gdb960 User’s Manual

Order Number: 485546-005

Revision Revision History Date
-001 Original Issue. 05/94
-002 Revised for R5.0. 02/96
-003 Revised for R5.1. 01/97
-004 Revised for R6.0. 12/97

-005 Revised for R6.5. 12/98

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Intel Corporation
Literature Sales

P.O. Box 5937

Denver, CO 80217-9808

Or you can call the following toll-free number:
1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel
sales office.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel
or otherwise, to any intellectual property rightsis granted by this document. Except as provided in Intel’s Terms and
Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied
warranty, relating to sale and/or use of Intel productsincluding liability or warranties relating to fitness for a particular
purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for usein medical, life saving, or life sustaining applications. Intel may make changes to specifications
and product descriptions at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosureis subject to restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to
the government, in accordance with the software license agreement as defined in FAR 52.227-7013.

Copyright 0 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim
copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above
conditions for modified versions.

* Other brands and names are the property of their respective owners.

N
&S
printed on

recycled paper Copyright [0 1994, 1996, 1997, 1998. pintel Corporation. All rights reserved.

Contents

Chapter 1

Chapter 2

The gdb960 Debugger

gdb960 Features and Benefits.......cccceeeeeiiiiiiiiiiiiieiiiiinn, 1-1
What's New in gdb9607?............oovviiiiiiiii e 1-2
About this Manualooiiiii 1-3
(7o) 011=] | £ 7S 1-3
AUdIENCE ... e 1-5
Notational Conventionsccccevviieeeeiiiceeiiceee e, 1-5
UNIX* and Windows* Command Line Differences......... 1-6
Related Publicationsccooviiiiiiiiii e 1-6
ONliNE HEIP e 1-7
Contacting Intel Support ServiCes.........ccccvvviiiiiiieeeeeeeenns 1-7
Getting Started
Setting Up Your Target Board.............ccoevvviviiiiiiiiiiiiiiinnnnn. 2-1
Using the MON960 Debug Monitor with gdb960................ 2-2
TCP/IP CommuniCationcoeeeviveiiiiiiiee e 2-3
Hardware RequIrementseevveeieeieieiiiiiiiiiiieeeeeeenn 2-4
Server SEMANTICSuuiiii e e e 2-4
Client SEMANTICS ..evvvviiiei e 2-4
JTAG Emulation SUPPOITccoieiiiiii 2-5
Connecting the SP1610 to Your Target System............ 2-5
Target Cable CONNECLOrS...........ccvvvvviviiiiiiiiiiiiiiieee 2-6
JTAG Header Pin Definitionscccceevvveeiiiieeiinnnnnn. 2-7
Running gdb960 with JTAG ... 2-7
gdb960 ... 2-7
OADOBOV......oiiiiiiieeee 2-7

gdb960 User’'s Manual

Compiling for Debugging..........coovvviiiiiiiiiieeeeee, 2-8
Starting gdb960.............iiiiiii s 2-10
Starting the gdb960 Windows Graphical User
(=T = Lo = USSR 2-10
Starting the gdb960 UNIX Graphical User Interface 2-10
Starting the Command Line Interface.........ccccccccceeeennn. 2-11
Changing Your Target Settings After Starting
OADOBO0.ceiiiiiiiiiiiiiiieee 2-12
HDIL ArgumeENntSoooviiiii e e eeeis e e e e 2-14
Combining Serial Communication and PCI
Downloadingcoooviiiiiiiiii 2-14
Emacs INVOCcationceeiiiiieiiiiiiiiiieee e 2-15
Batch Mode Invocationccevvveeiiiiiiieieeeeeeeeiies 2-15
MOdE OPLIONS ... 2-15

Chapter 3 Using the gdb960 Windows Graphical
User Interface

OVEIVIEW ... 3-2
ONlNE Help o 3-2
Starting and Stopping the Debuggercccccceveeiiiiniiiinnns 3-3
Starting the Debugger ... 3-3
Stopping the Debugger..........ouvvviiiiiiiiiiiie 3-3
A Sketch of the Debugger..........cccccvvviiiiiiiiiiiiiiieeeeeeee 3-4
ConNNEeCtiNg 10 @ TArget.......uuuriiiiiiiiiieieiiiieeeee e 3-6
Setting the Search Path ..., 3-9
Opening a File......ooooi e 3-10
LiStiNg COEuuuiiiiiiiiiiiiiiiiii e 3-11
Debugging With gdb960............oooviiiiiiiieeeee 3-12
Debugger BUttonSooooiiiiiiiiie 3-13
The Debug MenU..........coooiiiiiiiie e 3-17
Downloading a Modulecccooiiiiiiiiiiiiiiiiiiee 3-17
Setting Breakpoints ..., 3-17

Navigating through a Program............cccccoviiiiiiiiiiinnnnns 3-19

Contents

Chapter 4

Viewing Alternate Stack Levelsccccoeevviiiiiiiiiiiinnnnnn. 3-23
Using the Auxiliary Debugger Windows........................ 3-24
INSPECT .. i 3-24
LOCAIS. ..eiiiiiiiiiiieieeeeeeeeeee 3-26
BaACK TracCe.....ccvvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 3-27
=T o) (=] £ T 3-27
=70 0 o] YRR 3-29
SOUICE VIBWSvviiiiiiiiiiirineininnnnnnnensennnsnnnnnnnnnnnnsnnnnnnnnnnes 3-31
Using the gdb960v Text Editor.............ccoovvviiiiiiiiiiee e, 3-34
Editing a Fileccooorie e, 3-34
Opening a File ..., 3-34
Creatinga New Text Fileccoooeviiiiiiiiiiiiieee, 3-35
Cutting, Copying and Pasting Textcccceeeeeeeeeee. 3-36
MoVINg 10 @ LiNEcvvviiiiiieiecceee e, 3-36
Finding a Text StriNg.........ccoovvviiiiiiee e, 3-36
Finding and Replacing Textcccovvvvvvviiivinnnenennn. 3-36
Printing the Contents of an Active Window 3-37
Customizing a Print JOb.........cccoovvieiiiiiiiiiiiien e, 3-37
Savinga File......cccooooiiiiii e 3-37
Saving A New File or Renaming an Existing One...... 3-38
Setting the Save OptioNS.......ccccoevveeeviiiiiiiiiee e, 3-38
Customizing the Text EAitorccoovvviiiiiiiiiieeencies 3-38
Setting the Attribute Pane.............cccoovvvviiiieni e, 3-38
Changing the Tab Settingsccevvvviiieiiiieeeeinn, 3-39
Changing Font Type and Font Sizeccceeee. 3-39
Changing Syntax Coloring in a Source File............... 3-39
The Debugger Command Line Windowcccceeeeennn. 3-40
Using the gdb960 UNIX Graphical User Interface
OVEBIVIBW ...ttt a e e e e e e e e ettt s e e e e e e eeeeees 4-1
ONINE HeIP oo 4-2

Running the GUI Debugger...........uuuuuiiiiiiiiiiiiiiiiiiiiceeaeeeee 4-2

gdb960 User’'s Manual

Vi

Chapter 5

A Sketch of the Debugger......cccooovviiiiiiiiiiiiici e, 4-3
Setting the Working DIrectorycccceeeevieiiiiiiiiiiieeee e, 4-4
Connecting to a Target........ccoovvvvveiiiiiiiiie e 4-5
Opening a File........coooiiiice e 4-8
LisSting COdecvvviiiiiieiiiiecee e 4-9
Setting the Search Directories...........cccceevvieeeiiiiiiiiiieee e, 4-11
Using the DebUQQEroovvviiiiiiii e, 4-12
Code Display OptionS........cccceviviiiiiiiiii e 4-13
Setting Breakpointscccceeeiiieieiiieiiiiiee e, 4-13
RuUNNing Your Program..........cccoevvviiiiiiiiiiiiieeeeeeeeeeeiiinns 4-14
Using the Up and Down Stack Frames Feature............. 4-15
Viewing the Contents of Registers..........ccccoeeeeiiieenninnnn, 4-16
Using the Backtrace Window............ccccceeeiiiiieiiiiiieennnnn, 4-17
Using the Print/Print Star Options..........ccccooeeeevviviiiinnnnn. 4-17
Editing Source Codeooovviiiiiiiiieeeceeeee e, 4-17
Creating a New File..........ooiiiiiiiiiiiciee e, 4-18
EXiting the DebUQQEr.........uuuiiiiiiii e 4-18
Customizing the GUI.........cccooiiiiiiiiicie e, 4-18
Configuring the gdb960 Environment
Rules for Using gdb960 Commands...............cceevveevevvvnnnnns 5-1
File-specifying OptioNS............uuuuuiimiiiiiiiiiiiiiiiiiiiiiiiiiiiiieneees 5-2
gdb960 Environment Variables ..., 5-5
The help Command ... 5-6
The show Command...........coovvviiiiiiiiie e 5-7
The info CommaNndcoooiiiiiiiici e 5-7
The set prompt Commandcoevvviiiiiiiiiiiiiiiiiiiieieeeeeee 5-8
Command Line EditiNg.......ccooerrriiiiiiiiiiee 5-8
Using the History Featureccccocuvimiiiiiiiiiiiiiiiiiiiiiennne 5-9
HIStory EXpansion ... 5-10
shell and make Commands.........cccvvveeiiiiieiiiiiiiiiee e 5-11
SCIEEN SIZE e 5-11

Contents

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Setting RAIXccooviiiiiiiiie e 5-12
Messages, Complaints and Cautions............cccceeeeeeeeeennnee. 5-13
EXIting gdbO960ovviiiiiiiiieeeee e 5-14
Example gdb960 Session
Example SeSSiON ... 6-1
Running Your Program with gdb960
RUNNING Programs..........ccooiviiiiiiiiiiieiee e 7-1
Setting Your Program’s ArgumentS...........coouvvvieeiiieeeereennnns 7-2
Setting Your Program’s Working Directory........................ 7-2
Your Program’s EnvironMentooviieeieieeeeveeennvnnnnn. 7-3
Program Execution Control
Breakpoints.........coovviiii 8-1
WaAtChPOINTS ..o 8-5
Deleting Breakpoints and Watchpoints............ccccceeeeee. 8-6
Disabling Breakpoints and Watchpointsccc....... 8-7
Break ConditioNS.........cooeeeviiiiiiiiiiiaee e 8-9
Commands Executed on Breakingccccvvvvvennnnen. 8-11
(©0] 111 01811 0o RTE TP PP PP PPPPPPPPPPPPP 8-13
S (=] o] o] [o PSP P PP PPPPPPPPPPP 8-13
Continuing at a Different Addressvvvvvviiiiiiiiiieinennn. 8-15
OMU COMMANTS ...ttt 8-17
gmu detect gmu Protectcccccuuemmmmmmiiiiiiiiiiiiiiiiiiinens 8-17
SYNEAX 1ottt 8-18
EXaMPIES ...ooviiiiiiiiiiiieee 8-20
Examining the Program Stack
SEACK FrameS.......cvviiiiiiiiiiiiiiiieiiieeeeeeeeeeeee ettt 9-1
BaCKLraCesS.......ccvvviiiiiiiiiiiiiiiiii 9-2
Selecting @ Frame........cceeeiii i 9-4
Frame Informationccccccciiiiii 9-5

Chapter 10 Examining Source Files

vii

gdb960 User’'s Manual

viii

Chapter 11

Chapter 12

Displaying Source Lines.........cccoeeeiiiieiiiiiiiiiciee e, 10-1
linespec Definitionvviieiii i, 10-3
Searching Source FileS.......ccooooiiiiiiiiiiie e, 10-5
Specifying Source DirecCtoriesccccvveeieeieeiviieiiiiee e, 10-5
Displaying Program Data and Symbols
EXPreSSIONScuiiiiiiiiiiiiiiiiiiii e 11-1
Program Variables ..o 11-2
Assignment to Variables ... 11-3
ATIFICIAI AITAYS ..o 11-4
FOrmat OPLiONSuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee 11-5
OULPUL FOrMALS ... 11-9
EXamining MemoOry..........cccooiiiimiiiiiiiiiiiiiiiiiee 11-10
StOrNG t0 MEMOTY ..o 11-15
AUtOMALIC DISPlaYcevvvvviiiiiiiiiiiiiiiiiiiii 11-15
Examining the Symbol Table.............ccccciiiiiiiiiiiiiiiiiiiis 11-17
Command-Line Completion............cccceeeeiiiiiiiiiieie 11-19
Letting Readline Type FOr YOU...........uuuiiiiiiiiiiiiiiiiiiiiiiiiinns 11-20
Working with Overload Member Functioncccccccee.... 11-20
Value HISTOIY....ccvviiiiiiiiiiiiiieeieeeeeeeeeeee e 11-21
Convenience Variables ..., 11-22
REGISTEIS. ... 11-23
EXAMPIES ..o 11-25
Profile Data File Manipulationcccccuveiiiiiiiiiiiiinnnn. 11-26
gdb960 Command and Option Reference
gdb960 Invocation ArgumeNntS...........cceevvvveeeviiiiiiiiin e, 12-1
gdb960 ComMMANAS.....cciieieiiiieiice e 12-3
add-symbol-fileccooeiiiiii e, 12-3
aplink enable ..., 12-3
APIINK rSEL..uuui i 12-3
aplink SWItCh ..., 12-4
aplink Waltcoooooiii 12-4

Contents

AWALCK. ..ee e 12-4
DACKLIACEovveiiie e, 12-4
BrEAKcvei i 12-5
Call e 12-6
Lo o IR 12-6
(o1 (=T | TR 12-6
COMIMANGS ...vvniiiiiiieee et e e et eeraa s 12-6
(oT0] Lo 11 o] o TP 12-7
(o70] 011 01 =TT 12-7
AEfiNE oo 12-8
AEIBTE ..o 12-8
delete displaycoevvieeiiiiiii e 12-8
(o [T =Tox (0] oYU 12-8
AISADIE... . 12-9
diSasSEMDBIE ... 12-9
AISPIAY .. 12-10
Lo To o101 0[=T o | AR PPTR 12-10
Lo 1o 11 o R 12-10
down-silentlyccooooiiiiiii e, 12-11
ECRO ... 12-11
ENADIE ... 12-11
EXEC-TIB. e 12-12
Bl e 12-12
NS e 12-12
forward-SearChccoeeviiiiiie e 12-13
fTAME . et 12-13
gmu detect define........ccooiiiiiiiii e, 12-14
gmu detect disable............cccooeeeei i, 12-14
gmu detect enable...........ccceiieiiiieiiiie e 12-15
gmu protect define ..., 12-15
gmu protect disable..........ccccoeeeiiiiiiiii e, 12-16

gdb960 User’'s Manual

gmu protect enable..............cooviiiie . 12-16
RBIEAK ... 12-17
NEIP oo 12-17
[0] 1o (= IS 12-17
1] (o PR 12-17
18 0] o 12-20
11 SRR 12-20
1 g F= T [PR 12-21
11 0 o] PP 12-21
(o= Lo IR TP 12-22
INAKE .vteeeeete ettt e e 12-22
10 [ole] o IR P PP PPRUPPI 12-22
DXL ettt 12-22
NIEXEL it 12-23
o 11 110 | PSP 12-23
PAtN ..o 12-23
] P 12-23
PINEE Lo e 12-24
ST 1 6537 1 1 TSP 12-24
PrOfilE oo 12-24
01177 012 12-25
PWA Lo 12-25
0 [PSP 12-25
TOFEAK ... 12-25
L= 0 LSRR 12-26
FES L . it 12-26
FEVErSE-SEArCh ..o, 12-26
U] 12-26
SBAICK ...t 12-27
SEleCt-framevv e 12-27

Contents

Chapter 13 Storing Commands
User-defined Commands...............evveeeeeeeeeeeennnn.
User-defined Command Hooks
Command FileS........cccoovveeiiiieiiiii e,
Commands for Controlled Outputeeee

Appendix A Using gdb960 Under GNU Emacs
Setting Up gdb960 in Emacs............ccceevvvvvvvnnnnn.

If you have GNU Emacs version 19 or greater..............

If you have an earlier version of GNU Emacs
Either version ...,
Using Emacs Commands with gdb960

Appendix B Command Line Editing

Xi

gdb960 User’'s Manual

Xii

Introduction to Line Editing.......ccc.oeoeeiiiiiiiiiiiiiei e, B-1
Readline INteractionuuuueueuummmeeniiiiiiieneeineeennnnnennnnnes B-2
Readline Bare Essentialscccccoviiniiiiiiiiiiiiiiiiiinnns B-2
Readline Movement Commandsoooeviiiiiiinnnnnns B-3
Readline Killing Commands..............cceceevvvvvevviiiivinnnnnnn. B-3
Readline Arguments...........cccceeeiieeeiiieiiieeee e, B-5
Readline INIt Fileuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeees B-5
Readline Variablescccoooiiiiiiiiiiis B-6
Readline Key Bindingscccooeviieeiiiiiiiiiiiiieeeeeceeeeinn, B-7
Commands FOr MOVING.........cccovvviiiiiiiiiie e B-7
Commands For Manipulating Historycccceeeeeeeeneeenn. B-8
Commands For Changing TeXtcccceevvveiviiiiiiiiiii e, B-9
Killing And Yankingceeiiiieeeeiiiiiieiceee e B-10
Specifying Numeric Arguments..........cccceeeeeeeereieeeiiiceeeeenen, B-11
Some Miscellaneous Commands........cccccevvvveeeeeeeeeenennnnnn, B-11
Readline Vi MOdEuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiieeeeeeeeees B-12
Appendix C GNU History Library
HIStOry INteractionccccooiimmimiiiiii C-2
Event Designatorscoooviiiiiiiieee e C-2
WOrd DeSIgNALOrS.uuuueiiiiiiiiiiiiiiiiiiiiiieeiieeieinninnenennnnes C-3
MOGIFIEIS ... C-3
Appendix D Using gdb960 with ApLink
ApLINKk CommandsS...........ccoviiiiiiiiiiii e, D-1
Using gdb960 With ApLINKcoovviiiiiiiiiiieeiieiieeeeiinn, D-2
gAb960 SCrIPLS ..oeveviiiiii i D-4
Index
Figures
1-1 Sample GUI Debugger Windows (Windows NT*)...... 1-3
3-1 Debugging WIiNdOWSccccoeviiiieiiiiiieeicee e, 3-4
3-2 The Debug MENUcoeiiieiiiiiiiiiiii e 3-5

Contents

Tables

3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17

1-1
1-2
3-1
3-2
3-3
3-4
3-5

3-6
3-7
3-8
8-1
12-1

The Target Connect Window............cccoovviivieininnneennn. 3-6
Target Connected WIiNdow.........cccoeeveeeriiiiiiiiiiieneeennn, 3-8
Source Search Path Windowccccoeeeeeeenennn, 3-9
(@] 01T VAV 1 s o [0 1 SRR RPN 3-10
File/Function Lister Windowcccoovvviiiiiiiinnnns 3-11
Debug Toolbar ..., 3-13
The RUN WINAOW........uuiiiiiiiiiiiiiiiiiiiiciceeeeee e 3-19
The Context POINTENuuuuviiiiiiiiiiiiiiiiiiiiiiiiiennnennnns 3-20
Inspect Windows in the Debugger........cccoeeiiveieeen. 3-25
Inspect: Partly Hidden Structure Hierarchy 3-26
Locals WINdOW........coooieiiiiiiiiiiieeee 3-26
Backtrace Windowccooviiiiiiiiiiiiiiiiiiiiieeeeeeeeee 3-27
Registers Windowiveeiiiiei i, 3-28
Memory WINAOWoooviiiiiiiiiieeccceciee e 3-29
Source View WINAdOWcoooeeiiiiiiiiiiiieeeeeeen 3-32
Chapter SUMMArIESccooeeieeeeeeeeeeeee e 1-4
APPENdIX SUMMAIIESuuviiiiiiiiiiiiieiiieeeeeeee e 1-5
Summary of Debug Buttons............cccccoeeiiiiiiiiiiins 3-13
Breakpoint BULtONS.............uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiee 3-18
Buttons for Stepping Through a Program.................. 3-21
Buttons for Navigating Up and Down the Stack......... 3-23
Buttons for Bringing Up Auxiliary Debugger

WINAOWS ..o 3-24
Options for Bringing Up the Memory Window 3-29
Memory-display Formats and UnitS.......................... 3-31
Print OptioNScovviiiiii e 3-37
ACCESS TYPES..uuniieiiiiii ittt 8-20
ACCESS TYPES.cuuniieiiiiii et e e e e 12-16

Xiii

The gdb960 Debugger

This manual tells you how to use the gdb960 debugger in Microsoft

Windows* 95/Windows NT* and UNIX*. gdb960 is a source-level

symbolic debugger that helps you find problemsin your application code.

When used with atarget platform (such as a Cyclone evaluation platform)

and monitor software running in the target (e.g., MON960) gdb960 lets

you:

e Runyour program with any command line arguments.

e Stop and restart your program at specified locations and conditions.

e Examinetheinterna state of your program when execution has
stopped.

e Changethevaluesin your program so that you can experiment with
corrections and continue debugging without re-invoking the program.

This chapter provides the following information:

e Alist of features and benefits of the gdb960 software debugger.

e A description of the new features in gdb960.

e Information about this manual including chapter and appendix
descriptions and notational conventions.

¢ Instructions on how to access the online help systemsthat are
provided with gdb960.

gdb960 Features and Benefits

e Graphica and command line user interfaces. With gdb960v provides a
windowed environment where you can access almost all of gdb960’s
command line features (listed below).

11

1

gdb960 User’'s Manual

1-2

Source-level debugging. Y ou can set and display breakpoints directly
in source code, browse through program modules, and examine the
procedure call chain.

Watch expressions. Y ou can select specific program variables to
display, and you can watch the values of these variables change as you
step through your program.

Breakpoints. Y ou can define a breakpoint at a function name, source-
code line, an assembly instruction, an execution address, or (on the
1960® Cx, Jx, Hx, and Rx processors) a data address.

Stepping. Y ou can execute your program as single assembly-language
steps, high-level-language statement steps, or high-level-language
procedure call or return steps.

Register access. Y ou can examine and modify the processor registers.

Memory access. Y ou can display and modify memory and system
tables. Y ou can also display and assemble code in memory as
assembler mnemonics.

Symbolic support. Y ou can use symbols to debug al programs
written in the C language. Y ou can aso display and modify program
memory using program symbols.

Downloading. Y ou can download i960 processor ELF/DWAREF,
Common Object File Format (COFF) files, or b.out files.

Release 6.0 includes support for source-level debugging of C++ code.
Thisfeatureis available in both the command line and GUI versions of
the debugger. Debugging is supported only with ELF/DWARF
Common Object File Format.

What's New in gdb960?

64-bit Integer Support: The debugger now dispalys long long int types
and dispalyslong long valuesin all standard formats including signed
and unsigned decimal, octal, and hex.

JTAG Emulation Support: This version of gdb960 adds JTAG
interface support. The debugger connects to the Spectrum Digital
Incorporated’s SPI610* JTAG scanner. The SPI610 isalso known asa
scan path interface adapter or pod.

The gdb960 Debugger

About this Manual

Table 1-1

Contents

This guide includes the following chapters and appendices:

Chapter Summaries

Chapter

1. The gdb960
Debugger

2. Running gdb960

3. Using the gdb960v
Windows Graphical
User Interface

4. Using the gdh960
UNIX Graphical
User Interface

5. Configuring the
gdb960
Environment

6. Example gdb960
Session

7. Running Your
Program with
gdb960

8. Program Execution

Control

Description
This chapter.

Provides setup instructions and invocation
procedures for all three gdb960 interfaces.

Tells you how to use all features of the
Windows 95/NT GUIL.

Tells you how to use all features of the UNIX GUI.

Describes the basic commands for configuring the
gdb960 environment, including commands for
specifying files and directories.

Provides an example session of the gdb960
Software Debugger.

Describes how to run programs from the gdb960
debugger, including:

« specifying arguments for your program

e setting the working directory for gdb960

e setting the environment for gdb960
Describes the features of gdb960 that let you halt,
examine, and restart your program.

continued [J

1-3

gdb960 User’'s Manual

1-4

Table 1-1 Chapter Summaries (continued)
Chapter Description
9. Examining the Provides information about manipulating stack
Program Stack frames, selecting frames, creating traces, and
extracting information from selected frames.

10. Examining Source Describes commands and techniques that allow

Files you to display specified pieces of source files.

11. Displaying Program Contains information about examining data

Data and Symbols through expressions, variables, and artificial
arrays. This chapter also presents information
about accessing the value history, using
convenience variables, and accessing registers.

12. gdb960 Command Provides a list of the gdb960 command line

and Option options and commands, along with common HDIL
Reference invocation options.

13. Storing Commands Tells you how to define custom commands, create
command files to execute commands sequences
automatically, and control gdb960’s output.

Table 1-2 Appendix Summaries

Appendix

A. Using gdb960
Under GNU Emacs

B. Command Line
Editing
C. GNU History Library

D. Using gdb960 with
ApLink

Description

Describes setting up gdb960 in Emacs and using
Emacs commands with gdb960.

Describes GNU’s command line editing and
provides some examples of its use.

Describes the GNU history library, a programming
tool that provides a consistent user interface for
recalling lines of typed input.

Tells you how to use the debugger with the ApLink
debug probe.

The gdb960 Debugger

Audience

To use this product, you must be familiar with your host operating system,
the 1960 processor architecture, and the 1960 processor program
development tools (CTOOLYS). Seethelist of related publications listed in
Getting Started with the iI960® Processor Development Todts more
information on the i960 processor. This manual assumes that you know
techniques for writing and debugging software.

Notational Conventions

The following notational and terminology conventions are used throughout

this manual:
debugger, debug tool

1960 Cx processor

1960 Hx processor
1960 Jx processor

1960 Kx processor

1960 Rx processor

target processor

This type style

refers to the gdb960 software debugger.

refers generically to the i960 CA and CF
processors.

refersto thei960 HA, HD, and HT processors.
refersto the 960 JA, JF, JD, and JT processors.

refers generically to the i960 KA, KB, SA, and
SB processors.

refers generically to the 960 RD, RP, RM and
RN processors.

refers to the 1960 processor on the target board.
This processor can be an 1960 Sx, Kx, Cx, JX,
HX, or Rx processor.

indicates an element of syntax, areserved word, a
keyword, afilename, computer output, or part of
aprogram example. The text appearsin
lowercase unless uppercase is significant.

| islowercase letter L in examples.
1 isthe number 1 in examples.

1-5

gdb960 User’'s Manual

1-6

This type style

This type style

O isthe uppercase O in examples.
0 isthe number O in examples.

indicates the exact characters you type asinput in
examples.

indicates a place holder for an identifier, an
expression, a string, asymbol, or avalue.
Substitute one of these items for the place holder.

means the syntactic symbols enclosed by the
braces are optional.

means you must select one, and only one, of the
syntactic symbols enclosed in the braces.

means exclusive or. Select only one of the
syntactic items on opposite sides of the bar.

means and. In syntax specification (except when
used in a C/C++ expression as a unary operator),
shows that symbols on both sides of the & must
appear together.

UNIX and Windows Command Line Differences

Most examplesin this manual show a UNIX command line. Unless
otherwise specified, examples work in both UNIX and Windows 95/NT
environments. In Windows you can precede optional arguments with either
a - or/; however, you must use a backslash (\) in directory pathnames.

Related Publications

This manual contains the information needed to use the debugger. The
publicationslist in Getting Started with the iI960® Processor Development
Toolsprovides the order numbers and brief descriptions of related manuals
and books. For information on ordering these and other Intel publications,
contact your local Intel sales office or writeto the Intel Corporation

The gdb960 Debugger 1

Literature Sales, P.O. Box 5937, Denver, CO 80217-9808 or call
1-800-548-4725.

Online Help

All three gdb960 interfaces (Windows GUI, UNIX GUI, and
Windows/UNIX command line) provide online help.

In Windows 95/NT, reference information is available to you anytime by
pressing F1 in any window, or by opening the Help menu and choosing
any of the help options listed there. Using the F1 key provides you with
context-sensitive information about the current active window.

The UNIX help system is HTML-based and can be viewed with any web
browser such as Mosaic* or Netscape*. To view the file, simply open the
filewi ngdb960. ht mwith your web browser. At installation thisfileis
placed thein directory [$G60BASE/ $i 960BASE] / ht m / t ool s/ .

When running gdb960 from the command line, use the hel p command as
described in Chapter 5. This allows you to access reference information
about specific gdb960 commands.

Contacting Intel Support Services

If you need service or assistance with the debugger, refer to Getting Sarted
with the i960® Processor Development Tools.

1-7

Getting Sarted

This chapter provides information on setting up your target platform and

host PC to use with gdb960. In this chapter you:

e Set up your target board

e Learn about MON960, the onboard monitor software that gdb960 uses
to communicate with your evaluation board.

» Learn about recompiling your software for debugging.

e Learn how to start gdb960’s Windows, UNIX, and command line
interfaces

For some operations, you may need to refer to your target board manual,
theMON960 Debug Monitor User’s Guidand the i960® Processor
Compiler User's Guide

Setting Up Your Target Board

To run your software, you must have atarget board connected to the host
computer. Target boards such as the Cyclone evaluation platform support
communications via seria port, paralel port, or PCI bus. Using mondb and
gdb960, you can create a TCP/IP link to atarget board connected to
another computer. The table below shows the host requirements for using
each type of communication:

2-1

gdb960 User’'s Manual

Communication Media Resource(s) Required
Serial Communication e One available serial port
Serial Communication e One available serial port

/Parallel Download .
e One available parallel port

PCI Communication/ e One available full length PCI slot
Download (fastest)

TCP/IP Connection e Target board connected to host PC
(server) via serial, serial/parallel, or
PCl link.

e Server running mondb using the
-srv host_nane port option.

¢ Client running gdb960 using the
-tcp host_nane port option.

. Network connection.

e TCP/IP software running on both
server and client.

If your PC host and target support PCl communication, you will probably
want to take advantage of the superior host-to-target transfer speeds that
PCl communication provides. See the MON960 Debug Monitor User’'s
Guidefor alist of 1960 evaluation boards that support PCI communication.
For information on setting up the TCP/IP link see “TCI/IP
Communication” on page 2-3.

Refer to your target board documentation for steps on connecting the board
to your host system.

Using the MON960 Debug Monitor with gdb960

The MON960 debug monitor software is resident in ROM or Flash on all

evaluation boards provided by Intel. This software allows a debugger such
as gdb960 to communicate with the evaluation board, and view and modify
memory. If you are using a Cyclone evaluation board, you probably do not

Getting Sarted 2

need to install the files from the MON960 install ation media, since the
software in your evaluation board is sufficient for all gdb960 debugging
features.

If, however, you need to update the version of MON960 in your evaluation
board or want to retarget MON960 for a custom board, you must install the
MON960 software to the host. The MON960 installation mediaincludes
ROM images (hex files) for al currently supported target boards and
source code. MON960 also ships with its source code, so you can modify
MON960 to support custom boards. For more information, refer to the
MON960 Debug Monitor User’s Guide

Because MON960 is a separate product from CTOOLS, versions of
MON960 may be released between releases of CTOOLS. Dependencies
between versions of MON960 and versions of the tools are described in the
release notes. For details on versions and dependencies, refer to the release
notes and the MON960 Debug Monitor User's Guide

Updated versions of MON960 are available free on the Intel World-Wide
Web server at:

http://ww.intel.com

TCP/IP Communication

gdb960 supports a operation client mode using the TCP Internet Protocols
(AF_INET, SOCK_STREAM) to establish the connection. The operation
of gdb960 in client mode is completely transparent to the user with the
exception of the command line options required. The server must have a
target 1960 board installed and be ready for communication via serial or
PCI connection prior to starting the client.

The gdb960 TCP/IP client communication software is implemented as a
standard driver that is part of the HDILCOMM library. Both client and
server systems must have standard TCP/IP communication software
installed in order for gdb960 to function in TCP/IP mode.

2-3

gdb960 User’'s Manual

The client HDILCOMM packets, which are normally sent directly to the
target board via SERIAL or PCI connection, are encapsulated into standard
TCP/IP packets and sent to the server where they are extracted and
forwarded to the target board via serial or PCI connection. Response
HDILCOMM packets from the target board are received by the server,
encapsulated into standard TCP/IP packets, and sent to the client for
processing.

Hardware Requirements

» PCor UNIX workstation for client operation.

e PCor UNIX workstation for server operation.

* 1960 processor evauation board installed on the server machine.
¢ Network connection between client and server.

Software Requirements
» TCP/IP software installed on both client and server.

Server Semantics

Invoke the mondb executable with the - srv option and one of the

standard target board communication options (serial or PCI). The -srv

option must be immediately followed by two arguments. The first

argument is the name of the server machine that directly corresponds to

that machine’s IP address. The second argument is the server port number
that is used to establish the client/server connection. Note that selecting a
port number is left to the operator, there is no standard port reserved for
this type of connection. For example:

nondb -pci -srv comnput er XYZ. conmpany. com 1234

Client Semantics

Invoke gdb960 executable with the cp option. Place the same two
arguments that were used to invoke the server immediately after tipe
option. The first argument being the machine name of the server and the

Getting Sarted

second being the port number to be used for establishing the connection.
For example:

gdb960 -tcp comnputer XYZ. conpany. com 1234

JTAG Emulation Support

Thisversion of gdb960 adds JTAG interface support. The debugger
connects to the Spectrum Digital Incorporated’s SPI610* JTAG scanner.
The SPI610 is also known as a scan path interface adapter or pod. The
JTAG interface is supported on Windows 95, NT4.0, IBM RS6000*, Sun
Solaris*, and Hewlett Packard HP700*. The JTAG interface requires:

Spectrum Digitals Incorporated SPI610 JTAG scanner. Spectrum
Digital, Inc. web site is http://www.spectrumdigital .com/

Control code file, spi610.gdb for the scanner. Thisfileis provided by
Spectrum Digital Incorporated. Their installation program will install
the file in the same directory as gdb960 (i.e. $G960BA SE/bin or
$I1960BASE/bin). Alternatively, the file can be saved in the current
working directory as from which gdb960 was invoked.

mon960 version 3.3.0 or later. hdil and hdilcomm libraries have
considerable modifications and new filesto allow the JTAG extension.
1Q80960JT 100(little endian mode only), IQ80960RP, 1Q80960RPL YV,
1Q80960RD, 1Q80960RM, IQ80960RN evaluation platforms, or your
own platform with one of the equvalent processors, a JTAG connector,
and a JTAG minimum version of mon960 ported to your system.

Connecting the SPI610 to Your Target System

Figure 1 shows how you connect the SPI610 Emulator Pod and 16

conductor ribbon cable (tail) to your target system. In most cases, the target
system will be a ‘CYCLONE’ PCI board in another chassis, or a target
board of your own design. The target system must have a mating 16 pin
(8x2 double row header) connector.

2-5

gdb960 User’'s Manual

Target Cable Connectors
Figure 1: Connecting the SP1610 to your Target System

-pin fermale
D-sub connector
(Plugs into serial port on PC)

E .

9-pin male T e
D-sub connector == :

SP1810 Emulator Pod

a o .
COLRRHD & 1 1)
:

110/220 4 :
WA |
== For example:
Power Suppl:llz.' 980 microprocessor
NOTE. Be very careful with the target cable connectors. Connect them
gently. Do not force them into position or you may damage the connectors.

Do not connect or disconnect the 16-pin cable while the target systemis
powered up. Prior to connecting the emulator pod to the target, remove
power from the target or turn the target system off.

2-6

Getting Sarted 2

Connect one end of the supplied cable to the serial port that you intend to
use. Connect the other end of the cable to the 9 pin connector on the
SPI1610 emulator pod.

The SPI1610 should be powered by the power supply provided with the
SPI1610.

JTAG Header Pin Definitions

The SPI1610 JTAG Emulator interfaces to a 2x8 double row header on the
target board. The signals of this connector are defined in Table 1.

Table 1: JTAG Pin Definitions

Pin # Signal Pin # Signal
1 TRST# 9 GND
2 TDI 10 GND
3 TDO 11 GND
4 T™MS 12 GND
5 TCK 13 GND
6 LCDINIT# 14 GND
7 |_RST# 15 GND
8 PWRVLD 16 GND

Signal descriptions can be found in the i960® RM/RN 1/O Processor
Developer’'s Manual, 80960RM I/O Processor Data Sheet and the
80960RN I/O Processor Data Sheet.

Running gdb960 with JTAG

gdb960

To invoke the JTAG interface from the command line, use the following
syntax:

gdb960 -jtag port [nyfile] [-b baud]

2-7

gdb960 User’'s Manual

2-8

where port is the rs232 port myfile is the application to be debugged, and
baud is a specific baud rate. For example on NT4.0:

gdb960 -jtag coml nyapp -b 57600

and on a RS6000:
gdb960 -jtag tty0 nyapp

The JTAG interface can also be invoked while running gdb960 using the
target command. On Windows 95 the command would be:

target mon960 -jtag conl

Once connected through JTAG, the info target command can be used to
obtain additional connection information and JTAG version humbers.

gdb960v

The GUI version of gdb960 has the same requirements as gdb960.
gdb960w and the crosswind.tcl file must be updated to version 6.1.0 or
later. Inside the GUI, the Target dialog box adds anew JTAG selection.
Choosing JTAG, will invoke a JTAG communication port selection dialog
box. Thisdialog box will allow selecting the JTAG serial port and the baud
rate to use. Giving the ok to this dialog box will begin the JTAG
connection process. If connection is completed, then a connection status
will be displayed, otherwise, a error message box will be posted. From the
command line window, the info target command provides additional
connection information.

Compiling for Debugging

To debug a program effectively, you need to recompile your code to
include debug information. Thisinformation is stored in the object file,
and describes the data type of each variable or function and the correlation
between source line numbers and addresses in the executable code.

To include debugging information, specify the - g option when you invoke
the compiler (gcc960 or ic960). For example, the commands:

Getting Sarted

gcec960 -g -ACA tl.c
ic960 -g -ACAtl.c

tell the compiler to compile thefilet 1. ¢ for use with the i960 CA
architecture and to include debugging information.

Y ou can use the - g option with or without - On (capital "Oh"), where nis
an optimization level, making it possible to debug optimized code. Note,
however, that some debugging operations do not work aswell with - g - On
aswith just - g. Many optimizations can make debugging optimized code
more difficult. In particular, source line information in the program may
be incorrect, which can cause confusion while debugging. Also, variables
that exist in your source programs may not exist at run-time, or their values
may not be current. These difficulties appear most often at higher levels of
optimization.

Y ou can reduce problems caused by compiler optimizations greatly by
compiling with EL F/DWARF object module format whenever possible.
(Usethe-Fel f compiler option.) The ELF/DWARF debug datais
specifically enriched to aide debugging of highly optimized code. If
problems persist, disable optimization features and compile with - g only.

For more information on compiler options, refer to the i960® Processor
Compiler User's Guide

2-9

2

gdb960 User’'s Manual

2-10

Starting gdb960

Starting the gdb960 Windows Graphical User
Interface
Y ou can start the debugging session by double-clicking the icon that was

installed into your gdb960 program group during CTOOL Sinstallation.
The installation also sets the proper environment variables for you.

When the debugger is running, you can interact with it through the editor
window, through the Debugger command window, and through the Debug
menu and toolbar. See Chapter 3 for details.

Starting the gdb960 UNIX Graphical User Interface

To start the gdb960 UNIX GUI, use the syntax:
gdb960v [opti ons]
where opt i ons isany of the options allowed by the gdb960 command line

interface (see Chapter 12 for more information). For example, in Bourne
shell you might enter:

$EO60BASE/ bi n/ gdb960v -r /dev/tty0 nyprogram

Y ou can also use - d display option, which allows you to explicitly set the
X terminal type used for the display. For example:

gdb960v -r /dev/tty0 -d system conpany.com 0.0 nyprogram

selectsthe X DISPLAY asthe console of syst em conpany. com If

no - d option is given, the debugger uses the current setting of the
DISPLAY environment variable. If itisnot set, the debugger issues afatal
error.

When the debugger is running, you are ready to load an executable’s
symbols and begin debugging. See Chapter 4 for details.

Getting Sarted

Starting the Command Line Interface

You can invoke gdb960’s command line interface from a Windows
command prompt box, a UNIX command line, an Emacs command line, or
with a batch command file executed from a Windows or UNIX command
line. Once started, gdb960 interactively reads commands from standard
input until you exit the debugger by entering ghét command.

NOTE. Unless otherwise specified, command line options in examples
are presented using the UNIX - x option specification syntax. Either the
- x syntax or the/ x syntax is allowable on Windows systems. Command
line options apply to both the GUI and the command line versions of
gdb960.

The command name for invoking the debuggenis60. Entergdb960
along with associated options to start an interactive debugging session.

The following invocation example starts the gdb960 software debugger
and establishes communication with a MON960 debug monitor connected
totty Xrunning at the default baud rate (38400 bps). The debugger reads
symbols from the filgr ogr am then downloadgr ogr amto the MON960
debug monitor:

gdb960 -r port [progranm
« for example, to specify a serial port on a host and load the program

with symbols for the executabigpr ogr am you would enter the
command in Windows and UNIX:

gdb960 -r con®? nyprogram (Windows Host)
gdb960 -r /dev/ttyO nyprogram (UNIX Host)

« To specify serial communication and parallel download
gdb960 -r conR -par |ptl nyprogram (Windows Host)

gdb960 -r /dev/tty0 -par /dev/bppO nmyprogram
(UNIX Host)

. For PCI communication:

2-11

gdb960 User’'s Manual

gdb960 - pci nyprogram (Windows Host)
. For TCP/IP communication on the server:

nondb -pci -srv comnput er XYZ. conmpany. com 1234
(Windows/UNIX)

For TCP/IP communication on the client:

gdb960 -tcp computer XYZ. conpany. com 1234
(Windows/UNIX)

Changing Your Target Settings After Starting gdb960

After you have run gdb960, you can change your target communications
settings using thet ar get command at the gdb960 prompt:

gdb960 execut abl e
(gdb960) target nmon960 port [hdil argunents]

Thefollowing isalist of command line options and their descriptions:

r port Specify the seria port name of a serial interface
to use to connect to the target system. If no target
typeisset using the-t option or t ar get
command, the debugger assumes that MON960
isthe target monitor.

Y ou can specify port asany of:
« afull pathname (e.g.,-r / dev/ttya)
» adevicenamein /dev (e.g.,-r ttya)

* the unique suffix for aspecifictty

(eg.,-r a)
t mon960 Use MON960 asthe target type. Thisisthe
default target type.
b bps Set the line speed, baud rate or bps of the serial

interface to the target system. MON960 supports
baud rates of 1200, 2400, 9600, 19200, and
38400 bps (the default) on UNIX hosts; some of
these may not be available on every host. The

2-12

Getting Sarted
additional, unsupported, baud rates 57600 and
115200 may work on some hosts.

brk Send a break (of about 1/4 second in duration) to

par device

pci

pcib bus_no dev_no
func_no

pciv vendor_id
device_id

the target system after opening the connection but
before trying to communicate. |If the target board
is equipped with a break-triggered reset circuit,
this allows you to connect to a running system.

Use parallel download instead of serial
download. Use parallel device, devi ce, for
downloading (typically LPT1or LPT20on
Windows, varies on UNIX). The parallel device
isused only for downloading. Other host/target
communications use the serial port specified with
-r orthe PCl target specified with - pci . For
more information about UNIX parallel download
from gdb960, refer to Appendix Fin this guide.

Selects a target connected to the host's PCI bus
(if available).

Selects a target connected to the host's PCI bus
(if available). This option selects the target using
an absolute PCI bus address. All arguments are
specified in hex.

Selects a target connected to the host's PCI bus
(if available). This option selects the target using
using an algorithm that searches for the first
available PCI device that matches the specified
PCI vendor and device ID. All arguments are
specified in hex.

2-13

gdb960 User’'s Manual

2-14

pcic {io | mmap} Configures PCI communications. By default,
gdb960 always attempts to communicate with a
PCI devicevial/O space. This option permits
the user to explicitly specify the interface.

io Communicate vial/O space (i.e., use
in/out instructions to access the PCI
device).

map Communicate via memory-mapped
access.

-tcp hostname port Connect via TCP/IP link to target board
connected to server host nane. port specifiesthe
port where the board is connected to the server.

HDIL Arguments

The MON960 Host Debugger Interface Library (HDIL) routines allow
interaction with the target monitor. Severa optional HDIL arguments may
be specified on thet ar get non960 command line. These options affect
the communication between the host and target. For more information on
the HDIL routines, refer to the MON960 Debug Monitor User’s Guide.

Combining Serial Communication and PCI Downloading

If your PC host and target support PCI communication, but application
requirements make it undesirable for the monitor to tie up the PCI bus with
1/O and various service requests (e.g., register dumps), then use PCI
download to augment serial communication.

Examples
> gdb960 -r coml -pci myprog

This example connects to the target via serial port COM1 and
downloads the program nypr og viathe PCI bus. The PCI busis used
only for downloading; all other host/target communication use the
serial port.

> gdb960 -r coml -pcib O ¢ O nyprog

Getting Sarted 2

This exampleis similar to the previous one, except that the PCI device
isexplicitly specified by bus (0), device (0xc), and function number (0).

Emacs Invocation

On UNIX hosts, if you are a GNU Emacs user, you can set up gdb960 to
runin an Emacs window. This has many advantages over the normal,
single line gdb960 command line, notably the source code buffer that
Emacs keeps updated for you as you debug your application. For more
information on running gdb960 under Emacs, refer to Appendix B, Using
gdb960 Under GNU Emacs.

Batch Mode Invocation

Y ou can also start gdb960 in batch mode. Y ou can get more detailed
control over how gdb960 starts by using the command-line optionslisted in
Appendix E of this manual.

All the options and command line arguments listed in a batch file are
processed in sequential order. Sometimes order isimportant. For
example, when the x option is used, you need to load an object before you
can manipulate it.

Mode Options

M ode options specified in the gdb960 invocation line determine how the
software debugger accepts input, produce output, and processes debugging
commands. Thefollowingisalist of the available mode options along
with brief descriptions of their effects on gdb960’s operation:

bat ch Run in batch mode. Terminate gdb960 with exit
code 0 after processing the commands in thefile
specified with - x and in . gdbi ni t, if not
inhibited. Terminate with non-zero statusif an
error occurs in executing the gdb960 commands
in the command file. On Windows hosts, the
initiation batch fileisnamedi ni t . gdb instead
of . gdbi ni t . Only one command file can be
specified on the command line. Execution of
gdb960 terminates when the command file ends.

2-15

2 gdb960 User’'s Manual

hel p

nx

pc pi cof fset

pd pi dof f set

px of f set

2-16

Batch mode allows you to run gdb960 as afilter.
For example, you can download and run a series
of programs and capture their output.

Informs gdb960 that the target has big-endian
memory.

gdb960 briefly describes usage details.

Suppress execution of commands in the

. gdbi ni t initiaization file. Normally, the
commandsin . gdbi ni t execute after the
command line options and arguments have been
processed. For more information on command
files, refer to Chapter 13.

Debug position-independent code. Download
code sections to link-time-address + pi cof f set
instead of the usual link-time-address. When
gdb960 reads the symbol table from your
program, code section labels and symbols will
have pi cof f set added to their link-time
addresses to account for this relocation.

Debug position-independent data. Download
data and bss sections to link-time-address +

pi dof f set instead of to link-time-address.
When gdb960 reads the symbol table from your
program, data and bss symbols will have

pi dof f set added to their link-time addresses to
account for this relocation.

Enter the same offset for both - pc and - pd.
Download al sectionsto link-time-address +

of f set instead of to link-time-address. When
gdb960 reads the symbol table from the program
to debug, all labels and symbols have of f set
added to their link-time addresses to account for
thisrelocation.

Getting Sarted 2

q "Quiet." Do not display the introductory and
copyright messages. These messages are
automatically suppressed in batch mode.

2-17

Using the gdb960 Windows
Graphical User Interface

This chapter provides information on running gdb960 using its Graphical
User Interface (gdb960v) in Windows 95 and Windows NT. Topics
include:

e Overview

e Online Help (page 3-2)

e Starting and Stopping the Debugger (page 3-3)

e A Sketch of the Debugger (page 3-4)

e Connecting to a Target (page 3-6)

e Setting the Search Path (page 3-9)

e Opening aFile (page 3-10)

e Listing Code (page 3-11)

« Debugging with gdb960v (page 3-12)

« Using the dgh960v Text Editor (page 3-34)

e The Debugger Command Line Window (page 3-40)

See Chapter 4 for information on running the UNIX version.

31

gdb960 User's Manual

3-2

Overview

The design of the gdb960v GUI debugger combines the best features of
graphical and command-line debugging interfaces. The most common
debugging activities, such as setting breakpoints and controlling program
execution, are available through convenient point-and-click interfaces.
Similarly, program listings and data-inspection windows provide an immediate
visual context for the crucia portions of your application.

For more complex or unpredictable debugging needs, a command-line
interface gives you full access to awealth of specialized debugging
commands. For instructions on running gdb960 from the command line,
see Chapters 5 through 13.

Online Help

Reference information is available to you anytime you are running the
debugger simply by pressing F1 in any window, or by pulling down the
Help menu and choosing any of the help options listed there. Using the F1
key provides you with context-sensitive information about the current
active window. The Help menu provides you with options that let you start
your search in the more general areas of the online help system and then
move to the more specific topics.

Using the gdb960 Windows Graphical User Interface 3

Starting and Stopping the Debugger

Starting the Debugger

Y ou can start the debugging session by double clicking the icon that was
installed into your gdb960v program group during installation of the
toolset. Theinstallation also sets the proper environment variables for you.
Y ou can modify the Windows start up properties to include any command
line options you want used, such as the specifying the baud rate for the
communications port.

When the debugger is running, you can interact with it through the editor
window, through the Debugger command window, and through the Debug

menu and toolbar. The section titled “A Sketch of the Debugger” provides
an outline of these interaction modes.

Stopping the Debugger
You can end the debugging session in any of the following ways:

e Inthe debug toolbar, press Jﬁ‘ button.

¢ Click on the Stop Debugging command in the Debug menu.
e Close the Debugger command window.

¢ Close the debugger.

3-3

gdb960 User's Manual

A Sketch of the Debugger

Figure 3-1

Figure 3-1 illustrates the windows and buttons you can use to interact with
the debugger.

Debugging Windows

34

- Gdb360 - Debugger gdb960w@rdb M=
File Edit Yiew Debug Tools Window Help

mEEEEEEE]
xR EIEE][E]])

=]Gdb9s0 Butto - |]| |-=! C:Mtestfilesttest.c ==
#include <=stdic. he |+
woid main() { =
int i
List source code | int 30
¥ for (i=0; i<5; i++) 4
printf{"Hello i=Xd~n". 1i):
i =1+ 5;
H

for (3=0; 3<5: J++3 {
printf("Hello j=%d-n". j):

i=3+
+
Debugger gdb960w@rdb |=
Starting program: C:-testfiles-TEST L
Frogram stop reason: UTnclaimed fault
Fault type: Inwalid Opcode (type 0x2, subtype O0xl)
ip O=a0008000, fault record @ Oxal00011c0
Program received signal SIGTRAP. Trace-breakpoint trap. -
0=xa0008000 in ?7 () |
{gdb960) +
CaP UM || Tn 23, Cal 10

The editor window (in the background) keeps track of the code you are
debugging. You can click in thiswindow to specify information for
debugger commands (such as symbol names, or lines of code). The
debugger in turn uses the attribute panel, in the left margin of the editor
window, to show breakpoints and the execution context.

3 gdb960 User's Manual

Connecting to a Target

Now that you are more familiar with the parts of the debugger window,

you are ready to connect to atarget board.

1. If you have not already done so, physically connect the target board to
the host. For details, see Chapter 2.

2. Pressthe Target Connect button in the gdb960v buttons pane. Y ou
can aso open File pull down menu, select the Target Connect option
and from the submenu select the type of media used for
communication between the host and the target. Y ou can then skip
step 3 below. The Target Connect window appears.

Figure 3-3 The Target Connect Window

Target Connect |
Eancel
" TCP/p
 UTaG

1. Select the type of mediayou are using for communication between the
target and host. Select the fastest media your hardware supports. For
details, see Chapter 2.

O If you select PCI, awindow appears displaying the PCI devices
that are currently installed in your system. Select the desired PCI
device and choose OK. For example, the Cyclone i960
1Q80960RP evaluation board has vendor and device identification
numbers 8086 and 0960 respectively. For more information on

3-6

Using the gdb960 Windows Graphical User Interface

0

PCI, seethe PCI Local Bus Specification from the PCI Special
Interest Group (1-800-433-5177).

If you select Serial, you are prompted to select the port
parameters. Y ou also have the option of using a parallel port to
download code to the target. Once you have set the correct
parameters, choose OK.

If you select TCP/IP, you are prompted to enter the name of the
server sharing the evaluation board and the port where the board
is connected. Once you have set the correct parameters, choose
OK. (See “TCP/IP Communication” in Chapter 2 for more
information on setting up a TCP/IP connection.)

If you select JTAG, you are prompted to select the port
parameters. Once you have set the correct parameters, choose OK.

If you have not successfully connected to your target, a dialog displaying
an error message is presented to you. When you successfully connect, a
window displays target information.

37

gdb960 User's Manual

Figure 3-4 Target Connected Window

Target Connected EHE |

T arget Infarmation

R ermote tarqet in 1960 MOMNS60-2pecific protocal:
Attached to JTAG through jtag at 57600 bpz.
HOIL 2.3.1; RD at BEkhz with 4MB DRAM; [QB0960RD
kOMSE0 3.3.7 Mow 30 1993; JD step number 02
SPIE10 Loader $Revizion: 2 %, $0ate: 8413/93 10:44a §
SPIE10 App $Rewizion: 1%, $Data 813/9810:44a §
Mo executable file has been loaded to the remaote.
Cpu statuz information:

PRCE addresz (=a0001330

Sysztem procedure table address: Oxa0000a00

Fault table address Dxa0007 250

Interrupt table address Dxal0d0e40

Baze of Interrupt stack, Oxal001 540

o]

When you have successfully connected to your target, the following

changes appear in the main window:

« The Target Connect button in the gdb960v buttons pane disappears.

¢ Thestatusline at the lower Ieft corner indicates that you have
connected to a host running MON960.

3-8

Using the gdb960 Windows Graphical User Interface

Setting the Search Path

Figure 3-5

The debugger maintains alist of directories where it searches for source
code. Thislistis called the source search path. To edit thislist:

1. Open the Debug pull down menu, and then select Source Search Path.

Thiswindow shown in Figure 3-5 appears.

Source Search Path Window

— Debugger Source Search Path
iC:

CAIMTELSE0NRIN m
CINTEL
Path: | C:Mtesthiles

2. Usethefollowing buttons to maintain the Search list:

Add

Remove
Move Up

Move Down

Brings up awindow where you can select a new
directory to add to the current search directory
list.

Removes a search directory from the list.

Moves the selected directory up one place higher
inthelist.

Moves the selected directory down one place
lower in thelist.

Note that the order of the directoriesis significant. Generally, you should
place the directories that you will be accessing most often first. Also, if the

39

gdb960 User's Manual

3-10

same filename exists in multiple directories, make sure the directory with
the desired file is listed above any other directories that contain files with
the same name. (To reduce confusion while debugging your application,
we recommend you consider using unique filenames across directory
boundaries.)

Y ou can set the debugger source paths prior to starting the debugging
session. The directories you enter here persist to the next debugger
invocation.

Opening a File

Figure 3-6

Y ou are now ready to open a program file, load its symbols, and/or

Download code from it to the target. (Y ou can edit afile using the Open

file menu item in the File menu. See “Source Views” on page 3-31 for

more information.)

1. Press the Open Binary button located in the gdb960v buttons pane.
Alternatively, you can pull down the File menu and choose Open
Binary.

2. Inthe File select dialog, select the desired program file and choose
OK. This window shown in Figure 3-5 appears.

Open Window

X iLoad symbols | ok |

X Download code

3. You can now load the symbols and/or download the code to the target.
For the purposes of this chapter, select Load symbols and download
code and choose OK.

The status line in the lower left corner of the window tells you when
the debugger has finished loading the symbols and/or downloading the

Using the gdb960 Windows Graphical User Interface

file. Also, the List source code button replaces the Open Binary button
in the gdb960v buttons pane.

You are now ready to use the debugger’s options for listing code, as
described in the next section.

Listing Code

Figure 3-7

The debugger lets you display any of the files or modules that comprise a
program in an edit window. You can also have multiple edit windows
open, which lets you move between source files and modules as needed.

1. Press the List source code button in the gdb960v buttons window. The
window shown in Figure 3-7 appears.

File/Function Lister Window

Select a filename to list:

= File { Function Lister

Or, select a function to list

test.c

H rnain

Dimis:

You can also access this window by pulling down the View menu and
choosing List Code.

The left field lists the names of the files (or modules) that comprise the
program. To the right is a list with the names of the functions found in

the program.

2. Select the file and function that you want displayed, then press the List
button. An edit window appears displaying the selected file or

311

3 gdb960 User's Manual

module. By default it appearsin C/C++ code. The two other file
viewing options are described in “Source Views” on page 3-31.

displays an error message in a message box. In most cases, the error is

due to the directory with the desired module or file not being in the list of
search directories. To fix this problem, use the Source Search Path option
from the Debug menu to add the directory where the file or function

resides to the list of search directories. For more information, see “The
Debug Menu” on page 3-17.

[‘ NOTE. If thedebugger cannot find the file or function you specify, it

So far, you have:

¢ Connected to the target

e Opened abinary file reading its symbols and downloading its code to
the target

e Listed asource module or two.

Y ou are now ready to debug your software as described in the next section.

Debugging With gdb960

Programs executing under debugger control execute normally and the
debugger maintains control until:

* The program terminates.
e The program encounters a breakpoint.
e You interrupt the executing program via the debugger.

* Anevent such asafatal error occurs. (Note that an interrupt for the
executing program by itself will not cause the debugger to regain
control.)

312

Using the gdb960 Windows Graphical User Interface 3

Figure 3-8

CAUTION. You must compile your application using debugging symbols
(- g) to use many of the features of the debugger. Highly optimized codeis
best debugged with ELF/DWARF file format (- Fel).

Y ou can interrupt program execution with Interrupt Debugger in the Debug
menu, by pressing CTRL+BREAK in the Debugger command window, or
by using the keyboard shortcut ALT+SHIFT+F5.

Debugger Buttons

Debug Toolbar

Debug
o k(x| ¥|v| v|:]3]=] t]a]

[
W

The Debug toolbar (shown as afloating palette in Figure 3-8) has buttons
for the most common debugging commands. Table 3-1 summarizes each
button.

313

gdb960 User's Manual

314

Table 3-1

Summary of Debug Buttons

Button Description Button Description
) Download A Next

| &* Run program h 4 Continue
w Stop debugging . 4 Finish
v Toggle breakpoint t. Up stack
7 Toggle Temporary 1 Down stack

breakpoint

3 Step

You can get the same help using the “tool tip feature”. Place the mouse
over the button and pause. A bubble pops up, letting you know what the
button does.

The following paragraphs describe each button.

E Download an object module to the connected
target. This button is equivalent to the Download
command in the Debug menu; it opens a file
browser to find the module. See “Downloading a
Module” on page 3-17.

]il Run a program on the target under debugger
control. A Run dialog box allows you to specify
initial arguments for the program. This button is
equivalent to the Run command in the Debug
menu. See “Navigating through a Program” on
page 3-19 for more information.

¥ Stop the debugger. This button is equivalent to
the Stop Debugging command in the Debug
menu.

Using the gdb960 Windows Graphical User Interface

x|v

Set or remove a breakpoint or temporary
breakpoint on the current line of the editor
window. To insert a breakpoint, place the mouse
cursor on the desire line, press the left mouse
button to select the line, then press to insert a
breakpoint or |z to insert atemporary breakpoint.
The breakpoint is inserted at the next valid
stopping point.

To delete a breakpoint, place the mouse cursor on
alinethat is already marked with the breakpoint
icon, press the left button, and then press = or |z.

This button is equivalent to the Toggle
Breakpoint command in the Debug menu; see
“Setting Breakpoints” on page 3-17.

Step to the next line of code. This button is
equivalent to Step in the Debug menu; see
“Navigating through a Program” on page 3-19.
This button causes the debugger to step one
machine instruction when the edit window
contains assembly language?

Step over a function call: instead of stepping to
the next statement executed, this button steps to
the next line on the screen. If there is a function
call on the current line, the button executes that
function in its entirety, then stops at the line after
the function call. This button is equivalent to the
Next command in the Debug menu; see
“Navigating through a Program” on page 3-19.

The next button behaves analogously to the step
button when assembly language is displayed in

315

gdb960 User's Manual

3-16

52

the edit window.

Continue program execution. This button allows
the program to continue execution from its
current | P location until the debugger regains
control. The debugger regains control when:

e The program terminates.
e The program encounters a breakpoint.
e Youinterrupt the program.

« Anevent such asan interrupt or afatal error
occurs.

This button is equivalent to Continuein the
Debug menu; see “Navigating through a
Program” on page 3-19.

Finish the current execution continues until the
current function completes, then the debugger
regains control in the calling statement. This
button is equivalent to the Finish command in the
Debug menu; see “Navigating through a
Program” on page 3-19.

Move one level up the function stack. This
button is equivalent to the Up Stack Frame
command in the Debug menu; see “Viewing
Alternate Stack Levels” on page 3-23. The
change is reflected in the Backtrace and Register
windows.

Using the gdb960 Windows Graphical User Interface

]1 Move one level down the stack. Thisisthe
converse of the up button. This button is
equivalent to the Down Stack Frame command in
the Debug menu; see “Viewing Alternate Stack
Levels” on page 3-23. The change is reflected in
the Backtrace and Register windows.

The Debug Menu

The Debug menu provides an alternate method from debugger buttons to
invoke commands, and also presents supplementary debugger commands.
Refer to the online help for detailed descriptions of each option.

Downloading a Module

Once the debugger is running and you have connected to a target, you can

download code to the target board.

1. Click on the Download button. Alternatively, you can pull down the
Debug menu and choose Download, or press Shift+F6.

2. Select a program to download to the target for debugging. You can
also do this operation while opening a binary file. (See “Opening a
File” on page 3-10 for details). This brings up the Download objects
dialog box, where you can select one or more object modules.

3. Click the Download button to download the selected object modules to
the target. Debugging information for these modules is contained in
each object module.

Setting Breakpoints

To set a breakpoint:
1. Place the text cursor in the line where you want the program to stop.
2. Choose Toggle Breakpoint or Toggle Temporary Breakpoint.

317

gdb960 User's Manual

3-18

Table 3-2

Breakpoint Buttons

Debug Menu
Button Shortcut Command Description

v F9 Toggle Places a breakpoint that stops
— Breakpoint execution at that point each time you
run the program.

E F8 Toggle Places a breakpoint that stops
Temporary execution at the selected point only
Breakpoint once. The debugger disables it
automatically as soon as the program
stops there.

The same breakpoint symbols used on the buttons for these commands
mark breakpoints in the editor’s left margin, so that you can readily
distinguish the two kinds of breakpoints.

If you try to create a breakpoint on a line that has no corresponding object
code (such as a comment line or a declaration), the breakpoint appears on
the next line that does have corresponding object code.

To remove either type of breakpoint, select the breakpoint line, then click
the appropriate breakpoint command.

Using the gdb960 Windows Graphical User Interface 3

Figure 3-9

NOTE. If your application was compiled without debugging information,
the debugger displays an error when you try to set a breakpoint using
these commands. If you are forced to work on an object module without
debugging information, you can still break at the start of any functionin
the following ways:

« Check the Break at main check box in the Run dialog box when you
start the program (See “Navigating through a Program”).

e Use the break command in the debugger command window (see
Chapter 13 for usage of the break command).

In either case, when the debugger stops, it displays a Disassembly
window, as it does whenever no debugging information is available for the
program context.

Navigating through a Program

To run a program under debugger control:

1. Pressthe Run button, or pull down the Debug menu and choose Run.
The Run dialog box (see Figure 3-9) appears.

The Run Window

= Run
Arguments: I
[Break at main(]
I 0K I | Cancel I | Help I

319

gdb960 User's Manual

3-20

Figure 3-9 shows the Run dialog box with an argument list (optional).
The default for required arguments that you do not supply is zero. To
set atemporary breakpoint program function main, check the Break at
main() box.

2. Specify the arguments (if any) used by the program.

3. Click OK to start the program execution on the target.

Once a program stops under debugger control (most often, at a breakpoint),
you can single-step through the code, jump over function calls, or resume
execution. Figure 3-10 shows the debugger stopped at the routine
graphinit(). The context pointer ™ indicates what statement executes if
you alow the program to resume.

Figure 3-10 The Context Pointer

7 306 3 3636 30 36 36 600 366 36 36 96 06 3696 36 36 36 36 06 36 36 30 36 6 36 36 36 9036 6 00 36 3636 36 36 36 600 66 3 6 36 06 36 06 36 36 36 36 06 3036 30 36 6 36 90 3606 30 36 00 6 306 30 36 0 H
E3

¥ graphlnit - coloring graph initialization

%

=/

wold graphlnit [void)

/% zet initial node number to [*/
dB.nlum = 0

/%
* gnabling round robin: necessary to give each node of the
graph (vhich have all the same priority) some CPU access
*/

Using the gdb960 Windows Graphical User Interface

Table 3-3

When the program is stopped, you can use any of the following options
from the Debug menu:

Buttons for Stepping Through a Program

Button

A2

Shortcut

F5

F10

Debug
Menu
Command

Continue

Step

Description

Restarts program execution. If there are
no remaining breakpoints, interrupts, or
signals, the program runs to completion. A
common example of using Continue is to
set a breakpoint at the end of a loop, then
use Continue repeatedly to stop once in
each loop iteration, while monitoring a loop
variable.

Steps through the code one line at a time.
If you have auxiliary debugger windows
open (See “Using the Auxiliary Debugger
Windows” on page 3-24), they are updated
with current values as you step through the
code. If there is a function call in the
current line, Step takes you to the first line
of that function, not to the next line
currently displayed on your screen. The
only exception is for functions that are
compiled without debugging information;
Step cannot step into these functions.

continued [J

321

gdb960 User's Manual

3-22

Table 3-3

Buttons for Stepping Through a Program (continued)

Debug
Menu

Button Shortcut Command Description

- CTRL+F5 Next

- 4 SHIFT+F5 Finish

Single-steps without going into other
functions. The Next command is similar to
Step, but instead of stepping to the very
next statement executed (which, in the
case of a function call, is typically not the
next statement displayed), Next steps to
the next line on the screen. The command
allows you to run through a function call
without considering its details. If there is
no intervening function call, this is the
same thing as Step. When there is an
intervening function call, Next executes
that function in its entirety, then stops at
the line after the function call.

Continues execution until the current
function completes, then the debugger
regains control in the calling statement.
This option is useful if, after stepping
through a program, you conclude that the
problem you are interested in lies in the
current function’s caller, rather than at the
stack level where your program is
suspended.

The effect of Step is somewhat different if the current view in the editor
shows assembly instructions (when either Disassembly or Mixed is
selected from the View menu, or the current routine has no debugging
symboals). In this case, Step advances execution to the next machine
instruction rather than to the next source line. The display style hasthe
same effect on Next as on Step: thus, Next causes the program to run
through acall instruction and stop on the next source line.

Using the gdb960 Windows Graphical User Interface

Table 3-4

Viewing Alternate Stack Levels

Each function call creates anew stack frame. A stack frame contains auto
variables, local variables, and register values for the called function. The
Backtrace window displays al active stack frames. The Backtrace window
can be opened with the menu command Debug: Back Trace or Alt+6. The
deepest frame, #0, is where program execution stopped. The debugger
displays data, symbols and source code from the current stack frame. This
also means that which variable definitions are visible depends on the
selected stack frame. The datafor that frameis related to the function
which created the frame. The Up Stack Frame command in the Debug
menu selects the context to the current function’s caller. You can then
click it again to get to function’s caller stack frame, and so on.

This command does not change the location of the program counter; it only
affects what data, symbols, and source code are visible. If you continue or
step the program, execution still takes up where it left off, regardless of
whether you have used this command.

Use the Down Stack Frame command to retrace your steps through the
stack. Like Up Stack Frame, it changes only your view of the program, not
the program’s state.

As you move up and down the stack frames, the Backtrace window
changes the highlight to the currently selected stack frame and the Register
window contents change to reflect the register values associated with the
selected stack frame.

Table 3-4 lists displays the toolbar button, keyboard shortcut, and Debug
menu commands for using the Up and Down Stack Frame features.

Buttons for Navigating Up and Down the Stack

Button Shortcut Debug Menu Command
t. CTRL+U Up Stack Frame
1 CTRL+D Down Stack Frame

3-23

gdb960 User's Manual

3-24

Table 3-5

Using the Auxiliary Debugger Windows

When a program stops under debugger control, you can examine local and
global program variables, arguments, registers, target memory, and the
execution stack. Table 3-5 provides you with a summary of these window

types.

Buttons for Bringing Up Auxiliary Debugger Windows

Button Shortcut Debug Menu Command
n/a ALT+2 Inspect

n/a ALT+3 Locals

n/a ALT+4 Registers

n/a ALT+5 Memory

n/a ALT+6 Back Trace

The sections below describe the Debug menu commands that open
auxiliary windows for these purposes.

NOTE. The sub-windows described in this section update each time your
program stops in the debugger. Each update highlights values that
changed since the previous display.

Inspect

To monitor an expression or a symbol’s current value:

1. Select an expression or symbol name in the editor,

2. Pull down the Debug menu and choose Inspect, or press Alt+2. This
opens a sub-window for the selected symbol; the window is updated
automatically each time the program stops. Alternatively, if you
choose Inspect with nothing selected and specify the symbol name in
the dialog provided.

Several different kinds of data-inspection windows are available,
depending on the data structure. The debugger chooses the right one
automatically.

gdb960 User's Manual

Figure 3-12 Inspect: Partly Hidden Structure Hierarchy

'.0 Inspect: (1) dB !Elm

El s=truct dB -
{char nHum} = 9 T
El {struct GHODE nirray[]}

FE 0

{char =stable} =1

{char rew} = 0

struct tnid

struct att

{int pc} = 3

{int oD} = 0

{int cHum} = 8

{=truct COHNNECT INFO chrray[]}

FE 1

FE 2

-lllﬁ -

Y ou can also click on pointers (marked with a small asterisk) to open a
new Inspect window that shows the pointer value. Thisfeature providesa
convenient way of exploring list values interactively

Locals

To view the value of local variables, open the Debug menu and choose
Locals. Alternatively, use the Alt+3 keyboard command. A window
appears, showing the values of local variables. For example:

Figure 3-13 Locals Window

;—Tj Locals [_ O] x|

{int nodeId} 1
{int model} =
{int rank} =
{char color}

n oo =

3-26

Using the gdb960 Windows Graphical User Interface

Figure 3-14

Y ou can use the same controls as for Inspect windows (see the previous

section) to hide or reveal levels of structures. The contents of the Locals

window always reflect the routine that is currently executing; when you

step into a different routine, the new routine’s local variables replace those
in the previous display.

Back Trace

To inspect the calling sequence leading to the current routine, pull down
the Debug menu and choose Back Trace, or press Alt+6. A window opens
to monitor the stack.

Backtrace Window

:—Tj ETIAIETT S !E m
E Call Stack
I:D = zemlPut

1 = nodedob

In the Backtrace window, you can double-click on any routine to make the
corresponding editor window the active window.
Registers

To view the values of the target registers, pull down the Debug menu and
choose Registers, or press Alt+4. Figure 3-15 illustrates the Registers
window.

327

gdb960 User's Manual

Figure 3-15 Registers Window

! Registers: i960
E[i%60 Registers]
FE Local
Fpfp = 0O
F=p = O0xa002d4880
Frip = O=xal00cc3g
Fr3 = 0
Frd4 =0
FrE5 = 0O=xa000d4&680
Fre = 0x=a000d4688
Fr?7 = 0O=a
Fxr8 =10
Fr9 =0
Frl0 = 0
Frll = 0
Frl2 = 0
Frl3 = 0
Frld = 0O
—rl5 =0
FEl Glabal
Fgl = 0O=a
gl = 0xal009%ch4d
Fg2 = 0
Fg3 = O=ffffffff
Fgd =0
Fgb = 0=xal00dctEO
Fge = 0O=400
Fg?7 = O0xal0004d=E50
Fg8 =0
Fg9 =0
Fglo = 0
Fgll = 0
Fgl2 = 0
Fgl3 = 0=101
Fgld = 0
- fp = 0=xa002d840
[Control

You can use the same hierarchy controls described in “Inspect” to hide or
reveal groups of registers.

3-28

Using the gdb960 Windows Graphical User Interface

Memory

Options for Bringing Up the Memory Window

Table 3-6

Debug Menu Command

Shortcut
ALT+5

Button

Memory

n/a

Click the Memory item in the debug menu to open awindow that displays
arange of target memory starting at a specified address. Figure 3-15

shows a maximized Memory window, displaying memory in Hex/ASCI|

format. The numbersin the left margin of Figure 3-16 identify the control

fields described below.

Memory Window

Figure 3-16

Start Address aDHffff E I Refresh on debugger stop m

=1

i iﬂyle

[2] size: [512

[HexsasC

Format:

LEE E—

A A A A A A A A A A A A A A
(o e e e e e e e

o000 o0O0O000000 00 -
(e e o e e e e e e e e o e R o o R

folt e O o s e S o o e R o o o e e T
DO HDH D EDOOO D E D HDwW O

(e e o e e e e e e e e o e R o o R
o000 0O00O000000000000g

A A A A A A A A A A A A A
e e e e e e e e e e e e e

o000 00000000000 A
(o e e e e e e e

HOOHODHAFDHOODONDO DO QDLW
e (O e P e D0 e D D 00 M NS00 DD

o e e e e e e e o e o e
o000 000O000000000000g

A A A A A A A A A A A A A A
e e e e e e e e e e

o000 00000000000 A
(o e e e e e e e

HHHHOODHODHOO 04O OoWwowmog
HHHHNOODHOHNDOoDo000

o e e e e e e e o e o e
o000 000O000000000000g

A A A A A A A A A A A A A A A A A A
o000 000O000000000000g

o000 00000000000 A
e e e e e e e e e e

HHOHODNDMHOODWOONOoOoOoOo0o oy
e OO D e DD D O s T

o e e e e e e e e e e o o e R
(e e o e e e e e e e e o e R o o R

L 4 S
O O 07 e LD 0
o o o O o o o
HOoOoOoooooo
oA A A A A A A
o e e e e e e e e e e e e
(e e o e e e e e e e e o e R o o R

HHH
el g]
ooooooo
coooooo

A

o I e e o e o e o e o e o o e

NOTE. You can choose whether to update the Memory window only on
demand, or automatically. Check the box labeled Refresh on debugger
stop to update the Memory window each time the debugger takes control.

R

To update the memory display immediately, pressthe [button.

3-29

gdb960 User's Manual

3-30

Table 3-7

The following controls specify what memory range to display, and in what
format:

Start Address Enter the beginning address for the range of
memory. The debugger saves each address you
type here. Y ou can select a previously displayed
address from the drop-down list associated with

this box.

Format Select adisplay format from this drop-down list
box.

Size Type the amount of memory to display here. The

units are specified in the adjacent in field. For
example, if thein field has the value Word, the
Memory window displays 4 x Size bytes of data.

in Select the unit of memory to display.

Memory-display Formats and Units

Format Values Unit Values (in)
Hex/ASCII Byte

Octal Halfword

Hex Word

Decimal Giant (8 bytes)
Unsigned decimal

Binary

Float

Address

Instruction

Char

String

See the description of thex (“examine”) command in Chapter 13 for a
discussion of the memory-display formats.

Using the gdb960 Windows Graphical User Interface

Source Views

While the debugger is running, you have control how your program is
displayed. By default the debugger displays your code in C/C++ style.

Y ou also have the option of displaying the source as disassembly or a
combination of C/C++ and disassembly. To change the view, simply pull
down the View menu and choose one of these options:

Sour ce

Disassembly

Displays the C/C++ source code. Thisisthe
default style of program display. To choose this
option, you can also press the F7 key.

Displays a symbolic disassembly of your

program’s object code. This style of display is
the default for routines compiled without
debugging information (such as the C/C++
runtime library routines supplied as object code
only). To choose this option, you can also press
Alt+F7.

Mixed Source and Disassembly

Displays both high-level source and a symbolic
disassembly, with the assembly-level code shown
as close as possible to the source code that
generates the corresponding object code. To
choose this option, you can also press Shift+F7.
Figure 3-17 shows a mixed-mode code display.

331

Using the gdb960 Windows Graphical User Interface 3

The debugger is fully operational no matter what view you select. For
example, you can set breakpoints in aline of assembly code, and you can
use the Step and Next commands in either assembly or source. Inviews
that show assembly, these commands step by instructions rather than by
source lines; see “Navigating through a Program” on page 3-19.

The editor, however, works only on source code. Thus, when you display
a view with disassembled instructions, the editor display goes into read-
only mode until you either stop debugging or switch to the Source view.

NOTE. Disassembly takes a long time the first time you switch to a view
that requiresit. Subsequently, in the same debugging session, you can
switch views quickly. The disassembly information is not persistent; the
debugger discards it when you stop debugging (or if you close the source
file with the Close command in the File menu).

Note also that if you have a relatively ow PC, (e.g., has slower than a
100 MHz Pentium™ processor, and/or your modules are larger than 500
lines of C/C++ code, the time to disassemble will be quite low. The
status line shows progress as it disassembles as percentages of the
modules.

3-33

3

gdb960 User's Manual

3-34

Using the gdb960v Text Editor

gdb960v provides an integrated text editor to manage, edit, and print
sourcefiles. Most of the procedures involved in using the editor, such as
file and text handling and moving around in afile, should seem familiar if
you have used other Windows-based text editors. The Text Editor window
displays C/C++ source files as well as all header files used in gdb960.
With the editor, you can:

Perform advanced find and replace operations.

Specify syntax coloring.

Customize tab stops.

Use toolbar shortcuts for various commands.

Use multiple levels of undo and redo.

Open multiple windows for debugging, monitoring variables,
disassembling code, and displaying sourcefiles.

Open multiple views of the samefile.

Take advantage of other ease-of-use features, such asalist of recently
opened files at the bottom of the File menu, parsing text around the
insertion point as theinitial search string in a Find operation, and
keyboard shortcuts.

Editing a File
Opening a File
1. From the File menu, choose Open (CTRL+O).
or
Click on the Standard Toolbar.
The Open dialog box appears.
2. Select the drive and directory where the fileis stored. The defaultis

the current drive and directory.

Using the gdb960 Windows Graphical User Interface

3

3. Setthetypesof filesto display in the Files of Type box. Fileswith the

chosen extension are displayed in the File name box.

This box serves as afilter to display all files with a given extension.
The drop-down box initialy lists commonly-used file extensions. The
default showsthe. TXT,. C,. CPP,. H,. HPP, and . TCL extensions.

Alternatively, you can specify wildcard patterns in the File name box
to display filetypes. The new wildcard pattern is retained until the
dialog box is closed. You can also use any combination of wildcard
patterns, delimited by semicolons. For example, entering " * .
displays all files with these extensions.

In the File name box, click afilename, then click Open.
or
Double-click on afilename.

Y ou are now ready to edit thefile.

Creating a New Text File

1

2.

From the File menu, choose New (CTRL+N). The New diaog box
appears.

Select C/C++ Source File, then click OK.

or

Click on the Standard toolbar.
From the File menu, choose Save (CTRL+S).
or

Click on the Standard toolbar.

The Save As dialog box appears.

Double-click adirectory where you want to store the source file (or

move down a path to the appropriate directory).

Type afilename in the File name box, then choose OK. The default
extension given to afile isthe last extension used when you saved a
file. You can type another extension or select one from the Save as
Type box.

3-35

gdb960 User's Manual

3-36

Y ou are now ready to enter text into the file you created.

Cutting, Copying and Pasting Text

1. Select the text you want to paste.

2. From the Edit menu, choose the Cut (CTRL+X or SHIFT+DEL) or
Copy (CTRL+C or CTRL+INS).

3. Placetheinsertion point in any source window where you want to
insert the text.

4. From the Edit menu, choose the Paste (CTRL+V or SHIFT+INS).

Moving to a Line
1. From the Edit menu, choose Go To.

The Go To dialog box appears.
2. IntheLine box, type aline number.
3. Click OK.

If you type aline number greater than the last line in your sourcefile, the
editor moves to the end of thefile.

Finding a Text String

1. Position the insertion point where you want to start your search.
If you select some text, the editor uses that text as the default search
string.

2. From the Edit menu, choose Find (ALT+F3).

The Find dialog box appears.
3. Typethe search text in the Find What box.
4. Select any of the Find options.

5. To begin your search, choose Find Next.
The find dialog box disappears when the search begins. To repeat a
find operation, you can use the F3 shortcut key.
To begin afind without bringing up the Find dialog box, select a text
string in asourcefile, then press ALT+F3.

Finding and Replacing Text
1. Position the insertion point where you want to start your search.

Using the gdb960 Windows Graphical User Interface

Table 3-9

W

If you select some text, the editor uses that text as the default search
string.

From the Edit menu, choose Replace.

The Replace dialog box appears.

Type the search text in the Find What box.

Type the replacement text in the Replace With box.

Select any of the Replace options.

Begin replacing text by choosing Find Next or Replace All.

Printing the Contents of an Active Window

1

2.
3.

From the File menu, choose Print.

The Print dialog box appears.

Under Print Range, select the All option button.
Click OK.

Customizing a Print Job

1
2.
3.

From the File menu, choose Page Setup.
Type the header or footer text, codes (see Table 3-6), or both.
Click OK.

Print Options

To Print Use
Filename &f
Page # of current page &p
Current system time &t
Current system date &d
Left aligned &l
Centered &c
Right aligned &r

Saving a File
1. From the File menu, choose Save (CTRL+S).

or

3-37

3 gdb960 User's Manual

Click on the Standard Toolbar.

2. If your fileis unnamed, the environment displays the Save As dialog
box. Inthe File name box, type the filename.

3. Select the drive and directory where you want the file saved. The
default isthe current drive and directory.

4. Specify the type of file you're saving in the Save as type box.

5. Click Save.

Saving A New File or Renaming an Existing One
1. Makethefile active by clicking the editor window.
2. From the File menu, choose Save As.
The Save As dialog box appears.
3. Typeafilename and extension in the File name box.
4. Choose the drive and the directory where you want to save thefile.
5. Click Save.

Setting the Save Options

1. From the Tools menu, choose Options>Editor.
The Editor Preferences dialog box appears.

2. To save open files before running any tool, select the Save Before
Running Tools/Builds check box.

3. Click OK.

Customizing the Text Editor

Setting the Attribute Pane

1. From the Tools menu, choose Options>Editor.
The Editor Preferences dialog is displayed.

2. Select the Attribute Pane check box (this box is checked by default).
When the mouse is moved into the Attribute Pane, the cursor changes
to an up-and-right-pointing select cursor (a mirror image of the
standard select arrow).

O Clicking the left mouse button in the margin selects the entire line
to the right of the click. Dragging the mouse cursor in the
selection margin selects multiple consecutive lines.

3-38

Using the gdb960 Windows Graphical User Interface 3

O Clicking the left mouse button or dragging the mouse cursor with
the Shift key held down extends the selection.

Changing the Tab Settings

1

3.

From the Tools menu, choose Options>Editor.

The Editor Preferences dialog box appears.

Under Tab Settings, in the Tab Stops box, type the number of spaces
to be used as atab stop. The default is four spaces.

Click OK.

Changing Font Type and Font Size

1

From the Tools menu, choose Options>Font.

The Font dialog box appears.

Select the font from the Font box. The text sample in the Sample box
will change to the font you selected.

Select the size in points from the Size box. The text samplein the
Sample box will change to the font size you selected.

Changing Syntax Coloring in a Source File

1

A w

Click the editor window or use the Window menu to make the source
window active.

If there are multiple windows open on the source file, select one of
them. Syntax coloring changes will appear in all windows opened on
the source file.

From the Tools menu, choose Options>Color.

The Color Preferences dialog box is displayed. The Items list box
displays the current setting for syntax coloring.

Select awindow or text element for which you want to specify a color.
Click acolor from both the Foreground and Background color areas.
Click OK.

Note that syntax coloring must be enabled before you can set the
syntax coloring properties for any specific file. To enable global
syntax coloring, select the Syntax Coloring check box in the Color
Preferences dialog box.

3-39

3 gdb960 User's Manual

The Debugger Command Line Window

The gdb960v graphical interface is usually the most convenient way to run
the debugger. However, you can also use the command-line interface,
which in some cases is the best way to perform a particular action (and in
some cases, the only way to perform an action). The Debugger window
provides full access to the command language described in Chapters 5-13.

3-40

Using the gdb960 UNIX
Graphical User Interface

This chapter provides step-by-step instructions for running gdb960 using
its UNIX Graphical User Interface (gdb960v). Topicsinclude:
e Overview

e OnlineHep

e Running the Debugger

e Setting the Working Directory

e Connecting to a Target

e Opening aFile

« Using the Debugger

« Editing Source Code

» CreatingaNew File

e Setting the Search Directories

« Exiting the Debugger

e Customizing the GUI

» See Chapter 3 for information on running the Windows 95/NT version.

Overview

gdb960v provides users with a Graphical User Interface to access many of
the features of its line-oriented interface. The most common debugging
activities, such as setting breakpoints and controlling program execution,
are available through convenient point-and-click interfaces. Similarly,
program listings and data-inspection windows provide an immediate visual
context for the crucial portions of your application.

4-1

gdb960 User’'s Manual

For more complex or unpredictable debugging needs, a command-line
interface gives you full access to awealth of specialized debugging
commands. For instructions on running gdb960 from the command line,
see Chapters 5 through 13.

Online Help

The UNIX help system is HTML-based and can be viewed with any web
browser such as Mosaic or Netscape. To view thefile, simply open thefile
wi ngdb960. ht mwith your web browser. At installation thisfileis placed
thein directory [$G360BASE/ $i 960BASE] / ht m / t ool s/ .

Running the GUI Debugger

To start the gdb960v UNIX GUI, use the syntax:
gdb960v [opti ons]

where opt i ons isany of the options allowed by the gdb960 command line
interface (see chapter 12 for more information). For example, in borne
shell you might enter:

$E@60BASE/ bi n/ gdb960v -r /dev/tty0 myprogram

You can aso use - d display option, which allows you to explicitly set the
X terminal type used for the display. For example:

gdb960v -r /dev/tty0 -d system conpany.com 0.0 myprogram

selectsthe X DISPLAY asthe console of syst em conpany. com

If no - d option is given, the debugger uses the current setting of the
DISPLAY environment variable. If itisnot set, the debugger issues afatal
error.

Using the gdb960 UNIX Graphical User Interface

A Sketch of the Debugger

Hereistheinitial gdb960v screen:

Open file

File Target

No target/No file

L
1

under certain conditions; type "show copying" to sees the conditions.
There is absolutely no warranty for GDE; type "show warranty" for details.
gdb®60 5.0.003, Mcn Sep 9 13:55:20 PDT 1996

GDE 4.13 (sparc-sun-sunosd.1.3 --target i960-intel-hdi),

Copyright 1994 Free Software Foundation, Inc.

(gdboaly |

Theinitial screen includes:

A menu bar with pull down menus for File and Target.

A toolbar with buttons that vary depending on the state of the
debugger. For example, the Target connect button disappears after you
have connected to atarget board. In the above figure, the toolbar
contains the Target connect and Open file buttons.

A target status line near the upper right corner. This area shows the
state of the target connection, the name of the program that is loaded
(if any), and whether the program is running or stopped.

A source pane, where the debugger displays source code and
disassembly to you.

A debug margin along the left side of the source pane, where the
debugger shows which line it is executing, and where breakpoints are
Set.

4-3

I gdb960 User’'s Manual

¢ A command line window at the bottom of the screen, where you can
enter gdb960 commands.. All gdb960 commands can be used in this
window. Thisiswhere debugger error messages are displayed, and
other feedback such as printing the values of variables.

e Ananimation area (above showing the debugging hand). When the
debugger is busy, this area flashes and animate.

To start debugging a program, you need to:

1. Set your working directory (optiona).

2. Connect to atarget.

3. Open afile, load the symbols from a program, and optionally
download code to the target.

4. Start running the application.

The sections that follow describe how to compl ete these tasks.

Setting the Working Directory

Before you get started debugging, you can optionally change your working
directory. Thiscan be done anytime you are in the debugger.

1. Open the File menu and choose Change Directory. Thiswindow
appears:

Directory name:

YEfs/a/panle

Contains Sub-Directories:

80960_cust_support
ATS_PROJECT

GHU

ame

ars

bin

bugs

cheap_rtos

cmpdirs

4-4

Using the gdb960 UNIX Graphical User Interface

Enter the desired path in the directory name textbox. Y ou can also set
this textbox using the mouse by selecting one of the directory names

listed in the Contains Sub-Directories listbox . A dialog box appears,

confirming that the directory has been changed.

Y ou can also change the working directory in the command window

by usingthecd <di r name> command.

Connecting to a Target

Now that you have set the working directory, you are ready to connect to a

target board.

1. Physicaly connect the target board to the host via a serial cable. For
more information see Chapter 2.

2. Make sure the target board has the MON960 debug monitor running.
For more information, see Chapter 2.

3. Pressthe Target Connect button from the toolbar. Y ou can also use the
Connect option in the Target pull down menu.

4. You are prompted to select either serial or TCP/IP connection.

O If you select serial, Enter the serial port name in the top text box
of the dialog.

Typicaly inaUNIX system, thereisafilenamed/ dev/ tty??
used for serial communication. In the Serial port field, you can
enter either the entire name (/ dev/ t t y??), or just the 22 portion.

Y ou can set this value by including the - r command line option
when you initiate gdb960v as you would using the line oriented
debugger. (see your system administrator for the specific name of
the serial port on your system).

Y ou can aso set this option in the command window using the
target nmon960 <portname> ... command.

O If you select TCP/IP, you are prompted to enter the name of the
server sharing the evaluation board and the port where the board
is connected. Once you have set the correct parameters, choose

4-5

gdb960 User’'s Manual

4-6

OK. (See “TCP/IP Communication” in Chapter 2 for more
information on setting up a TCP/IP connection.)

5. If needed, specify the baud rate used to communicate with the target

board. The default setting is 38,400 BPS, and is the maximum rate (on
UNIX). You need only use this option to specify a slower baud rate
than the default.

6. If you wish to use a parallel port for code downloading, make sure the
parallel cable is connected from target to host, and enter the port name
in the field provided.

7. To connect to the target, press the connect button.

NOTE. You can set variables so that the proper communication
parameters are set automatically whenever you run gdb960. These
variables are stored in the TCL configuration files. For more information,
see “Customizing the GUI” on page 4-18.

If you have not successfully connected to your target, an error message
appears in the command window.

Using the gdb960 UNIX Graphical User Interface

When you have successfully connected to your target, the following
changes appear in the main window:

The Target Connect button on the toolbar disappears.

The No target portion of the status line becomes MON960.

The Windows pull down menu appears, which gives you options for
viewing the contents of registers.

A dialog box appears indicating various information about the target
to which you have connected.

Target information:

Attached to /dew/ttya at 38400 bps. 5
HDIL 3.0.2; CX at 33 MHz with 32MB DRAM; Cyclone EP, Rev. B
MON960 3.0.1a Jan 26 1996; CF step number 05 (Big-Endian)

No executable file has been loaded to the remote

Cpu status information:

PRCE address Ox=200010c0
System procedure table address Oxal000700
Fault table address Ozxa0000£50
Interrupt table address Ozxa0000b40
EBase of Interrupt stack Ox=20001380
Control table address Ox=20001050

Note also that if you have previously opened afile and read the symbols
from it, the Download button appears on the toolbar.

4-7

gdb960 User’'s Manual

4-8

Opening a File

Y ou are now ready to open a program file and then load its symbols and or
download code from it to the target. Y ou can also edit thefile in atext
editor as described in “Editing Source Code” on page 4-17.

1. Press the Open File button. This window appears:

Directory name: Selected File name:

|Efffsfafpaulrfgui_dncfscreenafsnurce l r

Contains Sub-Directories: Files:

Glerical. o
Er.in
Er.out
VRemily. c

You can also access this window by opening the File menu and
choosing Open.

2. Select the desired file by entering the directory and filename in the text

boxes provided, or by selecting one of the directory or file items in the

two list boxes provided.

Choose OK.

4. A window appears, giving you the option to edit the source file or load
its symbols. If you choose to load the symbols you can also download
the file to the target. In this section, you load the symbols and
download to the target. See “Editing Source Code” on page 4-18 for
more information on using gdb960v to run your favorite text editor.

[® Load symbols

[Download to target

w

Using the gdb960 UNIX Graphical User Interface

5. Select the Load symbols and Download to target options and choose

Open. Notice the following changes to the Debugger window:

* The Open file button from the toolbar disappears.

« TheList Code button appears on the toolbar.

¢ Thestatusline indicates the basename of the file from which you
have loaded symbols/downloaded code.

* The Source list menu appears. The options in this menu alow you
to set the search directories for source files, and aso to bring up
thelist code dialog.

Listing Code

The debugger lets you display any of the files or modules that comprise a
program. Y ou can aso have multiple windows open, which lets you move
between source files and modules as needed.

1. Choose List Code from the toolbar. This window appears:

Select a filename to list: Or, select a function name to list:

app. ¢
as.
atof_gen. c
atofieee. c
cc_finfo.c
cc_finfo.c
cc_info.c
ce_linfo.c
co_rdwrt. ¢
cmdout. ¢

=k
CI_REC_FIXED SIZE
CI_REC_LIST HI
¢I_FEC_LIST L0
| | Tswan
L |1=_a_dirc
| |S_GET_PRTAELE_NAME
| |2dd_include_dir
| |2dd_symbol_to_alphahet

The left field displays the names of the files or modules that comprise
the program. To the right are the names of the functions found in the
program

2. Select thefile or function that you want displayed.

4-9

gdb960 User’'s Manual

4-10

3. Choose List. Notice the following changes to the debugger main

window:

e Two buttons for setting permanent or temporary breakpoints
appear on the toolbar.

< If thetarget is connected, the Run button appears on the toolbar.

¢ TheList mode menu appears. The optionsin this menu let you
specify whether you want to display C/C++ code, assembly code
or bath.

File Target Windows Sourcelist Listmeode

]] (2] (7] o]

{fsiplidevisrelgasP60/paulr960/as.c mon960/gas960c/Ready §
g7
aa #ifdef DEEBUG
g9 int tot_instr_count;
90 int mem_instr_count;
91 int mema_to_memb_count;
9z int FILE run_ count;
93 int FILE_teot_instr_count;
94 int FILE_mem instr_count;
95 int FILE_mema_to_memb_count;
95 char #instr_count file = "gas9al.trace";
97 fendif
98
99 int main{argc,argv)
100 int arge;
101 char **argv;
10z {
103
104 #ifdef GNU9G0
105 #ifdef DOS
106 #ifdef _INTELC3Z_
107 ll/kkkxkkkkkkkxkkkkkk*xkkkkkktkxkkkkkktkkkkkk*kxkkkkkktkkkk

under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDE; type "show warranty" for details.
gdbSeD 5.0.003, Mon Sep 9 13:55:20 PDT 1996

GDE 4.13 (sparc-sun-sunosd.l1.3 --target i960-intel-hdi},

Copyright 1994 Free Software Foundation, Inc.

(gdboel) |

Using the gdb960 UNIX Graphical User Interface

NOTE. If the debugger cannot find thefile or function you specify, it
displays an error message in the command window. In most cases, the
error isdue to the directory with the desired module or file not being in
the list of search directories. To fix this problem, use the Search
Directories option from the Windows directory to add the directory where
thefile or function resides to the list of search directories. For more
information, see “Setting the Search Directories” on page 4-11.

Y ou are now ready to debug your software as described in the next section.

Setting the Search Directories

The Search Directories option lets you maintain alist of directories that

gdb960v uses when searching for files or modules for listing. Also, if the

same filename exists in multiple directories, make sure the directory with

the desired file is listed above any other directories that contain files with

the same name.

1. Open the Source list menu and choose Search directories. This
window appears.

Current search directorylist

FEfs/53/960t00ls Stornado. vnixringdb960 /o
Sodir

ERemove selected direct.oryl

Add directory after selection |

Insert directory before selection |

4-11

I gdb960 User’'s Manual

2. Usethese optionsto set up the search directories list:

Remove selected directory Removes the selected directory from the
search list.

Add directory after selection Adds a new entry to the search directory
list after the selection.

Pressing Insert directory before Adds anew entry to the search directory
list before the selection.

Both the Add directory after selection and the Insert directory before selection
options present you with a dialog where you select a directory name.

When you are finished modifying the search list press the OK button.

Using the Debugger

Once you have connected to the target, loaded the file, and downloaded

your program, you are ready to use gdb960’s debugging features. In this
section you learn how to

e List the code in C/C++, assembly language, or mixed code.

e Set permanent or temporary breakpoints.

* Run the program.

e Step through your code.

4-12

Using the gdb960 UNIX Graphical User Interface

Code Display Options

After you have loaded symbols from afile, you have the option of
displaying them in C/C++, assembly language, or mixed code.
1. Select the List mode menu. The List mode menu appears.

2. Choose the desired mode:

C Displays C/C++ source code.

Assembly Displays assembly language code.

Mixed Displays a combination of C/C++ and assembly
language code.

Setting Breakpoints

The debugger lets you set two kinds of breakpoints:

h 4 Breakpoints, which stop execution at the
indicated line of code each time the codeis run.

Y Temporary breakpoints, which stop execution at
the indicated line of code thefirst time you run
the program, but then are deleted.

There are two methods for setting and removing breakpoints:

Point and Click
Using the mouse, select the line where you wish to insert or remove a
breakpoint, then press the right mouse button to set a breakpoint.

Drag and Drop
Drag a breakpoint or atemporary breakpoint icon to alocation in the
source pane. The breakpoint or temporary breakpoint icon appearsin
the debug margin at the file line number where you dropped the icon.

4-13

gdb960 User’'s Manual

4-14

Running Your Program

Now that you have set your breakpoints, you are ready to run your

program.

1. Pressthe Run button. The Target Run dialog appears.

2. Inthe Target Run, enter any program command line options.

For example, you might enterdebug” in the box, and then your initial
program modul¢mai n() ?) can parse these using the usual
techniques of parsing argc, argv. This assumes you are using Intel's
standardtr t 960. o startup routine.

3. Press Run.

NOTE. You can set the default invocation arguments by assigning them to
the targetRunArgs variable in your tcl configuration file See “Customizing
the GUI” on page 4-18 for more information.

When your program starts executing, the debugger changes the appearance
of the screen in anumber of ways. In the main window, the Run button
changes to the re-Run button and the following new buttons appear:

f Target interrupt: Letsyou interrupt processing
on the target board. Y our board must have a
break detect circuit to use this option (see xyz for
more information on this). To resume execution
from where it stopped, press the step, next,
continue or finish buttons.

+ + Step/next: Causes execution to resume for one
line of C/C++ code, or assembly instruction
(depending on which list mode is currently
selected). The step button stepsinto calls,
whereas the next button steps over calls.

- Continue: Continues execution from where it
stopped.
¥ Finish: Continues execution until the current

subroutine completes, then the debugger regains

Using the gdb960 UNIX Graphical User Interface I

control in the calling statement.

Backtrace Displays the backtrace window. See backtrace
window below.

| P Up stack frames: Causes the debugger to go to
the scope of the caller of the current frame.

i | Down stack frames. Causes the debugger to go
down in stack frames closer to where the
machine is actually executing.

P P+ print/print star: Letsyou print (or, print with
one level of indirection) what is currently
selected in the source pane, and display it in the
command window.

ii# Display/display *: Display the value of the
selection (or the selection with one level of
indirection) in a separate window. The window
updates whenever the variable changes values.

Once a program starts executing, the debugger regains control after:
» the program encounters one of the breakpoints you inserted, or
e the program encounter afatal error, or

e you pressthe Target interrupt button.

When the debugger regains control, the source pane displays the C/C++
source code or assembly language corresponding to the location where
execution halted, and the arrow icon () appears in the debug margin
adjacent to the C/C++ source statement or the assembly instruction where
execution halted.

Using the Up and Down Stack Frames Feature

Pressing the up and down the stack frame buttons causes the debugger to
display the contexts of the previous or next stack frames respectively. Two
icons displayed in the debug margin help you in using this feature:

4-15

gdb960 User’'s Manual

4-16

indicates the call site.

> indicates the innermost frame.

Viewing the Contents of Registers

After you have run your program or stopped execution at a breakpoint, you

may want to check the values of the 1960 processor registers. To do so:

1. Open the Windows menu and choose Registers. This window appears:

= 1960 Registers
= Local
pfp = 0xa002d920
sp = 0xa002d9a0
rip = 0xa00081c4
r3 = 0x%5d05641
rd =10
r5 = O0xal0081k0
rg =10
r7 = Oxza00Zde50
rg = 0Ozl
r9 =10
rld =10
rll =
rl2 = 0xffffffff
rl3 =10
rld =10
rls =10
= Global

gl = 0x9
gl =
gz = 0xf0040d484
g3 = 0xfo040d40
gd = 0x9
g5h = Oxa
g6 = O0xa0003306
g7 = 0xZ69%6
g8 = Oxa0008140
g9 =10
gld =0
gll =0
glz =0
gld = 0xal003301

B

The window is updated each time the target halts, and if avalue differs
from the previous display, the value appearsin bold. For example, in the
register window above, the three registers pfp, sp, and rip have changed

since the previous execution.

Using the gdb960 UNIX Graphical User Interface I

Using the Backtrace Window

When debugging software, it is often useful to step backwards through the

calling sequence. gdb960v lets you do this any time after you have halted

program execution. To use this feature:

1. Select the Windows menu and choose Backtrace, or press the
Backtrace button on the toolbar. An interactive window displaying the
program’s call stack appears:

= call stack
= printf

PN N O e]

The frame that corresponds to the source pane is set in bold. The
Debug margin displays the current execution point going up and down
in the backtrace. The register window changes to display the register
values for the selected stack frame.

2. Click on any member of the call stack to display its contents in the
source pane.

Using the Print/Print Star Options

The print and the print * buttons let you print (or, print with one level of
indirection) what is currently selected in the source pane, and display it in
the command window. For example, suppose in the source pane there is a
line of source code that says:

foo(bar);

If you select the variablear and press the print button, the command
window displays the current value of the variable in the command window.

Editing Source Code

To edit your source code, drag the edit i’to the line that you want to
change. If you drag the Edit icon, by default, the vi editor is brought up.

4-17

I gdb960 User’'s Manual

Y ou can specify adifferent editor by setting the EDITOR environment
variable. See “Customizing the GUI” on page 4-18 for more information.

Creating a New File

To create a new source file:

1. Open the File menu, and choose New.

2. Inthe dialog provided, enter the name of the file that you would like to
create and the directory where it will reside.

The debugger brings up the text editor specified with the TCL EDITOR
environment variable. See “Customizing the GUI” on page 4-18 for
information on setting this option.

Exiting the Debugger

To exit the debugger:
1. Open the File menu and choose Exit.
Alternatively, you can typgui t in the command window.

Customizing the GUI

You can customize your configuration for many of the GUI's dialogs by
editing the following TCL files. To set the options, you need to edit either
of the following files:

$1 960BASE$SGI60BASE/ gui / host / resour ce/ t cl / app- confi g/ <host-type>. tcl

$HOVE/ . wi nd/ cr osswi nd. t cl
The second file is read in after the first one, and so can override values in
the first file, which in turn overrides the default configuration. The first

file is for customizations visible throughout the whole system, affecting all
users, whereas the second file is for customizations specific to a user.

For example you may enter lines to set your target communication
parameters:

4-18

Using the gdb960 UNIX Graphical User Interface

set targetConnectSerialPort “01”
set targetConnectSerialBaud “9600”
set targetConnectSerialPPort “/dev/bpp0”

Y ou may want to set the default invocation arguments by assigning them to
the targetRunArgs. For example:

set targetRunArgs “-debug”

Y ou may also want to specify the editor to use by setting the EDITOR
environment variable, or by setting the textEditor TCL variablein the
above .tcl files. For example:

set textEditor emacs

4-19

Configuring the gdb960 Environment

In this chapter, you learn some of the basic commands for configuring the
gdb960 environment. Topics include:

¢ Rulesfor using gdb960 commands

e Commands for specifying files and directories

¢ gdb960 environment variables

e Using the hel p command, to access reference information on gdb960
commands

¢ Using the show command to determine the current gdb960 settings

* Usingthei nf o command to display register and breakpoint settings

e Setting the gdb960 command prompt

e Command line editing

e Using the History feature

» Shell and Make options

e Setting the gdb960 screen size

e Setting the radix (octal, decimal, hexadecimal)

¢ Message options

e Quitting gdb960

Rules for Using gdb960 Commands

Commands consist of acommand name followed by arguments whose
meaning depends on the command name. For example, the command st ep
accepts an argument that is the number of timesto step, asinst ep 5. You
can also usethe st ep command with no arguments. Some commands do
not allow any arguments.

Command names may be truncated if the abbreviation is unambiguous.
Some commands have pre-defined abbreviations. These are listed in the

51

5

gdb960 User’'s Manual

5-2

description for individual commands. For example, s is specially defined as
equivalent to st ep even though there are other commands whose names
start with s. For more information on command line shortcuts, refer to
Appendix B.

Entering a blank line at the gdb960 prompt repeats the previous command.
Commands whose unintentional repetition might cause trouble are restricted
from repeating in thisway. Other commands (e.g., | i st and x) act
differently when repeated. For example, I i st n showsthe next n lines
beyond those already listed rather than repeating the lines already displayed.

An input line starting with # is a comment; it does nothing. Thisisuseful in
command files. For additional information on command files, refer to
Chapter 13.

File-specifying Options

When you invoke gdb960 from the command line, the debugger assumes

that the first argument not preceded by one of the file-specifying command
line options or by the option flags™or “/ ” specifies an executable file.
For example, in this command lipeogr ant is the name of the executable
from which symbolic information is read:

gdb960 - pci prograntl
This is equivalent to using thee option described below. There are other
options that let you perform such functions as changing the working
directory, specifying additional search directories, and specifying whether
the debugger loads a program’s symbols before downloading and executing
it.
add- symbol -file The add- synbol - fi | e command reads
fil ename addr ess additional symbol table information from
fil ename. Usethis command when that file has
been dynamically loaded (by some other means)

Configuring the gdb960 Environment 5

cddirectory

ddirectory

efile

exec-file filenane

filefilenane
[-p{c|d|x} offset]

into the running program. The addr ess
argument must be the memory address at which
the file has been loaded.

The symbol table of 7i | enane is added to the
symbol table originally read with the symbol -

fil e command. You can usetheadd-syns
command any number of times; the new symbol
data keeps adding to the old. In contrast, the
synbol - fi | e command loses al the symbol data
gdb960 has read before loading new symbols.

Set gdb960's working directory to di rectory.

Add ai r ect or y to the search path for source
files.
Usefil e asthefileto download and/or execute.

Specify that the program to be run (but not the
symbol table) isfound in fi I enane. The gdb960
debugger searches the environment variable
PATH, when necessary, to locate the program.
Usethefi | e command to get both the symbol
table and the program to run from the samefile.

Usefi I enane asthe program to be debugged.
Itisread for its symbols and pure memory
contents, and it is executed when you give the
run command. If you do not specify adirectory
and thefileis not found in gdb960’s working
directory, gdb960 uses the PATH environment
variable as alist of directories to search.

Thef il e command with no argument leaves
both the executable file and symbol table
unspecified.

5-3

gdb960 User’'s Manual

If you specify - pc, - pd, or - px, symbols are
relocated by adding of f set to their values.
These arguments act the same as their command-
line counterparts. Refer to Chapter 12 for more
information.

After loading the debug data with thefil e
command, you can download the code with the
| oad command.

infofiles Display the current target, including the names of
the executabl e files currently in use by gdb960,
and the files from which symbols were |oaded.

load [filenamne] This command downloads f i I enane to the
current target. If you have already specified an
exec-filewiththefil e orexec-file
commands, then leaving out fi | enane causes the
current exec-file to be downloaded.

r eadnow Read each symbol file’s entire symbol table
immediately, rather than the default, which is to
read it incrementally as needed. This slows the
symbol-file command, but speeds up other

operations.
sfile Read symbol table fromy / e.
sefile Read the symbol table frofi/ e and use it as
the executable.
synbol -file Read symbol table information from file
filename fil ename. PATH s searched when necessary.

Use thef i | e command to get both the symbol
table and the program to run from the same file.

Thesynbol -fil e command with no argument
clears out gdb960's information on your
program’s symbol table.

Configuring the gdb960 Environment

xfile

Thesymbol -fi |l e command causes the gdb960
debugger to lose the contents of its convenience
variables, the value history, and al breakpoints
and auto-display expressions. Thisis because
they may contain pointers to internal data
recording symbols and data types that are part of
the old symbol table data being discarded.

Execute gdb960 commands from fi / e. For
more information on setting up a batch mode
execution file, refer to Chapter 13. - command is
asynonym for - x.

While al file-specifying commands allow both absolute and relative file
names as arguments, gdb960 always converts the file name to an absolute.

gdb960 Environment Variables

Thefollowing isalist of environment variables recognized by the gdb960
debugger. Following each variable is a description of its use and its default

value:
COMSPEC

SHELL

PATH

Used by Windows systems only. Setsthe shell to
run for the shell command. Can be overridden
with the SHELL variable.

Sets the shell to run for the shel I command.
Defaults are:

UNIX: / bin/sh

Windows:. Current setting of the $COVBPEC
environment variable. If $COVBPEC is not set, the
debugger then looks for COMMAND. CoMin the
current PATH.

Used by gdb960 to find executables when not
found in the current directory.

5-5

5 gdb960 User’'s Manual

HI STSI ZE

GDBHI STFI LE

TERM

| 960ERR

GO60BAUD

The help Command

Used by gdb960 to find . gdbi ni t and
.inputrc. Nodefaults. The debugger always
looks in the current directory for . gdbi ni t
whether or not $HOVE/ . gdbi nit isfound. The
debugger alwaystakes. i nput r ¢ from the
$HOMVE directory.

Sets number of gdb960 commandsto savein
history file. Default is 256.

Sets name of history file. Defaults are

. gdb_hi st ory inthe current directory for UNIX
hosts; hi st . gdb in the current directory in
Windows.

Used to set up screen width and height from
termcap database. Default is 80 x 24.

Windows only. If set, send st dout and st derr
to different streams. Default isto mix st dout
and st derr .

Sets the default baud rate. Default is 38400 bps.
Command line - b overrides $G60BAUD.

The hel p command displays category- or command-specific help. The hel p
command syntax is as follows:

help[option]

5-6

Displays information about gdb960 commands.
When opt i on is acommand name, help displays
a paragraph on how to use the command. With
no arguments, hel p displays a short list of
command categories; you can then enter the hel p
command using one of the listed categories to
replace opt i on. Theresult isalist of the
individual commands in the specified category.

Configuring the gdb960 Environment 5

The show Command

The show command displays the gdb960 software debugger’s internal state.
The following is the show command syntax:

show opt i on Where opt i on isone of theset command
options.
The following are some of the more commonly used show command
options:
version Displays version information for the currently
running gdb960 software debugger.
print Displays gdb960’s print settings.
editing Tells you whether command line editing is on or
off.
pr onpt Displays the current prompt string. For more

information on the prompt string, see the set
pr onpt command.
For a complete listing of the show options, refer to Chapter 12.

The info Command

Thei nf o command displays information about the program being
debugged, for example, the program’s registers or the status of the program’s
breakpoints. Followingisthe i nf o command syntax and a description of
the effects of two examples of the use of i nf o:

infooption Where opt i on isone of thei nf o optionslisted
in Chapter 12.

5-7

5 gdb960 User’'s Manual

The following are examples of thei nf o command:
inforegisters Displays the registers of the program.
i nf o breakpoints Displays the current breakpoints.

For a complete listing of the possible argumentstoi nf o, refer to
Appendix E.

The set prompt Command

Theset pronpt command changes the prompt string displayed by gdb960.
The gdb960 software debugger indicates its readiness to read a command by
printing a string called the prompt. This prompt string is normally
(gdb960) .
set pronpt newpronpt Directs gdb960 to use newpr onpt asits prompt
string.

Command Line Editing

The gdh960 software debugger reads its input commands viather eadl i ne
interface. This GNU library provides consistent behavior for programs that
provide a command line interface to the user. Advantages are Emacs-style
or vi -style in-line editing of commands, csh-like history substitution, as
well as storage and recall of command history across debugging sessions.
For detailed information on the command line editing capabilities of
gdb960, refer to Appendix B, Command Line Editing.

The set command controls the behavior of command line editing in
gdb960. The show command checks the status of command line editing.
The following examples demonstrate the use of set and show. For a
complete list of the options available for set and show, refer to Chapter 12.

set editing Enable command line editing (enabled by
set editingon default).
set editing of f Disable command line editing.
showedi ting Show whether command line editing is enabled.

5-8

Configuring the gdb960 Environment

Using the History Feature

Theset hi st ory save command causes each command entered at the
gdb960 command line to be stored for later retrieval. Y ou can store the
commands to either abuffer or afile. History expansion commands allow
retrieval of commands stored by hi story. Below istheset history
command syntax followed by alist of and a description of the effects of the
possible replacements for option in aset hi st ory command:

set history [option]

Where opt i on may be any of the following:

filename Set the gdb960 command history file to
fil ename. The gdb960 debugger reads an initial
command history list from thisfile and writesa
history list to this file when you exit gdb960.
The history list is accessed through history
expansion or through the history command
editing characters.

By default, i/ enaneis./.gdb_hi story for
UNIX hosts, and . / hi st . gdb for Windows
hosts. However, when the GDBHI STFI LE
environment variable is set, the value of the
GDBHI STFI LE is used.

save on Record the gdb960 command history in afile.
By default, i/ enaneis./.gdb_history for
UNIX hosts, and . / hi st . gdb for Windows
hosts. However, when the GDBHI STFI LE
environment variable is set, the value of
GDBHI STFI LEisused. You can also specify a
filename using the set hi story fi | e command.
By default, set hi story save isoff.

save of f Stop recording command history in afile.

5-9

gdb960 User’'s Manual

5-10

size [size] Set the number of commands that gdb960 keeps
inits history list. The default isthe value of the
HI STSI ZE environment variable, or 256 when
Hl STSI ZE is not set.

History Expansion
History expansion assigns special meaning to the exclamation point
character (1). Since! isalsothelogica not operator in C/C++, history
expansion is off by default.

NOTE. Whenusing ! asalogical not in an expression while history
expansion is enabled, you may sometimes need to follow / with a space or
atab to prevent it from being expanded. The r ead! i ne history facilities
do not attempt substitution on the strings ™! =" and "/ (" even when history
expansion is enabled.

Theset hi story optionsto control history expansion are:

expansi on on Enable history expansion. History
expansionisof f by default.

expansi on of f Disable history expansion.

The showhi st ory optionsto display the state of the gdb960 history
parameters are:

fil ename showhi st ory by
save itself displaysall four
si ze states.

expansi on

For additional information about command line editing using Enacs or vi ,
refer to Appendix A. For additional options, refer to Chapter 12.

Configuring the gdb960 Environment

shell and make Commands

Y ou can execute a shell command from within gdb960 in either Windows
or UNIX systems by entering the shel I command.

shel | Causes gdh960 to spawn a shell with acommand
prompt. Enter the exi t command to the shell to
return to gdb960.

shel | conmmand Causes gdb960 to spawn a shell to execute

command. The debugger uses the environment
variable SHELL when it is set, otherwise gdb960
uses/ bi n/ sh.

The utility make is often needed in development environments. Theshel |
command is not needed to execute make. However, make must appear in

the PATH:
make ... Causes gdb960 to spawn a shell run the make
program with the arguments specified with the
make command. Thisis equivalent to shell
make ...
Screen Size

Certain gdb960 commands may output large amounts of information to the
screen. To help you read all of it, gdb960 pauses and asks you for input at
the end of each page. Enter RETto continue. On UNIX, gdb960 sets the
screen size based on settings from the termcap database, the value of the
TERMenvironment variable, and the stty rows andstty cols settings. In
Windows, gdb960 queries the host for the current screen dimensions. Y ou
can override the default settings with the set height and set width
commands.

5-11

5 gdb960 User’'s Manual

The gdb960 software debugger also uses the screen width setting to
determine when to wrap lines of output. It triesto break thelineat a
readabl e place, rather than simply letting it overflow onto the following line.

show hei ght These set commands specify a screen
showwi dt h height and a screen width, where 1 pp
set hei ght / pp contains the number of lines on the
set wi dth cpl/ screen, and cp/ contains the number of

columns on the screen. The associated
show commands display the current
setting. If you specify a height of zero
lines, gdb960 does not pause during
output, no matter how long the output is.
Thisisuseful if output isto afile or to an
editor buffer.

Setting Radix

Y ou can enter numbersin octal, decimal, or hexadecimal in gdb960 using
the standard conventions: Octal numbers begin with "0" and hexadecimal
numbers begin with "0x." Numbers that begin with none of these are, by
default, entered in base ten; likewise, the default display for numbers when
no particular format is specified is base ten. Y ou can change the default
base for both input and output with the set radi x command.

set radi x base Set the default base for numeric input
and display. Supported choicesfor base
aredecima 8, 10, 16. base must be
specified either unambiguously or using
the current default radix.

showr adi x Display the current default base for
numeric input and display.

set i nput - radi x base Set the default base for numeric input
that you provide.

5-12

Configuring the gdb960 Environment

5

set out put -radi x base

set radi x base

Set the default base for numeric output
printed by gdb960.

Set both input and output bases.

Messages, Complaints and Cautions

By default, gdb960 is silent about itsinner workings. Theset ver bose
command forces gdb960 to display messages during lengthy interna

operations.

Currently, the messages controlled by set ver bose announce that the
symbol table for a sourcefileis being read.

set verbose on

set verbose of f

showver bose

Enables gdb960's output of informational
messages.

Disables gdb960's output of informational
messages.

Displays whether set ver bose ison or off.

Y ou can tell gdb960 to display a message when it encounters a bug in an
object file's symbol table. By default, gdb960 does not display such

messages.

set conplaints
limt

showconpl ai nts

Permits gdb960 to output / i mi t complaints
about each type of unusua symbol before
becoming silent about the problem. The default
iszero, off. Setlimt toalarge number -- five
is reasonable -- to prevent complaints from being
suppressed.

Displays how many symbol complaints gdb960 is
permitted to produce.

5-13

5 gdb960 User’'s Manual

By default, gdb960 provides cautionsin its queries for information. For
example, if you try to run a program that is already running, the debugger
displays the message shown in the following example:

(gdb960) run

The program bei ng debugged has been started already.
Start it fromthe beginning? (y or n)

Y ou can use these options to enable or disable this feature:

set confirmoff Disables cautions.
set confirmon Enables cautions (the default).
showconfirm Displays state of cautious questions.

Exiting gdb960

To exit the gdb960 software debugger, use the qui t command (abbreviated
q), or type an end-of-file character, usually CTRL + d. An interrupt, often
CTRL + ¢, does not exit from gdb960, but terminates the action of any
gdb960 command that isin progress and returns control to the gdb960
command line.

5-14

Example gdb960 Session

This chapter contains an example session of the gdb960 Software
Debugger. The session provided here uses avariation on "hello, world."
In the example, you perform the following tasks:

list the program

compile the program

invoke the debugger

load the program

set a breakpoint

list lines

set another breakpoint

execute to the breakpoints

. examine data

10. exit from the program and the debugger

©ooNo T A~AWDdDPE

Example Session

This extended example demonstrates a minimal set of gdb960 commands.
Follow the example sequence to familiarize yourself with the debugger and
the command line interface. Experiment with the other commands
described in this manual.

6-1

gdb960 User’'s Manual

6-2

Thefollowing isa UNIX listing of the example program:

$ cat hello.c
char buf[20] = "hi there";

mai n(argc, argv)

int argc;

char *argv[];

{
int i = 8;
buf[i++] =",";
buf[i++] ="'\0";
strcat(buf, " ya'll");
printf ("%\n", buf);

}

The two compiler invocation lines below demonstrate a build of the

example program using gcc960 and ic960, respectively. For more
information on the two compilers, refer to your compiler user’s guide. In
the example compile lines, the test program is built for the Intel
EV80960CA evaluation board:

$ gcc960 -g -Tnevca -0 hello hello.c
$ ic960 -g -Tev960ca -0 hello hello.c

The example assumes a UNIX system and a serial/piest/ t t yo1. To
familiarize yourself with a work session with the gdb960 software
debugger, perform the following actions:

1. Invoke the gdb960 debugger by entering the following command:
$ gdb960 -r 01
2. The following messages appear:

GDB is free software and you are wel cone to distribute
copies of it under certain conditions; type "show
copying" to see the conditions.

There is absolutely no warranty for CDB; type "show
warranty" for details.

gdb960 2.4, Thu Mar 10 09:14: 12 PST 1995
GDB 5.0 (host --target i960-intel-nobn960),

Example gdb960 Session

Copyri ght 1993 Free Software Foundation, Inc.
Connected to /dev/tty0l at 38400 bps.

3. Once the prompt returns, specify the file gdb960 is to read the symbol
table from by entering thef i | e command:
(gdb960) file hello
Readi ng synbols from hello...done.

4. Enter the load command to download the program and prepare for
execution:

(gdb960) | oad

section 0, name .text, address 0xe0008000, size 0x4c9c, flags 0x20

witing section at 0xe0008000
section 1, nane .data, address 0xe000ccaO, size 0x18, flags 0x40
witing section at 0xe000ccal
section 2, nane .bss, address 0xe000cccO, size 0x68c, flags 0x80
- nol oad

5. Set abreakpoint after the initialization code and at the first executable
lineinmain():
(gdb960) b main
Br eakpoint 1 at 0xe0008100: file hello.c, line 8.

6. Run the program until it encounters the breakpoint at the first line of
main:
(gdb960) run
Starting program /ffs/alpeters/gdb960/tutorial/hello
Breakpoint 1, main (argc=1, argv=0xe000d0c0) at hello.c:8
8 int i =8;

7. Listten lines, centered around the encountered breakpoint:
(gdb960) i st

1

2 char buf[20] = "hi there";
3

4 main(argc, argv)

5 int argc;

6 char *argv[];

7

8 int i = 8;

9 buf[i++] =",";

10 buf[i++] ="'\0";

6-3

gdb960 User’'s Manual

6-4

10.

11.

12.

13.

14.

15.

16.

Set a breakpoint on line 10:

(gdb960) b 10
Breakpoint 2 at 0xe0008120: file hello.c, line 10.

Continue execution until the second breakpoint is encountered:

(gdb960) c

Cont i nui ng.

Breakpoint 2, main (argc=1, argv=0xe000d0c0) at hello.c:10
10 buf[i++] = "\0";

Display the contents of the eighth element of the buf array:

(gdb960) p buf[8]
$1 = 44 ',

Step to the next line:

(gdb960) n
11 strcat (buf, " ya'll");

Display the string held in buf after executing the eighth line:

(gdb960) p buf
$2 = "hi there, \ 000\ 000\ 000\ 000\ OO0\ OO0\ 000"

Step to the next line:

(gdb960) n
12 printf("%\n", buf);

Display the string held in buf after executing the eleventh line:

(gdb960) p buf
$3 = "hi there, ya’ll\000\000\ 000\ 000"

Continue execution until the program terminates:
(gdb960) c

Cont i nui ng.

hi there, ya'll

Programexited with code 020.

Quit the debugger:

(gdb960) q
Terminating old session with dev/tty01
$

Running Your Program with gdb960

This chapter describes how to complete the following tasks:
e Run programs from the gdb960 debugger

e Specify arguments for your program

» Set the working directory for gdb960

e Set the environment for gdb960

Running Programs

Complete the following steps:

1. Make sure you recompile your software to include debugging
information as described in Chapter 2.

2. Run gdb960 and specify the name of the file that you would like to
execute, as described in Chapter 2. For example:
gdb960 -pci nyprogram

Note that you can use the file specification options (e.g., fi | e, exec-

file) described in Chapter 5 to specify a different file to execute after
gdb960 has loaded.

3. Enter ther un command, using the syntax:
run [argunents]

where ar gunent s specifies any arguments that your program accepts
ontherun command. Alternately, useset ar gs to set the program
arguments.

7-1

v

gdb960 User’'s Manual

7-2

Entering ar un command begins program execution immediately. For
adiscussion of how to stop and restart a program by using
breakpoints, refer to Chapter 8.

Setting Your Program’s Arguments

The arguments to your program are specified as arguments to ther un
command. The run command passes them directly to the monitor target to
be used during the invocation of your program.

L)

NOTE. Entering r un with no arguments invokes your program with the
same arguments used by the previous r un.

The following commands allow you to change or examine the arguments
to be passed the next time your program isinvoked by the r un command:

set args The command set ar gs can be used to specify
[arguments] the arguments to use the next time the program is
run. If set ar gs has no arguments, it meansto
use no arguments the next time the program is
run. Thisway, you can run your program with
arguments and set it to run again with no
arguments.

showar gs Show the arguments to be used by your program
when it next starts.

Setting Your Program’s Working Directory

Each program invocation with r un inherits its working directory from
gdb960's current working directory. The gdb960 debugger’s working
directory isinitially inherited from its parent process (typically the shell).
The cd command allows specifying a new working directory in gdb960.

Running Your Program with gdb960 ;

The gdb960 working directory also serves as a default for the commands
that specify files on which gdb960 operates.

cd directory Set gdb960's working directory to di rect or y.
pwd Display gdb960's working directory.

Your Program’s Environment

At startup, gdb960 inherits the environment from your current shell. This
environment is then passed on to MON960, where it becomes available to
your program.

Up to 20 environment variables can be passed to the program via
MON960. Thetypical UNIX environment islarger than that. 1t may be
necessary to start your UNIX shell with a stripped-down environment if
you need to pass variables to your application. One common way to do
thisisto give the UNIX command:

env - / bin/ ksh
where/ bi n/ ksh isthe shell that is used to start up gdb960.

The following commands allow you to change or examine the program

environment:
set envi ronment Set environment variable var nane to val ue.
var nane [val ue] The environment change is visible to your
program, not to gdb960. If optional val ue is
omitted, var nane issetto NULL. envi ronment
can be abbreviated env.
showenvi r onment Show the value of environment variable
[var nane] var nane, or al variables if var name is omitted.

unset environnment Remove the variable var nare from the
[varnane] environment. If var name is omitted, remove all
environment variables.

path di rectory Add di rect or y to the front of the PATH
environment variable. (the search path for

7-3

gdb960 User’'s Manual

executables). You may specify severa directory
names, separated by " or white space (‘;’ or
white space on Windows).

Program Execution Control

This chapter describes the features of the gdb960 debugger that allow you
to halt, examine, and restart your program.

A debugger alows you to interrupt program execution to inspect the
internal state of the program. The gdb960 debugger provides breakpoints,
conditional breakpoints, and watchpoints to monitor execution and halt
execution at instructions you have identified, or when conditions you have
defined develop.

Breakpoints

A breakpoint halts program execution when the execution point reaches a
pre-selected instruction in the program. Set breakpoints explicitly with
gdb960 commands, specifying by line number, function name, or exact
address the line on which the program should halt execution. Conditions
describing the internal state of the program can be added to breakpoints.
When the breakpoint is encountered, the debugger interrupts the programs
operation and evaluates the stop conditions. If the conditions evaluate to
false, then the debugger silently continues program execution. If the
conditions evaluate to true, then the debugger announces the interruption.
The effects of momentary interruptions to a real-time system must be
considered when setting conditional breakpoints.

When each breakpoint is created, the debugger assignsit a number. The
numbers are successive integers starting with 1. 1n commands for
controlling breakpoint features, the breakpoint number determines which
breakpoint is affected. Each breakpoint can be enabled or disabled; if
disabled, it cannot effect program execution until enabled.

81

gdb960 User’'s Manual

Breakpoints are set with the br eak command (abbreviated b). The gdb960
software debugger alows any number of breakpoints on the samelinein a
program. When it resumes execution, the gdb960 debugger ignores
breakpoints until at least one instruction has been executed. Otherwise,
you could not proceed past a breakpoint without first disabling it.

Refer to Chapter 2 for more information on breakpoints and symbolic

debugging of optimized code.

Thefollowing isalist of commands that create, examine, or manipulate
breakpoints. Accompanying each command is a description of its use:

br eak

break *address

break [filenane:]
function

break [filenane: |1inenum

Set a breakpoint at the next instruction to
be executed in the selected stack frame.
A breakpoint set with br eak in the
innermost frame halts execution the next
time it reaches the current location.

In any selected frame but the innermost,
the breakpoint causes the program to halt
as soon as control returns to that frame.

For more detail on how stack frames are
selected and moving from frame to
frame, refer to Chapter 9.

Set a breakpoint at addr ess. You can
set breakpointsin parts of the program
that do not have debugging information
or sourcefiles. The asterisk allows the
command line parser to identify

addr ess as an address rather than a
number.

Set a breakpoint at entry to f unct i on in
filename. Specifying afile nameis
unnecessary except when multiple files
contain functions with the same name.

Set abreakpoint at line / i nenumin
sourcefile fil ename. If filenaneis

Program Execution Control

break ... if cond

break +of fset
break -of fset

hbr eak args

not specified, it defaults to the current
file

Set a breakpoint with condition cond;
evaluate the expression cond each time
the breakpoint is reached, and halt only
if the value is non zero.

Andlipsis, ". .. ", stands for one of the
possible arguments described above (or
no argument) specifying where to break.
See the Break Conditions section in this
chapter for more information on
breakpoint conditions.

Set a breakpoint of f set number of lines
forward or back from the execution point
in the currently selected frame.

For MON960, only. Set ahardware
breakpoint, abbreviated hb. The
argumentslist, ar gs, alows the same
arguments that are listed in the br eak
command, and the breakpoint is set the
same way. Hardware breakpoints allow
breakpoints in non-writeable code (e.g.,
code that residesin ROM or FLASH).
Breakpoints set with the break command
are silently ignored when set in code that
resides in non-writeable memory. You
may set any number of hardware
breakpoints, but 1960 processor
architectures alow only two to be
enabled at any onetime. If more than

8-3

8 gdb960 User’s Manual

i nfo break [bnum]

i nfowat ch

rbreak regex

84

two are enabled, the lowest two
breakpoint numbers are honored and all
others are automatically disabled.

The command i nf o br eak displaysalist
of all breakpoints set and not deleted,
showing their numbers, where in the
program they are, and any special
features related to them. Disabled
breakpoints are included in the list and
marked as disabled.

Specifying a breakpoint number after the
i nf o br eak command lists only
information about the breakpoint
associated with the specified number.

Thei nf o br eak command sets the
convenience variable $_ and the default
examining-address for the x command to
the address of the last breakpoint listed.

Thisisasynonym for i nf o br eak.

Set a breakpoint on all functions
matching r egex. This command sets an
unconditional breakpoint on all matches,
displaying alist of all breakpoints set.
Once the breakpoints are set, they are
treated just like the breakpoints set with
break. They can be deleted, disabled,
made conditional, etc., in the standard

ways.

Program Execution Control

t break args Set a breakpoint that only halts execution
once. Theargumentslist, ar gs, isthe
same asin the br eak command, and the
breakpoint is set the same way, but the
breakpoint is automatically disabled the
first timeit is encountered. For more
information on disabling breakpoints,
refer to the Disabling Breakpoints and
Watchpoints section in this chapter.

Watchpoints

A watchpoint is a breakpoint that halts your program only when a specified
expression’s value changes. Watchpoints are set witlatlod

command. Watchpoints are managed like other breakpoints and are
enabled, disabled, and deleted using the same commands used for other
breakpoints.

There are two types of watchpoints:

1. Hardware-assisted watchpoints use i960 registers and evaluate at
normal execution speed.

2. Software watchpoints depend on single-stepping and are slower.

Hardware watchpoints are available on i960 Cx, Jx, Rx, and Hx
processors. A maximum of two hardware watchpoints can be set at any
one time (six on the Hx processors).

When you specify a watchpoint with the watch command, gdb960
determines automatically if the target hardware supports hardware
watchpoints. If so, and if there are sufficient hardware watchpoint registers
available, they are allocated to your watchpoint. Otherwise, a software
watchpoint is generated. Theat ch andwat ch commands are available

for setting only hardware-assisted watchpoints.

gdb960 User’'s Manual

8-6

Watchpoints find bugs when the module, function or location causing the
problem is unknown. For al types of watchpoints, provide a specifier for a
memory location (expr below; i.e., not aregister or machine address, but a
variablelikear g[10]). The gdb960 debugger converts the expression into
an address.

awat ch expr Set amemory access hardware
watchpoint. Memory access watchpoints
halt program execution when any read or
write is attempted at the address of expr .

wat ch expr Set awatchpoint on expr. Use hardware
resources if available.

wwat ch expr Set amemory write hardware
watchpoint. Memory write watchpoints
halt program execution when awrite is
attempted at the address of expr .

Deleting Breakpoints and Watchpoints

Thecl ear command lets you delete breakpoints according to their
placement in the program. Thedel et e command lets you delete
individual breakpoints by specifying their breakpoint numbers. A deleted
breakpoint no longer existsin any sense; it is forgotten.

NOTE. The gdb960 debugger automatically ignores breakpoints on the first
instruction to be executed when you continue execution without changing the
execution address. This prevents the debugger from stalling on a breakpoint.

Program Execution Control

Thefollowing isalist of commands that remove breakpoints or

watchpoints:

cl ear

cl ear function
clear filenanme: function

cl ear |'i nenum
clear filenane:|inenum

del et e br eakpoi nt s
bnuns. . .

del et e bnuns. . .

del ete

Delete any breakpoints at the next
instruction to be executed in the selected
stack frame. When the innermost frame
isselected, clear deletes the breakpoint
at which the program halted.

Delete any breakpoints set at the entry to
the function f unct i on.

Delete any breakpoints set at or within
the code of the specified line.

Delete the breakpoints of the numbers
specified as arguments. If no argument
is specified, delete all breakpoints.

Disabling Breakpoints and Watchpoints

Once a breakpoint is created, it can be set to one of the four following

states:

e Enabled. The breakpoint haltsthe program. A breakpoint made with
the br eak command starts out in this state.

« Disabled. The breakpoint has no effect on the program.

« Enabled once. The breakpoint halts the program, but when it does so
itisdisabled. A breakpoint made with thet br eak command starts out

in this state.

* Enabled for deletion. The breakpoint halts the program, but
immediately after the breakpoint is deleted permanently.

Disabling renders a breakpoint inoperative. However, adisabled

breakpoint can be enabled again.

Disable and enable breakpoints with the di sabl e and enabl e commands,
optionally specifying one or more breakpoint numbers as arguments.

87

gdb960 User’'s Manual

8-8

NOTE. Useinfo break to display alist of breakpointsif you don’'t know

which breakpoint numbersto use.

Thefollowing isalist of commands and descriptions for enabling or

disabling breakpoints:
di sabl e br eakpoi nts bnuns

di sabl e bnuns

di sabl e

enabl e br eakpoi nts bnuns
enabl e bnuns
enabl e

enabl e once bnuns

enabl e del et e bnuns

Disable the breakpoints listed in bnums.

Any number of breakpoints may be
listed by number. Separate each number
from the next by a space. The

br eakpoi nt keyword is not necessary
unless differentiating between disabling
display and disabling breakpoints. The
default is to disable breakpoints.

If no list of breakpointsis specified, all
breakpoints are disabled. A disabled
breakpoint has no effect but is not
forgotten. All options such asignore-
counts, conditions and commands are
remembered in case the breakpoint is
enabled again later.

Enable the breakpoints specified in
bnuns. If bnuns isnot specified, enable
all defined breakpoints.

Enable the specified breakpoints
temporarily. Each is disabled the next
time it halts your program.

Enable the specified breakpoints
temporarily. Each is deleted the next
time it halts your program.

Except for abreakpoint set with t br eak, breakpoints are enabled or
disabled only when you use one of the above commands.

Program Execution Control

NOTE. Thecommand unt i/ can set and delete a breakpoint, but it does
not change the state of your breakpoints. The unt i/ command is
described later in this chapter.

Break Conditions

Execution is halted every time an enabled breakpoint is encountered. To
customize a breakpoint to halt execution only under specia conditions, a
conditional expression can be attached to the breakpoint. Conditional
breakpoints cause momentary program interruption, which can affect real-
time programs. Execution halts only if the expression evaluates to true.

Any valid C/C++ expression in scope when the breakpoint is reached can
be used in a breakpoint condition.

Breakpoint conditions can have side effects, and may even call functionsin
your program. This can useful, for example, to activate functions that 1og
program progress, or to use your own print functions to format special data
structures. The effects are predictable unless there is another enabled
breakpoint at the same address. In that case, gdb960 might encounter the
unexpected breakpoint first and halt execution without checking the
expected breakpoint. Note that breakpoint commands are usually more
convenient and flexible for the purpose of performing side effects when a
breakpoint is reached.

When a breakpoint is set, break conditions can be specified by usingi f in
the arguments to the br eak command. Breakpoint conditions can also be
changed at any time with the condi ti on command. Thefollowingisalist
of condition commands and their effects on the breakpoints to which they
are applied:

condi ti on bnumexpressi on Specify expr essi on asthe break
condition for breakpoint number bnum
The breakpoint halts the program only if
the value of expr essi on istrue (non
zero, in C/C++). The expr essi on isnot

8-9

gdb960 User’'s Manual

8-10

condi ti on bhum

evaluated when the condi ti on
argument is given. When you enter the
condi ti on argument to the br eak
command, the expr essi on you specify
is checked immediately for syntactic
correctness and to determine whether
symbolsin it are defined in the scope of
your breakpoint. For more information
on examining data, refer to Chapter 11.

Remove the condition from breakpoint
number bnumto make it an unconditional
breakpoint.

Each breakpoint has an integer value called an i gnor e count associated
with it. Theinteger is set to O for enabled, unconditional breakpoints. The
i gnor e count command sets the integer to a positive value. Each time
execution encounters the breakpoint, the ignore count value is decremented
by 1. When the value reaches 0, the breakpoint halts execution and any set
conditions are evaluated. Thefollowingisalist of commands that
manipulate count and execution:;

i gnor e bnumcount

continue[count]
fg[count]

Set the count of breakpoint number bnumto

count . Thenext count timesthe breakpoint is
reached, your program’s execution does not halt;
other than to decrement the ignore count, gdb960
takes no action.

To make the breakpoint halt the next time it is
reached, specify a count of zero.

Continue executing the program. cbunt

is specified, ignoreount of the breakpoint
that halted execution tount minus one. The
program does not halt at the breakpoint again
until the breakpoint is encounteredunt times.

Program Execution Control

Except when halted at a breakpoint, the argument
to cont i nue isignored.

The synonym f g is provided for convenience,
and has exactly the same behavior ascont i nue.

NOTE. If a breakpoint has a positive ignore count and a condition, the
condition is evaluated each time the breakpoint is hit, but execution does
not stop until the ignore count reaches zero.

Commands Executed on Breaking

Y ou can give any breakpoint a series of commands to execute after
execution halts at a breakpoint. For example, you might want to display
the values of certain expressions, or enable other breakpoints. The
following command allows creation of alist of commands that can be
associated with breakpoints:

conmands bnum Specify alist of commands for breakpoint
number bnum Enter the commands one per line
on separate lines following commands. Typea
separate line containing the end command to
terminate the commands.

To remove al commands from a breakpoint,
follow commands immediately by end.

NOTE. With no arguments, conmands refersto the last breakpoint set,
not to the breakpoint most recently encountered.

811

gdb960 User’'s Manual

812

Breakpoint commands can re-start execution. Thecont or st ep
commands begin execution again. However, any further commands in the
same command list are ignored. When execution halts again, gdb960
executes any command list associated with the breakpoint that causes the
halt.

If si | ent isthefirst command specified in acommand list, the usual
message about halting at a breakpoint is not displayed. This may be
desirable for breakpoints that are to display a specific message and then
continue. If the remaining commands also display nothing, you see no sign
that the breakpoint was reached at al. Thesi | ent commandis
meaningful only at the beginning of the command list for a breakpoint.

The following example displays the value of x at entry to f oo when x is
positive; then continues execution:

break foo if x>0

comands

sil ent # Don't print normal bp stuff.
print x # What is x's val ue?

cont # Resune program

end

NOTE. The commands echo and out put allow more precise display
control of output and are often useful in silent breakpoints.

The following example of a command list shows correction of one bug so
another can be pursued without reinvoking the program. The example
places a breakpoint just after an error in the code, gives the breakpoint a
condition to detect the error case, and adds a command list that assigns

Program Execution Control

correct values to variables that need them. The command list starts with
the si | ent command so no output is produced and ends with the cont
command so the program does not halt:

break 403
conmands
silent

set x =y + 4
cont

end

Continuing

Stepping

The continue command allows you to re-start a halted program.

conti nue cont Continue running the program where
it halted.

If the program halted at a breakpoint, execution resumes at the address of
the breakpoint, but the breakpoint is not taken.

Stepping means executing aline of code, or set of lines, according to
restrictions set by the st ep command. Control returns automatically to the
debugger after one line of code. Breakpoints are active during stepping,
and execution haltsif a breakpoint is encountered on a machine instruction.
The st ep command may be given when control is within afunction that
has no debugging information. Execution proceeds until control reaches
another function, or is about to return from thisfunction. The following is
alist of stepping commands and their descriptions:

finish Continue execution until after the selected stack
frame returns (or until there is some other reason
to halt, such as afatal signal or a breakpoint).
Display the value returned by the selected stack
frame.

8-13

gdb960 User’'s Manual

next

nexti
nexti count

step

st ep count

st epi
stepi count

unti |

8-14

Similar to st ep, but function callsin aline are
executed without halting or taking special actions
inside them. Execution halts when control
reaches anew line of code at the stack level that
was executing when the next command was
given or if another breakpoint is hit. next is
abbreviated asn. A count argument is arepeat
count, asin st ep.

Execute one machine instruction, but if itisa
subroutine call, proceed until the subroutine
returns. A count argument is arepeat count, as
instep.

Execute one line of code then halt execution and
return control to the debugger. This command is
abbreviated as s.

Execute count lines. If abreakpoint or asignal
not related to stepping is encountered before
count steps, execution halts.

Execute one machine instruction, then halt and
return control to the debugger.

It is often useful to do di spl ay/i $i p when
stepping by machine instructions. This causes
the next instruction executed to display
automatically at each halt. For more information
on examining data, refer to Chapter 11. A count
argument is arepeat count, asin st ep.

Theunti| command allows execution of all
iterations of aloop asasingle step. Theunti |
command with no arguments causes execution to
continue until the program reaches a source line
greater than the current source line.

Theunti| command always halts the program if
it attempts to exit the current stack frame.

Program Execution Control

until /ocation

With no argument, unt i | workslike single
instruction stepping, and henceis slower than
unti | with an argument. The until command
accepts all the same arguments as the br eak
command.

Continue running the program until either the
specified location is reached, or the current
(innermost) stack frame returns. / ocat i on can
be any argument form acceptable to br eak. This
form of theunt i I command uses breakpoints,
and hence is quicker than unt i | without an
argument because it need not break on every
machine instruction.

A typical technique for using stepping is to put a breakpoint (see the
Breakpoints section) at the beginning of the function or program section
where a problem is believed to be, execute to the breakpoint, then step
through the suspect area, examining the interesting variables until the

problem occurs.

The cont command can be used after stepping to resume execution until
the next breakpoint or signal.

Continuing at a Different Address

Ordinarily, when you continue the program, you do so from the place it
stopped, with the cont command. Y ou can instead continue from any
address you choose using the following commands:

junp /i nenum

Resume execution at line number / i nenum
Execution may stop immediately if thereisa
breakpoint there.

Thej unp command does not change the current
stack frame, the stack pointer, the contents of any
memory location, or any register other than the
instruction pointer. If line/ i nenumisina

8-15

gdb960 User’'s Manual

8-16

j unp * addr ess

different function from the one currently
executing, the results may be unpredictable if the
two functions expect different patterns of
arguments or of local variables. For thisreason,
thej unp command requests confirmation if the
specified line is not in the function currently
executing. However, results are predictable
based on careful study of the machine-language
code of the program.

Resume execution at the instruction at address
addr ess. The asterisk allows the command line
parser to identify addr ess as an address rather
than a number.

Y ou can get much the same effect asthej unp
command by storing a new value into the register
$i p. Thedifferenceisthat the program does not
start running; only the address where it will run
when it is continued changes. For example:

set $ip = 0x485

causes the next cont command or stepping
command to execute at address 0x485, rather
than at the address where the program stopped.

The most common use of thej unp command is
to back up, perhaps with more breakpoints set,
over aportion of a program that has already
executed.

Program Execution Control

gmu Commands

The gnu commands allow interactive control over the Guarded Memory
Unit (GMU). They apply to the Hx processor only.

gmu prot ect and gnu det ect specify the type of GMU register to control,
either protection (pr ot ect) or detection (det ect). Protection GMU
registers are identified by number, ranging from 0 to

NUMPREGS - 1. NUMPREGS is currently 2 on the Hx processors. Detection
GMU registers are identified by number, ranging from 0 to NUVMDREGS - 1.
NUMDREGS is currently 6 on the Hx processors.

gdb960 records the gnu def i ne commandsin an internal data structure

called the command cache. If you later invokethefi | e command, gdb960
reprograms the GMU using the commands in the command cache. This

allows the same GMU definitions to be used repeatedly while only the

fil e name changes. Sincethe gnu defi ne commands accept expressions,
aswell as addresses, you can protect a section of memory without knowing

its exact size. If the section’s size changes due to recompilation, the GMU
settings still work, regardless of the change.

gmu detect
gmu protect
Following is thegmu det ect andgmu pr ot ect command syntax, a

description of the effects of the possible options, and examples of use.
Refer to Chapter 12 for further discussiory@f syntax and arguments.

gmu detect | Allows control over the Hx processor Guarded
pr ot ect Memory Unit, andspecifies the type of GMU
subcommand register to control, either protectigsr 6t ect) or

detection det ect). subconmand specifies the
action to perform on the register. Following are
the subconmand options for theymu pr ot ect
andgnu det ect commands.

define Initialize and enable the specified register.

8-17

gdb960 User’'s Manual

di sabl e Disable the previously-defined register.
enabl e Enable the previously-defined register.

You may aso usethei nf o gnu command to print atable of all current
GMU registers. Refer to Chapter 12 for more information on thei nf o
command.

Syntax

gmu detect define regnum access startaddress endaddress

Initializes and enables the specified GMU detection register.

regnum Specifies a detection register number.

access Specifies which types of memory access can
cause aGMU fault. The string has the form
nodet ype[, nodet ype]
where node is either u or s, for user mode access
or supervisor mode access. t ype isastring of
one or more |etters from Table 8-1.
An optional second nodet ype may be given to
program both user and supervisor modesin the
same command.

An example of avalid access argument is
ur w, sx, which means fault on a user mode read
or user mode write or a supervisor mode execute.

startaddress Evaluates to the starting address of the desired
detection range.

endaddr ess Evaluates to one byte beyond the ending address
of the desired detection range.

8-18

Program Execution Control

gmu detect disable [regnum

Disables the specified GMU detection register. Clears the memory
detection enable bit for this register in the GMU control register. |If
regnumis omitted, disable all GMU detection registers.

gmu detect enable [regnum

Enables the specified GMU detection register. Sets the memory detection
enable bit for this register in the GMU control register. If regnumis
omitted, enable all GMU detection registers.

gmu protect define regnum access address nmask

Initializes and enables the specified protection GMU register.

regnum Specifies a protection register number.

access Specifies which types of memory access can
cause aGMU fault. The string has the form
nmodet ype[, nodet ype]
where node is either u or s, for user mode access
or supervisor mode access. t ype isastring of
one or more |etters from Table 8-1.
An optiona second nodet ype may be given to
program both user and supervisor modesin the
same command.

An example of avalid access argument is
ur w, sx, which means fault on a user mode read
or user mode write or a supervisor mode execute.

addr ess Evaluates to the starting address of the desired
protection range.

mask Evaluates to a number describing the addressing
congstraints for thisrange. For more information,
refer to thei960 Hx Microprocessor User’'s
Manual

8-19

gdb960 User’'s Manual

Table 8-1 Access Types

Access Type Access Type Symbolic
Name

Read r

Write w

Execute X

Data Cache Write c

None (clears previous settings) n

gmu protect disable [regnum

Disables the specified GMU protection register. SpecifiesaGMU
protection register number. Clears the memory protection enable bit for
this register in the GMU control register. If regnumis omitted, disable al
GMU protection registers.

gmu protect enable [regnum

Enables the specified GMU protection register. Set the memory protection
enable bit for this register in the GMU control register. If regnumis
omitted, enable all GMU protection registers.

Examples

(gdb960) gnu protect define O urwxc 0 Oxfffc0000

This example establishes 256 KB of illegal access protection beginning at
address 0. Any user-mode access to this memory range triggers a faullt.
All supervisor-mode access is alowed without generating a fault.
Protection register O is used.

(gdb960) gnu detect define 4 sw, uw 0xa0010000 0xa0020000

This example initializes detection register 4 as follows: 64 KB of illegal
access detection beginning at address 0xa0010000. Either a user-mode
write or a supervisor-mode write to this memory range triggers a fault.

8-20

Examining the Program Sack

The gdb960 debugger provides commands for examining the stack. It

allows you to see information about where the call was made and the local
variables of the called function. Each function call causes information to

be saved in ablock of data called a stack frame. The stack frame also

contains the call's arguments. All stack frames are allocated from a region
of memory called the call stack.

The gdb960 debugger selects one of the stack frames, and many gdb960
commands act on the selected frame. In particular, when you ask gdb960
for a variable's value, the value is sought in the selected frame. Commands
are provided in gdb960 to allow selection of any stack frame.

When execution halts, gdb960 automatically selects the currently executing
frame and describes it briefly. This chapter provides information about
manipulating stack frames, selecting frames, creating traces, and extracting
information from selected frames.

Stack Frames

The call stack is divided into contiguous pieces called stack frames, or
frames. Each frame contains the data associated with a call to a function.
A frame contains the function’s arguments, its local variables, and its
execution address.

When your program starts, the call stack contains a frame for all-purpose
execution. You might call this the art frame, which is how gdb960

prints it forbackt race. The functiomai n is actually in the second-to-
the-outermost frame. The starting frame is called the initial frame or the
outermost frame. Each time a function is called, a new frame is created.
Each time a function returns, its frame is eliminated from the call stack. If

9-1

gdb960 User’'s Manual

9-2

afunction isrecursive, there can be many frames for the same function.
The frame for the function where execution is actually occurring is called
the innermost frame. Thisisthe most recently created of all the stack
frames that still exist.

Stack frames are identified by addresses. A stack frame consists of many
bytes, each of which hasits own address; different hosts have different
conventions for choosing a byte whose address serves as the frame address.
On 960 processors, the address of the currently executing frameis kept in
the frame pointer register.

The gdb960 debugger assigns numbersto all existing stack frames, starting
with zero for the innermost frame, one for the frame that called it, and so
on. These numbers are record keeping devices for gdb960. They do not
really exist in your program; they provide away of describing stack frames
in gdb960 commands.

When program execution halts, gdb960 automatically selects the innermost
stack frame. Many gdb960 commands refer implicitly to the selected stack
frame. Y ou can select any frame using gdb960 command frame. Once
selected, gdb960 commands operate on the newly-selected frame.

Backtraces

A backtrace is asummary list of stack framesin the order in which they
were called. The backtrace presents one line per frame, starting with the
currently executing frame (frame zero), followed by its caller (frame one),
and so on up the stack. Thefollowingisalist of commands for creating a
backtrace; accompanying each command is a description of its use:

backtrace Display a backtrace of the entire stack: oneline
per frame for al framesin the stack. Y ou can
stop the backtrace at any time by typing the
system interrupt character, normally CTRL + C.

backtrace n Display only the innermost n frames.

backtrace -n Display only the outermost n frames.

Examining the Program Sack

The commandswher e and i nf o st ack are synonyms for backt r ace.

Every line in the backtrace shows a frame number and function name. An
instruction pointer value is also shown — unless yowaseri nt
address of f.

If a function is in a source file whose symbol table data has been fully read,
the backtrace shows the source file name and line number, as well as the
function’s arguments. When the line number is shown, the instruction
pointer value for that line number is omitted if it is at the beginning of the
code.

Here is an example of a backtrace. It was made with the conmtmand
so it shows the innermost three frames:

#0 rtx_equal _p (x=(rtx) 0x8e58c, y=(rtx) 0x1086c4) \
(/gp/rns/cc/rtlanal.c line 337)

#1 0x246b0 in expand_call (...) (...)
#2 0x2lcfc in expand_expr (...) (...)
(More stack franmes follow...)

The functionsxpand_cal | andexpand_expr are in a file whose symbol
details have not been fully read. Full detail is available for the function
rtx_equal _p, which is in the filet1 anal . c. Its arguments, namedand
y, are shown with their typed values.

9-3

9

gdb960 User’'s Manual

94

Selecting

a Frame

Most commands for examining the stack, and other datain a program,
work on the currently selected stack frame. The following commands
select astack frame. Each finishes by displaying a brief description of the
stack frame just selected:

frame n Select frame number n, where frame zero isthe
innermost (currently executing) frame, frame one
isthe frame that called the innermost one, and so
on. The highest-numbered frameisthest art
frame. The second highest is the frame for mai n.

frame frane_addr Select the frame at address f r ane_adar . If the
chaining of stack frames has been damaged by a
bug, it isimpossible for gdb960 to properly
assign numbersto al frames. If the numbers are
unavailable, addresses are till available for
selecting frames.

up[n] Select the frame n frames up from the previously
selected frame. For positive numbers n, this
advances toward the outermost frame, to higher
frame numbers. Default is one.

down [n] Select the frame n frames down from the
previously selected frame. For positive numbers
n, this advances toward the innermost frame, to
lower frame numbers. Default isone.

Each of the above commands ends by displaying information about the
selected frame: the frame number, the function name and its arguments, the
source file and line number of execution in that frame, and the text of that
source line. For example:

#3 main (argc=3, argv=??, env=??) at mmin.c:67

67 read_input _file (argv[i]);

Examining the Program Sack

After one of the above listed commands produces a printout, entering the
I'i st command without arguments displays ten source lines centered on
the point of execution in the selected frame.

up-silentlyn
down-silentlyn

Frame Information

These two commands are variants of up and
down, respectively. They differ in that they do
their work silently, without causing display of the
new frame. They are intended primarily for use
in gdb960 command scripts, where output might
be unnecessary and distracting.

The following commands display information about the selected stack

frame.

frane

infofrane

infofrane frane_addr

With no argument, does not change which frame
is selected, but does display information about
the currently selected stack frame. Theframe
command can be abbreviatedtof. Thefranme
command can also be used as an argument to

i nfo.

Display averbose description of the selected

stack frame, including the frame’s address, the
address of the frame called by the selected frame,
the frame that called the selected frame, the
address of the selected frame’s arguments, the
instruction pointer saved in the selected frame
(the address of execution in the caller frame), and
which registers were saved in the frame. The
description is useful when some problem has
corrupted the stack format.

Display a verbose description of the frame at
address r ane_addr, without selecting that
frame. The selected frame remains unchanged.

9-5

gdb960 User’'s Manual

9-6

i nfoargs

infolocals

Display the selected frame’s arguments, each on
a separate line.

Display the selected frame’s local variables, each
on a separate line. These are all variables
declared static or automatic within all program
blocks that are executed within this frame.

Examining Source Files

The gdh960 debugger knows from which source files your program was

compiled and can display parts of the source files’ text. When execution
halts, gdb960 displays the source line at which execution halted. When you
select a stack frame, gdb960 displays the source line on which execution in
that frame has halted.

This chapter describes commands and techniques that allow you to display
specified pieces of source files. The chapter contains information on
displaying specified source lines, identifying the directory in which source
files are found, and searching source files for particular lines.

Displaying Source Lines

To display lines from a source file, use that command (abbreviated
asl). There are several ways to specify which part of the file you want to
display.

The following is a list of the most common uses ofith&e command.
Each command is followed by a description of its effect:

list Iinenum Display I i st si ze lines centered on / i nenum
from the current source file. The command set
| i st si ze n changesthe default of ten linesto n
lines.

l'ist function Display I i st si ze lines centered around the
beginning of funct i on.

10-1

1

gdb960 User’'s Manual

list-

list Display I i st si ze morelines. If the
last lines displayed were displayed with al i st
command, display | i st si ze linesfollowing the
last lines displayed; however, if the last line
displayed was a solitary line displayed as part of
displaying a stack frame, display | i st si ze lines
centered around that line.

Display thel i st si ze lines preceding the last
lines displayed.

Repeating al i st command with RET discards the argument, so it is
equivalent to entering 1 i st . However, the -’ argument is preserved in
repetition so that each repetition displays preceding linesin the file.

Theli st command expects auser supplied zero, one, or two / i nespecs.
Thel i nespec arguments specify source lines; there are several ways of
writing thel i nespec argument but the effect is always to specify some
source line. Thefollowingisalist of I i st commands with possible
arguments and descriptions of their effects.

l'ist [inespec

list first,last

list,[last
list first,

list+

list-

10-2

Display I i st si ze number of lines centered
around the line specified by / i nespec.

Display linesfrom fi rst to/ ast. Both
arguments arel i nespecs.

Display I i st si ze lines, ending with / ast .
Display I i st si ze lines, starting with 7 i r st .

Display thel i st si ze lines following the last
lines displayed.

Display thel i st si ze lines preceding the lines
last displayed.

Examining Source Files

list

Display I i st si ze lines. If thelast lines
displayed were displayed with al i st command,
the new lines follow them. If thelast line
displayed was part of a stack frame display, the
new lines precede and follow it.

linespec Definition

The display command argument | i nespec can be composed of asingle
argument or a combination of arguments. The followingisalist of
possiblel i nespec command arguments that modify the display of source

lines:

I'i nenum

+of fset

-of fset

filenane: i nenum

function

Specifiesline I i nenumof the current sourcefile.
Thel i nenumargument isal i nespec. When a
I'i st command hastwo | i nespec arguments,
both refer to the same sourcefile asthe first

| i nespec.

Specifiestheline of f set lines after the last line
displayed. When used asthe second | i nespec
inalist command, +of f set specifiestheline
of fset linesdfter thefirst1i nespec.

Specifiestheline of f set lines before the last
line displayed.

Specifiesline I i nenumin the sourcefile
filenane.

Specifies the line of the first executable statement
that begins the body of the function f unct i on.

10-3

gdb960 User’'s Manual

10-4

filenane: function

*address

Specifies the line of the first executable statement
inthe functioninfilename. Thefilenameis
needed with a function name only if you have
identically named functions in different source
files. Otherwise, the function argument searches
all specified source files for the first match.

Specifies the line containing the program’s
address, whereddr ess may be any expression.
The asterisk is necessary to allow the command
line parser to identifysddr ess as an address
rather than a number.

Thei nf o command maps source lines to program addresses. The
following is an example command line for the info command:

infolinelinenum

Displays the starting and ending addresses of the
compiled code for source lirié nenum

The default examine address for theommand

is changed to the starting address of the line, so
thatx/ i is sufficient to begin examining the
machine code. Also, this address is saved as the
value of the convenience varialsle. For more
information on the« command and convenience
variables, refer to Chapter 11.

10

Examining Source Files

Searching Source Files

Two commands let you search the current source file for aregular
expression. The following list showsthef or ward and r ever se
commands and describes their uses:

f orwar d- sear ch regexp Checks each line, starting with the one
following the last line listed, for a match
for regexp. Itliststhelinethat isfound.
The command abbreviation for f or war d
isfo. Thesynonymsear ch regexp is
also supported.

rever se-search regexp Checks each line, starting with the one
before the last line listed and going
backward, for amatch for regexp. It
liststhelinethat isfound. The
command abbreviation for r ever se is
rev.

Specifying Source Directories

Executable programs sometimes do not record the directories of the
source files from which they were compiled, just the source file names.
Additionally, directories can be moved between compilation and
debugging. The gdb960 debugger remembers alist of directoriesto
search for source files. That directory list is called the source path. Each
time gdb960 wants a source file, it tries al directoriesin the list, in the
order they appear, until it finds afile with the desired name. The source
path is not the same as the executabl e search path unless you have
specified them identically.

If gdb960 can't find a source file in the source path, and the object
program records the directory the program was compiled in, gdb960 tries
the recorded directory too. If the source path is empty, and there is no
record of the compilation directory, gdb960 looks in the current directory.

10-5

1

gdb960 User’'s Manual

10-6

Whenever you reset or rearrange the source path, gdb960 clears out any
information it has cached about where source files are found, where each
lineisinthefile, and so forth.

When you start gdb960, its source path is empty. The source path contains
only the special directories "$cdi r " (stands for the compilation directory,
if available from the object file) and "$cwd" (stands for the current working
directory). To add other directories, use the di r ect or y command.

directory dirname Adddirectory di r nane (abbreviated, di r) to the
front of the source path. Multiple directory
names may be given to this command, separated
by white space or acolon (:), or asemi colon (;)
on DOS.

directory Reset the source path to empty. You are
prompted for confirmation.

show directories Display the source path; show which directories
it contains.

Because the di r ect or y command, when used with arguments, adds to the
front of the source path, it can affect files that gdb960 has aready found.

If the source path contains directories that you do not want, and those
directories contain misleading files with names matching your source files,
you can correct the situation using one of the following two methods:

1. usingdirect ory with no argument to reset the source path to empty.
2. usingdi r ect or y with suitable arguments to add any other directories
you want in the source path. You can add all the directoriesin one

command.

1

gdb960 User’'s Manual

list Display I i st si ze morelines. If thelast lines
displayed were displayed with al i st command,
display I i st si ze linesfollowing the last lines
displayed; however, if the last line displayed was
asolitary line displayed as part of displaying a
stack frame, display | i st si ze lines centered
around that line.

list - Display thel i st si ze lines preceding the last
lines displayed.

Repeating al i st command with RET discards the argument, so it is
equivalent to entering 1 i st . However, the -’ argument is preserved in
repetition so that each repetition displays preceding linesin the file.

Theli st command expects auser supplied zero, one, or two / i nespecs.
Thel i nespec arguments specify source lines; there are several ways of
writing thel i nespec argument but the effect is always to specify some
source line. Thefollowingisalist of I i st commands with possible
arguments and descriptions of their effects.

l'ist Iinespec Display I i st si ze number of lines centered
around the line specified by / i nespec.

list first,Iast Display linesfrom fi rst to/ ast. Both
arguments arel i nespecs.

list,/ast Display I i st si ze lines, ending with / ast .

list first, Display I i st si ze lines, starting with 7 i r st .

list+ Display thel i st si ze lines following the last
lines displayed.

list - Display thel i st si ze lines preceding the lines
last displayed.

10-2

Examining Source Files

list

Display I i st si ze lines. If thelast lines
displayed were displayed with al i st command,
the new lines follow them. If thelast line
displayed was part of a stack frame display, the
new lines precede and follow it.

linespec Definition

The display command argument | i nespec can be composed of asingle
argument or a combination of arguments. The followingisalist of
possiblel i nespec command arguments that modify the display of source

lines:

I'i nenum

+of fset

-of fset

filenane: i nenum

function

Specifiesline I i nenumof the current sourcefile.
Thel i nenumargument isal i nespec. When a
I'i st command hastwo | i nespec arguments,
both refer to the same sourcefile asthe first

| i nespec.

Specifiestheline of f set lines after the last line
displayed. When used asthe second | i nespec
inalist command, +of f set specifiestheline
of fset linesdfter thefirst1i nespec.

Specifiestheline of f set lines before the last
line displayed.

Specifiesline I i nenumin the sourcefile
filenane.

Specifies the line of the first executable statement
that begins the body of the function f unct i on.

10-3

gdb960 User’'s Manual

10-4

filenane: function

*address

Specifies the line of the first executable statement
inthe functioninfilename. Thefilenameis
needed with a function name only if you have
identically named functions in different source
files. Otherwise, the function argument searches
all specified source files for the first match.

Specifies the line containing the program’s
address, whereddr ess may be any expression.
The asterisk is necessary to allow the command
line parser to identifysddr ess as an address
rather than a number.

Thei nf o command maps source lines to program addresses. The
following is an example command line for the info command:

infolinelinenum

Displays the starting and ending addresses of the
compiled code for source lirié nenum

The default examine address for theommand

is changed to the starting address of the line, so
thatx/ i is sufficient to begin examining the
machine code. Also, this address is saved as the
value of the convenience varialsle. For more
information on the« command and convenience
variables, refer to Chapter 11.

10

Examining Source Files

Searching Source Files

Two commands let you search the current source file for aregular
expression. The following list showsthef or ward and r ever se
commands and describes their uses:

f orwar d- sear ch regexp Checks each line, starting with the one
following the last line listed, for a match
for regexp. Itliststhelinethat isfound.
The command abbreviation for f or war d
isfo. Thesynonymsear ch regexp is
also supported.

rever se-search regexp Checks each line, starting with the one
before the last line listed and going
backward, for amatch for regexp. It
liststhelinethat isfound. The
command abbreviation for r ever se is
rev.

Specifying Source Directories

Executable programs sometimes do not record the directories of the
source files from which they were compiled, just the source file names.
Additionally, directories can be moved between compilation and
debugging. The gdb960 debugger remembers alist of directoriesto
search for source files. That directory list is called the source path. Each
time gdb960 wants a source file, it tries al directoriesin the list, in the
order they appear, until it finds afile with the desired name. The source
path is not the same as the executabl e search path unless you have
specified them identically.

If gdb960 can't find a source file in the source path, and the object
program records the directory the program was compiled in, gdb960 tries
the recorded directory too. If the source path is empty, and there is no
record of the compilation directory, gdb960 looks in the current directory.

10-5

1

gdb960 User’'s Manual

10-6

Whenever you reset or rearrange the source path, gdb960 clears out any
information it has cached about where source files are found, where each
lineisinthefile, and so forth.

When you start gdb960, its source path is empty. The source path contains
only the special directories "$cdi r " (stands for the compilation directory,
if available from the object file) and "$cwd" (stands for the current working
directory). To add other directories, use the di r ect or y command.

directory dirname Adddirectory di r nane (abbreviated, di r) to the
front of the source path. Multiple directory
names may be given to this command, separated
by white space or acolon (:), or asemi colon (;)
on DOS.

directory Reset the source path to empty. You are
prompted for confirmation.

show directories Display the source path; show which directories
it contains.

Because the di r ect or y command, when used with arguments, adds to the
front of the source path, it can affect files that gdb960 has aready found.

If the source path contains directories that you do not want, and those
directories contain misleading files with names matching your source files,
you can correct the situation using one of the following two methods:

1. usingdirect ory with no argument to reset the source path to empty.
2. usingdi r ect or y with suitable arguments to add any other directories
you want in the source path. You can add all the directoriesin one

command.

Displaying Program
Data and Symbols

This chapter contains information on examining data through expressions,
variables, and artificia arrays. This chapter also presentsinformation
about accessing the value history, using convenience variables, and
accessing registers.

To help in presentation of data, gdb960 allows use of format options and
output format specifications. Use of the options and format specifications
is also presented and demonstrated in this chapter.

The usual way to examine data in your program iswith the pri nt
command (abbreviated p), or its synonymi nspect. Thepri nt command
evauates and displays the value of any valid C/C++ expression, exp. The
value of exp isdisplayed in aformat appropriate to its datatype. The
following example shows the syntax of the pri nt command:

print exp

A lower-level way of examining datais with the x command. It examines
datain memory at a specified address and displaysit in a specified format.

Expressions

Many different gdb960 commands accept an expression and evaluate its
value. Any valid C/C++ operator, constant, or variableislegal in a gdb960
expression, including conditional expressions, and casts. Symbols defined
by preprocessor #def i ne commands do not evaluate.

111

1 1 gdb960 User’'s Manual

In addition to C/C++ language operators, the gdb960 debugger supports
the following three operators:

@ abinary operator for treating parts of memory as
arrays. For more information on treating memory
as arrays, refer to the Artificial Arrays sectionin
this chapter.

allows specification of avariable in terms of the
file or function in which the variable is defined.

{type} addr Refersto an object of type t ype stored at
memory address addr, where addr may be any
expression whose value is an integer or pointer
(but parentheses are required around non-unary
operators, just asin acast). Thet ype construct
is allowed regardless of what kind of data resides
at addr.

Program Variables

The most common kind of expression used to examine datais avariable
name. A referenceto avariable by an expression assumes the referenceis
to an instance of the variable that is located in the selected stack frame; the
variable must either be global (static) or be visible according to the C/C++
scope rules from the point of execution in that frame. For more
information on the selected stack frame, refer to Chapter 9.

11-2

Displaying Program Data and Symbols 1 1

In the following example function, the variable a is usable whenever the
program is executing within the function f oo, but the variable b isvisible
only while the program is executing inside the block where b is declared:
foo (a)
int a;
{
bar (a);

{
int b =test ();
bar (b);
}
}

Asaspecia exception, you can refer to avariable or function whose scope
isasingle source file even if the current execution point is not in the
currently selected file. If there are two or more static file-scope variables
with the same name in two or more different files, you can specify which
one you want in the following manner:

bl ock: : vari abl e

In this example, b/ ock isthe name of the source file in which the variable
you want resides.

Assignment to Variables

To alter avariable's value, evaluate an assignment expression. Inthe
following example, pri nt storesthe value 4 into the variable x, and then
displays the value of the assignment expression (which is 4):

print x=4

All C/C++ assignment operators are supported, including the increment
operators ++ and - - , and combined assignments such as += and <<=.

If you are not interested in seeing the assignment’s value, use the set
command instead of the pri nt command. set does not display the
expression’s value and does not put it in the value history. The expression
isevaluated only for side effects. For more information on the value
history and examining data, refer to Chapter 11.

11-3

11

gdb960 User’'s Manual

11-4

L)

NOTE. If the beginning of aset command’s argument string appears
identical to a set subcommand, you may need to usetheset vari abl e
command. Thiscommand isidentical to set except for itslack of
subcommands.

Artificial Arrays

It is often useful to display several successive objects of the sasme typein
memory (e.g., a section of an array, or an array of dynamically determined
size for which only a pointer exists in the program).

To display successive abjects, construct an artificial array by using the
binary operator @ The left operand of @isthe first element of the desired
array, as an individual object. The right operand is the number of objects
inthearray. Theresult isan array value whose elements are all of the type
of the left argument. The first element is actually the left argument; the
second element comes from bytes of memory immediately following those
that hold the first element, and so on.

Given the following example source line, you might want to display the
contents of array:

int *array = (int *) malloc (len * sizeof (int));
To display the contents of array, enter the following line:
p *array@en

The left operand of @must reside in memory. Array values made with @in
thisway behave just like other arraysin terms of subscripting, and are
coerced to pointers when used in expressions.

Displaying Program Data and Symbols

Format Options

The gdb960 software debugger provides the following ways to control
array, structure, and symbol printing. Each of theset commands shown
has a corresponding show command that displays the current setting. For
commands where the on or of f arguments are used as toggles, the default
ison when the argument is omitted.

set print address on Display memory addresses showing the
location of stack traces, structure values,
pointer values, breakpoints, and so forth,
even when it also displays the contents
of those addresses.

set print address of f Do not display addresses when
displaying their contents. The following
isabackt r ace command example:

(gdb960) set print address on

(gdb960) bt

#0 hithere (foo=0x55) at hi.c:11

#1 0xe00081b4 in main (argc=0x1l, argv=0xe000e960)
at hello.c:43

#2 0xe00080d4 in start ()

(gdb960) set print addr off

(gdb960) set print address off

(gdb960) bt

#0 hiya (foo=0x55) at hi.c:11

#1 main (argc=0x1l, argv=) at hello.c:43
#2 start ()

Theset print address of f command eliminates most machine
dependent displays from the gdb960 interface. For example, with pri nt
address of f, you should get the same text for backtraces on all machines,
whether or not they involve pointer arguments. Thisis especialy useful if
you wish to compare the results of running the same program on different
hosts, using gdb960 in batch mode as an execution vehicle.

11-5

11

gdb960 User’'s Manual

11-6

When gdb960 displays a symbolic address, it normally displays the closest
earlier symbol plus an offset. If that symbol does not uniquely identify the
address (for example, it is a name whose scope is asingle source file), you
may need to disambiguate by entering thei nf o | i ne command, for
examplei nfoline *0x4537. Asan alternative, you can set gdb960 to
display the source file and line number when it displays a symbolic
address. Thefollowing list provides examples of the set pri nt command
and descriptions of the effect of each example:

set print
synbol -fil ename on

set print
synbol -fil enane of f

set print
synbol i c-di sassenbly

set print max-synbolic-

of f set MAX- OFFSET

set print aut oderef

Display the source file name and line
number of a symbol in the symbolic
form of an address.

Do not display the source file name and
line number of a symbol. Omission of
the on or of f argument assumes of f .

(can be abbreviated set pri nt

synbol i ¢) When on, addressesin the
disassembly show the machine address
followed by <synmbol +1234> where
symbol isthe closest preceding function
name. Turning this off creates less
clutter inthe display. Theon settingis
the default.

Display only the symbolic form of an
address if the offset between the closest
earlier symbol and the addressis less
than MAX- OFFSET. The default is zero,
to always display the symbolic form of
an address, if any symbol precedesit.

When on, always dereference char *
pointers (i.e., print the string that the
char * pointsto). When turned of f,
char * isprinted likeavoi d * (i.e, just
print the hex address that the char *
pointsto). The on setting is the default.

Displaying Program Data and Symbols

set print array on Pretty-print arrays. Thisformat is more
convenient to read, but uses more space.
of f isthe defaullt.

set print array of f Return to compressed format for arrays.
set print el ements When displaying alarge array, stop
nunber - of - el enent s displaying after printing the number of

elements set by theset pri nt
el ement s command. The limit aso
appliesto display of strings. Setting the
number of elements to zero allows
unlimited displaying.

set print pretty on Display structures in an indented format
with one member per line. The
following is an example of a pretty
printed structure:

$1 = {
next = 0xO0,
flags = {
sweet = 1,
sour =1
I
meat = 0x54 " Pork"
}
set print pretty of f of f isthe default format. Display

structures in a compact format, asin the
following example:

$1 = {next = 0x0, flags = {sweet
= 1, sour = 1}, neat = 0x54
" Por k"}

11-7

gdb960 User’'s Manual

11-8

set print repeats repeats

set print
on

set print
off

set print

set print

sevenbit-strings

sevenbit-strings

union on

union off

Set threshold for printing repeated
elements (e.g., printing an array that
contains r epeat s Or More zeroes prints
amessage \000 <repeats NN
times> , where NN is the number of
eements). The default for repeat s

is 10.

Display using only seven-bit characters;
if this option is set, gdb960 displays any
eight-bit characters, in strings or
character values, using the notation

\ NN\, For example, M-a is displayed as
octal \341 .

Display using either seven-bit or eight-
bit characters, asrequired. off isthe
default.

Display unions that are contained in
structures. on isthe default.

Do not display unions contained in
structures.

The following example demonstrates displaying structures containing
unions. The structures are declared, initialized, and displayed with union
both on and off :

typedef enum {Tree, Bug} Species;

typedef enum {Big_tree, Acorn, Seedling} Tree_forms;
typedef enum {Caterpillar, Cocoon, Butterfly} Bug_forms;

struct thing {

Species it;

union {

Tree_forms tree;
Bug_forms bug;

} form;

h

Displaying Program Data and Symbols 1 1

struct thing foo = {Tree, {Acorn}};

(gdb960) set print union on

(gdb960) print foo

$2 = {it = Tree, form= {tree = Acorn, bug = Cocoon}}
(gdb960) set print union off

$2 = {it = Tree, form={...}}

Output Formats

The gdb960 software debugger normally displays all values according to
their data types. Output formats allow you to view data as other types.
Possible types are:

e integer in hexidecimal

» integer in signed decimal

e integer in unsigned decimal

* integerin octal

e integer in binary

e integer as character constant

e address as hexadecimal

« floating point

To display avaue aready computed, start the arguments of the pri nt
command with aslash and aformat letter. Thefollowingisalist of the
supported format |etters:

X Regard the bits of the value as an integer, and display the integer
in hexadecimal.

d Display asinteger in signed decimal.

u Display asinteger in unsigned decimal.

0 Display asinteger in octal.

t Display asinteger in binary. Theletter t stands for "two".

11-9

11

gdb960 User’'s Manual

11-10

a Display as an address, both absolute in hex and as an offset of the
nearest preceding symbol. Thisformat can be used to discover in
which function an unknown address is located:

(gdb) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>

c Regard as an integer and display as a character constant.

f Regard the bits of the value as a floating point number and
display using floating point syntax.

The following example displays the instruction pointer in hexadecimal:
p/x $ip

No space is required before the slash because gdb960 command names
cannot contain a slash.

To redisplay the last value in the value history with a different format, you
can use the pri nt command with aformat and no expression. For
example, p/ x redisplays the last printed valuein hex.

Examining Memory

This section contains information about manipulating and examining
memory contents. The commands listed below provide access to the
memory. Each command isfollowed by a description of its use:

set caching The gdb960 debugger normally caches
[on| of f] target memory reads and writes to reduce

serid-linetraffic. 1n some cases, this
feature masks volatile memory changes.
To prevent gdb960 from caching target
memory, useset cachi ng of f, which
flushes the memory cache prior to every
target read or write. By default, caching
isenabled, set cachi ng on.

Displaying Program Data and Symbols 1 1

di sassenbl e { function| Provides a dump of arange of memory
address} [address] as machine instructions. The rangeisthe

inclusive area bounded by the two
machine addresses provided in the
addr ess arguments. If only one
addr ess argument is provided, gdb960
finds the first C/C++ function that starts
at an address less than or equal to the
given address; then it disassembles the
entire function. If only afunction
argument is provided, then the function
named in funct i on isdisassembled in
itsentirety. If thestringinfunctionis
not a function name, then its addressis
calculated and acted on as though it were
an addr ess argument.

x [/ NFU] [address] Y ou can use the command x to examine
memory in any of several formats,
independent of your program’s data

types.

N, F, and U are all optional parameters
that specify how much memory to
display and how to format it; addr ess is
an expression giving the address where
you want to start displaying memory. |If
you use defaults for NFU, you need not
typethedash (/). Several commands set
convenient defaults for addr ess.

Nisthe repeat count. The repeat count is
adecimal integer; the defaultis 1. It
specifies how much memory (counting
by units U) to display.

11-11

11

gdb960 User’'s Manual

11-12

F isthedisplay format. It isone of the
formats used by pri nt, ors (null-
terminated string) or i (machine
instruction). The default isx
(hexadecimal) initialy, or the format
specified the last time you used either the
x command or pri nt .

Uistheunit size. The unit sizeisany of
the size specifiers described in the lists
on the following pages.

Each time you specify a unit size with x,
that size becomes the default unit the
next time you usex. Forthes andi
formats, the unit sizeisignored and is
normally not written.

Output format specifies how large a unit of memory to examine and how to
display the contents of that unit. Format specification consists of one or

two of the following letters:

The following |etters specify the size of unit to examine:

b Examineindividual bytes.

h Examine half words (two bytes each).
w Examine words (four bytes each).

g Examine giant words (eight bytes).

The following letters specify the display format:

X Display asintegersin unsigned hexadecimal.

d Display asintegersin signed decimal.

u Display asintegersin unsigned decimal.

t Display asintegersin binary. Theletter t stands for "two".
) Display asintegersin unsigned octal.

Displaying Program Data and Symbols

a Display as an address, both absolute in hex and then relative to a
symbol defined as an address below it. Notethat p/ a and x/ a
are similar, but not exactly the same. The following example
shows p/ a displaying the result of an expression asif it were an
address:

(gdb960) p/a main + 8
$9 = 0xe00080e8 <mmi n+8>

The following example of the x/ a command shows it displaying
the contents of the result of the expression as if it were an
address. Thereisan additional level of indirection here:

gdb960) x/a &main

0xe000880e0 <mai n>: 0x59084810

(gdb960) x/a 0xe000880e8

0xe000880e8 <mai n+8>: 0xe00080f 0 <nmi n+16>

c Display as character constants.
f Display asfloating point. Thisworks only with sizeswand g.
s Display a null-terminated string of characters. The specified unit

sizeisignored; instead, the unit is however many bytes it takesto
reach anull character, including the null character.

[Display a machine instruction in assembler syntax. The specified
unit size isignored; the number of bytesin an instruction varies
depending on the type of machine, the op code, and the
addressing modes used. The command di sassenbl e isan
alternative for inspecting machine instructions.

If either the manner of displaying or the size of unit is unspecified, the
default isto use the last used specification. If you do not use any letters
after the dash, you can omit the slash as well.

If you omit the address to examine, the address following the last unit
examined isused. String and instruction formats actually compute a unit-
size based on the data. It ensures that the next string or instruction
examined startsin the right place.

11-13

11

gdb960 User’'s Manual

11-14

When the pri nt command shows a value that residesin memory, pri nt
also sets the address for the x command. Similarly, thei nfo i ne
command also sets the address for x to the start of the machine code for the
specified ling, and i nf o br eakpoi nt s setsthe address for x to the address
of the last breakpoint listed.

When you use RET to repeat an x command, any previously specified
address isignored, so the repeated command examines the successive
locations in memory rather than the same ones.

Y ou can use one command to examine several consecutive memory units
by writing a repeat-count after the slash and before the format letters. The
repeat count must be adecimal integer. It has the same effect as repeating
the x command that many times, except that the output may be more
compact, with several units per line. The following example displays x
instructions, starting with the one to be executed next in the selected frame:

x/ 10i $ip

After displaying a set of instructions, you could display the seven
following instructions by entering the following example, in which the
format and address are allowed to default to the last address accessed by
the previous x command:

x/ 7

The addresses and contents displayed by the x command are not put in the
value history because there are often so many of them that they get in the

way.
After an x command, the last address examined is available for usein

expressions in the convenience variable $_. The contents of that address,
as examined, are available in the convenience variable $__.

If the x command has a repeat count, the address and contents saved are
from the last memory unit displayed, which is not the same as the last
address displayed, if several units were displayed on the last line of output.

Displaying Program Data and Symbols 1 1

Storing to Memory

The gdb960 software debugger allows more implicit conversionsin
assignments than C/C++ do; you can freely store an integer value into a
pointer variable or vice versa, and any structure can be converted to any
other structure that is the same length or shorter.

To store values into arbitrary placesin memory, usethe{. ..} construct to
generate a value of specified type at a specified address. For more
information onthe{. ..} construct, refer to Chapter 12.

In the following example {i nt } 0x83040 refers to memory location
0x83040 as an integer (which implies a certain size and representation in
memory), and set storesthe value 4 into that memory location:

set {int}0x83040 = 4

Automatic Display

To frequently display the value of an expression to see how it changes, add
it to the automatic display list so that gdb960 displaysits value each time
the program stops. Each expression added to the list is given an
identifying number. To remove an expression from the list, specify that
number in adi sabl e di spl ay or del et e di spl ay command. The
automatic display shows item numbers, expressions and their current
values:

2: foo = 38

3: bar[5] = (struct hack *) 0x3804

If the expression refers to local variables, then it does not make sense
outside the lexical context in which it was set up. Such an expression is
disabled when execution enters a context where one of its variablesis not
defined.

For example, if you give the command di spl ay nane whileinside a

function containing a variable nane, then this argument displays while the
program continues to stop inside that function. When it stops el sewhere --
where thereis no variable name -- display isdisabled. The next time your

11-15

gdb960 User’'s Manual

11-16

program stops where nane is meaningful, you can enable the display
expression once again by entering the enabl e di spl ay command. The
following isalist of di spl ay commands and their descriptions:

di spl ay exp

di spl ay/ fnt exp

di spl ay/fnt addr

undi spl ay dnuns
del et e di spl ay dnuns

di sabl e di spl ay dnuns

enabl e di spl ay dnuns

di spl ay

Add the expression exp to the list of
expressions to display each time the
program stops. For more detailed
information on expressions, refer to the
Expressions section in this chapter.

Add the expression exp to the auto-
display list and display it each timein
the specified format fnt. fnt specifies
only adisplay format and not a size or
count.

For fmt i ors, or when including a unit-
size or anumber of units, add the
expression, amemory address, to be
examined each time the program stops,
addr. Examining means, in effect,
entering x/ fnt addr .

Remove item numbers dnuns from the
list of expressionsto display.

Disable the display of item numbers
dnuns. A disabled display item is not
displayed automatically, but is not
forgotten. It may be enabled again later.

Enable the display of item numbers
dnuns. Theitemsin dnuns appear once
again in auto display until you specify
otherwise.

Display the current values of the
expressions on the list, just as occurs
when the program stops.

Displaying Program Data and Symbols 1 1

i nfodispl ay Display thelist of expressions set up to
display automatically, each one with its
item number. Do not display the values
of the expressions. Include disabled
expressions and mark them as such in
the printout. Also include expressions
that refer to automatic variables.

Examining the Symbol Table

The commands described in this section allow you to inquire about the
symbols (names of variables, functions and types) defined in your
program. Thisinformation isfound by gdb960 in the symbol table loaded
by the synbol - fi | e command. Theinformation isinherent in the text of
your program and does not change as the program executes.

% NOTE. print &ynbol doesnot work at all for a register variable, and,
& for a stack local variable, displays the exact address of the current
instantiation of the variable.

what i s exp Display the datatype of expression exp. The
argument exp is not actually evaluated, and any
side-effecting operations (such as assignments or
function calls) inside it do not take place.

whati s Display the data type of $, thelast valuein the
value history.
ptype t ypenane Display adescription of datatype t ypenane.

t ypename may be the name of atype, or for
C/C++ code, it may have theform st r uct
struct-tag, uni on uni on-tag Or enumenunt
tag.

11-17

gdb960 User’'s Manual

11-18

ptype exp

nf o addr ess synbol

nf o functions

nf o functions
regexp

nfo local s

nf o sour ces

nfotypes

Display a description of the type of expression
exp. Thisislikewhati s except it displaysa
detailed description instead of just the name of
thetype. The following example shows the
results of entering what i s and pt ype if the type
of avariableisstruct conpl ex {doubl e real ;
doubl e i mag; }:

(gdb960) whatis foo

struct conpl ex

(gdb960) ptype foo

struct conpl ex {doubl e real ; doubl e

i mag; }

Describe where the datafor synbol is stored.
For aregister variable, this says which register it
iskept in. For anon-register local variable, this
displays the stack-frame offset at which the
variableis always stored.

Display the names and data types of all defined
functions.

Display the names and data types of all defined
functions whose names match the regular
expression regexp. Thus, i nf o fun st ep finds
al functions whose names include st ep;

i nf o fun ~st ep finds those whose names start
with st ep.

Display the names and data types of local
variables from the current stack frame.

Display the names of all source files along with
debugging information.

Print a brief description of al typesin the
program. Thisincludes typedefs, enums, structs
and unions explicitly declared or included.

Displaying Program Data and Symbols

11

i nfotypes regexp Print a brief description of al types whose name
matches regular expression r egexp.

i nfovariabl es Display the names and data types of al variables
declared outside of functions (i.e., all variables
except for local variables).

i nfovariabl es Display the names and data types of al variables
regexp (except for local variables) whose names match
the regular expression r egexp.
printsyns Write a complete dump of the debugger’s symbol
fil enanme datainto thefile fi I enane.

Command-Line Completion

When working with C++ syntax, you may need to quote some arguments
for them to be properly parsed by gdb960 for command-line completion.
For example, if you try to use command-line completion as follows:

(gdb960) b cl ass_nane: : over | oaded<TAB>

gdb960 is unable to find any completions. However, if you quote the
argument with a single leading quote as shown:

(gdb960) b ‘class_name::overload<TAB>
gdb960 finds the appropriate completion:

(gdb960) b ‘class_name::overloaded_func(

Here, gdb960 is waiting for the user to fill in argument types to distinguish
between multiple overloaded functions with the same function name and
differing arguments. If you type two TAB characters and allow gdb960 to
provide alist of possible completions, it gives the following:
my_class::ol_func(char) my_class::ol_func(int, int)

my_class::ol_func(double, double)

11-19

1 1 gdb960 User’'s Manual

Letting Readline Type For You

Thefollowing isalist of the command names, their original bindings, and
short descriptions for automatic completions on the command line;

conpl et e (TAB) Attempt to do completion on the text
beforethe cursor. Thisis
implementation-defined. Generally, if
you are typing a filename argument, you
can do filename completion; if you are
typing a command, you can do command
completion; if you aretyping in a
symbol to gdb960, you can do
symbol name completion; if you are
typing in avariable to Bash, you can do
variable name completion.

possi bl e- conpl et i ons List the possible completions of the text
(TABTAB) (or META+ ?) before the cursor.

Working with Overloaded Member Functions

When you specify an overloaded member function name to gdb960
without specifying the function’s parameters, gdb960 displays a menu of
options for selecting the function(s) you wish to reference. For example:

(gdb960) b my_cl ass:: ol _func

[0] cancel

[1] all

[2] my_class::ol_func(doubl e, double) at ol.cc:27
[3] my_class::ol_func(char) at ol.cc:20

[4] my_class::ol _func(int, int) at ol.cc:13

>

11-20

Displaying Program Data and Symbols 1 1

Typing O terminates the operation without setting a breakpoint. Typing 1,
or any combination of 2 through 4 sets breakpoints on the identified
functions:

> 2 3

Breakpoi nt 1 at 0xa0008184: file ol.cc, line 27.
Br eakpoi nt 2 at 0xa0008150: file ol.cc, line 20.
(gdb960)

Value History

Vauesdisplayed by pri nt are saved in gdb960’s value history so you can
refer to them in other expressions. Vaues are kept until the symbol table is
re-read or discarded. When the symbol table changes, the value history is
discarded because values may contain pointers back to the types defined in
the symbol table.

The values displayed are given history numbers for reference. The
reference numbers are successive integers starting with 1. Thepri nt
command displays the history number assigned to avalue by displaying
$nun= before the value, where numis the history number.

To refer to avalue previously displayed, use $ and the value's history
number. The output displayed by pri nt remindsyou of that. The$
character, alone, refers to the most recent value in the history, and $$ refers
to the value before that. $$n refersto the nth value from the end; $$2 is
the value just before $$, $$1 is equivalent to $$, and $$0 isequivalent to $.

The following example displays the contents of a structure pointed to by a
pointer that was just displayed:

p*$

If you have a chain of structures where the component next pointsto the

next one, you can display the contents of the next one with the following
example:

p *$. next

11-21

11

gdb960 User’'s Manual

Repeat commands with RET.

The history records values, not expressions. In the following example, if
the value of x is4, then the value recorded in the value history by the
pri nt command remains 4 even though the value of x has changed:

print x
set x=5

Thefollowing isalist of show commands and descriptions of their effects:

showval ues Display the last X valuesin the value history,
with their item numbers. Thisislike p$$9
repeated X number of times, except that show
val ues does not change the history.

showval ues n Display X history values centered on history item
number n.

showval ues + Display X history values just after the values last
printed.

Convenience Variables

11-22

Y ou can use convenience variables within gdb960 to hold a value and refer
toit later. These variables exist entirely within gdb960 and are not part of
your program. Setting a convenience variable does not affect further
execution of your program, so you may use them freely.

Convenience variables have names starting with $. Any name starting with
$ can be used for a convenience variable, unlessit is one of the pre-defined
register names. For more information on registers and register names, refer
to the Registers section in this chapter.

Y ou can save avalue in a convenience variable with an assignment
expression, just as you would set avariable in your program. The
following example saves the value contained in the object pointed to by
obj ect _ptr inthe $f oo convenience variable:

set $foo = *object_ptr

Displaying Program Data and Symbols

Using a convenience variable the first time creates it; but itsvalueisvoi d
until you assign anew value. Y ou can alter the value with another
assignment at any time because convenience variables have no fixed types.
Y ou can assign a convenience variable any type of value, including
structures and arrays, even if that variable already has a value of a different
type. The convenience variable as an expression has its current value's
type. Usethe show command to display alist of convenience variables

used:

showconveni ence Display alist of convenience variables used so
far, and their values. showcon isthe
abbreviation.

One way to use a convenience variable is as a counter to be incremented or
as a pointer to be advanced. In the following example, $i isset at 0 and
used inthe pri nt command to control incrementing thebar [] array:

set $i =0

print bar[$i ++]->contents

...repeat that conmand by typing RET.

Thefollowing isalist of the convenience variables gdb960 automatically
creates:

$_ Automatically set by the x command to the last
address examined. Other commands that provide
adefault addressfor x to examinealso set $_ to
that address. The commandsincludei nfoline
and i nf o br eakpoi nt .

$ Thevariable$__ isautomatically set by the x
command to the value found in the last address
examined.

Registers

Machine register contents can be referred to in expressions as variables
with names starting with $. Thei nf o r egi st er s command lists the
names of al the registers.

11-23

11

gdb960 User’'s Manual

11-24

The names $i p and $sp represent the instruction pointer register and the
stack pointer, respectively. The name $f p represents aregister that
contains a pointer to the current stack frame.

The gdb960 debugger always views the contents of aregister as an integer
when the register is examined in thisway. Some machines have special
registers that can hold nothing but floating point values. Thereis no way
to refer to the contents of an ordinary register as a floating point value.
However, you can display the value in an ordinary register as afloating
point value by entering the pri nt/ f $r egname command.

Some registers have distinct raw and virtual dataformats. Register
contents are saved by the operating system in a different data format from
the one your program normally sees. For example, the registers of the
1960 K B floating point coprocessor are always saved in extended (raw)
format, but most C/C++ programs expect to work with double (virtual)
format.

The gdb960 debugger normally works with the virtual format only (the
format that makes sense for your program), but thei nf o regi sters
command displays the data in both formats.

Except for go through g15, register values are relative to the selected stack
frame. For more information on the stack frame, refer to Chapter 9.

The result is the value the register would contain if all stack frames nearer
to O were exited and their saved registersrestored. To seethe rea contents
of all registers, you must select the innermost frame by entering the
command, f r ame 0.

The global registers go through g15 are never saved. For these registers,
relativization makes no difference.

Displaying Program Data and Symbols

11

Thefollowing isalist of commands that display register information:

regs Display non-floating registers as two
columns of hexidecimal numbers.
Output is suitable for a 24x80 display.

inforegisters Display the names and relativized values
of all non-floating-point registers.

infoall-registers Display the names and relativized values
of all registers, including floating-point
registers. For MON960, thisisa
synonymfori nfo regi sters whenthe
1960 processor architecture does not
contain floating-point registers (e.g., the
1960 CA processor family).

i nforegisters regnane Display the relativized value of register
regname. The r egname argument may
be any register name that is valid on the
machine you are using, with or without
theinitia $.

Examples

The following example displays the instruction pointer in hexadecimal:
p/x $ip

The following example displays the instruction to be executed next:
xIi $ip

The following example adds four to the stack pointer:

set $sp -= 4

The set $sp - = 4 command also removes one word from the stack on
machines where stacks grow upward in memory. This assumesthat the
innermost stack frame is selected. Setting $sp is not allowed when other
stack frames are selected. To pop entire frames off the stack, regardless of
machine architecture, enter thef i ni sh command.

11-25

gdb960 User’'s Manual

11-26

Profile Data File Manipulation

Theprof i | e command supports the two-pass compilation systems of the

1960 compiler. (See your compiler user’s guide for complete information
on two-pass compilation.) The gdb960 software debugger provides the
profile command to store and retrieve profiling counts, even if your
target does not support file I/O.

As you run an instrumented application, the instrumented code generates
information about the application and accumulates it in the application's
memory space. It is then necessary to save the information into a file on
the host system to make it available for the second compilation pass. This
file is known as a profiléile. You can save this information yourself at

any time during the debugging session and then retrieve it at a later time.
If your target system does not have a file system, the debugger is the only
way to save this information in a file.

profileclear Reset profile data area in target memory
to all zeroes.
profileget [filenane] Get profile data froni i I ename and put

it into the profile data area in target
memory (default file name is
./ defaul t. pf).

profileput [filenane] Store profile data from the profile data
area in target memory intao / enane
(default file name is/ def aul t . pf).

gdb960 Command and Option
Reference

This chapter contains two sections. Thefirstisalist of possible command
line arguments that you can use when invoking gdb960. The second
section isalist of gdb960 commands and their options.

gdb960 Invocation Arguments

-b bps Set the baud rate (bps), of the seria interface to
the 1960 processor target system.

-batch Run in batch mode.

-brk Send a break (of about 1/4 second in duration)

through MON960 to the target system, after
opening the connection, but before trying to talk.
This allows you to connect to some running
systems.

-cddirectory Set gdb960's working directory to di rect or y.

-command cndfile Run gdb960 commands from cndf i I e.

-ddirectory Add ai r ect or y to the path to search for source
files.

-efile Usefil e asthefileto download and/or execute.

-G Inform gdb960 that the target has big-endian
memory.

- nx Suppress execution of commands in the

. gdbi ni t initidization file. For more

12-1

gdb960 User’'s Manual

12-2

- par device

-pc picoffset

- pci

-pd pidof fset

-px offset

-q

-1 port

-readnow

-sfile

-sefile

-t target

information on command files, refer to
Chapter 13.

Use parallel download instead of serial

download. The parallel device (typically LPT1
or LPT2inWindows) isused only for
downloading. Other host/target communications
use the serial port specified with -r.

Debug position-independent code. Download
code sections to link-time-address + pi cof f set
instead of the usual link-time-address.

Specify PCI communication. Refer to Chapter 2
for more information.

Debug position-independent data. Download
data and bss sections to link-time-address +
pi dof f set , instead of to link-time-address.

Enter the same offset for both - pc and - pd.

"Quiet." Do not display the introductory and
copyright messages.

Specify the seria port name of a serial interface
to be used to connect to the target system.

Read each symbol file’s entire symbol table
immediately, rather than the default, which is to
read it incrementally as needed.

Read symbol table fromy / e.

Read the symbol table frofi / e and use it as
the executable.

Uset ar get as the target monitor type. MON960

is currently the only supported target type.

gdb960 Command and Option Reference

-tcp hostname port Connect via TCP/IP link to target board
connected to server host nane. port specifiesthe
port where the board is connected to the server.

-xfile Execute gdb960 commands from fi / e. For
more information on setting up a batch mode
execution file, see Chapter 13. The - command
option isasynonym for - x.

gdb960 Commands

This section contains an aphabetic listing of the gdb960 commands. Each
command appears as a section header followed by a syntax description, a
description of the command’s purpose, and the arguments you can use with
the command.

add-symbol-file
add-synbol -file filenane [address |

Reads symbol table information.

fil ename Read additional symbol table information from
fil enane.
addr ess The memory address at which the files’ .text

section has been loaded.

aplink enable
aplink enable bit val ue

Changes bits in the ApLink mode register.

aplink reset
aplink reset

Executes the ApLink reset command.

12-3

gdb960 User’'s Manual

12-4

aplink switch
aplink switch region node

Changes ApLink modes. regi on isahex constant; node is adecimal
constant.

aplink wait
aplink wait

Executes the ApLink wai t command.

awatch
awat ch expr

Sets amemory access hardware watchpoint. Memory access watchpoints
halt program execution when any read or write is attempted at the address
of expr.

backtrace
backtrace [n| -n]

Displays a backtrace of the entire stack, one line per frame for all framesin
the stack. Y ou can stop the backtrace at any time by typing the system
interrupt character, normally CTRL + C.

n Display only the innermost n frames.

-n Display only the outermost n frames.

gdb960 Command and Option Reference

break

break [argument]

Sets a breakpoint.

*address

break fil enane: functi on

filenane: i nenum

function

. if cond

I'i nenum

[+

- Joffset

[options]

Set a breakpoint at addr ess.

Set a breakpoint at entry to functi onin
fil enane.

Set abreakpoint at line / i nenumin
sourcefile fi I enane.

Set a breakpoint at entry to f unct i on.

Set a breakpoint with condition cond;
evauate the expression cond each time
the breakpoint is reached, and halt only
if the value is non zero.

Anéllipsis, ". . . ", stands for one of the
possible arguments described above (or
no argument) specifying where to break.

Set a breakpoint at / i nenumin the
current source file (the source file
corresponding to the currently selected
frame).

Set a breakpoint of f set number of lines
forward (+) or back (-) from the
execution point in the currently selected
frame.

12-5

gdb960 User’'s Manual

12-6

call
call function (args)

Callsafunctionin the program. The function f unct i onis called with
argument ar gs, and thereturn valueis printed and saved in the value
history, if it isnot void.

cd

cd directory

Sets gdb960's working directory to di rect or y.

clear
clear [argunent |

Deletes any breakpoints at the next instruction to be executed in the
selected stack frame. When the innermost frame is selected, cl ear deletes
the breakpoint at which the program halted.

[breakpoints] bnuns Delete the breakpoints of the numbers
specified in bnuns.

function filenane: function Deleteany breakpoints set at the entry to
the function f unct i on.

I'i nenum Delete any breakpoints set at or within
the code

filenane:|inenum of the specified line.

commands

conmands bnum

Specifies alist of commands for breakpoint number bnum The commands
appear one per line on separate lines following commands. Type a separate
line containing the end command to terminate the commands.

gdb960 Command and Option Reference

To remove all commands from a breakpoint, follow comands
immediately by end.

condition

condition bnum|[expression]
Adds a condition to a breakpoint.

bnuns The breakpoint numbers of breakpoints to ater.

expressi on The break condition for breakpoint number bnum
The breakpoint(s) halts the program only if the
value of expressi on istrue (non zero, in
C/C++). If not specified, remove the condition
from breakpoint number bnuns to make it an
unconditional breakpoint. For more information
on examining data, refer to Chapter 11.

continue
continue [count]

Continues executing the program, setting the ignore count of the
breakpoint that halted execution to count minusone. The program does
not halt at the breakpoint again until the breakpoint is encountered count
times.

If the program halts for any reason other than a breakpoint, the argument to
cont i nue isignored.

The synonym f g is provided for convenience, and has exactly the same
behavior as other forms of the command.

12-7

gdb960 User’'s Manual

12-8

define
defi ne conmmandnane

Defines a command.

commandnane Define a command named commandnane. The
end of these commands is marked by aline
containing end. Y ou can include up to 10
arguments. This command is also useful to
“hook” a command.

delete
delete [bnuns]

If no argument is specified, deletes all breakpoints. Otherwise, deletes the
breakpoints whose numbers appeasrions.

delete display
delete display [dnuns]

Removes item numbetsmuns from the list of expressions to display. If
dnuns is omitted, removes all items from the list of expressions to display.

directory
directory [dirnane]

With no argument, resets the source path to empty. You are then prompted
for confirmation.

di rnanme Add directorydi r nane to the front of the source
path.

gdb960 Command and Option Reference 1 2

disable
disable [display] | [breakpoints] [bnuns]

Disables the breakpoints listed in bnuns. Any number of breakpoints may
be listed by number. Separates each number from the next by a space.
The br eakpoi nt s keyword is not necessary unless differentiating between
disabling the display of breakpoints, di spl ay, and disabling breakpoints.
If no list of breakpointsis specified, all breakpoints are disabled.

disassemble
di sassenble { function | address } [address]

Provides a dump of arange of memory as machine instructions.

addr ess Therangeisthe inclusive area bounded by the
two machine addresses provided in the addr ess
arguments. If only one addr ess argument is
provided, gdb960 finds the first C/C++ function
that starts at an address less than or equal to the
given address, then disassembles the entire
function.

function If only afuncti on argument is provided, then
the function named in f unct i on is disassembled
initsentirety. If thestringin functionisnota
function name, then its addressis cal culated and
acted on as though it were an addr ess argument.

12-9

gdb960 User’'s Manual

12-10

display
display [/fornmat]

[exp | addr]

Prints alist of expressions each time the program stops. Without
arguments, displays the current values of the expressions on the list, just as

when the program stops.

addr

exp

/ fornmat spec

document

For fnt i ors, or whenincluding a unit-size or a
number of units, add addr to the auto-display list.

Add the expression exp to the auto-display list
and display it each time in the specified format.

The format in which memory contents are to
display.

docunent commandnane

Documents a user-defined command.

conmandnane

down

down [n]

Document the user-defined command
commandnarne. Thedocument command reads
lines of documentation, ending with end. After
the docurment command is finished, hel p on
command conmandnane displaysthe
documentation you specify.

Selects the frame n frames down from the previously selected frame. For
positive numbers n, this advances toward the innermost frame, to lower
frame numbers. Default is one.

gdb960 Command and Option Reference 1 2

down-silently

down-silently n

Same as down, except produces no output. Thisis useful in command
scripts.

echo

echo text

Displays t ext . C/C++ escape sequences may beused in t ext .

text Display t ext . Non printing characters can be
included in text using C/C++ escape sequences,
such as\ n to print anewline.

enable

enable [display] | [once | delete | breakpoints | [bnuns]

Enables breakpoints.

bnuns Enable breakpoints specified in bnuns. If bnuns
is not specified, enable all defined breakpoints.

br eakpoi nt's Thebr eakpoi nt s keyword is not necessary
unless differentiating between enabling the
display of breakpoints, di spl ay, and enabling
breakpoints. If no list of breakpointsis specified,
all breakpoints are enabled.

del et e bnuns Enable the specified breakpoints temporarily.
Each is deleted the next time it halts your
program.

di spl ay Enable display of breakpoint information.

once bnuns Enable the specified breakpoints temporarily.
Each is disabled the next time it halts your
program.

12-11

12

gdb960 User’'s Manual

12-12

exec-file

exec-file [filenane]

Specifies the program to run. Omitting the argument specifies no
executable.

filename Specify that the program to be run (but not the
symbol table) isfound in fi / enane. The gdb960
debugger searches the environment variable
PATH, if necessary, to locate the program.

file
file [filenane][-p{c|d|x} offset]

Specifies the program to debug.

no argunent s L eaves both the executable file and symbol table
unspecified.
filename The program to be debugged. Itisread for its

symbols and pure memory contents, and it is
executed when you give the r un command.

pc, pd, Or px Symbols are relocated by adding of f set to their
values. These arguments act the same as their
command-line counterparts.

finish
finish
Continues execution until after the selected stack frame returns (or until

there is some other reason to halt, such as afatal signal or a breakpoint).
Displays the value returned by the selected stack frame.

gdb960 Command and Option Reference

forward-search

forward- search regexp

Searches for atext match in each line.

regexp Searches by line, starting with the one following

the last line listed, for amatch for the regular
expression r egexp.

frame
frame [n | addr]

When used with any of the arguments described with the br eak command,
selects a stack frame; with no argument, it does not change which frameis
selected, but still displays information about the currently selected stack
frame. Thef r ame command can be used as an argument to i nf o.

n Select frame number n, where frame zero isthe
innermost (currently executing) frame.

frame_addr Select the frame at address addr .

12-13

gdb960 User’'s Manual

12-14

gmu detect define

gmu detect define regnum access startaddress endaddress

Controls the Guarded Memory Unit (GMU) detection registers. Detection
GMU registers are identified by number, ranging from 0 to

NUMDREGS - 1.

regnum

access

startaddress

endaddr ess

NUMDREGS is currently 6 on the Hx processors.

Specifies the protection register number.

Specifies which types of memory access cause a
GMU fault. The string has the form

ModeType[, ModeType]

where Mbde is either u (user mode access) or s
(supervisor mode access); Type isastring of one
or more letters from Table 12-1.

An optional second nodet ype may be given to
program both user mode and supervisor mode in
the same command.

An example of avalid access argument is

ur w, sx, which means fault on a user mode read
or user mode write or a supervisor mode execute.

Evaluates to the starting address of the detection
range.

Evaluates to one byte beyond the ending address
of the desired detection range.

gmu detect disable

gmu detect disable [regnum

Disables the specified GMU detection register. Clears the memory
detection enable bit in the GMU control register. If regnum is omitted,
disables all GMU detection registers.

gdb960 Command and Option Reference

gmu detect enable

gmu detect enable [regnum

Enables the specified GMU detection register. Sets the memory detection
enable bit for this register in the GMU control register. If regnumis
omitted, enables all GMU detection registers.

gmu protect define

gmu protect define regnum access address nask

Controls the Guarded Memory Unit (GMU) protection registers.
Protection GMU registers are identified by number, ranging from 0 to
NUMPREGS - 1. NUMPREGS is currently 2 on the Hx processors.

regnum Specifies the protection register number.

access Specifies which types of memory access cause a
GMU fault. The string has the form
ModeType[, ModeType] where Mbde is either u
(user mode access) or s (supervisor mode
access); Type isastring of one or more letters
from Table 12-1.
An optional second nodet ype may be given to
program both user mode and supervisor mode in
the same command.
An example of avalid access argument is
ur w, sx, which means fault on a user mode read
or user mode write or a supervisor mode execute.

addr ess Evaluates to the starting address of the protection
range.
mask Evaluates to a number describing the addressing

congtraints for thisrange. For more information,
refer to thei960 Hx Microprocessor User’s
Manual

12-15

gdb960 User’'s Manual

12-16

Table 12-1 Access Types

Access Type

Read

Write

Execute

Data Cache Write

None (clears previous settings)

Access Type Symbolic Name

r

w
X
(o}
n

gmu protect disable

gmu protect disable [regnum

Disables the specified GMU protection register. SpecifiesaGMU
protection register number. Clears the memory protection enable bit for

this register in the GMU control register. If r egnumis omitted, disables al
GMU protection registers.

gmu protect enable

gmu protect enable [regnum

Enables the specified GMU protection register. Setsthe memory
protection enable bit for this register in the GMU control register. If
regnumis omitted, enables all GMU protection registers.

gdb960 Command and Option Reference

hbreak

hbreak args

Sets a hardware breakpoint on a specified line or function. The arguments
list alows the same arguments as are listed in the br eak command, and the
breakpoint is set in the same way. Hardware breakpoints allow
breakpoints in non-writeable code; e.g., code that residesin ROM or
FLASH. Breakpoints set with the br eak command are silently ignored
when set in code that resides in non-writeable memory. Y ou can set any
number of hardware breakpoints, but 1960 processor architecture allows
only two to be enabled at any onetime.

help
help [option]
Displays information about gdb960 commands.

opt i on With no arguments, hel p displays ashort list of
command categories.

ignore
i gnore bnum count

Sets the count of breakpoint number bnumto count . The next count times
the breakpoint is reached, your program’s execution does not halt; other
than to decrement the ignore count, gdb960 takes no action.

To make the breakpoint halt the next time it is reached, specify a count of
Zero.

info
info option [option_nodifier]

Displays requested information.

12-17

gdb960 User’'s Manual

12-18

addr ess synbol

all-registers

args

break [bnum]

di spl ay

files

frame [addr]

functions [regexp |

Describes where the datafor synbol is
stored.

Display the names and relativized values
of all registers, including floating-point
registers.

Display the selected frame’s arguments,
each on a separate line.

The commandnf o br eak displays a list
of all breakpoints set and not deleted,
showing their numbers, where in the
program they are, and any special
features related to thenbnumidentifies
breakpoints about which information
should be displayed.

Display the list of expressions set up to
display automatically, each one with its
item number.

Display the current target, including the
names of the executable files currently in
use, and the files from which symbols
were loaded.

Without theaddr argument, display a
verbose description of the selected stack
frame.

With theaddr argument, display a
verbose description of the frame at
addressdar .

Without ther egexp argument, display
the names and data types of all defined
functions.

With ther egexp argument, display the
names and data types of all defined

gdb960 Command and Option Reference

gmu

l'inelinenum

pr ogr am

| ocal s

registers [regnane |

set

sources

st ack

tar get

types [regexp |

variables [regexp]

functions whose names match the
regular expression r egexp.

Display the current values of all Guarded
Memory Unit (GMU) registers (Hx
only).

Display the starting and ending
addresses of the compiled code for
sourceline /i nenum

Display the execution status of the
program.

Display the selected frame’s local
variables, each on a separate line.

Without ther egnane argument, display
the names and relativized values of all
non-floating-point registers.

With ther egname argument, display the
relativized value of registeregnane.

Display all gdb960 settings.

Display the names of all source files
with debugging information.

Display a backtrace.

Display the execution status of the
program.

Display either all types, or all those
matching the regular expressioggexp.

Without ther egexp argument, display
the names and data types of all variables
declared outside of functions.

With ther egexp argument, display the
names and data types of all variables

12-19

gdb960 User’'s Manual

12-20

(except for local variables) whose names
match regular expression r egexp.

wat ch Thisisasynonym for i nf o br eak.

jump
jump { linenum| *address }

Resumes execution at a new location.

| i nenum Resume execution at line number / i nenum

*addr ess Resume execution at the instruction at address
address. The asterisk isrequired so the
command line parser can identify addr ess asa
location rather than avalue. For more
information on halting the program, refer to
Chapter 8.

list
list [/istsize] [n]

Without an argument, displays /i st si ze morelines. If thelast lines
displayed were displayed with al i st command, displays /i stsi ze lines
following the last lines displayed; however, if the last line displayed was a
solitary line displayed as part of displaying a stack frame, displays

I'i stsi ze lines centered around that line. The command set |i stsize n
changes the default of ten linesto n lines.

li nenum Display /i st si ze lines centered on / i nenum
from the current source file.

- Display the /i st si ze lines preceding the last
lines displayed.

function Display /i st si ze lines centered around the
beginning of funct i on.

gdb960 Command and Option Reference

first,last Display linesfrom fi rst to/ ast. Both
arguments arel i nespecs.

, | ast Display /i st si ze lines, ending with / ast .

first, Display /i st si ze lines, starting with fi r st .

+ Display the /i st si ze lines following the last
lines displayed.

- Display the /i st si ze lines preceding the lines
last displayed.

Imadr

| madr regno val ue

Sets the contents of the specified logical memory address register to the
designated value. Range of regno is0- 1.

This command is valid only for i960 Jx/Hx/Rx processors. Both command
arguments are assumed to be hex constants.

Immr

| v regno val ue

Sets the contents of the specified logical memory mask register to the
designated value. Range of r egno is0- 1.

This command is valid only for 1960 Jx/Hx/Rx processors. Both command
arguments are assumed to be hex constants.

12-21

gdb960 User’'s Manual

12-22

load

load [filenane]

Downloadsfile.

filename Download 7 i I enane to the current target. If you
have already specified an exec-filewiththefil e
or exec-fil e command, then leaving out

fi | enane causes the current exec-file to be
downloaded.

make
make [nake-options |

Runs a make tool in the shell, using the optionsin nake- opt i ons as
argumentsto the make command.

mcon

ncon regi on val ue

Sets the Memory Configuration register for r egi on to the specified value.
Range of r egi on is0- 0xf. Thiscommand isvalid only for i960
Cx/IX/HX/Rx processors. For the 960 Jx and Rx processors, r egi on is
automatically divided by two to map to the supported range of that
processor. Both command arguments are assumed to be hex constants.

next
next [count]

Similar to st ep, but steps over function calls. Execution halts when
control reaches anew line of code at the stack level that was executing
when the next command was given. next isabbreviated asn. A count
argument is arepeat count, asin st ep.

Seeadlso step, nexti.

gdb960 Command and Option Reference

nexti

nexti [count]
ni

Executes one machine instruction, but if it is a subroutine call, proceeds
until the subroutine returns.

count A count argument isarepeat count, asin next .

Seealso stepi, next.

output

output [/fnt] expression

expressi on Display the value of expr essi on and nothing
but that value: no newlines, no $nn =. The value

is not entered in the value history. For more
information on expressions, refer to Chapter 11.

| fnt expression Display the value of expr essi oninformat fnt.
For more information on format specifications
(f mt), refer to Chapter 11.

path
path [directory]

Adds di rect or y to the front of the current search path. If no di rectory
argument is specified, displays the current search path.

print
print /fnt expression

Displays the evaluated value of exp and add exp to thevaluehi st ory,
where exp is an expression.

12-23

gdb960 User’'s Manual

12-24

| fnt expression Display the value of expr essi oninformat fnt.
For more information on format specifications
(f m), refer to Chapter 11.

printf

printf string, expression...

Prints formatted data.

string, expression Display the value of expr essi oninthe
format specified in st ri ng. Format
specifications are the same as for C/C++
pri nt f (). For more information on
expressions, refer to Chapter 11.

printsyms
printsyns filenane

Writes a complete dump of the debugger’s symbol datainto the file
fil enane.

profile
profile { put | get | clear } [filenane]

Manages profile data.

cl ear Reset profile data areain target memory to all
ZEXoes.
get [filenane] Get profile datafrom 7 i I ename and put it into

the profile data area in target memory (default
filenameis. / def aul t . pf).

put [filename] Store profile datafrom the profile dataareain
target memory into 7 i I enane (default file name
is./defaul t.pf).

gdb960 Command and Option Reference

12

ptype

ptype [typename | exp]

Displays a description of atype.

t ypename Display adescription of datatype t ypenane.
t ypenane can be the name of atype, or for
C/C++ code it can have the form st r uct

struct-tag, uni on uni on-tag oOr enumenumn
tag.

exp Display a description of the type of expression
exp. Thisislikewhati s, except it displaysa
detailed description instead of just the name of
the type.

pwd
pwd
Displays gdb960's working directory.

quit
quit [-n]
The optiona - n option tellsqui t not to reset the target system.

rbreak
rbreak regexp

Sets a breakpoint on all functions matching r egexp. This command sets
an unconditional breakpoint on all matches, displaying alist of all
breakpoints set. Once the breakpoints are set, they are treated just like the
breakpoints set with br eak. They can be deleted, disabled, made
conditional, and so forth, in the standard ways.

The gdb960 debugger converts the expression to an address.

12-25

gdb960 User’'s Manual

12-26

regs
regs

Displays non-floating registers as two columns of hexadecimal numbers.
Output is suitable for a 24x80 display. Thiscommand isan Intel
modification to GNU gdb.

reset
reset

Sends a break to the remote target board with MON960 attached through a
seria ling; useful only if the target board has a circuit to perform a hard
reset, or some other action, when a break is detected.

reverse-search

reverse-search regexp

Searches backward for atext match on each line.

regexp Check each line, starting with the one preceding
thelast line listed, for amatch for regexp. Lists

theline that isfound. The command abbreviation
forreverseisrev.

run
run [argunents]

Before executing the r un command, you must use thef i | e command,
exec-fil e command, or an argument to gdb960 to specify the program.
Ther un command initiates execution at the location it has recorded as the
start of the program. Program arguments are specified in ar gunent s.

gdb960 Command and Option Reference

search

search regexp

Searches forward for atext match on each line.

regexp Check each line, starting with the one following

thelast line listed, for amatch for regexp. Lists
the line that is found.

select-frame

select-frame [n | addr]

When used with any of the arguments described with the br eak command,
selects a stack frame; with no argument, does not change which frame is
selected. Thesel ect - f rame command does not display information. The
sel ect - f rame command can be used as an argument to i nf o.

n Select frame number n, where frame zero isthe
innermost (currently executing) frame.

addr Select the frame at address addr .

set
set item|[setting] [filenane]

Changes the setting of a debugger attribute.

{type} addr = val ue Assigns a value to a memory location.
For example:
set {int} 0x4321 =5

args Specify the arguments to be used the
next time the programisrun. If set
ar gs has no arguments, it means use no
arguments the next time the program is
run.

12-27

12

gdb960 User’'s Manual

12-28

autoreset [on | off]

caching[on | off]

conplaints [imt

confirm [off | on]

denmangl e-styl e

When on, the default, qui t resetsthe
target.

Prevent gdb960 from caching target
memory if of f isset. By default,
caching is enabled, set cachi ng on.

Permit gdb960 to output /i mi ¢
complaints about each type of unusual
symbol before becoming silent about the
problem. The default is zero, of f. Set
l'imt toalarge number -- fiveis
reasonable -- so complaints are not
suppressed.

Disables or enables (the default) cautious
guestions.

Show the current C++ demangling style.
Setting this variable determines how
gdb960 determines which demangling
style gdb960 uses for C++ mangled
names. The following choices are
available and can be selected using the
set demangl e-styl e command.

aut o Determines demangling style
on a case-by-case basis (this
isthe default)

gnu Uses gnu (g++) style
demangling

| uci d Uses lucid (Icc) style
demangling

arm Uses ARM-style demangling

It is suggested that you use either the

auto or gnu settings when working
with CTOOL Sfiles.

gdb960 Command and Option Reference

editing [on | off]

env var val ue

hei ght | pp

history [option]

expansi on on
expansi on of f

fil enane

hi story save[on| off]

hi story size[size]

i nput -radi x base

Enable or disable command line editing.
on isthe default.

Set the environment variable var to
expression val ue.

Set the number of horizontal output lines
on the screen.

Theset hi st ory optionsto control
history expansion are:

Enable history expansion.
Disable history expansion (default).

Set the command history fileto
fil enane

Record the gdb960 command history in
afile. By default, i/ enaneis

.1 .gdb_hi story on UNIX, and

./ hi st.gdb on DOS. However, when
the GDBHI STFI LE environment variable
isset, itsvalueisused. You can also
specify afilename using the set

hi st ory fi/ ename command. By
default, set hi story save isoff.

Set the number of commands that
gdb960 keepsinitshistory list. The
default isthe value of the HI STSI ZE
environment variable, or 256 if

HI STSI ZE is not set.

Set the default base for numeric user
input. Supported choices for base are
decimal 8, 10, 16. base must be
specified either unambiguously or using
the current default radix.

12-29

1 2 gdb960 User’'s Manual

Language Sets the source language. This variable
can be set to any of the following:
| ocal Automatically sets
the language based
on the sourcefile
name and contents

aut o Same as| ocal

c C language

c++ C++ language

asm Assembly language

gdb960 defaultsto aut o when first
loaded, but this can be changed by using
the set | anguage command. Setting
the language affects how gdb960 parses
command expressions and interprets
information found in the source file.

listsize n Set the number of linesto list to n.

out put -radi x base Set the default base for numeric output.
Supported choices for base are decimal
8, 10, 16. base must be specified either
unambiguously or using the current
default radix.

print address[on| of f] Enable or disable display of memory
addresses showing the location of stack
traces, structure values, pointer values,
breakpoints, and so forth, even when it
also displays the contents of those
addresses. on isthe default.

print array [on| off] Display pretty-print arrays. Thisformat
is more convenient to read, but uses
more space. of f isthe default.

12-30

gdb960 Command and Option Reference 1 2

print asm demangl e

print autoderef [on| of f]

print demangl e

print el ements
NUVBER- OF- ELEMENTS

print hit-counts
[on | off]

print max-synbolic-of f set
max- of f set

Display demangled C++ namesin
disassembly listings. If print asm
demangl e isenabled, gdb960
demangles C++ mangled namesin
assembly code text (e.g., function
disassembly). If thisoption is disabled
(the default), gdb960 does not demangle
names in assembly text.

Print char * variablesasstrings. on is
the default.

Display demangled encoded C++ names.
When print demangl e isenabled (the
default), gdb960 demangles C++ symbol
namesin its output. When thisoption is
disabled, gdb960 does not demangle
C++ mangled symbol names.

When displaying alarge array, stop
displaying after printing the number of
elements set by theset pri nt

el ement s command. The limit aso
appliesto display of strings. Setting the
number of elements to zero allows
unlimited displaying.

Display the number of timesa
breakpoint or watchpoint was
encountered ini nf o br eak output. of f
is the default.

Display only the symbolic form of an
address if the offset between the closest
earlier symbol and the addressisless
than nmax- of f set . The default is zero,
to always display the symbolic form of
an address, if any symbol precedesit.

12-31

1

gdb960 User’'s Manual

12-32

print null-stop
[on | off]

print pretty
[on| off]

print sevenbit-strings
[on | off]

print static-nenbers

print synbolic-di sassenbly

print synbol -fil enane
[on| off]

Stop printing of char arrays on the first
null character when on. Thedefault is
off.

Display structuresin an indented format

with one member per line. of f isthe
default format

Display using only seven-bit characters;
if this option is set, gdb960 displays any
eight-bit characters, in strings or
character values, using the notation

\ NN\, For example, M a is displayed as
octa \ 341. of f isthe default.

Enable printing of C++ static members.
If print static-menbers isenabled
(the default), gdb960 includes static data
members when displaying a class
instance. If thisoption is disabled,
gdb960 does not include static data
membersin its output. Thisflag does
not affect the printing of atype

(e.g., 'p a_cl ass” is affected, but
“ptype a_cl ass” is not).

Can be abbreviateset print

symbol i c. When on, addresses in the
disassembly show the machine address
followed by <synbol +1234> where
symbol is the closest preceding function
name. Turning this off reduces clutter in
the display. The on setting is the default.

Disable or enable displaying the source
file name and line number of a symbol in
the symbolic form of an addressf f

is the default.

gdb960 Command and Option Reference

print union[on| off]

pr onpt newpr onpt

radi x base

vari abl e var = expr

verbose[on| off]

wi dt h cpl/

shell

shell [conmand]

Display unions contained in structures.
on isthe default.

Direct gdb960 to use newpr onpt asits
prompt string.

Set the default base for numeric input
and display. Supported choicesfor base
aredecima 8, 10, 16. base must be
specified either unambiguously or using
the current default radix.

Set the variable var to expression expr .
The keyword vari abl e isrequired
when var conflictswith aset print

keyword.

Enable gdb960’s output of certain
informational messages. of f isthe
defaullt.

Contain the number of lines on the
screen, and cp/ contains the number of
columns on the screen.

Directs gdb960 to invoke an inferior shell and give you a shell prompt.

command Directs gdb960 to invoke an inferior shell to
execute command. The environment variable
SHELL isusedif it exists, otherwise gdb960 uses
/ bi n/ sh on UNIX and command. comon DOS.

show

show [settings]

12-33

1 2 gdb960 User’'s Manual

Displays the setting of a debugger attribute. If you include no arguments,
gdb960 displays all current settings. For each of these commands, see the
corresponding set command for more information.

args

aut or eset

cachi ng
check
conmands

conpl aints

confirm

conveni ence

copyi ng

demangl e-styl e

12-34

Show start-up arguments to give program being
debugged.

Show resetting of the target automatically when
quitting.

Show target memory caching.
Show the status of the type/range checker.
Show the history of commands you typed.

Show maximum number of complaints about
incorrect symbols

Show whether to confirm potentially dangerous
operations.

Show debugger convenience ("$foo") variables.

Show conditions for redistributing copies of
gdb960.

Show the current C++ demangling style. Setting
this variable determines how gdb960 determines
which demangling style gdb960 uses for C++
mangled names. The following choices are
available and can be selected using the set
demangl e- styl e command.

aut o Determines demangling style on a
case-by-case basis (thisis the default)

gnu Uses gnu (g++) style demangling
lucid Useslucid (Icc) style demangling
arm Uses ARM style demangling

It is suggested that you use either the auto or

gdb960 Command and Option Reference

12

directories
editing
endi an

envi ronment
gnut ar get
hei ght

hi story

i nput -radi x
| anguage

listsize

out put - radi x
pat hs
print

print address

print array

print asm
demangl e

print autoderef

gnu settings when working with CTOOL Sfiles.
Show current search path for finding source files.
Show editing of command lines as they are typed.
Show endianness of target.

Show the environment settings.

Show the current BFD target.

Show number of linesin a page.

Show command history parameters.

Show default input radix for entering numbers.
Show the current source language.

Show default number of source lines gdb960
lists.

Show default output radix for printing of values.
Show current search path for finding object files.
Generic command for showing print settings.

Show whether printing of addressesis enabled or
disabled.

Show whether pretty printing of arraysis enabled
or disabled.

Show whether demangling of C++ namesin
disassembly listingsis enabled or disabled. When
print asm demangl e isenabled, gdb960
demangles C++ mangled names in assembly code
text (e.g., function disassembly). When this
option is disabled (the default), gdb960 does not
demangle names in assembly text.

Show whether to print char pointers as stringsis
enabled or disabled.

12-35

12

gdb960 User’'s Manual

12-36

print demangl e

print elements

print hit-counts

print nmax-
synbol i c- of f set

print null-stop

print pretty

print repeats

print sevenbit-
strings

print static-
nenber s

print synbol -
filename

Show whether demangling of encoded C++
names when displaying is enabled or disabled.
When print denmangl e isenabled (the
default), gdb960 demangles C++ symbol names
initsoutput. When thisoption is disabled,
gdb960 does not demangle C++ mangled symbol
names.

Show the limit on string chars or array elements
to print.

Show whether the printing of breakpoint hit
counts is enabled or disabled.

Show the largest offset that will be printed in
<symbol+1234> form.

Show whether printing of char arrays to stop at
first null char is enabled or disabled.

Show whether pretty printing of structuresis
enabled or disabled.

Show threshold for repeated print elements.

Show whether printing of 8-bit charactersin
strings as \nnn is enabled or disabled.

Show whether printing of C++ static membersis
enabled or disabled. If print static-menbers
is enabled (the default), gdb960 includes static
data members when displaying a class instance.

If this option is disabled, gdb960 does not include
static data membersin its output. Thisflag does
not affect the printing of atype

(eq. “p a_cl ass” is affected, but

“ptype a_cl ass” is not).

Show whether printing of source filename and
line number with <symbol> is enabled or

gdb960 Command and Option Reference

print synbolic-
di sassenbl y

print union

pr onpt

radi x

r enot ebaud
r enot edebug

synbol - r el oadi ng

t ar get debug
user

val ues

ver bose
ver si on
war ranty
wat chdog

wi dt h

wite

source

source file

disabled.

Show whether printing of <symbol+1234> with
disassembly is enabled or disabled.

Show whether printing of unionsinterior to
structuresis enabled or disabled.

Show gdb960 command prompt.

Show the default input and output number
radices.

Show baud rate for remote seria 1/0.
Show debugging of remote protocol.

Show dynamic symbol table reloading multiple
timesin one run.

Show target debugging.
Show definitions of user-defined commands

Elements of value history around item number
IDX (or last ten).

Show verbose information.

Show gdb960 version.

Various kinds of warranty you do not have
Show watchdog timer.

Show number of characters gdb960 thinks arein
aline

Show writing into executable and core files.

Reads gdb960 commands from 7/ I e.

12-37

gdb960 User’'s Manual

12-38

step

step [count]
Executes one line of code, then halts execution and returns control to the
debugger. Stepsinto function calls. Thiscommand is abbreviated s.

count Execute count lines. If abreakpoint or asignal
not related to stepping is encountered before
count steps, execution halts.

Seealso stepi.

stepi

stepi [count]
si

Executes one machine instruction, then halts and returns control to the
debugger.
count A count argument isarepeat count, asin st ep.

See aso next, nexti .

symbol-file
synbol -file [filenane]

Reads symbol tableinformation. Thesynbol - fi | e command with no
argument clears out gdb960's information on your program’s symbol table.

Thesynbol -fil e command causes the gdb960 debugger to forget the
contents of its convenience variables, the value history, and all breakpoints
and auto-display expressions. This is because they may contain pointers to
the internal data recording symbols and data types, which are part of the
old symbol table data being discarded.

fil ename Read symbol table information from file
fil ename. PATH s searched when necessary.

gdb960 Command and Option Reference

Usethefi | e command to run both the symbol
table and the program from the same file.

target

target type devicenane [hdil_argunents]

[type] devicenane Connect to an 1960 processor board
controlled by at ype MON960. The
devi cenane isthe name of the seria
deviceto use for the connection, (e.g.,
/dev/ ttya). On Windows hosts, thisis
the name of your seria port (e.g., COML).

hdi | _argunent s See the MON960 Debug Monitor User’'s
Guide for valid arguments to pass as
hdi | _argunents.

tbreak
tbreak args

Sets a breakpoint enabled to cause only one halt. The argumentslist, ar gs
isthe same asin the br eak command, and the breakpoint is set the same
way, but the breakpoint is automatically disabled the first timeitis
encountered. For more information on disabling breakpoints, see the

di sabl e command in this chapter.

thbreak

t hbreak args

Sets a hardware-assisted breakpoint enabled to cause only one halt. The
argumentslist ar gs isthe same asin the hbr eak command, and the
breakpoint is set the same way. However, the breakpoint is automatically
disabled thefirst timeit is encountered.

12-39

gdb960 User’'s Manual

12-40

undisplay
undi spl ay dnuns

Removes item numbers dnuns from the list of expressions to display.

unset
unset env [var]

Unsets environment variable var. With no arguments, unsets all
environment variables.

until
until [/ocation]

Allows executing al iterations of aloop as a single step; without
arguments, causes execution to continue until the program reaches a source
line greater than the current source line.

Theunti | command always halts the program if it attempts to exit from
the current stack frame.

With no argument, unt i I works like single instruction stepping, and hence
isslower than unti | with an argument. Theunti| command accepts the
same arguments as the br eak command.

I ocation Continue running the program until either the
specified location is reached, or the current
(innermost) stack frame returns. / ocat i on can
be any argument form acceptable to br eak (see
theset command in this chapter). Thisform of
theunti | command uses breakpoints, and hence
isquicker than unt i I without an argument
because it need not break on every machine
instruction.

gdb960 Command and Option Reference 1 2

up
up n
Selects the frame n frames up from the previously selected frame. For

positive numbers n, this advances toward the outermost frame, to higher
frame numbers. Default is one.

up-silently
up-silently n

Same as up, except produces no output. Thisis useful in command scripts.

watch
wat ch expr

Sets awatchpoint on expr. Execution stops whenever the value of expr
changes. If hardware-assisted watchpoints are available in the target
hardware, they are assigned to the watchpoint; otherwise a software
watchpoint is generated. Use awat ch or wwat ch for hardware-only
watchpoints.

whatis
whatis [exp]

Without an argument, displays the data type of $, the last value in the value
history.

exp Briefly display the datatype of expression exp
like pt ype, but do not expand type descriptions.
The argument exp is not actually evaluated, and
any side-effecting operations (such as
assignments) inside it do not take place. For
more information on examining data, refer to
Chapter 11.

12-41

gdb960 User’'s Manual

12-42

where
wher e

Synonym for backt r ace.

wwatch

wwat ch expr

Sets a memory write hardware watchpoint. Memory write watchpoints
halt program execution when awrite is attempted at the address of expr .
X

x | fornmat spec address

Examines memory without reference to the program’s data types. The
format must be explicitly specified.

addr ess The beginning location in memory where
examination isto begin.

/ for mat spec The format in which memory contents are to be
displayed. For more information on formatting
output, refer to Chapter 11.

Seedsoprint, set

Soring Commands

The gdb960 debugger provides two ways to store sequences of commands
for execution: user-defined commands and command files. This chapter
lists commands for defining custom commands, a description of how to
create command files that can execute sequences of commands
automatically, and alist of commands for controlling outpuit.

User-defined Commands

A user-defined command is a sequence of gdb960 commands that you
assign a name which can then be used to invoke the sequence. The
defi ne command assigns the execution name to the sequence of
commands.

As with breakpoint command lists, a user-defined command isalist of
commands entered after the initial command is entered. Terminate the list
with the end command.

The following is an example of creating a user-defined command list
which, when invoked by entering the f oo command, displays aname, a
number, and sets the $t np convenience variable to the next structure. In

131

gdb960 User’'s Manual

this example, the convenience variable $t np must be set to the first
structure before the f oo command isinvoked. Once defined, this
command allows examining each member of alist by repeatedly pressing
RETURN:

(gdb960) define foo

print $tnp->sptr->nane. str
print $tnp->sptr->nunber
set $tnp = $t np- >next

end

(gdb960)

Thefollowing isalist of commands used to create and manipul ate user-
defined commands. Each command is followed by a description of its use:

define Define acommand named comrandnane. |f
conmandnane thereis already a command by that name, you
must confirm that you want to redefine it.

The command definition is made up of other
gdb960 command lines that follow the def i ne
command. The end of these commandsis
marked by aline containing end.

docurent Document the user-defined command

commandnane conmmandnane. The command conmandnane
must already be defined. The docunent
command reads lines of documentation just as
def i ne reads lines of the command definition,
ending with end. After the document command
isfinished, hel p on command conmandnane
displays the documentation you have specified.

Y ou must use the docurmrent command to change
a command's documentation. Redefining the
command with def i ne does not change its
documentation.

User-defined commands can have up to 10 arguments. When they are
executed, the commands of the definition do not display. An error in any

13-2

Soring Commands

command stops execution of the user-defined command and displays an
error.

Commands that ask for confirmation if used interactively proceed without
confirmation when part of a user-defined command. Many gdb960
commands that normally display messages omit the messages when used in
user-defined commands.

User-defined Command Hooks

Y ou may define hooks, which are a special kind of user-defined command.
Whenever you run the command f oo, if the user-defined command hook-
f oo exigts, it is executed before that command. Like other user-defined
commands, hooks can have up to 10 arguments.

In addition, a pseudo-command, st op, exists. Defining hook- st op makes
the associated commands execute every time execution stopsin your
program, before breakpoint commands are run, displays are printed, or the
stack frame s printed.

For example, suppose you want to execute a troublesome loop over and
over, but you do not wish to single-step through it. The following resets
the loop counter before cont i nue, and examines the registers each time
execution stops:

(gdb960) define hook-conti nue

set var i = 12

end

(gdb960) defi ne hook-stop
regs

end

(gdb960) conti nue

133

13

gdb960 User’'s Manual

Y ou can define ahook for any single-word command in gdb960, but not
for command aliases; you should define a hook for the basic command
name (e.g., backt r ace rather than bt). If an error occurs during the
execution of your hook, execution of gdb960 commands stops, and gdb960
issues a prompt (before the command that you actually typed had a chance
to run).

To undefine a hook, redefine it with the word end only.

Command Files

13-4

A command file contains gdb960 command lines. Comments and lines
starting with # can also beincluded. An empty linein acommand file does
nothing; it does not repeat the last command.

On invocation, gdb960 first executes commands fromitsinit fil es.
These arefilesnamed . gdbi ni t on UNIX hostsand i ni t .gdb on DOS
hosts. The gdb960 debugger readsany i nit fi | e inyour home directory,
thenanyinit fil e inthecurrent working directory. Theinit fil es are
not executed if the - nx invocation option is given.

Y ou can also request the execution of acommand file with the sour ce
command, as shown in the following line:

(9gdb960) source filenane Execute the command file 7 i I enane.

Linesin acommand file are executed sequentially. They do not display as
they are executed. An error in any command terminates execution of the
command file. Commands that normally ask for confirmation proceed
without confirmation when used in a command file. Many gdb960
commands that normally display messages omit the messages when used in
command files.

Soring Commands 1

Commands for Controlled Output

During execution of a command file or user-defined command, only output
explicitly displayed by the included commands appears. This section
describes three commands for generating output from a command file or a
user-defined command. The followingisalist of commands and their
effects when included in a command list:

echo t ext Display t ext . Non-printing characters can be
included in text using C/C++ escape sequences,
such as\ n to print anewline. No newline will be
printed unless you specify one. In addition to the
standard C/C++ escape sequences, a backslash
followed by a space stands for a space. Unless
escaped, leading and trailing spaces are trimmed
from all arguments. Thus, to display
"and f oo =", use the command:

echo\ and foo =\ .

A backdlash at the end of t ext continues the
command onto subsequent lines. For example:

echo This is sonme text\n\
whi ch is continued\n\
onto several lines.\n

produces the same output as:

echo This is sone text\n
echo which is continued\n
echo onto several lines.\n

13-5

gdb960 User’'s Manual

out put expressi on

out put/ fnt
expressi on

printf string,
expressi ons

printf "foo,

13-6

Display the value of expr essi on and nothing
but that value: no newlines, and no $nn =. The
valueis not entered in the value history. For
more information on expressions, refer to
Chapter 11. The following example compares
the printout of the pri nt command to the
printout of the out put command:

(gdb960) print/d foo
$15=42

(gdb960) output/d foo
42

(gdb960)

Display the value of expr essi oninformat fnt.
For more information on expressions, refer to
Chapter 11.

Display the values of the expr essi ons under the
control of st ring. The expressi ons are
separated by commas and may be either numbers
or pointers. Their values are displayed as
specified by st ri ng, exactly asif the program
were to execute the following C/C++ output
function:

printf (string, expressions...);

For example, you can display two valuesin
hex by entering the following command:

bar-foo = O0x%, Ox%\n", foo, bar-foo

The only backsl ash-escape sequences allowed in
the format string are backslash-letter
combinations.

Using gdb960
Under GNU Emacs

Setting Up gdb960 in Emacs

If you have GNU Emacs version 19 or greater

1

w

Copy thefile gud960. el from the source code tree

(BaseOf Tr eel src/ gdb960/ common/ gud960. el) into your home
directory, or, if you aready have a collection of . el files, into that
directory. Your system administrator can tell you where BaseOf Tr ee
is.

Edit ~/ . emacs and add the line:

(autoload ‘gdb960 “~/gud960.el” nil t)

Substitute the destination directory you used in step 1, if it is different
from your home directory.

Make sure gdb960 can be found on your PATH.

The next time you start Emacs, run the command gdb960 . It asksfor a
command line, in the same way that the Emacs command gdb does.
Enter the name of the 1960 processor program you want to debug,
followed by any other arguments you wish to pass to gdb960 .

If you have an earlier version of GNU Emacs

1

Copy thefile gdb960.el from the GNU/960 source code tree
(BaseOr Tr eelsrc/gdb960/common/gdb960.el) into your home
directory, or, if you aready have a collection of .el files, into that
directory. Your system administrator can tell you where BaseOf Tr ee
is.

A-1

gdb960 User’s Manual

A-2

2. Edit~/ . emacs and add theline:

(autoload ‘gdb960 “~/gdb960.el” nil t)
Substitute the destination directory you used in step 1, if it is different
from your home directory.

3. Make sure gdb960 can be found on your PATH.

4. The next time you start Emacs, run the command gdb960 . It asksfor a
symbol-file, in the same way that the Emacs command gdb does.

5. Enter the name of the 1960 processor program you want to debug.

6. After you see the gdb960 prompt, use the gdb960 target command to
connect to your target.

Either version
When the target stops running for the first time, due to a breakpoint or single-stepping, Emacs
splits the current window vertically, showing you the text of the current source file in the second
window. This new buffer is continually updated as you step through your source code.
A specia interface allows you to use GNU Emacsto view and edit the source files for the
program you are debugging with gdb960. Using gdb960 under Emacsis just like using gdb960
normally except in two aspects:

1. All terminal input and output goes through the Emacs buffer. This
applies both to gdb960 commands and their output, and to the input
and output produced by the program you are debugging. Thisis useful
because it means you can copy the text of previous commands and
input them again; you can even use parts of the output that way. All
the facilities of Emacs' shell mode are available for interacting with
your program. In particular, you can send signals the usual Emacs
way: for example, C-c C-c for aninterrupt, and C-c C-z for astop.

Using gdb960 Under GNU Emacs

A

2. gdb960 displays source code through Emacs.

Each time gdb960 displays a stack frame, Emacs automatically finds
the source file for that frame and puts an arrow (=>) at the left margin
of the current line. Emacs uses a separate buffer for source display

and splits the screen to show both your gdb960 session and the source.

Explicit gdb9601 i st or sear ch commands still produce output as usual.

0

CAUTION. If the directory where your program residesis not your
current directory, it can be easy to confuse Emacs about the location of
the sourcefiles, in which case the auxiliary display buffer does not appear
to show your source. gdb960 can find programs by searching your
environment’s PATH, so the gdb960 input and output session proceed
normally; but Emacs does not get enough information back from gdb960
to locate the sourcefilesin this situation. To avoid this problem, either
start gdb960 mode from the directory where your program resides, or
specify a full path name when prompted for the M x gdb960 argument.

Confusion can also result if you use the gdb960 7 i | e command to switch
to debugging a program in some other location, from an existing gdb960
buffer in Emacs.

Using Emacs Commands with gdb960

By default, M x gdb960 callsthe program called gdb960. If you need to call gdb960 by a
different name (for example, if you keep several configurations around, with different names)
you can set the Emacs variable gdb960- cormand- nane. In the following example, the set g
command (preceded by ESC ESC, or typed inthe *scr at ch* buffer, or in your . enacs file)
makes Emacs call the program named ny gdb instead:

setq gdb960- comrand- nanme "mygdb"

A-3

‘ ‘ gdb960 User’s Manual

In the gdb960 I/O buffer, you can use these special Emacs (version 18 or earlier) commandsin
addition to the standard Shell mode commands:

Chm

M s

M x gdb960- next i

Cc Cf

Md

A-4

Describe the features of Emacs’ gdb960 Mode.

Execute to another source line, like the gdb960
st ep command; also update the display window
to show the current file and location.

Execute to next source line in this function,
skipping all function calls, like the gdb960 next
command. Then update the display window to
show the current file and location.

Execute one instruction, like the gdb960 st epi
command; update display window accordingly.

Execute to the next instruction, using the gdb960
next i command; update display window
accordingly.

Execute until you exit from the selected stack
frame, like the gdb960 f i ni sh command.

Continue executing your program, like the
gdb960 cont i nue command.

Go up the number of framesindicated by the
numeric argument.

Go down the number of frames indicated by the
numeric argument, like the gdb960 down
command.

Using gdb960 Under GNU Emacs

A

Cx &

Read the number where the cursor is positioned,
and insert it at the end of the gdb960 1/0O buffer.
For example, if you wish to disassemble code
around an address that was displayed earlier, type
di sassenbl e; then move the cursor to the
address display and pick up the argument for

di sassenbl e by typing G x &.

Y ou can customize this further by defining
elements of the gdb9601 i st pri nt command,;
once it is defined, you can format or otherwise
process numbers picked up by C-x & before they
areinserted. A numeric argumentto G-x &
indicates both that you want special formatting,
and acts as an index to pick an element of thelist.
If the list element is a string, the number to be
inserted is formatted using the Emacs function

f or mat ; otherwise, the number is passed as an
argument to the corresponding list element.

In any source file, the Emacs command C- x SPC (gdb960 br eak) tells gdb960 to set a
breakpoint on the source line point ison. If you accidentally delete the source-display buffer, an
easy way to get it back isto type the command f in the gdb960 buffer, to request a frame
display; when you run under Emacs, this recreates the source buffer, if necessary, to show you
the context of the current frame.
The source files displayed in Emacs are in ordinary Emacs buffers that are visiting the source
filesinthe usual way. Y ou can edit the files with these buffersif you wish.

CAUTION. InEmacsv19 or later, most of the special commands shown
above have been replaced by commands preceded with the G- ¢ command
prefix. Use G- h mto list the commands available in gdb960 mode.

A-5

Command Line Editing

Command line editing allows fast modification of command lines. You
can repeat often typed text, delete and replace text, record text to be
inserted later, splice commands together, and repair mis-typed commands.

This appendix describes the command line editing interface and provides
some examples of its use.

Introduction to Line Editing

In this appendix, the following notation is used to describe keystrokes.

Thetext CTRL + k is read as ‘Control k' and describes the character
produced when the Control key is depressed and held whitekie is
pressed.

The textVETA + k is read as ‘Meta k' and describes the character produced
when theVvETA key (if you have one) is depressed, andcktkey is pressed.

If you do not have &ETA key, identical effects can result from holding
down theEsc key while typingk. Either process is known as metafying
thek key.

The textVETA + CTRL + k is read as 'Meta Control k' and describes the
character produced by metafyiogrL + k.

B-1

B

gdb960 User’'s Manual

B-2

In addition, severa keys have their own names. Specifically, DEL, ESC,
LFD, SPC, RET, and TAB all stand for themselves when seen in thistext, or
inaninit file. For more information on init files, refer to the Readline Init
File section of this appendix.

Readline Interaction

The Readline library provides a set of commands for manipulating the text
on the command line, allowing you to fix typos without retyping the line.
These editing commands allow positioning the cursor and deleting or
inserting text. When you are satisfied with aline, press RETURN. The
cursor does not have to be at the end of the line to press RETURN and have
the modifications accepted.

Readline Bare Essentials

To enter charactersinto the line, position the cursor and type. Characters
appear at the cursor position, and the cursor moves to theright. If you mis-
type a character, you can use DEL to back up, and delete the mis-typed
character.

Typing CTRL + b moves the cursor to the left, and CTRL + f moves the
cursor to theright.

When adding text in the middle of aline, notice that characters to the right
of the cursor move right to make room for the text you are inserting. When
deleting text to the left of the cursor, charactersto the right of the cursor
move left to fill in the blank space created. Thefollowingisalist of input
line editing commands and descriptions of their effects:

CTRL +b Move back one character.

CTRL +f Move forward one character.

DEL Delete the character to the left of the cursor.
CTRL +d Delete the character undernesth the cursor.

Command Line Editing

CTRL + _ Undo the last input line change made. Y ou can
repeat the undo command until only an empty
line remains.

Readline Movement Commands

Commandsin addition to CTRL + b, CTRL + f , CTRL + d, and DEL alow
rapid movement within aline. Here are some commands for moving more
rapidly about the line:

CTRL +a Moveto the start of the line.

CTRL + e Moveto the end of theline.

META + f Move forward aword.

META + b Move backward aword.

CTRL +1 Clear the screen, redisplaying the current line at
the top.

Notice how CTRL + f moves forward a character, while META + f moves
forward an entire word. It isaloose convention that control keystrokes
operate on characters while meta keystrokes operate on words.

Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for
later use. If the description for acommand saysthat it kills' text, then you
can retrieve the text later.

Thefollowing isalist of commands for killing text:

CTRL + k Kill the text from the current cursor position to
the end of theline.

META +d Kill from the cursor to the end of the current
word, or if between words, to the end of the next
word.

B-4

gdb960 User’'s Manual

META + DEL Kill from the cursor to the start of the previous
word, or if between words, to the start of the
previous word.

CTRL +w Kill from the cursor to the previous white space.

Thisisdifferent than META + DEL because
CTRL + wkillsto first white space, rather than to
first white space before a complete word.

Y anking text means retrieving the text from the kill buffer. If the
description for acommand says that it yanks text, then the command places
previoudy-killed text at the cursor position.

The following commands yank the text back into the line:

CTRL +y Y ank the most recently killed text back into the
command line at the cursor location.

META +y Rotate the kill-ring (the list of previously killed
text), and yank the new top. Y ou can do this
only if the prior command iSCTRL +y or
META+ y.

When you use akill command, the text is saved in a buffer called akill-
ring. Any number of consecutive kills save all the killed text together in
one element of thekill-ring. When yanking, all text in one element of the
kill-ring isretrieved. Elementsin the kill-ring separate from one another
only if kills are separated by other commands. The kill-ring is not changed
by creation of anew command line. Text killed on a previously typed line
is available to be yanked when you are typing ancther line.

Command Line Editing

Readline Arguments

Y ou can pass humeric arguments to Readline commands. Sometimes,
numeric arguments determine the number of times a command is to repeat.
Sometimes the sign of the argument determines the action and the numeric
provides an offset. If you pass a negative argument to a command that
normally actsin aforward direction, that command actsin a backward
direction. For example, to kill text back to the start of the line, you might
type META + - CTRL +Kk.

Generaly, pass numeric arguments to a command by typing META di gi t s
before the command. If thefirst di gi t you typeisaminussign (-), then
the sign of the argument is negative. Once you have typed one meta digit
to get the argument started, type the remaining digits, and then the
command. For example, to give the CTRL + d command an argument of 10,
type META+ 1 0 CTRL +d.

Readline Init File

Although the Readline library comes with a set of Emacs-like key
bindings, it is possible to set up your own key bindings and change the
state of afew variables. Y ou can customize programs that use Readline by
putting commands in an init file in your home directory. The name of this
fileis. i nputrc on UNIX hosts, andi nput rc on Windows hosts.
gdb960 looks for thisfile at startup in the directory specified by the $HOVE
environment variable. Thereisno default for $SHOVE. |f $HOME is not set,
then noinit fileis used.

When a program that uses the Readline library starts up, the~/ . i nputrc
fileisread, and the key bindings are set.

B-5

gdb960 User’'s Manual

B-6

Readline Variables

There are four internal Readline variables. Y ou can use them to change the
initial state of Readline editing. A list of the Readline init variables and
their descriptions follows:

edi ti ng- node Controls which editing mode you are
using. By default, GNU Readline starts
up in Emacs editing mode. Possible
settings are: emacs and vi .

hori zont al - scrol | - nnde Controls whether the text of the lines
you edit scroll horizontally on asingle
screen line when they are larger than the
width of the screen, instead of wrapping
onto anew screen line. There are two
possible settings: on and of f. of f isthe
defaullt.

mar k- nodi fi ed-1ines Controls whether an asterisk appears at
the beginning of history lines that have
been modified. There are two possible
settings: on and of f. of f, No asterisk, is

the default.
pr ef er - vi si bl e- bel | If set to on, use thevisible bell if oneis
[on]| of f] available rather than using the terminal

bell. There aretwo possible settings: on
and of f . of f isthe defaullt.

Although the Readline library comes with a set of Emacs-like key
bindings, it is possible to set up your own key bindings. Y ou can
customize programs that use Readline by putting commandsin an init file
in your home directory. The name of thisfileis~/ . i nputrc.

The following two examples set edi t i ng- mode tovi and
hori zont al - scrol I modeto on, respectively:

set editing-node vi

set horizontal -scroll-nmpde on

Command Line Editing

Readline Key Bindings

The syntax for controlling key bindingsinthe~/ . i nputrc or C:\i nputrc
requires that you know the name of the command you want to change. The
following pages provide tables containing command names, their default
key bindings, and a short description of what each command does.

Once you know the name of the command, place the name of the key you
wish to bind the command to, a colon, and then the name of the command
onalineintheinit file.

In the following example, CTRL + u is bound to the function

uni ver sal - ar gunent , and CTRL + o is bound to the macro "&>out put ",
which inserts the string &>out put into theline:

This is a coment |ine.

Control -o: ">&out put "
Control - u: uni ver sal - ar gunent

Y ou need not spell out the key sequences. Y ou can specify key sequences
in shorthand by enclosing the sequence in double quotes and using
Emacs-style escapes. In the following example, CTRL + u isbound to the
function uni ver sal - ar gunent , CTRL + o iSbound to the macro

">&out put ", which inserts the string &>out put into theline, and CTRL + x
CTRL +r isbound to thefunctionre-read-init-file:

This is a conment |ine.

"\CTRL + 0": " >&out put "
"\CTRL + u": uni ver sal - ar gunent
"\CTRL + x\CTRL + r": re-read-init-file

Commands For Moving

Thefollowing isalist of the command names, their original bindings, and
short descriptions for cursor movement commands:

begi nni ng-of -1 i ne Move to the start of the current line.
(CTRL + a)
end-of -1ine (CTRL +e) Move to the end of theline.

B-7

gdb960 User’'s Manual

B-8

forward-char (CTRL +f)
backwar d- char (CTRL + b)

forward-word (META+)

backwar d- wor d (META + b)

clear-screen (CTRL+1)

Move forward a character.
Move back a character.

Move forward to the end of the next
word.

Move back to the first white space that
precedes the cursor position.

Clear the screen, leaving the current line
at the top of the screen.

Commands For Manipulating History

Thefollowing isalist of history manipulation command names, their
original bindings, and short descriptions:

accept-line
(Newl i ne, Ret urn)

previ ous- hi story (CTRL + p)
next - hi story (CTRL + n)

begi nni ng- of - hi story
(META+ <)

end- of - hi story (META+ >)

reverse-search-history
(CTRL +7r)

Accept the line regardless of cursor
position. If thisline is non-empty, add it
tothe history list. If thislinewasa
history line, restore the history lineto its
origina state.

Move up through the history list.
Move down through the history list.
Move to thefirst line in the history.

Move to the end of the input history
(i.e., theline you are entering).

Search backward, starting at the current
line, and moving up through the history
as necessary. Thisisacharacter-by-
character, incremental search.

Command Line Editing

f orwar d- sear ch- hi story
(CTRL +s)

Commands For Changing Text

Search forward, starting at the current
line, and moving down through the
history.

Thefollowing isalist of the command names, their original bindings, and
short descriptions for changing text on the command line:

del et e-char (CTRL +d)

backwar d- del et e- char
(Rubout)

guot ed-i nsert (CTRL +q,
CTRL + V)

tab-insert (META+ TAB)

sel f-insert

transpose-chars (CTRL +1)

transpose-words (META+1)

Delete the character under the cursor. If
the cursor is at the beginning of theline,
and there are no charactersin the line,
and the last character typed was not
CTRL + d, then return EOF.

Delete the character behind the cursor.
A numeric argument saysto kill the
charactersinstead of deleting them.

Add the next character that you type to
the line verbatim. Use this command to
insert characterslike CTRL + g.

Insert atab character.

Insert the character of the key that is
pressed.

Drag the character before the cursor
forward. The cursor insertion point
moves forward as well. If the cursor is
at the end of the line, then transpose the
two characters preceding the cursor.
Negative arguments do not work.

Drag the word behind the cursor past the
word in front of the cursor, moving the
cursor over that word as well.

gdb960 User’'s Manual

B-10

upcase-word (META+u)

downcase-word (META+1)

capitalize-word (META+C)

Killing And Yanking

Convert to uppercase the current (or
following) word. With a negative
argument, convert the previous word, but
do not move the cursor.

Convert to lowercase the current (or
following) word. With a negative
argument, convert the previous word, but
do not move the cursor.

Convert to uppercase the current (or
following) word. With a negative
argument, convert the previous word, but
do not move the cursor.

The following isalist of the command names, their original bindings, and
short descriptions for killing and yanking text on the command line;

ki ll-1ine(CTRL+k)

backward-kill-line ()

ki |l-word (META+d)

backward- kil | -word
(META + DEL)

uni x-1ine-discard
(CTRL +u)

Kill the text from the current cursor
position to the end of the line.

Kill backward to the beginning of the
line. Thisisnormally not bound to a key
sequence.

Kill from the cursor to the end of the
current word, or if between words, to the
end of the next word.

Kill the word behind the cursor.

Remove the line input
(backwar d-ki Il -1ine). Savethe
killed text on the kill-ring.

Command Line Editing

B

uni x- wor d- rubout (CTRL +w) Removeaword from lineinput. Save

yank (CTRL +y)

yank- pop (META+Yy)

Specifying Numeric Arguments

the text on thekill-ring. Thisisthe same
asbackwar d- ki | | - wor d.

Y ank the top of the kill-ring into the
buffer at the cursor.

Rotate the kill-ring, and yank the new
top. You can only do thisif the prior
command isyank or yank- pop.

The following isalist of the command names, their original bindings, and
short descriptions for specifying numeric arguments on the command line:

di git-argument (META+O0,
META+1,... META+-)

uni versal - argunent ()

Add this digit to the argument already
accumulating, or start a new argument.
META + - starts a negative argument.

Do what CTRL + u doesin Emacs. By
default, this function is not bound to a

key sequence.

Some Miscellaneous Commands

The following isalist of the command names, their original bindings, and
short descriptions for miscellaneous actions on the command line:

abort (CTRL + Q)

do- upper case- versi on
(META+ a, META + b)

prefix-meta (ESC)

Stops execution and sounds the terminal
bell.

Run the command that is bound to the
uppercase character.

Make the next character typed metafied.
Thisisfor people without a meta key.
ESC-f isequivalent to META +f .

B-11

B gdb960 User’'s Manual

undo (CTRL +) Character by character, incremental
undo, separately remembered for each
line.

revert-line (META+r) Undo al changes made to thisline. This

islike typing the undo command enough
times to get back to blank line.

Readline vi Mode

While the Readline library does not have afull set of vi editing functions,
it does contain enough to alow simple editing of the command line.

To switch interactively between Emacs and vi editing modes, use the
command META + CTRL +j (toggle-editing-mode).

When you enter alineinvi mode, you are aready in insertion mode, as if
you had typed ani after invoking vi . Pressing ESC switches to edit mode,
and allows you to edit text with the standard vi movement keys. For
example, you may move to previous history lines with k, follow lines with
j , and so forth.

B-12

GNU History Library

This appendix describes the history library, a programming tool that
provides a consistent user interface for recalling lines of previously typed
input.

Many programs read input from the user oneline at atime. The GNU
history library keeps track of those lines, associates arbitrary data with each
line, and uses information from previous lines to make up new ones.

The programmer using the History library has functions available for
completing the following tasks:

* remembering lines on a history stack

e associating arbitrary datawith aline

» removing lines from the stack

« searching through the stack for aline containing an arbitrary text string
« referencing any line on the stack directly.

In addition, a history expansion function is available that provides a
consistent user interface across many different programs.

The end-user using programs written with the History library has the
benefit of a consistent user interface, with a set of well-known commands
for manipulating the text of previous lines and using that text in new
commands. The basic history manipulation commands are similar to the
history substitution used by csh.

C1

C gdb960 User’'s Manual

History Interaction

The History library provides a history expansion feature similar to the
history expansionin csh. The following text describes the available
syntax features.

History expansion takes place in two parts. First, determine which line
from the previous history should be used during substitution. Second,
select portions of that line for inclusion in the current line. Theline
selected from the previous history is called the event, and the portions of
that line that are acted upon are called words. The lineis broken into
wordsin Bash shell fashion. Words are delimited by white space, with the
exception of quoted strings. So, several words surrounded by quotes are
considered one word.

Event Designators

An event designator is a character or character sequence that refersto a
command line entry in the history list. Thefollowing isalist of event
designators and descriptions of their effects:

! Start a history substitution, except when followed
by a space, tab, =, (, or end-of-line.

I Refer to the previous command. Thisisa
synonym for !-1.

I'n Refer to command line n.

l-n Refer to the command line n lines back.

I'string Refer to the most recent command starting with
string.

1 2string[?] Refer to the most recent command containing
string.

C-2

GNU History Library C

Word Designators

A colon (:) separates event specifications from the word designators. The
colon can be omitted if the word designator beginswith ~, $, * or %
Words are numbered from the beginning of the line, with the first word
being denoted by a0 (zero).

0 (zero) The zero'th word. Thisis usually the command
word.

n The n'th word.

A The first argument. That is, word 1.

$ The last argument.

% The word matched by the most recent ?st ri ng?
search.

X-y A range of words; -y isthe abbreviation for 0-y.

* All of the words, excepting the zero'th. Thisisa

synonym for 1- $. Itisnot an error to use* if
thereisjust one word in the event. The empty
string is returned in that case.

Modifiers

Modifiers alow modification of designator-created commands. After the
optional word designator, you can add a sequence of one or more of the
following modifiers, each preceded by acolon (:):

The entire current command line typed so far.

h Remove atrailing pathname component, leaving
only the head.

r Remove atrailing suffix of theform'’suf fi x,

leaving the basename.

C3

C

gdb960 User’'s Manual

c4

Remove all but the suffix.

Remove al leading pathname components,
leaving the tail.

Display the new command but do not execute it.
This takes effect immediately, so it should be the
last specifier on the line.

Using gdb960 with ApLink

gdb960 supports ApLink, a software and hardware debug probe for the
1960 processors. Because ApLink includes the MON960 debug monitor on
board, it makesi960 processor software development as simple as self-
hosted development on a PC or workstation. By using ApLink, you avoid
having to port software or design specialized hardware into the target
system to use the monitor.

ApLink Commands

These commands are useful primarily for ApLink, but can be used by all
1960 Cx, Jx, and Hx processor-based targets.

mcon region val ue Set the Memory Configuration register
for regi on to the specified value.
Range of regi on is0- 0xf. This
command isvalid only for i960
Cx/Ix/Hx processors. For the 960 Jx
processor, r egi on is automatically
divided by two to map to the supported
range of that processor. Both command
arguments are assumed to be hex
constants.

| madr regno val ue Set the contents of the specified logica
memory address register to the
designated value. Range of regno is
0-1.

D-1

D

D-2

gdb960 User’'s Manual
This command is valid only for i960
JX/HX/Rx processors. The debugger
assumes that both command arguments
are hex constants.

I nmr regno val ue Set the contents of the specified logical

memory mask register to the designated
value. Range of regno iso- 1.

This command is valid only for i960
JX/HX/Rx processors. The debugger
assumes that both command arguments
are hex constants.

NOTE. Improper use of the nton, | madr, or | nmr commands causes
MONB960 to crash. See the next section for examples of using these
commands.

Using gdb960 With ApLink

Thei960 Cx, Jx, and Hx ApLink-compatible versions of MON960 are not
configured to enable the active memory regions on the target connected to
ApLink. Consequently, debugger access to target memory and/or
peripheralsis, by default, impossible.

However, ApLink-aware debuggers, such as gdb960 R5.0 and later,
support several new commands to dynamically enable processor memory
regions following monitor boot.

Using gdb960 with ApLink D

Cx Configuration

To configure memory regions for a Cx-based target, you need only to
modify the processor’'s memory region configuration registers. For more
information on those registers, refer to the description of the processor’s
bus controller in Chapter 10 of the i960 Cx Microprocessor User’s Manual.
The following example shows gdb960 syntax that enables DRAM in
memory regions C and D of an EP80960CX target connected to ApLink.

c:\> gdbh960 -r coml -b 57600
(gdb960) nton c 0x900003

/* d-cache on, 32-bit, little-endian, !ready set, burst set */
(gdb960) nton d 0x900003
/* d-cache on, 32-bit, little-endian, !ready set, burst set */

1960® Jx Memory Configuration

Configuring memory regions for an 1960 Jx processor-based target is
discussed in Chapter 12 of the i960 Jx Microprocessor User’'s Manual.

When the 1960 Jx processor’'s DLMCON. dcen bit is not set, aregion
containing noncacheable, memory-mapped peripheral (s) may be enabled
by simply using the previously described ncon commands to write an
appropriate bus width setting into the applicable PMCON register. When
enabling cacheable memory (i.e., DRAM), the processor's PMCON,
LMADR, and LMMR registers must all be configured.

The effective address range for alogical data template is defined using the
A31: 12 field in the LMADRx register and the MA31: 12 field in the LMVRx
register. For each data access, the upper 20 bits of the effective address are
compared against A31: 12 of the LMADRx.

Only address bits for which the corresponding mask bit is set (in the LMVRx
register) are compared. Effective address bits with corresponding mask
bits cleared are automatically considered amatch. Logicaly, the operation
isasfollows:

(EFA[31: 12] xnor LMADRX[A31:12]) or (not LMVRx[MA31:12])
where EFA[31: 12] isthe effective bus address. Only when all compared
address bits match are the LMADRX be used for the current bus access.

D-3

gdb960 User’'s Manual

The following example gdb960 commands enable 32-bit DRAM in
memory region A of an EP80960JX target connected to ApLink.

c:\> gdh960 -r coml

(gdb960) nton a 0x800000

/* 32-bit bus width */

(gdb960) | madr 0 0xa0000002

/* data caching configured for region A */
(gdb960) I nmmr O Oxf 0000001

/* set mask register to appropriate value & enable
tenplate */

gdb960 Scripts

gdb960 supports command scripts that automate enabling a target's DRAM
and/or peripheral memory regions prior to downloading and debugging a
program. The following example script and actual command line syntax
demonstrate how to use this facility. The script downloads and executes a
fictitious program called "hello". In this example, assume that an
EP80960CX target is physically connected to a CA ApLink and that the
EP80960CX has DRAM in region C.

Example Script

c:\> type gdb960. cnd

ncon ¢ 0x900003

file hello

| oad hello

run

c:\> gdh960 -b 57600 -r conl -parallel Iptl -
conmmand=gdh960. cnd

| ndex

- character, 1-6
| character, 1-6

A
add-symbol-file command, 12-3
ApLink

commands, 12-3

Jx processor configuration, D-3
arguments to your program, 7-2
arrays, artificial, 11-4
assignment operators, 11-3
automatic display

expression vaue, 11-15
awatch command, 12-4

B
backslash-letter combinations, 13-6
backtrace, 9-2, 12-42

of astack, 12-4
baud rate, specifying, 2-12
binary operator @, 11-4
backtrace command, 12-4
break command, 12-5, 12-25
break, 2-13

conditions, 8-9

send to target, 12-26
breakpoints, 8-1

add a condition to, 12-7
deleting, 8-6, 12-6, 12-8
disabling, 8-7, 12-9
enabling, 12-11
example, 6-3
hardware, 8-3
hardware-assisted to halt, 12-39
register, 8-4
set count of number, 12-17
set hardware, 12-17
set to cause halt, 12-39
setting, 12-5, 12-25
specify commands for, 12-6
states, 8-7

breakpoints, setting
GUI, Windows, 3-17
GUI, UNIX, 4-13

C
C boolean expressions, 8-9
C operators, 11-1
call command, 12-6
call stack, 9-1
cd command, 12-6
character, 1-6
clear command, 12-6
code, listing

GUI, UNIX, 4-9, 4-13

Index-1

gdb960 User’'s Manual

Index-2

GUI, Windows, 3-11
command files, 13-4
command hooks,user-defined, 13-3
command line
completion, readline, 11-20
invocation, 2-11
startup options, 2-12
command line completion, 11-19
commands
ApLink, 12-3
#define, 11-1
defining, 12-8
awatch, watchpoint, 8-6
backtrace, display, 9-2
break, breakpoint, 8-2
cd, configuration, 7-2
clear, breakpoint, 8-7
command, breakpoint, 8-11
condition, breakpoint, 8-9
cont, execution, 8-12, 8-15
continue, execution, 8-10, 8-13
define, 13-1
delete, breakpoint, 8-7
directory, configuration, 10-6
disable, breakpoint, 8-8
disassemble, display, 11-11
display name, display, 11-15
document, 13-2
down, selection, 9-4
echo, display, 8-12, 13-5
Emacs with gdb960, A-3
enable, breakpoint, 8-8
executed on breaking, 8-11
finish, execution, 8-13

for controlled output, 13-5
for GMU, 12-14

for moving on command line, B-7
forward-search, search, 10-5
frame, 9-4, 9-5

gdb960 command list, 12-3
gmu, display, 8-17

hbreak, breakpoint, 8-3

info address, display, 11-17
info args, display, 9-6

info breakpoints, display, 11-14
info line, display, 11-14

info registers, display, 11-23, 11-25

info, display, 11-18
inspect, display, 11-1

info line, display, 10-4
info locals, display, 9-6
info stack, display, 9-3
ignore count, breakpoint, 8-10
info break, display, 8-4
jump, execution, 8-15

list, display, 9-5, 10-1
miscellaneous, 11-20
next, execution, 8-14
nexti, execution, 8-14
output, display, 8-12, 13-6
path, configuration, 7-3
print, display, 11-1, 11-9, 11-14
printf, display, 13-6
printsyms, display, 11-19
profile, 11-26

ptype, display, 11-17
pwd, display, 7-2

rbreak, breakpoint, 8-4

Index

regs, display, 11-25

readline movement, B-3
readline, killing, B-3
reverse-search, search, 10-5
run, execution, 7-1

set args, configuration, 7-2

set environment, configuration, 7-3
set caching, mode, 11-10

set print, mode, 11-5

show, display, 12-8, 12-9
show args, display, 7-2

show environment, display, 7-3
show history, display, 11-22
show values, display, 11-22
silent, display, 8-12

step, execution, 8-12, 8-13, 8-14
stepi, execution, 8-14

target, example, 2-12

tbreak, breakpoint, 8-5

until, execution, 8-14
user-defined, 12-10

up, selection, 9-4

watch, watchpoint, 8-6

where, display, 9-3

whatis, display, 11-17

wwatch, watchpoint, 8-6

x, display, 11-1, 11-11, 11-14

unset environment, configuration, 7-3

user-defined, 13-1

command line

editing, 5-8
file-specifying, 5-5
help, display, 5-6
info, display, 5-7

make, 5-11
quit, 5-14

set complaints, configuration, 5-13

set confirm, configuration, 5-14
set editing, mode, 5-8
set height, configuration, 5-12
set history, configuration, 5-9
set history, mode, 5-10
set listsize, configuration, 10-1
set prompt, display, 5-8
set radix, configuration, 5-12
set verbose, configuration, 5-13
set width, configuration, 5-12
shell, 5-11
show complaints, display, 5-13
show confirm, display, 5-14
show editing, display, 5-8
show height, display, 5-12
show history, display, 5-10
show radix, display, 5-12
show verbose, display, 5-13
show width, display, 5-12
show, display, 5-7
storefor later retrieval, 5-9
text, changing, B-9
UNIX, B-1
command window
GUI, Windows, 3-40
commands command, 12-6
comments, 13-4
comment lines, 5-2
compiler
g option, 2-8
complaints, 5-13

Index-3

gdb960 User’'s Manual

Index-4

condition command, 12-7, 12-22
continue command, 12-7
convenience variables, 11-22
conventions, notational, 1-5
conversions, type, 11-15
customer service, 1-7

D
data
examining, 11-1
datatype
display, 11-17, 12-41
debugger
features of, 1-1
display attribute setting, 12-33
symbol, 11-19
set attribute, 12-27
UNIX GUI
back tracing, 4-17
connecting to target, 4-5
creating anew file, 4-18
customizing, 4-18
debugging, 4-12
editing source code, 4-17
exiting, 4-18
listing code, 4-9, 4-13
online help, 4-2
opening afile, 4-8
overview, 4-3
printing, 4-17
program navigation, 4-14
register values, 4-16
running, 4-2
running a program, 4-14

search path, 4-11

setting breakpoints, 4-13

stack, viewing, 4-15

stepping through a program, 4-14
working directory, 4-4

UNIX GUI, 4-1
Windows GUI

back tracing, 3-27

command window, 3-40
connecting to target, 3-6
debugging, 3-12
downloading, 3-17
expression values, 3-24

files, editing, 3-34

listing code, 3-11

memory, viewing, 3-29
opening afile, 3-10
overview, 3-4

program navigation, 3-19
register values, 3-27

running a program, 3-19
search path, 3-9

setting breakpoints, 3-17
source code, viewing, 3-31
stack, viewing, 3-23

starting, 3-3

stepping through a program, 3-19
symbol values, 3-24

text editor, 3-34

text editor, attributes, 3-38
text editor, customizing, 3-38
text editor, font settings, 3-39
text editor, syntax coloring, 3-39
text editor, tab settings, 3-39

Index

variable values, 3-26

Windows online help, 3-2
debugging

GUI, UNIX, 4-12

GUI, Windows, 3-12

optimized code, 2-9
define command, 12-8
delete command, 12-8
delete display command, 12-8
directory command, 12-8
directories

changing, 12-6
disable command, 12-9
disassemble command, 12-9
display command, 12-10
document command, 12-10
down command, 12-10
downloading

GUI, Windows, 3-17
down-silently command, 12-11
DOS command line, 1-6

E
echo command, 12-11
editor, text

GUI, Windows, 3-34
Emacs

commands with gdb960, A-3

setting up gdb960, A-1
enable command, 12-11
environment variables
environment variables, 2-15

unset, 12-40
escape sequences, 13-6

event designators, C-2
exclamation point(!)

assign special meaning to, 5-10
exiting, debugger

GUI, UNIX, 4-18
exec-file command, 12-12
executing aprogram file, 12-12
execution

continuing, 8-13

continuing

example, 6-3

expression

datatype, 11-17
expressions, 11-1

display, 13-6

display when program stops, 12-10

remove from display, 12-40
expression values, viewing

GUI, Windows, 3-24

F
file command, 12-12
files
downloading, 12-22
.gdbinit, 13-4
init.gdb, 13-4
files, creating
GUI, UNIX, 4-18
files, editing
GUI, Windows, 3-34
files, opening
GUI, UNIX, 4-8
GUI, Windows, 3-10
finish command, 12-12

Index-5

gdb960 User’'s Manual

Index-6

font settings

GUI, Windows, 3-39
format

letters, 11-9

options, 11-5

output, 11-9, 11-12
forward-search command, 12-13
frame

select, 12-13

selecting, 12-10, 12-41
frame command, 12-13
function calls

stepping over, 12-22
Functions

overloaded, 11-20

caling, 12-6

G

gdb960
command help, 12-17
command list, 12-3
compiling for, 2-1
configuring from the command line, 2-1
example session, 6-1
exiting, 5-14
expressions, 11-1
features, 1-1
invocation arguments, 12-1
invoking, 2-15
internal state, 5-7
manipulating history, B-8
quitting, 5-14, 12-25
read commands, 12-37
setting up in Emacs, A-1

show command, 12-33

working directory, 12-25
gmu detect define command, 12-14
gmu detect disable command, 12-14
gmu detect enable command, 12-15
gmu protect define command, 12-15
gmu protect disable command, 12-16
gmu protect enable command, 12-16
GNU history library, C-1
graphical user interface

using, 4-1
Guarded Memory Unit (GMU), 8-17

commands, 12-14

syntax and arguments, 12-17
GUI, UNIX

back tracing, 4-17

connecting to atarget, 4-5

creating anew file, 4-18

customizing, 4-18

debugging, 4-12

editing source code, 4-17

exiting, 4-18

listing code, 4-9, 4-13

online help, 4-2

opening afile, 4-8

overview, 4-3

printing, 4-17

program navigation, 4-14

register values, 4-16

running, 4-2

running a program, 4-14

search path, 4-11

setting breakpoints, 4-13

stack, viewing, 4-15

Index

stepping through a program, 4-14 H
working directory, 4-4 hbreak command, 12-17
GUI, UNIX, 4-1 HDIL arguments, 2-14
GUI, Windows help command, 12-17
back tracing, 3-27 history
command window, 3-40 command line substitution, 5-8
connecting to atarget, 3-6 event designators, C-2
debugging, 3-12 expansion, 5-10
downloading, 3-17 controlling, 5-10
expression vaues, 3-24 library, GNU, C-1
files, editing, 3-34 manipulating, B-8
listing code, 3-11 modifiers, C-3
memory, viewing, 3-29 numbers, 11-21
opening afile, 3-10 word designators, C-3
overview, 3-4
program navigation, 3-19 I-K

register values, 3-27
running a program, 3-19
search path, 3-9

setting breakpoints, 3-17
source code, viewing, 3-31

ignore command, 12-17
ignore count, 8-11
info command, 12-17
increment operators, 11-3
instruction pointer, 11-25
register, 11-24
invocation example, 6-2
jump command, 12-20
killing and yanking, B-10

stack, viewing, 3-23

starting, 3-3

stepping through a program, 3-19
symbol values, 3-24

text editor, 3-34

text editor, attributes, 3-38

text editor, customizing, 3-38
text editor, font settings, 3-39
text editor, syntax coloring, 3-39 lines

text editor, tab settings, 3-39 display, 12-20
variable values, 3-26 linespec definition, 10-3

GUI, Windows help, 3-2 list command, 12-20
Imadr command, 12-21

L
line wrapping, 5-12

Index-7

gdb960 User’'s Manual

Index-8

Immr command, v21
load command, 12-22
loops
execute dl iterations, 12-40
logical not operator, 5-10

M
machine instruction
executing, 12-23
make command, 12-22
make tool, 12-22
manuals, related, 1-6
mcon command, 12-22
memory
dump as machine instructions, 12-9
examining, 12-42
memory
examining, 11-10
examining consecutive units, 11-14
memory, modifying, 11-15
memory, viewing
GUI, Windows, 3-29
messages, 5-13
modifying memory, 11-15
MON960
awatch command, 8-6
connecting to, 2-12
specifying target type, 2-12
MON960, setting up, 2-2
monitor software, 2-2
watch command, 8-6
wwatch command, 8-6

N-O
next command, 12-22
nexti command, 12-23
notational differences, UNIX vs. DOS, 1-6
numeric arguments, specifying, B-11
online help, accessing, 1-7
online help
GUI, UNIX, 4-2
operators, 11-2
assignment, 11-3
increment, 11-3
optimized code, debugging, 2-9
options
command line example, 2-11
invocation, nx, 13-4
file-specifying, 2-15, 5-5
format, 11-5
modes, 2-15, 2-17
startup, 2-12
output
display, 12-23
format, 11-9
output command, 12-23

P
path command, 12-23
parallel port, specifying, 2-13
path notation, 1-6
print command, 12-23
printf command, 12-24
printsyms command, 12-24
printing

GUI, UNIX, 4-17
processor status, 11-24

Index

profiling, 11-26
profile command, 12-24
profile data
manage, 12-24
program
arguments, 7-2
continue execution, 12-7, 12-12
continuing at a different address, 8-15
execute at new location, 12-20
execution
halting and continuing, 8-1
loading example, 6-3
status information, 5-7
resuming execution, 8-15
running, 12-26
specify for debugging, 12-12
stop execution, 12-38
variables, 11-2
working directory, 7-2
program navigation
GUI, UNIX, 4-14
GUI, Windows, 3-19
programs, running
GUI, UNIX, 4-14
GUI, Windows, 3-19
prompt string
change, 5-8
ptype command, 12-25
pwd command, 12-25
publications, related, 1-6

Q

quit command, 12-25

R
raw dataformats, 11-24
readline
arguments, B-5
automatic typing, 11-20
command line completion, 11-20
history facilities, 5-10
init file, B-5
init syntax, B-6
interaction, B-2
interface, 5-8
key bindings, B-7
killing commands, B-3
movement commands, B-3
registers, 11-23
$fp, 11-24
$ip, 11-24
$ps, 11-24
$sp, 11-24
display non-floating, 12-26
information display, 11-23
instruction pointer, 11-24
register values, viewing
GUI, UNIX, 4-16
GUI, Windows, 3-27
regs command, 12-26
reset command, 12-26
reverse-search command, 12-26
run command, 12-26

S
screen size
setting, 5-11
select-frame command, 12-27

Index-9

gdb960 User’'s Manual

Index-10

serial port, specifying, 2-12
search
backward, 12-26
for text match, 12-27
search command, 12-27
search path
add directory to, 12-23
executable search, 10-5
GUI, UNIX, 4-11
GUI, Windows, 3-9
source, 10-5
set command, 12-27
shell
invoke inferior, 12-33
shell command, 12-33
show command, 12-33
source
path
reset, 12-8
source code
example, 6-2
source code, viewing
GUI, UNIX, 4-17
GUI, Windows, 3-31
source
displaying
example, 6-3
files
searching, 10-4
lines
displaying, 10-1
mapping to program addresses, 10-4
path, 10-5
source command, 12-37

stack
frame, 8-13
selecting, 12-27
frames, 9-1, 10-1
pointer, 11-24
stack, viewing
GUI, UNIX, 4-15
GUI, Windows, 3-23
Starting gdb960, 2-10
UNIX GUI, 2-10
Windows GUI, 2-10
Starting gdb960 command line interface, 2-11
startup options (also see options), 2-12
step command, 12-38
stepi command, 12-38
stepping through a program
GUI, UNIX, 4-14
GUI, Windows, 3-19
stty rows and stty cols settings, 5-11
support, customer, 1-7
symbol
table, 5-3, 11-21
information display, 12-3
symbol data
dump, 12-24
symbols
defined by the preprocessor, 11-1
file messages, 5-5
symbol-file command, 12-38
symbol table
examining, 11-17
read, 12-38
symbol values, viewing
GUI, Windows, 3-24

Index

syntax coloring
GUI, Windows, 3-39
system interrupt character, 9-2

T
tab settings

GUI, Windows, 3-39
target command, 12-39
target connection

GUI, UNIX, 4-5

GUI, Windows, 3-6
target

connect to, 12-39
tbreak command, 12-39
TCP/IP, 2-14
TCP/IP Communication, 2-3
termcap database, 5-11
test

display, 12-11
text

search for amatch, 12-13
text editor

GUI, Windows, 3-34
text editor, attributes

GUI, Windows, 3-38
text editor, customizing

GUI, Windows, 3-38
thbreak command, 12-39
tracing

GUI, UNIX, 4-17

GUI, Windows, 3-27
type

conversions, 11-15

display description, 12-25

0]
undisplay command, 12-40
unit, size to examine, 11-12
UNIX command line, 1-6
UNIX

command line editing, B-1
unset command, 12-40
until command, 12-40
up command, 12-41
up-silently command, 12-41

V
value history, 11-17
variables
assignment to, 11-3
environment, 2-15
convenience, 11-22
program, 11-2
variable values, viewing
GUI, Windows, 3-26
vi command line mode, B-12
virtual data formats, 11-24

W

watch command, 12-41

watchpoints, 8-5
deleting, 8-6
hardware-assisted, 8-5
memory access, 12-4
memory write hardware, 12-42
setting, 12-41

whatis command, 12-41

where command, 12-42

Index-11

| ndex

- character, 1-6
| character, 1-6

A
add-symbol-file command, 12-3
ApLink

commands, 12-3

Jx processor configuration, D-3
arguments to your program, 7-2
arrays, artificial, 11-4
assignment operators, 11-3
automatic display

expression vaue, 11-15
awatch command, 12-4

B
backslash-letter combinations, 13-6
backtrace, 9-2, 12-42

of astack, 12-4
baud rate, specifying, 2-12
binary operator @, 11-4
backtrace command, 12-4
break command, 12-5, 12-25
break, 2-13

conditions, 8-9

send to target, 12-26
breakpoints, 8-1

add a condition to, 12-7
deleting, 8-6, 12-6, 12-8
disabling, 8-7, 12-9
enabling, 12-11
example, 6-3
hardware, 8-3
hardware-assisted to halt, 12-39
register, 8-4
set count of number, 12-17
set hardware, 12-17
set to cause halt, 12-39
setting, 12-5, 12-25
specify commands for, 12-6
states, 8-7

breakpoints, setting
GUI, Windows, 3-17
GUI, UNIX, 4-13

C
C boolean expressions, 8-9
C operators, 11-1
call command, 12-6
call stack, 9-1
cd command, 12-6
character, 1-6
clear command, 12-6
code, listing

GUI, UNIX, 4-9, 4-13

Index-1

gdb960 User’'s Manual

Index-2

GUI, Windows, 3-11
command files, 13-4
command hooks,user-defined, 13-3
command line
completion, readline, 11-20
invocation, 2-11
startup options, 2-12
command line completion, 11-19
commands
ApLink, 12-3
#define, 11-1
defining, 12-8
awatch, watchpoint, 8-6
backtrace, display, 9-2
break, breakpoint, 8-2
cd, configuration, 7-2
clear, breakpoint, 8-7
command, breakpoint, 8-11
condition, breakpoint, 8-9
cont, execution, 8-12, 8-15
continue, execution, 8-10, 8-13
define, 13-1
delete, breakpoint, 8-7
directory, configuration, 10-6
disable, breakpoint, 8-8
disassemble, display, 11-11
display name, display, 11-15
document, 13-2
down, selection, 9-4
echo, display, 8-12, 13-5
Emacs with gdb960, A-3
enable, breakpoint, 8-8
executed on breaking, 8-11
finish, execution, 8-13

for controlled output, 13-5
for GMU, 12-14

for moving on command line, B-7
forward-search, search, 10-5
frame, 9-4, 9-5

gdb960 command list, 12-3
gmu, display, 8-17

hbreak, breakpoint, 8-3

info address, display, 11-17
info args, display, 9-6

info breakpoints, display, 11-14
info line, display, 11-14

info registers, display, 11-23, 11-25

info, display, 11-18
inspect, display, 11-1

info line, display, 10-4
info locals, display, 9-6
info stack, display, 9-3
ignore count, breakpoint, 8-10
info break, display, 8-4
jump, execution, 8-15

list, display, 9-5, 10-1
miscellaneous, 11-20
next, execution, 8-14
nexti, execution, 8-14
output, display, 8-12, 13-6
path, configuration, 7-3
print, display, 11-1, 11-9, 11-14
printf, display, 13-6
printsyms, display, 11-19
profile, 11-26

ptype, display, 11-17
pwd, display, 7-2

rbreak, breakpoint, 8-4

Index

regs, display, 11-25

readline movement, B-3
readline, killing, B-3
reverse-search, search, 10-5
run, execution, 7-1

set args, configuration, 7-2

set environment, configuration, 7-3
set caching, mode, 11-10

set print, mode, 11-5

show, display, 12-8, 12-9
show args, display, 7-2

show environment, display, 7-3
show history, display, 11-22
show values, display, 11-22
silent, display, 8-12

step, execution, 8-12, 8-13, 8-14
stepi, execution, 8-14

target, example, 2-12

tbreak, breakpoint, 8-5

until, execution, 8-14
user-defined, 12-10

up, selection, 9-4

watch, watchpoint, 8-6

where, display, 9-3

whatis, display, 11-17

wwatch, watchpoint, 8-6

x, display, 11-1, 11-11, 11-14

unset environment, configuration, 7-3

user-defined, 13-1

command line

editing, 5-8
file-specifying, 5-5
help, display, 5-6
info, display, 5-7

make, 5-11
quit, 5-14

set complaints, configuration, 5-13

set confirm, configuration, 5-14
set editing, mode, 5-8
set height, configuration, 5-12
set history, configuration, 5-9
set history, mode, 5-10
set listsize, configuration, 10-1
set prompt, display, 5-8
set radix, configuration, 5-12
set verbose, configuration, 5-13
set width, configuration, 5-12
shell, 5-11
show complaints, display, 5-13
show confirm, display, 5-14
show editing, display, 5-8
show height, display, 5-12
show history, display, 5-10
show radix, display, 5-12
show verbose, display, 5-13
show width, display, 5-12
show, display, 5-7
storefor later retrieval, 5-9
text, changing, B-9
UNIX, B-1
command window
GUI, Windows, 3-40
commands command, 12-6
comments, 13-4
comment lines, 5-2
compiler
g option, 2-8
complaints, 5-13

Index-3

gdb960 User’'s Manual

Index-4

condition command, 12-7, 12-22
continue command, 12-7
convenience variables, 11-22
conventions, notational, 1-5
conversions, type, 11-15
customer service, 1-7

D
data
examining, 11-1
datatype
display, 11-17, 12-41
debugger
features of, 1-1
display attribute setting, 12-33
symbol, 11-19
set attribute, 12-27
UNIX GUI
back tracing, 4-17
connecting to target, 4-5
creating anew file, 4-18
customizing, 4-18
debugging, 4-12
editing source code, 4-17
exiting, 4-18
listing code, 4-9, 4-13
online help, 4-2
opening afile, 4-8
overview, 4-3
printing, 4-17
program navigation, 4-14
register values, 4-16
running, 4-2
running a program, 4-14

search path, 4-11

setting breakpoints, 4-13

stack, viewing, 4-15

stepping through a program, 4-14
working directory, 4-4

UNIX GUI, 4-1
Windows GUI

back tracing, 3-27

command window, 3-40
connecting to target, 3-6
debugging, 3-12
downloading, 3-17
expression values, 3-24

files, editing, 3-34

listing code, 3-11

memory, viewing, 3-29
opening afile, 3-10
overview, 3-4

program navigation, 3-19
register values, 3-27

running a program, 3-19
search path, 3-9

setting breakpoints, 3-17
source code, viewing, 3-31
stack, viewing, 3-23

starting, 3-3

stepping through a program, 3-19
symbol values, 3-24

text editor, 3-34

text editor, attributes, 3-38
text editor, customizing, 3-38
text editor, font settings, 3-39
text editor, syntax coloring, 3-39
text editor, tab settings, 3-39

Index

variable values, 3-26

Windows online help, 3-2
debugging

GUI, UNIX, 4-12

GUI, Windows, 3-12

optimized code, 2-9
define command, 12-8
delete command, 12-8
delete display command, 12-8
directory command, 12-8
directories

changing, 12-6
disable command, 12-9
disassemble command, 12-9
display command, 12-10
document command, 12-10
down command, 12-10
downloading

GUI, Windows, 3-17
down-silently command, 12-11
DOS command line, 1-6

E
echo command, 12-11
editor, text

GUI, Windows, 3-34
Emacs

commands with gdb960, A-3

setting up gdb960, A-1
enable command, 12-11
environment variables
environment variables, 2-15

unset, 12-40
escape sequences, 13-6

event designators, C-2
exclamation point(!)

assign special meaning to, 5-10
exiting, debugger

GUI, UNIX, 4-18
exec-file command, 12-12
executing aprogram file, 12-12
execution

continuing, 8-13

continuing

example, 6-3

expression

datatype, 11-17
expressions, 11-1

display, 13-6

display when program stops, 12-10

remove from display, 12-40
expression values, viewing

GUI, Windows, 3-24

F
file command, 12-12
files
downloading, 12-22
.gdbinit, 13-4
init.gdb, 13-4
files, creating
GUI, UNIX, 4-18
files, editing
GUI, Windows, 3-34
files, opening
GUI, UNIX, 4-8
GUI, Windows, 3-10
finish command, 12-12

Index-5

gdb960 User’'s Manual

Index-6

font settings

GUI, Windows, 3-39
format

letters, 11-9

options, 11-5

output, 11-9, 11-12
forward-search command, 12-13
frame

select, 12-13

selecting, 12-10, 12-41
frame command, 12-13
function calls

stepping over, 12-22
Functions

overloaded, 11-20

caling, 12-6

G

gdb960
command help, 12-17
command list, 12-3
compiling for, 2-1
configuring from the command line, 2-1
example session, 6-1
exiting, 5-14
expressions, 11-1
features, 1-1
invocation arguments, 12-1
invoking, 2-15
internal state, 5-7
manipulating history, B-8
quitting, 5-14, 12-25
read commands, 12-37
setting up in Emacs, A-1

show command, 12-33

working directory, 12-25
gmu detect define command, 12-14
gmu detect disable command, 12-14
gmu detect enable command, 12-15
gmu protect define command, 12-15
gmu protect disable command, 12-16
gmu protect enable command, 12-16
GNU history library, C-1
graphical user interface

using, 4-1
Guarded Memory Unit (GMU), 8-17

commands, 12-14

syntax and arguments, 12-17
GUI, UNIX

back tracing, 4-17

connecting to atarget, 4-5

creating anew file, 4-18

customizing, 4-18

debugging, 4-12

editing source code, 4-17

exiting, 4-18

listing code, 4-9, 4-13

online help, 4-2

opening afile, 4-8

overview, 4-3

printing, 4-17

program navigation, 4-14

register values, 4-16

running, 4-2

running a program, 4-14

search path, 4-11

setting breakpoints, 4-13

stack, viewing, 4-15

Index

stepping through a program, 4-14 H
working directory, 4-4 hbreak command, 12-17
GUI, UNIX, 4-1 HDIL arguments, 2-14
GUI, Windows help command, 12-17
back tracing, 3-27 history
command window, 3-40 command line substitution, 5-8
connecting to atarget, 3-6 event designators, C-2
debugging, 3-12 expansion, 5-10
downloading, 3-17 controlling, 5-10
expression vaues, 3-24 library, GNU, C-1
files, editing, 3-34 manipulating, B-8
listing code, 3-11 modifiers, C-3
memory, viewing, 3-29 numbers, 11-21
opening afile, 3-10 word designators, C-3
overview, 3-4
program navigation, 3-19 I-K

register values, 3-27
running a program, 3-19
search path, 3-9

setting breakpoints, 3-17
source code, viewing, 3-31

ignore command, 12-17
ignore count, 8-11
info command, 12-17
increment operators, 11-3
instruction pointer, 11-25
register, 11-24
invocation example, 6-2
jump command, 12-20
killing and yanking, B-10

stack, viewing, 3-23

starting, 3-3

stepping through a program, 3-19
symbol values, 3-24

text editor, 3-34

text editor, attributes, 3-38

text editor, customizing, 3-38
text editor, font settings, 3-39
text editor, syntax coloring, 3-39 lines

text editor, tab settings, 3-39 display, 12-20
variable values, 3-26 linespec definition, 10-3

GUI, Windows help, 3-2 list command, 12-20
Imadr command, 12-21

L
line wrapping, 5-12

Index-7

gdb960 User’'s Manual

Index-8

Immr command, v21
load command, 12-22
loops
execute dl iterations, 12-40
logical not operator, 5-10

M
machine instruction
executing, 12-23
make command, 12-22
make tool, 12-22
manuals, related, 1-6
mcon command, 12-22
memory
dump as machine instructions, 12-9
examining, 12-42
memory
examining, 11-10
examining consecutive units, 11-14
memory, modifying, 11-15
memory, viewing
GUI, Windows, 3-29
messages, 5-13
modifying memory, 11-15
MON960
awatch command, 8-6
connecting to, 2-12
specifying target type, 2-12
MON960, setting up, 2-2
monitor software, 2-2
watch command, 8-6
wwatch command, 8-6

N-O
next command, 12-22
nexti command, 12-23
notational differences, UNIX vs. DOS, 1-6
numeric arguments, specifying, B-11
online help, accessing, 1-7
online help
GUI, UNIX, 4-2
operators, 11-2
assignment, 11-3
increment, 11-3
optimized code, debugging, 2-9
options
command line example, 2-11
invocation, nx, 13-4
file-specifying, 2-15, 5-5
format, 11-5
modes, 2-15, 2-17
startup, 2-12
output
display, 12-23
format, 11-9
output command, 12-23

P
path command, 12-23
parallel port, specifying, 2-13
path notation, 1-6
print command, 12-23
printf command, 12-24
printsyms command, 12-24
printing

GUI, UNIX, 4-17
processor status, 11-24

Index

profiling, 11-26
profile command, 12-24
profile data
manage, 12-24
program
arguments, 7-2
continue execution, 12-7, 12-12
continuing at a different address, 8-15
execute at new location, 12-20
execution
halting and continuing, 8-1
loading example, 6-3
status information, 5-7
resuming execution, 8-15
running, 12-26
specify for debugging, 12-12
stop execution, 12-38
variables, 11-2
working directory, 7-2
program navigation
GUI, UNIX, 4-14
GUI, Windows, 3-19
programs, running
GUI, UNIX, 4-14
GUI, Windows, 3-19
prompt string
change, 5-8
ptype command, 12-25
pwd command, 12-25
publications, related, 1-6

Q

quit command, 12-25

R
raw dataformats, 11-24
readline
arguments, B-5
automatic typing, 11-20
command line completion, 11-20
history facilities, 5-10
init file, B-5
init syntax, B-6
interaction, B-2
interface, 5-8
key bindings, B-7
killing commands, B-3
movement commands, B-3
registers, 11-23
$fp, 11-24
$ip, 11-24
$ps, 11-24
$sp, 11-24
display non-floating, 12-26
information display, 11-23
instruction pointer, 11-24
register values, viewing
GUI, UNIX, 4-16
GUI, Windows, 3-27
regs command, 12-26
reset command, 12-26
reverse-search command, 12-26
run command, 12-26

S
screen size
setting, 5-11
select-frame command, 12-27

Index-9

gdb960 User’'s Manual

Index-10

serial port, specifying, 2-12
search
backward, 12-26
for text match, 12-27
search command, 12-27
search path
add directory to, 12-23
executable search, 10-5
GUI, UNIX, 4-11
GUI, Windows, 3-9
source, 10-5
set command, 12-27
shell
invoke inferior, 12-33
shell command, 12-33
show command, 12-33
source
path
reset, 12-8
source code
example, 6-2
source code, viewing
GUI, UNIX, 4-17
GUI, Windows, 3-31
source
displaying
example, 6-3
files
searching, 10-4
lines
displaying, 10-1
mapping to program addresses, 10-4
path, 10-5
source command, 12-37

stack
frame, 8-13
selecting, 12-27
frames, 9-1, 10-1
pointer, 11-24
stack, viewing
GUI, UNIX, 4-15
GUI, Windows, 3-23
Starting gdb960, 2-10
UNIX GUI, 2-10
Windows GUI, 2-10
Starting gdb960 command line interface, 2-11
startup options (also see options), 2-12
step command, 12-38
stepi command, 12-38
stepping through a program
GUI, UNIX, 4-14
GUI, Windows, 3-19
stty rows and stty cols settings, 5-11
support, customer, 1-7
symbol
table, 5-3, 11-21
information display, 12-3
symbol data
dump, 12-24
symbols
defined by the preprocessor, 11-1
file messages, 5-5
symbol-file command, 12-38
symbol table
examining, 11-17
read, 12-38
symbol values, viewing
GUI, Windows, 3-24

Index

syntax coloring
GUI, Windows, 3-39
system interrupt character, 9-2

T
tab settings

GUI, Windows, 3-39
target command, 12-39
target connection

GUI, UNIX, 4-5

GUI, Windows, 3-6
target

connect to, 12-39
tbreak command, 12-39
TCP/IP, 2-14
TCP/IP Communication, 2-3
termcap database, 5-11
test

display, 12-11
text

search for amatch, 12-13
text editor

GUI, Windows, 3-34
text editor, attributes

GUI, Windows, 3-38
text editor, customizing

GUI, Windows, 3-38
thbreak command, 12-39
tracing

GUI, UNIX, 4-17

GUI, Windows, 3-27
type

conversions, 11-15

display description, 12-25

0]
undisplay command, 12-40
unit, size to examine, 11-12
UNIX command line, 1-6
UNIX

command line editing, B-1
unset command, 12-40
until command, 12-40
up command, 12-41
up-silently command, 12-41

V
value history, 11-17
variables
assignment to, 11-3
environment, 2-15
convenience, 11-22
program, 11-2
variable values, viewing
GUI, Windows, 3-26
vi command line mode, B-12
virtual data formats, 11-24

W

watch command, 12-41

watchpoints, 8-5
deleting, 8-6
hardware-assisted, 8-5
memory access, 12-4
memory write hardware, 12-42
setting, 12-41

whatis command, 12-41

where command, 12-42

Index-11

gdb960 User’'s Manual

Windows

gdb960 GUI, 2-10
working directory

GUI, UNIX, 4-4
wwatch command, 12-42

Index-12

XY
X command, 12-42
yanking and killing, B-10

