, which 
would cause the corresponding division to overflow, although no fault is 
generated.
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6.2.54 ret

Mnemonic ret Return

Format ret

Description Returns program control to the calling procedure. The current stack frame (i.e., 
that of the called procedure) is deallocated and the FP is changed to point to 
the calling procedure’s stack frame. Instruction execution is continued at th
instruction pointed to by the RIP in the calling procedure’s stack frame, wh
is the instruction immediately following the call instruction.

As shown in the action statement below, the return-status field an
prereturn-trace flag determine the action that the processor takes on the re
These fields are contained in bits 0 through 3 of register r0 of the called 
procedure’s local registers.

See Chapter 7, “Procedure Calls” for more on ret.

Action implicit_syncf();
if(pfp.p && PC.te && TC.p)
{ pfp.p = 0;

generate_fault(TRACE.PRERETURN);
}
switch(return_status_field)
{

case 0002: #local return
get_FP_and_IP();
break;

case 0012: #fault return
tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();
AC = tempb;
if(execution_mode == supervisor)
PC = tempa;
break;

case 0102: #supervisor return, trace on return disabled
if(execution_mode != supervisor)

get_FP_and_IP();
else
{ PC.te = 0;

execution_mode = user;
get_FP_and_IP();

}
break;
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Action 
(continued)

case 0112: # supervisor return, trace on return enabled
if(execution_mode != supervisor)

get_FP_and_IP();
else
{ PC.te = 1;

execution_mode = user;
get_FP_and_IP();

}
break;

case 1002: #reserved -  unpredictable behavior
break;

case 1012: #reserved -  unpredictable behavior
break;

case 1102: #reserved -  unpredictable behavior
break;

case 1112: #interrupt return
tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();
AC = tempb;
if(execution_mode == supervisor)

PC = tempa;
check_pending_interrupts();
break;

}
get_FP_and_IP()
{ FP =PFP;

free(current_register_set);
if(not_allocated(FP))

retrieve_from_memory(FP);
IP = RIP;

}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example ret # Program control returns to
# context of calling procedure.

Opcode ret 0AH CTRL

See Also call, calls, callx
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6.2.55 rotate

Mnemonic rotate Rotate

Format rotate len, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Copies src2 to dst and rotates the bits in the resulting dst operand to the left 
(toward higher significance). Bits shifted off left end of word are inserted at 
right end of word. The len operand specifies number of bits that the dst 
operand is rotated.

This instruction can also be used to rotate bits to the right. The number of bits 
the word is to be rotated right should be subtracted from 32 and the result used 
as the len operand.

Action src2 is rotated by len mod 32. This value is stored in dst.

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example rotate 13, r8, r12# r12 = r8 with bits rotated
# 13 bits to left.

Opcode rotate 59DH REG

See Also SHIFT, eshro
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6.2.56 scanbit

Mnemonic scanbit Scan For Bit

Format scanbit src1, dst
reg/lit/sfr reg/sfr

Description Searches src1 for a set bit (1 bit). If a set bit is found, the bit number of the 
most significant set bit is stored in the dst and the condition code is set to 0102. 
If src value is zero, all 1’s are stored in dst and condition code is set to 0002.

Action dst = 0xFFFFFFFF;
AC.cc = 0002;
for(i = 31; i >= 0; i--)
{ if((src1 & 2**i) != 0)
{ dst = i;

AC.cc = 0102;
break;

}
}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example # assume g8 is nonzero
scanbit g8, g10 # g10 = bit number of most-

# significant set bit in g8;
# AC.cc = 0102.

Opcode scanbit 641H REG

See Also spanbit, setbit

Notes Sets the condition code in the arithmetic controls.
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6.2.57 scanbyte

Mnemonic scanbyte Scan Byte Equal

Format scanbyte src1, src2
reg/lit/sfr reg/lit/sfr

Description Performs byte-by-byte comparison of src1 and src2 and sets condition code to 
0102 if any two corresponding bytes are equal. If no corresponding bytes are 
equal, condition code is set to 0002.

Action if((src1 & 0x000000FF) == (src2 & 0x000000FF)
|| (src1 & 0x0000FF00) == (src2 & 0x0000FF00)
|| (src1 & 0x00FF0000) == (src2 & 0x00FF0000)
|| (src1 & 0xFF000000) == (src2 & 0xFF000000))

AC.cc = 0102;
else

AC.cc = 0002;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example # Assume r9 = 0x11AB1100
scanbyte 0x00AB0011, r9# AC.cc = 0102

Opcode scanbyte 5ACH REG

See Also bswap

Side Effects Sets the condition code in the arithmetic controls.
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6.2.58 SEL<cc>

Mnemonic selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge Select Based on Greater or Equal
sell Select Based on Less
selne Select Based on Not Equal
selle Select Based on Less or Equal
selo Select Based on Ordered

Format sel* src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Selects either src1 or src2 to be stored in dst based on the condition code bits 
in the arithmetic controls. If for Unordered the condition code is 0, or if for the 
other cases the logical AND of the condition code and the mask part of the 
opcode is not zero, then the value of src2 is stored in the destination. Else, the 
value of src1 is stored in the destination.

Instruction Mask Condition

selno 0002 Unordered

selg5 0012 Greater 

sele 0102 Equal

selge 0112 Greater or equal

sell 1002 Less 

selne 1012 Not equal

selle 1102 Less or equal

selo 1112 Ordered

Action if ((mask & AC.cc) || (mask == AC.cc))
dst = src2;

else
dst = src1;

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5

Example # AC.cc = 0102
sele g0,g1,g2 # g2 = g1

# AC.cc = 0012
sell g0,g1,g2 # g2 = g0
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Opcode selno 784H REG
selg 794H REG
sele 7A4H REG
selge 7B4H REG
sell 7C4H REG
selne 7D4H REG
selle 7E4H REG
selo 7F4H REG

See Also MOVE, TEST<cc>, cmpi, cmpo, SUB<cc>

Notes These core instructions are not implemented on 80960Cx, Kx and Sx 
processors.
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6.2.59 setbit

Mnemonic setbit Set Bit

Format setbit bitpos, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Copies src value to dst with one bit set. bitpos specifies bit to be set.

Action dst = src | (2**(bitpos%32));

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example setbit 15, r9, r1 # r1 = r9 with bit 15 set.

Opcode setbit 583H REG

See Also alterbit, chkbit, clrbit, notbit
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6.2.60 SHIFT 

Mnemonic shlo Shift Left Ordinal
shro Shift Right Ordinal
shli Shift Left Integer
shri Shift Right Integer
shrdi Shift Right Dividing Integer

Format sh* len, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Shifts src left or right by the number of bits indicated with the len operand and 
stores the result in dst. Bits shifted beyond register boundary are discarded. 
For values of len > 32, the processor interprets the value as 32.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the 
most significant bit. These instructions are equivalent to mulo and divo by the 
power of 2, respectively.

shli shifts zeros in from the least significant bit. An overflow fault is generated 
if the bits shifted out are not the same as the most significant bit (bit 31). If 
overflow occurs, dst will equal src shifted left as much as possible without 
overflowing.

shri performs a conventional arithmetic shift-right operation by shifting in the 
most significant bit (bit 31). When this instruction is used to divide a negative 
integer operand by the power of 2, it produces an incorrect quotient 
(discarding the bits shifted out has the effect of rounding the result toward 
negative).

shrdi is provided for dividing integers by the power of 2. With this instruction, 
1 is added to the result if the bits shifted out are non-zero and the src operand 
was negative, which produces the correct result for negative operands.

shli and shrdi are equivalent to muli and divi by the power of 2.
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Action shlo:
if(src1 < 32)

dst = src * (2**len);
else

dst = 0;
shro:
if(src1 < 32)

dst = src / (2**len);
else

dst = 0;
shli:
if(len > 32)

count = 32;
else

count = src1;
temp = src;
while((temp[31] == temp[30]) && (count > 0))
{ temp = (temp * 2)[31:0];

count = count - 1;
}
dst = temp;
if(count > 0)
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

shri:
if(len > 32)

count = 32;
else

count = src1;
temp = src;
while(count > 0)
{ temp = (temp >> 1)[31:0];

temp[31] = src[31];
count = count - 1;

}
dst = temp;

shrdi:
dst = src / (2**len);

Faults STANDARD  Refer to Section 6.1.6, “Faults” on page 6-5.
ARITHMETIC.OVERFLOW For shli.

Example shli 13, g4, r6 # g6 = g4 shifted left 13 bits.

Opcode shlo 59CH REG
shro 598H REG
shli 59EH REG
shri 59BH REG
shrdi 59AH REG
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See Also divi, muli, rotate, eshro

Notes shli and shrdi are identical to multiplications and divisions for all positive and 
negative values of src2. shri is the conventional arithmetic right shift that does 
not produce a correct quotient when src2 is negative.
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6.2.61 spanbit

Mnemonic spanbit Span Over Bit

Format spanbit src, dst
reg/lit/sfr reg/sfr

Description Searches src value for the most significant clear bit (0 bit). If a most significant 
0 bit is found, its bit number is stored in dst and condition code is set to 0102. 
If src value is all 1’s, all 1’s are stored in dst and condition code is set to 0002.

Action dst = 0xFFFFFFFF;
AC.cc = 0002;
for(i = 31; i > = 0; i--)
{ if((src1 & 2**i) == 0))
{ dst = i;

AC.cc = 0102;
break;

}
}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example # Assume r2 is not 0xffffffff
spanbit r2, r9 # r9 = bit number of most-

# significant clear bit in r2;
# AC.cc = 0102

Opcode spanbit 640H REG

See Also scanbit

Side Effects Sets the condition code in the arithmetic controls.
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6.2.62 STORE

Mnemonic st Store
stob Store Ordinal Byte
stos Store Ordinal Short
stib Store Integer Byte
stis Store Integer Short
stl Store Long
stt Store Triple
stq Store Quad

Format st* src1, dst
reg mem

Description Copies a byte or group of bytes from a register or group of registers to 
memory. src specifies a register or the first (lowest numbered) register of 
successive registers.

dst specifies the address of the memory location where the byte or first byte or 
a group of bytes is to be stored. The full range of addressing modes may be 
used in specifying dst. Refer to Section 2.3, “Memory Addressing Modes” on
page 2-6 for a complete discussion.

stob and stib store a byte and stos and stis store a half word from the src 
register’s low order bytes. Data for ordinal stores is truncated to fit the 
destination width. If the data for integer stores cannot be represented corre
in the destination width, an Arithmetic Integer Overflow fault is signaled.

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from successive
registers to memory.

For stl, src must specify an even numbered register (e.g., g0, g2, ... or r0, r
...). For stt and stq, src must specify a register number that is a multiple of 
four (e.g., g0, g4, g8, ... or r0, r4, r8, ...).

Action st:
if (illegal_write_to_on_chip_RAM)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[1:0] != 002) && unaligned_fault_enabled) 

{store_to_memory(effective_address)[31:0]  = src1; 
generate_fault(OPERATION.UNALIGNED);}

else
store_to_memory(effective_address)[31:0] = src1;
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Action 
(continued)

stob:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else

store_to_memory(effective_address)[7:0] = src1[7:0];

stib:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((src1[31:8] != 0) && (src1[31:8] != 0xFFFFFF)) 

{ store_to_memory(effective_address)[7:0] = src1[7:0];
if (AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

else
store_to_memory(effective_address)[7:0] = src1[7:0];

end if;

stos:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[0] != 02) && unaligned_fault_enabled) 

{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);

}
else

store_to_memory(effective_address)[15:0] = src1[15:0];
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Action 
(continued)

stis:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[0] != 02) && unaligned_fault_enabled) 

{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);

}
else if ((src1[31:16] != 0) && (src1[31:16] != 0xFFFF))

{ store_to_memory(effective_address)[15:0] = src1[15:0];
if (AC.om == 1)
AC.of = 1;

else
generate_fault(ARITHMETIC.OVERFLOW);

}
else

store_to_memory(effective_address)[15:0] = src1[15:0];

stl:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 2 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[2:0] != 0002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;

}
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Action 
(continued)

stt:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 4 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[3:0] != 00002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;

}

stq:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 4 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[3:0] != 00002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
store_to_memory(effective_address + 12)[31:0] = 

src1_+_3;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
store_to_memory(effective_address + 12)[31:0] = 

src1_+_3;
}

Faults STANDARD  Refer to Section 6.1.6, “Faults” on page 6-5.
ARITHMETIC.OVERFLOW For stib, stis.

Example st g2, 1254 (g6) # Word beginning at offset
# 1254 + (g6) = g2.

Opcode st 92H MEM
stob 82H MEM
stos 8AH MEM
stib C2H MEM
stis CAH MEM
stl 9AH MEM
stt A2H MEM
stq B2H MEM

See Also LOAD, MOVE
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Notes illegal_write_to_on_chip_RAM is an implementation-dependent mechanism. 
The mapping of register bits to memory(efa) depends on the endianism of the 
memory region and is implementation-dependent.
6-102 i960® Hx Microprocessor Developer’s Manual



Instruction Set Reference
6.2.63 subc

Mnemonic subc Subtract Ordinal With Carry

Format subc src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Subtracts src1 from src2, then subtracts the opposite of condition code bit 1 
(used here as the carry bit) and stores the result in dst. If the ordinal subtraction 
results in a carry, condition code bit 1 is set to 1, otherwise it is set to 0.

This instruction can also be used for integer subtraction. Here, if integer 
subtraction results in an overflow, condition code bit 0 is set.

subc does not distinguish between ordinals and integers: it sets condition code 
bits 0 and 1 regardless of data type.

Action dst = (src2 - src1 -1 + AC.cc[1])[31:0];
AC.cc[2:0] = 0002;
if((src2[31] == src1[31]) && (src2[31] != dst[31]))

AC.cc[0] = 1; # Overflow bit.
AC.cc[1] = (src2 - src1 -1 + AC.cc[1])[32]; # Carry out.

Faults STANDARD  Refer to Section 6.1.6, “Faults” on page 6-5.

Example subc g5, g6, g7
# g7 = g6 - g5 - not(condition code bit 1)

Opcode subc 5B2H REG

See Also addc, addi, addo, subi, subo

Side Effects Sets the condition code in the arithmetic controls.
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6.2.64 SUB<cc>

.

Mnemonic subono Subtract Ordinal if Unordered
subog Subtract Ordinal if Greater
suboe Subtract Ordinal if Equal
suboge Subtract Ordinal if Greater or Equal
subol Subtract Ordinal if Less
subone Subtract Ordinal if Not Equal
subole Subtract Ordinal if Less or Equal
suboo Subtract Ordinal if Ordered
subino Subtract Integer if Unordered
subig Subtract Integer if Greater
subie Subtract Integer if Equal
subige Subtract Integer if Greater or Equal
subil Subtract Integer if Less
subine Subtract Integer if Not Equal
subile Subtract Integer if Less or Equal
subio Subtract Integer if Ordered

Format sub* src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Subtracts src1 from src2 conditionally based on the condition code bits in the 
arithmetic controls.

If for Unordered the condition code is 0, or if for the other cases the logical 
AND of the condition code and the mask part of the opcode is not zero; then 
src1 is subtracted from src2 and the result stored in the destination

Instruction Mask Condition

subono, subino 0002 Unordered

subog, subig 0012 Greater

suboe, subie 0102 Equal

suboge, subige 0112 Greater or equal

subol, subil 1002 Less

subone, subine 1012 Not equal 

subole, subile 1102 Less or equal

suboo, subio 1112 Ordered
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Action SUBO<cc>:
if ((mask & AC.cc) || (mask == AC.cc))

dst = (src2 - src1)[31:0];

SUBI<cc>:
if ((mask & AC.cc) || (mask == AC.cc))
{

{ true_result = (src2 - src1);
dst = true_result[31:0];

}
if((true_result > (2**31) - 1) || (true_result < -2**31))

# Check for overflow
{ if (AC.om == 1)

AC.of  = 1;
else

generate_fault (ARITHMETIC.OVERFLOW);
}

}

Faults STANDARD  Refer to Section 6.1.6, “Faults” on page 6-5.
ARITHMETIC.OVERFLOW For the SUBI<cc> class.

Example # AC.cc = 0102
suboge g0,g1,g2 # g2 = g1 - g0

# AC.cc = 0012
subile g0,g1,g2 # g2 not modified

Opcode subono 782H REG
subog 792H REG
suboe 7A2H REG
suboge 7B2H REG
subol 7C2H REG
subone 7D2H REG
subole 7E2H REG
suboo 7F2H REG
subino 783H REG
subig 793H REG
subie 7A3H REG
subige 7B3H REG
subil 7C3H REG
subine 7D3H REG
subile 7E3H REG
subio 7F3H REG

See Also subc, subi, subo, SEL<cc>, TEST<cc>

Notes These core instructions are not implemented on 80960Cx, Kx and Sx 
processors.
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6.2.65 subi, subo

Mnemonic subi Subtract Integer
subo Subtract Ordinal

Format sub* src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Subtracts src1 from src2 and stores the result in dst. The binary results from 
these two instructions are identical. The only difference is that subi can signal 
an integer overflow.

Action subo:
dst = (src2 - src1)[31:0];

subi:
true_result = (src2 - src1);
dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31))# Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.ARITHMETIC.OVERFLOW
For subi.

Example subi g6, g9, g12 # g12 = g9 - g6

Opcode subi 593H REG
subo 592H REG

See Also addi, addo, subc, addc
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6.2.66 syncf

Mnemonic syncf Synchronize Faults

Format syncf

Description Waits for all faults to be generated that are associated with any prior 
uncompleted instructions.

Action if(AC.nif == 1)
break;

else
wait_until_all_previous_instructions_in_flow_have_completed();
# This also means that all of the faults on these instructions have 
# been reported.

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example ld xyz, g6
addi r6, r8, r8
syncf
and g6, 0xFFFF, g8
# The syncf instruction ensures that any faults
# that may occur during the execution of the
# ld and addi instructions occur before the
# and instruction is executed.

Opcode syncf 66FH REG

See Also mark, fmark
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6.2.67 sysctl

Mnemonic sysctl System Control

Format sysctl src1, src2, src/dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Performs system management and control operations including requesting 
software interrupts, invalidating the instruction cache, configuring the 
instruction cache, processor reinitialization, modifying memory-mapped 
registers, and acquiring breakpoint resource information. 

Processor control function specified by the message field of src1 is executed. 
The type field of src1 is interpreted depending upon the command. Remaining 
src1 bits are reserved. The src2 and src3 operands are also interpreted 
depending upon the command.

Figure 6-7. Src1 Operand Interpretation

Table 6-10. sysctl Field Definitions

Message
Src1 Src2 Src/Dst

Type Field 1 Field 2 Field 3 Field 4

Request Interrupt 0x0 Vector Number N/U N/U N/U

Invalidate Cache 0x1 N/U N/U N/U N/U

Configure Instruction 
Cache 0x2

Cache Mode 
Configuration 

(See Table 6-11)
N/U Cache load 

address N/U

 Reinitialize 0x3 N/U N/U Starting IP PRCB Pointer

Load Control Register 0x4 Register Group 
Number N/U N/U N/U

Modify Memory-
Mapped Control 
Register (MMR)

0x5 N/U
Lower 2 bytes 

of MMR 
address

Value to write Mask

Breakpoint Resource 
Request 0x6 N/U N/U N/U Breakpoint info 

(See Figure 6-8)

NOTE: Sources and fields that are not used (designated N/U) are ignored.

8    7 031 16   15

Message TypeField 2 Field 1
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Table 6-11. Cache Mode Configuration

Mode Field Mode Description 80960HA/HD/HT

0002 Normal cache enabled 16 Kbyte

XX12 Full cache disabled 16 Kbyte

1002 or 1102 Load and lock cache Lock 1 way (4K) 12K, 3 ways available

Figure 6-8. src/dst Interpretation for Breakpoint Resource Request

Action if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

order_wrt(previous_operations);
OPtype = (src1 & 0xff00) >> 8;
switch (OPtype) {
  case 0: # Signal Software Interrupt

vector_to_post = 0xff & src1;
priority_to_post = vector_to_post >> 3;
pend_ints_addr = interrupt_table_base + 4 + priority_to_post;
pend_priority = memory_read(interrupt_table_base,atomic_lock);
# Priority zero just recans Interrupt Table 
if (priority_to_post != 0)

{pend_ints = memory_read(pend_ints_addr, non-cacheable)
pend_ints[7 & vector] = 1;
pend_priority[priority_to_post] = 1;
memory_write(pend_ints_addr, pend_ints); }

memory_write(interrupt_table_base,pend_priority,atomic_unlock);
# Update internal software priority with highest priority interrupt
# from newly adjusted Pending Priorities word.  The current internal
# software priority is always replaced by the new, computed one. (If
# there is no bit set in pending_priorities word for the current
# internal one, then it is discarded by this action.)
if (pend_priority == 0)

SW_Int_Priority = 0;
else { msb_set = scan_bit(pend_priority);

SW_Int_Priority = msb_set;   }

Reserved - Set to zero

4    331 8    7

# available 
instruction 
breakpoints

# available 
data 

breakpoints

0
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# Make sure change to internal software priority takes full effect
# before next instruction.
order_wrt(subsequent_operations);

break;
case 1: # Global Invalidate Instruction Cache 

invalidate_instruction_cache( );  
unlock_instruction_cache( );
break;

case 2: # Configure Instruction-Cache 
mode = src1 & 0xff;
if (mode & 1) disable_instruction_cache;
else switch (mode) {

case 0: enable_instruction_cache; break;
case 4,6: # Load & Lock code into I-Cache 

# All contiguous blocks are locked.
# Note:   block = way on i960 Hx processor. 
# src2 has starting address of code to lock.
# src2 is aligned to a quad word 
# boundary.
aligned_addr = src2 & 0xfffffff0;
invalidate(I-cache); unlock(I-cache);
for (j = 0; j < number_of_blocks_that_lock; j++)
{way = block_associated_with_block(j);
 start = src2 + j*block_size;
 end = start + block_size;
 for (i = start; i < end; i=i+4)

{ set = set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word]=memory[i];
update_tag_n_valid_bits(set,way,word)
lock_icache(set,way,word);

} } break;
default:

generate_operation_invalid_operand_fault;
} break;
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nd 
case 3: # Software Re-init 
disable(I_cache); invalidate(I_cache);
disable(D_cache); invalidate(D_cache);
Process_PRCB(dst);  # dst has ptr to new PRCB 
IP = src2;
break;

case 4: # Load One Group of Control Registers From Control Table
grpoff = (src1 & 0xff) * 16;
for (i = 0; i < 4; i=i+4)
memory[control_reg_addr(i,grpoff)] = memory[i+grpoff];
}
break;

case 5: # Modify One Memory-Mapped Control Register (MMR)
# src1[31:16] has lower 2 bytes of MMR address
# src2 has value to write; dst has mask.
# After operation, dst has old value of MMR
addr = (0xff00 << 16) | (src1 >> 16);
temp = memory[addr];
memory[addr] = (src2 & dst) | (temp & ~dst);
dst = temp;
break;

case 6: # Breakpoint Resource Request 
acquire_available_instr_breakpoints( );
dst[3:0] = number_of_available_instr_breakpoints;
acquire_available_data_breakpoints( );
dst[7:4] = number_of_available_data_breakpoints;
dst[31:8] = 0;
break;

default: # Reserved, fault occurs 
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
order_wrt(subsequent_operations);

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example ldconst 0x100,r6 # Set up message.
sysctl r6,r7,r8 # Invalidate I-cache.

# r7, r8 are not used.
ldconst 0x204, g0 # Set up message type and 

# cache configuration mode.
# Lock half cache.

ldconst 0x20000000,g2 # Starting address of code.
sysctl g0,g2,g2 # Execute Load and Lock.

Opcode sysctl 659H REG

See Also dcctl, icctl

Notes This instruction is implemented on 80960RP, Hx, Jx and Cx processors, a
may or may not be implemented on future i960 processors.
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6.2.68 TEST<cc>

Mnemonic teste{.t|.f} Test For Equal
testne{.t|.f} Test For Not Equal
testl{.t|.f} Test For Less
testle{.t|.f} Test For Less Or Equal
testg{.t|.f} Test For Greater
testge{.t|.f} Test For Greater Or Equal
testo{.t|.f} Test For Ordered
testno{.t|.f} Test For Not Ordered

Format test*{.t|.f} dst:src1
reg

Description Stores a true (01H) in dst if the logical AND of the condition code and opcode 
mask part is not zero. Otherwise, the instruction stores a false (00H) in dst. For 
testno (Unordered), a true is stored if the condition code is 0002, otherwise a 
false is stored. 

The following table shows the condition-code mask for each instruction. The 
mask is in bits 0-2 of the opcode.

Instruction Mask Condition

testno 0002 Unordered

testg 0012 Greater

teste 0102 Equal

testge 0112 Greater or equal

testl 1002 Less

testne 1012 Not equal

testle 1102 Less or equal

testo 1112 Ordered

The optional .t or .f suffix may be appended to the mnemonic. Use .t to speed 
up execution when these instructions usually store a true (1) condition in dst. 
Use .f to speed up execution when these instructions usually store a false (0) 
condition in dst. If a suffix is not provided, the assembler is free to provide 
one.
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Action For all TEST<cc> except testno:
if((mask & AC.cc) != 0002)

src1 = 1; #true value
else

src1 = 0; #false value

testno:
if(AC.cc == 0002)

src1 = 1; #true value
else

src1 = 0; #false value

Faults STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example # Assume AC.cc = 1002
testl g9# g9 = 0x00000001

Opcode teste 22H COBR
testne 25H COBR
testl 24H COBR
testle 26H COBR
testg 21H COBR
testge 23H COBR
testo 27H COBR
testno 20H COBR

See Also cmpi, cmpdeci, cmpinci
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6.2.69 xnor, xor

Mnemonic xnor Exclusive Nor
xor Exclusive Or

Format xnor src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

xor src1, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Description Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction) 
operation on the src2 and src1 values and stores the result in dst.

Action xnor:
dst = ~(src2 | src1) | (src2 & src1);

xor:
dst = (src2 | src1) & ~(src2 & src1);

Faults  STANDARD Refer to Section 6.1.6, “Faults” on page 6-5.

Example xnor r3, r9, r12 # r12 = r9 XNOR r3
xor g1, g7, g4 # g4 = g7 XOR g1

Opcode xnor 589H REG
xor 586H REG

See Also and, andnot, nand, nor, not, notand, notor, or, ornot
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Procedure Calls 7

This chapter describes mechanisms for making procedure calls, which include branch-and-link 
instructions, built-in call and return mechanism, call instructions (call, callx, calls), return 
instruction (ret) and call actions caused by interrupts and faults.

The i960® processor architecture supports two methods for making procedure calls:

• A RISC-style branch-and-link: a fast call best suited for calling procedures that do not call 
other procedures.

• An integrated call and return mechanism: a more versatile method for making procedure calls, 
providing a highly efficient means for managing a large number of registers and the program 
stack.

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register. The 
called procedure uses the same set of registers and the same stack as the calling procedure. On a 
call (call, callx, calls) or when an interrupt or fault occurs, the processor also branches to a target 
instruction and saves a return IP. Additionally, the processor saves the local registers and allocates 
a new set of local registers and a new stack for the called procedure. The saved context is restored 
when the return instruction (ret) executes.

In many RISC architectures, a branch-and-link instruction is used as the base instruction for coding 
a procedure call. The user program then handles register and stack management for the call. Since 
the i960 architecture provides a fully integrated call and return mechanism, coding calls with 
branch-and-link are not necessary. Additionally, the integrated call is much faster than typical 
RISC-coded calls.

The branch-and-link instruction in the i960 processor family, therefore, is used primarily for calling 
leaf procedures. Leaf procedures call no other procedures; they reside at the “leaves” of the
tree.

In the i960 architecture the integrated call and return mechanism is used in two ways:

•  explicit calls to procedures in a user’s program

•  implicit calls to interrupt and fault handlers

The remainder of this chapter explains the generalized call mechanism used for explicit and 
implicit calls and call and return instructions.
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The processor performs two call actions:

Explicit procedure calls can be made using several instructions. Local call instructions call and 
callx perform a local call action. With call and callx, the called procedure’s IP is included as an 
operand in the instruction.

A system call is made with calls. This instruction is similar to call and callx, except that the 
processor obtains the called procedure’s IP from the system procedure table. A system call, when 
executed, is directed to perform either the local or supervisor call action. These calls are refe
as system-local and system-supervisor calls, respectively. A system-supervisor call is also referr
to as a supervisor call.

7.1 Call and Return Mechanism 

At any point in a program, the i960 processor has access to the global registers, a local regis
and the procedure stack. A subset of the stack allocated to the procedure is called the stack

• When a call executes, a new stack frame is allocated for the called procedure. The processor 
also saves the current local register set, freeing these registers for use by the newly called 
procedure. In this way, every procedure has a unique stack and a unique set of local registers.

• When a return executes, the current local register set and current stack frame are deallocated. 
The previous local register set and previous stack frame are restored.

7.1.1 Local Registers and the Procedure Stack

The processor automatically allocates a set of 16 local registers for each procedure. Since local 
registers are on-chip, they provide fast access storage for local variables. Of the 16 local registers, 
13 are available for general use; r0, r1 and r2 are reserved for linkage information to tie procedures 
together.

local When a local call is made, execution mode remains unchanged and the stack 
frame for the called procedure is placed on the local stack. The local stack 
refers to the stack of the calling procedure. 

supervisor When a supervisor call is made from user mode, execution mode is switched to 
supervisor and the stack frame for the called procedure is placed on the 
supervisor stack.

When a supervisor call is issued from supervisor mode, the call degenerates 
into a local call (i.e., no mode nor stack switch).
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The processor does not always clear or initialize the set of local registers assigned to a new 
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does 
not initialize the local register save area in the newly created stack frame for the procedure, its 
contents are equally unpredictable.

The procedure stack can be located anywhere in the address space and grows from low addresses to 
high addresses. It consists of contiguous frames, one frame for each active procedure. Local 
registers for a procedure are assigned a save area in each stack frame (Figure 7-1). The procedure 
stack, available to the user, begins after this save area.

To increase procedure call speed, the architecture allows an implementation to cache the saved 
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of 
local registers often do not have to be written out to the save area in the stack frame in memory. 
Refer to Section 7.1.4, “Caching Local Register Sets” on page 7-7 and Section 7.1.4.1, “Reserving 
Local Register Sets for High Priority Interrupts” on page 7-8 for more about local registers and 
procedure stack interrelations.

Figure 7-1. Procedure Stack Structure and Local Registers

register
save area

Procedure Stack

Previous Frame Pointer (PFP) 

Stack Pointer (SP)

Return Instruction Pointer (RIP)

user allocated stack

unused stack

stack growth
(toward higher addresses)

padding area

user allocated stack

Current Register Set

Previous Frame Pointer (PFP)

Stack Pointer (SP)

reserved for RIP

.

..

Frame Pointer (FP)

Previous 
Stack 

Frame

Current 
Stack
Frame.

.

.

.

..

.

..

g0

g15

r0

r1

r2

r15

r0

r1

r2

r15
i960® Hx Microprocessor Developer’s Manual 7-3



Procedure Calls

 g15, 
ot use 

rding
3

ck so that

ck 
k 
 
 action 

k. The 
his is 

In the 
pt 
 written 
7.1.2 Local Register and Stack Management

Global register g15 (FP) and local registers r0 (PFP), r1 (SP) and r2 (RIP) contain information to 
link procedures together and link local registers to the procedure stack (Figure 7-1). The following 
subsections describe this linkage information.

7.1.2.1 Frame Pointer

The frame pointer is the current stack frame’s first byte address. It is stored in global register
the frame pointer (FP) register. The FP register is always reserved for the frame pointer; do n
g15 for general storage. 

Stack frame alignment is defined for each implementation of the i960 processor family, acco
to an SALIGN parameter (see Section A.2.5, “Data and Data Structure Alignment” on page A-).
In the i960 Hx processor, stacks are aligned on 16-byte boundaries (see Figure 7-1). When the
processor needs to create a new frame on a procedure call, it adds a padding area to the sta
the new frame starts on a 16-byte boundary.

7.1.2.2 Stack Pointer

The stack pointer is the byte-aligned address of the stack frame’s next unused byte. The sta
pointer value is stored in local register r1, the stack pointer (SP) register. The procedure stac
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor
automatically adds 64 to the frame pointer value and stores the result in the SP register. This
creates the register save area in the stack frame for the local registers.

The program must modify the SP register value when data is stored or removed from the stac
i960 architecture does not provide an explicit push or pop instruction to perform this action. T
typically done by adding the size of all pushes to the stack in one operation.

7.1.2.3 Considerations When Pushing Data onto the Stack

Care should be taken in writing to stack in the presence of unforeseen faults and interrupts. 
general case, to ensure that the data written to the stack is not corrupted by a fault or interru
record, the SP should be incremented first to allocate the space, and then the data should be
to the allocated space:
mov sp,r4
addo 24,sp,sp
st data,(r4)

...
st data,20(r4)
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7.1.2.4 Considerations When Popping Data off the Stack

For reasons similar to those discussed in the previous section, care should be taken in reading the 
stack in the presence of unforeseen faults and interrupts. In the general case, to ensure that data 
about to be popped off the stack is not corrupted by a fault or interrupt record, the data should be 
read first and then the sp should be decremented:
subo 24,sp,r4

ld 20(r4),rn

...

ld (r4),rn

mov r4,sp

7.1.2.5 Previous Frame Pointer

The previous frame pointer is the previous stack frame’s first byte address. This address’s up
bits are stored in local register r0, the previous frame pointer (PFP) register. The four least-
significant bits of the PFP are used to store the return type field. See Figure 7-5 and Table 7-2 for 
more information on the PFP and the return-type field.

7.1.2.6 Return Type Field

PFP register bits 0 through 3 contain return type information for the calling procedure. When
procedure call is made — either explicit or implicit — the processor records the call type in th
return type field. The processor then uses this information to select the proper return mecha
when returning to the calling procedure. The use of this information is described in Section 7.8, 
“Returns” on page 7-19.

7.1.2.7 Return Instruction Pointer

The actual RIP register (r2) is reserved by the processor to support the call and return mech
and must not be used by software; the actual value of RIP is unpredictable at all times. For 
example, an implicit procedure call (fault or interrupt) can occur at any time and modify the R
An OPERATION.INVALID_OPERAND fault is generated when attempting to write to the RIP

The image of the RIP register in the stack frame is used by the processor to determine that f
return instruction address. When a call is made, the processor saves the address of the instr
after the call in the image of the RIP register in the calling frame.
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7.1.3 Call and Return Action

To clarify how procedures are linked and how the local registers and stack are managed, the 
following sections describe a general call and return operation and the operations performed with 
the FP, SP, PFP and RIP registers.

The events for call and return operations are given in a logical order of operation.   can execute 
independent operations in parallel; therefore, many of these events execute simultaneously. For 
example, to improve performance, the processor often begins prefetching of the target instruction 
for the call or return before the operation is complete.

7.1.3.1 Call Operation

When a call, calls or callx instruction is executed or an implicit call is triggered:

1. The processor stores the instruction pointer for the instruction following the call in the current 
stack’s RIP register (r2).

2. The current local registers — including the PFP, SP and RIP registers — are saved, free
these for use by the called procedure.

3. The frame pointer (g15) for the calling procedure is stored in the current stack’s PFP reg
(r0). The return type field in the PFP register is set according to the call type which is 
performed. See Section 7.8, “Returns” on page 7-19.

4. For a local or system-local call, a new stack frame is allocated by using the old stack po
value saved in step 2. This value is first rounded to the next 16-byte boundary to create 
frame pointer, then stored in the FP register. Next, 64 bytes are added to create the new f
register save area. This value is stored in the SP register. 

For an interrupt call from user mode, the current interrupt stack pointer value is used inste
the value saved in step 2.

For a system-supervisor call from user mode, the current Supervisor Stack Pointer (SSP)
is used instead of the value saved in step 2. 

5. The instruction pointer is loaded with the address of the first instruction in the called 
procedure. The processor gets the new instruction pointer from the call, the system procedure 
table, the interrupt table or the fault table, depending on the type of call executed.

Upon completion of these steps, the processor begins executing the called procedure. Some
before a return or nested call, the local register set is bound to the allocated stack frame.
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7.1.3.2 Return Operation

A return from any call type — explicit or implicit — is always initiated with a return (ret) 
instruction. On a return, the processor performs these operations:

1. The current stack frame and local registers are deallocated by loading the FP register w
value of the PFP register.

2. The local registers for the return target procedure are retrieved. The registers are usuall
from the local register cache; however, in some cases, these registers have been flushe
register cache to memory and must be read directly from the save area in the stack fram

3. The processor sets the instruction pointer to the value of the RIP register.

Upon completion of these steps, the processor executes the instruction to which it returns. T
frames created before the ret instruction was executed will be overwritten by later implicit or 
explicit call operations. 

7.1.4 Caching Local Register Sets

Actual implementations of the i960 architecture may cache some number of local register se
within the processor to improve performance. Local registers are typically saved and restored
the local register cache when calls and returns are executed. Other overhead associated wit
or return is performed in parallel with this data movement. 

When the number of nested procedures exceeds local register cache size, local register sets
times be saved to (and restored from) their associated save areas in the procedure stack. Be
these operations require access to external memory, this local cache miss affects call and re
performance.

When a call is made and no frames are available in the register cache, a register set in the c
must be saved to external memory to make room for the current set of local registers in the c
This action is referred to as a frame spill. The oldest set of local registers stored in the cache
spilled to the associated local register save area in the procedure stack. Figure 7-2 illustrates a call 
operation with and without a frame spill.

Similarly, when a return is made and the local register set for the target procedure is not availa
the cache, these local registers must be retrieved from the procedure stack in memory. This 
operation is referred to as a frame fill. Figure 7-3 illustrates return operations with and without 
frame fills.
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The flushreg instruction (described in Section 6.2.31, “flushreg” on page 6-53) writes all local 
register sets (except the current one) to their associated stack frames in memory. The registe
is then invalidated, meaning that all flushed register sets are restored from their save areas i
memory.

For most programs, the existence of the multiple local register sets and their saving/restoring
stack frames should be transparent. However, there are some special cases:

• A store to the register save area in memory does not necessarily update a local register set, 
unless user software executes flushreg first.

• Reading from the register save area in memory does not necessarily return the current value of 
a local register set, unless user software executes flushreg first.

• There is no mechanism, including flushreg, to access the current local register set with a read 
or write to memory.

• flushreg must be executed sometime before returning from the current frame if the current 
procedure modifies the PFP in register r0, or else the behavior of the ret instruction is not 
predictable.

• The values of the local registers r2 to r15 in a new frame are undefined.

flushreg is commonly used in debuggers or fault handlers to gain access to all saved local 
registers. In this way, call history may be traced back through nested procedures.

7.1.4.1 Reserving Local Register Sets for High Priority Interrupts

To decrease interrupt latency for high priority interrupts, software can limit the number of frames
available to all remaining code. This includes code that is either in the executing state (non-inter-
rupted) or code that is in the interrupted state but has a process priority less than 28. For the
purposes of discussion here, this remaining code will be referred to as non-critical code.
Specifying a limit for non-critical code ensures that some number of free frames are available to
high-priority interrupt service routines. Software can specify the limit for non-critical code by
writing bits 11 through 8 of the register cache configuration word in the PRCB (see Figure 13-6
“Process Control Block Configuration Words” on page 13-18). The value indicates how many
frames within the register cache may be used by non-critical code before a frame needs
flushed to external memory. The programmed limit is used only when a frame is pushed, 
occurs only for an implicit or explicit call. 

Allowed values of the programmed limit range from 0 to 15. Setting the value to 0 reserv
frames for high-priority interrupts. Setting the value to 15 causes the register cache to b
disabled for non-critical code. See Section 13.3.1.2, “Process Control Block (PRCB)” o
page 13-17.
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Figure 7-2. Frame Spill
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Figure 7-3. Frame Fill
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7.1.5 Mapping Local Registers to the Procedure Stack

Each local register set is mapped to a register save area of its respective frame in the procedure 
stack (Figure 7-1). Saved local register sets are frequently cached on-chip rather than saved to 
memory. This is not a write-through cache. Local register set contents are not saved automatically 
to the save area in memory when the register set is cached. This would cause a significant 
performance loss for call operations.

Also, no automatic update policy is implemented for the register cache. If the register save area in 
memory for a cached register set is modified, there is no guarantee that the modification will be 
reflected when the register set is restored. For a frame spill, the set must be flushed to memory 
prior to the modification for the modification to be valid. 

The flushreg instruction causes the contents of all cached local register sets to be written (flushed) 
to their associated stack frames in memory. The register cache is then invalidated, meaning that all 
flushed register sets are restored from their save areas in memory. The current set of local registers 
is not written to memory. flushreg is commonly used in debuggers or fault handlers to gain access 
to all saved local registers. In this way, call history may be traced back through nested procedures. 
flushreg is also used when implementing task switches in multitasking kernels. The procedure 
stack is changed as part of the task switch. To change the procedure stack, flushreg is executed to 
update the current procedure stack and invalidate all entries in the local register cache. Next, the 
procedure stack is changed by directly modifying the FP and SP registers and executing a call 
operation. After flushreg executes, the procedure stack may also be changed by modifying the 
previous frame in memory and executing a return operation.

When a set of local registers is assigned to a new procedure, the processor may or may not clear or 
initialize these registers. Therefore, initial register contents are unpredictable. Also, the processor 
does not initialize the local register save area in the newly created stack frame for the procedure; its 
contents are equally unpredictable.

7.2 Modifying the PFP Register

The FP must not be directly modified by user software or risk corrupting the local registers. 
Instead, implement context switches by modifying the PFP. 

Modification of the PFP is typically for context switches; as part of the switch, the active procedure 
changes the pointer to the frame that it will return to (previous frame pointer — PFP). Great 
should be taken in modifying the PFP. In the general case, a flushreg must be issued before and 
after modifying the PFP when the local register cache is enabled (see Example). This requirement 
ensures the correct operation of a context switch on all i960 processors in all situations.
i960® Hx Microprocessor Developer’s Manual 7-11
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The flushreg before the modification is necessary to ensure that the frame of the previous context 
(mapped to 0x5000 in the example) is “spilled” to the proper external memory address and 
removed from the local register cache. If the flushreg before the modification was omitted, a 
flushreg (or implicit frame spill due to an interrupt) after the modification of PFP would cause
frame of the previous context to be written to the wrong location in external memory.

The flushreg after the modification ensures that outstanding results are completely written to
PFP before a subsequent ret instruction can be executed. Recall that the ret instruction uses the 
low-order 4 bits of the PFP to select which ret function to perform. Requiring the flushreg after the 
PFP modification allows an i960 implementation to implement a simple mechanism that quic
selects the ret function at the time the ret instruction is issued and provides a faster return 
operation.

Note the flushreg after the modification will execute very quickly because the local register ca
has already been flushed by the flushreg before; only synchronization of the PFP will be 
performed. i960 processor implementations may provide other mechanisms to ensure PFP 
synchronization in addition to flushreg, but a flushreg after a PFP modification is ensured to wor
on all i960 processors.

Example 7-1. flushreg

# Do a context switch. 

# Assume PFP = 0x5000.

flushreg # Flush Frames to correct address. 

lda 0x8000,pfp

flushreg # Ensure that "ret" gets updated PFP. 

ret
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7.3 Parameter Passing

Parameters are passed between procedures in two ways:

When passing parameters by value, the calling procedure stores the parameters to be passed in 
global registers. Since the calling procedure and the called procedure share the global registers, the 
called procedure has direct access to the parameters after the call.

When a procedure needs to pass more parameters than will fit in the global registers, they can be 
passed by reference. Here, parameters are placed in an argument list and a pointer to the argument 
list is placed in a global register.

The argument list can be stored anywhere in memory; however, a convenient place to store an 
argument list is in the stack for a calling procedure. Space for the argument list is created by 
incrementing the SP register value. If the argument list is stored in the current stack, the argument 
list is automatically deallocated when no longer needed. 

A procedure receives parameters from — and returns values to — other calling procedures. 
this successfully and consistently, all procedures must agree on the use of the global registe

Parameter registers pass values into a function. Up to 12 parameters can be passed by valu
the global registers. If the number of parameters exceeds 12, additional parameters are pass
using the calling procedure’s stack; a pointer to the argument list is passed in a pre-designat
register. Similarly, several registers are set aside for return arguments and a return argumen
pointer is defined to point to additional parameters. If the number of return arguments excee
available number of return argument registers, the calling procedure passes a pointer to an 
argument list on its stack where the remaining return values will be placed. Example 7-2 illustrates 
parameter passing by value and by reference.

Local registers are automatically saved when a call is made. Because of the local register ca
they are saved quickly and with no external bus traffic. The efficiency of the local register 
mechanism plays an important role in two cases when calls are made:

1. When a procedure is called which contains other calls, global parameter registers shoul
moved to working local registers at the beginning of the procedure. In this way, paramete
registers are freed and nested calls are easily managed. The register move instruction 
necessary to perform this action is very fast; the working parameters — now in local 
registers — are saved efficiently when nested calls are made. 

2. When other procedures are nested within an interrupt or fault procedure, the procedure 
preserve all normally non-preserved parameter registers, such as the global registers. T
necessary because the interrupt or fault occurs at any point in the user’s program and a 
from an interrupt or fault must restore the exact processor state. The interrupt or fault 
procedure can move non-preserved global registers to local registers before the nested 

value Parameters are passed directly to the calling procedure as part of the call
return mechanism. This is the fastest method of passing parameters.

reference Parameters are stored in an argument list in memory and a pointer to the
argument list is passed in a global register. 
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7.4 Local Calls

A local call does not cause a stack switch. A local call can be made two ways:

• with the call and callx instructions; or

• with a system-local call as described in Section 7.5, “System Calls” on page 7-15. 

call specifies the address of the called procedures as the IP plus a signed, 24-bit displaceme
-223 to 223 - 4). callx allows any of the addressing modes to be used to specify the procedure 
address. The IP-with-displacement addressing mode allows full 32-bit IP-relative addressing

When a local call is made with a call or callx, the processor performs the same operation as 
described in Section 7.1.3.1, “Call Operation” on page 7-6. The target IP for the call is derived 
from the instruction’s operands and the new stack frame is allocated on the current stack.

Example 7-2. Parameter Passing Code Example

# Example of parameter passing . . .

# C-source:int a,b[10];

# a = proc1(a,1,’x’,&b[0]); 

# assembles to ...

mov r3,g0 # value of a

ldconst 1,g1 # value of 1

ldconst 120,g2 # value of “x”

lda 0x40(fp),g3 # reference to b[10]

call _proc1

mov g0,r3 #save return value in “a”

.

.

_proc1:

movq g0,r4 # save parameters

.

. # other instructions in procedure

. # and nested calls

mov r3,g0 # load return parameter

ret
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7.5 System Calls

A system call is a call made via the system procedure table. It can be used to make a system-local 
call — similar to a local call made with call and callx in the sense that there is no stack nor mod
switch — or a system supervisor call. A system call is initiated with calls, which requires a 
procedure number operand. The procedure number provides an index into the system proce
table, where the processor finds IPs for specific procedures.

Using an i960 processor language assembler, a system procedure is directly declared using
.sysproc directive. At link time, the optimized call directive, callj, is replaced with a calls when a 
system procedure target is specified. (Refer to current i960 processor assembler documenta
a description of the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software portab
System calls are commonly used to call kernel services. By calling these services with a proc
number rather than a specific IP, applications software does not need to be changed each tim
implementation of the kernel services is modified. Only the entries in the system procedure t
must be changed. Second, the ability to switch to a different execution mode and stack with 
system supervisor call allows kernel procedures and data to be insulated from applications c
This benefit is further described in Section 3.7, “User-Supervisor Protection Model” on page 3-2.

7.5.1 System Procedure Table

The system procedure table is a data structure for storing IPs to system procedures. These c
procedures which software can access through (1) a system call or (2) the fault handling 
mechanism. Using the system procedure table to store IPs for fault handling is described in 
Section 8.1, “Fault Handling Overview” on page 8-1.

Figure 7-4 shows the system procedure table structure. It is 1088 bytes in length and can have
260 procedure entries. At initialization, the processor caches a pointer to the system procedu
table. This pointer is located in the PRCB. The following subsections describe this table’s fie
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Figure 7-4. System Procedure Table
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7.5.1.1 Procedure Entries

A procedure entry in the system procedure table specifies a procedure’s location and type. E
entry is one word in length and consists of an address (IP) field and a type field. The addres
gives the address of the first instruction of the target procedure. Since all instructions are wo
aligned, only the entry’s 30 most significant bits are used for the address. The entry’s two lea
significant bits specify entry type. The procedure entry type field indicates call type: system-l
call or system-supervisor call (Table 7-1). On a system call, the processor performs different 
actions depending on the type of call selected. 

7.5.1.2 Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack called the supervisor 
stack, if not already in supervisor mode. The processor gets a pointer to this stack from the 
supervisor stack pointer field in the system procedure table (Figure 7-4) during the reset 
initialization sequence and caches the pointer internally. Only the 30 most significant bits of t
supervisor stack pointer are given. The processor aligns this value to the next 16-byte bound
determine the first byte of the new stack frame.

7.5.1.3 Trace Control Bit

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC re
(PC.te) when a system-supervisor call causes a switch from user mode to supervisor mode. 
this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables tracing. The use o
bit is described in Section 9.1.2, “PC Trace Enable Bit and Trace-Fault-Pending Flag” on page.

Table 7-1. Encodings of Entry Type Field in System Procedure Table

Encoding Call Type

00 System-Local Call

01 Reserved1

10 System-Supervisor Call

11 Reserved1

1. Calls with reserved entry types have unpredictable behavior.
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7.5.2 System Call to a Local Procedure

When a calls instruction references an entry in the system procedure table with an entry type of 00, 
the processor executes a system-local call to the selected procedure. The action that the processor 
performs is the same as described in Section 7.1.3.1, “Call Operation” on page 7-6. The call’s 
target IP is taken from the system procedure table and the new stack frame is allocated on t
current stack, and the processor does not switch to supervisor mode. The calls algorithm is 
described in Section 6.2.14, “calls” on page 6-25.

7.5.3 System Call to a Supervisor Procedure

When a calls instruction references an entry in the system procedure table with an entry type
102, the processor executes a system-supervisor call to the selected procedure. The call’s ta
is taken from the system procedure table.

The processor performs the same action as described in Section 7.1.3.1, “Call Operation” on 
page 7-6, with the following exceptions:

• If the processor is in user mode, it switches to supervisor mode.

• If a mode switch occurs, SP is read from the Supervisor Stack Pointer (SSP) base. A new 
frame for the called procedure is placed at the location pointed to after alignment of SP. 

• If no mode switch occurs, the new frame is allocated on the current stack.

• If a mode switch occurs, the state of the trace enable bit in the PC register is saved in the return 
type field in the PFP register. The trace enable bit is then loaded from the trace control bit in 
the system procedure table.

• If no mode switch occurs, the value 0002 (calls instruction) or 0012 (fault call) is saved in the 
return type field of the pfp register.

When the processor switches to supervisor mode, it remains in that mode and creates new frames 
on the supervisor stack until a return is performed from the procedure that caused the original 
switch to supervisor mode. While in supervisor mode, either the local call instructions (call and 
callx) or calls can be used to call procedures.

The user-supervisor protection model and its relationship to the supervisor call are described in 
Section 3.7, “User-Supervisor Protection Model” on page 3-26. 
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7.6 User and Supervisor Stacks

When using the user-supervisor protection mechanism, the processor maintains separate stacks in 
the address space. One of these stacks — the user stack — is for procedures executed in us
the other stack — the supervisor stack — is for procedures executed in supervisor mode.

The user and supervisor stacks are identical in structure (Figure 7-1). The base stack pointer for the
supervisor stack is automatically read from the system procedure table and cached internally
during initialization. Each time a user-to-supervisor mode switch occurs, the cached supervis
stack pointer base is used for the starting point of the new supervisor stack. The base stack 
for the user stack is usually created in the initialization code. See Section 13.2, “Initialization” on 
page 13-2. The base stack pointers must be aligned to a 16-byte boundary; otherwise, the firs
frame pointer on the interrupt stack is rounded up to the previous 16-byte boundary. 

7.7 Interrupt and Fault Calls

The architecture defines two types of implicit calls that make use of the call and return mecha
interrupt-handling procedure calls and fault-handling procedure calls. A call to an interrupt 
procedure is similar to a system-supervisor call. Here, the processor obtains pointers to the 
interrupt procedures through the interrupt table. The processor always switches to superviso
on an interrupt procedure call.

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls 
supervisor calls. The processor obtains pointers to fault procedures through the fault table a
(optionally) through the system procedure table. 

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the ne
generated stack frame for the call. These records hold the machine state and information to i
the fault or interrupt. When a return from an interrupt or fault is executed, machine state is res
from these records. See Chapter 8, “Faults” and Chapter 11, “Interrupts” for more information on 
the structure of the fault and interrupt records.

7.8 Returns

The return (ret) instruction provides a generalized return mechanism that can be used to retu
from any procedure that was entered by call, calls, callx, an interrupt call or a fault call. When ret 
executes, the processor uses the information from the return-type field in the PFP register 
(Figure 7-5) to determine the type of return action to take.
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return-type field indicates the type of call which was made. Table 7-2 shows the return-type field 
encoding for the various calls: local, supervisor, interrupt and fault.

trace-on-return flag (PFP.rt0 or bit 0 of the return-type field) stores the trace enable bit value when 
an explicit system-supervisor call is made from user mode. When the call is made, the PC register 
trace enable bit is saved as the trace-on-return flag and then replaced by the trace controls bit in the 
system procedure table. On a return, the trace enable bit’s original value is restored. This 
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch occurs. 
See Section 9.5.2.1, “Tracing on Explicit Call” on page 9-12.

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and prereturn-trace modes. I
call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag; 
otherwise it clears the flag. Then, if this flag is set and prereturn-trace mode is enabled, a pre
trace event is generated on a return, before any actions associated with the return operation
performed. See Section 9.2, “Trace Modes” on page 9-3 for a discussion of interaction between 
call-trace and prereturn-trace modes with the prereturn-trace flag.

Figure 7-5. Previous Frame Pointer Register (PFP) (r0)
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7.9 Branch-and-Link

A branch-and-link is executed using either the branch-and-link instruction (bal) or branch-and-
link-extended instruction (balx). When either instruction executes, the processor branches to the 
first instruction of the called procedure (the target instruction), while saving a return IP for the 
calling procedure in a register. The called procedure uses the same set of local registers and stack 
frame as the calling procedure:

• For bal, the return IP is automatically saved in global register g14

• For balx, the return IP instruction is saved in a register specified by one of the instruction
operands

A return from a branch-and-link is generally carried out with a bx (branch extended) instruction, 
where the branch target is the address saved with the branch-and-link instruction. The branc
link method of making procedure calls is recommended for calls to leaf procedures. Leaf 
procedures typically call no other procedures. Branch-and-link is the fastest way to make a c
providing the calling procedure does not require its own registers or stack frame.

Table 7-2. Encoding of Return Status Field

Return Status 
Field Call Type Return Action

000
Local call 
(system-local call or system-supervisor 
call made from supervisor mode)

Local return
(return to local stack; no mode switch)

001 Fault call Fault return

01t System-supervisor from user mode

Supervisor return
(return to user stack, mode switch to user 
mode, trace enable bit is replaced with the 
t1 bit stored in the PFP register on the call)

100 reserved 2

101 reserved2

110 reserved2

111 Interrupt call Interrupt return

NOTES:
1. “t” denotes the trace-on-return flag; used only for system supervisor calls which cause a user-to-supervisor 

mode switch.
2. This return type results in unpredictable behavior.
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Faults 8

This chapter describes the i960® Hx processor’s fault handling facilities. Subjects covered inclu
the fault handling data structures and fault handling mechanisms. See Section 8.10, “Fault
Reference” on page 8-21 for detailed information on each fault type.

8.1 Fault Handling Overview

The i960 processor architecture defines various conditions in code and/or the processor’s in
state that could cause the processor to deliver incorrect or inappropriate results or that could
it to choose an undesirable control path. These are called fault conditions. For example, the 
architecture defines faults for divide-by-zero and overflow conditions on integer calculations 
an inappropriate operand value.

As shown in Figure 8-1, the architecture defines a fault table, a system procedure table, a set 
fault handling procedures and stacks (user stack, supervisor stack and interrupt stack) to ha
processor-generated faults.

Figure 8-1. Fault-Handling Data Structures

Processor

Fault

Fault Fault

Supervisor

User Stack

System

Table

Procedure 
Table

Handling
Procedures

Stack
i960® Hx Microprocessor Developer’s Manual 8-1



Faults

 the 
e 
ler 
The fault table contains pointers to fault handling procedures. The system procedure table 
optionally provides an interface to any fault handling procedure and allows faults to be handled in 
supervisor mode. Stack frames for fault handling procedures are created on either the user or 
supervisor stack, depending on the mode in which the fault is handled. If the processor is in the 
interrupted state, the processor uses the interrupt stack.

Once these data structures and the code for the fault procedures are established in memory, the 
processor handles faults automatically and independently from application software. 

The processor can detect a fault at any time while executing instructions, whether from a program, 
interrupt handling procedure or fault handling procedure. When a fault occurs, the processor 
determines the fault type and selects a corresponding fault handling procedure from the fault table. 
It then invokes the fault handling procedure by means of an implicit call. As described later in this 
chapter, the fault handler call can be:

• A local call (call-extended operation)

• A system-local call (local call through the system procedure table)

• A system-supervisor call (supervisor call through the system procedure table)

A normal fault condition is handled by the processor in the following manner:

• The current local registers are saved and cached on-chip. 

• PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to 
Section 7.8, “Returns” on page 7-19 for more information.

• If the fault call is a system-supervisor call from user mode, the processor switches to the 
supervisor stack; otherwise, SP is re-aligned on the current stack. 

• The processor writes the fault record on the new stack. This record includes information on the 
fault and the processor’s state when the fault was generated. 

• The Instruction Pointer (IP) of the first instruction of the fault handler is accessed through the 
fault table or through the system procedure table (for system fault calls).

After the fault record is created, the processor executes the selected fault handling procedure. If a 
fault is recoverable (i.e., the program can be resumed after handling the fault) the Return 
Instruction Pointer (RIP) is defined for the fault being serviced (see Section 8.10, “Fault 
Reference” on page 8-21, and the processor will resume execution at the RIP upon return from
fault handler. If the RIP is undefined, the fault handling procedure can create one by using th
flushreg instruction followed by a modification of the RIP in the previous frame. The fault hand
can also call a debug monitor or reset the processor instead of resuming prior execution. 

This procedure call mechanism also handles faults that occur:

• While the processor is servicing an interrupt

• While the processor is servicing another fault
8-2 i960® Hx Microprocessor Developer’s Manual
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8.2 Fault Types

The i960 processor architecture defines a basic set of faults that are categorized by type and 
subtype. Each fault has a unique type and subtype number. When the processor detects a fault, it 
records the fault type and subtype numbers in the fault record. It then uses the type number to select 
the fault handling procedure. 

The fault handling procedure can optionally use the subtype number to select a specific fault 
handling action. The i960 Hx processor recognizes i960 processor architecture-defined faults and a 
new fault subtype for detecting unaligned memory accesses. Table 8-1 lists all faults that the i960 
Hx processor detects, arranged by type and subtype. Text that follows the table gives column 
definitions.

Table 8-1. i960® Hx Processor Fault Types and Subtypes 

Fault Type Fault Subtype Fault Record

Number Name Number or 
Bit Position Name

0H PARALLEL NA NA see Section 8.6.4, “Parallel 
Faults” on page 8-9

1H TRACE

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

INSTRUCTION 

BRANCH 

CALL 

RETURN 

PRERETURN 

SUPERVISOR 

MARK

0001 0002H

0001 0004H

0001 0008H

0001 0010H

0001 0020H

0001 0040H

0001 0080H

2H OPERATION

1H

2H

3H

4H

INVALID_OPCODE

UNIMPLEMENTED

UNALIGNED

INVALID_OPERAND

0002 0001H

0002 0002H

0002 0003H

0002 0004H

3H ARITHMETIC
1H

2H

INTEGER_OVERFLOW

ZERO-DIVIDE

0003 0001H

0003 0002H

4H Reserved

5H CONSTRAINT 1H RANGE 0005 0001H

6H Reserved

7H PROTECTION Bit 1
Bit 5

LENGTH

BAD_ACCESS

0007 0002H

0007 0020H

9H Reserved

8H MACHINE 2H PARITY_ERROR 0008 0002H

AH TYPE 1H  MISMATCH 000A 0001H

BH - FH Reserved

10H OVERRIDE NA NA NA
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In Table 8-1:

• The first (left-most) column contains the fault type numbers in hexadecimal.

• The second column shows the fault type name.

• The third column gives the fault subtype number as either: (1) a hexadecimal number or (2) as 
a bit position in the fault record’s 8-bit fault subtype field. The bit position method of 
indicating a fault subtype is used for certain faults (such as trace faults) in which two or m
fault subtypes may occur simultaneously.

• The fourth column gives the fault subtype name. For convenience, individual faults are 
referenced by their fault-subtype names. Thus an OPERATION.INVALID_OPERAND fault is 
referred to as an INVALID_OPERAND fault; an ARITHMETIC.INTEGER_OVERFLOW 
fault is referred to as an INTEGER_OVERFLOW fault.

• The fifth column shows the encoding of the word in the fault record that contains the fault type 
and fault subtype numbers.

Other i960 processor family members may provide extensions that recognize additional fault 
conditions. Fault type and subtype encoding allows all faults to be included in the fault table: those 
that are common to all i960 processors and those that are specific to one or more family members. 
The fault types are used consistently for all family members. For example, Fault Type 4H is 
reserved for floating point faults. Any i960 processor with floating point operations uses Entry 4H 
to store the pointer to the floating point fault handling procedure.
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8.3 Fault Table

The fault table (Figure 8-2) is the processor’s pathway to the fault handling procedures. It can 
located anywhere in the address space. From the control table, the processor obtains a point
fault table during initialization.

The fault table contains one entry for each fault type. When a fault occurs, the processor use
fault type to select an entry in the fault table. From this entry, the processor obtains a pointer
fault handling procedure for the type of fault that occurred. Once called, a fault handling proce
has the option of reading the fault subtype or subtypes from the fault record when determinin
appropriate fault recovery action.

Figure 8-2. Fault Table and Fault Table Entries
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As indicated in Figure 8-2, two fault table entry types are allowed: local-call entry and system-call 
entry. Each is two words in length. The entry type field (bits 0 and 1 of the entry’s first word) 
the value in the entry’s second word determine the entry type.

Other entry types (012 and 112) are reserved and have unpredictable behavior. 

To summarize, a fault handling procedure can be invoked through the fault table in any of th
ways: a local call, a system-local call or a system-supervisor call.

8.4 Stack Used in Fault Handling

The i960 processor architecture does not define a dedicated fault handling stack. Instead, to
a fault, the processor uses either the user, interrupt or supervisor stack, whichever is active w
the fault is generated. There is, however, one exception: if the user stack is active when a fa
generated and the fault handling procedure is called with an implicit system supervisor call, t
processor switches to the supervisor stack to handle the fault.

8.5 Fault Record

When a fault occurs, the processor records information about the fault in a fault record in me
The fault handling procedure uses the information in the fault record to correct or recover fro
fault condition and, if possible, resume program execution. The fault record is stored on the 
stack that the fault handling procedure will use to handle the fault.

8.5.1 Fault Record Description

Figure 8-3 shows the fault record’s structure. In this record, the fault’s type number and subty
number (or bit positions for multiple subtypes) are stored in the fault type and subtype fields,
respectively. The Address of Faulting Instruction Field contains the IP of the instruction that 
caused the processor to fault.

When a fault is generated, the existing PC and AC register contents are stored in their respe
fault record fields. The processor uses this information to resume program execution after th
is handled. 

local-call entry
(type 002)

Provides an instruction pointer for the fault handling procedure. The 
processor uses this entry to invoke the specified procedure by means of
implicit local-call operation. The second word of a local procedure entry 
reserved. It must be set to zero when the fault table is created and not 
accessed after that.

system-call entry
(type 102)

Provides a procedure number in the system procedure table. This entry 
have an entry type of 102 and a value in the second word of 0000 027FH. T
processor computes the system procedure number by shifting right the f
word of the fault entry by two bit positions. Using this system procedure 
number, the processor invokes the specified fault handling procedure by
means of an implicit call-system operation similar to that performed for th
calls instruction.
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In the i960 Hx processor, the Address of Faulting Instruction Field is undefined for GMU 
PROTECTION.BAD_ACCESS faults and MACHINE.PARITY faults. Also the FAULT DATA 
field in the fault record contains information about the type of access and the address of the faulting 
access. It is only used for PROTECTION.BAD_ACCESS, MACHINE.PARITY and 
OPERATION.UNALIGNED faults.

Figure 8-3. Fault Record
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NOTES: “NFP” means “New Frame Pointer”
“n” means “number of faults”
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The processor can generate PARALLEL faults when instructions are executed in parallel. The 
Number of Faults field is used to describe PARALLEL faults. For single faults, the 80960Hx 
places the number of faults (one) in the OSubtype field, as it does for PARALLEL faults (greater 
than one).

All unused bytes in the fault record are reserved. See Section 8.6, “Multiple and Parallel Faults” on
page 8-9 for more information. 

The Resumption Field is used to store information about a pending trace fault. If a trace fault
non-trace fault occur simultaneously, the non-trace fault is serviced first and the pending trac
be lost depending on the non-trace fault encountered. The Trace Reporting paragraph for ea
specifies whether the pending trace is kept or lost.

8.5.2 Fault Record Location

The fault record is stored on the stack that the processor uses to execute the fault handling 
procedure. As shown in Figure 8-4, this stack can be the user stack, supervisor stack or interru
stack. The fault record begins at byte address NFP-1. NFP refers to the new frame pointer th
computed by adding the memory size allocated for padding and the fault record to the new s
pointer (NSP). The processor rounds the FP to the next 16-byte boundary. 

Figure 8-4. Storage of the Fault Record on the Stack
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NOTES:
1. 1. If the call to the fault handler procedure does not require a stack switch, the new stack pointer (NSP) is the same as SP.
2. 2. If the processor is in user mode and the fault handler procedure is called with a system supervisor call, the processor 

switches to the supervisor stack.
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8.6 Multiple and Parallel Faults

Multiple fault conditions can occur during a single instruction execution and during multiple 
instruction execution when the instructions are executed by different units within the processor. 
The following sections describe how faults are handled under these conditions.

8.6.1 Multiple Non-Trace Faults on the Same Instruction

Multiple fault conditions can occur during a single instruction execution. For example, an 
instruction can have an invalid operand and unaligned address. When this situation occurs, the 
processor is required to recognize and generate at least one of the fault conditions. The processor 
may not detect all fault conditions and will report only one detected non-trace fault on a single 
instruction.

In a multiple fault situation, the reported fault condition is left to the implementation. 

8.6.2 Multiple Trace Fault Conditions on the Same Instruction

Trace faults on different instructions cannot happen concurrently, because trace faults are precise 
(see Section 8.9, “Precise and Imprecise Faults” on page 8-19). Multiple trace fault conditions on 
the same instruction are reported in a single trace fault record (with the exception of preretur
trace, which always happens alone). To support multiple fault reporting, the trace fault uses 
positions in the fault-subtype field to indicate occurrences of multiple faults of the same type
Table 8-1).

8.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same 
Instruction

The execution of a single instruction can create one or more trace fault conditions in addition
multiple non-trace fault conditions. When this occurs:

• The pending trace is dismissed if any of the non trace faults dismisses it, as mentioned in the 
“Trace Reporting” paragraph for that fault in Section 8.10, “Fault Reference” on page 8-21.

• The processor services one of the non trace faults.

• Finally, the trace is serviced upon return from the non-trace fault handler if it was not 
dismissed in step 1.

8.6.4 Parallel Faults

The i960 Hx processor exploits the architecture’s tolerance of out-of-order instruction executi
issuing instructions to independent execution units on the chip. The following subsections de
how the processor handles faults in this environment.
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8.6.4.1 Faults on Multiple Instructions Executed in Parallel

If AC.nif=0, imprecise faults relative to different instructions executing in parallel may be reported 
in a single parallel fault record. For these conditions, the processor calls a unique fault handler, the 
PARALLEL fault handler (see Section 8.9.4, “No Imprecise Faults (AC.nif) Bit” on page 8-20). 
This mechanism allows instructions that can fault to be executed in parallel with other instruc
or out of order. 

In parallel fault situations, the processor saves the fault type and subtype of the second and 
subsequent faults detected in the optional section of the fault record. The optional section is 
area below NFP-64 where the fault records for each of the parallel faults that occurred are s
The fault handling procedure for parallel faults can then analyze the fault record and handle 
faults. The fault record for parallel faults is described in the next section.

If the RIP is undefined for at least one of the faults found in the parallel fault record, then the
of the parallel fault handler is undefined. In this case, the parallel fault handling procedure ca
either create a RIP and return or call a debug monitor to analyze the faults.

If the RIP is defined for all faults found in the fault record, then it will point to the next instruct
not yet executed. The parallel fault handler can simply return to the next instruction not yet 
executed with a ret instruction.

Consider the following code example, where the muli and the addi instructions both have overflow 
conditions. AC.om=0, AC.nif = 0, and both instructions are in the instruction cache at the tim
their execution. The addi and muli are allowed to execute in parallel because AC.nif = 0 and th
faults that these instructions can generate (ARITHMETIC) are imprecise.

The fault on the addi is detected before the fault on the muli because the muli takes longer to 
execute. The fault call synchronizes faults on the way to the overflow fault handler for the addi 
instruction (see Section 8.9.5, “Controlling Fault Precision” on page 8-20), which is when the muli 
fault is detected. The processor builds a parallel fault record with information relative to both f
and calls the parallel fault handler. In the fault handler, ARITHMETIC faults may be recovere
storing the desired result of the instruction in the proper destination register and setting the A
flag (optional) to indicate that an overflow occurred. A ret at the end of the parallel fault handler 
routine will then return to the next instruction not yet executed in the program flow.

On the i960 Hx processor, the muli overflow, REG side, MEM side (see Appendix E, “Instruction 
Execution and Performance Optimization”) and parity faults are the only faults that can happen 
parallel with any other defined fault.

A parallel fault handler must be accessed through a system-supervisor call. Local and system
parallel fault handlers are not supported by the architecture and have unpredictable behavio

8.6.4.2 Fault Record for Parallel Faults

When parallel faults occur, the processor selects one of the faults and records it in the first 16
of the fault record as described in Section 8.5.1, “Fault Record Description” on page 8-6. The 
remaining parallel faults are written to the fault record’s optional section, and the fault handlin
procedure for parallel faults is invoked. Figure 8-3 shows the structure of the fault record for 
parallel faults.

mulig2, g4, g6;

addig8, g9, g10; # results in integer overflow
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The Number of Faults word at NFP - 20 contains the number of parallel faults. The optional section 
also contains a 32-byte parallel fault record for each additional parallel fault. These parallel fault 
records are stored incrementally in the fault record starting at byte offset NFP-68. The fault record 
for each additional fault contains only the fault type, fault subtype, address-of-faulting-instruction 
and the optional fault section. (For example, if two parallel faults occur, the fault record for the 
second fault is located from NFP-96 to NFP-65.)

To calculate byte offsets, “n” indicates the fault number. Thus, for the second fault recorded (
the relationship (NFP-8-(n * 32)) reduces to NFP-72. On the i960 Hx processor, a parity faul
happen in parallel with any other fault.

8.6.5 Override Faults

The i960 Hx processor can detect a fault condition while the processor is preparing to servic
previously detected fault. When this occurs, it is called an override condition. This section 
describes this condition and how the processor handles it.

A normal fault condition is handled by the processor in the following manner:

• The current local registers are saved and cached on-chip. 

• PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to 
Section 7.8, “Returns” on page 7-19 for more information.

• If the fault call is a system-supervisor call from user mode, the processor switches to the 
supervisor stack; otherwise, SP is re-aligned on the current stack. 

• The processor writes the fault record on the new stack. 

• The IP of the first instruction of the fault handler is accessed through the fault table or through 
the system procedure table (for system fault calls).

A fault that occurs during any of the above actions is called an override fault. In response to this 
condition, the processor does the following:

• Switches the execution mode to supervisor.

• Selects the override condition that shows that the writing of the fault record was unsuccessful. 
If no such fault exists, the processor selects one of the other fault conditions. This method 
ensures that the fault handler has information regarding the fault record write.

• Saves information pertaining to the override condition selected as a fault record in the new 
local register set as shown in Table 8-2:   
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• Attempts to access the IP of the first instruction in the override fault handler through the 
system procedure table.

It should be noted that a fault that occurs while the processor is actually executing a fault handling 
procedure is not an override fault.

The override fault entry is entry 16 decimal or 10h. If the override fault entry in the fault table 
points to a location beyond the system procedure table, the processor enters system error mode. 
Override fault conditions include: PROTECTION, MACHINE and 
OPERATION.UNIMPLEMENTED faults.

8.6.6 System Error

If a fault is detected while the processor is in the process of servicing an override fault, the 
processor enters the system error state. Note that “servicing” indicates that the processor ha
detected the override or parallel fault, but has not begun executing the fault handling proced
This type of error causes the processor to enter a system error state. In this state, the proces
only one read bus transaction to signal the fail code message; the address of the bus transa
the fail code itself. See Section 13.2.2.5, “Self Test Failure# Codes” on page 13-9.

Table 8-2. Override Fault Record Format

Register Contents

r3 IP within 8 bytes of the original faulting instruction.

r4 Override fault indicator for PROTECTION.BAD_ACCESS fault conditions. This field is unused 
for other fault conditions.

r5 Override Access type word for PROTECTION.BAD_ACCESS or MACHINE.PARITY fault 
conditions. This field is unused for other fault conditions.

r6 Override Fault address for PROTECTION.BAD_ACCESS or MACHINE.PARITY fault 
conditions. This field is unused for other fault conditions. 

r7 Override Fault Type and Subtype.
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8.7 Fault Handling Procedures

The fault handling procedures can be located anywhere in the address space except within the on-
chip data RAM or MMR space. Each procedure must begin on a word boundary. The processor can 
execute the procedure in user or supervisor mode, depending on the fault table entry type.

8.7.1 Possible Fault Handling Procedure Actions

The processor allows easy recovery from many faults that occur. When fault recovery is possible, 
the processor’s fault handling mechanism allows the processor to automatically resume wor
the program or pending interrupt when the fault occurred. Resumption is initiated with a ret 
instruction in the fault handling procedure.

If recovery from the fault is not possible or not desirable, the fault handling procedure can tak
of the following actions, depending on the nature and severity of the fault condition (or condit
in the case of multiple faults):

• Return to a point in the program or interrupt code other than the point of the fault.

• Call a debug monitor.

• Perform processor or system shutdown with or without explicitly saving the processor state 
and fault information.

When working with the processor at the development level, a common fault handling strategy is to 
save the fault and processor state information and call a debugging tool such as a monitor. 
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8.7.2 Program Resumption Following a Fault

Because of the wide variety of faults, they can occur at different times with respect to the faulting 
instruction:

• Before execution of the faulting instruction (e.g., fetch from on-chip RAM)

• During instruction execution (e.g., integer overflow)

• Immediately following execution (e.g., trace)

8.7.2.1 Faults Happening Before Instruction Execution

The following fault types occur before instruction execution:

• ARITHMETIC.ZERO_DIVIDE

• TYPE.MISMATCH

• PROTECTION.LENGTH

• All OPERATION subtypes except UNALIGNED

• PROTECTION.BAD_ACCESS due to protect violation

For these faults, the contents of a destination register are lost, and memory is not updated. The RIP 
is defined for the ARITHMETIC.ZERO_DIVIDE fault only. Because the state of the machine is 
undefined for a PROTECTION.BAD_ACCESS fault condition that is due to a protect violation, do 
not resume an application that has generated this fault. In some cases the fault occurs before the 
faulting instruction is executed, the faulting instruction may be fixed and re-executed upon return 
from the fault handling procedure. 

8.7.2.2 Faults Happening During Instruction Execution

The following fault types occur during instruction execution:

• CONSTRAINT.RANGE

• OPERATION.UNALIGNED

• MACHINE.PARITY

• ARITHMETIC.INTEGER_OVERFLOW

For these faults, the fault handler must explicitly modify the RIP to return to the faulting 
application (except for ARITHMETIC.INTEGER_OVERFLOW). Because the state of the 
machine is undefined for a MACHINE.PARITY fault condition, do not resume an application that 
has generated this fault.

When a fault occurs during or after execution of the faulting instruction, the fault may be 
accompanied by a program state change such that program execution cannot be resumed after the 
fault is handled. For example, when an integer overflow fault occurs, the overflow value is stored 
in the destination. If the destination register is the same as one of the source registers, the source 
value is lost, making it impossible to re-execute the faulting instruction.
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8.7.2.3 Faults Happening After Instruction Execution

For these faults, the Return Instruction Pointer (RIP) is defined and the fault handler can return to 
the next instruction in the flow:

• TRACE

• ARITHMETIC.INTEGER_OVERFLOW

• PROTECTION.BAD_ACCESS (due to detect violation)

In general, resumption of program execution with no changes in the program’s control flow is
possible with the following fault types or subtypes:

• All TRACE Subtypes

• PROTECTION.BAD_ACCESS (due to detect violation)

The effect of specific fault types on a program is defined in Section 8.10, “Fault Reference” on 
page 8-21 under the heading Program State Changes.

8.7.3 Return Instruction Pointer (RIP)

When a fault handling procedure is called, a Return Instruction Pointer (RIP) is saved in the i
of the RIP in the faulting frame. The RIP can be accessed at address PFP+8 while executing
fault handler after a flushreg. The RIP in the previous frame points to an instruction where 
program execution can be resumed with no break in the program’s control flow. It generally p
to the faulting instruction or to the next instruction to be executed. In some instances, howev
RIP is undefined. RIP content for each fault is described in Section 8.10, “Fault Reference” on 
page 8-21.

8.7.4 Returning to the Point in the Program Where the Fault 
Occurred

As described in Section 8.7.2, “Program Resumption Following a Fault” on page 8-14, most faults 
can be handled such that program control flow is not affected. In this case, the processor all
program to be resumed at the point where the fault occurred, following a return from a fault 
handling procedure (initiated with a ret instruction). The resumption mechanism used here is 
similar to that provided for returning from an interrupt handler.

Also, to restore the PC register from the fault record upon return from the fault handler, the f
handling procedure must be executed in supervisor mode either by using a supervisor call o
running the program in supervisor mode. See the pseudocode in Section 6.2.54, “ret” on page 6-86.
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8.7.5 Returning to a Point in the Program Other Than Where the 
Fault Occurred

A fault handling procedure can also return to a point in the program other than where the fault 
occurred. To do this, the fault procedure must alter the RIP. To do this reliably, the fault handling 
procedure should perform the following steps:

1. Flush the local register sets to the stack with a flushreg instruction.

2. Modify the RIP in the previous frame.

3. Clear the trace-fault-pending flag in the fault record’s process controls field before the re
(optional).

4. Execute a return with the ret instruction.

Use this technique carefully and only in situations where the fault handling procedure is clos
coupled with the application program. 

8.7.6 Fault Controls

For certain fault types and subtypes, the processor employs register mask bits or flags that 
determine whether or not a fault is generated when a fault condition occurs. Table 8-3 summarizes 
these flags and masks, the data structures in which they are located, and the fault subtypes 
affect.

The integer overflow mask bit inhibits the generation of integer overflow faults. The use of th
mask is discussed in Section 8.10, “Fault Reference” on page 8-21.

The Arithmetic Controls no imprecise faults (AC.nif) bit controls the synchronizing of faults fo
category of faults called imprecise faults. The function of this bit is described in Section 8.9, 
“Precise and Imprecise Faults” on page 8-19.

TC register trace mode bits and the PC register trace enable bit support trace faults. Trace m
bits enable trace modes; the trace enable bit (PC.te) enables trace fault generation. The use 
bits is described in the trace faults description in Section 8.10, “Fault Reference” on page 8-21. 
Further discussion of these flags is provided in Chapter 9, “Tracing and Debugging”.

The unaligned fault mask bit is located in the process control block (PRCB), which is read from
fault configuration word (located at address PRCB pointer + 0CH) during initialization (see 
Figure 13-6). It controls whether unaligned memory accesses generate a fault. See Section 14.3.2, 
“Bus Transactions across Region Boundaries” on page 14-10.

Table 8-3. Fault Control Bits and Masks

Flag or Mask Name Location Faults Affected

Integer Overflow Mask Bit Arithmetic Controls (AC) Register INTEGER_OVERFLOW

No Imprecise Faults Bit Arithmetic Controls (AC) Register All Imprecise Faults

Trace Enable Bit Process Controls (PC) Register All TRACE Faults

Trace Mode Trace Controls (TC) Register All TRACE Faults except hardware 
breakpoint traces and fmark

Unaligned Fault Mask Process Control Block (PRCB) UNALIGNED Fault
8-16 i960® Hx Microprocessor Developer’s Manual



Faults

lt 

nto 
ontrols 

entry 
a local 
's 
8.8 Fault Handling Action

Once a fault occurs, the processor saves the program state, calls the fault handling procedure and, if 
possible, restores the program state when the fault recovery action completes. No software other 
than the fault handling procedures is required to support this activity.

Three types of implicit procedure calls can be used to invoke the fault handling procedure: a local 
call, a system-local call and a system-supervisor call.

The following subsections describe actions the processor takes while handling faults. It is not 
necessary to read these sections to use the fault handling mechanism or to write a fault handling 
procedure. This discussion is provided for those readers who wish to know the details of the fault 
handling mechanism.

8.8.1 Local Fault Call

When the selected fault handler entry in the fault table is an entry type 0002 (a local procedure), the 
processor operates as described in Section 7.1.3.1, “Call Operation” on page 7-6, with the 
following exceptions:

• A new frame is created on the stack that the processor is currently using. The stack can be the 
user stack, supervisor stack or interrupt stack.

• The fault record is copied into the area allocated for it in the stack, beginning at NFP-1. (See 
Figure 8-4.)

• The processor gets the IP for the first instruction in the called fault handling procedure from 
the fault table.

• The processor stores the fault return code (0012) in the PFP return type field.

If the fault handling procedure is not able to perform a recovery action, it performs one of the 
actions described in Section 8.7.2, “Program Resumption Following a Fault” on page 8-14.

If the handler action results in recovery from the fault, a ret instruction in the fault handling 
procedure allows processor control to return to the program that was executing when the fau
occurred. Upon return, the processor performs the action described in Section 7.1.3.2, “Return 
Operation” on page 7-7, except that the arithmetic controls field from the fault record is copied i
the AC register. If the processor is in user mode before execution of the return, the process c
field from the fault record is not copied back to the PC register.

8.8.2 System-Local Fault Call

When the fault handler selects an entry for a local procedure in the system procedure table (
type 102), the processor performs the same action as is described in the previous section for 
fault call or return. The only difference is that the processor gets the fault handling procedure
address from the system procedure table rather than from the fault table. 
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8.8.3 System-Supervisor Fault Call

When the fault handler selects an entry for a supervisor procedure in the system procedure table, 
the processor performs the same action described in Section 7.1.3.1, “Call Operation” on page 7-6, 
with the following exceptions:

• If the fault occurs while in user mode, the processor switches to supervisor mode, reads the 
supervisor stack pointer from the system procedure table and switches to the supervisor stack. 
A new frame is then created on the supervisor stack.

• If the fault occurs while in supervisor mode, the processor creates a new frame on the current 
stack. If the processor is executing a supervisor procedure when the fault occurred, the current 
stack is the supervisor stack; if it is executing an interrupt handler procedure, the current stack 
is the interrupt stack. (The processor switches to supervisor mode when handling interrupts.)

• The fault record is copied into the area allocated for it in the new stack frame, beginning at 
NFP-1. (See Figure 8-4.)

• The processor gets the IP for the first instruction of the fault handling procedure from the 
system procedure table (using the index provided in the fault table entry).

• The processor stores the fault return code (0012) in the PFP register return type field. If the 
fault is not a trace, parallel or override fault, it copies the state of the system procedure table 
trace control flag (byte 12, bit 0) into the PC register trace enable bit. If the fault is a trace, 
parallel or override fault, the trace enable bit is cleared. 

On a return from the fault handling procedure, the processor performs the action described in 
Section 7.1.3.2, “Return Operation” on page 7-7 with the addition of the following:

• The fault record arithmetic controls field is copied into the AC register. 

• If the processor is in supervisor mode prior to the return from the fault handling procedure 
(which it should be), the fault record process controls field is copied into the PC register. The 
mode is then switched back to user, if it was in user mode before the call. 

• The processor switches back to the stack it was using when the fault occurred. (If the processor 
was in user mode when the fault occurred, this operation causes a switch from the supervisor 
stack to the user stack.)

• If the trace-fault-pending flag and trace enable bits are set in the PC field of the fault record, 
the trace fault on the instruction at the origin of the supervisor fault call is handled at this time.

The user should note that PC register restoration causes any changes to the process controls done 
by the fault handling procedure to be lost.

8.8.4 Faults and Interrupts

If an interrupt occurs during an instruction that will fault, an instruction that has already faulted, or 
fault handling procedure selection, the processor handles the interrupt in the following way: 

1. It completes the selection of the fault handling procedure.

2. It creates the fault record. 

3. It services the interrupt just prior to executing the first instruction of the fault handling 
procedure. 

4. It handles the fault upon return from the interrupt. 

Handling the interrupt before the fault reduces interrupt latency.
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8.9 Precise and Imprecise Faults

As described in Section 8.10.6, “PARALLEL Faults” on page 8-29, the i960 architecture — to 
support parallel and out-of-order instruction execution — allows some faults to be generated
together.

The processor provides two mechanisms for controlling the circumstances under which fault
generated: the AC register no-imprecise-faults bit (AC.nif) and the instructions that synchron
faults. See Section 8.9.5, “Controlling Fault Precision” on page 8-20 for more information. Faults 
are categorized as precise, imprecise and asynchronous. The following subsections describ

8.9.1 Precise Faults

A fault is precise if it meets all of the following conditions:

• The faulting instruction is the earliest instruction in the instruction issue order to generate a 
fault.

• All instructions after the faulting instruction, in instruction issue order, are guaranteed not to 
have executed.

TRACE and PROTECTION.LENGTH faults are always precise. Precise faults cannot be found in 
parallel records with other precise or imprecise faults. However, they can be found in parallel fault 
records with asynchronous faults.

8.9.2 Imprecise Faults

Faults that do not meet all of the requirements for precise faults are considered imprecise. For 
imprecise faults, the state of execution of instructions surrounding the faulting instruction may be 
unpredictable. When instructions are executed out of order and an imprecise fault occurs, it may 
not be possible to access the source operands of the instruction. This is because they may have been 
modified by subsequent instructions executed out of order. However, the RIP of some imprecise 
faults (e.g., ARITHMETIC) points to the next instruction that has not yet executed and guarantees 
the return from the fault handler to the original flow of execution. Faults that the architecture 
allows to be imprecise are OPERATION, CONSTRAINT, ARITHMETIC and TYPE.

8.9.3 Asynchronous Faults

Asynchronous faults are those whose occurrence has no direct relationship to the instruction 
pointer. This group includes MACHINE faults, which are implemented on the 80960Hx. 
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8.9.4 No Imprecise Faults (AC.nif) Bit

The Arithmetic Controls no imprecise faults (AC.nif) bit controls imprecise fault generation. If 
AC.nif is set, out of order instruction execution is disabled and all faults generated are precise. 
Therefore, setting this bit will reduce processor performance. If AC.nif is clear, several imprecise 
faults may be reported together in a parallel fault record. Precise faults can never be found in 
parallel fault records, thus only more than one imprecise fault occurring concurrently with AC.nif 
= 0 can produce a parallel fault.

Compiled code should execute with the AC.nif bit clear, using syncf where necessary to ensure 
that faults occur in order. In this mode, imprecise faults are considered to be catastrophic errors 
from which recovery is not needed. This also allows the processor to take advantage of internal 
pipelining, which can speed up processing time. When only precise faults are allowed, the 
processor must restrict the use of pipelining to prevent imprecise faults.

The AC.nif bit should be set if recovery from one or more imprecise faults is required. For 
example, the AC.nif bit should be set if a program needs to handle and recover from unmasked 
integer-overflow faults and the fault handling procedure cannot be closely coupled with the 
application to perform imprecise fault recovery.

8.9.5 Controlling Fault Precision

The syncf instruction forces the processor to complete execution of all instructions that occur prior 
to syncf and to generate all faults before it begins work on instructions that occur after syncf. This 
instruction has two uses:

• It forces faults to be precise when the AC.nif bit is clear.

• It ensures that all instructions are complete and all faults are generated in one block of code 
before executing another block of code.

The implicit fault call operation synchronizes all faults. In addition, the following instructions or 
operations perform synchronization of all faults except MACHINE.PARITY:

• Call and return operations including call, callx, calls and ret instructions, plus the implicit 
interrupt and fault call operations.

• Atomic operations including atadd and atmod.
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8.10 Fault Reference

This section describes each fault type and subtype and gives detailed information about what is 
stored in the various fields of the fault record. The section is organized alphabetically by fault type. 
The following paragraphs describe the information that is provided for each fault type.

Fault Type: Gives the number that appears in the fault record fault-type field 
when the fault is generated. 

Fault Subtype: Lists the fault subtypes and the number associated with each fault 
subtype.

Function: Describes the purpose and handling of the fault type and each 
subtype. 

RIP: Describes the value saved in the image of the RIP register in the 
stack frame that the processor was using when the fault occurred. In 
the RIP definitions, “next instruction” refers to the instruction 
directly after the faulting instruction or to an instruction to which th
processor can logically return when resuming program execution

Note that the discussions of many fault types specify that the RIP
contains the address of the instruction that would have executed
next had the fault not occurred. 

Fault IP: Describes the contents of the fault record’s fault instruction poin
field, typically the faulting instruction’s IP.

Fault Data: Describes any values stored in the fault record’s fault data field.

Class: Indicates if a fault is precise or imprecise.

Program State Changes: Describes the process state changes that would prevent re-ex
the faulting instruction if applicable.

Trace Reporting: Relates whether a trace fault (other than PRERET) can be dete
on the faulting instruction, also if and when the fault is serviced.

Notes: Additional information specific to particular implementations of th
i960 processor architecture.
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8.10.1 ARITHMETIC Faults

Fault Type: 3H

Fault Subtype: Number Name
0H Reserved
1H INTEGER_OVERFLOW
2H ZERO_DIVIDE
3H-FH Reserved

Function: Indicates a problem with an operand or the result of an arithmetic 
instruction. An INTEGER_OVERFLOW fault is generated when 
the result of an integer instruction overflows its destination and the 
AC register integer overflow mask is cleared. Here, the result’s n 
least significant bits are stored in the destination, where n is 
destination size. Instructions that generate this fault are:

An ARITHMETIC.ZERO_DIVIDE fault is generated when the 
divisor operand of an ordinal- or integer-divide instruction is zero
Instructions that generate this fault are:

RIP: IP of the instruction that would have executed next if the fault ha
not occurred.

Fault IP: IP of the faulting instruction.

Class: Imprecise.

Program State Changes: Faults may be imprecise when executing with the AC.nif bit cle
INTEGER_OVERFLOW and ZERO_DIVIDE faults may not be 
recoverable because the result is stored in the destination before
fault is generated (e.g., the faulting instruction cannot be re-
executed if the destination register was also a source register for
instruction). 

Trace Reporting: The trace is reported upon return from the arithmetic fault hand

addi subi stis

stib shli ADDI<cc>

muli divi SUBI<cc>

divo divi

ediv remi

remo modi
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8.10.2 CONSTRAINT Faults

Fault Type: 5H

Fault Subtype: Number Name
0H Reserved
1H RANGE
2H-FH Reserved

Function: Indicates the program or procedure violated an architectural 
constraint.

A CONSTRAINT.RANGE fault is generated when a FAULT<cc> 
instruction is executed and the AC register condition code field 
matches the condition required by the instruction.

RIP: No defined value.

Fault IP: Faulting instruction.

Class: Imprecise.

Program State Changes: These faults may be imprecise when executing with the AC.nif bit 
cleared. No changes in the program’s control flow accompany th
faults. A CONSTRAINT.RANGE fault is generated after the 
FAULT<cc> instruction executes. The program state is not affecte

Trace Reporting: Serviced upon return from the Constraint fault handler.
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8.10.3 MACHINE Faults

Fault Type: 8H

Fault Subtype: 0H-1H Reserved
2H Parity
3H-FH Reserved

Function: Indicates errors relative to external memory or buses.

When the parity checking mechanism is activated in the PMCON of 
a memory region (see Figure 14-2), the bus controller generates a 
MACHINE.PARITY_ERROR fault when detecting a parity 
violation on a load operation.

When several parity fault conditions are detected during the 
execution of an instruction, the information relative to the first 
parity violation is recorded in the fault data field of the parity fault 
record. Subsequent parity violations are discarded, until the parity 
recording mechanism is reactivated by the processor upon entry into 
the MACHINE fault handler.

If another parity fault is detected after reactivation of the parity 
detection mechanism, an override fault is generated instead of the 
parity fault. Figure 8-5 shows the Parity Fault Record.

RIP: No defined value

Fault IP: Undefined

Fault Data: The optional fault data field for MACHINE.PARITY_ERROR 
faults consists of:

• Address of the faulting access at FP-24, the memory addres
the faulting load or fetch.

• Access type word at FP-28, the size and type (load or fetch)
the access.

Class: Parity faults are asynchronous: they have no direct relationship 
the current IP. Parity faults are never precise, even in No Imprec
Faults mode (AC.nif=1). As a result, they lead to the creation of 
parallel fault records if their detection coincides with the detectio
of another fault, even in No Imprecise Faults mode. Use syncf to 
synchronize parity faults explicitly.

Program State Changes: The contents of the destination register are lost.
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Figure 8-5. Parity Fault Record

Figure 8-6. MACHINE.PARITY_ERROR Fault Access Type Word Definition (NFP-28)

Undefined

Fault Type (8) Sub-type (2)

Arithmetic Controls

Process Controls

No. Par. Faults

NFP-4

NFP-8

NFP-12

NFP-16

NFP-20

NFP-24

NFP-28

NFP-32

Address of Faulting Access

Access Type Word (See Figure 8-6)

20 16 12 8 4 0

11 = Fetch
01 = Load

Access Type (load or fetch)

Access Size (See 

Table 8-4. Access Size/Type Definitions

Setting Size

000 Byte

001 Short

010 Word

011 Long

100 Triple

110 Quad

111 Instruction Fetch

2428

00, 10 = Reserved
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8.10.4 OPERATION Faults

Fault Type: 2H

Fault Subtype: Number Name
0H Reserved
1H INVALID_OPCODE
2H UNIMPLEMENTED
3H UNALIGNED 
4H INVALID_OPERAND
5H - FH Reserved

Function: Indicates the processor cannot execute the current instruction 
because of invalid instruction syntax or operand semantics. 

An INVALID_OPCODE fault is generated when the processor 
attempts to execute an instruction containing an undefined opcode 
or addressing mode. 

An UNIMPLEMENTED fault is generated when the processor 
attempts to execute an instruction fetched from on-chip data RAM, 
or when a non-word or unaligned access to a memory-mapped 
region is performed, or when attempting to write memory-mapped 
region 0xFF0084XX when rights have not been granted.

An UNALIGNED fault is generated when the following conditions 
are present: (1) the processor attempts to access an unaligned word 
or group of words in non-MMR memory; and (2) the fault is enabled 
by the unaligned-fault mask bit in the PRCB fault configuration 
word. 

An INVALID_OPERAND fault is generated when the processor 
attempts to execute an instruction that has one or more operands 
having special requirements that are not satisfied. This fault is 
generated when specifying a non-existent SFR or non-defined 
sysctl, icctl, dcctl or intctl command, or referencing an unaligned 
long-, triple- or quad-register group, or by referencing an undefined 
register, or by writing to the RIP register (r2).

RIP: No defined value.

Fault IP: Address of the faulting instruction.

Fault Data: When an UNALIGNED fault is signaled, the effective address of 
the unaligned access is placed in the fault record’s optional data
section, beginning at address NFP-24. This address is useful to 
debug a program that is making unintentional unaligned accesse

Class: Imprecise.
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Program State Changes: For the INVALID_OPCODE and UNIMPLEMENTED faults (case: 
store to MMR), the destination of the faulting instruction is not 
modified. (For the UNALIGNED fault, the memory operation 
completes correctly before the fault is reported.) In all other cases, 
the destination is undefined.

Trace Reporting: OPERATION.UNALIGNED fault: the trace is reported upon return 
from the OPERATION fault handler.
All other subtypes: the trace event is lost.

Note: OPERATION.UNALIGNED fault is not implemented on i960 Kx 
and Sx CPUs.
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8.10.5 OVERRIDE Faults

Fault Type: Fault table entry = 10H 

See Section 8.6.5, “Override Faults” on page 8-11 for more infor-
mation.

Function: The override fault handler must be accessed through a system-
supervisor call. Local and system-local override fault handlers ar
not supported and have an unpredictable behavior. Tracing is 
disabled upon entry into the override fault handler (PC.te is cleare
It is restored upon return from the handler. To prevent infinite 
internal loops, the override fault handler should not set PC.te.

Trace Reporting: Same behavior as if the override condition had not existed. Ref
the description of the original program fault.

Note: Fault handlers must not be placed in a GMU-protected area.
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8.10.6 PARALLEL Faults

Fault Type: Fault table entry = 0H
Fault type in fault record = fault type of one of the parallel faults.

Fault Subtype: Fault subtype of one of the parallel faults.

Number of Faults: Number of parallel faults.

Function: See Section 8.6.4, “Parallel Faults” on page 8-9 for a complete 
description of parallel faults. When the AC.nif=0, the architecture
permits the processor to execute instructions in parallel and out-
order by different execution units. When an imprecise fault occur
in any of these units, it is not possible to stop the execution of th
instructions after the faulting instruction. It is also possible that 
more than one fault is detected from different instructions almost
the same time.

When there is more than one outstanding fault at the point when
execution units terminate, a parallel fault situation arises. The fa
record of parallel faults contains the fault information of all faults 
that occurred in parallel. The size of the fault record is variable a
depends on the number of parallel faults. The number of parallel
faults is indicated in the Parallel Faults Field (NFP-20). See 
Figure 8-3. The maximum size of the fault record is implementatio
dependent and depends on the number of parallel and pipeline 
execution units in the specific implementation.

The parallel fault handler must be accessed through a system-
supervisor call. Local and system-local parallel fault handlers are
not supported by the i960 processor and have an unpredictable 
behavior. 

RIP: If all parallel fault types allow a RIP to be defined, the RIP is the 
next instruction in the flow of execution, otherwise it is undefined

Fault IP: IP of one of the faulting instructions.

Class: Imprecise.

Program State Changes: State changes associated with all the parallel faults.

Trace Reporting: If all parallel fault types allow for a resumption trace, then a trac
reported upon return from the parallel fault handler, or else it is lo
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8.10.7 PROTECTION Faults

Fault Type: 7H

Function: Number Name
Bit 0 Reserved
Bit 1 LENGTH
Bits 2-4 Reserved
Bit 5 BAD_ACCESS
Bits 6-7 Reserved

Indicates that a program or procedure is attempting to perform an 
illegal operation that the architecture protects against.

A PROTECTION.LENGTH fault is generated when the index 
operand used in a calls instruction points to an entry beyond the 
extent of the system procedure table.

A PROTECTION.BAD_ACCESS fault is generated when a 
program or procedure attempts a memory access that violates the 
permissions defined in the GMU memory protection or the GMU 
memory detection registers.

A memory access that violates the permissions defined in the GMU 
memory protection or detection registers causes a PROTECTION. 
BAD_ACCESS fault. BAD_ACCESS faults due to protection 
violations are handled immediately by the processor (breaking 
instruction execution), whereas BAD_ACCESS faults due to 
detection violations are pended until the instruction completes. If 
during the execution of a complex instruction, the GMU signals a 
detect violation, the GMU records the information relative to this 
first violation in the fault data field. Subsequent detect violations for 
this instruction will not modify the data field, but a subsequent 
protect violation will. The protect violation interrupts the instruction 
execution and the final data field of the fault reported describes the 
memory protection violation access. 

The words of the optional fault data field for 
PROTECTION.BAD_ACCESS faults are:

• The address of the faulting access at FP-24. It holds the add
of the first protect violation encountered or of the first detect 
violation if no protect violation occurred.

• The access type word at FP-28. It shows the size and type of
first protect violation encountered or of the first detect violatio
if no protect violation occurred.
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• The indicator word at FP-32. It shows all bits corresponding 
access violations during a memory access: if protect and det
regions overlap and a memory access triggers multiple regio
violations, all offending regions are listed in the indicator wor
of the fault record. However, the indicator word shows only th
information relative to one machine memory access, which m
be only a subset of all memory accesses done by the proces
during the execution of a complex operation, like a call or 
return. In case of multiple memory accesses, the indicator wo
behaves like the other data fields: it contains the information
relative to the first memory access containing a protect 
violation, or the information relative to the first memory acces
that triggered a detect violation, if no protect violation occurre

In a region protected by the GMU, only code fetched from extern
memory will generate a PROTECTION.BAD_ACCESS fault. Onc
the instructions are cached, the BAD_ACCESS fault will not be 
generated when the instructions are executed. However, access
data in a region protected by the GMU will cause a BAD_ACCES
fault, whether the region is cached or not.

Due to instruction prefetching, a spurious BAD_ACCESS fault ma
be generated when the target of a branch is in a region fetch-
protected by the GMU, if the branch is predicted to be taken, but
not. For application debugging with the GMU, conditional branch
to regions protected by the GMU should always be predicted not
taken.

When a processor is configured to have more than 5 register cac
frames, the number of frames in excess of 5 are located in the up
portion of SRAM. If this region is protected by the GMU, a 
BAD_ACCESS fault will not occur when a register set is pushed 
popped from its frame during a call or return operation. A 
BAD_ACCESS fault only occurs if the application program directl
loads or stores data from the SRAM region protected by the GM

Note that the faultIP field of the fault record is undefined for 
BAD_ACCESS faults.

RIP: IP of the faulting instruction.
GMU Protection: Undefined
GMU Detection: IP of the instruction that would have executed ne
if the fault had not occurred.

Fault IP: LENGTH: IP of the faulting instruction.
BAD_ACCESS (Protect): Undefined
BAD_ACCESS (Detect): Undefined

Fault Data: When a PROTECTION.BAD_ACCESS fault occurs, the proces
writes a fault record to memory. This fault record consists of the 
indicator word, the access type word, and the address of the faul
access. Figure 8-7 outlines their relative position with respect to th
FP.
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Class: Imprecise.

Program State Changes: LENGTH: The instruction does not execute.
BAD_ACCESS (Protect): Memory is not updated. Contents of the 
destination register are lost. 
BAD_ACCESS (Detect): Memory and register updated with correct 
value (i.e., the instruction completes prior to faulting).

Trace Reporting: PROTECTION.LENGTH: The trace event is lost.
GMU Protection: The trace event is lost.                         
GMU Detection: The trace is reported upon return from the fault 
handler.

Notes: The fault handler should not attempt to return from a
PROTECTION.BAD_ACCESS fault caused by a GMU Protection
condition because the stack frame cache may be in an undefined
state.

The fault handler can determine if the fault was caused by a GMU
Protection condition or a GMU Detection condition by analyzing the
indicator word in the fault record (Figure 8-7). Bits 1 to 0 define the
GMU Memory Protect Register pair affected, while bits 21 to 16
define the affected GMU Memory Detect Register pair. See
Section 12.3, “GMU Register Description” on page 12-4 for a
detailed description of these registers.

On the i960 Hx processor, it is possible to get 
PROTECTION.BAD_ACCESS fault by placing instructions in th
16 words directly below an area of memory (i.e., with smaller valu
for the address) that is protected by the GMU against instruc
execution. This is because of the instruction prefetch feature of
i960 Hx processor. The processor may try to fetch words that
never actually executed but that are protected by the GMU aga
instruction execution.

If any of the PROTECTION, PARALLEL, OVERRIDE or TRACE
fault handlers is protected by the GMU, infinite recursion within t
fault handlers may occur. If the PROTECTION handler is fetc
protected by the GMU, the processor loops infinitely with no way
being interrupted except through reset.
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Figure 8-7. PROTECTION.BAD_ACCESS Fault Record

Figure 8-8. Indicator Word (NFP-32)
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Figure 8-9. Access Type Fault (NFP-28)
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Table 8-5. Access Size and Type Definitions

Setting Size Type

000 Byte Load/Store

001 Short Load/Store

010 Word Load/Store

011 Long Load/Store

100 Triple Load/Store

101 All DCINVA Data 
Cache Access

110 Quad Load/Store

111 All Fetch

111 All
DCFLUSHA 
Data Cache 

Access

User Data Cache Access

Supervisor Data Cache Access

2428
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8.10.8 TRACE Faults

Fault Type: 1H

Fault Subtype: Number Name
Bit 0 Reserved
Bit 1 INSTRUCTION 
Bit 2 BRANCH 
Bit 3 CALL 
Bit 4 RETURN 
Bit 5 PRERETURN 
Bit 6 SUPERVISOR 
Bit 7 MARK/BREAKPOINT 

Function: Indicates the processor detected one or more trace events. The event 
tracing mechanism is described in Chapter 9, “Tracing and 
Debugging”.

A trace event is the occurrence of a particular instruction or 
instruction type in the instruction stream. The processor recogniz
seven different trace events: instruction, branch, call, return, 
prereturn, supervisor, mark. It detects these events only if the TC
register mode bit is set for the event. If the PC register trace ena
bit is also set, the processor generates a fault when a trace even
detected.

A TRACE fault is generated following the instruction that causes
trace event (or prior to the instruction for the prereturn trace even
The following trace modes are available:

INSTRUCTION Generates a trace event following ever
instruction.

BRANCH Generates a trace event following any 
branch instruction when the branch is 
taken (a branch trace event does not 
occur on branch-and-link or call 
instructions).

CALL Generates a trace event following any 
call or branch-and-link instruction or an
implicit fault call.

RETURN Generates a trace event following a ret.

PRERETURN Generates a trace event prior to any ret 
instruction, provided the PFP register 
prereturn trace flag is set (the processo
sets the flag automatically when a call 
trace is serviced). A prereturn trace 
fault is always generated alone.
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SUPERVISOR Generates a trace event following any 
calls instruction that references a 
supervisor procedure entry in the 
system procedure table and on a return 
from a supervisor procedure where the 
return status type in the PFP register is 
0102 or 0112.

MARK/BREAKPOINT Generates a trace event following the 
mark instruction. The MARK fault 
subtype bit, however, is used to indicate 
a match of the instruction-address 
breakpoint register or the data-address 
breakpoint register as well as the fmark 
and mark instructions.

A TRACE fault subtype bit is associated with each mode. Multiple 
fault subtypes can occur simultaneously; all trace fault conditions 
detected on one instruction (except prereturn) are reported in one 
single trace fault, with the fault subtype bit set for each subtype that 
occurs. The prereturn trace is always reported alone.

When a fault type other than a TRACE fault is generated during 
execution of an instruction that causes a trace event, the non-trace 
fault is handled before the trace fault. An exception is the prereturn-
trace fault, which occurs before the processor detects a non-trace 
fault and is handled first.

Similarly, if an interrupt occurs during an instruction that causes a 
trace event, the interrupt is serviced before the TRACE fault is 
handled. Again, the TRACE.PRERETURN fault is different. Since 
it is generated before the instruction, it is handled before any 
interrupt that occurs during instruction execution.

A trace fault handler must be accessed through a system-supervisor 
call (it must be a supervisor procedure in the system procedure 
table). Local and system-local trace fault handlers are not supported 
by the architecture and may have unpredictable behavior. Tracing is 
automatically disabled when entering the trace fault handler and is 
restored upon return from the trace fault handler. The trace fault 
handler should not modify PC.te.

RIP: Instruction immediately following the instruction traced, in 
instruction issue order, except for PRERETURN. For 
PRERETURN, the RIP is the return instruction traced.

Fault IP: IP of the faulting instruction for all except prereturn trace and call 
trace (on implicit fault calls), for which the fault IP field is 
undefined.

Class: Precise.
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Program State Changes: All trace faults except PRERETURN are serviced after the 
execution of the faulting instruction. The processor returns to the 
instruction immediately following the instruction traced, in 
instruction issue order. For PRERETURN, the return is traced 
before it executes. The processor re-executes the return instruction 
after completion of the PRERETURN trace fault handler.
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8.10.9 TYPE Faults

Fault Type: AH

Fault Subtype: Number Name
0H Reserved
1H MISMATCH
2H-FH Reserved

Function: Indicates a program or procedure attempted to perform an illegal 
operation on an architecture-defined data type or a typed data 
structure. 

A TYPE.MISMATCH fault is generated when attempts are made to:

• Execute a privileged (supervisor-mode only) instruction while
the processor is in user mode. Privileged instructions on the
i960 Hx processor are:

• Write to on-chip data RAM while the processor is in superviso
only write mode and BCON.irp is set. See Figure 14-3. 

• Write to the first 64 bytes of on-chip data RAM while the 
processor is in either user or supervisor mode and BCON.sir
set. See Figure 14-3.

• Write to memory-mapped registers in supervisor space from
user mode.

• Write to timer registers while in user mode, when timer 
registers are protected against user-mode writes.

• Access an SFR while the processor is in user mode.

RIP: No defined value.

Fault IP: IP of the faulting instruction.

Class: Imprecise.

Program State Changes: The fault happens before execution of the instruction. The ma
state is not changed.

Trace Reporting: The trace event is lost. 

modpc intctl

sysctl inten

icctl intdis

dcctl
8-38 i960® Hx Microprocessor Developer’s Manual



0 
n. A 
lar 

n 

. This 
uring 

de bits 

e 
esses, 

res, 

n 
Tracing and Debugging 9

This chapter describes the i960® Hx processor’s facilities for runtime activity monitoring. The i96
architecture provides facilities for monitoring processor activity through trace event generatio
trace event indicates a condition where the processor has just completed executing a particu
instruction or a type of instruction or where the processor is about to execute a particular 
instruction. When the processor detects a trace event, it generates a trace fault and makes a
implicit call to the fault handling procedure for trace faults. This procedure can, in turn, call 
debugging software to display or analyze the processor state when the trace event occurred
analysis can be used to locate software or hardware bugs or for general system monitoring d
program development.

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mo
in the trace controls (TC) register. Alternatively, the mark and fmark instructions can be used to 
generate trace events explicitly in the instruction stream.

The i960 Hx processor also provides twelve hardware breakpoint registers that generate trac
events and trace faults. Six registers are dedicated to trapping on instruction execution addr
while the remaining six registers can trap on the addresses of data accesses.

9.1 Trace Controls

To use the architecture’s tracing facilities, software must provide trace fault handling procedu
perhaps interfaced with a debugging monitor. Software must also manipulate the following 
registers and control bits to enable the various tracing modes and enable or disable tracing i
general.

These controls are described in the following subsections.

• TC register mode bits • PC register trace enable bit

• DAB0-DAB5 registers’ address field and 
enable bit (in the control table)

• PFP register return status field prereturn trace 
flag (bit 3)

• System procedure table supervisor-stack-
pointer field trace control bit

• BPCON and XBPCON register breakpoint 
mode bits and enable bits (in the control table)

• IPB0-IPB5 registers’ address field 
(in the control table)
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9.1.1 Trace Controls (TC) Register

The TC register (Figure 9-1) allows software to define conditions that generate trace events. 

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions 
that the processor can detect. For example, when the call-trace mode bit is set, the processor 
generates a trace event when a call or branch-and-link operation executes. See Section 9.2 on 
page 9-3. The processor uses event flags to monitor which breakpoint trace events are generated.

A special instruction, modify-trace-controls (modtc), allows software to modify the TC register. 
On initialization, the TC register is read from the Control Table. modtc can then be used to set or 
clear trace mode bits as required. Updating TC mode bits may take up to four non-branching 
instructions to take effect. Software can access the breakpoint event flags using modtc. The 
processor automatically sets and clears these flags as part of its trace handling mechanism: the 
breakpoint event flag corresponding to the trace being serviced is set in the TC while servicing a 
breakpoint trace fault; the TC event flags are cleared upon return from the trace fault handler.

When the program is not in a trace fault handler, or when the trace is not for breakpoints, the TC 
event bits are clear. On the i960 Hx processor, TC register bits 0, 16 through 23 and 28 through 31 
are reserved. Software must initialize these bits to zero and cannot modify them afterwards.

Figure 9-1. Trace Controls (TC) Register

Hardware Breakpoint Event Flags Trace Mode Bits

Mnemonic Name Bit # Mnemonic Name Bit #

TC.i5:2f Instruction-Address 
Breakpoint 2 to 5 8-11 TC.i Instruction Trace Mode 1

TC.d5:2f Data-Address 
Breakpoint 2 to 5 12-15 TC.b Branch Trace Mode 2

TC.i1:0f Instruction-Address 
Breakpoint 0 to 1 24-25 TC.c Call Trace Mode 3

TC.d1:0f Data-Address 
Breakpoint 0 to 1 26-27 TC.r Return Trace Mode 4

TC.p Pre-Return Trace Mode 5
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TC.mk Mark Trace Mode 7
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9.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag

The Process Controls (PC) register trace enable bit and the trace-fault-pending flag in the PC field 
of the fault record control tracing (see Section 3.6.3, “Process Controls (PC) Register” on 
page 3-24). The trace enable bit enables the processor’s tracing facilities; when set, the proce
generates trace faults on all trace events.

Typically, software selects the trace modes to be used through the TC register. It then sets th
enable bit to begin tracing. This bit is also altered as part of some call and return operations t
processor performs as described in Section 9.5.2, “Tracing on Calls and Returns” on page 9-11.

The update of PC.te through modpc may take up to four non-branching instructions to take effe
The update of PC.te through call and return operations is immediate.

The trace-fault-pending flag, in the PC field of the fault record, allows the processor to remem
to service a trace fault when a trace event is detected at the same time as another event (e.g
trace fault, interrupt). The non-trace fault event is serviced before the trace fault, and depend
the event type and execution mode, the trace-fault-pending flag in the PC field of the fault re
may be used to generate a fault upon return from the non-trace fault event (see Section 9.5.2.4, 
“Tracing on Return from Implicit Call: Fault Case” on page 9-13).

9.2 Trace Modes

This section defines trace modes enabled through the TC register. These modes can be ena
individually or several modes can be enabled at once. Some modes overlap, such as call-tra
mode and supervisor-trace mode.

See Section 9.4, “Handling Multiple Trace Events” on page 9-11 for a description of processor 
function when multiple trace events occur.

9.2.1 Instruction Trace

When the instruction-trace mode is enabled in TC (TC.i = 1) and tracing is enabled in PC 
(PC.te = 1), the processor generates an instruction-trace fault immediately after an instructio
executed. A debug monitor can use this mode (TC.i = 1, PC.te = 1) to single-step the proces

• Instruction trace • Branch trace • Mark trace • Prereturn trace

• Call trace • Return trace • Supervisor trace
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9.2.2 Branch Trace

When the branch-trace mode is enabled in TC (TC.b = 1) and PC.te is set, the processor generates a 
branch-trace fault immediately after a branch instruction executes, if the branch is taken. A branch-
trace event is not generated for conditional-branch instructions that do not branch, branch-and-link 
instructions, and call-and-return instructions.

9.2.3 Call Trace

When the call-trace mode is enabled in TC (TC.c = 1) and PC.te is set after the call, the processor 
generates a call-trace fault when a call instruction (call, callx or calls) or a branch-and-link 
instruction (bal or balx) executes. See Section 9.5.2.1, “Tracing on Explicit Call” on page 9-12 for 
a detailed description of call tracing on explicit instructions. Interrupt calls are never traced.

An implicit call to a fault handler also generates a call trace if TC.c and PC.te are set after th
Refer to Section 9.5.2.2, “Tracing on Implicit Call” on page 9-12 for a complete description of this
case.

When the processor services a trace fault, it sets the prereturn-trace flag (PFP register bit 3)
new frame created by the call operation or in the current frame if a branch-and-link operation
performed. The processor uses this flag to determine whether or not to signal a prereturn-tra
event on a ret instruction.

9.2.4 Return Trace

When the return-trace mode is enabled in TC and PC.te is set after the return instruction, the
processor generates a return-trace fault for a return from explicit call (PFP.rrr = 000 or 
PFP.rrr = 01x). See Section 9.5.2.3, “Tracing on Return from Explicit Call” on page 9-13.

A return from fault may be traced and a return from interrupt cannot. See Section 9.5.2.4, “Tracing 
on Return from Implicit Call: Fault Case” on page 9-13 and Section 9.5.2.5, “Tracing on Return 
from Implicit Call: Interrupt Case” on page 9-13 for details.

9.2.5 Prereturn Trace

When the TC prereturn-trace mode, the PC.te, and the PFP prereturn-trace flag (PFP.p) are 
processor generates a prereturn-trace fault prior to executing a ret execution. The dependence on 
PFP.p implies that prereturn tracing cannot be used without enabling call tracing. The proces
sets PFP.p whenever it services a call-trace fault (as described above) for call-trace mode. 

If another trace event occurs at the same time as the prereturn-trace event, the processor gen
fault on the non-prereturn-trace event first. Then, on a return from that fault handler, it gener
fault on the prereturn-trace event. The prereturn trace is the only trace event that can cause 
successive trace faults to be generated between instruction boundaries.
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9.2.6 Supervisor Trace

When supervisor-trace mode is enabled in TC and PC.te is set, the processor generates a 
supervisor-trace fault after either of the following:

• A call-system instruction (calls) executes from user mode and the procedure table entry is for 
a system-supervisor call.

• A ret instruction executes from supervisor mode and the return-type field is set to 0102 or 0112 
(i.e., return from calls).

This trace mode allows a debugging program to determine kernel-procedure call boundaries within 
the instruction stream. 

9.2.7 Mark Trace

Mark trace mode allows trace faults to be generated at places other than those specified with the 
other trace modes, using the mark instruction. It should be noted that the MARK fault subtype bit 
in the fault record is used to indicate a match of the instruction-address breakpoint registers or the 
data-address breakpoint registers as well as the fmark and mark instructions.

9.2.7.1 Software Breakpoints

mark and fmark allow breakpoint trace faults to be generated at specific points in the instruction 
stream. When mark trace mode is enabled and PC.te is set, the processor generates a mark trace 
fault any time it encounters a mark instruction. fmark causes the processor to generate a mark trace 
fault regardless of whether or not mark trace mode is enabled, provided PC.te is set. If PC.te is 
clear, mark and fmark behave like no-ops.

9.2.7.2 Hardware Breakpoints

The hardware breakpoint registers are provided to enable generation of trace faults on instruction 
execution and data access.

The i960 Hx processor implements six instruction and six data address breakpoint registers, 
denoted IPB0 through IPB5 and DAB0 through DAB5. The instruction and data address 
breakpoint registers are 32-bit registers. The instruction breakpoint registers cause a break after 
execution of the target instruction. The DABx registers cause a break after the memory access has 
been issued to the bus controller.

Hardware breakpoint registers may be armed or disarmed. When the registers are armed, hardware 
breakpoints can generate an architectural trace fault. When the registers are disarmed, no action 
occurs, and execution continues normally. Since instructions are always word aligned, the two low-
order bits of the IPBx registers act as control bits. Control bits for the DABx registers reside in the 
Breakpoint Control (BPCON and XBPCON) registers. BPCON and XBPCON enable the data 
address breakpoint registers, and set the specific modes of these registers. Hardware breakpoints 
are globally enabled by the process controls trace enable bit (PC.te).

The IPBx, DABx, BPCON and XBPCON registers may be accessed using normal load and store 
instructions. The application must be in supervisor mode for a legal access to occur. See 
Section 3.3, “Memory-Mapped Control Registers” on page 3-6 for more information on the 
address for each register.
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Applications must request modification rights to the hardware breakpoint resources, before 
attempting to modify these resources. Rights are requested by executing the sysctl instruction, as 
described in the following section.

9.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources

Application code must always first request and acquire modification rights to the hardware 
breakpoint resources before any attempt is made to modify them. This mechanism is employed to 
eliminate simultaneous usage of breakpoint resources by emulation tools and application code. An 
emulation tool exercises supervisor control over breakpoint resource allocation. If the emulator 
retains control of breakpoint resources, none are available for application code. If an emulation tool 
is not being used in conjunction with the device, modification rights to breakpoint resources will be 
granted to the application. The emulation tool may relinquish control of breakpoint resources to the 
application.

If the application attempts to modify the breakpoint or breakpoint control (BPCON or XBPCON) 
registers without first obtaining rights, an OPERATION.UNIMPLEMENTED fault will be 
generated. In this case, the breakpoint resource will not be modified, whether accessed through a 
sysctl instruction or as a memory-mapped register.

Application code requests modification rights by executing the sysctl instruction and issuing the 
Breakpoint Resource Request message (src1.Message_Type = 06H). In response, the current 
available breakpoint resources will be returned as the src/dst parameter (src/dst must be a register). 
The src2 parameter is not used. Results returned in the src/dst parameter must be interpreted as 
shown in Table 9-1.

The following code sample illustrates the execution of the breakpoint resource request.
ldconst 0x600, r4 # Load the Breakpoint Resource 

# Request message type into r4.

sysctl r4, r4, r4 # Issue the request.

Assume in this example that after execution of the sysctl instruction, the value of r4 is 
0000 0066H. This indicates that the application has gained modification rights to all instruction 
and all data address breakpoint registers. If the value returned is zero, the application has not 
gained the rights to the breakpoint resources.

Because the i960 Hx processor does not initialize the breakpoint registers from the control table 
during initialization (as i960 Cx processors do), the application must explicitly initialize the 
breakpoint registers in order to use them once modification rights have been granted by the sysctl 
instruction.

Table 9-1. src/dst Encoding

src/dst 7:4 src/dst 3:0

Number of Available Data Address Breakpoints Number of Available Instruction Breakpoints

NOTE: SRC3 31:8 are reserved and will always return zeroes.
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9.2.7.4 Breakpoint Control Register

The format of the BPCON and XBPCON registers are shown in Figure 9-2 and Figure 9-3. Each 
breakpoint has four control bits associated with it: two mode and two enable bits. The enable bits 
(DABx.e0, DABx.e1) in BPCON and XBPCON act to enable or disable the data address 
breakpoints, while the mode bits (DABx.m0, DABx.m1) dictate which type of access will generate 
a break event.

Figure 9-2. Breakpoint Control Register (BPCON)

Figure 9-3. Extended Breakpoint Control Register (XBPCON)
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Programming the BPCON and XBPCON registers is summarized in Table 9-2 and Table 9-3.

The mode bits of BPCON and XBPCON control what type of access generates a fault, trace 
message, or break event, as summarized in Table 9-3

.

9.2.7.5 Data Address Breakpoint (DAB) Registers

The format for the Data Address Breakpoint (DAB) registers is shown in Figure 9-4. Each 
breakpoint register contains a 32-bit address of a byte to match on.

A breakpoint is triggered when both a data access’s type and address matches that specified
BPCON or XBPCON and the appropriate DAB register. The mode bits for each DAB registe
which are contained in BPCON or XBPCON (see section 9.2.7.4), qualify the access types t
DAB will match. An access-type match selects that DAB register to perform address checkin
address match occurs when the byte address of any of the bytes referenced by the data acc
matches the byte address contained within a selected DAB.

Consider the following example. DAB0 is enabled to break on any data read access and has 
of 100FH. Any of the following instructions will cause the DAB0 breakpoint to be triggered:

ldob0x100f,r8
ldos0x100e,r8
ld 0x100c,r8
ld 0x100d,r8 /* even unaligned accesses */
ldl 0x1008,r8
ldq 0x1000,r8

Note that the instruction:
ldt 0x1000,r8

does not cause the breakpoint to be triggered because byte 100FH is not referenced by the 
word access.

Table 9-2.  Configuring the Data Address Breakpoint (DAB) Registers

PC.te DABx.e1 DABx.e0 Description

0 X X No action. With PC.te clear, breakpoints are globally disabled.

X 0 0 No action. DABx is disabled.

1 0 1 Reserved.

1 1 0 Reserved.

1 1 1 Generate a Trace Fault.

NOTE: “X” = don’t care. Reserved combinations must not be used.

Table 9-3. Programming the Data Address Breakpoint (DAB) Modes

DABx.m1 DABx.m0 Mode

0 0 Break on Data Write Access Only.

0 1 Break on Data Read or Data Write Access.

1 0 Break on Data Read Access.

1 1 Reserved.
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Data address breakpoints can be set to break on any data read, any data write, or any data read or 
data write access. All accesses qualify for checking. These include explicit load and store 
instructions, and implicit data accesses performed by other instructions and normal processor 
operations.

For data accesses to the memory-mapped control register space, it is unpredictable whether 
breakpoint traces are generated when the access matches the breakpoints and also results in an 
OPERATION fault or TYPE.MISMATCH fault. The OPERATION or TYPE.MISMATCH fault 
will always be reported in this case.

9.2.7.6 Instruction Breakpoint (IPB) Registers

The format for the instruction breakpoint registers is given in Figure 9-5. Instruction Breakpoint 
(IPB) Register Format. The upper thirty bits of the IPBx register contain the word-aligned 
instruction address on which to break. The two low-order bits indicate the action to take upon an 
address match.

Figure 9-4. Data Address Breakpoint (DAB) Register Format

28 24 20 16 12 8 4 031

Data Address

Hardware Reset Value: 0000 0000H

Software Re-init Value: 0000 0000H

Figure 9-5. Instruction Breakpoint (IPB) Register Format

28 24 20 16 12 8 4 031

IPBx Mode

Instruction Address

m

1

m

0

Hardware Reset Value: 0000 0000H

Software Re-init Value: 0000 0000H
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Programming the instruction breakpoint register modes is shown in Table 9-4

On the i960 Hx processor, the instruction breakpoint memory-mapped registers can be read by 
using the sysctl instruction or by a word-length read instruction. They can be modified by sysctl 
or by a word-length store instruction.

Storing directly to an IP breakpoint register may cause unexpected results if tracing is enabled. Any 
instructions in the superscalar template of a store operation that updates an IPB and any 
instructions in the subsequent superscalar template may trigger on the new or old value of the 
breakpoint register. The IP in the fault record may be that of the instruction that caused the 
breakpoint or may be the new value of the IPB register. The return IP in the fault record will always 
be correct.

If it is necessary to avoid this condition, use the modify memory-mapped control register operation 
of the sysctl instruction to update the IPB registers.

9.3 Generating a Trace Fault

To summarize the information presented in the previous sections, the processor services a trace 
fault when PC.te is set and the processor detects any of the following conditions:

• An instruction included in a trace mode group executes or is about to execute (in the case of a 
prereturn trace event) and the trace mode for that instruction is enabled.

• A fault call operation executes and the call-trace mode is enabled.

• A mark instruction executes and the breakpoint-trace mode is enabled.

• An fmark instruction executes.

• The processor executes an instruction at an IP matching an enabled instruction address 
breakpoint (IPB) register.

• The processor issues a memory access matching the conditions of an enabled data address 
breakpoint (DAB) register.

Table 9-4. Instruction Breakpoint Modes

PC.te IPBx.m1 IPBx.m0 Action

0 X X No action. Globally disabled.

X 0 0 No action. IPBx disabled.

1 0 1 Reserved.

1 1 0 Reserved.

1 1 1 Generate a Trace Fault.

NOTE: “X” = don’t care. Reserved combinations must not be used.
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9.4 Handling Multiple Trace Events

With the exception of a prereturn trace event, which is always reported alone, it is possible for a 
combination of trace events to be reported in the same fault record. The processor may not report 
all events; however, it will always report a supervisor event and it will always signal at least one 
event.

If the processor reports prereturn trace and other trace types at the same time, it reports the other 
trace types in a single trace fault record first, and then services the prereturn trace fault upon return 
from the other trace fault.

9.5 Trace Fault Handling Procedure

The processor calls the trace fault handling procedure when it detects a trace event. See 
Section 8.7, “Fault Handling Procedures” on page 8-13 for general requirements for fault handling
procedures.

The trace fault handling procedure is involved in a specific way and is handled differently tha
other faults. A trace fault handler must be invoked with an implicit system-supervisor call. W
the call is made, the PC register trace enable bit is cleared. This disables trace faults in the t
fault handler. Recall that for all other implicit or explicit system-supervisor calls the trace ena
bit is replaced with the system procedure table trace control bit. The exception handling of tr
enable for trace faults ensures that tracing is turned off when a trace fault handling procedur
being executed. This is necessary to prevent an endless loop of trace fault handling calls.

9.5.1 Tracing and Interrupt Procedures

When the processor invokes an interrupt handling procedure to service an interrupt, it disabl
tracing. It does this by saving the PC register’s current state in the interrupt record, then clea
the PC register trace enable bit.

On returning from the interrupt handling procedure, the processor restores the PC register to
state it was in prior to handling the interrupt, which restores the trace enable bit. See 
Section 9.5.2.2, “Tracing on Implicit Call” on page 9-12 and Section 9.5.2.5, “Tracing on Return 
from Implicit Call: Interrupt Case” on page 9-13 for detailed descriptions of tracing on calls and 
returns from interrupts.

9.5.2 Tracing on Calls and Returns

During call and return operations, the trace enable flag (PC.te) may be altered. This section 
discusses how tracing is handled on explicit and implicit calls and returns.

Since all trace faults (except prereturn) are serviced after execution of the traced instruction,
tracing on calls and returns is controlled by the PC.te in effect after the call or the return.
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9.5.2.1 Tracing on Explicit Call

Tracing an explicit call happens before execution of the first instruction of the procedure called.

Tracing is not modified by using a call or callx instruction. Further, tracing is not modified by 
using a calls instruction from supervisor mode. When calls is issued from user mode, PC.te is read 
from the supervisor stack pointer trace enable bit (SSP.te) of the system procedure table, which is 
cached on chip during initialization. The trace enable bit in effect before the calls is stored in the 
new PFP[0] bit and is restored upon return from the routine (see Section 9.5.2.3, “Tracing on 
Return from Explicit Call” on page 9-13). The calls instruction and all instructions of the 
procedure called are traced according to the new PC.te. 

Table 9-5 summarizes all cases; “a” and “x” are bit variables.

9.5.2.2 Tracing on Implicit Call

Tracing on an implicit call happens before execution of the first instruction of the non-trace fa
handler called. Table 9-6 summarizes all cases of tracing on implicit call. In the table, a is a bit 
variable that symbolizes the trace enable bit in PC.

Table 9-5. Tracing on Explicit Call

Call
Type

Calling Procedure 
Trace Enable

Calling Procedure 
Mode Saved PFP.rt2:0 Called Procedure 

Trace Enable Bit

call, callx PC.te user or supervisor 0002 PC.te

calls PC.te supervisor 0002 PC.te

calls PC.te user
01t2

Stores PC.te into 
bit 0 of PFP.rt2:0

SSP.te

NOTE: Refer to Table 7-2 “Encoding of Return Status Field” on page 7-21.

Table 9-6. Tracing on Implicit Call 

Call
Type

System 
Procedure Table 

Entry

Previous 
Frame Pointer 
Return Status 

(PFP.rt2:0)

Source
PC.te

Target
PC.te

PC.te Value 
Used for 

Traces on 
Implicit Call

00-Fault† N.A. 001 a a a

10-Fault† 00 001 a a a

10-Fault† 10 001 a SSP.te SSP.te

00-Override Fault

00-Trace Fault
x Type of trace fault not supported

10-Override Fault

10-Trace Fault
00 Type of trace fault not supported

10-Override Fault

10-Trace Fault
10 001 a 0 0

Interrupt N.A. 111 a 0 0

† On i960® Hx processors, all faults except override and trace faults.
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Tracing is not altered on the way to a local or a system-local fault handler, so the call is traced if 
PC.te and TC.call are set before the call. For an implicit system-supervisor call, PC.te is read from 
the Supervisor Stack Pointer enable bit (SSP.te). The trace on the call is serviced before execution 
of the first instruction of the non-trace fault handler (tracing is disabled on the way to a trace fault 
handler).

On the i960 Hx processor, the override fault handler must be accessed through a system-supervisor 
call. Tracing is disabled on the way to the override fault handler.

The only type of trace fault handler supported is the system-supervisor type. Tracing is disabled on 
the way to the trace fault handler.

Tracing is disabled by the processor on the way to an interrupt handler, so an interrupt call is never 
traced.

Note that the Fault IP field of the fault record is not defined when tracing a fault call, because there 
is no instruction pointer associated with an implicit call.

9.5.2.3 Tracing on Return from Explicit Call

Table 9-7 shows all cases.

For a return from local call (return type 000), tracing is not modified. For a return from system call 
(return type 01a, with PC.te equal to “a” before the call), tracing of the return and subsequen
instructions is controlled by “a”, which is restored in the PC.te during execution of the return.

9.5.2.4 Tracing on Return from Implicit Call: Fault Case

When the processor detects several fault conditions on the same instruction (referred to as t
“target”), the non-trace fault is serviced first. Upon return from the non-trace fault handler, the
processor services a trace fault on the target if in supervisor mode before the return and if th
enable and trace-fault-pending flags are set in the PC field of the non-trace fault record (at F

If the processor is in user mode before the return, tracing is not altered. The pending trace o
target instruction is lost, and the return is traced according to the current PC.te. 

9.5.2.5 Tracing on Return from Implicit Call: Interrupt Case

When an interrupt and a trace fault are reported on the same instruction, the instruction com
and then the interrupt is serviced. Upon return from the interrupt, the trace fault is serviced if
interrupt handler did not switch to user mode. On the i960 Hx processor, the interrupt handle
returns directly to the trace fault handler.

If the interrupt return is executed from user mode, the PC register is not restored and tracing
return occurs according to the PC.te and TC.modes bit fields. 

Table 9-7. Tracing on Return from Explicit Call

PFP.rt2:0 Execution Mode PC.em Trace Enable Used for Trace on Return

0002 user or supervisor PC.te

01t2 user PC.te

01t2 super t2 (from PFP.r2:0)

Refer to Table 7-2 “Encoding of Return Status Field” on page 7-21.
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Timers 10

This chapter describes the i960® Hx processor’s dual, independent 32-bit timers. Topics include
timer registers (TMRx, TCRx and TRRx), timer operation, timer interrupts, and timer register
values at initialization.

Each timer is programmed by the timer registers. These registers are memory-mapped withi
processor, addressable on 32-bit boundaries. When enabled, a timer decrements the user-d
count value with each Timer Clock (TCLOCK) cycle. The countdown rate is also user-
configurable to be equal to the bus clock frequency, or the bus clock rate divided by 2, 4 or 8
timers can be programmed to either stop when the count value reaches zero (single-shot mo
run continuously (auto-reload mode). When a timer’s count reaches zero, the timer’s interrup
signals the processor’s interrupt controller. Figure 10-1 shows a diagram of the timer functions. Se
also Figure 10-5 for the Timer Unit state diagram.

Figure 10-1. Timer Functional Diagram

Address
Detect

Timer Mode Register

Timer Count Register
32-bit Counter

32-bit Compare 
Against Zero

Interrupt Unit

Clock Unit Bus

Fault
Output

User/ Interrupt
Output

Clock

Internal
CPU
Bus

Timer Reload Register

Selected Clock

Terminal Count 

Supervisor
Status

32-bit Register
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10.1 Timer Registers

As shown in Table 10-2, each timer has three memory-mapped registers:

• Timer Mode Register - programs the specific mode of operation or indicates the current 
programmed status of the timer. This register is described in Section 10.1.1, “Timer Mode 
Registers (TMR0, TMR1)” on page 10-2.

• Timer Count Register - contains the timer’s current count. See Section 10.1.2, “Timer Count 
Register (TCR0, TCR1)” on page 10-5.

• Timer Reload Register - contains the timer’s reload count. See Section 10.1.3, “Timer Reload 
Register (TRR0, TRR1)” on page 10-6.

For register memory locations, see Table 3-5 “User Space Family Registers and Tables” on 
page 3-13.

10.1.1 Timer Mode Registers (TMR0, TMR1)

The Timer Mode Register (TMRx) lets the user program the mode of operation and determin
current status of the timer. TMRx bits are described in the subsections following Figure 10-2 and 
are summarized in Table 10-4.

Table 10-1. Timer Performance Ranges

Bus Frequency (MHz) Max Resolution (ns) Max Range (mins)

40 25 14.3

33 30.3 17.4

25 40 22.9

20 50 28.6

16 62.5 35.8

Table 10-2. Timer Registers

Timer Unit Register Acronym Register Name

Timer 0

TMR0 Timer Mode Register 0

TCR0 Timer Count Register 0

TRR0 Timer Reload Register 0

Timer 1

TMR1 Timer Mode Register 1

TCR1 Timer Count Register 1

TRR1 Timer Reload Register 1
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10.1.1.1 Bit 0 - Terminal Count Status Bit (TMRx.tc)

The TMRx.tc bit is set when the Timer Count Register (TCRx) decrements to 0 and bit 2 
(TMRx.reload) is not set for a timer. The TMRx.tc bit allows applications to monitor timer status 
through software instead of interrupts. TMRx.tc remains set until software accesses (reads or 
writes) the TMRx. The access clears TMRx.tc. The timer ignores any value specified for TMRx.tc 
in a write request.

When auto-reload is selected for a timer and the timer is enabled, the TMRx.tc bit status is 
unpredictable. Software should not rely on the value of the TMRx.tc bit when auto-reload is 
enabled. 

The processor also clears the TMRx.tc bit upon hardware or software reset. Refer to Section 13.2, 
“Initialization” on page 13-2.

Figure 10-2. Timer Mode Register (TMR0, TMR1)

28 24 20

4 0

Terminal Count Status - TMRx.tc
    (0) No Terminal Count 
    (1) Terminal Count 

Timer Enable - TMRx.enable 
    (0) Disabled
    (1) Enabled

Timer Auto Reload Enable - TMRx.reload
    (0) Auto Reload Disabled
    (1) Auto Reload Enabled

Timer Register Supervisor Write Control - TMRx.sup
    (0) Supervisor and User Mode Write Enabled
    (1) Supervisor Mode Only Write Enabled

Timer Input Clock Selects - TMRx.csel1:0
    (00) 1:1 Timer Clock = Bus Clock
    (01) 2:1 Timer Clock = Bus Clock / 2
    (10) 4:1 Timer Clock = Bus Clock / 4

16 12 8

    (11) 8:1 Timer Clock = Bus Clock / 8 

Reserved
(Initialize to 0)

Timer Mode Register (TMR0, TMR1)

31
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10.1.1.2 Bit 1 - Timer Enable (TMRx.enable)

The TMRx.enable bit allows user software to control the timer’s RUN/STOP status. When:

User software sets this bit. Once started, the timer continues to run, regardless of other proc
activity. Three events can stop the timer:

• User software explicitly clearing this bit (i.e., TMRx.enable = 0).

• TCRx value decrements to 0, and the Timer Auto Reload Enable (TMRx.reload) bit = 0.

• Hardware or software reset. Refer to Section 13.2, “Initialization” on page 13-2.

10.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload)

The TMRx.reload bit determines whether the timer runs continuously or in single-shot mode.
When TCRx = 0 and TMRx.enable = 1 and:

User software sets this bit. When TMRx.enable and TMRx.reload are set and TRRx does not
0, the timer continues to run in auto-reload mode, regardless of other processor activity. Two 
can stop the timer: 

• User software explicitly clearing either TMRx.enable or TMRx.reload.

• Hardware or software reset. Refer to Section 13.2, “Initialization” on page 13-2.

The processor clears this bit upon hardware or software reset. Refer to Section 13.2, 
“Initialization” on page 13-2.

TMRx.enable = 1 The Timer Count Register (TCRx) value decrements every Timer 
Clock (TCLOCK) cycle. TCLOCK is determined by the Timer Input 
Clock Select (TMRx.csel bits 0-1). See Section 10.1.1.5, “Bits 4, 5 - 
Timer Input Clock Select (TMRx.csel1:0)” on page 10-5. If 
TMRx.reload=0, the timer automatically clears TMRx.enable when 
the count reaches zero. If TMRx.reload=1, the bit remains set. See
Section 10.1.1.3, “Bit 2 - Timer Auto Reload Enable (TMRx.reload)”
on page 10-4.

TMRx.enable = 0 The timer is disabled and ignores all input transitions.

TMRx.reload = 1 The timer runs continuously. The processor: 

1. Automatically loads TCRx with the value in the Timer Reload 
Register (TRRx), when TCRx value decrements to 0.

2. Decrements TCRx until it equals 0 again. 

Steps 1 and 2 repeat until software clears TMRx bits 1 or 2. 

TMRx.reload = 0 The timer runs until the Timer Count Register = 0. TRRx has no eff
on the timer.
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10.1.1.4 Bit 3 - Timer Register Supervisor Read/Write Control (TMRx.sup)

The TMRx.sup bit enables or disables user mode writes to the timer registers (TMRx, TCRx, 
TRRx). Supervisor mode writes are allowed regardless of this bit’s condition. Software can r
these registers from either mode. 

When:

The processor clears TMRx.sup upon hardware or software reset. Refer to Section 13, 
“Initialization and System Requirements” on page 13-1. 

10.1.1.5 Bits 4, 5 - Timer Input Clock Select (TMRx.csel1:0)

User software programs the TMRx.csel bits to select the Timer Clock (TCLOCK) frequency. 
Table 10-3. As shown in Figure 10-1, the bus clock is an input to the timer clock unit. These bits
allow the application to specify whether TCLOCK runs at or slower than the bus clock freque

The processor clears these bits upon hardware or software reset (TCLOCK = Bus Clock). 

10.1.2 Timer Count Register (TCR0, TCR1)

The Timer Count Register (TCRx) is a 32-bit register that contains the timer’s current count. 
register value decrements with each timer clock tick. When this register value decrements to
(terminal count), a timer interrupt is generated. If TMRx.reload is not set for the timer, the stat
in the timer mode register (TMRx.tc) is set and remains set until the TMRx register is access
Figure 10-3 shows the timer count register.

TMRx.sup = 1 The timer generates a TYPE.MISMATCH fault when a user mode t
attempts a write to any of the timer registers; however, supervisor mo
writes are allowed.

TMRx.sup = 0 The timer registers can be written from either user or supervisor mo

Table 10-3. Timer Input Clock (TCLOCK) Frequency Selection

Bit 5
TMRx.csel1

Bit 4
TMRx.csel0 Timer Clock (TCLOCK)

0 0 Timer Clock = Bus Clock

0 1 Timer Clock = Bus Clock / 2

1 0 Timer Clock = Bus Clock / 4

1 1 Timer Clock = Bus Clock / 8
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The valid programmable range is from 1H to FFFF FFFFH. (Avoid programming TCRx to 0 as it 
will have varying results as described in Section 10.5, “Uncommon TCRX and TRRX Conditions
on page 10-10.)

User software can read or write TCRx whether the timer is running or stopped. Bit 3 of TMRx
determines user read/write control (see Section 10.1.1.4). The TCRx value is undefined after 
hardware or software reset.

10.1.3 Timer Reload Register (TRR0, TRR1)

The Timer Reload Register (TRRx; Figure 10-4) is a 32-bit register that contains the timer’s reloa
count. The timer loads the reload count value into TCRx when TMRx.reload is set (1), 
TMRx.enable is set (1) and TCRx equals zero.

As with TCRx, the valid programmable range is from 1H to FFFF FFFFH. Avoid programmin
value of 0, as it may prevent TINTx from asserting continuously. (See Section 10.5, “Uncommon 
TCRX and TRRX Conditions” on page 10-10 for more information.)

User software can access TRRx whether the timer is running or stopped. Bit 3 of TMRx deter
read/write control (see Section 10.1.1.4). TRRx value is undefined after hardware or software 
reset.

Figure 10-3. Timer Count Register (TCR0, TCR1)

28 24 20 4 016 12 8

Timer Count Register (TCR0, TCR1)

Timer Count Value - TCRx.d31:0
 

   D31:0
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10.2 Timer Operation

This section summarizes timer operation and describes load/store access latency for the timer 
registers.

10.2.1 Basic Timer Operation

Each timer has a programmable enable bit in its control register (TMRx.enable) to start and stop 
counting. The supervisor (TMRx.sup) bit controls write access to the enable bit. This allows the 
programmer to prevent user mode tasks from enabling or disabling the timer. Once the timer is 
enabled, the value stored in the Timer Count Register (TCRx) decrements every Timer Clock 
(TCLOCK) cycle. TCLOCK is determined by the Timer Input Clock Select (TMRx.csel) bit 
setting. The countdown rate can be set to equal the bus clock frequency, or the bus clock rate 
divided by 2, 4 or 8. Setting TCLOCK to a slower rate lets the user specify a longer count period 
with the same 32-bit TCRx value.

Software can read or write the TCRx value whether the timer is running or stopped. This lets the 
user monitor the count without using hardware interrupts. The TMRx.sup bit lets the programmer 
allow or prevent user mode writes to TCRx, TMRx and TRRx.

When the TCRx value decrements to zero, the unit’s interrupt request signals the processor’
interrupt controller. See Section 10.3, “Timer Interrupts” on page 10-10 for more information. The 
timer checks the value of the timer reload bit (TMRx.reload) setting. If TMRx.reload. = 1, the
processor: 

• Automatically reloads TCRx with the value in the Timer Reload Register (TRRx).

• Decrements TCRx until it equals 0 again. 

This process repeats until software clears TMRx.reload or TMR.enable. 

Figure 10-4. Timer Reload Register (TRR0, TRR1)

Timer Reload Register (TRR0, TRR1)

28 24 20 4 016 12 8

Timer Auto-Reload Value - TRRx.d31:0
    
D31:0
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If TMRx.reload = 0, the timer stops running and sets the terminal count bit (TMRx.tc). This bit 
remains set until user software reads or writes the TMRx register. Either access type clears the bit. 
The timer ignores any value specified for TMRx.tc in a write request.

10.2.2 Load/Store Access Latency for Timer Registers

As with all other load accesses from internal memory-mapped registers, a load instruction that 
accesses a timer register has a latency of one internal processor cycle. With one exception, a store 
access to a timer register completes and all state changes take effect before the next instruction 
begins execution. The exception to this is when disabling a timer. Latency associated with the 
disabling action is such that a timer interrupt may be posted immediately after the disabling 
instruction completes. This can occur when the timer is near zero as the store to TMRx occurs. In 
this case, the timer interrupt is posted immediately after the store to TMRx completes and before 
the next instruction can execute. Table 10-5 summarizes the timer access and response timings. 
Refer also to the individual register descriptions for details.

Note that the processor may delay the actual issuing of the load or store operation due to previous 
instruction activity and resource availability of processor functional units. 

The processor ensures that the TMRx.tc bit is cleared within one bus clock after a load or store 
instruction accesses TMRx. 

Table 10-4. Timer Mode Register Control Bit Summary
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Action

X X X X 0 Timer disabled.

X X N 0 1 Timer enabled, TMRx.enable is cleared when TCRx decrements to zero.

X N N 1 1 Timer and auto reload enabled,TMRx.enable remains set when TCRx=0. 
When TCRx=0, TCRx equals the TRRx value.

0 X X X X No faults for user mode writes are generated.

1 X X X X TYPE.MISMATCH fault generated on user mode write.

NOTES: 

X = don’t care

N = a numb`er between 1H and FFFF FFFFH
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Table 10-5. Timer Responses to Register Bit Settings 

 Name Status Action

(TMRx.tc)

Terminal Count
Bit 0

READ
Timer clears this bit when user software accesses TMRx. This bit can be set 1 
bus clock later. The timer sets this bit within 1 bus clock of TCRx reaching 
zero if TMRx.reload=0. 

WRITE Timer clears this bit within 1 bus clock after the software accesses TMRx. The 
timer ignores any value specified for TMRx.tc in a write request.

(TMRx.enable)

Timer Enable
Bit 1

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE Writing a ‘1’ enables the bus clock to decrement TCRx within 1 bus clock after 
executing a store instruction to TMRx.

(TMRx.reload)

Timer Auto 
Reload Enable 

Bit 2

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE
Writing a ‘1’ enables the reload capability within 1 bus clock after the store 
instruction to TMRx has executed. The timer loads TRRx data into TCRx and 
decrements this value during the next bus clock cycle. 

(TMRx.sup)

Timer Register 
Supervisor Write 

Control
Bit 3

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE
Writing a ‘1’ locks out user mode writes within 1 bus clock after the store 
instruction executes to TMRx. Upon detecting a user mode write the timer 
generates a TYPE.MISMATCH fault. 

(TMRx.csel1:0)

Timer Input Clock 
Select

Bits 4-5

READ Bits are available 1 bus clock after executing a read instruction from 
TMRx.csel1:0 bit(s).

WRITE The timer re-synchronizes the clock cycle used to decrement TCRx within one 
bus clock cycle after executing a store instruction to TMRx.csel1:0 bit(s).

(TCRx.d31:0)

Timer Count 
Register

READ
The current TCRx count value is available within 1 bus clock cycle after 
executing a read instruction from TCRx. If the timer is running, the pre-
decremented value is returned as the current value.

WRITE
The value written to TCRx becomes the active value within 1 bus clock cycle. 
If the timer is running, the value written is decremented in the current clock 
cycle.

(TRRx.d31:0)

Timer Reload 
Register

READ

The current TRRx count value is available within 1 bus clock after executing a 
read instruction from TRRx. If the timer is transferring the TRRx count into 
TCRx in the current count cycle, the timer returns the new TCRx count value 
to the executing read instruction.

WRITE
The value written to TRRx becomes the active value stored in TRRx within 1 
bus clock cycle. If the timer is transferring the TRRx value into the TCRx, data 
written to TRRx is also transferred into TCRx.
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10.3 Timer Interrupts

Each timer is the source for one interrupt. When a timer detects a zero count in its TCRx, the timer 
generates an internal edge-detected Timer Interrupt signal (TINTx) to the interrupt controller, and 
the interrupt-pending (IPND.tipx) bit is set in the interrupt controller. Each timer interrupt can be 
selectively masked in the Interrupt Mask (IMSK) register or handled as a dedicated hardware-
requested interrupt. Refer to Chapter 11, “Interrupts” for a description of hardware-requested 
interrupts.

When the interrupt is disabled after a request is generated, but before a pending interrupt is 
serviced, the interrupt request is still active (the Interrupt Controller latches the request). Wh
timer generates a second interrupt request before the CPU services the first interrupt reques
second request may be lost.

When auto-reload is enabled for a timer, the timer continues to decrement the value in TCRx
after entry into the timer interrupt handler.

10.4 Powerup/Reset Initialization

Upon power up, external hardware reset or software reset (sysctl), the timer registers are initialized
to the values shown in Table 10-6.

10.5 Uncommon TCRX and TRRX Conditions 

Table 10-4 summarizes the most common settings for programming the timer registers. Unde
certain conditions, however, it may be useful to set the Timer Count Register or the Timer Re
Register to zero before enabling the timer. Table 10-7 details the conditions and results when thes
conditions are set.

Table 10-6. Timer Powerup Mode Settings 

Mode/Control Bit Notes

TMRx.tc = 0 No terminal count

TMRx.enable = 0 Prevents counting and assertion of TINTx

TMRx.reload = 0 Single terminal count mode

TMRx.sup = 0 Supervisor or user mode access

TMRx.csel1:0 = 0 Timer Clock = Bus Clock

TCRx.d31:0 = 0 Undefined

TRRx.d31:0 = 0 Undefined

TINTx output Deasserted
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10.6 Timer State Diagram

Figure 10-5 shows the common states of the Timer Unit. For uncommon conditions see 
Section 10.5, “Uncommon TCRX and TRRX Conditions” on page 10-10.

Table 10-7. Uncommon TMRx Control Bit Settings

T
R
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x

T
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R
x

B
it

 2
(T

M
R

x.
re

lo
ad

)

B
it

 1
(T

M
R

x.
en

ab
le

)

Action

X 0 0 1 TMRx.tc and TINTx set, TMR.enable cleared

0 0 1 1 Timer and auto reload enabled, TINTx not generated and timer enable 
remains set.

0 N 1 1 Timer and auto reload enabled. TINT.x set when TCRx=0. The timer remains 
enabled but further TINTx’s are not generated.

N 0 1 1
Timer and auto reload enabled, TINTx not set initially, TCRx = TRRx, TINTx 
set when TCRx has completely decremented the value it loaded from TRRx. 
TMRx.enable remains set.

NOTES: 
X = don’t care

N = a number between 1H and FFFF FFFFH
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Figure 10-5. Timer Unit State Diagram

A4873-01

Hardware/Software
Reset

Idle

Decrement
TCRx

TC Detected
State

TMRx.enable = 0
TMRx.reload = 0
TMRx.sup = 0
TMRx.csel1:0 = 0
IPND.tip = 0

TMRx.enable = 1
TMRx.reload = user value
TMRx.sup = user value
TMRx.csel1:0 = user value

TC = 0

TMRx.enable = 1

TCRx = TRRx

See Section 10.5, "UNCOMMON
TCRX AND TRRX CONDITIONS"
(pg. 10-10)

TC = 0

TMRx.reload = user value
TMRx.sup = user value
TMRx.csel1:0 = user value

TC = 1
IPND.tip = 1
TMRx.enable = 0

Initial TCRx
Check

Bus Clock or
SW Read

Clock Unit Tick
and TCRx ! = 0

SW Read

SW Read

Bus Clock

SW Write

SW Write

SW Read/Write & Reload = 0

TMRx.enable = 1

TMRx.enable = 0

TCRx = 0

Reload = 1

TCRx ! = 0

TCRx = 0

SW Write (TMRx.enable = 1)

SW Write
(TMRx.enable = 0)
10-12 i960® Hx Microprocessor Developer’s Manual



sting
y and

r can 
 with 
mily, 
. To 
essor 

at 
the 
dware 
e 

 

panies 
n 
 an 

or 
 to the 

tate, 
rogram 
Interrupts 11

This chapter describes the i960® processor core architecture interrupt mechanism and the i960 Hx
processor interrupt controller. Key topics include the i960 Hx processor’s facilities for reque
and posting interrupts, the programmer’s interface to the on-chip interrupt controller, latenc
how to optimize interrupt performance.

11.1 Overview

An interrupt is an event that causes a temporary break in program execution so the processo
handle another task. Interrupts commonly request I/O services or synchronize the processor
some external hardware activity. For interrupt handler portability across the i960 processor fa
the architecture defines a consistent interrupt state and interrupt-priority-handling mechanism
manage and prioritize interrupt requests in parallel with processor execution, the i960 Hx proc
provides an on-chip programmable interrupt controller.

Requests for interrupt service come from many sources. These requests are prioritized so th
instruction execution is redirected only if an interrupt request is of higher priority than that of 
executing task. On the i960 Hx processor, interrupt requests may originate from external har
sources, internal timer unit sources or from software. External interrupts are detected with th
chip’s 8-bit interrupt port and with a dedicated Non-Maskable Interrupt (NMI) input. Interrupt 
requests originate from software by the sysctl instruction. To manage and prioritize all possible 
interrupts, the processor integrates an on-chip programmable interrupt controller. Integrated
interrupt controller configuration and operation is described in Section 11.7, “External Interface 
Description” on page 11-17.

When the processor is redirected to service an interrupt, it uses a vector number that accom
the interrupt request to locate the vector entry in the interrupt table. From that entry, it gets a
address to the first instruction of the selected interrupt procedure. The processor then makes
implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. The process
creates a new frame for the interrupt on this stack and a new set of local registers is allocated
interrupt procedure. The interrupted program’s current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program’s s
switches back to the stack that the processor was using prior to the interrupt and resumes p
execution.
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Since interrupts are handled based on priority, requested interrupts are often saved for later service 
rather than being handled immediately. The mechanism for saving the interrupt is referred to as 
interrupt posting. Interrupt posting is described in Section 11.6.5, “Posting Interrupts” on 
page 11-9.

The i960 core architecture defines two data structures to support interrupt processing: the in
table (see Figure 11-1) and interrupt stack. The interrupt table contains 248 vectors for interrup
handling procedures (eight of which are reserved) and an area for posting software-requeste
interrupts. The interrupt stack prevents interrupt handling procedures from using the stack in u
the application program. It also allows the interrupt stack to be located in a different area of 
memory than the user and supervisor stack (e.g., fast SRAM).

11.1.1 The i960® Hx Processor Interrupt Controller

The i960 Hx processor Interrupt Controller Unit (ICU) provides a flexible, low-latency means for 
requesting and posting interrupts and minimizing the core’s interrupt handling burden. Acting
independently from the core, the interrupt controller posts interrupts requested by hardware 
software sources and compares the priorities of posted interrupts with the current process pr

The interrupt controller provides the following features for managing hardware-requested 
interrupts:

• Low latency, high throughput handling.

• Support of up to 240 external sources.

• Eight external interrupt pins, one non-maskable interrupt pin, two internal timers sources for 
detection of hardware-requested interrupts.

• Edge or level detection on external interrupt pins.

• Debounce option on external interrupt pins.

Figure 11-1. Interrupt Handling Data Structures

Interrupt 
InterruptTable 
Handling

Procedure

Interrupt
Request Interrupt Pointer

Memory

i960® Hx 

Processor
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The user program interfaces to the interrupt controller with six memory-mapped control registers. 
The interrupt control register (ICON) and interrupt map control registers (IMAP0-IMAP2) provide 
configuration information. The interrupt pending (IPND) register posts hardware-requested 
interrupts. The interrupt mask (IMSK) register selectively masks hardware-requested interrupts.

11.2 Software Requirements for Interrupt Handling

To use the processor’s interrupt handling facilities, user software must provide the following i
in memory:

• Interrupt Table

• Interrupt Handler Routines

• Interrupt Stack

These items are established in memory as part of the initialization procedure. Once these items are 
present in memory and pointers to them have been entered in the appropriate system data 
structures, the processor handles interrupts automatically and independently from software.

11.3 Interrupt Priority

Each interrupt procedure pointer is eight bits in length, allowing up to 256 unique procedure 
pointers to be defined in principle. Each procedure pointer’s priority is defined by dividing the
procedure pointer number by eight. Thus, at each priority level, there are eight possible proc
pointers (e.g., procedure pointers 8-15 have a priority of 1 and procedure pointers 246-255 h
priority of 31). Procedure pointers 0-7 cannot be used because a priority-0 interrupt would ne
successfully stop execution of a program of any priority. In addition, procedure pointers 244-
and 249-251 are reserved; therefore, 240 external interrupt sources and the non-maskable in
(NMI#) are available to the user.

The processor compares its current priority with the interrupt request priority to determine wh
to service the interrupt immediately or to delay service. The interrupt is serviced immediately
priority is higher than the priority of the program or interrupt the processor is executing curre
If the interrupt priority is less than or equal to the processor’s current priority, the processor d
not service the request but rather posts it as a pending interrupt. See Section 11.4.2, “Pending 
Interrupts” on page 11-5. When multiple interrupt requests are pending at the same priority lev
the request with the highest vector number is serviced first.

Priority-31 interrupts are handled as a special case. Even when the processor is executing a
priority level 31, a priority-31 interrupt will interrupt the processor. On the i960 Hx processor,
non-maskable interrupt (NMI#) interrupts priority-31 execution; no interrupt can interrupt an N
handler.
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11.4 Interrupt Table

The interrupt table (see Figure 11-2) is 1028 bytes in length and can be located anywhere in the 
non-reserved address space. It must be aligned on a word boundary. The processor reads a pointer 
to the interrupt table byte 0 during initialization. The interrupt table must be located in RAM since 
the processor must be able to read and write the table’s pending interrupt section. Also, mak
the table’s memory location is not protected by the GMU as this can also prevent the proces
from reading and writing the table’s pending interrupt section.

The interrupt table is divided into two sections: vector entries and pending interrupts. Each a
described in the subsections that follow.

Figure 11-2. Interrupt Table

X  X

000H

004H

020H

024H (Vector 8)

028H (Vector 9)

02CH (Vector 10)

3D0H (Vector 243)
3D4H (Vector 244)

3E4H (Vector 248)

3E8H (Vector 249)

3F0H (Vector 251)
3F4H (Vector 252)

400H (Vector 255)

Entry Type:
00  Normal

10  Target in Cache2
01  Reserved1

Pending Priorities

Pending Interrupts

Entry 8

Entry 9

NMI Vector

Vector Entry

Instruction Pointer

...

Reserved (Initialize to 0)

Preserved

0

012

7831

...

Entry 252

Entry 255

...

Entry 243

Entry 10...

3E0H (Vector 247)

11  Reserved1

1 Vector entries with a reserved type

2 Not implemented on 80960Hx. 

 cause unpredictable behavior.

Included for backward compatibility
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11.4.1 Vector Entries

A vector entry contains a specific interrupt handler’s address. When an interrupt is serviced,
processor branches to the address specified by the vector entry.

Each interrupt is associated with an 8-bit vector number that points to a vector entry in the int
table. The vector entry section contains 248 word-length entries. Vector numbers 8-243 and 
255 and their associated vector entries are used for conventional interrupts. Vector number 2
the NMI vector. Vector numbers 244-247 and 249-251 are reserved. Vector number 248 and
associated vector entry is used for the non-maskable interrupt (NMI). Vector numbers 0-7 ca
be used.

Vector entry 248 contains the NMI# handler address. When the processor is initialized, the N
vector located in the interrupt table is automatically read and stored in location 0H of interna
RAM. The NMI vector is subsequently fetched from internal data RAM to improve this interru
performance.

The vector entry structure is given at the bottom of Figure 11-2. Each interrupt procedure must 
begin on a word boundary, so the processor assumes that the vector’s two least significant b
0. Bits 0 and 1 of an entry indicate entry type: type 000 indicates that the interrupt procedure s
be fetched normally; type 010 indicates that the interrupt procedure should be fetched from t
locked partition of the instruction cache. Refer to Section 11.9.2.2, “Caching Interrupt Routines 
and Reserving Register Frames” on page 11-33. The other possible entry types are reserved and
must not be used.

11.4.2 Pending Interrupts

The pending interrupts section comprises the interrupt table’s first 36 bytes, divided into two f
pending priorities (byte offset 0 through 3) and pending interrupts (4 through 35).

Each of the 32 bits in the pending priorities field indicate an interrupt priority. When the proce
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt’s priority
set. For example, if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is s

Each of the pending interrupts field’s 256 bits represents an interrupt procedure pointer. Byte
offset 5 is for vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte
offset 4, the first byte of the pending interrupts field, is reserved. When an interrupt is posted
corresponding bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to fir
check if there are any pending interrupts with a priority greater than the current program and
determine the vector number of the interrupt with the highest priority.
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11.4.3 Caching Portions of the Interrupt Table

The architecture allows all or part of the interrupt table to be cached internally to the processor. The 
purpose of caching these fields is to reduce interrupt latency by allowing the processor to access 
certain interrupt procedure pointers and the pending interrupt information without having to make 
external memory accesses. The i960 Hx processor caches the following:

• The value of the highest priority posted in the pending priorities field.

• A predefined subset of interrupt procedure pointers (entries from the interrupt table).

• Pending interrupts received from external interrupt pins.

This caching mechanism is non-transparent; the processor may modify fields in a cached interrupt 
table without modifying the same fields in the interrupt table itself. Vector caching is described in 
Section 11.9.2.1, “Vector Caching Option” on page 11-32.

11.5 Interrupt Stack and Interrupt Record

The interrupt stack can be located anywhere in the non-reserved address space. The proces
obtains a pointer to the base of the stack during initialization. The interrupt stack has the sam
structure as the local procedure stack described in Section 7.1.1, “Local Registers and the 
Procedure Stack” on page 7-2. As with the local stack, the interrupt stack grows from lower 
addresses to higher addresses.

The processor saves the state of an interrupted program, or an interrupted interrupt procedu
record on the interrupt stack. Figure 11-3 shows the structure of this interrupt record.
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The interrupt record is always stored on the interrupt stack adjacent to the new frame that is created 
for the interrupt handling procedure. It includes the state of the AC and PC registers at the time the 
interrupt was serviced and the interrupt procedure pointer number used. Relative to the new frame 
pointer (NFP), the saved AC register is located at address NFP-12, the saved PC register is located 
at address NFP-16.

In the i960 Hx processor, the stack is aligned to a 16-byte boundary. When the processor needs to 
create a new frame on an interrupt call, it adds a padding area to the stack so that the new frame 
starts on a 16-byte boundary.

Figure 11-3. Storage of an Interrupt Record on the Interrupt Stack

Padding Area

Saved Arithmetic Controls Register

New Frame

NFP-8

NFP-16

NFP-12

NFP

Current Frame

FP

Saved Process Controls Register

Interrupt Stack 031

Current Stack
031 (Local, Supervisor, or Interrupt Stack)

Vector Number

Reserved

Stack
Growth

Interrupt 

Record

Optional Data 
(not used by 80960Hx)
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11.6 Managing Interrupt Requests

The i960 processor architecture provides a consistent interrupt model, as required for interrupt 
handler compatibility between various implementations of the i960 processor family. The 
architecture, however, leaves the interrupt request management strategy to the specific i960 
processor family implementations. In the i960 Hx processor, a programmable on-chip interrupt 
controller manages all interrupt requests (Figure 11-12). These requests originate from:

• Eight-bit external interrupt pins XINT[7:0]#

• Two internal timer unit interrupts (TINT[1:0])

• Non-maskable interrupt pin (NMI#)

• sysctl instruction execution (software-initiated interrupts)

11.6.1 External Interrupts

External interrupt pins can be programmed to operate in three modes:

1. Dedicated mode: the pins may be individually mapped to interrupt vectors. 

2. Expanded mode: the pins may be interpreted as a bit field which can request any of the 240 
possible external interrupts that the i960 processor family supports.

3. Mixed mode: five pins operate in expanded mode and can request 32 different interrupts, and 
three pins operate in dedicated mode. 

Dedicated-mode requests are posted in the Interrupt Pending Register (IPND). The process
ICU does not post expanded-mode requests. 

11.6.2 Non-Maskable Interrupt (NMI#)

The NMI# pin generates an interrupt for implementation of critical interrupt routines. NMI# 
provides an interrupt that cannot be masked and that has a priority of 31. The interrupt vecto
NMI# resides in the interrupt table as vector number 248. During initialization, the core cache
vector for NMI# on-chip, to reduce NMI# latency. The NMI# vector is cached in location 0H o
internal data RAM. 

The core immediately services NMI# requests. While servicing an NMI#, the core does not 
respond to any other interrupt requests — even another NMI# request. The processor remai
this non-interruptible state until any return-from-interrupt (in supervisor mode) occurs. Note t
return-from-interrupt in user mode does not unblock NMI events and should be avoided by 
software. An interrupt request on the NMI# pin is always falling-edge detected. 
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11.6.3 Timer Interrupts

Each of the two timer units has an associated interrupt to allow the application to accept or post the 
interrupt request. Timer unit interrupt requests are always handled as dedicated-mode interrupt 
requests.

11.6.4 Software Interrupts

The application program may use the sysctl instruction to request interrupt service. The vector that 
sysctl requests is serviced immediately or posted in the interrupt table’s pending interrupts se
depending upon the current processor priority and the request’s priority. The interrupt contro
caches the priority of the highest priority interrupt posted in the interrupt table. The processo
request vector 248 (NMI#) as a software interrupt; however, the interrupt vector will be read 
the interrupt table, not from the internal vector cache.

11.6.5 Posting Interrupts

Interrupts are posted to the processor by a number of different mechanisms; these are desc
the following sections.

• Software interrupts: interrupts posted through the interrupt table, by software running on the 
i960 Hx processor.

• External Interrupts: interrupts posted through the interrupt table, by an external agent to the 
i960 Hx processor.

• Hardware interrupts: interrupts posted directly to the i960 Hx processor through an 
implementation-dependent mechanism that may avoid using the interrupt table.

11.6.5.1 Posting Software Interrupts via sysctl

In the i960 Hx processor, sysctl is typically used to request an interrupt in a program (see 
Example ). The request interrupt message type (00H) is selected and the interrupt procedure 
pointer number is specified in the least significant byte of the instruction operand. See 
Section 6.2.67, “sysctl” on page 6-108 for a complete discussion of sysctl.

 

A literal can be used to post an interrupt with a vector number from 8 to 31. Here, the require
value of 00H in the second byte of a register operand is implied.

Example 11-1. Using sysctl to Request an Interrupt

ldconst 0x53,g5 # Vector number 53H is loaded

# into byte 0 of register g5 and

# the value is zero extended into

# byte 1 of the register

sysctl g5, g5, g5 # Vector number 53H is posted
i960® Hx Microprocessor Developer’s Manual 11-9
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The action of the processor when it executes the sysctl instruction is as follows:

1. The processor performs an atomic write to the interrupt table and sets the bits in the pending-
interrupts and pending-priorities fields that correspond to the requested interrupt.

2. The processor updates the internal software priority register with the value of the highest 
pending priority from the interrupt table. This may be the priority of the interrupt that was just 
posted.

The interrupt controller continuously compares the following three values: software priority 
register, current process priority, priority of the highest pending hardware-generated interrupt. 
When the software priority register value is the highest of the three, the following actions occur:

1. The interrupt controller signals the core that a software-generated interrupt is to be serviced.

2. The core checks the interrupt table in memory, determines the vector number of the highest 
priority pending interrupt and clears the pending-interrupts and pending-priorities bits in the 
table that correspond to that interrupt.

3. The core detects the interrupt with the next highest priority that is posted in the interrupt table 
(if any) and writes that value into the software priority register.

4. The core services the highest priority interrupt.

If more than one pending interrupt is posted in the interrupt table at the same interrupt priority, the 
core handles the interrupt with the highest vector number first. The software priority register is an 
internal register and, as such, is not visible to the user. The core updates this register’s value
when sysctl requests an interrupt or when a software-generated interrupt is serviced. 

11.6.5.2 Posting Software Interrupts Directly in the Interrupt Table

Software can post interrupts by setting the desired pending-interrupt and pending-priorities b
directly. Direct posting requires that software ensure that no external I/O agents post a pend
interrupt simultaneously, and that an interrupt cannot occur after one bit is set but before the
is set. Note, however, that this method is not recommended and is not reliable.

11.6.5.3 Posting External Interrupts

An external agent posts (sets) a pending interrupt with vector “v” to the i960 processor throug
interrupt table by executing the following algorithm:

Generally, software cannot use this algorithm to post interrupts because there is no way for 
software to have an atomic (locking) read/write operation span multiple instructions.

Example 11-2. External Agent Posting

External_Agent_Posting:

x = atomic_read(pending_priorities); # synchronize; 

z = read(pending_interrupts[v/8]); 

x[v/8] = 1; 

z[v mod 8] = 1; 

write(pending_interrupts[v/8]) = z; 

atomic_write(pending_priorities) = x;
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11.6.5.4 Posting Hardware Interrupts

Certain interrupts are posted directly to the processor by an implementation-dependent mechanism 
that can bypass the interrupt table. This is often done for performance reasons.

11.6.6 Resolving Interrupt Priority

The interrupt controller continuously compares the processor’s priority to the priorities of the 
highest-posted software interrupt and the highest-pending hardware interrupt. The core is 
interrupted when a pending interrupt request is higher than the processor priority or has a pr
of 31. (Note that a priority-31 interrupt handler can be interrupted by another priority-31 interr
There are no priority-0 interrupts, since such an interrupt would never have a priority higher 
the current process, and would therefore never be serviced.

In the event that both hardware and software requested interrupts are posted at the same le
hardware interrupt is delivered first while the software interrupt is left pending. As a result, if 
priority-31 hardware- and software-requested interrupts are pending, control is first transferre
the interrupt handler for the hardware-requested interrupt. However, before the first instructio
that handler can be executed, the pending software-requested interrupt is delivered, which c
control to be transferred to the corresponding interrupt handler.

11.6.7 Sampling Pending Interrupts in the Interrupt Table

At specific points, the processor checks the interrupt table for pending interrupts. If one is fou
is handled as if the interrupt occurred at that time. In the i960 Hx processor, a check for pen
interrupts in the interrupt table is made when requesting a software interrupt with sysctl, or when 
servicing a software interrupt.

When a check of the interrupt table is made, the algorithm shown in Example 11-4 is used. Since 
the pending interrupts may be cached, the check for pending interrupt operation may not inv
any memory operations. The algorithm uses synchronization because there may be multiple 
posting and unposting interrupts. In the algorithm, w, x, y, and z are temporary registers with
processor

.

Example 11-3. Interrupt Resolution

/* Model used to resolve interrupts between execution of all macro instructions */

if (NMI_pending && !block_NMI)

   { block_NMI = true;  /* Reset on return from NMI INTR handler */

     vecnum = 248; vector_addr = 0;

     PC.priority = 31;

     push_local_register_set();

     goto common_interrupt_process; }

if (ICON.gie == enabled) {

   expand_HW_int();

   temp = max(HW_Int_Priority, SW_Int_Priority);

   if (temp == 31 || temp > PC.priority)

      { PC.priority = temp;

        if (SW_Int_Priority > HW_Int_Priority) goto Deliver_SW_Int;

        else{ vecnum = HW_vecnum; goto Deliver_HW_Int;}

       }

    }
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The algorithm shows that the pending interrupts are marked by a bit in the pending interrupts field, 
and that the pending priorities field is an optimization; the processor examines pending interrupts 
only if the corresponding bit in Pending Priorities is set.

The steps prior to the atomic_read are another optimization. Note that these steps must be repeated 
within the synchronized critical section, since another processor could have spotted and accepted 
the same pending interrupt(s).

Use sysctl with a vector in the range 0 to 7 to force the core to check the interrupt table for pending 
interrupts. When an external agent is posting interrupts to a shared interrupt table, use sysctl 
periodically to guarantee recognition of pending interrupts posted in the table by the external agent.

Example 11-4. Sampling Pending Interrupts

Check_For_Pending_Interrupts:

x = read(pending_priorities); 

if(x == 0) return(); #nothing to do 

y = most_significant_bit(x); 

if(y != 31 && y <= current_priority) return(); 

x = atomic_read(pending_priorities); #synchronize 

if(x == 0) 

{atomic_write(pending_priorities) = x; 

 return();} #interrupts disappeared 

 # (e.g., handled by another processor) 

y = most_significant_bit(x); #must be repeated 

if(y != 31 && y <= current_priority) 

{atomic_write(pending_priorities) = x; 

return();} #interrupt disappeared 

z = read(pending_interrupts[y]); #z is a byte 

if(z == 0)

{x[y] = 0; #false alarm, should not happen 

atomic_write(pending_priorities) = x; 

return();} 

else 

{w = most_significant_bit[z]; 

z[w] = 0; 

write(pending_interrupts[y]) = z; 

if(z == 0) x[y] = 0; #no others at this level 

atomic_write(pending_priorities) = x; 

take_interrupt();} 
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11.6.8 Interrupt Controller Modes

The eight external interrupt pins can be configured for one of three modes: dedicated, expanded or 
mixed. Each mode is described in the subsections that follow.

11.6.8.1 Dedicated Mode

In dedicated mode, each external interrupt pin is assigned a vector number. Vector numbers that 
may be assigned to a pin are those with the encoding PPPP 00102 (Figure 11-4), where bits marked 
P are programmed with bits in the interrupt map (IMAP) registers. This encoding of programmable 
bits and preset bits can designate 15 unique vector numbers, each with a unique, even-numbered 
priority. (Vector 0000 00102 is undefined; it has a priority of 0.)

Dedicated-mode interrupts are posted in the interrupt pending (IPND) register. Single bits in the 
IPND register correspond to each of the eight dedicated external interrupt inputs, or the two timer 
inputs to the interrupt controller. The interrupt mask (IMSK) register selectively masks each of the 
dedicated-mode interrupts. Optionally, the IMSK register can be saved and cleared when a 
dedicated interrupt is serviced. This allows other hardware-generated interrupts to be locked out 
until the mask is restored. See Section 11.7.3, “Memory-Mapped Control Registers” on page 11- 
for a further description of the IMSK, IPND and IMAP registers.

Interrupt vectors are assigned to timer inputs in the same way external pins are assigned de
mode vectors. The timer interrupts are always dedicated-mode interrupts. 

Figure 11-4. Dedicated Mode
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11.6.8.2 Expanded Mode

In expanded mode, up to 240 interrupts can be requested from external sources. Multiple external 
sources are externally encoded into the 8-bit interrupt vector number. This vector number is then 
applied to the external interrupt pins (Figure 11-5), with the XINT0# pin representing the least-
significant bit and XINT7# the most significant bit of the number. Note that external interrupt pins 
are active low; therefore, the inverse of the vector number is actually applied to the pins.

In expanded mode, external logic is responsible for posting and prioritizing external sources. 
Typically, this scheme is implemented with a simple configuration of external priority encoders. 
The interrupt source must remain asserted until the processor services the interrupt and explicitly 
clears the source. As shown in Figure 11-6, simple, combinational logic can handle prioritization of 
the external sources when more than one expanded mode interrupt is pending. 

An expanded mode interrupt source must remain asserted until the processor services the interrupt 
and explicitly clears the source. External-interrupt pins in expanded mode are always active low 
and level-detect. The interrupt controller ignores vector numbers 0 though 7. The output of the 
external priority encoders in Figure 11-6 can use the 0 vector to indicate that no external interrupts 
are pending.

The low-order four bits of IMAP0 buffer the expanded-mode interrupt internally. XINT[7:4]# are 
placed in IMAP0[3:0]; XINT[3:0]# are latched in a special register for use in further arbitrating the 
interrupt and in selecting the interrupt handler. 

IMSK register bit 0 provides a global mask for all expanded interrupts. The remaining bits (1-7) 
must be set to 0 in expanded mode. Optionally, the mask bit can be saved and cleared when an 
expanded mode interrupt is serviced. This allows other hardware-requested interrupts to be locked 
out until the mask is restored. IPND register bits 0-7 have no function in expanded mode, since 
external logic is responsible for posting interrupts.

Figure 11-5. Expanded Mode
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Figure 11-6. Implementation of Expanded Mode Sources
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11.6.8.3 Mixed Mode

In mixed mode, pins XINT0# through XINT4# are configured for expanded mode. These pins are 
encoded for the five most-significant bits of an expanded-mode vector number; the three least-
significant bits of the vector number are set internally to 0102. Pins XINT5# through XINT7# are 
configured for dedicated mode.

The low-order four bits of IMAP0 are used to buffer the expanded-mode interrupt internally. 
XINT[4:1]# are placed in IMAP0[3:0]; XINT0# is latched in a special register for use in further 
arbitrating the interrupt and in selecting the interrupt handler. 

IMSK register bit 0 is a global mask for the expanded-mode interrupts; bits 5 through 7 mask the 
dedicated interrupts from pins XINT5# through XINT7#, respectively. IMSK register bits 1-4 must 
be set to 0 in mixed mode. The IPND register posts interrupts from the dedicated-mode pins 
XINT[7:5]#. IPND register bits that correspond to expanded-mode inputs are not used.

11.6.9 Saving the Interrupt Mask

Whenever an interrupt requested by XINT[7:0]# or by the internal timers is serviced, the IMSK 
register is automatically saved in register r3 of the new local register set allocated for the interrupt 
handler. After the mask is saved, the IMSK register is optionally cleared. This allows all interrupts 
except NMI#s to be masked while an interrupt is being serviced. Since the IMSK register value is 
saved, the interrupt procedure can restore the value before returning. The option of clearing the 
mask is selected by programming the ICON register as described in Section 11.7.4, “Interrupt 
Control Register (ICON) — SF3” on page 11-20. Several options are provided for interrupt mask
handling:

• Mask unchanged

• Cleared for dedicated-mode sources only

• Cleared for expanded-mode sources only

• Cleared for all hardware-requested interrupts (dedicated and expanded mode)

The second and third options are used in mixed mode, where both dedicated-mode and expanded-
mode inputs are allowed. Timer unit interrupts are always dedicated-mode interrupts.

Note that when the same interrupt is requested simultaneously by a dedicated- and an expanded-
mode source, the interrupt is considered an expanded-mode interrupt and the IMSK register is 
handled accordingly.
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The IMSK register must be saved and cleared when expanded mode inputs request a priority-31 
interrupt. Priority-31 interrupts are interrupted by other priority-31 interrupts. In expanded mode, 
the interrupt pins are level-activated. For level-activated interrupt inputs, instructions within the 
interrupt handler are typically responsible for causing the source to deactivate. When these 
priority-31 interrupts are not masked, another priority-31 interrupt is signaled and serviced before 
the handler can deactivate the source. The first instruction of the interrupt handling procedure is 
never reached, unless the option is selected to clear the IMSK register on entry to the interrupt.

Another use of the mask is to lock out other interrupts when executing time-critical portions of an 
interrupt handling procedure. All hardware-generated interrupts are masked until software 
explicitly replaces the mask.

The processor does not restore r3 to the IMSK register when the interrupt return is executed. When 
the IMSK register is cleared, the interrupt handler must restore the IMSK register to enable 
interrupts after return from the handler. 

11.7 External Interface Description

This section describes the physical characteristics of the interrupt inputs. The i960 Hx processor 
provides eight external interrupt pins and one non-maskable interrupt pin for detecting external 
interrupt requests. The eight external pins can be configured as dedicated inputs, where each pin is 
capable of requesting a single interrupt. The external pins can also be configured in an expanded 
mode, where the value asserted on the external pins represents an interrupt vector number. In this 
mode, up to 240 values can be directly requested with the interrupt pins. The external interrupt pins 
can be configured in mixed mode. In this mode, some pins are dedicated inputs and the remaining 
pins are used in expanded mode.

11.7.1 Pin Descriptions

The interrupt controller provides nine interrupt pins:

External interrupt pin functions XINT[7:0]# depend on the operation mode (expanded, dedicated 
or mixed) and on several other options selected by setting ICON register bits.

XINT[7:0]# External Interrupt (input) - These eight pins cause interrupts to be requested. Pins 
are software configurable for three modes: dedicated, expanded, mixed. Each pin 
can be programmed as an edge- or level-detect input. Also, a debounce sampling 
mode for these pins can be selected under program control. 

NMI# Non-Maskable Interrupt (input) - This edge-activated pin causes a non-maskable 
interrupt event to occur. NMI# is the highest priority interrupt recognized. A 
debounce sampling mode for NMI# can be selected under program control. This 
pin is internally synchronized.
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11.7.2 Interrupt Detection Options

The XINT[7:0]# pins can be programmed for level-low or falling-edge detection when used as 
dedicated inputs. All dedicated inputs plus the NMI# pin are programmed (globally) for fast 
sampling or debounce sampling. Expanded-mode inputs are always sampled in debounce mode. 
Pin detection and sampling options are selected by programming the ICON register.

When falling-edge detection is enabled and a high-to-low transition is detected, the processor sets 
the corresponding pending bit in the IPND register. The processor clears the IPND bit upon entry 
into the interrupt handler. 

When a pin is programmed for low-level detection, the pin’s bit in the IPND register remains s
long as the pin is asserted (low). The processor attempts to clear the IPND bit on entry into t
interrupt handler; however, if the active level on the pin is not removed at this time, the bit in
IPND register remains set until the source of the interrupt is deactivated and the IPND bit is 
explicitly cleared by software. Software may attempt to clear an interrupt pending bit before t
active level on the corresponding pin is removed. In this case, the active level on the interrup
causes the pending bit to remain asserted. 

After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for th
source before return from handler is executed. If the pending bit is not cleared, the interrupt 
entered after the return is executed. 

Example 11-5 demonstrates how a level detect interrupt is typically handled. The example ass
that the ld from address “timer_0,” deactivates the interrupt input.

t

The debounce sampling mode provides a built-in filter for noisy or slow-falling inputs. The 
debounce sampling mode requires that a low level is stable for three consecutive cycles befo
expanded mode vector is resolved internally. Expanded mode interrupts are always sampled
the debounce sampling mode. This allows for skew time between changing outputs of extern
priority encoders.

Example 11-5. Return from a Level-detect Interrupt 

# Clear level-detect interrupts before return from handler
ld INTR_SRC, g0 # Dismiss the extern. interrupt
lda IPND_MMR, g1 # g1 = IPND MMR address
lda 0x80, g2 # g2 = mask to clear XINT7 IPND bit

# Loop until IPND bit 7 clears
wait:

mov 0,g3
# Try to clear the XINT7 IPND bit
atmod g1, g2, g3
bbs 0x7, g3, wait # Branch until IPND bit 7 clears

# Optionally restore IMSK
mov r3, IMSK

 ret # Return from handler
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Figure 11-7 shows how a signal is sampled in each mode. The debounce-sampling option adds 
several clock cycles to an interrupt’s latency due to the multiple clocks of sampling. Inputs ar
sampled once every CLKIN cycle (external bus clock).

Interrupt pins are asynchronous inputs. Setup or hold times relative to CLKIN are not needed
ensure proper pin detection. Note in Figure 11-7 that interrupt inputs are sampled every CLKIN 
cycle. For practical purposes, this means that asynchronous interrupting devices must gener
interrupt signal that is asserted for at least two CLKIN cycles for the fast sampling mode or fo
CLKIN cycles for the debounce sampling mode. See the 80960HA/HD/HT Embedded 32-bit 
Microprocessor datasheet for setup and hold specifications that guarantee detection of the inte
on particular edges of CLKIN. These specification are useful in designs that use synchronous
to generate interrupt signals to the processor. These specification must also be used to calcu
minimum signal width, as shown in Figure 11-7. 

11.7.3 Memory-Mapped Control Registers

The programmer’s interface to the interrupt controller is through six memory-mapped control
registers: ICON control register, IMAP0-IMAP2 control registers, IMSK register and IPND 
control register. Table 11-1 describes the ICU registers. ICON, IMSK and IPND are also access
as special function registers. 

Figure 11-7. Interrupt Sampling

Denotes sampling clock edge. Interrupt pins are sampled every CLKIN (external bus clock) cycle.

CLKIN

XINT[7:0]#
(fast sampled)

XINT[7:0]#
(debounce)

* * * *

2 cycle min.

Detect
Interrupt

*

* 

4 cycle min.

Detect
Interrupt

* * * *

Table 11-1. Interrupt Control Registers Memory-Mapped Addresses

Register Name Description Address

IPND (sf0) Interrupt Pending Register FF00 8500H

IMSK (sf1) Interrupt Mask Register FF00 8504H

ICON (sf3) Interrupt Control Register FF00 8510H

IMAP0 Interrupt Map Register 0 FF00 8520H

IMAP1 Interrupt Map Register 1 FF00 8524H

IMAP2 Interrupt Map Register 2 FF00 8528H
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11.7.4 Interrupt Control Register (ICON) — SF3 

The ICON register (see Figure 11-8) is a 32-bit memory-mapped control register that sets up the 
interrupt controller. Software can manipulate this register using the load/store type instructions. 
The ICON register is also automatically loaded at initialization from the control table in external 
memory. 

The interrupt mode field (bits 0 and 1) determines the operation mode for the external interrupt 
pins (XINT[7:0]#), dedicated, expanded or mixed. 

The signal detection mode bits (bits 2 - 9) determine whether the signals on the individual external 
interrupt pins (XINT[7:0]#) are level-low activated or falling-edge activated. Expanded-mode 
inputs are always level-detected; the NMI# input is always edge-detected, regardless of the bit’s
value.

The global interrupts enable bit (bit 10) globally enables or disables the external interrupt pins a
timer unit inputs. It does not affect the NMI# pin. This bit performs the same function as clea
the mask register. The global interrupts enable bit is also changed indirectly by the use of the
following instructions: inten, intdis, intctl.

Figure 11-8. Interrupt Control (ICON) Register
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Signal Detection Mode - ICON.sdm
 (0) Level-low activated
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 (0) Enabled
 (1) Disabled

Mask Operation - ICON.mo
(00) Move to r3, mask unchanged
(01) Move to r3 and clear for dedicated mode interrupts
(10) Move to r3 and clear for expanded mode interrupts
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The mask-operation field (bits 11, 12) determines the operation the core performs on the mask 
register when a hardware-generated interrupt is serviced. On an interrupt, the IMSK register is 
either unchanged; cleared for dedicated-mode interrupts; cleared for expanded-mode interrupts; or 
cleared for both dedicated- and expanded-mode interrupts. IMSK is never cleared for NMI or 
software interrupts.

The vector cache enable bit (bit 13) determines whether interrupt table vector entries are fetched 
from the interrupt table or from internal data RAM. Only vectors with the four least-significant bits 
equal to 00102 may be cached in internal data RAM. 

The sampling-mode bit (bit 14) determines whether dedicated inputs and NMI# pin are sampled 
using debounce sampling or fast sampling. Expanded-mode inputs are always detected using 
debounce mode.

Bits 15 through 31 are reserved and must be set to 0 at initialization.

11.7.5 Interrupt Mapping Registers (IMAP0-IMAP2)

The IMAP registers (Figure 11-9) are three 32-bit registers (IMAP0 through IMAP2). These 
registers are used to program the vector number associated with the interrupt source when the 
source is connected to a dedicated-mode input. IMAP0 and IMAP1 contain mapping information 
for the external interrupt pins (four bits per pin). IMAP2 contains mapping information for the 
timer-interrupt inputs (four bits per interrupt).

Each set of four bits contains a vector number’s four most-significant bits; the four least-signif
bits are always 00102. In other words, each source can be programmed for a vector number o
PPPP 00102, where “P” indicates a programmable bit. For example, IMAP0 bits 4 through 7 
contain mapping information for the XINT1# pin. If these bits are set to 01102, the pin is mapped to 
vector number 0110 00102 (or vector number 98).

Software can access the mapping registers using load/store type instructions. The mapping 
registers are also automatically loaded at initialization from the control table in external mem
Note that bits 16 through 31 of IMAP0 and IMAP1 are reserved and should be cleared to 0 a
initialization. Bits 0-15 and 24-31 of IMAP2 are also reserved and should be cleared to 0.
i960® Hx Microprocessor Developer’s Manual 11-21



Interrupts
Figure 11-9. Interrupt Mapping (IMAP0-IMAP2) Registers
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11.7.5.1 Interrupt Mask (IMSK; SF1) and Interrupt Pending (IPND; SF0) 
Registers

The IMSK and IPND registers (see Figure  and Figure 11-11) are both memory-mapped registers. 
Bits 0 through 7 of these registers are associated with the external interrupt pins (XINT0# through 
XINT7#) and bits 12 and 13 are associated with the timer-interrupt inputs (TMR0 and TMR1). All 
other bits are reserved and should be set to 0 at initialization.

Figure 11-10. Interrupt Pending (IPND) Register
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Figure 11-11. Interrupt Mask (IMSK) Registers
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The IPND register posts dedicated-mode interrupts originating from the eight external dedicated 
sources (when configured in dedicated mode) and the two timer sources. Asserting one of these 
inputs causes a 1 to be latched into its associated bit in the IPND register. In expanded mode, bits 0 
through 7 of this register are not used and should not be modified; in mixed mode, bits 0 through 4 
are not used and should not be modified.

The mask register provides a mechanism for masking individual bits in the IPND register. An 
interrupt source is disabled if its associated mask bit is set to 0.

Mask register bit 0 has two functions: it masks interrupt pin XINT0# in dedicated mode and it 
masks all expanded-mode interrupts globally in expanded and mixed modes. In expanded mode, 
bits 1 through 7 are not used and should contain zeros only; in mixed mode, bits 1 through 4 are not 
used and should contain zeros only.

When delivering a hardware interrupt, the interrupt controller conditionally clears IMSK based on 
the value of the ICON.mo bit. Note that IMSK is never cleared for NMI or software interrupt.

When the processor core handles a pending interrupt, it attempts to clear the bit that is latched for 
that interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated 
with an interrupt source that is programmed for level detection and the true level is still present, the 
bit remains set. Because of this, the interrupt routine for a level-detected interrupt should clear the 
external interrupt source and explicitly clear the IPND bit before return from the handler is 
executed.

An alternative method of posting interrupts in the IPND register, other than through the external 
interrupt pins, is to set bits in the register directly using an ATMOD instruction. This operation has 
the same effect as requesting an interrupt through the external interrupt pins. The bit set in the 
IPND register must be associated with an interrupt source that is programmed for dedicated-mode 
operation.

11.7.5.2 Interrupt Controller Register Access Requirements

Like all other load accesses from internal memory-mapped registers, once issued, a load instruction 
that accesses an interrupt register has a latency of one internal processor cycle. 

A store access to an interrupt register is synchronous with respect to the next instruction; that is, the 
operation completes fully and all state changes take effect before the next instruction begins 
execution. 

Interrupts can be enabled and disabled quickly by the new intdis and inten instructions, which take 
four cycles each to execute. intctl takes a few cycles longer because it returns the previous interrupt 
enable value. See Chapter 6, “Instruction Set Reference” for more information on these 
instructions.

11.7.5.3 Default and Reset Register Values

The ICON and IMAP[2:0] control registers are loaded from the control table in external mem
when the processor is initialized or reinitialized. The control table is described in Section 13.3.3, 
“Control Table” on page 13-22. The IMSK register is set to 0 when the processor is initialized 
(RESET# is deasserted). The IPND register value is undefined after a power-up initialization
reset). The application is responsible for clearing this register before any mask register bits a
otherwise, unwanted interrupts may be triggered. The pending register value is retained for a
while power is on (warm reset).
i960® Hx Microprocessor Developer’s Manual 11-25



Interrupts

ller 
events) 

ely or 
ice is 
d 

ding 

’s 

iority 
y are 
y for 
en the 
d to 

 

rupt 
terrupt 

r 

cess 
never 
11.8 Interrupt Operation Sequence

The interrupt controller, microcode and core resources handle all stages of interrupt service. 
Interrupt service is handled in the following stages:

Requesting Interrupt — In the i960 Hx processor, the programmable on-chip interrupt contro
transparently manages all interrupt requests. Interrupts are generated by hardware (external 
or software (the application program). Hardware requests are signaled on the 8-bit external 
interrupt port (XINT[7:0]#), the non-maskable interrupt pin (NMI#) or the two timer channels. 
Software interrupts are signaled with the sysctl instruction with post-interrupt message type.

Posting Interrupts — When an interrupt is requested, the interrupt is either serviced immediat
saved for later service, depending on the interrupt’s priority. Saving the interrupt for later serv
referred to as posting. Once posted, an interrupt becomes a pending interrupt. Hardware an
software interrupts are posted differently:

• Hardware interrupts are posted by setting the interrupt’s assigned bit in the interrupt pen
(IPND) memory mapped register

• Software interrupts are posted by setting the interrupt’s assigned bit in the interrupt table
pending priorities and pending interrupts fields

Checking Pending Interrupts — The interrupt controller compares each pending interrupt’s pr
with the current process priority. If process priority changes, posted interrupts of higher priorit
then serviced. Comparing the process priority to posted interrupt priority is handled differentl
hardware and software interrupts. Each hardware interrupt is assigned a specific priority wh
processor is configured. The priority of all posted hardware interrupts is continually compare
the current process priority. Software interrupts are posted in the interrupt table in external 
memory. The highest priority posted in this table is also saved in an on-chip software priority
register; this register is continually compared to the current process priority.

Servicing Interrupts — If the process priority falls below that of any posted interrupt, the inter
is serviced. The comparator signals the core to begin a microcode sequence to perform the in
context switch and branch to the first instruction of the interrupt routine.

Figure 11-12 illustrates interrupt controller function. For best performance, the interrupt flow fo
hardware interrupt sources is implemented entirely in hardware.

The comparator signals the core only when a posted interrupt is a higher priority than the pro
priority. Because the comparator function is implemented in hardware, microcode cycles are 
consumed unless an interrupt is serviced.
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Figure 11-12. Interrupt Controller
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11.8.1 Setting Up the Interrupt Controller

This section provides an example of setting up the interrupt controller. The following example 
describes how the interrupt controller can be dynamically configured after initialization. 

Example 11-6 sets up the interrupt controller for expanded-mode operation. Initially the IMSK 
register is masked to allow for setup. A value that selects expanded-mode operation is loaded into 
the ICON register and the IMSK is unmasked.

11.8.2 Interrupt Service Routines

An interrupt handling procedure performs a specific action that is associated with a particular 
interrupt procedure pointer. For example, one interrupt handler task might initiate a timer unit 
request. The interrupt handler procedures can be located anywhere in the non-reserved address 
space. Since instructions in the i960 processor architecture must be word-aligned, each procedure 
must begin on a word boundary.

When an interrupt handling procedure is called, the processor allocates a new frame on the 
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode, the 
processor always switches to supervisor mode while an interrupt is being handled. It also saves the 
states of the AC and PC registers for the interrupted program. 

The interrupt procedure shares the remainder of the execution environment resources (namely the 
global registers, special function registers and the address space) with the interrupted program. 
Thus, interrupt procedures must preserve and restore the state of any resources shared with a non-
cooperating program. For example, an interrupt procedure that uses a global register that is not 
permanently allocated to it should save the register’s contents before using the register and 
the contents before returning from the interrupt handler.

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into
instruction cache. See Section 11.9.2.2, “Caching Interrupt Routines and Reserving Register 
Frames” on page 11-33 for a complete description.

Example 11-6. Programming the Interrupt Controller for Expanded Mode

# Example expanded mode setup . . .

mov 0, g0

mov 1, g1

st g0,IMSK # mask, IMSK MMR at 0XFF008504

st g1,ICON

st g1,IMSK # unmask expanded interrupts
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11.8.3 Interrupt Context Switch

When the processor services an interrupt, it automatically saves the interrupted program state or 
interrupt procedure and calls the interrupt handling procedure associated with the new interrupt 
request. When the interrupt handler completes, the processor automatically restores the interrupted 
program state.

The method that the processor uses to service an interrupt depends on the processor state when the 
interrupt is received. If the processor is executing a background task when an interrupt request is 
posted, the interrupt context switch must change stacks to the interrupt stack. This is called an 
executing-state interrupt. If the processor is already executing an interrupt handler, no stack switch 
is required since the interrupt stack is already in use. This is called an interrupted-state interrupt.

The following subsections describe interrupt handling actions for executing-state and interrupted-
state interrupts. In both cases, it is assumed that the interrupt priority is higher than that of the 
processor and thus is serviced immediately when the processor receives it.

11.8.3.1 Servicing an Interrupt from Executing State

When the processor receives an interrupt while in the executing state (i.e., executing a program, 
PC.s = 0), it performs the following actions to service the interrupt. This procedure is the same 
regardless of whether the processor is in user or supervisor mode when the interrupt occurs. The 
processor: 

1. Switches to the interrupt stack (as shown in Figure 11-3). The interrupt stack pointer becomes 
the new stack pointer for the processor. 

2. Saves the current PC and AC in an interrupt record on the interrupt stack. The processor also 
saves the interrupt procedure pointer number.

3. Allocates a new frame on the interrupt stack and loads the new frame pointer (NFP) in global 
register g15. 

4. Sets the state flag in PC to interrupted (PC.s = 1), its execution mode to supervisor and its 
priority to the priority of the interrupt. Setting the processor’s priority to that of the interrupt 
ensures that lower priority interrupts cannot interrupt the servicing of the current interrupt. 

5. Clears the trace enable bit in PC. Clearing this bit allows the interrupt to be handled without 
trace faults being raised. 

6. Sets the frame return status field pfp2:0 to 1112. 

7. Performs a call operation as described in Chapter 7, “Procedure Calls”. The address for the 
called procedure is specified in the interrupt table for the specified interrupt procedure po
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After completing the interrupt procedure, the processor: 

1. Copies the arithmetic controls field and the process controls field from the interrupt record into 
the AC and PC, respectively. It then switches to the executing state and restores the trace-
enable bit to its value before the interrupt occurred. 

2. Deallocates the current stack frame and interrupt record from the interrupt stack and switches 
to the stack it was using before servicing the interrupt. 

3. Performs a return operation as described in Chapter 7, “Procedure Calls”.

4. Resumes work on the program, if there are no pending interrupts to be serviced or trace
to be handled. 

11.8.3.2 Servicing an Interrupt from Interrupted State

If the processor receives an interrupt while it is servicing another interrupt, and the new inter
has a higher priority than the interrupt currently being serviced, the current interrupt-handler 
routine is interrupted. Here, the processor performs the same interrupt-servicing action as is
described in Section 11.8.3.1, “Servicing an Interrupt from Executing State” on page 11-29 to save 
the state of the interrupted interrupt-handler routine. The interrupt record is saved on the top
interrupt stack prior to the new frame that is created for use in servicing the new interrupt. Se
Figure 11-3.

On the return from the current interrupt handler to the previous interrupt handler, the process
allocates the current stack frame and interrupt record, and stays on the interrupt stack.
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11.9 Optimizing Interrupt Performance

Figure 11-13 depicts the path from interrupt source to interrupt service routine. This section 
discusses interrupt performance in general and suggests techniques the application can use to get 
the best interrupt performance.

Figure 11-13. Interrupt Service Flowchart
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11.9.1 Interrupt Service Latency

The established measure of interrupt performance is the time required to perform an interrupt task 
switch, which is known as interrupt service latency. Latency is the time measured between 
activation of an interrupt source and execution of the first instruction for the accompanying 
interrupt-handling procedure.

Interrupt latency depends on interrupt controller configuration and the instruction being executed 
at the time of the interrupt. The processor also has a number of cache options that reduce interrupt 
latency. In the discussion that follows, interrupt latency is expressed as a number of bus clock 
cycles, and reflects differences between the 80960HA and the 80960HD/HT due to the 80960HD/
HT processor’s clock-multiplied core.

11.9.2 Features to Improve Interrupt Performance

The i960 Hx processor implementation employs four methods to reduce interrupt latency:

• Caching interrupt vectors on-chip

• Caching of interrupt handling procedure code

• Reserving register frames in the local register cache

• Caching the interrupt stack in the data cache

11.9.2.1 Vector Caching Option

To reduce interrupt latency, the i960 Hx processors allow some interrupt table vector entries to be 
cached in internal data RAM. When the vector cache option is enabled and an interrupt request has 
a cached vector to be serviced, the controller fetches the associated vector from internal RAM 
rather than from the interrupt table in memory. 

Interrupts with a vector number with the four least-significant bits equal to 00102 can be cached.   
The vectors that can be cached coincide with the vector numbers that are selected with the mapping 
registers and assigned to dedicated-mode inputs. The vector caching option is selected when 
programming the ICON register; software must explicitly store the vector entries in internal RAM.

Since the internal RAM is mapped to the address space directly, this operation can be performed 
using the core’s store instructions. Table 11-2 shows the required vector mapping to specific 
locations in internal RAM. For example, the vector entry for vector number 18 must be stored
RAM location 04H, and so on. 

The NMI# vector is also shown in Table 11-2. This vector is always cached in internal data RAM 
location 0000H. The processor automatically loads this location at initialization with the value
vector number 248 in the interrupt table.
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11.9.2.2 Caching Interrupt Routines and Reserving Register Frames

The time required to fetch the first instructions of an interrupt-handling procedure affects interrupt 
response time and throughput. The user can reduce this fetch time by caching interrupt procedures 
or portions of procedures in the i960 Hx processor’s instruction cache. The icctl instruction can 
load and lock these procedures into the instruction cache. See Section 4.4, “Instruction Cache” on 
page 4-4 for information on the instruction cache.

To decrease interrupt latency for high priority interrupts (priority 28 and above), software can 
the number of frames in the local register cache available to code running at a lower priority 
(priority 27 and below). This ensures that some number of free frames are available to high-p
interrupt service routines. See Section 4.2, “Local Register Cache” on page 4-3, for more details.

Table 11-2. Location of Cached Vectors in Internal RAM

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address

NMI 248 0000H

0001 00102 18 0004H

0010 00102 34 0008H

0011 00102 50 000CH

0100 00102 66 0010H

0101 00102 82 0014H

0110 00102 98 0018H

0111 00102 114 001CH

1000 00102 130 0020H

1001 00102 146 0024H

1010 00102 162 0028H

1011 00102 178 002CH

1100 00102 194 0030H

1101 00102 210 0034H

1110 00102 226 0038H

1111 00102 242 003CH
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11.9.2.3 Caching the Interrupt Stack

By locating the interrupt stack in cacheable memory, the performance of interrupt returns can be 
improved. This is because potentially accesses to the interrupt record by the interrupt return can be 
satisfied by the data cache. See Section 14.4, “Programming the Logical Memory Attributes” on 
page 14-11 for details on how to enable data caching for portions of memory.

11.9.3 Base Interrupt Latency

In many applications, the processor’s instruction mix and cache configuration are known 
sufficiently well to use typical interrupt latency in calculations of overall system performance.
example, a timer interrupt may frequently trigger a task switch in a multi-tasking kernel. Base
interrupt latency assumes the following:

• Single-cycle RISC instruction is interrupted.

• Frame flush does not occur.

• Bus queue is empty.

• Cached interrupt handler.

• No interaction of faults and interrupts (i.e., a stable system).

Table 11-3 shows the base latencies for all interrupt types, with varying pin sampling and vector 
caching options. 

Table 11-3. Base Interrupt Latency

Interrupt Type Detection Option Vector Caching 
Enabled

Typical 80960Hx
Latency (Bus Clocks)

HA HD HT

NMI#
Fast Yes 21 10.5 7.3

Debounced Yes 23 12.5 9.3

Dedicated Mode 
XINT[7:0]#, 
TINT[1:0]

Fast
Yes 27 13 9.3

No 29+a 15+d 10.3+g

Debounced
Yes 28 15 11

No 31+a 17.5+d 12+g

Expanded Mode 
XINT[7:0]#, 
TINT[1:0]

Debounced
Yes 30 16 11.3

No 33+a 17.5+d 12.3+g

Software NA
Yes 54+2b 27+2e 18+2h

No 54+2b+c 27+2e+f 18+2h+g

NOTES:
a = MAX (0, N-6)
b = MAX (0, N-1)
c = MAX (0, N-7)

d= MAX (0, N-3)
e= MAX (0, N-0.5)
f= MAX (0, N-3.5)

g= MAX (0, N-2)
h= MAX (0, N-0.3)

where “N” is the number of bus cycles needed to perform a word load.
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11.9.4 Maximum Interrupt Latency

In real-time applications, worst-case interrupt latency must be considered for critical handling of 
external events. For example, an interrupt from a mechanical subsystem may need service to 
calculate servo loop parameters to maintain directional control. Determining worst-case latency 
depends on knowledge of the processor’s instruction mix and operating environment as well 
interrupt controller configuration. Excluding certain very long, uninterruptable instructions fro
critical sections of code reduces worst-case interrupt latency to levels approaching the base 

The following tables present worst-case interrupt latencies based on possible execution of divo 
(r15 destination), divo (r3 destination), calls or flushreg instructions or software interrupt 
detection. The assumptions for these tables are the same as for Table 11-3, except for instruction 
execution. It is also assumed that the instructions are already in the cache and that tracing is
disabled.

Table 11-4. Worst-Case Interrupt Latency Controlled by divo to Destination r15

Interrupt Type Detection Option
Vector 

Caching 
Enabled

Worst 80960Hx 
Latency (Bus Clocks)

HA HD HT

NMI#
Fast Yes 40 20 13.7

Debounced Yes 42 22 15.3

Dedicated Mode 
XINT[7:0]#, TINT[1:0]

Fast
Yes 42 21.5 14

No 42+b 21.5+d 14+e

Debounced
Yes 45 23.5 16

No 45+b 23.5+d 16+e

Expanded Mode 
XINT[7:0]#, TINT[1:0] Debounced

Yes 47 24.5 17.3

No 47+b 24.5+d 17.3+e

NOTES:
a = MAX (0, N - 12)
b = MAX (0, N - 15)

c = MAX (0, N - 4.5)
d = MAX (0, N - 7.5)

e = MAX (0, N - 5.3)
f = MAX (0, N - 3.7)
g = MAX (0, N - 2)

where “N” is the number of bus cycles needed to perform a word load.
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Table 11-5. Worst-Case Interrupt Latency Controlled by divo to Destination r3 

Interrupt Type Detection Option
Vector 

Caching 
Enabled

Worst 80960Hx
Latency (Bus Clocks)

HA HD HT

NMI#
Fast Yes 54 27 18.3

Debounced Yes 56 29 20

Dedicated Mode 
XINT[7:0]#, TINT[1:0]

Fast
Yes 59 30 20.3

No 62+a 31.5+d 21.3+g

Debounced
Yes 61 32 22

No 64+a 33.5+d 23+g

Expanded Mode 
XINT[7:0]#, TINT[1:0] Debounced

Yes 64 33 23

No 67+a 34.5+d 24+g

Software NA
Yes 70+2b 35+2e 23.3+2h

No 70+2b+c 35+2e+f 23.3+2h+i

NOTES:
a = MAX (0, N - 6)
b = MAX (0, N - 1)
c = MAX (0, N - 7)

d = MAX (0, N - 3)
e = MAX (0, N - 0.5)
f = MAX (0, N - 3.5)

g = MAX (0, N - 2)
h = MAX (0, N - 0.7)
i = MAX (0, N - 2.3)

where “N” is the number of bus cycles needed to perform a word load.

Table 11-6. Worst-Case Interrupt Latency Controlled by calls 

Interrupt Type Detection 
Option

Vector 
Caching 
Enabled

Worst 80960Hx
Latency (Bus Clocks)

HA HD HT

NMI#
Fast Yes 55+b 27.5+d 18.3+f

Debounced Yes 58+b 29.5+d 20.7+f

Dedicated Mode 
XINT[7:0]#, TINT[1:0]

Fast
Yes 60+b 30.5+d 20.3+f

No 63+a+b 32+c+d 21.3+e+f

Debounced
Yes 62+b 32.5+d 22.3+f

No 65+a+b 34+c+d 23.3+e+f

Expanded Mode 
XINT[7:0]#, TINT[1:0] Debounced

Yes 65+b 33.5+d 23.3+f

No 68+a+b 35+c+d 24.3+e+f

NOTES:
a = MAX(0, N - 6)
b = MAX(0, N - 2)
c = MAX(0, N - 3)
d = MAX(0, N - 1)

e= MAX(0, N - 0.7)
f = MAX(0, (N + f1) - 0.7)
f1 = MAX(0, Fet - 2.3)
g = MAX (0, N - 2)

where “N” is the number of bus cycles needed to perform a word load.

“b”, “d” and “f” represent the number of additional cycles required for a non-cached system procedure entry.
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Table 11-7. Worst-Case Interrupt Latency When Delivering a Software Interrupt

Interrupt Type Detection 
Option

Vector 
Caching 
Enabled

Worst 80960Hx
Latency (Bus Clocks)

HA HD HT

NMI#
Fast Yes 77+2b+c 39+2e+f 25.7+2h+i

Debounced Yes 77+2b+c 39+2e+f 25.7+2h+i

Dedicated Mode 
XINT[7:0]#, 
TINT[1:0]

Fast
Yes 80+2b+c 40+2e+f 26.7+2h+i

No 80+a+2b+c 40+d+2e+f 26.7+g+2h+i

Debounced
Yes 80+2b+c 40+2e+f 26.7+2h+i

No 80+a+2b+c 40+d+2e+f 26.7+g+2h+i

Expanded Mode 
XINT[7:0]#, 
TINT[1:0]

Debounced
Yes 80+2b+c 40+2e+f 26.7+2h+i

No 80+a+2b+c 40+d+2e+f 26.7+g+2h+i

NOTES:
a = MAX (0, N - 6)
b = MAX (0, N - 1)
c = MAX (0, N - 7)

d = MAX (0, N - 3)
e = MAX (0, N - 0.5)
f = MAX (0, N - 3.5)

g = MAX (0, N - 2)
h = MAX (0, N - 0.3)
i = MAX (0, N - 2.3)

where “N” is the number of bus cycles needed to perform a word load.

Table 11-8. Worst-Case Interrupt Latency Controlled by flushreg of One Stack Frame

Interrupt Type Detection Option
Vector 

Caching 
Enabled

Worst 80960Hx
Latency (Bus Clocks)

HA HD HT

NMI#
Fast Yes 41+a 21+f 14+i

Debounced Yes 43+a 23+f 16.3+i

Dedicated Mode 
XINT[7:0]#, TINT[1:0]

Fast
Yes 47+b 24+f 16+i

No 50+c 25.5+e+f 17+h+i

Debounced
Yes 49+b 26+f 18+i

No 52+c 27.5+e+f 18+h+i

Expanded Mode 
XINT[7:0]#, TINT[1:0] Debounced

Yes 52+b 27+f 19+i

No 55+c 28.5+b+c 20+h+i

NOTES:
a = MAX(0, M - 24)
b = MAX(0, M - 28)
c = MAX(0, N + c1-6)
c1= MAX(0, 4*Q - 24)

d = MAX(0, N + d1-3)
d1 = MAX(0, 4*M - 12)
e = MAX(0, N + e1 - 3)
e1 = MAX(0, 3*M - 4)
f = MAX(0, M - 7.5)

g = MAX(0, N + g1-2)
g1 = MAX(0, 4*M - 8)
h = MAX(0, N+H1 - 2)
h1 = MAX(0, 3*M - 3.3)
i = MAX(0, M - 5)

where “M” is the number of bus cycles needed to perform a quad word store and “N” is the number of bus cycles 
needed to perform a word load. 
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11.9.4.1 Avoiding Certain Destinations for MDU Operations

Typically, when delivering an interrupt, the processor attempts to push the first four local registers 
(pfp, sp, rip, and r3) onto the local register cache as early as possible. Because of register-interlock, 
this operation is stalled until previous instructions return their results to these registers. In most 
cases, this is not a problem; however, in the case of instructions performed by the Multiply/Divide 
Unit (divo, divi, ediv, modi, remo, and remi), the processor could be stalled for many cycles 
waiting for the result and unable to proceed to the next step of interrupt delivery.

Interrupt latency can be improved by avoiding the first four local registers as the destination for a 
Multiply/Divide Unit operation. (Registers pfp, sp, and rip should be avoided for general 
operations as these are used for procedure linking.)

11.9.4.2 Masking Integer Overflow Faults for syncf

The i960 core architecture requires an implicit syncf before delivering an interrupt so that a fault 
handler can be dispatched first, if necessary. The syncf can require a number of cycles to       
complete if a multi-cycle multiply or divide instruction was issued previously and integer-overflow 
faults are unmasked (allowed to occur). Interrupt latency can be improved by masking integer-
overflow faults, which allows the implicit syncf to complete in much shorter time.
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Guarded Memory Unit (GMU) 12

This chapter provides information about the i960® Hx processor’s Guarded Memory Unit (GMU).
The GMU provides memory protection without the performance penalty found in Memory 
Management Units. The GMU contains two memory protection schemes: one prevents illega
memory accesses, the other only detects memory access violations. Both signal a fault to th
microprocessor (assuming faults are enabled).

The memory protection scheme is designed to prevent access to a specified block of memory. The
i960 Hx processor provides the ability to protect, as a minimum, two blocks of addresses with
mechanism. Attempts to illegally access memory protected by this mechanism do not generate 
internal cache accesses or external bus cycles. 

The memory detection scheme allows the application to define ranges of memory for which illeg
accesses generate a fault. However, this mechanism — although more flexible — does not p
access; it only faults after the illegal access has occurred. 

The programmable protection modes are:

Figure 12-1 shows how an application might use the GMU. The logical partitions and the acc
types for each partition are shown.

The programmer interface to the GMU consists of seventeen 32-bit registers, accessible onl
word boundaries. These registers are shown in Table 12-1 The GMU registers are memory-mappe
and may only be accessed in supervisor mode. The registers are described in greater detail 
following sections.

• User Read • Supervisor Read

• User Write • Supervisor Write

• User Execute • Supervisor Execute

• User Data Cache Write • Supervisor Data Cache Write
i960® Hx Microprocessor Developer’s Manual 12-1



Guarded Memory Unit (GMU)
Figure 12-1. Sample Application with Partitions

Application RAM Notes
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Interrupt Tables need to be located in supervisor address space with both read and 
write enabled. Fault Table, System Procedure Table, Control Tables need 
supervisor read enabled.

Interrupt Stack Since ISRs are always initiated in Supervisor mode, the GMU must allow 
Supervisor mode reads and writes.

Supervisor Stack Supervisor mode stacks require both read and write enabled.

Kernel RAM Supervisor mode execute regions also require supervisor mode read enabled. The 
tables located in the code space need to be accessed.

Kernel Code and 
Application Code User mode RAM requires both read and write enabled.
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12.1 Illegal Access Protection

The memory protection scheme is designed to prevent any fetch or data access to a specified block 
of memory. The programmable protection modes are:

The GMU can protect a minimum of two blocks of memory. A block is defined by a pair of 
registers. The first register determines the starting address of the block, and the second register 
determines the size of the block. This is done using a “compare under mask” operation that a
allows more than one block to be specified by the pair, as is explained in Section 12.3.2.

For example, Illegal Access Protection would be useful during the software debugging phase
project, when an application with software executing from RAM can be subject to errors. The
errors may corrupt the executing software by overwriting the code located in RAM. Figure 12-1 
shows a block of the RAM containing both the kernel code and the application code. When t
GMU detects an illegal access to the protected region, the unit cancels the illegal access 
and generates a fault. 

The blocks defined by the GMU protection registers are independent of the physical and log
regions defined by the Bus Controller, and may span those regions.

12.2 Illegal Access Detection

The memory detection scheme is similar to the memory protection scheme, however, instead of
preventing an access; memory detection only faults after the illegal access has occurred. Th
programmable detection modes are:

Memory detection also gives the application greater flexibility in defining ranges of memory. T
application can program six ranges of memory with any combination of access qualifications
shown above. A range is defined by a Lower-Bounds address register and a upper-bounds a
register. The bounds registers contain the upper 24 bits of address. Each range can span ac
physical and logical memory region boundaries. The minimum range size is 256 bytes.

The GMU is especially useful during the software debugging phase of the application to dete
accesses to specific data structures and arrays. 

When an access to memory occurs without the programmed privileges, an imprecise fault is
generated. The GMU will not prevent the access from completing.

• User Read • Supervisor Read

• User Write • Supervisor Write

• User Execute • Supervisor Execute

• User Data Cache Write • Supervisor Data Cache Write

• User Read • Supervisor Read

• User Write • Supervisor Write

• User Execute • Supervisor Execute

• User Data Cache Write • Supervisor Data Cache Write
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12.3 GMU Register Description

The GMU contains 16 programmable registers, organized as eight pairs, for defining the memory 
protection blocks, and a mode control register for enabling and disabling each pair. Two different 
protection mechanisms are provided. The GMU registers are memory mapped, as shown in 
Table 12-1. 

Table 12-1. GMU Memory-Mapped Registers 

Register Name GMU Register Description Address

GCON (sf4) Control Register FF00 8000

MPAR0 Memory Protection Address Register 0 FF00 8010

MPMR0 Memory Protection Mask Register 0 FF00 8014

MPAR1 Memory Protection Address Register 1 FF00 8018

MPMR1 Memory Protection Mask Register 1 FF00 801C

MDUB0 Memory Detect Upper-Bounds Address Register 0 FF00 8080

MDLB0 Memory Detect Lower-Bounds Address Register 0 FF00 8084

MDUB1 Memory Detect Upper-Bounds Address Register 1 FF00 8088

MDLB1 Memory Detect Lower-Bounds Address Register 1 FF00 808C

MDUB2 Memory Detect Upper-Bounds Address Register 2 FF00 8090

MDLB2 Memory Detect Lower-Bounds Address Register 2 FF00 8094

MDUB3 Memory Detect Upper-Bounds Address Register 3 FF00 8098

MDLB3 Memory Detect Lower-Bounds Address Register 3 FF00 809C

MDUB4 Memory Detect Upper-Bounds Address Register 4 FF00 80A0

MDLB4 Memory Detect Lower-Bounds Address Register 4 FF00 80A4

MDUB5 Memory Detect Upper-Bounds Address Register 5 FF00 80A8

MDLB5 Memory Detect Lower-Bounds Address Register 5 FF00 80AC
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12.3.1 GMU Control Register

The GMU Control register (GCON) enables and disables the memory protection registers. It is 
accessible as Special Function Register 4 (sf4) in the register set, and at address FF00 8000H as a 
memory-mapped register accessible from supervisor mode. Note that simultaneous access to the 
register via both mechanisms is not supported. Figure 12-2 describes the bit representations of the 
GCON. The GCON is the only enable/disable mechanism for the GMU.

Figure 12-2. GMU Control Register (GCON)
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Reserved
(Initialize to 0)

Memory Protection Enable 0 - GCON.mpe0
(0) Disable (1) Enable

Memory Protection Enable 1- GCON.mpe1
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Memory Detect Enable 0- GCON.mde0
(0) Disable (1) Enable

Memory Detect Enable 1- GCON.mde1
(0) Disable (1) Enable

Memory Detect Enable 2- GCON.mde2
(0) Disable (1) Enable

Memory Detect Enable 3- GCON.mde3
(0) Disable (1) Enable

Memory Detect Enable 4- GCON.mde4
(0) Disable (1) Enable

Memory Detect Enable 5- GCON.mde5
(0) Disable (1) Enable
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12.3.2 GMU Memory Protect Address and Mask Registers

The GMU memory protection scheme uses two registers to define a protected block of addresses: 
the address register (MPAR) and the mask register (MPMR). The GMU provides registers for two 
memory protected blocks accessible only from supervisor mode. Figure 12-3 describes the bit 
definitions of the MPAR and MPMR registers.

The MPAR contains the most significant 24 bits of the target address for the protected memory 
block(s). The minimum protected block size is 256 bytes. The low-order eight (8) bits in the MPAR 
register define the access privileges. The meanings of the bits are given below:

The MPMR register is used in conjunction with the MPAR to define protected block boundaries. 
The mask register contains 24 mask bits. Each mask bit determines if the corresponding address bit 
found in the MPAR is compared by the GMU hardware: this mechanism is called “compare u
mask”. Figure 12-3 shows the layout of MPAR and MPMR.

If a mask bit is set (MPMR.mx = 1), the respective bit in the address register will be compare
a valid address. If the bit is cleared (MPMR.mx = 0), the respective address bit is not compa

The block sizes are defined by the number of bits cleared in the GMU Mask registers. Table 12-3 
shows some examples of mask bit combinations and the block size they represent.

Table 12-2. MPAR Register Bit Descriptions

Bit Name Bit # Description

User Read 0 When cleared (0) user mode reads are allowed. When set (1) a fault is 
generated on a user mode read.

User Write 1 When cleared (0) user mode writes are allowed. When set (1) a fault is 
generated on a user mode write.

User Execute 2 When cleared (0) user mode execution is allowed. When set (1) a fault is 
generated on a user mode execution.

User Cache 
Write 3

When cleared (0) user mode dcflusha and dcinva instructions are allowed. 
When set (1) a fault is generated on user mode dcflusha and dcinva 
instructions.

Supervisor 
Read 4 When cleared (0) supervisor mode reads are allowed. When set (1) a fault is 

generated on a supervisor mode read.

Supervisor 
Write 5 When cleared (0) supervisor mode writes are allowed. When set (1) a fault is 

generated on a supervisor mode write.

Supervisor 
Execute 6 When cleared (0) supervisor mode execution is allowed. When set (1) a fault is 

generated on a supervisor mode execution.

Supervisor 
Cache Write 7

When cleared (0) supervisor mode dcflusha and dcinva instructions are 
allowed. When set (1) a fault is generated on supervisor mode dcflusha and 
dcinva instructions.

Target Address 31:8 Most significant 24 bits of the target address for protected memory.
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Figure 12-3. GMU Memory Protect Address Register (MPARx, MPMRx)
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Memory Protect Address Register (MPAR 0 - MPAR 1)
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User Mode Read Enable MPARx.umr
(1) Fault On User Mode Read(0) Allow User Mode Read

User Mode Write Enable MPARx.umw
(1) Fault On User Mode Write(0) Allow User Mode Write

User Mode Execute Enable MPARx.umx
(1) Fault On User Mode Execute(0) Allow User Mode Execution

Supervisor Mode Read Enable MPARx.smr
(1) Fault On Supervisor Mode Read(0) Allow Supervisor Mode Read

Supervisor Mode Write Enable MPARx.smw
(1) Fault On Supervisor Mode Write(0) Allow Supervisor Mode Write

Supervisor Mode Execute Enable MPARx.smx
(1) Fault On Supervisor Mode Execution(0) Allow Supervisor Mode Execution
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Supervisor Mode Cache Write MPARx.scw
(1) Fault On Supervisor Mode Data Cache(0) Allow Supervisor Mode Data Cache

 Instructions (dcflusha, dcinva)  instruction (dcflusha, dcinva)

User Mode Cache Write MPARx.ucw
(1) Fault On User Mode Data Cache(0) Allow User Mode Data Cache

 Instructions (dcflusha, dcinva)  Instructions (dcflusha, dcinva)
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12.3.2.1 Programming the MPAR and MPMR registers

There are special considerations when programming the MPAR and MPMR registers. The 
mechanism allows only 2n byte blocks on 2n boundaries to be defined. For example, if the MPMR 
register contains the value FFFF F000H, the block size is 4 Kbytes. The starting and ending points 
of the block defined by the MPAR register will therefore be on 4-Kbyte boundaries. Figure 12-4 
describes this example in pictorial form.

Note that software must not attempt to protect the memory-mapped register region (FF00 0000 and 
above). Also, protected regions must not overlap.

It should be noted that if the MPAR register is programmed to a value not on the natural MPMR 
block boundary, the less significant bits of MPAR are ignored.

The next example describes the behavior of the MPAR and MPMR registers when some of the 
upper MPMR bits are cleared. The MPAR register contains the value 0FFC 0000H. The MPMR 
register contains the value 0FFC 0000H; the block size is 256 Kbytes. Note, bits 28-31 in the 
MPMR are cleared. Figure 12-4 shows the multiple blocks of protected memory. This occurs 
because the upper four mask bits (MPMR bits 28-31) are 0. When the mask bits are cleared, the 
address bits are not compared. This creates the effect of multiple protected addresses with a single 
pair of registers.

Table 12-3. GMU Protected Memory Mask Register Block Sizes

Mask Value Block Size Mask Value Block Size

FFFF FF00 256 Bytes FFF0 0000 1 Mbyte

FFFF FE00 512 Bytes FFE0 0000 2 Mbytes

FFFF FC00 1 Kbytes FFC0 0000 4 Mbytes

FFFF F800 2 Kbytes FF80 000 8 Mbytes

FFFF F000 4 Kbytes FF00 0000 16 Mbytes

FFFF E000 8 Kbytes FE00 0000 32 Mbytes

FFFF C000 16 Kbytes FC00 0000 64 Mbytes

FFFF 8000 32 Kbytes F800 0000 128 Mbytes

FFFF 0000 64 Kbytes F000 0000 256 Mbytes

FFFE 0000 128 Kbytes E000 0000 512 Mbytes

FFFC 0000 256 Kbytes C000 0000 1 Gbytes

FFF8 0000 512 Kbytes 8000 0000 2 Gbytes
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Figure 12-4. GMU MPAR and MPMR Programming Example

MPMR = 4 KByte Block Size

F F F F F 0

031 15 723

MPAR ADDRESS = 0FFF F000H

FFFF FFFFH

F000 0000H

E000 0000H

D000 0000H

C000 0000H

B000 0000H

A000 0000H

9000 0000H

8000 0000H

7000 0000H

6000 0000H

5000 0000H

4000 0000H

3000 0000H

2000 0000H

1000 0000H

0000 0000H

0 F F F F 0 2 2

031 15 723

GMU Memory Protect
Address And Mask Register

Protected 4 Kbyte Block

Starting Address End Address

0FFF F000H 0FFF FFFFH

4 Gbyte Address Space

Protection Type Access Allowed

0 0

User Mode Read
User Mode Write
User Mode Execute

Supervisor Mode Read
Supervisor Mode Write
Supervisor Mode Execute

Allowed
Fault
Allowed

Allowed
Fault
Allowed

User Mode D-Cache Instr. Allowed

Supervisor Mode D-Cache Instr. Allowed
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12.3.3 GMU Memory Detect Upper- and Lower-Bounds Registers

The GMU memory detect violation mode uses pairs of registers to define a protected address 
range: an upper-bounds register (MDUB) and a lower-bounds register (MDLB). These registers 
define a memory range. Each memory range has independent access permission characteristics.

Note that software must not attempt to protect the memory-mapped register region (FF00 0000 and 
above). Also, protected regions must not overlap.

Figure 12-5. GMU MPAR and MPMR Programming Example

MPMR = 256 Kbyte Block Size

0 F F C 0 0

031 15 723

MPAR Base Address = 0FFC 0000H

FFFF FFFFH

F000 0000H

E000 0000H

D000 0000H

C000 0000H

B000 0000H

A000 0000H

9000 0000H

8000 0000H

7000 0000H

6000 0000H

5000 0000H

4000 0000H

3000 0000H

2000 0000H

1000 0000H

0000 0000H

0 F F C 0 0

031 15 723

Protected 256 Kbyte Blocks

Start Address

GMU Memory Protect
Address and Mask Register

End Address

0FFC 0000H
1FFC 0000H
2FFC 0000H
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BFFC 0000H
CFFC 0000H
DFFC 0000H
EFFC 0000H
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7FFF FFFFH
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CFFF FFFFH
DFFF FFFFH
EFFF FFFFH
FFFF FFFFH

4 Gbyte Address Space

2 2

0 0
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Figure 12-6 describes the MDLB and MDUB registers. 

The MDLB register contains 24 bits used to define the lower bounds of the memory range. The 
MDLB register is inclusive of the address programmed. For example, if the MDLB contained the 
value 0C00 0000H, the beginning address in the range would be 0C00 0000H. 

Figure 12-6. GMU Memory Violation Detection Upper and Lower-Bounds Registers
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The MDUB register contains 24 bits used to define the upper bounds of the memory range. It also 
contains the access types bits. The MDUB register is exclusive of the address programmed. For 
example, if the MDUB contained the value 1E00 0024H, the last address contained in the range 
would be 1DFF FFFFH. The low-order eight (8) bits in the MDUB register define the access 
privileges. The bit representations are shown below:

The GMU provides registers for six memory ranges. These registers are accessible only when the 
processor is in supervisor mode. The MDUB and MDLB are not bound by any physical or logical 
memory regions, and can span multiple memory regions.

The programmed mode bits define which access types are allowed. Combinations of these are very 
important for normal code execution, such as those shown Figure 12-1.

Table 12-4. MDUB Register Bit Descriptions

Bit Name Bit # Description

User Read 0 When cleared (0) user mode reads are allowed. When set (1) a 
fault is generated on a user mode read.

User Write 1 When cleared (0) user mode writes are allowed. When set (1) a 
fault is generated on a user mode write.

User Execute 2 When cleared (bit 2 = 0) user mode execution is allowed. When 
set (1) a fault is generated on a user mode execution.

User Cache Write 3
When cleared (0) user mode dcflusha and dcinva instructions 
are allowed. When set (1) a fault is generated on user mode 
dcflusha and dcinva instructions.

Supervisor Read 4 When cleared (0) supervisor mode reads are allowed. When set 
(1) a fault is generated on a supervisor mode read.

Supervisor Write 5 When cleared (0) supervisor mode writes are allowed. When set 
(1) a fault is generated on a supervisor mode write.

Supervisor Execute 6 When cleared (0) supervisor mode execution is allowed. When 
set (1) a fault is generated on a supervisor mode execution.

Supervisor Cache Write 7
When cleared (0) supervisor mode dcflusha and dcinva 
instructions are allowed. When set (1) a fault is generated on 
supervisor mode dcflusha and dcinva instructions.

Memory Violation Detect 
Upper-Bounds Address 8-31 The 24 bits used to define the upper bounds of the memory range
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12.3.4 GMU Faults

The GMU generates faults based on the programmed protection and/or the mode of access to the 
GMU registers. See Section 8.10.7, “PROTECTION Faults” on page 8-30 for detailed description 
of GMU faults and the GMU fault record. 

12.4 GMU Powerup Modes

Upon powerup, an external hardware reset, or software reset (sysctl), the GMU registers are 
initialized to the values shown in Table 12-5.

Table 12-5. GMU Powerup and Reset Values

Register Value at 
Power-Up

Value after 
Reset Notes

(GCON) GMU Control Register 0000 0000 0000 0000 All GMU Protection registers 
disabled. 

(MPARx, MPMRx) All Memory 
Protection Registers indeterminate Value before 

reset 

User must program these registers 
prior to enabling the GMU memory 
protection.

(MDUBx, MDLBx) All Memory 
Detection Address Registers indeterminate Value before 

reset

User must program these registers 
prior to enabling the GMU memory 
detection.
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12.5 GMU Programming Considerations

The programmer should always disable GMU faults in the GCON before modifying any of the 
GMU address or mask registers, to prevent accidental generation of GMU faults.

If any of the PROTECTION, PARALLEL, OVERRIDE or TRACE fault handlers are protected by 
the GMU, infinite recursion within the fault handlers may occur. If the PROTECTION handler is 
fetch-protected by the GMU, the processor faults infinitely with no way of being interrupted except 
through reset.

The fault handler should not attempt to return from a PROTECTION.BAD_ACCESS fault caused 
by a GMU protection condition, because the stack frame cache may be in an undefined state in that 
case.

The GMU cannot detect previously cached instruction fetches. To insure that all instruction fetches 
are monitored, invalidate the instruction cache (using an icctl instruction) after enabling GMU 
protection/detection.

Due to instruction prefetching, a spurious PROTECTION.BAD_ACCESS fault may be generated 
when the target of a branch is in a region fetch-protected by the GMU and the branch is predicted 
to be taken, but not actually taken. For application debugging with the GMU, conditional branches 
to regions protected by the GMU should always be predicted as not taken.

Software should not program the GMU to protect the memory-mapped registers in the range of 
addresses FFFFFF00H through FFFFFFFFH as this can lead to the unexpected generation of 
PROTECTION.BAD_ACCESS faults.

In general, the Interrupt Table should not be protected against Supervisor mode accesses. 
Protecting the Interrupt Table from Supervisor mode writes is acceptable if it can be guaranteed 
that no software posting of interrupts will occur. Protecting the Interrupt Table against Supervisor 
mode reads will cause trouble if any hardware interrupts, including the NMI, occur. Violation of 
these cautions will result in improper system behavior.
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Initialization and System 
Requirements 13

This chapter describes the steps that the i960® Hx processor performs during initialization. 
Discussed are the RESET# pin and the reset state built-in self test (BIST) features. This chapter 
also describes the processor’s basic system requirements, including power, ground and cloc
concludes with some general guidelines for high-speed circuit board design. 

13.1 Overview

During the time that the RESET# pin is held asserted, the processor is in a quiescent reset st
external pins are inactive and the internal processor state is forced to a known condition. Th
processor begins initialization when the RESET# pin is deasserted.

When initialization begins, the processor uses an Initial Memory Image (IMI) to establish its s
The IMI includes:

• Initialization Boot Record (IBR) – contains the addresses of the first instruction of the us
code and the PRCB.

• Process Control Block (PRCB) – contains pointers to system data structures; also conta
information used to configure the processor at initialization.

• System data structures – the processor caches several data structure pointers internally
initialization.

Software can reinitialize the processor using the sysctl instruction (Section 6.2.67, “sysctl” on 
page 6-108). When a reinitialization takes place, a new PRCB and reinitialization instruction 
pointer are specified. Reinitialization is useful for relocating data structures from ROM to RA
after initialization.

The i960 Hx processor supports several facilities to assist in system testing and start-up 
diagnostics. ONCE mode electrically removes the processor from a system. This feature is u
for system-level testing where a remote tester exercises the processor system. The i960 Hx 
processor also supports JTAG boundary-scan (see Chapter 16, “Test Features”). During 
initialization, the processor performs an internal functional self test and external bus self test
These features are useful for system diagnostics to ensure basic CPU and system bus funct

The processor is designed to minimize the requirements of its external system. It requires an
clock (CLKIN) and clean power and ground connections (VSS and VCC). Since the processor can 
operate at a high frequency, the external system must be designed with considerations to re
induced noise on signals, power and ground.
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13.2 Initialization

This section describes the mechanism that the processor uses to establish its initial state and begin 
instruction execution. Initialization begins when the RESET# pin is deasserted. At this time, the 
processor automatically configures itself with information specified in the IMI and performs its 
built-in self test based on the condition of the STEST pin. The processor then branches to the first 
instruction of user code. See Figure 13-1 for a flow chart of i960 Hx processor initialization.
13-2 i960® Hx Microprocessor Developer’s Manual



Initialization and System Requirements
Figure 13-1. Processor Initialization Flow
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The objective of the initialization sequence is to provide a complete working initial state when the 
first user instruction executes. The user’s startup code needs only to perform several basic 
functions to place the processor in a configuration for executing application code.

13.2.1 Reset State Operation

The RESET# pin, when asserted (active low), causes the processor to enter the reset state.
processor sets all external signals to a defined state (Table 13-1), initializes internal logic, and sets
certain registers to defined values (Table 13-2). When the RESET# pin is deasserted, the proces
initializes as shown in Section 13.5, “Startup Code Example” on page 13-25. RESET# is a level-
sensitive, asynchronous input. If HOLD is asserted while the processor is in reset, the proce
will acknowledge the request. All external pins will assume their usual The states while the b
in the hold state. See Section 15.6.1, “The HOLD and HOLDA Signals” on page 15-32.

The RESET# pin must be asserted when power is applied to the processor. The processor t
stabilizes in the reset state. This power-up reset is referred to as cold reset. To ensure that all 
internal logic has stabilized in the reset state, a valid input clock (CLKIN) and VCC must be present 
and stable for a specified time before RESET# can be deasserted.

The processor may also be cycled through the reset state after execution has started. This se
is referred to as warm reset. For a warm reset, the RESET# pin must be asserted for a minimum
number of clock cycles. If a warm reset is asserted during a bus hold, the processor continue
drive HOLDA until HOLD is deasserted, at which point the processor begins the internal 
initialization process. Specifications for a cold and warm reset can be found in the 80960HA/HD/
HT Embedded 32-bit Microprocessor datasheet. 

While the processor’s RESET# pin is asserted, output pins are driven to the states as indica
Table 13-1. The reset state cannot be entered under direct control from user code. No reset 
instruction or other condition that forces a reset exists on the i960 Hx processors. The RESE
must be asserted to enter the reset state. The processor does, however, provide a means to
the initialization process. See Section 13.4.1, “Reinitializing and Relocating Data Structures” on
page 13-24.
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Figure 13-2. Cold Reset Waveform
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Table 13-1. Pin Reset State

Pins Reset State Pins Reset State

A31:2 Floating BREQ Low (inactive)

D31:0 Floating D/C# Low (code)

BE[3:0]# High (inactive) SUP# Floating

W/R# Low (read) FAIL# Low (active)

ADS# High (inactive) TDO Valid output

WAIT# High (inactive) CT[3:0] Floating

BLAST# High (inactive) BSTALL Low (inactive)

DT/R# Low (receive) HOLDA Valid Output

DEN# High (inactive) PCHR# High (inactive)

LOCK# High (inactive) DP3:0 Floating

NOTE: Pin states shown assume ONCE# pin is not asserted. If the ONCE# pin is asserted, the processor 
pins are all floated.

Table 13-2. Register Values after Reset (Sheet 1 of 2)

Register Value after Power-On Reset, in Hex Value after Software Re-Init, in Hex

g0 Device ID Device ID

IPND (sf0) undefined value before software re-init

IMSK (sf1) 00 00

CCON(sf2) bit 31 = 1, others = 0 bit 31 = 1, others = 0

ICON(sf3) value of Control Table word 7 value of Control Table word 7

GCON(sf4) bits 0-7 = 0; bits 8 -31 = undefined bits 0-7 = 0; bits 8 -31 = undefined

MPAR0-1 undefined value before software re-init

MPMR0-1 undefined value before software re-init

MDUB0-5 undefined value before software re-init

MDLB0-5 undefined value before software re-init

LMAR0-14 undefined value before software re-init

LMMR0-14 bit 0 = 0; bits 1 -31 = undefined bit 0 = 0; bits 1 -31 = undefined

DLMCON bit 0 see note 1; bits 1 and 4 =0; 
others undefined

bit 0 see note 1; bits 1 and 4 =0; 
others undefined

TRR0-1 undefined value before software re-init

TCR0-1 undefined value before software re-init

TMR0-1 bits 0 - 5 = 0; bits 6 - 31 = undefined bits 0 - 5 = 0; bits 6 - 31 = undefined

IPB0 0000 000H 0000 000H

IPB1 0000 000H 0000 000H

DAB0 0000 000H 0000 000H

DAB1 0000 000H 0000 000H

1. Loaded from BBIGE bit in the Initialization Boot Record.
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IMAP0 initial image in Control Table, offset 10 initial image in Control Table, offset 10

IMAP1 initial image in Control Table, offset 14 initial image in Control Table, offset 14

IMAP2 initial image in Control Table, offset 18 initial image in Control Table, offset 18

ICON initial image in Control Table, offset 1C initial image in Control Table, offset 1C

PMCON0 initial image in Control Table, offset 20 initial image in Control Table, offset 20

PMCON1 initial image in Control Table, offset 24 initial image in Control Table, offset 24

PMCON2 initial image in Control Table, offset 28 initial image in Control Table, offset 28

PMCON3 initial image in Control Table, offset 2C initial image in Control Table, offset 2C

PMCON4 initial image in Control Table, offset 30 initial image in Control Table, offset 30

PMCON5 initial image in Control Table, offset 34 initial image in Control Table, offset 34

PMCON6 initial image in Control Table, offset 38 initial image in Control Table, offset 38

PMCON7 initial image in Control Table, offset 3C initial image in Control Table, offset 3C

PMCON8 initial image in Control Table, offset 40 initial image in Control Table, offset 40

PMCON9 initial image in Control Table, offset 44 initial image in Control Table, offset 44

PMCON10 initial image in Control Table, offset 48 initial image in Control Table, offset 48

PMCON11 initial image in Control Table, offset 4C initial image in Control Table, offset 4C

PMCON12 initial image in Control Table, offset 50 initial image in Control Table, offset 50

PMCON13 initial image in Control Table, offset 54 initial image in Control Table, offset 54

PMCON14 initial image in Control Table, offset 58 initial image in Control Table, offset 58

PMCON15 initial image in Control Table, offset 5C initial image in Control Table, offset 5C

BPCON 0000 000H 0000 000H

TC initial image in Control Table, offset 68 initial image in Control Table, offset 68

BCON initial image in Control Table, offset 6C initial image in Control Table, offset 6C

DEVICEID initialized by microcode initialized by microcode

IPB2-IPB5 0000 0000H 0000 0000H

DAB2-DAB5 0000 0000H 0000 0000H

XBPCON 0000 0000H 0000 0000H

AC AC initial image in PRCB AC initial image in PRCB

PC C01F2002H C01F2002H

TC initial image in Control Table, offset 68H initial image in Control Table, offset 68H

FP (g15) interrupt stack base interrupt stack base

PFP (r0) undefined undefined

SP (r1) interrupt stack base+64 interrupt stack base+64

RIP (r2) undefined undefined

Table 13-2. Register Values after Reset (Sheet 2 of 2)

Register Value after Power-On Reset, in Hex Value after Software Re-Init, in Hex

1. Loaded from BBIGE bit in the Initialization Boot Record.
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13.2.2 Self Test Function (STEST, FAIL#)

As part of initialization, the i960 Hx processor executes a bus confidence self test, an alignment 
check for data structures within the initial memory image (IMI), and optionally, a built-in self test 
program. The self test (STEST) pin enables or disables built-in self test. The FAIL# pin indicates 
whether the self tests passed or failed. During normal operations the FAIL# pin can be asserted if a 
System Error is detected. The following subsections further describe these pin functions.

The Built-In Self Test (BIST) checks basic functionality of internal data paths, registers and 
memory arrays on-chip. Built-in self test is not intended to be a full validation of processor 
functionality; it is intended to detect catastrophic internal failures and complement a user’s sy
diagnostics by ensuring a confidence level in the processor before any system diagnostics a
executed.

13.2.2.1 The STEST Pin

The STEST pin enables BIST. The user can disable BIST if the initialization time needs to be
minimized or if diagnostics are not necessary. The processor samples STEST pin on the risin
of the RESET# input:

• If STEST is asserted (high), the processor executes BIST.

• If STEST is deasserted, the processor bypasses BIST. 

13.2.2.2 External Bus Confidence Test

The processor always performs the external bus confidence test regardless of STEST pin value.

The external bus confidence test checks external bus functionality; it reads eight words from the 
Initialization Boot Record (IBR) and performs a checksum on the words and the constant 
FFFF FFFFH. The test passes only when the processor calculates a sum of zero (0). The external 
bus confidence test can detect catastrophic bus failures such as external address, data or control 
lines that are stuck, shorted or open.

13.2.2.3 The Fail Pin (FAIL#)

The FAIL# pin signals errors in either the Built-In Self Test or the external bus confidence self test. 
FAIL# is asserted (low) during each self test (Figure 13-3):

• When any test fails, the FAIL# pin remains asserted, a fail code message is driven onto the 
address bus, and the processor stops execution at the point of failure.

• When an external system error occurs, FAIL# remains asserted. See section 13.2.2.4 for 
details.

• When the test passes, FAIL# is deasserted.

If FAIL# stays asserted, the only way to resume normal operation is to perform a reset operation. 
When the STEST pin is used to disable BIST, the test does not execute; however, FAIL# still 
asserts at the point where BIST would occur. FAIL# is deasserted after the bus confidence test 
passes. In Figure 13-3, all transitions on the FAIL# pin are relative to CLKIN as described in the 
80960HA/HD/HT Embedded 32-bit Microprocessor datasheet.
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13.2.2.4 IMI Alignment Check and System Error

The alignment check during initialization for data structures within the IMI ensures that the PRCB, 
control table, interrupt table, system-procedure table, and fault table are aligned to word 
boundaries. Normal processor operation is not possible without proper alignment of these key data 
structures. The alignment check is one case where a System Error could occur.

When the processor detects a System Error, it asserts the FAIL# pin, drives a fail code message 
onto the address bus, and stops execution at the point of failure. The only way to resume normal 
operation of the processor is to perform a reset operation. Because System Error generation can 
occur after the bus confidence test and even after initialization during normal processor operation, 
the FAIL# pin is a logical “1” before the detection of a System Error.

13.2.2.5 Self Test Failure# Codes

When the processor fails the self test, the FAIL# pin asserts and the processor signals the c
the failure. The processor uses only one read bus transaction to signal the fail code message
address of the bus transaction is the fail code itself. The fail code is of the form: 0xfeffffnn; bits 6 
to 0 contain a mask recording the possible failures. Bit 7, when 1, indicates the mask contain
failures from BIST; when 0, the mask indicates other failures. The fail codes are shown in 
Table 13-3 and Table 13-4. 

 

Figure 13-3. FAIL# Functional Timing

RESET# 

FAIL# 

(Bus Test)
Pass

(Built-In Self Test)
Pass

∼ ∼
∼ ∼

∼ ∼
∼ ∼Fail Fail

Table 13-3. Fail Codes for BIST (bit 7 = 1)

Bit When set:

6 On-chip Data-RAM failure detected by BIST

5 Internal Microcode ROM failure detected by BIST

4 I-cache failure detected by BIST

3 D-cache failure detected by BIST

2 Local-register cache or processor core failure detected by BIST

1 Always zero.

0 Always zero.
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13.3 Architecturally Reserved Memory Space

The i960 Hx processor contains 232 bytes of address space. This address space contains portions 
that are architecturally reserved and must not be used by customers. Section 3.5 Memory Address 
Space (pg. 3-15) shows the reserved address space. The i960 Hx processor suppresses all external 
bus cycles from 0 to 7FFH and from FF00 0000H to FFFF FFFFH.

Addresses FF00 0000H through FFFF FFFFH are reserved for implementation-specific functions. 
This address range is termed “reserved” since i960 architecture implementations may use th
addresses for functions such as memory-mapped registers or data structures. To ensure com
object level compatibility, portable code must not access or depend on values in this region. 

The i960 Hx processor uses the reserved address range 0000 0000H through 0000 07FFH f
internal data RAM. This internal data RAM is used for storage of interrupt vectors plus gener
purpose storage available for application software variable allocation or data structures. Load
stores directed to these addresses access internal memory; instruction fetches from these ad
are not allowed. See Chapter 4, “Cache and On-Chip Data RAM”, for more details.

13.3.1 Initial Memory Image (IMI)

The IMI comprises the minimum set of data structures that the processor needs to initialize i
system. As shown in Figure 13-4, these structures are the initialization boot record (IBR), proce
control block (PRCB) and system data structures. The IBR is located at a fixed address in me
The other components are referenced directly or indirectly by pointers in the IBR and the PR

The IMI performs three functions for the processor:

• Provides initial configuration information for the core and integrated peripherals

• Provides pointers to the system data structures and the first instruction to be executed after 
processor initialization

• Provides checksum words that the processor uses in its self test routine at start-up

Several data structures are typically included as part of the IMI because values in these data 
structures are accessed by the processor during initialization. These data structures are usually 
programmed in the systems’s boot ROM, located in memory region 15 of the address space

Table 13-4. Remaining Fail Codes (bit 7 = 0)

Bit When set:

6 Always One; this bit does not indicate a failure.

5 Always One; this bit does not indicate a failure.

4 A data structure within the IMI is not aligned to a word boundary.

3 A System Error during normal operation has occurred.

2 The Bus Confidence test has failed.

1 Always zero.

0 Always zero.
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The required data structures are:

• PRCB

• IBR

• System procedure table

• Control table

• Interrupt table

• Fault table

To ensure proper processor operation, the PRCB, system procedure table, control table, interrupt 
table, and fault table must not be located in architecturally reserved memory — addresses re
for on-chip Data RAM and addresses at and above FF00 0000H. In addition, each of these 
structures must start at a word-aligned address; a System Error occurs if any of these structu
not word-aligned (see section 13.2.2.3).

At initialization, the processor loads the Supervisor Stack Pointer (SSP) from the system proc
table, aligns it to a 16-byte boundary, and caches the pointer in the SSP memory-mapped co
register (see Section 3.3, “Memory-Mapped Control Registers” on page 3-6). Recall that the 
Supervisor Stack Pointer is located in the preamble of the system procedure table at byte of
from the base address. The system procedure table base address is programmed in the PR
Consult Section 7.5.1, “System Procedure Table” on page 7-15 for the format of this table.

At initialization, the NMI vector loads from the interrupt table into location 0000 0000H of the
internal data RAM. The interrupt table is typically programmed in the boot ROM and then 
relocated to internal RAM by reinitializing the processor.

Typically, applications locate the fault table in boot ROM. To locate the fault table in RAM, th
processor must be reinitialized.

The remaining data structures that an application may need are the user stack, supervisor st
interrupt stack. Applications must locate these stacks in a system’s RAM. 
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Figure 13-4. Initial Memory Image (IMI) and Process Control Block (PRCB)
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13.3.1.1 Initialization Boot Record (IBR)

The initialization boot record (IBR) is the primary data structure required to initialize the i960 Hx 
processor. The IBR is a 12-word structure that must be located at address FEFF FF30H (see 
Table 13-5). The IBR has four components: the initial bus configuration data, the first instruction 
pointer, the PRCB pointer and the bus confidence test checksum data.

When the processor reads the IMI during initialization, it must know the bus characteristics of 
external memory where the IMI is located. Specifically, it must know the bus width and endianism 
for the remainder of the IMI. At initialization, the processor sets the PMCON register to an 8-bit 
bus width. The processor then needs to form the initial DLMCON and PMCON15 registers so it 
can access the memory containing the IBR. The lowest-order byte of each of the IBR’s first 4
words are used to form the register values. 

Table 13-5. Initialization Boot Record

Byte Physical Address Description

FEFF FF30H PMCON15, byte 0

FEFF FF31H to FEFF FF33H Reserved

FEFF FF34H PMCON15, byte 1

FEFF FF35H to FEFF FF37H Reserved

FEFF FF38H PMCON15, byte 2

FEFF FF39H to FEFF FF3BH Reserved

FEFF FF3CH PMCON15, byte 3

FEFF FF3DH to FEFF FF3FH Reserved

FEFF FF40H to FEFF FF43H First Instruction Pointer

FEFF FF44H to FEFF FF47H PRCB Pointer

FEFF FF48H to FEFF FF4BH Bus Confidence Self-Test Check Word 0

FEFF FF4CH to FEFF FF4FH Bus Confidence Self-Test Check Word 1

FEFF FF50H to FEFF FF53H Bus Confidence Self-Test Check Word 2

FEFF FF54H to FEFF FF57H Bus Confidence Self-Test Check Word 3

FEFF FF58H to FEFF FF5BH Bus Confidence Self-Test Check Word 4

FEFF FF5CH to FEFF FF5FH Bus Confidence Self-Test Check Word 5
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Example 13-1. Processor Initialization Flow 

Processor_Initialization_flow()

{ FAIL_pin = true;

restore_full_cache_mode; disable(I_cache); invalidate(I_cache); 

disable(D_cache); invalidate(D_cache);

BCON.ctv = 0; /* Selects PMCON15 to control all accesses */

PMCON15 = 0; /* Selects 8-bit bus width */

/** Exit Reset State & Start_Init **/

if (STEST_ON_RISING_EDGE_OF_RESET)

status = BIST();   /* BIST does not return if it fails */

FAIL_pin = false;
   PC = 0x001f2002;  /* PC.Priority = 31, PC.em = Supervisor,*/

 /* PC.te = 0; PC.State = Interrupted    */

ibr_ptr = 0xfeffff30;  /* ibr_ptr used to fetch IBR words      */

    

/** Read PMCON15 image in IBR **/

FAIL_pin = true; IMSK       = 0;

DLMCON.dcen = 0; LMMR0.lmte = 0; LMMR1.lmte = 0; 

DLMCON.be = (memory[ibr_ptr + 0xc] >> 7);

PMCON15[byte2] = 0xc0 & memory[ibr_ptr + 8];    

/** Compute CheckSum on Boot Record **/

carry = 0;  CheckSum = 0xffffffff;

for (i=0; i<8; i++) /* carry is carry out from previous add*/

CheckSum = memory[ibr_ptr + 16 + i*4] + CheckSum + carry;

if (CheckSum != 0)

{ fail_msg = 0xfeffff64;   /* Fail BUS Confidence Test */

  dummy = memory[fail_msg];  /* Do load with address = fail_msg */

  for (;;) ;

          } /* loop forever with FAIL pin true */

else   FAIL_pin = false;

/** Process PRCB and Control Table **/

prcb_ptr   = memory[ibr_ptr+0x14];

ctrl_table = memory[prcb_ptr+4];

Process_PRCB(prcb_ptr);     /* See Process PRCB Section for Details */

IP = memory[ibr_ptr+0x10];

g0 = DEVICE_ID;

return;/* Execute First Instruction */

}
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The four bytes residing at FEFF FF30H, FEFF FF34H, FEFF FF38H and FEFF FF3CH form a 
composite word that describes the characteristics of external memory that are used to fetch the rest 
of the IMI, as shown in Figure 13-5. (Note that the meanings of the bits in these bytes differ from 
those of the i960 Cx processor.) Bits 30 through 0 of this word are loaded into PMCON15, and 
PMCON15[31] is set to zero; this sets the physical characteristics such as timing and bus width. Bit 
31 of the composite word is loaded into bit 0 of the Default LMCON, which sets the “endiane

Note that room for a re-mapped copy of the i960 CF processor IBR exists at address FEFF F
This simplifies building a system where a single ROM can be used for either an i960 Cx or H
processor.

At a later point in initialization, the processor loads the remainder of the memory region 
configuration table from the external control table. The Bus Configuration (BCON) register is 
loaded at this time. The control table valid (BCON.ctv) bit is then set in the control table to val
the PMCON registers after they are loaded. In this way, the bus controller is completely config
during initialization. (See Chapter 15, “External Bus Description” for a complete discussion of 
memory regions and configuring the bus controller.)

After the bus configuration data loads and the new bus configuration is in place, the process
loads the remainder of the IBR, which consists of the first instruction pointer, the PRCB poin
and six checksum words. The processor caches the PRCB pointer and the first instruction p
internally. The processor uses six checksum words along with the PRCB pointer and the firs
instruction pointer in a checksum calculation that implements an external bus confidence tes
pseudo-code flow in Example 13-1 shows the checksum calculation. If the checksum calculatio
equals zero, then the confidence test of the external bus passes.

Figure 13-5 further describes the IBR organization.
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Figure 13-5. PMCON15 Register Bit Description in IBR

Mnemonic Name Bit # Function

NRAD4:0 Number of Read Address 
to Data Wait States 0-4

Specifies the number of wait states (0 to 31) inserted 
between the assertion of ADS# and the first data cycle for 
read accesses.

NRDD1:0 Number of Read Data to 
Data Wait States 6-7 Specifies the number of wait states (0 to 3) inserted 

between successive data cycles for a burst read access.

NWAD4:0 Number of Write Address 
to Data Wait States 8-12

Specifies the number of wait states (0 to 31) inserted 
between the assertion of ADS# and the first data cycle for 
write accesses.

NWDD1:0 Number of Write Data to 
Data Wait States 14-15 Specifies the number of wait states (0 to 3) inserted 

between successive data cycles for a burst write access.

NXDA3:0 Number of Bus 
Turnaround Wait States 16-19 Specifies the number of wait states (0-15) inserted after 

the last data cycle for accesses in this region.

PEN Parity Enable 20 Enables parity generation/checking for a region.
0 = not enabled, 1 = enabled 

PODD Parity Odd 21 Selects parity sense for a region.
0 = even, 1 = odd

BW1:0 Bus Width 22-23
Selects the bus width for a region:
00 = 8-bit, 01 = 16-bit, 10 = 32-bit bus
11 = reserved (do not use)

RPIPE Read Pipelining Enable 24
Enables address pipelining for read accesses in this 
region.

0 = disabled, 1 = enabled

BEN Burst Enable 28 Enables burst accesses for the region.
0 = disabled, 1 = enabled

RBEN READY#/BTERM# Enable 29

Enables the READY# and BTERM# pins for a region.

0 = READY#/BTERM# ignored in this region

1 = READY#/BTERM# enabled

BBIGE Boot Big-Endian Byte 
Order 31

0 = little-endian, 1 = big-endian

This bit is copied to the DLMCON.be bit. See Section 14.4,
“Programming the Logical Memory Attributes” on 
page 14-11
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13.3.1.2 Process Control Block (PRCB)

The PRCB contains base addresses for system data structures and initial configuration information 
for the core and integrated peripherals. Software can access the base addresses from these internal 
registers through the memory-mapped interface. Upon reset or reinitialization, the processor 
initializes these registers. The PRCB format is shown in Table 13-6.

The processor programs the initial configuration information in the arithmetic controls (AC) initial 
image, the fault configuration word, the instruction cache configuration word, and the register 
cache configuration word. Figure 13-6 shows these configuration words.

Table 13-6. PRCB Configuration

Physical Address Description

PRCB POINTER + 00H Fault Table Base Address

PRCB POINTER + 04H Control Table Base Address

PRCB POINTER + 08H AC Register Initial Image

PRCB POINTER + 0CH Fault Configuration Word

PRCB POINTER + 10H Interrupt Table Base Address

PRCB POINTER + 14H System Procedure Table Base Address

PRCB POINTER + 18H Reserved, load with zero

PRCB POINTER + 1CH Interrupt Stack Pointer

PRCB POINTER + 20H Instruction Cache Configuration Word

PRCB POINTER + 24H Register Cache Configuration Word
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Figure 13-6. Process Control Block Configuration Words
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AC Register Initial Image

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) no overflow
(1) overflow

Integer Overflow Mask Bit - AC.om
(0) enable overflow faults
(1) mask overflow faults

No-Imprecise-Faults Bit - AC.nif
(0) allow imprecise fault conditions
(1) prevent imprecise fault conditions

Register Cache Configuration Word

Number of Frames Reserved for High Priority Interrupts

Disable Instruction Cache

Instruction Cache Configuration Word

(0) enable cache
(1) disable cache

Mask Non-Aligned Bus Request Fault
(0) enable the fault
(1) mask the fault
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13.3.2 Process PRCB Flow

The following pseudo-code flow illustrates the PRCB processing. Note that this flow is used for 
both initialization and reinitialization (through sysctl).

Example 13-2. Process PRCB Flow 

Process_PRCB(prcb_ptr)

{  PRCB_mmr = prcb_ptr;

   reset_state(data_ram); /* It is unpredictable whether the   */

                          /* Data RAM keeps its prior contents */
    fault_table  =  memory[PRCB_mmr];

    ctrl_table   =  memory[PRCB_mmr+0x4];

    AC           =  memory[PRCB_mmr+0x8];

    fault_config =  memory[PRCB_mmr+0xc];

        if (1 & (fault_config >> 30)) generate_fault_on_unaligned_access = false;
        else                          generate_fault_on_unaligned_access = true;

/** Load Interrupt Table and Cache NMI Vector Entry in Data RAM**/  
    Reset_block_NMI;
    interrupt_table =  memory[PRCB_mmr+0x10];
    memory[0] = memory[interrupt_table + (248*4) + 4];

/** Process System Procedure Table **/

    sysproc = memory[PRCB_mmr+0x14];
    temp    = memory[sysproc+0xc];
    SSP_mmr = (0x3) & temp;
    SSP.te  = 1 & temp;

/** Initialize ISP, FP, SP, and PFP **/
    ISP_mmr =  memory[PRCB_mmr+0x1c];
    FP      = ISP_mmr;
    SP      = FP + 64;
    PFP     = FP;

/** Initialize Instruction Cache **/
    ICCW = memory[PRCB_mmr+0x20];
    if! (1 & (ICCW >> 16) ) enable(I_cache);

/** Configure Local Register Cache **/
    programmed_limit = (15 & memory[PRCB_mmr+0x24]) );
    config_reg_cache( programmed_limit );

/** Load_control_table. Note breakpoints and BPCON are excluded here **/
    load_control_table(ctrl_table+0x10 , ctrl_table+0x58);
    load_control_table(ctrl_table+0x68 , ctrl_table+0x6c);

/** Initialize Timers **/
    TMR0.tc  = 0; TMR1.tc = 0; TMR0.enable = 0; TMR1.enable = 0;
    TMR0.sup  = 0; TMR1.sup = 0; TMR0.reload = 0; TMR1.reload = 0;
    TMR0.csel  = 0; TMR1.csel = 0;

    return;

}
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13.3.2.1 AC Initial Image

The AC initial image loads into the on-chip AC register during initialization. The AC initial image 
allows selection of the initial value of the overflow mask, the no imprecise faults (AC.nif) bit and 
the condition code bits at initialization. 

Applications can use the AC initial image condition code bits to specify the source of an 
initialization or reinitialization when a single instruction entry point to the user startup code is 
desirable. This is accomplished by programming the condition code in the AC initial image to a 
different value for each different entry point. The user startup code can detect the condition code 
values and thus the source of the reinitialization by using the compare or compare-and-branch 
instructions.

13.3.2.2 Fault Configuration Word

The fault configuration word lets the user mask the OPERATION.UNALIGNED fault when an 
unaligned memory request is issued. (See Section 14.3.2, “Bus Transactions across Region 
Boundaries” on page 14-10 for a description of unaligned memory requests.) Whenever the 
processor encounters an unaligned access, it always performs the access, then determines wheth
or not it should generate a fault. If bit 30 in the fault configuration word is set, no fault is gener
If bit 30 is clear, the processor generates a fault after performing an unaligned memory requ

13.3.2.3 Instruction Cache Configuration Word

The instruction cache configuration word lets the user enable or disable the instruction cache
initialization. Setting bit 16 in the instruction cache configuration word disables the instruction
cache and directs all instruction fetches to external memory. Disabling the instruction cache 
useful for tracing execution in a software debug environment. The instruction cache remains
disabled until one of three operations is performed:

• The processor reinitializes with a new value in the instruction cache configuration word

• Software issues an icctl instruction with the enable instruction cache operation

• Software issues a sysctl instruction with the configure-instruction-cache-message type and a 
cache configuration mode other than disable cache
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13.3.2.4 Register Cache Configuration Word

The register cache configuration word specifies the number of free frames in the local register 
cache that can be used by critical code (i.e., code that is in the interrupted state and has a process 
priority greater than or equal to 28). See Figure 13-6.

The register cache configuration word also specifies the number of additional register frames that 
can be cached on-chip, up to a total of 15 register frames. The default register cache can contain 
five register frames. Bits 3-0 of the register cache word expand the cache size by another 0 to 10 
frames. 

The additional register cache space comes at the expense of on-chip general purpose RAM space. 
The register cache grows downward into the RAM space from the highest RAM address. For 
example, the first additional register cache expansion consumes addresses 0000 07C0H through 
0000 07FFH of RAM. Table 13-7 illustrates the trade-offs between register cache size and 
available general purpose RAM space.

Once allocated, register cache space fills starting at the lowest address. For example, if three 
additional register cache frames are reserved in RAM, the first frame will be cached beginning at 
address 0000 0740H. Therefore, user software cannot expect to use RAM addresses allocated to 
the register cache. 

User software is responsible for preventing register cache corruption due to writes to RAM.

The register cache and the configuration word are explained further in Section 4.2, “Local Register 
Cache” on page 4-3.

Table 13-7. Register Cache Size vs. Available General Purpose RAM

Register Cache Word 
Bits 3-0 (Hex)

On-Chip Register 
Cache Size (Frames) Available General RAM (Hex)

0 0

0000 0000H to 0000 07FFH

1 1

2 2

3 3

4 4

5 5

6 6 0000 0000H to 0000 07BFH

7 7 0000 0000H to 0000 077FH

8 8 0000 0000H to 0000 073FH

9 9 0000 0000H to 0000 06FFH

A 10 0000 0000H to 0000 06BFH

B 11 0000 0000H to 0000 067FH

C 12 0000 0000H to 0000 063FH

D 13 0000 0000H to 0000 05FFH

E 14 0000 0000H to 0000 05BFH

F 15 0000 0000H to 0000 057FH
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13.3.3 Control Table

The control table is the data structure that contains the on-chip control register values. It is 
automatically loaded during initialization and must be completely constructed in the IMI. 
Figure 13-7 shows the Control Table format.

For register bit definitions of the on-chip control table registers, see the following:

• IMAP — Figure 11-9., “Interrupt Mapping (IMAP0-IMAP2) Registers” (pg. 11-22)

• ICON — Figure 11-8., “Interrupt Control (ICON) Register” (pg. 11-20)

• PMCON — Figure 14-2., “PMCON Register Bit Descriptions” (pg. 14-8)

• TC — Figure 9-1., “Trace Controls (TC) Register” (pg. 9-2)

• BCON — Figure 14-3., “Bus Control Register (BCON)” (pg. 14-10) 

Figure 13-7. Control Table

31 0

Reserved (Initialize to 0)

00H

04H

08H

0CH

Interrupt Map 0 (IMAP0) 10H

Interrupt Map 1 (IMAP1) 14H

Interrupt Map 2 (IMAP2) 18H

Interrupt Control (ICON) 0CH

Physical Memory Region 0 Configuration (PMCON0) 20H

Physical Memory Region 1 Configuration (PMCON0) 24H

Physical Memory Region 2 Configuration (PMCON0) 28H

Physical Memory Region 3 Configuration (PMCON0) 2CH

Physical Memory Region 4 Configuration (PMCON0) 30H

Physical Memory Region 5 Configuration (PMCON0) 34H

Physical Memory Region 6 Configuration (PMCON0) 38H

Physical Memory Region 7 Configuration (PMCON0) 3CH

Physical Memory Region 8 Configuration (PMCON0) 40H

Physical Memory Region 9 Configuration (PMCON0) 44H

Physical Memory Region 10 Configuration (PMCON0) 48H

Physical Memory Region 11 Configuration (PMCON0) 4CH

Physical Memory Region 12 Configuration (PMCON0) 50H

Physical Memory Region 13 Configuration (PMCON0) 54H

Physical Memory Region 14 Configuration (PMCON0) 58H

Physical Memory Region 15 Configuration (PMCON0) 5CH

Reserved (Initialize to 0)
60H

64H

Trace Controls (TC) 68H

Bus Configuration Control (BCON) 6CH
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13.4 Device Identification on Reset

The DEVICEID memory-mapped register contains a number characterizing the microprocessor 
type and stepping. During initialization, the processor places the DEVICEID register value into g0.

The value for device identification is compliant with the IEEE 1149.1 specification and Intel 
standards. Table 13-8 describes the fields of the device ID. The Version field corresponds to silicon 
stepping; for example, 0000 refers to the A-0 stepping.

Figure 13-8. IEEE 1149.1 Device Identification Register

28 24 20 4 016 12 8

110010000000

Manufacturer ID

Part Number

Version ModelGeneration

Product

Type 1

Table 13-8. Fields of IEEE 1149.1 Device ID

Field Value Definition

Version 0000 = A0 step Used to indicate major steppings. 

VCC 1 = 3.3 volt device Indicates that the device uses a VCC of 3.3 volt

Product Type 00 0100 Designates type of product (Indicates i960 CPU)

Generation Type 0000 = reserved
0010 = H-series

Indicates the generation (or series) that the 
product belongs to.

Model
00000 = 1x core clock (HA)
00001 = 2x core clock (HD)
00010 = 3x core clock (HT)

Indicates member within series and specific model 
information.

Manufacturer ID 000 0000 1001 Manufacturer ID assigned by IEEE 
(Indicates Intel)
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13.4.1 Reinitializing and Relocating Data Structures

Reinitialization can reconfigure the processor and change pointers to data structures. The processor 
is reinitialized by issuing the sysctl instruction with the reinitialize processor message type. (See 
Section 6.2.67, “sysctl” on page 6-108 for a description of sysctl.) The reinitialization instruction 
pointer and a new PRCB pointer are specified as operands to the sysctl instruction. When the 
processor is reinitialized, the fields in the newly specified PRCB are loaded as described in 
Section 13.3.1.2, “Process Control Block (PRCB)” on page 13-17. 

Reinitialization is useful for relocating data structures to RAM after initialization. The interrup
table must be located in RAM to allow the processor to post software-generated interrupts b
writing to the interrupts table’s pending priorities and pending interrupts fields. It may also be
necessary to relocate the control table to RAM. It must be in RAM if the control register value
to be changed by user code. In some systems, it is necessary to relocate other data structur
table and system procedure table) to RAM because of unsatisfactory load performance from 

After initialization, the software is responsible for copying data structures from ROM into RAM
The processor then reinitializes with a new PRCB containing the base addresses of the new
structures in RAM.

Reinitialization is required to relocate any of the data structures listed below, since the proce
caches the pointers to the structures. The processor caches these pointers during its initializ

• Interrupt Table Address

• Fault Table Address

• System Procedure Table Address

• Control Table Address

To modify these data structures, software re-initialization is needed.

During software re-initialization, BCON.sirp may be set up to protect the first 64 bytes of internal 
data RAM from supervisor mode writes. This bit is cleared during software re-initialization to 
allow the NMI vector to be cached. The remaining BCON bits are not modified at this point.Later 
in the software re-initialization process, the entire BCON MMR is reloaded with the value from the 
Control Table. In addition to clearing the BCON.sirp bit, all GMU protection is disabled to prevent 
GMU faults.
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13.5 Startup Code Example

After initialization, user startup code typically copies initialized data structures from ROM to 
RAM, reinitializes the processor, sets up the first stack frame, changes the execution state to non-
interrupted and calls the _main routine. This section presents an example startup routine and 
associated header file. This simplified startup file can be used as a basis for more complete 
initialization routines.

The examples in this section are useful for creating and evaluating startup code. The following lists 
the example’s number, name and page.

• Example 13-3 “Initialization Header File (init.h)” on page 13-26

• Example 13-4 “Start-up Routine (init.s) (Sheet 1 of 4)” on page 13-27

• Example 13-5 “High-Level Start-up Code (initmain.c)” on page 13-30

• Example 13-6 “Control Table (ctltbl.c)” on page 13-31

• Example 13-7 “Initialization Boot Record File (rom_ibr.c)” on page 13-32

• Example 13-8 “Linker Directive File (init.ld)” on page 13-33

• Example 13-9 “Makefile” on page 13-34
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Example 13-3. Initialization Header File (init.h)

/*----------------------------------------------------------*/

/*  init.h                                                  */

/*----------------------------------------------------------*/

#define BYTE_N(n,data)  (((unsigned)(data) >> (n*8)) & 0xFF)

typedef struct

   {

   unsigned char bus_byte_0;

   unsigned char reserved_0[3];

   unsigned char bus_byte_1;

   unsigned char reserved_1[3];

   unsigned char bus_byte_2;

   unsigned char reserved_2[3];

   unsigned char bus_byte_3;

   unsigned char reserved_3[3];

   void     (*first_inst)();

   unsigned *prcb_ptr;

   int      check_sum[6];

   }IBR;

/* PMCON Bus Width can be 8,16 or 32, default to 8 

 * PMCON15 BOOT_BIG_ENDIAN  0=little endian, 1=big endian

 */

#define BUS_WIDTH(bw)   ((bw==16)?(1<<22):(0)) |

((bw==32)?(2<<22):(0))

#define BOOT_BIG_ENDIAN (on)   ((on)?(1<<31:0))

/* Bus configuration */

#define DEFAULT (BUS_WIDTH(8) | BOOT_BIG_ENDIAN(0))

#define I_O (BUS_WIDTH(8) | BOOT_BIG_ENDIAN(0))

#define DRAM (BUS_WIDTH(32)| BOOT_BIG_ENDIAN(0))

#define ROM  (BUS_WIDTH(8) | BOOT_BIG_ENDIAN(0))
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Example 13-4. Start-up Routine (init.s)  (Sheet 1 of 4)

/*----------------------------------------------------------*/

/*  init.s                                                  */

/*----------------------------------------------------------*/

/* initial PRCB  */

.globl  _rom_prcb

.align 4

_rom_prcb:

.word   boot_flt_table # 0 - Fault Table

.word   _boot_control_table # 4 - Control Table

.word   0x00001000 # 8 - AC reg mask

overflow fault

.word   0x40000000 # 12 - Flt CFG

.word   boot_intr_table # 16 - Interrupt Table

.word   rom_sys_proc_table # 20 - System Procedure Table

.word   0 # 24 - Reserved

.word   _intr_stack # 28 - Interrupt Stack

# Pointer

.word   0x00000000 # 32 - Inst. Cache 

# - enable cache

.word   0x00000205 # 36 - Register Cache 

# Configuration

/* ROM system procedure table */

.equ    supervisor_proc, 2

.text

.align 6 /* or .align 2 or .align 4 */

rom_sys_proc_table:

.space  12                      # Reserved

.word   _supervisor_stack       # Supervisor stack pointer

.space  32                                # Preserved

.word   _default_sysproc                  # sysproc 0

.word   _default_sysproc                  # sysproc 1

.word   _default_sysproc                  # sysproc 2

.word   _default_sysproc                  # sysproc 3

.word   _default_sysproc                  # sysproc 4

.word   _default_sysproc                  # sysproc 5

.word   _default_sysproc                  # sysproc 6

.word   _fault_handler + supervisor_proc  # sysproc 7

.word   _default_sysproc                  # sysproc 8

.space  251*4                             # sysproc 9-259

/* Fault Table */

.equ    syscall, 2

.equ    fault_proc, 7

.text

.align  4

boot_flt_table:

.word   (fault_proc<<2) + syscall    # 0-Parallel Fault

.word   0x27f

.word   (fault_proc<<2) + syscall    # 1-Trace Fault
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.word   0x27f

.word   (fault_proc<<2) + syscall    # 2-Operation Fault

.word   0x27f

.word   (fault_proc<<2) + syscall    # 3-Arithmetic Fault

.word   0x27f

.word   0                            # 4-Reserved

.word   0

.word   (fault_proc<<2) + syscall    # 5-Constraint Fault

.word   0x27f

.word   0                            # 6-Reserved

.word   0

.word   (fault_proc<<2) + syscall    # 7-Protection Fault

.word   0x27f

.word   0                            # 8-Reserved

.word   0

.word   0                            # 9-Reserved

.word   0

.word   (fault_proc<<2) + syscall    # 0xa-Type Fault

.word   0x27f

.space  21*8                         # reserved

/* Boot Interrupt Table */

.text

boot_intr_table:

.word   0                        # Pending Priorities

.word   0, 0, 0, 0, 0, 0, 0, 0   # Pending Interrupts         Vectors

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 8

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 10

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 18

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 20

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 28

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 30

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 38

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 40

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 48

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 50

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 58

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 60

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 68

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 70

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 78

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 80

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 88

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 90

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 98

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # a0

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # a8

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # b0

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # b8

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # c0

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # c8

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # d0

Example 13-4. Start-up Routine (init.s)  (Sheet 2 of 4)
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.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # d8

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # e0

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # e8

.word   _intx, _intx, _intx, _intx,     0,     0,     0,     0  # f0

.word   _nmi,      0,     0,     0, _intx, _intx, _intx, _intx  # f8

/* START */

/* Processor starts execution here after reset. */

.text

.globl  _start_ip

.globl  _reinit

_start_ip:

mov     0, g14              /* g14 must be 0 for ic960 C compiler */

/* MON960 requires copying the .data area into RAM. If a user application   

* does not require this it is not necessary. 

* Copy the .data into RAM. The .data has been packed in the ROM after the 

* code area. If the copy is not needed (RAM-based monitor), the symbol 

* rom_data can be defined as 0 in the linker directives file.

*/

lda     rom_data, g1            # load source of copy

cmpobe  0, g1, 1f

lda     __Bdata, g2             # load destination

lda     __Edata, g3

 init_data:

ldq     (g1), r4

addo    16, g1, g1

stq     r4, (g2)

addo    16, g2, g2

cmpobl  g2, g3, init_data

1:

/* Initialize the BSS area of RAM. */

lda     __Bbss, g2              # start of bss

lda     __Ebss, g3              # end of bss

movq    0,r4

bss_fill:

stq     r4, (g2)

addo    16, g2, g2

cmpobl  g2, g3, bss_fill

_reinit:

ldconst 0x300, r4               # reinitialize sys control

lda     1f, r5

lda     _ram_prcb, r6

sysctl  r4, r5, r6

1:

lda     _user_stack, pfp

lda     64(pfp), sp        

mov     pfp, fp         /* new fp */

flushreg

ldconst 0x001f2403, r3 /* PC mask */

ldconst 0x000f0003, r4 /* PC value */

Example 13-4. Start-up Routine (init.s)  (Sheet 3 of 4)
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modpc r3, r3, r4 /* Lower interrupt priority */

*/

/* Clear the IPND register */

lda     0xff008500, g0

mov     0, g1

st      g1,(g0)

callx   _main                    #to main routine

.globl  _intr_stack

.globl  _user_stack

.globl  _supervisor_stack

.bss    _user_stack, 0x0200, 6          # default application stack

.bss    _intr_stack, 0x0200, 6          # interrupt stack

.bss    _supervisor_stack, 0x0600, 6    # fault (supervisor) stack

.text

_fault_handler:

ldconst ’F’, g0

call    _co

ret

_default_sysproc:

ret

_intx:

ldconst ’I’, g0

call    _co

ret

Example 13-5. High-Level Start-up Code (initmain.c) 

unsigned componentid = 0;

main()

{ /* system- or board-specific code goes here */

} /* this code is called by init.s */

co()

{ /* system or board-specific output routine goes here */

}

Example 13-4. Start-up Routine (init.s)  (Sheet 4 of 4)
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Example 13-6. Control Table (ctltbl.c) 

/*----------------------------------------------------------*/

/*  ctltbl.c                                                */

/*----------------------------------------------------------*/

#include "init.h"

typedef struct

   {

   unsigned control_reg[28];

   }CONTROL_TABLE;

const CONTROL_TABLE boot_control_table = {

/* Reserved */

0, 0, 0, 0,

/* Interrupt Map Registers */

0, 0, 0,/* Interrupt Map Regs (set by code as needed) */

  0x43bc,   /* ICON

             *               - dedicated mode,

             *               - enabled

             * system_init 0 - falling edge activated,

             * system_init 1 - falling edge activated,

             * system_init 2 - falling edge activated,

             * system_init 3 - falling edge activated,

             * system_init 4 - level-low activated,

             * system_init 5 - falling edge activated,

             * system_init 6 - falling edge activated,

             * system_init 7 - falling edge activated,

             *               - mask unchanged,

             *               - not cached,

             *               - fast,

             */

/* Physical Memory Configuration Registers */

DEFAULT, 0,/* Region 0 */
DEFAULT, 0,/* Region 1 */
DEFAULT, 0,/* Region 2 */
DEFAULT, 0,/* Region 3 */
DEFAULT, 0,/* Region 4 */
DEFAULT, 0,/* Region 5 */
I_O, 0,/* Region 6 */
DEFAULT, 0,/* Region 7 */
DEFAULT, 0,/* Region 8 */
DEFAULT, 0,/* Region 9 */
DEFAULT, 0,/* Region 10 */
DEFAULT, 0,/* Region 11 */
DRAM, 0,/* Region 12 */
DEFAULT, 0,/* Region 13 */
DEFAULT, 0,/* Region 14 */
ROM,  0,/* Region 15 */

0, /* Reserved */

0, /* Breakpoint Control */

0, /* Trace Controls */

1 /* Bus Configuration Control (Region config. valid) */

};
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Example 13-7. Initialization Boot Record File (rom_ibr.c) 

#include "init.h"

/*

 * NOTE: The ibr must be located at 0xFEFFFF30. Use the linker to 

 * locate this structure. 

 * The boot configuration is always region 15, since the IBR

 * must be located there

 */

extern void start_ip();

extern unsigned rom_prcb;

extern unsigned checksum;

#define CS_6 (int) &checksum  /* value calculated in linker */

#define BOOT_CONFIG ROM

const IBR init_boot_record =

{

BYTE_N(0,BOOT_CONFIG),    /* PMCON15 byte 1 */

0,0,0,                    /* reserved set to 0 */

BYTE_N(1,BOOT_CONFIG),    /* PMCON15 byte 2 */

0,0,0,                    /* reserved set to 0 */

BYTE_N(2,BOOT_CONFIG),    /* PMCON15 byte 3 */

0,0,0,                    /* reserved set to 0 */

BYTE_N(3,BOOT_CONFIG),    /* PMCON15 byte 4 */

0,0,0,                    /* reserved set to 0 */

start_ip,
&rom_prcb,

-2,

0,

0,

0,

0,

CS_6

};
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Example 13-8. Linker Directive File (init.ld) 

/*----------------------------------------------------------*/

/*  init.ld                                                 */

/*----------------------------------------------------------*/

MEMORY

{

    /*

      Enough space must be reserved in ROM after the text

      section to hold the initial values of the data section.

    */

    rom:     o=0xfefe0000,l=0x1fc00

    rom_dat: o=0xfefffc00,l=0x0300    /* placeholder for .data image */

    ibr:        o=0xfeffff30,l=0x0030

    data:       o=0xa0000000,l=0x0300

    bss:        o=0xa0000300,1=0x7d00

}

SECTIONS

{

.ibr :

{

  rom_ibr.o

} > ibr

  .text :

{

} > rom

.data :

{

} > data

.bss :

{

} > data

}

rom_data = __Etext;  /* used in init.s as source of .data

section initial values.  ROM960 

"move" command places the .data 

section right after the .text section */

_checksum = -(_rom_prcb + _start_ip);

HLL()

/*Rommer script embedded here: the following creates a ROM image

#*move $0 .text 0               

#*move $0  

#*move $0 .ibr 0x1ff30

#*mkimage $0 $0.ima

#*ihex $0.ima $0.hex mode16

#*map  $0

#*quit

*/
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Example 13-9. Makefile 

/*----------------------------------------------------------*/

/*  makefile                                                */

/*----------------------------------------------------------*/

LDFILE = init

FINALOBJ = init

OBJS = init.o ctltbl.o initmain.o

IBR = rom_ibr.o

LDFLAGS = -AJF -Fcoff -T$(LDFILE) -m

ASFLAGS = -AJF -V

CCFLAGS = -AJF -Fcoff -V -c

init.ima: $(FINALOBJ)

  rom960 $(LDFILE) $(FINALOBJ)

init: $(OBJS) $(IBR)

  gld960 $(LDFLAGS) -o $< $(OBJS)

.s.o:

  gas960c $(ASFLAGS) $<

.c.o:

  gcc960 $(CCFLAGS) $<
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13.6 System Requirements

The following sections discuss generic hardware requirements for a system built around the i960 
Hx processor. This section describes electrical characteristics of the processor’s interface to
external circuit. The CLKIN, RESET#, STEST, FAIL#, ONCE#, VSS and VCC pins are described 
in detail. Specific signal functions for the external bus signals and interrupt inputs are discus
their respective sections in this manual. 

13.6.1 Input Clock (CLKIN)

The clock input (CLKIN) determines processor execution rate and timing. It is designed to be
driven by most common TTL crystal clock oscillators. The clock input must be free of noise a
conform with the specifications listed in the data sheet. CLKIN input capacitance is minimal;
this reason, it may be necessary to terminate the CLKIN circuit board trace to reduce oversho
undershoot. 

13.6.2 Power and Ground Requirements (VCC, VSS)

The i960 Hx processor is designed for 3.3 V VCC and is compatible with typical 5 V TTL signals.

The large number of VSS and VCC pins reduces the impedance of power and ground connection
the chip effectively and reduces transient noise induced by current surges. The i960 Hx proce
implemented in CMOS technology. Unlike NMOS processes, power dissipation in the CMOS
process is due to capacitive charging and discharging on-chip and in the processor’s output b
there is almost no DC power component. The nature of this power consumption results in cu
surges when capacitors charge and discharge. The processor’s power consumption depends
on frequency. It also depends on voltage and capacitive bus load (see the 80960HA/HD/HT 
Embedded 32-bit Microprocessor datasheet).

To reduce clock skew, i960 Hx processor isolates the VCCPLL pin for the Phase Lock Loop (PLL) 
circuit on the pinout. The lowpass filter, as shown in Figure 13-9, reduces noise-induced clock 
jitter and its effects on timing relationships in system designs. The 4.7 µF capacitor must be 
ESR solid tantalum, the 0.01 µF capacitor must be of the type X7R and the node connecting
VCCPLL must be as short as possible.
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13.6.3 VCC5 Pin Requirements

In mixed voltage systems that drive the i960 Hx processor inputs in excess of 3.3 V, the VCC5 pin 
must be connected to the system’s 5 V supply. To limit current flow into the VCC5 pin, there is a 
limit to the voltage differential between the VCC5 pin and the other VCC pins. The voltage 
differential (VDIFF)between the 80960Hx VCC5 pin and its 3.3 V VCC pins should never exceed 
2.25 V. This limit applies to power up, power down, and steady-state operation. See the 80960HA/
HD/HT Embedded 32-bit Microprocessor datasheet for more details.

If the voltage difference requirements cannot be met due to system design limitations, an alt
solution may be employed. As shown in Figure 13-10, a minimum of 100 ohm series resistor ma
be used to limit the current into the VCC5 pin. This resistor ensures that current drawn by the VCC5 
pin does not exceed the maximum rating for this pin.

This resistor is not necessary in systems that can guarantee the VDIFF specification. In 3.3 V-only 
systems and systems that drive the i960 Hx processor pins from 3.3 V logic, connect the VCC5 pin 
directly to the 3.3 V VCC plane. 

Figure 13-9. VCCPLL Lowpass Filter

100

3.3 V VCC
(Board Plane)

VCCPLL
(On i960® Hx Processors)

Ω (±5%, 1/8 W)

0.01µF 4.7µF 

+

Figure 13-10. VCC5 Current-Limiting Resistor

5 V Vcc VCC5 Pin

100 Ω
(±5%, 0.5 W)

(Board Plane)
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13.6.4 Power and Ground Planes

Power and ground planes must be used in i960 Hx processor systems to minimize noise. 
Justification for these power and ground planes is the same as for multiple VSS and VCC pins. ower 
and ground lines have inherent inductance and capacitance, therefore, an impedance
Z=(L/C)1/2. 

Total characteristic impedance for the power supply can be reduced by adding more lines. This 
effect is illustrated in Figure 13-11, which shows that two lines in parallel have half the impedance 
of one. Ideally, a plane — an infinite number of parallel lines — results in the lowest impedan
Fabricate power and ground planes with a 1 oz. copper for outer layers and 0.5 oz. copper fo
layers.

All power and ground pins must be connected to the planes. Ideally, the i960 Hx processor s
be located at the center of the board to take full advantage of these planes, simplify layout a
reduce noise.

13.6.5 Decoupling Capacitors

Decoupling capacitors placed across the processor between VCC and VSS reduce voltage spikes by
supplying the extra current needed during switching. Place these capacitors close to the dev
because connection line inductance negates their effect. Also, for this reason, the capacitors
be low inductance. Chip capacitors (surface mount) exhibit lower inductance.

Figure 13-11. Reducing Characteristic Impedance
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13.6.6 I/O Pin Characteristics

The i960 Hx processor interfaces to its system through its pins. This section describes the general 
characteristics of the input and output pins. 

13.6.6.1 Output Pins

All output pins on the i960 Hx processor are three-state outputs. Each output can drive a logic 1 
(low impedance to VCC); a logic 0 (low impedance to VSS); or float (present a high impedance to 
VCC and VSS). Each pin can drive an appreciable external load. The 80960HA/HD/HT Embedded 
32-bit Microprocessor datasheet describes each pin’s drive capability and provides timing and
derating information to calculate output delays based on pin loading.

13.6.6.2 Input Pins

All i960 Hx processor inputs are designed to detect TTL thresholds, providing compatibility w
the vast amount of available random logic and peripheral devices that use TTL outputs. 

Most i960 Hx processor inputs are synchronous inputs (Table 13-9). A synchronous input pin must 
have a valid level (TTL logic 0 or 1) when the value is used by internal logic. If the value is n
valid, it is possible for a metastable condition to be produced internally resulting in indetermi
behavior. The 80960HA/HD/HT Embedded 32-bit Microprocessor datasheet specifies input valid 
setup and hold times relative to CLKIN for the synchronized inputs.

i960 Hx processor inputs that are considered asynchronous are internally synchronized to the
edge of CLKIN. Since they are internally synchronized, the pins need to be held only long en
for proper internal detection. In some cases, it is useful to know if an asynchronous input wil
recognized on a particular CLKIN cycle or held off until a following cycle. The 80960HA/HD/HT 
Embedded 32-bit Microprocessor datasheet provides setup and hold requirements relative to 
CLKIN which ensure recognition of an asynchronous input. The data sheet also supplies hold
required for detection of asynchronous inputs.

The ONCE# and STEST inputs are asynchronous inputs. These signals are sampled and lat
the rising edge of the RESET# input instead of CLKIN.

Table 13-9. Input Pins

Synchronous Inputs
(sampled by CLKIN)

Asynchronous Inputs
(sampled by CLKIN)

Asynchronous Inputs
(sampled by RESET#)

D[31:0]

RDYRCV#

HOLD

TDI

TMS

RESET#

XINT[7:0]#

NMI#

STEST

LOCK#

ONCE#
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13.6.7 High Frequency Design Considerations

At high signal frequencies and/or with fast edge rates, the transmission line properties of signal 
paths in a circuit must be considered. Transmission line effects and crosstalk become significant in 
comparison to the signals. These errors can be transient and therefore difficult to debug. The 
following sections of this chapter discuss some high-frequency design issues. For more 
information, consult a reference on high-frequency design.

13.6.7.1 Line Termination

Input voltage level violations are usually due to voltage spikes that raise input voltage levels above 
the maximum limit (overshoot) and below the minimum limit (undershoot). These voltage levels 
can cause excess current on input gates, resulting in permanent damage to the device. Even if no 
damage occurs, many devices are not guaranteed to function as specified if input voltage levels are 
exceeded.

Signal lines are terminated to minimize signal reflections and prevent overshoot and undershoot. 
Terminate the line if the round-trip signal path delay is greater than signal rise or fall time. If the 
line is not terminated, the signal reaches its high or low level before reflections have time to 
dissipate and overshoot or undershoot occurs.

For the i960 Hx processor, two termination methods are attractive: AC and series. An AC 
termination matches the impedance of the trace, thereby eliminating reflections due to the 
impedance mismatch.

Series termination decreases current flow in the signal path by adding a series resistor as shown in 
Figure 13-12. The resistor increases signal rise and fall times so that the change in current occurs 
over a longer period of time. Because the amount of voltage overshoot and undershoot depends on 
the change in current over time (V = L di/dt), the increased time reduces overshoot and undershoot. 
Place the series resistor as close as possible to the signal source. AC termination is effective in 
reducing signal reflection (ringing). This termination is accomplished by adding an RC 
combination at the signal’s farthest destination (Figure 13-13). While the termination provides no 
DC load, the RC combination damps signal transients.

Selection of termination methods and values is dependent upon many variables, such as ou
buffer impedance, board trace impedance and input impedance.
i960® Hx Microprocessor Developer’s Manual 13-39



Initialization and System Requirements

ed 
rward 
13.6.7.2 Latchup

Latchup is a condition in a CMOS circuit in which VCC becomes shorted to VSS. Intel’s CMOS 
processes are immune to latchup under normal operation conditions. Latchup can be trigger
when the voltage limits on I/O pins are exceeded, causing internal PN junctions to become fo
biased. The following guidelines help prevent latchup:

• Observe the maximum rating for input voltage on I/O pins.

• Never apply power to an i960 Hx processor pin or a device connected to an i960 Hx processor 
pin before applying power to the processor itself.

• Prevent overshoot and undershoot on I/O pins by adding line termination and by designing to 
reduce noise and reflection on signal lines.

Figure 13-12. Series Termination

Figure 13-13. AC Termination
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13.6.7.3 Interference

Interference is the result of electrical activity in one conductor that causes transient voltages to 
appear in another conductor. Interference increases with the following factors:

• Frequency interference is the result of changing currents and voltages. The more frequent the 
changes, the greater the interference. 

• Closeness-of-conductors interference is due to electromagnetic and electrostatic fields whose 
effects are weaker further from the source.

Two types of interference must be considered in high-frequency circuits: electromagnetic 
interference (EMI) and electrostatic interference (ESI).

EMI is caused by the magnetic field that exists around any current-carrying conductor. The 
magnetic flux from one conductor can induce current in another conductor, resulting in transient 
voltage. Several precautions can minimize EMI:

• Run ground lines between two adjacent lines wherever they traverse a long section of the 
circuit board. The ground line should be grounded at both ends.

• Run ground lines between the lines of an address bus or a data bus if either of the following 
conditions exists:

— The bus is on an external layer of the board.

— The bus is on an internal layer but not sandwiched between power and ground plane
are at most 10 mils away.

ESI is caused by the capacitive coupling of two adjacent conductors. The conductors act as 
plates of a capacitor; a charge built up on one induces the opposite charge on the other.

The following steps reduce ESI:

• Separate signal lines so that capacitive coupling becomes negligible.

• Run a ground line between two lines to cancel the electrostatic fields.

Figure 13-14. Avoiding Closed-Loop Signal Paths

A

CB
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The Bus Control Unit (BCU) includes logic to control many common types of memory and I/O 
subsystems. Every bus access is formatted according to the contents of the BCU control registers. 
The programming model for the BCU is consistent across the i960® Hx processor and i960 Jx 
processor families; however, not all capabilities are present in each device. The i960 Hx 
processor’s BCU programming model differs from schemes used in other i960 processors.

14.1 Memory Attributes

Every location in memory has associated physical and logical attributes. For example, a spe
location may have the following attributes:

• Physical: Memory is an 8-bit wide ROM

• Logical: Memory is ordered big-endian and data is non-cacheable

In the example above, physical attributes correspond to those parameters that indicate how to 
physically access the data. The BCU uses physical attributes to determine the bus protocol and 
signal pins to use when controlling the memory subsystem. The logical attributes tell the BCU how 
to interpret, format and control interaction of on-chip data caches. The physical and logical 
attributes for an individual location are independently programmable. 

14.1.1 Physical Memory Attributes

Programmable physical memory attributes for the i960 Hx processor include the following:

• Wait-state profile

• Parity enable/disable

• Parity sense (even/odd)

• Burst capability (can burst/cannot burst)

• Address read pipelining capability (can pipeline/cannot pipeline)

• READY# and BTERM# pin operation

• Bus width (8-, 16- or 32-bits wide)

For the purposes of assigning memory attributes, the physical address space is partitioned into 16 
independently programmable, fixed 256-Mbyte regions determined by the upper four address bits. 
Region 0 maps to addresses 0000 0000H to 0FFF FFFFH and region 15 maps to addresses
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F000 0000H to FFFF FFFFH. The physical memory attributes for each region are programmable 
through the Physical Memory Configuration (PMCON) registers. The PMCON registers are loaded 
from the Control Table. The i960 Hx microprocessor provides one PMCON register for each 
region. The descriptions of the PMCON registers and instructions on programming them are found 
in Section 14.2.

14.1.1.1 Data Bus Width

The i960 Hx processors allow an 8-, 16- or 32-bit wide data bus for each region. Byte enable 
signals encoded in each region provide the proper address for 8-, 16- or 32-bit memory systems. 
The i960 Hx processors use the lower order data lines when reading and writing to 8- or 16-bit 
memory. The unused upper order bits are undefined.

14.1.1.2 Burst Accesses

When burst access is enabled, the bus controller generates an address followed by one to four data 
transfers. The lower two address bits are incremented for each consecutive data transfer. Burst 
accesses facilitate the interface to memories that support burst-mode data transfers. Wait states 
following the address cycle and wait states between data cycles can be controlled independently. 
Data cycle time is typically a fraction of address cycle time. For example, bursting provides an 
optimal wait state profile for fast page mode DRAM. 

14.1.1.3 Pipelined Read Accesses

When address pipelining is enabled, the next read address is asserted in the last data cycle of the 
current read access. Pipelining makes the address cycle transparent for back-to-back read accesses. 
There is no length limit to address pipelining.

14.1.1.4 Wait States

A wait state generator within the bus controller generates wait states for memory accesses. For 
many memory interfaces, the internal wait state generator eliminates the necessity to externally 
generate a memory ready signal.

Typically, extra clock cycles — wait states — are associated with each data cycle. Wait state
provide the required access times for external memory or peripherals. Five parameters, 
programmed for each region define wait state generator operation. These parameters are:

NRAD Number of wait cycles for Read Address-to-Data. The number of wait state
between address cycle and first read data cycle. Programmable for 0-31 wa
states.

NRDD Number of wait cycles for Read Data-to-Data. The number of wait states 
between consecutive data cycles of a burst read. Programmable for 0-3 wa
states. 

NWAD Number of wait cycles for Write Address-to-Data. The number of wait states
that data is held after the address cycle and before the first write data cycle
Programmable for 0-31 wait states. 

NWDD Number of wait cycles for Write Data-to-Data. The number of wait states tha
data is held between consecutive data cycles of a burst write. Programmabl
0-3 wait states. 
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NRAD and NWAD describe address-to-data wait states. NRDD and NWDD specify the number of wait 
states between consecutive data when burst mode is enabled. NRDD and NWDD are used only in 
memory regions where bursting is enabled.

NXDA describes the number of wait states between consecutive bus requests. NXDA is the bus 
turnaround time. An external device’s ability to relinquish the bus on a read access (read dea
to data float) determines the number of NXDA cycles.

Note that for pipelined read accesses, the bus controller uses a value of zero for NXDA, regardless 
of the parameter’s programmed value. A non-zero NXDA value defeats the purpose of pipelining. 
The programmed value of NXDA is used for write requests to pipelined memory regions, as the
i960 Hx processor does not support pipelined write accesses.

14.1.1.5 READY# and BTERM# Pin Operation

The ready (READY#) and burst terminate (BTERM#) inputs dynamically control bus accesse
These inputs are enabled or disabled for each memory region. READY# extends accesses b
forcing wait states. BTERM# allows a burst access to be broken into multiple accesses. The
PMCON registers are programmed to enable or disable these inputs for each region.

READY# and BTERM# work with the programmed internal wait state counter. If READY# an
BTERM# are enabled in a region, these pins are sampled only after the programmed numbe
wait states expire. If the inputs are disabled in a region, the inputs are ignored and the interna
state counter alone determines access wait states. Refer to Section 15.3.1, “Wait States” on 
page 15-8 for details on the operation of the READY# and BTERM# inputs.

Note that when pipelining is enabled, the bus controller ignores the READY# and BTERM# in
for read requests. Since the i960 Hx processor does not support write pipelining, READY# a
BTERM# are sampled for writes.

NXDA Number of wait cycles for read or write Data-to-Address. The minimum 
number of wait states between the last data cycle of a bus access to the ad
cycle of the next bus access. NXDA applies to write and non-pipelined read 
requests. Programmable for 0-15 bus clocks.
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14.1.1.6 Data Bus Parity

Data bus parity is enabled for a region by setting the Parity Enable bit (PMCON.pen) in the 
PMCON register. The parity sense, even or odd, is controlled by the Parity Sense (PMCON.podd) 
bit. Parity is always generated on write accesses. For read accesses, the processor checks parity 
only when the PMCON.pen bit is set.

When even parity is selected, the parity bit for each byte is set to a value that makes the total 
number of “1” bits in that byte even. When odd parity is selected, the parity bit for each byte is 
to a value that makes the total number of “1” bits in that byte odd.

14.1.2 Logical Memory Attributes

i960 Hx processor logical memory attributes include:

• Byte ordering (little endian/big endian).

• Data access cacheability (cacheable/non-cacheable).

• Rapid invalidation (whether data from that logical region can be quickly invalidated from the 
Data Cache without affecting the rest of the Data Cache).

The i960 Hx processor supports configuring several different logical memory regions within a 
single physical memory subsystem. For example, data within one area of DRAM may be non-
cacheable while data in another area is cacheable. Figure 14-1 shows the use of the Control Table 
(PMCON registers) with logical memory templates for a single DRAM region in a typical 
application.

Each logical memory template is defined by programming Logical Memory Configuration 
(LMCON) registers. The Hx microprocessor has 15 pairs of LMCON registers. Each LMCON 
register pair defines a data template for memory areas that have common logical attributes. The 
extent of each data template is described by an address (aligned on 4-Kbyte boundaries) and an 
address mask. The address is programmed in the Logical Memory Address register (LMAR). The 
mask is programmed in the Logical Memory Mask register (LMMR). These two registers 
constitute the LMCON register pair.

The Default Logical Memory Configuration register is used to provide configuration data for areas 
of memory that do not fall within one of the 15 logical data templates. 

The LMCON registers and their programming are described in Section 14.4. 
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14.1.2.1 Byte Ordering

Byte ordering determines how data is read from or written to the bus and ultimately how data is 
stored in memory. Byte ordering can be individually selected for each logical memory region by 
setting a bit in the corresponding LMCON register. The bus controller supports big endian and little 
endian byte ordering for memory operations:

14.1.2.2 Logical Memory Region Cacheability

For loads and stores, the data cache uses the LMCON settings for a memory region to determine 
access cacheability. The LMCON registers also specify whether cached data from the logical 
region can be quickly invalidated. See Chapter 4, “Cache and On-Chip Data RAM” for a detailed 
description of the data cache quick invalidation feature.

little endian The controller reads or writes a data word’s least-significant byte to the bus’s 
eight least-significant data lines (D7:0). Little endian systems store a word’s le
significant byte at the lowest byte address in memory. For example, if a little 
endian ordered word is stored at address 600, the least-significant byte is stor
address 600 and the most-significant byte at address 603. 

big endian The controller reads or writes a data word’s least-significant byte to the bus’s 
eight most-significant data lines (D31:24). Big endian systems store the least
significant byte at the highest byte address in memory. So, if a big endian ord
word is stored at address 600, the least-significant byte is stored at address 6
and the most-significant byte at address 600.
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Figure 14-1. PMCON and LMCON Example
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14.2 Programming the Physical Memory Configuration 
(PMCON) Registers

The layout of the Physical Memory Configuration registers, PMCON0 to PMCON15, is shown in 
Figure 14-2, which gives the descriptions of the individual bits. The PMCON registers reside 
within memory-mapped control register space. Each PMCON register controls one 256 Mbyte 
region of memory according to the mapping shown in Table 14-1. See Table 3-4 for information on 
programming the MMRs.

Table 14-1. Region Table Mapping

Register (Region Table Entry) Region Controlled

PMCON0 0000 0000H to 0FFF FFFFH

PMCON1 1000 0000H to 1FFF FFFFH

PMCON2 2000 0000H to 2FFF FFFFH

PMCON3 3000 0000H to 3FFF FFFFH

PMCON4 4000 0000H to 4FFF FFFFH

PMCON5 5000 0000H to 5FFF FFFFH

PMCON6 6000 0000H to 6FFF FFFFH

PMCON7 7000 0000H to 7FFF FFFFH

PMCON8 8000 0000H to 8FFF FFFFH

PMCON9 9000 0000H to 9FFF FFFFH

PMCON10 A000 0000H to AFFF FFFFH

PMCON11 B000 0000H to BFFF FFFFH

PMCON12 C000 0000H to CFFF FFFFH

PMCON13 D000 0000H to DFFF FFFFH

PMCON14 E000 0000H to EFFF FFFFH

PMCON15 F000 0000H to FFFF FFFFH
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Figure 14-2. PMCON Register Bit Descriptions

Mnemonic Name Bit # Function

NRAD4:0
Number of Read 
Address to Data Wait 
States

0-4
Specifies the number of wait states (0 to 31) inserted 
between the assertion of ADS# and the first data cycle 
for read accesses.

NRDD1:0 Number of Read Data 
to Data Wait States 6-7

Specifies the number of wait states (0 to 3) inserted 
between successive data cycles for a burst read 
access.

NWAD4:0
Number of Write 
Address to Data Wait 
States

8-12
Specifies the number of wait states (0 to 31) inserted 
between the assertion of ADS# and the first data cycle 
for write accesses.

NWDD1:0 Number of Write Data 
to Data Wait States 14-15

Specifies the number of wait states (0 to 3) inserted 
between successive data cycles for a burst write 
access.

NXDA3:0
Number of Bus 
Turnaround Wait 
States

16-19
Specifies the number of wait states (0-15) inserted 
after 
the last data cycle for accesses in this region.

PEN Parity Enable 20 Enables parity generation/checking for a region.
0 = not enabled, 1 = enabled 

PODD Parity Odd 21 Selects parity sense for a region.
0 = even, 1 = odd

BW1:0 Bus Width 22-23
Selects the bus width for a region:
00 = 8-bit, 01 = 16-bit, 10 = 32-bit bus
11 = reserved (do not use)

RPIPE Read Pipelining 
Enable 24

Enables address pipelining for read accesses in this 
region.

0 = disabled, 1 = enabled

BEN Burst Enable 28 Enables burst accesses for the region.
0 = disabled, 1 = enabled

RBEN READY#/
BTERM#Enable 29

Enables the READY# and BTERM# pins for a region.

0 = READY#/BTERM# ignored in this region

1 = READY#/BTERM# enabled
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All 16 PMCON registers are loaded automatically during system initialization. The initial values 
are stored in the Control Table in the Initialization Boot Record (see Section 13.3.1, “Initial 
Memory Image (IMI)” on page 13-10). On a hardware reset, PMCON15 is automatically set to t
values shown in Table 14-2. This operation configures all regions to an 8-bit bus width with 
maximum wait states with bursting, pipelining, parity and ready-control disabled.

14.2.1 Bus Control (BCON) Register

Immediately after a hardware reset, the Bus Control (BCON) register is set to zero, which m
the PMCON register contents as invalid. Figure 14-3 shows the BCON register and Control Table
Valid (BCON.ctv) bit. Whenever the PMCON entries are marked invalid by BCON, the BCU u
the parameters in PMCON15 for all regions. After the processor loads all PMCON registers, 
BCON is loaded from the Control Table. If BCON.ctv is clear, then PMCON15 remains in use
all bus accesses. If BCON.ctv is set, the region table is valid and the BCU uses the program
PMCON values for each region.

Table 14-2. PMCON15 Register Values after Reset

PMCON15 Bit or Bit Field Value During Reset Microcode

NRAD4:0 [bits 0-4] 31

NRDD1:0 [bits 6-7] X (don’t care)

NWAD4:0 [bits 8-12] 31

NWDD1:0 [bits 14-15] X (don’t care)

NXDA3:0 [bits 16-19] 15

PEN [bit 20] 0 (disabled)

PODD [bit 21] X (don’t care)

BW1:0 [bits 22-23] 0 (8-bit)

RPIPE [bits 24] 0 (disabled)

BEN [bit 28] 0 (bursts disabled)

RBEN [bit 29] 0 (disabled)
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14.3 Boundary Conditions for Physical Memory Regions

The following sections describe the operation of the PMCON registers during conditions other than 
“normal” accesses.

14.3.1 Internal Memory Locations

The PMCON registers are ignored during accesses to internal memory or memory-mapped 
registers. 

14.3.2 Bus Transactions across Region Boundaries

The BCU can perform unaligned word and short word requests. Unaligned requests greater 
one word are automatically broken into word requests by microcode. Bus requests broken up
microcode are treated as separate requests by the BCU. Any word or short word request tha
region boundaries uses the PMCON settings of the first region. 

For example, an unaligned word load/store beginning at address 1FFF FFFEH would cross 
boundaries from region 1 to 2. This request is broken into two accesses, whose addresses a
1FFF FFFEH and 2000 0000H. The word request at 1FFF FFFEH spans the region boundar
uses the physical parameters for region 1. 

Figure 14-3. Bus Control Register (BCON)
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0 = PMCON entries not valid; use PMCON15 setting.
1 = PMCON entries valid

Internal RAM Protection (BCON.irp)
0 = Internal data RAM not protected from user mode writes

Supervisor Internal RAM Protection (BCON.sirp)
0 = First 64 bytes not protected from supervisor mode writes
1 = First 64 bytes protected from supervisor mode writes

1 = Internal data RAM protected from user mode writes
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14.3.3 Modifying the PMCON Registers

An application can modify the value of a PMCON register by using the st or sysctl instruction. If 
a st instruction is used to modify a PMCON register, precede the st instruction with a syncf 
instruction. This ensures that there are no outstanding loads or stores in the BCU.

14.4 Programming the Logical Memory Attributes

The layouts for the LMAR14:0 and LMMR14:0 registers are shown in Figure 14-4 and 
Figure 14-5. LMCON registers reside within the memory-mapped control register space. (See 
Section 3.3, “Memory-Mapped Control Registers” on page 3-6.)

Figure 14-4. Logical Memory Address Registers (LMAR14:0)

Mnemonic Bit/Bit Field Name Bit 
Position(s) Function

BE Big Endian Byte Order 0
Controls byte order for the template.
0 = Little-endian
1 = Big-endian

DCEN Data Cache Enable 1
Controls data caching template.

0 = Data caching disabled
1 = Write-through caching enabled

DCIIR
Data Cache 
Independently 
Invalidatable Region

4

Controls Logical Region Invalidation.
0 = region is not independently invalidatable
1 = region is independently invalidatable using
 the dcctl “Invalidate Logical Region” 

command.

A31:12 Template Starting 
Address 12-31

Defines upper 20 bits for the starting address for a 
logical data template. The lower 12 bits are fixed at 
zero. The starting address is modulo 4 Kbytes.
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The Default Logical Memory Configuration (DLMCON) register is shown in Figure 14-6. The 
BCU uses the parameters in the DLMCON register when the current access does not fall within 
one of the 15 logical memory templates (LMTs). 

Figure 14-5. Logical Memory Mask Registers (LMMR14:0)

Mnemonic Bit/Bit Field Name Bit Position(s) Function

LMTE Logical Memory 
Template Enabled 0

Enables/disables logical memory template.

0 = LMT disabled

1 = LMT enabled

MA31:12 Template Address 
Mask 12-31

Defines upper 20 bits for the address mask for a 
logical memory template. The lower 12 bits are 
fixed at zero.

0 = Mask (don’t care)

1 = Do not mask

Reserved, 
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14.4.1 Defining the Effective Range of a Logical Memory Template

For each logical memory template, an LMAR register sets the base address using the A31:12 field. 
The LMMR register sets the address mask using the MA31:12 field. The effective address range 
for a logical data template is defined using the A31:12 field in an LMAR register and the MA31:12 
field in an LMMR register. For each access, the upper 20 address bits (A31:12) are compared 
against A31:12 in the LMAR register. Only address bits with corresponding MA bits set are 
compared. Address bits with corresponding MA bits cleared (0) are automatically considered a 
“match”. The processor uses only the logical data template when all compared address bits 

Figure 14-6. Default Logical Memory Configuration Register (DLMCON)

Mnemonic Bit/Bit Field Name Bit 
Position(s) Function

BE Big Endian Byte 
Order 0

Controls byte order for areas not within other logical 
memory templates.

0 = Little-endian
1 = Big-endian

DCEN Data Cache Enable 1

Controls data caching policy for areas not within other 
logical memory templates.

0 = Data caching disabled
1 = Write-through data caching enabled

DCIIR
Data Cache 
Independently 
Invalidatable Region

4

Controls Logical Region Invalidation for areas not
within other Logical Memory Templates.

0 = Region is not independently invalidatable
1 = Region is independently invalidatable using
 the dcctl “Invalidate Logical Region” 

command.
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The following two examples help clarify the operation of the address comparators:

• Create a template 64 Kbytes in length beginning at address 0010 0000H and ending at address 
0010 FFFFH. Determine the form of the candidate address to match and then program the 
LMAR and LMMR registers:

Candidate Address is of form: 0010 XXXX
LMAR <31:12> should be: 0010 0...
LMMR <31:12> should be: FFFF 0...

• Multiple data templates can be created from a single LMAR/LMMR register pair by aliasing 
effective addresses. For example, to create sixteen 64-Kbyte templates, each beginning on 
modulo 1 Mbyte boundaries starting at 0000 0000H and ending with 00F0 0000H, the 
registers are programmed as follows:

Candidate Address is of form: 00X0 XXXX
LMAR <31:12> should be: 0000 0...
LMMR <31:12> should be: FF0F 0...

14.4.2 Selecting the Byte Order

The BCU can automatically convert big endian data in memory into little endian data for the 
processor core. The conversion is done transparently in hardware, with no performance penalty. 
The BE bit in the LMAR register controls the byte order for a logical data template. The BE bit in 
the DLMCON register controls the default byte ordering for the system.

Byte ordering is not applicable to memory-mapped registers since they are always accessed as 
words.

14.4.3 Logical Region Invalidation Control

The i960 Hx processor allows independent Data Cache coherency management for a set of selected 
logical memory regions. This allows memory regions that are shared with other bus masters to be 
invalidated without the performance penalty associated with invalidating the entire cache.

Whether a particular LMT is part of this set of regions is indicated by the Data Cache 
Independently Invalidatable Region (LMAR.dciir) bit of the LMAR. If this bit is set, then data 
fetched using the LMT will be affected by the dcctl “Quick Invalidate” command, as well as by the
commands and methods used to control the rest of the Data Cache.
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The dcctl instruction’s “Invalidate Logical Region” command affects all lines in the Data Cach
that were fetched from any LMT that had the LMAR.dciir bit set at the time the line was alloca
it does not affect any other lines in the cache. The affected lines are all invalidated by the 
command. This command is extremely fast, completing in only a few cycles.

Note that there is no mechanism for invalidating only those lines that were fetched from a 
particular LMT. All lines from LMTs with the LMAR.dciir bit set are managed as a group.

Software can make changes to the LMCON at any time without regard to bus queues or bus
activity. The processor synchronizes the LMCON settings to the bus requests automatically.

14.4.4 Data Caching Enable

Enabling and disabling data caching for an LMT is controlled via the LMAR.dcen bit in the LM
register. Likewise, the LMAR.dcen bit in DLMCON enables and disables data-caching for reg
of memory that are not covered by the LMCON registers. The LMAR.dcen bit has no effect o
instruction cache.

14.4.5 Enabling the Logical Memory Template

The LMTE bit activates the logical data template in the LMMR register for the programmed ra

14.4.6 Initialization

Immediately following a hardware reset, all LMTs are disabled. The LMAR.lmte bit in each of
LMMR registers is cleared (0) and all other bits are undefined. Immediately after a hardware
the Default Logical Memory Control register (DLMCON) has the values shown in Table 14-3.

Application software may initialize and enable the logical memory template after hardware re
The registers are not modified by software re-initialization.

The contents of LMAR registers are cleared after a hardware or software reset. 

Table 14-3. DLMCON Values at Reset

DLMCON Bit Value After Reset

DCIIR 0 (area not independently invalidatable)

DCEN 0 (data caching disabled)

BE (Big-Endian) Loaded from BBIGE bit in the Initialization Boot 
Record
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14.4.7 Boundary Conditions for Logical Memory Templates

The following sections describe the operation of the LMT registers during conditions other than 
“normal” accesses. See Chapter 4, “Cache and On-Chip Data RAM” for a treatment of data cache
coherency when modifying an LMT.

14.4.7.1 Internal Memory Locations

The user can map internal data RAM into an LMT; however, only the byte-ordering informatio
used. Since internal data RAM locations are never cached, the BCU ignores LMT bits contro
caching for data RAM accesses. 

The LMT registers are not used during accesses to memory-mapped registers. 

14.4.7.2 Overlapping Logical Data Template Ranges

Logical data templates that specify overlapping ranges are not allowed. When an access is 
attempted that matches more than one enabled LMT range, the logical memory attributes of
access are undefined.

To establish different logical memory attributes for the same address range, program non-
overlapping logical ranges, then use partial physical address decoding.

14.4.7.3 Accesses across LMT Boundaries

Avoid accesses that cross LMT boundaries. The processor does not cache any data in a non
cacheable region, even if the request spans from a cacheable region. 

14.4.8 Modifying the LMT Registers

An LMT register can be modified using st or sysctl instructions. Both instructions ensure data 
cache coherency and order the modification with previous and subsequent data accesses.
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External Bus Description 15

This chapter describes the bus pins, bus transactions and bus arbitration. It shows waveforms to
illustrate some common bus configurations. This chapter serves as a guide for the hardware
designer when interfacing memory and peripherals to the i960® Hx processor. For further details
on external bus operation, refer to Appendix F, “Bus Interface Examples”. For information on bus
controller configuration, refer to Chapter 14, “Memory Configuration”. For pin descriptions, refer
to the 80960HA/HD/HT Embedded 32-bit Microprocessor datasheet.

15.1 Overview

A 32-bit high performance Bus Control Unit (BCU) interfaces the i960 Hx processor core to 
external memory and peripherals. One of the key advantages of the BCU design is its versa
The user can program system memory’s physical and logical attributes independently. Physi
attributes include wait state profile, bus width and parity. Logical attributes include cacheabil
and big or little endian byte order. Internally programmable wait states and 16 separately 
configurable physical memory regions allow the processor to interface with a variety of mem
subsystems with minimum system complexity. To reduce the effect of wait states, the bus de
decoupled from the core. Decoupling lets the processor execute instructions while the bus pe
memory accesses independently.

The Bus Controller’s key features include:

• Demultiplexed, burst bus to support most efficient DRAM access modes

• Address pipelining to reduce memory cost while maintaining performance

• 32-, 16- and 8-bit modes for I/O interfacing ease

• Full internal wait state generation to reduce system cost

• Little and big endian support

• Unaligned access support implemented in hardware

• Request queue to decouple the bus from the core (four-deep for loads/stores, two-deep for 
fetches)

• Independent physical and logical address space characteristics
i960® Hx Microprocessor Developer’s Manual 15-1
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15.1.1 Terminology: Requests and Accesses

The terms request and access are used frequently when referring to bus controller operation. The 
description of the bus modes and burst bus operation is simplified by defining these terms.

15.1.1.1 Request

The terms request, bus request or memory request describe interaction between the core and bus 
controller. The bus controller is designed to decouple, as much as possible, bus activity from 
instruction execution in the core. When a load or store instruction or instruction fetch is issued, the 
core delivers a bus request to the bus control unit.

The bus control unit independently processes the request and retrieves data from memory for load 
instructions and instruction fetches. The bus controller delivers data to memory for store 
instructions. The i960 architecture defines byte, short word, word, double word, triple word and 
quad word data lengths for load and store instructions.

When a load or store instruction is encountered, the core issues a bus request of the appropriate 
data length to the bus controller. For example, ldq requests that four words of data be retrieved 
from memory, and stob requests that a single byte be delivered to memory.

The processor fetches instructions using double or quad word bus requests.

15.1.1.2 Access

The terms access, bus access or memory access describe the mechanism for moving data or 
instructions between the bus controller and memory. An access is bounded by the assertion of 
ADS# (address strobe) and BLAST# (burst last) signals, which are outputs from the processor. 
ADS# indicates that a valid memory address is present and an access has started. BLAST# 
indicates that the next data transferred is the end of access. The bus controller can be configured to 
initiate burst, non-burst or pipelined accesses. A burst access begins with ADS# followed by two to 
four data transfers. The last data transfer is indicated by assertion of BLAST#. Non-burst accesses 
begin with assertion of ADS# followed by a single data transfer. Pipelined accesses begin on the 
same clock cycle in which the previous cycle completes. This is accomplished by asserting ADS# 
and a valid address during the last data transfer of the previous cycle. Pipelined accesses may also 
be burst or non-burst.
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15.2 Bus Signals

As described in Table 15-1, the i960 Hx processor bus consists of 30 address signals, four byte 
enables, 32 data lines, four data parity signals, and various control and status signals. 

Table 15-1. Bus Controller Signals

Signal Name Description Input/Output

Clock

CLKIN Clock Input I

Address/Data Signals

A[31:2] Address Bus O

D[31:0] Data Bus I/O

DP[3:0] Data Parity I/O

Control Signals

ADS# Address Strobe O

BE[3:0]# Byte Enables O

BLAST# Burst Last O

BTERM# Burst Terminate I

DEN# Data Enable O

DT/R# Data Transmit/Receive O

PCHK# Parity Check O

READY# Memory Ready I

WAIT# Wait States O

W/R# Write/Read O

Status Signals

CT[3:0] Cycle Type O

D/C# Data/Code Request O

SUP# Supervisor Mode Request O

Bus Arbitration

BOFF# Bus Backoff I

BREQ Bus Request Pending O

BSTALL Bus Stall O

HOLD Hold Request I

HOLDA Hold Acknowledge O

LOCK# Locked Request O
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15.2.1 Bus Clock

The i960 Hx processor generates a core clock based upon the CLKIN signal. The i960 HA 
processor core operates at the external bus speed. The i960 HD and HT processors multiply the 
input clock signal on CLKIN by two and three respectively and feed this multiplied clock to the 
CPU core. The external system bus uses CLKIN directly as its timing reference. For example, with 
a 33 MHz CLKIN signal the i960 HD processor core runs at 66 MHz and the external system bus 
runs at 33 MHz.

15.2.2 Address, Data and Parity Signals

The address and byte enable signals determine which of the 232 memory locations to access. 
Addressed data is then transferred on the data pins. 

Data signals are bi-directional and are used for transferring data between the processor and external 
memory systems during reads and writes. The bus is programmable for 8-, 16- and 32-bit transfer 
widths. A request to an 8-bit region uses data bits 7:0. Bits 15:0 are used during 16-bit accesses, 
and 32-bit accesses use all of the data bits (31:0). Each data byte is associated with a programmable 
parity bit and a byte enable bit:

Parity is always generated on write requests, but checked only when the PMCON.pen bit is enabled 
for a memory region. On write accesses, the memory system should only store parity bits that have 
their associated Byte Enable (BE[3:0]#) signals active. The bus controller presents the results of 
parity checking onto the PCHK# signal one bus cycle after the data is read.

Table 15-2. Data, Parity and Byte Enable Associations

Data Bits  Parity Bit Byte Enable

D[31:24] DP3 BE3#

D[23:16] DP2 BE2#

D[15:8] DP1 BE1#

D[7:0] DP0 BE0#
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15.2.3 Control Signals

The bus controller uses the upper four bits of the address to determine which of the 16 Physical 
Memory Configuration (PMCON) registers apply to the bus request. The bus controller then uses 
the associated PMCON register settings to sequence several control signals. See Section 14.2, 
“Programming the Physical Memory Configuration (PMCON) Registers” on page 14-7 for more 
information on PMCON registers. These signals specify parameters such as:

• Access start and finish (ADS#, BLAST#)

• Wait state control (WAIT#, READY#, BTERM#)

• Transceiver control (DEN#, DT/R#)

• Data flow control (W/R#, BE[3:0]#)

15.2.3.1 Access Start and Finish

A bus access starts with an address cycle, which is defined by the assertion of address strobe 
(ADS#). Address and byte enables (A[31:2] and BE[3:0]#) are also presented with the ADS# 
strobe.

A bus access may be either non-burst or burst. A non-burst access ends after one data cycle to a 
single memory location. A burst access involves two to four data cycles to consecutive memory 
locations. The Burst Last signal (BLAST#) is asserted to indicate the last data cycle of an access. 
Section 15.3.2, “Burst Accesses” (pg. 15-13) explains how to configure the bus controller for burs
or non-burst accesses.

Read accesses may be pipelined. In a pipelined access, the data cycle and address cycle of
accesses can overlap. This is possible because address and data lines are not multiplexed. 
address can be presented on the address bus while a previous access ends with a data trans
data bus. Section 15.3.2, “Burst Accesses” (pg. 15-13) explains how to configure the bus for 
pipelined accesses. Write accesses are not pipelined in the i960 Hx processor. For more 
information, see 

15.2.3.2 Wait State Control

Wait states can be inserted by the internal wait state generator, by external logic, or by a 
combination of both to accommodate the access time for external memory or peripherals. Th
WAIT# pin reflects the status of the internal wait state generator. External logic can insert wa
states by using the READY# and BTERM# pins.

15.2.3.3 Data Flow Control

W/R# discerns between a write request (store) or a read request (load or fetch). The Byte En
(BE[3:0]#) determine which of the four bytes addressed by A[31:2] are active during a bus ac
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15.2.3.4 Transceiver Control

The DT/R# and DEN# pins are used to control data transceivers. Data transceivers may be used in 
a system to isolate a memory subsystem or control loading on data lines. DT/R# is used to control 
transceiver direction; the signal is low for read requests and high for write requests. indicates data 
transfer cycles during a bus access. DEN# is asserted at the start of the first data cycle in a bus 
access and de-asserted at the end of the last data cycle. DEN# remains asserted for an entire bus 
request, even when that request spans several bus accesses. For example, a ldq instruction starting 
at an unaligned quad word boundary is one bus request spanning at least two bus accesses. DEN# 
remains asserted throughout all the accesses (including ADS# states) and de-asserts when the Iqd 
instruction request is satisfied. DEN# is used with DT/R# to provide control for data transceivers 
connected to the data bus. DEN# remains asserted for sequential reads from pipelined memory 
regions.

15.2.3.5 Status Signals

D/C# and SUP# provide information about the source of a bus request. D/C# indicates whether the 
current request is a data access or a code fetch. SUP# indicates whether the current request 
originates from user or supervisor mode. When used with a logic analyzer, these signals aid in 
software debugging.

D/C# may also be used to implement separate external data and instruction memories. SUP# can be 
used to protect hardware from accesses while the processor is in user mode.

The Cycle Type pins (CT[3:0]) provide information about the source of bus accesses. Bus accesses 
can be a result of executing instructions, such as ld or st, or a result of events, such as interrupts. 
When connected to logic analyzers or other diagnostic hardware, the CT[3:0] signals are useful for 
system debugging. 

15.3 Basic Bus Transaction

A basic transaction (non-burst, non-pipelined; see Figure 15-1) is an address cycle followed by a 
single data cycle. 

Assertion of ADS# indicates the address cycle, which is the beginning of an access. During the 
address cycle (marked as “A” on the waveform diagrams), the processor asserts signals suc
A[31:2], BE[3:0]# and W/R# on the rising clock edge. The address cycle lasts for one bus cy

DT/R# is driven before the next rising edge of CLKIN. DT/R# specifies the direction of extern
data transceivers. The bus transitions from the address cycle into the data cycle when DEN#
asserted and ADS# is deasserted on the clock’s next rising edge. DT/R# is asserted early to
that it does not change while DEN# is asserted. DEN# is used to enable external data transc

For write accesses, data is driven on the data lines (D[31:0]) at the start of a data cycle. For 
the processor accepts the data at the end of the data cycle. The processor asserts BLAST# 
indicate the end of the basic bus transaction. DEN# and BLAST# are deasserted at the next
edge of CLKIN.
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Figure 15-1. Basic Read and Write Bus Accesses
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15.3.1 Wait States

The i960 Hx processor can generate wait states internally, or it can insert wait states based on the 
status of the BTERM# and READY# pins. Each physical memory region has its own wait state 
profile, set up using the PMCON registers. See Section 14.2, “Programming the Physical Memor
Configuration (PMCON) Registers” on page 14-7. The wait state profile can use:

• The internal wait state generator alone

• READY# and BTERM# together

• A combination of the above

For write accesses, the data lines are driven during wait states. For read accesses, data lines float. 
The following subsections describe generating wait states using these mechanisms.

15.3.1.1 Internally Generated Wait States

The bus controller provides an internal counter for automatically inserting wait states. Five 
different wait state parameters are supported. Figure 15-2 and the following text describe each 
parameter.

The time required for an external device to relinquish the bus on a read request (read deasserted to 
data-float) determines the number of NXDA cycles. Note that for pipelined read accesses, the bus 
controller uses a zero value for NXDA, regardless of the parameter’s programmed value. The 
programmed value of NXDA is used for write requests to pipelined memory regions, as the i960
processor does not support pipelined write accesses.

The processor asserts the WAIT# signal when NRAD, NWAD, NRDD or NWDD is inserted. WAIT# is 
useful as a write strobe for simple external memory systems. NRDD and NWDD are not used in non-
burst memory regions. 

NRAD The number of clock cycles between the address cycle and first read da
cycle. 

NRDD The number of clock cycles between consecutive data cycles of a burst r

NWAD The number of clock cycles that data is held after the address cycle and
before the first write data cycle. 

NWDD The number of clock cycles that data is held between consecutive data 
cycles of a burst write. 

NXDA The minimum number of clock cycles between the last data cycle of a bu
request and the address cycle of the next bus request (i.e., the bus turna
time). NXDA applies to write and non-pipelined read requests. Note that 
NXDA is not generated after an access that is terminated with BTERM#, 
unless BLAST# is asserted in the same cycle.
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Figure 15-2. Internal Programmable Wait States
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15.3.1.2 Externally Generated Wait States

Wait states can also be controlled with READY# and BTERM#. These inputs are enabled or 
disabled in a region by programming the PMCON registers. See Section 14.1.1.4, “Wait States” on
page 14-2. 

When enabled, READY# indicates that read data on the bus is valid or that a write data trans
completed. When used in conjunction with the internal wait state generator, the READY# pin 
is ignored until the NRAD, NRDD, NWAD or NWDD wait states expire. At this time, if READY# is 
deasserted (high), wait states continue to be inserted until READY# is asserted. To bypass t
internal wait state generator, program the NRAD, NRDD, NWAD or NWDD values to zero.

NXDA wait states are not affected by READY#. The READY# input is ignored during idle, add
and NXDA cycles. For read accesses, READY# is also ignored in memory regions where pipe
is enabled, regardless of memory region programming. 

The burst terminate signal (BTERM#) breaks up a burst access. Asserting BTERM# for one 
cycle completes the current data transfer and invokes another address cycle. This allows a b
access to be dynamically broken into smaller accesses. The resulting accesses may also be
accesses. For example, if BTERM# is asserted after the first word of a quad word burst, the 
controller initiates another access by asserting ADS#. The accompanying address is the add
the second word of the burst access (A[3:2] = 012). The bus controller then bursts the remaining 
three words. The BLAST# (burst last) signal indicates the last data transfer of the access.

Read data is accepted on the clock edge where BTERM# is asserted. For writes, BTERM# 
indicates the memory system has accepted the data. In this way, BTERM# performs the sam
function as the memory READY# signal, ensuring that no data is lost when the current acces
terminated. As with READY#, BTERM# is ignored for reads when pipelining is enabled in a 
region. 

Note: When enabled, READY# and BTERM# are always used for write accesses, including region
where pipelining is enabled. 
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Figure 15-3. Bus Request with READY# and BTERM# Control
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BLAST# assertion indicates end of data transfer cycles for this access. DEN# is deasserted. NXDA 
wait states (turnaround wait states) follow BLAST#; a new address cycle may start after NXDA 
cycles expire. NXDA states allow time for slow devices to relinquish the bus. For Figure 15-4, this 
access is the last access of a bus request because NXDA wait states are inserted and DEN# is 
deasserted.

Figure 15-4. Non-Burst, Non-Pipelined Read Request with Wait States
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15.3.2 Burst Accesses

The i960 Hx processor’s burst access allows up to four consecutive data cycles to follow a s
address cycle. Compared to non-burst memory systems, burst mode memory systems achie
greater performance out of slower memory. SRAM, interleaved SRAM, Static Column Mode 
DRAM and Fast-Page Mode DRAM may be easily designed into burst-mode memory system

A burst read or write access consists of a single address cycle, 0-31 address-to-data wait sta
(NRAD or NWAD) and 1-4 data cycles separated by 0-3 data-to-data wait states (NRDD or NWDD). If 
READY#/BTERM# control is enabled in the region, NRAD, NWAD, NRDD and NWDD wait states 
may all be extended by not asserting READY#. BTERM# may be used to break a burst acce
smaller accesses. See Section 15.3.1, “Wait States” on page 15-8 for more information on this 
subject.

The maximum burst size is four data cycles. This maximum is independent of bus width. A b
wide bus has a maximum burst size of four bytes; a word-wide bus has a maximum of four w
If a quad word load request (e.g., ldq) is made to an 8-bit data region, it results in four 4-byte bu
accesses. (See Table 15-3.)

Table 15-3. Burst Transfers and Bus Widths

Request Bus Width Number of Burst 
Accesses

Number of Transfers 
per Burst

Number of 
Transfers

Quad Word 8 bit 

16 bit 

32 bit

4

2

1

4-4-4-4 

4-4 

4

16 

8 

4

Triple Word 8 bit 

16 bit 

32 bit

3 

2 

1

4-4-4 

4-2 

3

12 

6 

3

Double Word 8 bit 

16 bit 

32 bit

2 

1 

1

4-4

4 

2

8 

4 

2

Word 8 bit 

16 bit 

32 bit

1 

1 

1

4 

2 

1

4 

2 

1

Short 8 bit 

16 bit 

32 bit

1 

1 

1

2 

1 

1

2 

1 

1

Byte 8 bit 

16 bit 

32 bit

1 

1 

1

1 

1 

1

1 

1 

1
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The address’s two least-significant bits automatically increment after each burst data cycle. W
memory region is configured for a 32-bit data bus width, address pins A[3:2] increment. For 
bit memory region, BE1# is encoded as A1 and address bits A[2:1] increment. When a mem
region is configured for an 8-bit data bus width, BE0# and BE1#, acting as the lower two bits o
address (A[1:0]), increment. See Section 15.3.4, “Bus Width” on page 15-22 for more information 
on programming the bus width.

Burst accesses on a 32-bit bus are always aligned to even word boundaries. Quad word and
word accesses always begin on quad word boundaries (A[3:2]=00); double word transfers a
begin on double word boundaries (A2=0); single word transfers occur on single word bounda
(See Figure 15-5.)

Burst accesses for a 16-bit bus are always aligned to even short word boundaries. A four sho
burst access always begins on a four short word boundary (A2=0, A1=0). Two short word bu
accesses always begin on a four word boundary (A2=0, A1=0). Single short word transfers o
on single short word boundaries (see Figure 15-6). For a 16-bit bus, valid data is transferred on da
pins D[15:0]. Upper data lines D[31:16] are also driven on writes. For aligned accesses, the 
are a duplicate of those driven on D[15:0].

Figure 15-5. 32-Bit-Wide Data Bus Bursts
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Burst accesses for an 8-bit bus are always aligned to even byte boundaries. Four-byte burst 
accesses always begin on a 4-byte boundary (A1=0, A0=0). Two-byte burst accesses always begin 
on an even byte boundary (A0=0) (see Figure 15-7). For an 8-bit bus, data is transferred on data 
pins D[7:0]. Unlike the i960 Cx processor, data is not driven on the upper bytes of the data bus 
D[15:8], D[23:16] and D[31:24] on writes.

Figure 15-6. 16-Bit Wide Data Bus Bursts
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Figure 15-7. 8-Bit Wide Data Bus Bursts
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Figure 15-8 shows a quad word read on a 32-bit bus; Figure 15-9 shows a write. Burst access 
begins by asserting the proper address and status signals (ADS#, A[31:2], BE[3:0]#, SUP#, D/C#, 
W/R#). This is done on the rising edge that begins the address cycle (“A” on the figures). Th
processor asserts all byte enable signals (BE[3:0]#) during word read accesses. 

DT/R# is driven before the clock’s next rising edge to ensure that DT/R# does not change wh
DEN# is asserted. DEN# is asserted on the clock’s next rising edge, the rising edge that end
address cycle. ADS# is deasserted on this clock edge. DEN# is used to control external data
transceivers. DEN# and DT/R# remain asserted throughout the burst access.

Figure 15-8. 32-Bit Bus, Burst, Non-Pipelined, Read Request with Wait States
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Figure 15-9. 32-Bit Bus, Burst, Non-Pipelined, Write Request without Wait States
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15.3.3 Pipelined Read Accesses

Pipelined read accesses provide the maximum data bandwidth. For pipelined reads, the next 
address is output during the current data cycle. This effectively removes the address cycle from 
consecutive pipelined accesses.

A pipelined read memory system is implemented by adding an address latch to the design (see 
Figure 15-10). The address latch holds the address for the current read access while the processor 
outputs the address for the next access. This allows the next address to be available during the data 
cycle of the current access. 

Since the i960 Hx processor does not support pipelined write accesses, writes to a pipelined region 
behave the same as writes to a non-pipelined region. Also, the address for a read access following a 
write is not pipelined.

Note: When pipelining is enabled in a region, READY# and BTERM# are ignored for read cycles. 

For pipelined reads, the bus controller uses a value of zero for the NXDA parameter, regardless of 
the parameter’s programmed value. A non-zero NXDA value defeats the purpose of pipelining. Th
programmed value of NXDA is used for write accesses to pipelined memory regions.

Figure 15-10. Pipelined Read Memory System
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Figure 15-11. Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus
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Figure 15-12. Burst, Pipelined Read Request without Wait States, 32-Bit Bus
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Figure 15-13. Pipelined to Non-Pipelined Transitions
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15.3.4 Bus Width

Each region’s data bus width is programmed using the PMCON registers (see Section 14.1.1.1, 
“Data Bus Width” on page 14-2. The i960 Hx processor allows an 8-, 16- or 32-bit-wide data bu
for each region. The processor places 8- and 16-bit data on low order data pins. This simplif
interface to external devices. As shown in Figure 15-14, 8-bit data is placed on lines D[7:0]; 16-bit
data is placed on lines D[15:0]; 32-bit data is placed on lines D[31:0]. 

The four byte enable signals are encoded for each region to generate proper address signal
16- or 32-bit memory systems:

• 8-bit region: BE0# is address line A0; BE1# is address line A1. 

• 16-bit region: BE1# is address line A1; BE3# is the byte high enable signal (BHE#); BE0# is 
the byte low enable signal (BLE#). 

• 32-bit region: byte enables are not encoded. Byte enables BE[3:0]# select byte 3 to byte 0, 
respectively. Address lines A[31:2] provide the most significant portion of the address. (See 
Table 15-4.)

For regions configured for 8- and 16-bit bus widths, data is repeated on the upper data lines for 
aligned store operations. When storing a value to an 8-bit bus region, the processor drives the same 
byte-wide data onto lines D[7:0], D[15:8], D[23:16] and D[31:24] simultaneously. When storing a 
value to memory in a 16-bit bus region, the processor drives the same short word data onto lines 
D[15:0] and D[31:16] simultaneously.

Figure 15-14. Data Width and Byte Enable Encodings
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Table 15-4. Byte Enable Encoding

8-Bit Bus Width:

BYTE BE3# (X) BE2# (X) BE1# (A1) BE0# (A0)

0 X X 0 0

1 X X 0 1

2 X X 1 0

3 X X 1 1

16-Bit Bus Width:

BYTE BE3# (BHE#)  BE2# (X) BE1# (A1) BE0# (BLE#)

0,1 0 X 0 0

2,3 0 X 1 0

0 1 X 0 0

1 0 X 0 1

2 1 X 1 0

3 0 X 1 1

32-Bit Bus Width:

BYTE BE3# BE2# BE1# BE0#

0,1,2,3 0 0 0 0

1,2,3 0 0 0 1

0,1,2 1 0 0 0

2,3 0 0 1 1

1, 2 1 0 0 1

0,1 1 1 0 0

0 1 1 1 0

1 1 1 0 1

2 1 0 1 1

3 0 1 1 1
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15.3.5 Parity Generation and Checking

The i960 Hx processor’s bus adds four data parity signals, DP[3:0], to indicate the parity of e
byte of a data word. DP[3:0] timings are identical to those of D[31:0]. The processor generat
parity for each store operation; however, parity is checked only for loads and fetches within re
that have parity checking enabled. See Section 14.1.1.6, “Data Bus Parity” on page 14-4. 

The processor signals a parity error by asserting the PCHK# pin after the rising edge of CLK
the clock cycle immediately following the data cycle that caused a parity error. See Figure 15-15 
and Figure 15-16. PCHK# remains asserted for one clock cycle. If back-to-back data transfers
zero wait states) cause parity errors, then PCHK# remains asserted. Figure 15-15 shows DP[3:0] 
and PCHK# timings. The PCHK# pin goes low for parity failures during data accesses only. 
Accesses from the data cache do not test parity.

Since the PCHK# signal value becomes valid after an access completes, the processor does
float PCHK# when HOLDA is asserted. 
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When a parity error occurs, the processor can generate a MACHINE.PARITY fault. Figure 8-5 
shows the parity fault record. See Section 8.10.3, “MACHINE Faults” on page 8-24 for details on 
the MACHINE.PARITY fault.

Figure 15-15. Parity Error on Non-Burst Access
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15.3.6 Cycle Type Pins

The i960 Hx processor includes cycle type pins, CT[3:0], that indicate the type of bus cycle in 
progress, or the processor state. The cycle type pins have the same timing as A[31:4]. See 
Figure 15-17. 

Figure 15-16. Parity Error during Burst Access, No Wait States
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Figure 15-17. Cycle Type Pin Definition — Non-Burst Access

Figure 15-18. Cycle Type Pin Definitions — Burst Access
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The cycle type encodings are shown in Table 15-5 When ADS# is asserted, the pins contain 
information about the bus operation being initiated. 

Some i960 Hx processor instructions are implemented in microcode, such as atmod, atadd and 
sysctl. There are also several non-instruction-related microcode routines, to perform functions 
such as initialization. Microcode routines are also called microflows. 

Program-initiated accesses (cycle types 0000 through 0010) are initiated directly via instruction 
execution. Loads, stores and atomic accesses are considered program-initiated data access 
(qualified with the D/C# pin). Similarly, bus accesses requested by a program-initiated microflow 
(i.e., calls or sysctl) are considered program-initiated data accesses. Instruction fetches due to 
instruction cache misses are considered program-initiated code accesses.

Event-initiated accesses (cycle types 0100 through 0110) are initiated via microflow routines that 
are not called directly by the executing program. Examples include fault, interrupt and 
initialization microflows. 

The width indicated by the cycle type pins is the width of the memory region being accessed as 
programmed in the PMCON registers of the processor. It is not the width of the actual transfer. For 
example, a program-initiated byte store to a 32-bit wide memory region would be cycle type 0010.

All unused encodings are reserved. Note that the i960 Hx processor does not drive signal CT3 high.

Table 15-5. CT[3:0] Encoding 

Cycle Type ADS CT3 CT2 CT1 CT0

Program-initiated access using 8-bit bus

0
0

0 0 0

Program-initiated access using 16-bit bus 0 0 1

Program-initiated access using 32-bit bus 0 1 0

Event-initiated access using 8-bit bus 1 0 0

Event-initiated access using 16-bit bus 1 0 1

Event-initiated access using 32-bit bus 1 1 0

Reserved X 1 1

Reserved for future products 1 X X X

Reserved 1 X X X X
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15.4 Little or Big Endian Memory Configuration

The bus controller supports big endian and little endian byte ordering for memory operations. Byte 
ordering determines how data is read from or written to the bus and ultimately how data is stored in 
memory. Little endian systems store a word’s least significant byte at the lowest byte addres
memory. For example, if a little endian ordered word is stored at address 600, the least signi
byte is stored at address 600 and the most significant byte at address 603. Big endian system
the least significant byte at the highest byte address in memory. So, if a big endian ordered w
stored at address 600, the least significant byte is stored at address 603 and the most signif
byte at address 600. 

Data in memory can be stored in either little or big endian order. The byte order for a logical 
memory region is programmed with the logical memory templates. See Section 14.4.2, “Selecting 
the Byte Order” on page 14-14. Data and instructions can be located in either big or little endia
regions.

Both byte ordering methods are supported for short word and word data types. Table 15-6 shows 
how word, half word and byte data types are transferred on the bus according to the type of 
ordering used for the selected memory region and bus width (32, 16 or 8 bits). All transfers s
in the table are aligned memory accesses. The second column shows the lower address bits
effective address (EFA). The EFA is the address of the beginning of the datum.

For word stores, assume that a hexadecimal value of aabbccddH is stored in an internal reg
where aa is the word’s most significant byte and dd is the least significant byte. Table 15-6 shows 
how this word is transferred on the bus to either a little endian or big endian region of memo

For half word stores, assume that a hexadecimal value of ccddH is stored in one of the inter
registers. Note that the half word goes out on different data lines on a 32-bit bus depending 
whether bit 1 of the memory address is set or cleared.
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Table 15-6 also shows that the i960 Hx processor handles byte data types the same regardless of 
byte ordering type. Multiple word bus requests (bursts) to a big endian region are handled as 
individual words. Bytes in each word are stored in big endian order. Big endian data types that 
exceed 32 bits are not supported and must be handled by software.

Table 15-6. Byte Ordering on Bus Transfers

Word Data Type Bus Pins (Data Lines [31:0])

Bus 
Width EFA A[1:0] Xfer

Little Endian Big Endian

31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0

32 bit 00 1st aa bb cc dd dd cc bb aa

16 bit 00
1st

2nd

--

--

--

--

cc

aa

dd

bb

--

--

--

--

bb

dd

aa

cc

8 bit 00

1st

2nd

3rd

4th

--

--

--

--

--

--

--

--

--

--

--

--

dd

cc

bb

aa

--

--

--

--

--

--

--

--

--

--

--

--

aa

bb

cc

dd

Half Word Data Type Bus Pins (Data Lines 31:0)

Bus 
Width EFA A[1:0] Xfer

Little Endian Big Endian

31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0

32 bit
00

10

1st

1st

--

cc

--

dd

cc

--

dd

--

--

dd

--

cc

dd

--

cc

--

16 bit X0 1st -- -- cc dd -- -- dd cc

8 bit X0
1st

2nd

--

--

--

--

--

--

dd

cc

--

--

--

--

--

--

cc

dd

Byte Data Type Bus Pins (Data Lines 31:0)

Bus 
Width EFA A[1:0] Xfer

Little and Big Endian

31:24 23:16 15:8 7:0

32 bit

00

01

10

11

1st

1st

1st

1st

--

--

--

dd

--

--

dd

--

--

dd

--

--

dd

--

--

--

16 bit
X0

X1

1st

1st

--

--

--

--

--

dd

dd

--

8 bit XX 1st -- -- -- dd
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15.5 Atomic Memory Operations (The LOCK# Signal)

LOCK# output assertion indicates that the processor is executing an atomic read-modify-write 
operation. Atomic instructions (atadd, atmod) provide indivisible memory accesses. Atomic 
instructions consist of a load and store request to the same memory location. LOCK# is asserted in 
the first address cycle of the load request and deasserted in the cycle after the last data transfer of 
the store request. The LOCK# pin is not active during the NXDA states for the store request. During 
this operation, another bus agent must not access the target of the atomic instruction between read 
and write cycles. 

When implementing a locked memory subsystem, consider the interaction that the following 
mechanisms may have with the system. A system must account for these conditions during locked 
accesses:

• HOLD requests are not acknowledged while LOCK# is asserted. 

• An atomic load or store may be suspended using the BOFF# input. 

LOCK# indicates that other agents must not write data to any address falling within the quad word 
boundary of the address on the bus when LOCK# was asserted. LOCK# is deasserted after the 
write portion of an atomic access. (See Figure 15-19.)

Figure 15-19. The LOCK# Signal

CLKIN
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A[31:4], SUP#

W/R#

BLAST#

LOCK#

 D/C#, BE[3:0]#

Read Write

A D A D
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~ ~
~ ~

~ ~
~ ~

~ ~
~ ~
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15.6 External Bus Arbitration

The i960 Hx processor provides a shared bus protocol to allow another bus master to access the 
processor’s bus. The two methods for an external agent to acquire the bus are using the HO
HOLDA pins or the BOFF# signal. When the processor relinquishes control of the bus, the d
address and control lines are floated to allow the external bus master to control the bus and m
interface. HOLD/HOLDA allow the processor to finish its current access(es) before releasing
bus. BOFF# stops the current access and gives the external agent immediate control. Additi
the Bus Request (BREQ) and Bus Stall (BSTALL) signals provide status information for 
arbitration logic.

15.6.1 The HOLD and HOLDA Signals

The HOLD input signal is asserted when another processor or peripheral is requesting contr
the bus. The HOLDA (Hold Acknowledge) output signal acknowledges that the i960 Hx proce
has relinquished the bus. Bus pins float on the same clock cycle in which the hold request is
granted (HOLDA asserted). The i960 Hx processor uses the bus request signal (BREQ) to te
other processor or peripheral when it needs to access the bus. If the processor is stalled whi
waiting for the bus, then BSTALL is asserted as well. When the HOLD signal is asserted, the
Hx processor grants the hold request (asserts HOLDA) and relinquishes control as follows:

• If the bus is in the idle state, the hold request is granted immediately.

• If a bus request is being serviced and LOCK# is not asserted, the hold request is granted at the 
end of the current bus request. 

• If a bus request is being serviced and LOCK# is asserted, the hold request is granted after the 
request that releases LOCK#. 

• If the processor is in the backoff state (BOFF# pin asserted), the hold request is granted after 
BOFF# is deasserted and the resumed request has completed.

When the HOLD signal is removed, HOLDA is deasserted on the following CLKIN cycle and the 
bus and control signals are driven. The HOLD signal is a synchronous input. Setup and hold times 
for this input are given in the 80960HA/HD/HT Embedded 32-bit Microprocessor datasheet.

HOLD and HOLDA arbitration can also function during the reset state. The bus controller 
acknowledges HOLD while RESET# is asserted. If RESET# is asserted while HOLDA is asserted 
(the processor has acknowledged the HOLD), the processor remains in the HOLDA state. The 
processor does not go into the reset state until HOLD is removed and the processor removes 
HOLDA. 
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15.6.2 The BREQ and BSTALL Signals

BREQ indicates that the bus controller queue contains one or more pending bus requests. The bus 
controller can queue up to three bus requests. When the bus queue is empty, the BREQ pin is 
deasserted. 

Applications can use BREQ to qualify hold requests to optimize the processor’s use of the b
when shared by external masters. Because the hold request is granted between bus requests
controller queue may contain one or more entries when the request is granted. BREQ can b
to delay a hold request until all pending bus requests are complete. It should be noted that th
processor can continue executing from on-chip cache while in the hold state. It is possible, th
that bus requests may be posted in the queue after the hold request is granted. In this case,
processor asserts BREQ when it needs the bus.

Figure 15-20. HOLD/HOLDA Bus Arbitration

Word Read Request
NRAD=1, NXDA=1

Word Read
Request
NRAD=0,
NXDA=0

Hold State Hold State

CLKIN
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The i960 Hx processor includes the signal BSTALL that indicates when the CPU has stalled due to 
inability to access the bus during a HOLD or backoff condition. A stall may be caused by:

• Full bus queues resulting in stalled execution of a memory reference instruction

• Data dependency due to an outstanding load request

• Instruction cache miss

BSTALL may be used in combination with BREQ to provide a bus arbiter with additional 
information. The timing for BSTALL is the same as BREQ (see 80960HA/HD/HT Embedded 32-
bit Microprocessor datasheet).

15.6.3 Bus Backoff Function (BOFF# Pin)

The bus backoff input (BOFF#) suspends a bus request already in progress and allows another bus 
master to take control of the bus temporarily. Assertion of the BOFF# pin suspends the current bus 
request, and the processor’s address, data and status pins are floated on the following clock
At this time, an alternate bus master may take control of the local system bus. When the alte
bus master has completed its accesses, BOFF# is deasserted and the suspended request is
upon assertion of ADS# on the following clock cycle. See Figure 15-22.

Backoff can be used only for requests to regions that have the READY#/BTERM# inputs ena
with the NRAD, NRDD, NWAD and NWDD parameters programmed to 0. If BOFF# is asserted dur
an access to a memory region where the READY#/BTERM# inputs are disabled, the proces
ignores the backoff request.

Note that if the wait state parameters are not programmed to zero in a region where BOFF# 
asserted, improper bus controller behavior can occur.

BOFF# may be asserted only during a bus access. External logic must ensure that BOFF# is
asserted during idle bus cycles or during bus turnaround (NXDA) cycles, otherwise, unpredictable 
behavior may occur. 

It is possible for HOLD and BOFF# to be asserted in the same clock cycle. When this occurs
BOFF# takes precedence. The bus is relinquished to a hold request only after BOFF# is dea
and the current request is complete.

Bus backoff is intended for multiprocessor designs or bus architectures that do not implemen
“collision-free” bus arbitration schemes (such as VME* and MULTIBUS I*). A collision occurs
when multiple processors begin a bus access simultaneously and a conflict for control of a 
processor’s local memory occurs.

Figure 15-21 illustrates a bus collision. In this system, several processors share a common bu
Each processor has local memory that is connected directly to that processor’s address, dat
control lines. Each processor can access another processor’s local memory over the bus. 
15-34 i960® Hx Microprocessor Developer’s Manual



External Bus Description

’s local 
f the bus 
ccess, 
ng the 

 return 
serted.
Processor A has a higher priority than Processor B for use of the bus. Processor A and B 
simultaneously request an access over the bus. Processor A attempts to access Processor B
memory and Processor B attempts to access another memory subsystem on the bus. Use o
is granted to Processor A because it is the highest priority. For Processor A to complete its a
the local bus for Processor B must be relinquished (floated). This is accomplished by asserti
BOFF# pin for Processor B.

When BOFF# is asserted, external memory is responsible for cancelling the current access 
gracefully. This means that the memory control state machine should cancel write cycles and
to an idle state after BOFF# is asserted. The processor ignores read data after BOFF# is as

Figure 15-21. Example Application of the Bus Backoff Function
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Figure 15-22. Operation of the Bus Backoff Function
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Test Features 16

This chapter describes the i960® Hx processor’s test features, including ONCE (On-Circuit 
Emulation) and boundary-scan (JTAG). Together these two features create a powerful enviro
for design debug and fault diagnosis.

16.1 On-Circuit Emulation (ONCE)

On-circuit emulation aids board-level testing. This feature allows a mounted i960 Hx process
electrically “remove” itself from a circuit board. This allows for system-level testing where a 
remote tester exercises the processor system. In ONCE mode, the processor presents a hig
impedance on every pin, except for the JTAG test data Output (TDO). All pullup transistors pr
on input pins are also disabled and internal clocks stop. In this state the processor’s power de
on the circuit board are nearly eliminated. Once the processor is electrically removed, a func
tester such as an In-Circuit Emulator (ICE™) system can emulate the mounted processor an
execute a test of the i960 Hx processor system.

Note: Do not use ONCE mode with boundary-scan (JTAG). See Section 16.1.2, “ONCE Mode and 
Boundary-Scan (JTAG) are Incompatible” on page 16-2.

16.1.1 Entering/Exiting ONCE Mode

The ONCE# pin, in concert with the RESET# pin, invokes ONCE mode. 

To invoke ONCE mode, assert the ONCE# pin (low) while the processor is in the reset state
processor recognizes the ONCE# pin signal only while RESET# is asserted.) The processor
ONCE mode immediately. The rising edge of RESET# latches the ONCE# pin state until RES
goes true again. 

Enter ONCE mode by asserting the following sequence with an external tester:

1. Drive the ONCE pin low (overcoming the internal pull-up resistor).

2. Initiate a normal reset cycle.

3. Anytime after the RESET# pin goes high again, the ONCE# pin can be deasserted.

Exit ONCE mode, by performing a normal reset with the RESET# pin while holding the ONC
pin high. A power off-on cycle is not necessary to exit ONCE mode.

See the 80960HA/HD/HT Embedded 32-bit Microprocessor datasheet (Intel Literature order 
#272495) for specific timing of the ONCE# pin and the characteristics of the on-circuit emula
mode.
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16.1.2 ONCE Mode and Boundary-Scan (JTAG) are Incompatible

Permanent damage can occur if an in-circuit emulator is used concurrently with boundary-scan 
(JTAG). Do not use any system that relies on ONCE mode when using boundary-scan. Signal 
contentions and resultant damage may occur if an external system, such as an emulator 
development system, invokes ONCE mode and manipulates the i960 Hx processor signals while 
JTAG is active.

Since the i960 Hx processor complies fully with IEEE Std. 1149.1, JTAG boundary-scan 
instructions always override ONCE mode. While ONCE mode intends to disable all processor 
outputs so an external emulator can drive them, JTAG boundary-scan can enable those outputs, 
causing contention with the external emulator.

To avoid damage, and as a general design rule, force TRST# low to disable boundary-scan 
whenever ONCE mode is active. 

16.2 Boundary-Scan (JTAG)

The i960 Hx processor provides test features compliant to IEEE standard test access port and 
boundary-scan architecture (IEEE Std. 1149.1). JTAG ensures that components function correctly, 
connections between components are correct, and components interact correctly on the printed 
circuit board.

To date, the i960 Hx, Jx and RP processors implement IEEE 1149.1 standard test access port and 
boundary-scan architecture, and i960 Kx, Sx and Cx processors do not. For information about 
using JTAG in a design, refer to IEEE Std. 1149.1 (available from the Institute of Electrical and 
Electronics Engineers Inc., 345 E. 47th St., New York, NY 10017).

Note: Do not use ONCE mode with boundary-scan (JTAG). See Section 16.1.2, “ONCE Mode and 
Boundary-Scan (JTAG) are Incompatible” on page 16-2.
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16.2.1 Boundary-Scan Architecture

Boundary-scan test logic consists of a boundary-scan register and support logic. These are accessed 
through a Test Access Port (TAP). The TAP provides a simple serial interface that allows all 
processor signal pins to be driven and/or sampled, thereby providing direct control and monitoring 
of processor pins at the system level.

This mode of operation is valuable for design debugging and fault diagnosis since it permits 
examination of connections not normally accessible to the test system. The following subsections 
describe the boundary-scan test logic elements: TAP pins, instruction register, test data registers 
and TAP controller. Figure 16-1 illustrates how these pieces fit together to form the JTAG unit.

Figure 16-1. Test Access Port Block Diagram

 Boundary-Scan Register

Device ID Register

RUNBIST Register

TDO

TDI

 Bypass Register

     Control and Clock Signals

 Instruction
Register

. . .

 Processor System Pins TAP Pins

TRST#

TMS

TCK

TAP
 Controller
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16.2.2 TAP Pins

The i960 Hx processor’s TAP pins form a serial port composed of four input connections (TM
TCK, TRST# and TDI) and one output connection (TDO). These pins are described in Table 16-1. 
The TAP pins provide access to the instruction register and the test data registers. 

16.2.3 Instruction Register

The Instruction Register (IR) holds instruction codes. These codes are shifted in through the
Data Input (TDI) pin. The instruction codes are used to select the specific test operation to b
performed and the test data register to be accessed.

The instruction register is a parallel-loadable, master/slave-configured 4-bit wide, serial-shift
register with latched outputs. Data is shifted into and out of the IR serially through the TDI pi
clocked by the rising edge of TCK when the TAP controller is in the Shift_IR state. The shifte
instruction becomes active upon latching from the master stage to the slave stage in the Upd
state. At that time the IR outputs along with the TAP finite state machine outputs are decode
select and control the test data register selected by that instruction. Upon latching, all action
caused by any previous instructions will terminate. 

Table 16-1. TAP Controller Pin Definitions 

Pin Name Type Definition

TCK Input Test Clock provides the clock for the JTAG logic. The JTAG test logic retains its 
state indefinitely when TCK is stopped at “0” or “1”. 

TMS Input
Test Mode is decoded by the TAP controller state machine to control test 
operations. TMS is sampled by the test logic on the rising edge of TCK. TMS is 
pulled high internally when not driven. 

 TDI Input

Test Data Input is the serial port where test instructions and data is received by the 
test logic. Signals presented at TDI are sampled into the test logic on the rising 
edge of TCK. TDI is pulled high internally when not driven. Data shifted into TDI is 
not inverted on its way to the TDO input.

TDO Output

Test Data Output is the serial output for test instructions and data from the JTAG 
test logic. Changes in the state of TDO occur only on the falling edge of TCK. The 
TDO output is active only during data shifting (SHDR or SHIR); it is inactive (high-
Z) at all other times. 

TRST# Input

Test Reset provides for an asynchronous initialization of the TAP controller. 
Asserting a logic “0” on this pin puts the TAP controller state machine and all other 
test logic on the processor in the Test-Logic-Reset (initial) state. TRST# is pulled 
high internally when not driven. 

Note: The system must ensure that TRST# is asserted after power-up in order to 
put the TAP controller in a known state. Failure to do so may cause improper 
processor operation. 
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The instruction determines the test to be performed, the test data register to be accessed, or both 
(see Table 16-2). The IR is four bits wide. When the IR is selected in the Shift_IR state, the most 
significant bit is connected to TDI, and the least significant bit is connected to TDO. The value 
presented on the TDI pin is shifted into the IR on each rising edge of TCK, as long as the TAP 
controller remains in the Shift_IR state. When the TAP controller changes to the Capture_IR state, 
fixed parallel data (00012) is captured. During Shift_IR, when a new instruction is shifted in 
through TDI, the value 00012 is always shifted out through TDO, least significant bit first. This 
helps identify instructions in a long chain of serial data from several devices.

Upon activation of the TRST# reset pin, the latched instruction asynchronously changes to the 
idcode instruction. If the TAP controller moved into the Test_Logic_Reset state other than by reset 
activation, the opcode changes as TDI is shifted, and becomes active on the falling edge of TCK. 
See Figure 16-4 for an example of loading the instruction register.

16.2.3.1 Boundary-Scan Instruction Set

The i960 Hx processor supports three mandatory boundary-scan instructions (bypass, sample/
preload and extest) plus four additional public instructions (idcode, clamp, highz and runbist). 
Table 16-2 lists the i960 Hx processor’s boundary-scan instruction codes. Those codes listed 
“not used” or “private” should not be used.

Table 16-2. Boundary-Scan Instruction Set

Instruction Code Instruction Name Instruction Code Instruction Name

00002 extest 10002 highz

00012 sample/preload 10012 not used

00102 idcode 10102 not used

00112 not used 10112 private

01002 clamp 11002 private

01012 not used 11012 not used

01102 not used 11102 not used

01112 runbist 11112 bypass
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Table 16-3. IEEE Instructions  (Sheet 1 of 2)

Instruction / 
Requisite Opcode Description

extest

IEEE 1149.1

Required

00002

extest initiates testing of external circuitry, typically board-level interconnects 
and off chip circuitry. extest connects the boundary-scan register between 
TDI and TDO in the Shift_DR state only. When extest is selected, all output 
signal pin values are driven by values shifted into the boundary-scan register 
and may change only on the falling edge of TCK in the Update_DR state. 
Also, when extest is selected, all system input pin states must be loaded into 
the boundary-scan register on the rising-edge of TCK in the Capture_DR 
state. Values shifted into input latches in the boundary-scan register are 
never used by the processor’s internal logic.

sample/
preload

IEEE 1149.1

Required

00012

sample/preload performs two functions:
• When the TAP controller is in the Capture-DR state, the sample 

instruction occurs on the rising edge of TCK and provides a snapshot of 
the component’s normal operation without interfering with that normal 
operation. The instruction causes boundary-scan register cells 
associated with outputs to sample the value being driven by or to the 
processor.

• When the TAP controller is in the Update-DR state, the preload 
instruction occurs on the falling edge of TCK. This instruction causes the 
transfer of data held in the boundary-scan cells to the slave register cells. 
Typically the slave latched data is then applied to the system outputs by 
means of the extest instruction. 

idcode

IEEE 1149.1

Optional

00102

idcode is used in conjunction with the device identification register. It 
connects the device identification register between TDI and TDO in the 
Shift_DR state. When selected, idcode parallel-loads the hard-wired 
identification code (32 bits) into the device identification register on the rising 
edge of TCK in the Capture_DR state.

NOTE: The device identification register is not altered by data being shifted 
in on TDI.

runbist

i960 Hx 
processor 
Optional

01112

runbist selects the one-bit RUNBIST register, loads a value of 1 into it and 
connects it to TDO. It also initiates the processor’s built-in self test (BIST) 
feature which is able to detect approximately 82% of all the possible stuck-at 
faults on the device. The processor AC/DC specifications for VCC and CLKIN 
must be met and RESET# must be de-asserted prior to executing runbist.

After loading runbist instruction code into the instruction register, the TAP 
controller must be placed in the Run-Test/Idle state. BIST begins on the first 
rising edge of TCK after the Run-Test/Idle state is entered. The TAP controller 
must remain in the Run-Test/Idle state until BIST is completed. runbist 
requires approximately 414,000 core cycles to complete BIST and report the 
result to the RUNBIST register. The results are stored in bit 0 of the RUNBIST 
register. After the report completes, the value in the RUNBIST register is 
shifted out on TDO during the Shift-DR state. A value of 0 being shifted out on 
TDO indicates BIST completed successfully. A value of 1 indicates a failure 
occurred. After BIST completes, the processor must be cycled through the 
reset state to resume normal operation.
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16.2.4 TAP Test Data Registers

The i960 Hx processor contains four test data registers (device identification, bypass, RUNBIST 
and boundary-scan). Each test data register selected by the TAP controller is connected serially 
between TDI and TDO. TDI is connected to the test data register’s most significant bit. TDO 
connected to the least significant bit. Data is shifted one bit position within the register towar
TDO on each rising edge of TCK. While any register is selected, data is transferred from TD
TDO without inversion. The following sections describe each of the test data registers. See 
Figure 16-5 for an example of loading the data register.

16.2.4.1 Device Identification Register

The device identification register is a 32-bit register containing the manufacturer’s identificati
code, part number code, version code and other information in the format shown in Figure 13-8. 
The format of the register is discussed in Section 13.4, Device Identification on Reset (pg. 13-23. 
Table 13-8 lists the codes corresponding to the i960 Hx processor. The identification register 
selected only by the idcode instruction. When the TAP controller’s Test_Logic_Reset state is 
entered, idcode is asynchronously loaded into the instruction register. The device identificatio
register loads the fixed parallel input value in the Capture_DR state.

bypass

IEEE 1149.1

Required

11112

bypass instruction selects the one-bit bypass register between TDI and TDO 
pins while in SHIFT_DR state, effectively bypassing the processor’s test logic. 
02 is captured in the CAPTURE_DR state. This is the only instruction that 
accesses the bypass register. While this instruction is in effect, all other test 
data registers have no effect on system operation. Test data registers with 
both test and system functionality perform their system functions when this 
instruction is selected.

highz 10002

The execution of highz generates a signal that is read on the rising-edge of 
RESET#. If this signal is found asserted, the device is put into the ONCE 
mode (all output pins are floated). Also, when this instruction is active, the 
Bypass register is connected between TDI and TDO. This register can be 
accessed via the JTAG Test-Access Port throughout the device operation. 
Access to the Bypass register can also be obtained with the bypass 
instruction. highz provides an alternate method of entering ONCE mode.

clamp 01002

clamp instruction allows the state of the signals driven from the i960 Jx 
processor pins to be determined from the boundary-scan register while the 
BYPASS register is selected as the serial path between TDI and TDO. 
Signals driven from the component pins will not change while the clamp 
instruction is selected.

Table 16-3. IEEE Instructions  (Sheet 2 of 2)

Instruction / 
Requisite Opcode Description
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16.2.4.2 Bypass Register

The required bypass register, a one-bit shift register, provides the shortest path between TDI and 
TDO when a bypass instruction is in effect. This allows rapid movement of test data to and from 
other components on the board. This path can be selected when no test operation is being 
performed on the i960 Hx processor itself. 

16.2.4.3 RUNBIST Register

The RUNBIST register, a one-bit register, contains the result of the execution of the process
BIST routine. After the built-in self-test completes, the processor must be cycled through the
state to resume normal operation. See Section 13.2.2, “Self Test Function (STEST, FAIL#)” on 
page 13-8 for details of the built-in self test algorithm. The processor runs the BIST routine wh
the TAP controller enters the Test_Logic_Reset state while the runbist instruction is selected.

16.2.4.4 Boundary-Scan Register

The boundary-scan register contains a cell for each pin as well as control cells for I/O and th
HIGHZ pin. 

Table 16-4 shows the bit order of the i960 Hx processor boundary-scan register. All table cells
contain “Control” select the direction of bidirectional pins or HIGHZ output pins. If a “0” is load
into the control cell, the associated pin(s) are HIGHZ or selected as input. 

The boundary-scan register is a required set of serial-shiftable register cells, configured in m
slave stages and connected between each of the i960 Hx processor’s pins and on-chip syste
The VCC, VSS and JTAG pins are NOT in the boundary-scan chain.

The boundary-scan register cells are dedicated logic and do not have any system function. D
may be loaded into the boundary-scan register master cells from the device input pins and o
pin-drivers in parallel by the mandatory sample/preload and extest instructions. Parallel loading 
takes place on the rising edge of TCK in the Capture_DR state.

Data may be scanned into the boundary-scan register serially via the TDI serial input pin, clo
by the rising edge of TCK in the Shift_DR state. When the required data has been loaded int
master-cell stages, it can be driven into the system logic at input pins or onto the output pins 
falling edge of TCK in the Update_DR state. Data may also be shifted out of the boundary-sc
register by means of the TDO serial output pin at the falling edge of TCK.
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Table 16-4. i960 Hx Processor Boundary-Scan Register Bit Order  (Sheet 1 of 3)

Bit Boundary-Scan Cell Cell Type Bit Boundary-Scan Cell Cell Type

1 DP3 I/O 26 D15 I/O

2 DP2 I/O 27 D16 I/O

3 DP0 I/O 28 D17 I/O

4 DP1 I/O 29 D18 I/O

5 STEST I 30 D19 I/O

6 FAIL# O 31 D20 I/O

7 FAIL#, BREQ, BSTALL enable 
cell Control 32 D21 I/O

8 ONCE# I 33 D22 I/O

9 BOFF# I 34 D23 I/O

10 D0 I/O 35 D24 I/O

11 D1 I/O 36 D25 I/O

12 D2 I/O 37 D26 I/O

13 D3 I/O 38 D27 I/O

14 D4 I/O 39 D28 I/O

15 D5 I/O 40 D29 I/O

16 D6 I/O 41 D30 I/O

17 D7 I/O 42 D31 I/O

18 D[31:0], DP[3:0] enable cell Control 43 BTERM# I

19 D8 I/O 44 RDY# I

20 D9 I/O 45 HOLD I

21 D10 I/O 46 HOLDA O

22 D11 I/O 47 HOLDA enable cell Control

23 D12 I/O 48 ADS# O

24 D13 I/O 49 BE3# O

25 D14 I/O 50 BE2# O

NOTES:
1. Cell #1 connects to TDO and cell # 112 connects to TDI.
2. All outputs are three-states.
3. For output-only signals, a logic 1 on the Enable signal enables the output. A logic 0 three-states the output.
4. For bi-directional signals, a logic 1 on the Enable signal enables the output. A logic 0 selects the input 

direction. 
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51 BE1# O 75 A21 O

52 BE0# O 76 A20 O

53 BLAST# O 77 A19 O

54 DEN# O 78 A18 O

55 W/R# O 79 A17 O

56 DTR# O 80 A16 O

57 Enable for DTR# Control 81 A[31:2], CT[3:0] enable cell Control

58 WAIT# O 82 A15 O

59 BSTALL O 83 A14 O

60 D/C# O 84 A13 O

61 SUP# O 85 A12 O

62
SUP#, LOCK#, D/C#, WAIT#, 
W/R#, DEN#, BLAST#, BE[3:0]#, 
ADS# enable cell

Control 86 A11 O

63 LOCK# O 87 A10 O

64 BREQ O 88 A9 O

65 A31 O 89 A8 O

66 A30 O 90 A7 O

67 A29 O 91 A6 O

68 A28 O 92 A5 O

69 A27 O 93 A4 O

70 A26 O 94 A3 O

71 A25 O 95 A2 O

72 A24 O 96 NMI# I

73 A23 O 97 XINT7# I

74 A22 O 98 XINT6# I

Table 16-4. i960 Hx Processor Boundary-Scan Register Bit Order  (Sheet 2 of 3)

Bit Boundary-Scan Cell Cell Type Bit Boundary-Scan Cell Cell Type

NOTES:
1. Cell #1 connects to TDO and cell # 112 connects to TDI.
2. All outputs are three-states.
3. For output-only signals, a logic 1 on the Enable signal enables the output. A logic 0 three-states the output.
4. For bi-directional signals, a logic 1 on the Enable signal enables the output. A logic 0 selects the input 

direction. 
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16.2.5 TAP Controller

The TAP (Test Access Port) controller is a 16-state synchronous finite state machine that controls 
the sequence of test logic operations. The TAP can be controlled via a bus master. The bus master 
can be either automatic test equipment or a component (i.e., PLD) that interfaces to the TAP. The 
TAP controller changes state only in response to a rising edge of TCK. The value of the test mode 
state (TMS) input signal at a rising edge of TCK controls the sequence of state changes. The TAP 
controller is initialized after power-up by applying a low to the TRST# pin. In addition, the TAP 
controller can be initialized by applying a high signal level on the TMS input for a minimum of 
five TCK periods. See Figure 16-2 for the state diagram of the TAP controller. An uninitialized 
TAP controller can result in erratic processor behavior even if there is no intention to use the JTAG 
portion of the processor.

The behavior of the TAP controller and other test logic in each controller state is described in the 
following subsections. For greater detail on the state machine and the public instructions, refer to 
the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture document (available 
from the IEEE).

99 XINT5# I 106 CLKIN I

100 XINT4# I 107 CT3 O

101 XINT3# I 108 CT2 O

102 XINT2# I 109 CT1 O

103 XINT1# I 110 CT0 O

104 XINT0# I 111 PCHK# O

105 RESET# I 112 PCHK# enable Control

Table 16-4. i960 Hx Processor Boundary-Scan Register Bit Order  (Sheet 3 of 3)

Bit Boundary-Scan Cell Cell Type Bit Boundary-Scan Cell Cell Type

NOTES:
1. Cell #1 connects to TDO and cell # 112 connects to TDI.
2. All outputs are three-states.
3. For output-only signals, a logic 1 on the Enable signal enables the output. A logic 0 three-states the output.
4. For bi-directional signals, a logic 1 on the Enable signal enables the output. A logic 0 selects the input 

direction. 
i960® Hx Microprocessor Developer’s Manual 16-11



Test Features
Figure 16-2. TAP Controller State Diagram
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16.2.5.1 Test Logic Reset State

In this state, test logic is disabled to allow normal operation of the i960 Hx processor. Upon 
entering the Test_Logic_Reset state, the device identification register is loaded. No matter what the 
present state of the controller, it enters Test-Logic-Reset state when the TMS input is held high (12) 
for at least five rising edges of TCK. The controller remains in this state while TMS is high. The 
TAP controller is also forced to enter this state asynchronously by asserting TRST#.

If the controller exits the Test-Logic-Reset controller state as a result of an erroneous low signal on 
the TMS line at the time of a rising edge on TCK (for example, a glitch due to external 
interference), it returns to the Test-Logic-Reset state following three rising edges of TCK with the 
TMS line at the intended high logic level. 

16.2.5.2 Run-Test/Idle State

The TAP controller enters the Run-Test/Idle state between scan operations. The controller remains 
in this state as long as TMS is held low. If the runbist instruction is selected, it executes during the 
Run-Test/Idle state and the result is reported in the RUNBIST register. Instructions that do not call 
functions generate no activity in the test logic while the controller is in this state. The instruction 
register and all test data registers retain their current state. When TMS is high on the rising edge of 
TCK, the controller moves to the Select-DR-Scan state. The instruction register does not change 
while the TAP controller is in this state.

16.2.5.3 Select-DR-Scan State

The Select-DR-Scan state is a transitional controller state. While in the Select-DR-Scan state, the 
test data registers selected by the current instruction retain their previous states. If TMS is held low 
on the rising edge of TCK, the controller moves into the Capture-DR state. If TMS is held high on 
the rising edge of TCK, the controller moves into the Select-IR-Scan state. See Section 16.2.5.10, 
Select-IR Scan State (pg. 16-15). The instruction register does not change while the TAP controller 
is in this state.

16.2.5.4 Capture-DR State

In this state, the selected test data register is loaded with its parallel value on the rising edge of 
TCK. When the controller is in the Capture-DR state and the current instruction is sample/
preload, the boundary-scan register captures input pin data on the rising edge of TCK. Test data 
registers that do not have a parallel input are not changed. The boundary-scan registers cannot be 
updated from the parallel inputs any other way. The instruction register does not change while the 
TAP controller is in this state.

If TMS is high on the rising edge of TCK, the controller enters the Exit1-DR state. If TMS is low 
on the rising edge of TCK, the controller enters the Shift-DR state.
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16.2.5.5 Shift-DR State

In the Shift-DR state, the test data register selected by the current instruction shifts data one bit 
position nearer to the TDO serial output on each rising edge of TCK. All other test data registers 
retain their previous values during this state. 

The instruction register does not change while the TAP controller is in this state.

If TMS is high on the rising edge of TCK, the controller enters the Exit1-DR state. If TMS is low 
on the rising edge of TCK, the controller remains in the Shift-DR state.

16.2.5.6 Exit1-DR State

Exit1-DR is a temporary controller state. When the TAP controller is in the Exit1-DR state and 
TMS is held high on the rising edge of TCK, the controller enters the Update-DR state, which 
terminates the scanning process. If TMS is held low on the rising edge of TCK, the controller 
enters the Pause-DR state.

The instruction register does not change while the TAP controller is in this state. All test data 
registers selected by the current instruction retain their previous value during this state.

16.2.5.7 Pause-DR State

The Pause-DR state allows the test controller to temporarily halt the shifting of data through the 
test data register in the serial path between TDI and TDO. The test data register selected by the 
current instruction retains its previous value during this state. The instruction register does not 
change in this state.

The controller remains in this state as long as TMS is low. When TMS is high on the rising edge of 
TCK, the controller moves to the Exit2-DR state.

16.2.5.8 Exit2-DR State

Exit2-DR is a temporary state. If TMS is held high on the rising edge of TCK, the controller enters 
the Update-DR state, which terminates the scanning process. If TMS is held low on the rising edge 
of TCK, the controller re-enters the Shift-DR state.

The instruction register does not change while the TAP controller is in this state. All test data 
registers selected by the current instruction retain their previous value during this state.
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16.2.5.9 Update-DR State

The boundary-scan register is provided with a latched parallel output. This output prevents changes 
at the parallel output while data is shifted in response to the extest, sample/preload instructions. 
When the boundary-scan register is selected while the TAP controller is in the Update-DR state, 
data is latched onto the boundary-scan register’s parallel output from the shift-register path o
falling edge of TCK. The data held at the latched parallel output does not change unless the
controller is in this state.

While the TAP controller is in this state, all of the test data register’s shift-register bit position
selected by the current instruction retain their previous values. The instruction register does 
change while the TAP controller is in this state.

When the TAP controller is in this state and TMS is held high on the rising edge of TCK, the 
controller re-enters the Select-DR-Scan state. If TMS is held low on the rising edge of TCK, 
controller re-enters the Run-Test/Idle state.

16.2.5.10 Select-IR Scan State

Select-IR is a temporary controller state. The test data registers selected by the current instr
retain their previous states. In this state, if TMS is held low on the rising edge of TCK, the 
controller enters the Capture-IR state and a scan sequence for the instruction register is initia
TMS is held high on the rising edge of TCK, the controller re-enters the Test-Logic-Reset sta
The instruction register does not change in this state.

16.2.5.11 Capture-IR State

When the controller is in the Capture-IR state, the shift register contained in the instruction re
appends the instruction with the fixed value 012 on the rising edge of TCK.

The test data register selected by the current instruction retains its previous value during this
The instruction does not change in this state. While in this state, holding TMS high on the ris
edge of TCK causes the controller to enter the Exit1-IR state. If TMS is held low on the rising 
of TCK, the controller enters the Shift-IR state.

16.2.5.12 Shift-IR State

When the controller is in this state, the shift register contained in the instruction register is 
connected between TDI and TDO and shifts data one bit position nearer to its serial output o
rising edge of TCK. The test data register selected by the current instruction retains its previ
value during this state. The instruction register does not change.

If TMS is held high on the rising edge of TCK, the controller enters the Exit1-IR state. If TMS
held low on the rising edge of TCK, the controller remains in the Shift-IR state.
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16.2.5.13 Exit1-IR State

This is a temporary state. If TMS is held high on the rising edge of TCK, the controller enters the 
Update-IR state, which terminates the scanning process. If TMS is held low on the rising edge of 
TCK, the controller enters the Pause-IR state.

The test data register selected by the current instruction retains its previous value during this state. 

The instruction does not change and the instruction register retains its state.

16.2.5.14 Pause-IR State

The Pause-IR state allows the test controller to temporarily halt the shifting of data through the 
instruction register. The test data registers selected by the current instruction retain their previous 
values during this state. The instruction does not change and the instruction register retains its state.

The controller remains in this state as long as TMS is held low. When TMS is high on the rising 
edges of TCK, the controller enters the Exit2-IR state.

16.2.5.15 Exit2-IR State

This is a temporary state. If TMS is held high on the rising edge of TCK, the controller enters the 
Update-IR state, which terminates the scanning process. If TMS is held low on the rising edge of 
TCK, the controller re-enters the Shift-IR state.

This test data register selected by the current instruction retains its previous value during this state. 
The instruction does not change and the instruction register retains its state.

16.2.5.16 Update-IR State

The instruction shifted into the instruction register is latched onto the parallel output from the shift-
register path on the falling edge of TCK. Once latched, the new instruction becomes the current 
instruction. Test data registers selected by the current instruction retain their previous values.

If TMS is held high on the rising edge of TCK, the controller re-enters the Select-DR-Scan state. If 
TMS is held low on the rising edge of TCK, the controller re-enters the Run-Test/Idle state.
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16.2.6 Boundary-Scan Example

The following example describes two command actions. The example assumes the TAP controller 
starts in the Test-Logic-Reset state. The TAP controller then loads and executes a new instruction. 
See Figure 16-3 for an illustration of the waveforms involved in this example. The steps are:

1. Load the sample/preload instruction into the instruction register:

a. Use TMS to select the Shift-IR state. While in the Shift-IR state, shift in the new 
instruction, least significant byte first. 

b. Use the Shift-IR state four times to read the least- through most-significant instruction bits 
into the instruction register (one does not care what old instruction is being shifted out of 
the TDO pin).

c. Enter the Update-IR state to make the instruction take effect.

2. Capture pin data and shift the data out through the TDO pin:

a. Use TMS to select the Select-DR-Scan state.

b. Transition the TAP controller to the Capture-DR state to latch pin data in the boundary-
scan register cells.

c. Enter and stay in the Shift-DR state for 110 TCK cycles. These TDO values are compared 
against expected data to determine if component operation and connection are correct. 
Record the TDO values after each cycle. New serial data enters the boundary-scan register 
through the TDI pin, while old data is scanned out.

d. Pass through the Exit1-DR state to the Update-DR state. Here boundary-scan data to be 
driven out of the system output pins is latched and driven.

e. Transition back to the Select-DR state to begin another iteration.

This example does not use Pause states. These states allow software to pause the JTAG state 
machine to accommodate slow board-level data paths. The Pause states allow indefinite 
interruptions in the shifting while the external tester performs other tasks.

The old instruction was abcd in the example. The original instruction register value will be the ID 
code since the example starts from the reset state. Other times it will represent the previous opcode. 
The new instruction opcode is 00012 (sample/preload). All pins are captured into the serial 
boundary-scan register and the values are output to the TDO pin.

The TCK signal at the top of the diagram shows a continuous pulse train. In many designs, 
however, TCK is more irregular. In such cases, software controls TCK by writing to a port bit. 
Software writes the TMS and TDI signals and then toggles the clock high. Typically, software then 
drives TCK low quickly. The program then monitors the TDO pin values as they are shifted out.
i960® Hx Microprocessor Developer’s Manual 16-17



Test Features
Figure 16-3. Example Showing Typical JTAG Operations
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Figure 16-4. Timing Diagram Illustrating the Loading of Instruction Register
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Figure 16-5. Timing Diagram Illustrating the Loading of Data Register
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16.2.7 Boundary-Scan Description Language Example

Boundary-Scan Description Language (BSDL) Example 16-1 meets the de facto standard means of 
describing essential features of ANSI/IEEE 1149.1-1993 compliant devices.

Example 16-1. i960 Hx Processor Boundary-Scan Description Language (BSDL) Example  
(Sheet 1 of 5)
-- i960 (R) Hx Processor BSDL Model

-- Rev 0.6      08 Dec 1994
-- The following list describes all of the pins that are contained in the 
-- i960 Hx microprocessor.

entity Ha_Processor is
   generic(PHYSICAL_PIN_MAP : string:= “PGA”);

   port (A         : out     bit_vector(2 to 31);
         ADSBAR    : out     bit;
         BEBAR     : out     bit_vector(0 to 3);
         BLASTBAR  : out     bit;
         BOFFBAR   : in      bit;
         BREQ      : out     bit;
         BSTALL    : out     bit;
         BTERMBAR  : in      bit;
         CT        : out     bit_vector(0 to 3);
         CLKIN     : in      bit;
         D         : inout   bit_vector(0 to 31);
         DENBAR    : out     bit;
         DP        : inout   bit_vector(0 to 3);
         DTRBAR    : out     bit;
         DCBAR     : out     bit;
         FAILBAR   : out     bit;
         HOLD      : in      bit;
         HOLDA     : out     bit;
         LOCKBAR   : out     bit;
         NMIBAR    : in      bit;
         ONCEBAR   : in      bit;
         PCHKBAR   : out     bit;
         READYBAR  : in      bit;
         RESETBAR  : in      bit;
         STEST     : in      bit;
         SUPBAR    : out     bit;
         TCK       : in      bit;
         TDI       : in      bit;
         TDO       : out     bit;
         TMS       : in      bit;
         TRST      : in      bit;
         WAITBAR   : out     bit;
         WRBAR     : out     bit;
         XINTBAR   : in      bit_vector(0 to 7);
         FIVEVREF  : linkage bit;
         VCCPLL    : linkage bit;
         VOLTDET   : linkage bit;
         VCC1      : linkage bit_vector(0 to 23);
         VCC2      : linkage bit_vector(0 to 20);
         VSS1      : linkage bit_vector(0 to 25);
         VSS2      : linkage bit_vector(0 to 22);
         NC        : linkage bit_vector(0 to 4)
i960® Hx Microprocessor Developer’s Manual 16-21



Test Features
   );

   use STD_1149_1_1990.all;
   use i960ha_a.all;

   attribute PIN_MAP of Ha_Processor : entity is PHYSICAL_PIN_MAP;

    constant PGA:PIN_MAP_STRING :=

        “A         : (D16, D17, E16, E17, F17, G16, G17, H17, J17, K17,”&
        “             L17, L16, M17, N17, N16, P17, Q17, P16, P15, Q16,”&
        “             R17, R16, Q15, S17, R15, S16, Q14, R14, Q13, S15),”&
        “ADSBAR    : R06,”&
        “BEBAR     : (R09, S07, S06, S05),”&
        “BLASTBAR  : S08,”&
        “BOFFBAR   : B01,”&
        “BREQ      : R13,”&
        “BSTALL    : R12,”&
        “BTERMBAR  : R04,”&
        “CT        : (A11, A12, A13, A14),”&
        “CLKIN     : C13,”&
        “D         : (E03, C02, D02, C01, E02, D01, F02, E01, F01, G01,”&
        “            H02, H01, J01, K01, L02, L01, M01, N01, N02, P01,”&
        “            P02, Q01, P03, Q02, R01, S01, Q03, R02, Q04, S02,”&
        “            Q05, R03),”&
        “DENBAR    : S09,”&
        “DP        : (A03, B03, A04, B04),”&
        “DTRBAR    : S11,”&
        “DCBAR     : S13,”&
        “FAILBAR   : A02,”&
        “HOLD      : R05,”&
        “HOLDA     : S04,”&
        “LOCKBAR   : S14,”&
        “NMIBAR    : D15,”&
        “ONCEBAR   : C03,”&
        “PCHKBAR   : B08,”&
        “READYBAR  : S03,”&
        “RESETBAR  : A16,”&
        “STEST     : B02,”&
        “SUPBAR    : Q12,”&
        “TCK       : B05,”&
        “TDI       : A07,”&
        “TDO       : A08,”&
        “TMS       : B06,”&
        “TRST      : A06,”&
        “WAITBAR   : S12,”&
        “WRBAR     : S10,”&
        “XINTBAR   : (B15, A15, A17, B16, C15, B17, C16, C17),”&
        “FIVEVREF  : C05,”&
        “VOLTDET   : A05,”&
        “VCCPLL    : B10,”&
        “VCC1      : (M02, K02, J02, G02, N03, F03, C06, B07, B09, B11,”&
        “             B12, C14, E15, F16, H16, J16, K16, M16, N15, Q06,”&
        “             R07, R08, R10, R11),”&

Example 16-1. i960 Hx Processor Boundary-Scan Description Language (BSDL) Example  
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        “VSS1      : (G03, H03, J03, K03, L03, M03, C07, C08, C09, C10,”&
        “             C11, C12, Q07, Q08, Q09, Q10, Q11, F15, G15, H15,”&
        “             J15, K15, L15, M15, A01, C04),”&
     “NC        : (A09, A10, B13, B14, D03)”;

   attribute Tap_Scan_In    of  TDI   : signal is true;
   attribute Tap_Scan_Mode  of  TMS   : signal is true;
   attribute Tap_Scan_Out   of  TDO   : signal is true;
   attribute Tap_Scan_Reset of  TRST  : signal is true;
   attribute Tap_Scan_Clock of  TCK   : signal is (66.0e6, BOTH);

   attribute Instruction_Length of Ha_Processor: entity is 4;

   attribute Instruction_Opcode of Ha_Processor: entity is

      “BYPASS     (1111),” &
      “EXTEST     (0000),” &
      “SAMPLE     (0001),” &
      “IDCODE     (0010),” &
      “RUBIST     (0111),” &
      “CLAMP      (1011),” &
      “HIGHZ      (1100)”;

   attribute Instruction_Capture of Ha_Processor: entity is “0001”;

   attribute Instruction_Private of Ha_Processor: entity is “Reserved” ;

   attribute Idcode_Register of Ha_Processor: entity is
      “0000”                  &  --version,
      “1000100001000000”      &  --part number
      “00000001001”           &  --manufacturers identity
      “1”;                       --required by the standard

   attribute Register_Access of Ha_Processor: entity is
     “Runbist[32]     (RUBIST),” &
     “Bypass          (CLAMP, HIGHZ)”;

--{*******************************************************************}
--{  The first cell, cell 0, is closest to TDO                        }
--{  BC_1:Control, Output3  CBSC_1:Bidir  BC_4: Input, Clock          }
--{*******************************************************************}

   attribute Boundary_Cells of Ha_Processor: entity is “BC_4, BC_1, CBSC_1”;
   attribute Boundary_Length of Ha_Processor: entity is 112;
   attribute Boundary_Register of Ha_Processor: entity is

      “0  (CBSC_1,  DP(3),       bidir,   X,   17, 1,  Z),”   &
      “1  (CBSC_1,  DP(2),       bidir,   X,   17, 1,  Z),”   &
      “2  (CBSC_1,  DP(0),       bidir,   X,   17, 1,  Z),”   &
      “3  (CBSC_1,  DP(1),       bidir,   X,   17, 1,  Z),”   &
      “4  (BC_4,    STEST,       input,   X),”   &
      “5  (BC_1,    FAILBAR,     output3, X,   6,  1,  Z),”   &
      “6  (BC_1,    *,           control, 1),”   &
      “7  (BC_4,    ONCEBAR,     input,   X),”   &
      “8  (BC_4,    BOFFBAR,     input,   X),”   &
      “9  (CBSC_1,  D(0),        bidir,   X,  17,  1,  Z),”   &
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      “10 (CBSC_1,  D(1),        bidir,   X,  17,  1,  Z),”   &
      “11 (CBSC_1,  D(2),        bidir,   X,  17,  1,  Z),”   &
      “12 (CBSC_1,  D(3),        bidir,   X,  17,  1,  Z),”   &
      “13 (CBSC_1,  D(4),        bidir,   X,  17,  1,  Z),”   &
      “14 (CBSC_1,  D(5),        bidir,   X,  17,  1,  Z),”   &
      “15 (CBSC_1,  D(6),        bidir,   X,  17,  1,  Z),”   &
      “16 (CBSC_1,  D(7),        bidir,   X,  17,  1,  Z),”   &
      “17 (BC_1,    *,           control, 1),”   &
      “18 (CBSC_1,  D(8),        bidir,   X,  17,  1,  Z),”   &
      “19 (CBSC_1,  D(9),        bidir,   X,  17,  1,  Z),”   &
      “20 (CBSC_1,  D(10),       bidir,   X,  17,  1,  Z),”   &
      “21 (CBSC_1,  D(11),       bidir,   X,  17,  1,  Z),”   &
      “22 (CBSC_1,  D(12),       bidir,   X,  17,  1,  Z),”   &
      “23 (CBSC_1,  D(13),       bidir,   X,  17,  1,  Z),”   &
      “24 (CBSC_1,  D(14),       bidir,   X,  17,  1,  Z),”   &
      “25 (CBSC_1,  D(15),       bidir,   X,  17,  1,  Z),”   &
      “26 (CBSC_1,  D(16),       bidir,   X,  17,  1,  Z),”   &
      “27 (CBSC_1,  D(17),       bidir,   X,  17,  1,  Z),”   &
      “28 (CBSC_1,  D(18),       bidir,   X,  17,  1,  Z),”   &
      “29 (CBSC_1,  D(19),       bidir,   X,  17,  1,  Z),”   &
      “30 (CBSC_1,  D(20),       bidir,   X,  17,  1,  Z),”   &
      “31 (CBSC_1,  D(21),       bidir,   X,  17,  1,  Z),”   &
      “32 (CBSC_1,  D(22),       bidir,   X,  17,  1,  Z),”   &
      “33 (CBSC_1,  D(23),       bidir,   X,  17,  1,  Z),”   &
      “34 (CBSC_1,  D(24),       bidir,   X,  17,  1,  Z),”   &
      “35 (CBSC_1,  D(25),       bidir,   X,  17,  1,  Z),”   &
      “36 (CBSC_1,  D(26),       bidir,   X,  17,  1,  Z),”   &
      “37 (CBSC_1,  D(27),       bidir,   X,  17,  1,  Z),”   &
      “38 (CBSC_1,  D(28),       bidir,   X,  17,  1,  Z),”   &
      “39 (CBSC_1,  D(29),       bidir,   X,  17,  1,  Z),”   &
      “40 (CBSC_1,  D(30),       bidir,   X,  17,  1,  Z),”   &
      “41 (CBSC_1,  D(31),       bidir,   X,  17,  1,  Z),”   &
      “42 (BC_4,    BTERMBAR,    input,   X),”   &
      “43 (BC_4,    READYBAR,    input,   X),”   &
      “44 (BC_4,    HOLD,        input,   X),”   &
      “45 (BC_1,    HOLDA,       output3, X,  46, 1,  Z),”   &
      “46 (BC_1,    *,           control, 1),”  &
      “47 (BC_1,    ADSBAR,      output3, X,  61, 1,  Z),”   &
      “48 (BC_1,    BEBAR(3),    output3, X,  61, 1,  Z),”   &
      “49 (BC_1,    BEBAR(2),    output3, X,  61, 1,  Z),”   &
      “50 (BC_1,    BEBAR(1),    output3, X,  61, 1,  Z),”   &
      “51 (BC_1,    BEBAR(0),    output3, X,  61, 1,  Z),”   &
      “52 (BC_1,    BLASTBAR,    output3, X,  61, 1,  Z),”   &
      “53 (BC_1,    DENBAR,      output3, X,  61, 1,  Z),”   &
      “54 (BC_1,    WRBAR,       output3, X,  61, 1,  Z),”   &
      “55 (BC_1,    DTRBAR,      output3, X,  56, 1,  Z),”   &
      “56 (BC_1,    *,           control, 1),”  &
      “57 (BC_1,    WAITBAR,     output3, X,  61, 1,  Z),”   &
      “58 (BC_1,    BSTALL,      output3, X,  6,  1,  Z),”   &
      “59 (BC_1,    DCBAR,       output3, X,  61, 1,  Z),”   &
      “60 (BC_1,    SUPBAR,      output3, X,  61, 1,  Z),”   &
      “61 (BC_1,    *,           control, 1),”  &
      “62 (BC_1,    LOCKBAR,     output3, X,  61, 1,  Z),”   &
      “63 (BC_1,    BREQ,        output3, X,  6,  1,  Z),”   &
      “64 (BC_1,    A(31),       output3, X,  80, 1,  Z),”   &
      “65 (BC_1,    A(30),       output3, X,  80, 1,  Z),”  &
      “66 (BC_1,    A(29),       output3, X,  80, 1,  Z),”  &
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      “67 (BC_1,    A(28),       output3, X,  80, 1,  Z),”  &
      “68 (BC_1,    A(27),       output3, X,  80, 1,  Z),”   &
      “69 (BC_1,    A(26),       output3,  X,  80, 1,  Z),”   &
      “70 (BC_1,    A(25),       output3,  X,  80, 1,  Z),”   &
      “71 (BC_1,    A(24),       output3,  X,  80, 1,  Z),”   &
      “72 (BC_1,    A(23),       output3,  X,  80, 1,  Z),”   &
      “73 (BC_1,    A(22),       output3,  X,  80, 1,  Z),”   &
      “74 (BC_1,    A(21),       output3,  X,  80, 1,  Z),”   &
      “75 (BC_1,    A(20),       output3,  X,  80, 1,  Z),”   &
      “76 (BC_1,    A(19),       output3,  X,  80, 1,  Z),”   &
      “77 (BC_1,    A(18),       output3,  X,  80, 1,  Z),”   &
      “78 (BC_1,    A(17),       output3,  X,  80, 1,  Z),”   &
      “79 (BC_1,    A(16),       output3,  X,  80, 1,  Z),”   &
      “80 (BC_1,    *,           control,  1),”   &
      “81 (BC_1,    A(15),       output3,  X,  80, 1,  Z),”   &
      “82 (BC_1,    A(14),       output3,  X,  80, 1,  Z),”   &
      “83 (BC_1,    A(13),       output3,  X,  80, 1,  Z),”   &
      “84 (BC_1,    A(12),       output3,  X,  80, 1,  Z),”   &
      “85 (BC_1,    A(11),       output3,  X,  80, 1,  Z),”   &
      “86 (BC_1,    A(10),       output3,  X,  80, 1,  Z),”   &
      “87 (BC_1,    A(9),        output3,  X,  80, 1,  Z),”   &
      “88 (BC_1,    A(8),        output3,  X,  80, 1,  Z),”   &
      “89 (BC_1,    A(7),        output3,  X,  80, 1,  Z),”   &
      “90 (BC_1,    A(6),        output3,  X,  80, 1,  Z),”   &
      “91 (BC_1,    A(5),        output3,  X,  80, 1,  Z),”   &
      “92 (BC_1,    A(4),        output3,  X,  80, 1,  Z),”   &
      “93 (BC_1,    A(3),        output3,  X,  80, 1,  Z),”   &
      “94 (BC_1,    A(2),        output3,  X,  80, 1,  Z),”   &
      “95 (BC_4,    NMIBAR,      input,    X),”   &
      “96 (BC_4,    XINTBAR(7),  input,    X),”   &
      “97 (BC_4,    XINTBAR(6),  input,    X),”   &
      “98 (BC_4,    XINTBAR(5),  input,    X),”   &
      “99 (BC_4,    XINTBAR(4),  input,    X),”   &
      “100(BC_4,    XINTBAR(3),  input,    X),”   &
      “101(BC_4,    XINTBAR(2),  input,    X),”   &
      “102(BC_4,    XINTBAR(1),  input,    X),”   &
      “103(BC_4,    XINTBAR(0),  input,    X),”   &
      “104(BC_4,    RESETBAR,    input,    X),”   &
      “105(BC_4,    CLKIN,       input,    X),”   &
      “106(BC_1,    CT(3),       output3,  X,   80, 1, Z),”   &
      “107(BC_1,    CT(2),       output3,  X,   80, 1, Z),”   &
      “108(BC_1,    CT(1),       output3,  X,   80, 1, Z),”   &
      “109(BC_1,    CT(0),       output3,  X,   80, 1, Z),”   &
      “110(BC_1,    PCHKBAR,     output3,  X,  111, 1, Z),”   &
      “111(BC_1,    *,           control,  1)”;
end Ha_Processor;
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Considerations for Writing 
Portable Code A

This appendix describes the aspects of the microprocessor that are implementation-dependent. The 
following information is intended as a guide for writing application code that is directly portable to 
other i960® processor implementations.

A.1 Core Architecture

All i960 microprocessor family products are based on the core architecture definition. An i960 
processor can be thought of as consisting of two parts: the core architecture implementation and 
implementation-specific features. The core architecture defines the following mechanisms and 
structure:

• Programming environment: global and local registers, literals, processor state registers, data 
types, memory addressing modes, etc.

• Implementation-independent instruction set.

• Procedure call mechanism.

• Mechanism for servicing interrupts and the interrupt and process priority structure.

• Mechanism for handling faults and the implementation-independent fault types and subtypes.

Implementation-specific features are one or all of:

• Additions to the instruction set beyond the instructions defined by the core architecture.

• Extensions to the register set beyond the global, local and processor-state registers that are 
defined by the core architecture.

• On-chip program or data memory.

• Integrated peripherals that implement features not defined explicitly by the core architecture.

Code is directly portable (object-code compatible) when it does not depend on implementation-
specific instructions, mechanisms or registers. The aspects of this microprocessor that are 
implementation dependent are described below. Those aspects not described below are part of the 
core architecture. 
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A.2 Address Space Restrictions

Address space properties that are implementation-specific to this microprocessor are described in 
the subsections that follow.

A.2.1 Reserved Memory

Addresses in the range FF00 0000H to FFFF FFFFH are reserved by the i960 architecture. The 
i960 Hx processor cannot access this memory, so any use of reserved memory by other i960 
processor code is not portable to the i960 Hx processor. 

A.2.2 Initialization Boot Record

The i960 Hx processor uses a section just below the reserved address space for the initialization 
boot record; see Section 13.3.1.1, “Initialization Boot Record (IBR)” on page 13-13. This differs 
from the i960 Cx processor, which requires that user to place the Initialization Boot Record (
in a section of reserved memory. 

The initialization boot record may not exist or may be structured differently for other 
implementations of the i960 architecture. 

A.2.3 Internal Data RAM

Internal data RAM — an i960 Hx processor implementation-specific feature — is mapped to 
first 2 Kbytes of the processor’s address space (0000H – 07FFH). The on-chip data RAM ma
used to cache interrupt vectors and may be protected against user and supervisor mode wri
Code that relies on these special features is not directly portable to all i960 processor 
implementations.

A.2.4 Instruction Cache

The i960 architecture allows instructions to be cached on-chip in a non-transparent fashion. 
means that the cache may not detect modification of the program memory by loads, stores o
alteration by external agents. Each implementation of the i960 architecture that uses an inte
instruction cache provides a mechanism to purge the cache or some other method that force
consistency between external memory and internal cache. 

This feature is implementation dependent. Application code that supports modification of the
space must use this implementation-specific feature and, therefore, is not object-code portab
all i960 processor implementations.
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The i960 HA/HD/HT processor has a 16-Kbyte instruction cache. The instruction cache is purged 
using the system control (sysctl) or instruction cache control (icctl) instruction. These instructions 
are not available on all i960 processors.

An icctl instruction invokes the load-and-lock mechanism for one, two, three, or all four 4-Kbyte 
ways of the instruction cache. Legacy software from the i960 Cx processor can still use the sysctl 
instruction to lock the cache, but with reduced flexibility. sysctl can load and lock only one 
4 Kbyte way of the instruction cache due to backwards compatibility with the i960 Cx processor 
definition of the sysctl instruction. New software for the i960 Hx processor should use icctl for all 
instruction cache manipulations. With either instruction, when the lock option is selected, the 
processor loads the cache starting at an address specified as an operand to the instruction.

The i960 Hx processor data cache is 8 Kbytes. Caching may be enabled on a per region basis by 
programming the LMCON registers. A logical region can be programmed as cacheable with the 
quick-invalidate option. Not all i960 processors support the quick-invalidate feature.

A.2.5 Data and Data Structure Alignment

The i960 processor architecture does not define how to handle loads and stores to non-aligned 
addresses. Therefore, code that generates non-aligned addresses may not be compatible with all 
i960 processor implementations. 

The i960 Hx processor automatically handles non-aligned load and store requests with a 
combination of microcode and hardware. See Section 14.3.2, “Bus Transactions across Region 
Boundaries” on page 14-10 for details.

The address boundaries on which an operand begins can affect processor performance. Op
that span more word boundaries than necessary suffer a cost in speed due to extra bus cycl

Alignment of architecturally defined data structures in memory is implementation dependent.
Chapter 3, “Programming Environment”. Code that relies on specific alignment of data structure
in memory is not portable to every i960 processor type.

Stack frames in the i960 processor architecture are aligned on (SALIGN*16)-byte boundarie
where SALIGN is an implementation-specific parameter. For the i960 Hx processors, SALIG
1, so stack frames are aligned on 16-byte boundaries. The low-order N bits of the Frame Poin
ignored and are always interpreted to be zero. The N parameter is defined by the following 
expression: SALIGN*16 = 2N. Thus for the i960 Hx processors, N is 4. 
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A.3 Reserved Locations in Registers and Data 
Structures

Some register and data structure fields are defined as reserved locations. A reserved field may be 
used by future implementations of the i960 architecture. For portability and compatibility, code 
should initialize reserved locations to zero. When an implementation uses a reserved location, the 
implementation-specific feature is activated by a value of 1 in the reserved field. Setting the 
reserved locations to 0 guarantees that the features are disabled. 

A.4 Instruction Set

The i960 architecture defines a comprehensive instruction set. Code that uses only the 
architecturally-defined instruction set is object-level portable to other implementations of the i960 
architecture. Some implementations may favor a particular code ordering to optimize performance. 
This special ordering, however, is never required by an implementation. The following subsections 
describe implementation-dependent instruction set properties. 

A.4.1 Instruction Timing

An objective of the i960 architecture is to allow micro-architectural advances to translate directly 
into increased performance. The architecture does not restrict parallel or out-of-order instruction 
execution, nor does it define the time required to execute any instruction or function. Code that 
depends on instruction execution times, therefore, is not portable to all i960 processor architecture 
implementations.

A.4.2 Implementation-Specific Instructions

Most of the processor’s instruction set is defined by the core architecture. Several instruction
specific to the i960 Hx processor. These instructions are either functional extensions to the 
instruction set or instructions that control implementation-specific functions. Chapter 6, 
“Instruction Set Reference” denotes each implementation-specific instruction. 

In addition, the i960 Hx processor features the dcinva instruction, which allows software to 
invalidate a quad word of data from the D-cache.

Application code using implementation-specific instructions is not directly portable to the ent
i960 processor family. Attempted execution of an unimplemented instruction results in an 
OPERATION.INVALID_OPCODE fault. 

• dcctl Data cache control • inten Global interrupt enable

• icctl Instruction cache control • intdis Global interrupt disable

• intctl Interrupt control • sysctl System control
A-4 i960® Hx Microprocessor Developer’s Manual



Considerations for Writing Portable Code

ed 
ion 

RCB) 

ity is 

ion, 
ced. 
tware, 
The i960 Jx and Hx processors introduce several new core instructions. These instructions may or 
may not be supported on other i960 processors. The new core instructions include:

A.5 Extended Register Set

The i960 processor architecture defines a way to address an extended set of 32 registers in addition 
to the 16 global and 16 local registers. Some or all of these registers may be implemented on a 
specific i960 processor. 

The i960 Hx processor uses 5 special function registers. Two of these are portable with the i960 Cx 
processor, sf0 (IPND) and sf1 (IMSK). The i960 Hx processor uses sf2 as the Cache Control 
special function register which is used as the DMA control register on the i960 Cx processor. For 
complete descriptions of the special function registers, see Section 3.2.3, “Special Function 
Registers (SFRs)” on page 3-4. 

A.6 Initialization

The i960 architecture does not define an initialization mechanism. The way that an i960-bas
product is initialized is implementation dependent. Code that accesses locations in initializat
data structures is not portable to other i960 processor implementations.

The i960 Hx processors use an initialization boot record (IBR) and a process control block (P
to hold initial configuration and a first instruction pointer. 

A.7 Memory Configuration

The i960 Hx processors employ Physical Memory Control (PMCON) and Logical Memory 
Control (LMCON) registers to control bus width, byte order and the data cache. This capabil
analogous to the MCON register scheme employed by the i960 Cx processor. Memory 
configurations, like the bus control unit, are implementation specific.

A.8 Interrupts 

The i960 architecture defines the interrupt servicing mechanism. This includes priority definit
interrupt table structure and interrupt context switching that occurs when an interrupt is servi
The core architecture does not define the means for requesting interrupts (external pins, sof
etc.) or for posting interrupts (i.e., saving pending interrupts).

• ADD<cc> Conditional add • eshro Extended shift right ordinal

• bswap Byte swap • SEL<cc> Conditional select

• COMPARE Byte and short compares • SUB<cc> Conditional subtract
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The method for requesting interrupts depends on the implementation. The i960 Hx processors have 
an interrupt controller that manages nine external interrupt pins. The organization of these pins and 
the registers of the interrupt controller are implementation specific. Code that configures the 
interrupt controller is not directly portable to other i960 implementations. 

On the i960 Hx processors, interrupts may also be requested in software with the sysctl 
instruction. This instruction and the software request mechanism are implementation specific. 

Posting interrupts is also implementation specific. Different implementations may optimize 
interrupt posting according to interrupt type and interrupt controller configuration. A pending 
priorities and pending interrupts field is provided in the interrupt table for interrupt posting. 
However, the i960 Hx processors post hardware-requested interrupts internally in the IPND 
register instead. Code that requests interrupts by setting bits in the pending priorities and pending 
interrupts field of the interrupt table is not portable. Also, application code that expects interrupts 
to be posted in the interrupt table is not object-code portable to all i960-based products.

The i960 Hx processors do not store a resumption record for suspended instructions in the interrupt 
or fault record. Portable programs must tolerate interrupt stack frames with and without these 
resumption records.

A.9 Other i960® Hx Processor Implementation-Specific 
Features 

Subsections that follow describe additional implementation-specific features of the i960 Hx 
processors. These features do not relate directly to application code portability.

A.9.1 Data Control Peripheral Units

The bus controller and interrupt controller are implementation-specific extensions to the core 
architecture. Operation, setup and control of these units is not a part of the core architecture. Other 
implementations of the i960 architecture are free to augment or modify such system integration 
features.

A.9.2 Timers

The i960 Hx processor contains two 32-bit timers that are implementation-specific extensions to 
the i960 architecture. Code involving operation, setup and control of the timers may or may not be 
directly portable to other i960 processors.

A.9.3 Guarded Memory Unit (GMU)

The GMU contains two memory protection schemes to either prevent or merely detect illegal 
memory accesses. Both schemes signal a fault to the processor (assuming faults are enabled). To 
date, this feature is found only on the i960 Hx processor.
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A.9.4 Fault Implementation

The architecture defines a subset of fault types and subtypes that apply to all implementations of 
the architecture. Other fault types and subtypes may be defined by implementations to detect errant 
conditions that relate to implementation-specific features. For example, the i960 Hx 
microprocessor provides an OPERATION.UNALIGNED fault for detecting non-aligned memory 
accesses, a MACHINE.PARITY fault for reporting parity errors and a 
PROTECTION.BAD_ACCESS fault for reporting illegal accesses to memory regions protected by 
the GMU. Future i960 processor implementations that generate these faults are expected to assign 
the same fault type and subtype numbers to these faults. 

A.10 Breakpoints

Breakpoint registers are not defined in the i960 architecture. The i960 Hx processor implements six 
instruction and six data breakpoint registers.
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Opcodes and Execution Times B

B.1 Instruction Reference by Opcode

This section lists the instruction encoding for each i960® Hx processor instruction. Instructions are 
grouped by instruction format and listed by opcode within each format.

Table B-1. Miscellaneous Instruction Encoding Bits

M3 M2 M1 S2 S1 T Description

REG Format

x x 0 x 0 — src1 is a global or local register

x x 1 x 0 — src1 is a literal

x x 0 x 1 — src1 is a special function register

x x 1 x 1 — reserved

x 0 x 0 x — src2 is a global or local register

x 1 x 0 x — src2 is a literal

x 0 x 1 x — src2 is a special function register

x 1 x 1 x — reserved

0 x x x x — src/dst is a global or local register

1 x x x x —

src/dst is a literal when used as a source or a special function 
register when used as a destination. M3 may not be 1 when src/dst 
is used as a destination only or is used both as a source and 
destination in an instruction (atmod, modify, extract, modpc).

COBR Format

— — 0 0 — x src1, src2 and dst are global or local registers

— — 1 0 — x src1 is a literal, src2 and dst are global or local registers

— — 0 1 — x src1 is a global or local register, src2 and dst are special function 
registers

— — 1 1 — 0 src1 is a literal, src2 and dst are special function registers

COBR Format and CTRL Format

— — x — x 0 Outcome of conditional test is predicted to be true.

— — x — x 1 Outcome of conditional test is predicted to be false.
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Table B-2. REG Format Instruction Encodings  (Sheet 1 of 4)
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58:0 notbit 1 0101 1000 dst src M3 M2 M1 0000 S2 S1 bitpos

58:1 and 1 0101 1000 dst src2 M3 M2 M1 0001 S2 S1 src1

58:2 andnot 1 0101 1000 dst src2 M3 M2 M1 0010 S2 S1 src1

58:3 setbit 1 0101 1000 dst src M3 M2 M1 0011 S2 S1 bitpos

58:4 notand 1 0101 1000 dst src2 M3 M2 M1 0100 S2 S1 src1

58:6 xor 1 0101 1000 dst src2 M3 M2 M1 0110 S2 S1 src1

58:7 or 1 0101 1000 dst src2 M3 M2 M1 0111 S2 S1 src1

58:8 nor 1 0101 1000 dst src2 M3 M2 M1 1000 S2 S1 src1

58:9 xnor 1 0101 1000 dst src2 M3 M2 M1 1001 S2 S1 src1

58:A not 1 0101 1000 dst M3 M2 M1 1010 S2 S1 src

58:B ornot 1 0101 1000 dst src2 M3 M2 M1 1011 S2 S1 src1

58:C clrbit 1 0101 1000 dst src M3 M2 M1 1100 S2 S1 bitpos

58:D notor 1 0101 1000 dst src2 M3 M2 M1 1101 S2 S1 src1

58:E nand 1 0101 1000 dst src2 M3 M2 M1 1110 S2 S1 src1

58:F alterbit 1 0101 1000 dst src M3 M2 M1 1111 S2 S1 bitpos

59:0 addo 1 0101 1001 dst src2 M3 M2 M1 0000 S2 S1 src1

59:1 addi 1 0101 1001 dst src2 M3 M2 M1 0001 S2 S1 src1

59:2 subo 1 0101 1001 dst src2 M3 M2 M1 0010 S2 S1 src1

59:3 subi 1 0101 1001 dst src2 M3 M2 M1 0011 S2 S1 src1

59:4 cmpob 1 0101 1001 src2 M3 M2 M1 0100 S2 S1 src1

59:5 cmpib 1 0101 1001 src2 M3 M2 M1 0101 S2 S1 src1

59:6 cmpos 1 0101 1001 src2 M3 M2  M1 0110 S2 S1 src1

59:7 cmpis 1 0101 1001 src2 M3 M2 M1 0111 S2 S1 src1

59:8 shro 1 0101 1001 dst src M3 M2 M1 1000 S2 S1 len

59:A shrdi 3 0101 1001 dst src M3 M2 M1 1010 S2 S1 len

59:B shri 1 0101 1001 dst src M3 M2 M1 1011 S2 S1 len

59:C shlo 1 0101 1001 dst src M3 M2 M1 1100 S2 S1 len

59:D rotate 1 0101 1001 dst src M3 M2 M1 1101 S2 S1 len

59:E shli 1 0101 1001 dst src M3 M2 M1 1110 S2 S1 len

5A:0 cmpo 1 0101 1010 src2 M3 M2 M1 0000 S2 S1 src1

5A:1 cmpi 1 0101 1010 src2 M3 M2 M1 0001 S2 S1 src1

1. Execution time based on function performed by instruction.
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5A:2 concmpo 1 0101 1010 src2 M3 M2 M1 0010 S2 S1 src1

5A:3 concmpi 1 0101 1010 src2 M3 M2 M1 0011 S2 S1 src1

5A:4 cmpinco 1 0101 1010 dst src2 M3 M2 M1 0100 S2 S1 src1

5A:5 cmpinci 1 0101 1010 dst src2 M3 M2 M1 0101 S2 S1 src1

5A:6 cmpdeco 1 0101 1010 dst src2 M3 M2 M1 0110 S2 S1 src1

5A:7 cmpdeci 1 0101 1010 dst src2 M3 M2 M1 0111 S2 S1 src1

5A:C scanbyte 1 0101 1010 src2 M3 M2 M1 1100 S2 S1 src1

5A:D bswap 1 0101 1010 dst M3 M2 M1 1101 S2 S1 src1

5A:E chkbit 1 0101 1010 src M3 M2 M1 1110 S2 S1 bitpos

5B:0 addc 1 0101 1011 dst src2 M3 M2 M1 0000 S2 S1 src1

5B:2 subc 1 0101 1011 dst src2 M3 M2 M1 0010 S2 S1 src1

5B:4 intdis 6 0101 1011 M3 M2 M1 0100 S2 S1

5B:5 inten 6 0101 1011 M3 M2 M1 0101 S2 S1

5C:C mov 1 0101 1100 dst M3 M2 M1 1100 S2 S1 src

5D:8 eshro 1 0101 1101 dst src2 M3 M2 M1 1000 S2 S1 src1

5D:C movl 1 0101 1101 dst M3 M2 M1 1100 S2 S1 src

5E:C movt 2 0101 1110 dst M3 M2 M1 1100 S2 S1 src

5F:C movq 2 0101 1111 dst M3 M2 M1 1100 S2 S1 src

61:0 atmod 6+ bus 0110 0010 dst src2 M3 M2 M1 0000 S2 S1 src1

61:2 atadd 5+ bus 0110 0010 dst src2 M3 M2 M1 0010 S2 S1 src1

64:0 spanbit 3 0110 0100 dst M3 M2 M1 0000 S2 S1 src

64:1 scanbit 1 0110 0100 dst M3 M2 M1 0001 S2 S1 src

64:5 modac 7 0110 0100 mask src M3 M2 M1 0101 S2 S1 dst

65:0 modify 3 0110 0101 src/dst src M3 M2 M1 0000 S2 S1 mask

65:1 extract 4 0110 0101 src/dst len M3 M2 M1 0001 S2 S1 bitpos

65:4 modtc 9 0110 0101 mask src M3 M2 M1 0100 S2 S1 dst

65:5 modpc 11-16 0110 0101 src/dst mask M3 M2 M1 0101 S2 S1 src

65:8 intctl See 
Table B-8 0110 0101 dst M3 M2 M1 1000 S2 S1 src1

65:9 sysctl See 
Table B-51 0110 0101 src/dst src2 M3 M2 M1 1001 S2 S1 src1

65:B icctl See 
Table B-61 0110 0101 src/dst src2 M3 M2 M1 1011 S2 S1 src1

Table B-2. REG Format Instruction Encodings  (Sheet 2 of 4)
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1. Execution time based on function performed by instruction.
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65:C dcctl See 
Table B-71 0110 0101 src/dst src2 M3 M2 M1 1100 S2 S1 src1

66:0 calls 22+spill 0110 0110 M3 M2 M1 0000 S2 S1 src

66:B mark 8 0110 0110 M3 M2 M1 1011 S2 S1

66:C fmark 5 0110 0110 M3 M2 M1 1100 S2 S1

66:D flushreg 21 • # 
frames

0110 0110 M3 M2 M1 1101 S2 S1

66:F syncf 8 0110 0110 M3 M2 M1 1111 S2 S1

67:0 emul 1 0110 0111 dst src2 M3 M2 M1 0000 S2 S1 src1

67:1 ediv 3-36 0110 0111 dst src2 M3 M2 M1 0001 S2 S1 src1

70:1 mulo 1 0111 0000 dst src2 M3 M2 M1 0001 S2 S1 src1

70:8 remo 1 0111 0000 dst src2 M3 M2 M1 1000 S2 S1 src1

70:B divo 1 0111 0000 dst src2 M3 M2 M1 1011 S2 S1 src1

74:1 muli 1 0111 0100 dst src2 M3 M2 M1 0001 S2 S1 src1

74:8 remi 1 0111 0100 dst src2 M3 M2 M1 1000 S2 S1 src1

74:9 modi 1 0111 0100 dst src2 M3 M2 M1 1001 S2 S1 src1

74:B divi 7-30 0111 0100 dst src2 M3 M2 M1 1011 S2 S1 src1

78:0 addono 1 0111 1000 dst src2 M3 M2 M1 0000 S2 S1 src1

78:1 addino 1 0111 1000 dst src2 M3 M2 M1 0001 S2 S1 src1

78:2 subono 1 0111 1000 dst src2 M3 M2 M1 0010 S2 S1 src1

78:3 subino 1 0111 1000 dst src2 M3 M2 M1 0011 S2 S1 src1

78:4 selno 1 0111 1000 dst src2 M3 M2 M1 0100 S2 S1 src1

79:0 addog 1 0111 1001 dst src2 M3 M2 M1 0000 S2 S1 src1

79:1 addig 1 0111 1001 dst src2 M3 M2 M1 0001 S2 S1 src1

79:2 subog 1 0111 1001 dst src2 M3 M2 M1 0010 S2 S1 src1

79:3 subig 1 0111 1001 dst src2 M3 M2 M1 0011 S2 S1 src1

79:4 selg 1 0111 1001 dst src2 M3 M2 M1 0100 S2 S1 src1

7A:0 addoe 1 0111 1010 dst src2 M3 M2 M1 0000 S2 S1 src1

7A:1 addie 1 0111 1010 dst src2 M3 M2 M1 0001 S2 S1 src1

7A:2 suboe 1 0111 1010 dst src2 M3 M2 M1 0010 S2 S1 src1

7A:3 subie 1 0111 1010 dst src2 M3 M2 M1 0011 S2 S1 src1

7A:4 sele 1 0111 1010 dst src2 M3 M2 M1 0100 S2 S1 src1

7B:0 addoge 1 0111 1011 dst src2 M3 M2 M1 0000 S2 S1 src1

Table B-2. REG Format Instruction Encodings  (Sheet 3 of 4)
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1. Execution time based on function performed by instruction.
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7B:1 addige 1 0111 1011 dst src2 M3 M2 M1 0001 S2 S1 src1

7B:2 suboge 1 0111 1011 dst src2 M3 M2 M1 0010 S2 S1 src1

7B:3 subige 1 0111 1011 dst src2 M3 M2 M1 0011 S2 S1 src1

7B:4 selge 1 0111 1011 dst src2 M3 M2 M1 0100 S2 S1 src1

7C:0 addol 1 0111 1100 dst src2 M3 M2 M1 0000 S2 S1 src1

7C:1 addil 1 0111 1100 dst src2 M3 M2 M1 0001 S2 S1 src1

7C:2 subol 1 0111 1100 dst src2 M3 M2 M1 0010 S2 S1 src1

7C:3 subil 1 0111 1100 dst src2 M3 M2 M1 0011 S2 S1 src1

7C:4 sell 1 0111 1100 dst src2 M3 M2 M1 0100 S2 S1 src1

7D:0 addone 1 0111 1101 dst src2 M3 M2 M1 0000 S2 S1 src1

7D:1 addine 1 0111 1101 dst src2 M3 M2 M1 0001 S2 S1 src1

7D:2 subone 1 0111 1101 dst src2 M3 M2 M1 0010 S2 S1 src1

7D:3 subine 1 0111 1101 dst src2 M3 M2 M1 0011 S2 S1 src1

7D:4 selne 1 0111 1101 dst src2 M3 M2 M1 0100 S2 S1 src1

7E:0 addole 1 0111 1110 dst src2 M3 M2 M1 0000 S2 S1 src1

7E:1 addile 1 0111 1110 dst src2 M3 M2 M1 0001 S2 S1 src1

7E:2 subole 1 0111 1110 dst src2 M3 M2 M1 0010 S2 S1 src1

7E:3 subile 1 0111 1110 dst src2 M3 M2 M1 0011 S2 S1 src1

7E:4 selle 1 0111 1110 dst src2 M3 M2 M1 0100 S2 S1 src1

7F:0 addoo 1 0111 1111 dst src2 M3 M2 M1 0000 S2 S1 src1

7F:1 addio 1 0111 1111 dst src2 M3 M2 M1 0001 S2 S1 src1

7F:2 suboo 1 0111 1111 dst src2 M3 M2 M1 0010 S2 S1 src1

7F:3 subio 1 0111 1111 dst src2 M3 M2 M1 0011 S2 S1 src1

7F:4 sello 1 0111 1111 dst src2 M3 M2 M1 0100 S2 S1 src1

Table B-2. REG Format Instruction Encodings  (Sheet 4 of 4)
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Table B-3. COBR Format Instruction Encodings 

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s 

to
 E

xe
cu

te

O
p

co
d

e

sr
c1

sr
c2 M

D
is

p
la

ce
m

en
t

T S
2

31...........24 23... 19 18 ...14 13 12......... 2 1 0

20 testno 10-12 0010 0000 dst M1 T S2

21 testg 10-12 0010 0001 dst M1 T S2

22 teste 10-12 0010 0010 dst M1 T S2

23 testge 10-12 0010 0011 dst M1 T S2

24 testl 10-12 0010 0100 dst M1 T S2

25 testne 10-12 0010 0101 dst M1 T S2

26 testle 10-12 0010 0110 dst M1 T S2

27 testo 10-12 0010 0111 dst M1 T S2

30 bbc 1-31 0011 0000 bitpos src M1 targ T S2

31 cmpobg 1-3 0011 0001 src1 src2 M1 targ T S2

32 cmpobe 1-3 0011 0010 src1 src2 M1 targ T S2

33 cmpobge 1-3 0011 0011 src1 src2 M1 targ T S2

34 cmpobl 1-3 0011 0100 src1 src2 M1 targ T S2

35 cmpobne 1-3 0011 0101 src1 src2 M1 targ T S2

36 cmpoble 1-3 0011 0110 src1 src2 M1 targ T S2

37 bbs 1-3 0011 0111 bitpos src M1 targ T S2

38 cmpibno 1-3 0011 1000 src1 src2 M1 targ T S2

39 cmpibg 1-3 0011 1001 src1 src2 M1 targ T S2

3A cmpibe 1-3 0011 1010 src1 src2 M1 targ T S2

3B cmpibge 1-3 0011 1011 src1 src2 M1 targ T S2

3C cmpibl 1-3 0011 1100 src1 src2 M1 targ T S2

3D cmpibne 1-3 0011 1101 src1 src2 M1 targ T S2

3E cmpible 1-3 0011 1110 src1 src2 M1 targ T S2

3F cmpibo 1-3 0011 1111 src1 src2 M1 targ T S2

1. Indicates that it takes two cycles to execute the instruction plus an additional cycle to fetch the target 
instruction if the branch is taken.
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Table B-4. CTRL Format Instruction Encodings 
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08 b 0-21 0000 1000 targ T 0

09 call 4+spill 0000 1001 targ T 0

0A ret 4+fill 0000 1010 T 0

0B bal 1-2 0000 1011 targ T 0

10 bno 0-2 0001 0000 targ T 0

11 bg 0-2 0001 0001 targ T 0

12 be 0-2 0001 0010 targ T 0

13 bge 0-2 0001 0011 targ T 0

14 bl 0-2 0001 0100 targ T 0

15 bne 0-2 0001 0101 targ T 0

16 ble 0-2 0001 0110 targ T 0

17 bo 0-2 0001 0111 targ T 0

18 faultno 7-12 0001 1000 T 0

19 faultg 7-12 0001 1001 T 0

1A faulte 7-12 0001 1010 T 0

1B faultge 7-12 0001 1011 T 0

1C faultl 7-12 0001 1100 T 0

1D faultne 7-12 0001 1101 T 0

1E faultle 7-12 0001 1110 T 0

1F faulto 7-12 0001 1111 T 0

1. Indicates that it takes 1 cycle to execute the instruction plus an additional cycle to fetch the target 
instruction if the branch is taken.
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Table B-5. Cycle Counts for sysctl Operations

Operation Cycles to Execute

Post Interrupt 20

Purge I-cache 19

Enable I-cache 20

Disable I-cache 22

Software Reset 329+bus

Load Control Register Group 26

Request Breakpoint Resource 21-22

Table B-6. Cycle Counts for icctl Operations

Operation Cycles to Execute

Disable I-cache 18

Enable I-cache 16

Invalidate I-cache 18

Load and Lock I-cache 5193

I-cache Status Request 21

I-cache Locking Status 20

Table B-7. Cycle Counts for dcctl Operations

Operation Cycles to Execute

Disable D-cache 18

Enable D-cache 18

Invalidate D-cache 19

Load and Lock D-cache 19

D-cache Status Request 16

Quick Invalidate D-cache 14

Table B-8. Cycle Counts for intctl Operations

Operation Cycles to Execute

Disable Interrupts 13

Enable Interrupts 13

Interrupt Status Request 8
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Table B-9. MEM Format Instruction Encodings

31.......24 23...19 18 ...... 14 13 ...... 12 11 ..................................................0

Opcode src/
dst ABASE Mode Offset

31.......24 23...19 18 ...... 14 13 .......12 ..11....... 10 9...... 7 6...5 4 ...... 0

Opcode src/
dst ABASE Mode Scale 00 Index

Displacement

Effective Address

efa =                 offset Opcode dst 0 0 offset

offset(reg) Opcode dst reg 1 0 offset

(reg) Opcode dst reg 0 1 0 0 00

disp + 8 (IP) Opcode dst 0 1 0 1 00

displacement

(reg1)[reg2 * scale] Opcode dst reg1 0 1 1 1 scale 00 reg2

disp Opcode dst 1 1 0 0 00

displacement

disp(reg) Opcode dst reg 1 1 0 1 00

displacement

disp[reg * scale] Opcode dst 1 1 1 0 scale 00 reg

displacement

disp(reg1)[reg2*scale] Opcode dst reg1 1 1 1 1 scale 00 reg2

displacement
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Opcode Mnemonic Cycles to Execute Opcode Mnemonic Cycles to Execute

80 ldob 1-4+bus (See Note 1) 9A stl 1-4 (See Note 1)

82 stob 1-4 (See Note 1) A0 ldt 1-4+bus (See Note 1)

84 bx 3-5 A2 stt 1-4 (See Note 1)

85 balx 3-5 AD dcinva 1-4

86 callx 6-8+spill B0 ldq 1-4+bus (See Note 1)

88 ldos 1-4+bus (See Note 1) B2 stq 1-4 (See Note 1)

8A stos 1-4 (See Note 1) C0 ldib 1-4+bus (See Note 1)

8C lda 1-3 (See Note 1) C2 stib 1-4 (See Note 1)

90 ld 1-4+bus (See Note 1) C8 ldis 1-4+bus (See Note 1)

92 st 1-4 (See Note 1) CA stis 1-4 (See Note 1)

98 ldl 1-4+bus (See Note 1)

1. The number of cycles required to execute these instructions is based on the addressing mode used.
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Machine-Level Instruction Formats C

This appendix describes the encoding format for instructions used by the i960® processors. 
Included is a description of the four instruction formats and how the addressing modes relate to 
these formats. Refer also to Appendix B, “Opcodes and Execution Times”.

C.1 General Instruction Format

The i960 processor architecture defines four basic instruction encoding formats: REG, COBR
CTRL and MEM (see Figure C-1). Each instruction uses one of these formats, which is defined
the instruction’s opcode field. All instructions are one word long and begin on word boundari
MEM format instructions are encoded in one of two sub-formats: MEMA or MEMB. MEMB 
supports an optional second word to hold a displacement value. The following sections desc
each format’s instruction word fields.

Figure C-1. Instruction Formats

 

28 24 20 16 12 8 4 031

 MMMOpcode src/dst src2 Opcode src1

28 24 20 16 12 8 4 031

 SOpcode src2 displacement Tsrc1

28 24 20 16 12 8 4 031

 0Opcode displacement
T

28 24 20 16 12 8 4 031

 
Opcode src/dst abase Offset

0

REG

COBR

CTRL

MEMA

MODE

MEMB

28 24 20 16 12 8 4 031

 Opcode src/dst abase Index
001

3 2 1

Optional Displacement

M
1

Scale

(5 bits)(5 bits)(5 bits) (4 bits)(8 bits)

(8 bits) (5 bits) (5 bits) (11 bits)

(8 bits) (22 bits)

(8 bits) (5 bits) (5 bits) (12 bits)

(8 bits) (5 bits) (5 bits) (3 bits) (5 bits)

2

S
2

S
1

X

X X X
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ween 
When a particular instruction is defined as not using a particular field, the field is ignored. 

C.2 REG Format

REG format is used for operations performed on data contained in registers. Most of the i960 
processor family’s instructions use this format.

The opcode for the REG instructions is 12 bits long (three hexadecimal digits) and is split bet
bits 7 through 10 and bits 24 through 31. For example, the addi opcode is 591H. Here, bits 24 
through 31 contain 59H and bits 7 through 10 contain 1H.

Table C-1. Instruction Field Descriptions

Instruction Field Description

Opcode The opcode of the instruction. Opcode encodings are defined in Section 6.1.8, 
“Opcode and Instruction Format” on page 6-5.

src1 An input to the instruction. This field specifies a value or address. In one case of the 
COBR format, this field is used to specify a register in which a result is stored.

src2 An input to the instruction. This field specifies a value or address.

src/dst Depending on the instruction, this field can be (1) an input value or address, (2) the 
register where the result is stored, or (3) both of the above.

abase A register whose register’s value is used in computing a memory address.

INDEX A register whose register’s value is used in computing a memory address.

DISPLACEMENT A signed two’s complement number.

Offset An unsigned positive number.

Optional 
Displacement A signed two’s complement number used in the two-word MEMB format.

MODE 
A specification of how a memory address for an operand is computed and, for MEMB, 
specifies whether the instruction contains a second word to be used as a 
displacement.

SCALE A specification of how a register’s contents are multiplied for certain addressing 
modes (i.e., for indexing).

T 

The branch prediction bit. If this bit is 0 in a conditional instruction, the condition is 
likely to be true. If this bit is 1 in a conditional instruction, the condition is likely to be 
false. Conditional instructions affected are conditional branch instructions, compare 
and branch instructions, conditional fault instructions, and conditional test 
instructions. 

S1, S2 These fields further define the meaning of the src1 and src2 fields respectively as 
shown in Table C-2.

M1, M2, M3 These fields further define the meaning of the src1, src2, and src/dst fields 
respectively as shown in Table C-2 and Table C-3.
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src1 and src2 fields specify the instruction’s source operands. Operands can be global, local o
special function registers or literals. Mode bits (M1 for src1 and M2 for src2), special-purpose bits 
(S1 for src1 and S2 for src2) and the instruction type determine what an operand specifies. 
Table C-2 shows this relationship.

The src/dst field can specify a source operand, a destination operand or both, depending on t
instruction. Here again, mode bit M3 determines how this field is used. If M3 is clear, the src/dst 
operand is a global or local register that is encoded as shown in Table C-3. If M3 is set, the src/dst 
operand can be used as a source-only operand that is: (1) a literal, or (2) a destination-only o
that is a special function register.

When a literal is specified, it is always an unsigned 5-bit value that is zero-extended to a 32-
value and used as the operand. When the instruction defines an operand to be larger than 3
values specified by literals are zero-extended to the operand size. 

Table C-2. Encoding of src1 and src2 in REG Format

M1 or M2 S1 or S2 src1 or src2 Operand 
Value Meaning

0 0
00000 ... 01111 r0 ... r15

10000 ... 11111 g0 ... g15

1 0 00000 ... 11111 literal 0 ... 31

0 1
00000 ... 00100 sf0 ... sf4

00101 ... 11111 reserved

1 1 00000 ... 11111 reserved

Table C-3. Encoding of src/dst in REG Format

M3 src/dst src Only dst Only

0 g0 ... g15 
r0 ... r15

g0 ... g15 
r0 ... r15

g0 ... g15 
r0 ... r15

1 Reserved Reserved sf0 .. sf4
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C.3 COBR Format

The COBR format is used primarily for compare-and-branch instructions. The test-if instructions 
also use the COBR format. The COBR opcode field is eight bits (two hexadecimal digits). 

The src1 and src2 fields specify source operands for the instruction. The src1 field can specify 
either a global or local register or a literal as determined by mode bit M1. The src2 field can specify 
a global, local or special function register as determined by special purpose bit S2. Table C-4 
shows the M1, src1 relationship and Table C-4 shows the S2, src2 relationship.

The T bit supports the 80960Hx processor’s branch prediction for conditional instructions. If 
cleared, the condition being tested is likely to be true; if set to 1, the condition is likely to be f

The displacement field contains a signed two’s complement number that specifies a word 
displacement. The processor uses this value to compute the address of a target instruction to
the processor branches as a result of the comparison. The displacement field’s value can ran
-210 to 210 -1. To determine the target instruction’s IP, the processor converts the displaceme
value to a byte displacement (i.e., multiplies the value by 4). It then adds the resulting byte 
displacement to the IP of the current instruction.

C.4 CTRL Format

The CTRL format is used for instructions that branch to a new IP, including the BRANCH<cc>, bal 
and call instructions. Note that balx, bx and callx do not use this format. ret also uses the CTRL 
format. The CTRL opcode field is eight bits (two hexadecimal digits).

A branch target address is specified with the displacement field in the same manner as COB
format instructions. The displacement field specifies a word displacement as a signed, two’s
complement number in the range -221 to 221-1. The processor ignores the ret instruction’s 
displacement field.

The T bit performs the same branch prediction function for CTRL instructions as it does for C
instructions. If this bit is 0 in a conditional instruction, the condition is likely to be true.

Table C-4. Encoding of src1 in COBR Format

M1 src1

0 g0 ... g15
r0 ... r15

1 SF0-SF4

Table C-5. Encoding of src2 in COBR Format

S2 src2

0 g0 ... g15
r0 ... r15

1 sf0 ... sf4
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C.5 MEM Format

The MEM format is used for instructions that require a memory address to be computed. These 
instructions include the LOAD, STORE and lda instructions. Also, the extended versions of the 
branch, branch-and-link and call instructions (bx, balx and callx) use this format.

The two MEM-format encodings are MEMA and MEMB. MEMB can optionally add a 32-bit 
displacement (contained in a second word) to the instruction. Bit 12 of the instruction’s first w
determines whether MEMA (clear) or MEMB (set) is used.

The opcode field is eight bits long for either encoding. The src/dst field specifies a global or local 
register. For load instructions, src/dst specifies the destination register for a word loaded into th
processor from memory or, for operands larger than one word, the first of successive destina
registers. For store instructions, this field specifies the register or group of registers that conta
source operand to be stored in memory.

The mode field determines the address mode used for the instruction. Table C-6 summarizes the 
addressing modes for the two MEM-format encodings. Fields used in these addressing mod
described in the following sections.

Table C-6. Addressing Modes for MEM Format Instructions

Format MODE Addressing Mode Address Computation # of Instr 
Words

MEMA
00 Absolute Offset offset 1

10 Register Indirect with Offset (abase) + offset 1

MEMB

0100 Register Indirect (abase) 1

0101 IP with Displacement (IP) + displacement + 8 2

0110 Reserved reserved NA

0111 Register Indirect with Index (abase) + (index) * 2scale 1

1100 Absolute Displacement displacement 2

1101 Register Indirect with 
Displacement (abase) + displacement 2

1110 Index with Displacement (index) * 2scale + displacement 2

1111 Register Indirect with Index 
and Displacement (abase) + (index) * 2scale + displacement 2

NOTES:
1. In these address computations, a field in parentheses indicates that the value in the specified register is 

used in the computation. 
2. Usage of a reserved encoding may cause generation of an OPERATION.INVALID_OPCODE fault.
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C.5.1 MEMA Format Addressing

The MEMA format provides two addressing modes:

• Absolute offset

• Register indirect with offset

The offset field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a global 
or local register that contains an address in memory.

For the absolute-offset addressing mode (MODE = 00), the processor interprets the offset field as 
an offset from byte 0 of the current process address space; the abase field is ignored. Using this 
addressing mode along with the lda instruction allows a constant in the range 0 to 4096 to be 
loaded into a register.

For the register-indirect-with-offset addressing mode (MODE = 10), offset field value is added to 
the address in the abase register. Clearing the offset value creates a register indirect addressing 
mode; however, this operation can generally be carried out faster by using the MEMB version of 
this addressing mode.

C.5.2 MEMB Format Addressing

The MEMB format provides the following seven addressing modes:

• absolute displacement • register indirect

• register indirect with displacement • register indirect with displacement

• register indirect with index and 
displacement

• index with displacement

• IP with displacement
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The abase and index fields specify local or global registers, the contents of which are used in 
address computation. When the index field is used in an addressing mode, the processor 
automatically scales the index register value by the amount specified in the SCALE field. 
Table C-7 gives the encoding of the scale field. The optional displacement field is contained in the 
word following the instruction word. The displacement is a 32-bit signed two’s complement v

For the IP with displacement mode, the value of the displacement field plus eight is added to
address of the current instruction.

Table C-7. Encoding of Scale Field

Scale Scale Factor (Multiplier)

000 1

001 2

010 4

011 8

100 16

101 to 111 Reserved

NOTE: Usage of a reserved encoding causes an unpredictable result.
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Register and Data Structures D

This appendix is a compilation of all register and data structure figures described throughout the 
manual. Following each figure is a reference that indicates the section that discusses the figure.

Fig. Register / Data Structure Where Defined in the manual Page

Registers

D-1 AC (Arithmetic Controls) Register Section 3.2.6, “Register and Literal Addressing and Alignment” on 
page 3-5 D-3

D-2 BCON (Bus Control) Register Section 14.2.1, “Bus Control (BCON) Register” on page 14-9 D-3

D-3 BPCON (Breakpoint Control) Register Section 9.2.7.4, “Breakpoint Control Register” on page 9-7 D-4

D-4 CCON (Cache Control Register) Section 4.5.1, “Enabling and Disabling the Data Cache” on 
page 4-7 D-4

D-5 DAB (Data Address Breakpoint) Register 
Format

Section 9.2.7.5, “Data Address Breakpoint (DAB) Registers” on 
page 9-8 D-4

D-6 DLMCON (Default Logical Memory 
Configuration) Register

Section 14.4, “Programming the Logical Memory Attributes” on 
page 14-11 D-5

D-7 GCON (GMU Control) Register Section 12.3.1, “GMU Control Register” on page 12-5 D-6

D-8 IEEE 1149.1 Device Identification 
Register Section 13.4, “Device Identification on Reset” on page 13-23 D-6

D-9 ICON (Interrupt Control) Register Section 11.7.4, “Interrupt Control Register (ICON) — SF3” on 
page 11-20 D-7

D-10 IMAP0–IMAP2 (Interrupt Mapping) 
Registers

Section 11.7.5, “Interrupt Mapping Registers (IMAP0-IMAP2)” on 
page 11-21 D-8

D-11 IMSK (Interrupt Mask) Registers Section 11.7.5.1, “Interrupt Mask (IMSK; SF1) and Interrupt 
Pending (IPND; SF0) Registers” on page 11-23 D-9

D-12 IPB (Instruction Breakpoint) Register 
Format

Section 9.2.7.6, “Instruction Breakpoint (IPB) Registers” on 
page 9-9 D-10

D-13 IPND (Interrupt Pending) Register Section 11.7.5.1, “Interrupt Mask (IMSK; SF1) and Interrupt 
Pending (IPND; SF0) Registers” on page 11-23 D-11

D-14 LMAR0–14 (Logical Memory Address) 
Registers

Section 14.4, “Programming the Logical Memory Attributes” on 
page 14-11 D-12

D-15 LMMR0–14 (Logical Memory Mask 
Registers)

Section 14.4, “Programming the Logical Memory Attributes” on 
page 14-11 D-13

D-16
MDUB0–5, MDLB0–5 (GMU Memory 
Violation Detection Upper and Lower-
Bounds) Registers

Section 12.3.3, “GMU Memory Detect Upper- and Lower-Bounds 
Registers” on page 12-10 D-14

D-17
MPAR0–1, MPMR0–1 (GMU Memory 
Protect Address Register and Memory 
Protect Mask Register)

Section 12.3.2, “GMU Memory Protect Address and Mask 
Registers” on page 12-6 D-15

D-18 PC (Process Controls) Register Section 3.6.3, “Process Controls (PC) Register” on page 3-24 D-16

D-19 PFP (Previous Frame Pointer) Register 
(r0) Section 7.1.2.5, “Previous Frame Pointer” on page 7-5 D-16

D-20 PMCON0–15 (Physical Memory 
Configuration) Register

Section 14.2, “Programming the Physical Memory Configuration 
(PMCON) Registers” on page 14-7 D-17
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D-21
PMCON15 (Physical Memory 
Configuration) Register Bit Description in 
IBR

Section 13.3.1.1, “Initialization Boot Record (IBR)” on page 13-13 D-18

D-22 TC (Trace Controls) Register Section 9.1.1, “Trace Controls (TC) Register” on page 9-2 D-19

D-23 TCR0-1 (Timer Count Register) Section 10.1.2, “Timer Count Register (TCR0, TCR1)” on 
page 10-5 D-19

D-24 TMR0–1 (Timer Mode Register) Section 10.1.1, “Timer Mode Registers (TMR0, TMR1)” on 
page 10-2 D-20

D-25 TRR0-1 (Timer Reload Register) Section 10.1.3, “Timer Reload Register (TRR0, TRR1)” on 
page 10-6 D-20

D-26 XBPCON (Extended Breakpoint Control) 
Register Section 9.2.7.4, “Breakpoint Control Register” on page 9-7 D-21

Data Structures

D-27 Control Table Section 13.3.3, “Control Table” on page 13-22 D-22

D-28 Fault Table and Fault Table Entries Section 8.3, “Fault Table” on page 8-5 D-23

D-29 Fault Record Section 8.5, “Fault Record” on page 8-6 D-24

D-30 Initial Memory Image (IMI) and Process 
Control Block (PRCB) Section 13.3.1, “Initial Memory Image (IMI)” on page 13-10 D-25

D-31 Interrupt Table Section 11.4, “Interrupt Table” on page 11-4 D-26

D-32 Procedure Stack Structure and Local 
Registers

Section 7.1.1, “Local Registers and the Procedure Stack” on 
page 7-2 D-27

D-33 Process Control Block Configuration 
Words Section 13.3.1.2, “Process Control Block (PRCB)” on page 13-17 D-28

D-34 Storage of an Interrupt Record on the 
Interrupt Stack Section 11.5, “Interrupt Stack and Interrupt Record” on page 11-6 D-29

D-35 System Procedure Table Section 7.5.1, “System Procedure Table” on page 7-15 D-30

Fig. Register / Data Structure Where Defined in the manual Page
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D.1 Registers

Figure D-1. AC (Arithmetic Controls) Register

Section 3.6.2, “Arithmetic Controls (AC) Register” on page 3-21

Figure D-2. BCON (Bus Control) Register

Section 14.2.1, “Bus Control (BCON) Register” on page 14-9

28 24 20 16 12 8 4 031

 

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) No Overflow
(1) Overflow

Integer Overflow Mask Bit - AC.om
(0) No Mask
(1) Mask

No-Imprecise-Faults Bit- AC.nif
(0) Some Faults are Imprecise
(1) All Faults are Precise

Reserved
(Initialize to 0)

c
c
0

c
c
1

c
c
2

o
m

n
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o
f
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S
I
R

Reserved,
 write to zero

Configuration Entries in Control Table Valid (BCON.ctv)

P

I
R
P

C
T
V

0 = PMCON entries not valid; use PMCON15 setting.
1 = PMCON entries valid

Internal RAM Protection (BCON.irp)
0 = Internal data RAM not protected from user mode writes

Supervisor Internal RAM Protection (BCON.sirp)
0 = First 64 bytes not protected from supervisor mode writes
1 = First 64 bytes protected from supervisor mode writes

1 = Internal data RAM protected from user mode writes
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Section 9.2.7.5, “Data Address Breakpoint (DAB) Registers” on page 9-8

Figure D-3. BPCON (Breakpoint Control) Register

Section 9.2.7.4, “Breakpoint Control Register” on page 9-7

Figure D-4. CCON (Cache Control Register)

Section 4.5.1, “Enabling and Disabling the Data Cache” on page 4-7

Figure D-5. DAB (Data Address Breakpoint) Register Format

28 24 20 16 12 8 4 031

DAB0

ee

1 0

m

0

m

1

e

0

e

1

m

0

m

1

DAB1

Reserved
(Initialize to 0)

Hardware Reset Value: 0000 0000H

Software Re-Init Value: 0000 0000H

28 24 20 16 12 8 4 031

Reserved
(Initialize to 0)

Data Cache Global Disable - CCON.dcgd
(0) Enabled
(1) Disabled

Data Cache Invalidate - CCON.dci
(0) Enabled
(1) Invalidate 

d
c
i

d
c
g
d

28 24 20 16 12 8 4 031

Data Address

Hardware Reset Value: 0000 0000H

Software Re-init Value: 0000 0000H
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Figure D-6. DLMCON (Default Logical Memory Configuration) Register

Section 14.4, “Programming the Logical Memory Attributes” on page 14-11

Mnemonic Bit/Bit Field Name Bit 
Position(s) Function

BE Big Endian Byte Order 0

Controls byte order for areas not within other logical 
memory templates.

0 = Little-endian
1 = Big-endian

DCEN Data Cache Enable 1

Controls data caching policy for areas not within other 
logical memory templates.

0 = Data caching disabled
1 = Write-through data caching enabled

DCIIR
Data Cache 
Independently 
Invalidatable Region

4

Controls Logical Region Invalidation for areas not
within other Logical Memory Templates.

0 = Region is not independently invalidatable
1 = Region is independently invalidatable using
 the dcctl “Invalidate Logical Region” 

command.
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Reserved, 
write to zero
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Figure D-7. GCON (GMU Control) Register

Section 12.3.1, “GMU Control Register” on page 12-5

Figure D-8. IEEE 1149.1 Device Identification Register

Section 13.4, “Device Identification on Reset” on page 13-23

28 24 20 16 12 8 4 0

Reserved
(Initialize to 0)

Memory Protection Enable 0 - GCON.mpe0
(0) Disable (1) Enable

Memory Protection Enable 1- GCON.mpe1
(0) Disable (1) Enable

Memory Detect Enable 0- GCON.mde0
(0) Disable (1) Enable

Memory Detect Enable 1- GCON.mde1
(0) Disable (1) Enable

Memory Detect Enable 2- GCON.mde2
(0) Disable (1) Enable

Memory Detect Enable 3- GCON.mde3
(0) Disable (1) Enable

Memory Detect Enable 4- GCON.mde4
(0) Disable (1) Enable

Memory Detect Enable 5- GCON.mde5
(0) Disable (1) Enable
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110010000000
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Product
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Figure D-9. ICON (Interrupt Control) Register

Section 11.7.4, “Interrupt Control Register (ICON) — SF3” on page 11-20

Interrupt Mode - ICON.im
(00) Dedicated
(01) Expanded
(10) Mixed
(11) Reserved

Signal Detection Mode - ICON.sdm
 (0) Level-low activated
 (1) Falling-edge activated

Global Interrupts Enable - ICON.gie
 (0) Enabled
 (1) Disabled

Mask Operation - ICON.mo
(00) Move to r3, mask unchanged
(01) Move to r3 and clear for dedicated mode interrupts
(10) Move to r3 and clear for expanded mode interrupts
(11) Move to r3 and clear for dedicated and expanded

Vector Cache Enable - ICON.vce
 (0) Fetch from external memory
 (1) Fetch from internal RAM

Sampling Mode -ICON.sm
 (0) debounce
 (1) fast

Interrupt Control Register (ICON)
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(Initialize to 0)
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Figure D-10. IMAP0–IMAP2 (Interrupt Mapping) Registers

Section 11.7.5, “Interrupt Mapping Registers (IMAP0-IMAP2)” on page 11-21
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Interrupt Map Register 0 (IMAP0)

External Interrupt 1 Field - IMAP0.x1
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External Interrupt 5 Field - IMAP1.x5
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Figure D-11. IMSK (Interrupt Mask) Registers

Section 11.7.5.1, “Interrupt Mask (IMSK; SF1) and Interrupt Pending (IPND; SF0) Registers” on page 11-23
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Register and Data Structures
Figure D-12. IPB (Instruction Breakpoint) Register Format

Section 9.2.7.6, “Instruction Breakpoint (IPB) Registers” on page 9-9

28 24 20 16 12 8 4 031

IPBx Mode

Instruction Address

m

1

m

0

Hardware Reset Value: 0000 0000H

Software Re-init Value: 0000 0000H
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Register and Data Structures
Figure D-13. IPND (Interrupt Pending) Register

Section 11.7.5.1, “Interrupt Mask (IMSK; SF1) and Interrupt Pending (IPND; SF0) Registers” on page 11-23

28 24 20 16 12 8 4 0

Timer Interrupt Pending Bits - IPND.tip
(0) No Interrupt

x
i
p
7

x
i
p
6

x
i
p
5

x
i
p
4

x
i
p
3

x
i
p
2

x
i
p
1

x
i
p
0

t
i
p
0

t
i
p
1

(1) Pending Interrupt

External Interrupt Pending Bits - IPND.xip
(0) No Interrupt
(1) Pending Interrupt

RESERVED
(INITIALIZE TO 0)

28 24 20 16 12 8 4 0

Timer Interrupt Pending Bits - IPND.tip
(0) No Interrupt

t
i
p
0

t
i
p
1

(1) Pending Interrupt

28 24 20 16 12 8 4 0

Timer Interrupt Pending Bits - IPND.tip
(0) No Interrupt

x
i
p
7

x
i
p
6

t
i
p
0

t
i
p
1

(1) Pending Interrupt

External Interrupt Pending Bits - IPND.xip
(0) No Interrupt
(1) Pending Interrupt

Interrupt Pending Register (Dedicated Mode)

Interrupt Pending Register (Mixed Mode)

Interrupt Pending Register (Expanded Mode)

x
i
p
5
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Register and Data Structures
Figure D-14. LMAR0–14 (Logical Memory Address) Registers

Section 14.4, “Programming the Logical Memory Attributes” on page 14-11

Mnemonic Bit/Bit Field Name Bit 
Position(s) Function

BE Big Endian Byte Order 0
Controls byte order for the template.
0 = Little-endian
1 = Big-endian

DCEN Data Cache Enable 1
Controls data caching template.

0 = Data caching disabled
1 = Write-through caching enabled

DCIIR
Data Cache 
Independently 
Invalidatable Region

4

Controls Logical Region Invalidation.
0 = region is not independently invalidatable
1 = region is independently invalidatable using
 the dcctl “Invalidate Logical Region” 

command.

A31:12 Template Starting 
Address 12-31

Defines upper 20 bits for the starting address for a 
logical data template. The lower 12 bits are fixed at 
zero. The starting address is modulo 4 Kbytes.

28 24 20 16 12 8 4 031

 

Reserved, 
write to zero

A
3
1

A
3
0

A
2
9

A
2
8

A
2
7

A
2
6

A
2
5

A
2
4

A
2
3

A
2
2

A
2
1

A
2
0

A
1
9

A
1
8

A
1
7

A
1
6

A
1
5

A
1
4

A
1
3

A
1
2

D
C
I
I
R

D
C
E
N

B
E
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Register and Data Structures
Figure D-15. LMMR0–14 (Logical Memory Mask Registers)

Section 14.4, “Programming the Logical Memory Attributes” on page 14-11

Reserved, 

28 24 20 16 12

8 4 0

31

write to zero

Logical Memory Template Enabled
0 = LMT disabled
1 = LMT enabled

Template Address Mask

L
M
T
E

M
A
3
1

M
A
3
0

M
A
2
9

M
A
2
8

M
A
2
7

M
A
2
6

M
A
2
5

M
A
2
4

M
A
2
3

M
A
2
2

M
A
2
1

M
A
2
0

M
A
1
9

M
A
1
8

M
A
1
7

M
A
1
6

M
A
1
5

M
A
1
4

M
A
1
3

M
A
1
2

Mnemonic Bit/Bit Field Name Bit Position(s) Function

LMTE Logical Memory 
Template Enabled 0

Enables/disables logical memory template.

0 = LMT disabled

1 = LMT enabled

MA31:12 Template Address Mask 12-31

Defines upper 20 bits for the address mask for a 
logical memory template. The lower 12 bits are 
fixed at zero.

0 = Mask (don’t care)

1 = Do not mask
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Register and Data Structures
Figure D-16. MDUB0–5, MDLB0–5 (GMU Memory Violation Detection Upper and Lower-
Bounds) Registers

Section 12.3.3, “GMU Memory Detect Upper- and Lower-Bounds Registers” on page 12-10

Reserved
(Initialize to 0)

28 24 20 16 12 8 4 0

Memory Violation Detection

A
3
1

A
8

Lower-Bounds Register A31:8

Memory Violation Detection Lower-Bounds Register (MDLB 0 - MDLB 5)

Memory Violation Detection Upper-Bounds Register (MDUB 0 - MDUB 5)

28 24 20 16 12 8 4 0

Memory Violation Detection

A
3
1

A
8

Upper-Bounds Register A31:8

User Mode Read Enable MDUBx.umr
(1) Fault On User Mode Read(0) Allow User Mode Read

User Mode Write Enable MDUBx.umw
(1) Fault On User Mode Write(0) Allow User Mode Write

User Mode Execute Enable MDUBx.umx
(1) Fault On User Mode Execute(0) Allow User Mode Execution

Supervisor Mode Read Enable MDUBx.smr

(1) Fault On Supervisor Mode Read(0) Allow Supervisor Mode Read

Supervisor Mode Write Enable MDUBx.smw
(1) Fault On Supervisor Mode Write(0) Allow Supervisor Mode Write

Supervisor Mode Execute Enable MDUBx.smx
(1) Fault On Supervisor Mode Execute(0) Allow Supervisor Mode Execution

U
M
R

U
M
W

U
M
X

S
M
R

S
M
W

S
M
X

Supervisor Mode Cache Write MPARx.scw
(1) Fault On Supervisor Mode Data (0) Allow Supervisor Mode Data Cache

 Instructions (dcflusha, dcinva) Cache Instructions (dcflusha, dcinva)

User Mode Cache Write MPARx.ucw
(1) Fault On User Mode Data (0) Allow User Mode Data Cache

 Instructions (dcflusha, dcinva) Cache Instructions (dcflusha, dcinva)

S
C
W

U
C
W
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Register and Data Structures
Figure D-17. MPAR0–1, MPMR0–1 (GMU Memory Protect Address Register and Memory 
Protect Mask Register)

Section 12.3.2, “GMU Memory Protect Address and Mask Registers” on page 12-6

Reserved
(Initialize to 0)

Memory Protect Address Register (MPAR 0 - MPAR 1)

28 24 20 16 12 8 4 0

Memory Protect

m
3
1

m
8

 Mask Register M31:8

Memory Protect Mask Register (MPMR 0 - MPMR 1)

28 24 20 16 12 8 4 0

Memory Protection

a
3
1

a
8

Address Register A31:8

User Mode Read Enable MPARx.umr
(1) Fault On User Mode Read(0) Allow User Mode Read

User Mode Write Enable MPARx.umw
(1) Fault On User Mode Write(0) Allow User Mode Write

User Mode Execute Enable MPARx.umx
(1) Fault On User Mode Execute(0) Allow User Mode Execution

Supervisor Mode Read Enable MPARx.smr
(1) Fault On Supervisor Mode Read(0) Allow Supervisor Mode Read

Supervisor Mode Write Enable MPARx.smw
(1) Fault On Supervisor Mode Write(0) Allow Supervisor Mode Write

Supervisor Mode Execute Enable MPARx.smx
(1) Fault On Supervisor Mode Execution(0) Allow Supervisor Mode Execution

U
M
R

U
M
W

U
M
X

S
M
R

S
M
W

S
M
X

U
C
W

S
C
W

Supervisor Mode Cache Write MPARx.scw
(1) Fault On Supervisor Mode Data Cache(0) Allow Supervisor Mode Data Cache

 Instructions (dcflusha, dcinva)  instruction (dcflusha, dcinva)

User Mode Cache Write MPARx.ucw
(1) Fault On User Mode Data Cache(0) Allow User Mode Data Cache

 Instructions (dcflusha, dcinva)  Instructions (dcflusha, dcinva)
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Register and Data Structures
Figure D-18. PC (Process Controls) Register

Section 3.6.3, “Process Controls (PC) Register” on page 3-24

Figure D-19. PFP (Previous Frame Pointer) Register (r0)

Section 7.1.2.5, “Previous Frame Pointer” on page 7-5

28 24 20 16 12 8 4 031

 

Trace-Enable Bit - PC.te
(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em
(0) user mode
(1) supervisor mode

Trace-Fault-Pending - PC.tfp
(0) no fault pending
(1) fault pending

State Flag - PC.s
(0) executing
(1) interrupted

Priority Field - PC.p
(0-31) process priority

Reserved 

te
t

s
p pppp

4 3 2 1 0
f

m ep

(Do not modify)

28 24 20 16 12 8 4 031

Return Status

a
4 p

r
t
2

r
t
1

r
t
0

Return-Type Field - PFP.rt

Pre-Return-Trace Flag - PFP.p

Previous Frame Pointer

Address-PFP.a

a
3
1
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Register and Data Structures
Figure D-20. PMCON0–15 (Physical Memory Configuration) Register

Section 14.1.1, “Physical Memory Attributes” on page 14-1

Mnemonic Name Bit # Function

NRAD4:0 Number of Read Address 
to Data Wait States 0-4

Specifies the number of wait states (0 to 31) inserted 
between the assertion of ADS# and the first data cycle for 
read accesses.

NRDD1:0 Number of Read Data to 
Data Wait States 6-7 Specifies the number of wait states (0 to 3) inserted 

between successive data cycles for a burst read access.

NWAD4:0 Number of Write Address 
to Data Wait States 8-12

Specifies the number of wait states (0 to 31) inserted 
between the assertion of ADS# and the first data cycle for 
write accesses.

NWDD1:0 Number of Write Data to 
Data Wait States 14-15 Specifies the number of wait states (0 to 3) inserted 

between successive data cycles for a burst write access.

NXDA3:0 Number of Bus 
Turnaround Wait States 16-19 Specifies the number of wait states (0-15) inserted after 

the last data cycle for accesses in this region.

PEN Parity Enable 20 Enables parity generation/checking for a region.
0 = not enabled, 1 = enabled 

PODD Parity Odd 21 Selects parity sense for a region.
0 = even, 1 = odd

BW1:0 Bus Width 22-23
Selects the bus width for a region:
00 = 8-bit, 01 = 16-bit, 10 = 32-bit bus
11 = reserved (do not use)

RPIPE Read Pipelining Enable 24
Enables address pipelining for read accesses in this region

0 = disabled, 1 = enabled

BEN Burst Enable 28 Enables burst accesses for the region.
0 = disabled, 1 = enabled

RBEN READY#/BTERM# 
Enable 29

Enables the READY# and BTERM# pins for a region.

0 = READY#/BTERM# ignored in this region

1 = READY#/BTERM# enabled

28 24 20 16 12 8 4 031

 
B
W
1

B
W

0

Reserved, 
write to zero

R
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D

P
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0
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Register and Data Structures
Figure D-21. PMCON15 (Physical Memory Configuration) Register Bit Description in IBR

Section 13.3.1.1, “Initialization Boot Record (IBR)” on page 13-13

Mnemonic Name Bit # Function

NRAD4:0 Number of Read Address 
to Data Wait States 0-4

Specifies the number of wait states (0 to 31) inserted 
between the assertion of ADS# and the first data cycle for 
read accesses.

NRDD1:0 Number of Read Data to 
Data Wait States 6-7 Specifies the number of wait states (0 to 3) inserted 

between successive data cycles for a burst read access.

NWAD4:0 Number of Write Address 
to Data Wait States 8-12

Specifies the number of wait states (0 to 31) inserted 
between the assertion of ADS# and the first data cycle for 
write accesses.

NWDD1:0 Number of Write Data to 
Data Wait States 14-15 Specifies the number of wait states (0 to 3) inserted 

between successive data cycles for a burst write access.

NXDA3:0 Number of Bus 
Turnaround Wait States 16-19 Specifies the number of wait states (0-15) inserted after 

the last data cycle for accesses in this region.

PEN Parity Enable 20 Enables parity generation/checking for a region.
0 = not enabled, 1 = enabled 

PODD Parity Odd 21 Selects parity sense for a region.
0 = even, 1 = odd

BW1:0 Bus Width 22-23
Selects the bus width for a region:
00 = 8-bit, 01 = 16-bit, 10 = 32-bit bus
11 = reserved (do not use)

RPIPE Read Pipelining Enable 24
Enables address pipelining for read accesses in this region

0 = disabled, 1 = enabled

BEN Burst Enable 28 Enables burst accesses for the region.
0 = disabled, 1 = enabled

RBEN READY#/BTERM# 
Enable 29

Enables the READY# and BTERM# pins for a region.

0 = READY#/BTERM# ignored in this region

1 = READY#/BTERM# enabled

BBIGE Boot Big-Endian Byte 
Order 31

0 = little-endian, 1 = big-endian

This bit is copied to the DLMCON.be bit. See Section 14.4,
“Programming the Logical Memory Attributes” on 
page 14-11

28 24 20 16 12 8 4 031
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Register and Data Structures
Figure D-22. TC (Trace Controls) Register

Section 9.1.1, “Trace Controls (TC) Register” on page 9-2

Figure D-23. TCR0-1 (Timer Count Register)

Section 10.1.2, “Timer Count Register (TCR0, TCR1)” on page 10-5

Hardware Breakpoint Event Flags Trace Mode Bits

Mnemonic Name Bit # Mnemonic Name Bit #

TC.i5:2f Instruction-Address 
Breakpoint 2 to 5 8-11 TC.i Instruction Trace Mode 1

TC.d5:2f Data-Address Breakpoint 
2 to 5 12-15 TC.b Branch Trace Mode 2

TC.i1:0f Instruction-Address 
Breakpoint 0 to 1 24-25 TC.c Call Trace Mode 3

TC.d1:0f Data-Address Breakpoint 
0 to 1 26-27 TC.r Return Trace Mode 4

TC.p Pre-Return Trace Mode 5

TC.s Supervisor Trace Mode 6

TC.mk Mark Trace Mode 7

28 24 20 16 12 8 4 031

ibcrpsm
k

Reserved

i
0
f

i
1
f

d
0
f

d
1
f

T
C.

T
C.

T
C.

T
C. T

C.
T
C.

T
C.

T
C.

T
C.

T
C.

T
C.i

2
f

T
C.

i
3
f

T
C.

i
4
f

T
C.

i
5
f

T
C.

d
2
f

T
C.

d
3
f

T
C.

d
4
f

T
C.

d
5
f

T
C.

28 24 20 4 016 12 8

Timer Count Register (TCR0, TCR1)

Timer Count Value - TCRx.d31:0
 

   D31:0
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Register and Data Structures
Figure D-24. TMR0–1 (Timer Mode Register)

Section 10.1.1, “Timer Mode Registers (TMR0, TMR1)” on page 10-2

Figure D-25. TRR0-1 (Timer Reload Register)

Section 10.1.3, “Timer Reload Register (TRR0, TRR1)” on page 10-6

28 24 20

4 0

Terminal Count Status - TMRx.tc
    (0) No Terminal Count 
    (1) Terminal Count 

Timer Enable - TMRx.enable 
    (0) Disabled
    (1) Enabled

Timer Auto Reload Enable - TMRx.reload
    (0) Auto Reload Disabled
    (1) Auto Reload Enabled

Timer Register Supervisor Write Control - TMRx.sup
    (0) Supervisor and User Mode Write Enabled
    (1) Supervisor Mode Only Write Enabled

Timer Input Clock Selects - TMRx.csel1:0
    (00) 1:1 Timer Clock = Bus Clock
    (01) 2:1 Timer Clock = Bus Clock / 2
    (10) 4:1 Timer Clock = Bus Clock / 4

16 12 8

    (11) 8:1 Timer Clock = Bus Clock / 8 

Reserved
(Initialize to 0)

Timer Mode Register (TMR0, TMR1)

31

Timer Reload Register (TRR0, TRR1)

28 24 20 4 016 12 8

Timer Auto-Reload Value - TRRx.d31:0
    D31:0
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Register and Data Structures
Figure D-26. XBPCON (Extended Breakpoint Control) Register

Section 9.2.7.4, “Breakpoint Control Register” on page 9-7

28 24 20 16 12 8 4 031

Reserved
(Initialize to 0)

e
0

e
1

m
0

m
1

e
0

e
1

m
0

m
1

e
0

e
1

m
0

m
1

e
0

e
1

m
0

m
1

DAB2

DAB3

DAB4

DAB5
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Register and Data Structures
D.2 Data Structures

Figure D-27. Control Table

Section 13.3.3, “Control Table” on page 13-22

31 0

Reserved (Initialize to 0)

00H

04H

08H

0CH

Interrupt Map 0 (IMAP0) 10H

Interrupt Map 1 (IMAP1) 14H

Interrupt Map 2 (IMAP2) 18H

Interrupt Control (ICON) 0CH

Physical Memory Region 0 Configuration (PMCON0) 20H

Physical Memory Region 1 Configuration (PMCON0) 24H

Physical Memory Region 2 Configuration (PMCON0) 28H

Physical Memory Region 3 Configuration (PMCON0) 2CH

Physical Memory Region 4 Configuration (PMCON0) 30H

Physical Memory Region 5 Configuration (PMCON0) 34H

Physical Memory Region 6 Configuration (PMCON0) 38H

Physical Memory Region 7 Configuration (PMCON0) 3CH

Physical Memory Region 8 Configuration (PMCON0) 40H

Physical Memory Region 9 Configuration (PMCON0) 44H

Physical Memory Region 10 Configuration (PMCON0) 48H

Physical Memory Region 11 Configuration (PMCON0) 4CH

Physical Memory Region 12 Configuration (PMCON0) 50H

Physical Memory Region 13 Configuration (PMCON0) 54H

Physical Memory Region 14 Configuration (PMCON0) 58H

Physical Memory Region 15 Configuration (PMCON0) 5CH

Reserved (Initialize to 0)
60H

64H

Trace Controls (TC) 68H

Bus Configuration Control (BCON) 6CH
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Register and Data Structures
Figure D-28. Fault Table and Fault Table Entries

Section 8.3, “Fault Table” on page 8-5

31 0

TYPE Fault Entry

PROTECTION Fault Entry

CONSTRAINT Fault Entry

ARITHMETIC Fault Entry

OPERATION Fault Entry

TRACE Fault Entry

PARALLEL Fault Entry

Local-Call Entry

Fault-Handler Procedure Address

System-Call Entry

Fault-Handler Procedure Number

0000 027FH

n

n+4

n

n+4

012

0

01

00H

08H

10H

18H

20H

28H

30H

38H

40H

48H

50H

FCH

Reserved (Initialize to 0)

0

31

31

Fault Table

012

OVERRIDE Fault Entry 80H

MACHINE Fault Entry
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Register and Data Structures
Figure D-29. Fault Record

Section 8.5, “Fault Record” on page 8-6

031

Process Controls

Address of Faulting Instruction (n)

RESERVED

NFP-20

NFP-16

NFP-12

NFP-8

NFP-4

Number of Faults

Arithmetic Controls

Ftype (N) FSubtype (N)FFlags (N)

Fault Data

NFP-(n+1)*32

NFP-24-n*32

NFP-20-n*32

NFP-12-n*32

NFP-8-n*32

NFP-4-n*32

NFP-64

NFP-52

NFP-48

NFP-32

FType (1) FSubtype (1)

Address of Faulting Instruction (1)

28 24 20 16 12 8 4 031

Resumption Information

Fault Data

NOTES: “NFP” means “New Frame Pointer”
“n” means “number of faults”
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Register and Data Structures
Figure D-30. Initial Memory Image (IMI) and Process Control Block (PRCB)

Section 13.3.1, “Initial Memory Image (IMI)” on page 13-10

FEFF FF30H

FEFF FF40H

FEFF FF44H

FEFF FF48H

FEFF FF5CH

PMCON

First Instruction
Pointer

PRCB Pointer

6 Check Words
(For Bus Confidence

Self-Test)

Address

User Code:

Process Control Block (PRCB):

Fault Table Base Address

Control Table Base Address

AC Register Initial Image

Fault Configuration Word

Interrupt Table Base Address

System Procedure
Table Base Address

Reserved

Interrupt Stack Pointer

Instruction Cache
Configuration Word

Register Cache 

Control Table

Interrupt Table

System Procedure Table

Other Architecturally
Defined Data

Structures (Not 
Required As Part Of IMI)

Fixed Data Structures Relocatable Data Structures

Configuration Word

FEFF FF34H

FEFF FF38H

FEFF FF3CH

Byte 0
PMCON
Byte 1
PMCON
Byte 2
PMCON
Byte 3

Init. Boot Record (IBR):
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Register and Data Structures
Figure D-31. Interrupt Table

Section 11.4, “Interrupt Table” on page 11-4

X  X

000H

004H

020H

024H (Vector 8)

028H (Vector 9)

02CH (Vector 10)

3D0H (Vector 243)
3D4H (Vector 244)

3E4H (Vector 248)

3E8H (Vector 249)

3F0H (Vector 251)
3F4H (Vector 252)

400H (Vector 255)

Entry Type:
00  Normal

10  Target in Cache2
01  Reserved1

Pending Priorities

Pending Interrupts

Entry 8

Entry 9

NMI# Vector

Vector Entry

Instruction Pointer

...

Reserved (Initialize to 0)

Preserved

0

012

7831

...

Entry 252

Entry 255

...

Entry 243

Entry 10...

3E0H (Vector 247)

11  Reserved1

1 Vector entries with a reserved 

2 Not implemented on 80960Hx.
Included for backward compatibility.

type cause unpredictable behavior.
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Register and Data Structures
Figure D-32. Procedure Stack Structure and Local Registers

Section 7.1.1, “Local Registers and the Procedure Stack” on page 7-2

register
save area

Procedure Stack

Previous Frame Pointer (PFP) 

Stack Pointer (SP)

Return Instruction Pointer (RIP)

user allocated stack

unused stack

stack growth
(toward higher addresses)

padding area

user allocated stack

Current Register Set

Previous Frame Pointer (PFP)

Stack Pointer (SP)

reserved for RIP

.

..

Frame Pointer (FP)

Previous 
Stack 

Frame

Current 
Stack
Frame.

.

.

.

..

.

..

g0

g15

r0

r1

r2

r15

r0

r1

r2

r15
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Register and Data Structures
Figure D-33. Process Control Block Configuration Words

Section 13.3.1.2, “Process Control Block (PRCB)” on page 13-17

28 24 20 16 12 8 4 031

28 24 20 16

12 8 4 0

31

AC Register Initial Image

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) no overflow
(1) overflow

Integer Overflow Mask Bit - AC.om
(0) enable overflow faults
(1) mask overflow faults

No-Imprecise-Faults Bit - AC.nif
(0) allow imprecise fault conditions
(1) prevent imprecise fault conditions

Register Cache Configuration Word

Number of Frames Reserved for High Priority Interrupts

Disable Instruction Cache

Instruction Cache Configuration Word

(0) enable cache
(1) disable cache

Mask Non-Aligned Bus Request Fault
(0) enable the fault
(1) mask the fault

c
c
0

c
c
1

c
c
2

o
f

o
m

n
i
f

12 8 4 028 24 20 1631

28 24 20 16 12 8 4 031

Fault Configuration Word

Offset 08H

Offset 0CH

Offset 20H

Offset 24H

Number of Cached Register Frames (0-15)
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Register and Data Structures
Figure D-34. Storage of an Interrupt Record on the Interrupt Stack

Section 11.5, “Interrupt Stack and Interrupt Record” on page 11-6
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Figure D-35. System Procedure Table

Section 7.5.1, “System Procedure Table” on page 7-15
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Instruction Execution and 
Performance Optimization E

This appendix describes the i960® Hx processor’s core architecture and core features that enha
the processor’s performance. This appendix also describes assembly language techniques f
achieving the highest instruction-stream performance.

The i960 processor core architecture defines the programming environment, basic interrupt 
mechanism and fault mechanism for all members of the i960 microprocessor family. The H-s
core is a high-performance, highly parallel implementation. The i960 Hx processor integrates
controller, dual timers, a guarded memory unit and an interrupt controller around the core 
architecture (Figure E-1).

Figure E-1. H-Series Core and Peripherals
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State-of-the-art silicon technology and innovative micro-architectural constructs achieve high 
performance due to these features:

• Parallel instruction decoding allows sustained, simultaneous execution of two instructions in 
every clock cycle.

• Most instructions execute in a single clock cycle.

• Multiple, independent execution units enable multi-clock instructions to execute in parallel.

• Resource and register scoreboarding provide efficient and transparent management for parallel 
execution.

• Branch look-ahead and branch prediction features enable branches to execute in parallel with 
other instructions.

• A local register cache permits fast calls, returns, interrupts and faults to be implemented.

• A 16-Kbyte four-way set-associative instruction cache is integrated on-chip.

• An 8-Kbyte four-way set-associative data cache is integrated on-chip.

• 2-Kbytes of static data RAM are integrated on-chip.

E.1 Internal Processor Structure

The i960 Hx processor core contains the following main functional units:

Figure E-2 shows the i960 Hx processor block diagram. The IS and RF are the “heart” of the 
processor. Other core functional units — referred to as coprocessors — interface to the IS and RF,
connecting to either the register (REG) side or the memory (MEM) side of the processors. 

The IS issues directives via the REG and MEM interfaces which target a specific coprocesso
coprocessor then executes an express function virtually decoupled from the IS and the other
coprocessors. The REG and MEM data buses transfer data between the common RF and th
coprocessors.

The i960 Hx processors are designed to allow application-specific coprocessors to interface 
IS in the same way as core-defined coprocessors. The integrated peripherals — bus control
interrupt controller  — interface to the i960 Hx processor’s REG and MEM sides.

• Instruction Scheduler (IS) • Multiply/Divide Unit (MDU)

• Register File (RF) • Address Generation Unit (AGU)

• Execution Unit (EU) • Data RAM/Local Register Cache
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E.1.1 Instruction Scheduler (IS)

The IS decodes the instruction stream and drives the decoded instructions onto the machine bus, 
which is the major control bus. The IS can decode up to three instructions at a time, one from each 
of three different classes of instructions: one REG format, one MEM format and one CTRL format 
instruction. The IS directly executes the CTRL format instruction (branches), manages the 
instruction pipeline and keeps track of which instructions are in the pipeline so faults can be 
detected. 

The IS is assisted by three associated functional blocks: instruction fetch unit, instruction cache and 
microcode ROM.

The instruction fetch unit provides the IS with up to four words of instructions each cycle. It 
extracts instructions from the instruction cache, microcode ROM and its instruction fetch queue for 
presentation to the scheduler. The instruction fetch unit requests external fetch operations from the 
bus controller whenever a cache miss occurs. 

The instruction cache is 16-Kbyte and four-way set associative. This cache delivers to the IS up to 
four instructions per clock. The cache allows many inner loops of code to execute with no external 
instruction fetches; this maximizes the core’s performance. 

The i960 Hx processors use a microcode engine to implement complex instructions and func
This includes implicit and explicit calls, returns and initialization sequences. Unlike conventio
microcode, i960 Hx processor microcode uses a RISC subset of the instruction set in additio
specific micro-instructions. Microcode, therefore, can be thought of as a RISC program conta
operational routines for complex instructions. When the instruction pointer references a 
microcoded instruction, the instruction fetch unit automatically branches to the appropriate 
microcode routine. The i960 Hx processors perform this microcode branch in 0 clocks.

Figure E-2. i960 Hx Microprocessor Block Diagram
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E.1.2 Instruction Flow

Most instructions flow through a three-stage pipeline (Figure E-3):

• The decode stage calculates the address used to fetch the next instruction from the instruction 
cache. Additionally, this stage starts decoding the instruction. 

• The issue stage completes instruction decode and sends it to the appropriate execution unit. 

• During the execute stage, the operation is performed and the result is returned to the RF.

In the decode stage, the IS decodes the instruction and calculates the next instruction address. This 
could be a macro- or micro-instruction address. It is either the next sequential address or the target 
of a branch. For conditional branches, the IS uses condition codes or internal hardware flags to 
determine which way to branch. If branch conditions are not valid when the IS sees a branch, the 
processor guesses the branch direction, using the branch prediction specified in the instruction. If 
the guess was wrong, the IS cancels the instructions on the wrong path and begins fetching along 
the correct path.

In the issue stage, instructions are emitted or issued to the rest of the machine via the machine bus. 
The machine bus consists of three parts: REG format instruction portion, MEM format instruction 
portion and CTRL format portion. Each part of the machine bus goes to the coprocessor that 
executes the appropriate instruction. The RF supplies operands and stores results for REG and 
MEM format instructions. For this reason, the RF is connected to both the REG and MEM portions 
of the machine bus. The CTRL portion stays within the instruction sequencer since it directly 
executes the branch operations. Several events occur when an instruction is issued:

1. The information is driven onto the machine bus. 

2. The IS reads the source operands and checks that all resources needed to execute the 
instruction are available. 

3. The instruction is cancelled if any resource that the instruction requires is busy. The resource is 
busy if a previous, incomplete instruction reserved it or the resource is already working on an 
instruction. 

4. The IS then attempts to re-issue the instruction on the next clock; the same sequence of events 
is repeated. 

Figure E-3. Instruction Pipeline
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This processor resource management mechanism is called resource scoreboarding. A specific form 
of resource scoreboarding is register scoreboarding. When an instruction’s computation stag
more than one clock, the result registers are scoreboarded. A subsequent operation needing
particular register is delayed until the multi-clock operation completes. Instructions which do 
use the scoreboarded registers can execute in parallel.

The execute stage performs the instruction. This stage is handled by the coprocessors which
connect to the REG- and MEM-side buses. In this stage, the coprocessor has received oper
from the RF and recognized opcode which tells the coprocessor which instruction to execute
Execution begins and a result is returned in this stage for single-clock instructions. 

The execute stage is a single- or multi-clock pipeline stage, depending on the operation perf
and the coprocessor targeted. For single-clock coprocessors—such as the integer execution
the result of an operation is always returned immediately. Because of the three-stage pipelin
construction and the register bypassing mechanism, no conflicts between source access and
return can occur. For multi-clock coprocessors—such as the multiply/divide unit—the coproc
must arbitrate access to the return path. 

E.1.3 Register File (RF)

The RF contains the 16 local and 16 global registers and has six ports (Figure E-4). This allows 
several of the core’s coprocessors to access the register set in parallel. This parallel access r
an ability to execute one simple logic or arithmetic instruction, one memory operation (LOAD/
STORE) and one address calculation per clock.

Figure E-4. Six-Port Register File
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MEM coprocessors interface to the RF with a 128-bit wide load bus and a 128-bit wide store bus. 
An additional 32-bit port allows the Address Generation Unit to simultaneously fetch an address or 
address reduction operand. These wide load and store data paths:

• enable up to four words of source data and four words of destination data to simultaneously 
pass between the RF and a MEM coprocessor in a single clock.

• provide a high-bandwidth path between data RAM, data cache and local register cache to 
implement high-speed data operations. 

• provide a highly efficient means for moving load, store and fetch data between the bus 
controller and the RF. 

REG coprocessors interface to the RF with two 64-bit source buses and a single 64-bit destination 
bus. The source and result from different REG coprocessors can access the RF simultaneously 
using this bus structure. The 64-bit source and destination buses allow the eshro, mov and movl 
instructions to execute in a single cycle. 

To manage register dependencies during parallel register accesses, register bypassing (result 
forwarding) is implemented. The register bypassing mechanism is activated whenever an 
instruction’s source register is the same as the previous instruction’s destination register. The
instruction pipeline allows no time for the contents of a destination register to be written befor
read again by another instruction. Because of this, the RF forwards the result data from the r
bus directly to the source bus without reading the source register.

E.1.4 Execution Unit (EU)

The EU is the i960 Hx processor core’s 32-bit arithmetic and logic unit. The EU can be viewed
self-contained REG coprocessor with its own instruction set. As such, the EU is responsible 
executing or supporting the execution of all integer and ordinal arithmetic instructions, logic a
shift instructions, move instructions, bit and bit-field instructions and compare operations. Th
performs any arithmetic or logical instructions in a single clock. 

E.1.5 Multiply/Divide Unit (MDU)

The MDU is a REG coprocessor which performs integer and ordinal multiply, divide, remaind
and modulo operations. The MDU detects integer-overflow and divide-by-zero errors. The MD
optimized for multiplication, performing extended multiplies (32 by 32) in four to five clocks. T
MDU performs multiplies and divides in parallel with the main execution unit.

E.1.6 Address Generation Unit (AGU)

The AGU is a MEM coprocessor which computes the effective addresses for memory operati
directly executes the load address instruction (lda) and calculates addresses for loads and stores
based on the addressing mode specified in these instructions. Address calculations are perfo
parallel with the main execution unit (EU). 
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E.1.7 Data RAM and Local Register Cache

The data RAM and local register cache are part of a 2.5 Kbyte block of on-chip Static RAM 
(SRAM). Two Kbytes of this SRAM are mapped into the i960 Hx processor’s address space 
location 0000 0000H to 0000 07FFH. A portion of the remaining 512 bytes is dedicated to the
register cache. This part of internal SRAM is not directly visible to the user. Loads and stores
including quad word accesses to the internal data RAM, are typically performed in only one c
The complete local register set, therefore, can be moved to the local register cache in only fo
clocks.

E.1.8 Data Cache

The i960 Hx processor has an 8-Kbyte four-way set-associative data cache which enhances
performance by reducing the number of load and store accesses to external memory. The da
cache can return up to a quad word (128 bits) to the register file in a single clock cycle on a 
hit.

External memory is configured as cacheable or non-cacheable on a region-by-region basis, 
special bits in the memory region configuration LMCON registers. This makes it easy to partit
system into cacheable regions and non-cacheable regions.

The i960 Hx processor implements a simple coherency mechanism. The dcctl instruction is used to 
invalidate all cacheable regions marked as quick-invalidate. The data cache can also be ena
disabled or invalidated on a global basis using the dcctl instruction.

E.1.8.1. Data Cache Organization

The data cache has a four word line size (see Figure E-5). Each of the 128 cache lines has an 
associated cache tag containing the 21 most significant bits of the address and a valid bit. Ea
is further subdivided into single word blocks, each with its own valid bit. This subblock placement 
technique reduces latency on cache misses. 

Data accesses result in cache hits and misses. Accesses that match valid address tags and
marked as valid are cache hits; other data accesses are misses.

Figure E-5. Data Cache Organization
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E.1.8.2. Bus Configuration

 Certain data accesses are implicitly non-cacheable. All  atomic (atmod, atadd) accesses are non-
cacheable. User settings in the LMCON registers determine which data accesses are cacheable or 
non-cacheable. Refer to Section 14.1.2.2, “Logical Memory Region Cacheability” on page 14-5.

Upon reset or initialization, the processor clears all valid bits to zero to ensure that accesses 
made to a cache line that may contain invalid data. 

E.1.8.3. Global Control of the Cache

The following example code shows how to disable/enable the cache using the dcctl command. 
Disabling the cache does not invalidate any of its entries. 

E.1.8.4. Data Fetch Policy

Data fetch policy determines what happens to a load that misses the cache. The processor e
a natural fetch policy. Word, double word, triple word and quad word loads are issued to the b
control logic in their original widths. Byte and short word loads are promoted to word bus requ
Because most applications have 32-bit data buses, there is seldom a bandwidth penalty for 
promoting a byte or short word load to a full word bus operation.

E.1.8.5. Write Policy

Write policy determines what happens on cacheable store operations. The write policy for the
Hx processor is write-through and write-allocate. For cacheable stores, data is written into both t
cache and external memory simultaneously, regardless of whether the write is a hit or miss. 
maintains coherency between the data cache and external memory.

For cacheable stores that are equal to or greater than a word in length, cache tags and appr
valid bits are updated whenever data is written into the cache. Consider a word store as an ex
The tag is always updated and its valid bit is set. The appropriate valid bit for that word is alw
set and, on a cache miss, the other three valid bits are always cleared.

Cacheable stores that are less than a word in length are handled differently. Byte and short w
stores that hit the cache (i.e., are contained in valid words within valid cache lines) do not ch
the tag and valid bits. The processor writes the data into the cache and external memory as u
byte or short word store to an invalid word within a valid cache line leaves the word valid bit 
cleared because the rest of the word is still invalid. In all cases the processor simultaneously
the data into the cache and the external memory.

dcctl 0,0,r4 # Disable
dcctl 1,0,r4 # Enable
E-8 i960® Hx Microprocessor Developer’s Manual
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E.1.8.6. Data Cache Coherency

Whenever the cacheability of a region is changed, cache coherency becomes an immediate issue. 
The coherency mechanism solves this issue directly. The processor compares a non-cacheable store 
to the relevant tag in the data cache. If the store address matches the tag, the processor invalidates 
all words in the cache line. In a single processor system, this guarantees that the data cache never 
contains stale data. When the data cache is globally disabled, all stores are non-cacheable and the 
processor invalidates relevant tags whenever addresses match.

Atomic accesses from the atmod and atadd instructions are implicitly non-cacheable. Otherwise, 
entire memory regions would have to be programmed as non-cacheable to support semaphore 
operations.

E.1.8.7. BCU Pipeline and Data Cache Interaction

The BCU’s interaction with the data cache affects overall bus throughput. Figure E-6 shows how 
the BCU and data cache process a series of hits and misses for cacheable loads and stores

During the first issue clock, the data cache receives the first load address and recognizes a 
hit. The following clock is an execute clock; the cache returns data to the register file over th
bus. In the next issue clock the cache receives the second load address and recognizes a m
passed on to the BCU in the following clock. The BCU then processes the load as if there we
data cache. Note that the following load quad instruction is scoreboarded for a single clock w
the previous cache miss is issued to the BCU. The load quad instruction is determined to be 
the third issue clock and all 128 bits of data are returned to the register file in the following ex
clock.

ld (g0),g1 :data cache hit

ld (g2),g4 :data cache miss

ldq (g3),g8 :data cache hit

st g1,(g0) :store is scoreboarded

Figure E-6. BCU and Data Cache Interaction
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The i960 Hx processor scoreboards the store instruction until the pending load returns data to the 
cache. The processor writes the data to the register file and the cache in the same clock, updating 
the cache tag and valid bits. In the next clock, the store instruction is issued. For the store, the 
processor writes unconditionally into the cache during the issue clock.

When using the i960 Hx processor, refer to Table E-1 for a listing of the single clock load and store 
instructions. The table is valid when offset, displacement or indirect addressing modes are used 
over an external bus with the following characteristics:

NXAD =NXDD=NXDA=0, Burst On, Pipelining On, Ready Disabled

For other addressing modes, information in Section E.2.6, “Micro-flow Execution” on page E-29 
applies.

For each instruction that requires multiple reads on the external bus, such as ldq, the BCU buffers 
the return data until all data is returned from the bus. This optimization reduces the internal l
bus overhead to a minimum and allows the processor to access the MEM-side while externa
are in progress. If instructions are issued back-to-back with no register dependencies and hi
cache, execution can proceed at the rate of one instruction per clock. For cache misses, the
processor issues instructions until the cache is full. Subsequent back-to-back execution proc
bus bandwidth.

Table E-1. BCU Instructions

Mnemonic Issue 
Clocks

Result Latency 
Clocks

Back-to-Back 
Throughput

Result Latency 
Clocks

Back-to-Back 
Throughput

Hits Hits Misses Misses

ld
ldob
ldib
ldos
ldis

1 1 1 4 2

ldl 1 1 1 6 2

ldt 1 1 1 7 3

ldq 1 1 1 8 4

st
stob
stib
stos
stis

1 N/A 2 N/A 2

stl 1 N/A 3 N/A 3

stt N/A 4 N/A 4

stq N/A 5 N/A 5
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E.1.8.8. BCU Queues and Cache Coherency

The bus control unit is implemented as a coprocessor. Many clock cycles can pass after a cacheable 
load instruction is issued before data is returned to the data cache and registers. Because of this 
delay, the BCU was modified to support data cache operation. The processor scoreboards all stores 
when cacheable loads are present in the BCU queue. Consider the following case:

The load instruction misses the data cache and is then issued to the bus control unit. It can take 
several clocks before data is actually written to r0 and the data cache. If the store were issued 
before the load returns data, an inconsistency would result. External memory would receive correct 
data from the store, but the data cache would contain incorrect data from the load. The processor 
prevents this inconsistency by stalling the store until the load returns data. 

The policy of scoreboarding stores on outstanding cacheable loads typically decreases overall 
processor performance by less than one percent. 

E.1.8.9. External I/O and Bus Masters and Cache Coherency

The i960 Hx processor implements a single processor coherency mechanism. There is no hardware 
mechanism—such as bus snooping—to support multiprocessing. If another bus master can c
shared memory, there is no guarantee that the data cache contains the most recent data. Th
must manage such data coherency issues in software.

Users typically program the LMCON registers such that I/O regions are non-cacheable. 
Partitioning the system this way eliminates I/O as a source of coherency problems.

E.2 Parallel Instruction Processing

At the center of the i960 Hx processor core is a set of parallel processing units capable of exe
multiple single-clock instructions in every clock. To support this rate, the IS can issue up to th
new instructions in every clock. Each processing unit has access to the multiple ports of the 
six-ported register file; therefore, each processing unit can execute instructions independent
in parallel. 

In general, the register file, instruction scheduler, cache and fetch unit keep the parallel proc
units busy, given the typical diversity of instructions found in a rolling quad word group of 
instructions. To achieve highly optimized performance for critical code sequences, the user m
understand how instructions execute on the processor.

The following section describes instruction execution on the i960 Hx processor with the goal
instruction stream optimization in mind. See Section , “” on page E-34 for specific optimization 
techniques applicable to the i960 Hx processors.

ld xyz, R0# load from address xyz misses the data cache
st r4, xyz# store is issued to the same address
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E.2.1 Parallel Issue

The IS looks at a rolling quad word group of unexecuted instructions every clock and issues all 
instructions that can be executed in that clock. The scheduler can issue up to three instructions 
every clock to the processing units and can sustain an issue rate of two instructions per clock. To 
achieve parallelism, the IS detects to which machine “side” — REG, MEM or CTRL — each 
instruction in the current quad word group belongs.

When the IS issues a group of instructions, the appropriate parallel processing units acknow
receipt and begin execution. However, register and resource dependencies can delay instruc
execution. The processor transparently manages these interactions through register scorebo
and register bypassing.

To maximize the IS’s ability to issue instructions in parallel, the instruction cache is organized
provide four instructions per clock to the scheduler. To minimize the cost of a cache miss, th
instruction fetch unit constantly checks whether a cache miss will occur on the next clock. If a
is imminent, an instruction fetch is issued. 

The following discussions assume that instructions are always available from the instruction c
For a discussion of cache organization and the impact of cache misses, see Section E.2.5, 
“Instruction Cache and Fetch Execution” on page E-27.

E.2.2 Parallel Execution

Six parallel processing units are attached to the six-ported register file:

MEM-side: Three units are attached to the machine’s memory side. MEM-side 
instructions are dispatched over the MEM machine-bus.

BCU Bus Control Unit executes memory reads and writes for 
instructions which reference an operand in external memo

DR Data RAM handles memory reads and writes for instructio
that reference on-chip data RAM and MMR space. 

AGU Address Generation Unit executes the lda, callx, bx and balx 
instructions and assists address calculation for all loads an
stores.

REG-side: Two units are attached to the register side. REG-side instructions are 
dispatched over the REG machine bus.

MDU Multiply/Divide Unit executes the multiply, divide, 
remainder, modulo and extended multiply and divide 
instructions.

EU Execution Unit executes all other arithmetic, logical, shift, 
comparison, bit, bit field, move instructions and the scanbyte 
instruction.

CTRL-side: One unit is on the control side.

IS Instruction Scheduler directly executes control instructions
by modifying the next instruction pointer given to the 
instruction cache.
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The processor uses on-chip ROM to execute instructions not directly executed by one of the 
parallel processing units. This ROM contains a sequence of RISC instructions for each complex 
instruction not directly executable in one of the parallel processing units. When the scheduler 
encounters a complex instruction, the appropriate sequence of RISC instructions is issued for 
execution. This sequence of instructions is called a micro-flow. 

The IS can issue multiple instructions in every clock when the instructions decoded in that clock 
can be executed by different machine sides. For example, an add can begin in the same clock as a 
load since the addition is performed by the EU on the REG side, while the load is executed by the 
BCU on the MEM side. Furthermore, a branch can be issued in the same clock as the add and load 
since the IS executes it directly (three instructions per clock). The IS does not exploit every 
possible combination of three instruction types in four consecutive words. Table E-2 summarizes 
the sequences of instruction machine types that can be issued in parallel. A group of one or more 
instructions which can be issued in the same clock is referred to in this appendix as an executable 
group of instructions. Figure E-7 shows the paths that the IS has available for dispatching each 
word of the rolling quad word to the three machine sides. 

Table E-2. Machine Type Sequences that Can Be Issued in Parallel

Sequence Description

R M x x REG-side followed immediately by a MEM-side instruction

R M C x REG-side followed immediately by a MEM-side followed immediately by a CTRL 
instruction

R M x C REG-side followed immediately by a MEM-side followed by a CTRL instruction in the 
same rolling quad word

R C x x REG-side followed immediately by a CTRL instruction

R x C x 

R x x C
REG-side followed by a CTRL instruction in the same rolling quad word

M C x x MEM-side followed immediately by a CTRL instruction

M x C x 

M x x C
MEM-side followed by a CTRL instruction in the same rolling quad word
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E.2.3 Scoreboarding

When the scheduler issues a group of instructions, the targeted parallel processing units 
immediately acknowledge receipt of instructions and the scheduler begins considering the next 
four unexecuted words of the instruction stream. The scheduler checks for register dependencies 
between instructions before issuing them. The scheduler does not issue a group of instructions if:

1. a register is specified as a destination more than once, or

2. a register is specified as a destination in one instruction and a source in a subsequent 
instruction

A single register may, however, be specified as a source in multiple instructions or as a source in 
one instruction and a destination in a subsequent instruction. The six-port register set supports 
these cases. For example, the following instructions cannot be issued in parallel due to register 
dependencies:

Figure E-7. Issue Paths

Instruction Cache**
16 Kbyte 4-Way Set Associative

Presents 4 words per clock to the Instruction Scheduler

Control

Word (IP) Word (IP + 8) Word (IP + 12)Word (IP + 4)
rolling

quad word
instruction

window

MEM
Pipelines

CTRL
Pipelines

parallel issue paths

Instruction
Scheduler

Instruction 
Fetch Unit

Execution
Pipelines

IP IP
next

REG
Pipelines
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However, the following instructions can be issued in parallel:

or:

In all cases of parallel instruction issue, the IS ensures that the program operates as if the 
instructions were actually issued sequentially.

Two conditions can delay the execution of one or more of the instructions that the scheduler 
attempted to issue: a scoreboarded register or a scoreboarded resource.

E.2.3.1. Register Scoreboarding

If an instruction’s source (or destination) register is the destination of a prior incomplete mult
clock instruction (such as a load), the instruction is delayed. The scheduler attempts to reissu
instruction every clock until the scoreboarded register is updated and the delayed instruction 
executed. Table E-3 summarizes conditions which cause a delay due to a scoreboarded regist

addo g0, g1, g2 # g2 is a destination

st g2, (g3) # g2 is a source;4.45

# store must wait for addo to complete

addog0, g1, g2 # g2 is a destination

ld (g3), g2 # g2 is also a destination;

# load must wait for addo to complete

addog0, g1, g2 # g0 is a source for both instructions

st g0, (g3)

addog0, g1, g2 # g0 is a source for addo and

ld (g3), g0 # a destination for load

Table E-3. Scoreboarded Register Conditions

Condition Description

src busy One or both of the registers specified as a source for the instruction was referenced as a 
destination of a prior instruction which has not completed.

dst busy The destination referenced by the instruction was referenced as a destination of a prior 
instruction which has not completed.

cc busy AC register condition codes are not valid. Correct branch prediction eliminates dead 
clocks due to condition code dependencies.
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E.2.3.2. Resource Scoreboarding

A scoreboarded resource also defeats the scheduler’s attempt to issue an instruction. A reso
scoreboarded when it is needed to execute the instruction but is not available. The parallel 
processing units are the resources. Table E-4 lists cases which cause an instruction to be delaye
due to a scoreboarded resource. The description that follows the table describes what happe
instruction once it is issued to a processing unit.

E.2.3.3. Prevention of Pipeline Stalls

To maintain the logical intent of the sequential instruction stream, the i960 Hx processors 
implement register scoreboarding and register bypassing. Examples of each are demonstrat
the descriptions and examples in this appendix. These mechanisms eliminate possible pipel
stalls due to parallel register access dependencies. It is not necessary to perform any code 
optimizations to take advantage of this parallel support hardware.

Register scoreboarding maintains register coherency by preventing parallel execution units f
accessing registers for which there is an outstanding operation. When the IS issues an instru
that requires multiple clocks to return a result, the instruction’s destination register is locked 
further accesses until it is updated. To manage this destination register locking, the processor
33rd bit in each register to indicate whether the register is available or locked. This bit is calle
scoreboard bit. There is a scoreboard bit for each of the 32 registers.

Register bypassing eliminates a pipeline stall that would otherwise occur when one parallel 
processing unit is returning a result to a register over one port while, in the same clock, anoth
is accessing the same register over a different port. Register bypassing logic constantly monit
register addresses being written and read. If a register is being read and written in the same
bypass logic routes incoming data from the write port directly to the read port.

E.2.4 Processing Units

Once the IS issues a group of instructions, the appropriate processing units begin instruction
execution in parallel with all other processor operations. The following sections describe eac
unit’s pipelines and execution times of the instructions they process.

Table E-4. Scoreboarded Resource Conditions

Condition Description

BCU Queue Full Bus Controller queues are full and the scheduler is attempting to issue a memory 
request.

MDU Busy The Multiply/Divide Unit is busy executing a previously issued instruction and the 
scheduler is attempting to issue another instruction for which the MDU is responsible.

DR Busy

On-chip data RAM can support one 128-bit load or store every clock. However, the 
data RAM has no queues for storing requests. The unit stalls execution if a new 
request is issued to it when it has not been allowed to return data from a prior 
instruction.

For example, if the DR and BCU attempt to return results over the load bus in the same 
clock, the BCU wins the arbitration. This delays the DR result by one clock. If, 
simultaneously, the IS is attempting to issue another instruction to the data RAM, the 
DR stalls the processor for one clock.
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E.2.4.1. Execution Unit (EU)

The EU performs arithmetic, logical, move, comparison, bit and bit-field operations. The EU 
receives its instructions over the REG-machine bus and receives source operands over the src1 and 
src2 buses and returns its result over the dst bus.

The EU pipeline is shown in Figure . In the clock in which an EU instruction is issued, the EU 
latches the source operands and begins performing the operation. In the following clock, the 
instruction completes and the result is written to the destination register. When an instruction 
immediately follows an EU operation that references the EU’s destination register, the new 
instruction is issued in the clock following the EU operation.

The EU directly executes the instructions listed in Table E-5. The EU is pipelined such that back-
to-back EU operations execute at a one-clock sustained rate. The EU returns its result to the
destination register in the clock following the clock in which the instruction was issued. If a fix
is needed during shrdi execution, the processor executes a four-clock micro-flow. See 
Section E.2.6, “Micro-flow Execution” on page E-29.

addo g0, g1, g2

shlo g3, g4, g5

subo g5, g6, g7

shro g8, g9, g10

Figure E-8. EU Execution Pipeline

Instruction 
Scheduler Issue

addo shlo subo shro

EU 
Pipeline

Read src 1,
src2 g0, g1 g3, g4 g5, g6 g8, g9

Execute and
Write dst g2←g0+g1 g5←g4<<g3 g7←g6-g5 g10←g9>>g8

Table E-5. EU Instructions

addo
addi
addc

ADD<cc>
subo
subi
subc

SUB<cc>

setbit
clrbit
notbit

shlo
shro
shri
shli

shrdi
eshro

alterbit
chkbit

mov
movl
cmpo
cmpi

cmpdeco
cmpdeci

compare byte
compare short

SEL<cc>

scanbyte
bswap

and
andnot
notand
nand

or
nor

ornot
notor
xnor
xor
not

rotate
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E.2.4.2. Multiply/Divide Unit (MDU)

The MDU performs multiplication, division, remainder and modulo operations. The MDU receives 
its instructions over the REG-machine bus and source operands over the src1 and src2 buses and 
returns its result over the dst bus. Once the IS issues an MDU instruction, the MDU performs its 
operations in parallel with all other execution.

The MDU pipeline for the 32x32 mulo instruction is shown in Figure . In the clock in which the 
multiply is issued, the MDU latches the source operands and begins the operation. The multiply 
completes and the result is written to the destination register in the fifth clock following the clock 
in which the instruction was issued. When an instruction immediately follows a multiply which 
references the multiply’s destination, the instruction is not issued until the clock in which the 
multiply result is returned. For example, an addo which follows a multiply and references the 
destination of the multiply is delayed until the fourth clock after the processor issues the mul
This five-clock multiply latency is easily hidden; four to eight instructions could be placed betw
the multiply and add without increasing the total number of processor clocks used.

addo g0, g1, g2

mulo g3, g4, g5

addo g5, g6, g7

The MDU incorporates a one-clock pipeline unless integer overflow faults are enabled. The I
issue a new MDU instruction one clock before the previous result is written. For example, ba
back 32x32 multiply throughput is four clocks per multiply versus a five-clock multiply latency
Figure E-10 shows the execution pipeline for back-to-back multiplies in which adjacent 
instructions do not have a register dependency between them.
addog0, g1, g2
mulog2, g3, g4
mulog5, g6, g7
addog8, g9, g10

Figure E-9. MDU Execution Pipeline

Instruction
Scheduler Issue addo mulo — — — — — — — — addo

EU
Pipeline

Read src1,
src2 g0, g1 g5, g6

Execute and
Write dst g2 ← g0+g1 g7← g5+g6

MDU
Pipeline

Read src1,
src2 g3, g4

Execute

Write dst g5 ← g3∗g4
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The MDU directly executes instructions listed in Table E-6. The scheduler issues an MDU 
instruction in one clock. The table also shows the length of the execution stage (latency) for each 
instruction. Subsequent instructions not dependent upon MDU results are issued and executed in 
parallel with the MDU. If instructions in the table are issued back-to-back and they have no register 
dependency between them, the MDU pipeline improves throughput by one clock per instruction.

Figure E-10. MDU Pipelined Back-To-Back Operations

Instruction
Scheduler Issue addo mulo — — — — — — mulo addo

EU
Pipeline

Read src1,
src2 g0, g1 g8, g9

Execute and
Write dst g2←g0+g1 g10←g8+g9

MDU
Pipeline

Read src1,
src2 g2, g3 g5, g6

Execute

Write dst g4←g2∗g3

Table E-6. MDU Instructions

Mnemonic Issue 
Clocks

Result
Latency

Back-to-Back 
Throughput
(AC.om = 1)

Back-to-Back 
Throughput
(AC.om = 0)

muli 32x32 
16x32

1
1

5
3

4
2

5
3

mulo 32x32 
16x32

1
1

5
3

4
2

4
3

emul 32x32
16x32

1
1

6
3

5
2

6
3

divi 13 37 36 36

divo 3 36 35 35

ediv 
remi 
remo 
modi

3 36 35 35
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E.2.4.3. Data RAM (DR)

On-chip data RAM (DR), described in Section 4.1, “Internal Data Ram” on page 4-1, is single-
ported and 128-bits wide to support accesses of up to one quad-load or quad-store per clock
DR receives instructions over the MEM-machine bus, stores addresses over the 32-bit Addre
bus and stores data over the 128-bit store bus. The DR returns data over the 128-bit load bu

The one-clock DR pipeline for reads is shown in Figure E-11. When the IS issues a load from the
DR, load data is written to the destination register in the following clock.

An instruction which immediately follows a load from the DR and references the load destina
cannot execute in the same clock as the load. As shown in the figure, the instruction is issued
clock in which the load data is returning.

Table E-7 lists the instructions executed directly in most addressing modes (without micro-flo
execution) using the DR. As seen in Figure E-11, if these instructions are issued back-to-back, th
execute at a one-clock sustained rate, with or without register dependencies.

addo16, g0, g0
ldq (g0), g4
addog4, g5, g6
ldt (g7), g8
ldq (g8), g0

Figure E-11. Data RAM Execution Pipeline

Instruction
Scheduler 

Issue addo ldq addo
ldt ldq

EU
Pipeline

Read src1, src2 16, g0 g4, g5

Execute and
Write dst g0←g0+16 g6←g4+g5

Table E-7. Data RAM Instructions

Load Latency = 1 clock Store Latency = 1 clock

ld
ldob
ldib
ldos
ldis
ldl
ldt
ldq 

st
stob
stib
stos
stis
stl
stt
stq
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E.2.4.4. Address Generation Unit (AGU)

The AGU contains a 32-bit parallel shifter-adder to speed memory address calculations. It also 
directly executes the lda instruction. The AGU receives instructions over the MEM-machine bus 
and offset and displacement values over the address out bus from the IS. The AGU reads the global 
and local registers over the 32-bit base bus register port and writes the registers over the 128-bit 
load bus.

The AGU calculates an effective address (efa) which is either written to a destination register in 
(the case of an lda instruction) or used as a memory address (in the case of loads, stores, extended 
branches or extended calls). When an lda instruction is issued, the AGU returns the efa to the 
destination register in the following clock for most addressing modes. An instruction which 
immediately follows the lda and references the lda destination is not issued in the same clock as 
the lda. As shown in Figure E-12, it is issued in the clock in which lda is writing the destination 
register.

Table E-8 lists the lda addressing mode combinations that the AGU executes directly. As seen in 
the figure, if lda instructions are issued back-to-back using one of the addressing modes in the 
table, the instructions execute at a one-clock sustained rate with or without register dependencies.

addo16, g0, g0
lda 16 (g0), g4
addog4, g5, g6
lda 16 [g7 * 4], g8
lda 16 (g8), g0

Figure E-12. The lda Pipeline

Instruction
Scheduler Issue addo lda addo

lda lda

EU
Pipeline

Read src1,
src2 16, g0 g4, g5

Execute and
Write dst g0←g0+16 g6←g4+g5

AGU
Pipeline

Read over
Base Bus g0 g7 g8

Execute and
Write over

Ldbus
g4←g0+16 g8←(g7*4)+16 g0←g8+16

Table E-8. AGU Instructions

Mnemonic Issue Clocks Addressing Mode Result Latency Clocks

lda 1

offset 
disp
(reg)
offset(reg)
disp(reg)
disp[reg * scale]

1
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E.2.4.5. Effective Address (efa) Calculations

The AGU calculates the efa for instructions which require one. When the addressing mode 
specified by an instruction is the offset, disp or (reg) mode, the AGU generates the efa in parallel 
with the instruction’s issuance. As shown in the previous pipeline figure for the DR (Figure E-11), 
load and store instructions begin immediately for these addressing modes with no delay for a
generation. See Section E.2.6, “Micro-flow Execution” on page E-29 for a description of how 
other addressing modes are handled.

E.2.4.6. Bus Control Unit (BCU)

The BCU executes memory operations for load and store instructions, instruction fetches an
micro-flows. It executes memory load requests in two clocks (zero wait states) and returns a
on the third clock. Using address pipelining and on-chip request queuing, the BCU can acce
load or store from the IS every clock and return load data every clock. The BCU receives 
instructions over the MEM-machine bus, stores addresses over the 32-bit address out bus a
stores data over the 128-bit store bus. The BCU returns data over the 128-bit load bus.

The BCU receives a load address during the “issue” clock. The address is placed on the syst
during the next clock (the first BCU execute stage). The system returns data at the end of th
following clock (the second BCU execute stage). On the next clock the BCU writes the data 
destination register. This write is bypassed to the REG-side and MEM-side source buses an
scoreboarded instruction is issued in the same clock.

The zero wait state load causes a two clock execution delay of the next instruction because t
data is referenced immediately after the load is issued. If the memory system has wait states
load data delay will be longer. If the load is advanced in the code such that it is separated fro
instruction which uses the data, the load delay can be completely overlapped with the execu
other instructions.

Store instruction execution would proceed as does the load, except that there would be no re
clock and no instructions could be stalled due to a scoreboarded register.

Table E-9 lists instructions that the i960 Hx processor’s BCU executes directly. For each 
instruction that requires multiple reads (such as ldq) the BCU buffers the return data until all data i
returned. This optimization reduces the internal load bus overhead to the minimum, giving m
clocks to the processor to access the DR and perform lda operations while external loads are in 
progress. The table is valid when offset, displacement or indirect memory addressing modes
used over an external bus with the following characteristics:

NXAD = NXDD = NXDA = 0, Burst On, Pipelining On, Ready Disabled

For other addressing modes, see Section E.2.6, “Micro-flow Execution” on page E-29.

If instructions listed in the table are issued back-to-back with no register dependencies, they
execute at a rate of one instruction per clock until the BCU queues are full. Once the queues
full, further back-to-back BCU instructions execute at the bus bandwidth. Figure E-13 shows back-
to-back loads being executed.
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To allow programs to issue load requests before the data is needed — and thus decouple m
speeds from instruction execution — the BCU contains four queue entries. Each entry stores
information needed for a memory request:

• For loads, the BCU contains the source address, destination register number and load type

• For stores, BCU contains the destination address, store type and the store data

If a stq is executed, all four registers are written to the BCU queue in one clock. The BCU 
performs the actual bus request without taking any further clocks from instruction execution. BCU 
queues maintain memory requests in order. The requests are executed on the bus in the order that 
they are issued from the instruction stream.

ld (g0), g1
ld (g2), g3
ld (g4), g5
addog1, g6, g7

Table E-9. BCU Instructions

Mnemonic Issue Clocks Result Latency Clocks Back-to-Back 
Throughput

ld
ldob
ldib
ldos
ldis

1 3 1

ldl 1 4 2

ldt 1 5 3

ldq 1 6 4

st
stob
stib
stos
stis

1 N/A 2

stl 1 N/A 3

stt 1 N/A 4

stq 1 N/A 5

Figure E-13. Back-to-Back BCU Accesses

Instruction
Scheduler Issue ld ld ld addo

BCU
Pipeline

Address Out bus
St bus g0 g2 g4

External
Address Bus g0 g2 g4

External Data Bus (go) (g2) (g4)

LD Bus g1←(g0) g3←(g2) g5←(g4)

EU
Pipeline

Read src1, src2 g1, g6

Execute and Write
dst g7←g1+g6
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E.2.4.7. Control Pipeline

The IS directly executes program flow control instructions. Branches take two clocks to execute in 
the CTRL pipeline; however, the IS is able to see branches as many as four instructions ahead of 
the current instruction pointer. This allows the scheduler to issue the branch early and, in most 
cases, execute the branch without inserting a dead clock in the REG and MEM instruction streams.

Table E-10 lists the instructions that the IS executes directly, without the aid of micro-flows. For 
information on other control flow instructions, see Section E.2.6, “Micro-flow Execution” on 
page E-29.

E.2.4.8. Unconditional Branches

Figure E-15 shows the IS issue stage and the CTRL pipeline for the case where the branch ta
another branch, disabling the IS’s ability to look ahead. The IS issues the branch in one cloc
branch is executed in the next clock. The branch target is another branch, which the schedu
issues immediately. Hence, branch instructions have a two-clock sustained rate when issued
to-back.

 

w: b x
   ...
x: b y
   ...
y: b z
   ...
z: b w

An executable group of instructions is a group of sequential instructions in the currently visible
quad word which can be issued in the same clock. See Section E.2, “Parallel Instruction 
Processing” on page E-11.

Table E-10. CTRL Instructions

Mnemonic Issue Clocks Latency Clocks Back-to-Back Throughput 
Clocks

be 
bne 
bl 
ble 
bg 
bge 
bo 
bno

1 2 2

Figure E-14. CTRL Pipeline for Branches to Branches

Instruction
Scheduler Issue w: b x: b y: b z: b w: b

CTRL
Pipeline Execute
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Figure E-15 shows the cases where a branch, when first seen by the IS, is in the first executable 
group of instructions. The IS issues the branch immediately, along with the first one (or two) 
instruction(s) ahead of it. Since the branch takes two clocks in the CTRL pipeline to execute, a one-
clock break in the IS’s ability to issue instructions occurs. On the next clock, the IS issues a n
group of instructions from the branch target.

In the figure, two other instructions were issued simultaneously with the branch. Hence, the b
could be said to have taken one clock to execute. When the branch is the first instruction in t
group (the branch is a branch target) no other instructions are issued in parallel with the bran
it takes a full two clocks to execute (as seen in Figure E-15).

b x
      ...
x: addo g0, g1, g2

lda 2(g3), g4
b y

      ...
y: addo g5, g6, g7

lda 2(g8), g9

Figure E-16 shows the case where a branch, when first seen by the IS, is in the second exec
group (B) of instructions in the rolling quad word, not the first executable group (A) which is a
to be issued. The IS issues the branch immediately, along with the first group of instructions 
of it (A). Since the branch takes two clocks in the CTRL pipeline to execute, there is no brea
the IS’s ability to issue instructions. On the next clock, the IS issues a new group of instructio
from the branch target.

In the figure, two other instructions were issued simultaneously with the branch and one instru
was issued during the clock in which the branch was executing. Hence, it can be said that th
branch takes zero clocks to execute.

Figure E-17 shows the case where a branch, when first seen by the IS, is in the third executa
group (C) of instructions of the rolling quad word, not the first executable group (A) which is a
to be issued. The IS issues group A, then issues the branch and group B simultaneously. Sin
branch takes two clocks in the CTRL pipeline to execute, there is no break in the IS’s ability 
issue instructions. On the clock following the issuance of group B, the IS issues a new group
instructions from the branch target.

Figure E-15. Branch in First Executable Group

Instruction
Scheduler Issue

addo
lda
b

—— addo
lda

CTRL
Pipeline Execute

EU
Pipeline

Read src1, src2 g0, g1 g5, g6

Execute and
Write dst g2←g0+g1 g7←g5+g6

AGU
Pipeline

Read over
Base Bus g3 g8

Execute and
Write over

Ldbus
g4←2+g3 g9←g8+2
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b x 
...

x: addo g0, g1, g2 A
lda 2(g3), g4 A
lda 2(g5), g6 B
b y A

y: ...
addo g7, g8, g9
lda 2(g10), g11

b x
...

x: lda 2(g3), g4  A
addo g0, g1, g2  B
addo g5, g6, g7  C
b y        
...

y: addo g8, g9, g10
lda 2(g11), g12

Figure E-16. Branch in Second Executable Group

Group: A B

Instruction
Scheduler 

Issue
addo
lda
b

lda addo
lda

CTRL
Pipeline

Execute

EU
Pipeline

Read src1, src2 g0, g1 g7, g8

Execute and
Write dst g2←g0+g1 g9←g7+g8

AGU
Pipeline

Read over
Base Bus g3 g5 g10

Execute and
Write over

Ldbus
g4←g3+2 g6←g5+2 g11←g10+2

Figure E-17. Branch in Third Executable Group

Group: A B C

Instruction
Scheduler 

Issue lda addo
b addo addo

lda

CTRL
Pipeline Execute

EU
Pipeline

Read src1, src2 g0, g1 g5, g6 g8, g9

Execute and
Write dst g2←g0+g1 g7←g5+g6 g10←g8+g9

AGU
Pipeline

Read over
Base Bus g3 g11

Execute and
Write over

Ldbus
g4←g3+2 g12←g11+2
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E.2.4.9. Conditional Branches

When the IS sees a conditional branch instruction, the condition codes are sometimes not yet 
determined. For example, a conditional branch which immediately follows a compare instruction 
cannot be allowed to complete execution until the result of the comparison is known. However, the 
processor begins to execute the branch based upon the branch prediction bit set by the programmer 
for that branch.

When one or more executable instruction groups separate the conditional instruction from the 
instruction that changed the condition code, the condition code will have already settled in the 
pipeline by the time the prefetch mechanism sees the conditional instruction. This situation allows 
the branch to execute in zero clock cycles, as described in Figure E-17.

If the conditional instruction and the instruction that sets the condition codes are in the same 
executable group or in consecutive groups, the condition code is not valid when the IS sees the 
branch; a guess is required. If the prediction turns out to be correct, the branch executes in its 
normal amount of time, as described in the previous section. If the prediction is wrong, the pipeline 
is flushed. Any erroneously started single- or multiple-cycle instructions are killed and the branch 
executes as if there had been no lookahead or prediction. In other words:

• the branch takes two clocks out of the IS’s issue stage if it is in the same executable gro
the instruction which modified the condition codes; or 

• the branch takes one clock if it is in the executable group adjacent to the group that modifies 
the condition codes.

E.2.5 Instruction Cache and Fetch Execution

The instruction cache provides four consecutive opcode words to the IS on every clock. This 
capability allows the processor to dispatch instructions from the processor’s sequential instru
stream to multiple independent parallel processing units. When a cache miss occurs or is ab
occur, the Instruction Fetch Unit issues instruction fetch requests to the BCU.

E.2.5.1. Instruction Cache Organization

On every clock, the cache accesses one or two lines and multiplexes the correct four words 
IS. 

The i960 Hx processor’s instruction cache supports pre-loading and locking 0 to 4 ways of th
instruction cache. Each way is 4 Kbytes and any contiguous section of code can be locked in

The instruction scheduler checks all ways of the cache for every instruction fetched. If an 
instruction is not found, it is fetched from external memory and loaded into the unlocked porti
the instruction cache.

E.2.5.2. Fetch Strategy

When any of the four words presented to the scheduler are invalid, a cache miss is signaled
instruction fetch is issued. The Instruction Fetch Unit makes the fetch and prefetch decisions

Since the cache supports two word and quad word replacement within a line, instruction fetc
can be issued in either size. The conditions of the cache miss determine which fetch is issue
Table E-11 describes the fetch decision. 
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E.2.5.3. Fetch Latency

The Instruction Fetch Unit initiates an instruction fetch by requesting quad word or long word 
loads from the BCU. These fetches differ from actual instruction stream loads in two ways: load 
destination and load data buffering.

First, the load destination of an instruction fetch is the instruction fetch buffer, not the register file. 
Since fetch data goes directly from the BCU to the instruction fetch buffer and IS, the scheduler 
can issue fetched instructions during the clock after they are read from external memory.

Second, to reduce fetch latency, the BCU buffers fetch data differently than a regular load 
instruction. Instead of buffering four words of instructions before sending data to the fetch unit, the 
BCU sends each word as it is received over the bus. If the fetches are from 8- or 16-bit memory, the 
BCU collects 32 bits before sending the word to each fetch unit.

If the fetch request is the result of a prefetch decision, the IS is not stalled unless it needs an 
instruction from the prefetch request.

If the processor is executing straight-line code which always misses the cache, the IS is only able to 
issue instructions at a one-instruction-per-clock rate. It is never able to see multiple instructions in 
one clock. The bus bandwidth of the memory subsystem containing the code limits the 
application’s performance.

b y
...

y: addo g0, g1, g2← Cache Miss
subo g3, g4, g5

Table E-11. Fetch Strategy

Words Provided To Scheduler Fetch Initiated

IP IP+4 IP+8 IP+12 A3:2 of requested IP = 0X2 A3:2 of requested IP = 1X2

Hit Hit Hit Hit no fetch no fetch

Hit
Miss
Miss

Miss
Hit

Miss

 Hit
Hit
Hit

Hit
Hit
Hit

fetch two words at IP fetch two words at IP

Hit 
Hit 
Hit

Hit 
Hit 
Hit

Hit
Miss
Miss

Miss
Hit

Miss
fetch two words at IP+8 fetch two words at IP+8

All other cases fetch four words at IP fetch two words at IP 
and four words at IP+8
E-28 i960® Hx Microprocessor Developer’s Manual



Instruction Execution and Performance Optimization

r’s 
nce of 
hich 

m the 
f this 

 out 
ing 

d 

 
 

he 
 which 
E.2.5.4. Cache Replacement

Data fetched as a result of a cache miss is always written to the cache.

E.2.6 Micro-flow Execution

The i960 Hx processor’s parallel processing units directly execute about half of the processo
instructions. The processor services the remaining complex instructions by executing a seque
simple instructions from an on-chip ROM. Complex instructions are detected in the clock in w
they are fetched. This information becomes part of the instruction encoding stored in the 
instruction fetch unit queue and/or instruction cache.

Micro-flow instruction sequences are written to enable the parallel processing units to perfor
required function as fast as possible. Micro-flows use instructions described in prior sections o
appendix (machine types REG, MEM and CTRL) and some special parallel circuitry to carry
the complex instructions. An instruction which cannot be directly issued to a parallel process
unit is said to have the machine type µ. 

E.2.6.1. Invocation and Execution

Invoking a micro-flow can be considered analogous to the processor’s execution of an 
unconditional branch into the on-chip ROM. However, pre-decoding and optimized lookahea
logic make the micro-flow invocation more efficient than a branch instruction.

While the IS is issuing one group of instructions, parallel decode circuitry checks to see if thenext 
executable instruction is a µ instruction (Figure E-19). If so, the opcode words presented to the IS
in the next clock come from the on-chip ROM location that contains the micro-flow for the 
detected complex instruction. The IS actually never attempts to issue a complex encoding. T
processor detects the encoding when the instruction is fetched, then traps during the clock in
the instruction is presented to the IS.

Figure E-18. Fetch Execution

Instruction
Scheduler Issue y: — — — — — — — — addo subo

CTRL
Pipeline Execute Cache 

Miss

BCU
Pipeline

Address Out
bus

St bus

Fetch 
Miss

External
Address Bus A

External
Data Bus

D
addo

D
subo

Ld Bus D
addo

D
subo

EU
Pipeline

Read src1,
src2 g0, g1 g3, g4

Execute and
Write dst g2←g0+g1 g5←g4-g3
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Generally, no clocks are lost when switching to a micro-flow. However, two conditions can defeat 
the lookahead logic: 

• branches to REG-, CTRL- or COBR-format instructions which are implemented as micro-
flows (µ); or 

• cache misses from straight-line code execution. 

Under these conditions, the switch to on-chip ROM causes a one-clock break in the IS’s abil
issue instructions.

Complex instructions encoded with the MEM-format do not require lookahead detection to tr
the ROM without overhead. Therefore, MEM-format instructions of machine type µ do not se
one-clock performance loss even when lookahead logic is defeated. Furthermore, micro-flow
return to general execution with no overhead; back-to-back micro-flows do not incur the one-
defeated lookahead penalty.

When micro-flows execute, they consume the instruction scheduler’s activity. From the first c
through the last clock of a micro-flow, the IS is typically issuing two instructions per clock. ME
side micro-flows — such as loads and stores — can be issued in parallel with REG-side 
instructions. Performance of micro-flowed instructions is measured by the number of clocks 
to issue instructions. 

Figure E-19. Micro-Flow Invocation
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E.2.6.2. Data Movement

Data movement instructions supported as micro-flows include the triple and quad word register 
move instructions and the lda, load and store instructions which use complex addressing modes.

movt and movq each take two clocks to execute.

Load and store instructions are summarized in Table E-14 and Table E-15. The number of clocks 
shown is the additional number of issue clocks consumed for address calculation prior to the load 
or store being issued to the BCU or DR. These instructions can be issued in parallel with a machine 
type REG instruction. To find the result latency of the BCU or DR, see the appropriate section 
earlier in this appendix.

E.2.6.3. Bit and Bit Field

scanbit, spanbit, extract and modify are executed as micro-flows. Table E-14 lists their execution 
times. For these instructions, the IS issues n clocks of instructions in place of the single word i960 
Hx processor instruction encoding, where n is shown in the table.

Table E-12. Load Micro-Flow Instruction Issue Clocks

The following load instructions consume n additional issue clocks for address 
calculation before initiating a load request to the BCU or DR, where n for each 
addressing mode is as follows:

Mnemonic
disp(reg)
offset(reg)
disp[reg * scale]

(reg)[reg * scale]
disp(reg)[reg * scale] disp(IP)

ld, ldob, ldib, ldos, 
ldis, ldl, ldt, ldq 1 2 4

NOTE: offset, disp and (reg) memory addressing modes incur no address calculation overhead. 

Table E-13. Store Micro-flow Instruction Issue Clocks

The following store instructions consume n additional issue clocks for address 
calculation prior to initiating a store request to the BCU or DR, where n for each 
addressing mode is as follows:

Mnemonic
disp(reg)
offset(reg)
disp[reg * scale]

(reg)[reg * scale]
disp(reg)[reg * scale] disp(IP)

st, stob, stib, stos, 
stis, stl, stt, stq 1 2 4

NOTE: offset, disp and (reg) memory addressing modes incur no address calculation overhead. 

Table E-14. Bit and Bit Field Micro-flow Instructions

Mnemonic Execution Clocks (n)

scanbit 1

spanbit 3

extract 4

modify 3
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E.2.6.4. Comparison

test* instructions are executed as micro-flows. Execution time depends upon condition code 
validity and prediction bit settings. When condition codes are valid or the prediction bit is set 
correctly, a test* instruction takes 10 issue clocks if its correct result is a 1, and 12 issue clocks if its 
correct result is a 0.

E.2.6.5. Branch

Compare and branch, extended branch, branch and link and extended branch and link instructions 
are implemented with micro-flows.

cmpib* and cmpob* instructions take one issue clock if the prediction was correct and two issue 
clocks if the prediction was incorrect, assuming a cached branch target.

bal takes two issue clocks to execute, assuming a cache hit.

bx and balx are summarized in Table E-15. The number of clocks shown is the total number of 
issue clocks consumed by the instruction prior to the code at the branch target being issued. Times 
shown assume instruction cache hits and a DR-based link target. These instructions may be issued 
in parallel with a machine-type R instruction. 

E.2.6.6. Call and Return

Procedure call, return and system procedure call instructions are implemented as micro-flows. call 
consumes four issue clocks when the target is cached and a register cache location is available. 
When a frame spill is required, an additional 22 issue clocks are consumed in a zero-wait-state 
system before the target code begins execution. The worst-case memory activity for a call with a 
frame spill and a cache miss is one quad word instruction fetch followed by four quad word stores. 
Wait states in the instruction fetch directly impact call speed, while wait states in the frame stores 
are decoupled from internal execution by the BCU queues.

ret consumes four issue clocks when the target and the previous register set are both cached. When 
a frame fill is required, an additional 38 issue clocks are consumed in a zero-wait-state system 
before the target code begins execution. The worst-case memory activity for a return with a frame 
fill and a cache miss is four quad word reads followed by one quad word fetch. Wait states in the 
instruction fetch or the frame fill directly impact return speed.

Table E-15. bx and balx Performance

The following instructions consume n issue clocks before target code is issued, 
where n for each addressing mode is as follows:

Mnemonic

disp 
offset 
(reg)
disp(reg)
offset(reg)
disp[reg * scale]

(reg)[reg * scale]
disp(reg)[reg * scale] disp(IP)

bx, balx 4 4 6
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calls consumes up to 56 issue clocks if the call is to a supervisor procedure. If the call is to a non-
supervisor procedure, calls takes 38 issue clocks. These times assume an available register cache 
location and a cached target. During calls execution, the processor accesses the system procedure 
table with a single word read and a long word read. The presence of several wait states in these 
reads directly affects the instruction’s performance. The impact of non-cached target code or
frame spill on the calls instruction is identical to the impact on the call instruction.

callx timing is similar to call instruction timing with the exception of issue clocks. Table E-16 
shows total issue clocks for callx.

Times shown assume instruction cache hits. 

E.2.6.7. Conditional Faults

fault* instructions are implemented with micro-flows and require one issue clock if the predic
bit is correct and no fault occurs. If the prediction bit is incorrect and no fault occurs, the 
instructions require two issue clocks. The time it takes to enter a fault handler varies greatly 
depending upon the state of the processor’s parallel processing units.

E.2.6.8. Debug

mark and fmark are implemented with micro-flows. mark takes one issue clock if no trace fault is
signaled. If a trace fault is signaled or fmark is executed, the processor performs an implicit call 
the trace fault handler. As with conditional faults, the time required to enter a fault handler va
greatly.

E.2.6.9. Atomic

Atomic instructions are implemented with micro-flows. atadd takes seven issue clocks and atmod 
takes eight issue clocks to execute with an idle bus in a zero-wait state system. Memory wait
directly affect execution speed.

Table E-16. callx Performance

The following instruction consumes n issue clocks before target code is issued, 
where n for each addressing mode is as follows:

Mnemonic

disp 
offset 
(reg)
disp(reg)
offset(reg)
disp[reg * scale]

(reg)[reg * scale]
disp(reg)[reg * scale] disp(IP)

callx 7 9 9
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E.2.6.10. Processor Management

Processor management instructions implemented as micro-flows include: modpc, modac, modtc, 
syncf, flushreg and sysctl.

E.2.7 Coding Optimizations

Embedded applications often benefit from hand-optimized interrupt handlers and critical 
primitives. This section reviews coding optimizations which arise due to the micro-architecture of 
the i960 Hx instruction set processor. The examples in this section are constructed to illustrate 
particular optimization techniques. In general, every example could be further optimized by 
applying several techniques instead of one.

modpc requires 17 clocks to execute if process priority is changed and 12 clocks if 
process priority is not changed.

modac requires 9 clocks.

modtc requires 15 clocks.

syncf takes 4 issue clocks if there are no possible outstanding faults. Otherwise, 
the instruction locks the IS until it is certain that no prior instruction will 
fault.

flushreg requires 24 clocks for each frame that is flushed. This translates to 120 
cycles to flush five frames. Wait states in the memory being written affect 
this instruction’s performance.

sysctl Timings shown in Table E-17 assume a zero wait-state memory system.

Table E-17. sysctl Performance

Message Message Type Issue Clocks

Request Interrupt 00H 20 + bus wait states

Invalidate Instruction Cache 01H 19

Configure Instruction Cache 02H

20 to enable I-cache 

22 to disable I-cache 

TBD+ bus wait states to load and lock 
1 way (4 Kbytes)

Reinitialize 03H 329 + bus wait states

Load Control Register Group 04H 39 to 51+ bus wait states

Modify Memory-Mapped Control 
Register (MMR) 05H 26 + bus wait states

Breakpoint Resource Request 06H 21 - 22
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E.2.7.1. Loads and Stores

Separate load instructions from instructions that use load data. Remember that store instructions 
can also be reordered. Although it returns no results to a register, a poorly placed store in front of a 
critical load slows down the load. Reorder to issue the load first. Example E-1 shows a simple 
change that saved one clock from a five-clock loop.

E.2.7.2. Multiplication and Division

Begin multiply and divide instructions several cycles before instructions that use their results. 
MDU instructions consume less than one clock if they are sufficiently separated from the 
instructions that use their results. Also, use shift instructions to replace multiplication and division 
by powers of two. Example E-2 shows overlapping pointer math and a comparison with the 32x32 
multiply time in a simple multiply-accumulate loop.

Example E-1. Overlapping Loads (Checksum)

loop: opt_loop:

ldob (g0), g1 ldob (g0), g1

addo g1, g2, g2 cmpinco g0, g3, g3

cmpinco g0, g3, g3 addo g1, g2, g2

bl.t loop bl.t opt_loop

Execution: Execution:

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop

1 ldob 1 ldob

2 : 2 cmpinco :

3 : 3 : bl.t

4 addo bl.t 4 addo :

5 cmpinco : 5 ldob

6 ldob
i960® Hx Microprocessor Developer’s Manual E-35



Instruction Execution and Performance Optimization
E.2.7.3. Advancing Comparisons

Where possible, instructions which change condition codes should be separated from instructions 
that use condition codes. Although correct branch prediction gives the same performance as 
separating the compare from the branch, prediction is statistical while separation is deterministic. 
In the previous example, optimized code advanced the comparison enough that branch prediction is 
not being relied upon to keep the branch-true path executing at nine clocks. Furthermore, the 
branch-false path does not take extra clocks since the condition codes are known when the branch 
is encountered.

In a situation where the comparison and a branch cannot be separated to achieve a performance 
advantage, use the combined compare and branch instructions. This is likely to lead to faster 
execution since the two instructions are encoded in a single word. This code economy frees another 
location in the cache and the IS may be able to see the branch earlier because the branch is encoded 
in the same opcode word.

Example E-2. Overlapping MDU Operations (Multiply Accumulate)
loop: opt_loop:

ld (g0), g2 ld (g0), g2

ld (g1), g3 ld (g1), g3

muli g2, g3, g4 muli g2, g3, g4

addi g4, g5, g5 addo 4, g0, g0

addo 4, g0, g0 cmpo g0, g6

addo 4, g1, g1 addo 4, g1, g1

cmpobl.t g0, g6, loop addi g4, g5, g5

bl.t opt_loop

Execution (from DR): Execution (from DR):

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop

1 ld 1 ld

2 ld 2 ld

3 muli 3 muli

4 : 4 : addo

5 : 5 : cmpo

6 : 6 : addo

7 : 7 : bl.t

8 addi 8 addi :

9 addo 9 ld

10 addo bl.t

11 cmpo :

12 ld
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E.2.7.4. Unrolling Loops

Expand small loops into larger loops which fill the cache, use more registers and pipeline their 
memory operations. The strategy is to begin accessing the memory system as soon as the routine is 
entered and to make the best use of the bus. Less bus bandwidth is used for the same operations if 
the algorithm is implemented with quad loads and/or stores.

The large register set allows an unrolled loop to have multiple sets of working temporary registers 
for operations in various stages. For example, the previous checksum example is repeated in 
Example E-3. The loop is unrolled to perform checksums nearly twice as fast as the simple loop.

Example E-3. Unrolling Loops (Checksum)

-- initialize -- -- initialize --

loop: opt_loop:

ldob (g0), g1 ldob (g0), g1

addo g1, g2, g2 cmpinco g0, g3, g3

cmpinco g0, g3, g3 addo g4, g2, g2

bl.t loop bge.f exit1

ret ldob (g0), g4

cmpinco g0, g3, g3

addo g1, g2, g2

bl.t opt_loop

exit2:

addo g4, g2, g2

ret

exit1:

addo g1,g2,g2

ret

Execution: Execution:

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop

1 ldob 1 ldob g1

2 : 2 cmpinco : bge.f

3 : 3 addo g4 : :

4 addo bl.t 4 ldob g4

5 cmpinco : 5 cmpinco : bl.t

6 ldob 6 addo g1 : :

7 ldob g1
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E.2.7.5. Enabling Constant Parallel Issue

As described in Section E.2.1, “Parallel Issue” on page E-12, certain sequences of machine-type 
instructions can be executed in parallel, such as REG-MEM, REG-MEM-CTRL, MEM-CTRL
Example E-4 the checksum loop is repeated. Another clock is eliminated by reordering code f
parallel issue.

E.2.7.6. Alternating from Side to Side

The i960 Hx processor can sustain execution of two instructions per clock. To maximize this
capability, try to start instructions in two of the three pipelines each clock. To increase paralle
move an instruction from a unit which has become a critical path to a unit with available cloc
The AGU performs shifts, additions and moves that can replace EU operations. Literal addre
mode, in combination with EU or AGU operations, provides some freedom in deciding which
loads constants into registers. Remember to use addressing modes that the AGU executes 
(machine type M, not µ).

Table E-18 lists several conversions that can move an instruction to the AGU from either the E
MDU. Example E-5 exploits the lda instruction to increase a 3x3 lowpass filter’s performance b
approximately 30 percent.

Example E-4. Order for Parallelism (Checksum)

-- initialize -- -- initialize --

loop: opt_loop:

ldob (g0), g1 addo g4, g2, g2

addo g1, g2, g2 ldob (g0), g1

cmpinco g0, g3, g3 cmpinco g0, g3, g3

bl.t loop bge.f exit1

ret ldob (g0), g4

cmpinco g0, g3, g3

addo g1, g2, g2

bl.t opt_loop

exit2:

addo g4, g2, g2

ret

exit1:

addo g1,g2,g2

ret

Execution: Execution:

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop

1 ldob 1 addo g4 ldob g1 bge.f

2 : 2 cmpinco : :

3 : 3 ldob g4

4 addo bl.t 4 cmpinco : bl.t

5 cmpinco : 5 addo g1 : :

6 ldob 6 addo g4 ldob g1
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Table E-18. Creative Uses for the lda Instruction

Operation Equivalent lda instruction

addo 5, g0, g1# constant addition lda 5(g0), g1

shlo 2, g1, g2# shifts by a constant lda [ g1 * 4], g2

mov 31, g0# constant load lda 31, g0

shlo 2, g1, g2 # shift/add combination 
addo 5, g2, g2

lda 5[ g1 * 4], g2

mov g0, g1# register move lda (g0), g1

Example E-5. Change the Type of Instruction Used (3x3 Lowpass Mask

# initial values # initial values

# g0 points to X(0,0) # g0 points to X(0,0)

# g1 points to Y(1,1) # g1 points to Y(1,0)

# g2 contains imax # g2 contains imax

# r4 load temp # r4 load temp

# r5 accumulator # r5 accumulator

# r6 = imax (i count temp) # r6 = imax (i count temp)

# r7 = jmax (j count temp) # r7 = jmax (j count temp)

# r8 = imax-1 # r8 = imax-1

# (new mask row offset) # (new mask row offset)

# r9 = 2*imax - 2 # r9 = 2*imax - 2 

# (new i offset) # (new i offset)

# r10 is 2*imax + 1 # r10 is 2*imax + 1

# (new j offset) # (new j offset)

b next_j new_next_i:

next_i: new_next_j:

subor9, g0, g0

next_j: # first mask row

# first mask row addo1, g1, g1

ldob(g0), r5 ldob(g0), r5

addo1, g0, g0 addo1, g0, g0

ldob(g0), r4 ldob(g0), r4

addo1, g0, g0 addo1, g0, g0

shlo1, r4, r4 lda [r4 * 2], r4

addor4, r5, r5 addor4, r5, r5

Y[ ] = X[ ] * M[ ]

M[ ] = 

1
16
------

2
16
------

1
16
------

2
16
------

4
16
------

2
16
------

1
16
------

2
16
------

1
16
------
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ldob(g0), r4 ldob(g0), r4

addor4, r5, r5 addor4, r5, r5

addor8, g0, g0 addor8, g0, g0

# second mask row # second mask row

ldob(g0), r4 ldob(g0), r4

addo1, g0, g0 addo1, g0, g0

 shlo1, r4, r4 addor4, r5, r5

addor4, r5, r5 lda [r4 * 2], r4

ldob(g0), r4 ldob(g0), r4

addo1, g0, g0 addo1, g0, g0

shlo2, r4, r4 lda [r4 * 4], r4

addor4, r5, r5 addor4, r5, r5

ldob(g0), r4 ldob(g0), r4

shlo1, r4, r4 addor8, g0, g0

addor4, r5, r5 lda [r4 * 2], r4

addor8, g0, g0 addor4, r5, r5

# third mask row # third mask row

ldob(g0), r4 ldob(g0), r4

addo1, g0, g0 addo1, g0, g0

addor4, r5, r5 addor4, r5, r5

ldob(g0), r4 ldob(g0), r4

addo1, g0, g0 addo1, g0, g0

shlo1, r4, r4 lda [r4 * 2], r4

addor4, r5, r5 addor4, r5, r5

ldob(g0), r4 ldob(g0), r4

addor4, r5, r5 addor4, r5, r5

shro4, r5, r5 shro4, r5, r5

stobr5, (g1) cmpdeco2, r6, r6

addo1, g1, g1 stobr5, (g1)

subor9, g0, g0

# update pointers # update pointers

cmpdeco2, r6, r6 bg.tnew_next_i

bg next_i addor9, g0, g0

mov g2, r6 lda (g2), r6

cmpdeco2, r7, r7 cmpdeco2, r7, r7

subor10, g0, g0 lda 2(g1), g1

addo2, g1, g1 subor10, g0, g0

bg next_j bg.tnew_next_j

ret ret

Execution from DR (new loop): Execution from DR (loop):

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop

1 subo 1 addo ldob

2 ldob 2 addo

3 addo 3 ldob

4 ldob 4 addo lda

5 addo 5 addo ldob

6 shlo 6 addo
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7 addo 7 addo ldob

8 ldob 8 addo lda

9 addo 9 addo ldob

10 addo 10 addo lda

11 ldob 11 addo ldob

12 addo 12 addo lda

13 shlo 13 addo ldob

14 addo 14 addo

15 ldob 15 addo ldob

16 addo 16 addo lda

17 shlo 17 addo ldob

18 addo 18 addo

19 ldob 19 shro

20 shlo 20 cmpdeco stob bg.t

21 addo 21 subo :

22 addo 22 addo ldob

23 ldob

24 addo

25 addo

26 ldob

27 addo

28 shlo

29 addo

30 ldob

31 addo

32 shro

33 stob

34 addo bg.t

35 cmpdeco :

36 subo

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop
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E.2.7.7. Branch Prediction

Conditional branches execute faster if the branch direction is correctly predicted using the branch 
prediction bits on conditional instructions. This is particularly true when a comparison cannot be 
separated from the test in a conditional instruction. When the prediction is correct, branches 
generally execute in parallel with other execution. If prediction is not correct, the worst case branch 
time for cached execution is still two clocks. 

Although prediction bits are most likely set to gain maximum throughput, different strategies can 
be used for setting the prediction bits. A code sequence dominated by comparisons and conditional 
branches might see large differences between execution time of the fastest path and slowest path. 
Prediction bits can be set to provide the best average throughput to ensure the fastest worst case 
execution or to minimize deviation between slowest and fastest times.

E.2.7.8. Branch Target Alignment

Branch target code executes with more parallelism in the first clock if the branch target is long 
word or quad word aligned. Quad word alignment is preferable for prefetch efficiency. 

The IS sees four words in a clock when the requested IP is long word aligned and three words when 
the requested IP is not on a long word boundary. Aligned branch targets give the scheduler another 
word to examine on the first clock following a branch. However, there are only a few cases where 
this optimization pays off.

The IS takes advantage of seeing four words on the first clock after a branch when the fourth word 
is a branch or micro-flow and all three previous opcodes are executable in one clock. Example E-6 
shows a three word executable group (add followed by lda with 32-bit constant) followed by a 
micro-flow. The sequence executes one clock faster when the branch target is long word aligned. 
The reason for the extra clock is described in Section E.2.6, “Micro-flow Execution” on page E-29. 
Since optimization can save one clock under such circumstances, it could be worthwhile in s
frequently executed loops.
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E.2.7.9. Replacing Straight-Line Code and Calls

bal takes three or four clocks to execute and does not cause a frame spill to memory. Replacing 
calls with branch and link instructions is an obvious optimization. However, a not-so-obvious but 
equally beneficial optimization is to use branches and bal to reduce a critical procedure’s code siz

When porting optimized algorithms originally written for other processors, the software engin
often expands the code in a straight-line fashion due to branch speed penalties of the origina
and the lack of on-chip caching. On the i960 Hx processors, branches are virtually free in ca
programs and cached program execution is dramatically faster than non-cached execution. 
Therefore, branches and the branch-and-link instruction should be used to compress algorith
into the cache. For example, the previous low-pass filter routine could be modified to use 
coefficients from registers instead of literals. A short code piece could then sequence differen
coefficients through the registers and branch (using bal) to the filter loop. The entire routine would
fit in the instruction cache and could perform a chain of linear filters without a procedure call.

E.2.8 Utilizing On-chip Storage

The processor has the ability to consume instructions and execute quad word memory opera
parallel with arithmetic operations every clock. The instruction cache, data cache, register ca
and on-chip data RAM are valuable resources for sustaining such optimized execution.

Compiler experimentation is an important aid to maximize utilization of on-chip storage resou
Compiler optimization is not limited to instruction caching. In particular, execution profiling w
automate assignment of frequently used data to the data RAM. Availability of data RAM prov
more options for partitioning data among context-based storage (register cache), general sto
(data cache where available) and static caching (data RAM).

Example E-6. Align Branch Targets

-- initialize -- -- initialize --

.align 2 .align 2

mov g0, g0 #nop target:

target: add g0, g1

add g0, g1 lda 0xffffffff, g2

lda 0xffffffff, g2 scanbit g3, g4

scanbit g3, g4 addo g5, g6

addo g5, g6 - more -

- more -

Execution: Execution:

Clock REGop MEMop CTRLop Clock REGop MEMop CTRLop

1 b target 1 b target

2 : 2 :

3 addo lda 3 addo lda

µ 4 scanbit µ 4 scanbit

µ 5 : 5 addo

6 addo 6 more

7 more
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E.2.8.1. Instruction Cache

If an algorithm can be compressed to fit into the instruction cache, it generally executes faster than 
if it did not fit. This is true even if the compressed code contains more comparisons and branches 
than the original code contains.

If a loop fits in the cache but is not capable of executing two instructions per clock due to memory 
or resource dependencies, keep unrolling the loop and pipelining operations until the cache is full. 
To increase performance of loops with multiple iterations and memory operations, unroll the loops 
until all registers are used or the cache is full.

If the system is interrupt-intensive, consider locking interrupt service routines into the cache. On 
the i960 Hx processor, cache locking is extended to any frequently executed code segments. Some 
experimentation may be necessary to determine if cache locking affects performance of remaining 
non-locked code.

Finally, as mentioned in a previous section on branches, aligning branch targets can improve 
performance. While long word aligned branch targets improve the scheduler’s lookahead abi
the first clock of the branch, quad word aligned branch targets reduce the number of long wo
instruction fetches issued. Although the long word fetch is implemented to reduce cache mis
latency for many cases, the quad word instruction fetch is more efficient for system throughp

E.2.8.2. Data Cache 

The i960 Hx processor has an 8-Kbyte, four-way, set-associative data cache. The effect of d
caching on performance is usually not as great as the effect of instruction caching because t
processor often accesses data in a random, occasional pattern compared to the repetitive, lo
pattern commonly seen with instruction execution.

The data cache behaves like SRAM for cache hits, delivering data in a single clock. Data ca
misses require BCU interaction, as do all stores to external memory addresses. Data caching
enabled for particular memory regions. In most cases, programmers will use this function on
distinguish non-cacheable memory-mapped I/O space from ordinary data memory. Once the
cache is enabled, its operation is transparent as there are no further programming options.
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E.2.8.3. Register Cache

Register cache can be thought of as a data cache which selectively caches only that data related to 
procedure context. Section 7.1, “Call and Return Mechanism” on page 7-2 describes the i960 Hx 
processor’s register cache.

The register cache/data RAM partition is programmable. Therefore, the user can determine 
trade-off between procedural context caching and static caching of procedure variables in th
chip data RAM. Experiments can be run to measure the sensitivity of system performance to
register cache depth of a fixed program. Minimizing register cache depth maximizes on-chip
RAM for variable caching.

Some situations exist where flushreg can optimize register cache usage. When an application 
crosses the boundary between non-real-time processing and real-time processing, it might b
desirable to flush the register set. Flushing the register set at the beginning of a routine save
that would otherwise be spent on frame spills later in the routine. However, this approach ma
actually result in a greater number of spills occurring than would otherwise have occurred wi
the premature flush. 

This technique may be used to control interrupt latency within sections of background code. For 
example, it may be advantageous to execute a flush at the beginning of a routine which exec
many loads from very slow memory. This reduces interrupt latency within that code section s
there is no possibility of the interrupt’s frame spill being impeded by slow memory operations

E.2.8.4. Data RAM

On every clock, 128 bits of data can be loaded from or stored to the data RAM. This rate is 
sustained simultaneously with single-clock arithmetic operations executing from the indepen
REG-side register ports.

Allocated correctly, this resource dramatically increases performance of critical application 
algorithms. If data RAM space is scarce, locations can be dynamically allocated. If data RAM
space is plentiful, locations can be globally allocated to achieve minimum latency to critical 
variables.

Variables which are used heavily over short periods of time or are used heavily by one proce
should be dynamically allocated. Such variables could be coefficients for filters which proces
large images on command. Dynamically allocated data RAM space would be loaded from m
memory at the onset of intense processing and restored to main memory as the activity subs

Global allocation of DR space should be saved for storing variables that are heavily used by
variety of procedures over a long period of time or for storing variables needed by latency-cr
activities. For example, the programmer may wish to allocate space for coefficients of a 
continuously operating filter.
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E.2.9 Summary

Table E-19 summarizes code optimization tactics presented in the previous sections. Optimizing 
compilers for the i960 processor family are designed to exploit most of these techniques. Advanced 
compilers also incorporate profiling features to automate much of the experimentation process. 

Table E-19. Code Optimization Summary

Tactic Description

Advance “long” operations Separate comparisons, loads, stores and MDU operations from the 
instructions that use their results.

Unroll loops

Unroll time-consuming loops until: 

1) processor executes loop with two instructions per clock;

2) bus is saturated with quad operations; 

3) no registers are left;

4) loop does not fit in the cache.

Order for parallelism Alternate REG-side instructions with MEM-side instructions so they 
may be issued in parallel.

Migrate the operation To enable parallelism, move EU and MDU operations to the AGU or 
vice versa.

Use branch prediction Set prediction bits correctly in conditional instructions.

Align branch targets Align branch targets of critical loops on an even word or quad word 
boundary.

Compress code to fit
If loop does not fit in cache, use branches, branch-and-links or calls to 
compress code size so it fits. Use code size optimization instructions 
(e.g., cmpobe) where possible.

Use data RAM Use high-bandwidth data RAM space for performance-critical and/or 
latency-critical variables
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This appendix describes how to interface the processor to external memory systems. Table F-1 
shows the sample applications included in this chapter and the page number where each section 
begins.

All issues discussed in each example are independent of operating frequency.

F.1 Non-Pipelined Burst SRAM Interface

This example uses a simple SRAM design to demonstrate how the bus and control signals are used. 
The design also demonstrates the internal wait state generator. The SRAM interface provides the 
basic information needed to design most I/O and memory interfaces. The design supports burst and 
non-burst bus accesses. The SRAM interface is important for shared memory systems; variations 
can be used to communicate with external memory-mapped peripherals.

F.1.1 Background

SRAM devices are available in a wide variety of packages and densities. SRAM address pins are 
always dedicated as inputs. Data pins may be configured in two ways:

• Each pin can be dedicated as an input or an output

• A set of data pins may be used for both data in and data out

Control signals usually found on asynchronous SRAM include: Chip Enable (CE#), Output Enable 
(OE#) and Write Enable (WE#). The following example deals with SRAM that has CE#, OE# and 
WE# control signals, address inputs and data input/output pins.

Table F-1. Sample Memory Interface Systems

Memory Type Refer to

Non-Pipelined Burst SRAM Interface page F-1

Pipelined SRAM Read Interface page F-11

Interfacing to Dynamic RAM page F-16

Interfacing to Slow Peripherals Using the Internal Wait State Generator page F-32

Synchronous Flash Interface page F-38
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Memory is read when CE# and OE# are asserted and WE# is not asserted. Memory is written when 
CE# and WE# are asserted. The OE# input becomes don’t care when WE# is asserted. Howeve
is recommended that OE# not be asserted at the beginning or end of a write cycle; this can l
bus contention. 

F.1.2 Implementation

Figure F-1 illustrates a 32-bit burst access SRAM interface for a non-pipelined, RDY# and 
BTERM# disabled region. The design may be simplified if burst access modes are not requir
is easily modified for 8- or 16-bit buses. Note that this example requires wait states for writes

WAIT#, generated by the internal wait state generator, is used to generate write strobes at th
proper place in the write cycle. WAIT# is used in the address generation circuit to generate m
burst addresses. External address generation improves performance in burst accesses.

F.1.3 Block Diagram

The 32-bit burst SRAM interface consists of chip select logic, a state machine Programmabl
Logic Device (PLD) and write enable logic.
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F.1.3.1. Chip Select Logic

Chip select logic is a simple asynchronous decoder; it can be implemented with an external state 
machine or PLD. Chip Select (CS#) is based only on the address and is not qualified with any other 
signals. The state machine PLD qualifies CS# with ADS# to create the SRAM CE# signals. See 
Section F.2.2, “Waveforms” on page F-14 for a more in-depth discussion of chip select generatio

Figure F-1. 32-Bit, Asynchronous, Non-Pipelined Burst SRAM Interface
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F.1.3.2. State Machine PLD

The SRAM state machine PLD generates the CE# and OE# signals to the SRAM. This PLD also 
contains the logic for creating burst address signals (BA[3:2]); this logic improves burst access 
performance. The improvement occurs because the i960® Hx processor’s worst-case address vali
delay is typically longer than the PLD’s worst-case delay.

F.1.3.3. Write Enable Generation Logic

The write enable generation logic generates the WE# signal to the SRAM. WE# signals are 
conditioned on the i960 Hx processor byte enables (BE[3:0]#), the write/read signal (W/R#) a
the wait signal (WAIT#).

There is a write enable signal (WE[3:0]#) for each byte position corresponding to the byte en
signals (BE[3:0]#); this allows byte, short word and word-wide writes. Read accesses to this 
memory system always result in word reads. In the case of byte- or short word reads, the i96
processor read the data from the correct place on the data bus.
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F.1.4 Waveforms

Figure F-2 shows a non-pipelined SRAM read waveform; Figure F-3 shows a non-pipelined burst 
SRAM write waveform.

Figure F-2. Non-Pipelined SRAM Read Waveform
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F.1.4.1. Chip Select Generation

ADS# assertion during the CLKIN rising edge indicates the address is valid. Address setup time to 
this clock edge is CLKIN period (TPP), minus address output delay (TOV). CS# signal generation 
time (CS#_gen) must satisfy the input setup time of the State Machine PLD(TPLD_setup). 
Therefore:
TCS#_gen = TPP - TOV - TPLD_setup

Figure F-3. Non-Pipelined Burst SRAM Write Waveform
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F.1.4.2. Wait State Selection

The i960 Hx processor incorporates an internal wait state generator. Wait state selection is dictated 
by the memory system. The number of NRAD wait states required is a function of output enable 
access time, chip enable access time or address access time. NRAD must be selected so the wait 
states and data cycle accommodate the longest of these times. It is important to consider PLD 
output delay. 

The number of NRDD wait states required is a function of address access time. NRDD must be 
selected so that the wait states and data cycle accommodate the memory system’s address 
time. If the memory system is using the burst addresses provided by the i960 Hx processor, 
important to consider address output delay from the i960 Hx processor. If external address 
generation is used, PLD delay is important.

The number of NWAD and NWDD wait states required is a function of memory write cycle time. 
There must be at least 1 NWAD and 1 NWDD wait state for this example design to work properly. 
The number of NXDA wait states required is a function of the memory system’s output-to-float 
time. NXDA determines how soon read data from the memory must be off the data bus before
other device asserts data on the data bus. This could be a read from another memory system
write from the i960 Hx processor. 

F.1.4.3. Output Enable and Write Enable Logic

The output enable signal is simply (see Figure F-2):
OE# = W/R#

The PLD is used to buffer the W/R# signal; this may be necessary to reduce the load on the
processor’s W/R# signal. 

The write enable signals are:

The WAIT# signal is used to create the write strobe. When W/R# indicates a write and BEx#
WAIT# are asserted, the logic asserts WE#. The 80960HA/HD/HT Embedded 32-bit 
Microprocessor datasheet guarantees a relationship from WAIT# high to write data invalid. 

WE# = !(WAIT & W/R#);

or

WE0# = !(WE &  BE0);

WE1# = !(WE &  BE1);

WE2# = !(WE &  BE2);

WE3# = !(WE &  BE3);
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F.1.4.4. State Machine Descriptions

The state machine PLD incorporates two state machines: one controls SRAM chip enable (CE#); 
the other generates the A[3:2] address signals for multiple word burst accesses.

The chip enable state machine (Figure F-4) controls the CE# signal. CE# is normally not asserted, 
but when both ADS# and SRAM_CS# are asserted, CE# is asserted and remains asserted until 
BLAST# is asserted. ADS indicates the beginning of an access, BLAST# indicates that the access 
is complete. CE# is the output of the state register; therefore, the CE# output delay is the clock-to-
output time of the PLD. Minimizing CE# delay provides more memory access time.

The A[3:2] address generation state machine (Figure F-5) generates consecutive addresses for 
multiple word burst accesses. The address generation state machine is not necessary if the memory 
region is defined in the region configuration table as non-burst, or if the processor’s TOV for A[3:2] 
meets system timing requirements.

The burst address outputs (BA[3:2]) correspond to registers within the PLD. Address genera
time then corresponds to the clock-to-output time of the PLD. The BA[3:2] signals are forced
when BLAST# is asserted.

The pseudo-code descriptions that follow the figures are provided only to describe the state 
machine diagrams. They are not intended to be PLD equations. A trailing # indicates a signa
asserted low.

In the pseudo-code description, the assertion of ADS# and SRAM_CS# indicates the beginn
an access. The state machine jumps to the proper state based on A[3:2]. The assertion of C
indicates that an access has begun. The assertion of CE#, !WAIT and !BLAST indicates that
current transfer is complete and it is time to generate the next address. The assertion of BLA
indicates the access is complete.

Figure F-4. Chip Enable State Machine
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De-assert CE#
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Figure F-5. A[3:2] Address Generation State Machine
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Pseudo-code Key

# signal is asserted low == equality test

! logical NOT := clocked assignment

& logical AND = value assignment

| logical OR X Don’t Care

STATE_0: /* BA3:2 = 00 */

IF /* access 01 OR Next access */

(ADS && SRAM_CS && (A3:2 == 01))||(CE & !WAIT & !BLAST);

THEN

next state is STATE_1;

ELSE IF /* access 10 */

ADS && SRAM_CS && (A3:2 == 10);

THEN

next state is STATE_2;

ELSE IF /* access 11 */

ADS && SRAM_CS && (A3:2 == 11);

THEN

next state is STATE_3;

ELSE /* Idle or access 00 */

next state is STATE_0;

STATE_1: /* BA3:2 = 01 */

IF /* Next access */

CE & !WAIT & !BLAST;

THEN

next state is STATE_2;

ELSE IF /* Done */

BLAST;

THEN

next state is STATE_0;

ELSE /* Just Wait */

next state is STATE_1;

STATE_2: /* BA3:2 = 10 */

IF /* Next access */

CE & !WAIT & !BLAST;

THEN

next state is STATE_3;

ELSE IF /* Done */

BLAST;

THEN

next state is STATE_0;

ELSE /* Just Wait */

next state is STATE_2;

STATE_3: /* BA3:2 = 11 */

IF /* Done */

BLAST;

THEN

next state is STATE_0;

ELSE

next state is STATE_3;
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F.1.5 Trade-offs and Alternatives

The SRAM example just described demonstrates a burst SRAM interface. If a non-burst interface 
is desired, simply remove the address generation section of the state machine PLD. The design is 
also easily expanded to accommodate multiple banks of SRAM by providing multiple chip 
enables.

Using the i960 Hx processor’s internal wait state generator frees the external memory contro
from accounting for different memory speeds. Memory access parameters are entered into t
Physical Memory Configuration (PMCON) registers. See Section 14.2, “Programming the 
Physical Memory Configuration (PMCON) Registers” on page 14-7.

F.2 Pipelined SRAM Read Interface

The following example illustrates the implementation of a pipelined read SRAM system. A ze
wait state pipelined read memory system can have up to a 20 percent improvement in read d
bandwidth over a non-pipelined memory system using the same memory devices. The pipel
read memory system is similar in design to the burst memory system. 

A pipelined read memory system is the highest performance memory system that can be inte
to the i960 Hx processor. The address cycle of consecutive read accesses is overlapped wit
data cycle of the previous access. This results in the maximum bandwidth utilization of the b
(See Figure F-6.)

Figure F-6. Pipelined Read Address and Data Transactions
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Memory ADR
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F.2.1 Block Diagram

The same SRAM used in a non-pipelined read memory system can be used in a pipelined read 
memory system. Figure F-7 shows a 32-bit-wide burst read pipelined memory system. Burst mode 
is used to speed write accesses.

The design of a pipelined read SRAM interface is very similar to the design of a non-pipelined 
SRAM interface. The difference is that an address latch and a W/R# latch have been added.

Chip select logic is a simple asynchronous data selector. Chip select (CS#) is based only on the 
address and is not qualified with any other signals. See Section F.1, “Non-Pipelined Burst SRAM 
Interface” on page F-1 for more information on chip select generation.

F.2.1.1. Address Latch

During pipelined reads, the i960 Hx processor outputs the next address during the last data c
the current access. This requires either an address latch or memory devices that are design
work with the pipelined bus.

Figure F-7. Pipelined SRAM Interface Block Diagram
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F.2.1.2. State Machine PLD

The state machine PLD contains logic to control CE# and address signals A[3:2]. CE# is controlled 
by a simple state machine; A[3:2] automatically increment during burst accesses. For read 
accesses, the A[3:2] signals are pipelined and must be latched. Write accesses are not pipelined; 
therefore it is necessary to pass A[3:2] through without latching when W/R# is high. The A[3:2] 
generation is implemented as a state machine to achieve minimum address delay out of the PLD. 
ADR[3:2] (pipelined address 3:2) outputs are also the state bit of the PLD. This configuration 
ensures that the address delay is only the clock-to-output time for the PLD.

F.2.1.3. Write Enable Logic

Write enable logic uses the byte enable signals (BE[3:0]#), the WAIT# signal and a latched version 
of the W/R# signal (OE#). Therefore:

DEN# remains asserted as long as consecutive pipelined read accesses continue. DEN# and DT/R# 
are related to the data, not the address; therefore, DEN# and DT/R# are not pipelined and retain the 
same timing for pipelined and non-pipelined reads.

In pipelined read mode, a series of non-burst, zero-wait state accesses results in ADS# remaining 
asserted for consecutive clock cycles. Similarly, BLAST# remains asserted for several clock 
cycles.

W/R# behaves slightly differently for pipelined reads than for non-pipelined reads. W/R# is not 
valid for the last cycle of a pipelined read. This requires that W/R# be latched for pipelined reads 
similar to A[31:2]. The following signals are pipelined during pipelined read accesses: A[31:2], 
BE[3:0]#, SUP#, DMA# and D/C#. All of these pipelined signals are invalid during the last cycle 
of a pipelined read.

Address delay time for the pipelined read is the output valid time of the address latch (or the 
PA[3:2] generation PLD). Minimizing address delay maximizes access time.

WE# = !(OE# & WAIT#& BE);

or:

WE0# = !OE# |  WAIT# |  BE0#;

WE1# = !OE# |  WAIT# |  BE1#;

WE2# = !OE# |  WAIT# |  BE2#;

WE3# = !OE# |  WAIT# |  BE3#;
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F.2.2 Waveforms

F.2.2.1. State Machines

Chip enable (CE#) is controlled by a simple state machine. The state machine is normally in the 
idle state and CE# is not asserted. When ADS# and PSRAM_CS# are asserted, the CE# state 
machine goes to the active state. CE# remains active until BLAST# is asserted unless another 
SRAM access follows immediately.

Figure F-8. Pipelined Burst Read Waveform
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Figure F-9. Pipelined Read Chip Enable State Machine
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The PA[3:2] state machine latches the A[3:2] address bits on read and generates the low address bit 
for writes. During read, PA[3:2] is a latched version of A[3:2]. If a write access occurs, the state 
machine generates the proper PA[3:2] addresses.

In the READ_STATE, the state machine simply latches A[3:2] and outputs them as PA[3:2]. On a 
write, the state machine jumps to the appropriate state based on the value of A[3:2]. When in a 
write state, the state machine will advance to the next write state if WAIT# and BLAST# are not 
asserted. The state machine can advance from any write state to the READ_STATE.

Figure F-10. Pipelined Read PA[3:2] State Machine Diagram
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F.2.3 Trade-offs and Alternatives

The example described above demonstrates a burst pipelined read SRAM interface. Burst mode is 
used to improve write performance. If write performance is not critical (i.e., if the region is used 
only for code), the next address generation PLD can be removed. 

F.3 Interfacing to Dynamic RAM

This section provides an overview of DRAM and DRAM access modes and describes an i960 Hx 
processor-specific DRAM interface. A specific design example using the CAS#-before-RAS# 
refresh method is also included. This design illustrates the advantage of the i960 Hx process
burst bus and the fast column address access times available on many modern DRAMs.

The burst bus and memory region configuration tables simplify DRAM interface to the i960 H
processor. DRAM systems can be designed in many ways, there are memory access option
memory system configuration options and refresh mode options.

DRAM offers high data density and low cost per bit compared to SRAM. DRAM is available i
wide variety of packages, making it easy to pack a lot of memory into a small space. DRAM 
features described here are provided as general information. (See specific data sheets for d
information.)

The i960 Hx processor’s burst mode bus is well suited to the high-speed multiple column acc
modes found in DRAM. Fast page mode DRAM can easily be exploited to improve memory 
system performance.

All DRAMs have a multiplexed address bus, a write enable input (WE#) and two address str
row address strobe (RAS#) and column address strobe (CAS#). Some DRAMs also have an
enable input (OE#). DRAMs are accessed by placing a valid row address on the address inp
and asserting RAS#; then the column address is driven onto the DRAM address pins and CA
asserted. Write enable (WE#) input on the DRAM determines whether the access is a read o
Output enable input (OE#) — found on some DRAMs — controls the DRAM output buffers a
can be useful for multibanked and interleaved designs.
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F.3.1 Fast Page Mode DRAM

Fast page mode DRAM (see Figure F-11) allows any column within a selected row to be read or 
written at a high data rate. A read or write cycle starts by asserting RAS#. Strobing CAS# accesses 
the selected column data. During reads, the CAS# falling edge latches the address (internal to the 
DRAM) and enables the output. The processor’s four word burst bus can easily take advanta
the faster column access times provided by fast page mode DRAM

F.3.2 DRAM Refresh Modes

All DRAMs require periodic refreshes to retain data. DRAMs may be refreshed in one of two
ways: RAS#-only refresh or CAS#-before-RAS# refresh. RAS#-only refresh (Figure F-12) is done 
by asserting a row address on the address pins and asserting RAS#. CAS# is not asserted. A
RAS#-only refresh cycle refreshes all columns within the selected row. RAS#-only refresh wa
method of refreshing older DRAMs; however, most modern DRAMs provide the much easier
CAS#-before-RAS# refresh method. CAS#-before-RAS# refreshes (Figure F-13) do not require an 
address to be generated; DRAM generates the row address with an internal counter.

Figure F-11. Fast Page Mode DRAM Read
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DRAM may be refreshed in either a distributed or a burst manner. Burst refresh does not refer to 
the burst access bus. The term simply means that all memory rows are sequentially accessed when 
the refresh interval time expires. Distributed refresh implies that refresh cycles are distributed 
within the refresh interval required by the memory.

Distributed refresh cycles are spread out over the refresh interval, reducing possible access latency. 
Burst refreshing may lock the processor out of the DRAM for a longer period and so may be 
inappropriate for some applications. Burst refreshing, however, guarantees that no refresh activity 
occurs between refresh intervals. Some applications may take advantage of this to burst refresh the 
DRAM during a time it will not be accessed, making refresh invisible to the application.

Figure F-12. RAS#-only DRAM Refresh

Figure F-13. CAS#-before-RAS# DRAM Refresh
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F.3.3 Address Multiplexer Input Connections

Address multiplexer inputs can be ordered such that 256-Kbyte through 4-Mbyte DRAM can be 
supported. Interleaving the upper address signals provides compatibility with all these memory 
densities. Figure F-14 illustrates this arrangement. Availability of DRAM modules with standard 
pinouts provides an easy path for future memory expansion.

F.3.4 Series Damping Resistors

Series-damping resistors are recommended on all DRAM control and address inputs. These 
resistors prevent overshoot and undershoot on input lines. Damping is required because of the large 
capacitive load present when many DRAMs are connected together, combined with circuit board 
trace inductance. Damping resistor values are typically between 15 and 100 Ohms, depending on 
the load, the lower the load, the higher the required damping resistor value. If the damping resistor 
value is too high, the signal is overdamped, extending memory cycle time. If the damping resistor 
value is too low, overshoot or undershoot is not sufficiently damped. Place damping resistors near 
the driving source.

Figure F-14. Address Multiplexer Inputs
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F.3.5 System Loading

The i960 Hx processor can drive a large capacitive load. However, systems with many DRAM 
banks may require data buffers and, for interleaved designs, multiplexers to isolate the DRAM load 
from the i960 Hx processor or other system components with less drive capability (e.g., high speed 
SRAM).

RAS# and CAS# inputs to the DRAM should also be designed with consideration for capacitive 
load. When many DRAMs are connected to common RAS# and CAS# signals, the capacitive load 
can be considerable.

F.3.6 DRAM Address Generation

DRAM address generation logic speeds burst accesses for fast page mode DRAM. This is 
accomplished by reducing the time required to present the consecutive column addresses during a 
burst access. If the address generator is not present, the address valid delay time consists of the 
worst-case address valid delay time plus the worst-case propagation delay through the input 
address multiplexer.

DRAM address generation logic must control the DRAM address’s two least significant bits. 
During the initial DRAM access, address generation logic acts like a multiplexer. During colu
accesses within a burst, address generation logic generates consecutive addresses. Therefo
DRAM address generation logic is designed to function as a multiplexer and an address gen

If an address generator is used, address valid delay time is equal to address generation time
Address generation delay time consists of the clock-to-feedback and feedback-to-output dela
the selected device. 

Figure F-15 shows the state diagram for address generation logic (see also Example F-1). Signals 
into the DRAM burst address logic are: ADR2, ADR3, ADR11, ADR12, WAIT# and BLAST#
from the processor and COL_ADR# from the DRAM control logic. COL_ADR# indicates whet
the DRAM controller is requesting the row address (COL_ADR# not asserted) or column add
(COL_ADR# asserted). Signals output from DRAM burst address logic are the DRAM addre
two least significant bits, DRAM_ADR[3:2]. The pseudo-code following the figure is provided
only to describe the state machine diagram. It is not intended for direct use as PLD equation
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Figure F-15. DRAM Address Generation State Machine
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Example F-1. Address Generation Logic State Machine Pseudocode
STATE_0: /* Multiplexer Emulation */

DRAM_ADR3 = (COL_ADR && A3) || (!COL_ADR && A12);

DRAM_ADR2 = (COL_ADR && A2) || (!COL_ADR && A11);

IF /* address generation */

WAIT && !BLAST && COL_ADR

 && (ADR3 == 0) && (ADR2 == 0);

THEN 

next state is STATE_1;

ELSE IF

WAIT && BLAST && COL_ADR 

 && (ADR3 == 1) && (ADR2 == 0);

THEN 

next state is STATE_3;

ELSE

next state is STATE_0;

STATE_1: /* Generate address 01 */

DRAM_ADR3 = 0;

DRAM_ADR2 = 1;

IF 

BLAST;

THEN 

next state is STATE_0;

ELSE IF

!BLAST && !WAIT;

THEN

next state is STATE_2;

ELSE

next state is STATE_1

STATE_2: /* Generate address 10 */

DRAM_ADR3 = 1;

DRAM_ADR2 = 0;

IF

BLAST;

THEN

next state is STATE_0;

ELSE IF

!BLAST && !WAIT;

THEN

next state is STATE_3;

ELSE

next state is STATE_2

STATE_3: /* Generate address 11 */

DRAM_ADR3 = 1;

DRAM_ADR2 = 1;

IF 

BLAST;

THEN 

the next state is STATE_0;

ELSE

next state is STATE_3
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F.3.7 Memory Ready

The memory ready input to the i960 Hx processor (READY#) indicates the completion of a 
DRAM read or write cycle. READY# must be generated by the DRAM controller and must satisfy 
setup and hold times specified in the data sheet. If multiple memory systems are using READY#, 
ready signals from these memory systems must be logically ORed together.

F.3.8 Region Programming

Region programming is critical to DRAM operation. NRAD and NWAD wait states must satisfy 
RAS#, CAS# and address valid times for the DRAM. NRDD and NWDD times must satisfy the 
column address to data access times. The NXDA time must satisfy RAS# precharge time. 
Figure F-16 and Figure F-17 show typical system waveforms for this design. Note that RAS# is not 
asserted until the cycle after the address cycle; this delay is intended to accommodate the RAS# 
precharge time. In some DRAM designs, it may be possible to remove RAS# before an access is 
complete. If RAS# can be removed early in the access, RAS# precharge can occur during the 
access. 

Figure F-16. Fast Page DRAM System Read Waveform
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Figure F-17. Fast Page Mode DRAM System Write Waveform
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F.3.9 Design Example: Burst DRAM with Distributed CAS#-
Before-RAS# Refresh Using READY# Control

This example illustrates a 4 Mbyte DRAM system design that uses CAS#-before-RAS# refresh and 
READY# control. CAS#-before-RAS# refresh uses the internal refresh address generation 
capabilities of modern DRAMs. READY# must be generated by the DRAM controller to indicate 
that a data transfer is complete. The controller must also arbitrate between access and refresh 
requests, and control the address multiplexer and RAS# precharge time. The internal wait state 
generator is not used. The DRAM controller must be designed with information about processor 
and DRAM speed.

The memory system block diagram is shown in Figure F-18.

Figure F-18. Memory System Block Diagram
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F.3.10 DRAM Controller State Machine

The state machine shown in Figure F-19 controls both normal accesses and DRAM refreshes. 
CAS#-before-RAS# refresh mode does not require the bus or any processor intervention; therefore, 
DRAM refresh occurs autonomously. The DRAM controller state machine described here assumes 
80 ns fast page mode DRAM with a 33 MHz clock (CLKIN). This DRAM controller does not 
require the internal wait state generator; as a result, all wait state parameters can be programmed to 
zero (0).

Figure F-19. DRAM State Machine
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The refresh request timer generates the refresh request signal (REF_REQ#), indicating that it is 
time to refresh the DRAM. The controller gives preference to refresh requests over access requests. 
This ensures that the entire memory remains refreshed. The access request signal (ACC_REQ) 
shown on the state diagram is a latched signal. ACC_REQ is asserted when ADS# and 
DRAM_CS# are both asserted. ACC_REQ is deasserted when BLAST is asserted. It is necessary 
to latch the access request because the controller could be in a refresh or RAS# precharge state 
when the processor accesses the DRAM.

The pseudo-code description below is provided only to describe the state machine diagram. It is not 
intended to be used directly as PLD equations.

STATE_0: /* Idle */
RAS is not asserted;
CAS3:0 is not asserted;
COL_ADR is not asserted;
READY is not asserted;
WE = W/R;
IF

REF_REQ;
THEN

the next state is STATE_7;/* Refresh */
ELSE IF

(ADS && DRAM_CS) || ACC_REQ;
THEN

the next state is STATE_1;/* Access*/
ELSE

the next state is STATE_0;/* Idle */
STATE_1: /* Assert RAS# */

RAS is asserted;
CAS3:0 is not asserted;
COL_ADR is not asserted;
READY is not asserted;
WE = W/R;
the next state is STATE_2;

STATE_2: /* MUX the address */
RAS is asserted;
CAS3:0 is not asserted;
COL_ADR is asserted;
READY is not asserted;
WE = W/R;

STATE_3:         /* Assert CAS#, write is
ready, read is not */

RAS is asserted;
CAS3:0 = BE3:0;
COL_ADR is asserted;
READY =!W/R;

STATE_0: /* Idle */
WE = W/R;
IF

W/R && BLAST;/* Write access not done */
THEN

the next state is STATE_2;/* remove CAS# */
ELSE IF

W/R# && BLAST;/* Write Finished*/
THEN

the next state is STATE_5;/*RAS# Precharge*/
ELSE /* !W/R#, Read*/

the next state is STATE_4;/* Read */
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STATE_4: /* Read data ready */
RAS is asserted;
CAS3:0 = BE3:0;
COL_ADR is asserted;
READY is asserted;
WE = W/R;
IF

 BLAST /* read not Done */
THEN

the next state is STATE_3;/* Remove READY */
ELSE /* BLAST, Read Done */

the next state is STATE_5;/*RAS# Precharge*/
the next state is STATE_3;

STATE_5: /* RAS# Precharge */
RAS is not asserted;
CAS3:0 is not asserted;
COL_ADR = X;
READY is not asserted;
WE = X;

the next state is STATE_6;
STATE_6: /* More RAS# Precharge */

RAS is not asserted;
CAS3:0 is not asserted;
COL_ADR = X;
READY is not asserted;
WE = X;

the next state is STATE_0;/*Return to idle*/
STATE_7: /* Refresh, assert CAS# */

RAS is not asserted;
CAS3:0 is asserted;
COL_ADR = X;
READY is not asserted;
WE is not asserted;

the next state is STATE_8;
STATE_8: /* Refresh, assert RAS# */

RAS is asserted;
CAS3:0 is asserted;
COL_ADR = X;
READY is not asserted;
WE is not asserted;

the next state is STATE_8;STATE_9:/* Refresh Hold
RAS# */

RAS is asserted;
CAS3:0 is asserted;
COL_ADR = X;
READY is not asserted;
WE = X;

the next state is STATE_10;
STATE_10: /* Refresh Hold RAS# */

RAS is asserted;
CAS3:0 is asserted;
COL_ADR = X;
READY is not asserted;
WE is not asserted;

the next state is STATE_5; /*RAS# Precharge*/
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F.4 Interleaved Memory Systems

Interleaving memory can provide a significant improvement in memory system performance. 
Interleaved memory systems overlap accesses to consecutive addresses; this results in higher 
performance with slower memory. Two-way memory interleaving is accomplished by dividing the 
memory into banks: one bank for even word addresses, one for odd word addresses. The least 
significant address bit (A2) is used to select a bank. The two banks are read in parallel and the data 
is put onto the data bus by a multiplexer. This can allow the wait states of the second access to be 
overlapped with the data transfer of the first access. Figure F-20 shows the access overlap for a 
burst access.

Figure F-21 is a simple schematic of a two-way, interleaved, pipelined memory system. The design 
is similar to the design of a non-interleaved pipelined memory design with the following 
exceptions: 

• An output data multiplexer is used to prevent data contention

• The write data buffers isolate the memory data buses for writes

• The low address bit to the memory devices is A3

The A2 address determines which bank (even or odd word) is selected. Figure F-22 shows the read 
waveform.

Figure F-22 illustrates a memory system that interleaves read accesses. Write interleaving requires 
latching the written data and controlling memory access with the READY# signal. Write 
interleaving provides less performance improvement than read interleaving. Write data must come 
from the processor; this means a write interleaved system must queue data. The i960 Hx processor 
bus controller queues all access; therefore, write interleaving does not significantly benefit most 
applications.

Figure F-20. Two-Way Interleaved Read Access Overlap
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Memory interleaving can be applied to SRAM, DRAM and even EPROM systems. Interleaved 
SRAM and EPROM systems overlap access times for consecutive accesses to improve memory 
system performance. The i960 Hx processor’s pipelined read mode can be used on SRAM a
EPROM systems to further increase memory system performance. However, pipelined read
is not appropriate for DRAM systems that require NXDA states or READY# control. Interleaved 
DRAM systems can overlap the memory access time and RAS# precharge time of consecut
accesses. 

Figure F-21. Two-Way Interleaved Memory System
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Figure F-22. Two-Way Interleaved Read Waveforms
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F.5 Interfacing to Slow Peripherals Using the Internal 
Wait State Generator

This section illustrates how easy it is to interface slow peripherals to the i960 Hx processor. The 
example shows the interface to a timer/counter and a UART. The integrated internal wait state 
generator, programmable data bus width and data transceiver control signals simplify the logic 
required to implement the interface.

A system may require several slower-speed peripherals; other peripherals may use the interface 
described here.

F.5.1 Implementation 

Both the timer/counter and UART have address, read, write and chip enable inputs and an 8-bit 
bidirectional data bus. The slow peripherals example considers only the memory-mapped interface 
to chip control registers. The timer/counter and UART are memory-mapped into a region 
programmed for non-burst, non-pipelined reads and an 8-bit data bus.

The RD# high to data float time dictates the number of NXDA wait states required. Recovery time 
between reads or writes requires special treatment. The following example assumes a 33 MHz bus. 
The issues are the same at other operating frequencies.

F.5.2 Schematic

The interface consists of chip select logic, a registered PLD with at least two combinatorial outputs 
and a data transceiver. 

Chip select logic is the same as in previous examples. A simple demultiplexer is based only on the 
address. The PLD that controls access qualifies this signal with the address strobe (ADS#).

The state machine PLD generates chip enable, read and write signals for the UART and timer/
counter. It also generates the data enable control for the data transceiver. The A3 address signal 
determines which peripheral is enabled.

The data transceiver is enabled by the PLD. The transceiver is activated when both the CS# and 
DEN# signals are asserted. The equation is:
DATA_8_EN#= CS# | DEN#
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Transceiver direction control is connected directly to the DT/R# signal of the i960 Hx processor. 
Data transceiver usage is optional; it is used here to reduce capacitive loading on the data bus. The 
i960 Hx processor can drive substantial capacitive loads; however, high-speed SRAM may have 
limited drive capabilities. If high-speed SRAM is on the data bus, it may be necessary to buffer the 
slower peripherals.

Figure F-23. 8-bit Interface Schematic
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F.5.3 Waveforms

The timer/counter and UART have long address setup times to read or write. They also have long 
read and write recovery times. This design uses a PLD to implement a state machine that delays the 
read or write signal. Delaying the read or write signal satisfies command recovery times. Using the 
internal wait state generator to determine the length of the overall read or write cycle adds 
flexibility and simplifies the state machine.

Figure F-24. Read Waveforms
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Data lines are not driven during NXDA wait states. This requires gating the W/R# signal with the 
WAIT# signal, so that W/R# goes high while the data is still asserted. There is a relative timing for 
output data hold after WAIT# goes high. The data hold requirement of the peripheral and the delay 
time to gate the write signal with WAIT# determines if this is an appropriate solution.

The state machine simply delays the read or write signal so that back-to-back commands to the 
peripheral satisfy the peripheral’s command recovery time. When the write state is entered, t
W/R# output of the PLD is a gated version of the WAIT# signal. This guarantees that the 
peripheral’s write data hold time is satisfied.

Figure F-25. Write Waveforms
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This pseudo-code example is provided only to describe the state machine diagram shown in 
Figure F-26. It is not intended for direct use as PLD equations.   

Figure F-26. State Machine Diagram
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STATE_0:/*idle */
CE_UART is not asserted;
CE_TC is not asserted;
RD is not asserted;
W/R is not asserted;
IF /* selected */

ADS & CS;
THEN

next state is STATE_1;
ELSE

next state is STATE_0;
STATE_1: /* Enable Selected Chip, Hold Off

   Write or Read */
CE_UART = A3;
CE_TC = !A3;
RD is not asserted;
W/R is not asserted;
the next state is state_2

STATE_2: /* Enable Selected Chip, Hold Off
   Write or Read */

CE_UART = A3;
CE_TC = !A3;
RD is not asserted;
W/R is not asserted;
the next state is state_3

STATE_3: /* Enable Selected Chip, Hold Off
   Write or Read */

CE_UART = A3;
CE_TC = !A3;
RD is not asserted;
W/R is not asserted;

IF
!READ /* read */

THEN
next state is STATE_4;

ELSE /* write */
next state is STATE_5;

STATE_4: /* Read asserted to
   selected peripheral */

CE_UART = A3;
CE_TC = !A3;
RD is asserted;
W/R is not asserted;
IF

BLAST /* Done */
THEN

next state is STATE_0;
ELSE /* write */

next state is STATE_4;
STATE_5: /* Write asserted to selected peripheral */

CE_UART = A3;
CE_TC = !A3;
RD is not asserted;
W/R = WAIT#
IF

BLAST /* Done */
THEN

next state is STATE_0;
ELSE /* write */

next state is STATE_5;
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F.6 Synchronous Flash Interface

By using 28F016XS synchronous flash memory, one of Intel’s embedded flash RAM compon
the user can easily construct a high performance memory subsystem for the i960 Hx process
design shown in Figure F-27 provides a pipelined 2-0-0-0 wait-state memory subsystem ideal f
code storage and execution. In doing so, the 28F016XS replaces redundant volatile executio
RAM and nonvolatile storage memories. The interface logic, managing the CPU-to-memory 
communication, supports burst transfers and address pipelining and fits easily within an 
inexpensive 22V10-15. 

Upon power-up or reset, the i960 Hx processor, interface logic and 28F016XSs default to an
configuration. The processor’s memory region configuration register (PMCON0) setting disa
bursting and address pipelining and sets the wait-states to 5. The processor remains in this 
until system software optimizes 28F016XSs configuration register (SFI Configuration = 2) fo
MHz operation and sets the interface logic’s internal configuration bit. Then, the i960 Hx 
processor’s PMCON0 setting can change to enable bursting, address pipelining and burst wa
control equal to 3-0-0-0 (enabling 2-0-0-0 pipelined reads). 

Figure F-27. Flash Memory System Block Diagram
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In the initial configuration, the interface logic monitors ADS# and W/R# to identify the start and 
type of a bus transaction. Upon detecting ADS# active, the interface drives ADV# (Address Valid) 
active and loads a two-bit counter within the interface logic with the processor’s lower addres
lines (A[3:2]). The counter then drives the flash memory’s lower address lines, A[2:1]. 

Interface logic holds ADV# active for one CLK cycle, thereby supplying the flash with only on
read cycle. After driving ADV#, the interfacing state machine waits for the processor to asse
BLAST#, then transitions to an inactive state where it waits for the start of a new bus transac

The optimized interface configuration drives ADV# active for four consecutive CLK cycles or
until BLAST# is sampled active (see Figure F-28). While ADV# is active, the counter increments
through i960 Hx processor’s burst order in anticipation of a four double-word burst transactio
keeping the flash’s internal pipe full. As the access transitions into its data phase, the state m
examines ADS# to identify the start of a pipelined read access. If a pipelined access is detect
interface logic immediately drives ADV# active and loads the two-bit counter, kicking off a ne
transaction. If ADS# is not sampled active during the last data phase, the interface logic tran
to an inactive state that is similar to the initial configuration.

During pipelined reads, the i960 Hx processor outputs the next burst cycle address in the las
phase of the present cycle. Therefore, the flash memory’s CE# signal must be latched to pre
its value as the address bus changes. To accomplish this task, a simple one-bit state machin
the interface logic latches the status of CE#. When the bus is idle, the state machine holds C
active in anticipation of a flash memory access. CE# remains active until a bus transaction 
targeting some memory or I/O location other than synchronous flash memory is detected.

Figure F-28. Four Double-Word Burst Followed by a Pipelined Two Double-Word Burst Read

CLKIN

ADS#

A[31:2]

W/R#

ADV#

CE#

OE#

CTR[1:0]

BLAST#

D[31:0]

Valid Valid

J+ J+1 J+2 J+3 K K+1 K+2 K+3

DK+1DKDJ+3DJ+2DJ+1
i960® Hx Microprocessor Developer’s Manual F-39





es 

yte, 

tic 
n this 
o-
t to 

 
 the 
y 

t 
e at 
ress 
t 

nch 
 the 

e (0) 

res. 

r the 
Glossary

Address Space An array of bytes used to store program code, data, stacks and system data structures 
required to execute a program. Address space is linear – also called flat – and byte 
addressable, with addresses running contiguously from 0 to 232 - 1. It can be mapped to 
read-write memory, read-only memory and memory-mapped I/O. i960 architecture do
not define a dedicated, addressable I/O space.

Address A 32-bit value in the range 0 to FFFF FFFFH used to reference in memory a single b
half-word (2 bytes), word (4 bytes), double-word (8 bytes), triple-word (12 bytes) or 
quad-word (16 bytes). Choice depends on the instruction used.

Arithmetic Controls 
(AC) Register

A 32-bit register that contains flags and masks used in controlling the various arithme
and comparison operations that the processor performs. Flags and masks contained i
register include the condition code flags, integer-overflow flag and mask bit and the n
imprecise-faults (NIF) bit. All unused bits in this register are reserved and must be se
0.

Asynchronous 
Faults

Faults that occur with no direct relationship to a particular instruction in the instruction
stream. When an asynchronous fault occurs, the address of the faulting instruction in
fault record and the saved IP are undefined. i960 core architecture does not define an
fault types that are asynchronous.

Big Endian The bus controller reads or writes a data word’s least-significant byte to the bus’ eigh
most-significant data lines (D31:24). Big endian systems store the least-significant byt
the highest byte address in memory. So, if a big endian ordered word is stored at add
600, the least-significant byte is stored at address 603 and the most-significant byte a
address 600. Compare with little endian.

Condition Code 
Flags

AC register bits 0, 1 and 2. The condition code flags indicate the results of certain 
instructions – usually compare instructions. Other instructions, such as conditional bra
instructions, examine these flags and perform functions according to their state. Once
processor sets the condition code flags, they remain unchanged until the processor 
executes another instruction that uses these flags to store results.

Execution Mode 
Flag

PC register bit 1. This flag determines whether the processor is operating in user mod
or supervisor mode (1).

Fault Call An implicit call to a fault handling procedure. The processor performs fault calls 
automatically without any intervention from software. It gets pointers to fault handling 
procedures from the fault table.

Fault Table An architecture-defined data structure that contains pointers to fault handling procedu
Each fault table entry is associated with a particular fault type. When the processor 
generates a fault, it uses the fault table to select the proper fault handling procedure fo
type of fault condition detected.
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Fault An event that the processor generates to indicate that, while executing the program, a 
condition arose that could cause the processor to go down a wrong and possibly disastrous 
path. One example of a fault condition is a divisor operand of zero in a divide operation; 
another example is an instruction with an invalid opcode.

Frame Pointer (FP) The address of the first byte in the current (topmost) stack frame of the procedure stack. 
The FP is contained in global register g15.

Frame See Stack Frame.

Global Registers A set of 16 general-purpose registers (g0 through g15) whose contents are preserved 
across procedure boundaries. Global registers are used for general storage of data and 
addresses and for passing parameters between procedures.

Guarded Memory 
Unit (GMU)

A section of the processor that monitors all of the processor’s memory transactions a
can prevent accesses to predefined address regions or warn the user program if acce
occur.

Hardware Reset The assertion of the RESET# pin; equivalent to powerup.

IBR See Initialization Boot Record. 

IMI See Initial Memory Image. 

Imprecise Faults Faults that are allowed to be generated out-of-order from where they occur in the 
instruction stream. When an imprecise fault is generated, the processor indicates the
address of the faulting instruction, but it does not guarantee that software can to reco
from the fault and resume execution of the program with no break in the program's 
control flow. The NIF bit in the arithmetic controls register determines whether all faul
must be precise (1) or some faults are allowed to be imprecise (0).

Initialization Boot 
Record (IBR)

One of three IMI components, IBR is the primary data structure required to initialize th
processor. IBR is 12-word structure which must be located at address FFFF FF00H.

Initial Memory 
Image (IMI)

Comprises the minimum set of data structures the processor needs to initialize its sys
Performs three functions for the processor: 1) provides initial configuration informatio
for the core and integrated peripherals; 2) provides pointers to system data structures
the first instruction to be executed after processor initialization; 3) provides checksum
words that the processor uses in self-test at startup. See also IBR, PRCB and System
Structures.

Instruction Cache A memory array used for temporary storage of instructions fetched from main memo
Its purpose is to streamline instruction execution by reducing the number of instructio
fetches required to execute a program.

Instruction Pointer 
(IP)

A 32-bit register that contains the address (in the address space) of the instruction 
currently being executed. Since instructions are required to be aligned on word 
boundaries in memory, the IP's two least-significant bits are always zero.

Integer Overflow 
Flag

AC register bit 8. When integer overflow faults are masked, the processor sets the inte
overflow flag whenever integer overflow occurs to indicate that the fault condition has
occurred even though the fault has been masked. If the fault is not masked, the fault i
allowed to occur and the flag is not set.
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Integer Overflow 
Mask Bit

AC register bit 12. This bit masks the integer overflow fault.

Interrupt Call An implicit call to a interrupt handling procedure. The processor performs interrupt calls 
automatically without any intervention from software. It gets vectors (pointers) to 
interrupt handling procedures from the interrupt table.

Interrupt Stack Stack the processor uses when it executes interrupt handling procedures.

Interrupt Table A data structure that contains vectors to interrupt handling procedures and fields for 
storing pending interrupts. When the processor receives an interrupt, it uses the vector 
number that accompanies the interrupt to locate an interrupt vector in the interrupt table. 
The interrupt table’s pending interrupt fields contain bits that indicate priorities and vector 
numbers of interrupts waiting to be serviced.

Interrupt Vector A pointer to an interrupt handling procedure. In the i960 architecture, interrupts vectors 
are stored in the interrupt table.

Interrupt An event that causes program execution to be suspended temporarily to allow the 
processor to handle a more urgent chore.

Leaf Procedure Leaf procedures call no other procedures. They are called “leaf procedures” because 
reside at the “leaves” of the call tree.

Literals A set of 32 ordinal values ranging from 0 to 31 (5 bits) that can be used as operands
certain instructions.

Little Endian The bus controller reads or writes a data word’s least-significant byte to the bus’ eigh
least-significant data lines (D7:0). Little endian systems store a word’s least-significan
byte at the lowest byte address in memory. For example, if a little endian ordered wor
stored at address 600, the least-significant byte is stored at address 600 and the mos
significant byte at address 603. Compare with big endian.

Local Call A procedure call that does not require a switch in the current execution mode or a sw
to another stack. Local calls can be made explicitly through the call, callx and calls 
instructions and implicitly through the fault call mechanism.

Local Registers A set of 16 general-purpose data registers (r0 through r15) whose contents are asso
with the procedure currently being executed. Local registers hold the local variables fo
procedure. Each time a procedure is called, the processor automatically allocates a n
set of local registers for that procedure and saves the local registers for the calling 
procedure.

Memory Array to which address space is mapped. Memory can be read-write, read-only or a 
combination of the two. A memory address is generally synonymous with an address
the address space.

Memory-Mapped 
Register (MMR)

A 32-bit register located in memory used to control specific sections of the processor.
MMRs reside inside the processor. These registers can be manipulated like any other
register, but their contents affect the processor’s behavior directly.
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“Natural” Fill Policy The processor fetches only the amount of data that is requested by a load (i.e., a wor
long word, etc.) on a data cache miss. Exceptions are byte and short word accesses, w
are always promoted to words.

No Imprecise Faults 
(NIF) Bit

AC register bit 15. This flag determines whether or not imprecise faults are allowed to
occur. If set, all faults are required to be precise; if clear, certain faults can be impreci

Non Maskable 
Interrupt (NMI)

Provides an interrupt that cannot be masked and has a higher priority than priority-31
interrupts and priority-31 process priority. The core services NMI requests immediate

Parallel Faults A condition which occurs when multiple execution units, executing instructions in 
parallel, report multiple faults simultaneously. Setting the NIF bit prohibits execution 
conditions which could cause parallel faults.

Pending Interrupt An interrupt that the processor saves to be serviced at a later time. When the proce
receives an interrupt, it compares the interrupt's priority with the priority of the current
processing task. If the priority of the interrupt is equal to or less than that of the curren
task, the processor saves the interrupt's priority and vector number in the pending 
interrupt fields of the interrupt table, then continues work on the current processing ta

PFP See Previous Frame Pointer.

Pointer An address in the address space (or memory). The term pointer generally refers to th
byte of a procedure or data structure or a specific byte location in a stack.

PRCB See Process Control Block.

Precise Faults Faults generated in the order in which they occur in the instruction stream and with 
sufficient fault information to allow software to recover from the faults without altering
program's control flow. The AC register NIF bit and the syncf instruction allow software 
to force all faults to be precise.

Previous Frame 
Pointer (PFP)

The address of the previous stack frame's first byte. It is contained in bits 4 through 3
local register r0. 

Priority Field PC register bits 16 through 20. This field determines processor priority (from 0 to 31)
When the processor is in the executing state, it sets its priority according to this value
also uses this field to determine whether to service an interrupt immediately or to save
interrupt for later service.

Priority A value from 0 to 31 that indicates the priority of a program or interrupt; highest priori
is 31. The processor stores the priority of the task (program or interrupt) that it is curre
working on in the priority field of the PC register. See also NMI.

Process Control 
Block (PRCB)

One of three (IMI) components, PRCB contains base addresses for system data struc
and initial configuration information for the core and integrated peripherals. 

Process Controls 
(PC) Register

A 32-bit register that contains miscellaneous pieces of information used to control 
processor activity and show current processor state. Flags and fields in this register 
include the trace enable bit, execution mode flag, trace fault pending flag, state flag, 
priority field and internal state field. All unused bits in this register are reserved and m
be set to 0.
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Internal flags that indicate a particular register or group of registers is being used in an 
operation. This feature enables the processor to execute some instructions in parallel and 
out-of-order. When the processor begins executing an instruction, it sets the scoreboard 
flag for the destination register in use by that instruction. If the instructions that follow do 
not use scoreboarded registers, the processor can execute one or more of those 
instructions concurrently with the first instruction.

Return Instruction 
Pointer (RIP)

The address of the instruction following a call or branch-and-link instruction that the 
processor is to execute after returning from the called procedure. The RIP is contained in 
local register r2. When the processor executes a procedure call, it sets the RIP to the 
address of the instruction immediately following the procedure call instruction.

Return Type Field Bits 0, 1 and 2 of local register r0. When a procedure call is made using the integrated call 
and return mechanism, this field indicates the call type: local, supervisor, interrupt or 
fault. The processor uses this information to select the proper return mechanism when 
returning from the called procedure.

RIP See Return Instruction Pointer.

Software Reset Re-running of the Reset microcode without physically asserting the RESET# pin or 
removing power from the CPU.

SP See Stack Pointer.

Special Function 
Registers (SFRs)

A 32-bit register (sf0-sf4) used to control specific sections of the processor. These 
registers can be manipulated like any other register, but their contents affect the 
processor’s behavior directly.

Stack Frame A block of bytes on a stack used to store local variables for a specific procedure. An
term for a stack frame is an activation record. Each procedure that the processor calls ha
its own stack frame associated with it. A stack frame is always aligned on a 64-byte 
boundary. The first 64 bytes in a stack frame are reserved for storage of the local regi
associated with the procedure. The frame pointer (FP) and stack pointer (SP) for a 
particular frame indicate location and boundaries of a stack frame within a stack.

Stack Pointer (SP) The address of the last byte in the current (topmost) frame of the procedure stack. T
is contained in local register r1.

Stack A contiguous array of bytes in the address space that grows from low addresses to h
addresses. It consists of contiguous frames, one frame for each active procedure. i96
architecture defines three stacks: local, supervisor and interrupt.

State Flag PC register bit 10. This flag indicates to software that the processor is currently exec
a program (0) or servicing an interrupt (1).

State The type of task that the processor is currently working on: a program or an interrupt
handling procedure. The processor sets the PC register state flag to indicate its curre
state.

Status and Control 
Registers

A set of four 32-bit registers that contain status and control information used in 
controlling program flow. These registers include the instruction pointer (IP), AC regist
PC register and TC register.
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Supervisor Call A system call (made with the calls instruction) where the entry type of the called 
procedure is 102. If the processor is in user mode when a supervisor call is made, it 
switches to the supervisor stack and to supervisor mode.

Supervisor Mode One of two execution modes – user and supervisor – that the processor can use. The
processor uses the supervisor stack when in supervisor mode. Also, while in supervis
mode, software is allowed to execute supervisor mode instructions such as sysctl and 
modpc.

Supervisor Stack 
Pointer

The address of the first byte of the supervisor stack. The supervisor stack pointer is 
contained in bytes 12 through 15 of the system procedure table and the trace table.

Supervisor Stack The procedure stack that the processor uses when in supervisor mode.

System Call An explicit procedure call made with the calls instruction. The two types of system calls 
are a system-local call and system-supervisor call. On a system call, the processor g
pointer to the system procedure through the system procedure table.

System Data 
Structures

One of three IMI components. The following system data structures contain values th
processor requires for initialization: PRCB, IBR, system procedure table, control table
interrupt table.

System Procedure 
Table

An architecturally-defined data structure that contains pointers to system procedures 
(optionally) to fault handling procedures. It also contains the supervisor stack pointer a
the trace control flag.

Trace Table An architecturally-defined data structure that contains pointers to trace-fault-handling
procedures. The trace table has the same structure as the system procedure table.

Trace Control Bit Bit 0 of byte 12 of the system procedure table. This bit specifies the new value of the 
enable bit when a supervisor call causes a switch from user mode to supervisor mode
Setting this bit to 1 enables tracing; setting it to 0 disables tracing.

Trace Controls (TC) 
Register

A 32-bit register that controls processor tracing facilities. This register contains one ev
bit and one mode bit for each trace fault subtype (i.e., instruction, branch, call, return,
prereturn, supervisor and breakpoint). The mode bits enable the various tracing mode
the event flags indicate that a particular type of trace event has been detected. All the
unused bits in this register are reserved and must be set to 0.

Trace Enable Bit PC register bit 0. This bit determines whether trace faults are to be generated (1) or 
generated (0).

Trace Fault Pending 
Flag 

PC register bit 10. This flag indicates that a trace event has been detected (1) but not
generated. Whenever the processor detects a trace fault at the same time that it dete
non-trace fault, it sets the trace fault pending flag then calls the fault handling procedu
for the non-trace fault. On return from the fault procedure for the non-trace fault, the 
processor checks the trace fault pending flag. If set, it generates the trace fault and ha
it.

Tracing The ability of the processor to detect execution of certain instruction types, such as 
branch, call and return. When tracing is enabled, the processor generates a fault when
it detects a trace event. A trace fault handler can then be designed to call a debug mo
to provide information on the trace event and its location in the instruction stream.
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User Mode One of two execution modes – user and supervisor – that the processor can be in. W
the processor is in user mode, it uses the local stack and is not allowed to use the modpc 
instruction or any other implementation-defined instruction that is designed to be used
only in supervisor mode.

Vector Number The number of an entry in the interrupt table where an interrupt vector is stored. The
vector number also indicates the priority of the interrupt.

Vector See Interrupt Vector.
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displacement addressing mode 2-7
memory addressing mode 2-7
offset addressing mode 2-7

AC 3-21
AC register, see Arithmetic Controls (AC) register
access faults 3-7
access types

restrictions 3-7
ADD 6-7
add

conditional instructions 6-7
integer instruction 6-11
ordinal instruction 6-11
ordinal with carry instruction 6-10

addc 6-9
addi 6-11
addie 6-7
addig 6-7
addige 6-7
addil 6-7
addile 6-7
addine 6-7
addino 6-7
addio 6-7
addo 6-11
addoe 6-7
addog 6-7
addoge 6-7
addol 6-7
addole 6-7
addone 6-7
addono 6-8
addoo 6-7
Address Generation Unit (AGU) E-6, E-21
address space restrictions

data structure alignment A-3
instruction cache A-2
internal data RAM A-2
reserved memory A-2
stack frame alignment A-3

addressing mode
examples 2-8
register indirect 2-7

addressing registers and literals 3-5
alignment, registers and literals 3-5
alterbit 6-12
and 6-13
andnot 6-13
argument list 7-13
Arithmetic Controls (AC) Register 3-21
Arithmetic Controls (AC) register 3-21

condition code flags 3-22
initial image 13-20
initialization 3-22
integer overflow flag 3-23
integer overflow mask bit 3-23
no imprecise faults bit 3-23

arithmetic instructions 5-7
add, subtract, multiply or divide 5-8
extended-precision instructions 5-10
remainder and modulo instructions 5-8
shift and rotate instructions 5-9

arithmetic operations and data types 5-7
atadd 3-16, 4-10, 6-14
atmod 3-8, 3-16, 4-10, 6-15
atomic access 3-16
atomic add instruction 6-14
atomic instructions 5-19

(LOCK# signal) 15-31
atomic modify instruction 6-15

B
b 6-16
bal 6-17
balx 6-17
bbc 6-19
bbs 6-19
BCON 14-10
BCON register, see Bus Control (BCON) register
BCU, see Bus Control Unit (BCU)
be 6-21
bg 6-21
bge 3-23, 6-21
big endian byte order 2-4, 15-29
bit definition 1-9
bit field instructions 5-11
bit instructions 5-11
bit ordering 2-4
bit values

naming conventions 1-8
bits and bit fields 2-3
bl 6-21
ble 6-21
bne 6-21
bno 6-21
bo 6-21
BOFF#, see bus backoff (BOFF#) signal
boundary conditions

internal memory-mapped locations 14-10, 14-16
LMT boundaries 14-16
logical data template ranges 14-16

boundary-scan register 16-8
boundary-scan (JTAG) 16-1

architecture 16-2
test logic 16-3

BPCON 9-7
branch

and link extended instruction 6-17
and link instruction 6-17
check bit and branch if clear set instruction 6-19
check bit and branch if set instruction 6-19
conditional instructions 6-21
extended instruction 6-16
instruction 6-16
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branch instructions, overview 5-14
compare and branch instructions 5-16
conditional branch instructions 5-15
unconditional branch instructions 5-15

branch prediction 5-14
branch-and-link 7-1

returning from 7-21
branch-and-link instruction 7-1
branch-if-greater-or-equal instruction 3-23
breakpoint

registers A-7
resource request message 9-6

Breakpoint Control Register (BPCON) 9-7
Breakpoint Control (BPCON) register 9-7, D-4

programming 9-8
BREQ, see Bus Request (BREQ) signal
BSTALL, see Bus Stall (BSTALL) signal
bswap 6-23
Built-In Self Test (BIST) 13-2
burst access 14-2
bus access 15-2
bus backoff (BOFF#) signal 15-34
bus confidence self test 13-8
Bus Configuration (BCON) register

RAM protection bit 3-19
Bus Control Register (BCON) 14-10
Bus Control Unit (BCU) 14-1, E-22

boundary conditions 14-10
loads E-22
memory attributes 14-1
physical memory attributes 14-7
PMCON initialization 14-9
queue entries E-23
stores E-22
wait state generator 14-2

Bus Control (BCON) register 14-9
BCON.irp bit 4-2
BCON.sirp bit 4-1

Bus Request (BREQ) signal 15-34
bus requests 15-2
bus snooping 4-6, 4-10
Bus Stall (BSTALL) signal 15-34
bus width 15-22
bx 6-16
byte instructions 5-12
byte order, little or big endian 2-4, 15-29
byte swap instruction 6-23

C
cache

data 3-20
cache coherency and non-cacheable accesses 4-10
described 4-6
enabling and disabling 4-7
fill policy 4-8
invalidating 4-11
partial-hit multi-word data accesses 4-8
visibility 4-11
write policy 4-9

instruction 3-19
enabling and disabling 4-5
invalidation 3-19
loading and locking instruction 4-5
visibility 4-5

load-and-lock mechanism 4-5
local register 3-18, 4-3
stack frame 4-3

Cache Control Register (CCON) 4-7
Cache Control (CCON) register 4-7

CCON.dcgd bit 4-7
CCON.dci bit 4-7

cacheable writes (stores) 4-9
caching of interrupt-handling procedure 11-33
caching of local register sets

frame fills 7-7
frame spills 7-7
mapping to the procedure stack 7-11
updating the register cache 7-11

call
extended instruction 6-27
instruction 6-24
system instruction 6-25

call 6-24, 7-2, 7-6
call and return instructions 5-17
call and return mechanism 7-1, 7-2

explicit calls 7-1
implicit calls 7-1
local register cache 7-3
local registers 7-2
procedure stack 7-3
register and stack management 7-4

frame pointer 7-4
previous frame pointer 7-5
return type field 7-5
stack pointer 7-4

stack frame 7-2
call and return operations 7-6

call operation 7-6
return operation 7-7

calls 3-27, 6-25, 7-2, 7-6
call-trace mode 9-3
callx 6-27, 7-2, 7-6
carry conditions 3-22
CCON 4-7
check bit instruction 6-28
chkbit 6-28
clear bit instruction 6-29
CLKIN 15-4
clock input (CLKIN) 13-35
clock rate

multiplying 15-4
clrbit 6-29
cmpdeci 6-30
cmpdeco 6-30
cmpi 5-12, 6-32
cmpib 5-12
cmpibe 6-34
cmpibg 6-34
cmpibge 6-34
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cmpibl 6-34
cmpible 6-34
cmpibne 6-34
cmpibno 6-34
cmpibo 6-34
cmpinci 6-31
cmpinco 6-31
cmpis 5-12
cmpo 5-12, 6-32
cmpobe 6-34
cmpobg 6-34
cmpobge 6-34
cmpobl 6-34
cmpoble 6-34
cmpobne 6-34
coding optimizations

branch prediction E-42
branch target alignment E-42
comparison and branching E-36
compressing algorithms using branching E-43
data cache E-44
data RAM E-45
instruction cache E-44
loads and stores E-35
loop expansion E-37
maximizing instruction execution E-38
multiplication and division E-35
on-chip storage E-43
register cache E-45
reordering code for parallel issue E-38

cold reset 11-25, 13-4
compare

and branch conditional instructions 6-34
and conditional compare instructions 5-12
and decrement integer instruction 6-30
and decrement ordinal instruction 6-30
and increment integer instruction 6-31
and increment ordinal instruction 6-31
integer conditional instruction 6-36
integer instruction 6-32
ordinal conditional instruction 6-36
ordinal instruction 6-32

comparison instructions, overview
compare and increment or decrement instructions 5-13
test condition instructions 5-13

concmpi 6-36
concmpo 6-36
conditional branch instructions 3-22
conditional fault instructions 5-18
control registers 3-1, 3-7

memory-mapped 3-6
control table 3-1, 3-7, 3-14

alignment 3-17
control table valid (BCON.ctv) bit 14-9
core architecture

and performance optimization E-1
and software portability A-1

CTRL pipeline

conditional branches E-27
unconditional branches E-24

Cycle Type pins 15-26

D
DAB 9-9
Data Address Breakpoint (DAB) Register Format 9-9
Data Address Breakpoint (DAB) registers 9-8

programming 9-8
data alignment in external memory 3-16
data bus parity 14-4
data cache 3-20, E-7

BCU interaction E-9
bus configuration E-8
cache coherency and non-cacheable accesses 4-10
coherency 14-14, E-9

BCU queues E-11
I/O and bus masters 4-10, E-11

control instruction 6-38
data fetch policy E-8
described 4-6
enabling and disabling 4-7
fill policy 4-8
hits and misses E-7
invalidating 4-11
organization E-7
partial-hit multi-word data accesses 4-8
subblock placement E-7
visibility 4-11
write policy 4-9, E-8

Data Cache Enable (DCEN) bit 14-15
data cache enable (LMAR.dcen) bit 14-15
data cache global disable (CCON.dcgd) bit 4-7
data cache invalidate (CCON.dci) bit 4-7
data control peripheral units A-6
data fetch policy E-8
data movement instructions 5-5

load address instruction 5-6
load instructions 5-5
move instructions 5-6

data parity signals 15-24
data RAM 3-18, E-7, E-20
data register

timing diagram 16-20
data structures

control table 3-1, 3-7, 3-14
fault table 3-1, 3-14
Initialization Boot Record (IBR) 3-1, 3-14
interrupt stack 3-1, 3-14
interrupt table 3-1, 3-14
literals 3-5
local stack 3-1
Process Control Block (PRCB) 3-1, 3-14
supervisor stack 3-1, 3-14
system procedure table 3-1, 3-14
user stack 3-14
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data types
bits and bit fields 2-3
integers 2-2
literals 2-4
ordinals 2-2
supported 2-1
triple and quad words 2-3

dcctl 3-27, 4-6, 4-7, 4-11, 6-38
DCEN bit, see Data Cache Enable (DCEN) bit
dcen bit, see data cache enable (LMAR.dcen) bit
dcinva 4-11
debug

overview 9-1
debug instructions 5-18
decoupling capacitors 13-37
Default Logical Memory Configuration Register (DLMCON) 

14-13
Default Logical Memory Configuration (DLMCON) register 

14-4
DLMCON.be bit 4-4

design considerations
high frequency 13-39
interference 13-41
latchup 13-40
line termination 13-39
performance E-1

detection scheme, GMU
described 12-3

Device ID register 16-7
device ID register D-6
DEVICEID 13-23
DEVICEID register location 3-3
divi 6-46
divide integer instruction 6-46
divide ordinal instruction 6-46
divo 6-46
DLMCON 14-13
DLMCON registers
DLMCON, see Default Logical Memory Configuration 

(DLMCON) register

E
ediv 6-47
effective address (efa) E-21

calculations E-22
electromagnetic interference (EMI) 13-41
electrostatic interference (ESI) 13-41
emul 6-48
endian 14-5

converting big- and little-endian data 14-14
eshro 6-49
Event initiated accesses 15-28
executable group E-13, E-24
execution architecture 1-2
Execution Unit (EU) E-6, E-17
explicit calls 7-1
extended addressing instructions 5-14
Extended Breakpoint Control Register (XBPCON) 9-7
extended divide instruction 6-47

extended multiply instruction 6-48
extended shift right ordinal instruction 6-49
external interrupt (XINT#) signals 11-17
external memory requirements 3-16
extract 6-50

F
FAIL# signal 13-8
fault

OPERATION.UNIMPLEMENTED 4-1
fault conditional instructions 6-51
fault conditions 8-1
fault handling

data structures 8-1
fault record 8-2, 8-6
fault table 8-2, 8-5
fault type and subtype numbers 8-3
fault types 8-4
local calls 8-2
multiple fault conditions 8-9
procedure invocation 8-6
return instruction pointer (RIP) 8-15
stack usage 8-6
supervisor stack 8-2
system procedure table 8-2
system-local calls 8-2
system-supervisor calls 8-2
user stack 8-2

fault record 8-6
address-of-faulting-instruction field 8-6
fault subtype field 8-6
location 8-6, 8-8
optional data fields 8-8
structure 8-6

fault table 3-1, 3-14, 8-5
alignment 3-17
local-call entry 8-6
location 8-5
system-call entry 8-6

fault type and subtype numbers 8-3
fault types 8-4
faulte 6-51
faultg 6-51
faultge 6-51
faultl 6-51
faultle 6-51
faultne 6-51
faultno 6-51
faulto 6-51
faults A-7

access 3-7
AC.nif bit 8-20
ARITHMETIC.INTEGER_OVERFLOW 6-85
ARITHMETIC.OVERFLOW 6-8, 6-11, 6-46, 6-

78, 6-95, 6-101, 6-106
ARITHMETIC.ZERO_DIVIDE 6-46, 6-47, 6-72, 

6-85
CONSTRAINT.RANGE 6-51
controlling precision of (syncf) 8-20
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OPERATION.INVALID_OPERAND 6-43
PROTECTION.LENGTH 6-26
TRACE.MARK 6-54, 6-70
TYPE.MISMATCH 6-43, 6-61, 6-62, 6-64, 6-

65, 6-74
fetch latency E-28
fetch strategy E-27
field definition 1-9
flag definition 1-9
floating point 3-23
flush local registers instruction 6-53
flushreg 6-53, 7-11
fmark 6-54
force mark instruction 6-54
FP, see Frame Pointer
frame fills 7-7
Frame Pointer (FP) 7-4

location 3-3
frame spills 7-7

G
GCON 12-5
global registers 3-1, 3-2

overview 1-8
GMU 12-11
GMU Control Register (GCON) 12-5
GMU Control (GCON) register 4-6, 12-5
GMU Memory Protect Address Register (MPARx, MPMRx) 

12-7
GMU Memory Violation Detection Upper and Lower-Bounds 

Registers 12-11
Guarded Memory Unit (GMU) 3-15, 4-6

described 12-1

H
hardware breakpoint resources 9-5

requesting access privilege 9-6
high priority interrupts 4-3

I
IBR, see initialization boot record
icctl 3-27, 4-4, 4-5, 4-6
ICON 11-20
IEEE Standard Test Access Port 16-2
IEEE Std. 1149.1 16-2
IEEE 1149.1 Device Identification Register 13-23
IMAP0-IMAP2 11-22
IMI 13-10
implementation-specific features A-1
implicit calls 7-1, 8-2
IMSK 11-24

index with displacement addressing mode 2-8
indivisible access 3-16
inequalities (greater than, equal or less than) conditions 3-22
Initial Memory Image (IMI) 13-1, 13-10
initialization 13-1, 13-2

CLKIN 13-35
code example 13-25
hardware requirements 13-35
MON960 13-25
power and ground 13-35
software 6-108

Initialization Boot Record (IBR) 3-1, 3-14, 13-1, 13-
13, 13-15

alignment 3-17
initialization data structures 3-14
initialization mechanism A-5
initialization requirements

control table 13-22, D-22
data structures 13-10
Process Control Block 13-17
reserved memory space 13-10

instruction breakpoint modes
programming 9-10

Instruction Breakpoint (IBP) registers 9-9
Instruction Breakpoint (IPB) Register Format 9-9
instruction cache 3-19

bus snooping 3-19
coherency 4-6
configuration 3-19
disabling 3-19
effects of disabling 4-5
enabling and disabling 4-5, 13-20
fetch latency E-28
fetch strategy E-27
invalidation 3-19
load-and-lock mechanism 3-20
locking instructions 4-5
overview 4-4
visibility 4-5

Instruction Fetch Unit (IFU) E-27
instruction flow E-4

decode stage E-4
execute stage E-5
issue stage E-4

instruction formats 5-3
assembly language format 5-1
branch prediction 5-14
instruction encoding format 5-2

Instruction Pointer (IP) Register 3-21
Instruction Pointer (IP) register 3-21
Instruction Register (IR) 16-4

timing diagram 16-19
Instruction Scheduler (IS) E-3

instruction cache E-3
instruction fetch unit E-3
microcode E-3
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instruction set
ADD 6-7
addc 6-9
addi 6-11
addie 6-7
addig 6-7
addige 6-7
addil 6-7
addile 6-7
addine 6-7
addino 6-7
addo 6-11
addoe 6-7
addog 6-7
addoge 6-7
addol 6-7
addole 6-7
addone 6-7
addono 6-8
addoo 6-7
alterbit 6-12
and 6-13
andnot 6-13
atadd 3-16, 4-10, 6-14
atmod 3-8, 3-16, 4-10, 6-15
b 6-16
bal 6-17
balx 6-17
bbc 6-19
bbs 6-19
be 6-21
bg 6-21
bge 3-23, 6-21
bl 6-21
ble 6-21
bne 6-21
bno 6-21
bo 6-21
bswap 6-23
bx 6-16
call 6-24, 7-2, 7-6
calls 3-27, 6-25, 7-2, 7-6
callx 6-27, 7-2, 7-6
chkbit 6-28
clrbit 6-29
cmpdeci 6-30
cmpdeco 6-30
cmpi 5-12, 6-32
cmpib 5-12
cmpibe 6-34
cmpibg 6-34
cmpibge 6-34
cmpibl 6-34
cmpible 6-34
cmpibne 6-34
cmpibno 6-34
cmpibo 6-34
cmpinci 6-31
cmpinco 6-31
cmpis 5-12

cmpo 5-12, 6-32
cmpobe 6-34
cmpobg 6-34
cmpobge 6-34
cmpobl 6-34
cmpoble 6-34
cmpobne 6-34
concmpi 6-36
concmpo 6-36
dcctl 3-27, 4-6, 4-7, 4-11, 6-38
dcinva 4-11
divi 6-46
divo 6-46
ediv 6-47
emul 6-48
eshro 6-49
extract 6-50
faulte 6-51
faultg 6-51
faultge 6-51
faultl 6-51
faultle 6-51
faultne 6-51
faultno 6-51
faulto 6-51
flushreg 6-53
fmark 6-54
icctl 3-27, 4-4, 4-5, 4-6
implementation-specific A-4
intctl 3-27, 6-62
intdis 3-27, 6-64
inten 3-27, 6-65
ld 2-2, 3-17, 6-66
lda 6-69
ldib 2-2, 6-66
ldis 2-2, 6-66
ldl 3-5, 4-8, 6-66
ldob 2-2, 6-66
ldos 2-2, 6-66
ldq 3-17, 4-8, 6-66
ldt 4-8, 6-66
mark 6-70
modac 3-22, 6-71
modi 6-72
modify 6-73
modpc 3-25, 3-27, 6-74, 9-3
modtc 6-75, 9-2
mov 6-76
movl 6-76
movq 6-76
movt 6-76
muli 6-78
mulo 6-78
nand 6-79
nor 6-80
not 6-81
notand 6-81
notbit 6-82
notor 6-83
or 6-84
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ornot 6-84
remi 6-85
remo 6-85
ret 6-86
rotate 6-88
scanbit 6-89
scanbyte 6-90
sele 5-6, 6-91
selg 5-6, 6-91
selge 5-6, 6-91
sell 5-6, 6-91
selle 5-6, 6-91
selne 5-6, 6-91
selno 5-6, 6-91
selo 5-6, 6-91
setbit 6-93
shli 6-94
shlo 6-94
shrdi 6-94
shri 6-94
shro 6-94
spanbit 6-97
st 2-2, 3-17, 6-98
stib 2-2, 6-98
stis 2-2, 6-98
stl 3-17, 4-8, 6-98
stob 2-2, 6-98
stos 2-2
stq 3-17, 4-8, 6-98
stt 4-8, 6-98
subc 6-103
subi 6-106
subie 6-104
subig 6-104
subige 6-104
subil 6-104
subile 6-104
subine 6-104
subino 6-104
subio 6-104
subo 6-106
suboe 6-104
subog 6-104
suboge 6-104
subol 6-104
subole 6-104
subone 6-104
subono 6-104
suboo 6-104
syncf 6-107, 8-20
sysctl 3-27, 4-4, 4-5, 4-6, 6-108, 9-6
teste 6-112
testg 6-112
testge 6-112
testl 6-112
testle 6-112
testne 6-112
testno 6-112
testo 6-112
timing A-4

xnor 6-114
xor 6-114

instruction set functional groups 5-4
Instruction Trace Event 6-4
Instructions

TRISTATE 16-7
instructions

conditional branch 3-22
parallel execution 1-2
parallel issue E-12
parallel processing E-11
scoreboarding E-14

instruction-trace mode 9-3
intctl 3-27, 6-62
intdis 3-27, 6-64
integers 2-2

data truncation 2-2
sign extension 2-2

inten 3-27, 6-65
internal data RAM 4-1

local register cache 3-18
location 3-18
modification 3-19, 4-1
size 4-1
write protection 3-19

interrupt
timer 11-9

Interrupt Control (ICON) Register 11-20
Interrupt Control (ICON) register

memory-mapped addresses 11-19
interrupt controller 11-1

configuration 11-28
interrupt pins 11-17
overview 11-2
program interface 11-3
programmer interface 11-19
setup 11-28

interrupt handling procedures 11-28
AC and PC registers 11-28
address space 11-28
global registers 11-28
instruction cache 11-28
interrupt stack 11-28
local registers 11-28
location 11-28
special function registers 11-28
supervisor mode 11-28

Interrupt Mapping (IMAP0-IMAP2) Registers 11-22
Interrupt Mapping (IMAP0-IMAP2) registers 11-21
interrupt mask

saving 11-16
Interrupt Mask (IMSK) register 11-23, D-9
Interrupt Mask (IMSK) Registers 11-24
Interrupt Pending (IPND) Register 11-25
Interrupt Pending (IPND) register 11-23
interrupt performance

caching of interrupt-handling 11-33
interrupt stack 11-34
local register cache 11-33

interrupt pins
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dedicated mode 11-8
expanded mode 11-8
mixed mode 11-8

interrupt posting 11-2
interrupt procedure pointer 11-5
interrupt record 11-7

location 11-7
interrupt request management 11-8
interrupt requests

sysctl 11-9
interrupt sequencing of operations 11-26
interrupt servicing mechanism A-5
interrupt stack 3-1, 3-14, 11-6, 11-34

alignment 3-17
structure 11-6

interrupt table 3-1, 3-14, 11-4
alignment 3-17, 11-4
caching mechanism 11-6
location 11-4
pending interrupts 11-5
vector entries 11-5

interrupt vectors
caching 4-1

interrupts
dedicated mode 11-13
dedicated mode posting 11-13
expanded mode 11-14
function 11-1
global disable instruction 6-64
global enable and disable instruction 6-62
global enable instruction 6-65
high priority 4-3
internal RAM 11-32
interrupt context switch 11-29
interrupt handling procedures 11-28
interrupt record 11-7
interrupt stack 11-6
interrupt table 11-4
masking hardware interrupts 11-17
mixed mode 11-16
Non-Maskable Interrupt (NMI#) 11-3, 11-8
overview 11-1
physical characteristics 11-17
posting 11-2
priority handling 11-11
priority-31 interrupts 11-3, 11-17
programmable options 11-18
restoring r3 11-17
servicing 11-3
sysctl 11-9
vector caching 11-32

IP 3-21
IP register, see Instruction Pointer (IP) register
IP with displacement addressing mode 2-8
IPB 9-9
IPND 11-25
IS, see Instruction Scheduler (IS)

i960 processor
block diagram 1-1
Family description 1-2
80960Hx family members 1-2

J
JTAG (boundary-scan) 16-1

L
ld 2-2, 3-17, 6-66
lda 6-69
ldib 2-2, 6-66
ldis 2-2, 6-66
ldl 3-5, 4-8, 6-66
ldob 2-2, 6-66
ldos 2-2, 6-66
ldq 3-17, 4-8, 6-66
ldt 4-8, 6-66
leaf procedures 7-1
literal addressing and alignment 3-5
literals 2-4, 3-1, 3-5

addressing 3-5
little endian byte order 2-4, 3-18, 15-29
LMADR register
LMAR14:0 14-11
LMCON registers
LMMR14:0 14-12
load address instruction 6-69
load instructions 5-5, 6-66
load-and-lock mechanism 3-20, 4-5
local calls 7-2, 7-14, 8-2

call 7-2
callx 7-2

local register cache 3-18, 7-3, E-7
overview 4-3

local registers 3-1, 7-2
allocation 3-3, 7-2
management 3-3
overview 1-8
usage 7-2

local stack 3-1
Logical Configuration (LMCON) registers 4-11
logical data templates

effective range 14-13
logical instructions 5-10
Logical Memory Address Registers (LMAR14:0) 14-11
Logical Memory Address (LMADR) register 14-4

programming 14-11
logical memory attributes 14-4
Logical Memory Configuration (LMCON) registers 14-4
Logical Memory Mask Registers (LMMR14:0) 14-12
Logical Memory Mask (LMMR) registers

programming 14-11
Logical Memory Templates (LMTs)

accesses across boundaries 14-16
boundary conditions 14-16
enabling 14-15
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enabling and disabling data caching 14-15
modifying 14-16
overlapping ranges 14-16
values after reset 14-15

M
mark 6-70
Mark Trace Event 6-4
MDLB, see Memory Detect Lower Bounds (MDLB) register
MDUB, see Memory Detect Upper Bounds (MDUB) register
memory

internal data RAM 3-18
memory access 15-2
memory address space 3-1

external memory requirements 3-16
atomic access 3-16
big endian byte order 3-18
data alignment 3-16
data block sizes 3-17
data block storage 3-18
indivisible access 3-16
instruction alignment in external memory 3-16
little endian byte order 3-18
reserved memory 3-16

memory addressing modes
absolute 2-7
examples 2-8
index with displacement 2-8
IP with displacement 2-8
overview 2-6
register indirect 2-7

Memory Detect Lower Bounds (MDLB) register 12-11
Memory Detect Upper Bounds (MDUB) register 12-12
memory detection scheme, GMU

described 12-3
Memory Management Unit (MMU) 3-15
Memory Protect Mask Register (MPMR) 12-6
Memory Protection Address Register (MPAR) 12-6
memory protection scheme, GMU

described 12-3
memory request 15-2
memory-mapped control registers 3-6
Memory-Mapped Registers (MMR) 3-6, 3-16
micro-flows

atomic instructions E-33
bit and bit field instructions E-31
branch instructions E-32
call and return instructions E-32
comparison instructions E-32
data movement instructions E-31
debug instructions E-33
definition E-13
execution E-30
fault instructions E-33
invocation E-29
processor management instructions E-34

MMR, see Memory-Mapped Registers (MMR)
modac 3-22, 6-71
modi 6-72

modify 6-73
modify arithmetic controls instruction 6-71
modify process controls instruction 6-74
modify trace controls instruction 6-75, 9-2
modpc 3-25, 3-27, 6-74, 9-3
modtc 6-75, 9-2
modulo integer instruction 6-72
mov 6-76
move instructions 6-76
movl 6-76
movq 6-76
movt 6-76
MPARx, MPMRx 12-7
MPAR, see Memory Protect Address Register (MPAR)
MPMR, see Memory Protect Mask Register (MPMR)
muli 6-78
mulo 6-78
multiple fault conditions 8-9
multiply integer instruction 6-78
multiply ordinal instruction 6-78
Multiply/Divide Unit (MDU) E-6, E-18

N
nand 6-79
NMI, see Non-Maskable Interrupt (NMI#)
No Imprecise Faults (AC.nif) bit 8-16, 8-20
Non-Maskable Interrupt (NMI#) 11-3, 11-8
Non-Maskable Interrupt (NMI)

signal 11-17
nor 6-80
not 6-81
notand 6-81
notation and terminology 1-7
notbit 6-82
notor 6-83
NRAD 14-2, 15-8
NRDD 14-2, 15-8
number representations 1-8
NWAD 14-2, 15-8
NWDD 14-2, 15-8
NXDA 14-3, 15-8

O
On-Circuit Emulation (ONCE) mode 13-1, 16-1
OPERATION.UNIMPLEMENTED 4-1
or 6-84
ordinals 2-2

sign and sign extension 2-3
ornot 6-84
output pins 13-38
overflow conditions 3-22

P
parallel instruction execution

overview 1-2
parallel issue E-12
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parallel processing E-11, E-12
parallel execution E-12

parameter passing 7-13
argument list 7-13
by reference 7-13
by value 7-13

parity 15-24
parity checking error 15-24
PC 3-24
PC register, see Process Controls (PC) register
pending interrupts 11-5

encoding 11-5
interrupt procedure pointer 11-5
pending priorities field 11-5

PFP r0 7-20
Physical Memory Configuration (PMCON) registers

application modification 14-11
initial values 14-9

pipeline stalls
register bypassing E-16
register scoreboarding E-16

pipelined read accesses 15-18
PMCON 14-8
PMCON Register Bit Descriptions 14-8
PMCON15 in IBR 13-16
PMCON15 Register Bit Description in IBR 13-16
power and ground planes 13-37
powerup/reset initialization

timer powerup 10-10
PRCB, see Processor Control Block (PRCB)
prereturn-trace mode 9-4
preserved field 1-7
Previous Frame Pointer Register (PFP) (r0) 7-20
Previous Frame Pointer (PFP) 3-1, 7-4, 7-5

location 3-3
r0 7-19

priority-31 interrupts 11-3, 11-17
procedure calls

branch-and-link 7-1
call and return mechanism 7-1
leaf procedures 7-1

procedure stack 7-3
growth 7-3

Process Control Block (PRCB) 3-1, 3-14, 4-5, 13-1, 
13-17

alignment 3-17
configuration 13-17
register cache configuration word 13-21

Process Controls (PC) Register 3-24
Process Controls (PC) register 3-24

execution mode flag 3-24
initialization 3-26
modification 3-25
modpc 3-25
priority field 3-25
processor state flag 3-24
trace enable bit 3-25
trace fault pending flag 3-25

processing units E-16
Address Generation Unit (AGU) E-21
Bus Control Unit (BCU) E-22
data RAM E-20
Execution Unit E-17
Multiply/Divide Unit E-18

processor initialization 13-1
processor management instructions 5-19
processor state registers 3-1, 3-21

Arithmetic Controls (AC) register 3-21
Instruction Pointer (IP) register 3-21
Process Controls (PC) register 3-24
Trace Controls (TC) register 3-26

program-initiated accesses 15-28
programming

logical memory attributes 14-15, 14-16
protection modes, GMU 12-1
protection scheme, GMU

described 12-3

R
RAM 3-14

internal data
described 4-1

RAM, internal data 3-18
region boundaries

bus transactions across 14-10
register

access 11-25
addressing 3-5
addressing and alignment 3-5
boundary-scan 16-8
Breakpoint Control (BPCON) 9-7
bypassing E-6
cache 4-3
control 3-7

memory-mapped 3-6
DEVICEID

memory location 3-3
global 3-2
indirect addressing mode

register-indirect-with-displacement 2-7
register-indirect-with-index 2-7
register-indirect-with-index-and-displacement 2-8
register-indirect-with-offset 2-7

Instruction 16-4
Interrupt Control (ICON) 11-19
Interrupt Mapping (IMAP0-IMAP2) 11-21
Interrupt Mask (IMSK) 11-23
Interrupt Pending (IPND) 11-23, 11-25
local

allocation 3-3
management 3-3

Logical Memory Templates (LMTs) 14-16
processor-state 3-21
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scoreboarding E-5, E-15
example 3-4
implementation 3-4
pipeline stalls E-16

TCRx 10-5
Register File (RF) E-5

CTRL units E-12
MEM E-6
MEM units E-12
REG E-6
REG units E-12

Registers
Arithmetic Controls (AC) Register 3-21
Breakpoint Control Register (BPCON) 9-7
Cache Control Register (CCON) 4-7
Data Address Breakpoint (DAB) Register Format 9-9
Default Logical Memory Configuration Register (DLM-

CON) 14-13
Extended Breakpoint Control Register (XBPCON) 9-7
GMU Control Register (GCON) 12-5
GMU Memory Protect Address Register (MPARx, MP-

MRx) 12-7
GMU Memory Violation Detection Upper and Lower-

Bounds Registers 12-11
IEEE 1149.1 Device Identification Register 13-23
Instruction Breakpoint (IPB) Register Format 9-9
Instruction Pointer (IP) Register 3-21
Interrupt Control (ICON) Register 11-20
Interrupt Mapping (IMAP0-IMAP2) Registers 11-22
Interrupt Mask (IMSK) register 11-24
Interrupt Pending (IPND) Register 11-25
Logical Memory Address Registers (LMAR14:0) 14-

11
Logical Memory Mask Registers (LMMR14:0) 14-12
PMCON Register Bit Descriptions 14-8
PMCON15 Register Bit Description in IBR 13-16
Previous Frame Pointer Register (PFP) (r0) 7-20
Process Controls (PC) Register 3-24
Timer Count Register (TCR0, TCR1) 10-6
Timer Mode Register (TMR0, TMR1) 10-3
Timer Reload Register (TRR0, TRR1) 10-7
Trace Controls (TC) Register 3-26, 9-2

registers
device ID D-6
Interrupt Pending (IPND) D-11

re-initialization
software 6-108

related documents 1-9
remainder integer instruction 6-85
remainder ordinal instruction 6-85
remi 6-85
remo 6-85
reserved field 1-7
reserved locations A-4
reserved memory 1-7
reserving frames in the local register cache 11-33
reset state 13-4
resource scoreboarding E-5, E-16
ret 6-86
Return Instruction Pointer (RIP) 7-4

location 3-3
return operation 7-7
return type field 7-5
RF, see Register File (RF)
RIP, see Return Instruction Pointer (RIP)
ROM 3-14
rotate 6-88
Rregisters

Bus Control Register (BCON) 14-10
Run Built-In Self-Test (RUNBIST) register 16-8
r0 Previous Frame Pointer (PFP) 7-19

S
SALIGN A-3
saving the interrupt mask 11-16
scanbit 6-89
scanbyte 6-90
scoreboarding

instruction E-14
register E-15

pipeline stalls E-16
resource E-16

sele 5-6, 6-91
select based on equal instruction 5-6
select based on less or equal instruction 5-6
select based on not equal instruction 5-6
select based on ordered instruction 5-6
Select Based on Unordered 5-6
Self Test (STEST) pin 13-8
selg 5-6, 6-91
selge 5-6, 6-91
sell 5-6, 6-91
selle 5-6, 6-91
selne 5-6, 6-91
selno 5-6, 6-91
selo 5-6, 6-91
setbit 6-93
SFRs, see special function registers (SFRs) 3-1
shift instructions 6-94
shli 6-94
shlo 6-94
shrdi 6-94
shri 6-94
shro 6-94
sign extension

integers 2-2
ordinals 2-3

software re-initialization 6-108
spanbit 6-97
special function registers (SFRs) 3-1, 3-4

reading or modifying 3-4
usage 3-4

SP, see Stack Pointer
SRAM, see Static RAM (SRAM)
src/dst parameter encodings 9-6
st 2-2, 3-17, 6-98
stack frame

allocation 7-2
stack frame cache 4-3
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Stack Pointer (SP) 7-4
location 3-3

stacks 3-14
Static RAM (SRAM) E-7

interface F-1
stib 2-2, 6-98
stis 2-2, 6-98
stl 3-17, 4-8, 6-98
stob 2-2, 6-98
store instructions 5-5, 6-98
stos 2-2
stq 3-17, 4-8, 6-98
stt 4-8, 6-98
subc 6-103
subi 6-106
subie 6-104
subig 6-104
subige 6-104
subil 6-104
subile 6-104
subine 6-104
subino 6-104
subio 6-104
subo 6-106
suboe 6-104
subog 6-104
suboge 6-104
subol 6-104
subole 6-104
subone 6-104
subono 6-104
suboo 6-104
subtract

conditional instructions 6-104
integer instruction 6-106
ordinal instruction 6-106
ordinal with carry instruction 6-103

suggested reading 1-9
supervisor calls 7-2
supervisor mode resources 3-26
supervisor space family registers and tables 3-9
supervisor stack 3-1, 3-14

alignment 3-17
Supervisor (SUP#) signal 3-26
supervisor-trace mode 9-3
syncf 6-107, 8-20
synchronize faults instruction 6-107
sysctl 3-8, 3-27, 4-4, 4-5, 4-6, 6-108, 9-6
system calls 7-2, 7-15

calls 7-2
system-local 7-2, 8-2
system-supervisor 7-2, 8-2

system control instruction 6-108
system procedure table 3-1, 3-14

alignment 3-17

T
TC 3-26, 9-2
TCR0, TCR1 10-6
Test Access Port (TAP) controller 16-11

block diagram 16-3
state diagram 16-12

test features 16-2
test instructions 6-112
Test Mode Select (TMS) line 16-11
teste 6-112
testg 6-112
testge 6-112
testl 6-112
testle 6-112
testne 6-112
testno 6-112
testo 6-112
three-state output pins 13-38
timer

interrupts 11-9
memory-mapped addresses 10-2

Timer Count Register (TCRx) 10-5
address and access type 3-13

Timer Count Register (TCR0, TCR1) 10-6
Timer Mode Register

timer mode control bit summary 10-8
Timer Mode Register (TMRx)

address and access type 3-13
terminal count 10-3
timer clock encodings 10-5

Timer Mode Register (TMR0, TMR1) 10-3
Timer Reload Register (TRRx)

address and access type 3-13
Timer Reload Register (TRR0, TRR1) 10-7
TMR0, TMR1 10-3
Trace Controls (TC) Register 3-26, 9-2
Trace Controls (TC) register 3-26, 9-2
trace events 9-1

hardware breakpoint registers 9-1
mark and fmark 9-1
PC and TC registers 9-1

trace-fault-pending flag 9-3
TRISTATE 16-7
TRR), TRR1 10-7
true/false conditions 3-22
TTL input pins 13-38
typeface conventions 1-7

U
unordered numbers 3-23
user space family registers and tables 3-13
user stack 3-14

alignment 3-17
user supervisor protection model 3-26

supervisor mode resources 3-26
usage 3-27
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V
vector entries 11-5

NMI 11-5
structure 11-5

W
warm reset 11-25, 13-4
words

triple and quad 2-3

write policy
data cache E-8

X
XBPCON 9-7
XINT#, see external interrupt 11-17
xnor 6-114
xor 6-114
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