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CHAPTER 1

INTRODUCTION I

11 INTEL'S i960® Rx I/O PROCESSOR

The i960 Rx /O Processor integrates a high-performance 80960 “core” into a Peripheral
Components Interconnect (PCI) functionality. This integrated processor addresses the needs o
intelligent I/O applications and helps reduce intelligent 1/O system costs. As indicated in
Figure 1-1 the primary functional units include an i960 core processor, PCI to PCI bus bridge,
PCI-to-80960 Address Translation Unit, Messaging Unit, Direct Memory Access (DMA)
Controller, Memory Controller, Secondary PCI bus Arbitration URE, Bus Interface Unit, and

APIC Bus Interface Unit.

The PCI Bus is an industry standard, high performance, low latency system bus that operates up tc
132 Mbyte/sec. The PCI-to-PCI bridge provides a connection path between two independent 32-bit
PCI buses and provides the ability to overcome PCI electrical loading limits. The addition of the
1960 core processor brings intelligence to the PCI bus bridge.

Local Memory 12C Serial Bus 1/0 APIC Bus
A A A
Y
Memor i960® JF Core y Y
Controllgr Processor 12C Bus 1/0 APIC Bus Internal Local
Interface Unit Interface Unit Bus Arbiter
A A \ A A
v v Local Bus ¥ 17 17 >
¢ ] A
Primary ATU y Secondary ATU
Address > Message Add
Two DMA Translation Unit One DMA T |ies_s
Channels Unit Channel rar&snitlon
A A
PCI-to-PCI \4
Y . !
4 N > Bridge Unit < Secondary PCI Bus >
Primary PCI Bus
| Pri Internal Secondary Secondary B -
Internal Primary PCI Arbiter PCI Arbiter - -
PCI Arbiter

Figure 1-1. i960% Rx I/0 Processor Functional Block Diagram
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1.2 i960® Rx I/0 PROCESSOR FEATURES

The i960 Rx 1/0 Processor (“80960Rx”) combines the i960JF processor with powerful new
features to create an intelligent 1/0O processor. This multi-function PCI device is fully compliant
with the PCI Local Bus Specification, revision 2.1. 80960Rx-specific features include:

* Intelligent 1/0 (LO) « I1°C Bus Interface Unit

e PCI-to-PCI Bridge Unit e 1/O APIC Bus Interface Unit

e Private PCI Device Support « Secondary PCI Arbitration Unit

« DMA Controller ¢ Messaging Unit

e Address Translation Unit « Wind River Systems IxWorks* RTOGompatibility

¢« Memory Controller

Because the 80960Rx’s core processor is based upon the 80960JF, the two i960 family members
are object code compatible and can maintain a sustained execution rate of one instruction per
clock. The 80960 local bus, a 32-bit multiplexed burst bus, is a high-speed interface to system
memory and I/O. A full complement of control signals simplifies the connection of the 80960Rx

to external components. Physical and logical memory attributes are programmed via memory-
mapped control registers (MMRS), a feature not found on the i960 Kx, Sx or Cx processors.
Physical and logical configuration registers enable the processor to operate with all combinations
of bus width and data object alignment. Seetion 1.3i960° CORE PROCESSOR FEATURES
(80960JF) (pg. 1-5) for more information.

The subsections that follow briefly overview each feature. Refer to the appropriate chapter for full
technical descriptions.

1.2.1 Intelligent 1/O (1,0)

Addressing the software side of 1/0, the i960 Rx 1/O Processor supports the industry-standard
Intelligent 1/O (1,0) interface for PCI applications. This specification was formed by Intel and
industry leaders in hardware and software to create a standard interface that increases 1/0
performance and decreases developer time-to-market. This specification provides a common 1/0O
device driver that is independent to both the specific controlled device and the host operating
system. The 1,0 architecture facilitates intelligent 1/0 subsystems by supporting message passing
between multiple independent processors. 1,0 provides a standard interface to which all peripheral
and network adapter card software can be devel oped, and remain compliant with popular network
operating systems. The 1,0 architecture improves performance by relieving the host of interrupt-
intensive 1/0 tasks. By providing a standard interface, new technologies can be implemented
quickly and uniformly.

1-2 I
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1.2.2 PCI-to-PCI Bridge Unit 1
The PCI-to-PCI bridge unit (referred to as “bridge”) connects two independent PCI buse
fully compliant with thePCI-to-PCl Bridge Architecture Specification Revision 1.0 published by

the PCI Special Interest Group. It allows certain bus transactions on one PCI bus to be forwardec
to the other PCI bus. It allows fully independent PCI bus operation (e.g., independent clocks).
Dedicated data queues support high-performance bandwidth on the PCI buses. The 80960Rx
supports PCI 64-bit Dual Address Cycle (DAC) addressing. The bridge has dedicated PCI configu-
ration space that is accessible through the primary PCIl busCISe&€TER 15,PCI-TO-PCI
BRIDGE UNIT.

1.2.3 Private PCI Device Support

A key 80960Rx feature is that it explicitly supports private PCI devices on the secondary PCI bus
without being detected by PCI configuration software. The bridge and Address Translation Unit
work together to hide private devices from PCI configuration cycles and allow these devices to use
a private PCI address space. The Address Translation Unit uses normal PCI configuration cycles tc
configure these devices.

1.2.4 DMA Controller

The DMA Controller allows low-latency, high-throughput data transfers between PCI bus agents
and 80960 local memory. Three separate DMA channels accommodate data transfers: two for
primary PCI bus, one for the secondary PCIl bus. The DMA Controller supports chaining and
unaligned data transfers. It is programmable through the i960 core processor only, and functions in
synchronous mode only. SE&IAPTER 20DMA CONTROLLER.

1.2.5 Address Translation Unit

The Address Translation Unit (ATU) allows PCI transactions direct access to the 80960Rx local

memory. The ATU supports transactions between PCIl address space and 80960Rx address spac
Address translation is controlled through programmable registers accessible from both the PCI
interface and the 1960 core processor. Dual access to registers allows flexibility in mapping the two
address spaces. SEElAPTER 16 ADDRESS TRANSLATION UNIT.

1.2.6 Messaging Unit

The Messaging Unit (MU) provides data transfer between the PCI system and the 80960RXx. It uses
interrupts to notify each system when new data arrives. The MU has four messaging mechanisms
Message Registers, Doorbell Registers, Circular Queues and Index Registers. Each allows a hos
processor or external PCI device and the 80960Rx to communicate through message passing an
interrupt generation. SEEHAPTER 17 MESSAGING UNIT.
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1.2.7 Memory Controller

The Memory Controller allows direct control of external memory systems, including DRAM,
SRAM, ROM and flash. It provides a direct connect interface to memory that typically does not
require external logic. It features programmable chip selects, await state generator and byte parity.
External memory can be configured as PCI addressable memory or private 80960Rx memory. See
CHAPTER 14, MEMORY CONTROLLER.

1.2.8 I2C Bus Interface Unit

Thel2C (Inter-Integrated Circuit) Bus Interface Unit allows the i960 core processor to serve as a
master and slave device residing on the 12C bus. The I12C unit uses a serial bus developed by
Philips Semiconductor* consisting of atwo-pin interface. The bus allows the 80960Rx to interface
to other 12C peripherals and microcontrollers for system management functions. It requires a
minimum of hardware for an economica system to relay status and reliability information on the
1/0 subsystem to an external device. See CHAPTER 21, I°C BUS INTERFACE UNIT. Also refer
to the document 12C Peripherals for Microcontrollers (Philips Semiconductor).

1.2.9 I/0O APIC Bus Interface Unit

The I/O APIC Bus Interface Unit provides an interface to the three-wire Advanced Programmable
Interrupt Controller (APIC) bus that allows 1/0 APIC emulation in software. Interrupt messages
can be sent on the bus and EOI messages can be received. See CHAPTER 22, |/O APIC BUS
INTERFACE UNIT.

1.2.10 Secondary PCI Arbitration Unit

The Secondary PCI Arbitration Unit is the arbiter for the secondary PCI bus. It includes afairness
algorithm with programmable priorities and six PCI request and grant signal pairs. This arbitration
unit can also be disabled to allow for externa arbitration. See CHAPTER 18, BUS
ARBITRATION.

1.2.11 Wind River Systems IxWorks* RTOS

A key feature of the i960 Rx 1/0O Processor is Wind River System’s IxWorks* Real-Time
Operating System (RTOS). With clearly defined Application Program Interfaces (APIs), IxXWorks
creates a user-friendly environment to write basic device drivers. IXWorks supports NOS-to-driver
independence, and allows multiple I/O software to co-exist reliably. In addition, developers get a
30-day evaluation copy of the Tornado* development environment. For more information, contact
your local Intel representative.
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i960® CORE PROCESSOR FEATURES (80960JF)

INTROD

UCTION

The processing power of the 80960Rx comes from the 80960JF processor core. The 80960JF is a
new, scalar implementation of thei960 core architecture. Figure 1-2 shows a block diagram of the

80960JF core processor.
32-bit buses
P_CLK/ address / data| |Physical Region Control
S_CLK PLL. Clocks, Configuration %@
Instruction Cache ) Bus Control Unit
4 Kbyte Two-Way Set Associative o
> Bus Request
@ TA: P Boundary Scan ‘ | Queuqes H ‘73&2’@
5

Two 32-Bit
Timers

Programmable | Pori
Interrupt 5

Controller

Instruction Sequencer >

Constants Control e

l dm

< -

8-Set >
. v

Local Register Cache A A4 A4
Execution Memory

: Multiply and Interface 4=

1 Divide Address Unit .

A128 Generation >
¥ Unit

Memory-Mapped
Register Interface

Address fmp 32-bit Data

Register File
SRC1 SRC2 DEST

> 1 Kbyte
> Data RAM
4= 2 Kbyte
| Direct Mapped
”| Data Cache

Three Independent 32-Bit SRC1, SRC2, and DEST Buses I

Interrupt

Figure 1-2. 80960JF Core Processor Block Diagram

Factors that contribute to the 80960JF’s performance include:

Single-clock execution of most instructions
Independent Multiply/Divide Unit

Efficient instruction pipeline minimizes pipeline break latency

Register and resource scoreboarding allow overlapped instruction execution

128-bit register bus speeds local register caching

4 Kbyte two-way set-associative, integrated instruction cache

2 Kbyte direct-mapped, integrated data cache

1 Kbyte integrated data RAM delivers zero wait state program data

1-5



INTRODUCTION Inte|®

The 1960 core processor operates out of its own 32-bit address space, which is independent of the
PCIl address space. The 80960 local bus memory can be:

« Made visible to the PCIl address space
* Kept private to the i960 core processor
» Allocated as a combination of the two

1.3.1 Burst Bus

A 32-bit high-performance bus controller interfaces the i960 core processor to external memory
and peripherals. The Bus Control Unit fetches instructions and transfers data on the 80960 local
bus at the rate of up to four 32-bit words per six clock cycles.

NOTE: DMA and ATU accesses are limited to 32-bit wide memory regions. Also
these units can burst up to a 2 Kbyte boundary with no alignment restric-
tions.

Users may configure the i960 core processor’'s bus controller to match an application’s
fundamental memory organization. Physical bus width is programmable for up to eight regions.
Data caching is programmed through a group of logical memory templates and a defaults register.
The Bus Control Unit's features include:

e Multiplexed external bus minimizes pin count
e 32-, 16- and 8-bit bus widths simplify I/O interfaces

e External ready control for address-to-data, data-to-data and data-to-next-address wait
state types

e Unaligned bus accesses performed transparently
e Three-deep load/store queue decouples the bus from the 1960 core processor
For reliability, the 80960Rx conducts an internal self test upon reset. Before executing its first

instruction, it performs a local bus confidence test by performing a checksum on the first words of
the Initialization Boot Record.

1.3.2 Timer Unit

As described ilCHAPTER 19, TIMERS, The Timer Unit (TU) contains two independent 32-bit
timers that are capable of counting at software-defined clock rates and generating interrupts. Each
is programmed by use of the Timer Unit memory-mapped registers. The timers have a single-shot
mode and auto-reload capabilities for continuous operation. Each timer has an independent
interrupt request to the 80960RX’s interrupt controller.

1-6 I
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1.3.3 Priority Interrupt Controller -
1

CHAPTER 8, INTERRUPTS explains how low interrupt latency is critica to many embedded

applications. As part of its highly flexible interrupt mechanism, the 80960Rx exploits several

technigues to minimize latency:

« Interrupt vectors and interrupt handler routines can be reserved on-chip

* Register frames for high-priority interrupt handlers can be cached on-chip

* The interrupt stack can be placed in cacheable memory space

1.34 Faults and Debugging

The 80960Rx employs a comprehensive fault model. The processor responds to faults by making
implicit calls to fault handling routines. Specific information collected for each fault allows the
fault handler to diagnose exceptions and recover appropriately.

The processor also has built-in debug capabilities. Via software, the 80960Rx may be configured
to detect as many as seven different trace event types. Alternativeky andfmark instructions

can generate trace events explicitly in the instruction stream. Hardware breakpoint registers are
also available to trap on execution and data addresseSHF€eTER 9 FAULTS.

1.3.5 On-Chip Cache and Data RAM

As discussed iItHAPTER 4,CACHE AND ON-CHIP DATA RAM, memory subsystems often
impose substantial wait state penalties. The 80960Rx integrates considerable storage resources ol
chip to decouple CPU execution from the external bus. The 80960Rx includes a 4 Kbyte
instruction cache, a 2 Kbyte data cache and 1 Kbyte data RAM.

1.3.6 Local Register Cache

The 80960Rx rapidly allocates and deallocates local register sets during context switches. The
processor needs to flush a register set to the stack only when it saves more than seven sets to i
local register cache.

1.3.7 Test Features
The 80960Rx incorporates features that enhance the user’s ability to test both the processor and th

system to which it is attached. These features include ONCE (On-Circuit Emulation) mode and
IEEE Std. 1149.1 Boundary Scan (JTAG). 8¢APTER 23 TEST FEATURES
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One of the boundary scan instructions, HIGHZ, forces the processor to float al its output pins
(ONCE mode). ONCE mode can also be initiated at reset without using the boundary scan
mechanism.

ONCE mode is useful for board-level testing. This feature allows a mounted 80960Rx to electri-

cally “remove” itself from a circuit board. This mode allows system-level testing where a remote
tester, such as an In-Circuit Emulator (ICE) system, can exercise the processor system. The test
logic does not interfere with component or system behavior and ensures that components function
correctly, and also the connections between various components are correct.

The JTAG Boundary Scan feature is an alternative to conventional “bed-of-nails” testing. It can
examine connections that might otherwise be inaccessible to a test system.

1.3.8 Memory-Mapped Control Registers

The 80960Rx is compliant with 80960 family architecture and has the added advantage of
memory-mapped, internal control registers not found on the 80960Kx, Sx or Cx processors. This
feature provides software an interface to easily read and modify internal control registers.

Each memory-mapped, 32-bit register is accessed via regular memory-format instructions. The
processor ensures that these accesses do not generate external bus cyCleg\FSdéeR 14,
MEMORY CONTROLLER

1.3.9 Instructions, Data Types and Memory Addressing Modes

As with all 80960 family processors, the 80960RXx instruction set supports several different data
types and formats:

e Bit

» Bitfields

« Integer (8-, 16-, 32-, 64-bit)

e Ordinal (8-, 16-, 32-, 64-bit unsigned integers)

e Triple word (96 bits)

¢ Quad word (128 bits)

Several chapters describe the 1960 Rx I/O Processor instruction set, including:
e CHAPTER 3PROGRAMMING ENVIRONMENT

e CHAPTER 5INSTRUCTION SET OVERVIEW

e CHAPTER 6,INSTRUCTION SET REFERENCE

1-8 I
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14 ABOUT THIS DOCUMENT -
1

The 1960 Rx 1/0O Processor incorporates Peripheral Component Interconnect (PCI) functionality

with the 1960 JF processor. As such, it is assumed that the reader has a working understanding of

the Peripheral Component Interconnect (PCI), PCI Local Bus Specification, revision 2.1, and the

1960 core processor.

141 Terminology

In this document, the following terms are used:

* 80960Rxefers generically to the 1960 Rx /O Processor family. As of this printing, the
family includes the 80960RP 33/5.0, 80960RP 33/3.3, 80960RD 66/3.3.

* 80960 local bus refers to the 1960 Rx I/O Processor’s internal local bus, not the PCI local
bus.

«  Primary and Secondary PCI buses are the i960 Rx 1/0 Processor’s internal PCI buses that
conform to PCI SIG specifications.

e 1960 core processor refers to the i960 JF processor that is integrated into the 80960RX.
« DWORD is a 32-bit data word.

e 80960 Local memory is a memory subsystem on the 80960 processor local bus.

The following terms are used primarily @GHAPTER 15PCI-TO-PCI BRIDGE UNIT

« Downstream — at or toward a PCI bus with a higher number (after configuration).
e Host processor — Processor located upstream from the i960 Rx 1/0O Processor.

e Local processor — i960 core processor within the i960 Rx I/O Processor.

e Upstream — At or toward a PCI bus with a lower number (after configuration).

1.4.2 Representing Numbers

Assume that all numbers are base 10 unless designated otherwise. In text, numbers in base 16 a
represented as “nnnH”, where the “H” signifies hexadecimal. In pseudocode descriptions,
hexadecimal numbers are represented in the form 0x1234ABCD. Binary numbers are not
explicitly identified and are assumed when bit operations or bit ranges are used.

1.4.3 Fields

A preserved field in a data structure is one that the processor does not use. Preserved fields can be
used by software; the processor does not modify such fields.
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A reserved field is a field that may be used by an implementation. When the initial value of a
reserved field is supplied by software, this value must be zero. Software should not modify
reserved fields or depend on any valuesin reserved fields.

A read only field can be read to return the current value. Writes to read only fields are treated as
no-op operations and do not change the current value or result in an error condition.

A read/clear field can also be read to return the current value. A write to aread/clear field with
the data value of 0 causes no change to the field. A write to aread/clear field with a data value of
1 causes the field to be cleared (reset to the value of 0). For example, when aread/clear field hasa
value of FOH, and adata value of 55H iswritten, the resultant field is AOH.

A read/set field can also be read to return the current value. A write to a read/set field with the
data value of 0 causes no change to the field. A write to a read/set field with a data value of 1
causes the field to be set (set to the value of 1). For example, when a read/set field has a value of
FOH, and a data value of 55H is written, the resultant field is F5H.

1.4.4 Specifying Bit and Signal Values

The terms set and clear in this specification refer to bit valuesin register and data structures. When
abitisset, itsvaueis 1; when the bit isclear, its valueis 0. Likewise, setting abit means giving it
avalue of 1 and clearing a bit means giving it avalue of 0.

The terms assert and deassert refer to the logically active or inactive value of a signal or bit,
respectively.

145 Signal Name Conventions

All signal names use the PCI signal name convention of using the “#” symbol at the end of a signal
name to indicate that the signal's active state occurs when it is at a low voltage. This includes
80960 processor-related signal names that normally use an ovdtiaeabsence of the “#”
symbol indicates that the signal’s active state occurs when it is at a high voltage.

1.4.6 Solutions960® Program

Intel’s Solutions960® program features a wide variety of development tools that support the i960
processor family. Many of these tools are developed by partner companies; some are developed by
Intel, such as profile-driven optimizing compilers. For more information on these products,
contact your local Intel representative.
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1.4.7 Additional Information Sources

Intel documentation is available from your Intel Sales Representative or Intel Literature Sales.

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect IL 60056-7641
1-800-548-4725

Document Title Order / Contact
i960® Rx I/O Processor Specification Update Intel Order # 272918
i960® RP /O Processor (33 MHz, 5.0 Volt version) data sheet Intel Order # 272737
i960® RP/RD 1/O Processor at 3.3 Volts data sheet Intel Order # 273001

i960 RP Processor: A Single-Chip Intelligent I/O Subsystem

Technical Brief Intel Order # 272738

i960® Jx Microprocessor User’s Guide Intel Order # 272483
MultiProcessor Specification Intel Order # 242016

PCI Local Bus Specification, revision 2.1 PCI Special Interest Group 1-800-433-5177
PCI-to-PCI Bridge Architecture Specification Revision 1.0 PCI Special Interest Group 1-800-433-5177
PCI System Design Guide, Revision 1.0 PCI Special Interest Group 1-800-433-5177
C Peripherals for Microcontrollers Philips Semiconductor

12C Bus and How to Use It (Including Specifications) Philips Semiconductor

12C Peripherals for Microcontrollers (Including Fast Mode) Signetics
1.4.8 Electronic Information

Intel's World-Wide Web Home Page http://www.intel.com/

Wind River System’s IxWorks http://www.wrs.com/

1,0 Special Interest Group Web Site http://www.i20sig.org/
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STEPPING DIFFERENCES SUMMARY
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Table 1-1 identifies the sections in this document which contain information that is specific to an
individual stepping.

Table 1-1. Stepping Differences Summary

Section Description Page
8.3 Interrupt Controller Connections for 80960RP 33/5.0 Volt 8-23
8.3 Interrupt Controller Connections for 80960Rx 33/3.3 Volt 8-24

8.3.2 PCI Interrupt Routing Summary for 80960RP 33/5.0 Volt 8-26
8.3.2 PCI Interrupt Routing Summary for 80960RP 33/3.3 Volt 8-26
8.4.1 PCI Interrupt Routing Select Register — PIRSR (80960RP 33/5.0 Volt) 8-32
8.4.1 PCI Interrupt Routing Select Register — PIRSR (80960Rx 33/3.3 Volt) 8-32
154.1 Private Configuration Commands (Type 0) on the Secondary Interface 15-7
154.2 Private PCI Memory IDSEL Select Configurations 15-8

15.13.25 Secondary IDSEL Select Register - SISR 15-66

16.7.12 Determining Block Sizes for Base Address Registers 16-37
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DATA TYPES AND MEMORY ADDRESSING MODES

2.1

DATA TYPES

CHAPTER 2

The instruction set references or produces several data lengths and formats. The i960%° Rx 1/0

processor supports the following data types:

Integer (signed 8, 16 and 32 hits)
Long Word (64 bits)
Quad Word (128 bits)

Ordinal (unsigned integer 8, 16, and 32 bits)
Triple Word (96 bits)

Bit Field

Figure 2-1 illustrates the class, data type and length of each type supported by 1960 processors.

—_— 8
| | Bis
31 = Length Jk 16 [ z 0
Bits | Short
LSB of 15 0
Bit Field 32
Bits Word |
31 0
64
Bits Long |
63 0
| Triple Word |
95 0
| Quad Word |
127 0
Class Data Type Length Range
N ) Byte Integer 8 Bits 2"t0 2" -1
(Irl:trgggs Short Integer 16 Bits 2%t 2151
Integer 32 Bits 2810231 1
Byte Ordinal 8 Bits 0to28-1
Numeric Short Ordinal 16 Bits 0to216-1
(Ordinal) Ordinal 32 Bits 0to2%2-1
Long Ordinal 64 Bits Oto204-1
Bft A 1 Bit N/A
Bit Field 1-32 Bits
Non-Numeric Long Word 64 Bits
Triple Word 96 Bits
Quad Word 128 Bits

Figure 2-1. Data Types and Ranges
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211 Word/Dword Notation

Data lengths, as described in the PCl Loca Bus Specification, Revision 2.1, differs from the
conventions used for the 80960 architecture. See also Table 2-1:

« Inthe PCI specification the terword refers to a 16-bit block of data.

¢ In this manual and other documentation relating to the i960 Rx 1/O processor, thedetm
refers to a 32-bit block of data.

Table 2-1. 80960 and PCI Architecture Data Word Notation Differences

No. of Bits PCI Architecture 80960 Architecture
16 word short word or half word
32 doubleword or dword word
2.1.2 Integers

Integers are signed whole numbers that are stored and operated on in two’s complement format by
the integer instructions. Most integer instructions operate on 32-bit integers. Byte and short
integers are referenced by the byte and short classes of the load, store and compare instructions
only.

Integer load or store size (byte, short or word) determines how sign extension or data truncation is
performed when data is moved between registers and memory.

For instructionddib (load integer byte) andlis (load integer short), a byte or short word in
memory is considered a two’s complement value. The value is sign-extended and placed in the 32-
bit register that is the destination for the load.

Idib
7AH i s | oaded into a register as 0000 007AH
FAH i s | oaded into a register as FFFF FFFAH
Idis
O5A5H is |l oaded into a register as 0000 O05A5H
85A5H i s | oaded into a register as FFFF 85A5H

Example 2-1. Sign Extensions on Load Byte and Load Short
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For instructions stib (store integer byte) and stis (store integer short), a 32-bit two’s complement
number in a register is stored to memory as a byte or short word. When register data is too large tc
be stored as a byte or short word, the value is truncated and the integer overflow conditigayi
signalled. When an overflow occurs, either an AC register flag is set or the A
METIC.INTEGER_OVERFLOW fault is generated, depending on the Integer Overflow Ma
(AC.om) in the AC registelCHAPTER 9,FAULTS describes the integer overflow fault.

For instructionsd (load word) andt (store word), data is moved directly between memory and a
register with no sign extension or data truncation.

2.1.3 Ordinals

Ordinals or unsigned integer data types are stored and treated as positive binarfFialueg-1
shows the supported ordinal sizes.

The large number of instructions that perform logical, bit manipulation and unsigned arithmetic
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean values
1 = TRUE and 0 = FALSE. Most extended arithmetic instructions reference the long ordinal data
type. Only loadldob andidos), store §tob andstos), and compare ordinal instructions reference

the byte and short ordinal data types.

Sign and sign extension are not considered when ordinal loads and stores are performed; howeve
the values may be zero-extended or truncated. A short word or byte load to a register causes th
value loaded to be zero-extended to 32 bits. A short word or byte store to memory truncates an
ordinal value in a register to fit the destination memory. No overflow condition is signalled in this
case.

2.1.4 Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit fields
within register operands. An individual bit is specified for a bit operation by giving its bit number
and register. Internal registers always follow little endian byte order; the least significant bit is bit O
and the most significant bit is bit 31.

A bit field is any contiguous group of bits (up to 32 bits long) in a 32-bit register. Bit fields do not
span register boundaries. A bit field is defined by giving its length in bits (1-32) and the bit number
of its lowest numbered bit (0-31).

Loading and storing bit and bit-field data is normally performed using the ordinallttgdatd

store §to) instructions. When anli instruction loads a bit or bit field value into a 32-bit register,

the processor appends sign extension bits. A byte or short store can signal an integer overflow
condition.
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215 Triple and Quad Words

Triple and quad words refer to consecutive words in memory or in registers. Triple- and quad-
word load, store and move instructions use these data types to accomplish block movements. No
data manipulation (sign extension, zero extension or truncation) is performed in these instructions.

Triple- and quad-word data types can be considered a superset of the other data types described.
Datain each word subset of aquad word islikely to be the operand or result of an ordinal, integer,
bit or bit field instruction.

2.1.6 Register Data Alignment

Several instructions operate on multiple-word operands. For example, the load-long instruction
(Idl) loads two words from memory into two consecutive registers. Here the register number for
the least significant word is automatically loaded into the next higher-numbered register.

In cases where an instruction specifies a register number, and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an
integral multiple of four if three or four registers are accessed (e.g., g0, g4). When a register
reference for a source value is not properly aligned, the registers that the processor writes to are
undefined.

The 1960 Rx 1/O processor does not require data aignment in external memory; the processor
hardware handles unaligned memory accesses automatically. Optionally, user software can
configure the processor to generate afault on unaligned memory accesses.

2.1.7 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions.
These literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When aliteral is used
as an operand, the processor expands it to 32 hits by adding leading zeros. If the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If
aliteral isused in an instruction that requires integer operands, the processor treats the literal as a
positive integer value.

2.2 BIT AND BYTE ORDERING IN MEMORY

All occurrences of numeric and non-numeric data types, except bits and bit fields, must start on a
byte boundary. Any dataitem occupying multiple bytesis stored as little endian.
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2.3 MEMORY ADDRESSING MODES
Nine modes are available for addressing operands in memory. Each addressing mode is used to

reference a byte location in the processor’s address spade. 2-2shows the memory addressi
modes and a brief description of each mode’s address elements and assembly code syntax

Table 2-2. Memory Addressing Modes

Mode Description Assembler Syntax ;r;spte

Absolute offset | offset (smaller than 4096) exp MEMA
displacement| displacement (larger than 4095) exp MEMB

Register Indirect abase (reg) MEMB
with offset| abase + offset exp (reg) MEMA

with displacement| abase + displacement exp (reg) MEMB

with index| abase + (index*scale) (reg) [reg*scale] MEMB

with index and displacement| abase + (index*scale) + displacement | exp (reg) [reg*scale] | MEMB

Index with displacement (index*scale) + displacement exp [reg*scale] MEMB
:;zg;itle(;r]\e[;(imter (IP) with IP + displacement + 8 exp (IP) MEMB

NOTE: reg is register, exp is an expression or symbolic label, and IP is the Instruction Pointer.

SeeTable B-9.,MEM Format Instruction Encoding®g. B-9)for more on addressing modes. For
purposes of this memory addressing modes description, MEMA format instructions require one
word of memory and MEMB usually require two words and therefore consume twice the bus
bandwidth to read. Otherwise, both formats perform the same functions.

2.3.1 Absolute

Absolute addressing modes allow a memory location to be referenced directly as an offset from
address OH. At the instruction encoding level, two absolute addressing modes are provided:
absolute offset and absolute displacement, depending on offset size.

« For the absolute offset addressing mode, the offset is an ordinal number ranging from 0 to
4095. The absolute offset addressing mode is encoded in the MEMA machine instruction
format.

* For the absolute displacement addressing mode, the offset value ranges frofA-0. toHe
absolute displacement addressing mode is encoded in the MEMB format.

Addressing modes and encoding instruction formats are describedHAPTER 6,
INSTRUCTION SET REFERENCE
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At the assembly language level, the two absolute addressing modes use the same syntax.
Typically, development tools allow absolute addresses to be specified through arithmetic
expressions (e.g., x +44) or symbolic labels. After evaluating an address specified with the
absolute addressing mode, the assembler converts the address into an offset or displacement and
selects the appropriate instruction encoding format and addressing mode.

2.3.2 Register Indirect

Register indirect addressing modes use a register's 32-bit value as a base for address calculation.
The register value is referred to as the address base (designated “abiase 9. Depending
on the addressing mode, an optional scaled index and offset can be added to this address base.

Register indirect addressing modes are useful for addressing elements of an array or record
structure. When addressing array elements, the abase value provides the address of the first array
element. An offset (or displacement) selects a particular array element.

In register-indirect-with-index addressing mode, the index is specified using a value contained in a
register. This index value is multiplied by a scale factor. Allowable factors are 1, 2, 4, 8 and 16.
The register-indirect-with-index addressing mode is encoded in the MEMA format.

The two versions of register-indirect-with-offset addressing mode at the instruction encoding level
are register-indirect-with-offset and register-indirect-with-displacement. As with absolute
addressing modes, the mode selected depends on the size of the offset from the base address.

At the assembly language level, the assembler allows the offset to be specified with an expression
or symbolic label, then evaluates the address to determine whether to use register-indirect-with-
offset (MEMA format) or register-indirect-with-displacement (MEMB format) addressing mode.

Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a
displacement to the address base. There is only one version of this addressing mode at the
instruction encoding level, and it is encoded in the MEMB instruction format.

2.3.3 Index with Displacement
A scaled index can also be used with a displacement alone. Again, the index is contained in a

register and multiplied by a scaling constant before displacement is added. This mode uses MEMB
format.
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2.34 IP with Displacement

This addressing mode is used with load and store instructions to make them instruction pointer (IP)

relative. IP-with-displacement addressing mode references the next instruction’s address
displacement plus a constant of 8. The constant is added because, in a typical processor i
tation, the address has incremented beyond the next instruction address at the time of addres
calculation. The constant simplifies IP-with-displacement addressing mode implementation. This

mode uses MEMB format.

2.35 Addressing Mode Examples

The following examples show how i960 processor addressing modes are encoded in assembly
languageExample 2-2shows addressing mode mnemoniesample 2-3llustrates the usefulness

of scaled index and scaled index plus displacement addressing modes. In this example, a procedur
named array_op uses these addressing modes to fill two contiguous memory blocks separated by
constant offset. A pointer to the top of the block is passed to the procedure in g0, the block size is
passed in g1 and the fill data in g2. RefeARBPENDIX A, MACHINE-LEVEL INSTRUCTION
FORMATS.

st g4, xyz Absolute; word fromg4 stored at nmenory
| ocati on designated with | abel xyz.
ldob (r3),r4 Regi ster indirect; ordinal byte from

menory | ocation given in r3 | oaded

into register r4 and zero extended.

Regi ster indirect with di splacement;
double word from g6, g7 stored at menory
| ocation xyz + g5.

Regi ster indirect with index; quad-word
begi nning at menory location r8 + (r9
scaled by 4) loaded into r4 through r7.
Regi ster indirect with index and

di spl acenment; word in g3 stored to nem
location g4 + xyz + (g5 scaled by 2).
Index with displacenent; |oad short
integer at nenory location xyz + ri2
into rl13 and sign extended.

IP with di splacement; store word in r4
at menory location IP + xyz + 8.

st g6, xyz(gb)

ldq (r8)[r9*4],r4

st 03, xyz(g4)[ g5*2]

Idis xyz[r12*2],r13

st r4,xyz(1P)

HHFHRIFHFHEHFHFHFHFRFHHFHEHEHRHH

Example 2-2. Addressing Mode Mnemonics
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array_op:
nov g0, r4
subi  1,91,r3
b . 133

.1 34:

st g2, (r4)[r3*4]
st g2, 0x30(r4)[r3*4]

subi  1,r3,r3

.133:
cnpi bl e
ret

0,r3,.134

H* H

#

* #

Pointer to array is copied to r4
Cal cul ate index for the last array
elenent to be filled

Fill elenment at index
Fill elenment at index+constant offset
Decrenent i ndex

Store next array elenents if
index is not O

Example 2-3. Scaled Index and Scaled Index Plus Displacement Addressing Modes
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CHAPTER 3
PROGRAMMING ENVIRONMENT

This chapter describes the i960%® Rx 1/0 processor's programming environment including glob
and local registers, control registers, literals, processor-state registers and address space.

3.1 OVERVIEW

The 1960 architecture defines a programming environment for program execution, data storage and
data manipulationFigure 3-1 shows the programming environment elements that include a

4 Gbyte (?2 byte) flat address space, an instruction cache, a data cache, global and local general-
purpose registers, a register cache, a set of literals, control registers and a set of processor sta
registers.

The processor includes several architecturally-defined data structures located in memory as part o
the programming environment. These data structures handle procedure calls, interrupts and fault:
and provide configuration information at initialization. These data structures are:

e interrupt stack e control table e system procedure table
¢ local stack o fault table e process control block

e supervisor stack e interrupt table e initialization boot record
3.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS

With the exception of a few special instructions, the i960 Rx 1/0O processor uses only simple load

and store instructions to access memory. All operations take place at the register level. The
processor uses 16 global registers, 16 local registers and 32 literals (constants 0-31) as instructiol
operands.

The global register numbers are g0 through g15; local register numbers are r0 through rl15. Severa
of these registers are used for dedicated functions. For example, register r0 is the previous frame
pointer, often referred to gifp. i960 processor compilers and assemblers recognize only the
instruction operands listed ifable 3-1 Throughout this manual, the registers’ descriptive names,
numbers, operands and acronyms are used interchangeably, as dictated by context.
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. 1
1
1
Address Space
Architecturally
Defined
Data Structures
I
Fetch
Instruction
Cache
Load Store
Instruction
Stream
Instruction
Execution
Processor State St 2.5t 90
- ixteen 32-Bi
Registers Global Registers g15
Instruction -
Pointer Register Cache
Arithmetic Sixteen 32-Bit 0
Controls Local Registers r15
Process
Controls
Trace Control Registers
Controls

Figure 3-1. i960% Rx I/0 Processor Programming Environment

3.2.1 Global Registers

Global registers are genera-purpose 32-bit data registers that provide temporary storage for a
program’s computational operands. These registers retain their contents across procedure
boundaries. As such, they provide a fast and efficient means of passing parameters between
procedures.
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Table 3-1. Registers and Literals Used as Instruction Operands

Instruction Operand Register Name (number) Function Acronym
g0-gl4 global (g0-g14) general purpose
fp global (g15) frame pointer FP
pfp local (r0) previous frame pointer PFP
sp local (r1) stack pointer SP
rip local (r2) return instruction pointer RIP
r3-rl5 local (r3-r15) general purpose
0-31 literals

The 1960 architecture supplies 16 global registers, designated g0 through gl15. Register g15 is
reserved for the current Frame Pointer (FP), which contains the address of the first byte in the
current (topmost) stack frame in interna memory. See section7.1, CALL AND RETURN
MECHANISM (pg. 7-2) for a description of the FP and procedure stack.

After the processor is reset, register g0 contains the i960 core processor device identification and
stepping information. go retains this information until it is written over by the user program. The
1960 core processor device identification and stepping information is also stored in the memory-
mapped DEVICEID register located at FFO0 8710H. In addition, the i960 Rx 1/O processor device
identification and stepping information is stored in the memory-mapped register located at
0000 17COH.

3.2.2 Local Registers

The 960 architecture provides a separate set of 32-bit local dataregisters (r0 through r15) for each

active procedure. These registers provide storage for variables that are local to a procedure. Each

time a procedure is called, the processor allocates a new set of local registers and saves the calling
procedure’s local registers. When the application returns from the procedure, the local registers are
released for the next procedure call. The processor performs local register management; a prograr
need not explicitly save and restore these registers.

r3 through rl5 are general purpose registers; rO through r2 are reserved for special functions; rQ
contains the Previous Frame Pointer (PFP); rl contains the Stack Pointer (SP); r2 contains the
Return Instruction Pointer (RIP). These are discuss€HAPTER 7,PROCEDURE CALLS

The processor does not always clear or initialize the set of local registers assigned to a new

procedure. Also, the processor does not initialize the local register save area in the newly createc
stack frame for the procedure. User software should not rely on the initial values of local registers.
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3.2.3 Register Scoreboarding

Register scoreboarding maintains register coherency by preventing parallel execution units from
accessing registers for which there is an outstanding operation. When an instruction that targets a
destination register or group of registers executes, the processor sets a register-scoreboard bit to
indicate that this register or group of registersisbeing used in an operation. If the instructions that
follow do not require data from registers already in use, the processor can execute those instruc-
tions before the prior instruction execution completes.

Software can use this feature to execute one or more single-cycle instructions concurrently with a
multi-cycle instruction (e.g., multiply or divide). Example 3-1 shows a case where register score-
boarding prevents a subsequent instruction from executing. It aso illustrates overlapping instruc-
tions that do not have register dependencies.

Example 3-1. Register Scoreboarding
muli r4,r5r6 # r6 is scoreboarded
addi r6,r7,r8 # addi nust wait for the previous nultiply
# to complete

muli r4,r5,r10 # r10 is scoreboarded
and r6,r7,r8 # and instruction is executed concurrently with

3.2.4 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions.
These literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used
as an operand, the processor expands it to 32 bits by adding leading zeros. If the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If
aliteral isused in an instruction that requires integer operands, the processor treats the literal as a
positive integer value.

3.25 Register and Literal Addressing and Alignment

Several instructions operate on multiple-word operands. For example, the load long instruction
(Idl) loads two words from memory into two consecutive registers. The register for the less
significant word is specified in the instruction. The more significant word is automatically loaded
into the next higher-numbered register.

3-4 I



intel.

PROGRAMMING ENVIRONMENT

In cases where an instruction specifies a register number and multiple consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an
integral multiple of 4 if three or four registers are accessed (e.g., g0, g4). If aregister reference for

a source vaue

is not properly aligned,

the source value

is undefined and an

OPERATION.INVALID_OPERAND fault is generated. If a register reference for a destination
value is not properly aigned, the registers to which the processor writes and the values written are

undefined. The processor then generates an OPERATION.INVALID_OPERAND fault. The

assembly language code in Example 3-2 shows an example of correct and incorrect register

alignment.
Example 3-2. Register Alignment
nmovl g3,g8 # Incorrect alignnent - resulting val ue
. # in registers g8 and g9 is
# unpredictabl e (non-aligned source)
nmovl g4, g8 # Correct alignment

Global registers, local registers and literals are used directly asinstruction operands. Table 3-2 lists

instruction operands for each machine-level instruction format and the positions that can be filled
by each register or literal.

Table 3-2. Allowable Register Operands

Operand?
Instruc?lon Operand Field Local Register Global Register Literal
Encoding
REG srcl X X X
src2 X X X
src/dst (as src) X X X
src/dst (as dst) X X
src/dst (as both) X X
MEM src/dst X X
abase X X
index X X
COBR srcl X X
src2 X X X
dst X? X? X?
NOTES:

1. “X” denotes the register can be used as an operand in a particular instruction field.
2. TheCOBR destination operands apply onlyT&ST instructions.
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3.3 MEMORY-MAPPED CONTROL REGISTERS (MMRs)

The i960 Rx /0 processor gives software the interface to easily read and modify internal control
registers. Each of these registers is accessed as a memory-mapped register with a unique memory
address. There are two distinct sets of memory-mapped registers on the 80960Rx. The first set
exists in the FFOO 0000H through FFFF FFFFH address range and is used to control the i960 core
processor functions. The second set exists in the 0000 1000H through 0000 17FFH address range
and is used to control the 80960Rx integrated peripherals. The processor ensures that accesses to
MMRs do not generate external bus cycles.

3.3.1 i960% Core Processor Function Memory-Mapped Registers

Portions of the 1960 Rx [/O processor address space (addresses FFOO O000H through
FFFF FFFFH) are reserved for memory-mapped registers. These memory-mapped registers are
accessed through word-operand memory instructions (atmod, atadd, sysctl, Id and st instruc-
tions) only. Accesses to this address space do not generate external bus cycles. The latency in
accessing each of these registersis onecycle.

Each register has an associated access mode (user and supervisor modes) and access type (read
and write accesses). Table C-2 and Table C-3 show al the memory-mapped registers and the
application modes of access.

The registers are partitioned into user and supervisor spaces based on their addresses. Addresses
FFOO 0000H through FFOO 7FFFH are allocated to user space memory-mapped registers,
Addresses FFO0 8000H to FFFF FFFFH are allocated to supervisor space registers.

3.3.1.1 Restrictions on Instructions that Access the i960® Core Processor
Memory-Mapped Registers

The mgjority of memory-mapped registers can be accessed by both load (Id) and store (st) instruc-
tions. However some registers have restrictions on the types of accesses they allow. To ensure
correct operation, the access type restrictions for each register should be followed. The accesstype
columns of Table C-2 and Table C-3 indicate the allowed access types for each register.

Unless otherwise indicated by its access type, the modification of a memory-mapped register by a
st instruction takes effect completely before the next instruction starts execution.

Some operations require an atomic-read-modify-write sequence to aregister, most notably IPND
and IMSK. The atmod and atadd instructions provide a special mechanism to quickly modify the
IPND and IMSK registers in an atomic manner on the i960 Rx 1/O processor. Do not use this
instruction on any other memory-mapped registers.
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The sysctl instruction can also modify the contents of a memory-mapped register atomically; in
addition, sysctl is the only method to read the breakpoint registers on the i960 Rx 1/0O processor;
the breakpoints cannot be read using ald instruction.

At initialization the control table is automatically loaded into the on-chip control registers. This
action simplifies the user’'s start-up code by providing a transparent setup of the procs
peripherals. SeEHAPTER 11 INITIALIZATION AND SYSTEM REQUIREMENTS. 3

3.3.1.2 Access Faults for i960® Core Processor MMRs

Memory-mapped registers are meant to be accessed only as aligned, word-size registers with
adherence to the appropriate access mode. Accessing these registers in any other way results in
faults or undefined operation. An access is performed using the following fault mode!:

1. The access must be aword-sized, word-aligned access; otherwise, the processor generates an
OPERATION.UNIMPLEMENTED fault.

2. If the access is a store in user mode to an implemented supervisor location, a
TYPE.MISMATCH fault occurs. It is unpredictable whether a store to an unimplemented
supervisor location causes a fault.

3. If the access is neither of the above, the access is attempted. Note that an MMR may
generate faults based on conditions specific to that MMR. (Example: trying to write the
timer registersin user mode when they have been allocated to supervisor mode only.)

4, When a store access to an MMR faults, the processor ensures that the store does not take
effect.

5. A load access of areserved |location returns an unpredictable value.

6. Avoid any store accesses to reserved locations. Such a store can result in undefined
operation of the processor if the location isin supervisor space.

Instruction fetches from the memory-mapped register space are not allowed and result in an
OPERATION.UNIMPLEMENTED faulilt.

3.3.2 i960® Rx I/0 Processor Peripheral Memory-Mapped Registers

The Peripheral Memory-Mapped Register (PMMR) interface gives software the ability to read and
modify internal control registers. Each of these 32-hit registers is accessed as a memory-mapped
register with a unique memory address, using regular memory-format instructions from the 1960
core processor. See APPENDIX C, MEMORY-MAPPED REGISTERS.
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The memory-mapped registers discussed in this chapter are specific to the i960 Rx 1/O processor
only. They support the DMA controller, memory controller, PCl and peripheral interrupt
controller, messaging unit, local bus arbitration unit, PCI to PCI bridge unit, and PCl address
translation unit, 1°C bus interface unit, and the APIC bus interface unit. This manual provides
chapters that fully describe each of these peripherals.

The PMMR interface (addresses 0000 1000H through 0000 17FFH) provides full accessibility
from the primary ATU, secondary ATU, and the i960 core processor.

3.3.21 Accessing The Peripheral Memory-Mapped Registers

The PMMR interface is a slave device connected to the 80960 loca bus. This interface accepts
data transactions that appear on the 80960 local bus from the Primary ATU, Secondary ATU, and
the 960 core processor. The PMMR interface allows these devices to perform read, write, or read-
modify-write transactions.

The PMMR interface does not support multi-word burst accesses from any bus master. The
PMMR interface supports 32-bit bus width transactions only. Because of this, PMCONO:1 must
be configured as a 32-bit memory region for accesses that originate from the i960 core processor.

The PMMR interface is byte addressable. For PMMR reads, al accesses are promoted to word
accesses and al data bytes are returned. The byte enables generated by the bus masters when
performing PMMR write cycles indicate which data bytes are valid on the internal 80960 local

bus. However, there may be requirements from the individual units that interface to the PMMR.

For example, when configuring the DMA channel’s control register, a full 32-bit write must be
performed to configure and restart the DMA channel. These restrictions are highlighted in the
chapters describing the integrated peripheral units.

The PMMR interface supports the 80960 local bus atomic operations from the i960 core
processor. The i960 core processor provigesod (atomic modify) andatadd (atomic add)
instructions for atomic accesses to memory. When the 80960 processor execattesdaior

atadd instruction, the LOCK# signal is asserted. The 80960 local bus is not granted to any other
bus master until the LOCK# signal is deasserted. This prevents other bus masters from accessing
the PMMR interface during a locked operation.

All PMMR transactions are allowed from i960 core processor operating in either user mode or
supervisor mode. In addition, the PMMR does not provide any access fault to the i960 core
processor.

The following PMMR registers have read/write access from the 80960 local bus (for both the PCI
Bridge and ATU):

« Vendor ID register

« Device ID register
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¢ Revision ID register

e Class Code register

* Header Type register

« Bridge Subsystem ID register

» Bridge Subsystem Vendor ID register

For accesses through PCI configuration cycles, access is specified in the register definition located
in the appropriate chapter.

For PCI configuration read transactions, the PMMR returns a zero value for reserved registers. For
PCI configuration write transactions, the PMMR discards the data. For all other accesses, reading
or writing a reserved register is undefined. Seéle C-2and Table C-3for register memory
locations.

3.4 ARCHITECTURALLY DEFINED DATA STRUCTURES

The architecture defines a set of data structures including stacks, interfaces to system procedure:
interrupt handling procedures and fault handling proceduissge 3-3defines the data structures
and references other sections of this manual where detailed information can be found.

The 1960 Rx I/O processor defines two initialization data structures: the Initialization Boot Record
(IBR) and the Process Control Block (PRCB). These structures provide initialization data and
pointers to other data structures in memory. When the processor is initialized, these pointers are
read from the initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control table
are specified in the processor control block. Supervisor stack location is specified in the system
procedure table. User stack location is specified in the user’s startup code. Of these structures, onl
the system procedure table, fault table, control table and initialization data structures may be in
ROM,; the interrupt table and stacks must be in RAM. The interrupt table must be located in RAM
to allow posting of software interrupts.
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Table 3-3. Data Structure Descriptions

Structure (see section) Description

User and Supervisor Stacks The processor uses these stacks when executing application code.

7.6, USER AND SUPERVISOR
STACKS (pg. 7-18)

Interrupt Stack A separate interrupt stack is provided to ensure that interrupt handling
does not interfere with application programs.

8.1.5, Interrupt Stack And Interrupt
Record (pg. 8-6)

System Procedure Table Contains pointers to system procedures. Application code uses the
3.7. USER-SUPERVISOR system call instruction (calls) to access system procedures through
PROTECTION MODEL (pg. 3-21) this table. A system supervisor call switches execution mode from user
mode to supervisor mode. When the processor switches modes, it also
switches to the supervisor stack.

7.5, SYSTEM CALLS (pg. 7-15)

Interrupt Table The interrupt table contains vectors (pointers) to interrupt handling

8.1.4, Interrupt Table (pg. 8-4) procedures. When an interrupt is serviced, a particular interrupt table
entry is specified.

Fault Table Contains pointers to fault handling procedures. When the processor

9.3. FAULT TABLE (pa. 9-4) detects a fault, it selects a particular entry in the fault table. The archi-

tecture does not require a separate fault handling stack. Instead, a
fault handling procedure uses the supervisor stack, user stack or
interrupt stack, depending on the processor execution mode in which
the fault occurred and the type of call made to the fault handling

procedure.
Control Table Contains on-chip control register values. Control table values are
11.4.4. Control Table (pa. 11-21) moved to on-chip registers at initialization or with sysctl.
35 MEMORY ADDRESS SPACE

The 1960 Rx /O processor’'s local address space is byte-addressable with addresses running
contiguously from 0 to %.1. Some memory space is reserved or assigned special functions as
shown inFigure 3-2
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Address
0000 0000H NMI Vector
0000 0004H
Optional Interrupt Vectors Internal

0000 oosm{ P P { Data RAM
0000 0040H

? Available for Data ?
8000 400t

—_ i960 Rx I/O Processor Reserved —
0000 OFFFH
0000 1000H

—— Peripheral Memory-mapped Registers _/‘_
0000 17FFH
0000 1800H

_ 1960 Rx I/O Processor Reserved 4I7
0000 1FFFH
0000 2000H

Z Code/Data _—

Architecturally Defined Data Structures
External Memory
FEFF FF2FH
FEFF FF30H
Initialization Boot Record (IBR) ﬁ_

FEFF FF5FH
FEFF FF60H

} Reserved Memory }
FEFF FFFFH
FFOO 0000H

1960 Core Processor
Memory-Mapped R

Z Register Space Z Aszz\s/:d

FFFF FFFFH Space

Figure 3-2. Local Memory Address Space

Physical addresses can be mapped to read-write memory, read-only memory and memory-mapped

1/0. The architecture does not define a dedicated, addressable I/0 space. There are no subdivisions

of the address space such as segments. For memory management, an external memory
management unit (MMU) may subdivide memory into pages or restrict access to certain areas of

memory to protect a kernel's code, data and stack. However, the processor views this addres:
space as linear.
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An address in memory is a 32-bit value in the range OH to FFFF FFFFH. Depending on the
instruction, an address can reference in memory a single byte, short word (2 bytes), word
(4 bytes), double word (8 bytes), triple word (12 bytes) or quad word (16 bytes). Refer to load and
store instruction descriptions in CHAPTER 6, INSTRUCTION SET REFERENCE for multiple-
byte addressing information.

35.1 Memory Requirements

The architecture requires that external memory have the following properties:
Memory must be byte-addressable.

« Physical memory must not be mapped to reserved addresses that are specifically used by the
processor implementation.

« Memory must guarantee indivisible access (read or write) for addresses that fall within 16-
byte boundaries.

« Memory must guarantee atomic access for addresses that fall within 16-byte boundaries.

The latter two capabilitiesindivisible and atomic access, are required only when multiple
processors or other external agents, such as DMA or graphics controllers, share a common
memory.

indivisible access Guarantees that a processor, reading or writing a set of memory locations,
complete the operation before another processor or external agent can read
or write the same location. The processor requires indivisible access within
an aligned 16-byte block of memory.

atomic access A read-modify-write operation. Here the external memory system must
guarantee that once a processor begins a read-modify-write operation on an
aligned, 16-byte block of memory it is allowed to complete the operation
before another processor or external agent can access to the same location.
An atomic memory system can be implemented by using the LOCK# signal
to qualify hold requests from external bus agents. The processor asserts
LOCK# for the duration of an atomic memory operation.

The upper 16 Mbytes of the address space (addresses FF00 0000H through FFFF FFFFH and
0000 1000H through 0000 017FFH) are reserved for implementation-specific functions. i960 Rx
I/0 processor programs cannot use this address space except for accesses to memory-mapped
registers. The processor does not generate any external bus cycles to this memory. As shown in
Figure 3-2 part of the initialization boot record is located just below the 1960 Rx I/O processor’'s
reserved memory.
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The 1960 Rx 1/0O processor requires some special consideration when using the lower 1 Kbyte of
address space (addresses 0000H 03FFH). Loads and stores directed to these addresses access
internal memory; instruction fetches from these addresses are not allowed by the processor. See
section 4.1, INTERNAL DATA RAM (pg.4-1). No externa bus cycles are generated to this
address space.

3

3.5.2 Data and Instruction Alignment in the Address Space -

Instructions, program data and architecturally defined data structures can be placed anywhere in

non-reserved address space while adhering to these alignment requirements:

< Align instructions on word boundaries.

« Align all architecturally defined data structures on the boundaries specifiexbia 3-4

< Align instruction operands for the atomic instructioasdd, atmod) to word boundaries in
memory.

The 1960 Rx I/O processor can perform unaligned load or store accesses. The processor handles

non-aligned load or store request by:

« Automatically servicing a non-aligned memory access with microcode assistance as described
in sectionl2.4.2,Bus Transactions Across Region Bounda(jEs 12-7)

« After the access completes, the processor can generate an OPERATION.UNALIGNED fault,
if directed to do so.

The method of handling faults is selected at initialization based on the value of the Fault Configu-
ration Word in the Process Control Block. Semction 11.4.2Process Control Block PRCB
(pg.11-17)

Table 3-4. Alignment of Data Structures in the Address Space

Data Structure Alignment Boundary
System Procedure Table 4 byte
Interrupt Table 4 byte
Fault Table 4 byte
Control Table 16 byte
User Stack 16 byte
Supervisor Stack 16 byte
Interrupt Stack 16 byte
Process Control Block 16 byte

Initialization Boot Record Fixed at FEFF FF30H
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3.5.3 Byte, Word and Bit Addressing

The processor provides instructions for moving data blocks of various lengths from memory to
registers (Id) and from registers to memory (st). Supported sizes for blocks are bytes, short words
(2 bytes), words (4 bytes), double words, triple words and quad words. For example, stl (store
long) stores an 8-byte (double word) data block in memory.

The most efficient way to move data blocks longer than 16 bytes is to move them in quad-word
increments, using quad-word instructionsdqg and stq.

When a data block is stored in memory, the block’s least significant byte is stored at a base
memory address and the more significant bytes are stored at successively higher byte addresses.
This method of ordering bytes in memory is referred to as “little endian” ordering.

When loading a byte, short word or word from memory to a register, the block’s least significant
bit is always loaded in register bit 0. When loading double words, triple words and quad words,
the least significant word is stored in the base register. The more significant words are then stored
at successively higher-numbered registers. Individual bits can be addressed only in data that
resides in a register: bit 0 in a register is the least significant bit, bit 31 is the most significant bit.

354 Internal Data RAM

The i960 Rx I/O processor has 1 Kbyte of on-chip data RAM. Only data accesses are allowed in
this region. Portions of the data RAM can also be reserved for functions such as caching interrupt
vectors. The internal RAM is fully described GHAPTER 4,CACHE AND ON-CHIP DATA

RAM.

355 Instruction Cache

The instruction cache enhances performance by reducing the number of instruction fetches from
external memory. The cache provides fast execution of cached code and loops of code in the cache
and also provides more bus bandwidth for data operations in external memory. The i960 Rx 1/O
processor instruction cache is a 4 Kbyte, two-way set associative cache, organized in two sets of
four-word lines.

3.5.6 Data Cache

The data cache on the i960 Rx I/O processor is a write-through 2-Kbyte direct-mapped cache. For
more information, seEHAPTER 4,CACHE AND ON-CHIP DATA RAM.
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3.6 PROCESSOR-STATE REGISTERS

The architecture defines four 32-bit registers that contain status and control information:

e Instruction Pointer (IP) register »  Arithmetic Controls (AC) register
« Process Controls (PC) register « Trace Controls (TC) register
3.6.1 Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This address is
32 bitslong; however, since instructions are required to be aligned on word boundariesin memory,
the IP’s two least-significant bits are always 0 (zero).

All 1960 processor instructions are either one or two words long. The IP gives the address of the
lowest-order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mode lets
software use the IP as an offset into the address space. This addressing mode can also be used w
thelda (load address) instruction to read the current IP value.

When a break occurs in the instruction stream due to an interrupt, procedure call or fault, the
processor stores the IP of the next instruction to be executed in local register r2, which is usually
referred to as the return IP or RIP register. RefeCtAPTER 7,PROCEDURE CALL Sfor

further discussion.
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3.6.2 Arithmetic Controls Register — AC

The AC register (Table 3-5) contains condition code flags, integer overflow flag, mask bit and a
bit that controls faulting on imprecise faults. Unused AC register bits are reserved.

Table 3-5. Arithmetic Controls Register — AC

31 28 24 20 16 12 8 4 0
n clc|c
i r?1 ? clc|c
f 2(1]0

No-Imprecise-Faults Bit- AC.nif g

(0) Some Faults are Imprecise
(1) All Faults are Precise

Integer Overflow Mask Bit - AC.om
(0) No Mask
(1) Mask

Integer-Overflow Flag - AC.of
(0) No Overflow
(1) Overflow

Condition Code Bits - AC.cc
Reserved
(Initialize to 0)

3.6.2.1 Initializing and Modifying the AC Register

At initialization, the AC register isloaded from the Initial AC image field in the Process Control
Block. Set reserved bitsto 0 in the AC Register Initial Image. Refer to CHAPTER 11, INITIAL-
IZATION AND SYSTEM REQUIREMENTS.

After initialization, software must not modify or depend on the AC register’s initial image in the
PRCB. Software can use the modify arithmetic contrelsd@c) instruction to examine and/or
modify any of the register bits. This instruction provides a mask operand that lets user software
limit access to the register’s specific bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrupt or
handles a fault. The processor saves the current AC register state in an interrupt record or fault
record, then restores the register upon returning from the interrupt or fault handler.
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3.6.2.2 Condition Code (AC.cc)

The processor sets the AC registedadition code flags (bits 0-2) to indicate the results of certain
instructions, such as compare instructions. Other instructions, such as conditional branch instruc-
tions, examine these flags and perform functions as dictated by the state of the condition code
flags. Once the processor sets the condition code flags, the flags remain unchanged until
instruction executes that modifies the field.

Condition code flags show true/false conditions, inequalities (greater than, equal or less than
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show true
or false conditions, the processor sets the flags as showabile 3-6 To show equality and
inequalities, the processor sets the condition code flags as shawhlan3-7

Table 3-6. Condition Codes for True or False Conditions

Condition Code Condition
010, true
000, false

Table 3-7. Condition Codes for Equality and Inequality Conditions

Condition Code Condition
000, unordered
001, greater than
010, equal
100, less than

The termunordered is used when comparing floating point numbers. The 1960 Rx 1/O processor
does not implement on-chip floating point processing.

To show carry out and overflow, the processor sets the condition code flags as shane i8-8

Table 3-8. Condition Codes for Carry Out and Overflow

Condition Code Condition
01X, carry out
0X1, overflow
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Certain instructions, such as the branch-if instructions, use a 3-bit mask to evaluate the condition
code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask of 011, to
determine if the condition code is set to either greater-than or equal. Conditional instructions use
similar masks for the remaining conditions such as: greater-or-equal (011,), less-or-equal (110,)
and not-equal (101,). The mask is part of the instruction opcode; the instruction performs a
bitwise AND of the mask and condition code.

The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in
conjunction with the ARITHMETIC.INTEGER_OV ERFLOW fault. The mask bit disables fault
generation. When the fault is masked and integer overflow is encountered, the processor sets the
integer overflow flag instead of generating afault. If the fault is not masked, the fault is allowed to
occur and the flag is not set.

Once the processor sets this flag, the flag remains set until the application software clears it. Refer
to the discussion of the ARITHMETIC.INTEGER_OVERFLOW fault in CHAPTER 9, FAULTS
for more information about the integer overflow mask bit and flag.

The no imprecise faults (AC.nif) bit (bit 15) determines whether or not faults are allowed to be
imprecise. If set, all faults are required to be precise; if clear, certain faults can be imprecise. See
section 9.9, PRECISE AND IMPRECISE FAULTS (pg. 9-20) for more information.
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3.6.3 Process Controls Register — PC

The PC register (Table 3-9) is used to control processor activity and show the processor’s current
state. The PC registexecution mode flag (bit 1) indicates that the processor is operating in either
user mode (0) or supervisor mode (1). The processor automatically sets this flag on a system cal
when a switch from user mode to supervisor mode occurs and it clears the flag on a retu
supervisor mode. (User and supervisor modes are describedtion 3.7USER—SUPERVISOR-
PROTECTION MODEL(pg. 3-21)

Table 3-9. Process Controls Register — PC

Trace-Enable Bit - PC.te
(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em
(0) user mode
(1) supervisor mode

Trace-Fault-Pending - PC.tfp
(0) no fault pending

(1) fault pending
State Flag - PC.s

(0) executing

(1) interrupted

Priority Field - PC.p
(0-31) process priority L
1 4 Y
t
ple|p|r|p s f e |t
413f2]1]0 m|e
p
31 28 24 20 16 12 8 4 0

Reserved
(Do not modify)

PC registestate flag (bit 13) indicates the processor state: executing (0) or interrupted (1). If the
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor’'s state is
executing.

While in the interrupted state, the processor can receive and handle additional interrupts. When
nested interrupts occur, the processor remains in the interrupted state until all interrupts are
handled, then switches back to the executing state on the return from the initial interrupt procedure.
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The PC register priority field (bits 16 through 20) indicates the processor’s current executing or
interrupted priority. The architecture defines a mechanism for prioritizing execution of code,
servicing interrupts and servicing other implementation-dependent tasks or events. This
mechanism defines 32 priority levels, ranging from 0 (the lowest priority level) to 31 (the highest).
The priority field always reflects the current priority of the processor. Software can change this
priority by use of thenodpc instruction.

The processor uses the priority field to determine whether to service an interrupt immediately or to
post the interrupt. The processor compares the priority of a requested interrupt with the current
process priority. When the interrupt priority is greater than the current process priority or equal to
31, the interrupt is serviced; otherwise it is posted. When an interrupt is serviced, the process
priority field is automatically changed to reflect interrupt priority. SEelAPTER 8,
INTERRUPTS

The PC registetrace enable bit (bit 0) andtrace fault pending flag (bit 10) control the tracing
function. The trace enable bit determines whether trace faults are globally enabled (1) or globally
disabled (0). The trace fault pending flag indicates that a trace event has been detected (1) or not
detected (0). The tracing functions are further describe@HAPTER 10, TRACING AND
DEBUGGING

3.6.3.1 Initializing and Modifying the PC Register

Any of the following three methods can be used to change bits in the PC register:
* Modify process controls instructiomgdpc)
« Alter the saved process controls prior to a return from an interrupt handler or fault handler

Themodpc instruction reads and modifies the PC register directly. A TYPE.MISMATCH fault
results if software executesodpc in user mode with a non-zero mask. As withdac, modpc
provides a mask operand that can be used to limit access to specific bits or groups of bits in the
register. In user mode, software can mselpc to read the current PC register.

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt or
fault record that is saved on the stack. Upon return from the interrupt or fault handler, the modified
process controls are copied into the PC register. The processor must be in supervisor mode prior to
return for modified process controls to be copied into the PC register.

When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: rifodpc is used to change the trace enable bit, the
processor may not recognize the change before the next four non-branch instructions are executed.
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After initialization (hardware reset), the process controls reflect the following conditions:

e priority = 31 e execution mode = supervisor
e trace enable = disabled » state = interrupted

e no trace fault pending

3
When the processor is reinitialized with a sysctl reinitialize message, the PC register is not -
changed.

Software should not use modpc to modify execution mode or trace fault state flags except under
specia circumstances, such asin initialization code. Normally, execution mode is changed through
the call and return mechanism. See section 6.2.43, modpc (pg. 6-78) for more details.

3.6.4 Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enabl e bits and trace event flags that are used to enabl e specific tracing modes
and record trace events, respectively. Trace controls are described in CHAPTER 10, TRACING
AND DEBUGGING.

3.7 USER-SUPERVISOR PROTECTION MODEL

The processor can be in either of two execution modes: user or supervisor. The capability of a
separate user and supervisor execution mode creates a code and data protection mechanism
referred to as the user-supervisor protection model. This mechanism allows code, data and stack
for akernd (or system executive) to reside in the same address space as code, data and stack for
the application. The mechanism restricts accessto all or parts of the kernel by the application code.
This protection mechanism prevents application software from inadvertently atering the kernel.

3.7.1 Supervisor Mode Resources

Supervisor mode is a privileged mode that provides several additional capabilities over user mode.

* When the processor switches to supervisor mode, it also switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel's integrity. For example, it allows
access to system debugging software or a system monitor, even if an application’s program
destroys its own stack.
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« In supervisor mode, the processor is allowed access to a set of supervisor-only functions and
instructions. For example, the processor uses supervisor mode to handle interrupts and trace
faults. Operations that can modify interrupt controller behavior or reconfigure bus controller
characteristics can be performed only in supervisor mode. These functions include modifi-
cation of control registers and internal data RAM that is dedicated to interrupt controllers. A
fault is generated if supervisor-only operations are attempted while the processor is in user
mode.

The PC register execution mode flag specifies processor execution mode. The processor automati-
cally sets and clears this flag when it switches between the two execution modes.

+ dcctl (data cache control) « inten (global interrupt enable)

. . . « modpc (modify process controls w/ non-
SFR as instruction operand zero mask)

+ icctl (instruction cache control) « sysctl (system control)

Protected internal data RAM or Supervisor

+ intctl (global interrupt enable and disable) MMR space write

« intdis (global interrupt disable) « Protected timer unit registers

Note that all of these instructions return a TYPE.MISMATCH fault if executed in user mode.

3.7.2 Using the User-Supervisor Protection Model

A program switches from user mode to supervisor mode by making a system-supervisor call (also
referred to as a supervisor call). A system-supervisor call is a call executed with the call-system
instruction €alls). With calls, the IP for the called procedure comes from the system procedure
table. An entry in the system procedure table can specify an execution mode switch to supervisor
mode when the called procedure is executatls and the system procedure table thus provide a
tightly controlled interface to procedures that can execute in supervisor mode. Once the processor
switches to supervisor mode, it remains in that mode until a return is performed to the procedure
that caused the original mode switch.

Interrupts and faults can cause the processor to switch from user to supervisor mode. When the
processor handles an interrupt, it automatically switches to supervisor mode. However, it does not
switch to the supervisor stack. Instead, it switches to the interrupt stack. Fault table entries

determine if a particular fault transitions the processor from user to supervisor mode.

If an application does not require a user-supervisor protection mechanism, the processor can
always execute in supervisor mode. At initialization, the processor is placed in supervisor mode
prior to executing the first instruction of the application code. The processor then remains in
supervisor mode indefinitely, as long as no action is taken to change execution mode to user mode.
The processor does not need a user stack in this case.
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CHAPTER 4
CACHE AND ON-CHIP DATA RAM

This chapter describes the structure and user configuration of al forms of on-chip storage,
including caches (data, local register and instruction) and data RAM.

4.1 INTERNAL DATA RAM

Internal data RAM is mapped to the lower 1 Kbyte (0 to 03FFH) of the address space. L oads and
stores with target addresses in internal data RAM operate directly on the internal data RAM; no
external busactivity is generated. Data RAM allowstime-critical data storage and retrieval without
dependence on external bus performance. Only data accesses are allowed to the internal data
RAM; instructions cannot be fetched from the internal data RAM. Instruction fetches directed to
the data RAM cause an OPERATION.UNIMPLEMENTED fault to occur.

Internal data RAM locations are never cached in the data cache. Logical Memory Template bits
controlling caching are ignored for data RAM accesses.

Some internal data RAM locations are reserved for functions other than general data storage. The
first 64 bytes of data RAM may be used to cache interrupt vectors, which reduces latency for these
interrupts. The word at location O000H is always reserved for the cached NMI vector. With the
exception of the cached NMI vector, other reserved portions of the data RAM can be used for data
storage when the aternate function is not used. All locations of the internal data RAM can be read
in both supervisor and user mode.

Thefirst 64 bytes (0000H to 003FH) of internal RAM are always user-mode write-protected. This

portion of data RAM can be read while executing in user or supervisor mode; however, it can be

only modified in supervisor mode. This area can also be write-protected from supervisor mode

writes by setting the BCON..sirp bit. See section 12.3.1, Bus Control Register — BCON(pg. 12-6)
Protecting this portion of the data RAM from user and supervisor rights preserves the interrupt
vectors that may be cached there. Sagion 8.5.2.1 Vector Caching Optioifpg. 8-46)
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0000 0000H
NMI
0000 0004H
Optional Interrupt Vectors
0000 003FH
Available for Data
0000 03FFH

Figure 4-1. Internal Data RAM and Register Cache

The remainder of the internal data RAM can always be written from supervisor mode. User mode
write protection is optionally selected for the rest of the data RAM (40H to 3FFH) by setting the
Bus Control Register RAM protection bit (BCON.irp). Writes to internal data RAM locations
while they are protected generate a TYPE.MISMATCH fault. See section 12.3.1, Bus Control
Register — BCON (pg. 12-6)for the format of the BCON register.

New versions of 1960 processor compilers take advantage of internal data RAM. Profiling
compilers, such as those offered by Intel, can allocate the most frequently used variables into this
RAM.

4.2 LOCAL REGISTER CACHE

The i96% Rx /0 processor provides fast storage of local registers for call and return operations
by using an internal local register cache (also known as a stack frame cache). Up to eight local
register sets can be contained in the cache before sets must be saved in externa memory. The
register setis al the local registers (i.e., rO through r15). The processor uses a 128-hit wide bus to
store local register sets quickly to the register cache. An integrated procedure call mechanism
saves the current local register set when acall is executed. A local register set is saved into aframe
in the loca register cache, one frame per register set. When the eighth frame is saved, the oldest
set of local registersis flushed to the procedure stack in external memory, which frees one frame.

Section 7.1.4, Caching Local Register Sets (pg. 7-7) and section 7.1.5, Mapping Local Registers
to the Procedure Stack (pg. 7-11) further discuss the relationship between the interna register
cache and the external procedure stack.
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The branch-and-link (bal and balx) instructions do not cause the local registers to be stored.

The entire internal register cache contents can be copied to the externa procedure stack through
the flushreg instruction. Section 6.2.30, flushreg (pg. 6-54) explains the instruction itself and
section 7.2, MODIFYING THE PFP REGISTER (pg. 7-11) offers a practical example when
flushreg must be used.

To decrease interrupt latency, software can reserve a number of frames in the local register cache
solely for high priority interrupts (interrupted state and process priority greater than or equal to 28).
The remaining frames in the cache can be used by all code, including high-priority interrupts.
When aframeisreserved for high-priority interrupts, the local registers of the code interrupted by
a high-priority interrupt can be saved to the local register cache without causing a frame flush to
memory, providing the local register cache is not aready full. Thus, the register allocation for the
implicit interrupt call does not incur the latency of a frame flush.

Software can reserve frames for high-priority interrupt code by writing bits 10 through 8 of the
register cache configuration word in the PRCB. This value indicates the number of free frames
within the register cache that can be used by high-priority interrupts only. Any attempt by non-
critical code to reduce the number of free frames below this value will result in a frame flush to
external memory. The free frame check is performed only when a frame is pushed, which occurs
only for an implicit or explicit call. The following pseudo-code illustrates the operation of the
register cache when aframeis pushed.
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Example 4-1. Register Cache Operation

frames_for_non_critical = 7- RCW11:8];
if (interrupt_request)
set _interrupt_handl er _PC,
push_frane;
nunber _of frames = nunber_of _franmes + 1;
if (nunber_of frames = 8) {
flush_register_frane(ol dest_frane);
nunber _of _franmes = nunber_of franmes - 1; }
else if ( nunmber_of _frames = (franes_for_non_critical + 1) &&
(PC.priority <28 || PC.state != interrupted) ) {
flush_regi ster_frame(ol dest _frane);
nunber _of _frames = nunber_of frames - 1; }

The valid range for the number of reserved free framesis 0 to 7. Setting the value to O reserves no
frames for exclusive use by high-priority interrupts. Setting the value to 1 reserves 1 frame for
high-priority interrupts and 6 frames to be shared by al code. Setting the value to 7 causes the
register cache to become disabled for non-critical code. If the number of reserved high-priority
frames exceeds the allocated size of the register cache, the entire cache is reserved for high-
priority interrupts. In that case, all low-priority interrupts and procedure calls cause frame spills to
external memory.

4.3 INSTRUCTION CACHE

The 1960 Rx 1/O processor features a 4-Kbyte, 2-way set-associative instruction cache (I-cache)
organized in lines of four 32-bit words. The cache provides fast execution of cached code and
loops of code and provides more bus bandwidth for data operations in external memory. To
optimize cache updates when branches or interrupts are executed, each word in the line has a
separate valid bit. When requested instructions are found in the cache, the instruction fetch timeis
one cycle for up to four words. A mechanism to load and lock critical code within a way of the
cacheis provided along with a mechanism to disable the cache. The cache is managed through the
icctl or sysctl instruction. The sysctl instruction supports the instruction cache to maintain
compatibility with other i960 processor software. Using icctl is the preferred and more versatile
method for controlling the instruction cache on the 1960 Rx 1/0O processor.

Cache misses cause the processor to issue a double-word or a quad-word fetch, based on the
location of the Instruction Pointer:
« Ifthe IPis at word O or word 1 of a 16-byte block, a four-word fetch is initiated.

« Ifthe IP is at word 2 or word 3 of a 16-byte block, a two-word fetch is initiated.
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4.3.1 Enabling and Disabling the Instruction Cache

Enabling the instruction cache is controlled on reset or initiaization by the instruction cache
configuration word in the Process Control Block (PRCB); see Table 11-8. When hit 16 in the
instruction cache configuration word is set, the instruction cache is disabled and al instruction
fetches are directed to externa memory. Disabling the instruction cache is useful for tracing
execution in a software debug environment.

The instruction cache remains disabled until one of three operations is performed:

e icctl is issued with the enable instruction cache operation (preferred method)

« sysctl is issued with the configure-instruction-cache message type and cache configuration
mode other than disable cache (provides compatibility with other i960 processors; not the
preferred method for i960 Rx I/O processor).

« The processor is reinitialized with a new value in the instruction cache configuration word

4.3.2 Operation While the Instruction Cache Is Disabled

Disabling the instruction cachdoes not disable instruction buffering that may occur in the
instruction fetch unit. A four-word instruction buffer is always enabled, even when the cache is
disabled.

There is one tag and four word-valid bits associated with the buffer. Because there is only one tag
for the buffer, any “miss” within the buffer causes the following:

» All four words of the buffer are invalidated.

* A new tag value for the required instruction is loaded.

« The required instruction(s) are fetched from external memory.

Depending on the alignment of the “missed” instruction, either two or four words of instructions
are fetched and only the valid bits corresponding to the fetched words are set in the buffer. No

external instruction fetches are generated until there is a “miss” within the buffer, even in the
presence of forward and backward branches.

4.3.3 Loading and Locking Instructions in the Instruction Cache

The processor can be directed to load a block of instructions into the cache and then lock out all
normal updates to the cache. This cache load-and-lock mechanism is provided to minimize latency
on program control transfers to key operations such as interrupt service routines. The block size
that can be loaded and locked on the 1960 Rx 1/O processor is one way of the cache.

I 4-5



CACHE AND ON-CHIP DATA RAM Inte|®

An icctl or sysctl instruction is issued with a configure-instruction-cache message type to select
the load-and-lock mechanism. When the lock option is selected, the processor loads the cache
starting at an address specified as an operand to the instruction.

4.3.4 Instruction Cache Visibility

Instruction cache status can be determined by issuing icctl with an instruction-cache status
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid bits
can be written to memory. Thisis done by issuing icctl with the store cache operation.

4.3.5 Instruction Cache Coherency

The i960 Rx 1/0O processor does not snoop the bus to prevent instruction cache incoherency. The
cache does not detect modification to program memory by loads, stores or actions of other bus
masters. Severa situations may require program memory modification, such as uploading code at
initialization or loading from a backplane bus or adisk drive.

The application program is responsible for synchronizing its own code modification and cache
invalidation. In general, a program must ensure that modified code space is not accessed until
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache
contents should be invalidated after code modification is complete. icctl invalidates the instruction
cache for the 1960 Rx /O processor. Alternately, i960 processor legacy software can use sysctl.

4.4 DATA CACHE

The 960 Rx 1/0O processor features a 2-Kbyte, direct-mapped cache that enhances performance by
reducing the number of data load and store accesses to external memory. The cache is write-
through and write-allocate. It has a line size of 4 words and each line in the cache has a valid bit.
To reduce fetch latency on cache misses, each word within a line also has a valid bit. Caches are
managed through the dcctl instruction.

User settings in the memory region configuration registers LM CONO-1 and DLMCON determine
the data accesses that are cacheable or non-cacheable based on memory region.
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4.4.1 Enabling and Disabling the Data Cache

To cache data, two conditions must be met:

1. The data cache must be enabled. A dcctl instruction issued with an enable data cache
message enables the cache. On reset or initialization, the data cache is always disabled and
dl valid bits are set to zero.

2. Data caching for a location must be enabled by the corresponding logical memory template,
or by the default logical memory template if no other template applies. See section 12.2,
PROGRAMMING THE PHYSICAL MEMORY ATTRIBUTES (PMCON REGISTERS)
(pg. 12-3) for more details on logical memory templates.

When the data cache is disabled, al data fetches are directed to external memory. Disabling the
data cache is useful for debugging or monitoring a system. To disable the data cache, issue a dcctl
with a disable data cache message. The enable and disable status of the data cache and various
attributes of the cache can be determined by a dcctl issued with a data-cache status message.

4.4.2 Multi-Word Data Accesses that Partially Hit the Data Cache
The following applies only when data caching is enabled for an access.

For amulti-word load access (Idl, Idt, Idq) in which none of the requested words hit the data cache,

an external bus transaction is started to acquire al the words of the access.

For amulti-word load access that partially hits the data cache, the processor may either:

« Load or reload all words of the access (even those that hit) from the external bus.

* Load only missing words from the external bus and interleave them with words found in the
data cache.

The multi-word alignment determines which of the above methods is used:

« Naturally aligned multi-word accesses cause all words to be reloaded.

« An unaligned multi-word access causes only missing words to be loaded.

When any words accessed with, Idt, or Idg miss the data cache, every word accessed by that
load instruction is updated in the cache.

Load Instruction Number of Updated Words
Idq 4 words
Idt 3 words
Idl 2 words
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In each case, the external bus accesses used to acquire the datamay consist of none, one, or several
burst accesses based on the aignment of the data and the bus-width of the memory region that
contains the data. See Chapter 13, LOCAL BUS for more details.

A multi-word load access that completely hits in the data cache does not cause external bus
accesses.

For amulti-word store access (stl, stt, stq) an external bus transaction is started to write al words
of the access regardless if any or all words of the access hit the data cache. External bus accesses
used to write the data may consist of either one or several burst accesses based on data alignment
and the bus-width of the memory region that receives the data. The cache is aso updated
accordingly as described earlier in this chapter.

4.4.3 Data Cache Fill Policy

The i960 Rx 1/0 processor always uses a “natural” fill policy for cacheable loads. The processor

fetches only the amount of data that is requested by a load (i.e., a word, long word, etc.) on a data
cache miss. Exceptions are byte and short-word accesses, which are always promoted to words.
This allows a complete word to be brought into the cache and marked valid. When the data cache
is disabled and loads are done from a cacheable region, promotions from bytes and short words

still take place.

4.4.4 Data Cache Write Policy

The write policy determines what happens on cacheable writes (stores). The i960 Rx I/O processor
always uses a write-through policy. Stores are always seen on the external bus, thus maintaining

coherency between the data cache and external memory.
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The i960 Rx 1/0 processor always uses a write-allocate policy for data. For a cacheable location,
data is always written to the data cache regardless of whether the access is a hit or miss. The
following cases are relevant to consider:

1. In the case of a hit for a word or multi-word store, the appropriate line and word(s) are
updated with the data.
2. In the case of a miss for a word or multi-word store, a tag and cache line are allocated, if

needed, and the appropriate valid bits, line, and word(s) are updated.

3. In the case of byte or short-word data that hits a valid word in the cache, both the word in
cache and external memory are updated with the data; the cache word remains valid.

4, In the case of byte or short-word data that falls within a valid line but misses because the
appropriate word is invalid, both the word and external memory are updated with the data;
however, the cache word remains invalid.

5. In the case of byte or short-word data that does not fall within a valid line, the external
memory is updated with the data. For data writes less than a word, the data cache is not
updated; the tags and valid bits are not changed.

A byte or short word is always invalid in the data cache since valid bits only apply to words.

For cacheable stores that are equal to or greater than a word in length, cache tags and appropriate
valid bits are updated whenever data iswritten into the cache. Consider aword store that misses as
an example. The tag is always updated and its valid bit is set. The appropriate valid bit for that
word is always set and the other three valid bits are always cleared. If the word store hits the cache,
the tag bits remain unchanged. The valid bit for the stored word is set; al other valid bits are
unchanged.

Cacheable stores that are less than aword in length are handled differently. Byte and short-word
stores that hit the cache (i.e., are contained in valid words within valid cache lines) do not change
the tag and valid bits. The processor writes the datainto the cache and external memory asusual. A
byte or short-word store to an invalid word within a valid cache line leaves the word valid bit
cleared because the rest of the word is still invalid. In these two cases the processor simultaneously
writes the data into the cache and the external memory.

4.4.5 Data Cache Coherency and Non-Cacheable Accesses

The 1960 Rx I/O processor ensures that the data cache is always kept coherent with accesses that it
initiates and performs. The most visible application of this requirement concerns non-cacheable
accesses discussed below. However, the processor does not provide data cache coherency for
accesses on the externa bus that it did not initiate. Software is responsible for maintaining
coherency in a multi-processor environment.
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An accessis defined as non-cacheable when any of the following is true:

1. The access fallsinto an address range mapped by an enabled LMCON or DLMCON and the
data-caching enabled bit in the matching LMCON is clear.

2. The entire data cache is disabled.

3. The accessisaread operation of the read-modify-write sequence performed by an atmod or
atadd instruction.

4, The access is an implicit read access to the interrupt table to post or deliver a software
interrupt.

If the memory location targeted by an atmod or atadd instruction is currently in the data cache, it
isinvalidated.

If the address for a non-cacheable store matches a tag (“tag hit”), the corresponding cache line is
marked invalid. This is because the word is not actually updated with the value of the store. This
behavior ensures that the data cache never contains stale data in a single-processor system. A
simple case illustrates the necessity of this behavior: a read of data previously stored by a non-
cacheable access must return the new value of the data, not the value in the cache. Because the
processor invalidates the appropriate word in the cache line on a store hit when the cache is
disabled, coherency can be maintained when the data cache is enabled and disabled dynamically.

Data loads or stores invalidate the corresponding lines of the cache even when data caching is
disabled. This behavior further ensures that the cache does not contain stale data.

4.4.6 External I/O and Bus Masters and Cache Coherency

The 1960 Rx I/O processor implements a single processor coherency mechanism. There is no
hardware mechanism, such as bus snooping, to support multiprocessing. If another bus master can
change shared memory, there is no guarantee that the data cache contains the most recent data.
The user must manage such data coherency issues in software.

A suggested practice is to program the LMCONO-1 registers such that 1/0 regions are non-
cacheable. Partitioning the system in this fashion eliminates 1/0 as a source of coherency
problems. Seeection 12.2, PROGRAMMING THE PHYSICAL MEMORY ATTRIBUTES
(PMCONREGISTERS)pg. 12-3)for more information on this subject.

4.4.7 Data Cache Visibility

Data cache status can be determined hycal instruction issued with a data-cache status
message. Data cache contents, data, tags and valid bits can be written to memory as an aid for
debugging. This operation is accomplished bygcat! instruction issued with the dump cache
operand. Seeection 6.2.23 dcctl (pg. 6-39)for more information.
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CHAPTER 5
INSTRUCTION SET OVERVIEW

This chapter provides an overview of the i960° microprocessor family’s instruction set and 860
Rx 1/0 processor-specific instruction set extensions. Also discussed are the assembly-language and
instruction-encoding formats, various instruction groups and each group’s instructions.

language syntax, and the action taken when the instruction executes and examples of ho
the instruction.

CHAPTER 6,INSTRUCTION SET REFERENCHescribes each instruction, including assem.
[y
wd

51 INSTRUCTION FORMATS

1960 Rx 1/0 processor instructions may be described in two formats: assembly language and
instruction encoding. The following subsections briefly describe these formats.

5.1.1 Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonics. For
example, the add ordinal instruction is referred taddn. Examples use Intel 80960 assembly
language syntax which consists of the instruction mnemonic followed by zero to three operands,
separated by commas. In the following assembly language statement exanzaleéofoordinal
operands in global registers g5 and g9 are added together, and the result is stored in g7:

addo g5, g9, g7 # g7 = g9 + g5

In the assembly language listings in this chapter, registers are denoted as:

g global register r local register
#  pound sign precedes a comment

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecime
numbers are denoted with a “Ox” prefix (e.g., Oxffff0012). Several assembly language instruction
statement examples follow. Additional assembly language examples are gigentiom 2.3.5,
Addressing Mode Examplépg. 2-7)

subi r3, r5, r6 #r6 =r5 - r3

sethit 13, g4, g5 #95 = g4 with bit 13 set

| da Oxfab3, r12 #r12 = Oxfab3

Id (r4), g3 #93 = menory location that r4 points to

st gl0, (r6)[r7*2] #910 = nenory | ocation that r6+2*r7 points to
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5.1.2 Instruction Encoding Formats

All instructions are encoded in one 32-bit machine language instruction epwamnd — which

must be word aligned in memory. An opword’s most significant eight bits contain the opcode
field. The opcode field determines the instruction to be performed and how the remainder of the
machine language instruction is interpreted. Instructions are encoded in opwords in one of four
formats (seeFigure 5-). For more information on instruction formats, seBPENDIX A,
MACHINE-LEVEL INSTRUCTION FORMATS

Table 5-1. Instruction Encoding Formats (REG, COBR, CRTL, MEM)

Instruction Type | Format Description

Most instructions are encoded in this format. Used primarily for instructions

register REG which perform register-to-register operations.

An encoding optimization which combines compare and branch operations into

compare and COBR | one opword. Other compare and branch operations are also provided as REG

branch and CTRL format instructions.

control CTRL For branches and calls that do not depend on registers for address calculation.
Used for referencing an operand which is a memory address. Load and store
instructions — and some branch and call instructions — use this format. MEM

memory MEM format has two encodings: MEMA or MEMB. Usage depends upon the

addressing mode selected. MEMB-formatted addressing modes use the word in
memory immediately following the instruction opword as a 32-bit constant.
MEMA format uses one word and MEMB uses two words.

31 0
OPCODE src/dst src2 OPCODE srel REG
31 0
OPCODE srcl src2 displacement COBR
31 0
OPCODE displacement CTRL
31 0
OPCODE src/dst Address Offset MEMA
Base
31 0
OPCODE src/dst Address Scale Index MEMB
Base
32-Bit displacement

Figure 5-1. Machine-Level Instruction Formats
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5.1.3 Instruction Operands

This section identifies and describes operands that can be used with the instruction formats.

Format Operand(s) Description

REG srcl, src2, sre/dst srcl and src2 can be global registers, local registers or literals.
src/dst iseither aglobal or alocal register.

CTRL displacement CTRL format is used for branch and call instructions.
displacement vaue indicates the target instruction of the
branch or cal.

indicates branch target. srcl can specify a global register,
local register or a literal. src2 can specify a global or local
register.

MEM src/dst, efa Specifies source or destination register and an effective
address (efa) formed by using the processor’'s addressing
modes as described $ction 2.3MEMORY ADDRESSING
MODES (pg. 2-5) Registers specified in a MEM format
instruction must be either a global or local register.

COBR  srcl, src2, displacement srcl, src2 indicate values to be compared; displacement -

52 INSTRUCTION GROUPS

The 1960 processor instruction set can be categorized into the following functional groups shown
in Table 5-2. The actual number of instructions is greater than those shown in this list because, for
some operations, severa unique instructions are provided to handle various operand sizes, data
types or branch conditions. The following sections provide an overview of the instructions in each
group. For detailed information about each instruction, refer to CHAPTER 6, INSTRUCTION
SET REFERENCE.
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Table 5-2. 80960Rx Instruction Set

intel.

Test Condition Code
Check Bit

Data Movement Arithmetic Logical Bit, Bit Field and Byte
Load Add And Set Bit
Store Subtract Not And Clear Bit
Move Multiply And Not Not Bit
*Conditional Select Divide Or Alter Bit
Load Address Remainder Exclusive Or Scan For Bit
Modulo Not Or Span Over Bit
Shift Or Not Extract
Extended Shift Nor Modify
Extended Multiply Exclusive Nor Scan Byte for Equal
Extended Divide Not *Byte Swap
Add with Carry Nand
Subtract with Carry
*Conditional Add
*Conditional Subtract
Rotate
Comparison Branch Call/Return Fault
Compare Unconditional Branch Call Conditional Fault
Conditional Compare Conditional Branch Call Extended Synchronize Faults
Compare and Increment | Compare and Branch Call System
Compare and Decrement Return

Branch and Link

Force Mark

Modify Process Controls
*Halt

System Control

*Cache Control
*Interrupt Control

Debug Processor Management Atomic
Modify Trace Controls Flush Local Registers Atomic Add
Mark Modify Arithmetic Atomic Modify
Controls

* Denotes newer instructions that are NOT available on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations.

521

Data Movement

These instructions are used to move data from memory to global and local registers, from global

and local registers to memory, and between local and global registers.
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Rules for register alignment must be followed when using load, store and move instructions that
move 8, 12 or 16 bytes at a time. See section 3.5, MEMORY ADDRESS SPACE (pg. 3-10) for
alignment requirements for code portability across implementations.

5.2.1.1 Load and Store Instructions

Load instructions copy bytes or words from memory to local or global registers or to a group of
registers. Each load instruction has a corresponding store instruction to memory bytes or words to
copy from a selected local or global register or group of registers. All load and store instructions
use the MEM format.

Id load word st store word

Idob load ordinal byte stob store ordinal byte

Idos load ordinal short stos store ordinal short
Idib load integer byte stib store integer byte

Idis load integer short stis store integer short
Idl load long stl store long

Idt load triple stt store triple

Idq load quad stq store quad

Id copies 4 bytes from memory into a register; Idl copies 8 bytes; Idt copies 12 bytes into
successive registers; Idq copies 16 bytesinto successive registers.

st copies 4 bytes from a register into memory; stl copies 8 bytes; stt copies 12 bytes from
successive registers; stq copies 16 bytes from successive registers.

For I1d, Idob, Idos, Idib and Idis, the instruction specifies a memory address and register; the
memory address value is copied into the register. The processor automatically extends byte and
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; integers
are sign-extended.

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the

register value is copied into memory. For byte and short instructions, the processor automatically
reformats the source register's 32-bit value for the shorter memory locatiostid-andstis, this
reformatting can cause integer overflow when the register value is too large for the shorter memory
location. When integer overflow occurs, either an integer-overflow fault is generated or the
integer-overflow flag in the AC register is set, depending on the integer-overflow mask bit setting
in the AC register.

For stob andstos, the processor truncates the register value and does not create a fault when
truncation resulted in the loss of significant bits.
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52.1.2 Move

Moveinstructions copy datafrom aloca or global register or group of registers to another register
or group of registers. These instructions use the REG format.

mov move word

movl move long word
movt move triple word
movq move quad word

5.2.1.3 Load Address

The Load Address instruction (Ida) computes an effective address in the address space from an
operand presented in one of the addressing modes. Ida is commonly used to load a constant into a
register. Thisinstruction usesthe MEM format and can operate upon local or global registers.

On the i960 Rx /O processor, Ida is useful for performing simple arithmetic operations. The
processor’s parallelism allowda to execute in the same clock as another arithmetic or logical
operation.

5.2.2 Select Conditional

Given the proper condition code bit settings in the Arithmetic Controls register, these instructions
move one of two pieces of data from its source to the specified destination.

selno Select Based on Unordered

selg Select Based on Greater

sele Select Based on Equal

selge Select Based on Greater or Equal
sell Select Based on Less

selne Select Based on Not Equal

selle Select Based on Less or Equal
selo Select Based on Ordered

5.2.3 Arithmetic

Table 5-3lists arithmetic operations and data types for which the i960 Rx 1/O processor provides
instructions. “X” in this table indicates that the microprocessor provides an instruction for the
specified operation and data type. All arithmetic operations are carried out on operands in registers
or literals. Refer teection 5.2.11Atomic Instructions(pg. 5-17)for instructions which handle
specific requirements for in-place memory operations.
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All arithmetic instructions use the REG format and can operate on local or global registers. The
following subsections describe arithmetic instructions for ordinal and integer data types.

Table 5-3. Arithmetic Operations

Data Types

Arithmetic Operations -
Integer Ordinal

Add X
Add with Carry
Conditional Add
Subtract

X

Subtract with Carry

Conditional Subtract

X|IX|X|X|[X[X

Multiply

Extended Multiply
Divide

Extended Divide
Remainder
Modulo

Shift Left

Shift Right
Extended Shift Right X
Shift Right Dividing Integer X

X

XXX X|[X[X[X][X]|X]|X

X

X | X|X|X

X

NOTE: “X”indicates that an instruction is available for the specified operation and data type.

5.2.3.1 Add, Subtract, Multiply, Divide, Conditional Add, Conditional Subtract

These instructions perform add, subtract, multiply or divide operations on integers and ordinals:

addi Add Integer

addo Add Ordinal

subi Subtract Integer
subo Subtract Ordinal
SUB<cc> Conditional Subtract
muli Multiply Integer
mulo Multiply Ordinal
divi Divide Integer

divo Divide Ordinal
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addi, ADDI<cc>, subi, SUBI<cc>, muli and divi generate an integer-overflow fault when the
result is too large to fit in the 32-bit destination. divi and divo generate a zero-divide fault when
the divisor is zero.

5.2.3.2 Remainder and Modulo

These instructions divide one operand by another and retain the remainder of the operation:

remi remainder integer
remo remainder ordinal
modi modulo integer

The difference between the remainder and modulo instructions lies in the sign of the result. For
remi and remo, the result has the same sign as the dividend; for modi, the result has the same sign
asthe divisor.

5.2.3.3 Shift, Rotate and Extended Shift

These shift instructions shift an operand a specified number of bitsleft or right:

shlo shift left ordina
shro shift right ordinal
shli shift left integer
shri shift right integer

shrdi shift right dividing integer
rotate rotate left
eshro extended shift right ordinal

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zerosin from the least significant bit; shro shifts zerosin from the most significant bit.
These instructions are equivaent to mulo and divo by the power of 2, respectively.

shli shifts zeros in from the least significant bit. When the shift operation results in an overflow,
an integer-overflow fault is generated (when enabled). The destination register is written with the
source shifted as much as possible without overflow and an integer-overflow fault is signaled.

shri performs a conventional arithmetic shift right operation by extending the sign bit. However,
when this instruction is used to divide a negative integer operand by the power of 2, it may
produce an incorrect quotient. (Discarding the bits shifted out has the effect of rounding the result
toward negative.)
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shrdi is provided for dividing integers by the power of 2. With thisinstruction, 1 is added to the
result when the bits shifted out are non-zero and the operand is negative, which produces the
correct result for negative operands. shli and shrdi are equivalent to muli and divi by the power of
2, respectively, except in cases where an overflow error occurs.

rotate rotates operand hits to the left (toward higher significance) by a specified number of bits.
Bits shifted beyond the register’s left boundary (bit 31) appear at the right boundary (bit 0).

Theeshro instruction performs an ordinal right shift of a source register pair (64 bits) by as much
as 32 bits and stores the result in a single (32-bit) register. This instruction is equivalent to an
extended divide by a power of 2, which produces no remainder. The instruction is als
equivalent of a 64-bit extract of 32 bhits. 5

5.2.34 Extended Arithmetic

These instructions support extended-precision arithmetic; i.e., arithmetic operations on operands
greater than one word in length:

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply

ediv extended divide

addc adds two word operands (literals or contained in registers) plus the AC Register condition
code bit 1 (used here as a carry bit). When the result has a carry, bit 1 of the condition code is set
otherwise, it is cleared. This instruction’s descriptionGHAPTER 6,INSTRUCTION SET
REFERENCEgives an example of how this instruction can be used to add two long-word (64-bit)
operands together.

subc is similar toaddc, except it is used to subtract extended-precision values. Altralaghand

subc treat their operands as ordinals, the instructions also set bit 0 of the condition codes when the
operation would have resulted in an integer overflow condition. This facilitates a software imple-
mentation of extended integer arithmetic.

emul multiplies two ordinals (each contained in a register), producing a long ordinal result (stored
in two registers)ediv divides a long ordinal by an ordinal, producing an ordinal quotient and an
ordinal remainder (stored in two adjacent registers).
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5.2.4 Logical

These instructions perform bitwise Boolean operations on the specified operands:

and src2 AND srcl
notand  (NOT src2) AND srcl
andnot  src2 AND (NOT srcl)

xor src2 XOR srcl

or src2 OR srcl

nor NOT (src2 OR srcl)
xnor src2 XNOR srcl
not NOT srcl

notor (NOT src2) or srcl

ornot src2 or (NOT srcl)
nand NOT (src2 AND srcl)

All logical instructions use the REG format and can operate on literals or local or global registers.

5.25 Bit, Bit Field and Byte Operations

These perform operations on a specified bit or bit field in an ordinal operand. All Bit, Bit Field and
Byte instructions use the REG format and can operate on literals or local or global registers.

5.25.1 Bit Operations

These instructions operate on a specified bit:

sethit set bit

clrbit clear bit
notbit invert bit
alterbit alter bit
scanbit  scan for bit
spanbit  span over bit

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal.

alterbit alters the state of a specified bit in an ordinal according to the condition code. When the
condition code is 010, the bit is set; when the condition code is 0005, the bit is cleared.

chkbit, described in section 5.2.6, Comparison (pg. 5-11), can be used to check the value of an
individual bit in an ordinal.

scanbit and spanbit find the most significant set bit or clear bit, respectively, in an ordinal.
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5.25.2 Bit Field Operations
The two bit field instructions are extract and modify.

extract converts aspecified bit field, taken from an ordina value, into an ordinal value. In essence,
thisinstruction shiftsright a bit field in aregister and fills in the bits to the left of the bit field with
zeros. (eshro also provides the equivalent of a 64-bit extract of 32 hits).

modify copies bits from one register into another register. Only masked bits in the destination
register are modified. modify is equivalent to a bit field move.

5.25.3 Byte Operations

scanbyte performs a byte-by-byte comparison of two ordinals to determine when any two corre-
sponding bytes are equal. The condition code is set based on the results of the comparison.
scanbyte usesthe REG format and can specify literals or local or globa registers as arguments.

bswap alters the order of bytes in a word, reversing its “endianess.”

5.2.6 Comparison

The processor provides several types of instructions for comparing two operands, as described ir
the following subsections.

5.2.6.1 Compare and Conditional Compare

These instructions compare two operands then set the condition code bits in the AC register
according to the results of the comparison:

cmpi Compare Integer
cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordinal

concmpi Conditional Compare Integer
concmpo  Conditional Compare Ordinal
chkbit Check Bit

These all use the REG format and can specify literals or local or global registers. The condition
code bits are set to indicate whether one operand is less than, equal to, or greater than the othe
operand. Seeection 3.6.2Arithmetic Controls Register — A(Qpg. 3-16)for a description of the
condition codes for conditional operations.
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cmpi and cmpo simply compare the two operands and set the condition code bits accordingly.
concmpi and concmpo first check the status of condition code bit 2:

« When not set, the operands are compared ascwifth andcmpo.
« When set, no comparison is performed and the condition code flags are not changed.

The conditional-compare instructions are provided specifically to optimize two-sided range
comparisons to check for the condition when A is between B and<CA(R C). Here, a compare
instruction €mpi or cmpo) checks one side of the range ¥AB) and a conditional compare
instruction €oncmpi or concmpo) checks the other side (A C) according to the result of the

first comparison. The condition codes following the conditional comparison directly reflect the
results of both comparison operations. Therefore, only one conditional branch instruction is
required to act upon the range check; otherwise, two branches would be needed.

chkbit checks a specified bit in a register and sets the condition code flags according to the bit
state. The condition code is set to §ihen the bit is set and 090therwise.

5.2.6.2 Compare and Increment or Decrement

These instructions compare two operands, set the condition code bits according to the compare
results, then increment or decrement one of the operands:

cmpinci compare and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer

cmpdeco  compare and decrement ordinal
These all use the REG format and can specify literals or local or global registers. They are an
architectural performance optimization which allows two register operations (e.g., compare and

add) to execute in a single cycle. The intended use of these instructions is at the end of iterative
loops.

5.2.6.3 Test Condition Codes

These test instructions allow the state of the condition code flags to be tested:

teste test for equal

testne test for not equal

testl test for less

testle test for less or equal
testg test for greater

testge test for greater or equal
testo test for ordered

testno test for unordered
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When the condition code matches the instruction-specified condition, a TRUE (0000 0001H) is
stored in a destination register; otherwise, a FAL SE (0000 O000H) is stored. All use the COBR
format and can operate on local and global registers.

5.2.7 Branch

Branch instructions alow program flow direction to be changed by explicitly modifying the IP.
The processor provides three branch instruction types:

* unconditional branch

« conditional branch
e compare and branch

Most branch instructions specify the target IP by specifying a sidispthcement to be added to

the current IP. Other branch instructions specify the target IP’s memory address, using one of the

processor's addressing modes. This latter group of instructions is called extended addressing
instructions (e.g., branch extended, branch-and-link extended).

5.2.7.1 Unconditional Branch

These instructions are used for unconditional branching:

b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

b andbal use the CTRL formabx andbalx use the MEM format and can specify local or global
registers as operands.andbx cause program execution to jump to the specified target IP. These
two instructions perform the same function; however, their determination of the target IP differs.
The target IP of & instruction is specified at link time as a relatdisplacement from the current

IP. The target IP of thiex instruction is the absolute address resulting from the instruction’s use of
a memory-addressing mode during execution.

bal andbalx store the next instruction’s address in a specified register, then jump to the specified
target IP. (Foial, the RIP is automatically stored in register g14;alx, the RIP location is
specified with an instruction operand.) As describedséttion 7.9, BRANCH-AND-LINK

(pg. 7-21) branch and link instructions provide a method of performing procedure calls that do not
use the processor’s integrated call/return mechanism. Here, the saved instruction address is used
a return IP. Branch and link is generally used to call leaf procedures (that is, procedures that do no
call other procedures).

bx andbalx can make use of any memory-addressing mode.
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5.2.7.2 Conditional Branch

With conditional branch (BRANCH IF) instructions, the processor checks the AC register
condition code flags. When these flags match the value specified with the instruction, the
processor jumps to the target IP. These instructions use the displacement-plus-ip method of
specifying the target 1 P:

be branch if equal/true

bne branch if not equal

bl branch if less

ble branch if less or equal
bg branch if greater

bge branch if greater or equal
bo branch if ordered

bno branch if unordered/false

All use the CTRL format. bo and bno are used with real numbers. bno can also be used with the
result of a chkbit or scanbit instruction. Refer to section 3.6.2.2, Condition Code (AC.cc)
(pg. 3-17) for adiscussion of the condition code for conditional operations.

5.2.7.3 Compare and Branch

These instructions compare two operands then branch according to the comparison result. Three
instruction subtypes are compare integer, compare ordinal and branch on bit:

cmpibe compare integer and branch if equal

cmpibne compare integer and branch if not equal
cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal
cmpibg compare integer and branch if greater
cmpibge compare integer and branch if greater or equal
cmpibo compare integer and branch if ordered
cmpibno compare integer and branch if unordered
cmpobe compare ordina and branch if equal
cmpobne compare ordinal and branch if not equal
cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal
cmpobg compare ordina and branch if greater
cmpobge compare ordina and branch if greater or equal
bbs check bit and branch if set

bbc check bit and branch if clear
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All use the COBR machine instruction format and can specify literals, local or global registers as
operands. With compare ordina and branch (compob*) and compare integer and branch
(compib*) instructions, two operands are compared and the condition code bits are set as described
in section 5.2.6, Comparison (pg.5-11). A conditional branch is then executed as with the
conditional branch (BRANCH IF) instructions.

With check bit and branch instructions (bbs, bbc), one operand specifies a bit to be checked in the
second operand. The condition code flags are set according to the state of the specified bit: 010,
(true) when the bit is set and 000, (false) when the bit is clear. A conditiona branch is then
executed according to condition code bit settings.

These instructions can be used to optimize execution performance time. When it is not possible to
separate adjacent compare and branch instructions from other unrelated instructions, replacing two
instructions with a single compare and branch instruction increases performance.

5.2.8 Call/Return

The 1960 Rx /O processor offers an on-chip cal/return mechanism for making procedure calls.
Refer to section 7.1, CALL AND RETURN MECHANISM (pg. 7-2). The following instructions
support this mechanism:

call call

callx call extended
calls call system
ret return

call and ret use the CTRL machine-instruction format. callx usesthe MEM format and can specify
local or global registers. calls uses the REG format and can specify loca or global registers.

call and callx make local callsto procedures. A local call isacall that does not require a switch to

another stack. call and callx differ only in the method of specifying the target procedure’s address.
The target procedure of a call is determined at link time and is encoded in the opword as a signed
displacement relative to the call IPcallx specifies the target procedure as an absolute 32-bit
address calculated at run time using any one of the addressing modes. For both instructions, a ne\
set of local registers and a new stack frame are allocated for the called procedure.

calls is used to make calls to system procedures — procedures that provide a kernel or
system-executive service. This instruction operates similadglt@ndcallx, except that it gets its
target-procedure address from the system procedure table. An index number included as ar
operand in the instruction provides an entry point into the procedure table.
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Depending on the type of entry being pointed to in the system procedure table, calls can cause
either a system-supervisor call or a system-local call to be executed. A system-supervisor cal isa
call to a system procedure that switches the processor to supervisor mode and switches to the
supervisor stack. A system-loca call is a cal to a system procedure that does not cause an
execution mode or stack change. Supervisor mode is described throughout CHAPTER 7,
PROCEDURE CALLS.

ret performs areturn from acalled procedure to the calling procedure (the procedure that made the

call). ret obtains its target IP (return IP) from linkage information that was saved for the calling
procedure. ret is used to return from all calls — including local and supervisor calls — and from
implicit calls to interrupt and fault handlers.

5.2.9 Faults

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling procedures are then invoked to handle various fault types without explicit intervention by
the currently running program. These conditional fault instructions permit a program to explicitly
generate a fault according to the state of the condition code flags. All use the CTRL format.

faulte fault if equal

faultne fault if not equal

faultl fault if less

faultle fault if less or equal
faultg fault if greater

faultge fault if greater or equal
faulto fault if ordered

faultno fault if unordered

syncf ensures that any faults that occur during the execution of prior instructions occur before the
instruction that follows theyncf. syncf uses the REG format and requires no operands.

5.2.10 Debug

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

modpc modify process controls
modtc modify trace controls
mark mark

fmark force mark
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These al use the REG format. Trace functions are controlled with bits in the Trace Control (TC)
register which enable or disable various types of tracing. Other TC register flags indicate when an
enabled trace event is detected. Refer to CHAPTER 10, TRACING AND DEBUGGING.

modtc permits trace controls to be modified. mark causes a breakpoint trace event to be generated
when breakpoint trace mode is enabled. fmark generates a breakpoint trace independent of the
state of the breakpoint trace mode bits.

Other instructions that are helpful in debugging include modpc and sysctl. modpc can
enable/disable trace fault generation. The sysctl instruction also provides control over breakpoint

processor’s breakpoint registers.

trace event generation. This instruction is used, in part, to load and control the i960 Rx 1/O

5.2.11 Atomic Instructions

Atomic instructions perform an atomic read-modify-write operation on operands in memory. An

atomic operation is one in which other memory operations are forced to occur before or after, but
not during, the accesses that comprise the atomic operation. These instructions are required t
enable synchronization between interrupt handlers and background tasks in any system. They ar
also particularly useful in systems where several agents — processors, COprocessors or externe

logic — have access to the same system memory for communication.

The atomic instructions are atomic addafld) and atomic modify &tmod). atadd causes an
operand to be added to the value in the specified memory locationd causes bits in the

specified memory location to be modified under control of a mask. Both instructions use the REG

format and can specify literals or local or global registers as operands.

5.2.12 Processor Management

These instructions control processor-related functions:

modpc Modify the Process Controls register
flushreg Flush cached local register sets to memory
modac Modify the Arithmetic Controls register

All use the REG format and can specify literals or local or global registers.

modpc provides a method of reading and modifying PC register contents. Only programs

operating in supervisor mode may modify the PC register; however, any program may read it.

The processor provides a flush local registers instrucfiashfeg) to save the contents of the

cached local registers to the stack. The flush local registers instruction automatically stores the
contents of all the local register sets — except the current set — in the register save area of thei

associated stack frames.
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The modify arithmetic controls instruction (modac) alows the AC register contents to be copied
to a register and/or modified under the control of a mask. The AC register cannot be explicitly
addressed with any other instruction; however, it isimplicitly accessed by instructions that use the
condition codes or set the integer overflow flag.

sysctl is used to configure the interrupt controller, breakpoint registers and instruction cache. It
also permits software to signal an interrupt or cause a processor reset and reinitialization. sysctl
may be executed only by programs operating in supervisor mode.

intctl, inten and intdis are used to enable and disable interrupts and to determine current interrupt
enabl e status.

5.3 PERFORMANCE OPTIMIZATION

Performance optimization is categorized into two sections: instructions optimizations and miscel-
|aneous optimizations.

5.3.1 Instruction Optimizations

Instruction optimizations are broken down by the instruction classification.

53.1.1 Load / Store Execution Model

Because the 1960 Rx /O processor has a 32-bit external data bus, multiple word accesses require
multiple cycles. The processor uses microcode to sequence the multi-word accesses. Because the
microcode can ensure that aligned multi-words are bursted together on the external bus, software
should not substitute multiple single-word instructions for one multi-word instruction for data that
isnot likely to be in cache; i.e., oneldq provides better bus performance than four Id instructions.

Once a load is issued, the processor attempts to execute other instructions while the load is
outstanding. It is important to note that when the load misses the data cache, the processor does
not stall the issuing of subsequent instructions (other than stores) that do not depend on the load.

Software should avoid following a load with an instruction that depends on the result of the load.
For aload that hits the data cache, a one-cycle stall occurs when the instruction immediately after
the load requires the data. When the load fails to hit the data cache, the instruction depending on
the load is stalled until the outstanding load request is resolved.

Multiple, back-to-back load instructions do not stall the processor until the bus queue becomes
full.
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The processor delays issuing a store instruction until all previously-issued load instructions
complete. This happens regardiess of whether the store is dependent on the load. This ordering
between loads and stores ensures that the return data from a previous cache-read miss does not
overwrite the cache line updated by a subsequent store.

5.3.1.2 Compare Operations

Byte and short word data is more efficiently compared using the new byte and short compare
instructions (cmpob, cmpib, cmpos, cmpis), rather than shifting the data and using a word
compare instruction.

53.1.3 Microcoded Instructions

While the majority of instructions on the i960 Rx 1/O processor are single cycle and are executed
directly by processor hardware, some require microcode emulation. Entry into a microcode routine
requires two cycles. Exit from microcode typicaly requires two cycles. For some routines, one
cycle of the exit process can execute in parallel with another instruction, thus saving one cycle of
execution time.

5.3.1.4 Multiply-Divide Unit Instructions

The Multiply-Divide Unit (MDU) performs a number of multi-cycle arithmetic operations. These
can range from 2 cycles for a 16-bitx32-bit mulo, 4 cycles for a 32-bitx32-bit mulo, to 30+ cycles
for an ediv.

Once issued, these MDU instructions are executed in parallel with other non-MDU instructions
that do not depend on the result of the MDU operation. Attempting to issue another MDU
instruction while a current MDU instruction is executing, stalls the processor until the first one
completes.

5.3.1.5 Multi-Cycle Register Operations

A few register operations can also take multiple cycles. The following instructions are performed
in microcode:

* bswap » extract ¢ eshro ¢ modify e movl e movt
* movq * shrdi e scanbit ¢ spanbit * testno * testo
* testl * testle * teste * testne * testg * testge

On the 1960 Rx /O processor, test<cc> dst is microcoded and takes many more cycles than
SEL<cc> 0,1,dst, which is executed in one cycle directly by processor hardware.
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Multi-register move operation execution time can be decreased at the expense of cache utilization
and code density by using mov the appropriate number of timesinstead of movl, movt and movq.

5.3.1.6 Simple Control Transfer

There is no branch look-ahead or branch prediction mechanism on the i960 Rx 1/O processor.
Simple branch instructions take one cycle to execute, and one more cycle is needed to fetch the
target instruction if the branch is actually taken.

b, bal, bno, bo, bl, ble, be, bne, bg, bge

One mode of the bx (branch-extended) instruction, bx (base), is also a simple branch and takes
one cycle to execute and one cycle to fetch the target.

As aresult, abal(g14) or bx (g14) sequence provides a two-cycle call and return mechanism for
efficient leaf procedure implementation.

Compare-and-branch instructions have been optimized on the i960 Rx 1/O processor. They require
two cycles to execute, and one more cycle to fetch the target instruction if the branch is actualy
taken. The instructions are;

e cmpobno e cmpobo ¢ cmpobl e cmpoble e cmpobe e cmpobne
e cmpobg e cmpobge ¢ cmpibno e cmpibo e cmpibl « cmpible
e cmpibe » cmpibg « cmpibne e cmpibge * bbc e bbs
5.3.1.7 Memory Instructions

The 1960 Rx /O processor provides efficient support for naturally aigned byte, short, and word
accesses that use one of six optimized addressing modes. These accesses require only one to two
cycles to execute; additional cycles are needed for aload to return its data.

The byte, short and word memory instructions are:
Idob, Idib, Idos, Idis, Id, Ida stob, stib, stos, stis, st

The remainder of accesses require multiple cyclesto execute. These include:

e Unaligned short, and word accesses

« Byte, short, and word accesses that do not use one of the 6 optimized addressing modes
e Multi-word accesses

The multi-word accesses are:

Idl, Idt, Idq, stl, stt, stq

5-20 I



In":el® INSTRUCTION SET OVERVIEW

5.3.1.8 Unaligned Memory Accesses

Unaligned memory accesses are performed by microcode. Microcode sequences the access into
smaller aligned pieces and does any merging of data that is needed. As aresult, these accesses are
not as efficient as aligned accesses. In addition, no bursting on the external bus is performed for
these accesses. Whenever possible, unaligned accesses should be avoided.

5.3.2 Miscellaneous Optimizations

5.3.2.1 Masking of Integer Overflow

The 1960 core architecture inserts an implicit syncf before performing a call operation or
delivering an interrupt so that a fault handler can be dispatched first, when necessary. syncf can
require a number of cycles to complete when a multi-cycle integer-multiply (muli) or
integer-divide (divi) instruction is issued previously and integer-overflow faults are unmasked
(allowed to occur). Call performance and interrupt latency can be improved by masking
integer-overflow faults (AC.om = 1), which alows the implicit syncf to complete more quickly.

5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for MDU Instructions

When performing a call operation or delivering an interrupt, the processor typically attempts to
push the first four local registers (pfp, sp, rip, and r3) onto the local register cache as early as
possible. Because of register-interlock, this operation is stalled until previous instructions return
their results to these registers. In most cases, this is not a problem; however, in the case of
multi-cycle instructions (divo, divi, ediv, modi, remo, and remi), the processor could be stalled
for many cycles waiting for the result and unable to proceed to the next step of call processing or
interrupt delivery.

Call performance and interrupt latency can be improved by avoiding the first four registers as the
destination for aMDU instruction. Generally, registers pfp, sp, and rip should be avoided; they are
used for procedure linking.

5.3.2.3 Use Global Registers (g0 - g14) As Destinations for MDU Instructions

Using the same rationale as in the previous item, call processing and interrupt performance are
improved even further by using global registers (g0-gl4) as the destination for multi-cycle MDU
instructions. This is because there is no dependency between g0-g14 and implicit or explicit call
operations (i.e., global registers are not pushed onto the local register cache).
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5.3.24 Execute in Imprecise Fault Mode

Significant performance improvement is possible by allowing imprecise faults (AC.nif = 0). In
precise fault mode (AC.nif = 1), the processor does not issue a new instruction until the previous
one completes. This ensures that a fault from the previous instruction is delivered before the next
instruction can begin execution. Imprecise fault mode allows new instructions to be issued before
previous ones complete, thus increasing the instruction issue rate. Many applications can tolerate
the imprecise fault reporting for the performance gain. A syncf can be used in imprecise fault
mode to isolate faults at desired points of execution when necessary.

5.3.3 Cache Control

The following instructions provide instruction and data cache control functions.

icctl Instruction cache control
dcctl Data cache control

icctl and dcctl provide cache control functions including: enabling, disabling, loading and locking
(instruction cache only), invalidating, getting status and storing cache information out to memory.
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CHAPTER 6
INSTRUCTION SET REFERENCE

This chapter provides detailed information about each instruction available to the i960%® Rx 1/0
processor. Instructions are listed alphabetically by assembly language mnemonic. Format and
notation used in this chapter are defined in section 6.1, NOTATION (pg. 6-1).

Information in this chapter is oriented toward programmers who write assembly language code for
the i960 Rx 1/0 processor. Information provided for each instruction includes:

« Alphabetic listing of all instructions » Faults that can occur during execution

« Assembly language mnemonic, name amd Action (or algorithm) and other side effe
format of executing an instruction

e Description of the instruction’s operation « Assembly language example

« Opcode and instruction encoding format ¢  Related instructions

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

e CHAPTER 5,INSTRUCTION SET OVERVIEW- Summarizes the instruction set by group
and describes the assembly language instruction format.

e APPENDIX B, OPCODES AND EXECUTION TIMES- A quick-reference listing of
instruction encodings assists debugging with a logic analyzer.

e APPENDIX A, MACHINE-LEVEL INSTRUCTION FORMATS- Describes instruction set
opword encodings.

6.1 NOTATION

In general, notation in this chapter is consistent with usage throughout the manual; however, there
are a few exceptions. Read the following subsections to understand notations that are specific tc

this chapter.

6.1.1 Alphabetic Reference

Instructions are listed alphabetically by assembly language mnemonic. When several instructions

are related and fall together alphabetically, they are described as a group on a single page.
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The instruction’s assembly language mnemonic is shown in bold at the top of the page (e.qg.,
subc). Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the
name of the instruction group is shown in capital letters @RANCH<cc> or FAULT<cc>).

The 1960 Rx I/O processor-specific extensions to the 1960 microprocessor instruction set are
indicated in the header text for each such instruction. This type of notation is also used to indicate
new core architecture instructions. Sections describing new core instructions provide notes as to
which i960-series processors do not implement these instructions.

Generally, instruction set extensions are not portable to other i960 processor implementations.
Further, new core instructions are not typically portable to earlier i960 processor family imple-
mentations such as the i960 Kx microprocessors.

6.1.2 Mnemonic

The Mnemonic section gives the mnemonic (in boldface type) and instruction name for each
instruction covered on the page, for example:

subi Subtract Integer

This name is the actual assembly language instruction name recognized by assemblers.

6.1.3 Format

The Format section gives the instruction’s assembly language format and allowable operand
types. Format is given in two or three lines. The following is a two-line format example:
sub* srcl src2 dst
reg/lit reg/lit reg
The first line gives the assembly language mnemonic (boldface type) and operands (italics). When
the format is used for two or more instructions, an abbreviated form of the mnemonic is used. An
* (asterisk) at the end of the mnemonic indicates a variable: in the above exsumbplés either

subi or subo. Capital letters indicate an instruction class. For exanyid<cc> refers to the
class of conditional add instructions (ealdio, addig, addoo, addog).

Operand names are designed to describe operand functiosr@ kg, mask).

The second line shows allowable entries for each operand. Notation is as follows:

reg Global (g0 ... g15) or local (rO ... r15) register

lit Literal of the range O ... 31

disp Signed displacement of range?-2. 222 - 1)

mem Address defined with the full range of addressing modes
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In some cases, a third line is added to show register or memory location contents. For example, it
may be useful to know that aregister isto contain an address. The notation used in thislineis as
follows:

addr Address
efa Effective Address

6.1.4 Description

The Description section is a narrative description of the instruction’s function and operands. It also
gives programming hints when appropriate.

6.1.5 Action n

The Action section gives an algorithm written in a "C-like" pseudo-code that describes direct
effects and possible side effects of executing an instruction. Algorithms document the instruction’s
net effect on the programming environment; they do not necessarily describe how the processor
actually implements the instruction. The following is an example of the action algorithm for the
alterbit instruction:

if ((AC.cc & 010,)==0)

dst = src2 & ~(2**(src1%32));
else

dst = src2 | 2**(src1%32);

Table 6-1defines each abbreviation used in the instruction reference pseudo-code. The pseudo-
code has been written to comply as closely as possible with standard C programming language
notation.Table 6-1lists the pseudocode symbol definitions.

Table 6-1. Pseudo-Code Symbol Definitions (Sheet 1 of 2)

= Assignment

==, I= Comparison: equal, not equal
<, > less than, greater than

<=, >= less than or equal to, greater than or equal to
<<, >> Logical Shift

** Exponentiation

&, && Bitwise AND, logical AND

[ 1l Bitwise OR, logical OR

A Bitwise XOR

~ One’s Complement

% Modulo

+, - Addition, Subtraction
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Table 6-1. Pseudo-Code Symbol Definitions (Sheet 2 of 2)

Assignment

Multiplication (Integer or Ordinal)

/ Division (Integer or Ordinal)
# Comment delimiter
Table 6-2. Faults Applicable to All Instructions
Fault Type Subtype Description
An attempt to execute any instruction fetched from internal data
OPERATION |UNIMPLEMENTED RAM or a memory-mapped region causes an operation unimple-
mented fault.
A Mark Trace Event is signaled after completion of an instruction for
MARK which there is a hardware breakpoint condition match. A Trace fault
TRACE is generated when PC.mk is set.
An Instruction Trace Eventis signaled after instruction completion. A
INSTRUCTION Trace fault is generated when both PC.te and TC.i=1.
Table 6-3. Common Faulting Conditions
Fault Type Subtype Description
Any instruction that causes an unaligned memory access causes an
UNALIGNED operation aligned fault when unaligned faults are not masked in the fault
configuration word in the Processor Control Block (PRCB).
INVALID_OPCODE Thls faqlt is gene_rgted when thg processor attempts to_execute an
instruction containing an undefined opcode or addressing mode.
OPERATION i i -defi i i
INVALID_OPERAN Thls faqlt is caused by a non-defined operand in a_superwsor m_ode only
D instruction or by an operand reference to an unaligned long-, triple- or
quad-register group.
This fault can occur due to an attempt to perform a non-word or
UNIMPLEMENTED | unaligned access to a memory-mapped region or when attempting to
fetch instructions from MMR space or internal data RAM.
Any instruction that attempts to write to supervisor protected internal
data RAM or a memory-mapped register in supervisor space while not in
Type MISMATCH supervisor mode causes a TYPE.MISMATCH fault. This fault is also
generated for any non-supervisor mode reference to an SFR.
6-4
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6.1.6 Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution.
Table 6-2 shows the possible faulting conditions that are common to the entire instruction set and
could directly result from any instruction. These fault types are not included in the instruction
reference. Table 6-3 shows the possible faulting conditions that are common to large subsets of the
instruction set. When an instruction can generate a fault, it is noted in that instruEtohs
section. In these sections, “Standard” refers to the faults showabie 6-2andTable 6-3

6.1.7 Example

The Example section gives an assembly language example of an application of the instruction.

6.1.8 Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction format for each
instruction, for example:

subi 593H REG
The opcode is given in hexadecimal format. The format is one of four possible formats: REG,

COBR, CTRL and MEM. Refer to)APPENDIX A, MACHINE-LEVEL INSTRUCTION
FORMATSfor more information on the formats.

6.1.9 See Also

The See Also section gives the mnemonics of related instructions which are also alphabetically
listed in this chapter.

6.1.10 Side Effects

This section indicates whether the instruction causes changes to the condition code bits in the
Arithmetic Controls.

6.1.11 Notes

This section provides additional information about an instruction such as whether it is
implemented in other i960 processor families.

6.2 INSTRUCTIONS

The processor’s instructions are arranged alphabetically by instruction or instruction group.
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6.2.1

Mnemonic:

Format:

Description:

6-6

ADD<cc>

addono
addog
addoe
addoge
addo
addone
addole
addoo
addino
addig
addie
addige
addil
addine
addile
addio

add*

Add Ordinal if Unordered
Add Ordinal if Greater

Add Ordinal if Equal

Add Ordinal if Greater or Equal
Add Ordinal if Less

Add Ordinal if Not Equal

Add Ordinal if Lessor Equal
Add Ordinal if Ordered

Add Integer if Unordered

Add Integer if Greater

Add Integer if Equal

Add Integer if Greater or Equal
Add Integer if Less

Add Integer if Not Equal

Add Integer if Less or Equal
Add Integer if Ordered

srcl, src2,
reg/lit reg/lit

dst
reg

Conditionally adds src2 and srcl values and stores the result in dst based on
the AC register condition code. If for Unordered the condition codeis O, or if
for all other casesthe logical AND of the condition code and the mask part of
the opcode is not 0, then the values are added and placed in the destination.
Otherwise the destination is left unchanged. Table 6-4 shows the condition
code mask for each instruction. The mask isin opcode bits 4-6.

Table 6-4. Condition Code Mask Descriptions (Sheet 1 of 2)

Instruction Mask Condition

addono 000 Unordered

" noraere
addino 2
addog

- 001, Greater
addig
addoe 010 Equal

I ual
addie 2 a
addoge

- 011, Greater or equal
addige
addol 100 L

. ess
addil 2
addone 101 Not |

N ot equal
addine 2 a




Action:

Faults:

Example:

INSTRUCTION SET REFERENCE

Table 6-4. Condition Code Mask Descriptions (Sheet 2 of 2)

Instruction Mask Condition
addole 110, Less or equal
addile
addoo 111, Ordered
addio

addo<cc>:

if((mask & AC.cc) || (mask == AC.cc))

dst = (srcl + src2)[31:0];

if((true_result > (2**31) - 1) || (true_result < -2**31))
# Check for overflow

generate_fault(ARITHMETIC.OVERFLOW);

addi<cc>:
if((mask & AC.cc) || (mask == AC.cc))
{
{ true_result = (srcl + src2);
dst = true_result[31:0];
}
{ if(AC.om==1)
AC.of = 1;
dse
}
}
STANDARD

Refer to section 6.1.6, Faults (pg. 6-5).

ARITHMETIC.OVERFLOW  Occurs only with addi<cc>.

# Assume (AC.cc AND 001,) # O.
# r10 =

addig r4, r8, r10

# Assume (AC.cc AND 101,) = O.
# r10

addone r4, r8, rl10

r8 +r4

i s not changed.
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Opcode:

See Also

Notes:

6-8

addono
addog
addoe
addoge
addo
addone
addole
addoo
addino
addig
addie
addige
addil
addine
addile
addio

addc, SUB<cc>, addi, addo

780H
790H
7A0H
7BOH
7COH
7DOH
7EOH
7FOH
781H
791H
7A1H
7B1H
7C1H
7D1H
7E1H
7F1H

REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG

This class of core instructions is not implemented on 80960Cx, Kx and Sx

processors.
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6.2.2

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Side Effects:

addc

INSTRUCTION SET REFERENCE

addc Add Ordinal With Carry
addc srcl, src2, dst
reg/lit reg/lit reg

Adds src2 and srcl values and condition code bit 1 (used here as a carry-in)
and stores the result in dst. If ordinal addition resultsin a carry out, condition
code hit 1 is set; otherwise, bit 1 is cleared. If integer addition results in an
overflow, condition code bit O is set; otherwise, bit 0 is cleared. Regardless of
addition results, condition code bit 2 is always set to 0.

addc can be used for ordinal or integer arithmetic. addc does not distinguish
between ordinal and integer source operands. Instead, the processor eval uates
the result for both data types and sets condition code bits 0 and 1 accordingly.

An integer overflow fault is never signaled with this instruction.
dst = (srcl + src2 + AC.cc[1])[31:0];

AC.cc[2:0] = 000,;

if((src2[31] == srcl[31]) & & (src2[31] !=dst[31]))

AC.cc[Q] = 1; # Set overflow hit.
AC.cc[1] = (src2 + srcl + AC.cc[1])[32]; # Carry out.
STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

# Exanpl e of doubl e-precision arithnetic.
# Assune 64-bit source operands

# in g0,gl1 and g2, g3

cnpo 1, O Clears Bit 1 (carry bit) of
the AC. cc.

Add | oworder 32 bits:

g0 = g2 + g0 + carry bit
Add hi gh-order 32 bits:

gl = g3 + gl + carry bit
64-bit result is in g0, g1l.

addc g0, g2, g0

addc g1, g3, g1

H o OHHHHH

addc 5BOH REG
ADD<cc>, SUB<cc>

Sets the condition code in the arithmetic controls.
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6.2.3

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-10

addi, addo

addo Add Ordinal
addi Add Integer
add* srcl, src2, dst

reg/lit reg/lit reg

Adds src2 and srcl values and stores the result in dst. The binary resultsfrom
these two instructions are identical. The only difference is that addi can
signal an integer overflow.

addo:
dst = (src2 +srcl)[31:0];

addi:

true_result = (srcl + src2);

dst = true_result[31:0];

if((true_result > (2**31) - 1) || (true_result < -2**31))# Check for overflow
{ if(AC.om==1)

AC.of = 1;
else
generate_fault(ARITHMETIC.OVERFLOW);
}
STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

ARITHMETIC.OVERFLOW  Occurs only with addi.
addi r4, g5, r9 #r9 =g5 +r4

addo 590H REG
addi 591H REG

addc, subi, subo, subc, ADD<cc>
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Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

alterbit

alterbit Alter Bit

alterbit bitpos, src, dst

reg/lit reg/lit reg
Copies src value to dst with one bit altered. bitpos operand specifies bit to be
changed; condition code determines the value to which the bit is set. If
condition code is X1X,, bit 1 = 1, the selected bit is set; otherwise, it is
cleared. Typically this instruction is used to set the bitpos bit in the targ
register if the result of a compare instruction is the equal condition code
(010,).

if((AC.cc & 010,)==0)

dst = src & ~(2** (bitpos%32));
else

dst = src | 2** (bitpos%32);

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

# Assunme AC.cc = 010,
alterbit 24, 94,99 # g9 = g4, with bit 24 set.

alterbit 58FH REG
chkbit, clrbit, notbit, setbit
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6.2.5

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-12

and, andnot

and And

andnot And Not

and srcl, src2, dst
reg/lit reg/lit reg

andnot srcl, src2, dst
reg/lit reg/lit reg

Performs abitwise AND (and) or AND NOT (andnot) operation on src2 and
srcl values and stores result in dst. Note in the action expressions below,
src2 operand comes first, so that with andnot the expression is evaluated as:

{'src2 and not (srcl)}
rather than
{'srcl and not (src2)}.

and:

dst = src2 & srcl;

andnot:

dst = src2 & ~srcl;

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

and 0Ox7, g8, g2 # Put lower 3 bits of g8 in g2.
andnot Ox7, rl12, r9# Copy rl2 to r9 with |ower
# three bits cleared.

and 581H REG
andnot 582H REG

nand, nor, not, notand, notor, or, ornot, xnor, xor
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6.2.6

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

atadd Atomic Add
atadd addr, src, dst
reg reg/lit reg

Adds src value (full word) to value in the memory location specified with
addr operand. This read-modify-write operation is performed on the actual
data in memory and never on a cached value on chip. Initial value from
memory is stored in dst.

Memory read and write are done atomicaly (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified

by src/dst operand until operation completes). See 3.5.1, Memory Require-
ments (pg. 3-12) or more information on atomic accesses.

Memory location in addr is the word’s first byte (LSB) address. Address is
automatically aligned to a word boundary. (Note tddr operand maps to
srcl operand of the REG format.)

implicit_syncf();

tempa = addr & OXFFFFFFFC;
temp = atomic_read(tempa);
atomic_write(tempa, temp+src);
dst = temp;

STANDARD Refer tosection 6.1.6Faults(pg. 6-5)

atadd r8, r3, rll # r8 contains the address of
# menory | ocation.

#rl1l = (r8)
# (r8) =rl1l1 + r3.
atadd 612H REG

atmod
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6.2.7 atmod
Mnemonic: atmod Atomic Modify
Format: atmod addr, mask, src/dst
reg reg/lit reg
Description: Copies the selected bits of src/dst value into memory location specified in

addr. The read-modify-write operation is performed on the actual data in
memory and never on a cached value on chip. Bits set in mask operand sel ect
bits to be modified in memory. Initial value from memory is stored in src/dst.
See 3.5.1, Memory Requirements (pg.3-12) for information on atomic
accesses.

Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
with the src/dst operand until operation completes).

Memory location in addr is the modified word’s first byte (LSB) address.
Address is automatically aligned to a word boundary.

Action: implicit_syncf();
tempa = addr & OXFFFFFFFC;
tempb = atomic_read(tempa);
temp = (tempb &~ mask) | (src_dst & mask);
atomic_write(tempa, temp);
src_dst = tempb;

Faults: STANDARD Refer tosection 6.1.6Faults(pg. 6-5)

Example: atrmod g5, g7, gl10 # tenpa = (gb)
# tenp = (tenpa andnot g7) or
# (gl0 and g7)
# (g5) = tenp
# gl0 = tenpa
Opcode: atmod 610H REG

See Also: atadd
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Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

b Branch
bx Branch Extended
b targ
disp
bx targ
mem
Branches to the specified target.

With the b instruction, IP specified with targ operand can be no farther than

-2%3 to (2%3- 4) bytes from current IP. When using the Intel i960 processor
assembler, targ operand must be a label which specifies target instructifiik®
IP.

bx performs the same operation lasexcept the target instruction can be
farther than -2 to (223- 4) bytes from current IP. Here, the target operand is
an effective address, which allows the full range of addressing modes to be
used to specify target instruction’s IP. The “IP + displacement” addressing
mode allows the instruction to be IP-relative. Indirect branching can be
performed by placing target address in a register then using a register-indirect
addressing mode.

Refer t02.3, MEMORY ADDRESSING MODES(pg. 2-5)for information
on this subject.

b, bx:

IP[31:2] = effective_address(targ[31:2]);

IP[1:0] = 0;

STANDARD Refer tosection 6.1.6Faults(pg. 6-5)
b xyz # 1P = xyz;

bx 1332 (ip) # 1P =1P + 8 + 1332;

# this exanple uses IP-rel ative addressing

b 08H CTRL

bx 84H MEM

bal, balx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs
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6.2.9

Mnemonic:

Format:

Description:

Action:

Faults:

6-16

bal, balx

bal Branch and Link
balx Branch and Link Extended
bal targ
disp
balx targ, dst
mem reg

Stores address of instruction following bal or balx in aregister then branches
to the instruction specified with the targ operand.

The bal and balx instructions are used to call leaf procedures (procedures

that do not call other procedures). The IP saved in the register provides a

return I P that the leaf procedure can branch to (using ab or bx instruction) to
perform areturn from the procedure. Note that these instructions do not use

the processor’s call-and-return mechanism, so the calling procedure shares its
local-register set with the called (leaf) procedure.

With bal, address of next instruction is stored in register ¢dr4) operand
value can be no farther than®32to (22- 4) bytes from current IP. When
using the Intel i960 processor assemlikg must be a label which specifies
the target instruction’s IP.

balx performs same operationtas except next instruction address is stored

in dst (allowing the return IP to be stored in any available register). With
balx, the full address space can be accessed. Here, the target operand is an
effective address, which allows full range of addressing modes to be used to
specify target IP. “IP + displacement” addressing mode allows instruction to
be IP-relative. Indirect branching can be performed by placing target address
in a register and then using a register-indirect addressing mode.

See 2.3, MEMORY ADDRESSING MODES (pg. 2-5) for a complete
discussion of addressing modes available with memory-type operands.

bal:

gl4 =1IP + 4

IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;

balx:

dst = IP + instruction_length;

# Instruction_length = 4 or 8 depending on the addressing mode used.
IP[31:2] = effective_address(targ[31:2]); # Resume execution at new IP.
IP[1:0] = 0;

STANDARD Refer tosection 6.1.6Faults(pg. 6-5)
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Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

bal xyz #9l4 = IP + 4
# 1P = xyz

bal x (g2), g4 # 94 =P+ 4
# 1P = (92)

bal 0BH CTRL

balx 85H MEM

b, bx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs
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6.2.10

Mnemonic:

Format:

Description:

Action:

Faults:

6-18

bbc, bbs

bbc Check Bit and Branch If Clear
bbs Check Bit and Branch If Set
bb* bitpos, src, targ

reg/lit reg disp

Checks hit (designated by bitpos) in src and sets AC register condition code
according to src value. The processor then performs conditional branch to
instruction specified with targ, based on condition code state.

For bbc, if selected bit in src is clear, the processor sets condition code to
000, and branches to instruction specified by targ; otherwise, it sets
condition code to 010, and goes to next instruction.

For bbs, if selected bit is set, the processor sets condition code to 010, and
branches to targ; otherwise, it sets condition code to 000, and goes to next
instruction.

targ can be no farther than -212 to (212 - 4) bytes from current |P. When using
the Intel 1960 processor assembler, targ must be alabel which specifiestarget
instruction’s IP.

bbs:

if((src & 2**(bitpos%32)) == 1)

{ AC.cc=010;
temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];

IP[1:0] = O;
}
else

AC.cc = 00G;
bbc:

if((src & 2**(bitpos%32)) == 0)
{ AC.cc =000;
temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = O;
}
else
AC.cc = 01G;

STANDARD Refer tosection 6.1.6Faults(pg. 6-5)
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Example:

Opcode:

See Also:

Side Effects:

INSTRUCTION SET REFERENCE

# Assune bit 10 of r6 is clear.

bbc 10, r6, xyz # Bit 10 of r6 is checked
# and found cl ear:
# AC.cc = 000

# 1P = xyz;
bbc 30H COBR
bbs 37H COBR

chkbit, COMPARE AND BRANCH<cc>, BRANCH<cc>

Sets the condition code in the arithmetic controls.
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6.2.11

Mnemonic:

Format:

Description:

6-20

BRANCH<cc>

be Branch If Equal

bne Branch If Not Equal

bl Branch If Less

ble Branch If Less Or Equal
bg Branch If Greater

bge Branch If Greater Or Equal
bo Branch If Ordered

bno Branch If Unordered

b* targ

disp
Branches to instruction specified with targ operand according to AC register
condition code state.

For all branch<cc> instructions except bno, the processor branches to
instruction specified with targ, if the logicad AND of condition code and
mask part of opcode is not zero. Otherwise, it goes to next instruction.

For bno, the processor branches to instruction specified with targ if the
condition code is zero. Otherwise, it goesto next instruction.

For instance, bno (unordered) can be used as a branch if false instruction
when coupled with chkbit. For bno, branch istaken if condition code equals
000,. be can be used as branch-if true instruction.

The targ operand value can be no farther than -223 to (223- 4) bytes from
current IP.

The following table shows condition code mask for each instruction. The
mask is in opcode bits 0-2.

Instruction Mask Condition
bno 000, Unordered
bg 001, Greater
be 010, Equal
bge 011, Greater or equal
bl 100, Less
bne 101, Not equal
ble 110, Less or equal
bo 111, Ordered
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Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

if((mask & AC.cc) || (mask == AC.cc))

{ temp[31:2] =sign_extension(targ[23:2]);

IP[31:2] = IP[31:2] + temp[31:2];

IP[1:0] =

}
STANDARD

bl xyz

be
bne
bl
ble
bg
bge
bo
bno

0;

12H
15H
14H
16H
11H
13H
17H
10H

Refer to section 6.1.6, Faults (pg. 6-5).

# Assume (AC.cc AND 100,) # O
# 1P = xyz;

CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL

b, bx, bbc, bbs, COMPARE AND BRANCH<cc>, bal, balx, BRANCH<cc>
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6.2.12 bswap

Mnemonic: bswap Byte Swap
Format: bswap srcl:src, src2:dst
reg/lit reg
Description: Alters the order of bytes in a word, reversing its “endianess.”

Copies bytes 3:0 afrcl to src2 reversing order of the bytes. Byte 0sofl
becomes byte 3 &fc2, byte 1 ofsrcl becomes byte 2 afc2, etc.

Action: dst = (rotate_left(src 8) & 0XxOOFFOOFF)
+(rotate_left(src 24) & OXFFOOFFQO0);

Faults: STANDARD Refer tosection 6.1.6Faults(pg. 6-5)
Example: # g8 = Ox89ABCDEF

bswap g8, gl0 # Reverse byte order.

# 910 now OxEFCDAB89

Opcode: bswap 5ADH REG
See Also: scanbyte, rotate
Notes: This core instruction is not implemented on Cx, Kx and Sx 80960 processors.
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6.2.13 call
Mnemonic: call Call

Format: call targ
disp
Description: Calls a new procedure. targ operand specifies the IP of called procedure’s

first instruction. When using the Intel i960 processor assemntbtgrmust be
a label.

In executing this instruction, the processor performs a local call operation as
described in7.1.3.1,Call Operation(pg. 7-6) As part of this operation, the
processor saves the set of local registers associated with the calling procedure
and allocates a new set of local registers and a new stack frame for the
procedure. Processor then goes to the instruction specifiedtavghand n
begins execution.

targ can be no farther than®2to (22 - 4) bytes from current IP.

Action: # Wait for any uncompleted instructions to finish.
implicit_syncf();
temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)
# Round stack pointer to next boundary.
# SALIGN=1 on 80960RXx.
RIP=1P;
if (register_set_available)
allocate_new_frame();
else
{ save_register_set(); # Save register set in memory at its FP.
allocate_new_frame();
}
# Local register references now refer to new frame.
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0O;
PFP = FP;
FP = temp;
SP =temp + 64;

Faults: STANDARD Refer tosection 6.1.6Faults(pg. 6-5)
Example: call xyz # 1P = xyz

Opcode: call 09H CTRL

See Also: bal, calls, callx
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6.2.14 calls
Mnemonic:

Format:

Description:

Action:

6-24

calls Call System
calls targ
reg/lit

Calls a system procedure. The targ operand gives the number of the
procedure being called. For calls, the processor performs system call
operation described in 7.5, SYSTEM CALLS (pg. 7-15). targ provides an
index to a system procedure table entry from which the processor gets the
called procedure’s IP.

The called procedure can be a local or supervisor procedure, depending on
system procedure table entry type. If it is a supervisor procedure, the
processor switches to supervisor mode (if not already in this mode).

As part of this operation, processor also allocates a new set of local registers
and a new stack frame for called procedure. If the processor switches to
supervisor mode, the new stack frame is created on the supervisor stack.

# Wait for any uncompleted instructions to finish.
implicit_syncf();
If (targ > 259)
generate_fault(PROTECTION.LENGTH);
temp = get_sys_proc_entry(sptbase + 48 + 4*targ);
# sptbase is address of supervisor procedure table.

if (register_set_available)
allocate_new_frame();
else
{ save_register_set(); # Save aframe in memory at its FP.
allocate_new_frame();
# Local register references now refer to new frame.

}
RIP = IP;
IP[31:2] = effective_address(temp[31:2]);
IP[1:0] = 0O;
if ((temp.type ==local) || (PC.em == supervisor))
{ # Local call or supervisor call from supervisor mode.
tempa = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)
# Round stack pointer to next boundary.
# SALIGN=1 on 80960RXx.
temp.RRR = 00§
}
else # Supervisor call from user mode.
{ tempa=SSP; # Get Supervisor Stack pointer.



Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

temp.RRR = 010, | PC.te;
PC.em = supervisor;

PC.te = temp.te;
}

PFP = FP;

PFP.rrr = temp.RRR;

FP = tempa;

SP =tempa+ 64;

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

PROTECTION.LENGTH Specifies a procedure number greater than

250.

calls ri12 # | P = val ue obtained from
# procedure table for procedure
# nunber given in rl2.

calls 3 # Call procedure 3.

calls 660H REG

bal, call, callx, ret

6-25



INSTRUCTION SET REFERENCE Inte|®

6.2.15 callx
Mnemonic:

Format:

Description:

Action:

Faults:

6-26

callx Call Extended
callx targ
mem

Calls new procedure. targ specifies IP of called procedure’s first instruction.

In executingcallx, the processor performs a local call as describ@dLir3.1,

Call Operation(pg. 7-6) As part of this operation, the processor allocates a
new set of local registers and a new stack frame for the called procedure.
Processor then goes to the instruction specified watly and begins
execution of new procedure.

callx performs the same operation as call except the target instruction can be
farther than -2 to (222 - 4) bytes from current IP.

Thetarg operand is a memory type, which allows the full range of addressing
modes to be used to specify the IP of the target instruction. The “IP +
displacement” addressing mode allows the instruction to be IP-relative.
Indirect calls can be performed by placing the target address in a register and
then using one of the register-indirect addressing modes.

Refer to Chapter 2, DATA TYPES AND MEMORY ADDRESSING
MODES for more information.

# Wait for any uncompleted instructions to finish;
implicit_syncf();
temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)
# Round stack pointer to next boundary.
# SALIGN=1 on 80960Rx.
RIP=1P;
if (register_set_available)
allocate_new_frame();
else
{ save_register_set(); # Save register set in memory at its FP;
allocate_new_frame();
}
# Local register references now refer to new frame.
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0O;
PFP = FP;
FP = temp;
SP =temp + 64;

STANDARD Refer tosection 6.1.6Faults(pg. 6-5)
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Example:

Opcode:

See Also:

cal I x (g5)

callx 86H

bal, call, calls, ret

# 1P = (g9),

INSTRUCTION SET REFERENCE

where the address in g5

# is the address of the new procedure.

MEM
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6.2.16
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

6-28

chkbit Check Bit
chkbit bitpos, src2
reg/lit reg/lit

Checks bit in src2 designated by bitpos and sets condition code according to
value found. If bit is set, condition code is set to 010,; if bit is clear, condition
code is set to 000,.

if (((src2 & 2**(bitpos % 32)) == 0)

AC.cc = 000,;
else
AC.cc = 010,;
STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
chkbit 13, @8 # Checks bit 13 in g8 and sets
# AC.cc according to the result.
chkbit 5AEH REG

alterbit, clrbit, notbit, setbit, cmpi, cmpo

Sets the condition code in the arithmetic controls.
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6.2.17

Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

clrbit

clrbit Clear Bit

clrbit bitpos,
reg/lit

Copies src value to dst with one bit cleared. bitpos operand specifies bit to be

cleared.
dst = src & ~(2** (bitpos%32));
STANDARD

clrbit 23, g3, g6 # g6 = g3 with bit 23 cleared.

clrbit 58CH
alterbit, chkbit, notbit, setbit

INSTRUCTION SET REFERENCE

src, dst
reg/lit reg

Refer to section 6.1.6, Faults (pg. 6-5).

REG
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6.2.18 cmpdeci, cmpdeco

Mnemonic: cmpdeci Compare and Decrement Integer
cmpdeco  Compare and Decrement Ordinal
Format: cmpdec* srcl, src2, dst
reg/lit reg/lit reg
Description: Compares src2 and srcl values and sets the condition code according to

comparison results. src2 is then decremented by one and result is stored in
dst. The following table shows condition code setting for the three possible
results of the comparison.

Condition Code Comparison
100, srcl < src2
010, srcl = src2
001, srcl > src2

These instructions are intended for use in ending iterative loops. For
cmpdeci, integer overflow is ignored to allow looping down through the
minimum integer val ues.

Action: if(srcl < src2)
AC.cc = 100,;
elseif(srcl == src2)
AC.cc = 010,;
else
AC.cc = 001,;
dst=src2-1; # Overflow suppressed for cmpdeci.
Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
Example: cnpdeci 12, g7, gl # Conpares g7 with 12 and sets
# AC.cc to indicate the result
# gl = g7 - 1.
Opcode: cmpdeci 5ATH REG
cmpdeco 5A6H REG
See Also: cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH<cc>
Side Effects: Sets the condition code in the arithmetic controls.
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Mnemonic:
Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

INSTRUCTION SET REFERENCE

cmpinci, cmpinco

cmpinci Compare and Increment Integer

cmpinco Compare and Increment Ordinal

cmpinc* srcl, src2, dst
reg/lit reg/lit reg

Compares src2 and srcl values and sets the condition code according to
comparison results. src2 isthen incremented by one and result is stored in dst.
The following table shows condition code settings for the three possible
comparison results.

Condition Code Comparison
100, srcl < src2
010, srcl = src2
001, srcl > src2

These instructions are intended for use in ending iterative loops. For cmpinci,
integer overflow isignored to alow looping up through the maximum integer
values.

if (srcl < src2)
AC.cc = 100,;
elseif (srcl == src2)
AC.cc = 010,;
else
AC.cc = 001y;

dst=src2+1; #Overflow suppressed for cmpinci.

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

cnpinco r8, g2, g9 # Conpares the values in g2
# and r8 and sets AC.cc to
# indicate the result:
# 099 = g2 + 1

cmpinci 5A5H REG
cmpinco 5A4H REG

cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH<cc>

Sets the condition code in the arithmetic controls.
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6.2.20

Mnemonic:

Format:

Description:

Action:

Faults:

6-32

COMPARE

cmpi Compare I nteger
cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordinal
cmpob Compare Ordinal Byte
cmpos Compare Ordinal Short
cmp* srcl, src2

reg/lit reg/lit

Compares src2 and srcl values and sets condition code according to
comparison results. The following table shows condition code settings for the
three possible comparison results.

Condition Code Comparison
100, srcl < src2
010, srcl = src2
001, srcl > src2

cmpi* followed by abranch-if instruction is equivalent to a compare-integer-
and-branch instruction. The latter method of comparing and branching
produces more compact code; however, the former method can execute byte
and short compares without masking. The same is true for cmpo* and the
compare-ordinal-and-branch instructions.

# For cmpo, cmpi, N = 31
# For cmpos, cmpis, N = 15.
# For cmpob, cmpib, N = 7.

if (src1[N:Q] < src2[N:0])
AC.cc = 100,;

elseif (srcl[N:0] == src2[N:Q])
AC.cc = 010,;

elseif (src1[N:0] > src2[N:Q])
AC.cc = 001y;

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
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Example: cnpo r9, 0x10 # Conpares the value in r9 with 0x10
# and sets AC.cc to indicate the
# result.
bg xyz # Branches to xyz if the value of r9
# was greater than 0x10.
Opcode: cmpi 5A1H REG
cmpib 595H REG
cmpis 597H REG
cmpo 5A0H REG
cmpob 594H REG
cmpos 596H REG
See Also: COMPARE AND BRANCH<cc>, cmpdeci, cmpdeco, cmpinci, cmpinco,
concmpi, concmpo
Side Effects: Sets the condition code in the arithmetic controls.
Notes: The core instructions cmpib, cmpis, compob and compos are not imple-

mented on 1960 Cx, Kx and Sx processors.
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6.2.21 COMPARE AND BRANCH<cc>

Mnemonic: cmpibe Compare Integer and Branch If Equal
cmpibne Compare Integer and Branch If Not Equal
cmpibl Compare Integer and Branch If Less
cmpible Compare Integer and Branch If Less Or Equal
cmpibg Compare Integer and Branch If Greater
cmpibge Compare Integer and Branch If Greater Or Equal
cmpibo Compare Integer and Branch If Ordered
cmpibno Compare Integer and Branch If Not Ordered
cmpobe Compare Ordinal and Branch If Equal
cmpobne Compare Ordinal and Branch If Not Equal
cmpobl Compare Ordinal and Branch If Less
cmpoble Compare Ordinal and Branch If Less Or Equal
cmpobg Compare Ordinal and Branch If Greater
cmpobge Compare Ordinal and Branch If Greater Or Equal
Format: cmpib* srcl, src2, targ
reg/lit reg disp
cmpob* srcl, src2, targ
reg/lit reg disp
Description: Compares src2 and srcl values and sets AC register condition code

according to comparison results. If logical AND of condition code and mask
part of opcode is not zero, the processor branches to instruction specified
with targ; otherwise, the processor goes to next instruction.

targ can be no farther than -212 to (212 - 4) bytes from current |P. When using
the Intel 1960 processor assembler, targ must be a label that specifies target
instruction’s IP.

Functions these instructions perform can be duplicated vthpa or cmpo
followed by a branch-if instruction, as described gection 6.2.20,
COMPARE (pg. 6-32)
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Action:

Faults:

Example:
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The following table shows the condition-code mask for each instruction. The
mask isin bits 0-2 of the opcode.

Instruction Mask Branch Condition
cmpibno 000, No Condition
cmpibg 001, srcl> src2
cmpibe 010, srcl=src2
cmpibge 011, srcl = src2
cmpibl 100, srcl < src2
cmpibne 101, srcl# src2
cmpible 110, src1 < src2
cmpibo 111, Any Condition
cmpobg 001, srcl> src2
cmpobe 010, srcl=src2
cmpobge 011, srcl = src2
cmpobl 100, srcl< src2
cmpobne 101, srcl# src2
cmpoble 110, srcl < src2

cmpibo aways branches;, cmpibno never branches.

if(srcl <src2)
AC.cc = 100,;
elseif(srcl == src2)
AC.cc = 010,;
else
AC.cc = 001,;
if((mask && AC.cc) |=000,)
IP[31:2] = efg[31:2]; # Resume execution at the new IP.
IP[1:0] =0;

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

# Assunme g3 < g9

cnpi bl g3, g9, xyz # g9 is conpared with ¢g3;
# IP = xyz.

# assume 19 =2 r7

cnpobge 19, r7, xyz# 19 is conpared with r7;
# IP = xyz.
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Opcode:

See Also:

Side Effects:

6-36

cmpibe 3AH
cmpibne 3DH
cmpibl 3CH
cmpible 3EH
cmpibg 39H
cmpibge 3BH
cmpibo 3FH
cmpibno 38H
cmpobe 32H
cmpobne  35H
cmpobl 34H
cmpoble 36H
cmpobg 31H
cmpobge  33H

COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR

BRANCH<cc>, cmpi, cmpo, bal, balx

Sets the condition code in the arithmetic controls.
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6.2.22 concmpi, concmpo
Mnemonic: concmpi Conditional Compare I nteger
concmpo  Conditional Compare Ordinal
Format: concmp* srcl, src2
reg/lit reg/lit
Description: Compares src2 and srcl values if condition code bit 2 is not set. If

comparison is performed, condition code is set according to comparison
results. Otherwise, condition codes are not altered.

These instructions are provided to facilitate bounds checking by means of
two-sided range comparisons (e.g., is A between B and C?). They are
generally used after a compare instruction to test whether a value is
inclusively between two other values. n

The example below illustrates this application by testing whether g3 value is
between g5 and g6 values, where g5 is assumed to be less than g6. First a
comparison (cmpo) of g3 and g6 is performed. If g3 is less than or equal to
g6 (i.e., condition code is either 010, or 001,), a conditional comparison
(concmpo) of g3 and g5 isthen performed. If g3 is greater than or equal to gb
(indicating that g3 is within the bounds of g5 and g6), condition codeis set to
010,; otherwise, it is set to 001,.

Action: if (AC.cc!=1XXy)
{ if(srcl <=src2)
AC.cc = 010,;
else
AC.cc =001,
}
Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
Example: cnpo g6, g3 # Conpares g6 and g3
# and sets AC. cc.
concnpo g5, g3 # If AC cc < 100, (g6 = g3)

# g5 is conpared with g3.

At this point, depending on the register ordering, the condition code is one of
those listed on Tabl e 6- 5.
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Table 6-5. concmpo Example: Register Ordering and CC

Order CcC
g5<g6<g3 100,
g5<g6=g3 010,
g5<9g3<g6 010,
g5=03<g6 010,
g3<g5<g6 001,
Opcode: concmpi 5A3H REG
concmpo 5A2H REG
See Also: cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE AND
BRANCH<cc>
Side Effects: Sets the condition code in the arithmetic controls.
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Mnemonic:

Format:

Description:

dcctl

INSTRUCTION SET REFERENCE

src/dst

dcctl Data-cache Control
srcl, src2,
reg/lit reg/lit

reg

Performs management and control of the data cache including disabling,

enabling, invalidating, ensuring coherency, getting status, and storing cache
contents to memory. Operations are indicated by the value of srcl. src2 and
src/dst are also used by some operations. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent

operations to ensure correct behavior.

Table 6-6. dcctl Operand Fields

Function srcl src2 src/dst
Disable D-cache 0 NA NA
Enable D-cache 1 NA NA
Global invalidate 5 NA NA
D-cache
Ensure ca(ihe 3 NA NA
coherency
src: NA
Get D-cache status 4 NA dst: Receives
D-cache status (see Figure 6-1).
Reserved 5 NA NA
Store D-cache to Destination src: D-cache set #'s to be stored
memol 6 address for (see Figure 6-1)
Y cache sets g ’
Reserved NA NA
Quick invalidate 1 NA
Reserved NA NA

1. Invalidates data cache on 80960RXx.
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srcl Format

31 8 7 0
Function Type
src/dst Format for Data Cache Status
31 28 27 16 15 12 11 8 7 4 3 0
# of Ways-1
log, (# of Sets) —T J T
log, (Atoms/Line) Enabled = 1
log, (Bytes/Atom) Disabled = 0
src/dst Format for Store Data Cache Sets to Memory
31 16 15 0

Ending Set # Starting Set #

Figure 6-1. dcctl src1 and src/dst Formats

Table 6-7. dcctl Status Values and D-Cache Parameters

Value Value on 80960Rx
bytes per atom 4
atoms per line 4
number of sets 128 (full)
number of ways 1 (Direct)
cache size 2-Kbytes(full)
Status[0] (enable / disable) Oorl
Status[1:3] (reserved) 0
Status[7:4] (log,(bytes per atom)) 2
Status[11:8] (log,(atoms per line)) 2
Status[15:12] (log,(number of sets)) 7 (full)
Status[27:16] (number of ways - 1) 0
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0 Destination
Address (DA)
Tag (Starting set) DA + 4H
Valid Bits (Starting set) DA + 8H
o Word 0 DA + CH
%" Word 1 DA + 10H
; Word 2 DA + 14H
Word 3 DA + 18H
0 DA + 1CH
o Tag (Starting set + 1) DA + 20H
%\ Valid Bits (Starting set + 1) DA + 24H
=

Figure 6-2. Store Data Cache to Memory Output Format

31

80960Rx Cache Tag Format (2 Kbyte Cache)

2120

Actual Address Bits 31:11

31

Valid Bits Values

Valid Bit for Word 3 of current Set and Way 4T
Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 1 of current Set and Way

Valid Bit for Word 0 of current Set and Way

Tag Valid Bit for current Set and Way

Figure 6-3. D-Cache Tag and Valid Bit Formats
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Action: if (PC.em != supervisor)
generate fault(TYPE.MISMATCH);
order_wrt(previous_operations);

switch (srcl[7:0]) {

case O: # Disable data cache.
disable Dcache();
break;

case 1. # Enable data cache.
enable_Dcache( );
break;

case 2: # Global invalidate data cache.
invalidate_Dcache( );
break;

case 3. # Ensure coherency of data cache with memory.

# Causes data cache to be invalidated on this processor.
ensure_Dcache_coherency();
break;
case 4. # Get data cache status into src_dst.
if (Dcache_enabled) src_dst[0] = 1;
dsesrc dst[0] =0;
# Atom is 4 bytes.
src_dst[7:4] = log2(bytes per atom);
# 4 atoms per line.
src_dst[11:8] = log2(atoms per line);
src_dst[15:12] = log2(number of sets);
src_dst[27:16] = number of ways-1; # in lines per set
# cache size = ([27:16]+1) << ([7:4] + [11:8] +[15:12)]).
break;
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Example:

Opcode:
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case 6: # Store data cache sets to memory pointed to by src2.
start = src_dst[15:0] #  Starting set number.
end =src_dst[31:16] # Ending set number.

# (zero-origin).
if (end >= Dcache_max_sets) end = Dcache max_sets- 1;
if (start > end) generate fault
(OPERATION.INVALID_OPERAND);

memadr = src2; # Must be word-aligned.
if (0x3 & memadr! =0)
generate fault(OPERATION.INVALID_OPERAND)
for (set = start; set <= end; set++){

# Set_Datais described at end of this code flow.

memory[memadr] = Set_Data[set];

memadr += 4;
for (way = 0; way < numb_ways; way++) n
{ memory[memadr] = tags[set][way];
memadr += 4;
memory[memadr] = valid_bitg[set][way];
memadr += 4;
for (word = 0; word < words_in_line; word++)
{memory[memadr] =
Dcache_line[set][way][word];
memadr += 4;
}
}
}
break;

default: # Reserved.
generate fault(OPERATION.INVALID_OPERAND);
break;

order_wrt(subsequent_operations)

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.
OPERATION.INVALID_OPERAND

# g0 = 6, gl = 0x10000000,
# g2 = 0x001F0001
dcctl g0, 91, g2 # Store the status of D-cache

# sets 1-0x1F to nenory starting
# at 0x10000000.

dectl 65CH REG
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See Also:

Notes:

6-44

sysctl

DCCTL function 6 stores data-cache sets to a target range in external mem-
ory. For any memory location that is cached and a so within the target range
for function 6, the corresponding word-valid bit will be cleared after function
6 completes to ensure data-cache coherency. Thus, dcctl function 6 can alter
the state of the cache after it completes, but only the word-valid bits. In all
cases, even when the cache sets to store to external memory overlap the
cache sets that map the target range in external memory, DCCTL function 6
always returns the state of the cache as it existed when the DCCTL was
issued.

Thisinstruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
CEssOrs.
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6.2.24 divi, divo

Mnemonic: divi Divide Integer
divo Divide Ordina
Format: div* srcl, src2, dst
reg/lit reg/lit reg
Description: Divides src2 value by srcl value and stores the result in dst. Remainder is
discarded.

For divi, an integer-overflow fault can be signaled.

Action: divo:
if (srcl==0)
{ dst =undefined_vaue;
generate fault (ARITHMETIC.ZERO_DIVIDE);
else

dst = src2/srcl;

divi:
if (srcl==0)
{ dst =undefined_vaue;
generate fault (ARITHMETIC.ZERO_DIVIDE);}
elseif ((src2 ==-2**31) && (srcl ==-1))

{ dst =-2**31
if (AC.om==1)
AC.of =1,
else
generate fault (ARITHMETIC.OVERFLOW);
}
else
dst =src2/ srcl;
Faults: STANDARD Refer to Section 6.1.6 on page 6-5.

ARITHMETIC.ZERO_DIVIDE The srcl operand is 0.

ARITHMETIC.OVERFLOW  Result too large for destination register (divi
only). If overflow occurs and AC.om=1,
fault is suppressed and AC.of is set to 1.
Result’s least significant 32 bits are stored in
dst.

Example: divo r3, r8, ri13 #rl13 =r8/r3
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Opcode: divi 74BH

divo 70BH
See Also: ediv, mulo, muli, emul
6-46
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Mnemonic:

Format:

Description:

Action:

Faults:

Example:
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ediv Extended Divide
ediv srcl, src2, dst
reg/lit reg/lit reg

Divides src2 by srcl and stores result in dst. The src2 value is along ordinal
(64 hits) contained in two adjacent registers. src2 specifies the lower
numbered register which contains operand’s least significantsti&must
be an even numbered register (i.e., g0, g2, ... or r4, r6, r&cl)value is a
normal ordinal (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quotient.
Remainder is stored in the register designatedshyquotient is stored in th

next highest numbered registdst must be an even numbered register (n
g0, g2, ... r4, 16, 18, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (quotient or remainder do not fit in 32 bits), no
fault is raised and the result is undefined.

if((reg_number(src2)%2 != 0) || (reg_number(dst)%2 != 0))
{ dst[0] = undefined_value;
dst[1] = undefined_value;
generate_fault (OPERATION.INVALID_OPERAND);
}
else if(srcl == 0)
{ dst[0] = undefined_value;
dst[1] = undefined_value;
generate_fault(ARITHMETIC.DIVIDE_ZERO);
}
else # Quotient
{ dst[1] = ((src2 + reg_value(src2[1]) * 2**32) / src1)[31:0];
#Remainder
dst[0] = (src2 + reg_value(src2[1]) * 2**32
- ((src2 + reg_value(src2[1]) * 2**32 / srcl) * srcl);

}

STANDARD Refer tosection 6.1.6, Fault§g. 6-5)
ARITHMETIC.ZERO_DIVIDE Thesrcl operand is O.
ediv g3, g4, gl0 # g10 remai nder of g4, g5/g3

# gll quotient of g4, g5/g3
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Opcode: ediv 671H
See Also: emul, divi, divo
6-48
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6.2.26

Mnemonic:

Format:

Description:

Action:

Faults:
Example:
Opcode:

See Also:

emul

INSTRUCTION SET REFERENCE

emul Extended Multiply

emul srcl, src2, dst
reg/lit reg/lit reg

Multiplies src2 by srcl and stores theresult in dst. Result isalong ordinal (64
bits) stored in two adjacent registers. dst specifies lower numbered register,
which receives the result's least significant bitlst must be an even
numbered register (i.e., g0, g2, ... r4, r6, r8, ...).

This instruction performs ordinal arithmetic.

if(reg_number(dst)%2 != 0)

{ dst[0] = undefined_value;
dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}

else

{ dst[0] = (srcl * src2)[31:0];
dst[1] = (srcl * src2)[63:32];

}

STANDARD Refer tosection 6.1.6Faults(pg. 6-5)
enul r4, r5, g2 # 92,093 =r4 * r5,

emul 670H REG

ediv, muli, mulo
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6.2.27 eshro
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Notes:

6-50

eshro Extended Shift Right Ordinal
eshro srcl, src2, dst
reg/lit reg/lit reg

Shifts src2 right by (srcl mod 32) places and stores the result in dst. Bits
shifted beyond the least-significant bit are discarded.

src2 valueis along ordinal (i.e., 64 bits) contained in two adjacent registers.
src2 operand specifies the lower numbered register, which contains
operand’s least significant bitstc2 operand must be an even numbered
register (i.e., r4, r6, r8, ... or g0, g2).

srcl operand is a single 32-bit register or literal where the lower 5 bits
specify the number of places that 8ne2 operand is to be shifted.

The least significant 32 bits of the shift operation result are stords.in

if(reg_number(src2)%?2 != 0)

{ dst[0] = undefined_value;
dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else

dst = shift_right((src2 + reg_value(src2[1]) * 2**32),(src1%32))[31:0];
STANDARD Refer tosection 6.1.6Faults(pg. 6-5)

eshro g3, g4, gl1 # g1l = g4,5 shifted right by
# (g3 MOD 32).

eshro 5D8H REG
SHIFT, extract

This core instruction is not implemented on the Kx and Sx 80960 processors.
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6.2.28

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

extract
extract

extract

Shifts a specified bit field in src/dst right and zero fills bits to |eft of shifted
bit field. bitpos value specifies the least significant bit of the bit field to be

Extract

bitpos
reg/lit

INSTRUCTION SET REFERENCE

len src/dst
reg/lit reg

shifted; len value specifies bit field length.

src_dst = (src_dst >> min(bitpos, 32))
& ~ (OXFFFFFFFF << len);

STANDARD

extract 5,

extract

modify

12, g4

651H

Refer to section 6.1.6, Faults (pg. 6-5).

# g4 = g4 with bits 5 through
# 16 shifted right.

REG
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6.2.29

Mnemonic:

Format:

Description:

Action:

Faults:

6-52

FAULT<cc>

faulte Fault If Equal

faultne Fault If Not Equal

faultl Fault If Less

faultle Fault If Less Or Equal
faultg Fault If Greater

faultge Fault If Greater Or Equal
faulto Fault If Ordered

faultno Fault If Not Ordered
fault*

Raises a constraint-range fault if the logical AND of the condition code and
opcode’s mask part is not zero. Raultno (unordered), fault is raised if
condition code is equal to 020

faulto andfaultno are provided for use by implementations with a floating
point coprocessor. They are used for compare and branch (or fault)
operations involving real numbers.

The following table shows the condition-code mask for each instruction. The
mask is opcode bits 0-2.

Instruction Mask Condition
faultno 000, Unordered
faultg 001, Greater
faulte 010, Equal
faultge 011, Greater or equal
faultl 100, Less
faultne 101, Not equal
faultle 110, Less or equal
faulto 111, Ordered

For all except faultno:
if(mask && AC.cc != 00Q)
generate_fault(CONSTRAINT.RANGE);

faultno:
if(AC.cc == 00Q)
generate_fault(CONSTRAINT.RANGE);

STANDARD Refer tosection 6.1.6Faults(pg. 6-5)
CONSTRAINT.RANGE If condition being tested is true.



In":el® INSTRUCTION SET REFERENCE

Example: # Assume (AC.cc AND 110,) # 000,
faultle # Generat e CONSTRAI NT_RANCE faul t

Opcode: faulte 1AH CTRL
faultne 1DH CTRL
faultl 1CH CTRL
faultle 1EH CTRL
faultg 19H CTRL
faultge 1BH CTRL
faulto 1FH CTRL
faultno 18H CTRL

See Also: BRANCH<cc>, TEST<cc>
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6.2.30

Mnemonic:

Format:

Description:

Action:

Faults:
Example:

Opcode:

6-54

flushreg

flushreg Flush Local Registers
flushreg

Copies the contents of every cached register set, except the current set, to its
associated stack frame in memory. The entire register cache is then marked
as purged (or invalid). On a return to a stack frame for which the local
registers are not cached, the processor rel oads the locals from memory.

flushreg is provided to alow a debugger or application program to
circumvent the processor’'s normal call/return mechanism. For example, a
debugger may need to go back several frames in the stack on the next return,
rather than using the normal return mechanism that returns one frame at a
time. Since the local registers of an unknown number of previous stack
frames may be cachedflashreg must be executed prior to modifying the
PFP to return to a frame other than the one directly below the current frame.

To reduce interrupt latencylushreg is abortable. If an interrupt of higher
priority than the current process is detected wHilehreg is executing,
flushreg flushes at least one frame and aborts. After executing the interrupt
handler, the processor returns to thishreg instruction and re-executes it.
flushreg does not reflush any frames that were flushed before the interrupt
occurred.flushreg is not aborted by high priority interrupts if tracing is
enabled in the PC or if any faults are pending at the time of the interrupt.

Each local cached register set except the current one is flushed to its

associated stack frame in memory and marked as purged, meaning that they
are reloaded from memory if and when they become the current local register

set.

STANDARD Refer tosection 6.1.6Faults(pg. 6-5)
flushreg
flushreg 66DH REG
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6.2.31 fmark

Mnemonic: fmark Force Mark
Format: fmark
Description: Generates a mark trace event. Causes a mark trace event to be generated,

regardless of mark trace mode flag setting, providing the trace enable bit, bit
0 in the Process Controls, is set.

For more information on trace fault generation, refer to CHAPTER 10,
TRACING AND DEBUGGING.

Action: A mark trace event is generated, independent of the setting of the mark-trace-
mode flag.
Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TRACE.MARK A TRACE.MARK fault is generated if
PC.te=1.
Example: # Assune PC.te =1
f mar k

# Mark trace event is generated at this point in the
# instruction stream

Opcode: fmark 66CH REG

See Also: mark
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6.2.32 halt
Mnemonic:

Format:

Description:

Action:

Faults:

6-56

halt Halt CPU
halt srcl
reg/lit

Causes the 1960 core processor to enter HALT mode. Entry into Halt mode
allows the interrupt enable state to be conditionally changed based on the
value of srcl.

srcl Operation
0 Disable interrupts and halt
1 Enable interrupts and halt
2 Use current interrupt enable state and halt

The processor exits Halt mode on a hardware reset or upon receipt of an
interrupt that should be delivered based on the current process priority. After
executing the interrupt that forced the processor out of Halt mode, execution
resumes a the instruction immediately after the halt instruction. The
processor must be in supervisor mode to use this instruction.

implicit_syncf;

if (PC.em != supervisor)
generate_fault( TYPE.MISMATCH);

switch(srcl) {

case 0 # Disableinterrupts. set ICON.gie.
globa_interrupt_enable = true; break;
case 1. # Enable interrupts. clear ICON.gie.
global_interrupt_enable = falsg; break;
case 2: # Use the current interrupt enabl e state.
break;
default:

generate fault( OPERATION.INVALID_OPERAND );
break;
}

ensure_bus is_quiescient;
enter_ HALT_mode;

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.
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Example:

Opcode:

Notes:

INSTRUCTION SET REFERENCE

#1CONgie =1, g0 =1, Interrupts disabl ed.
halt g0 # Enable interrupts and halt.

halt 65DH REG

Thisinstruction is implemented on the 80960Rx and 80960Jx processor fam-
iliesonly, and may or may not be implemented on future i960 processors.
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6.2.33
Mnemonic:

Format:

Description:

6-58

icctl

icctl Instruction-cache Control
icctl srcl, src2, src/dst
reg/lit reg/lit reg

Performs management and control of the instruction cache including
disabling, enabling, invalidating, loading and locking, getting status, and
storing cache sets to memory. Operations are indicated by the value of srcl.
Some operations also use src2 and src/dst. When needed by the operation,
the processor orders the effects of the operation with previous and
subsequent operations to ensure correct behavior. For specific function setup,
see the following tables and diagrams:

Table 6-8. icctl Operand Fields

Function srcl src2 src/dst
Disable I-cache 0 NA NA
Enable I-cache 1 NA NA
Invalidate I-cache 2 NA NA
src: Starting
Load and lock 3 address of code to | Number of blocks to lock.
I-cache
lock.
Get I-cache status 4 NA dst: Receives status (see

Eigure 6-4).
dst: Receives status (see

Get I-cache locking 5 NA

status Figure 6-4)

Store I-cache sets Destination src: I-cache set #'s to be stored
6 address for cache .

to memory (see Figure 6-4).

sets
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srcl Format

31 8 7 0

Function Type

src/dst Format for I-cache Status

31 28 27 16 15 12 11 8 7 4 3 0

# of Ways-1

log, (# of Sets) —T J T

log, (Atoms/Line) Enabled = 1

log, (Bytes/Atom) Disabled = 0
src/dst Format for I-cache Locking Status
31 24 23 8 7 0
# of Blocks that are Locked Block Size in Words # of Blocks that Lock
src/dst Format for Store I-cache Sets to Memory
31 16 15 0
Ending Set # Starting Set #
Reserved,
(Initialize to 0)

Figure 6-4. icctl src1 and src/dst Formats

I 6-59



INSTRUCTION SET REFERENCE

intel.

Table 6-9. icctl Status Values and I-Cache Parameters

Value Value on i960RP CPU
bytes per atom 4
atoms per line 4
number of sets 128
number of ways 2
cache size 4-Kbytes
Status[0] (enable / disable) Oorl
Status[1:3] (reserved) 0
Status[7:4] (log2(bytes per atom)) 2
Status[11:8] (log2(atoms per line)) 2
Status[15:12] (log2(number of sets)) 7
Status[27:16] (number of ways - 1) 1
Lock Status[7:0] (humber of blocks that lock) 1
Lock Status[23:8] (block size in words) 512
Lock Status[31:24] (number of blocks that are locked) Oor1l
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Set_Data [Starting Set] 233:?55??8 A)
Tag (Starting set) DA + 4H
Valid Bits (Starting set) DA + 8H
o Word 0 DA + CH
%" Word 1 DA + 10H
; Word 2 DA + 14H
Word 3 DA + 18H
Tag (Starting set) DA + 1CH
- Valid Bits (Starting set) DA + 20H
> Word 0 DA + 24H
Y Word 1 DA + 28H
; Word 2 DA + 2CH
Word 3 DA + 30H
Set_Data [Starting Set + 1] DA + 34H
o Tag (Starting set + 1) DA + 38H
%\ Valid Bits (Starting set + 1) DA + 3CH
=
Figure 6-5. Store Instruction Cache to Memory Output Format
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Set Data I-Cache Values

|I-Cache Set Data Value —T

0 =Way 0 is least recently used
1 =Way 1 is least recently used

80960Rx Cache Tag Format (4 Kbyte Cache)

31 2120 0

Actual Address Bits 31:11

Valid Bits Values

Valid Bit for Word 3 of current Set and Way 41
Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 1of current Set and Way
Valid Bit for Word 0 of current Set and Way
Tag Valid bit for current Set and Way

6-62

Figure 6-6. I-Cache Set Data, Tag and Valid Bit Formats



In":el® INSTRUCTION SET REFERENCE

Action: if (PC.em != supervisor)
generate fault(TYPE.MISMATCH);
switch (srcl[7:0]) {

case O: # Disableinstruction cache.
disable instruction_cache();
break;

case 1. # Enable instruction cache.
enable_instruction_cache( );
break;

case 2: # Globally invalidate instruction cache.

# Includes locked lines also.
invalidate_instruction_cache( );

unlock_icache( );
break;
case 3: # Load & Lock code into Instruction-Cache

# src_dst has number of contiguous blocks to lock.

# src2 has starting address of code to lock.

#0n the 960 RP, src2 is aligned to a quad word boundary
aigned addr = src2 & OXFFFFFFFO;
invalidate(l-cache); unlock(l-cache);
for (j =0;j < src_dst; j++)

{ way =way_associated_with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i < end; i=i+4)
{ set=set associated with(i);
word = word_associated with(i);
Icache_line[set][way][word] =
memory[i];
update tag n valid_bits(set,way,word)
lock_icache(set,way,word);
} } break;
case 4: # Get instruction cache statusinto src_dst.

if (Icache_enabled) src_dst[0] = 1,
else src_dst[0] = 0;

# Atom is 4 bytes.

src_dst[7:4] = log2(bytes per atom);
# 4 atoms per line.
src_dst[11:8] = log2(atoms per line);

src_dst[15:12] = log2(number of sets);

src_dst[27:16] = number of ways-1; #in lines per set

# cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12])

break;
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case 5: # Get instruction cache locking status into dst.
src_dst[7:0] = number_of blocks that_lock;
src_dst[23:8] = block_size in_words;
src_dst[31:24] = number_of blocks that_are locked,;

break;
case 6: # Store instr cache sets to memory pointed to by src2.
start = src_dst[15:0] # Starting set number

end =src_dst[31:16] # Ending set number
# (zero-origin).
if (end >= Icache_max_sets)
end = lcache_max_sets - 1;
if (start > end)

generate_fault(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if(0x3 & memadr !=0)

generate_fault(OPERATION.INVALID_OPERAND);
for (set = start; set <= end; set++){
# Set_Dataisdescribed at end of this code flow.
memory[memadr] = Set_Data[set];
memadr += 4;
for (way = 0; way < numb_ways; way++)
{memory[memadr] = tagq set][way];

memadr += 4;
memory[memadr] = valid_bitg[set][way];
memadr += 4;
for (word = 0; word < words _in_line;
word++)
{memory[memadr] =
Icache_line[set][way][word];
memadr += 4;
}
} } break;

default: # Reserved.
generate fault(OPERATION.INVALID_OPERAND);
break;}

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.
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Example:

Opcode:
See Also:

Notes:

INSTRUCTION SET REFERENCE

# g0 = 3, g1=0x10000000, g2=1
icctl g0,91,9g2 # Load and lock 1 block of cache

# (one way) with

# location of code at starting

# 0x10000000.

icctl 65BH REG

sysctl

This instruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future 1960 pro-
Cessors.
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6.2.34 intctl
Mnemonic:

Format:

Description:

Action:

Faults:

6-66

intctl Global Enable and Disable of Interrupts
intctl srcl dst
reg/lit reg

Globally enables, disables or returns the current status of interrupts
depending on the value of srcl. Returnsthe previousinterrupt enable state (1
for enabled or O for disabled) in dst. When the state of the global interrupt
enable is changed, the processor ensures that the new state is in full effect
before the instruction completes. (Thisinstruction is implemented by manip-
ulating ICON.gie.)

srcl Value Operation
0 Disables interrupts
1 Enables interrupts
2 Returns current interrupt enable status

if (PC.em != supervisor)
generate fault(TYPE.MISMATCH);
old_interrupt_enable = global_interrupt_enable;
switch(srcl) {
case 0: # Disable. Set ICON.gieto one.
globally_disable_interrupts;
global_interrupt_enable = falsg;
order_wrt(subsequent_instructions);
break;
case 1. # Enable. Clear ICON.gieto zero.
globally_enable_interrupts;
global_interrupt_enable = true;
order_wrt(subsequent_instructions);

break;
case 2: # Return status. Return ICON.gie
break;
default:
generate fault(OPERATION.INVALID_OPERAND);
break;
}
if(old_interrupt_enable)
dst=1;
else
dst=0;
STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
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Example:

Opcode:
See Also:

Notes:

INSTRUCTION SET REFERENCE

TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

# ICON.gie = 0, interrupts enabl ed

intctl 0, g4 # Disable interrupts (ICON.gie = 1)
#9094 =1

intctl 658H REG

intdis, inten

This instruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future 1960 pro-
Cessors.
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6.2.35 intdis

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Notes:

6-68

intdis Global Interrupt Disable
intdis
Globally disables interrupts and ensures that the change takes effect before

the instruction completes. This operation is implemented by setting
ICON.gieto one.

if (PC.em != supervisor)

generate fault(TYPE.MISMATCH);
# Implemented by setting ICON.gieto one.
globaly_disable interrupts;
interrupt_enable = false;
order_wrt(subsequent_instructions);

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

# ICON.gie = 0, interrupts enabl ed

intdis # Disable interrupts.
# ICON.gie =1

intdis 5B4H REG

intctl, inten

Thisinstruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
Cessors.
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6.2.36 inten

Mnemonic: inten global interrupt enable

Format: inten

Description: Globally enables interrupts and ensures that the change takes effect before the
instruction completes. This operation isimplemented by clearing ICON.gieto
zero.

Action: if (PC.em != supervisor)

generate fault(TYPE.MISMATCH);
# Implemented by clearing ICON.gie to zero.
globaly_enable_interrupts;

interrupt_enable = true;
order_wrt(subsequent_instructions);

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

Example: # ICON.gie = 1, interrupts disabled.

i nten # Enabl e interrupts.
# ICON.gie =0

Opcode: inten 5B5H REG

See Also: intctl, intdis

Notes: This instruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future 1960 pro-
CEessors.
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6.2.37 LOAD

Mnemonic: Id Load
Idob Load Ordinal Byte
Idos Load Ordina Short
Idib Load Integer Byte
Idis Load Integer Short
Idl Load Long
Idt Load Triple
Idq Load Quad
Format: |d* src, dst
mem reg
Description: Copies byte or byte string from memory into a register or group of successive
registers.

The src operand specifies the address of first byte to be loaded. The full
range of addressing modes may be used in specifying src. Refer to Chapter 2,
DATA TYPES AND MEMORY ADDRESSING MODES for more infor-
mation.

dst specifies a register or the first (lowest numbered) register of successive
registers.

Idob and Idib load abyte and Idos and Idis load a half word and convert it to
a full 32-bit word. Data being loaded is sign-extended during integer loads
and zero-extended during ordinal loads.

Id, Idl, Idt and Idq instructions copy 4, 8, 12 and 16 bytes, respectively, from
memory into successive registers.

For Idl, dst must specify an even numbered register (i.e., g0, g2...). For Idt
and Idg, dst must specify aregister number that is a multiple of four (i.e., g0,
04, 98, 912, r4, r8, r12). Results are unpredictable if registers are not aigned
on the required boundary or if data extends beyond register g15 or r15 forldl,
Idt or Idq.
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Action: Id:
dst = read_memory(effective_address)[31:0];
if((effective_address[1:0] != 00, ) && unaligned _fault_enabled)
generate fault(OPERATION.UNALIGNED);

Idob:
dst[7:0] = read_memory(effective_address)[7:0];
dst[31:8] = 0x000000;

Idib:
dst[7:0] = read_memory(effective_address)[7:0];
if(dst[7] == 0)
dst[31:8] = 0x000000;
else
dst[31:8] = OxFFFFFF;

Idos:
dst = read_memory(effective_address)[15:0];
# Order depends on endianism.
dst[31:16] = 0x0000;
if((effective_address[Q] != 0,) && unaligned_fault_enabled)
generate fault(OPERATION.UNALIGNED);

Idis:
dst[15:0] = read_memory(effective_address)[15:0];
# Order depends on endianism.
if(dst[15] == 0,)
dst[31:16] = 0x0000;
else
dst[31:16] = OXFFFF;
if((effective_address[Q] != 0,) && unaligned fault_enabled)
generate fault(OPERATION.UNALIGNED);

Idl:

if((reg_number(dst) % 2) !=0)
generate_fault(OPERATION.INVALID_OPERAND);
# dst not modified.

else

{ dst=read memory(effective address)[31:0];
dst_+ 1=read_memory(effective_address + 4)[31:0];
if((effective_address[2:0] != 000,) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
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Faults:

Example:

Opcode:

See Also:

6-72

Idt:

if((reg_number(dst) % 4) !=0)
generate fault(OPERATION.INVALID_OPERAND);
# dst not modified.

else

{ dst=read memory(effective_adddress)[31.0];
dst_+ 1=read_memory(effective_adddress + 4)[31:0];
dst_+ 2 =read_memory(effective_adddress + 8)[31:0];
if((effective_address3:0] != 0000,) & & unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}

Idq:

if((reg_number(dst) % 4) !=0)
generate fault(OPERATION.INVALID_OPERAND);
# dst not modified.

else

{ dst=read memory(effective_adddress)[31.0];

# Order depends on endianism.
dst_+ 1=read_memory(effective_adddress + 4)[31:0];
dst_+ 2 =read_memory(effective_adddress + 8)[31:0];
dst_+ 3 =read_memory(effective_adddress + 12)[31:0];
if((effective_address3:0] != 0000,) & & unaligned_fault_enabled)
generate_fault(OPERATION.UNALIGNED);
}

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
OPERATION.UNALIGNED
OPERATION.INVALID_OPERAND

Idl 2450 (r3), r10 # r10, r11 =r3 + 2450 in

# menory
Id 90H MEM
Idob 80H MEM
Idos 88H MEM
Idib COH MEM
Idis C8H MEM
Idl 98H MEM
Idt AOH MEM
Idqg BOH MEM

MOVE, STORE
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6.2.38

Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:

lda

INSTRUCTION SET REFERENCE

Ida Load Address

Ida src, dst
mem reg
efa

Computes the effective address specified with src and storesit in dst. The src
address is not checked for validity. Any addressing mode may be used to
calculate efa.

An important application of thisinstruction isto load a constant longer than 5
bits into a register. (To load a register with a constant of 5 bits or less, mov
can be used with alitera asthe src operand.)

dst = effective_address;

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
Il da 58 (g9), g1 # gl = g9+58

| da 0x749, r8 # r8 = 0x749

Ida 8CH MEM
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6.2.39 mark

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-74

mark Mark
mark

Generates mark trace fault if mark trace mode is enabled. Mark trace mode is
enabled if the PC register trace enable bit (bit 0) and the TC register mark
trace mode bit (bit 7) are set.

If mark trace mode is not enabled, mark behaves like a no-op.

For more information on trace fault generation, refer to CHAPTER 10,
TRACING AND DEBUGGING.

if(PC.te && TC.mk)
generate fault(TRACE.MARK)

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

TRACE.MARK Trace fault is generated if PC.te=1 and
TC.mk=1.

# Assune that the mark trace node is enabl ed.

Id xyz, r4

addi r4, r5, r6

mar k

# Mark trace event is generated at this point in the
# instruction stream

mark 66BH REG

fmark, modpc, modtc
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6.2.40 modac

Mnemonic: modac Modify AC
Format: modac mask, src, dst
reg/lit reg/lit reg
Description: Reads and modifies the AC register. src contains the value to be placed in the

AC register; mask specifies bits that may be changed. Only bits set in mask
are modified. Once the AC register is changed, itsinitial state is copied into

dst.
Action: temp = AC;

AC = (src & mask) | (AC & ~mask);

dst = temp;
Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
Example: modac gl, g9, gl2 # AC = g9, nasked by gl.

# gl2 = initial value of AC

Opcode: modac 645H REG
See Also: modpc, modtc
Side Effects: Sets the condition code in the arithmetic controls.
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6.2.41 modi
Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:
See Also:

Notes:

6-76

modi Modulo Integer
modi srcl, src2, dst
reg/lit reg/lit reg

Divides src2 by srcl, where both are integers and stores the modulo
remainder of theresult in dst. If the result is nonzero, dst has the same sign as
srcl.

if(srcl==0)
{ dst=undefined value
generate fault(ARITHMETIC.ZERO_DIVIDE);
}

dst = src2 - (src2/srcl) * srcl,;
if((src2*srcl<0) && (dst !'=0))
dst = dst + srcl;

STANDARD See section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.ZERO_DIVIDE  Thesrcl operand is zero.

modi r9, r2, r5 #r5 = nodulo (r2/r9)
modi 749H REG
divi, divo, remi, remo

modi generates the correct result (0) when computing -281 mod -1, athough
the corresponding 32-bit division does overflow, it does not generate a fault.
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6.2.42

Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

modify
modify Modify
modify mask,

reg/lit

Modifies selected bits in src/dst with bits from src. The mask operand selects
the bits to be modified: only bits set in the mask operand are modified in

src/dst.

src,
reg/lit

INSTRUCTION SET REFERENCE

src/dst
reg

src_dst = (src & mask) | (src_dst & ~mask);

STANDARD
modi fy g8, g10,
modify 650H

alterbit, extract

rd4 #

Refer to section 6.1.6, Faults (pg. 6-5).

r4 =
REG

gl0 masked by @8.
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6.2.43
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

6-78

modpc

modpc Modify Process Controls

modpc src, mask, src/dst
reg/lit reg/lit reg

Reads and modifies the PC register as specified with mask and src/dst.
src/dst operand contains the value to be placed in the PC register; mask
operand specifies bits that may be changed. Only bits set in the mask are
modified. Once the PC register is changed, its initial value is copied into
src/dst. The src operand is a dummy operand that should specify a literal or
the same register as the mask operand.

The processor must be in supervisor mode to use this instruction with a non-
zero mask value. If mask=0, this instruction can be used to read the process
controls, without the processor being in supervisor mode.

If the action of this instruction lowers the processor priority, the processor
checksthe interrupt table for pending interrupts.

When process controls are changed, the processor recognizes the changes
immediately except in one situation: if modpc is used to change the trace
enable bit, the processor may not recognize the change before the next four
non-branch instructions are executed. For more information see 3.6.3,
Process Controls Register — Pgg). 3-19)

if(mask != 0)
{ if(PC.em != supervisor)
generate_fault(TYPE.MISMATCH);
temp = PC;
PC = (mask & src_dst) | (PC & ~mask);
src_dst = temp;
if(temp.priority > PC.priority)
check_pending_interrupts;
}
else
src_dst = PC;

STANDARD Refer tosection 6.1.6Faults(pg. 6-5)
TYPE.MISMATCH

modpc g9, g9, g8 # process controls = g8
# masked by g9.

modpc 655H REG
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See Also: modac, modtc

Notes: Since modpc does not switch stacks, it should not be used to switch the mode
of execution from supervisor to user (the supervisor stack can get corrupted in
this case). The call and return mechanism should be used instead.
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6.2.44
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-80

modtc Modify Trace Controls
modtc mask, src2, dst
reg/lit reg/lit reg

Reads and modifies TC register as specified with mask and src2. The src2
operand contains the value to be placed in the TC register; mask operand
specifies bits that may be changed. Only bits set in mask are modified. mask
must not enable modification of reserved bits. Once the TC register is
changed, itsinitial stateis copied into dst.

The changed trace controls may take effect immediately or may be delayed.
If delayed, the changed trace controls may not take effect until after the first
non-branching instruction is fetched from memory or after four non-
branching instructions are executed.

For more information on the trace controls, refer to CHAPTER 9, FAULTS
and CHAPTER 10, TRACING AND DEBUGGING.

mode_bits = 0xO00000FE;

event_flags = 0X0F000000

temp=TC;

tempa = (event_flags & TC & mask) | (mode_bits & mask);
TC = (tempa& src2) | (TC & ~tempa);

dst = temp;

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

modtc gl2, g10, g2 # trace controls = g1l0 nasked
# by gl2; previous trace
# controls stored in g2.

modtc 654H REG

modac, modpc
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6.2.45 MOVE

Mnemonic: mov Move
movl Move Long
movt Move Triple
movq Move Quad
Format: mov* srcl, dst
reg/lit reg
Description: Copies the contents of one or more source registers (specified with src) to one

or more destination registers (specified with dst).

For movl, movt and movq, srcl and dst specify the first (lowest numbered)

register of several successive registers. srcl and dst registers must be even
numbered (e.g., g0, g2, ... or r4, r6, ...) for movl and an integral multiple of n
four (e.g., 90, g4, ... or r4, r8, ...) for movt and movq.

The moved register values are unpredictable when: 1) the src and dst
operands overlap; 2) registers are not properly aligned.

Action: mov:
if(is_reg(srcl))
dst = srcl;
else
{ dst[4:.0] =srcl; #srclisab-hit literal.
dst[31:5] = 0;
}
movl:
if((reg_num(srcl)%?2 != 0) || (reg_num(dst)%2 != 0))
{ dst =undefined_vaue;
dst_+ 1 =undefined_value;
generate fault(OPERATION.INVALID_OPERAND);

}

elseif(is_reg(srcl))

{ dst=srci;
dst_ + 1=srcl_+_1;

}

else

{ dst[4:.0] =srcl; #srclisab-hit literal.
dst[31:5] = 0;
dst_ + 1[31.0] =0;

}
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Faults:

Example:

6-82

movt:

if((reg_num(srcl)%4 !'= 0) || (reg_num(dst)%e4 != 0))

{ dst =undefined_vaue;
dst_+ 1 =undefined_value;
dst_+ 2 =undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}

elseif(is_reg(srcl))

{ dst=srcl;
dst + 1=srcl + 1;
dst + 2=srcl + 2;

}

else

{ dst[4:.0] =srcl; #srclisab-hit literal.
dst[31:5] = 0;
dst_ + 1[31.0] =0;
dst_ + 2[31.0] =0;

}

movq:

if((reg_num(srcl)%4 !'= 0) || (reg_num(dst)%e4 != 0))
{ dst =undefined_vaue;
dst_+ 1 =undefined_value;
dst_+ 2 =undefined_value;
dst_+ 3 =undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
elseif(is_reg(srcl))
{ dst=srcl;
dst + 1=srcl + 1;
dst + 2=srcl + 2;
dst + 3=srcl + 3;
}
else
{ dst[4:.0] =srcl; #srclisab bitliteral.
dst[31:5] = 0;
dst_ + 1]31:0] =0;
dst_ + 2[31:.0] =0;
dst_ + 3[31:.0] =0;
}
STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
nmovt g8, r4 #r4, r5 r6 =98, g9, glo
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Opcode

See Also

mov
movl
movt
movq

5CCH
5DCH
5ECH
5FCH

LOAD, STORE, lda

REG
REG
REG
REG

INSTRUCTION SET REFERENCE
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6.2.46

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-84

muli, mulo

muli Multiply Integer
mulo Multiply Ordinal
mul* srcl, src2, dst

reg/lit reg/lit reg

Multiplies the src2 value by the srcl value and stores the result in dst. The
binary results from these two instructions are identical. The only differenceis
that muli can signal an integer overflow.

mulo:
dst = (src2 * srcl)[31:0];

muli:

true_result = (srcl * src2);

dst = true_result[31:0];

if((true_result > (2**31) - 1) || (true_result < -2**31))# Check for overflow
{ if(AC.om==1)

AC.of = 1;
else
generate_fault(ARITHMETIC.OVERFLOW);
}
STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

ARITHMETIC.OVERFLOW  Result is too large for destination register
(muli only). If a condition of overflow
occurs, the least significant 32 bits of the
result are stored in the destination register.

muli r3, r4, r9 #r9 =r4 * r3

muli 741H REG
mulo 701H REG

emul, ediv, divi, divo
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Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

nand

INSTRUCTION SET REFERENCE

nand Nand

nand srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise NAND operation on src2 and srcl vaues and stores the
result in dst.

dst = ~src2 | ~srcl;

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
nand g5, r3, r7 # r7 = r3 NAND g5

nand 58EH REG

and, andnot, nor, not, notand, notor, or, ornot, xnor, xor
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6.2.48 nor
Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

6-86

nor Nor
nor srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise NOR operation on the src2 and srcl values and stores the
result in dst.

dst = ~src2 & ~srcl;

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
nor g8, 28, r5 #r5 = 28 NOR g8
nor 588H REG

and, andnot, nand, not, notand, notor, or, ornot, xnor, xor
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Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

not, notand
not Not
notand Not And
not srcl, dst
reg/lit reg
notand srcl, src2, dst
reg/lit reg/lit reg

Performs abitwise NOT (not instruction) or NOT AND (notand instruction)
operation on the src2 and srcl values and stores the result in dst.

not:
dst = ~srcl; n
notand:

dst = ~src2 & srcl;

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
not g2, g4 # g4 = NOT g2

notand r5, r6, r7 # r7 =NOT r6 AND r5

not 58AH REG

notand 584H REG

and, andnot, nand, nor, notor, or, ornot, xnor, xor
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6.2.50
Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:

See Also:

6-88

notbit Not Bit
notbit bitpos, src2, dst
reg/lit reg/lit reg

Copies the src2 value to dst with one bit toggled. The bitpos operand
specifies the bit to be toggled.

dst = src2 » 2**(srcl1%32);
STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

notbit r3, rl12, r7 #r7 =r12 with the bit
# specified in r3 toggled.

notbit 580H REG
alterbit, chkbit, clrbit, setbit
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6.2.51 notor

Mnemonic: notor Not Or
Format: notor srcl, src2, dst

reg/lit reg/lit reg
Description: Performs a bitwise NOTOR operation on src2 and srcl values and stores

result in dst.

Action: dst = ~src2 | srcl;
Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
Example: notor gl2, g3, g6 # g6 = NOT g3 OR gl2
Opcode: notor 58DH REG n
See Also: and, andnot, nand, nor, not, notand, or, ornot, xnor, xor
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6.2.52

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-90

or, ornot

or Or

ornot Or Not

or srcl, src2, dst
reg/lit reg/lit reg

ornot srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise OR (or instruction) or ORNOT (ornot instruction)
operation on the src2 and srcl values and stores the result in dst.

or:

dst = src2 | srcl;

ornot:

dst = src2 | ~srcl;

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
or 14, g9, g3 # 93 = g9 OR 14

ornot r3, r8, r11 # r11l =r8 OR NOT r3

or 587H REG

ornot 58BH REG

and, andnot, nand, nor, not, notand, notor, xnor, xor
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6.2.53 remi, remo
Mnemonic: remi Remainder Integer
remo Remainder Ordinal
Format: rem* srcl, src2, dst
reg/lit reg/lit reg
Description: Divides src2 by srcl and stores the remainder in dst. The sign of the result (if
nonzero) is the same asthe sign of src2.
Action: remi, remo:
if(srcl==0)
generate fault(ARITHMETIC.ZERO_DIVIDE);
dst = src2 - (src2/srcl)*srcl,;
Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.ZERO_DIVIDE The srcl operand isO.
Example: reno r4, r5 r6 #r6 =r5remr4
Opcode: remi 748H REG
remo 708H REG
See Also: modi
Notes: remi produces the correct result (0) even when computing -2%1remi -1, which
would cause the corresponding division to overflow, athough no fault is gen-
erated.
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Mnemonic:

Format:

Description:

Action:

ret Return

ret

Returns program control to the calling procedure. The current stack frame

(i.e., that of the called procedure) is deallocated and the FP is changed to

point to the calling procedure’s stack frame. Instruction execution is
continued at the instruction pointed to by the RIP in the calling procedure’s
stack frame, which is the instruction immediately following the call
instruction.

As shown in the action statement below, the return-status field and prereturn-
trace flag determine the action that the processor takes on the return. These
fields are contained in bits 0 through 3 of register rO of the called procedure’s
local registers.

SeeCHAPTER 7,PROCEDURE CALLSor more orret.

implicit_syncf();

if(pfp.p && PC.te && TC.p)

{ pfpp=0;
generate_fault(TRACE.PRERETURN);

}
switch(return_status_field)
{
case 006 #local return
get_FP_and_IP();
break;
case 00% #fault return

tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();

AC = tempb;
if(execution_mode == supervisor)
PC =tempa;
break;
case 016 #supervisor return, trace on return disabled

if(execution_mode != supervisor)
get FP_and_IP();

else

{ PC.te=0;
execution_mode = user;
get_ FP_and_IP();

}

break;
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case 011,: # supervisor return, trace on return enabled
if(execution_mode != supervisor)
get FP_and_IP();
else
{ PCte=1,
execution_mode = user;
get FP_and_IP();
}
break;
case 100,: #reserved - unpredictable behavior
break;
case 101,: #reserved - unpredictable behavior
break;
case 110,: #reserved - unpredictable behavior
break;
case 111,: #interrupt return

tempa = memory(FP-16);
tempb = memory(FP-12);

get FP_and IP();
AC = tempb;
if(execution_mode == supervisor)
PC = tempa;
check_pending_interrupts();
break;
}
get_FP_and_IP()
{ FP=PFP;
free(current_register_set);
if(not_allocated(FP))
retrieve_from_memory(FP);
IP=RIP;
}
Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
Example: ret # Program control returns to
# context of calling procedure.
Opcode: ret OAH CTRL
See Also: call, calls, callx
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6.2.55
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-94

rotate Rotate
rotate len, src2, dst
reg/lit reg/lit reg

Copies src2 to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). Bits shifted off left end of word are inserted at
right end of word. The len operand specifies number of bits that the dst
operand isrotated.

Thisinstruction can also be used to rotate bits to the right. The number of bits
the word is to be rotated right should be subtracted from 32 and the result
used asthe len operand.

src2 isrotated by len mod 32. This value is stored in dst.
STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

rotate 13, r8, r12 # rl1l2 =r8 with bits rotated
# 13 bits to left.

rotate 59DH REG
SHIFT, eshro
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Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Side Effects:

INSTRUCTION SET REFERENCE

scanbit

scanbit Scan For Bit

scanbit srcl, dst
reg/lit reg

Searches srcl for a set bit (1 bit). If a set bit is found, the bit number of the
most significant set bit is stored in the dst and the condition code is set to

010,. If src value is zero, all 1's are storeddst and condition code is set to

000,.
dst = OXFFFFFFFF,
AC.cc = 00G;
for(i=31;i>=0;i-)
{ if((srcl & 2**i) 1= 0)
{ dst =i,
AC.cc =016,
break;

}
}

STANDARD Refer tosection 6.1.6Faults(pg. 6-5)

# assune g8 i s nonzero

scanbit g8, gl10 # 910 = bit nunber of nost-
# significant set bit in g8
# AC. cc = 010,.

scanbit 641H REG
spanbit, setbit

Sets the condition code in the arithmetic controls.
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6.2.57
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

6-96

scanbyte

scanbyte  Scan Byte Equal

scanbyte srcl, src2
reg/lit reg/lit
Performs byte-by-byte comparison of srcl and src2 and sets condition code

to 010, if any two corresponding bytes are equal. If no corresponding bytes
are equal, condition code is set to 000,.

if((srcl & OxO00000FF) == (src2 & 0xO00000FF)
|| (srcl & OxO0000FFO0) == (src2 & O0xO0000FFO0)
|| (srcl & OxOOFF0000) == (src2 & 0xO0FF0000)
|| (srcl & OxFF000000) == (src2 & OxFF000000))
AC.cc = 010y,
else
AC.cc = 000,;

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

# Assunme r9 = 0x11AB1100
scanbyt e 0x00AB0011, r9# AC.cc = 010,

scanbyte 5ACH REG
bswap

Sets the condition code in the arithmetic controls.
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6.2.58 SEL<cc>

Mnemonic: selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge Select Based on Greater or Equal
sell Select Based on Less
selne Select Based on Not Equal
selle Select Based on Less or Equal
selo Select Based on Ordered
Format: sel* srcl, src2, dst
reg/lit reg/lit reg
Description: Selects either srcl or src2 to be stored in dst based on the condition code bits
in the arithmetic controls. If for Unordered the condition code is O, or if for

the other casesthe logical AND of the condition code and the mask part of the
opcode is not zero, then the value of src2 is stored in the destination. Else, the
value of srclis stored in the destination.

Instruction Mask Condition
selno 000, Unordered
selg 001, Greater
sele 010, Equal
selge 011, Greater or equal
sell 100, Less
selne 101, Not equal
selle 110, Less or equal
selo 111, Ordered
Action: if ((mask & AC.cc) || (mask == AC.cc))
dst = src2;
else
dst = srcl;
Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
Example: # AC.cc = 010,
sele g0, gl, g2 # g2 = g1
# AC.cc = 001,
sell g0, gl, g2 # g2 = g0
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Opcode:

See Also:

Notes:

6-98

selno
selg
sele
selge
sell
selne
selle
selo

MOVE, TEST<cc>, cmpi, cmpo, SUB<cc>

784H
794H
7A4H
7B4H
7C4AH
7D4H
7E4H
7F4H

REG
REG
REG
REG
REG
REG
REG
REG

These core instructions are not implemented on i960 Cx, Kx and Sx proces-

Sors.
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6.2.59 setbit

Mnemonic: setbit Set Bit
Format: setbit bitpos, src, dst

reg/lit reg/lit reg
Description: Copies src valueto dst with one hit set. bitpos specifies bit to be set.
Action: dst = src | (2**(bitpos%32));
Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
Example: sethit 15, r9, r1 #rl1l =r9 with bit 15 set.
Opcode: setbit 583H REG
See Also: alterbit, chkbit, clrbit, notbit
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6.2.60 SHIFT

Mnemonic: shlo Shift Left Ordinal
shro Shift Right Ordinal
shli Shift Left Integer
shri Shift Right Integer
shrdi Shift Right Dividing Integer
Format: sh* len, src, dst
reg/lit reg/lit reg
Description: Shifts src left or right by the number of bits indicated with the len operand

and stores the result in dst. Bits shifted beyond register boundary are
discarded. For values of len > 32, the processor interprets the value as 32.

shlo shifts zerosin from the least significant bit; shro shifts zerosin from the
most significant bit. These instructions are equivaent to mulo and divo by
the power of 2, respectively.

shli shifts zeros in from the least significant bit. An overflow fault is
generated if the bits shifted out are not the same as the most significant bit
(bit 31). If overflow occurs, dst will equal src shifted left as much as possible
without overflowing.

shri performs a conventional arithmetic shift-right operation by shifting in
the most significant bit (bit 31). When this instruction is used to divide a
negative integer operand by the power of 2, it produces an incorrect quotient
(discarding the bits shifted out has the effect of rounding the result toward
negative).

shrdi is provided for dividing integers by the power of 2. With this
instruction, 1 isadded to the result if the bits shifted out are non-zero and the
src operand was negative, which produces the correct result for negative
operands.

shli and shrdi are equivalent to muli and divi by the power of 2.

Action: shlo:
if(srcl < 32)
dst =src* (2**len);
else
dst=0;
shro:
if(srcl < 32)
dst = src/ (2**len);
else
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shli:
if(len > 32)
count = 32;
else
count = srcl;
temp = src;
while((temp[31] == temp[30]) & & (count > 0))
{ temp=(temp* 2)[31.0];
count = count - 1;
}
dst = temp;
if(count > 0)
{ if(ACom==1)
AC.of = 1;
else
generate fault(ARITHMETIC.OVERFLOW);

}

shri:
if(len > 32)
count = 32;
else
count = srcl;
temp = src;
while(count > 0)
{ temp=(temp>> 1)[3L:0];
temp[31] = src[31];
count = count - 1;

}
dst = temp;

shrdi:
dst = src/ (2**len);

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.OVERFLOW  For shli.

shli 13, g4, r6 # g6 = g4 shifted left 13 bits.

shlo 59CH REG
shro 598H REG
shli 59EH REG
shri 59BH REG
shrdi 59AH REG
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See Also: divi, muli, rotate, eshro

Notes: shli and shrdi are identical to multiplications and divisions for all positive
and negative values of src2. shri isthe conventional arithmetic right shift that
does not produce a correct quotient when src2 is negative.
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6.2.61 spanbit

Mnemonic: spanbit Span Over Bit
Format: spanbit sre, dst
reg/lit reg
Description: Searches src vaue for the most significant clear bit (O bit). If a most

significant 0 bit isfound, its bit number is stored in dst and condition code is
set to 010,. If src value is all 1's, all 1's are storeddst and condition code is

set to 006.
Action: dst = OXFFFFFFFF;
AC.cc = 00G;
for(i=31;i>=0;i-)
{ if((srcl & 2**) == 0))
{ dst=i;
AC.cc =016,
break;
}
}
Faults: STANDARD Refer tosection 6.1.6Faults(pg. 6-5)
Example: # Assune r2 is not Oxffffffff
spanbit r2, r9 #r9 = bit nunber of npst-
# significant clear bit in r2;
# AC.cc = 010,
Opcode: spanbit 640H REG
See Also: scanbit
Side Effects: Sets the condition code in the arithmetic controls.
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6.2.62 STORE

Mnemonic: st Store
stob Store Ordinal Byte
stos Store Ordinal Short
stib Store Integer Byte
stis Store Integer Short
stl Store Long
stt Store Triple
stq Store Quad
Format: st* srcl, dst
reg mem
Description: Copies a byte or group of bytes from a register or group of registers to

memory. src specifies a register or the first (lowest numbered) register of
successive registers.

dst specifies the address of the memory location where the byte or first byte
or agroup of bytesisto be stored. The full range of addressing modes may be
used in specifying dst. Refer to 2.3, MEMORY ADDRESSING MODES
(pg. 2-5) for acomplete discussion.

stob and stib store a byte and stos and stis store a haf word from the src
register's low order bytes. Data for ordinal stores is truncated to fit the
destination width. If the data for integer stores cannot be represented
correctly in the destination width, an Arithmetic Integer Overflow fault is
signaled.

st, stl, stt andstq copy 4, 8, 12 and 16 bytes, respectively, from successive
registers to memory.

Forstl, src must specify an even numbered register (e.g., g0, g2, ... or r0, r2,
...). Forstt andstq, src must specify a register number that is a multiple of
four (e.g., 90, g4, g8, ... orr0, r4, 18, ...).

Action: st:

if (illegal_write_to_on_chip_RAM)
generate_fault(TYPE.MISMATCH);

else if ((effective_address[1:0] B9,) && unaligned_fault_enabled)
{store_to_memory(effective_address)[310frc1;
generate_fault(OPERATION.UNALIGNED);}

else
store_to_memory(effective_address)[31:0] = src1;

Action: stob:
if (illegal_write_to_on_chip_RAM_or_MMR)
generate_fault(TYPE.MISMATCH);
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else
store_to_memory(effective_address)[7:0] = src1[7:0];

stib:
if (illegal_write_to_on_chip RAM_or_ MMR)
generate fault(TYPE.MISMATCH);
elseif ((src1[31:8] !=0) && (srcl[31:8] != OxFFFFFF))
{ sore to_memory(effective_address)[7:0] = src1[7:0];
if (AC.om==1)
AC.of = 1;
else
generate fault(ARITHMETIC.OVERFLOW);
}
else
store_to_memory(effective_address)[7:0] = src1[7:0];
end if;

stos:
if (illegal_write_to_on_chip RAM_or_ MMR)
generate fault(TY PE.MISMATCH);
elseif ((effective_address[(0] != 0,) & & unaligned_fault_enabled)
{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);
}
else
store_to_memory(effective_address)[15:0] = src1[15:0];

stis:
if (illegal_write_to_on_chip RAM_or_ MMR)
generate fault(TY PE.MISMATCH);
elseif ((effective_address[0] != 0,) & & unaligned_fault_enabled)
{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);
}
elseif ((src1[31:16] !=0) & & (src1[31:16] != OXFFFF))
{ store_to_memory(effective_address)[15:0] = src1[15:0];

if AC.om==1)
AC.of = 1;
else
generate fault(ARITHMETIC.OVERFLOW);
}
else

store_to_memory(effective_address)[15:0] = src1[15:0];
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stl:
if (illegal_write_to_on_chip RAM_or_ MMR)
generate fault(TY PE.MISMATCH);
elseif (reg_number(srcl) % 2 !'=0)
generate fault(OPERATION.INVALID_OPERAND);
elseif ((effective_address[2:0] != 000,) & & unaligned_fault_enabled)
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] =srcl _+_1;
generate fault (OPERATION.UNALIGNED);
}
else
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] =srcl _+_1;
}

stt:
if (illegal_write_to_on_chip RAM_or_ MMR)
generate fault(TY PE.MISMATCH);
elseif (reg_number(srcl) % 4 = 0)
generate_fault(OPERATION.INVALID_OPERAND);
elseif ((effective_address[3:0] != 0000,) && unaligned_fault_enabled)
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] =srcl_+_1;
store_to_memory(effective_address + 8)[31:0] =srcl + 2;
generate_fault (OPERATION.UNALIGNED);

{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] =srcl _+_1;
store_to_memory(effective_address + 8)[31:0] = srcl _+_2;

stq:
if (illegal_write_to_on_chip RAM_or_ MMR)
generate fault(TY PE.MISMATCH);
elseif (reg_number(srcl) % 4 !'=0)
generate_fault(OPERATION.INVALID_OPERAND);
elseif ((effective_address[3:0] != 0000,) && unaligned_fault_enabled)
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] =srcl +_1;
store_to_memory(effective_address + 8)[31:0] =srcl + 2;
store_to_memory(effective_address + 12)[31:0] = srcl_+_3;
generate_fault (OPERATION.UNALIGNED);
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else
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] =srcl_+_1;
store_to_memory(effective_address + 8)[31:0] =srcl +_2;
store_to_memory(effective_address + 12)[31:0] = srcl_+_3;

}
Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.OVERFLOW  For stib, stis.
Example: st g2, 1254 (g6) # Word begi nning at offset
# 1254 + (g6) = g2.
Opcode: st 92H MEM
stob 82H MEM
stos 8AH MEM
stib C2H MEM
stis CAH MEM
stl 9AH MEM
stt A2H MEM
stq B2H MEM
See Also: LOAD, MOVE
Notes: illegal_write_to_on_chip_RAM is an implementation-dependent mechanism.

The mapping of register bits to memory(efa) depends on the endianism of the
memory region and is implementati on-dependent.
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6.2.63
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

6-108

subc Subtract Ordinal With Carry
subc srcl, src2, dst
reg/lit reg/lit reg

Subtracts srcl from src2, then subtracts the opposite of condition code bit 1
(used here as the carry bit) and stores the result in dst. If the ordinal
subtraction results in a carry, condition code bit 1 is set to 1, otherwise it is
set to O.

This instruction can aso be used for integer subtraction. Here, if integer
subtraction resultsin an overflow, condition code bit O is set.

subc does not distinguish between ordinals and integers: it sets condition
code bits 0 and 1 regardless of data type.

dst = (src2 - srcl -1+ AC.cc[1])[31:0];
AC.cc[2:0] = 000,;
if((src2[31] == srcl[31]) & & (src2[31] !=dst[31]))

AC.cc[Q] = 1; # Overflow bit.
AC.cc[1] = (src2 - srcl -1+ AC.cc[1])[32]; # Carry out.
STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

subc g5, g6, g7
# g7 = g6 - g5 - not(condition code bit 1)

subc 5B2H REG
addc, addi, addo, subi, subo

Sets the condition code in the arithmetic controls.
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6.2.64 SuUB<cc>

Mnemonic: subono Subtract Ordinal if Unordered
subog Subtract Ordinal if Greater
suboe Subtract Ordinal if Equal
suboge Subtract Ordinal if Greater or Equal
subol Subtract Ordinal if Less
subone Subtract Ordinal if Not Equal
subole Subtract Ordinal if Lessor Equal
suboo Subtract Ordinal if Ordered
subino Subtract Integer if Unordered
subig Subtract Integer if Greater
subie Subtract Integer if Equal
subige Subtract Integer if Greater or Equal
subil Subtract Integer if Less
subine Subtract Integer if Not Equal
subile Subtract Integer if Less or Equal
subio Subtract Integer if Ordered
Format; sub* srcl, src2, dst
reg/lit reg/lit reg
Description: Subtracts srcl from src2 conditionally based on the condition code bitsin the

arithmetic controls.

If for Unordered the condition code is O, or if for the other cases the logical
AND of the condition code and the mask part of the opcode is not zero; then
srcl is subtracted from src2 and the result stored in the destination.

Instruction Mask Condition
subono, subino 000, Unordered
subog, subig 001, Greater
suboe, subie 010, Equal
suboge, subige 011, Greater or equal
subol, subil 100, Less
subone, subine 101, Not equal
subole, subile 110, Less or equal
suboo, subio 111, Ordered
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Action:

Faults:

Example:

Opcode:

6-110

SUBO<cc>:

if ((mask & AC.cc) || (mask == AC.cc))
dst = (src2 - srcl)[31:0];

SUBI<cc>:

if ((mask & AC.cc) || (mask == AC.cc))

{
{

}

if((true_result > (2**31) - 1) || (true_result < -2**31))
# Check for overflow

{

}
STANDARD

ARITHMETIC.OVERFLOW  For the SUBI<cc> class.

# AC.cc = 010,

suboge g0, g1, g2 # g2 =gl -

subile g0, gl, g2

subono
subog
suboe
suboge
subo
subone
subole
suboo
subino
subig
subie
subige
subil
subine
subile
subio

if (AC.om==1)
AC.of =1,
dse
generate fault (ARITHMETIC.OVERFLOW);

782H
792H
7AZH
7B2H
7C2H
7D2H
7TE2H
7F2H
783H
793H
7A3H
7B3H
7C3H
7D3H
7E3H
7F3H

true_result = (src2 - srcl);
dst = true_result[31:0];

Refer to section 6.1.6, Faults (pg. 6-5).

# AC.cc = 001,
# g2 not nodified

REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
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See Also: subc, subi, subo, SEL<cc>, TEST<cc>
Notes: These core instructions are not implemented on 80960Cx, Kx and Sx proces-
SOrs.
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6.2.65

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-112

subi, subo

subi Subtract Integer
subo Subtract Ordinal
sub* srcl, src2, dst

reg/lit reg/lit reg

Subtracts srcl from src2 and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that subi can
signal an integer overflow.

subo:
dst = (src2 - src1)[31:0];

subi:

true_result = (src2 - srcl);

dst = true_result[31:0];

if((true_result > (2**31) - 1) || (true_result < -2**31))# Check for overflow
{ if(AC.om==1)

AC.of = 1;
else
generate_fault(ARITHMETIC.OVERFLOW);
}
STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

ARITHMETIC.OVERFLOW  For subi.
subi g6, g9, gl2 # gl2 = g9 - (6

subi 593H REG
subo 592H REG

addi, addo, subc, addc
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Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:
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syncf

syncf Synchronize Faults
syncf

Waits for al faults to be generated that are associated with any prior
uncompleted instructions.

if(AC.nif == 1)
break;
else
wait_until_all_previous instructions_in_flow_have completed();
# Thisaso meansthat all of the faults on these instructions have

#  been reported.
STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
ld xyz, g6
addi r6, r8, r8
syncf

and g6, OxFFFF, g8

# The syncf instruction ensures that any faults
# that may occur during the execution of the

# 1d and addi instructions occur before the

# and instruction is executed.

syncf 66FH REG

mark, fmark
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6.2.67 sysctl
Mnemonic: sysctl System Control
Format: sysctl srcl, src2, src/dst
reg/lit reg/lit reg
Description: Performs system management and control operations including requesting
software interrupts, invaidating the instruction cache, configuring the
instruction cache, processor reinitiaization, modifying memory-mapped
registers, and acquiring breakpoint resource information.
Processor control function specified by the message field of srcl is executed.
The type field of srcl is interpreted depending upon the command.
Remaining srcl bits are reserved. The src2 and src3 operands are also
interpreted depending upon the command.
31 16 15 8 7 0
Field 2 Message Type Field 1
Figure 6-7. Srcl Operand Interpretation
Table 6-10. sysctl Field Definitions
srcl src2 src/dst
Message
Type Field 1 Field 2 Field 3 Field 4
Request Interrupt 0x0 Vector Number N/U N/U N/U
Invalidate Cache Ox1 N/U N/U N/U N/U
) . Cache Mode
ggzggure Instruction 0x2 Configuration N/U szzfelgsd N/U
(See Table 6-11)
Reinitialize 0x3 N/U N/U Starting IP PRCB Pointer
Modify Memory-
Mapped Control 0x5 N/U o?&vﬁéigﬁzs Value to write Mask
Register (MMR)
Breakpoint Resource Breakpoint info
Request 0x6 N/U N/U N/U (See Figure 6-8)

NOTE: Sources and fields that are not used (designated N/U) are ignored.
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Table 6-11. Cache Mode Configuration

Mode Field Mode Description 80960Rx
000, Normal cache enabled 4 Kbyte
XX1, Full cache disabled 4 Kbyte

100, or 110, I(;Zg:eand lock one way of the 2 Kbyte

31 8 7 4 3 0
s

# available | # available
Reserved - Set to zero data instruction

breakpoints | breakpoints
A,

Action:

Figure 6-8. src/dst Interpretation for Breakpoint Resource Request

if (PC.em != supervisor)

generate fault(TYPE.MISMATCH);

order_wrt(previous_operations);
OPtype = (srcl & 0xff00) >> 8;
switch (OPtype) {

case 0: # Signal Software Interrupt

vector_to_post = Oxff & srcl,;
priority_to_post = vector_to_post >> 3;
pend_ints addr = interrupt_table_base + 4 + priority_to_post;
pend_priority = memory_read(interrupt_table base,atomic_lock);
# Priority zero just recans Interrupt Table
if (priority_to_post !'=0)
{pend_ints = memory_read(pend_ints_addr, non-cacheable)
pend_intg[7 & vector] = 1,
pend_priority[priority_to_post] = 1;
memory_write(pend_ints_addr, pend_ints); }
memory_write(interrupt_table base,pend_priority,atomic_unlock);
# Update internal software priority with highest priority interrupt
# from newly adjusted Pending Priorities word. The current internal
# software priority is always replaced by the new, computed one. (If
# there is no hit set in pending_prioritiesword for the current
# internal one, then it is discarded by this action.)
if (pend_priority == 0)
SW_Int_Priority = 0;
else{ msb_set = scan_bit(pend_priority);
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SW_Int_Priority = msb_set; }

# Make sure change to internal software priority takes full effect
# before next instruction.
order_wrt(subsequent_operations);

case 1.

case 2.

case 3

break;
# Global Invalidate Instruction Cache
invalidate_instruction_cache( );
unlock_instruction_cache( );
break;
# Configure Instruction-Cache
mode = srcl & Oxff;
if (mode & 1) disable instruction_cache;
el se switch (mode) {
case 0 enable_instruction_cache; break;
case 4,6: # Load & Lock code into |-Cache
# All contiguous blocks are locked.
# Note: block = way on 80960RX.
# src2 has starting address of code to lock.
# src2 isdigned to aquad word
# boundary.
aligned_addr = src2 & Oxfffffffo;
invalidate(l-cache); unlock(l-cache);
for (j =0; j < number_of blocks that lock; j++)
{way = block_associated with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i < end; i=i+4)
{ set=set associated with(i);
word =word_associated with(i);
Icache_ling]set][way][word] =
memory[i];
update_tag n_valid_bits(set,way,word)
lock_icache(set,way,word);
} } break;
default:
generate_operation_invalid_operand_fault;
} break;
# Software Re-init
disable(l_cache); invalidate(l_cache);
disable(D_cache); invalidate(D_cache);
Process PRCB(dst); # dst has ptr to new PRCB
IP=src2;
break;
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case 5: # Modify One Memory-Mapped Control Register (MMR)
# src1[31:16] has lower 2 bytes of MMR address
# src2 has value to write; dst has mask.
# After operation, dst has old value of MMR
addr = (Oxff00 << 16) | (srcl >> 16);
temp = memory[addr];
memory[addr] = (src2 & dst) | (temp & ~dst);
dst = temp;
break;

case 6: # Breakpoint Resource Request
acquire_available_instr_breakpoints( );
dst[3:0] = number_of available_instr_breakpoints;
acquire_available data breakpoints();
dst[7:4] = number_of available_data_breakpoints; n
dst[31:8] = 0;
break;

default: # Reserved, fault occurs
generate_fault(OPERATION.INVALID_OPERAND);
break;

}

order_wrt(subsequent_operations);
Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: | dconst 0x100,r6
sysctl r6,r7,r8

Set up nessage.

I nvalidate |-cache.

r7, r8 are not used.

Set up nessage type and
cache configuration node
Lock hal f cache.

Starting address of code.
Execute Load and Lock.

| dconst 0x204, g0

| dconst 0x20000000, g2
sysctl g0, g2, g2

HoHoHHHHHH

Opcode: sysctl 659H REG
See Also: dcctl, icctl

Notes: This instruction is implemented on 80960Rx, Hx, Jx and Cx processors, and
may or may not be implemented on future i960 processors.
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6.2.68 TEST<cc>

Mnemonic: teste Test For Equal
testne Test For Not Equal
testl Test For Less
testle Test For Less Or Equal
testg Test For Greater
testge Test For Greater Or Equal
testo Test For Ordered
testno Test For Not Ordered
Format: test* dst:srcl
reg
Description: Stores a true (01H) in dst if the logical AND of the condition code and

opcode mask part is not zero. Otherwise, the instruction stores a false (00H)
in dst. For testno (Unordered), atrueis stored if the condition code is 0005,
otherwise afalseis stored.

The following table shows the condition-code mask for each instruction. The
mask isin bits 0-2 of the opcode.

Instruction Mask Condition
testno 000, Unordered
testg 001, Greater
teste 010, Equal
testge 011, Greater or equal
testl 100, Less
testne 101, Not equal
testle 110, Less or equal
testo 111, Ordered
Action: For al TEST<cc> except testno:

if((mask & AC.cc) !=000,)
srcl=1; #true value
else
srcl = 0; #falsevalue

testno:
if(AC.cc == 000,)

srcl=1; #true value
else

srcl = 0; #falsevalue

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
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# Assune AC.cc = 100,

testl g9

teste 22H
testne 25H
testl 24H
testle 26H
testg 21H
testge 23H
testo 27H
testno 20H

cmpi, cmpdeci, cmpinci

# g9 = 0x00000001

COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
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6.2.69

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-120

Xxnor, xor

xnor Exclusive Nor

xor Exclusive Or

xnor srcl, src2, dst
reg/lit reg/lit reg

xor srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)
operation on the src2 and srcl values and stores the result in dst.

xnor:
dst = ~(src2 | srcl) | (sre2 & srcl);

Xor:

dst = (src2 | srcl) & ~(src2 & srcl);

STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
xnor r3, r9, rl2 #r12 =r9 XNOR r3

xor gl, g7, g4 # g4 = g7 XOR gl

xnor 589H REG

xor 586H REG

and, andnot, nand, nor, not, notand, notor, or, ornot
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CHAPTER 7
PROCEDURE CALLS

This chapter describes mechanisms for making procedure calls, which include branch-and-link
instructions, built-in call and return mechanism, cal instructions (call, callx, calls), return
instruction (ret) and call actions caused by interrupts and faults.

The i960° processor architecture supports two methods for making procedure calls:

« A RISC-style branch-and-link: a fast call best suited for calling procedures that do not call
other procedures.

« Anintegrated call and return mechanism: a more versatile method for making procedure calls,
providing a highly efficient means for managing a large number of registers and the pr
stack.

On a branch-and-linkb@l, balx), the processor branches and saves a return IP in a register. The
called procedure uses the same set of registers and the same stack as the calling procedure. On
call (call, callx, calls) or when an interrupt or fault occurs, the processor also branches to a target
instruction and saves a return IP. Additionally, the processor saves the local registers and allocate:
a new set of local registers and a new stack for the called procedure. The saved context is restore
when the return instructiomet) executes.

In many RISC architectures, a branch-and-link instruction is used as the base instruction for coding
a procedure call. The user program then handles register and stack management for the call. Sinc
the 1960 architecture provides a fully integrated call and return mechanism, coding calls with
branch-and-link are not necessary. Additionally, the integrated call is much faster than typical
RISC-coded calls.

The branch-and-link instruction in the 1960 processor family, therefore, is used primarily for
calling leaf procedures. Leaf procedures call no other procedures; they reside at the “leaves” of the
call tree.

In the 1960 architecture the integrated call and return mechanism is used in two ways:

e explicit calls to procedures in a user’s program

. implicit calls to interrupt and fault handlers

The remainder of this chapter explains the generalized call mechanism used for explicit and
implicit calls and call and return instructions.
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The processor performstwo call actions:

local When a loca cal is made, execution mode remains unchanged and the stack
frame for the called procedure is placed on the local stack. The local stack refers
to the stack of the calling procedure.

supervisor When a supervisor call is made from user mode, execution mode is switched to
supervisor and the stack frame for the called procedure is placed on the
supervisor stack.

When a supervisor call isissued from supervisor mode, the call degeneratesinto
alocal cal (i.e., no mode nor stack switch).

Explicit procedure calls can be made using several instructions. Loca cal instructions call and
callx perform alocal call action. With call and callx, the called procedure’s IP is included as an
operand in the instruction.

A system call is made withalls. This instruction is similar teall andcallx, except that the
processor obtains the called procedure’s IP fronsgstem procedure table. A system call, when
executed, is directed to perform either the local or supervisor call action. These calls are referred
to assystem-local and system-supervisor calls, respectively. A system-supervisor call is also
referred to as aupervisor call.

7.1 CALL AND RETURN MECHANISM

At any point in a program, the 1960 processor has access to the global registers, a local register set
and the procedure stack. A subset of the stack allocated to the procedure is called the stack frame.

* When a call executes, a new stack frame is allocated for the called procedure. The processor
also saves the current local register set, freeing these registers for use by the newly called
procedure. In this way, every procedure has a unique stack and a unique set of local registers.

« When a return executes, the current local register set and current stack frame are deallocated.
The previous local register set and previous stack frame are restored.

7.1.1 Local Registers and the Procedure Stack

The processor automatically allocates a set of 16 local registers for each procedure. Since local
registers are on-chip, they provide fast access storage for local variables. Of the 16 local registers,
13 are available for general use; r0, rl and r2 are reserved for linkage information to tie procedures
together.
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The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does
not initialize the local register save area in the newly created stack frame for the procedure, its
contents are equally unpredictable.

The procedure stack can be located anywhere in the address space and grows from low addresses
to high addresses. It consists of contiguous frames, one frame for each active procedure. Local
registers for a procedure are assigned a save area in each stack frame (Figure 7-1). The procedure
stack, available to the user, begins after this save area.

To increase procedure cal speed, the architecture allows an implementation to cache the saved
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of
local registers often do not have to be written out to the save areain the stack frame in memory.
Refer to section 7.1.4, Caching L ocal Register Sets (pg. 7-7) and section 7.1.4.1, Reserving L ocal

Reqgister Sets for High Priority Interrupts (pg. 7-8) for more about local registers and procedure
stack interrelations.

Procedure Stack

Current Register Set Previous Frame Pointer (PFP) r0
go — Stack Pointer (SP) 1 )
Previous
Return Instruction Pointer (RIP) r2 Stack
Frame
rls
Frame Pointer (FP) gl5
user allocated stack
padding area
Previous Frame Pointer (PFP) 10 |—
Stack Pointer (SP) 1
register Current
reserved for RIP 2 save area Stack
Frame
rls5
user allocated stack
unused stack

stack growth
(toward higher addresses)

Figure 7-1. Procedure Stack Structure and Local Registers
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7.1.2 Local Register and Stack Management

Global register g15 (FP) and local registers rO (PFP), rl (SP) and r2 (RIP) contain information to
link procedures together and link local registers to the procedure stack (Figure 7-1). The following
subsections describe this linkage information.

7.1.2.1 Frame Pointer

The frame pointer is the current stack frame’s first byte address. It is stored in global register g15,
the frame pointer (FP) register. The FP register is always reserved for the frame pointer; do not use
g15 for general storage.

Stack frame alignment is defined for each implementation of the i960 processor family, according
to an SALIGN parameter. In the igB®x 1/0 processor, stacks are aligned on 16-byte boundaries

(see Figure 7-1). When the processor needs to create a new frame on a procedure call, it adds a
padding area to the stack so that the new frame starts on a 16-byte boundary.

7.1.2.2 Stack Pointer

The stack pointer is the byte-aligned address of the stack frame’s next unused byte. The stack
pointer value is stored in local register rl, the stack pointer (SP) register. The procedure stack
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor
automatically adds 64 to the frame pointer value and stores the result in the SP register. This
action creates the register save area in the stack frame for the local registers.

The program must modify the SP register value when data is stored or removed from the stack.
The 1960 architecture does not provide an explicit push or pop instruction to perform this action.
This is typically done by adding the size of all pushes to the stack in one operation.

7.1.2.3 Considerations When Pushing Data onto the Stack

Care should be taken in writing to stack in the presence of unforeseen faults and interrupts. In the
general case, to ensure that the data written to the stack is not corrupted by a fault or interrupt
record, the SP should be incremented first to allocate the space, and then the data should be written
to the allocated space:

nmov sp,r4

addo 24, sp, sp

st dat a, (r4)

st dat a, 20(r4)
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7.1.2.4 Considerations When Popping Data off the Stack

For reasons similar to those discussed in the previous section, care should be taken in reading the
stack in the presence of unforeseen faults and interrupts. In the general case, to ensure that data
about to be popped off the stack is not corrupted by a fault or interrupt record, the data should be
read first and then the sp should be decremented:

subo 24,sp,r4

I d 20(r4),rn

I d (rd4),rn

nmov  r4,sp

7.1.2.5 Previous Frame Pointer

28 bits are stored in local register rO, the previous frame pointer (PFP) register. Theed
least-significant bits of the PFP are used to store the return type fieldlaBlee7-2andTable 7-3
for more information on the PFP and the return-type field.

The previous frame pointer is the previous stack frame’s first byte address. This address’

7.1.2.6 Return Type Field

PFP register bits 0 through 3 contain return type information for the calling procedure. When a
procedure call is made — either explicit or implicit — the processor records the call type in the
return type field. The processor then uses this information to select the proper return mechanism
when returning to the calling procedure. The use of this information is descrilzedtion 7.8,
RETURNS(pg. 7-20)

7.1.2.7 Return Instruction Pointer

The actual RIP register (r2) is reserved by the processor to support the call and return mechanisn
and must not be used by software; the actual value of RIP is unpredictable at all times. For
example, an implicit procedure call (fault or interrupt) can occur at any time and modify the RIP.
An OPERATION.INVALID_OPERAND fault is generated when attempting to write the RIP.

The image of the RIP register in the stack frame is used by the processor to determine that frame’
return instruction address. When a call is made, the processor saves the address of the instructio
after the call in the image of the RIP register in the calling frame.

7.1.3 Call and Return Action
To clarify how procedures are linked and how the local registers and stack are managed, the

following sections describe a general call and return operation and the operations performed with
the FP, SP, PFP and RIP registers.
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The events for call and return operations are given in alogical order of operation. Thei960 Rx /0O
processor can execute independent operations in parallel; therefore, many of these events execute
simultaneously. For example, to improve performance, the processor often begins prefetching of
the target instruction for the call or return before the operation is complete.

7.1.3.1 Call Operation

When acall, calls or callx instruction is executed or an implicit call is triggered:

1.

The processor stores the instruction pointer for the instruction following the call in the
current stack’s RIP register (r2).

The current local registers — including the PFP, SP and RIP registers — are saved, freeing
these for use by the called procedure. The local registers are saved in the on-chip local
register cache if space is available.

The frame pointer (g15) for the calling procedure is stored in the current stack's PFP
register (r0). The return type field in the PFP register is set according to the call type which
is performed. Seeection 7.8RETURNS(pg. 7-20)

For a local or system-local call, a new stack frame is allocated by using the old stack pointer
value saved in step 2. This value is first rounded to the next 16-byte boundary to create a
new frame pointer, then stored in the FP register. Next, 64 bytes are added to create the new
frame’s register save area. This value is stored in the SP register.

For an interrupt call from user mode, the current interrupt stack pointer value is used instead
of the value saved in step 2.

For a system-supervisor call from user mode, the current Supervisor Stack Pointer (SSP)
value is used instead of the value saved in step 2.

The instruction pointer is loaded with the address of the first instruction in the called
procedure. The processor gets the new instruction pointer frontalhethe system
procedure table, the interrupt table or the fault table, depending on the type of call executed.

Upon completion of these steps, the processor begins executing the called procedure. Sometime
before a return or nested call, the local register set is bound to the allocated stack frame.
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7.1.3.2 Return Operation

A return from any call type — explicit or implicit — is always initiated with a retus) (
instruction. On a return, the processor performs these operations:

1. The current stack frame and local registers are deallocated by loading the FP register with
the value of the PFP register.

2. The local registers for the return target procedure are retrieved. The registers are usually reac
from the local register cache; however, in some cases, these registers have been flushec
from register cache to memory and must be read directly from the save area in the stack
frame.

3. The processor sets the instruction pointer to the value of the RIP register.

frames created before thet instruction was executed will be overwritten by later implicit

Upon completion of these steps, the processor executes the instruction to which it retur.
7
explicit call operations.

7.1.4 Caching Local Register Sets

Actual implementations of the 1960 architecture may cache some number of local register sets
within the processor to improve performance. Local registers are typically saved and restored from
the local register cache when calls and returns are executed. Other overhead associated with a ce
or return is performed in parallel with this data movement.

When the number of nested procedures exceeds local register cache size, local register sets must
times be saved to (and restored from) their associated save areas in the procedure stack. Becau
these operations require access to external memory, this local cache miss affects call and returi
performance.

When a call is made and no frames are available in the register cache, a register set in the cach
must be saved to external memory to make room for the current set of local registers in the cache
See4.2, LOCAL REGISTER CACHE(pg. 4-2) This action is referred to as a frame spill. The
oldest set of local registers stored in the cache is spilled to the associated local register save area |
the procedure stackigure 7-2illustrates a call operation with and without a frame spill.

Similarly, when a return is made and the local register set for the target procedure is not available
in the cache, these local registers must be retrieved from the procedure stack in memory. This
operation is referred to as a frame fitigure 7-3illustrates return operations with and without
frame fills.

The flushreg instruction, described i6.2.30, flushreg (pg. 6-54) writes all local register sets
(except the current one) to their associated stack frames in memory. The register cache is ther
invalidated, meaning that all flushed register sets are restored from their save areas in memory.
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For most programs, the existence of the multiple local register sets and their saving/restoring in the
stack frames should be transparent. However, there are some special cases.

* A store to the register save area in memory does not necessarily update a local register set,
unless user software executeshreg first.

« Reading from the register save area in memory does not necessarily return the current value of
a local register set, unless user software exefutgsreg first.

* There is no mechanism, includifigshreg, to access the current local register set with a read
or write to memory.

« flushreg must be executed sometime before returning from the current frame if the current
procedure modifies the PFP in register rO, or else the behavior oéttiestruction is not
predictable.

¢ The values of the local registers r2 to r15 in a new frame are undefined.

flushreg is commonly used in debuggers or fault handlers to gain access to all saved local
registers. In this way, call history may be traced back through nested procedures.

7141 Reserving Local Register Sets for High Priority Interrupts

To decrease interrupt latency for high priority interrupts, software can limit the number of frames
available to all remaining code. This includes code that is either in the executing state (non-inter-
rupted) or code that is in the interrupted state but has a process priority less than 28. For the
purposes of discussion here, this remaining code will be referred twnagritical code.
Specifying a limit for non-critical code ensures that some number of free frames are available to
high-priority interrupt service routines. Software can specify the limit for non-critical code by
writing bits 10 through 8 of the register cache configuration word in the PRCB ¢bée 11-8.,
Process Control Blockonfiguration Wordqpg. 11-18) The value indicates how many frames
within the register cache may be used by non-critical code before a frame needs to be flushed to
external memory. The programmed limit is used only when a frame is pushed, which occurs only
for an implicit or explicit call.

Allowed values of the programmed limit range from 0 to 7. Setting the value to O reserves no
frames for high-priority interrupts. Setting the value to 7 causes the register cache to become
disabled for non-critical code. Seection 11.4.2Process Control Block PRCB (pg. 11-17)
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7.1.5 Mapping Local Registers to the Procedure Stack

Each local register set is mapped to a register save area of its respective frame in the procedure
stack (Figure 7-1). Saved local register sets are frequently cached on-chip rather than saved to
memory. This is not awrite-through cache. Local register set contents are not saved automatically
to the save area in memory when the register set is cached. This would cause a significant
performance loss for call operations.

Also, no automatic update policy isimplemented for the register cache. If the register save areain
memory for a cached register set is modified, there is no guarantee that the modification will be
reflected when the register set is restored. For a frame spill, the set must be flushed to memory
prior to the modification for the modification to be valid.

Theflushreg instruction causes the contents of all cached local register sets to be written (flushed)
to their associated stack frames in memory. The register cache isthen invalidated, meaning that all
flushed register sets are restored from their save areas in memory. The current set of local registers
is not written to memory. flushreg is commonly used in debuggers or fault handlersto gain access
to all saved local registers. In thisway, cal history may be traced back through nested procedures.
flushreg is also used when implementing task switches in multitasking kernels. The procedure
stack is changed as part of the task switch. To change the procedure stack, flushreg is executed to
update the current procedure stack and invalidate all entries in the local register cache. Next, the
procedure stack is changed by directly modifying the FP and SP registers and executing a call
operation. After flushreg executes, the procedure stack may also be changed by modifying the
previous frame in memory and executing a return operation.

When a set of local registersis assigned to a new procedure, the processor may or may not clear or
initialize these registers. Therefore, initial register contents are unpredictable. Also, the processor
doesnot initialize the local register save areain the newly created stack frame for the procedure; its
contents are equally unpredictable.

7.2 MODIFYING THE PFP REGISTER

The FP must not be directly modified by user software or risk corrupting the local registers.
Instead, implement context switches by modifying the PFP.

Modification of the PFP is typicaly for context switches;, as part of the switch, the active
procedure changes the pointer to the frame that it will return to (previous frame pointer — PFP).
Great care should be taken in modifying the PFP. In the general dasshrag must be issued
before and after modifying the PFP when the local register cache is enablétkésegle 7-).

This requirement ensures the correct operation of a context switch on all i960 processors in all
situations.
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Example 7-1. flushreg

# Do a context switch.
# Assume PFP = 0x5000.

flushreg # Flush Frames to correct address.
| da 0x8000, pfp
flushreg # Ensure that "ret" gets updated PFP.

ret

The flushreg before the modification is necessary to ensure that the frame of the previous context
(mapped to 0x5000 in the example) is “spilled” to the proper external memory address and
removed from the local register cache. If theshreg before the modification was omitted, a
flushreg (or implicit frame spill due to an interrupt) after the modification of PFP would cause the
frame of the previous context to be written to the wrong location in external memory.

Theflushreg after the modification ensures that outstanding results are completely written to the
PFP before a subsequent instruction can be executed. Recall that tteinstruction uses the
low-order 4 bits of the PFP to select whieh function to perform. Requiring théushreg after

the PFP modification allows an i960 implementation to implement a simple mechanism that
quickly selects theet function at the time theet instruction is issued and provides a faster return
operation.

Note theflushreg after the modification will execute very quickly because the local register cache
has already been flushed by tHeshreg before; only synchronization of the PFP will be
performed. 1960 processor implementations may provide other mechanisms to ensure PFP
synchronization in addition tBushreg, but aflushreg after a PFP modification is ensured to
work on all i960 processors.

7.3 PARAMETER PASSING

Parameters are passed between procedures in two ways:

value Parameters are passed directly to the calling procedure as part of the call and
return mechanism. This is the fastest method of passing parameters.

reference Parameters are stored in an argument list in memory and a pointer to the
argument list is passed in a global register.

When passing parameters by value, the calling procedure stores the parameters to be passed in
global registers. Since the calling procedure and the called procedure share the global registers, the
called procedure has direct access to the parameters after the call.
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When a procedure needs to pass more parameters than will fit in the global registers, they can be
passed by reference. Here, parameters are placed in an argument list and a pointer to the argument
list is placed in aglobal register.

The argument list can be stored anywhere in memory; however, a convenient place to store an
argument list isin the stack for a calling procedure. Space for the argument list is created by incre-
menting the SP register value. If the argument list is stored in the current stack, the argument listis
automatically deallocated when no longer needed.

A procedure receives parameters from — and returns values to — other calling procedures. To do
this successfully and consistently, all procedures must agree on the use of the global registers.

Parameter registers pass values into a function. Up to 12 parameters can be passed by value usir
the global registers. If the number of parameters exceeds 12, additional parameters are passe
using the calling procedure’s stack; a pointer to the argument list is passed in a pre-designatec
register. Similarly, several registers are set aside for return arguments and a return argum
pointer is defined to point to additional parameters. If the number of return arguments exce
available number of return argument registers, the calling procedure passes a pointe
argument list on its stack where the remaining return values will be placechple 7-Zllustrates
parameter passing by value and by reference.

Local registers are automatically saved when a call is made. Because of the local register cache
they are saved quickly and with no external bus traffic. The efficiency of the local register
mechanism plays an important role in two cases when calls are made:

1. When a procedure is called which contains other calls, global parameter registers should be
moved to working local registers at the beginning of the procedure. In this way, parameter
registers are freed and nested calls are easily managed. The register move instruction
necessary to perform this action is very fast; the working parameters — now in local
registers — are saved efficiently when nested calls are made.

2. When other procedures are nested within an interrupt or fault procedure, the procedure must
preserve all normally non-preserved parameter registers, such as the global registers. This ic
necessary because the interrupt or fault occurs at any point in the user’s program and a
return from an interrupt or fault must restore the exact processor state. The interrupt or fault
procedure can move non-preserved global registers to local registers before the nested call.
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Example 7-2. Parameter Passing Code Example

# Exanpl e of parameter passing .
# C-source:int a,b[10];
# a = procl(a,l,'x’,&b[0]);
# assembles to ...
mov  r3,g0# value of a
Idconstl,g1# value of 1
Idconst120,g2# value of “x”
Ida  0x40(fp),g3# reference to b[10]
call _procl
mov  gO0,r3#save return value in “a”

_proc1l:
movqg g0,r4# save parameters

# other instructions in procedure
# and nested calls

mov  r3,g0# load return parameter

ret

7.4 LOCAL CALLS

A local call does not cause a stack switch. A local call can be made two ways.

* with thecall andcallx instructions; or

« with a system-local call as describedsaction 7.5SYSTEM CALLS(pg. 7-15)

call specifies the address of the called procedures as the IP plus a signed, 24-bit displacement

(i.e., -22 to 22 - 4).callx allows any of the addressing modes to be used to specify the procedure
address. The IP-with-displacement addressing mode allows full 32-bit IP-relative addressing.

When a local call is made with @ll or callx, the processor performs the same operation as
described irsection 7.1.3.1Call Operation(pg. 7-6) The target IP for the call is derived from the
instruction’s operands and the new stack frame is allocated on the current stack.
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7.5 SYSTEM CALLS

A system call is a call made viathe system procedure table. It can be used to make a system-local

call — similar to a local call made wittall andcallx in the sense that there is no stack nor mode
switch — or a system supervisor call. A system call is initiated waths, which requires a
procedure number operand. The procedure number provides an index into the system procedur:
table, where the processor finds IPs for specific procedures.

Using an i960 processor language assembler, a system procedure is directly declared using th
.sysproc directive. At link time, the optimized call directive, callj, is replaced witliiss when a

system procedure target is specified. (Refer to current i960 processor assembler documentation fo
a description of the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software portability.
System calls are commonly used to call kernel services. By calling these services with a procedure
number rather than a specific IP, applications software does not need to be changed each s
implementation of the kernel services is modified. Only the entries in the system procedur /
must be changed. Second, the ability to switch to a different execution mode and stack "WIth a
system supervisor call allows kernel procedures and data to be insulated from applications code.
This benefit is further described 3n7, USER-SUPERVISOR PROTECTION MODHJpg. 3-21)

75.1 System Procedure Table

The system procedure table is a data structure for storing IPs to system procedures. These can
procedures which software can access through (1) a system call or (2) the fault handling
mechanism. Using the system procedure table to store IPs for fault handling is descéilied in
FAULT HANDLING OVERVIEW (pg. 9-1)

Figure 7-4shows the system procedure table structure. It is 1088 bytes in length and can have up to

260 procedure entries. At initialization, the processor caches a pointer to the system procedure
table. This pointer is located in the PRCB. The following subsections describe this table’s fields.
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7.5.1.1 Procedure Entries

A procedure entry in the system procedure table specifies a procedure’s location and type. Eact
entry is one word in length and consists of an address (IP) field and a type field. The address field
gives the address of the first instruction of the target procedure. Since all instructions are word
aligned, only the entry’s 30 most significant bits are used for the address. The entry’s two
least-significant bits specify entry type. The procedure entry type field indicates call type:
system-local call or system-supervisor cdlhlfle 7-). On a system call, the processor performs
different actions depending on the type of call selected.

Table 7-1. Encodings of Entry Type Field in System Procedure Table

Encoding Call Type
00 System-Local Call
01 Reserved?
10 System-Supervisor Call
11 Reserved?®

1. Calls with reserved entry types have unpredictable behavior.

75.1.2 Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack calfzaiiser

stack, if not already in supervisor mode. The processor gets a pointer to this stack from the
supervisor stack pointer field in the system procedure tatideie 7-4 during the reset initial-

ization sequence and caches the pointer internally. Only the 30 most significant bits of the
supervisor stack pointer are given. The processor aligns this value to the next 16-byte boundary tc
determine the first byte of the new stack frame.

7.5.1.3 Trace Control Bit

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC
register (PC.te) when a system-supervisor call causes a switch from user mode to supervisor mode
Setting this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables tracing. The use
of this bit is described irsection 10.1.2PC Trace Enable Bit and Trace-Fault-Pending Flag

(Pg. 10-3)
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7.5.2 System Call to a Local Procedure

When a calls instruction references an entry in the system procedure table with an entry type of

00, the processor executes a system-local call to the selected procedure. The action that the
processor performs is the same as described in section 7.1.3.1, Call Operation (pg. 7-6). The call's

target IP is taken from the system procedure table and the new stack frame is allocated on the
current stack, and the processor does not switch to supervisor modealEhalgorithm is
described ir6.2.14 calls (pg. 6-24)

7.5.3 System Call to a Supervisor Procedure

When acalls instruction references an entry in the system procedure table with an entry type of
10,, the processor executes a system-supervisor call to the selected procedure. The call's target IP
is taken from the system procedure table.

The processor performs the same action as descrilmztilon 7.1.3.1Call Operation(pg. 7-6)
with the following exceptions:
« If the processor is in user mode, it switches to supervisor mode.

« If a mode switch occurs, SP is read from the Supervisor Stack Pointer (SSP) base. A new
frame for the called procedure is placed at the location pointed to after alignment of SP.

* If no mode switch occurs, the new frame is allocated on the current stack.

« If a mode switch occurs, the state of the trace enable bit in the PC register is saved in the
return type field in the PFP register. The trace enable bit is then loaded from the trace control
bit in the system procedure table.

* If no mode switch occurs, the value @@balls instruction) or 004 (fault call) is saved in the
return type field of the pfp register.

When the processor switches to supervisor mode, it remains in that mode and creates new frames
on the supervisor stack until a return is performed from the procedure that caused the original
switch to supervisor mode. While in supervisor mode, either the local call instruatihar(d

callx) orcalls can be used to call procedures.

The user-supervisor protection model and its relationship to the supervisor call are described in
section 3.7USER-SUPERVISOR PROTECTION MODH]pg. 3-21)

7.6 USER AND SUPERVISOR STACKS
When using the user-supervisor protection mechanism, the processor maintains separate stacks in

the address space. One of these stacks — the user stack — is for procedures executed in user
mode; the other stack — the supervisor stack — is for procedures executed in supervisor mode.
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The user and supervisor stacks areidentical in structure (Figure 7-1). The base stack pointer for the
supervisor stack is automatically read from the system procedure table and cached internally
during initidization. Each time a user-to-supervisor mode switch occurs, the cached supervisor
stack pointer base is used for the starting point of the new supervisor stack. The base stack pointer
for the user stack isusually created in the initialization code. See section 11.2, 80960Rx INITIAL-
IZATION (pg. 11-2). The base stack pointers must be aligned to a 16-byte boundary; otherwise,
the first frame pointer on the interrupt stack is rounded up to the previous 16-byte boundary.

7.7 INTERRUPT AND FAULT CALLS

The architecture defines two types of implicit calls that make use of the call and return mechanism:
interrupt-handling procedure calls and fault-handling procedure calls. A cal to an interrupt
procedure is similar to a system-supervisor call. Here, the processor obtains pointers to the
interrupt procedures through the interrupt table. The processor always switches to supervisor mode
on an interrupt procedure call.

A call to afault procedure is similar to a system call. Fault procedure calls can be local calls or
supervisor calls. The processor obtains pointers to fault procedures through the fault table and
(optionally) through the system procedure table.

When afault call or interrupt call is made, afault record or interrupt record is placed in the newly
generated stack frame for the call. These records hold the machine state and information to identify
the fault or interrupt. When areturn from an interrupt or fault is executed, machine state is restored
from these records. See CHAPTER 8, INTERRUPTS and CHAPTER 9, FAULTS for more
information on the structure of the fault and interrupt records.
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7.8 RETURNS

The return (ret) instruction provides a generalized return mechanism that can be used to return
from any procedure that was entered by call, calls, callx, an interrupt call or afault call. When ret
executes, the processor uses the information from the return-type field in the PFP register
(Table 7-2) to determine the type of return action to take.

Table 7-2. Previous Frame Pointer Register — PFP

Return Status
Return-Type Field - PFP.rt
Pre-Return-Trace Flag - PFP.p

Previous Frame Pointer

Address-PFP.a ¢
a r r r
3 alolt]t]t
1 2| 1|0
31 28 24 20 16 12 8 4 0

return-type field indicates the type of call which was made. Table 7-3 shows the return-type field
encoding for the various calls: local, supervisor, interrupt and fault.

trace-on-return flag (PFP.rt0 or bit O of the return-type field) stores the trace enable bit value
when an explicit system-supervisor call is made from user mode. When the call is made, the PC
register trace enable bit is saved as the trace-on-return flag and then replaced by the trace controls
bit in the system procedure table. On areturn, the trace enable bit's original value is restored. This
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch
occurs. See section 10.5.2.1, Tracing on Explicit Call (pg. 10-13).

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and prereturn-trace modes. If
call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;
otherwiseit clearsthe flag. Then, if thisflag is set and prereturn-trace modeis enabled, a prereturn
trace event is generated on a return, before any actions associated with the return operation are
performed. See section 10.2, TRACE MODES (pg. 10-3) for a discussion of interaction between
call-trace and prereturn-trace modes with the prereturn-trace flag.
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Table 7-3. Encoding of Return Status Field

Return Status .
Field Call Type Return Action
Local call
. Local return
000 (system-local call or system-supervisor . .
. (return to local stack; no mode switch)
call made from supervisor mode)
001 Fault call Fault return
Supervisor return
01t Svstem-supervisor from user mode (return to user stack, mode switch to user
Y P mode, trace enable bit is replaced with the
t* bit stored in the PFP register on the call)
100 reserved 2
101 reserved?
110 reserved?
111 Interrupt call Interrupt return
NOTES:

1. “t” denotes the trace-on-return flag; used only for system supervisor calls which cause a user-to-super-
visor mode switch.
2. This return type results in unpredictable behavior.

7.9 BRANCH-AND-LINK

A branch-and-link is executed using either the branch-and-link instruction (bal) or
branch-and-link-extended instruction (balx). When either instruction executes, the processor
branches to the first instruction of the called procedure (the target instruction), while saving a
return IP for the calling procedure in a register. The called procedure uses the same set of local
registers and stack frame as the calling procedure:

* Forbal, the return IP is automatically saved in global register g14

« Forbalx, the return IP instruction is saved in a register specified by one of the instruction’s
operands

A return from a branch-and-link is generally carried out withkk gbranch extended) instruction,
where the branch target is the address saved with the branch-and-link instruction. The
branch-and-link method of making procedure calls is recommended for calls to leaf procedures.
Leaf procedures typically call no other procedures. Branch-and-link is the fastest way to make a
call, providing the calling procedure does not require its own registers or stack frame.
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CHAPTER 8
INTERRUPTS

This chapter describes the i960° core processor architecture interrupt mechanism, the i960 Rx I/O
processor interrupt controller, periphera interrupts and secondary PCI interrupt routing. Key
topics include the 1960 Rx 1/O processor’s facilities for requesting and posting interrupts, the
programmer’s interface to the on-chip interrupt controller, interrupt implementation, interrupt
latency and how to optimize interrupt performance.

8.1 OVERVIEW

An interrupt is an event that causes a temporary break in program execution so the processor ca
handle another task. Interrupts commonly request 1/O services or synchronize the processor with
some external hardware activity. For interrupt handler portability across the i960 processor

the architecture defines a consistent interrupt state and interrupt-priority-handling mechani'ﬂ
manage and prioritize interrupt requests in parallel with processor execution, the 960
processor provides an on-chip programmable interrupt controller.

When the processor is redirected to service an interrupt, it uses a vector number that accompanie
the interrupt request to locate the vector entry in the interrupt table. From that entry, it gets an
address to the first instruction of the selected interrupt procedure. The processor then makes at
implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. The processc
creates a new frame for the interrupt on this stack and a new set of local registers is allocated to the
interrupt procedure. The interrupted program’s current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program’s state
switches back to the stack that the processor was using prior to the interrupt and resumes prograr
execution.

Since interrupts are handled based on priority, requested interrupts are often saved for later service
rather than handled immediately. The mechanism for saving the interrupt is referred to as interrupt
posting. Interrupt posting is describedsizction 8.1.6Posting Interrupt$pg. 8-7)

The 1960 core architecture defines two data structures to support interrupt processing: the interrupt
table (seeFigure 8-) and interrupt stack. The interrupt table contains 248 vectors for interrupt
handling procedures (eight of which are reserved) and an area for posting software requestec
interrupts. The interrupt stack prevents interrupt handling procedures from using the stack in use
by the application program. It also locates the interrupt stack in a different area of memory than the
user and supervisor stack (e.g., fast SRAM).
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Figure 8-1. Interrupt Handling Data Structures

Requests for interrupt service come from many sources and are prioritized such that instruction
execution is redirected only when an interrupt request is of higher priority than that of the
executing task. On the i960 Rx 1/O processor, interrupt requests may originate from external
hardware sources, interna peripherals or software. The 1960 Rx 1/O processor contains a number
of integrated peripherals which may generate interrupts, including:

« DMA Channel 0 e Primary ATU

« DMA Channel 1 * Secondary ATU

« DMA Channel 2 « fC Bus Interface Unit

« Bridge Primary Interface ¢ APIC Bus Interface Unit
« Bridge Secondary Interface ¢ Messaging Unit

e Timers0&1 *  Memory Controller

The interrupt controller can aso intercept external secondary PCI interrupts and forward them to
the primary PCI interrupt pins.

Interrupts are detected with the chip’s 8-bit interrupt port and with a dedicated Non-Maskable

Interrupt (NMI#) input in the 1960 core processor’s interrupt controller. Interrupt requests
originate from software by thegysctl instruction. To manage and prioritize all possible interrupts,
the processor integrates an on-chip programmable interrupt controller.

8.1.1 The i960® Rx I/0 Processor Core Interrupt Architecture

The 80960Rx contains the same core interrupt architecture as many other 80960 family members.
Some of the core featuresinclude the interrupt record and stack, the way interrupts are posted, and
the way interrupt priorities are resolved. These basic architectural features are detailed in the
following sections.
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8.1.2 Software Requirements For Interrupt Handling

To use the processor’s interrupt handling facilities, user software must provide the following items
in memory:

e Interrupt Table
e Interrupt Handler Routines
* Interrupt Stack

These items are established in memory as part of the initialization procedure. Once these items ar
present in memory and pointers to them have been entered in the appropriate system dat:
structures, the processor handles interrupts automatically and independently from software.

8.1.3 Interrupt Priority

Each procedure pointer’s priority is defined by dividing the procedure pointer number by eight.
Thus, at each priority level, there are eight possible procedure pointers (e.g., procedure pai
8-15 have a priority of 1 and procedure pointers 246-255 have a priority of 31). Procedure ;ﬁ
0-7 cannot be used because a priority-0 interrupt would never successfully stop executi
program of any priority. In addition, procedure pointers 244-247 and 249-251 are reserved;
therefore, 241 procedure pointers are available to the user.

The processor compares its current priority with the interrupt request priority to determine whether
to service the interrupt immediately or to delay service:

* The interrupt is serviced immediately when its priority is higher than the priority of the
program or interrupt the processor is currently executing.

e The interrupt is posted as a pending interrupt (not serviced immediately) when the interrupt
priority is less than or equal to the processor’s current priority.

Seesection 8.1.4.2Pending Interrupt$pg. 8-5) When multiple interrupt requests are pending at
the same priority level, the request with the highest vector number is serviced first.

Priority-31 interrupts are handled as a special case. Even when the processor is executing a
priority level 31, a priority-31 interrupt will interrupt the processor. On the i960 Rx I/O processor,
the non-maskable interrupt (NMI#) interrupts priority-31 execution; no interrupt can interrupt an
NMI# handler.
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8.1.4 Interrupt Table

The interrupt table (see Figure 8-2) is 1028 bytes in length and can be located anywhere in the
non-reserved address space. It must be aligned on aword boundary. The processor reads a pointer
to the interrupt table byte O during initialization. The interrupt table must be located in RAM so
the processor can read and write the table’s pending interrupt section for software or externally

generated interrupts.

The interrupt table is divided into two sectionsctor entries and pending interrupts. Each are

described in the subsections that follow.

intel.

T Entry 255

31 87 0
Pending Priorities 000H
004H
> Pending Interrupts
020H
Entry 8 024H (Vector 8)
Entry 9 028H (Vector 9)
Entry 10 02CH (Vector 10)
1 | T ome
Entry 243 3DOH (Vector 243)
L 3D4H (Vector 244)
<
3EOH (Vector 247)
NMI# Vector 3E4H (Vector 248)
3E8H (Vector 249)
2 :
TSFOH (Vector 251)
Entry 252 3F4H (Vector 252)

400H (Vector 255)

Vector Entry

210

| Instruction Pointer

EE

|:| Reserved (Initialize to 0)
! Preserved

L
. Entry Type:
00 Normal
01 Reserved®
10 Targetin Cache
11 Reserved!

Vector entries with a reserved
type have unpredictable behavior.

Figure 8-2.
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8.1.4.1 Vector Entries

A vector entry contains a specific interrupt handler’'s address. When an interrupt is serviced, the
processor branches to the address specified by the vector entry.

Each interrupt is associated with an 8-bit vector number that points to a vector entry in the interrupt
table. The vector entry section contains 248 word-length entries. Vector numbers 8-243 and
252-255 and their associated vector entries are used for conventional interrupts. Vector number
248 is the NMI# vector. Vector numbers 244-247 and 249-251 are reserved. Vector number 248
and its associated vector entry is used for the non-maskable interrupt (NMI#). Vector numbers 0-7
cannot be used.

Vector entry 248 contains the NMI# handler address. When the processor is initialized, the NMI#
vector located in the interrupt table is automatically read and stored in location OH of internal data
RAM. The NMI# vector is subsequently fetched from internal data RAM to improve this
interrupt’'s performance.

begin on a word boundary, so the processor assumes that the vector’s two least significant

0. Bits 0 and 1 of an entry indicate entry type: type 00 indicates that the interrupt procedure

be fetched normally; type 10 indicates that the interrupt procedure should be fetched from the
locked partition of the instruction cache. Refeséztion 8.5.2.2Caching Interrupt Routines and
Reserving Register Framgsy. 8-47) The other possible entry types are reserved and must not be
used.

The vector entry structure is given at the bottontigfure 8-2 Each interrupt procedure mu
2
v

8.1.4.2 Pending Interrupts

The pending interrupts section comprises the interrupt table’s first 36 bytes, divided into two
fields: pending priorities (byte offset 0 through 3) and pending interrupts (4 through 35).

Each of the 32 bits in the pending priorities field indicate an interrupt priority. When the processor
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt’s priority is
set; e.g., when an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is set.

Each of the pending interrupts field’s 256 bits represent an interrupt procedure pointer. Byte offset
5 is for vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset 4, the
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its corresponding
bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to first
check for any pending interrupts with a priority greater than the current program and then
determine the vector number of the interrupt with the highest priority.
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8.1.4.3 Caching Portions of the Interrupt Table

The architecture allows all or part of the interrupt table to be cached internally to the processor.
The purpose of caching these fields is to reduce interrupt latency by alowing the processor to
access certain interrupt procedure pointers and the pending interrupt information without having
to make external memory accesses. Thei960 Rx 1/0 processor caches the following:

« The value of the highest priority posted in the pending priorities field.

« A predefined subset of interrupt procedure pointers (entries from the interrupt table).

« Pending interrupts received from external interrupt pins.

This caching mechanism is non-transparent; the processor may modify fields in a cached interrupt

table without modifying the same fields in the interrupt table itself. Vector caching is described in
section 8.5.2.1Yector Caching Optiolpg. 8-46)

8.1.5 Interrupt Stack And Interrupt Record

The interrupt stack can be located anywhere in the non-reserved address space. The processor
obtains a pointer to the base of the stack during initialization. The interrupt stack has the same
structure as the local procedure stack describeddfion 7.1.1l ocal Registers and the Procedure
Stack(pg. 7-2) As with the local stack, the interrupt stack grows from lower addresses to higher
addresses.

The processor saves the state of an interrupted program, or an interrupted interrupt procedure, in a
record on the interrupt stadkigure 8-3shows the structure of this interrupt record.
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Current Stack
31 (Local, Supervisor, or Interrupt Stack) 0

‘ FP

T Current Frame

31 Interrupt Stack

L Padding Area L

Optional Data

Stack (not used by 80960Rx Implementation)
Growth
Saved Process Controls Register NFP-16
Interrupt
Saved Arithmetic Controls Register NEP-12 Record

Vector Number NEP-8

NFP
New Frame 2
T D Reserved

Figure 8-3. Storage of an Interrupt Record on the Interrupt Stack

The interrupt record is aways stored on the interrupt stack adjacent to the new frame that is created
for the interrupt handling procedure. It includes the state of the AC and PC registers at the time the
interrupt was serviced and the interrupt procedure pointer number used. Relative to the new frame
pointer (NFP), the saved AC register is located at address NFP-12, the saved PC register islocated

at address NFP-16.
Inthei960 Rx I/O processor, the stack is aligned to a 16-byte boundary. When the processor needs

to create a new frame on an interrupt call, it adds a padding areato the stack so that the new frame
starts on a 16-byte boundary.

8.1.6 Posting Interrupts

Interrupts are posted to the processor by a number of different mechanisms; these are described in
the following sections.
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e Software interrupts: interrupts posted through the interrupt table, by software running on
the 1960 Rx I/O processor.

« External Interrupts: interrupts posted through the interrupt table, by an external agent to
the 1960 Rx I/O processor.

« Hardware interrupts: interrupts posted directly to the i960 Rx I/O processor through an
implementation-dependent mechanism that may avoid using the interrupt table.

8.1.6.1 Posting Software Interrupts via sysctl

In the 1960 Rx I/O processorysctl is typically used to request an interrupt in a program (see
Example 8-). The request interrupt message type (00H) is selected and the interrupt procedure
pointer number is specified in the least significant byte of the instruction operand. See
section 6.2.67sysctl(pg. 6-114)for a complete discussion sfsctl.

Example 8-1. Using sysctl to Request an Interrupt

| dconst 0x53, g5# Vector nunber 53H is | oaded
# into byte 0 of register g5 and
# the value is zero extended into
# byte 1 of the register

sysctl g5, g5, g5# Vector number 53H is posted

A literal can be used to post an interrupt with a vector number from 8 to 31. Here, the required
value of O0H in the second byte of a register operand is implied.

The action of the processor when it executesiset! instruction is as follows:

1. The processor performs an atomic write to the interrupt table and sets the bits in the
pending-interrupts and pending-priorities fields that correspond to the requested interrupt.

2. The processor updates the internal software priority register with the value of the highest
pending priority from the interrupt table. This may be the priority of the interrupt that was
just posted.
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The interrupt controller continuously compares the following three values: software priority
register, current process priority, priority of the highest pending hardware-generated interrupt.
When the software priority register value is the highest of the three, the following actions occur:

1. The interrupt controller signals the core that a software-generated interrupt is to be serviced.

2. The core checks the interrupt table in memory, determines the vector number of the highest
priority pending interrupt and clears the pending-interrupts and pending-priorities bits in the
table that correspond to that interrupt.

3. The core detects the interrupt with the next highest priority that is posted in the interrupt
table (if any) and writes that value into the software priority register.

4, The core services the highest priority interrupt.

When more than one pending interrupt is posted in the interrupt table at the same interrupt priority,

the core handles the interrupt with the highest vector number first. The software priority register is

an internal register and, as such, is not visible to the user. The core only updates this registag
value whersysctl requests an interrupt or when a software-generated interrupt is serviced. E‘ﬁ

8.1.6.2 Posting Software Interrupts Directly in the Interrupt Table

In special cases within a single processor system, software can post interrupts by setting the
desired pending-interrupt and pending-priorities bits directly. Direct posting requires that software
ensure that no external 1/0O agents post a pending interrupt simultaneously, and that an interrupt
cannot occur after one bit is set but before the other is set. Note, however, that this method is no
recommended.

8.1.6.3 Posting External Interrupts

An external agent posts (sets) a pending interrupt with vector “v” to the 1960 Rx 1/O processor
through the interrupt table by executing the following algorithm:

Ext er nal _Agent _Posti ng:

X atoni c_read(pending_priorities); #synchronize;
z read(pendi ng_interrupts[v/8]);

x[v/8] = 1;

z[v mod 8] = 1;
write(pending_interrupts[v/8]) =
atomc_wite(pending_priorities)

N

X,

Generally, software cannot use this algorithm to post interrupts because there is no way for
software to have an atomic (locking) read/write span multiple instructions.
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8.1.6.4 Posting Hardware Interrupts

Certain interrupts are posted directly to the processor by an implementation-dependent mechanism
that can bypass the interrupt table. Thisis often done for performance reasons.

8.1.7 Resolving Interrupt Priority

The interrupt controller continuously compares the processor’s priority to the priorities of the
highest-posted software interrupt and the highest-pending hardware interrupt. The core is
interrupted when a pending interrupt request is higher than the processor priority or has a priority
of 31. (Note that a priority-31 interrupt handler can be interrupted by another priority-31
interrupt.) There are no priority-0 interrupts, since such an interrupt would never have a priority
higher than the current process, and would therefore never be serviced.

In the event that both hardware and software requested interrupts are posted at the same level, the
hardware interrupt is delivered first while the software interrupt is left pending. As a result, when
both priority-31 hardware- and software-requested interrupts are pending, control is first
transferred to the interrupt handler for the hardware-requested interrupt. However, before the first
instruction of that handler can be executed, the pending software-requested interrupt is delivered
and control is transferred to the corresponding interrupt handler.

Example 8-2. Interrupt Resolution

/* Model used to resolve interrupts between execution of all nmacro instructions */
if (NM#_pending & !bl ock_NM)
{ block_NM = true; /* Reset on return fromNM |NTR handler */
vecnum = 248; vector_addr = O;
PC. priority = 31;
push_l ocal _register_set();
goto conmon_i nterrupt_process; }
if (ICON. gie == enabl ed) {
expand_HW.int();
tenp = max(HWInt _Priority, SWlint_Priority);
if (tenp == 31 || tenp > PC.priority)
{ PC. priority = tenp;
if (SWint_Priority > HWInt_Priority) goto Deliver_SWInt;
el se{ vecnum = HWvecnum goto Deliver_HWInt;}

}

}

8.1.8 Sampling Pending Interrupts in the Interrupt Table

At specific points, the processor checks the interrupt table for pending interrupts posted. When
one is found, it is handled as if the interrupt occurred at that time. In the 1960 Rx I/O processor, a
check for pending interrupts in the interrupt table is made when requesting a software interrupt
with sysctl or when servicing a software interrupt.

8-10 I



Inte|® INTERRUPTS

When a check of the interrupt table is made, the following algorithm is used. Since the pending
interrupts may be cached, the check for pending interrupt operation may not involve any memory
operations. The algorithm uses synchronization because there may be multiple agents posting and
unposting interrupts. In the agorithm, w, x, y, and z are temporary registers within the processor.

Check_For _Pendi ng_Interrupts:

X = read(pending _priorities);
if(x == 0) return(); #nothing to do
y = most_significant_bit(x);
if(y '= 31 & y <= current _priority) return();
X = atom c_read(pending priorities); #synchronize
if(x == 0)
{atom c_wite(pending priorities) = x;
return();} #interrupts di sappeared
# (e.g., handl ed by another processor)
y = nmost_significant_bit(x); #must be repeated
if(y '= 31 & y <= current_priority)
{atom c_wite(pending_priorities) = x;
return();} #interrupt disappeared
z = read(pending_interrupts[y]); #z is a byte
if(z == 0)
{x[y] = 0; #false alarm should not happen
atom c_wite(pending_priorities) = x;
return();}
el se
{w = nost_significant_bit[z];
z[w = 0;
wite(pending_interrupts[y]) = z;
if(z == 0) x[y] = 0; #no others at this level
atomic_wite(pending_priorities) = x;
take_interrupt();}

The algorithm shows that the pending interrupts are marked by a bit in the Pending Interrupts
Field, and that the Pending Priorities Field is an optimization. The processor examines Pending
Interrupts only when the corresponding bit in Pending Prioritiesis set.

The steps prior to the at omi ¢_r ead are another optimization. Note that these steps must be
repeated within the synchronized critical section, since another processor could have spotted and
accepted the same pending interrupt(s).
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Use sysctl with a vector in the range 0 to 7 to force the core to check the interrupt table for
pending interrupts. When an external agent is posting interrupts to a shared interrupt table, use
sysctl periodically to guarantee recognition of pending interrupts posted in the table by the
external agent.

8.1.9 Saving the Interrupt Mask

Whenever an interrupt requested by the external interrupt pins or by the internal timersis serviced,
the IMSK register is automatically saved in register r3 of the new local register set allocated for
the interrupt handler. After the mask is saved, the IMSK register is optionally cleared. This masks
al interrupts except NMI#swhile an interrupt is serviced. Since the IMSK register value is saved,
the interrupt procedure can restore the vaue before returning. The option of clearing the mask is
selected by programming the ICON register as described in section 8.4.2, Interrupt Control
Register — ICON (pg. 8-34)

Priority-31 interrupts are interrupted by other priority-31 interrupts. For level-activated interrupt
inputs, instructions within the interrupt handler are typically responsible for causing the source to
deactivate. If these priority-31 interrupts are not masked, another priority-31 interrupt is signaled
and serviced before the handler can deactivate the source. The first instruction of the interrupt
handling procedure is never reached, unless the option is selected to clear the IMSK register on
entry to the interrupt.

Another use of the mask is to lock out other interrupts when executing time-critical portions of an
interrupt handling procedure. All hardware-generated interrupts are masked until software
explicitly replaces the mask.

The processor does not restore r3 to the IMSK register when the interrupt return is executed. When
the IMSK register is cleared, the interrupt handler must restore the IMSK register to enable
interrupts after return from the handler.
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8.2 THE i960® CORE PROCESSOR INTERRUPT CONTROLLER

The 1960 Rx 1/0O processor Interrupt Controller Unit (ICU) provides a flexible, low-latency means

for requesting and posting interrupts and minimizing the core’s interrupt handling burden. Acting
independently from the core, the interrupt controller posts interrupts requested by hardware and
software sources and compares the priorities of posted interrupts with the current process priority.

The interrupt controller provides the following features for managing hardware-requested
interrupts:

¢ Low latency, high throughput handling.

« Eight external interrupt pins.

¢ One non-maskable interrupt pin.

e Two internal timers sources.

e Peripheral interrupt sources.
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The user program interfaces to the interrupt controller with ten memory-mapped control registers.
The Interrupt Control Register (ICON) and Interrupt Map Control Registers (IMAPO-IMAP2)
provide configuration information. The Interrupt Pending Register (IPND) posts
hardware-requested interrupts. The Interrupt Mask Register (IMSK) selectively masks
hardware-requested interrupts.

8.2.1 Interrupt Controller Dedicated Mode

The 80960RXx interrupt controller externa pins are set up for dedicated mode operation, where
each externa interrupt pin is assigned a vector number. Vector numbers that may be assigned to a
pin are those with the encoding PPPP 0010, (Figure 8-5), where bits marked P are programmed
with bitsin the interrupt map (IMAP) registers. Thisencoding of programmable bits and preset bits
can designate 15 unique vector numbers, each with a unique, even-numbered priority. (Vector
0000 0010, is undefined; it has a priority of 0.)

Interrupts are posted in the interrupt pending (IPND) register. Single bits in the IPND register
correspond to each of the eight dedicated external interrupt inputs, or the two timer inputs to the
interrupt controller. The interrupt mask (IMSK) register selectively masks each of the interrupts.
Optionally, the IMSK register can be saved and cleared when an interrupt is serviced. This locks
out other hardware-generated interrupts until the mask is restored. See section 8.4,
MEMORY-MAPPED CONTROL REGISTERS (pg. 8-31) for afurther description of the IMSK,
IPND and IMAP registers.

Interrupt vectors are assigned to timer inputs in the same way external pins are assigned vectors.
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IMAP Control Registers Hard-wired Vector Offset
S_INTA#/XINTO# ——> PPPP 0010,
S_INTB#/XINT1# ——> PPPP 0010,
S_INTCH/XINT2# ——» PPPP 0010,
| ] L] L]
| ] L] L]
| ] L] L]
XINT7# —_— PPPP 0010,
TINT1 — > PPPP 0010,
4 MSB 4 LSB
Highest Selected
8 Vector Number

Figure 8-5. Interrupt Pin Vector Assignment

8.2.2 Interrupt Detection
The XINT7:0# pins use level-low detection. All of the interrupt pins use fast sampling.

For low-level detection, the pin’s bit in the IPND register remains set as long as the pin is asserted
(low). The processor attempts to clear the IPND bit on entry into the interrupt handler. However, if
the active level on the pin is not removed at this time, the bit in the IPND register remains set until
the source of the interrupt is deactivated and the IPND bit is explicitly cleared by software.
Software may attempt to clear an interrupt pending bit before the active level on the corresponding
pin is removed. In this case, the active level on the interrupt pin causes the pending bit to remain
asserted.

After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for that
source before return from handler is executed. If the pending bit is not cleared, the interrupt is
re-entered after the return is executed.

Example 8-demonstrates how a level detect interrupt is typically handled. The example assumes
that theld from address “timer_0,” deactivates the interrupt input.
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Example 8-3. Return from a Level-detect Interrupt

# Clear |evel-detect interrupts before return from handl er
lda |IPND_MVR, gl # Get address of | PND Menory-Mapped Regi ster
I d timer_0, g0 # CGet tinmer value and clear TMRO
| da 0x1000, g2
wait:
nov 0, g3
atmod gl, g2, g3
bbs OxC, g3, wait
ret # Return from handl er

Interrupt pins are asynchronous inputs. Setup or hold times relative to S_CLK are not needed to
ensure proper pin detection. Note in Figure 8-6, which shows how a signal is sampled using fast
sampling, that interrupt inputs are sampled once every two S_CLK cycles. For practical purposes,
this means that asynchronous interrupting devices must generate an interrupt signal that is asserted
for at least three S CLK cycles. See your 80960Rx Data Sheet for setup and hold specifications
that guarantee detection of the interrupt on particular edges of S CLK. These specifications are
useful in designs that use synchronous logic to generate interrupt signals to the processor. These
specification must aso be used to calculate the minimum signal width, as shown in Figure 8-6.

S_CLK [
S_INT[D:AJ/XINT3:0# § 3 cycle min.  —> / : : : : /
XINT7:4# : ; \ | :

(fast sampled) ; T

Detect Interrupt

* Denotes sampling clock edge. Interrupt pins are sampled one time for every two S_CLK (external bus clock) cycles.

Figure 8-6. Interrupt Fast Sampling

8.2.3 Non-Maskable Interrupt (NMI#)

The NMI# pin generates an interrupt for implementation of critical interrupt routines. Error
interrupts from the internal peripheral units also come into the 1960 core through the NMI# pin.
NMI# provides an interrupt that cannot be masked and that has a priority of 31. The interrupt
vector for NMI# resides in the interrupt table as vector number 248. During initialization, the core
caches the vector for NMI# on-chip, to reduce NMI# latency. The NMI# vector is cached in
location OH of internal data RAM.
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The core immediately services NMI# requests. While servicing an NMI#, the core does not
respond to any other interrupt requests, even another NMI# request. The processor remains in this
non-interruptible state until any return-from-interrupt (in supervisor mode) occurs. An interrupt
request on the NMI# pin is always falling-edge detected. (Note that a return-from-interrupt in user
mode does not unblock NM I# events and should be avoided by software.)

8.2.4 Timer Interrupts

Each of the two timer units has an associated interrupt to allow the application to accept or post the
interrupt request. The timer interrupts are connected directly to thei960 Rx I/O processor interrupt
controller and are posted in the IPND register. These interrupts are set up through the timer control
registers described in CHAPTER 19, TIMERS.

8.2.5 Software Interrupts

The application program may use the sysctl instruction to request interrupt service. The vector

that sysctl requests is serviced immediately or posted in the interrupt table’s pending interrupts

section, depending upon the current processor priority and the request’s priority. The interrupt
controller caches the priority of the highest priority interrupt posted in the interrupt table. The

processor cannot request vector 248 (NMI#) as a software interrupt.

8.2.6 Interrupt Operation Sequence

The interrupt controller, microcode and core resources handle all stages of interrupt service.
Interrupt service is handled in the following stages:

Requesting Interrupt — In the 960 Rx I/O processor, the programmable on-chip interrupt
controller transparently manages all interrupt requests. Interrupts are generated by hardware
(external events) or software (the application program). Hardware requests are signaled on the
8-bit external interrupt port (S_INT[D:A]J/XINT3:0#, XINT7:4#), the non-maskable interrupt pin
(NMI#) or the two timer channels. Software interrupts are signaled with the sysctl instruction with
post-interrupt message type.

Posting Interrupts — When an interrupt is requested, the interrupt is either serviced immediately
or saved for later service, depending on the interrupt's priority. Saving the interrupt for later
service is referred to as posting. Once posted, an interrupt becomes a pending interrupt. Hardware
and software interrupts are posted differently:

« Hardware interrupts are posted by setting the interrupt’s assigned bit in the interrupt pending
(IPND) memory mapped register

e Software interrupts are posted by setting the interrupt’'s assigned bit in the interrupt table’s
pending priorities and pending interrupts fields
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Checking Pending Interrupts — The interrupt controller compares each pending interrupt’s priority
with the current process priority. When process priority changes, posted interrupts of higher
priority are then serviced. Comparing the process priority to posted interrupt priority is handled

differently for hardware and software interrupts. Each hardware interrupt is assigned a specific
priority when the processor is configured. The priority of all posted hardware interrupts is

continually compared to the current process priority. Software interrupts are posted in the interrupt
table in external memory. The highest priority posted in this table is also saved in an on-chip
software priority register; this register is continually compared to the current process priority.

Servicing Interrupts — When the process priority falls below that of any posted interrupt, the
interrupt is serviced. The comparator signals the core to begin a microcode sequence to performn
the interrupt context switch and branch to the first instruction of the interrupt routine.

Figure 8-4illustrates interrupt controller function. For best performance, the interrupt flow for
hardware interrupt sources is implemented entirely in hardware.

The comparator only signals the core when a posted interrupt is a higher priority than the process
priority. Because the comparator function is implemented in hardware, microcode cycles ar
consumed unless an interrupt is serviced.

8.2.7 Setting Up the Interrupt Controller

This section provides an example of setting up the interrupt controller. The following example
describes how the interrupt controller can be dynamically configured after initialization.

Example 8-4sets up the interrupt controller to fetch interrupt vectors from internal data RAM
rather than external memory. Initially the IMSK register is masked to allow for setup. A value that
selects vector caching is loaded into the ICON register and the IMSK is unmasked.

Example 8-4. Programming the Interrupt Controller for Vector Caching

# Exanpl e vector caching setup .

mov  0x0, gO

nov  0x00006000, g1

I d I MSK, g3 # mask, | MSK MVR at OxFF008504
st g1, | MSK

st gl, | CON
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8.2.8 Interrupt Service Routines

An interrupt handling procedure performs a specific action that is associated with a particular
interrupt procedure pointer. For example, one interrupt handler task might initiate a timer unit
request. The interrupt handler procedures can be located anywhere in the non-reserved address
space. Since instructions in the i960 Rx I/O processor architecture must be word-aligned, each
procedure must begin on aword boundary.

When an interrupt handling procedure is caled, the processor alocates a new frame on the
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode, the
processor aways switches to supervisor mode while an interrupt is handled. It also saves the states
of the AC and PC registers for the interrupted program.

The interrupt procedure shares the remainder of the execution environment resources (namely the

global registers and the address space) with the interrupted program. Thus, interrupt procedures

must preserve and restore the state of any resources shared with a non-cooperating program. For

example, an interrupt procedure that uses a global register that is not permanently allocated to it

should save the register’'s contents before using the register and restore the contents before
returning from the interrupt handler.

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into the
instruction cache. Semction 8.5.2.2Caching Interrupt Routines and Reserving Register Frames
(pg. 8-47)for a complete description.

8.2.9 Interrupt Context Switch

When the processor services an interrupt, it automatically saves the interrupted program state or
interrupt procedure and calls the interrupt handling procedure associated with the new interrupt
request. When the interrupt handler completes, the processor automatically restores the interrupted
program state. The method used to service an interrupt depends on the processor state when the
interrupt is received.

* An executing-state interrupt — When the processor is executing a background task and an
interrupt request is posted, the interrupt context switch must change stacks to the interrupt
stack.

« An interrupted-state interrupt — When the processor is already executing an interrupt
handler, no stack switch is required since the interrupt stack is already in use.

The following subsections describe interrupt handling actions for executing-state and inter-
rupted-state interrupts. In both cases, it is assumed that the interrupt priority is higher than that of
the processor and thus is serviced immediately when the processor receives it.
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8.2.9.1 Servicing An Interrupt From Executing State

When the processor receives an interrupt while in the executing state (i.e., executing a program,
PC.s = 0), it performs the following actions to service the interrupt. This procedure is the same
regardless of whether the processor isin user or supervisor mode when the interrupt occurs. The
processor:

1. Switches to the interrupt stack (see Figure 8-3). The interrupt stack pointer becomes the new
stack pointer for the processor.

2. Saves the current PC and AC in an interrupt record on the interrupt stack. The processor also
saves the interrupt procedure pointer number.

3. Allocates a new frame on the interrupt stack and loads the new frame pointer (NFP) in
global register g15.

4, Sets the state flag in PC to interrupted (PC.s = 1), its execution mode to supervisor and its
priority to the priority of the interrupt. Setting the processor’s priority to that of the interrupt
ensures that lower priority interrupts cannot interrupt the servicing of the current interrupt.

5. Clearsthe trace enable bit in PC. The interrupt is handled without raising trace faults.
6. Sets the frame return status field pfp[2:0] to 111,.

7. Performs a call operation as described in CHAPTER 7, PROCEDURE CALLS. The address
for the called procedure is specified in the interrupt table for the specified interrupt
procedure pointer.

After completing the interrupt procedure, the processor:

1. Copies the arithmetic controls field and the process controls field from the interrupt record
into the AC and PC, respectively. It therefore switches to the executing state and restores the
trace-enabl e bit to its value before the interrupt occurred.

2. Deallocates the current stack frame and interrupt record from the interrupt stack and
switches to the stack it was using before servicing the interrupt.

3. Performs a return operation as described in CHAPTER 7, PROCEDURE CALLS.

4, Resumes work on the program when all pending interrupts and trace faults are serviced.
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8.2.9.2 Servicing An Interrupt From Interrupted State

When the processor receives an interrupt while servicing another interrupt, and the new interrupt
has a higher priority than one being serviced, the current interrupt-handler routine is interrupted.
Here, the processor performs the same interrupt-servicing action as described in section 8.2.9.1 to
save the state of the interrupted interrupt-handler routine. The interrupt record is saved on the top
of the interrupt stack prior to the new frame that is created for use in servicing the new interrupt.
See Figure 8-3.

On the return from the current interrupt handler to the previous interrupt handler, the processor
de-alocates the current stack frame and interrupt record, and stays on the interrupt stack.

8.3 PCI AND PERIPHERAL INTERRUPTS

The PCI and peripheral portion of the interrupt controller has two functions:
e Internal Peripheral Interrupt Control
« PCI Interrupt Routing

The peripheral interrupt control mechanism consolidates a number of interrupt sources for a given
internal peripheral into a single interrupt driven to the i960 core. In order to provide the executing
software with the knowledge of interrupt source, there is a memory-mapped status register that
describes the source of the interrupt. All of the internal peripheral interrupts are individually
enabled from their respective peripheral control registers.

The PCI interrupt routing mechanism allows the host software (or 80960 software) to route
secondary PCI interrupts to either the 1960 core or the P_INTA#, P_INTB#, P_INTC#, and
P_INTD# output pins. This routing mechanism is controlled through a memory-mapped register
accessible from the primary PCI bridge configuration space or the i960 Rx I/O processor local bus.
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> P_INTA# Output
——> P_INTB# Output

—>» P_INTC# Output
> P_INTD# Output
i960® Rx 1/0 Processor
M ge Unit Outbound Doorbell A
M ge Unit Outbound Doorbell B
< M ge Unit Outbound Doorbell C
-« M ge Unit Outbound Doorbell D
< M < Messaging Unit
. < g Outbound Interrupt Pending
XINT Select bit <
| Primary ATU Interrupt Pin Register
1
M > | XINTO#
S_INTA#/XINTO# ul_|
LX] > XINT1#
— > XINT2#
M
> XINT3#
#. > .
S_INTB#/XINT1: >Lg R i960® Core
T > XINT4#  processor
ﬁM_ XINTS5#
S_INTCH/XINT2# > U XINT6#
X
T »| XINT7#
™ > NMI#
S_INTD#/XINT3# ———> U
LX|
XINT4#
XINT5#
DMA Channel 0 Interrupt Pending —> g
DMA Channel 1 Interrupt Pending —> 5
DMA Channel 2 Interrupt Pending —>{ £ SH
O
XINT6# > 2
X |
12C Bus Interface Unit Interrupt Pending ——> g
APIC Bus Interface Unit Interrupt Pending—>| & «
Messaging Unit Inbound Interrupt Pending —>| £ %—
Primary ATU/Start BIST Interrupt Pending—»| = —
XINT7# > 2
Primary PCI Bridge Interface Error —>
Secondary PCI Bridge Interface Error —>»
Primary ATU Error—> §-
Secondary ATU Error—>| £ -
Messaging Unit Error —> % e
Local Processor Error—>( — -
DMA Channel 0 Error—>|
DMA Channel 1 Error—>
DMA Channel 2 Error—>
NMI# >

Figure 8-7. Interrupt Controller Connections for 80960RP 33/5.0 Volt
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> P_INTA# Output
——> P_INTB# Output
—>» P_INTC# Output
> P_INTD# Output
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ge Unit Outbound Doorbell C

M ge Unit Outbound Doorbell D

B M < Messaging Unit
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XINTO Select bit Primary ATU Interrupt Pin Register
M > | XINTO#
S_INTA#/XINTO# —— > U
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XINT1 Select bit ‘
> XINT2#
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SN .
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LX|
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DMA Channel 0 Interrupt Pending —> g
DMA Channel 1 Interrupt Pending —> 5
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DMA Channel 2 Error—>
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8.3.1 Pin Descriptions

The 1960 Rx /O processor provides eight external interrupt pins and one non-maskable interrupt
pin for detecting externa interrupt requests. The eight externa pins are configured as dedicated
inputs, where each pin is capable of requesting a single interrupt, in some cases from several
different sources. The externa interrupt input interface for the 1960 Rx 1/O processor consists of
the following pins:

Table 8-1. Interrupt Input Pin Descriptions

Signal Description

Can be directed to the P_INTA# output or the i960 core interrupt input XINTO#.

S INTA#/XINTO# When routed to the P_INTA# output, this pin is shared with two internal interrupts. They
- are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINTO#, this input is not shared.

Can be directed to the P_INTB# output or the i960 core interrupt input XINT1#.

S INTB#/XINT1# When routed to the P_INTB1# output, this pin is shared with two internal interrupts. They
- are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT1?#, this input is not shared.

Can be directed to the P_INTC# output or the 1960 core interrupt input XINT2#.

S INTCH/XINT2# When routed to the P_INTC2# output, this pin is shared with two internal interrupts. They
- are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT2?#, this input is not shared.

Can be directed to the P_INTD# output or the 1960 core interrupt input XINT3#.

S INTD#/XINT3# When routed to the P_INTD# output, this pin is shared with two internal interrupts. They
- are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT3#, this input is not shared.

XINTA4# Always connected to the i960 core interrupt input XINT4#.
XINTS# Always connected to the i960 core interrupt input XINT5#.

Shared with three internal interrupts. They are the interrupts from each of the three internal
DMA channels. All of the interrupts are directed to the i960 core interrupt input XINT6#.
Software must read the XINT6 Interrupt Status Register to determine the exact source of
the interrupt.

XINT6#

Shared with four internal interrupts. They are the interrupts from the APIC Bus Interface
Unit, the I12C Bus Interface Unit, the Primary ATU, and the Messaging Unit. All of the
interrupts are directed to the i960 core interrupt input XINT7#. Software must read the
XINT7 Interrupt Status Register to determine the exact source of the interrupt.

XINT7#

Shared with eight internal interrupts. They include error interrupts from the local processor,
primary PCI bridge interface, secondary PCI bridge interface, primary ATU, secondary
ATU, and the three DMA channels. All of the interrupts are directed to the i960 core NMI#
input. Software must read the NMI Interrupt Status Register to determine the exact source
of the interrupt. NMI# is the highest priority interrupt recognized. This pin is synchronized
internal to the i960 core.

NMI#

All pinsin Table 8-1 are level-low activated. See section 8.2.2, Interrupt Detection (pg. 8-16).
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8.3.2 PCI Interrupt Routing

Four PCI interrupt inputs can be routed to either the i960 core interrupt inputs or to the PCI
interrupt output pins. This routing is controlled by the XINT Select bit in the PCI interrupt
Routing Select Register. See Table 8-3.

Table 8-2. PCI Interrupt Routing Summary for 80960RP 33/5.0 Volt

XINT Select Bit Description

S_INTA#/XINTO# Input Pin routed to i960 core processor XINTO# Input Pin
S_INTB#/XINT1# Input Pin routed to i960 core processor XINT1# Input Pin

0 S_INTC#/XINT2# Input Pin routed to 1960 core processor XINT2# Input Pin
S_INTD#/XINT3# Input Pin routed to 1960 core processor XINT3# Input Pin
S_INTA#/XINTO# Input Pin routed to P_INTA# Output Pin

1 S_INTB#/XINT1# Input Pin routed to P_INTB# Output Pin

S_INTC#/XINT2# Input Pin routed to P_INTC# Output Pin
S_INTD#/XINT3# Input Pin routed to P_INTD# Output Pin

Table 8-3. PCI Interrupt Routing Summary for 80960RP 33/3.3 Volt

PIRSR Select Bit | Bit Value Description

bit 0 0 S_INTA#/XINTO# Input Pin routed to i960 core processor XINTO# Input Pin
1 S_INTA#/XINTO# Input Pin routed to P_INTA# Output Pin

bit 1 0 S_INTB#/XINT1# Input Pin routed to i960 core processor XINT1# Input Pin
1 S_INTB#/XINT1# Input Pin routed to P_INTB# Output Pin

bit 2 0 S_INTC#/XINT2# Input Pin routed to i960 core processor XINT2# Input Pin
1 S_INTC#/XINT2# Input Pin routed to P_INTC# Output Pin

bit 3 0 S_INTD#/XINT3# Input Pin routed to i960 core processor XINT3# Input Pin
1 S_INTD#/XINT3# Input Pin routed to P_INTD# Output Pin

8.3.3 Internal Peripheral Interrupt Routing

XINT6#, XINT7# and NMI# interrupt inputs on the 1960 core receive inputs from multiple
internal interrupt sources. One internal latch before each of these three inputs provides the
necessary muxing of the different interrupt sources. Application software can determine which
peripheral unit caused an interrupt by reading the corresponding interrupt latch. More detail about
the exact cause of the interrupt can be determined by reading status from the peripheral unit.
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8.3.3.1 XINTG6 Interrupt Sources

The XINT6# interrupt of the i960 core receives interrupts from the external pin and the three DMA
channels. A DMA channdl can cause an interrupt for a DMA End of Transfer interrupt or a DMA

End of Chain interrupt. See section 20.3, DMA TRANSFER (pg. 20-4) for details. A vaid
interrupt from any of these sources sets the bit in the latch and outputs a level-sensitive interrupt to
thei960 core’'s XINT6# input. The interrupt latch continues to drive an active low input to the i960
core interrupt input while an interrupt is present at the latch. The XINT6 interrupt latch is read
through the XINT6 Interrupt Status Register. The XINT6 interrupt latch is cleared by clearing the
source of the interrupt at the internal peripheral or deasserting the XINT6# input.

The interrupt sources which drive the inputs to the XINT6 interrupt latch are detailedlmn8-4

Table 8-4. XINT6 Interrupt Sources

Interrupt Status Interrupt MASK
Unit Interrupt Condition

Register Bit Register Bit
End of Chain CSRO 08

DMA Channel 0 DCRO 04
End of Transfer CSRO 09
End of Chain CSR1 08

DMA Channel 1 DCR1 04
End of Transfer CSR1 09
End of Chain CSR2 08

DMA Channel 2 DCR2 04
End of Transfer CSR2 09

XINT6# Pin External Source N/A N/A N/A N/A

8.3.3.2 XINT7 Interrupt Sources

The XINT7# interrupt on the i960 core receives interrupts from the external pin, the APIC Bus
Interface Unit, the2C Bus Interface Unit, the Primary ATU, and the Messaging Unit. A valid
interrupt from any of these sources sets the bit in the latch and outputs a level-sensitive interrupt to
the 1960 core XINT7# input. The interrupt latch drives an active low input to the i960 core
interrupt input as long as an interrupt is present at the latch. The XINT7 interrupt latch is read
through the XINT7 Interrupt Status Register. The XINT7 interrupt latch is cleared by clearing the
source of the interrupt at the internal peripheral or deasserting the XINT7# input pin.

I 8-27



INTERRUPTS

intel.

The interrupt sources which drive the inputs to the XINT7 interrupt latch are detailed in Table 8-5

Table 8-5. XINT7 Interrupt Sources

Interrupt Status Interrupt MASK
Unit Interrupt Condition : : : :
Register Bit Register Bit
APIC Bus APIC Message Sent APIC CSR 06 APIC CSR 05
Interface Unit EOI Message Received APIC CSR 14 APIC CSR 13
Slave STOP Detected ISR 04 ICR 11
Arbitration Loss Detected ISR 05 ICR 12
12C Bus Interface IDBR Transmit Empty ISR 06 ICR 08
Unit IDBR Receive Full ISR 07 ICR 09
Slave Address Detected ISR 09 ICR 13
Bus Error ISR 10 ICR 10
'”bournc:e'\fri;stage 0 ISR 00 IIMR 00
'"bournc:e'\fri;stage 1 ISR 01 IIMR 01
Inbound Doorbell Interrupt ISR 02 IIMR 02
Messaging Unit Inbound Post Queue ISR 04 IIMR 04
Interrupt
Index Register Interrupt ISR 06 IIMR 06
APIC Trig'rsrhe;tseled ISR 07 IIMR 07
APIC Window Interrupt ISR 08 IIMR 08
Primary ATU ATU BIST Start PATUISR 08 N/A N/A
XINT7# Pin External Source N/A N/A N/A N/A
8.3.3.3 NMI Interrupt Sources

The Non-Maskable Interrupt (NM I#) on the i960 core receivesinterrupts from the externa pin, the
primary and secondary ATUs, the primary and secondary bridge interfaces, the i960 core and each
of the three DMA channels. Each of the interrupts represents an error condition in the peripheral
unit. Several of these conditions can be masked through the Secondary Decode Enable Register. A
valid interrupt from any of these sources, when enabled, sets the bit in the latch and outputs an
edge-triggered interrupt to the i960 core NMI# input. The NMI interrupt latch is read through the
NMI Interrupt Status Register. The NMI interrupt latch is cleared by clearing the sources of al
interrupts at the internal peripherals. A new edge triggered interrupt is generated to the i960 core

only after al interrupt status bits have been simultaneously cleared.
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The interrupt sources which drive the inputs to the NMI interrupt latch are detailed in Table 8-6

Table 8-6. NMI Interrupt Sources (Sheet 1 of 2)

Interrupt Status Interrupt MASK

Unit Error Condition : : : :
Register Bit Register Bit

PCI Master Parity Error PBISR 00 SDER 06

) ) PCI Target Abort (target) PBISR 01 SDER 07
ane}x;gcindge PCI Target Abort (master) PBISR 02 SDER 08
PCI Master Abort PBISR 03 SDER 09

P_SERR# Asserted PBISR 04 SDER 10

PCI Master Parity Error SBISR 00 SDER 11

PCI Target Abort (target) SBISR 01 SDER 12

E?r?ggg?r?trgr; (;Ia PCI Target Abort (master) SBISR 02 SDER 13
PCI Master Abort SBISR 03 SDER 14

S_SERR# Asserted SBISR 04 SDER 15

PCI Master Parity Error PATUISR 00 ATUCR 04

PCI Target Abort (target) PATUISR 01 ATUCR 04

PCI Target Abort (master) PATUISR 02 ATUCR 04

Primary ATU PCI Master Abort PATUISR 03 ATUCR 04
P_SERR# Asserted PATUISR 04 ATUCR 04
80960 Bus Fault PATUISR 05 N/A N/A
80960 Memory Fault PATUISR 06 N/A N/A

PCI Master Parity Error SATUISR 00 ATUCR 05

PCI Target Abort (target) SATUISR 01 ATUCR 05

PCI Target Abort (master) SATUISR 02 ATUCR 05

Secondary ATU PCI Master Abort SATUISR 03 ATUCR 05
S_SERR# Asserted SATUISR 04 ATUCR 05
80960 Bus Fault SATUISR 05 N/A N/A
80960 Memory Fault SATUISR 06 N/A N/A

NMI Doorbell ISR 03 IIMR 03

Messaging Unit O”tbouonse':frlist”e”e ISR 05 IIMR 05
{960 Core 80960 Local Bus Fault LPISR 05 N/A N/A
Processor 80960 Memory Fault LPISR 06 N/A N/A
PCI Master Parity Error CSRO 0 PATUCMD 06
PCI Target Abort (master) CSRO 2 N/A N/A
DMA Channel 0 PCI Master Abort CSRO 3 N/A N/A
80960 Bus Fault CSRO 5 N/A N/A
80960 Memory Fault CSRO 6 N/A N/A
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Table 8-6. NMI Interrupt Sources (Sheet 2 of 2)
Interrupt Status Interrupt MASK
Unit Error Condition - - - -
Register Bit Register Bit
PCI Master Parity Error CSR1 0 PATUCMD 06
PCI Target Abort (master) CSR1 2 N/A N/A
DMA Channel 1 PCI Master Abort CSR1 3 N/A N/A
80960 Bus Fault CSR1 5 N/A N/A
80960 Memory Fault CSR1 6 N/A N/A
PCI Master Parity Error CSR2 0 SATUCMD 06
PCI Target Abort (master) CSR2 2 SATUCMD 06
DMA Channel 2 PCI Master Abort CSR2 3 SATUCMD 06
80960 Bus Fault CSR2 5 SATUCMD 06
80960 Memory Fault CSR2 6 SATUCMD 06
NMI# Pin External Source N/A N/A N/A N/A
8.34 PCI Outbound Doorbell Interrupts

The 1960 Rx /O processor has the capability of generating interrupts on any of the four primary
PCI interrupt pins. This is done by setting a bit in the messaging unit Outbound Doorbell Port
Register. See CHAPTER 17, MESSAGING UNIT for details.
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8.4 MEMORY-MAPPED CONTROL REGISTERS

The programmer’s interface to the interrupt controller is through eleven memory-mapped control
registersTable 8-7describes these registers.

Table 8-7. Interrupt Control Registers Memory-Mapped Addresses

Register Name Description Address
PIRSR PCI Interrupt Routing Select Register 0000 1050H
SDER Secondary Decode Enable Register 0000 105CH
NISR NMI Interrupt Status Register 0000 1700H
XINT7 XINT7 Interrupt Status Register 0000 1704H
XINT6 XINT6 Interrupt Status Register 0000 1708H
IPND Interrupt Pending Register FFOO 8500H
IMSK Interrupt Mask Register FFOO 8504H
ICON Interrupt Control Register FFOO 8510H
IMAPOQ Interrupt Map Register 0 FFO00 8520H
IMAP1 Interrupt Map Register 1 FFO0 8524H
IMAP2 Interrupt Map Register 2 FFOO 8528H

All registers are visible to software as 80960Rx memory-mapped registers and can be accessel
through the internal memory bus. The PCI Interrupt Routing Select Register and the Secondary
Decode Enable Register are accessible from the internal memory bus and through the PCI configu:
ration register space of the PCI-to-PCI Bridge Unit (function #0) C$&8PTER 15PCI-TO-PCI
BRIDGE UNIT for additional information regarding the PCI configuration cycles that can access
these registers.
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84.1 PCI Interrupt Routing Select Register (PIRSR)

The PCI Interrupt Routing Select Register (PIRSR) determines the routing of four of the external
interrupt pins. These interrupt pins consist of four secondary PCI interrupt inputs which are routed
to either the primary PCI interrupts or the i960 core interrupts.

If the secondary PCI interrupt inputs are routed to the primary PCI interrupt pins, the i960 core
XINT3:0# inputs must be set inactive by setting bits 3-0 in the IMSK register to zero.

Table 8-8 and Table 8-9 show the hit definitions for programming the PCI Interrupt Routing
Select Register. The XINT Select bit defaultsto a 0.

Table 8-8. PCI Interrupt Routing Select Register — PIRSR (80960RP 33/5.0 Volt)

31 28 24 20 16 12 8 4 0
LBAI: wvfovfrvfvfvfvfovfvfvfovfvfvf v/ fvfovf v/ v v/ v fovfvff v/

PCI[ GAVAUVAVAVAVAVAVAVVAVAVAVAVAVAVAVAVAVAVVANVVAVVAVVAVVAUWAVWVAVWVAVWAVUVA WAVVAVA W

LBA: 1050H Legend: NA = Not Accessible RO =Read Only
PCl:  50H RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description

31:01 | 0000 0000H | Reserved. Initialize to 0.

XINT Select Bit -
00 0, (1) Interrupts Routed To P_INTx# Pins
(0) Interrupts Routed To i960 core Interrupt Controller Input
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Table 8-9. PCI Interrupt Routing Select Register — PIRSR (80960Rx 33/3.3 Volt)

31 28 24 20 16 12 8 4 0
LBAI: wvfovfrvfvfvfvfovfvfvfovfvfvf v fvfovf v /v v v/ v v/ frwfrwfrafw,

PCI[ VAVAVAVAVAVAVAVAVAVAVAVAVVAVAV AV AAVAAV A YA A YAAYYAYYAYAYYA WN\'W
LBA: 1050H Legend: NA = Not Accessible RO =Read Only
PCl:  50H RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description

31:04 | 0000 O00H | Reserved. Initialize to 0.

XINT3 Select Bit -
03 0, (1) Interrupts Routed To P_INTx# Pins
(0) Interrupts Routed To i960 core Interrupt Controller Input

XINT2 Select Bit -
02 0, (1) Interrupts Routed To P_INTx# Pins
(0) Interrupts Routed To i960 core Interrupt Controller Input

XINT1 Select Bit -
01 0, (1) Interrupts Routed To P_INTx# Pins
(0) Interrupts Routed To i960 core Interrupt Controller Input

XINTO Select Bit -
00 0, (1) Interrupts Routed To P_INTx# Pins
(0) Interrupts Routed To i960 core Interrupt Controller Input
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intel.

Interrupt Control Register — ICON

The ICON register is a 32-bit memory-mapped control register, that sets up the interrupt
controller. Software can manipulate this register using the load/store type instructions. The ICON
register is also automatically loaded at initialization from the control table in external memory.
Table 8-10 describes the layout of the ICON register.

Table 8-10. Interrupt Control Register — ICON

31 28 24 20 16 12 8 4 0
LBAI:rvrvrvrvrvrvrvrvrvrvrvrvrvrvrvrvrvrwrwr "W/TwW/rw/r W/ TW/TW/ TWE TW/ W/ TW/TW,
1 ojojojojojogojojojo
PC'I:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
LBA: 8510H Legend: NA = Not Accessible RO = Read Only
PCl:  NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:15 Reserved. Initialize to 0.
14 This bit must be set (1).
Vector Cache Enable - determines whether interrupt table vector entries are fetched
13 from the interrupt table (bit clear) or from internal data RAM (bit set). Only vectors with
Default the four least-significant bits equal to 0010, may be cached in internal data RAM.
efau
value Mask Operation Field - determines the operation the core performs on the mask register
1211 Loaded |When a hardware-generated interrupt is serviced. On an interrupt, the value in IMSK is
’ from Image copied to r3. IMSK is then either left unchanged (00) or cleared (01). IMSK is never
in Control cleared for NMI# or software interrupts.
Table. Global Interrupts Disable - when set (1) this bit globally disables the i960 core interrupt
inputs and the timer unit inputs. When clear (0) this bit globally enables the i960 core
10 interrupt inputs and the timer unit inputs. This does not affect the NMI# input. This bit
performs the same function as clearing the IMSK register. This bit is also changed
indirectly by the instructions inten, intdis, intctl.
9:0 These bits must be cleared (0).
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8.4.3

The IMAP registers (Table 8-11 through Table 8-13) are three 32-bit registers (IMAPO through
IMAP2). These registers are used to program the vector number associated with the interrupt
source. IMAPO and IMAPL contain mapping information for the external interrupt pins (four bits
per pin). IMAP2 contains mapping information for the timer-interrupt inputs (four bits per

INTERRUPTS

Interrupt Mapping Registers — IMAPO-IMAP2

interrupt).

Each set of four bits contains a vector number’s four most-significant bits; the four least-signif-
icant bits are always 0030n other words, each source can be programmed for a vector number of
PPPP 001§ where “P” indicates a programmable bit. For example, IMAPO bits 4 through 7

contain mapping information for the XINT1 pin. When these bits are set to, 0t pin is

mapped to vector number 0110 0910r vector number 98).

Software can access the mapping registers using load/store type instructions. The mapping
registers are also automatically loaded at initialization from the control table in external memory.

Table 8-11. Interrupt Map Register 0 — IMAPO

LBA [
PCI [

31 28

24 20

16 12 8 4

0

v vfng S ivg v NS NSNS IV VIV T TWS TWLTWLTWE TW/ TW/ TW/ TWE TW/ TW/ TW/ TWE TW/ TW/ TW/ TW,

a\na\na\na\na\na\na\ayia\na\na\nayia\ia\na\nayna\yia\na\ia\na \na\na\nayna\na\na\naynayayia\yia

LBA: 8520H Legend: NA = Not Accessible RO = Read Only

PCl:  NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:15 Default Reserved. Initialize to 0.

15:12 Value External Interrupt 3 Field.

11:08 Loaded External Interrupt 2 Field.

from Image
07:04 | in Control | External Interrupt 1 Field.
03:00 Table. External Interrupt O Field.
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Table 8-12. Interrupt Map Register 1 — IMAP1
31 28 24 20 16 12 8 4 0
LBAI:rvrvr\/rvr\/rvrvrvrvrvr\/rvrvrvrvrvrwrwrwr "W/TW/Trw/T W/ TW/ TW/ TWE TW/ W/ TW/TW,
PC'I:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
LBA: 8524H Legend: NA = Not Accessible RO = Read Only
PCl:  NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:15 Default Reserved. Initialize to 0.
15:12 Value External Interrupt 7 Field.
11:08 Loaded External Interrupt 6 Field.
from Image
07:04 | in Control | External Interrupt 5 Field.
03:00 Table. External Interrupt 4 Field.
Table 8-13. Interrupt Map Register 2 — IMAP2
31 28 24 20 16 12 8 4 0

LBA [
PCI [

IA7AL7ANTAL ANTANTANT ALY ANV ANV A4

W/TwW/Trw/rw

IAVALTANTAL ASTANTANTAYT ANTANTALTAN ASTALTANT AV

a\na\na\na\na\na\na\nayia\a\nayiayna\na\ia\naynayiaya\iaya\\naya\nayna\na\na\na\na\na\na\ia

LBA: 8528H Legend: NA = Not Accessible RO = Read Only

PCl:  NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description
31:24 Default Reserved. Initialize to 0.
23:20 Value Timer Interrupt 1 Field.
- Loaded - -
19:16 from Image Timer Interrupt O Field.
15:00| M Control Reserved. Initialize to 0.
Table.
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8.4.4 Interrupt Mask — IMSK and Interrupt Pending Registers — IPND

The IMSK and IPND registers are both memory-mapped registers. Bits 0 through 7 of these
registers are associated with the external interrupt pins (XINTO# - XINT7#) and bits 12 and 13 are
associated with the timer-interrupt inputs (TMRO and TMR1). All other bits are reserved and
should be cleared at initialization.

Table 8-14. Interrupt Pending Register — IPND

31 28 24 20 16 12 8 4 0
LBAI: wv/fvfrvfrvfvfvfvfvfvfovfvvfvf v v rv/vfiwfrwf v v v fivfrwfrwfrw/wfrw/rw/rw/w,

PC'I:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

LBA: 8500H Legend: NA = Not Accessible RO =Read Only
PCl:  NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description

31:14 | XXXX XH | Reserved. Initialize to 0.
Timer Interrupt Pending Bits - IPND.tip

13:12 XX, (1) Pending Interrupt
(0) No Interrupt
11:08 XH Reserved. Initialize to 0.
External Interrupt Pending Bits - IPND.xip
07:00 XXH (1) Pending Interrupt

(0) No Interrupt
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Table 8-15. Interrupt Mask Register — IMSK

31 28 24 20 16 12 8 4 0
LBAI: wvfovfrvfvfvfvfovfvfvfvfvfvf v v rv/vfiwfiwf v v /v /v iwfrwfrw/rwfrw/rw/rw/w,

PC'I:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

LBA: 8504H Legend: NA = Not Accessible RO = Read Only
PCl:  NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description

31:14 0000 OH | Reserved. Initialize to 0.
Timer Interrupt Mask Bits - IMSK.tim

13:12 00, (1) Not Masked
(0) Masked
11:08 OH Reserved. Initialize to 0.
External Interrupt Mask Bits - IMSK.xim
07:00 00H (1) Not Masked
(0) Masked

The IPND register posts interrupts originating from the eight external dedicated sources and the
two timer sources. Asserting one of these inputs latches a 1 into its associated bit in the IPND
register. The mask register provides a mechanism for masking individual bitsin the IPND register.
An interrupt source is disabled when its associated mask bit is cleared (0).

When delivering a hardware interrupt, the interrupt controller conditionally clears IMSK based on
the value of the ICON.mo bit. Note that IMSK is never cleared for NMI# or software interrupt.

Although software can read and write IPND and IMSK using any memory-format instruction, it is
recommended that a read-modify-write operation using the atomic-modify instruction (atmod) be
used for reading and writing these registers. Executing an atmod on one of these registers causes
the interrupt controller to perform regular interrupt processing (including using or automatically
updating IPND and IMSK) either before or after, but, not during the read-modify-write operation
on that register. This requirement ensures that modifications to IPND and IMSK take effect
cleanly, completely, and at a well-defined point. Note that the processor does not assert the
L OCK# pin externally when executing an atomic instruction to IPND and IMSK.

When the processor core handles a pending interrupt, it attempts to clear the bit that is latched for
that interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated
with an interrupt source that is programmed for level detection and the true level is still present,
the bit remains set. Because of this, the interrupt routine for alevel-detected interrupt should clear
the external interrupt source and explicitly clear the IPND bit before return from the handler is
executed.
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An aternative method of posting interrupts in the IPND register, other than through the external
interrupt pins, is to set bits in the register directly using an atmod instruction. This operation has
the same effect as requesting an interrupt through the externa interrupt pins.

8.4.5 XINT6 Interrupt Status Register — X6ISR

The XINT6 Interrupt Status Register (X6l SR) shows the pending XINT6 interrupts. The source of
the XINT®6 interrupt can be the internal peripheral devices connected through the XINT6 interrupt
latch or the external XINT6# interrupt pin. The interrupts which are connected to the XINT6 input
are detailed in Section 8.3.3, Internal Peripheral Interrupt Routing.

The X6ISR register is used to determine the source of an interrupt on the XINT6# input. All bits
within this register are defined as read-only. The bits within this register are cleared when the
source of the interrupt (status register source shown in Table 8-4) are cleared. X61SR reflects the
current state of the input to the XINT6 interrupt latch.

Due to the asynchronous nature of the 80960Rx internal peripheral units, multiple interrupts can be
active when application software reads the X6ISR register. Application software must handle the
occurrence of multipleinterrupts. In addition, software may subsequently read X6l SR to determine
when additional interrupts have occurred while processing the current interrupts. All interrupts
from X61SR will be at the same priority level within thei960 core.

Table 8-16 details the X61 SR register.

Table 8-16. XINT6 Interrupt Status Register — X6ISR  (Sheet 1 of 2)

31 28 24 20 16 12 8 4 0
LBAI: vfvfvfvfvfvfvfvfvfv/nv v v v/ g v g fv/frv/vfrofrofrofro

PC'I:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

LBA: 1708H Legend: NA = Not Accessible RO =Read Only
PCl:  NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description

31:04 | 0000 O00H | Reserved.

External XINT6# Interrupt Pending - when set, an interrupt is pending on the external

03 02 XINT6# input. When clear, no interrupt exists.
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Table 8-16. XINT6 Interrupt Status Register — X6ISR  (Sheet 2 of 2)

31 28 24 20 16 12 8 4 0
LBAI: nvfvfvfrvf v/ vfv/v v v v/ g v v fvfvfv/v/vfrofrofrofro

PC'I:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

LBA: 1708H Legend: NA = Not Accessible RO = Read Only
PCl:  NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
DMA Channel 2 Interrupt Pending - when set, a DMA channel 2 interrupt is pending.
02 0, . " .
When clear, no interrupt condition exists.
DMA Channel 1 Interrupt Pending - when set, a DMA channel 1 interrupt is pending.
01 0, . o .
When clear, no interrupt condition exists.
DMA Channel 0 Interrupt Pending - when set, a DMA channel 0 interrupt is pending.
00 0, . o .
When clear, no interrupt condition exists.
8.4.6 XINT7 Interrupt Status Register — X7ISR

The XINT7 Interrupt Status Register (X71SR) shows the pending XINT7 interrupts. The source of
the XINT7 interrupt can be the internal peripheral devices connected through the XINT7 interrupt
latch or the external XINT7# interrupt pin. The interrupts which are connected to the XINT7#
input are detailed in Section 8.3.3, Internal Peripheral Interrupt Routing.

The X7ISR register is used to determine the source of an interrupt on the XINT7# input. All bits
within this register are defined as read-only. The bits within this register are cleared when the
source of the interrupt (status register source shown in Table 8-5) are cleared. X7ISR reflects the
current state of the input to the XINT7 interrupt latch.

Due to the asynchronous nature of the 80960Rx internal peripheral units, multiple interrupts can
be active when the application software reads the X7ISR register. It is up to the application
software to handle the occurrence of multiple interrupts. In addition, software may subsequently
read X7ISR to determine when additional interrupts have occurred while processing the current
interrupts. All X7I1SR interrupts will be at the same priority level within the i960 core.
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Table 8-16 details the definition of the X7ISR.

Table 8-17. XINT7 Interrupt Status Register — X7ISR

31 28 24 20 16 12 8 4 0
LBAI: nvfvfvfrvfvfvfvfvfvfv/vfovf v v v v v/ fovfvfvfrv/rv/rof rofrofrof ro

PC'I:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

LBA: 1704H Legend: NA = Not Accessible RO =Read Only
PCl:  NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:05 | 0000 O00H | Reserved.
04 0 External XINT7# Interrupt Pending - when set, an interrupt is pending on the external
2 XINT7# input. When clear, no interrupt exists.
Primary ATU/Start BIST Interrupt Pending - when set, the host processor has set the
03 0, start BIST request in the ATUBISTR register. When clear, no start BIST interrupt is
pending.
Inbound Doorbell Interrupt Pending - when set, an interrupt from the Inbound Doorbell
02 0, o ) . . .
Unit is pending. When clear, no interrupt is pending.
I2C Interrupt Pending - when set, an interrupt is from the 12C Bus Interface Unit is
01 0, . . - ;
pending. When clear, no interrupt is pending.
APIC Interrupt Pending - when set, an interrupt from the APIC Bus Interface Unit is
00 0, ; . . -
pending. When clear, no interrupt is pending.
8.4.7 NMI Interrupt Status Register — NISR

The NMI Interrupt Status Register (NISR) shows the pending NMI interrupts. The source of the
NMI interrupt can be the internal peripheral devices connected through the NMI Interrupt Latch or
the external NMI# interrupt pin. The interrupts which are connected to the NMI# input are detail ed
in Section 8.3.3, Internal Peripheral Interrupt Routing.

The NMI Interrupt Status Register is used to determine the source of an interrupt on the NMI#
input. All of the bits within the NISR are read-only. The bits within this register are cleared when
the source of theinterrupt (status register source shown in Table 8-6) are cleared. NISR reflects the
current state of theinput to the NMI Interrupt Latch. Note that although the NM1# input of the 960
coreis edge triggered, the external NMI# input of the i960 Rx 1/0O processor requires alevel input
and must be latched external to thei960 Rx 1/0O processor.
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Due to the asynchronous nature of the 80960Rx interna peripheral units, multiple interrupts can
be active when the application software readsthe NISR register. It is up to the application software
to handle the occurrence of multiple interrupts. In addition, software must check the contents of
the NISR to ensure all NMI sources are cleared before returning from the NMI interrupt service
routine. All NISR interrupts will be at the same priority level within the i960 core.

Example 8-5. Example Code - NMI Interrupt Handler Main Loop

/* NM Interrupt Handler */
vol atile unsigned long int N SR

do
NI SR = *NI SR reg_addr;

if (NNSR & 1)
80960_core_error();

if (NISR & 2)
primary_atu_error();

if (NISR & 4)
secondary_atu_error();

if (NISR & 8)

rimary_bridge_interface_error();

if (NISR & 16)

secondary_bridge_interface_error();
if (NISR & 32)

dme_channel _0_error();
if (NISR & 64)

dma_channel _1_error();
if (NISR & 128)

dma_channel _1_error();
if (NISR & 256)

nessagi ng_unit_interrupt();
if (NISR & 512)

extnernal _nm _interrupt(); }
while( 'NISR);
return;
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Table 8-18 shows the hit definitions for reading the NMI interrupt status register.

Table 8-18. NMI Interrupt Status Register — NISR

31 28 24 20 16 12 8 4 0
LBAI: nvfvfvfrvfvfvfvfvfvfvfvfovf v v fovfvfv/v/ g rv/vfrofrof rofrofrofrof rofrofrof ro

PC'I:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

LBA: 1700H Legend: NA = Not Accessible RO =Read Only
PCl:  NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:10 | 0000 OOH | Reserved.
09 0 External NMI# Interrupt - when set, an interrupt is pending on the external NMI# input.
2 When clear, no interrupt exists.
Messaging Unit Interrupt - when set, an NMI interrupt or error exists in the Messaging
08 0, . .
Unit. When clear, no error exists.
07 0 DMA Channel 2 Error - when set, a PCl or local bus error condition exists within DMA
2 channel. When clear, no error exists.
06 0 DMA Channel 1 Error - when set, a PCl or local bus error condition exists within DMA
2 channel. When clear, no error exists.
05 0 DMA Channel 0 Error - when set, a PCl or local bus error condition exists within DMA
2 channel. When clear, no error exists.
Secondary Bridge Error - when set, a PCI error condition exists within the secondary
04 0, . ) .
interface of the bridge. When clear, no error exists.
Primary Bridge Interface Error - when set, a PCI error condition exists within the primary
03 0, . . )
interface of the bridge. When clear, no error exists.
Secondary ATU Error - when set, a PCI or local bus error condition exists within the
02 0, )
secondary ATU. When clear, no error exists.
Primary ATU Error - when set, a PCI or local bus error condition exists within the
01 0, . )
primary ATU. When clear, no error exists.
00 0 i960 core Error - when set, an error condition caused by the i960 core exists within the
2 internal memory controller. When clear, no error exists.
8.4.8 Interrupt Controller Register Access Requirements

A load instruction that accesses the IPND, IMSK, IMAP2:0 or ICON register has a latency of one
internal processor cycle. A store access to an interrupt register is synchronous with respect to the
next instruction; that is, the operation completes fully and all state changes take effect before the
next instruction begins execution.
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Interrupts can be enabled and disabled quickly by the intdis and inten instructions, which take
four cycles each to execute. intctl takes a few cycles longer because it returns the previous
interrupt enable value. See CHAPTER 6, INSTRUCTION SET REFERENCE for more
information on these instructions.

8.4.9 Default and Reset Register Values

The interrupt logic is reset by the primary PCI reset signal or through software. Table 8-19 shows
the power-up and reset values. Refer to section 11.4, INITIAL MEMORY IMAGE (IMI)
(pg. 11-11) for more information on register values after reset.

Table 8-19. Default Interrupt Routing and Status Values Summary

Register Default Value Description

S_INTA#/XINTO# routed to the P_INTXA#
S_INTB#/XINT1# routed to the P_INTXB#

PCI Interrupt Routing Select Register 0000 0000H S_INTCHIXINT24 routed to the P_INTXCH#
S_INTD#/XINT3# routed to the P_INTXD#
SDER Secondary Decode Enable Register 0000H All NMI# sources are enabled
NMI Interrupt Status Register 0000 0000H No interrupts set
XINT7 Interrupt Status Register 0000 0000H No interrupts set
XINT6 Interrupt Status Register 0000 0000H No interrupts set
IPND ndefined | etore cnmasking any etrupts
IMSK 0000 0000H All interrupts masked

Initial Image in

ICON Control Table

Set to user’s values

Initial Image in

IMAP2:0 Control Table

Set to user’s values

8.5 OPTIMIZING INTERRUPT PERFORMANCE
Figure 8-9 depicts the path from interrupt source to interrupt service routine. This section

discusses interrupt performance in general and suggests techniques the application can use to get
the best interrupt performance.
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Figure 8-9. Interrupt Service Flowchart
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85.1 Interrupt Service Latency

The established measure of interrupt performance is the time required to perform an interrupt task
switch, which is known as interrupt service latency. Latency is the time measured between
interrupt source activation and execution of the first instruction for the accompanying
interrupt-handling procedure.

Interrupt latency depends on interrupt controller configuration and the instruction being executed
at the time of the interrupt. The processor a so has a number of cache options that reduce interrupt
latency. In the discussion that follows, interrupt latency is expressed as a number of bus clock
cycles.

8.5.2 Features to Improve Interrupt Performance

The 1960 Rx /O processor employs four methods to reduce interrupt latency:
e Caching interrupt vectors on-chip

e Caching of interrupt handling procedure code

« Reserving register frames in the local register cache

« Caching the interrupt stack in the data cache

8.5.2.1 Vector Caching Option

To reduce interrupt latency, the i960 Rx I/O processors cache some interrupt table vector entries in
internal data RAM. When the vector cache option is enabled and an interrupt request has a cached
vector to be serviced, the controller fetches the associated vector from internal RAM rather than
from the interrupt table in memory.

Interrupts with a vector number with the four least-significant bits equal to,@@t0be cached.
Vectors that can be cached coincide with the vector numbers selected with the mapping registers
and assigned to dedicated-mode inputs. The vector caching option is selected when programming
the ICON register; software must explicitly store the vector entries in internal RAM.

Since the internal RAM is mapped to the address space directly, this operation can be performed
using the core’s store instructionBable 8-20shows the required vector mapping to specific
locations in internal RAM. For example, the vector entry for vector number 18 must be stored at
RAM location 04H, and so on.

The NMI# vector is also shown imable 8-20 This vector is always cached in internal data RAM
at location 0000H. The processor automatically loads this location at initialization with the value
of vector number 248 in the interrupt table.
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Table 8-20. Location of Cached Vectors in Internal RAM

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address

(NMI#) 248 0000H
0001 0010, 18 0004H
0010 0010, 34 0008H
0011 0010, 50 000CH
0100 0010, 66 0010H
0101 0010, 82 0014H
0110 0010, 98 0018H
0111 0010, 114 001CH
1000 0010, 130 0020H
1001 0010, 146 0024H
1010 0010, 162 0028H
1011 0010, 178 002CH
1100 0010, 194 0030H
1101 0010, 210 0034H
1110 0010, 226 0038H
1111 0010, 242 003CH

8.5.2.2 Caching Interrupt Routines and Reserving Register Frames

The time required to fetch the first instructions of an interrupt-handling procedure affects interrupt
response time and throughput. The controller reduces this fetch time by caching interrupt
procedures or portions of procedures in the i960 Rx 1/0 processor’s instruction cache.

To decrease interrupt latency for high priority interrupts (priority 28 and above), software can limit
the number of frames in the local register cache available to code running at a lower priority
(priority 27 and below). This ensures that some number of free frames are available to
high-priority interrupt service routines. Seection 4.2 OCAL REGISTER CACHE(pg. 4-2)

for more details.

8.5.2.3 Caching the Interrupt Stack

By locating the interrupt stack in memory that can be cached by the data cache, the performance o
interrupt returns can be improved. This is because accesses to the interrupt record by the interrup
return can be satisfied by the data cache.s®e&on 12.2PROGRAMMING THE PHYSICAL
MEMORY ATTRIBUTES (PMCONREGISTERS)(pg. 12-3)for details on how to enable data
caching for portions of memory.
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8.5.3 Base Interrupt Latency

In many applications, the processor’s instruction mix and cache configuration are known suffi-
ciently well to use typical interrupt latency in calculations of overall system performance. For
example, a timer interrupt may frequently trigger a task switch in a multi-tasking kernel. Base
interrupt latency assumes the following:

« Single-cycle RISC instruction is interrupted.
* Frame flush does not occur.

* Bus queue is empty.

e Cached interrupt handler.

* No interaction of faults and interrupts (i.e., a stable system).

Table 8-21shows the base latencies for all interrupt types, with varying vector caching options.

Table 8-21. Base Interrupt Latency

Interrupt Type Vector Caching Enabled Typical 80960Rx Latency (Bus Clocks)
NMI# Yes 30
Yes 34
XINTS5:4#, TINT1:0
No 40+a
Yes 35
XINT7:6# XINT3:0#
No 41+a
Yes 68
Software
No 69+a

NOTES:
1. a=MAX(O,N-7)

where “N” is the number of bus cycles needed to perform a word load.

8.5.4 Maximum Interrupt Latency

In real-time applications, worst-case interrupt latency must be considered for critical handling of
external events. For example, an interrupt from a mechanical subsystem may need service to
calculate servo loop parameters to maintain directional control. Determining worst-case latency
depends on knowledge of the processor’s instruction mix and operating environment as well as the
interrupt controller configuration. Excluding certain very long, uninterruptible instructions from
critical sections of code reduces worst-case interrupt latency to levels approaching the base
latency.
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The following tables present worst case interrupt latencies based on possible execution of divo
(r15 destination), divo (r3 destination), calls or flushreg instructions or software interrupt

detection. The assumptions for these tables are the same as for Table 8-21, except for instruction
execution.

INTERRUPTS

Table 8-22. Worst-Case Interrupt Latency Controlled by divo to Destination r15

Interrupt Type Vector Caching Enabled Worst 80960Rx Latency (Bus Clocks)?!
NMI# Yes 43
Yes 45
XINTS5:44#, TINT1:0
No 45+a
Yes 46
XINT7:6# XINT3:0#
No 46+a
NOTES:
1. a=MAX(O,N - 11), where “N” is the number of bus cycles needed to perform a word load.

Table 8-23. Worst-Case Interrupt Latency Controlled by divo to Destination r3

Interrupt Type Vector Caching Enabled Worst 80960Rx Latency (Bus Clocks)!
NMI# Yes 60
Yes 65
XINTS5:4#, TINT1:0
No 72+a
Yes 66
XINT7:6# XINT3:0#
No 73+a
NOTES:
1. a=MAX(O,N -7), where “N” is the number of bus cycles needed to perform a word load.

Table 8-24. Worst-Case Interrupt Latency Controlled by calls

Interrupt Type Vector Caching Enabled Worst 80960Rx Latency (Bus Clocks)*
NMI# Yes 54+a
Yes 58+a
XINT5:4#, TINT1:0
No 66+a+b
Yes 59+a
XINT7:6# XINT3:0#
No 67+a+b

NOTES:
1. a=MAX (O,N - 4)
b = MAX (O,N - 7)

where “N” is the number of bus cycles needed to perform a word load.
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Table 8-25. Worst-Case Interrupt Latency When Delivering a Software Interrupt

Interrupt Type Vector Caching Enabled Worst 80960Rx Latency (Bus Clocks)
NMI# Yes 97
Yes 99
XINT5:4#, TINT1:0
No 107+a
Yes 100
XINT7:6# XINT3:0#
No 108+a

NOTES:
1. a=MAX(O,N-7), where “N" is the number of bus cycles needed to perform a word load.

Table 8-26. Worst-Case Interrupt Latency Controlled by flushreg of One Stack

Frame
Vector Caching
Interrupt Type Enabled Worst 80960Rx Latency (Bus Clocks)
NMI# Yes 78+atb
Yes 82+atb
XINT5:4#, TINT1:0
No 89+a+b+c
Yes 83+atb
XINT7:6# XINT3:0#
No 90+a+b+c

NOTES:

1. a=MAX (0, M- 15)
b = MAX (0, M - 28)
¢ =MAX (0, N - 7)

where “M” is the number of bus cycles needed to perform a quad word store and “N” is the number of bus
cycles needed to perform a word load. Interrupt latency increases rapidly as the number of flushed stack
frames increases.

8.5.5 Avoiding Certain Destinations for MDU Operations

Typically, when delivering an interrupt, the processor attempts to push the first four local registers
(pfp, sp, rip, and r3) onto the local register cache as early as possible. Because of
register-interlock, this operation is stalled until previous instructions return their results to these
registers. In most cases, this is not a problem; however, in the case of instructions performed by
the Multiply/Divide Unit (divo, divi, ediv, modi, remo, and remi), the processor could be stalled
for many cycles waiting for the result and unable to proceed to the next step of interrupt delivery.

Interrupt latency can be improved by avoiding the first four local registers as the destination for a

Multiply/Divide Unit operation. (Registers pfp, sp, and rip should be avoided anyway for general
operations as these are used for procedure linking.)
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8.5.6 Secondary PCI to Primary PCI Interrupt Routing Latency

The interrupt routing logic accepts the changes to the routing control value written to the PIRSR
register one clock after the write has completed. There is a one clock delay from the time that the
interrupt is recognized on the input of the mux until the signal is driven either to the i960 core
interrupt controller or the PCI output interrupt pins.
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CHAPTER 9
FAULTS

This chapter describes the i960%° Rx 1/0 processor's fault handling facilities. Subjects covered
include the fault handling data structures and fault handling mechanismsseSe&en 9.10,
FAULT REFERENCE(pg. 9-22)for detailed information on each fault type.

9.1 FAULT HANDLING OVERVIEW

The 1960 processor architecture defines various conditions in code and/or the processor’s internal
state that could cause the processor to deliver incorrect or inappropriate results or that could cause
it to choose an undesirable control path. These are dallddconditions. For example, the archi-
tecture defines faults for divide-by-zero and overflow conditions on integer calculations with an
inappropriate operand value.

As shown inFigure 9-1 the architecture defines a fault table, a system procedure table, a
fault handling procedures and stacks (user stack, supervisor stack and interrupt stack) t
processor-generated faults.

Fault
Fault Fault
Processor Table Handling
| Procedures
System ]
Procedure Supervisor
Table Stack
User Stack

Figure 9-1. Fault-Handling Data Structures
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The fault table contains pointers to fault handling procedures. The system procedure table
optionally provides an interface to any fault handling procedure and allows faults to be handled in
supervisor mode. Stack frames for fault handling procedures are created on either the user or
supervisor stack, depending on the mode in which the fault is handled. When the processor is in
the interrupted state, the processor uses the interrupt stack.

Once these data structures and the code for the fault procedures are established in memory, the
processor handles faults automatically and independently from application software.

The processor can detect afault at any time while executing instructions, whether from a program,
interrupt handling procedure or fault handling procedure. When a fault occurs, the processor
determines the fault type and selects a corresponding fault handling procedure from the fault table.
It then invokes the fault handling procedure by means of an implicit call. As described later in this
chapter, the fault handler call can be:

e Alocal call (call-extended operation)
« A system-local call (local call through the system procedure table)

« A system-supervisor call (supervisor call through the system procedure table)

A normal fault condition is handled by the processor in the following manner:

e The current local registers are saved and cached on-chip.

e PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to

section 7.8RETURNS(pg. 7-20)for more information.

« When the fault call is a system-supervisor call from user mode, the processor switches to the

supervisor stack; otherwise, SP is re-aligned on the current stack.

e The processor writes the fault record on the new stack. This record includes information on

the fault and the processor’s state when the fault was generated.

« The Instruction Pointer (IP) of the first instruction of the fault handler is accessed through the

fault table or through the system procedure table (for system fault calls).

After the fault record is created, the processor executes the selected fault handling procedure.
When a fault is recoverable (i.e., the program can be resumed after handling the fault) the Return

Instruction Pointer (RIP) is defined for the fault being serviced €segion 9.10,FAULT

REFERENCE(pg. 9-22) and the processor resumes execution at the RIP upon return from the
fault handler. When the RIP is undefined, the fault handling procedure can create one by using the
flushreg instruction followed by a modification of the RIP in the previous frame. The fault
handler can also call a debug monitor or reset the processor instead of resuming prior execution.

This procedure call mechanism also handles faults that occur:
*  While the processor is servicing an interrupt
* While the processor is servicing another fault
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9.2 FAULT TYPES

The 1960 architecture defines a basic set of faults that are categorized by type and subtype. Each
fault has a unique type and subtype number. When the processor detects afault, it records the fault
type and subtype numbers in the fault record. It then uses the type number to select the fault
handling procedure.

The fault handling procedure can optionally use the subtype number to select a specific fault
handling action. The 1960 Rx /O processor recognizes i960 architecture-defined faults and a new
fault subtype for detecting unaligned memory accesses. Table 9-1 lists al faults that the 1960 Rx
I/0 processor detects, arranged by type and subtype. Text that follows the table gives column
definitions.

Table 9-1. i960® Rx I/0 Processor Fault Types and Subtypes

Fault Type Fault Subtype Fault Record
Number or
Number Name Bit Position Name
see section 9.6.4, Parallel
OH PARALLEL NA NA Eaults 9.10
Bit 1 INSTRUCTION 0001 0002H
Bit 2 BRANCH 0001 0004H
Bit 3 CALL 0001 0008H
1H TRACE Bit 4 RETURN 0001 0010H
Bit 5 PRERETURN 0001 0020H
Bit 6 SUPERVISOR 0001 0040H
Bit 7 MARK/BREAKPOINT 0001 0080H
1H INVALID_OPCODE 0002 0001H
2H UNIMPLEMENTED 0002 0002H
2H OPERATION
3H UNALIGNED 0002 0003H
4H INVALID_OPERAND 0002 0004H
3H ARITHMETIC 1H INTEGER_OVERFLOW 0003 0001H
2H ZERO-DIVIDE 0003 0002H
4H Reserved
5H CONSTRAINT 1H RANGE 0005 0001H
6H Reserved
7H PROTECTION Bit 1 LENGTH 0007 0002H
8H -9H | Reserved
AH TYPE 1H MISMATCH 000A 0001H
BH - FH | Reserved
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In Table 9-1:
* The first (left-most) column contains the fault type numbers in hexadecimal.
e The second column shows the fault type name.

« The third column gives the fault subtype number as either: (1) a hexadecimal number or (2) as
a bit position in the fault record’s 8-bit fault subtype field. The bit position method of
indicating a fault subtype is used for certain faults (such as trace faults) in which two or more
fault subtypes may occur simultaneously.

e The fourth column gives the fault subtype name. For convenience, individual faults are
referenced by their fault-subtype names. Thus an OPERATION.INVALID_OPERAND fault
is referred to as an INVALID_OPERAND fault; an ARITHMETIC.INTEGER_OVERFLOW
fault is referred to as an INTEGER_OVERFLOW fault.

« The fifth column shows the encoding of the word in the fault record that contains the fault
type and fault subtype numbers.

Other 960 processor family members may provide extensions that recognize additional fault
conditions. Fault type and subtype encoding allows all faults to be included in the fault table: those
that are common to all i960 processors and those that are specific to one or more family members.
The fault types are used consistently for all family members. For example, Fault Type 4H is
reserved for floating point faults. Any i960 processor with floating point operations uses Entry 4H
to store the pointer to the floating point fault handling procedure.

9.3 FAULT TABLE

The fault table Eigure 9-3 is the processor’s pathway to the fault handling procedures. It can be
located anywhere in the address space. From the Process Control Block, the processor obtains a
pointer to the fault table during initialization.

The fault table contains one entry for each fault type. When a fault occurs, the processor uses the
fault type to select an entry in the fault table. From this entry, the processor obtains a pointer to the
fault handling procedure for the type of fault that occurred. Once called, a fault handling
procedure has the option of reading the fault subtype or subtypes from the fault record when
determining the appropriate fault recovery action.
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31 Fault Table 0
PARALLEL/OVERRIDE Fault Entry O0H
TRACE Fault Entry 08H
OPERATION Fault Entry 10H
ARITHMETIC Fault Entry 18H

CONSTRAINT Fault Entry 28H

PROTECTION Fault Entry 38H

TYPE Fault Entry 50H

FCH

31 Local-Call Entry 210

Fault-Handler Procedure Address 00| n

31 System-Call Entry 210
Fault-Handler Procedure Number | 1| ofn
0000 027FH n+4

. Reserved (Initialize to 0)

Figure 9-2. Fault Table and Fault Table Entries
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Asindicated in Figure 9-2, two fault table entry types are allowed: local-call entry and system-call
entry. Each is two words in length. The entry type field (bits 0 and 1 of the entry’s first word) and
the value in the entry’s second word determine the entry type.

local-call entry Provides an instruction pointer for the fault handling procedure. The

(type 0Q) processor uses this entry to invoke the specified procedure by means of an
implicit local-call operation. The second word of a local procedure entry is
reserved. It must be set to zero when the fault table is created and not
accessed after that.

system-call entry  Provides a procedure number in the system procedure table. This entry must

(type 1Q) have an entry type of 3Gand a value in the second word of 0000 027FH.
Using this entry, the processor invokes the specified fault handling
procedure by means of an implicit call-system operation similar to that
performed for thealls instruction. A fault handling procedure in the system
procedure table can be called with a system-local call or a system-supervisor
call, depending on the entry type in the system-procedure table.

Other entry types (Gland 13) are reserved and have unpredictable behavior.

To summarize, a fault handling procedure can be invoked through the fault table in any of three
ways: a local call, a system-local call or a system-supervisor call.

9.4 STACK USED IN FAULT HANDLING

The 1960 architecture does not define a dedicated fault handling stack. Instead, to handle a fault,
the processor uses either the user, interrupt or supervisor stack, whichever is active when the fault
is generated. There is, however, one exception: if the user stack is active when a fault is generated
and the fault handling procedure is called with an implicit system supervisor call, the processor
switches to the supervisor stack to handle the fault.

9.5 FAULT RECORD

When a fault occurs, the processor records information about the fault in a fault record in memory.
The fault handling procedure uses the information in the fault record to correct or recover from the
fault condition and, if possible, resume program execution. The fault record is stored on the same
stack that the fault handling procedure will use to handle the fault.
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95.1 Fault Record Description

Figure 9-3 shows the fault record’s structure. In this record, the fault's type number and subtype
number (or bit positions for multiple subtypes) are stored in the fault type and subtype fields,
respectively. The Address of Faulting Instruction Field contains the IP of the instruction that
caused the processor to fault.

When a fault is generated, the existing PC and AC register contents are stored in their respective
fault record fields. The processor uses this information to resume program execution after the fault
is handled.

The Resumption Field is used to store information about a pending trace fault. When a trace fault
and a non-trace fault occur simultaneously, the non-trace fault is serviced first and the pending
trace may be lost depending on the non-trace fault encountered. The Trace Reporting paragraph fo
each fault specifies whether the pending trace is kept or lost.
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NOTES: “NFP” means “New Frame Pointer”
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95.2 Fault Record Location

The fault record is stored on the stack that the processor uses to execute the fault handling
procedure. As shown in Figure 9-4, this stack can be the user stack, supervisor stack or interrupt
stack. The fault record begins at byte address NFP-1. NFP refers to the new frame pointer that is
computed by adding the memory size allocated for padding and the fault record to the new stack
pointer (NSP). The processor rounds the FP to the next 16-byte boundary and then allocates 80
bytes for the fault record.

Current Stack

31 (User, Supervisor, or Interrupt Stack)

0
L $FP
Current Frame

SP

31 Local Stack or Supervisor Stack?

0
} Padding Area } NSP!

Stack
Growth

Fault
Record

/\/

Fault Record 2

< New Frame T

!
NOTES:

1. If the call to the fault handler procedure does not require a stack switch, the new stack pointer (NSP) is the same as SP.

2. If the processor is in user mode and the fault handler procedure is called with a system supervisor call, the processor
switches to the supervisor stack.

NFP-4
NFP

Figure 9-4. Storage of the Fault Record on the Stack

9.6 MULTIPLE AND PARALLEL FAULTS
Multiple fault conditions can occur during a single instruction execution and during multiple

instruction execution when the instructions are executed by different units within the processor.
The following sections describe how faults are handled under these conditions.
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9.6.1 Multiple Non-Trace Faults on the Same Instruction

Multiple fault conditions can occur during a single instruction execution. For example, an
instruction can have an invalid operand and unaligned address. When this situation occurs, the
processor is required to recognize and generate at least one of the fault conditions. The processor
may not detect all fault conditions and will report only one detected non-trace fault on a single
instruction.

In amultiple fault situation, the reported fault condition is left to the implementation.

9.6.2 Multiple Trace Fault Conditions on the Same Instruction

Trace faults on different instructions cannot happen concurrently, because trace faults are precise
(see section9.9, PRECISE AND IMPRECISE FAULTS (pg.9-20)). Multiple trace fault
conditions on the same instruction are reported in a single trace fault record (with the exception of
prereturn trace, which always happens alone). To support multiple fault reporting, the trace fault
uses hit positions in the fault-subtype field to indicate occurrences of multiple faults of the same
type (see Table 9-1).

9.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same Instruction
The execution of a single instruction can create one or more trace fault conditions in addition to
multiple non-trace fault conditions. When this occurs:

« The pending trace is dismissed if any of the non trace faults dismisses it, as mentioned in the
“Trace Reporting” paragraph for that faultdaction 9.10FAULT REFERENCE(pg. 9-22)

« The processor services one of the non trace faults.

« Finally, the trace is serviced upon return from the non-trace fault handler if it was not
dismissed in step 1.

9.6.4 Parallel Faults

The 1960 Rx 1/O processor exploits the architecture’s tolerance of out-of-order instruction
execution by issuing instructions to independent execution units on the chip. The following
subsections describe how the processor handles faults in this environment.
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9.64.1 Faults on Multiple Instructions Executed in Parallel

When AC.nif=0, imprecise faults relative to different instructions executing in parallel may be
reported in a single parallel fault record. For these conditions, the processor cals a unique fault
handler, the PARALLEL fault handler (see section 9.9.4, No Imprecise Faults (AC.nif) Bit
(pg. 9-21)). This mechanism allows instructions that can fault to be executed in parallel with other
instructions or out of order.

In paralel fault situations, the processor saves the fault type and subtype of the second and
subsequent faults detected in the optional section of the fault record. The optional section is the
area below NFP-64 where the fault records for each of the parallel faults that occurred are stored.
The fault handling procedure for parallel faults can then analyze the fault record and handle the
faults. The fault record for paralel faultsis described in the next section.

When the RIP is undefined for at least one of the faults found in the parallel fault record, then the
RIP of the parallel fault handler is undefined. In this case, the paralel fault handling procedure can
either create a RIP and return or call adebug monitor to analyze the faults.

When the RIP is defined for all faults found in the fault record, then it will point to the next
instruction not yet executed. The parallel fault handler can simply return to the next instruction not
yet executed with aret instruction.

Consider the following code example, where the muli and the addi instructions both have overflow
conditions. AC.om=0, AC.nif = 0, and both instructions are in the instruction cache at the time of
their execution. The addi and muli are allowed to execute in parallel because AC.nif = 0 and the
faults that these instructions can generate (ARITHMETIC) are imprecise.

muli g2, g4, ¢6;
addi g8, g9, gl0; # results in integer overflow

The fault on the addi is detected before the fault on the muli because the muli takes longer to
execute. The fault call synchronizes faults on the way to the overflow fault handler for the addi
instruction (see section 9.9.5, Controlling Fault Precision (pg. 9-21)), which is when the muli fault
is detected. The processor builds a parallé fault record with information relative to both faults and
calls the parallel fault handler. In the fault handler, ARITHMETIC faults may be recovered by
storing the desired result of the instruction in the proper destination register and setting the AC.of
flag (optional) to indicate that an overflow occurred. A ret at the end of the parallel fault handler
routine will then return to the next instruction not yet executed in the program flow.

On the 1960 Rx 1/0O processor, the muli overflow fault is the only fault that can happen with a
delay. Therefore, parallel fault records can report a maximum of 2 faults, one of which must be a
muli ARITHMETIC.INTEGER_OVERFLOW fault.
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A parallel fault handler must be accessed through a system-supervisor call. Local and system-local
parallel fault handlers are not supported by the architecture and have unpredictable behavior.
Tracing is disabled upon entry into the parallel fault handler (PC.teis cleared). It is restored upon
return from the handler. To prevent infinite internal loops, the parallel fault handler should not set
PC.te.

9.6.4.2 Fault Record for Parallel Faults

When paralld faults occur, the processor selects one of the faults and records it in the first 16

bytes of the fault record as described in section 9.5.1, Fault Record Description (pg. 9-7). The
remaining parallel faults are written to the fault record’s optional section, and the fault handling
procedure for parallel faults is invokeligure 9-3shows the structure of the fault record for
parallel faults.

The OType/OSubtype word at NFP - 20 contains the number of parallel faults. The optional
section also contains a 32-byte parallel fault record for each additional parallel fault. These
parallel fault records are stored incrementally in the fault record starting at byte offset NFP-68.
The fault record for each additional fault contains only the fault type, fault subtype, address-of-
faulting-instruction and the optional fault section. (For example, when two parallel faults occur,
the fault record for the second fault is located from NFP-96 to NFP-65.)

For the second fault recorded (n=2), the relationship (NFP-8-(n * 32)) reduces to NFP-72. For the
1960 Rx I/0O processor, a maximum of two faults are reported in the parallel fault record, and one
of them must be the ARITHMETIC.INTEGER_OVERFLOW fault omali instruction.

9.6.5 Override Faults

The 1960 Rx I/O processor can detect a fault condition while the processor is preparing to service a
previously detected fault. When this occurs, it is calledoearride condition. This section
describes this condition and how the processor handles it.

A normal fault condition is handled by the processor in the following manner:

« The current local registers are saved and cached on-chip.

e PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to
section 7.8RETURNS(pg. 7-20)for more information.

« When the fault call is a system-supervisor call from user mode, the processor switches to the
supervisor stack; otherwise, SP is re-aligned on the current stack.

e The processor writes the fault record on the new stack.

« The IP of the first instruction of the fault handler is accessed through the fault table or through
the system procedure table (for system fault calls).
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A fault that occurs during any of the above actions is called an override fault. In response to this
condition, the processor does the following:

e Switches the execution mode to supervisor.

« Selects the override condition that shows that the writing of the fault record was unsuccessful.
If no such fault exists, the processor selects one of the other fault conditions. This method
ensures that the fault handler has information regarding the fault record write.

« Saves information pertaining to the override condition selected. The fault record describes the
first fault as described previously. Field OType contains the fault type of the second fault,
field OSubtype contains the fault subtype of the second fault and field override-fault-data
contains what would normally be the fault data field for the second fault type.

« Attempts to access the IP of the first instruction in the override fault handler through the
system procedure table.

It should be noted that a fault that occurs while the processor is actually executing a fault handling
procedure is not an override fault.

The override fault entry is entry 0. When the override fault entry in the fault table points to a
location beyond the system procedure table, the processor enters system error mode. Override fau
conditions include: PROTECTION and OPERATION.UNIMPLEMENTED faults.

An override fault handler must be accessed through a system-supervisor call. Local and
local override fault handlers are not supported by the architecture and have an unpredictable
behavior. Tracing is disabled upon entry into the override fault handler (PC.te is cleared). It is

restored upon return from the handler. To prevent infinite internal loops, the override fault handler

should not set PC.te.

9.6.6 System Error

When a fault is detected while the processor is in the process of servicing an override or parallel
fault, the processor enters the system error state. Note that “servicing” indicates that the processo
has detected the override or parallel fault, but has not begun executing the fault handling
procedure. This type of error causes the processor to enter a system error state. In this state, tt
processor uses only one read bus transaction to signal the fail code message; the address of the b
transaction is the fail code itself. Sgection 11.3.1.5FAIL# Code(pg. 11-11)

9.7 FAULT HANDLING PROCEDURES
The fault handling procedures can be located anywhere in the address space except within the on

chip data RAM or MMR space. Each procedure must begin on a word boundary. The processor
can execute the procedure in user or supervisor mode, depending on the fault table entry type.
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9.7.1 Possible Fault Handling Procedure Actions

The processor alows easy recovery from many faults that occur. When fault recovery is possible,

the processor’s fault handling mechanism allows the processor to automatically resume work on
the program or pending interrupt when the fault occurred. Resumption is initiated with a
instruction in the fault handling procedure.

When recovery from the fault is not possible or not desirable, the fault handling procedure can
take one of the following actions, depending on the nature and severity of the fault condition (or
conditions, in the case of multiple faults):

* Return to a point in the program or interrupt code other than the point of the fault.

e Call a debug monitor.

« Perform processor or system shutdown with or without explicitly saving the processor state
and fault information.

When working with the processor at the development level, a common fault handling strategy is to
save the fault and processor state information and call a debugging tool such as a monitor.

9.7.2 Program Resumption Following a Fault

Because of the wide variety of faults, they can occur at different times with respect to the faulting
instruction:

« Before execution of the faulting instruction (e.g., fetch from on-chip RAM)

< During instruction execution (e.g., integer overflow)

« Immediately following execution (e.g., trace)

9.7.2.1 Faults Happening Before Instruction Execution

The following fault types occur before instruction execution:

 ARITHMETIC.ZERO_DIVIDE

e TYPE.MISMATCH

e PROTECTION.LENGTH

« Al OPERATION subtypes except UNALIGNED

For these faults, the contents of a destination register are lost, and memory is not updated. The RIP
is defined for the ARITHMETIC.ZERO_DIVIDE fault only. In some cases the fault occurs before

the faulting instruction is executed, the faulting instruction may be fixed and re-executed upon
return from the fault handling procedure.
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9.7.2.2 Faults Happening During Instruction Execution

The following fault types occur during instruction execution:
« CONSTRAINT.RANGE

« OPERATION.UNALIGNED

e« ARITHMETIC.INTEGER_OVERFLOW

For these faults, the fault handler must explicitty modify the RIP to return to the faulting
application (except for ARITHMETIC.INTEGER_OVERFLOW).

When a fault occurs during or after execution of the faulting instruction, the fault may be
accompanied by a program state change such that program execution cannot be resumed after tt
fault is handled. For example, when an integer overflow fault occurs, the overflow value is stored
in the destination. When the destination register is the same as one of the source registers, th
source value is lost, making it impossible to re-execute the faulting instruction.

9.7.2.3 Faults Happening After Instruction Execution

For these faults, the Return Instruction Pointer (RIP) is defined and the fault handler can r
the next instruction in the flow:

« TRACE
* ARITHMETIC.INTEGER_OVERFLOW

In general, resumption of program execution with no changes in the program’s control flow is
possible with the following fault types or subtypes:

* All TRACE Subtypes

The effect of specific fault types on a program is defineseirtion 9.10FAULT REFERENCE
(pg. 9-22)under the heading Program State Changes.

9.7.3 Return Instruction Pointer (RIP)

When a fault handling procedure is called, a Return Instruction Pointer (RIP) is saved in the image
of the RIP in the faulting frame. The RIP can be accessed at address PFP+8 while executing the
fault handler after dlushreg. The RIP in the previous frame points to an instruction where
program execution can be resumed with no break in the program’s control flow. It generally points
to the faulting instruction or to the next instruction to be executed. In some instances, however, the
RIP is undefined. RIP content for each fault is describeseirtion 9.10FAULT REFERENCE

(pg. 9-22)
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9.7.4 Returning to the Point in the Program Where the Fault Occurred

As described in section 9.7.2, Program Resumption Following a Fault (pg. 9-14), most faults can
be handled such that program control flow is not affected. In this case, the processor alows a
program to be resumed at the point where the fault occurred, following a return from a fault
handling procedure (initiated with a ret instruction). The resumption mechanism used here is
similar to that provided for returning from an interrupt handler.

Also, to restore the PC register from the fault record upon return from the fault handler, the fault
handling procedure must be executed in supervisor mode either by using a supervisor call or by
running the program in supervisor mode. See the pseudocode in section 6.2.54, ret (pg. 6-92).

9.7.5 Returning to a Point in the Program Other Than Where the Fault
Occurred

A fault handling procedure can aso return to a point in the program other than where the fault
occurred. To do this, the fault procedure must alter the RIP. To do this reliably, the fault handling
procedure should perform the following steps:

1. Flush the local register setsto the stack with aflushreg instruction.
2. Modify the RIP in the previous frame.

3. Clear the trace-fault-pending flag in the fault record’s process controls field before the
return (optional).

4, Execute a return with thet instruction.

Use this technique carefully and only in situations where the fault handling procedure is closely
coupled with the application program.

9.7.6 Fault Controls

For certain fault types and subtypes, the processor employs register mask bits or flags that
determine whether or not a fault is generated when a fault condition ocebis.9-2summarizes

these flags and masks, the data structures in which they are located, and the fault subtypes they
affect.

The integer overflow mask bit inhibits the generation of integer overflow faults. The use of this
mask is discussed section 9.10FAULT REFERENCE(pg. 9-22)

The Arithmetic Controls no imprecise faults (AC.nif) bit controls the synchronizing of faults for a

category of faults called imprecise faults. The function of this bit is describedciion 9.9,
PRECISE AND IMPRECISE FAULT$pg. 9-20)
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TC register trace mode bits and the PC register trace enable bit support trace faults. Trace mode
bits enable trace modes; the trace enable hit (PC.te) enables trace fault generation. The use of these

FAULTS

bits is described in the trace faults description in section 9.10, FAULT REFERENCE (pg. 9-22).
Further discussion of these flagsis provided in CHAPTER 10, TRACING AND DEBUGGING.

Table 9-2. Fault Control Bits and Masks

Flag or Mask Name

Location

Faults Affected

Integer Overflow Mask Bit

Arithmetic Controls (AC) Register

INTEGER_OVERFLOW

No Imprecise Faults Bit

Arithmetic Controls (AC) Register

All Imprecise Faults

Trace Enable Bit

Process Controls (PC) Register

All TRACE Faults

Trace Mode

Trace Controls (TC) Register

All TRACE Faults except hardware
breakpoint traces and fmark

Unaligned Fault Mask

Process Control Block (PRCB)

UNALIGNED Fault

The unaligned fault mask bit is located in the process control block (PRCB), which is read from the
fault configuration word (located at address PRCB pointer + OCH) during initiaization. It controls
whether unaligned memory accesses generate afault. See section 12.4.2, Bus Transactions Across

Region Boundaries (pg. 12-7).

9.8

Once afault occurs, the processor saves the program state, calls the fault handling procedure and,
if possible, restores the program state when the fault recovery action completes. No software other

FAULT HANDLING ACTION

than the fault handling procedures is required to support this activity.

Three types of implicit procedure cals can be used to invoke the fault handling procedure: alocal
call, asystem-local call and a system-supervisor call.

The following subsections describe actions the processor takes while handling faults. It is not
necessary to read these sections to use the fault handling mechanism or to write a fault handling

procedure. This discussion is provided for those readers who wish to know the details of the fault

handling mechanism.
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9.8.1 Local Fault Call

When the selected fault handler entry in the fault table is an entry type 000, (alocal procedure),
the processor operates as described in section 7.1.3.1, Call Operation (pg. 7-6), with the following
exceptions:

A new frame is created on the stack that the processor is currently using. The stack can be the
user stack, supervisor stack or interrupt stack.

« The fault record is copied into the area allocated for it in the stack, beginning at NFP-1. (See
Figure 9-4)

« The processor gets the IP for the first instruction in the called fault handling procedure from
the fault table.

* The processor stores the fault return code {0ithe PFP return type field.

When the fault handling procedure is not able to perform a recovery action, it performs one of the
actions described igection 9.7.2Program Resumption Following a Fa(dg. 9-14)

When the handler action results in recovery from the faulif anstruction in the fault handling
procedure allows processor control to return to the program that was executing when the fault
occurred. Upon return, the processor performs the action describegttion 7.1.3.2Return
Operation(pg. 7-7) except that the arithmetic controls field from the fault record is copied into the
AC register. When the processor is in user mode before execution of the return, the process
controls field from the fault record is not copied back to the PC register.

9.8.2 System-Local Fault Call

When the fault handler selects an entry for a local procedure in the system procedure table (entry
type 1), the processor performs the same action as is described in the previous section for a local
fault call or return. The only difference is that the processor gets the fault handling procedure's
address from the system procedure table rather than from the fault table.

9.8.3 System-Supervisor Fault Call

When the fault handler selects an entry for a supervisor procedure in the system procedure table,
the processor performs the same action describgeciimn 7.1.3.1Call Operationpg. 7-6) with
the following exceptions:

¢ When the fault occurs while in user mode, the processor switches to supervisor mode, reads
the supervisor stack pointer from the system procedure table and switches to the supervisor
stack. A new frame is then created on the supervisor stack.
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* When the fault occurs while in supervisor mode, the processor creates a new frame on the
current stack. When the processor is executing a supervisor procedure when the fault
occurred, the current stack is the supervisor stack; when it is executing an interrupt handler
procedure, the current stack is the interrupt stack. (The processor switches to supervisor mode
when handling interrupts.)

« The fault record is copied into the area allocated for it in the new stack frame, beginning at
NFP-1. (See-igure 9-4)

e The processor gets the IP for the first instruction of the fault handling procedure from the
system procedure table (using the index provided in the fault table entry).

* The processor stores the fault return code {p0ilthe PFP register return type field. When
the fault is not a trace, parallel or override fault, it copies the state of the system procedure
table trace control flag (byte 12, bit 0) into the PC register trace enable bit. When the fault is a
trace, parallel or override fault, the trace enable bit is cleared.

On a return from the fault handling procedure, the processor performs the action described in
section 7.1.3.2Return Operatiolfpg. 7-7)with the addition of the following:

« The fault record arithmetic controls field is copied into the AC register.

¢ When the processor is in supervisor mode prior to the return from the fault handling proq
(which it should be), the fault record process controls field is copied into the PC registe 9
mode is then switched back to user, if it was in user mode before the call.

e The processor switches back to the stack it was using when the fault occurred. (When the
processor was in user mode when the fault occurred, this operation causes a switch from the
supervisor stack to the user stack.)

« When the trace-fault-pending flag and trace enable bits are set in the PC field of the fault
record, the trace fault on the instruction at the origin of the supervisor fault call is handled at
this time.

The user should note that PC register restoration causes any changes to the process controls do
by the fault handling procedure to be lost.
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9.8.4 Faults and Interrupts

When an interrupt occurs during an instruction that will fault, an instruction that has aready
faulted, or fault handling procedure selection, the processor:

1. Completes the selection of the fault handling procedure.
2. Creates the fault record.

3. Services the interrupt just prior to executing the first instruction of the fault handling
procedure.

4, Handles the fault upon return from the interrupt.

Handling the interrupt before the fault reduces interrupt latency.

9.9 PRECISE AND IMPRECISE FAULTS

As described in section 9.10.5, PARALLEL Faults (pg. 9-29), the i960 architecture — to support
parallel and out-of-order instruction execution — allows some faults to be generated together.

The processor provides two mechanisms for controlling the circumstances under which faults are
generated: the AC register no-imprecise-faults bit (AC.nif) and the instructions that synchronize
faults. Seesection 9.9.5Controlling Fault Precisiofipg. 9-21)for more information. Faults are
categorized as precise, imprecise and asynchronous. The following subsections describe each.

9.9.1 Precise Faults

A fault is precise if it meets all of the following conditions:

« The faulting instruction is the earliest instruction in the instruction issue order to generate a
fault.

« All instructions after the faulting instruction, in instruction issue order, are guaranteed not to
have executed.

TRACE and PROTECTION.LENGTH faults are always precise. Precise faults cannot be found in
parallel records with other precise or imprecise faults.
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9.9.2 Imprecise Faults

Faults that do not meet all of the requirements for precise faults are considered imprecise. For
imprecise faults, the state of execution of instructions surrounding the faulting instruction may be
unpredictable. When instructions are executed out of order and an imprecise fault occurs, it may
not be possible to access the source operands of the instruction. This is because they may have
been modified by subsequent instructions executed out of order. However, the RIP of some
imprecise faults (e.g., ARITHMETIC) points to the next instruction that has not yet executed and
guarantees the return from the fault handler to the original flow of execution. Faults that the archi-
tecture allows to be imprecise are OPERATION, CONSTRAINT, ARITHMETIC and TYPE.

9.9.3 Asynchronous Faults

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. This group includes MACHINE faults, which are not implemented on the 80960RX.

9.9.4 No Imprecise Faults (AC.nif) Bit

The Arithmetic Controls no imprecise faults (A C.nif) bit controls imprecise fault generation. When
AC.nif is set, out of order instruction execution is disabled and al faults generated are precise.
Therefore, setting this bit will reduce processor performance. When AC.nif is clear, several
imprecise faults may be reported together in a paralel fault record. Precise faults can never be
found in paralld fault records, thus only more than one imprecise fault occurring concurrently with
AC.nif =0 can produce a parallel fault.

Compiled code should execute with the AC.nif bit clear, using syncf where necessary to ensure
that faults occur in order. In this mode, imprecise faults are considered to be catastrophic errors
from which recovery is not needed. This aso allows the processor to take advantage of internal
pipelining, which can speed up processing time. When only precise faults are alowed, the
processor must restrict the use of pipelining to prevent imprecise faults.

The AC.nif bit should be set if recovery from one or more imprecise faults is required. For
example, the AC.nif bit should be set if a program needs to handle and recover from unmasked
integer-overflow faults and the fault handling procedure cannot be closely coupled with the
application to perform imprecise fault recovery.

9.9.5 Controlling Fault Precision

The syncf instruction forces the processor to complete execution of all instructions that occur prior
to syncf and to generate all faults before it begins work on instructions that occur after syncf. This
instruction has two uses:

« It forces faults to be precise when the AC.nif bit is clear.
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e It ensures that all instructions are complete and all faults are generated in one block of code
before executing another block of code.

The implicit fault call operation synchronizes all faults. In addition, the following instructions or
operations perform synchronization of all faults except MACHINE.PARITY:

e Call and return operations includirgll, callx, calls andret instructions, plus the implicit
interrupt and fault call operations.

e Atomic operations includingtadd andatmod.

9.10 FAULT REFERENCE

This section describes each fault type and subtype and gives detailed information about what is
stored in the various fields of the fault record. The section is organized alphabetically by fault
type. The following paragraphs describe the information that is provided for each fault type.

Fault Type: Gives the number that appears in the fault record fault-type field
when the fault is generated.

Fault Subtype: Lists the fault subtypes and the number associated with each fault
subtype.

Function: Describes the purpose and handling of the fault type and each
subtype.

RIP: Describes the value saved in the image of the RIP register in the

stack frame that the processor was using when the fault occurred. In
the RIP definitions, “next instruction” refers to the instruction
directly after the faulting instruction or to an instruction to which
the processor can logically return when resuming program
execution.

Note that the discussions of many fault types specify that the RIP
contains the address of the instruction that would have executed
next had the fault not occurred.

Fault IP: Describes the contents of the fault record’s fault instruction pointer
field, typically the faulting instruction’s IP.

Fault Data: Describes any values stored in the fault record’s fault data field.

Class: Indicates if a fault is precise or imprecise.

Program State Changes: Describes the process state changes that would prevent re-

executing the faulting instruction if applicable.
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Trace Reporting: Relates whether a trace fault (other than PRERET) can be detected
on the faulting instruction, also if and when the fault is serviced.

Notes: Additiona information specific to particular implementations of the
1960 architecture.
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9.10.1 ARITHMETIC Faults

Fault Type:
Fault Subtype:

Function:

RIP:

Fault IP:

Class:

Program State Changes:

Trace Reporting:

9-24

3H

Number Name

OH Reserved

1H INTEGER_OVERFLOW
2H ZERO DIVIDE

3H-FH Reserved

Indicates a problem with an operand or the result of an arithmetic
instruction. An INTEGER_OVERFLOW fault is generated when
the result of an integer instruction overflows its destination and the
AC register integer overflow mask is cleared. Here, the result’s
least significant bits are stored in the destination, whers
destination size. Instructions that generate this fault are:

addi subi stis
stib shli ADDI<cc>
muli divi SUBI<cc>

An ARITHMETIC.ZERO_DIVIDE fault is generated when the
divisor operand of an ordinal- or integer-divide instruction is zero.
Instructions that generate this fault are:

divo divi
ediv remi
remo modi

IP of the instruction that would have executed next if the fault had
not occurred.

IP of the faulting instruction.
Imprecise.

Faults may be imprecise when executing with the AC.nif bit
cleared. INTEGER_OVERFLOW and ZERO_DIVIDE faults may
not be recoverable because the result is stored in the destination
before the fault is generated (e.g., the faulting instruction cannot be
re-executed if the destination register was also a source register for
the instruction).

The trace is reported upon return from the arithmetic fault handler.
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9.10.2 CONSTRAINT Faults

Fault Type:
Fault Subtype:

Function:

RIP:
Fault IP:

Class:

Program State Changes:

Trace Reporting:

5H

Number Name
OH Reserved
1H RANGE
2H-FH Reserved

Indicates the program or procedure violated an architectural
constraint.

A CONSTRAINT.RANGE fault is generated when a FAULT<cc>
instruction is executed and the AC register condition code field
matches the condition required by the instruction.

No defined value.
Faulting instruction.
Imprecise.

These faults may be imprecise when executing with the AC.nif bit

cleared. No changes in the program’s control flow accompany t
faults. A CONSTRAINT.RANGE fault is generated after t

FAULT<cc> instruction executes. The program state is not affect®e®

Serviced upon return from the Constraint fault handler.
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9.10.3 OPERATION Faults

Fault Type: 2H
Fault Subtype: Number Name
OH Reserved
1H INVALID_OPCODE
2H UNIMPLEMENTED
3H UNALIGNED
4H INVALID_OPERAND
5H - FH Reserved
Function: Indicates the processor cannot execute the current instruction

because of invalid instruction syntax or operand semantics.

An INVALID_OPCODE fault is generated when the processor
attempts to execute an instruction containing an undefined opcode
or addressing mode.

An UNIMPLEMENTED fault is generated when the processor
attempts to execute an instruction fetched from on-chip data RAM,
or when a non-word or unaligned access to a memory-mapped
region is performed, or when attempting to write memory-mapped
region OXFF0084X X when rights have not been granted.

An UNALIGNED fault is generated when the following conditions
are present: (1) the processor attempts to access an unaligned word
or group of words in hon-MMR memory; and (2) the fault is
enabled by the unaligned-fault mask bit in the PRCB fault configu-
ration word.

An INVALID_OPERAND fault is generated when the processor
attempts to execute an instruction that has one or more operands
having special requirements that are not satisfied. This fault is
generated when specifying a non-defined sysctl, icctl, dcctl or
intctl command, or referencing an unaligned long-, triple- or quad-
register group, or by referencing an undefined register, or by
writing to the RIP register (r2).

RIP: No defined value.
Fault IP: Address of the faulting instruction.
Fault Data: When an UNALIGNED fault is signaled, the effective address of

the unaligned access is placed in the fault record’s optional data
section, beginning at address NFP-24. This address is useful to
debug a program that is making unintentional unaligned accesses.

Class: Imprecise.
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Program State Changes:

Trace Reporting:

Note:

FAULTS

For the INVALID_OPCODE and UNIMPLEMENTED faults
(case: store to MMR), the destination of the faulting instruction is
not modified. (For the UNALIGNED fault, the memory operation
completes correctly before the fault is reported.) In all other cases,
the destination is undefined.

OPERATION.UNALIGNED fault: the trace is reported upon return
from the OPERATION fault handler.
All other subtypes: the trace event is lost.

OPERATION.UNALIGNED fault is not implemented on i960 Kx
and Sx CPUs.
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9.10.4 OVERRIDE Faults

Fault Type:

Fault Subtype:

Fault OType:

Fault OSubtype:

Function:

Trace Reporting:

9-28

Fault table entry = 10H

The fault type in the fault record on the stack equals the fault type
of theinitial fault. The fault type in the internal registers equals the
fault type of the additional fault detected while attempting to
service theinitial fault.

The fault subtype in the fault record on the stack equals the fault
subtype of theinitial fault. The fault subtypein the internal registers
equals the fault subtype of the additional fault detected while
attempting to servicetheinitia fault.

The fault type of the additional fault detected while attempting to
deliver the program fault.

The fault subtype of the additiona fault detected while attempting
to deliver the program fault.

The override fault handler must be accessed through a system-
supervisor call. Local and system-local override fault handlers are
not supported and have an unpredictable behavior. Tracing is
disabled upon entry into the override fault handler (PC.te is
cleared). It is restored upon return from the handler. To prevent
infinite internal loops, the override fault handler should not set
PC.te.

Same behavior asif the override condition had not existed. Refer to
the description of the original program fault.
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9.10.5 PARALLEL Faults

Fault Type:

Fault Subtype:
Fault OType:
Fault OSubtype:

Function:

RIP:

Fault IP:

Class:

Program State Changes:

Trace Reporting:

Fault table entry = OH
Fault type in fault record = fault type of one of the parallel faults.

Fault subtype of one of the parallel faults.
OH
Number of paralel faults.

See section 9.6.4, Parallel Faults (pg.9-10) for a complete
description of pardld faults. When the AC.nif=0, the architecture
permits the processor to execute instructions in parallel and out-of-
order by different execution units. When an imprecise fault occurs
in any of these units, it is not possible to stop the execution of those
instructions after the faulting instruction. It is also possible that
more than one fault is detected from different instructions almost at
the sametime.

When there is more than one outstanding fault at the point when all
execution units terminate, a parallel fault situation arises. The fault
record of parallel faults contains the fault information of al faults
that occurred in paralel. The number of paralel faultsis indicated
inthe Paralld Faults Field (NFP-20). See Figure 9-3. The maximum
size of the fault record isimplementation dependent and depends on
the number of paralel and pipeline execution units in the specific
implementation.

The parallel fault handler must be accessed through a system-
supervisor cal. Loca and system-local parallel fault handlers are
not supported by the 1960 processor and have an unpredictable
behavior. Tracing is disabled upon entry into the parallel fault
handler (PC.te is cleared). It is restored upon return from the
handler. To prevent infinite internal loops, the parallel fault handler
should not set PC.te.

When all paralld fault types allow a RIP to be defined, the RIP is
the next instruction in the flow of execution, otherwise it is
undefined.

IP of one of the faulting instructions.
Imprecise.
State changes associated with all the parallel faults.

If al parallel fault types alow for aresumption trace, then atraceis
reported upon return from the parallel fault handler, or elseit islost.
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9.10.6 PROTECTION Faults

Fault Type:
Fault Subtype:

Function:

RIP:

Fault IP:

Class:

Program State Changes:

Trace Reporting:

9-30

H

Number Name
Bit 0 Reserved
Bit 1 LENGTH
Bit 2-7 Reserved

Indicates that a program or procedure is attempting to perform an
illegal operation that