
Getting Started with the
80960 QUICKval Kit

i960® Microprocessor Evaluation Kit

Order Number: 632708-005

Revision Revision History Date

-001 Original Issue. 12/94

-002 80960Hx and PCI80960DP chapters added. Additional examples
for all processors added.

12/95

-003 CTOOLS 5.0 support. 02/96

-004 Information on 80960RP, IQ80960RP evaluation board, and
CTOOLS 5.1 support added.

02/97

-005 CTOOLS 6.0 support 01/98

 Copyright © 1994-1998, Intel Corporation, All Rights Reserved.printed on
recycled paper

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Literature Distribution Center
Intel Corporation
PO Box 5937
Denver, CO 80217-9808

Or you can call the following toll-free number:

1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel sales
office.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Condi-
tions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty,
relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose,
merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intend-
ed for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product
descriptions at any time, without notice. Contact your local sales office to obtain the latest specifications before placing
your order.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclo-
sure is subject to restrictions stated in Intel's Software License Agreement, or in the case of software delivered to the gov-
ernment, in accordance with the software license agreement as defined in FAR 52.227-7013.

Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this per-
mission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this
one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions.

* Other brands and names are the property of their respective owners.

i

Contents
Chapter 1 Introduction

About this Kit ... 1-1
What’s New In CTOOLS .. 1-2

About This Manual .. 1-2
Intel Support Services .. 1-4
Notation Conventions.. 1-4

Chapter 2 Software Installation
System Requirements ... 2-1
Installing CTOOLS... 2-2

Installing CTOOLS in Windows 95/Windows NT 4.0 2-2
Windows NT 3.51 Installation ... 2-2

AUTOEXEC.BAT Change Summary 2-3
Installing the QUICKval Example Programs 2-4

Installing QUICKval Example Programs in Windows 95/
Windows NT 4.0 ... 2-4

Where Do You Go From Here?.. 2-4

Chapter 3 Hardware Installation
Inspecting Your Board.. 3-1
Installing Your CPU module ... 3-2
Setting Your Base Board Switches .. 3-3
Setting Your CPU Module Switches....................................... 3-3

ii

Getting Started with the 80960 QUICKval Kit

Setting the CPU Module Frequency Switch 3-3
Setting Your CPU Module Interrupt Switch 3-4
Installing MON960 on the IQ80960Rx Platform................ 3-5

Items Needed... 3-5
If You Are Using an IQ80960RP (5V)

Evaluation Board.. 3-5
If You Are Using an IQ80960RD/RPLV (3.3V)

Evaluation Board.. 3-6
Connecting the Evaluation Base Board to the Host............... 3-6

PCI80960DP ... 3-7
Connecting the Serial Communications Cable

(Optional) ... 3-7
Connecting the Parallel Communications Cables

(Optional) ... 3-7
IQ80960Rx.. 3-8

Connecting the Serial Communications Cable
(Optional) ... 3-8

EP80960BB .. 3-9
Where Do You Go From Here?.. 3-10
Troubleshooting the PCI-SDK and IQ-SDK Platforms 3-10

Verifying the PCI-SDK and IQ-SDK Platforms 3-11

Chapter 4 The i960 Rx CPU Example Programs
System Validation ... 4-5

Hello World... 4-5
Memory Test... 4-6

If Something Goes Wrong... 4-8
MON960 Debug Monitor is Not Responding... 4-8
Invoking the gcc960 Compiler Resulted in Errors... 4-8
Invoking the gld960 Linker Resulted in Errors.............. 4-9
Invoking the gdb960 Debugger Resulted in Errors....... 4-9

Data Cache Tutorial .. 4-9
Instruction Cache Tutorial ... 4-11

Contents

iii

DMA Example ... 4-12
How Does This Program Work? 4-12
Positive Address Decoding .. 4-13
Writing the Destination... 4-13
What Does This Example Do?................................... 4-13

DMA Tutorial ... 4-13
Messaging Unit Example.. 4-14
Example Description .. 4-14

Address Translation ... 4-14
Example Structure ... 4-15
Rp_code.c.. 4-16

Messaging Unit Tutorial .. 4-16
Host Program DOS Window 4-16

i960 Rx Processor Program Command Prompt
Window .. 4-16

Program Termination ... 4-18
Static, Global, and Profile-Driven Optimizations............. 4-18

C No Optimization.. 4-19
C Static Optimization ... 4-19
C++ No Optimization ... 4-20
C++ Static Optimization ... 4-20
C Global Optimization.. 4-21
C++ Global Optimization.. 4-22

Instrumentation, Profile Creation, Decision-making,
and Profile-Driven Re-Compilation............................... 4-23

C++ Virtual Function Optimizations................................ 4-24
Building Self-contained Profiles with gmpf960 4-26
Compression Assisted Virtual Execution (CAVE)........... 4-30

C Example ... 4-31
C++ Compression Assisted Virtual Execution (CAVE) ... 4-34
XLATE960 Tutorial .. 4-38

Looking at the xlt.s File .. 4-39

iv

Getting Started with the 80960 QUICKval Kit

Using xlate960 ... 4-41
Running the New Rx-compatible Source Code.......... 4-46

Assembler Pseudo-instruction Tutorial............................ 4-48
What Are Pseudo-instructions?.................................. 4-48
pseudop.c: Editing the File for the Cx

Microprocessor .. 4-48
Running pseudop.c For the Cx Microprocessor.............. 4-50

pseudop.c: Migrating the File to the Jx/Hx/Rx
Microprocessor .. 4-52

Running pseudop.c for the i960 Jx/Hx/Rx
Microprocessors... 4-53

pseudop.c: Adding Pseudo-Ops to the Program........ 4-56
Running pseudop.c with Pseudo-instruction 4-57

Debugging with gdb960 .. 4-61
Debugging Optimized Code.. 4-64
Debugging Optimized C++ Code Tutorial........................ 4-68
Writing Flash on the IQ80960RP Evaluation Board........ 4-78
Writing Flash on the IQ80960RD Evaluation Board........ 4-80
80960Rx Initialization Example....................................... 4-83

Module: INIT.S.. 4-83
Module: MAIN.C... 4-84
MODULE: CYRP_HW.C... 4-84
MODULE: MONITOR.C ... 4-85

Other i960 Processor Choices and the Remote
Evaluation Facility ... 4-85

Chapter 5 The i960 Hx CPU Example Programs
System Validation ... 5-6

Hello World... 5-6
Memory Test... 5-7

If Something Goes Wrong... 5-8
MON960 Debug Monitor is Not Responding... 5-8

Contents

v

Invoking the gcc960 Compiler Resulted in Errors........ 5-9
Invoking the gld960 Linker Resulted in Errors... 5-9

Data Cache Tutorial .. 5-11
Instruction Cache Tutorial... 5-12
Register Cache... 5-13
External Interrupts Tutorial ... 5-15
Internal Interrupts Tutorial... 5-16
Fault Handling .. 5-17
Static, Global, and Profile-Driven Optimizations............. 5-19

C No Optimization.. 5-20
C Static Optimization ... 5-20
C++ No Optimization ... 5-21
C++ Static Optimization ... 5-21
C Global Optimization.. 5-22
C++ Global Optimization.. 5-23

Instrumentation, Profile Creation, Decision-making,
and Profile-Driven Re-Compilation............................... 5-23

C++ Virtual Function Optimizations................................ 5-24
Building Self-contained Profiles with gmpf960 5-26
Profiling a Program in Pieces ... 5-30
Compression Assisted Virtual Execution (CAVE)........... 5-35

C Example ... 5-36
C++ Compression Assisted Virtual Execution (CAVE) ... 5-38
Linker Consumption.. 5-43
Assembler Pseudo-instruction Tutorial 5-46

What Are Pseudo-instructions? 5-46
pseudop.c: Editing the File for the Cx

Microprocessor.. 5-46
Running pseudop.c for the Cx Microprocessor............... 5-48

pseudop.c: Migrating the File to the Jx/Hx/Rx
Microprocessor.. 5-50

Running pseudop.c for the i960 Jx/Hx/Rx
Microprocessors .. 5-51

vi

Getting Started with the 80960 QUICKval Kit

pseudop.c: Adding Pseudo-Ops to the Program........ 5-54
Running pseudop.c with Pseudo-instruction 5-55

Debugging with gdb960 .. 5-59
Debugging Optimized Code.. 5-62
Debugging Optimized C++ Code Tutorial........................ 5-66
Writing Flash ... 5-75
How to Add Benchmarking Routines to Your Code......... 5-78
Other i960 Processor Choices and the Remote

Evaluation Facility ... 5-79

Chapter 6 The i960 Jx CPU Example Programs
System Validation ... 6-5

Hello World... 6-5
Memory Test... 6-7

If Something Goes Wrong... 6-8
MON960 Debug Monitor is Not Responding... 6-8
Invoking the gcc960 Compiler Resulted in Errors... 6-9
Invoking the gld960 Linker Resulted in Errors.............. 6-9

Data Cache Tutorial .. 6-11
Instruction Cache Tutorial ... 6-12
Register Cache ... 6-13
External Interrupts Tutorial .. 6-15
Internal Interrupts Tutorial ... 6-16
Halt Mode.. 6-17
Fault Handling ... 6-19
Static, Global, and Profile-Driven Optimizations 6-21

C No Optimization .. 6-22
C Static Optimization.. 6-22
C++ No Optimization.. 6-23
C++ Static Optimization ... 6-23
C Global Optimization .. 6-24
C++ Global Optimization .. 6-25

Contents

vii

Instrumentation, Profile Creation, Decision-making,
and Profile-Driven Re-Compilation............................... 6-25

C++ Virtual Function Optimizations................................ 6-26
Building Self-contained Profiles with gmpf960 6-28
Profiling a Program in Pieces ... 6-32
Compression Assisted Virtual Execution (CAVE)........... 6-37

C Example ... 6-38
C++ Compression Assisted Virtual Execution (CAVE) ... 6-41
Linker Consumption.. 6-45
XLATE960 Tutorial .. 6-48

Looking at the xlt.s File .. 6-49
Using xlate960 ... 6-51
Running the New Rx-compatible Source Code 6-57

Assembler Pseudo-instruction Tutorial 6-59
What Are Pseudo-instructions? 6-59
pseudop.c: Editing the File for the Cx

Microprocessor.. 6-59
Running pseudop.c for the Cx Microprocessor............... 6-61

pseudop.c: Migrating the File to the Jx/Hx/Rx
Microprocessor.. 6-63

Running pseudop.c for the i960 Jx/Hx/Rx
Microprocessors .. 6-65

pseudop.c: Adding Pseudo-Ops to the Program 6-67
Running pseudop.c with Pseudo-instruction.............. 6-69

Debugging with gdb960.. 6-73
Debugging Optimized Code ... 6-76
Debugging Optimized C++ Code Tutorial 6-80
Writing Flash .. 6-89
How to Add Benchmarking Routines to Your Code 6-92
Other i960 Processor Choices and the Remote

Evaluation Facility .. 6-93

viii

Getting Started with the 80960 QUICKval Kit

Chapter 7 The i960 Cx CPU Example Programs
System Validation ... 7-5

Hello World... 7-5
Memory Test... 7-7

If Something Goes Wrong... 7-8
MON960 Debug Monitor is Not Responding... 7-8
Invoking the gcc960 Compiler Resulted in Errors... 7-8
Invoking the gld960 Linker Resulted in Errors.............. 7-9
Invoking the gdb960 Debugger Resulted

in Errors... .. 7-9
Data Cache Tutorial (80960CF Only).............................. 7-10
Instruction Cache Tutorial (80960CF Only)..................... 7-12
External Interrupts Tutorial .. 7-13
Fault Handling ... 7-15
DMA Tutorial ... 7-16
Static, Global, and Profile-Driven Optimizations 7-17

C No Optimization .. 7-18
C Static Optimization.. 7-19
C++ No Optimization.. 7-19
C++ Static Optimization ... 7-20
C Global Optimization .. 7-20
C++ Global Optimization .. 7-21

Instrumentation, Profile Creation, Decision-making,
and Profile-Driven Re-Compilation 7-22

C++ Virtual Function Optimizations 7-23
Building Self-contained Profiles with gmpf960................ 7-24
Profiling A Program In Pieces ... 7-29
Compression Assisted Virtual Execution (CAVE) 7-34

C Example.. 7-35
C++ Compression Assisted Virtual Execution (CAVE) ... 7-37
Linker Consumption .. 7-41

Contents

ix

Assembler Pseudo-instruction Tutorial 7-44
What are Pseudo-instructions?.................................. 7-44
pseudop.c: Editing the File for the Cx

Microprocessor.. 7-45
Running pseudop.c for the Cx Microprocessor............... 7-47

pseudop.c: Migrating the File to the Jx/Hx/Rx
Microprocessor.. 7-48

Running pseudop.c for the i960 Jx/Hx/Rx
Microprocessors .. 7-50

pseudop.c: Adding Pseudo-Ops to the Program 7-53
Running pseudop.c with Pseudo-instruction.............. 7-54

Debugging with gdb960.. 7-58
Debugging Optimized Code ... 7-61
Debugging Optimized C++ Code Tutorial 7-66
Writing Flash .. 7-75
How to Add Benchmarking Routines to Your Code 7-78
Other i960 Processor Choices and the Remote

Evaluation Facility .. 7-79

Chapter 8 The i960 Sx CPU Example Programs
System Validation ... 8-4

Hello World .. 8-4
Memory Test .. 8-5

If Something Goes Wrong .. 8-7
MON960 Debug Monitor is Not Responding... 8-7
Invoking the gcc960 Compiler Resulted in Errors........ 8-7
Invoking the gld960 Linker Resulted in Errors... 8-8
Invoking the gdb960 Debugger Resulted

in Errors... .. 8-8
External Interrupts Tutorial ... 8-9
Static, Global, and Profile-Driven Optimizations............. 8-11

C No Optimization.. 8-11
C Static Optimization ... 8-12

x

Getting Started with the 80960 QUICKval Kit

C++ No Optimization.. 8-12
C++ Static Optimization ... 8-13
C Global Optimization .. 8-14
C++ Global Optimization .. 8-14

Instrumentation, Profile Creation, Decision-making,
and Profile-Driven Re-Compilation 8-15

C++ Virtual Function Optimizations 8-16
Building Self-contained Profiles with gmpf960................ 8-17
Compression Assisted Virtual Execution (CAVE) 8-22

C Example.. 8-23
C++ Compression Assisted Virtual Execution (CAVE) ... 8-25
Debugging with gdb960 .. 8-29
Debugging Optimized Code.. 8-33
Debugging Optimized C++ Code Tutorial........................ 8-37
Writing Flash ... 8-46
How to Add Benchmarking Routines to Your Code......... 8-49
Other i960 Processor Choices and the Remote

Evaluation Facility ... 8-50

Appendix A Communicating with MON960 via Serial Port

Appendix B The Saxsoft Webster Browser

Tables
3-1 Cyclone Kit Contents .. 3-2
3-2 CPU Module Frequency Switch Settings 3-4
3-3 CPU Module Interrupt Switch Settings 3-4
3-4 Chapter Roadmap .. 3-10
4-1 QUICKval i960 Processor Sample Programs 4-2
4-2 i960 Processor Optimization Results 4-25
4-3 Uncompressed Text Sections 4-33
4-4 After Function Compression ... 4-33
4-5 Improvement ... 4-33

Contents

xi

4-6 Uncompressed Text Sections 4-37
4-7 After Function Compression .. 4-38
4-8 Improvement .. 4-38
5-1 QUICKval i960 Processor Sample Programs 5-2
5-2 i960 Hx Processor Fault Types and Subtypes 5-18
5-3 i960 Hx Processor Optimization Results 5-25
5-4 Uncompressed Text Sections 5-38
5-5 After Function Compression .. 5-38
5-6 Improvement .. 5-38
5-7 Uncompressed Text Sections 5-42
5-8 After Function Compression .. 5-42
5-9 Improvement .. 5-42
6-1 QUICKval i960 Processor Sample Programs 6-1
6-2 i960 Jx Processor Fault Types and Subtypes 6-20
6-3 i960 Processor Optimization Results 6-27
6-4 Uncompressed Text Sections 6-40
6-5 After Function Compression .. 6-40
6-6 Improvement .. 6-41
6-7 Uncompressed Text Sections 6-45
6-8 After Function Compression .. 6-45
6-9 Improvement .. 6-45
7-1 QUICKval i960 Processor Sample Programs 7-2
7-2 i960 Cx Processor Fault Types and Subtypes 7-15
7-3 i960 Processor Optimization Results 7-24
7-4 Uncompressed Text Sections 7-36
7-5 After Function Compression .. 7-37
7-6 Improvement .. 7-37
7-7 Uncompressed Text Sections 7-41
7-8 After Function Compression .. 7-41
7-9 Improvement .. 7-41
8-1 QUICKval i960 Processor Sample Programs 8-2
8-2 i960 Processor Optimization Results 8-17

xii

Getting Started with the 80960 QUICKval Kit

8-3 Uncompressed Text Sections 8-24
8-4 After Function Compression ... 8-25
8-5 Improvement ... 8-25
8-6 Uncompressed Text Sections 8-29
8-7 After Function Compression ... 8-29
8-8 Improvement ... 8-29

Examples
4-1 person Class ... 4-72
4-2 professor Class ... 4-73
5-1 person Class ... 5-69
5-2 professor Class ... 5-70
6-1 person Class ... 6-83
6-2 professor Class ... 6-84
7-1 person Class ... 7-69
7-2 professor Class ... 7-70
8-1 person Class ... 8-40
8-2 professor Class ... 8-41

1-1

Introduction 1
In this highly-charged, fast-paced, cut-throat race to market, you want a
world-class support team backing you every step of the way. You want a
team that can help you push the limits of performance when you design
technically-advanced, high-quality, “second-to-none” products — even
when you’re confronted with limited time and limited resources. And that’s
what you get when you choose Intel’s i960® processor and CTOOLS
development toolset.

The 80960 QUICKval kit provides everything necessary to evaluate the
i960 processor and CTOOLS software development suite. Also included is
an on-line tutorial with development tool and architecture examples to help
jump start your evaluation process.

About this Kit
The 80960 QUICKval Kit includes:

• Installation CD-ROM with example programs that highlight features of
the i960 processor and CTOOLS.

• CTOOLS, a software development toolset that includes the gcc960
compiler, assembler, utilities, gdb960 debugger, and complete
documentation.

• The Cyclone evaluation platform, which includes an evaluation base
board and an i960 CPU module.

1-2

1Getting Started with the 80960 QUICKval Kit

What’s New In CTOOLS
Release 6.0 features support for C++. This means that you can now use the
enhancements of the C++ language with CTOOLS’ powerful development
features such as:

• Whole program and profile driven optimizations
• Position independent data, position independent code
• Compression Aided Virtual Execution (CAVE), to reduce the physical

memory requirements of ROM-based applications
• Symbolic debug of optimized code using the DWARF debug format

CTOOLS 6.0 also improves support for the i960 Rx processor as follows:

• xlate960 assembly language converter: converts assembly language
code from 80960 core processors (e.g., i960 Cx, Jx, and Hx processors)
to its CORE0 (e.g., 80960Rx) equivalent. xlate960 performs both
instruction and addressing-mode translations.

• Improved Assembler Pseudo-Instruction Support: A number of
pseudo-instructions have been added to the CTOOLS assembler to ease
migration between processors. These pseudo-ops provide an
architecture-independent method for performing some of the more
common low-level processing operations.

Finally, CTOOLS 6.0 includes support for the i960 JT and RD processors.
All tools support code generation for these new i960 processor family
members.

About This Manual

This manual is the only reference that you need for the QUICKval kit.
Information from the other manuals included in this kit is incorporated into
this manual for your convenience. For further details on any topic, please
refer to the appropriate manual or contact the 80960 technical support
personnel by phone or E-mail as described below.

Introduction1

1-3

This manual includes the following information.

Chapter 1, Introduction Introduces the 80960 QUICKval Kit and its
features, describes how to receive technical
support, and defines the various typeface
conventions used in this manual.

Chapter 2, Software
Installation

Describes how to install CTOOLS and
QUICKval.

Chapter 3, Hardware
Installation

Describes how to set-up your Cyclone
stand- alone or PCI evaluation platform.

Chapter 4, The i960 Rx
CPU Example Programs

Describes the example programs provided
for evaluating the i960 Rx processor and
CTOOLS.

Chapter 5, The i960 Hx
CPU Example Programs

Describes the example programs provided
for evaluating the i960 Hx processor and
CTOOLS.

Chapter 6, The i960 Jx
CPU Example Programs

Describes the example programs provided
for evaluating the i960 Jx processor and
CTOOLS.

Chapter 7, The i960 Cx
CPU Example Programs

Describes the example programs provided
for evaluating the i960 Cx processor and
CTOOLS.

Chapter 8, The i960 Sx
CPU Example Programs

Describes the example programs provided
for evaluating the i960 Sx processor and
CTOOLS.

Appendix A, Communi-
cating with MON960

Describes how to use MON960, the debug
monitor resident on the Cyclone evaluation
board, to download and execute programs.

Appendix B, The Saxsoft
Webster Browser

Tells you how to use the integrated web
browser to find files on the World-Wide
Web including specification updates, tech-
nical support, and many other resources.

Intel Support Services

This QUICKval Kit includes 90 days of free software and hardware support
by phone or E-mail. To receive this support, register with the 80960
technical support engineers in one of the following ways:

1. Fill out and return the enclosed registration card.
2. Call the 80960 Technical Support Group at 1-800-628-8686 between

7 am and 5 pm Pacific Time or, for non-USA customers, contact your
local technical support group.

3. E-mail the registration information to the 80960 Technical Support
Group at 960tools@intel.com.

The 80960 Technical Support Group information can also provide
information on how to access application support through the FaxBACK,
Bulletin Board, Internet, and World Wide Web. Additionally, you can order
data sheets, fact sheets, manuals, and application notes by calling the Intel
Literature Center at 1-800-548-4725.

Notation Conventions

Bold Indicates user entry and/or commands.

Italics Indicates a variable.

monospace fonts Indicates code examples, directories and
filenames, and development tool output.

asterisks On non-Intel company and product names, a
trailing asterisk indicates the item is a trademark
or registered trademark. Such brands and names
are the property of their respective owners.

2-1

Software Installation 2
This chapter describes how to install the software components of the
QUICKval Kit. Installation should be completed in the following order:

• Make sure your host system meets the minimum requirements.
• Install CTOOLS.
• Install the QUICKval example programs.

A section on each of these installation steps follows.

System Requirements
The QUICKval kit provides a Microsoft Windows* 95/Windows
NT*-based tutorial.1 Your PC system must have:

• An Intel386™, Intel486™, Pentium®‚ or Pentium Pro processor (or
compatible).

• At least 8 Mbytes of RAM.
• Up to 47 Mbytes of available hard disk space.
• For the EP80960BB evaluation platform, one available serial port, and

optionally one available parallel port.
• For the PCI80960DP evaluation platform, one empty full length PCI

slot, and optionally one available parallel or serial port.
• For the IQ80960Rx evaluation platform, one empty full length PCI slot,

and optionally one available serial port.

1. The CTOOLS toolset also supports other host environments including Sun-4*, RS-6000, and
HP9000-300/700, and more.

2-2

2Getting Started with the 80960 QUICKval Kit

Installing CTOOLS
The CTOOLS R6.0 toolset installation requires approximately 22 MB of
available hard disk space. To install an item that was not selected during
this installation, re-run the installation and select the item to install.

Installing CTOOLS in Windows 95/Windows NT 4.0

1. Insert the CTOOLS CD-ROM into your CD-ROM drive.
2. From the Windows task bar (Start button), choose Run.
3. Type drive:setup . For example, if you inserted the CD-ROM into

drive E, type:
e:\setup

4. Follow the on-screen instructions. When installing CTOOLS, make
sure you make the following selections:
a. Select gcc960 interface
b. Install All Components
• Help Files
• Library Files
• GUI
• .gld Files
• .ld Files
c. Select All Library Components
• KA/SA
• KB/SB
• Hx/Jx/Cx
• RP

Windows NT 3.51 Installation

1. Insert the CTOOLS CD-ROM into your CD-ROM drive.
2. From Windows Program Manager, open the File menu and choose

Run.
3. Type drive:setup . For example, if you inserted the CD-ROM into

drive E, type:
e:\setup

Software Installation2

2-3

4. Follow the on-screen instructions. When installing CTOOLS, make
sure you make the following selections:
a. Select gcc960 interface
b. Install All Components
• Help Files
• Library Files
• GUI
• .gld Files
• .ld Files
c. Select All Library Components
• KA/SA
• KB/SB
• Hx/Jx/Cx
• RP

5. Edit the autoexec.bat file as indicated in the autoexec.new file
that was created during installation.

If you made changes to your autoexec.bat file, you must re-boot your
system now so that the changes made are implemented.

AUTOEXEC.BAT Change Summary

With Windows NT, it is important that the path name for the CTOOLS BIN
directory is included in the autoexec.bat PATH definition. If you
selected the default directory during installation, verify that these path
names have been included.

C:\INTEL960\BIN

In addition, verify that the following variable is set:

SET G960BASE=C:\INTEL960

You must now re-boot your system if you made any changes to your
autoexec.bat file.

2-4

2Getting Started with the 80960 QUICKval Kit

Installing the QUICK val Example Programs
You can install the QUICKval example programs for use with Windows 95
or NT 4.0. These files require 25 MB of disk space. Although you can use
CTOOLS V6.0 with Windows NT 3.51, QUICKval supports Windows 95
and NT 4.0 only.

Installing QUICK val Example Programs in Windows 95/
Windows NT 4.0

1. Insert the QUICKval CD-ROM into your CD-ROM drive.
2. From the Windows task bar (Start button), choose Run.
3. Type drive:setup . For example, if you inserted the CD-ROM into

drive E, type:
e:\setup

4. Follow the on-screen instructions.

Where Do You Go From Here?
Now that your software is installed, you are ready to configure you
evaluation platform and connect it to the host PC. Chapter 3 tells you how.

NOTE. If you did not use the default directories on installation, please
make sure the G960BASE environment variable is assigned
appropriately.

3-1

Hardware Installation 3
Now that you have installed the required software as directed in Chapter 2,
you are ready to connect the Cyclone base board to your host system.

In this chapter, you complete these steps:

• Inspecting the board for any defects.
• Installing the CPU Module (PCI80960DP and EP80960BB evaluation

boards only)
• Configuring the processor module switch settings.
• Configuring the Cyclone base board switch settings.
• Connecting the board to the host PC.

This chapter also provides troubleshooting information to help you with any
installation problems that may arise. This information appears near the end
of this chapter.

Inspecting Your Board

NOTE. Use the ground strap supplied with this kit and handle
electronic components in a static-free area.

3-2

3Getting Started with the 80960 QUICKval Kit

1. Verify that you received every item on the packing list. The kit
contents are shown in the table below:

2. Visually inspect the board for any damage that may have occurred
during shipment. If there are any visible defects, follow the return
procedure in the Trouble Sheet to get a replacement. If there is no
damage, place the board in a static-free area and take precautions to
minimize static electricity (e.g., wear the provided ground strap).

Installing Your CPU module
A CPU module is a smaller board that attaches directly onto the Cyclone
EP80960BB and PCI80960DP evaluation base boards. If you are using an
IQ80960Rx evaluation board, you may skip this section.

Table 3-1 Cyclone Kit Contents

IQ80960Rx EP80960BB PCI80960DP

• Base board with
CPU

• Base board • Base board

• Serial cable • CPU module • CPU module

• Connector
adapters

• Parallel cable • Parallel cable

• Serial cable • Serial cable

• Connector
adapters

• Connector
adapters

NOTE. Make sure the power is OFF before you install or remove a
CPU module. Also, do not “peel” connectors by lifting one end of the
connector before the other. This can bend or break the pins and
connectors.

Hardware Installation3

3-3

Line up the alignment holes of the CPU module with the stand-off posts in
the center of the base board with the i960 processor facing away from the
base board. Press down firmly on the edges of the CPU module making
sure that the CPU module remains parallel with the base board at all times.
Use the plastic bolts provided to secure the CPU module in place.

Setting Your Base Board Switches
If you are using the Cyclone EP80960BB, PCI80960DP, or IQ80960RP
evaluation boards, make sure all four-position DIP switches located at S1 on
the base board are set to the OFF position. If you are using the Cyclone
IQ80960RD evaluation board, make sure that switch SW1.3 is set to the ON
position and SW1.1, SW1.2, and SW1.3 are set to the OFF position. For
further details on the function of these switches, refer to the Cyclone User’s
Guide.

Setting Your CPU Module Switches
The sections that follow describe setting the clock frequency for the
Cyclone EP80960BB and PCI80960DP evaluation boards. If you are using
an IQ80960Rx evaluation board, you may skip to “Installing MON960 on
the IQ80960Rx Platform” on page 3-5.

Setting the CPU Module Frequency Switch

Your CPU module may have either one or two four-position DIP switches.
The switch located on the CPU module allows you to set the clock
frequency. Table 3-2 outlines the processor frequency switch settings.

NOTE. Do not set a clock frequency that is faster than the installed
processor is capable of running. Remove power before changing the
switch settings.

3-4

3Getting Started with the 80960 QUICKval Kit

Setting Your CPU Module Interrupt Switch

The sections that follow describe setting the CPU interrupt switch for the
Cyclone EP80960BB and PCI80960DP evaluation boards. If you are using
an IQ80960Rx evaluation board, you may skip to “Installing MON960 on
the IQ80960Rx Platform” on page 3-5.

Your CPU module may have a four-position DIP switch located on the
lower left corner. This DIP switch is provided to map interrupt sources to
the four direct-mapped interrupt inputs. Table 3-3 outlines two settings that
are used with the QUICKval kit. For further details on the function of these
switches, refer to the Cyclone User’s Guide.

Table 3-2 CPU Module Frequency Switch Settings

Frequency FREQ2 FREQ1 FREQ0

16 MHz ON OFF ON

20 MHz ON OFF OFF

25 MHz OFF ON ON

33 MHz OFF ON OFF

40 MHz OFF OFF ON

50 MHz OFF OFF OFF

NOTE. The CPU module frequency switch position 1 is the VPP switch.
It is recommended that you leave it OFF.

Table 3-3 CPU Module Interrupt Switch Settings

Interrupt Sources Position 1 Position 2 Position 3 Position 4

UART/PCI
(Default)

ON OFF OFF ON

UART/PPIRQ ON OFF ON OFF

Hardware Installation3

3-5

Installing MON960 on the IQ80960Rx Platform

By default, a preprogrammed 256K Flash device containing IxWorks by
Wind River Systems ships on the IQ80960Rx evaluation boards. However,
the CTOOLS development tool suite and the 80960 QUICKval Kit require
MON960 on the IQ80960Rx board in place of IxWorks.

A MON960 Flash device is included with the IQ80960Rx kit in an
anti-static box. The following instructions describe how to remove the
IxWorks Flash device on the IQ80960Rx evaluation boards and how to
install the MON960 Flash device in its place.

Items Needed
• MON960 Flash device that ships in an anti-static box.
• Extraction tool.
• IQ80960Rx board.

For help using the extraction tool or inserting the 256K Flash device:

• Technical Support Group
1-800-628-8686

• 80960 Technical Support Group
960tools@intel.com

If You Are Using an IQ80960RP (5V) Evaluation Board
1. Power down the computer.
2. Remove the IQ80960RP evaluation board as you would an expansion

card in your host system.
3. Locate the 256K Flash device containing IxWorks in socket U4.
4. With the extraction tool, remove the IxWorks Flash device.
5. Replace the 256K MON960 Flash device with the IxWorks Flash

device in the anti-static box.

WARNING. When performing the steps below, make sure you wear a
ground strap and handle electronic components in a static-free area.

3-6

3Getting Started with the 80960 QUICKval Kit

6. Insert the 256K MON960 Flash device in the U4 socket on the
IQ80960RP evaluation platform.

7. Insert the IQ80960RP evaluation board in the computer as you would
an expansion card.

8. Power up the computer.

If You Are Using an IQ80960RD/RPLV (3.3V) Evaluation Board
1. Power down the computer.
2. Remove the IQ80960RD evaluation board as you would an expansion

card in your host system.
3. Locate the 256K Flash device containing IxWorks in socket U10.
4. With the extraction tool, remove the IxWorks Flash device.
5. Replace the 256K MON960 Flash device with the IxWorks Flash

device in the anti-static box.
6. Insert the 256K MON960 Flash device in the U10 socket on the

IQ80960RD evaluation platform.
7. Insert the IQ80960RD evaluation board in the computer as you would

an expansion card.
8. Power up the computer.

With MON960 installed on your IQ80960Rx evaluation platform, you are
ready to use the powerful CTOOLS code development tool suite and the
QUICKval code examples and tutorials.

Connecting the Evaluation Base Board to the Host
Now that the processor module is configured, you are ready to connect the
evaluation base board to the host PC.

Hardware Installation3

3-7

PCI80960DP

1. Install PCI-SDK platform as you would an expansion card in your host
system.

2. Observe the LEDS on the board you should see the following
sequence:
• The red Fail LED located at CR6 on the base board should turn

OFF, indicating the processor has passed the self test.
• The green Run LED located at CR5 should turn ON, indicating

that the processor is performing bus cycles.
• The green LEDs located at CR1 and CR4 should also be lit

indicating that the +5 VDC and +3.3 VDC power supplies are
within tolerance.

Connecting the Serial Communications Cable (Optional)

If you do not want to use the PCI local bus for communicating with the
evaluation board, you can use a serial port: however, this method is much
slower.

Connect the RS-232 cable from COM1 or COM2 on your host system to J5
on the PCI-SDK platform. Your system has either a DB-9 (9-pin) or DB-25
(25-pin) connector for its RS-232 port. Both connectors are provided.

Connecting the Parallel Communications Cables (Optional)

If you do not want to use the PCI Local Bus to download code, you can use
the parallel port, however, this method is much slower.

Connect a 25-pin to 25-pin parallel port cable from an open parallel port on
your system to J1 on the PCI-SDK platform.

NOTE. The PCI-SDK platform is a plug-in board and therefore draws
power through the PCI bus. No external power source is required.

3-8

3Getting Started with the 80960 QUICKval Kit

IQ80960Rx

1. Install the IQ80960Rx platform as you would an expansion card in
your host system.

2. Observe the LEDS on the board you should see the following
sequence:
• The red Fail LED located at CR3 on the base board should turn

OFF, indicating the processor has passed the self test.
• The green Run LED located at CR4 should turn ON, indicating

that the processor is performing bus cycles.
• The red user LEDs located at CR1 and CR2 should also be lit

indicating the status of the MON960 on-board monitor. MON960
is the monitor software installed on the evaluation board.

Connecting the Serial Communications Cable (Optional)

If you do not want to use the PCI local bus for communicating with the
evaluation board, you can use a serial port: however, this method is much
slower.

Connect the RS-232 cable from COM1 or COM2 on your host system to J2
on the IQ80960Rx platform. Your system has either a DB-9 (9-pin) or
DB-25 (25-pin) connector for its RS-232 port. Both connectors are
provided.

NOTE. The IQ80960Rx platform is a plug-in board and therefore draws
power through the PCI bus. No external power source is required.
Further, when Windows 95 detects the new adapter board, it asks you if
you want to install a driver for that device. Choose the No option.

Hardware Installation3

3-9

EP80960BB

1. Connecting the serial cable
The serial port is used for communicating and downloading. Connect
the RS-232 cable from COM1 or COM2 on your system to J5 on the
Cyclone base board. Your system has either a DB-9 (9-pin) or DB-25
(25-pin) connector for its RS-232 port. Both 9-pin and 25-pin
connectors are provided.

2. Connecting the parallel cables
The parallel port can be used to significantly increase download speed.
Connect a 25-pin to 25-pin parallel port cable from an open parallel
port on your system to J1 on the Cyclone base board.

3. Powering up the board
• Using the power supply provided with the Cyclone evaluation

board, plug the power supply into a standard power socket and the
power supply cable into connector J7. The power supply operates
with 120 VAC @ 60 Hz.

• Upon power up, the Fail LED located at CR6 on the base board
should turn OFF, indicating the processor has passed its self test.
The green Run LED located at CR5 should light, indicating that
the processor is performing bus cycles. The green LEDs located at
CR1 and CR4 should also be lit indicating that the +5 VDC and
+3.3 VDC power supplies are within tolerance.

3-10

3Getting Started with the 80960 QUICKval Kit

Where Do You Go From Here?
Congratulations! You have successfully installed one of the most advanced
software development toolsets available for the i960 processor. Your
development environment is now ready to use for evaluating the i960
architecture and CTOOLS. The table below tells you where to go for
tutorials on each i960 architecture.

Troubleshooting the PCI-SDK and IQ-SDK Platforms
If the host computer does not boot with the PCI-SDK or IQ-SDK platform
installed, do the following:

1. Verify the version of the MON960 debug monitor on your CPU or
baseboard is R3.2.3. To do this, check the label on socket U4 on the
IQ80960RP board, socket U10 on the IQ80960RD board, or for the
PCI80960DP platform socket U5 of the CPU module.
Also, make sure that you are using gdb960 v6.0 for the PCI
communications.

2. If you have the correct version of the monitor, turn off your PC and take
out the PCI- or IQ-SDK platform.

Table 3-4 Chapter Roadmap

Chapter 4. The i960 Rx
CPU Example Programs

Describes the sample programs provided for
evaluating the i960 Rx Processor and
CTOOLS.

Chapter 5. The i960 Hx
CPU Example Programs

Describes the sample programs provided for
evaluating the i960 Hx Processor and
CTOOLS.

Chapter 6. The i960 Jx
CPU Example Programs

Describes the sample programs provided for
evaluating the i960 Jx Processor and CTOOLS.

Chapter 7. The i960 Cx
CPU Example Programs

Describes the sample programs provided for
evaluating the i960 Cx Processor and
CTOOLS.

Chapter 8. The i960 Sx
CPU Example Programs

Describes the sample programs provided for
evaluating the i960 Sx Processor and
CTOOLS.

Hardware Installation3

3-11

3. If you are using the PCI-SDK platform, remove the CPU module from
the platform and check that the connector pins are straight. Replace the
CPU module.

4. Re-insert the board and make sure that it is firmly seated.
5. Power up your PC.

Verifying the PCI-SDK and IQ-SDK Platforms

mondb and the -pcil option make it possible to verify that the SDK
platforms are installed correctly. For information on installing MON960
and MONDB on your host, refer to the MON960 Debug Monitor User’s
Guide. Once you have installed MON960/MONDB, At a command prompt,
type:

mondb -pcil

This option displays the first 64 bytes of PCI configuration space for each
PCI device found.

For the PCI-SDK, the following information should be displayed along with
other information for other PCI cards which may be installed in your
system:

MONDB 3.2.3, Fri Feb 28 10:26:19 1998 (WIN_32), Copyright 1997,
Intel Corp.

PCI CONFIGUARTION for DEVICE at BUS=00, DEV=13, FUNC=00

00: 0001113c 02800107 ff000013 00004200

10: fffbfc00 0000fc81 ffc00000 00000000

20: 00000000 00000000 00000000 00000000

30: 00000000 00000000 00000000 0000010a

 VENDOR_ID = 113c, DEVICE_ID = 0001

Bus# Dev# Fcn# VendId DevId StsReg CmdReg ClsCde Rev Hdr

0 13 0 113c 1 280 107 ff0000 13 0 [*]

[*] Cyclone PCI Evaluation Target

3-12

3Getting Started with the 80960 QUICKval Kit

The Vendor ID (VenID) for the PCI-SDK platform is 113c. The bus, device,
and function values vary with the installed BIOS. If you see a listing for the
Cyclone PCI Evaluation Target, then the PCI-SDK has been installed
properly.

For the IQ-SDK, the following information should be displayed along with
other information for other PCI cards which may be installed in your
system:

MONDB 3.2.3, Fri Feb 28 10:26:19 1998 (WIN_32), Copyright 1997,
Intel Corp.

PCI CONFIGUARTION for DEVICE at BUS=00, DEV=13, FUNC=00

00: 09608086 02800106 06040000 00814008

10: 00000000 00000000 00010100 22800000

20: ff90ff90 ff80ff80 00000000 00000000

30: 00000000 03a2113c 00000000 00030000

 VENDOR_ID = 8086, DEVICE_ID = 0960

PCI CONFIGUARTION for DEVICE at BUS=00, DEV=13, FUNC=01

00: 19608086 02800116 05800000 80804008

10: fffbf008 00000000 00000000 00000000

20: 00000000 00000000 00000000 03a2113c

30: 00000000 00000000 00000000 0000010a

 VENDOR_ID = 8086, DEVICE_ID = 1960

Bus# Dev# Fcn# VendId DevId StsReg CmdReg ClsCde Rev Hdr

0 13 0 8086 960 280 106 060400 0 81

0 13 1 8086 1960 280 116 058000 0 80 [#]

[#] Cyclone Rx80960 Evaluation Target

The Vendor ID (VenID) for the IQ-SDK platform is 8086. The i960 Rx
microprocessor is assigned two Device IDs (DevId). The Address
Translation Unit and Messaging Unit have a DevID of 1960, and the i960
Rx microprocessor itself has a DevID of 960.

Hardware Installation3

3-13

The bus, device, and function values vary with the installed BIOS. If you
see a listing for the Cyclone Rx80960 Evaluation Target, then the IQ-SDK
has been installed properly.

If you are interested in the source code for mondb and have installed the
MON960 software to the default directory, look for the file mondb.c in:

c:\intel960\src\mondb\common

NOTE. If you receive the message “NT PCI device driver not found”
complete the following. In the CTOOLS installation directory,
c:\intel960\bin, you will find the file reg_ntdd.exe , which is
used to register the device driver PCI_WNT.SYS. Run reg_ntdd.exe
using the syntax:
reg_ntdd ctools_path NT_SYS_DIR_PATH

where ctools_path represents the CTOOLS installation directory, and

NT_SYS_DIR_PATH represents the Windows NT system driver directory.
For example:
reg_ntdd c:\intel960\bin c:\winnt

or
reg_ntdd %G960BASE% %SystemRoot%

The i960 Rx CPU
Example Programs
 4

d on
d
zing

vices

,

nd
The i960Rx processor effectively removes the I/O bottleneck in network
computing. In today's PC servers the I/O subsystem's performance and
bandwidth have not kept pace with today's powerful microprocessors.

The i960 Rx processor is a single-chip intelligent I/O subsystem for PC
servers in the enterprise computing environment. I/O subsystems base
the i960 Rx processor will improve the speed at which users access an
manipulate text, graphic, video and audio data from PC servers, maximi
the performance of the server. The i960 Rx processor combines the top
performance of the i960 Jx processor core with a fully integrated PCI
bridge. It will free the host CPU from handling many interrupt-driven I/O
processing tasks and allow the host CPU to address secondary PCI de
through the PCI-to-PCI bridge.

Additionally, you can optimize your system’s performance with CTOOLS
which includes a profile-driven compiler that can automatically optimize
your code based on its runtime behavior.

Table 4-1 provides descriptions of the tutorials included in the QUICKval
kit. Each example highlights a feature of the architecture or CTOOLS a
provides you with source code that can help shorten your software
development cycle.
4-1

4-2

4Getting Started with the 80960 QUICKval Kit

,

kit.

ded

of
Sx

ct

not
d
Additionally, you can optimize your system’s performance with CTOOLS
which includes a profile-driven compiler that can automatically optimize
your code based on its runtime behavior.

The following pages describe the example programs included with this
Each example highlights a feature of the architecture or CTOOLS and
provides you with source code that can help shorten your software
development cycle. Table 4-1 provides descriptions of the tutorials inclu
in the i960 Rx QUICKval kit.

NOTE. The 80960Rx QUICKval kit includes tutorials that highlight
features of the i960 Rx architecture. If you would like to explore some
the features of the development tools, double-click on the Hx Jx Cx &
QUICKval icon in the QUICKval program group and use the tools
tutorials provided there that are described in Table 4-1. When you sele
an architecture to be used for the tutorials, choose 80960Jx. For your
base board, choose the PCI80960DP. Note, however, that you should
attempt to use any of the i960 Jx architecture-specific tutorials describe
in Table 6-1.

Table 4-1 QUICK val i960 Processor Sample Programs

Tutorial Description Source Files

Hello World: Uses simple printf statement to
verify system integrity.

hello.c : source file
system.c : system file

Memory Test: Used for system verification of
external memory. The programs perform byte,
short, or word writes to external memory, and
then they check the addresses written for
correctness.

memtst8.c: 8 bit memory
test memtst16.c : 16 bit
memory test memtst32.c : 32
bit memory test
system.c : system file

continued ☛

The i960 Rx CPU Example Programs4
Data Cache: Uses the minimum edit distance
algorithm to demonstrate the effectiveness of
the on-chip data cache. This example also
shows how to enable and disable the data
cache and how to configure an area of
memory for caching.

dcache.c : source file
system.c : system file

Instruction Cache: Uses a simple loop to
demonstrate how to enable and disable the
instruction cache. It also highlights the
performance advantage obtained when using
the on-chip instruction cache.

loop.c : source file

system.c : system file

DMA Controller (i960 Rx): Demonstrates
how to set-up the DMA controller, the Primary
Address Translation Unit (ATU), the
Secondary ATU, and the PCI-to-PCI Bridge
Unit.

rpdma.c : source file

Messaging Unit: Demonstrates the
messaging unit of the i960 Rx processor

hostcode.c : source file
rp_code.c : source file

C Local Optimizations: Shows how to use
the C compiler with high levels of static
optimization for improved runtime
performance.

chksum.c , system.c :
source files

C Global Optimizations: Shows how to use
program-wide optimizations of the C compiler
for increased performance.

chksum.c ,
system.c :
source files

C++ Local Optimizations: Shows how to use
the C++ compiler with high levels of static
optimization for improved runtime
performance.

optimize.cpp : source file

C++ Global Optimizations: Shows how to
use program-wide optimizations of the C++
compiler for increased performance.

optimize.cpp : source file

continued ☛

Table 4-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files
4-3

4-4

4Getting Started with the 80960 QUICKval Kit
C++ Virtual Function Optimizations: Shows
how a call to a virtual function can be replaced
by a direct call to a member function, and, if
possible, it may be inlined at the call site. This
improves the runtime performance of the
code.

optimize.cpp : source file

Profiling Lab: Teaches you how to use some
of CTOOLS advanced profiling features.

chksum.c : source file

Self-Contained Profile: Shows how to create
a self-contained profile that captures the
program structure and associates it with the
program counters from a raw profile. When
the source program changes, the global
decision making step interpolates or stretches
the counters in the self-contained profile to fit
the changed program.

quick.c : source file

C Cave: Uses a tic-tac-toe game to show how
to reduce target memory requirements. The
text sections of compressed and
uncompressed tic-tac-toe executables are
compared. Additionally, this example
demonstrates how to specify functions for
compression.

ttt.c : source file

C++ Cave: Shows how to reduce target
memory requirements. The text sections of
compressed and uncompressed C++
executables are compared. This example also
shows how to specify functions for
compression.

cavecpp.cpp : source file

Linker Directive Language: Provides a
hyperlinked manual that describes the linker
command options. This tutorial is found in the
online help only, not in this manual.

xlate960 Assembly Language Converter:
Shows how to use xlate960 to convert
assembly language code written for one i960
processor family member to that of another.

xlt.s : source file

continued ☛

Table 4-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

The i960 Rx CPU Example Programs4

m
k,
System Validation

Hello World

The program hello.c is used to verify your software and hardware syste
integrity. The following steps provide instructions on how to compile, lin
download, and execute this program.

1. Power up the host system.
2. Double-click on the Rx QUICK val icon in the QUICKval program

group.

i960 Processor Assembler
Pseudo-Instruction Support: Shows how to
use the new assembler pseudo-ops.

pseudop.c : source file

Debugging with gdb960: Uses the Go Fish
card game to teach a few useful debugger
commands.

fish.c : source file
system.c : system file

ELF/DWARF Debugging Format:
Demonstrates that at the highest level of
module-local optimization, it is possible to set
a breakpoint on an in-line function.

swap.c : source file

C++ DWARF-2 Debugging Format:
Demonstrates that at the highest level of
module-local optimization, it is possible to
debug a C++ application.

cppdwarf.cpp : source file

Retargeting MON960: Provides steps for
retargeting MON960. This tutorial is found in
the online help only, not in this manual.

Writing Flash: Demonstrates how to update
the version of MON960 on your evaluation
board.

i960 Rx Processor Initialization Code:
Shows the Memory Controller, System Init,
and Hardware Init Code.

Table 4-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files
4-5

4-6

4Getting Started with the 80960 QUICKval Kit

of

d

gger.

ea of
s the
e
,
3. Configure you hardware.
• Select the 80960Rx Architecture tab.
• Select the i960 Rx processor that you are using.
• Select the IQ80960Rx tab.
• Configure the software communication options to match those

your evaluation board.
• Choose OK

4. Choose Hello World .
5. Choose Make to compile, link, and download the program

automatically.
6. Use the gdb960 debugger to execute hello. Type:

run

7. The gdb960 debugger responds by displaying:
Hello...Welcome to the 80960Rx QUICKval Kit!

SYSTEM CHECK COMPLETED!!

Now you may proceed with our Example Programs.

Program Exit: 01

(gdb960)

8. To exit the debugger, type: quit

CONGRATULATIONS! You have successfully installed your software an
your hardware, compiled a program using gcc960, and downloaded and
executed the program on your evaluation board using the gdb960 debu

If you received any error messages during this process, refer to “If
Something Goes Wrong” on page 4-8.

Memory Test

The programs memtst8.c , memtst16.c , and memtst32.c are used to test
the external memory on the Cyclone base board.

Depending on the test that is run, an 8, 16, or 32-bit test is run on an ar
memory. The program writes F's and 0's to a memory location and read
location to verify the integrity of what was written. All three programs ar
almost identical, with the exception of the casting of the variable *ADDR
which allows you to perform different test types.

The i960 Rx CPU Example Programs4
1. Choose Memory Test.
2. Choose a memory test. The options are, 8-bit Memory Test, 16-bit

Memory Test, or 32-bit Memory Test.
3. Choose Make to compile, link, and download the program

automatically.
4. Use the gdb960 debugger to execute memtst. Type:

run

5. For the 8-bit test, memtst8.c , the gdb960 debugger responds by
displaying:

This program will run a 8-bit test on the external memory.

Test to be implemented is byte test.
Starting address = a000dfb0
Ending address = a000ec30

Press enter to begin test with 0’s.
Number of errors that occurred is 0.

Begin test for f’s.

Press enter to continue.
Number of errors that occurred is 0.

All tests are complete.
Program exited with code 030.
(gdb960)

6. Exit the debugger. Type:
quit

NOTE. Below, memtst*.c refers to either the byte, short, or word
memory test example.
4-7

4-8

4Getting Started with the 80960 QUICKval Kit

ors
ble
e
elp,

6 or

ins

e the

If Something Goes Wrong

The following section describes a few actions that may help resolve err
that may have occurred when invoking one of the tools. If you were una
to get the proper response from the gdb960 debugger after executing th
above programs and the trouble-shooting hints described below do not h
contact the 80960 Technical Support Group by phone at 1-800-628-868
by E-mail at 960tools@intel.com.

MON960 Debug Monitor is Not Responding...

If the red FAIL LED (CR3) on the base board is lit, the monitor may not
have booted up correctly. Reset the host PC. If the red FAIL LED rema
lit, contact the 80960 Technical Support Group.

Invoking the gcc960 Compiler Resulted in Errors...

The environment must be set-up as described in Chapter 2. If you chos
default directories while installing CTOOLS, verify that the path names
C:\INTEL960\BIN have been added to your PATH variable and that the
following statement is in your autoexec.bat file. If you did not install
these tools using the default directories, make the appropriate change.

SET G960BASE=C:\INTEL960

NOTE. You did not use the default directories on installation, please
make sure the G960BASE environment variable is assigned
appropriately.

NOTE. Don’t forget to re-boot your system once you have made any
necessary changes to your autoexec.bat file.

The i960 Rx CPU Example Programs4

y

d to

at is
our

t,
Invoking the gld960 Linker Resulted in Errors...

Verify that the directory that contains the hello.c and memtst*.c
example programs also now has the object files, hello.o and memtst*.o .
If hello.o and memtst*.o do not exist, then the gcc960 compiler
command did not successfully create an object file. Re-compile hello.c
and memtst*.c to see if an error occurred during the compilation.

If hello.o and memtst*.o do not exist, make note of the error message
and contact the 80960 Technical Support Group.

Invoking the gdb960 Debugger Resulted in Errors...

Serial communication error

A serial communication error causes the gdb960 debugger to respond b
displaying:

HDIL error (10), communication failure
HDIL error (10), communication failure

You can’t do that when your target is ‘exec’

Verify that the serial port you are using is the one you specified in the
gdb960 command line. Verify that your serial cable is properly connecte
the board and to your PC.

Data Cache Tutorial

The i960 Rx processors feature a 2-Kbyte, direct-mapped data cache th
write-through and write-allocate. These processors have a line size of f
words. Each line in the cache has a valid bit; to reduce fetch latency on
cache misses, each word within a line also has a valid bit.

NOTE. When using the IQ-SDK evaluation platform, you may specify
-pci for PCI download and PCI communication.
For a list of all the gdb960 command line options, at a command promp
enter:
gdb960 -h | more
4-9

4-10

4Getting Started with the 80960 QUICKval Kit

0 Rx

 to
s

ng

ads

trix.

a
rs.
ical

The purpose of the dcache.c program is to show the performance
advantage that can be obtained by the use of the data cache on the i96
microprocessor.

This example uses the Minimum Edit Distance (MED) algorithm in order
show the effectiveness of using the data cache. The MED algorithm find
the minimum number of edit steps required to change one string into
another.

This example is a real world example of using the data cache. This
algorithm maintains a cost matrix to determine which change to the stri
being edited would incur the least cost. The cost matrix is a 2-D array
[1..n][1..m], where n and m are the sizes of the two strings.

The algorithm really shows the speed of the data cache due to three re
for each write to the cost matrix. The algorithm reads from the cache to
determine which step to take next, then writes its choice in the cost ma
Since the writes to the data cache are write-through, there is no
improvement for writes to the data cache. The Write-Through feature
maintains coherency between the data cache and external memory.

The source code includes system files, system.c and system.h , that
includes a macro and an assembly function that simplifies issuing data
cache control instructions.

Also, the example shows how to define an area of memory to make dat
cacheable by using the Logical Memory Configuration (LMCON) registe
The address of the area to make cacheable is programmed into the Log
Memory Address Register (LMADR). The mask is programmed into the
Logical Memory Mask Register (LMMR).

1. Choose Data Cache.
2. Choose Qv Code.
3. Scroll through the dcache.c code to see the calls to the macro,

dcctl_contrl .
4. Open and scroll through the system.h and system.c code to see the

macro and assembly function, dcctl_control and i960_dcctl .
5. Choose Make to compile, link, and download the program

automatically.
6. Use the gdb960 debugger to execute dcache . Type:

run

The i960 Rx CPU Example Programs4

ops

.
The debugger responds by displaying:
Minimum Edit Distance algorithm makes reads from the data cache.

This routine will determine how many steps are needed to convert:

StringA: 80960 QUICKval EvalKit

TO StringB: i960(R) HxJxCxSx & Kx

Starting timed routine with data cache on ...

RESULT: 18 moves are required to convert string A to string B

Elapsed Time On = 0.002956 seconds

Elapsed Time for routine with data cache off ...

RESULT: 18 moves are required to convert string A to string B.

Elapsed Time Off = 0.003391 seconds

IMPROVEMENT: 12.8 percent

(gdb960)

7. Type: quit

8. Select Results.

Instruction Cache Tutorial

The i960 Rx processor comes equipped with 4 KB of two-way set-
associative instruction cache. The instruction cache boosts your
application’s performance by reducing the number of instruction fetches
from external memory. The cache provides fast execution of code and lo
of code in the cache.

The loop.c program demonstrates the performance boost obtained by
running a loop completely within versus outside of the instruction cache

The source code includes system files, system.c and system.h that
includes a macro and an assembly function that simplifies issuing
instruction cache control instructions.

1. Choose Instruction Cache.
2. Choose Instruction Cache.
3. Choose Qv Code.
4. Scroll through the loop.c code to see the calls to the macro,

icache_control .
5. Open and scroll through the system.h and system.c code to see the

macro and assembly function, icache_control and i960_icctl .
4-11

4-12

4Getting Started with the 80960 QUICKval Kit

r.

I
e
6. Choose Make to compile, link, and download the program
automatically.

7. Use the gdb960 debugger to execute loop . Type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/loop
Simple loop timed with instruction cache off ...
Elapsed Time Off = 4.200 seconds

Simple loop timed with instruction cache on ...
Elapsed Time On = 2.076 seconds

IMPROVEMENT : 50.6 percent
Program exited with code 01
(gdb960)

8. Type: quit

9. Select Results.

DMA Example
The purpose of this example is to demonstrate how to set-up the DMA
controller, the Primary Address Translation Unit (ATU), the Secondary
ATU, and the PCI-To-PCI Bridge Unit.

How Does This Program Work?

A DMA is initiated on Channel 2 on the Secondary PCI bus. The Chain
Descriptor for the DMA is set-up such that the destination of the DMA is
the first Index Register of the Messaging Unit. (Note that this is a basic
example that shows how to use several features of the i960 Rx
microprocessor.)

In the Chain Descriptor, the DMA source is some 80960 local memory
value (0x12345678), and the type of transaction is PCI WRITE. This
means the DMA writes the value 0x12345678 to the first Index Registe

The DMA starts on the Secondary Bus from Channel 2. The PCI-To-PC
Bridge claims the transaction since the destination PCI address is on th
primary bus. The PCI-To-PCI Bridge forwards the transaction to the
primary bus.

The i960 Rx CPU Example Programs4

he
e
it

A
ed

.

Positive Address Decoding

In this example, the PCI-To-PCI Bridge is set up for Positive Address
Decoding. With Positive Address Decoding the PCI addresses within t
address range of the Secondary Memory Base Register (SMBR) and th
Secondary Memory Limit Register (SMLR) of the PCI-To-PCI Bridge Un
are forwarded through the bridge. Inverse Decoding is disabled.

Writing the Destination

The destination address of the DMA is the Primary Inbound ATU Base
Address (PIABAR) + INDEXREG_OFFSET (0x50). This means the DM
is the first Index Register in the Messaging Unit. The DMA is then verifi
by checking the 80960 local bus address of the first Index Register. The
Index Registers on the 80960 local bus can be found at the address:

Primary Inbound ATU Translate Value Register (PIATVR) +
INDEXREG_OFFSET.

What Does This Example Do?

This example configures the following parts of the 80960Rx:

1. Primary ATU
2. Secondary ATU
3. PCI-to-PCI Bridge unit
4. DMA Controller for Channel 2
5. Chain Descriptor

Note that the Chain descriptors must be aligned on an 8-word boundary

DMA Tutorial

1. Choose Rx DMA .
2. Choose Make to compile, link, and download the program

automatically.
3. At the (gdb960) prompt, enter:

run

Notice the destination value changes from 0 to 0x12345678.
4. Enter quit .
4-13

4-14

4Getting Started with the 80960 QUICKval Kit

, and
it.

, and

D.

he
e Rx

t
Messaging Unit Example

This example demonstrates the messaging unit of the i960 Rx
microprocessor. The host processor, for example a Pentium processor
the 80960Rx can pass messages to one another via the messaging un

Example Description

This example demonstrates the messaging unit of the i960 Rx
microprocessor. The host processor, for example a Pentium processor
the Rx can pass messages to one another via the messaging unit.

In this example, such messages include:

• From Host to Rx - "toggle your LEDs"
• From Rx to Host - "show various graphics applications"
• Synchronous counting by the Host and Rx

The message passing is done by using various inbound and outbound
registers of the Rx.

Address Translation

To access the inbound and outbound registers of the messaging unit, a
device driver is used. For Windows 95, the device driver is PCI_W95.VX
For Windows NT 4.0, the device driver is PCI_WNT.SYS.

The device driver takes a physical address of the 80960Rx’s registers
obtained from the system BIOS and returns a usable linear address. T
host processor can then use the linear address in a program to talk to th
through its registers.

NOTE. You should read “How Does This Program Work” before
running the tutorial to familiarize yourself with the concepts of the
example. Note also that the code rpdma.c is fully commented. Look a
the source code for further explanations.

The i960 Rx CPU Example Programs4

t

chip
CI

he

ess
turns

of

 The
sage

;
r 1.

or
Example Structure

The example is broken into two programs: hostcode.c runs on the host
processor, rp_code.c runs on the i960 Rx processor.

Hostcode.c

Hostcode.c begins by printing some system information about the hos
computer. Depending upon which operating system the host system is
running, a device driver is loaded for physical address translation. The
program scans the PCI bus for a PLX chip or an Rx chip. Since the Rx
has two functions, the Address Translation Unit (ATU) and the PCI-To-P
Bridge, hostcode.c searches for both functions.

Note that the bridge function is not found under Windows NT because t
operating system hides this information.

If the ATU of i960 Rx processor is found, the System BIOS is read to
determine the physical address of the Primary Inbound ATU Base Addr
Register. The physical address is passed to the device driver, which re
a linear address.

hostcode.c translates this virtual address to determine the addresses
the Inbound Message Registers and Outbound Message Register 0.

The program displays a menu of possible messages to send to the Rx.
messages are binary codes that are delivered to the Rx via Inbound Mes
Register 0. The Rx sends binary messages to the host via Outbound
Message Register 0. When the Rx and Host processor count together,
Inbound Message Register 1 is additionally used.

NOTE. In this example, Inbound Message Registers 0 and 1 are used
however, MON960 requires exclusive use of Inbound Message Registe
When developing your code, it is wise not to use the registers used by
MON960. Please refer to the MON960 Debug Monitor Release Notes f
more information.
4-15

4-16

4Getting Started with the 80960 QUICKval Kit

sage

he
e
 the

one

s

ages

end
Rp_code.c

The Rx enters a while loop that it stays in until the user sends a "quit"
message via the host. The Rx looks for messages from the Inbound Mes
Register 0. The messages range from 0x1 to 0x9.

The Rx communicates back to the host by sending messages through t
Outbound Message Register 0. Also, the Rx uses the Inbound Messag
Register 1 in order to synchronize the counting between processors for
counting message.

Messaging Unit Tutorial

The example spawns two DOS windows: one for the host program and
for the i960 Rx program.

Host Program DOS Window

Follow the instructions on the screen. The hostcode.c program explains
what is happening. Press <Enter > repeatedly until the Rx Message Option
Menu appears.

i960 Rx Processor Program Command Prompt Window

1. Choose Messaging.
2. Choose Make to compile, link, and download the program

automatically.
3. At the (gdb960) prompt, enter:

run

 The program responds with:
"I am waiting for the Host Processor to talk with me ".

The i960 Rx microprocessor is now ready to send and receive mess
with the host processor.

NOTE. In order for this example to work, the Rx must be ready to
receive messages from the host. See below how to set-up the host to s
messages and set-up the Rx to receive messages.

The i960 Rx CPU Example Programs4
ow
lt.

x

o

ct

he

he
ns.

en.
4. Use the Rx Message Options menu in the Host Program DOS wind
to communicate with the Rx. Try all the messages and see the resu
• In some cases, the Rx asks a question. You must supply the R

with an answer in order to continue the example.
• Click on the Rx Program DOS window in order to give it focus t

respond to the 80960Rx’s questions.
• Remember to click on the Host Program DOS window to intera

with the Rx Message Option menu.

General Notes Concerning the Random Scene Generator
(Message 7)

• Press <Enter> to make the random scene generator show pictures
faster.

• Pressing <Esc> to end the scene generator.

Issues with the random scene generator (Message 7):

Windows 95: The random scene generator starts out running in a DOS
window, and its color palette is not correct.

1. Press <Alt>+<Enter> , and the scenes zoom to full screen size and t
color palette corrects itself.

2. You can then press <Alt>+<Enter> again to toggle back to the DOS
window; however, this time the color is correct.

Windows NT: After the i960 Rx processor sends the message back to t
host saying it wants to see the random scene generator, nothing happe
This is because the Host Program DOS window does not have focus.

1. Click on the Host Program DOS window.
The random scene generator then starts; however, it makes itself
full-screen. Under Windows NT, let the scene generator run full-scre

2. After viewing the scenes, press <Esc> . To toggle to the DOS window,
press <Alt>+<Enter> .
4-17

4-18

4Getting Started with the 80960 QUICKval Kit

ed

e

f
ns
g
its

ew
e at
Program Termination

To exit the example:

1. Send message 9 , "QUIT", from the Host Program DOS window.
The Rx program also terminates.

2. In the Rx Program DOS window enter
 quit

at the (gdb960) prompt

Static, Global, and Profile-Driven Optimizations

Optimizing compilers provide you with a means of developing high
performance code without detailed knowledge of the architecture.
Engineers who understand the features of the i960 architecture develop
gcc960 to provide optimizations that take full advantage of the i960
processor. In general, optimizing compilation takes more time and may
require more memory for large functions. However, the benefit in runtim
performance is well worth it.

There are several levels of optimization available. Typically, low levels o
optimizations are used during the debugging phase. Certain optimizatio
can cause significant code changes that may make high-level debuggin
difficult. Once your application is functioning properly, you can increase
runtime performance by using a higher level of optimization.

Release 5.0 and later of the development tools support the ELF object
module format and DWARF version 2.0 debug information format. The n
format enables more accurate mapping between source and object cod
higher optimization levels and ease debugging of production code.

The C optimization example uses a program called chksum.c . The C++
examples use a program called optimize.cpp

NOTE. The code hostcode.c and rp_code.c are fully documented.
Look at the code for further explanations.

The i960 Rx CPU Example Programs4

C No Optimization

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Local Optimizations.
4. Choose Make -O0 to compile without optimizations, link, and

download the program automatically.
5. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 36.903947 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

C Static Optimization

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

Use the following commands to compile the chksum.c program using the
highest level of optimization without using runtime behavior, or
program-wide optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Local Optimizations.
4. Choose Make -O4 to compile with optimizations, link, and download

the program automatically.
4-19

4-20

4Getting Started with the 80960 QUICKval Kit
5. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 5.1887223 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

7. Choose Results.

C++ No Optimization

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Local Optimizations.
5. Choose Make -O0 to compile without optimizations, link, and

download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 10.2445 seconds.
Program exited normally

7. Type: quit

C++ Static Optimization

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

The i960 Rx CPU Example Programs4

Use the following commands to compile the optimize.cpp program using
the highest level of optimization without using runtime behavior, or
program-wide optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Local Optimizations.
5. Choose Make -O4 to compile without optimizations, link, and

download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 6.4918 seconds.
Program exited normally

7. Type: quit

8. Choose Results.

C Global Optimization

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

Use the following commands to compile the chksum.c with program
program-wide optimizations, which are sophisticated, inter-module
optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Global Optimizations.
4. Choose Make +O5 to compile with optimizations, link, and download

the program automatically.
4-21

4-22

4Getting Started with the 80960 QUICKval Kit
5. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 4.154432 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

7. Choose Results.

C++ Global Optimization

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

Use the following commands to compile the optimize.cpp program using
the program program-wide optimizations, which are sophisticated,
inter-module optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Global Optimizations.
5. Choose Make+05 to compile with optimizations, link, and download

the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 6.4584 seconds.
Program exited normally

7. Type: quit

8. Choose Results.

The i960 Rx CPU Example Programs4

 on

h as
n

are

r to:

al

 a
 be
file

e
Instrumentation, Profile Creation, Decision-making, and
Profile-Driven Re-Compilation

An 88% improvement in C code performance is significant, but there is
another level of optimization that is uniquely available through Intel’s
CTOOLS compilers: profile-driven optimization. This two-pass
compilation procedure allows the compiler to make optimizations based
runtime behavior as well as the static information used by conventional
optimizations.

The compiler can perform sophisticated inter-module optimizations, suc
replacing function calls with expanded function bodies when the functio
call sites and function bodies are in different object modules. These are
called program-wide optimizations because the compiler collects
information from multiple source modules before it makes final
optimization decisions. Standard (i.e., non-program-wide) optimizations
referred to as module-local optimizations.

Program-wide optimizations are enabled by options that tell the compile

1. Build a program database during the compilation phase.
2. Invoke a global decision making and optimization step during the

linking phase.
3. Automatically substitute the resulting optimized modules into the fin

program before the end of the linking phase.

The compiler can also collect information about the runtime behavior of
program by instrumenting the program. The instrumented program can
executed with typical input data, and the resultant program execution pro
can be used by the global decision making and optimization phase to
improve the performance of the final optimized program. The profile can
also provide input to the global coverage analyzer tool (gcov960), which
gives users information about the runtime behavior of the program at th
source-code level.
4-23

4-24

4Getting Started with the 80960 QUICKval Kit

f
to

in

g

the

e
This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

1. Choose Compiler.
2. Choose Profiling Optimizations .
3. Choose Profiling Lab .
4. Follow the Profiling Tutorial link in the online help.

Using profile-driven optimization, an increase in runtime performance o
20% is obtained. The average 80960 application can expect to gain 15
30% performance improvement through the use of this technology. This
boost in performance is available to you without any further investment
hardware.

C++ Virtual Function Optimizations

Invoking a virtual function is more expensive than invoking a non-virtual
function in C++. Also, other function-related optimizations such as inlinin
cannot be performed on virtual functions. In many situations, however,
call to the virtual function can be replaced by a direct call to a member
function and if possible it can be inlined at the call site. This improves th
runtime performance of the code.

Use the following commands to compile the optimize.cpp program.

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Virtual Opts .
5. Choose Make -NoVOpt to compile without virtual function

optimizations, link, and download the program automatically.

The i960 Rx CPU Example Programs4

w.
6. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 6.4584 seconds.
Program exited normally

7. Type: quit

8. Choose Make -VOpt to compile with virtual function optimizations,
link, and download the program automatically.

9. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 5.6307 seconds.
Program exited normally

10. Type: quit

11. Choose Results.
The virtual function optimizations yielded a 12.8% improvement.

Note the runtime performance at each optimization level as shown belo

Table 4-2 i960 Processor Optimization Results

Optimization Level C Execution Time C++ Execution Time

no optimization (-O0) 36.903947 seconds 10.2445 seconds

maximum static (-O4) 5.1887223 seconds 6.4918 seconds

global optimization 4.154432 seconds 6.4584 seconds

profile-driven 4.153173seconds NA

Virtual Function
Optimization

NA 5.6307 seconds
4-25

4-26

4Getting Started with the 80960 QUICKval Kit

tion
ce
ade
 are
.

d
ges
ing

ays,
 you
ile
nd
y

eate
Building Self-contained Profiles with gmpf960

A raw profile contains program counters that record how many times
various statements in the source program have been executed. Informa
in the PDB is needed to correlate these program counters with the sour
program. A raw profile has a very short useful life. When changes are m
in the source code, any raw profiles previously obtained for that program
no longer accepted by the global decision making and optimization step

A self-contained profile captures the program structure from the PDB an
associates it with the program counters from the raw profile. When chan
are subsequently made to the source program, the global decision mak
step interpolates or stretches the counters in the self-contained profile to fit
the changed program.

A self-contained profile can be used to optimize a program even after d
weeks, or perhaps months worth of changes to the program. This frees
from having to collect a new profile every time the program changes, wh
still allowing profile-directed optimizations. Depending upon the nature a
quantity of changes to the program, the accuracy of the profile graduall
degrades over time as more interpolation is done.

A self-contained profile must be generated from a raw profile before the
program that generated the raw profile is relinked. You should always cr
a self-contained profile immediately after the raw profile is collected.

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

1. Choose Compiler.
2. Choose Profiling Optimizations .
3. Choose Self-Contained.
4. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

5. Specify the program database directory.
The PDB can be specified by setting the environment variable
G960PDB.

The i960 Rx CPU Example Programs4

g

ly
For example, if you chose the default directory during installation,
enter:
SET G960PDB=C:\quickval\prof_lab\lab_pdb

Or, specify the PDB at compiler invocation time with the Zdir option,
as shown in the example below.
gcc960 -Zmypdb foo.o

6. Compile for profile instrumentation.
Insert profile instrumentation into quick so that when the linked
program is executed, a profile can be collected. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,subst=:*+fprof -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A { arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyrx specifies mcyrx.gld

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-gcdm,subst=:* The tool that performs the global decision makin
and optimization step is invoked from within the
linker when the gcdm option is used. The
substitution control specifies a module-set
specification of only eligible modules not linked
in from libraries.

+fprof causes generation of profile instrumentation

-o quick the executable file will be named quick

quick.c the source file

7. Collect a Profile
If a program that contains one or more modules compiled with fprof
is linked with the standard libraries and then executed, a file named
default.pf containing the profile for those modules is automatical
produced when the program exits. Type:
4-27

4-28

4Getting Started with the 80960 QUICKval Kit
gdb960 -t mon960 -b 115200 -r com1 -D lpt1 quick

The options in this gdb960 compiler command are:

-t mon960 MON960 is on the target

-b 115200 use 115200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

quick the executable file

8. Use the gdb960 debugger to execute quick . Enter:
run

9. Exit the debugger. Enter:
quit

10. Enter the command:
gmpf960 -spf quick.pf default.pf

The options in this gmpf960 compiler command are:

-spf causes a self-contained profile, quick.pf , to be
produced as output

default.pf The input profile.

11. Recompile the quick.c source code using the profiling information
obtained by the instrumentation. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=quick.pf -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyrx specifies mcyrx.gld

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-Gcdm,iprof=quick.pf

This supplies a profile file quick.pf to the
global decision making and optimization step.

The i960 Rx CPU Example Programs4

,
-o quick the executable file will be named quick

quick.c the source file

12. Change the control structure of quick.c.

Edit quick.c . Find the procedure called QUICK. In this procedure
there is a control structure:
for(i = 2; i <= SORTELEMENTS; i+=1)

{

(LOGIC)

}

Change the control structure to:
i = 2;

while (i <= SORTELEMENTS)

{

(LOGIC)

i+=1;

}

13. Compile the new quick.c using the interpolated profile. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=quick.pf -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyrx specifies mcyrx.gld

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-Gcdm,iprof=quick.pf

This supplies a profile file quick.pf to the
global decision making and optimization step.

-o quick the executable file will be named quick

quick.c the source file
4-29

4-30

4Getting Started with the 80960 QUICKval Kit

ine
rget
 on

 1.5
te of

n

t

rror

ry
Notice that the global decision making and optimization option
(-gcdm) accepts the interpolated profile, quick.pf .

Compression Assisted Virtual Execution (CAVE)

This CTOOLS feature allows non-critical parts of an application’s mach
code to be stored in memory in compressed form resulting in reduced ta
memory requirements. The code is expanded into native machine code
demand for execution.

CAVE reduces the physical memory requirements of ROM-based
applications through link-time compression and on-demand runtime
decompression of user-specified functions. The compiler, linker, runtime
dispatcher, and compression and decompression routines cooperate to
provide this feature. Code is typically compressed by a ratio of between
and 1.7. Runtime decompression speed is about 30 clock cycles per by
compressed code.

When the CAVE mechanism is used, selected functions in the applicatio
are designated to be secondary functions. All other functions are termed
primary functions. The primary set should contain performance-critical
functions, that are not to be affected by the CAVE mechanisms; the
secondary set is subject to compression. Secondary functions are
compressed by the linker and reside in memory in compressed form. A
runtime, calls to secondary functions are intercepted by the CAVE
dispatcher and the functions are decompressed if necessary.

Note that due to the overhead of decompressing code at runtime, only
non-performance critical code should be secondary functions, such as e
handling code or initialization code. You can use runtime profile
information generated by gcov960 to aid in selecting the set of seconda
functions.

NOTE. The beauty of this example is that the global decision making
and optimization option (-gcdm) accepts the interpolated profile,
quick.pf , not the results of running this example.

The i960 Rx CPU Example Programs4
mory
c-toe
 to

in
ced
This example uses a tic-tac-toe game to show how to reduce target me
requirements. The text sections of compressed and uncompressed tic-ta
executables are compared. Additionally, this example demonstrates how
specify functions for compression.

For the sake of demonstration, we compress performance-critical code
the tic-tac-toe program. The purpose of this example is to show the redu
text section of the executable, not demonstrate run times.

C Example

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

1. Choose Compiler.
2. Choose C Cave.
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Use the gcc960 mcave option or #pragma cave to designate the
specified functions as secondary. In the tic-tac-toe example, ttt.c ,
the following #pragma has been added:
#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)

where Initialize, Winner, Other, Play, Evaluate,

Best_Move, Describe, Move, and Game are all functions to be
compressed.
4-31

4-32

4Getting Started with the 80960 QUICKval Kit

ions.

er:
5. Edit ttt.c . Make sure the #pragma cave program line is
commented out:
/*#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)*/

6. Compile the tic-tac-toe program. Enter:
gcc960 -A{arch} -Fcoff -T{Link-dir} -o ttt ttt.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy rx specifies mcyrx .gld.

-o ttt names the executable file ttt

ttt.c input file

7. Check the text section size of the uncompressed program. Enter:
gsize960 ttt

The option in this command is:

ttt name of the executable file

The sizer responds by displaying the sizes of the various code sect
Write down the size of the uncompressed text section.

8. Edit ttt.c . Make sure the #pragma cave program line is
uncommented:
#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)

9. Compile the tic-tac-toe program with the pragma program line. Ent
gcc960 -A{arch} -Fcoff -T{Link-dir} -o ttt ttt.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy rx specifies mcyrx .gld.

The i960 Rx CPU Example Programs4

ions.
,
ere

VE
pect
tes
-o ttt names the executable file ttt

ttt.c input file

10. Check the text section size of the compressed program. Enter:
gsize960 ttt

The option in this command is:

ttt executable file

The sizer responds by displaying the sizes of the various code sect
Write down the size of the compressed text section. In this example
you can expect a code size reduction of approximately 1 percent. H
are some typical results for the supported processor types:

Note that the purpose of this example is to teach you how to use the CA
feature with programs. Though the improvements are small, you can ex
much better results with real-world programs of approximately 100 Kby
and larger, especially if the software has many non-critical functions.

Table 4-3 Uncompressed Text Sections

State
80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Uncompressed 33,764 32,944 32,768 32,976 31,600

Table 4-4 After Function Compression

State
80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Compressed
Text

31,908 30,832 30,816 30,832 29,648

Cave Section 1,818 1,770 1,746 1,800 1,776

Total 33,726 32,602 32,562 32,632 31,424

Table 4-5 Improvement

80960Rx 80960Hx 80960Jx 80960Cx 80960Sx

0.1% 1.0 % 0.6 % 1.0 % 0.6 %
4-33

4-34

4Getting Started with the 80960 QUICKval Kit

re
ject

 and

ll

er

 as a
C++ Compression Assisted Virtual Execution (CAVE)

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

1. Choose Compiler.
2. Choose C++ Cave.
3. Choose Make. The following tutorial is displayed in the QUICKval

browser, and the command lines may be entered at the Command
Prompt window.

4. Use the gcc960 mcave option or #pragma cave designate the
specified functions as secondary. In the C++ example, cavecpp.cpp ,
the following #pragma has been added:
#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

where initSetName , initSetDept , initSetGpa ,
initSetNumPubs , isOutstanding , printName , and
InitializeRecords are all functions to be compressed, i.e., all
functions are secondary functions. All other functions of the program
are primary functions.
The primary set should contain performance-critical functions that a
not to be affected by the CAVE mechanism; the secondary set is sub
to compression. Secondary functions are compressed by the linker
reside in memory in compressed form.
The C++ compiler behaves in essentially the same manner as the C
compiler when the mcave or Gcave options are used - generating a
functions in the compilation unit for which this option is in effect
as secondary.
A user typically designates a single function as secondary through
the use of pragma cave . The following statement for example
designates the function max as secondary.
pragma cave max

However in C++ overloaded functions have the same name. Memb
functions of two different classes are also allowed to have the same
name and these member functions can in turn have the same name
function with file scope.

The i960 Rx CPU Example Programs4
s
When a user specifies a function as secondary through the use of
pragma cave , the C++ compiler treats all functions with this name a
secondary. To illustrate, consider the following example:
ifdef PRAGMA
pragma cave max
endif

int max(int a, int b)
{
return a > b ? a : b;
}

float max(float a, float b)
{
return a > b ? a : b;
}

class Tclass1 {
int a, b;
public:
int max();
};

int Tclass1::max()
{
return a > b ? a : b;
}

class Tclass2 {
float a, b;
public:
float max();
};

float Tclass2::max()
{
return a > b ? a : b;
}

Tclass1 t1;
Tclass2 t2;
4-35

4-36

4Getting Started with the 80960 QUICKval Kit

ions.
The Compiler treats all the following functions as secondary.
int max(int, int);
float max(float, float);
int Tclass1::max();
float Tclass2::max();

5. Choose Qv Code. Edit cavecpp.cpp . Make sure the #pragma
cave program line is commented out:
//#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

6. Compile the C++ program. Enter:
gcc960 -A{ arch } -Felf -T{ Link-dir } -stdlibcpp -o
cavecpp cavecpp.cpp

The options in this command are:

-Felf create an ELF format output file

-A{ arch } specifies the architecture. For example, -AHD
specifies an 80960HD

-T{ Link-dir } specifies the linker directive file. For example,
-Tmcyrx specifies mcyrx.gld .

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-o cavecpp specifies the executable file cavecpp

cavecpp.cpp input file

7. Check the text section size of the uncompressed program. Enter:
gsize960 cavecpp

The option in this command is:

cavecpp specifies the executable file

The sizer responds by displaying the sizes of the various code sect
Write down the size of the uncompressed text section.

8. Choose Qv Code and edit cavecpp.cpp . Make sure the #pragma
cave program line is uncommented:
#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

The i960 Rx CPU Example Programs4

.
 can
e
9. Compile the C++ program with the pragma program line. Enter:
gcc960 -A{ arch } -Felf -T{ Link-dir } -stdlibcpp
-o cavecpp cavecpp.cpp

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyrx specifies mcyrx.gld .

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-o cavecpp specifies the executable file ttt

cavecpp.cpp specifies the input file
10. Check the text section size of the compressed program. Enter:

gsize960 cavecpp

The option in this command is:

cavecpp executable file

The sizer responds by displaying the sizes of the various code sections
Write down the size of the compressed text section. In this example, you
expect a code size reduction of approximately 1 percent. Here are som
typical results for the supported processor types:

Table 4-6 Uncompressed Text Sections

80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Uncompressed 89,788 84,196 83,512 84,196 81,764
4-37

4-38

4Getting Started with the 80960 QUICKval Kit

VE
pect
tes

S

Note that the purpose of this example is to teach you how to use the CA
feature with programs. Though the improvements are small, you can ex
much better results with real-world programs of approximately 100 Kby
and larger, especially if the software has many non-critical functions.

XLATE960 Tutorial

This tutorial shows how to use the xlate960 utility provided with CTOOL
release 6.0. xlate960 is the 80960 translation utility that generates i960
Rx-compatible code sequences to replace instructions and addressing
modes that are only available on other i960 processors.

1. If you are using the Hx Jx Cx & Sx QUICK val software, Choose
Linker and Utilities. If using the Rx QUICK val software, this step is
not necessary.

2. Choose xlate960 Tutorial
3. Choose Qv Code.

Table 4-7 After Function Compression

80960Rx Size 80960Hx Size 80960Jx Size 80960Cx Size 80960Sx Size

Compressed
 Text

87,612 81,892 81,512 81,892 79,796

Cave
Section

1,920 1,546 1,514 1,546 1,512

Total 89,532 83,438 83,026 83,438 81,308

Table 4-8 Improvement

80960Rx 80960Hx 80960Jx 80960Cx 80960Sx

1% 1% 1% 1% 1%

The i960 Rx CPU Example Programs4
.

 to
t is

be
s.
The assembly file, xlt.s , is loaded into the editor shown on your screen
This program is a contrived example that really does not do any useful
work. It was written to help demonstrate how to migrate assembly code
the Rx Strategy. This program supports i960 processor functionality tha
not available when using the Rx Strategy. xlt.s has two complex
addressing modes:

• indexed
• ip-relative

and three classes of instructions

• arithmetic (scanbit)
• triple word /quad word instructions (quad word move)
• integer/overflow behavior (addi)

that demonstrate behavior not supported under the Rx Strategy.

If xlt.s were compiled with the -AJF architecture option, there would
be no compilation errors. However, if xlt.s were compiled with the
-ARD or -ARP architecture options, compilation errors would stop the
build. The offending instructions and addressing modes would have to
translated to Rx Strategy compatible instructions and addressing mode
xlate960 can do this automatically for you, with only a little user
interaction.

Looking at the xlt.s File

To understand what the xlt.s file is doing, please review the xlt.s file
in an editor. The lines that violate the Rx Strategy are detailed below:

Line 83: bx 24(ip)

IP-relative addressing is not available when specifying an i960 Rx
processor-based target.
4-39

4-40

4Getting Started with the 80960 QUICKval Kit

e
ater

x

The xlate960 utility replaces the above bx 24(ip) operation with the
following instruction sequence that duplicates the functionality of the bx

24(ip) operation:

#xlate-beginbx 24(ip)

#xlate-err“Fill in register for E0”

#xlate-warn“Verify use of local labels ‘8’ and ‘9’”

#xlate-err“Verify that register g14 can be clobbered”

bal .+4

8: lda 24+9f-8b(g14),E0; 9:

bx (E0)

#xlate-end

The line beginning with #xlate-begin marks the start of the code added
by the xlate960 utility to replace the bx 24(ip) instruction, and the line
beginning with #xlate-end marks the end of the code. All translation
errors are marked with a comment of the form #xlate-err . More subtle
translation incompatibilities are flagged with a #xlate-warn comment.

Above, three non-comment lines were added to replace the bx 24(ip)

instruction. However, based on the suggestions of the comments, thes
lines may require manual editing. Manual translation is demonstrated l
in the tutorial.

Line 126: st r9,_VariableArray[r11*8]

Indexed addressing modes are not available when specifying an i960 R
processor-based target. The xlate960 utility replaces the above st

r9,_VariableArray[r11*8] operation with the following instruction
sequence that duplicates the functionality of the

st r9,_VariableArray[r11*8] operation:

#xlate-beginst r9,_VariableArray[r11*8]

#xlate-err“Fill in register for E1”

shlo3,rll,E1

st r9,_VariableArray(E1)

#xlate-end

Two instructions were inserted by the xlate960 utility to replace the

st r9,_VariableArray[r11*8] operation. Also, as before, it may be
necessary to edit these two instructions to complete code migration.

Line 160: scanbit r9,r8

The i960 Rx CPU Example Programs4
th

he

e
code
ugh
ing

0
The scanbit instruction is not guaranteed to set the condition code wi
the Rx Strategy.

Line 208: addi r10,r11,r8

The addi instruction is not supported with the i960 Rx architectures.

Line 239: movq r8,g8

The movq instruction is not supported with the i960 Rx architectures. T
instruction sequence inserted by xlate960 to replace the movq instruction
does not test for unaligned or overlapping registers. It is left to the
programmer to ensure that the registers used do not overlap and that th
registers are aligned. The programmer can do this by making sure the
is compatible with existing i960 processors before running the code thro
xlate960. The programmer should not experience unaligned or overlapp
registers if the code has been assembled for another processor prior to
running it through xlate960.

Using xlate960

To prove that xlt.s compiles unaltered as code designed for earlier i96
processors, complete the following steps:

1. Choose Make. The following tutorial is displayed in the QUICKval
browser, and the command lines may be entered at the Command
Prompt window.

2. Enter the following command in the Command Prompt window
provided:
gcc960 -AJF -Fcoff -Tmcyjx -o xlt xlt.s

The options in this command are:

-AJF sets the target architecture for the compiler.

-Fcoff sets the object file type as COFF.

-Tmcyjx uses the linker directive file for the Jx
architecture.

-o xlt sets the object file name as xlt (optional).

xlt.s specifies the input source file.

3. To run the program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci xlt
4-41

4-42

4Getting Started with the 80960 QUICKval Kit

).

s
d

d

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rate
are 1200, 2400, 9600, 19200, 38400, 57600, an
115200.

-r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is use
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

xlt specifies the executable file.

4. At the (gdb960) prompt, enter: run

The program prints out:
• the value of register r11 before and after the ip-relative branch.
• the value of the displacement in the index with displacement

addressing mode.
• the condition code before and after the scanbit instruction.
• the condition code before and after the add instruction.
• the result of performing the movq instruction.

5. At the (gdb960) prompt, enter: quit

NOTE. The significance of this example is not in the results of the
running program, but in the code translation performed by xlate960 in
the next few steps.

The i960 Rx CPU Example Programs4

ce

the

sing
To prove that xlt.s does not compile unaltered using the Rx Strategy,
complete the following steps:

6. Enter the following command in the Command Prompt window
provided:
gcc960 -AR{ P|D } -Fcoff -Tmcyrx -o xlt xlt.s

-AR{ P|D } sets the target architecture for the compiler. Sin
you are compiling for the Rx Strategy, use the
available i960 Rx architecture options -ARP or
-ARD.

-Fcoff sets the object file type as COFF.

-Tmcyrx uses the linker directive file for the i960 Rx
architecture.

-o xlt sets the object file name as xlt (optional).

xlt.s specifies the input source file.

There are errors during the compilation. The errors are:
xlt.s:83: Register is not in target architecture:
"(ip)".

xlt.s:126: indexed addressing mode not available

xlt.s:208: Opcode is not in target architecture:
"addi".

xlt.s:239: Opcode is not in target architecture:
"movq".

These errors must be resolved before the program compiles using
-ARD or -ARP architecture flags.

xlate960 generates Rx-compatible code sequences to replace those
instructions and addressing modes that appear in the JF processor cau
errors above.

7. Enter the following command in the Command Prompt window
provided:
xlate960 xlt.s

The previous command converts instructions in xlt.s to
Rx-compliant instructions, placing the output into the file xlt.xlt .
The output in the Command Prompt window is:
C:\INTEL960\BIN\XLATE960.EXE: Output file
'xlt.xlt' requires further manual translation.
4-43

4-44

4Getting Started with the 80960 QUICKval Kit

pt
was

not
d).
nd

ning
This message above means you must edit the output file xlt.xlt to
finish the translation to i960 Rx-compliant code.

You Are now ready to Edit the xlt.xlt file.

8. Open xlt.xlt in an editor.
The output file produced by xlate960 is identical to the input file exce
for the instances where translation occurred. Each instruction that
translated is replaced with a sequence of the following format in the
output file:
#xlate-beginoriginal instruction

<translation errors or warnings, marked by xlate-err
or xlate-warn>

<translation routine>

#xlate-end

9. Find the translation points in xlt.xlt by searching the file for
#xlate-begin flags.
There are five translation points in the file.
At the first translation point beginning on line 84 of xlt.xlt , note
two #xlate-err translation errors and the #xlate-warn
translation warning. The first translation error is:

#xlate-err "Fill in register for E0"

The following two instructions are found on lines 89 and 90 of the
translation routine:
lda 24+9f-8b(g14),E0; 9:

bx (E0)

Fill in a register that can be used for the place holder E0 that does
affect the program logic (i.e., choose a register that is not being use
In our example, it is all right to use register r13. So, edit the code a
change E0 to r13:
lda 24+9f-8b(g14),r13; 9:

bx (r13)

The next translation error is:
#xlate-err"Verify that register g14 can be clobbered"

The translation routine uses register g14 on line 89. Since g14 can
be overwritten, it does not need to be changed. The translation war
reported is:
#xlate-warn"Verify use of local labels '8' and '9' "

The i960 Rx CPU Example Programs4
do
s

sary

 the

ent
The translation routine uses the local labels '8' and '9'. Since they
not conflict with other local labels used in the program, no change i
needed.
Lastly, the original program, xlt.s , made a branch ahead by 24 plus
the contents of the ip-register. The translation routine discredits the
displacement number due to added instructions, and it is now neces
to change the displacement to 28.

10. So, edit the translation routine and change 24 to 28 to maintain the
correct logic:
lda 28+9f-8b(g14),r13; 9:

11. Find the next translation point; it is the following:
#xlate-beginst r9,_VariableArray[r11*8]

The translation error reported is:
#xlate-err"Fill in register for E1"

Like previously, all that is necessary is to use a register for the
placeholder E1 that is not used and that does not affect the logic of
program. This time, register r15 is all right.

12. Edit the code on lines 138 and 139 from:
shlo3,r11,E1

st r9,_VariableArray(E1)

to the following:
shlo3,r11,r15

st r9,_VariableArray(r15)

13. In order for the program to print the correct displacement after the
translation, the code needs a little more editing. On line 128 of the
xlt.xlt file, the following code segment begins:
lda LC9,g0

mov r15,g1

callj_printf

mov g0,g4

Move this code segment to line 139 of the file. The segment thus
occupies lines 139 through 142. Make sure to delete the code segm
from lines 128 through 131.

14. Translation point three concerning the scanbit instruction had no
translation warnings or errors.
4-45

4-46

4Getting Started with the 80960 QUICKval Kit

here
ere,

is

tion
e

ther
15. View translation point four; it starts with the following:
#xlate-beginaddi r10,r11,r8

The translation warning for this translation routine is:
#xlate-warn"Loss of faulting behavior"

and the translation routine is:
addor10,r11,r8

xlate960 uses the xlate-warn comment lines to indicate instances w
the translated code has subtle differences from the original code. H
the addo instruction differs from the addi instruction because it
does not fault when an overflow is generated. If overflow behavior
important to the program’s operation, you would need to rewrite the
code to manually check for an overflow condition.

16. Finally, view translation point five; it starts with the following:
#xlate-beginmovq r8,g8

The translation warning for this translation routine is:
#xlate-warn"Does not test for unaligned or
overlapping registers"

and the translation routine is:
mov r8,g8

mov r9,g9

mov r10,g10

mov r11,g11

Because our original code was 80960-compatible, the movq instruc
was aligned and did not access overlapping registers. However, th
translator draws our attention to the fact that invalid code would be
generated when either of these conditions were present. Since nei
are, you can ignore this warning.

17. The program has been manually translated. Close the xlt.xlt file.

Running the New Rx-compatible Source Code
1. Copy the xlt.xlt file to another file. At the command prompt, enter:

copy xlt.xlt xltconv.s

2. To compile the Rx-compatible code, enter:
gcc960 -AR{ P|D } -Fcoff -Tmcyrx -o xlt xltconv.s

The options in this command are:

The i960 Rx CPU Example Programs4
ce

).

s
d

d

-AR{ P|D } sets the target architecture for the compiler. Sin
you are compiling for the Rx Strategy, use the
available i960 Rx architecture options -ARP or
-ARD.

-Fcoff sets the object file type as COFF.

 -Tmcyrx uses the linker directive file for the i960 Rx
architecture.

-o xlt sets the object file name as xlt (optional).

xltconv.s specifies the input source file.

3. To run the program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci xlt

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rate
are 1200, 2400, 9600, 19200, 38400, 57600, an
115200.

 -r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is use
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

xlt specifies the executable file.

4. At the (gdb960) prompt, enter: run

The program prints out:
• the value of register r11 before and after the ip-relative branch.
• the value of the displacement in the index with displacement

addressing mode.
4-47

4-48

4Getting Started with the 80960 QUICKval Kit

n
s.

w

ir of

e

ng

d to

ns
• the condition code before and after the scanbit instruction.
• the condition code before and after the add instruction.
• the result of performing the movq instruction.

5. At the (gdb960) prompt, enter: quit

CONGRATULATIONS! You have translated source code written for
earlier i960 processors. The source code is now Rx-compatible!

Assembler Pseudo-instruction Tutorial

This tutorial demonstrates the use of pseudo-instructions that have bee
added to the CTOOLS assembler to ease migration between processor
The tutorial that follows demonstrates how to enable and disable the
instruction cache for the i960 Cx, Hx, Jx, and Rx microprocessors using
microprocessor specific instructions. The tutorial then demonstrates ho
easy it is to enable and disable the instruction cache using only one pa
pseudo-instructions.

What Are Pseudo-instructions?

A number of pseudo-instructions (pseudo-ops) have been added to the
CTOOLS assembler to ease the migration between processors. These
pseudo-ops provide an architecture-independent method for performing
some of the more common low-level processing operations. Using thes
pseudo-ops should reduce the number of changes required when movi
assembly code from one i960 processor to another.

When you use any of the new i960 pseudo-instructions, you are require
re-assemble your source code before running it on a new target platform
(e.g., from Cx to Jx). The assembler selects the best processor instructio
to replace the pseudo-instructions based on the processor targeted.

pseudop.c: Editing the File for the Cx Microprocessor
1. If you are using the Hx Jx Cx & Sx QUICK val software, choose

Linker and Utilities. If using the Rx QUICK val software, this step is
not necessary.

2. Choose Pseudo-op Tutorial.

The i960 Rx CPU Example Programs4

3. Choose Make. The following tutorial is displayed in the QUICKval
browser, and the command lines may be entered at the Command
Prompt window.

4. Choose Qv Code. View the file pseudop.c loaded into the editor.
Scroll down the file to view the two procedures: cache_off() and
cache_on() . Both procedures contain no code initially.
cache_off() looks like:
cache_off()

{

}

5. Add the code necessary to disable the instruction cache for the Cx
microprocessor. Between the brackets of the cache_off()
procedure, add the following line exactly:
__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(DISABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

The cache_off() procedure should look like this:
cache_off()

{

__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(DISABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

}

This procedure, cache_off() , uses the instruction cache control
processor instruction sysctl . This instruction is valid in the i960 Cx
processor for managing and controlling the instruction cache. sysctl
is used above to disable the instruction cache. Also, the
CONFIGURE_ICACHE and DISABLE_ICACHE constants are found in
the system.h file that is included in the pseudop.c file.

6. Likewise, edit the cache_on() procedure adding the following line
exactly:
__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(ENABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

The cache_on() procedure should look like this:
cache_on()
4-49

4-50

4Getting Started with the 80960 QUICKval Kit

s

{

__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(ENABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

}

Similarly, the cache_on() procedure for the Cx microprocessor use
the instruction cache control processor instruction sysctl . sysctl
is used directly above to enable the instruction cache.

7. Save the pseudop.c file.

Running pseudop.c For the Cx Microprocessor

1. Compile and run the pseudop.c program to show that it works as
desired.

2. In the Command Prompt window, enter the following commands:
gcc960 -AC{ F|A } -Fcoff -Tmcycx -o pseudop pseudop.c

The options in this command are:

-AC{ F|A } sets the target architecture for the compiler. For
this example, choose the Cx architecture, -ACF

or -ACA

-Fcoff sets the object file type as coff.

-Tmcycx sets the linker directive file for the Cx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

NOTE. If you do not have an i960 Cx microprocessor, you cannot run
this example; however, you can still compile the code to verify that it
compiles without error.

The i960 Rx CPU Example Programs4
r:

).

s
d

d

.
If you have a Cx microprocessor and want to run the program, ente
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rate
are: 1200, 2400, 9600, 19200, 38400, 57600, an
115200.

-r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are: com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is use
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

3. At the (gdb960) prompt, enter: run

The program prints out the performance advantage of running the
program with the instruction cache enabled versus disabled.

4. At the (gdb960) prompt, enter: quit

NOTE. The beauty of this example is not the results of the running
program, but the fact that the code works with instructions chosen
specifically for the Cx architecture. Of course, this is what is expected
This program becomes more interesting when you start using
pseudo-instructions.
4-51

4-52

4Getting Started with the 80960 QUICKval Kit

r

/Rx

line

,
pseudop.c: Migrating the File to the Jx/Hx/Rx Microprocessor

Since the i960 Jx, Hx, and Rx microprocessors use the same processo
instruction to enable and disable the instruction cache, this migration
supports all three processors.

In order to use the program, pseudop.c , modified in the first part of this
tutorial to support the Jx, Hx, or Rx microprocessor, it must first be
migrated to those processors since they do not use the sysctl instruction
to enable and disable the instruction cache.

1. Choose Qv Code. View the file pseudop.c loaded into the editor.
Scroll down the file to view the two procedures: cache_off() and
cache_on() .
cache_off() contains the Cx specific code and looks like:
cache_off()

{

__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(DISABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

}

2. Change the code to disable the instruction cache for the i960 Jx/Hx
microprocessors. Between the brackets of the cache_off()
procedure, delete the previously added line and insert the following
exactly:
__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_OFF),"d"(0),"d"(0));

The cache_off() procedure should now look like this:
cache_off()

{

__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_OFF),"d"(0),"d"(0));

}

This procedure, cache_off() , uses the instruction cache control
processor instruction icctl . This instruction is valid in the 80960
Jx/Hx/Rx processors for managing and controlling the instruction
cache. icctl is used above to disable the instruction cache. Also
the ICACHE_OFF constant is found in the system.h file that is
included in the pseudop.c file.

The i960 Rx CPU Example Programs4

tion
he.

e.

ify
3. Likewise, edit the cache_on() procedure deleting the previously
added line and inserting the following line exactly:
__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_ON),"d"(0),"d"(0));

The cache_on() procedure should now look like this:
cache_on()

{

__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_ON),"d"(0),"d"(0));

}

Similarly, the cache_on() procedure for the Jx/Hx/Rx
microprocessors use the instruction cache control processor instruc
icctl . icctl is used directly above to enable the instruction cac

4. Save the pseudop.c file.

Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors
1. Compile and run the pseudop.c program to show that it works as

desired.

2. In the Command Prompt window, enter the following commands:
For the Jx Microprocessor:
gcc960 -AJ{ F|D|A } -Fcoff -Tmcyjx -o pseudop pseudop.c

The options in this command are:

-AJ{ AF|D|T } sets the target architecture for the compiler. For
this example, to choose the Jx architecture, -AJA ,
-AJF , -AJD , or -AJT

-Fcoff sets the object file type as coff.

-Tmcyjx sets the linker directive file for the Jx architectur

NOTE. If you do not have an i960 Jx, Hx, or Rx microprocessor, you
cannot run this example; however, you can still compile the code to ver
that it compiles without error.
4-53

4-54

4Getting Started with the 80960 QUICKval Kit

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For the Hx Microprocessor:
gcc960 -AH{D|A} -Fcoff -Tmcyhx -o pseudop pseudop.c

The options in this command are:

-AH{ D|A } sets the target architecture for the compiler. For
this example, to choose the Hx architecture, -AHD
or -AHA

-Fcoff sets the object file type as coff.

-Tmcyhx sets the linker directive file for the Hx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For Rx Microprocessor:
gcc960 -AR{ P|D } -Fcoff -Tmcyrx -o pseudop pseudop.c

The options in this command are:

-AR{ P|D } sets the target architecture for the compiler. For
this example, to choose the Rx architecture:

-ARP or -ARD

-Fcoff sets the object file type as coff.

-Tmcyrx sets the linker directive file for the Rx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

The i960 Rx CPU Example Programs4

).

s
d

d

3. If you have a Jx, Hx, or Rx microprocessor and want to run the
program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rate
are 1200, 2400, 9600, 19200, 38400, 57600, an
115200.

 -r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is use
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

4. At the (gdb960) prompt, enter: run

The program prints out the performance advantage of running the
program with the instruction cache enabled versus disabled.

5. At the (gdb960) prompt, enter: quit

NOTE. The beauty of this example is not the results of the running
program, but the fact that the code works with instructions chosen
specifically for the architecture in question. Of course, this is what is
expected. This program becomes more interesting when you start using
pseudo-instructions.
4-55

4-56

4Getting Started with the 80960 QUICKval Kit

ssor

s.

rs.

n

 are
nd
pseudop.c: Adding Pseudo-Ops to the Program

As can be seen, it is neither easy nor fun migrating code from one proce
to another, especially when your code is many thousands of lines long.
Fortunately, pseudo-instructions have been added to the CTOOLS
assembler to ease migration between processors.

1. Choose Qv Code. View the file pseudop.c loaded into the editor.
You are ready now to rewrite this program using pseudo-instruction
Scroll down the file to view the two procedures: cache_off() and
cache_on() .
cache_off() contains the i960 Jx/Hx/Rx microprocessor specific
code:
cache_off()

{

__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_OFF),"d"(0),"d"(0));

}

2. Change the code to disable the instruction cache for ALL processo
Between the brackets of the cache_off() procedure, delete the
previously added line and insert the following line exactly:

__asm__ __volatile__("ic_disable r5");

The cache_off() procedure should now look like this:
cache_off()

{

 /* local register r5 is used to hold the status
returned */

__asm__ __volatile__("ic_disable r5");

}

This procedure, cache_off() , uses the pseudo-instruction
ic_disable . When this program, pseudop.c , is compiled for a
specific 80960 processor by using a -A architecture flag, the best
instructions for that architecture are chosen to replace the
ic_disable pseudo-op. Thus, pseudo-ops ease migration betwee
processors. Also, notice only one argument to the pseudo-op is
necessary. The icctl instruction requires three arguments.
Programming with pseudo-ops can be simpler. Pseudo-instructions
also available to perform the other instruction cache management a
controlling functions, such as cache invalidation.

The i960 Rx CPU Example Programs4

lace

tion

3. Likewise, edit the cache_on() procedure deleting the previously
added line and inserting the following line exactly:
__asm__ __volatile__("ic_enable r5");

The cache_on() procedure should now look like this:
cache_on()

{

 /* local register r5 is used to hold the status
returned */

__asm__ __volatile__("ic_enable r5");

}

Similarly, cache_on() uses a pseudo-instruction: ic_enable .
When this program, pseudop.c , is compiled for a specific 80960
processor, the best instruction for that architecture is chosen to rep
the ic_enable pseudo-op.

4. Save the pseudop.c file.

Running pseudop.c with Pseudo-instruction
1. Compile and run the pseudop.c program to show that the

pseudo-instructions work as desired. To prove that the best instruc
is chosen for the architecture, compile the code for the Cx
microprocessor and then the Jx, Hx, or Rx microprocessor.

2. In the Command Prompt window, enter the following command:
gcc960 -AC{ F|A } -Fcoff -Tmcycx -o pseudop pseudop.c

The options in this command are:

-AC{ F|A } sets the target architecture for the compiler. For
this example, choose the Cx architecture, -ACF

or -ACA

-Fcoff sets the object file type as coff.

-Tmcycx sets the linker directive file for the Cx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

When compiled, warnings may be generated. The warnings are
generated just to point out this simple fact: when you use any of the
new i960 pseudo-instructions, you are required to re-assemble your
4-57

4-58

4Getting Started with the 80960 QUICKval Kit

x to

r:

).

s
d

d

source code before running it on a new target platform (e.g., from C
Jx). The assembler selects the best instructions to replace the
pseudo-instructions based on the processor targeted.

3. If you have a Cx microprocessor and want to run the program, ente
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rate
are: 1200, 2400, 9600, 19200, 38400, 57600, an
115200.

-r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are: com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is use
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

4. At the (gdb960) prompt, enter: run

The program prints out the performance advantage of running the
program with the instruction cache enabled versus disabled.

NOTE. The beauty of this example is not the results of the running
program, but the fact that the code works as expected with
pseudo-instructions.

The i960 Rx CPU Example Programs4

0

sor

e.

ify
The result of this example is similar to using instructions specifically
chosen for the Cx architecture. So, using pseudo-instructions can
maintain the logic of your code, while easing migration to future i96
microprocessors.

5. At the (gdb960) prompt, enter: quit

Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors
Now you are ready to compile the code for the Jx, Hx, or Rx microproces
to demonstrate similar results on a different processor.

1. In the Command Prompt window, enter the following commands:
For the Jx Microprocessor:
gcc960 -AJ{ F|D|A } -Fcoff -Tmcyjx -o pseudop pseudop.c

The options in this command are:

-AJ{ A|F|D|T } sets the target architecture for the compiler. For
this example, to choose the Jx architecture, -AJA ,
-AJF , -AJD , or -AJT

-Fcoff sets the object file type as coff.

-Tmcyjx sets the linker directive file for the Jx architectur

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For the Hx Microprocessor:
gcc960 -AH{ D|A } -Fcoff -Tmcyhx -o pseudop pseudop.c

The options in this command are:

-AH{ D|A } sets the target architecture for the compiler. For
this example, to choose the Hx architecture, -AHD
or -AHA

-Fcoff sets the object file type as coff.

NOTE. If you do not have an i960 Jx, Hx, or Rx microprocessor, you
cannot run this example; however, you can still compile the code to ver
that it compiles without error.
4-59

4-60

4Getting Started with the 80960 QUICKval Kit

).

s
d

-Tmcyhx sets the linker directive file for the Hx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For Rx Microprocessor:
gcc960 -AR{ P|D } -Fcoff -Tmcyrx -o pseudop pseudop.c

The options in this command are:

-AR{ P|D } sets the target architecture for the compiler. For
this example, to choose the Rx architecture, -ARP
or -ARD

-Fcoff sets the object file type as coff.

-Tmcyrx sets the linker directive file for the Rx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

2. If you have a Jx, Hx, or Rx microprocessor and want to run the
program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rate
are 1200, 2400, 9600, 19200, 38400, 57600, an
115200.

 -r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are com1, com2, com3, and com4.

The i960 Rx CPU Example Programs4

d

ally

ly

the
r
x to

 the

with

u a

,

ctly,
”

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is use
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

3. At the (gdb960) prompt, enter: run

The result of this example is the same as using instructions specific
chosen for the Jx, Hx, or Rx architecture. So, using
pseudo-instructions does not change the logic of the program. It on
eases future migration of your code to future i960
microprocessors.

4. At the (gdb960) prompt, enter: quit

When compiled, warnings may be generated. The warnings are
generated just to point out this simple fact: When you use any of
new i960 pseudo-instructions, you are required to re-assemble you
source code before running it on a new target platform (e.g., from C
Jx). The assembler selects the best instructions to replace the
pseudo-instructions based on the processor targeted.

CONGRATULATIONS! You can now start using pseudo-instructions in
your code to ease migration of your code to future i960 processors.

Debugging with gdb960

A software debugger is a useful tool that allows you to learn more about
behavior of an application program while it is running on a target or
simulator. gdb960 is a source-level debugger that allows you to interact
your application program running on a target system through the debug
monitor, MON960. MON960 is resident on the Cyclone CPU module.

This example uses the card game, Go Fish, and is designed to teach yo
few debugger commands so that you can further examine the example
programs provided with this kit or your own programs. In the card game
Go Fish, you and the computer each get several cards. You take turns
guessing which cards are in each other’s hands. When you guess corre
you acquire that card. If you don’t guess correctly, you need to “Go Fish
and draw another card from the pack. When you get four-of-a-kind, you
4-61

4-62

4Getting Started with the 80960 QUICKval Kit

e the
s

remove those cards from your hand. The objective of the game is to hav
most sets of four-of-a-kind when either you or the computer has no card
remaining in your hands.

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

1. Choose Debugger.
2. Choose gdb960 Tutorial.
3. Choose Make to compile, link, and download the program

automatically.
The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

NOTE. This example uses the command line interface to gdb960. The
program also features a Graphical User Interface in both Windows and
UNIX. See The gdb960 User’s Manual for more information.

NOTE. DEBUGGING SHORTCUTS
Abbreviations for gdb960 commands are accepted as long as they are
unambiguous.
To run, enter: r
To break, enter: br
To list, enter: l
To continue, enter: c
To print, enter: p
To clear, enter: cl
To quit, enter: qu
For help, enter: he

The i960 Rx CPU Example Programs4

4. DO NOT TYPE RUN! First, use the gdb960 debugger to set a

breakpoint at function main() . Type:
break main

The debugger responds by displaying:
Breakpoint 1 set at 0xa0008570: file fish.c, line 209.

5. Set a second breakpoint at line 275. Type:
break 275

The debugger responds by displaying:
Breakpoint 2 set at 0xa0008bc4: file fish.c, line 275.

6. To execute the program from the beginning, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/fish
Breakpoint 1, main() at fish.c, 209.
209 srand();

7. To display the code at the breakpoint, type:
list

The debugger displays lines 204-213 of the fish.c source. To see the
next ten lines, type list again.

8. To continue executing the program from this location, type:
continue

The debugger responds by displaying:
Continue.
Would you like instructions[n]?

9. Reply by typing y for yes or <Enter> or n for no.
your hand is: A A 6 6 8 8 9
Breakpoint 2, game() at fish.c:275.
275 if(!move(yourhand,myhand,g=guess(),0))break;

10. In the source code in step 9, there are two variable arrays, myhand and
yourhand. Myhand is the computer’s hand and yourhand is yours. To look
at the card in the computer’s hand, type:
print myhand

The debugger responds by displaying:
$1=“000\000\000\001\000\002\000\001\000\000\001\002\000”

myhand[0] does not represent a card.
myhand[1] represents the number of Aces.
4-63

4-64

4Getting Started with the 80960 QUICKval Kit

he

960

e at

n, it
myhand[2] represents the number of 2s, and so on.
The same order of cards is represented in the array, yourhand .
If a King is drawn by either player, myhand[13] or yourhand[13]
will appear when you print the array.

11. Using the ability to see the computer’s hand, you are able to beat t
computer every time. Clear the first breakpoint at the function main()
and continue playing the game, looking at the computer’s hand any
time you need to. To clear the breakpoint at main() , type:
clear main

The debugger responds by displaying:
Deleted breakpoint 1

12. To continue executing the program, type:
continue

13. If you need further assistance beating the computer, contact the 80
Technical Support Group for more hints.

14. Type: quit

Debugging Optimized Code

CTOOLS can use the ELF object module format and DWARF Version 2
debug information format as described in the 80960 Embedded Application
Binary Interface (ABI) Specification (order number 631999). The new
formats enable more accurate mapping between source and object cod
higher optimization levels and ease production code debugging.

This example shows that at the highest level of module-local optimizatio
is possible to set a breakpoint on an inline function using ELF/DWARF,
while with COFF this is not possible.

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

1. Choose Debugger.
2. Choose C ELF/DWARF Format .
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

The i960 Rx CPU Example Programs4

4. Compile swap.c with no module-local optimizations (no inlining). This
shows that the procedure swap is not inlined. Enter:
gcc960 -Felf -T {Link-dir} -A {arch} -O0 -S swap.c

The options in this command are:

-Felf creates an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyrx specifies mcyrx.gld .

-O0 no module-local optimizations

-S generate assembly code from the source code

swap.c input file

5. Edit swap.s (the generated assembly file from swap.c). In the
function _main , see the call to the procedure swap:
callj _swap

This is an out-of-line call to the procedure swap. The function swap
has not been inlined.

6. Now, compile swap.c with the highest level of module-local
optimizations. This inlines the procedure swap.
gcc960 -Felf -T {Link-dir} -A {arch} -O4 -S swap.c

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyrx specifies mcyrx.gld .

-O4 highest level of module-local optimizations

-S generate assembly code from the source code

swap.c input file

7. Edit swap.s (the generated assembly file from swap.c). In the
function _main , note the call to the procedure swap does not exist:
callj _swap /* Does Not Exist*/

The procedure swap has been inlined.
4-65

4-66

4Getting Started with the 80960 QUICKval Kit
8. Recompile using the -O4 optimization level, the ELF/DWARF format,
and add debugging information.

gcc960 -Felf -T {Link-dir} -A {arch} -O4 -g -o swap swap.c

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy rx specifies mcyrx .gld.

-O4 highest level of module-local optimizations

-g include debug information in object file

-o swap names the executable file swap

swap.c input file

9. Download the executable file, swap, to the Cyclone eval board
memory. Enter:

gdb960 -t mon960 -b 115200 -r com1 -D lpt1 swap

The options in this command are:

-t mon960 MON960 is on the target

-b 115200 use 155200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

swap the executable file

10. DO NOT TYPE RUN!
First, set a breakpoint on the procedure swap. Enter:
break swap

The debugger responds by displaying:
breakpoint 1 @0xa00080f0:file swap.c, line 43

breakpoint 2 @0xa0008148:file swap.c, line 54

Breakpoint 1 is the out-of-line reference to the procedure swap.
Breakpoint 2 is the inline reference to the procedure swap.

The i960 Rx CPU Example Programs4
s
int
Swap.c was compiled with a high level of module-local optimization
that included function inlining, and it is still possible to set a breakpo
on the inline function. Breakpoint 2 stops program execution.

11. To execute the program, enter:
run

The debugger responds by displaying:
Breakpoint 2, main() @ swap.c: 54

54 printf(ìThe smallest number is %d\nî,a);

12. To continue the program, enter:
c

When the program has finished, enter:
quit

13. Compile using the -O4 optimization level, the COFF format, and add
debugging information.

gcc960 -Fcoff -T {Link-dir} -A {arch} -g -O4 -o swap swap.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyrx specifies mcyrx.gld .

-O4 highest level of module-local optimizations

-g include debug information in object file

-o swap names the executable file swap

swap.c input file

14. Download the executable file, swap, to the Cyclone eval board
memory. Enter:
gdb960 -t mon960 -b 115200 -r com1 -D lpt1 swap

The options in this command are:

-t mon960 MON960 is on the target

-b 115200 use 155200 baud rate

-r com1 use serial port 1
4-67

4-68

4Getting Started with the 80960 QUICKval Kit

op

s
int

at

ws

ay
g
-D lpt1 use parallel port 1

swap the executable file

15. DO NOT TYPE RUN!!
First, set a breakpoint on the procedure swap. Enter:
break swap

The debugger responds by displaying:
breakpoint 1 @0xa00080f0

Breakpoint 1 is the out-of-line reference to the procedure swap. Notice
that no inline breakpoint has been set. This breakpoint does not st
execution of the program.
Swap.c was compiled with a high level of module-local optimization
that included function inlining, and it is not possible to set a breakpo
on the inline function. Program execution does not stop.

16. To execute the program, enter:
run

The debugger responds by displaying the smallest number from the
swap. There is no break in program execution.

17. When the program has finished, enter:
quit

You have now seen that with the ELF/DWARF format, it is now
possible to debug your production code, even after high levels of
program optimization.

Debugging Optimized C++ Code Tutorial

The C++ compiler generates debug information using the DWARF form
when the -g option is specified with the -Felf option. This debug
information format is richer than that of other supported OMFs, and allo
more reliable debugging under optimization.

This tutorial demonstrates that at the highest level of module-local
optimization, debugging a C++ application is still possible due to the
DWARF debug format.

In this example, you compile a C++ program using the -O0 optimization
compiler option, which disables all optimizations, including those that m
interfere with debugging. The same C++ program is then compiled usin
the highest-level of module-local optimization, -O4.

The i960 Rx CPU Example Programs4
re

ce

ding:
There are several levels of program optimization available with the
CTOOLS development tool suite. Typically, low levels of optimization a
used during the debugging phase. Certain optimizations can cause
significant code changes that may make high-level debugging difficult.
Once the application is functioning properly, the application's performan
may be increased by using a higher level of optimization. The static
optimization options are:

O0 Turn optimization off

O1 Basic optimization

O2 strength-reduction, instruction scheduling for
pipelining, etc...

O3 O2 plus fconstprop, finline-functions , etc...

O4 O3 plus fsplit-mem, fmarry-mem, fcoalesce

Level O4 is the highest level of static optimization. Please refer to the
i960 Processor Compiler User's Guide for more information on
ELF/DWARF and compiler optimizations.

In this tutorial, you compile and debug a C++ program, cppdwarf.cpp ,
that contains many of the advanced features of the C++ language, inclu

• Classes
• Public, protected, and private variable accessibility
• Virtual functions
• Scope operators
• Overloaded functions
• Class inheritance

Using ELF/DWARF, both levels of optimization, -O0 and -O4 , retain the
C++ program structure so that the above features may be investigated.

This example is found in the Hx Jx Cx & Sx QUICK val software. To use
this tutorial, choose Jx as the architecture and PCI80960DP for the
evaluation board.

1. Choose Debugger
2. Choose C++ ELF/DWARF Format
4-69

4-70

4Getting Started with the 80960 QUICKval Kit

.

0,
3. Choose Make. The following tutorial is displayed in the QUICKval
browser, and the command lines may be entered at the Command
Prompt window.

4. Compile the program using the -O0 optimization level. In the
Command Prompt window, enter the following command:
gcc960 -Felf -A{ arch } -T{ Link-dir } -stdlibcpp -O0 -g
-o cppdwarf cppdwarf.cpp

The options in this command are:

-Felf creates an ELF format output file.

-A{arch} specifies the architecture. For example, -AHD
specifies an 80960HD.

-T{Link-dir} specifies the linker directive file. For example,
-Tmcyrx specifies mcyrx .gld.

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-O0 specifies the lowest level of module-local
optimizations.

-g includes debug information in object file.

-o cppdwarf specifies the executable file cppdwarf .

cppdwarf.cpp specifies the input file cppdwarf.cpp .

5. Run the program using the debugger, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -D
{ parallel port } -pci cppdwarf

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional)

-t mon960 is optional since mon960 is the
default.

-b 115200 sets the baud rate for serial communication
(optional). This option, -b 115200 , is not
needed when the serial port is not being used.
Possible baud rates are 1200, 2400, 9600, 1920
38400, 57600, and 115200.

The i960 Rx CPU Example Programs4

...

rt

++

f
-r com1 sets the port to use for serial communication
(optional). This option, -r com1 , is not needed
when the serial port is not being used; however,
the -pci option is required when no serial port
is used. Possible serial ports are com1, com2,
com99.

-D lpt1 sets the code download option for the parallel po
(optional). This option, -D lpt1 , is not needed
when the serial port or PCI bus is used for code
download. Possible parallel ports are lpt1 and
lpt2.

-pci sets the code download option for the PCI bus
(optional). When no serial port is specified, the
PCI bus is used for serial communication also.
The -r comx option is required when the PCI
bus is not used (i.e., when the -pci option is not
used).

cppdwarf specifies the executable file cppdwarf .

6. Do Not Enter Run!
Now you are ready to examine some features of the downloaded C
program, cppdwarf.cpp . A C++ class in the program is person .
The gdb960 command ptype may be used to display a description o
a data type, including classes.
At the (gdb960) prompt, enter:
ptype person
4-71

4-72

4Getting Started with the 80960 QUICKval Kit
The following data type information concerning the class person
appears:

Please note the following concerning the above output:
• The entire class information for person is displayed, including

variables and member functions.
• The public , protected , and private variable accessibility

qualifiers are displayed for variables and member functions.
• All member functions are displayed, including virtual functions

and overloaded functions.
Another C++ class in the program is professor , which inherits from
the person class. Again, you use the gdb960 command ptype to
display a description of the professor class.

7. At the (gdb960) prompt, enter:
ptype professor

Example 4-1 person Class

type = class person {

 protected:

 char name[40];

 char dept[40];

 public:

 void setName ();

 void setName (char *);

 void setDept ();

 void setDept (char *);

 void printName ();

 virtual int isOutstanding ();

 virtual char * getDept ();

}

The i960 Rx CPU Example Programs4

The following data type information concerning the class professor
appears:

Please note the following concerning the above output:
• The entire class information for professor is displayed,

including variables and member functions.
• The public , protected , and private variable accessibility

qualifiers are displayed for variables and member functions.
• All member functions are displayed, including virtual functions

and overloaded functions.
• type = class professor : public person indicates that

the professor class inherits from the person class.
8. You are ready to set some breakpoints.

a. First, set a breakpoint on the overloaded function setNumPubs in
the professor class. At the (gdb960) prompt, enter:
break professor::setNumPubs

Example 4-2 professor Class

type = class professor : public person {

 private:

 int numPubs;

 public:

 void setNumPubs ();

 void setNumPubs (int);

 virtual int isOutstanding ();

}

4-73

4-74

4Getting Started with the 80960 QUICKval Kit

ter:
The following information concerning breakpoints is displayed:
[0] cancel

[1] all

[2] professor::setNumPubs(int) at
cppdwarf.cpp:125

[3] professor::setNumPubs(void) at
cppdwarf.cpp:118

Option 0 cancels the breakpoint operation. Option 1 sets a
breakpoint on all the professor::setNumPubs functions.
Option 2 sets a breakpoint on
professor::setNumPubs(int) on line 125 of
cppdwarf.cpp . Similarly, option 3 only sets a breakpoint on
professor::setNumPubs(void) on line 118 of
cppdwarf.cpp .

b. Set a breakpoint on all professor::setNumPubs functions. At
the > prompt, enter: 1

The following information about breakpoints is displayed:
Breakpoint 1 at 0xa00083d0: file cppdwarf.cpp,
line 125.

Breakpoint 2 at 0xa0008358: file cppdwarf.cpp,
line 118.

c. Set a breakpoint on the virtual function
professor::isOutstanding . At the (gdb960) prompt, enter:
break professor::isOutstanding

The following information concerning breakpoints is displayed:
Breakpoint 3 at 0xa0009080: file cppdwarf.cpp,
line 110.

9. You are now ready to start the program. At the (gdb960) prompt, en
run

Notice that the program stops at all three of the breakpoints.

10. To continue after a break, use the gdb960 command continue , or
enter the keyboard shortcut c .

11. At the (gdb960) prompt, enter: quit

The i960 Rx CPU Example Programs4

.

00,
The results of the debug session were as expected because no
optimizations had been performed on the source code during
compilation. You can now recompile the cppdwarf.cpp program
using the highest-level of module-local optimization and repeat the
previous debug session.

12. Compile the program using the -O4 optimization level. In the
Command Prompt window, enter the following command:
gcc960 -Felf -A{ arch }-T{ Link-dir } -stdlibcpp -O4 -g
-o cppdwarf cppdwarf.cpp

The options in this command are:

-Felf create an ELF format output file

-A{ arch } specifies the architecture. For example, -AHD
specifies an 80960HD

-T{ Link-dir } specifies the linker directive file. For example,
-Tmcyrx specifies mcyrx.gld .

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-O4 highest level of module-local optimizations

-g include debug information in object file

-o cppdwarf specifies the executable file cppdwarf

cppdwarf.cpp input file

13. Run the program using the debugger, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -D
{ parallel port } -pci cppdwarf

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional)

-t mon960 is optional since mon960 is the
default.

-b 115200 sets the baud rate for serial communication
(optional). This option, -b 115200 , is not
needed when the serial port is not being used.
Possible baud rates are: 1200, 2400, 9600, 192
38400, 57600, and 115200.
4-75

4-76

4Getting Started with the 80960 QUICKval Kit

 ...

rt

C++

f

ss”.

sor
-r com1 sets the port to use for serial communication
(optional). This option, -r com1 , is not needed
when the serial port is not being used; however,
the -pci option is required when no serial port
is used. Possible serial ports are: com1, com2,
com99.

-D lpt1 sets the code download option for the parallel po
(optional). This option, -D lpt1 , is not needed
when the serial port or PCI bus is used for code
download. Possible parallel ports are: lpt1 and
lpt2.

-pci sets the code download option for the PCI bus
(optional). When no serial port is given, the PCI
bus is used for serial communication also. The

-r comx option is required when the PCI bus is
not used (i.e., when the -pci option is not used.)

cppdwarf specifies the executable file.

14. Do Not Enter Run!
You are now ready to investigate some features of the downloaded
program, cppdwarf.cpp . A C++ class in the program is person .
The gdb960 command ptype may be used to display a description o
a data type, including classes. At the (gdb960) prompt, enter:
ptype person

Please note, the output matches that of Example 4-1, “person Cla
Optimizations did not affect the person class output. It is the same
as the first debug session.

15. Another C++ class in the program is professor , which inherits from
the person class. Once again, you use the gdb960 command ptype to
display a description of the professor class. At the (gdb960)
prompt, enter:
ptype professor

Again please note, the output matches that of Example 4-2, “profes
Class”. Optimizations did not affect the professor class output. It
is the same as the first debug session.

The i960 Rx CPU Example Programs4

16. You are now ready to set some breakpoints.

a. First, set a breakpoint on the overloaded function setNumPubs
in the professor class. At the (gdb960) prompt, enter:
break professor::setNumPubs

The following information concerning breakpoints is displayed:
[0] cancel

[1] all

[2] professor::setNumPubs(int) at
cppdwarf.cpp:125

[3] professor::setNumPubs(void) at
cppdwarf.cpp:118

Option 0 cancels the breakpoint operation. Option 1 sets a
breakpoint on all the professor::setNumPubs functions.
Option 2 only sets a breakpoint on
professor::setNumPubs(int) on line 125 of
cppdwarf.cpp . Similarly, option 3 only sets a breakpoint on
professor::setNumPubs(void) on line 118 of
cppdwarf.cpp .

b. Set a breakpoint on all professor::setNumPubs functions, so
At the > prompt, enter: 1.
The following information about breakpoints is displayed:
Breakpoint 1 at 0xa00082e4: file cppdwarf.cpp,
line 125.

Breakpoint 2 at 0xa0008294: file cppdwarf.cpp,
line 118.

c. Finally, set a breakpoint on the virtual function
professor::isOutstanding . At the (gdb960) prompt, enter:
break professor::isOutstanding

The following information concerning breakpoints is displayed:
Breakpoint 3 at 0xa0008960: file cppdwarf.cpp,
line 111.
4-77

4-78

4Getting Started with the 80960 QUICKval Kit

ter:

. As

ot

ard
h

ed
17. You are now ready to start the program. At the (gdb960) prompt, en
run

Notice that the program does not stop at all three of the breakpoints
can be seen, the DWARF debug information format is very rich, and
allows more reliable debugging under optimization. However, even
with DWARF, there are situations where debugging behavior does n
agree with the debugging behavior of unoptimized code.

18. To continue after a break, use the gdb960 command continue , or
enter the keyboard shortcut c .

19. At the (gdb960) prompt, enter: quit

CONGRATULATIONS! You may now know how to use ELF/DWARF to
debug your optimized C++ code.

Writing Flash on the IQ80960RP Evaluation Board

This example teaches you the following:

• Writing to Flash on the Cyclone base board.
• Booting off of the Flash in socket U3 of the Cyclone base board, as

opposed to the Flash on the CPU Module.
• Setting the Cyclone base board to 12 volts.
• Using mondb.exe as a simple utility to download and execute an

application program on the target board running MON960.
• Using mondb.exe to write Flash.
• Building a new monitor.

Complete these steps to write the Flash:

1. Identify the Flash on the Cyclone base board
A blank Flash ships on each Cyclone board in socket U3. If your bo
did not ship with a Flash in socket U3, insert an Intel N28F020 Flas
chip.

2. Set the Cyclone eval base board voltage to 12 volts
Locate the four-position DIP switch labeled SW1. Flip S1.1 to the ON
position. This enables VPP to the Cyclone base board Flash.

3. Power up or reset the host PC to reset Cyclone board.
On the IQ80960RP Platform, +12 VDC and +5 VDC power is suppli
through the edge connector.

The i960 Rx CPU Example Programs4
ault

m
4. Edit Version.c.

a. Change directories to where the version.c file resides. The def
installation directory for CTOOLS is:
c:\intel960\src\mon960\common

Version.c contains the following information:
const char mon_version_byte = nn; /* version
n.n = nn */

const char base_version[] = "MON960 n.n.n";

const char build_date[] = __DATE__;

b. Change the file contents to reflect that this is your version of
MON960. For example, change
const char base_version[] = "MON960 n.n.n";

to:
const char base_version[] = "MY MON960";

c. Save Version.c.
5. Build the new MON960

By default the source for MON960 is located at:
c:\intel960\src\mon960\common

You may use the pre-built version of MON960 there, or build a custo
version. To create a custom version:
a. Copy makefile.xxx to

c:\intel960\src\mon960\common\makefile .
where xxx is one of the following make files

• makefile.ic (ic960 interface, COFF format)

• makefile.ice (ic960 interface, ELF format)

• makefile.gnu (gcc960 interface, COFF format)
• makefile.gne (gcc960 interface, ELF format)
b. Issue the commands:
nmake -s makefile

cyrp

This creates a file called cyrp.fls .
4-79

4-80

4Getting Started with the 80960 QUICKval Kit

 the

e

e

6. Writing the Flash
To write the Flash, use the mondb.exe utility located in the
intel960\bin\ directory. If you are going to use the pre-built
MON960 files, they are located in the intel960\roms directory. For
example, if you used the default installation directory and are using
pre-built MON960 files for the 80960RP, enter:
mondb -pci -ef -ne c:\intel960\roms\cyrp.fls

The options in this command are:
-pci Use PCI bus for communication
-ne no execute
-ef erase Flash
cyrp.fls input Flash filename
Note also that if you built a version of MON960 from the source cod
as described previously, the cyrp.fls file will be located in the
c:\intel960\src\mon960\common\ directory.

7. Set board voltage back to +5 VDC
Locate the four-position DIP switch labeled SW1. Set S1.1 to the OFF
position. This disables VPP to Cyclone RP base board Flash and
protects the Flash.

8. Set the board to boot from U3 socket
Locate the four-position DIP switch labeled SW1. Set SW1.2
ROMSWAP to the ON position. This exchanges the addresses of th
U4 and U3 ROMs. When the switch is OFF the processor boots from
the U4 ROM. When the switch is ON the processor boots from the U3
ROM.

9. Reboot the base board by rebooting the host PC. There is no reset
switch on the IQ80960RP evaluation board.

Writing Flash on the IQ80960RD Evaluation Board

This example teaches you the following:

• Writing to Flash on the IQ80960RD66 Evaluation Platform.
• Booting off the Flash in socket U9 of the Cyclone base board, as

opposed to the Flash in socket U10.
• Using mondb.exe to write Flash.
• Building a new monitor.

The i960 Rx CPU Example Programs4

ard

p.

ault
Complete these steps to write the Flash:

1. Identify the Flash on the Cyclone base board
A blank Intel 28F008SA Flash chip ships on each RD66 Cyclone bo
in socket U9. On the IQ80960RD66 Platform, +12 VDC power is
supplied through the edge connector for writing the blank Flash chi
Note: The IQ80960RD66 Cyclone base board is always set at +12
VDC power.

2. Edit Version.c .
a. Change directories to where the version.c file resides. The def

installation directory for CTOOLS is:
c:\intel960\src\mon960\common

Version.c contains the following information:
const char mon_version_byte = nn; /* version n.n
= nn */

const char base_version[] = "MON960 n.n.n";

const char build_date[] = __DATE__;

b. Change the file contents to reflect that this is your version of
MON960. For example, change
const char base_version[] = "MON960 n.n.n";

to:
const char base_version[] = "MY MON960";

c. Save Version.c .
3. Build the new MON960

Note: this example requires Microsoft's nmake make utility.
By default the source for MON960 is located at:
c:\intel960\src\mon960\common

You may use the pre-built version of MON960 in
c:\intel960\roms , or build a custom version. To create a custom
version:
a. Copy

c:\intel960\src\mon960\common\makefile.xxx

to
c:\intel960\src\mon960\common\makefile.

where xxx is one of the following make files
• makefile.ic (ic960 interface, COFF format)
4-81

4-82

4Getting Started with the 80960 QUICKval Kit

uilt

e

e

• makefile.ie (ic960 interface, ELF format)
• makefile.gc (gcc960 interface, COFF format)
• makefile.ge (gcc960 interface, ELF format)
b. Issue the commands:

nmake -s makefile

cyrd

This creates a file called cyrd.fls .
4. Writing the Flash.

To write the Flash, use the mondb.exe utility located in the
intel960\bin\ directory. If you are going to use the pre-built MON960
files, they are located in the intel960\roms directory. For example,
if you used the default installation directory and are using the pre-b
MON960 files for the 80960RD, enter:
mondb -pci -ef -ne c:\intel960\roms\cyrd.fls

The options in this command are:

-pci use PCI bus for communication.

-ne no execute.

-ef erase Flash.

cyrd.fls input Flash filename

Note also that if you built a version of MON960 from the source cod
as described previously, the cyrd.fls file will be located in the
c:\intel960\src\mon960\common\ directory.

5. Set the board to boot from U9 socket.
Locate the four-position DIP switch labeled SW1. Set SW1.3
ROMSWAP to the OFF position. This exchanges the addresses of th
U9 and U10 ROMs. When the switch is ON the processor boots from
the U10 ROM. When the switch is OFF the processor boots from the
U9 ROM.

6. Reboot the base board by rebooting the host PC. There is no reset
switch on the IQ80960RD66 evaluation board.

The i960 Rx CPU Example Programs4

em
 in

ode

80960Rx Initialization Example

Complete the following steps:

1. Choose RP Init Code.
2. When the editor appears, open the Init Code menu and choose the

initialization code that you wish to view. The options are Main ,
Memory Controller , System Init, and Hardware Init . The sections
that follow describe these modules.

Module: INIT.S

This module contains the Initial Memory Image, including a PRCB, Syst
Procedure Table, Fault Table, Interrupt Table. These data structures are
ROM during the initial boot. This module also contains the cold start
address (start_ip) and the system initialization code. The initialization c
does the following:

• code execution begins at start_ip label after boot
• calls pre_init, if required, to perform board self-test and enable RAM

— pre_init is set to init_mem in MONCYRP.LD file
— the init_mem function is located in the CYRP_ASM.S file

• copies the processor data structures to RAM
— initialize interrupt table and fill table with vectors
— initialize fault table with all entries to the fault entry point

(Set_prcb will initialize the trace entry properly)
— initialize system procedure table

• initializes the monitor's data in RAM
— call _set_prcb to copy PRCB to RAM

• reinitialize processor with RAM based PRCB
• turn off interrupted state and changes to the monitor's stack
• branch to mon960_main in the MAIN.C file.
4-83

4-84

4Getting Started with the 80960 QUICKval Kit

n
Module: MAIN.C

This module contains the mon960_main and init_regs functions.

mon960_main():

• call init_regs function in the MAIN.C file
• call init_hardware function in the CYRP_HW.C file

— performs initialization of the board and the Rx specific registers
• call init_monitor function in the MONITOR.C file
• call the monitor function in the MONITOR.C file
• Note: control does not return here after the call to monitor()

init_regs():

Initializes the "soft" copy of the register set used by the monitor

MODULE: CYRP_HW.C

This module contains the init_hardware function. This is the main
initialization routine for the i960 Rx evaluation board.

init_hardware():

• call disable_dcache function in RP.S file
— disables data cache

• call init_eeprom function in FLASH.C file
— establish operational parameters for the various banks of Flash

ROM
• call init_atu function in CYRP_HW.C file

— initialize the ATU and MU registers on the Rx.
• call init_bridge function in CYRP_HW.C file

— initialize the bridge registers on the Rx.
• call int_setup function in PCI_SERV.C file
• call init_pci_config_regs function in PCIDRVR.C
• call clear_retry function in CYRP_HW.C file

— clear the PCI config retry bit to allow acceptance of configuratio
cycles

The i960 Rx CPU Example Programs4

atch
r

at

ll

ffer
MODULE: MONITOR.C

This module contains the init_monitor and monitor functions.

init_monitor():

• set up CPU version once at boot time

 monitor():

• if first time, determine which com port to connect
• call hi_main or ui_main for HDIL or TERMINAL INTERFACE

respectively
• note: control WILL NOT return here after the call to hi_main() or

ui_main

Other i960 Processor Choices and the Remote Evaluation Facility

The i960 RISC processor family has a wide breadth of processors to m
your design’s price and performance needs. If you wish to evaluate othe
i960 processor family members, contact your local distributor and order
different Cyclone CPU modules, or visit the Remote Evaluation Facility
http://developer.intel.com/design/i960/testcntr

If you choose to order more CPU modules, you may rest assured that a
i960 processor modules plug-n-play with your QUICKval kit. This
configuration was specifically designed to protect your investment and o
a low cost migration path for future needs.

NOTE. The i960 Rx Processor is not available through the Remote
Evaluation Facility.
4-85

5-1

The i960 Hx CPU
Example Programs 5

The i960 Hx microprocessor is the performance follow-on product to the
i960 Cx microprocessor.

• The 80960Hx is pin and binary code-compatible with the 80960Cx
Core Architecture. 1

• It includes a 32-bit demultiplexed and pipelined burst bus interface.
• Integrated interrupt controller.
• The instruction cache is 16 Kbytes, the data cache is 8 Kbytes, and the

data RAM is expanded to 2 Kbytes.
• The 80960HD is clock doubled, and the 80960HT is clock tripled.

The i960 Hx microprocessor is used in a wide variety of application areas:

Office Automation Page-printer controllers, image scanners,
X terminals, Local Area Network (LAN)
controllers and communications bridges
(ATM, FDDI), database engines,
telecommunications and data
communications equipment, and I/O
processing for workstations/servers.

Industrial Robotics Automated vision systems and factory
process control.

1. Though not drop-in replaceable. Customers can design systems that accept either
i960 Hx or Cx processors.

5-2

5Getting Started with the 80960 QUICKval Kit

Medical Instrumentation Real-time data collection and analyses,
monitoring systems, and ultrasound
imaging displays.

Avionics and Aerospace Flight-control equipment, ground-to-air
communication systems, and satellite
navigation computers.

Additionally, you can optimize your system’s performance with CTOOLS,
which includes a profile-driven compiler that can automatically optimize
your code based on its runtime behavior.

The following pages describe the example programs included with this kit.
Each example highlights a feature of the architecture or CTOOLS and
provides you with source code that can help shorten your software
development cycle. Table 5-1 provides descriptions of the tutorials included
in the i960 Hx QUICKval kit.

Table 5-1 QUICK val i960 Processor Sample Programs

Tutorial Description Source Files

Hello World: Uses simple printf statement to
verify system integrity.

hello.c : source file
system.c : system file

Memory Test: Used for system verification of
external memory. The programs perform byte,
short, or word writes to external memory, and
then they check the addresses written for
correctness.

memtst8.c: 8 bit memory
test memtst16.c : 16 bit
memory test memtst32.c : 32
bit memory test
system.c : system file

Data Cache: Uses the minimum edit distance
algorithm to demonstrate the effectiveness of
the on-chip data cache. This example also
shows how to enable and disable the data
cache and how to configure an area of
memory for caching.

dcache.c : source file
system.c : system file

Instruction Cache: Uses a simple loop to
demonstrate how to enable and disable the
instruction cache. It also highlights the
performance advantage obtained when using
the on-chip instruction cache.

loop.c : source file

system.c : system file

continued ☛

The i960 Hx CPU Example Programs5

5-3

Register Cache: Demonstrates using the
on-chip register cache in reducing the
interrupt latency for high priority interrupts.

reg_int.c : source file
low_int.s : interrupt handler
for low priority
high_int.s : interrupt
handler for high priority
system.c : system file

External Interrupts: Shows how to configure
the Cyclone board timers to trigger hardware
interrupts. This is also an example of using
interrupt handlers and placing the handlers in
the interrupt table.

cyint.c : source file
asm_fns.s : interrupt handler
for Sx int_proc.s : interrupt
handler-all processors but Sx
t85c36.c : eval board timer
file system.c : system file

Internal Interrupts: Simple timer example
showing how to overlay the memory-mapped
registers with a structure to program the
on-chip timers. This tutorial also shows how to
set up interrupt routines using the timers.

timrcntr.c : source
file timers.c : on-chip timer
file system.c : system file

Fault Handling: Shows how to set up the fault
handling procedures in the fault and system
procedure tables.

fault.c : source file
flt_proc.c : fault
procedures
asm_flt.s : assembly
functions to help generate
faults system.c : system file

C Local Optimizations: Shows how to use
the C compiler with high levels of static
optimization for improved runtime
performance.

chksum.c , system.c :
source files

C Global Optimizations: Shows how to use
program-wide optimizations of the C compiler
for increased performance.

chksum.c ,
system.c :
source files

C++ Local Optimizations: Shows how to use
the C++ compiler with high levels of static
optimization for improved runtime
performance.

optimize.cpp : source file

continued ☛

Table 5-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

5-4

5Getting Started with the 80960 QUICKval Kit

C++ Global Optimizations: Shows how to
use program-wide optimizations of the C++
compiler for increased performance.

optimize.cpp : source file

C++ Virtual Function Optimizations: Shows
how a call to a virtual function can be replaced
by a direct call to a member function, and, if
possible, it may be inlined at the call site. This
improves the runtime performance of the
code.

optimize.cpp : source file

Profiling Lab: Teaches you how to use some
of CTOOLS advanced profiling features.

chksum.c : source file

Self-Contained Profile: Shows how to create
a self-contained profile that captures the
program structure and associates it with the
program counters from a raw profile. When
the source program changes, the global
decision making step interpolates or stretches
the counters in the self-contained profile to fit
the changed program.

quick.c : source file

Incremental Profiling: Shows how to profile
a program in pieces and then re-combine
them later, a useful methodology when the
target execution environment is memory
limited

fault.c , flt_proc.c ,
asm_flt.s , system.c :
source files

C Cave: Uses a tic-tac-toe game to show how
to reduce target memory requirements. The
text sections of compressed and
uncompressed tic-tac-toe executables are
compared. Additionally, this example
demonstrates how to specify functions for
compression.

ttt.c : source file

C++ Cave: Shows how to reduce target
memory requirements. The text sections of
compressed and uncompressed C++
executables are compared. This example also
shows how to specify functions for
compression.

cavecpp.cpp : source file

continued ☛

Table 5-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

The i960 Hx CPU Example Programs5

5-5

Linker Directive Language: Provides a
hyperlinked manual that describes the linker
command options. This tutorial is found in the
online help only, not in this manual.

Linker Consumption: Shows the ability of
the linker, gld960, to consume b.out-format,
COFF, or ELF object files and libraries in any
combination.

cyint.c , int_proc.s ,
t85c36.c , system.c :
source files

i960 Processor Assembler
Pseudo-Instruction Support: Shows how to
use the new assembler pseudo-ops.

pseudop.c : source file

Debugging with gdb960: Uses the Go Fish
card game to teach a few useful debugger
commands.

fish.c : source file
system.c : system file

ELF/DWARF Debugging Format:
Demonstrates that at the highest level of
module-local optimization, it is possible to set
a breakpoint on an in-line function.

swap.c : source file

C++ DWARF-2 Debugging Format:
Demonstrates that at the highest level of
module-local optimization, it is possible to
debug a C++ application.

cppdwarf.cpp : source file

Retargeting MON960: Provides steps for
retargeting MON960. This tutorial is found in
the online help only, not in this manual.

Writing Flash: Demonstrates how to update
the version of MON960 on your evaluation
board.

80960 Family Benchmark: Shows how to
use this facility to compare your processor's
performance with other i960 family members.
This example uses a typical checksum
routine to show how to add benchmarking
routines into source code.

chksum.c , system.c :
source files

Remote Evaluation Facility: Guides you
through the use of this new benchmarking
facility on the World-Wide Web.

Table 5-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

5-6

5Getting Started with the 80960 QUICKval Kit

System Validation

Hello World

The program hello.c is used to verify your software and hardware system
integrity. The following steps provide instructions on how to compile, link,
download, and execute this program.

1. Verify that your software and hardware have been installed according
to the instructions in Chapter 2 through 3 and the frequency switch on
your CPU module is set as shown. The switch settings below set the Hx
CPU module frequency at 33 or 25 MHz respectively; since the HD
processor is clock doubled, the processor runs internally at 66 or
50 MHz.

1. Power your Cyclone evaluation platform and i960 Hx CPU module
2. Double-click on the Hx Jx Cx & Sx QUICK val icon in the QUICKval

program group.
3. Configure you hardware.

• Select the 80960 Architecture tab.
• Select Hx.
• Depending on the board you have installed, select either the

EP80960BB or PCI80960DP tab.
• Configure the software communication options to match those of

your evaluation board.
• Choose OK .

4. Choose Hello World .
5. Choose Make to compile, link, and download the program

automatically.

66 MHz module 50 MHz module

OFF

1 2 3 4

SW1

OFF

1 2 3 4

SW1

The i960 Hx CPU Example Programs5

5-7

6. Use the gdb960 debugger to execute hello. Type:
run

7. The gdb960 debugger responds by displaying:
Hello...Welcome to the 80960HX QUICKval Kit!

SYSTEM CHECK COMPLETED!!

Now you may proceed with our Example Programs.

Program Exit: 01

(gdb960)

8. To exit the debugger, type: quit

CONGRATULATIONS! You have successfully installed your software and
your hardware, compiled a program using gcc960, and downloaded and
executed the program on your evaluation board using the gdb960 debugger.

If you received any error messages during this process, refer to “If
Something Goes Wrong” on page 5-8.

Memory Test

The programs memtst8.c , memtst16.c , and memtst32.c are used to test
the external memory on the Cyclone base board.

Depending on the test that is run, an 8, 16, or 32-bit test is run on an area of
memory. The program writes F's and 0's to a memory location and reads the
location to verify the integrity of what was written. All three programs are
almost identical, with the exception of the casting of the variable *ADDR,
which allows you to perform different test types.

1. Choose Memory Test.
2. Choose a memory test. The options are, 8-bit Memory Test, 16-bit

Memory Test, or 32-bit Memory Test.
3. Choose Make to compile, link, and download the program

automatically.

NOTE. Below, memtst*.c refers to either the byte, short, or word
memory test example.

5-8

5Getting Started with the 80960 QUICKval Kit

4. Use the gdb960 debugger to execute memtst. Type:
run

5. For the 8-bit test, memtst8.c , the gdb960 debugger responds by
displaying:

This program will run a 8-bit test on the external memory.

Test to be implemented is byte test.
Starting address = a000dfb0
Ending address = a000ec30

Press enter to begin test with 0’s.
Number of errors that occurred is 0.

Begin test for f’s.

Press enter to continue.
Number of errors that occurred is 0.

All tests are complete.
Program exited with code 030.
(gdb960)

6. Exit the debugger. Type:
quit

If Something Goes Wrong

The following section describes a few actions that may help resolve errors
that may have occurred when invoking one of the tools. If you were unable
to get the proper response from the gdb960 debugger after executing the
above programs and the trouble-shooting hints described below do not help,
contact the 80960 Technical Support Group by phone at 1-800-628-8686 or
by E-mail at 960tools@intel.com.

MON960 Debug Monitor is Not Responding...

If the red FAIL LED (CR6) on the base board is lit, the monitor may not
have booted up correctly. Press the reset button (S2). If the red FAIL LED
remains lit, contact the 80960 Technical Support Group.

The i960 Hx CPU Example Programs5

5-9

Invoking the gcc960 Compiler Resulted in Errors...

The environment must be set-up as described in Chapter 2. If you chose the
default directories while installing CTOOLS, verify that the path names
C:\INTEL960\BIN have been added to your PATH variable and that the
following statement is in your autoexec.bat file. If you did not install
these tools using the default directories, make the appropriate change.

SET G960BASE=C:\INTEL960

Invoking the gld960 Linker Resulted in Errors...

Verify that the directory that contains the hello.c and memtst*.c
example programs also now has the object files, hello.o and memtst*.o .
If hello.o and memtst*.o do not exist, then the gcc960 compiler
command did not successfully create an object file. Re-compile hello.c
and memtst*.c to see if an error occurred during the compilation.

If hello.o and memtst*.o do not exist, make note of the error message
and contact the 80960 Technical Support Group.

NOTE. You did not use the default directories on installation, please
make sure the G960BASE environment variable is assigned
appropriately.

NOTE. Don’t forget to re-boot your system once you have made any
necessary changes to your autoexec.bat file.

5-10

5Getting Started with the 80960 QUICKval Kit

Invoking the gdb960 Debugger Resulted
in Errors...

Serial communication error

A serial communication error causes the gdb960 debugger to respond by
displaying:

HDIL error (10), communication failure
HDIL error (10), communication failure

You can’t do that when your target is ‘exec’

Verify that the serial port you are using is the one you specified in the
gdb960 command line. Verify that your serial cable is properly connected to
the board and to your PC.

Parallel communication error

A parallel communication error causes the gdb960 debugger to respond by
displaying:

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type ‘show copying’ to see the conditions.
There is absolutely no warranty for GDB; type “show warranty” for
details.

gdb960.exe 6.0, Wed FEB 16 12:33:16 1998

GDB 5.10 (i486-intel-dos --target i960-intel-mon960), Copyright 1997

Free Software Foundation, Inc...(no debugging symbols found)...

Connected to com1 at 115200 bps.

(gdb960)

section 0, name .text, address 0xc0008000, size 0x50ec, flags 0x20

 writing section at 0xc0008000

Verify that the parallel port you are using is the one you specified in the
gdb960 command line. Verify that your parallel cable is properly connected
to the board and to your PC.

NOTE. If you are using the PCI-SDK evaluation platform, you may
specify -pci for PCI download and PCI communication.
For a list of all the gdb960 command line options, at a command prompt,
enter: gdb960 -h | more

The i960 Hx CPU Example Programs5

5-11

Data Cache Tutorial

The i960 Hx processors feature an 8-Kbyte, direct-mapped data cache that
is write-through and write-allocate. These processors have a line size of four
words. Each line in the cache has a valid bit; to reduce fetch latency on
cache misses, each word within a line also has a valid bit.

The purpose of the dcache.c program is to show the performance
advantage that can be obtained by the use of the data cache on the i960 Hx
microprocessor.

This example uses the Minimum Edit Distance (MED) algorithm in order to
show the effectiveness of using the data cache. The MED algorithm finds
the minimum number of edit steps required to change one string into
another.

This example is a real world example of using the data cache. This
algorithm maintains a cost matrix to determine which change to the string
being edited would incur the least cost. The cost matrix is a 2-D array
[1..n][1..m], where n and m are the sizes of the two strings.

The algorithm really shows the speed of the data cache due to three reads
for each write to the cost matrix. The algorithm reads from the cache to
determine which step to take next, then writes its choice in the cost matrix.
Since the writes to the data cache are write-through, there is no
improvement for writes to the data cache. The Write-Through feature
maintains coherency between the data cache and external memory.

The source code includes system files, system.c and system.h , that
includes a macro and an assembly function that simplifies issuing data
cache control instructions.

Also, the example shows how to define an area of memory to make data
cacheable by using the Logical Memory Configuration (LMCON) registers.
The address of the area to make cacheable is programmed into the Logical
Memory Address Register (LMADR). The mask is programmed into the
Logical Memory Mask Register (LMMR).

1. Choose Cache Examples.
2. Choose Data Cache.
3. Choose Qv Code.

5-12

5Getting Started with the 80960 QUICKval Kit

4. Scroll through the dcache.c code to see the calls to the macro,
dcctl_contrl .

5. Open and scroll through the system.h and system.c code to see the
macro and assembly function, dcctl_control and i960_dcctl .

6. Choose Make to compile, link, and download the program
automatically.

7. Use the gdb960 debugger to execute dcache . Type:
run

The debugger responds by displaying:
Minimum Edit Distance algorithm makes reads from the data cache.

This routine will determine how many steps are needed to convert:

StringA: 80960 QUICKval EvalKit

TO StringB: i960(R) HxJxCxSx & Kx

Starting timed routine with data cache on ...

RESULT: 18 moves are required to convert string A to string B

Elapsed Time On = 0.002869 seconds

Elapsed Time for routine with data cache off ...

RESULT: 18 moves are required to convert string A to string B.

Elapsed Time Off = 0.003360 seconds

IMPROVEMENT: 14.6 percent

(gdb960)

8. Type: quit

9. Select Results.

Instruction Cache Tutorial

The i960 Hx processor comes equipped with 16 KB of four-way set-
associative instruction cache. The instruction cache boosts your
application’s performance by reducing the number of instruction fetches
from external memory. The cache provides fast execution of code and loops
of code in the cache.

NOTE. Your actual run times may vary.

The i960 Hx CPU Example Programs5

5-13

The loop.c program demonstrates the performance boost obtained by
running a loop completely within versus outside of the instruction cache.

The source code includes system files, system.c and system.h that
includes a macro and an assembly function that simplifies issuing
instruction cache control instructions.

1. Choose Cache Examples.
2. Choose Instruction Cache.
3. Choose Qv Code.
4. Scroll through the loop.c code to see the calls to the macro,

icache_control .
5. Open and scroll through the system.h and system.c code to see the

macro and assembly function, icache_control and i960_icctl .
6. Choose Make to compile, link, and download the program

automatically.
7. Use the gdb960 debugger to execute loop . Type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/loop
Simple loop timed with instruction cache off ...
Elapsed Time Off = 2.824 seconds

Simple loop timed with instruction cache on ...
Elapsed Time On = 0.509 seconds

IMPROVEMENT : 82.0 percent
Program exited with code 01
(gdb960)

8. Type: quit

9. Select Results.

Register Cache

The i960 Hx processor provides fast storage of local registers for call and
return operations by using an internal local register cache. Up to fifteen
local register sets can be contained in the cache before sets must be saved in
external memory. The default cache size is five register sets. The register set
is all the registers (i.e., r0 through r15). The processor uses a 128-bit wide
bus to store local register sets quickly to the register cache.

5-14

5Getting Started with the 80960 QUICKval Kit

To decrease interrupt latency, software can reserve a number of frames in
the local register cache solely for high priority interrupts (interrupted state
and process priority greater than or equal to 28). When a frame is reserved
for high-priority interrupts, the local registers of the code interrupted by a
high-priority interrupt can be saved to the local register cache without
causing a frame flush to memory.

This program demonstrates the use of the on-chip register cache in reducing
the interrupt latency for high priority interrupts. First, high priority
interrupts are timed using the register cache, then low priority interrupts are
timed without the use of the register cache.

1. Choose Cache Examples.
2. Choose Register Cache.
3. Choose Qv Code.
4. Scroll through the reg_int.c code and find the

PRCB_Ptr -> reg_cache_config assignment. That is where the
Register Cache Configuration Word in the Processor Control Block
gets written. It is assigned to allocate all 15 frames for high priority
interrupts.

5. Open and scroll through the high_int.s and low_int.s files. The
high_int.s file contains the interrupt handling procedure for the high
priority interrupts, and the file low_int.s contains the interrupt
handling procedure for the low priority interrupts.

6. Choose Make to compile, link, and download the program
automatically.

7. Use the gdb960 debugger to execute reg_int . Type:
run

The debugger responds by displaying:
Starting program: C:\quickval/reg_int
Triggering Interrupts ... Register Cache USED ...
RESULT: Timeon is 0.000044 seconds
Triggering Interrupts ... Register Cache NOT USED ...
RESULT: Timeoff is 0.000058 seconds
IMPROVEMENT: 24.1 percent
Program exited with code 01.
(gdb960)

8. Exit the debugger, type: quit

9. Select Results.

The i960 Hx CPU Example Programs5

5-15

External Interrupts Tutorial

The purpose of this program, cyint.c , is to show the steps required when
dealing with an interrupt triggered externally by the evaluation board timers.
The cyint.c source code contains step-by-step instructions to save you
time when you program interrupts for your application. int_proc.s is the
interrupt handler, and t85c36.c contains the functions to program the
evaluation board timers.

The example performs the following steps in the handling of a hardware
interrupt.

• Modify the ICON register
• Modify the IMAP register
• Cache the interrupt vector and the interrupt handling procedure
• Lower the processor priority
• Modify the IMSK register
• Clear the IPND register
• Generate the hardware interrupt using the evaluation board timers

Complete these steps:

1. Choose Interrupt Examps .
2. Choose External Interrupts .
3. Choose Qv Code.
4. Scroll through the cyint.c source to see the code for setting up and

handling a hardware interrupt triggered by the evaluation board timers.
5. Open and scroll through the t85c36.c and t85c36.h files to see the

definitions and routines for programming the evaluation board timers.
You can simplify the programming of the evaluation board timers by
including this code in your own applications.

6. Choose Make to compile, link, and download the program
automatically.

5-16

5Getting Started with the 80960 QUICKval Kit

7. Use the gdb960 debugger to execute cyint . Type:
run

The debugger responds by displaying:
interrupt count = 60
interrupt count = 72
interrupt count = 84
interrupt count = 95
interrupt count = 107
interrupt count = 119
interrupt count = 131
interrupt count = 143
interrupt count = 155
Program exited with code 020.
(gdb960)

8. Type: quit

Internal Interrupts Tutorial

A key feature of the i960 Hx processor are the dual, fully independent 32-bit
timer units. Each is programmed by use of the timer registers. These
registers are memory-mapped within the processor, addressable on 32-bit
boundaries. The timers have a single shot mode and auto-reload capabilities
for continuous operation. Each timer has an independent interrupt request to
the processor’s interrupt controller. Each timer can generate a fault when it
detects unauthorized writes from user mode.

NOTE. Your actual interrupt counts may vary.

The i960 Hx CPU Example Programs5

5-17

The timrcntr.c program demonstrates how to use the structures and
routines found in timers.c to easily program either timer to cause periodic
interrupts.

1. Choose Interrupt Examps .
2. Choose Internal Interrupts .
3. Choose Qv Code.
4. Scroll through the timrcntr.c code to see the code for setting up a

timer to cause a hardware interrupt.
5. Open and scroll through timers.c and timers.h files to see the

definitions and routines for programming the on-chip timers. You can
simplify the programming of the timer by including this code in your
own applications.

6. Choose Make to compile, link, and download the program
automatically.

7. Use the gdb960 debugger to execute timrcntr . Type:
run

The debugger responds by displaying the current count of each timer
every time timer0 causes an interrupt.

8. Type: quit

Fault Handling

These programs, fault.c , flt_proc.c , asm_flt.s , and system.c , show
the steps taken in setting up the fault handling procedures in the fault and
system procedure tables. The faults are then triggered one by one.

5-18

5Getting Started with the 80960 QUICKval Kit

Table 5-2 i960 Hx Processor Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

Number Name

Number
or Bit
Position Name

0H PARALLEL NA See your
microprocessor
user’s manual

1H TRACE Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

INSTRUCTION

BRANCH

CALL

RETURN

PRERETURN

SUPERVISOR

MARK

0001 0002H

0001 0004H

0001 0008H

0001 0010H

0001 0020H

0001 0040H

0001 0080H

2H OPERATION 1H

2H

3H

4H

INVALID_OPCODE

UNIMPLEMENTED

UNALIGNED

INVALID_OPERAND

0002 0001H

0002 0002H

0002 0003H

0002 0004H

3H ARITHMETIC 1H

2H

INTEGER_OVERFLOW

ZERO-DIVIDE

0003 0001H

0003 0002H

4H Reserved

5H CONSTRAINT 1H RANGE 0005 0001H

6H Reserved

7H PROTECTION Bit 1
Bit 5

LENGTH

BAD_ACCESS

0007 0002H

0007 0020H

9H Reserved

8H MACHINE 2H PARITY_ERROR 0008 0002H

AH TYPE 1H MISMATCH 000A 0001H

BH - FH Reserved

10H OVERRIDE NA NA NA

The i960 Hx CPU Example Programs5

5-19

1. Choose Fault Handling.
2. Choose QV Code.
3. Scroll through the fault.c code to see a call to the function

load_flt_proc(). This function loads the fault handling procedures into
the fault and/or the system table.

4. Open and scroll through the flt_proc.c and asm_flt.s files. The
flt_proc.c file contains the fault handling procedures, and the file
asm_flt.s is used to help generate the faults.

5. Choose Make to compile, link, and download the program
automatically.

6. Use the gdb960 debugger to execute fault . Type:
run

The debugger responds by displaying the Fault Type and the Fault
Subtype for each fault handled. The address of the faulting instruction
is given (see Table 5-2).

7. Type: quit

Static, Global, and Profile-Driven Optimizations

Optimizing compilers provide you with a means of developing high
performance code without detailed knowledge of the architecture.
Engineers who understand the features of the i960 architecture developed
gcc960 to provide optimizations that take full advantage of the i960
processor. In general, optimizing compilation takes more time and may
require more memory for large functions. However, the benefit in runtime
performance is well worth it.

NOTE. When compiling, disregard the compiler warning:
Warning: unaligned register

This is one of the faults that will be handled.

5-20

5Getting Started with the 80960 QUICKval Kit

There are several levels of optimization available. Typically, low levels of
optimizations are used during the debugging phase. Certain optimizations
can cause significant code changes that may make high-level debugging
difficult. Once your application is functioning properly, you can increase its
runtime performance by using a higher level of optimization.

Release 5.0 and later of the development tools support the ELF object
module format and DWARF version 2.0 debug information format. The new
format enables more accurate mapping between source and object code at
higher optimization levels and ease debugging of production code.

The C optimization example uses a program called chksum.c . The C++
examples use a program called optimize.cpp .

C No Optimization
1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Local Optimizations.
4. Choose Make -O0 to compile without optimizations, link, and

download the program automatically.
5. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 11.776468 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

C Static Optimization

Use the following commands to compile the chksum.c program using the
highest level of optimization without using runtime behavior, or
program-wide optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Local Optimizations.

The i960 Hx CPU Example Programs5

5-21

4. Choose Make -O4 to compile with optimizations, link, and download
the program automatically.

5. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 0.988957 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

7. Choose Results.

C++ No Optimization
1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Local Optimizations.
5. Choose Make -O0 to compile without optimizations, link, and

download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 4.93137 seconds.
Program exited normally

7. Type: quit

C++ Static Optimization

Use the following commands to compile the optimize.cpp program using
the highest level of optimization without using runtime behavior, or
program-wide optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.

5-22

5Getting Started with the 80960 QUICKval Kit

3. Choose C++ Optimizations.
4. Choose C++ Local Optimizations.
5. Choose Make -O4 to compile without optimizations, link, and

download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 3.93345 seconds.
Program exited normally

7. Type: quit

8. Choose Results.

C Global Optimization

Use the following commands to compile the chksum.c with program
program-wide optimizations, which are sophisticated, inter-module
optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Global Optimizations.
4. Choose Make +O5 to compile with optimizations, link, and download

the program automatically.
5. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 1.167572 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

7. Choose Results.

The i960 Hx CPU Example Programs5

5-23

C++ Global Optimization

Use the following commands to compile the optimize.cpp program using
the program program-wide optimizations, which are sophisticated,
inter-module optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Global Optimizations.
5. Choose Make+05 to compile with optimizations, link, and download

the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 3.90345 seconds.
Program exited normally

7. Type: quit

8. Choose Results.

Instrumentation, Profile Creation, Decision-making, and
Profile-Driven Re-Compilation

A 92% improvement in C code performance is significant, but there is
another level of optimization that is uniquely available through Intel’s
CTOOLS compilers: profile-driven optimization. This two-pass
compilation procedure allows the compiler to make optimizations based on
runtime behavior as well as the static information used by conventional
optimizations.

The compiler can perform sophisticated inter-module optimizations, such as
replacing function calls with expanded function bodies when the function
call sites and function bodies are in different object modules. These are
called program-wide optimizations because the compiler collects
information from multiple source modules before it makes final
optimization decisions. Standard (i.e., non-program-wide) optimizations are
referred to as module-local optimizations.

5-24

5Getting Started with the 80960 QUICKval Kit

Program-wide optimizations are enabled by options that tell the compiler to:

1. Build a program database during the compilation phase.
2. Invoke a global decision making and optimization step during the

linking phase.
3. Automatically substitute the resulting optimized modules into the final

program before the end of the linking phase.

The compiler can also collect information about the runtime behavior of a
program by instrumenting the program. The instrumented program can be
executed with typical input data, and the resultant program execution profile
can be used by the global decision making and optimization phase to
improve the performance of the final optimized program. The profile can
also provide input to the global coverage analyzer tool (gcov960), which
gives users information about the runtime behavior of the program at the
source-code level.

1. Choose Compiler.
2. Choose Profiling Optimizations .
3. Choose Profiling Lab .
4. Follow the Profiling Tutorial link in the online help.

Using profile-driven optimization, an increase in runtime performance of
1% is obtained. The average 80960 application can expect to gain 15 to 30%
performance improvement through the use of this technology. This boost in
performance is available to you without any further investment in hardware.

C++ Virtual Function Optimizations

Invoking a virtual function is more expensive than invoking a non-virtual
function in C++. Also, other function-related optimizations such as inlining
cannot be performed on virtual functions. In many situations, however, the
call to the virtual function can be replaced by a direct call to a member
function and if possible it can be inlined at the call site. This improves the
runtime performance of the code.

Use the following commands to compile the optimize.cpp program.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.

The i960 Hx CPU Example Programs5

5-25

4. Choose C++ Virtual Opts .
5. Choose Make -NoVOpt to compile without virtual function

optimizations, link, and download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 3.90345 seconds.
Program exited normally

7. Type: quit

8. Choose Make -VOpt to compile with virtual function optimizations,
link, and download the program automatically.

9. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 3.54671 seconds.
Program exited normally

10. Type: quit

11. Choose Results.
The virtual function optimizations yielded a 9% improvement.

Note the runtime performance at each optimization level as shown below.

Table 5-3 i960 Hx Processor Optimization Results

Optimization Level C Execution Time C++ Execution Time

no optimization (-O0) 11.776468 seconds 4.93137 seconds

maximum static (-O4) 0.988957 seconds 3.93345 seconds

global optimization 1.167572 seconds 3.90345 seconds

profile-driven 0.975972seconds NA

Virtual Function
Optimization

NA 3.54671 seconds

5-26

5Getting Started with the 80960 QUICKval Kit

Building Self-contained Profiles with gmpf960

A raw profile contains program counters that record how many times
various statements in the source program have been executed. Information
in the PDB is needed to correlate these program counters with the source
program. A raw profile has a very short useful life. When changes are made
in the source code, any raw profiles previously obtained for that program are
no longer accepted by the global decision making and optimization step.

A self-contained profile captures the program structure from the PDB and
associates it with the program counters from the raw profile. When changes
are subsequently made to the source program, the global decision making
step interpolates or stretches the counters in the self-contained profile to fit
the changed program.

A self-contained profile can be used to optimize a program even after days,
weeks, or perhaps months worth of changes to the program. This frees you
from having to collect a new profile every time the program changes, while
still allowing profile-directed optimizations. Depending upon the nature and
quantity of changes to the program, the accuracy of the profile gradually
degrades over time as more interpolation is done.

A self-contained profile must be generated from a raw profile before the
program that generated the raw profile is relinked. You should always create
a self-contained profile immediately after the raw profile is collected.

1. Choose Compiler.
2. Choose Profiling Optimizations .
3. Choose Self-Contained.
4. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

5. Specify the program database directory.
The PDB can be specified by setting the environment variable
G960PDB.
For example, if you chose the default directory during installation,
enter:
SET G960PDB=C:\quickval\prof_lab\lab_pdb

The i960 Hx CPU Example Programs5

5-27

Or, specify the PDB at compiler invocation time with the Zdir option,
as shown in the example below.
gcc960 -Zmypdb foo.o

6. Compile for profile instrumentation.
Insert profile instrumentation into quick so that when the linked
program is executed, a profile can be collected. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,subst=:*+fprof -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A { arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-gcdm,subst=:* The tool that performs the global decision making
and optimization step is invoked from within the
linker when the gcdm option is used. The
substitution control specifies a module-set
specification of only eligible modules not linked
in from libraries.

+fprof causes generation of profile instrumentation.

-o quick the executable file will be named quick

quick.c the source file

7. Collect a Profile
If a program that contains one or more modules compiled with fprof
is linked with the standard libraries and then executed, a file named
default.pf containing the profile for those modules is automatically
produced when the program exits. Type:
gdb960 -t mon960 -b 115200 -r com1 -D lpt1 quick

5-28

5Getting Started with the 80960 QUICKval Kit

The options in this gdb960 compiler command are:

-t mon960 MON960 is on the target

-b 115200 use 115200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

quick the executable file

8. Use the gdb960 debugger to execute quick . Enter:
run

9. Exit the debugger. Enter:
quit

10. Enter the command:
gmpf960 -spf quick.pf default.pf

The options in this gmpf960 compiler command are:

-spf causes a self-contained profile, quick.pf , to be
produced as output.

default.pf The input profile.

11. Recompile the quick.c source code using the profiling information
obtained by the instrumentation. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=quick.pf -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-Gcdm,iprof=quick.pf

This supplies a profile file quick.pf to the
global decision making and optimization step.

The i960 Hx CPU Example Programs5

5-29

-o quick the executable file will be named quick

quick.c the source file

12. Change the control structure of quick.c.

Edit quick.c . Find the procedure called QUICK. In this procedure,
there is a control structure:
for(i = 2; i <= SORTELEMENTS; i+=1)

{

(LOGIC)

}

Change the control structure to:
i = 2;

while (i <= SORTELEMENTS)

{

(LOGIC)

i+=1;

}

13. Compile the new quick.c using the interpolated profile. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=quick.pf -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-Gcdm,iprof=quick.pf

This supplies a profile file quick.pf to the
global decision making and optimization step.

-o quick the executable file will be named quick

quick.c the source file

Notice that the global decision making and optimization option
(-gcdm) accepts the interpolated profile, quick.pf .

Profiling a Program in Pieces

Suppose that the target execution environment is memory limited so that all
your programs cannot be instrumented for profiling at the same time. You
can use substitutions to make partially instrumented versions of the final
executable, and then create self-contained profiles for each piece. Each
executable created in this way has a limited set of instrumented modules.

After you’ve created the self-contained profiles, you can use gmpf960 to
create a single merged self-contained profile. The final, merged
self-contained profile is identical to a profile obtained by instrumenting the
entire program at once.

In this example, you use the fault handling example programs to show
incremental profiling.

1. Choose Compiler.
2. Choose Profiling Optimizations.
3. Choose Incremental.
4. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

NOTE. The beauty of this example is that the global decision making
and optimization option (-gcdm) accepts the interpolated profile,
quick.pf , not the results of running this example.

The i960 Hx CPU Example Programs5

5-31

5. Specify the program database directory.
You can specify the PDB by setting the environment variable G960PDB.
For example, if you chose the default directory during installation,
enter:
SET G960PDB=C:\quickval\prof_lab\lab_pdb

Or, specify the PDB at compiler invocation time with the Zdir option,
as shown in the example below.
gcc960 -Zmypdb foo.o

6. Insert profile instrumentation into fault so that when the linked
program is executed, a profile can be collected. The instrumented
modules in this version of fault are from the files fault.c and
flt_proc.c . Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,subst=:f*+fprof -o fault fault.c flt_proc.c
asm_flt.s system.c

-Fcoff creates a COFF format output file.

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx.gld .

-fdb all modules subject to program-wide optimization
must be initially compiled with the fdb option.

-gcdm,subst=:f*

The tool that performs the global decision making
and optimization step is invoked from within the
linker when the gcdm option is used. The
substitution control specifies a module-set
specification of only the files that begin with f.

+Fprof causes generation of profile instrumentation.

-o fault names the executable file fault .

fault.c the source files.

flt_proc.c the fault procedures.

5-32

5Getting Started with the 80960 QUICKval Kit

asm_flt.s the assembly file to generate faults.

system. c system file.

7. Collect the profile.
When a program that contains one or more modules compiled with
fprof is linked with the standard libraries and then executed, a file
named default.pf containing the profile for those modules is
automatically produced when the program exits. Type:
gdb960 -t mon960 -b 9600 -r com1 -D lpt1 fault

-t mon960 MON960 is on the target

-b 115200 use 115200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

fault the executable file

8. Use the gdb960 debugger to execute fault . Enter:
run

9. Exit the debugger. Enter:
quit

10. Build the self-contained profiles with gmpf960.
To create a self-contained profile, use the gmpf960 profile merger tool.
gmpf960 is invoked with the raw profile as an input file. Enter:
gmpf960 -spf prof1.pf default.pf

-spf causes a self-contained profile, prof1.pf , to be
produced as output.

default.pf The input profile.

The resultant self-contained profile, prof1.pf , has a limited set of
instrumented modules.

11. Insert profile instrumentation into fault so that when the linked
program is executed, a profile can be collected. The instrumented
modules in this version of fault are from the file system.c . Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,subst=:s*+fprof -o fault fault.c flt_proc.c
asm_flt.s system.c

-Fcoff create a COFF format output file

The i960 Hx CPU Example Programs5

5-33

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD.

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-Gcdm,subst=:s*

The tool that performs the global decision making
and optimization step is invoked from within the
linker when the gcdm option is used. The
substitution control specifies a module-set
specification of only the files that begin withs .

+fprof causes generation of profile instrumentation.

-o fault names the executable file fault .

fault.c the source files

flt_proc.c the fault procedures

asm_flt.s the assembly file to generate faults

system.c system file

12. Collect the profile.
If a program that contains one or more modules compiled with fprof
is linked with the standard libraries and then executed, a file named
default.pf containing the profile for those modules is automatically
produced when the program exits. Type:
gdb960 -t mon960 -b 9600 -r com1 -D lpt1 fault

-t mon960 MON960 is on the target

-b 115200 use 115200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

fault the executable file

5-34

5Getting Started with the 80960 QUICKval Kit

13. Use the gdb960 debugger to execute fault . Enter:
run

14. Exit the debugger. Enter:
quit

15. Build the self-contained profiles with gmpf960.
To create a self-contained profile, use the gmpf960 profile merger tool.
gmpf960 is invoked with the raw profile as an input file. Enter:
gmpf960 -spf prof2.pf default.pf

-spf causes a self-contained profile, prof2.pf , to be
produced as output.

default.pf the input profile.

The resultant self-contained profile, prof2.pf , has a limited set of
instrumented modules.

16. Merge all the self-contained profiles into one.
The final prof.pf profile is identical to a profile obtained by
instrumenting the entire program at once. Type:
gmpf960 -spf prog.pf prof1.pf prof2.pf

-spf causes a self-contained profile, prog.pf , to be
produced as output.

prof1.pf an input self-contained profile.

prof2.pf an input self-contained profile.

17. Recompile the fault handling source code using the profiling
information obtained by the instrumentations. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=prog.pf -o fault fault.c flt_proc.c
asm_flt.s system.c

-Fcoff create a COFF format output file.

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx.gld .

-fdb all modules subject to program-wide optimization
must be initially compiled with the fdb option.

The i960 Hx CPU Example Programs5

5-35

-Gcdm,iprof=prog.pf

This supplies a profile file prog.pf to the global
decision making and optimization step.

-o fault names the executable file fault.

fault.c the source file.

flt_proc.c the fault procedures.

asm_flt.s the assembly file to generate faults.

system.c system file.

Compression Assisted Virtual Execution (CAVE)

This CTOOLS feature allows non-critical parts of an application’s machine
code to be stored in memory in compressed form resulting in reduced target
memory requirements. The code is expanded into native machine code on
demand for execution.

CAVE reduces the physical memory requirements of ROM-based
applications through link-time compression and on-demand runtime
decompression of user-specified functions. The compiler, linker, runtime
dispatcher, and compression and decompression routines cooperate to
provide this feature. Code is typically compressed by a ratio of between 1.5
and 1.7. Runtime decompression speed is about 30 clock cycles per byte of
compressed code.

When the CAVE mechanism is used, selected functions in the application
are designated to be secondary functions. All other functions are termed
primary functions. The primary set should contain performance-critical
functions, that are not to be affected by the CAVE mechanisms; the
secondary set is subject to compression. Secondary functions are
compressed by the linker and reside in memory in compressed form. At
runtime, calls to secondary functions are intercepted by the CAVE
dispatcher and the functions are decompressed if necessary.

NOTE. The beauty of this example is the methodology of incremental
profiling, not the result of running the example.

5-36

5Getting Started with the 80960 QUICKval Kit

Note that due to the overhead of decompressing code at runtime, only
non-performance critical code should be secondary functions, such as error
handling code or initialization code. You can use runtime profile
information generated by gcov960 to aid in selecting the set of secondary
functions.

This example uses a tic-tac-toe game to show how to reduce target memory
requirements. The text sections of compressed and uncompressed tic-tac-toe
executables are compared. Additionally, this example demonstrates how to
specify functions for compression.

For the sake of demonstration, we compress performance-critical code in
the tic-tac-toe program. The purpose of this example is to show the reduced
text section of the executable, not demonstrate run times.

C Example
1. Choose Compiler.
2. Choose C Cave.
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Use the gcc960 mcave option or #pragma cave to designate the
specified functions as secondary. In the tic-tac-toe example, ttt.c ,
the following #pragma has been added:
#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)

where Initialize, Winner, Other, Play, Evaluate,
Best_Move, Describe, Move, and Game are all functions to be
compressed.

5. Edit ttt.c . Make sure the #pragma cave program line is
commented out:
/*#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)*/

6. Compile the tic-tac-toe program. Enter:
gcc960 -A{arch} -Fcoff -T{Link-dir} -o ttt ttt.c

The options in this command are:

-Fcoff create a COFF format output file

The i960 Hx CPU Example Programs5

5-37

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy hx specifies mcyhx .gld.

-o ttt names the executable file ttt

ttt.c input file

7. Check the text section size of the uncompressed program. Enter:
gsize960 ttt

The option in this command is:

ttt name of the executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the uncompressed text section.

8. Edit ttt.c . Make sure the #pragma cave program line is
uncommented:
#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)

9. Compile the tic-tac-toe program with the pragma program line. Enter:
gcc960 -A{arch} -Fcoff -T{Link-dir} -o ttt ttt.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy hx specifies mcyhx .gld.

-o ttt names the executable file ttt

ttt.c input file

10. Check the text section size of the compressed program. Enter:
gsize960 ttt

The option in this command is:

ttt executable file

5-38

5Getting Started with the 80960 QUICKval Kit

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the compressed text section. In this example,
you can expect a code size reduction of approximately 1 percent. Here
are some typical results for the supported processor types:

Note that the purpose of this example is to teach you how to use the CAVE
feature with programs. Though the improvements are small, you can expect
much better results with real-world programs of approximately 100 Kbytes
and larger, especially if the software has many non-critical functions.

C++ Compression Assisted Virtual Execution (CAVE)

1. Choose Compiler.
2. Choose C++ Cave.
3. Choose Make.The following tutorial is displayed in the QUICKval

browser, and the command lines may be entered at the Command
Prompt window.

Table 5-4 Uncompressed Text Sections

State
80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Uncompressed 33,764 32,944 32,768 32,976 31,600

Table 5-5 After Function Compression

State
80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Compressed
Text

31,908 30,832 30,816 30,832 29,648

Cave Section 1,818 1,770 1,746 1,800 1,776

Total 33,726 32,602 32,562 32,632 31,424

Table 5-6 Improvement

80960Rx 80960Hx 80960Jx 80960Cx 80960Sx

0.1% 1.0 % 0.6 % 1.0 % 0.6 %

The i960 Hx CPU Example Programs5

5-39

4. Use the gcc960 mcave option or #pragma cave designate the
specified functions as secondary. In the C++ example, cavecpp.cpp ,
the following #pragma has been added:
#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

where initSetName , initSetDept , initSetGpa ,
initSetNumPubs , isOutstanding , printName , and
InitializeRecords are all functions to be compressed, i.e., all
functions are secondary functions. All other functions of the program
are primary functions.
The primary set should contain performance-critical functions that are
not to be affected by the CAVE mechanism; the secondary set is subject
to compression. Secondary functions are compressed by the linker and
reside in memory in compressed form.
The C++ compiler behaves in essentially the same manner as the C
compiler when the mcave or Gcave options are used - generating all
functions in the compilation unit for which this option is in effect
as secondary.
A user typically designates a single function as secondary through
the use of pragma cave . The following statement for example
designates the function max as secondary.
pragma cave max

However in C++ overloaded functions have the same name. Member
functions of two different classes are also allowed to have the same
name and these member functions can in turn have the same name as a
function with file scope.
When a user specifies a function as secondary through the use of
pragma cave , the C++ compiler treats all functions with this name as
secondary. To illustrate, consider the following example:
ifdef PRAGMA
pragma cave max
endif

int max(int a, int b)
{
return a > b ? a : b;
}

5-40

5Getting Started with the 80960 QUICKval Kit

float max(float a, float b)
{
return a > b ? a : b;
}

class Tclass1 {
int a, b;
public:
int max();
};

int Tclass1::max()
{
return a > b ? a : b;
}

class Tclass2 {
float a, b;
public:
float max();
};

float Tclass2::max()
{
return a > b ? a : b;
}

Tclass1 t1;
Tclass2 t2;

The Compiler treats all the following functions as secondary.
int max(int, int);
float max(float, float);
int Tclass1::max();
float Tclass2::max();

5. Choose Qv Code. Edit cavecpp.cpp . Make sure the #pragma

cave program line is commented out:
//#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

The i960 Hx CPU Example Programs5

5-41

6. Compile the C++ program. Enter:
gcc960 -A{ arch } -Felf -T{ Link-dir } -stdlibcpp -o
cavecpp cavecpp.cpp

The options in this command are:

-Felf create an ELF format output file

-A{ arch } specifies the architecture. For example, -AHD
specifies an 80960HD

-T{ Link-dir } specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx.gld .

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-o cavecpp specifies the executable file cavecpp

cavecpp.cpp input file

7. Check the text section size of the uncompressed program. Enter:
gsize960 cavecpp

The option in this command is:

cavecpp specifies the executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the uncompressed text section.

8. Choose Qv Code and edit cavecpp.cpp . Make sure the #pragma
cave program line is uncommented:
#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

9. Compile the C++ program with the pragma program line. Enter:
gcc960 -A{ arch } -Felf -T{ Link-dir } -stdlibcpp
-o cavecpp cavecpp.cpp

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx.gld .

5-42

5Getting Started with the 80960 QUICKval Kit

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-o cavecpp specifies the executable file ttt

cavecpp.cpp specifies the input file
10. Check the text section size of the compressed program. Enter:

gsize960 cavecpp

The option in this command is:

cavecpp executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the compressed text section. In this example, you can
expect a code size reduction of approximately 1 percent. Here are some
typical results for the supported processor types:

Table 5-7 Uncompressed Text Sections

80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Uncompressed 89,788 84,196 83,512 84,196 81,764

Table 5-8 After Function Compression

80960Rx Size 80960Hx Size 80960Jx Size 80960Cx Size 80960Sx Size

Compressed
 Text

87,612 81,892 81,512 81,892 79,796

Cave
Section

1,920 1,546 1,514 1,546 1,512

Total 89,532 83,438 83,026 83,438 81,308

Table 5-9 Improvement

80960Rx 80960Hx 80960Jx 80960Cx 80960Sx

1% 1% 1% 1% 1%

The i960 Hx CPU Example Programs5

5-43

Note that the purpose of this example is to teach you how to use the CAVE
feature with programs. Though the improvements are small, you can expect
much better results with real-world programs of approximately 100 Kbytes
and larger, especially if the software has many non-critical functions.

Linker Consumption

You can link b.out-format, COFF or ELF object files and libraries in any
combination. To determine a file format, the linker examines the first two
bytes of the file. An unrecognized value indicates a linker-directive file.
This feature is useful when using third-party archives with CTOOLS
runtime libraries and your application code. The runtime libraries are
shipped in ELF format only (effective with the 5.0 version of the tools).
Each can potentially have a different OMF, and the linkage still completes.

If the linker generates a different output format than the input, the linker
does not copy debug information from the input file to the output file.
Because of this, you should use only one OMF.

The symbol tables of each OMF are abbreviated when crossing OMF
boundaries. For example, when you include a b.out OMF file in a linkage
where the output file OMF is COFF format, none of the debug information
from the b.out file is copied into the output COFF file.

NOTE. As of version 5.0 of the tools, all runtime libraries are shipped in
ELF format only.

5-44

5Getting Started with the 80960 QUICKval Kit

1. Choose Linker and Utilities .
2. Choose Linker Consumption.
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Compile the first file in COFF format. Enter:
gcc960 -Fcoff -A {arch} -c t85c36.c

The options in this command are:

-Fcoff creates a COFF format output file.

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-c compile, but do not link.

t85c36.c input file.

5. Compile the second file in ELF format. Enter:
gcc960 -Felf -A {arch} -c system.c

The options in this command are:

-Felf creates an ELF format output file.

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-c compiles, but does not link.

system.c input file.

 GLD960

 b.out COFF ELF

 b.out COFF ELF

The i960 Hx CPU Example Programs5

5-45

6. Compile the third file in b.out format. Enter:
gcc960 -Fbout -A {arch} -c -r cyint.c int_proc.s

The options in this command are:

-Fbout creates a b.out format output file.

-A {arch} specifies the architecture. For example, -AHD

specifies an 80960HD

-c compiles, but does not link.

-r allows unresolved references.

cyint.c the source file.

int_proc.s the interrupt handler.

7. Generate an absolute file in ELF format by linking files in b.out-format,
ELF format, and COFF format. The absolute file could have also been
in b.out-format or COFF format. Enter:
gld960 -Felf -T {Link-dir} -A {arch} -o elf t85c36.o
system.o cyint.o int_proc.o

The options in this command are:

-Felf specifies the absolute file as ELF format.

-T {Link-dir} specifies the linker directive file. For example,
-Tcyhx specifies cyhx.gld .

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-o elf names the executable file elf .

cyint.o file in b.out-format.

int_proc.o file in b.out-format.

t85c36.o file in COFF format.

system.o file in ELF format.

NOTE. The beauty of this example is the functionality of the linker, not
the result of running the example.

5-46

5Getting Started with the 80960 QUICKval Kit

Assembler Pseudo-instruction Tutorial

This tutorial demonstrates the use of pseudo-instructions that have been
added to the CTOOLS assembler to ease migration between processors.
The tutorial that follows demonstrates how to enable and disable the
instruction cache for the i960 Cx, Hx, Jx, and Rx microprocessors using
microprocessor specific instructions. The tutorial then demonstrates how
easy it is to enable and disable the instruction cache using only one pair of
pseudo-instructions.

What Are Pseudo-instructions?

A number of pseudo-instructions (pseudo-ops) have been added to the
CTOOLS assembler to ease the migration between processors. These
pseudo-ops provide an architecture-independent method for performing
some of the more common low-level processing operations. Using these
pseudo-ops should reduce the number of changes required when moving
assembly code from one i960 processor to another.

When you use any of the new i960 pseudo-instructions, you are required to
re-assemble your source code before running it on a new target platform
(e.g., from Cx to Jx). The assembler selects the best processor instructions
to replace the pseudo-instructions based on the processor targeted.

pseudop.c: Editing the File for the Cx Microprocessor
1. If you are using the Hx Jx Cx & Sx QUICKval software, choose

Linker and Utilities . If using the Rx QUICKval software, this step is
not necessary.

2. Choose Pseudo-op Tutorial
3. Choose Make. The following tutorial is displayed in the QUICKval

browser, and the command lines may be entered at the Command
Prompt window.

The i960 Hx CPU Example Programs5

5-47

4. Choose Qv Code. View the file pseudop.c loaded into the editor.
Scroll down the file to view the two procedures: cache_off() and
cache_on() . Both procedures contain no code initially.

cache_off() looks like:
cache_off()

{

}

5. Add the code necessary to disable the instruction cache for the Cx
microprocessor. Between the brackets of the cache_off()
procedure, add the following line exactly:
__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(DISABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

The cache_off() procedure should look like this:
cache_off()

{

__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(DISABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

}

This procedure, cache_off() , uses the instruction cache control
processor instruction sysctl . This instruction is valid in the i960 Cx
processor for managing and controlling the instruction cache. sysctl
is used above to disable the instruction cache. Also, the
CONFIGURE_ICACHE and DISABLE_ICACHE constants are found in
the system.h file that is included in the pseudop.c file.

6. Likewise, edit the cache_on() procedure adding the following line
exactly:
__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(ENABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

5-48

5Getting Started with the 80960 QUICKval Kit

The cache_on() procedure should look like this:
cache_on()

{

__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(ENABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

}

Similarly, the cache_on() procedure for the Cx microprocessor uses
the instruction cache control processor instruction sysctl . sysctl

is used directly above to enable the instruction cache.
7. Save the pseudop.c file.

Running pseudop.c for the Cx Microprocessor

1. Compile and run the pseudop.c program to show that it works as
desired.

2. In the Command Prompt window, enter the following commands:
gcc960 -AC{ F|A } -Fcoff -Tmcycx -o pseudop pseudop.c

The options in this command are:

-AC{ F|A } sets the target architecture for the compiler. For
this example, choose the Cx architecture, -ACF

or -ACA

-Fcoff sets the object file type as coff.

-Tmcycx sets the linker directive file for the Cx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

NOTE. If you do not have an i960 Cx microprocessor, you cannot run
this example; however, you can still compile the code to verify that it
compiles without error.

The i960 Hx CPU Example Programs5

5-49

If you have a Cx microprocessor and want to run the program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are: 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

-r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are: com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

3. At the (gdb960) prompt, enter: run

The program prints out the performance advantage of running the
program with the instruction cache enabled versus disabled.

4. At the (gdb960) prompt, enter: quit

NOTE. The beauty of this example is not the results of the running
program, but the fact that the code works with instructions chosen
specifically for the Cx architecture. Of course, this is what is expected.
This program becomes more interesting when you start using
pseudo-instructions.

5-50

5Getting Started with the 80960 QUICKval Kit

pseudop.c: Migrating the File to the Jx/Hx/Rx Microprocessor

Since the i960 Jx, Hx, and Rx microprocessors use the same processor
instruction to enable and disable the instruction cache, this migration
supports all three processors.

In order to use the program, pseudop.c , modified in the first part of this
tutorial to support the Jx, Hx, or Rx microprocessor, it must first be
migrated to those processors since they do not use the sysctl instruction
to enable and disable the instruction cache.

1. Choose Qv Code. View the file pseudop.c loaded into the editor.
Scroll down the file to view the two procedures: cache_off() and
cache_on() .
cache_off() contains the Cx specific code and looks like:
cache_off()

{

__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(DISABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

}

2. Change the code to disable the instruction cache for the i960 Jx/Hx/Rx
microprocessors. Between the brackets of the cache_off()
procedure, delete the previously added line and insert the following line
exactly:
__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_OFF),"d"(0),"d"(0));

The cache_off() procedure should now look like this:
cache_off()

{

__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_OFF),"d"(0),"d"(0));

}

This procedure, cache_off() , uses the instruction cache control
processor instruction icctl . This instruction is valid in the 80960
Jx/Hx/Rx processors for managing and controlling the instruction
cache. icctl is used above to disable the instruction cache. Also,
the ICACHE_OFF constant is found in the system.h file that is
included in the pseudop.c file.

The i960 Hx CPU Example Programs5

5-51

3. Likewise, edit the cache_on() procedure deleting the previously
added line and inserting the following line exactly:
__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_ON),"d"(0),"d"(0));

The cache_on() procedure should now look like this:
cache_on()

{

__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_ON),"d"(0),"d"(0));

}

Similarly, the cache_on() procedure for the Jx/Hx/Rx
microprocessors use the instruction cache control processor instruction
icctl . icctl is used directly above to enable the instruction cache.

4. Save the pseudop.c file.

Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors
1. Compile and run the pseudop.c program to show that it works as

desired.

2. In the Command Prompt window, enter the following commands:
For the Jx Microprocessor:
gcc960 -AJ{ F|D|A } -Fcoff -Tmcyjx -o pseudop pseudop.c

The options in this command are:

-AJ{ AF|D|T } sets the target architecture for the compiler. For
this example, to choose the Jx architecture, -AJA ,
-AJF , -AJD , or -AJT

-Fcoff sets the object file type as coff.

-Tmcyjx sets the linker directive file for the Jx architecture.

NOTE. If you do not have an i960 Jx, Hx, or Rx microprocessor, you
cannot run this example; however, you can still compile the code to verify
that it compiles without error.

5-52

5Getting Started with the 80960 QUICKval Kit

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For the Hx Microprocessor:
gcc960 -AH{D|A} -Fcoff -Tmcyhx -o pseudop pseudop.c

The options in this command are:

-AH{ D|A } sets the target architecture for the compiler. For
this example, to choose the Hx architecture, -AHD
or -AHA

-Fcoff sets the object file type as coff.

-Tmcyhx sets the linker directive file for the Hx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For Rx Microprocessor:
gcc960 -AR{ P|D } -Fcoff -Tmcyrx -o pseudop pseudop.c

The options in this command are:

-AR{ P|D } sets the target architecture for the compiler. For
this example, to choose the Rx architecture:

-ARP or -ARD

-Fcoff sets the object file type as coff.

-Tmcyrx sets the linker directive file for the Rx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

3. If you have a Jx, Hx, or Rx microprocessor and want to run the
program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The i960 Hx CPU Example Programs5

5-53

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

 -r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

4. At the (gdb960) prompt, enter: run

The program prints out the performance advantage of running the
program with the instruction cache enabled versus disabled.

5. At the (gdb960) prompt, enter: quit

NOTE. The beauty of this example is not the results of the running
program, but the fact that the code works with instructions chosen
specifically for the architecture in question. Of course, this is what is
expected. This program becomes more interesting when you start using
pseudo-instructions.

5-54

5Getting Started with the 80960 QUICKval Kit

pseudop.c: Adding Pseudo-Ops to the Program

As can be seen, it is neither easy nor fun migrating code from one processor
to another, especially when your code is many thousands of lines long.
Fortunately, pseudo-instructions have been added to the CTOOLS
assembler to ease migration between processors.

1. Choose Qv Code. View the file pseudop.c loaded into the editor.
You are ready now to rewrite this program using pseudo-instructions.
Scroll down the file to view the two procedures: cache_off() and
cache_on() .
cache_off() contains the i960 Jx/Hx/Rx microprocessor specific
code:
cache_off()

{

__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_OFF),"d"(0),"d"(0));

}

2. Change the code to disable the instruction cache for ALL processors.
Between the brackets of the cache_off() procedure, delete the
previously added line and insert the following line exactly:

__asm__ __volatile__("ic_disable r5");

The cache_off() procedure should now look like this:
cache_off()

{

 /* local register r5 is used to hold the status
returned */

__asm__ __volatile__("ic_disable r5");

}

This procedure, cache_off() , uses the pseudo-instruction
ic_disable . When this program, pseudop.c , is compiled for a
specific 80960 processor by using a -A architecture flag, the best
instructions for that architecture are chosen to replace the
ic_disable pseudo-op. Thus, pseudo-ops ease migration between
processors. Also, notice only one argument to the pseudo-op is
necessary. The icctl instruction requires three arguments.
Programming with pseudo-ops can be simpler. Pseudo-instructions are
also available to perform the other instruction cache management and
controlling functions, such as cache invalidation.

The i960 Hx CPU Example Programs5

5-55

3. Likewise, edit the cache_on() procedure deleting the previously
added line and inserting the following line exactly:
__asm__ __volatile__("ic_enable r5");

The cache_on() procedure should now look like this:
cache_on()

{

 /* local register r5 is used to hold the status
returned */

__asm__ __volatile__("ic_enable r5");

}

Similarly, cache_on() uses a pseudo-instruction: ic_enable .
When this program, pseudop.c , is compiled for a specific 80960
processor, the best instruction for that architecture is chosen to replace
the ic_enable pseudo-op.

4. Save the pseudop.c file.

Running pseudop.c with Pseudo-instruction
1. Compile and run the pseudop.c program to show that the

pseudo-instructions work as desired. To prove that the best instruction
is chosen for the architecture, compile the code for the Cx
microprocessor and then the Jx, Hx, or Rx microprocessor.

2. In the Command Prompt window, enter the following command:
gcc960 -AC{ F|A } -Fcoff -Tmcycx -o pseudop pseudop.c

The options in this command are:

-AC{ F|A } sets the target architecture for the compiler. For
this example, choose the Cx architecture, -ACF

or -ACA.

-Fcoff sets the object file type as coff.

-Tmcycx sets the linker directive file for the Cx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

When compiled, warnings may be generated. The warnings are
generated just to point out this simple fact: when you use any of the
new i960 pseudo-instructions, you are required to re-assemble your

5-56

5Getting Started with the 80960 QUICKval Kit

source code before running it on a new target platform (e.g., from Cx to
Jx). The assembler selects the best instructions to replace the
pseudo-instructions based on the processor targeted.

3. If you have a Cx microprocessor and want to run the program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are: 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

-r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are: com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

4. At the (gdb960) prompt, enter: run

The program prints out the performance advantage of running the
program with the instruction cache enabled versus disabled.

NOTE. The beauty of this example is not the results of the running
program, but the fact that the code works as expected with
pseudo-instructions.

The i960 Hx CPU Example Programs5

5-57

The result of this example is similar to using instructions specifically
chosen for the Cx architecture. So, using pseudo-instructions can
maintain the logic of your code, while easing migration to future i960
microprocessors.

5. At the (gdb960) prompt, enter: quit

Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors
Now you are ready to compile the code for the Jx, Hx, or Rx microprocessor
to demonstrate similar results on a different processor.

1. In the Command Prompt window, enter the following commands:
For the Jx Microprocessor:
gcc960 -AJ{ F|D|A } -Fcoff -Tmcyjx -o pseudop pseudop.c

The options in this command are:

-AJ{ A|F|D|T } sets the target architecture for the compiler. For
this example, to choose the Jx architecture, -AJA ,
-AJF , -AJD , or -AJT

-Fcoff sets the object file type as coff.

-Tmcyjx sets the linker directive file for the Jx architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For the Hx Microprocessor:
gcc960 -AH{ D|A } -Fcoff -Tmcyhx -o pseudop pseudop.c

The options in this command are:

-AH{ D|A } sets the target architecture for the compiler. For
this example, to choose the Hx architecture, -AHD
or -AHA

-Fcoff sets the object file type as coff.

NOTE. If you do not have an i960 Jx, Hx, or Rx microprocessor, you
cannot run this example; however, you can still compile the code to verify
that it compiles without error.

5-58

5Getting Started with the 80960 QUICKval Kit

-Tmcyhx sets the linker directive file for the Hx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For Rx Microprocessor:
gcc960 -AR{ P|D } -Fcoff -Tmcyrx -o pseudop pseudop.c

The options in this command are:

-AR{ P|D } sets the target architecture for the compiler. For
this example, to choose the Rx architecture, -ARP
or -ARD

-Fcoff sets the object file type as coff.

-Tmcyrx sets the linker directive file for the Rx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

2. If you have a Jx, Hx, or Rx microprocessor and want to run the
program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

 -r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are com1, com2, com3, and com4.

The i960 Hx CPU Example Programs5

5-59

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

3. At the (gdb960) prompt, enter: run

The result of this example is the same as using instructions specifically
chosen for the Jx, Hx, or Rx architecture. So, using
pseudo-instructions does not change the logic of the program. It only
eases future migration of your code to future i960
microprocessors.

4. At the (gdb960) prompt, enter: quit

When compiled, warnings may be generated. The warnings are
generated just to point out this simple fact: When you use any of the
new i960 pseudo-instructions, you are required to re-assemble your
source code before running it on a new target platform (e.g., from Cx to
Jx). The assembler selects the best instructions to replace the
pseudo-instructions based on the processor targeted.

CONGRATULATIONS! You can now start using pseudo-instructions in
your code to ease migration of your code to future i960 processors.

Debugging with gdb960

A software debugger is a useful tool that allows you to learn more about the
behavior of an application program while it is running on a target or
simulator. gdb960 is a source-level debugger that allows you to interact with
your application program running on a target system through the debug
monitor, MON960. MON960 is resident on the Cyclone CPU module.

This example uses the card game, Go Fish, and is designed to teach you a
few debugger commands so that you can further examine the example
programs provided with this kit or your own programs. In the card game,
Go Fish, you and the computer each get several cards. You take turns
guessing which cards are in each other’s hands. When you guess correctly,
you acquire that card. If you don’t guess correctly, you need to “Go Fish”
and draw another card from the pack. When you get four-of-a-kind, you

5-60

5Getting Started with the 80960 QUICKval Kit

remove those cards from your hand. The objective of the game is to have the
most sets of four-of-a-kind when either you or the computer has no cards
remaining in your hands.

1. Choose Debugger.
2. Choose gdb960 Tutorial.
3. Choose Make to compile, link, and download the program

automatically.
The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Do Not Type Run! First, use the gdb960 debugger to set a breakpoint
at function main() . Type:
break main

The debugger responds by displaying:
Breakpoint 1 set at 0xa0008570: file fish.c, line 209.

NOTE. This example uses the command line interface to gdb960. The
program also features a Graphical User Interface in both Windows and
UNIX. See The gdb960 User’s Manual for more information.

NOTE. DEBUGGING SHORTCUTS
Abbreviations for gdb960 commands are accepted as long as they are
unambiguous.
To run, enter: r
To break, enter: br
To list, enter: l
To continue, enter: c
To print, enter: p
To clear, enter: cl
To quit, enter: qu
For help, enter: he

The i960 Hx CPU Example Programs5

5-61

5. Set a second breakpoint at line 275. Type:
break 275

The debugger responds by displaying:
Breakpoint 2 set at 0xa0008bc4: file fish.c, line 275.

6. To execute the program from the beginning, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/fish
Breakpoint 1, main() at fish.c, 209.
209 srand();

7. To display the code at the breakpoint, type:
list

The debugger displays lines 204-213 of the fish.c source. To see the
next ten lines, type list again.

8. To continue executing the program from this location, type:
continue

The debugger responds by displaying:
Continue.
Would you like instructions[n]?

9. Reply by typing y for yes or <Enter> or n for no.
your hand is: A A 6 6 8 8 9
Breakpoint 2, game() at fish.c:275.
275 if(!move(yourhand,myhand,g=guess(),0))break;

10. In the source code in step 9, there are two variable arrays, myhand and
yourhand . Myhand is the computer’s hand and yourhand is yours. To
look at the card in the computer’s hand, type:
print myhand

The debugger responds by displaying:
$1=“000\000\000\001\000\002\000\001\000\000\001\002\000”

myhand[0] does not represent a card.
myhand[1] represents the number of Aces.
myhand[2] represents the number of 2s, and so on.
The same order of cards is represented in the array, yourhand .
If a King is drawn by either player, myhand[13] or yourhand[13]
will appear when you print the array.

5-62

5Getting Started with the 80960 QUICKval Kit

11. Using the ability to see the computer’s hand, you are able to beat the
computer every time. Clear the first breakpoint at the function main()
and continue playing the game, looking at the computer’s hand any
time you need to. To clear the breakpoint at main() , type:
clear main

The debugger responds by displaying:
Deleted breakpoint 1

12. To continue executing the program, type:
continue

13. If you need further assistance beating the computer, contact the 80960
Technical Support Group for more hints.

14. Type: quit

Debugging Optimized Code

CTOOLS can use the ELF object module format and DWARF Version 2
debug information format as described in the 80960 Embedded Application
Binary Interface (ABI) Specification (order number 631999). The new
formats enable more accurate mapping between source and object code at
higher optimization levels and ease production code debugging.

This example shows that at the highest level of module-local optimization, it
is possible to set a breakpoint on an inline function using ELF/DWARF,
while with COFF this is not possible.

1. Choose Debugger.
2. Choose C ELF/DWARF Format .
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Compile swap.c with no module-local optimizations (no inlining). This
shows that the procedure swap is not inlined. Enter:
gcc960 -Felf -T {Link-dir} -A {arch} -O0 -S swap.c

The options in this command are:

-Felf creates an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

The i960 Hx CPU Example Programs5

5-63

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx.gld .

-O0 no module-local optimizations

-S generate assembly code from the source code

swap.c input file

5. Edit swap.s (the generated assembly file from swap.c). In the
function _main , see the call to the procedure swap:
callj _swap

This is an out-of-line call to the procedure swap. The function swap
has not been inlined.

6. Now, compile swap.c with the highest level of module-local
optimizations. This inlines the procedure swap.
gcc960 -Felf -T {Link-dir} -A {arch} -O4 -S swap.c

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx.gld .

-O4 highest level of module-local optimizations

-S generate assembly code from the source code

swap.c input file

7. Edit swap.s (the generated assembly file from swap.c). In the
function _main , note the call to the procedure swap does not exist:
callj _swap /* Does Not Exist*/

The procedure swap has been inlined.
8. Recompile using the -O4 optimization level, the ELF/DWARF format,

and add debugging information.
gcc960 -Felf -T {Link-dir} -A {arch} -O4 -g -o swap swap.c

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

5-64

5Getting Started with the 80960 QUICKval Kit

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy hx specifies mcyhx .gld.

-O4 highest level of module-local optimizations

-g include debug information in object file

-o swap names the executable file swap

swap.c input file

9. Download the executable file, swap, to the Cyclone eval board
memory. Enter:

gdb960 -t mon960 -b 115200 -r com1 -D lpt1 swap

The options in this command are:

-t mon960 MON960 is on the target

-b 115200 use 155200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

swap the executable file

10. Do Not Type Run!
First, set a breakpoint on the procedure swap. Enter:
break swap

The debugger responds by displaying:
breakpoint 1 @0xa00080f0:file swap.c, line 43

breakpoint 2 @0xa0008148:file swap.c, line 54

Breakpoint 1 is the out-of-line reference to the procedure swap.
Breakpoint 2 is the inline reference to the procedure swap.

Swap.c was compiled with a high level of module-local optimizations
that included function inlining, and it is still possible to set a breakpoint
on the inline function. Breakpoint 2 stops program execution.

11. To execute the program, enter:
run

The debugger responds by displaying:
Breakpoint 2, main() @ swap.c: 54

54 printf(ìThe smallest number is %d\nî,a);

The i960 Hx CPU Example Programs5

5-65

12. To continue the program, enter:
c

When the program has finished, enter:
quit

13. Compile using the -O4 optimization level, the COFF format, and add
debugging information.

gcc960 -Fcoff -T {Link-dir} -A {arch} -g -O4 -o swap swap.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx.gld .

-O4 highest level of module-local optimizations

-g include debug information in object file

-o swap names the executable file swap

swap.c input file

14. Download the executable file, swap, to the Cyclone eval board
memory. Enter:
gdb960 -t mon960 -b 115200 -r com1 -D lpt1 swap

The options in this command are:

-t mon960 MON960 is on the target

-b 115200 use 155200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

swap the executable file

15. Do Not Type Run!!
First, set a breakpoint on the procedure swap. Enter:
break swap

The debugger responds by displaying:
breakpoint 1 @0xa00080f0

5-66

5Getting Started with the 80960 QUICKval Kit

Breakpoint 1 is the out-of-line reference to the procedure swap. Notice
that no inline breakpoint has been set. This breakpoint does not stop
execution of the program.
Swap.c was compiled with a high level of module-local optimizations
that included function inlining, and it is not possible to set a breakpoint
on the inline function. Program execution does not stop.

16. To execute the program, enter:
run

The debugger responds by displaying the smallest number from the
swap. There is no break in program execution.

17. When the program has finished, enter:
quit

You have now seen that with the ELF/DWARF format, it is now
possible to debug your production code, even after high levels of
program optimization.

Debugging Optimized C++ Code Tutorial

The C++ compiler generates debug information using the DWARF format
when the -g option is specified with the -Felf option. This debug
information format is richer than that of other supported OMFs, and allows
more reliable debugging under optimization.

This tutorial demonstrates that at the highest level of module-local
optimization, debugging a C++ application is still possible due to the
DWARF debug format.

In this example, you compile a C++ program using the -O0 optimization
compiler option, which disables all optimizations, including those that may
interfere with debugging. The same C++ program is then compiled using
the highest-level of module-local optimization, -O4.

There are several levels of program optimization available with the
CTOOLS development tool suite. Typically, low levels of optimization are
used during the debugging phase. Certain optimizations can cause

The i960 Hx CPU Example Programs5

5-67

significant code changes that may make high-level debugging difficult.
Once the application is functioning properly, the application's performance
may be increased by using a higher level of optimization. The static
optimization options are:

O0 Turn optimization off

O1 Basic optimization

O2 strength-reduction, instruction scheduling for
pipelining, etc...

O3 O2 plus fconstprop, finline-functions , etc...

O4 O3 plus fsplit-mem, fmarry-mem, fcoalesce

Level O4 is the highest level of static optimization. Please refer to the
i960 Processor Compiler User's Guide for more information on
ELF/DWARF and compiler optimizations.

In this tutorial, you compile and debug a C++ program, cppdwarf.cpp ,
that contains many of the advanced features of the C++ language, including:

• Classes
• Public, protected, and private variable accessibility
• Virtual functions
• Scope operators
• Overloaded functions
• Class inheritance

Using ELF/DWARF, both levels of optimization, -O0 and -O4 , retain the
C++ program structure so that the above features may be investigated.

1. Choose Debugger.
2. Choose C++ ELF/DWARF Format .
3. Choose Make. The following tutorial is displayed in the QUICKval

browser, and the command lines may be entered at the Command
Prompt window.

4. Compile the program using the -O0 optimization level. In the
Command Prompt window, enter the following command:
gcc960 -Felf -A{ arch } -T{ Link-dir } -stdlibcpp -O0 -g
-o cppdwarf cppdwarf.cpp

5-68

5Getting Started with the 80960 QUICKval Kit

The options in this command are:

-Felf creates an ELF format output file.

-A{arch} specifies the architecture. For example, -AHD
specifies an 80960HD.

-T{Link-dir} specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx .gld.

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-O0 specifies the lowest level of module-local
optimizations.

-g includes debug information in object file.

-o cppdwarf specifies the executable file cppdwarf .

cppdwarf.cpp specifies the input file cppdwarf.cpp .

5. Run the program using the debugger, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -D
{ parallel port } -pci cppdwarf

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-t mon960 is optional since mon960 is the
default.

-b 115200 sets the baud rate for serial communication
(optional). This option, -b 115200 , is not
needed when the serial port is not being used.
Possible baud rates are 1200, 2400, 9600, 19200,
38400, 57600, and 115200.

-r com1 sets the port to use for serial communication
(optional). This option, -r com1 , is not needed
when the serial port is not being used; however,
the -pci option is required when no serial port
is used. Possible serial ports are com1, com2, ...
com99.

The i960 Hx CPU Example Programs5

5-69

-D lpt1 sets the code download option for the parallel port
(optional). This option, -D lpt1 , is not needed
when the serial port or PCI bus is used for code
download. Possible parallel ports are lpt1 and
lpt2.

-pci sets the code download option for the PCI bus
(optional). When no serial port is specified, the
PCI bus is used for serial communication also.
The -r comx option is required when the PCI
bus is not used (i.e., when the -pci option is not
used).

cppdwarf specifies the executable file cppdwarf .

6. Do Not Enter Run!
Now you are ready to examine some features of the downloaded C++
program, cppdwarf.cpp . A C++ class in the program is person .
The gdb960 command ptype may be used to display a description of
a data type, including classes.
At the (gdb960) prompt, enter:
ptype person

The following data type information concerning the class person
appears:

Example 5-1 person Class

type = class person {

 protected:

 char name[40];

 char dept[40];

 public:

 void setName ();

 void setName (char *);

 void setDept ();

 void setDept (char *);

 void printName ();

 virtual int isOutstanding ();

 virtual char * getDept ();

}

5-70

5Getting Started with the 80960 QUICKval Kit

Please note the following concerning the above output:
• The entire class information for person is displayed, including

variables and member functions.

• The public , protected , and private variable accessibility
qualifiers are displayed for variables and member functions.

• All member functions are displayed, including virtual functions
and overloaded functions.

Another C++ class in the program is professor , which inherits from
the person class. Again, you use the gdb960 command ptype to
display a description of the professor class.

7. At the (gdb960) prompt, enter:
ptype professor

The following data type information concerning the class professor
appears:

Please note the following concerning the above output:

• The entire class information for professor is displayed,
including variables and member functions.

• The public , protected , and private variable accessibility
qualifiers are displayed for variables and member functions.

• All member functions are displayed, including virtual functions
and overloaded functions.

• type = class professor : public person indicates that
the professor class inherits from the person class.

Example 5-2 professor Class

type = class professor : public person {

 private:

 int numPubs;

 public:

 void setNumPubs ();

 void setNumPubs (int);

 virtual int isOutstanding ();

}

The i960 Hx CPU Example Programs5

5-71

8. You are ready to set some breakpoints.

a. First, set a breakpoint on the overloaded function setNumPubs in
the professor class. At the (gdb960) prompt, enter:
break professor::setNumPubs

The following information concerning breakpoints is displayed:
[0] cancel

[1] all

[2] professor::setNumPubs(int) at
cppdwarf.cpp:125

[3] professor::setNumPubs(void) at
cppdwarf.cpp:118

Option 0 cancels the breakpoint operation. Option 1 sets a
breakpoint on all the professor::setNumPubs functions.
Option 2 sets a breakpoint on
professor::setNumPubs(int) on line 125 of
cppdwarf.cpp . Similarly, option 3 only sets a breakpoint on
professor::setNumPubs(void) on line 118 of
cppdwarf.cpp .

b. Set a breakpoint on all professor::setNumPubs functions. At
the > prompt, enter: 1

The following information about breakpoints is displayed:
Breakpoint 1 at 0xa00083d0: file cppdwarf.cpp,
line 125.

Breakpoint 2 at 0xa0008358: file cppdwarf.cpp,
line 118.

c. Set a breakpoint on the virtual function
professor::isOutstanding . At the (gdb960) prompt, enter:
break professor::isOutstanding

The following information concerning breakpoints is displayed:
Breakpoint 3 at 0xa0009080: file cppdwarf.cpp,
line 110.

9. You are now ready to start the program. At the (gdb960) prompt, enter:
run

Notice that the program stops at all three of the breakpoints.

10. To continue after a break, use the gdb960 command continue , or
enter the keyboard shortcut c .

5-72

5Getting Started with the 80960 QUICKval Kit

11. At the (gdb960) prompt, enter: quit

The results of the debug session were as expected because no
optimizations had been performed on the source code during
compilation. You can now recompile the cppdwarf.cpp program
using the highest-level of module-local optimization and repeat the
previous debug session.

12. Compile the program using the -O4 optimization level. In the
Command Prompt window, enter the following command:
gcc960 -Felf -A{ arch }-T{ Link-dir } -stdlibcpp -O4 -g
-o cppdwarf cppdwarf.cpp

The options in this command are:

-Felf create an ELF format output file

-A{ arch } specifies the architecture. For example, -AHD
specifies an 80960HD

-T{ Link-dir } specifies the linker directive file. For example,
-Tmcyhx specifies mcyhx.gld .

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-O4 highest level of module-local optimizations

-g include debug information in object file

-o cppdwarf specifies the executable file cppdwarf

cppdwarf.cpp input file

13. Run the program using the debugger, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -D
{ parallel port } -pci cppdwarf

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-t mon960 is optional since mon960 is the
default.

-b 115200 sets the baud rate for serial communication
(optional). This option, -b 115200 , is not
needed when the serial port is not being used.
Possible baud rates are: 1200, 2400, 9600, 19200,
38400, 57600, and 115200.

The i960 Hx CPU Example Programs5

5-73

-r com1 sets the port to use for serial communication
(optional). This option, -r com1 , is not needed
when the serial port is not being used; however,
the -pci option is required when no serial port
is used. Possible serial ports are: com1, com2, ...
com99.

-D lpt1 sets the code download option for the parallel port
(optional). This option, -D lpt1 , is not needed
when the serial port or PCI bus is used for code
download. Possible parallel ports are: lpt1 and
lpt2.

-pci sets the code download option for the PCI bus
(optional). When no serial port is given, the PCI
bus is used for serial communication also. The

-r comx option is required when the PCI bus is
not used (i.e., when the -pci option is not used.)

cppdwarf specifies the executable file.

14. Do Not Enter Run!
You are now ready to investigate some features of the downloaded C++
program, cppdwarf.cpp . A C++ class in the program is person .
The gdb960 command ptype may be used to display a description of
a data type, including classes. At the (gdb960) prompt, enter:
ptype person

Please note, the output matches that of Example 5-1, “person Class”.
Optimizations did not affect the person class output. It is the same
as the first debug session.

15. Another C++ class in the program is professor , which inherits from
the person class. Once again, you use the gdb960 command ptype to
display a description of the professor class. At the (gdb960)
prompt, enter:
ptype professor

Again please note, the output matches that of Example 5-2, “professor
Class”. Optimizations did not affect the professor class output. It
is the same as the first debug session.

5-74

5Getting Started with the 80960 QUICKval Kit

16. You are now ready to set some breakpoints.

a. First, set a breakpoint on the overloaded function setNumPubs
in the professor class. At the (gdb960) prompt, enter:
break professor::setNumPubs

The following information concerning breakpoints is displayed:
[0] cancel

[1] all

[2] professor::setNumPubs(int) at
cppdwarf.cpp:125

[3] professor::setNumPubs(void) at
cppdwarf.cpp:118

Option 0 cancels the breakpoint operation. Option 1 sets a
breakpoint on all the professor::setNumPubs functions.
Option 2 only sets a breakpoint on
professor::setNumPubs(int) on line 125 of
cppdwarf.cpp . Similarly, option 3 only sets a breakpoint on
professor::setNumPubs(void) on line 118 of
cppdwarf.cpp .

b. Set a breakpoint on all professor::setNumPubs functions, so
At the > prompt, enter: 1.
The following information about breakpoints is displayed:
Breakpoint 1 at 0xa00082e4: file cppdwarf.cpp,
line 125.

Breakpoint 2 at 0xa0008294: file cppdwarf.cpp,
line 118.

c. Finally, set a breakpoint on the virtual function
professor::isOutstanding . At the (gdb960) prompt, enter:
break professor::isOutstanding

The following information concerning breakpoints is displayed:
Breakpoint 3 at 0xa0008960: file cppdwarf.cpp,
line 111.

The i960 Hx CPU Example Programs5

5-75

17. You are now ready to start the program. At the (gdb960) prompt, enter:
run

Notice that the program does not stop at all three of the breakpoints. As
can be seen, the DWARF debug information format is very rich, and
allows more reliable debugging under optimization. However, even
with DWARF, there are situations where debugging behavior does not
agree with the debugging behavior of unoptimized code.

18. To continue after a break, use the gdb960 command continue , or
enter the keyboard shortcut c .

19. At the (gdb960) prompt, enter: quit

CONGRATULATIONS! You may now know how to use ELF/DWARF to
debug your optimized C++ code.

Writing Flash

This example teaches you the following:

• Writing to flash on the Cyclone base board.
• Booting off of the flash in socket U27 of the Cyclone base board, as

opposed to the flash on the CPU Module.
• Setting the Cyclone base board to 12 volts.
• Using mondb.exe as a simple utility to download and execute an

application program on the target board running MON960.
• Using mondb.exe to write flash.
• Building a new monitor for a particular i960 microprocessor family

member.
• Retargeting MON960 for other boards.

NOTE. In order to write to flash on your Cyclone base board, you need
a 12 volt power supply. Also, these instructions are used with the
CTOOLS 6.0 and MON960 3.2.3 toolsets.

5-76

5Getting Started with the 80960 QUICKval Kit

Complete this step:

1. Choose MON960.
2. Choose Writing Flash.
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Identify the Flash on the Cyclone base board.
A blank Flash chip ships on each Cyclone base board in socket U22. To
write MON960 to Flash, you must move the blank Flash from socket
U22 to socket U27.

5. Set the Cyclone base board voltage to 12 volts.
Locate the four-position DIP switch labeled S1. Flip S1.1 to the ON
position. This enables VPP to the Cyclone base board Flash.

6. Power up the Cyclone eval base board.
Locate the four-pin connector that interfaces to a secondary power
supply labeled J6. Three of the connector pins connect to +5 VDC,
+12 VDC and ground. (On the PCI-SDK Platform, +12 VDC and +5
VDC power is supplied through the edge connector.)

7. Edit Version.c .
a. Change directories to where the version.c file resides. The

default installation directory for CTOOLS is:
c:\intel960\src\mon960\common

If you cannot find the mon960 directory, You need to install
MON960 as directed in the MON960 Debug Monitor User’s
Manual.
Version.c contains the following information:

const char mon_version_byte = nn; /* version n.n = nn */

const char base_version[] = "MON960 n.n.n";

const char build_date[] = __DATE__;

b. Change the file contents to reflect that this is your version of
MON960. For example, change
const char base_version[] = "MON960 n.n.n";

to:
const char base_version[] = "MY MON960";

c. Save Version.c .

The i960 Hx CPU Example Programs5

5-77

8. Build the new MON960 from source (optional).
By default the source for MON960 is located at:
c:\intel960\src\mon960\common

You may use the pre-built version of MON960 there, or build a custom
verion. To create a custom version:
a. Copy makefile.xxx to

c:\intel960\src\mon960\common\makefile .
where xxx is one of the following make files:
makefile.ic (ic960 interface, COFF format)
makefile.ie (ic960 interface, ELF format)
makefile.gc (gcc960 interface, COFF format)
makefile.ge (gcc960 interface, ELF format)

b. Issue the commands:
nmake -s makefile

cyhx

This creates a file called cyhx.fls .
9. Write the Flash.

To write the Flash, use the mondb.exe utility located in the
intel960\bin\ directory. If you are going to use the pre-built
MON960 files, they are located in the intel960\roms directory. For
example, if you used the default installation directory and are using the
pre-built MON960 files for the 80960Hx, enter:
mondb -ser com1 -par lpt1 -ef -ne
c:\intel960\roms\cy hx.fls

The options in this command are:
-ser com1 use serial port 1
-par lpt1 use parallel port 1
-ne no execute
-ef erase Flash
cyhx.fls input Flash filename
Note also that if you built a version of MON960 from the source code
as described previously, the cyhx.fls file will be located in the
c:\intel960\src\mon960\common\ directory.

5-78

5Getting Started with the 80960 QUICKval Kit

10. Set Board Voltage Back To +5 VDC.
Locate the four-position DIP switch labeled S1. Set S1.1 to the OFF
position. This disables VPP to Cyclone EP base board Flash and
protects the Flash. Note that the PCI80960DP and i960 Hx evaluation
platforms do not boot when VPP is enabled and MON960 is running
from the evaluation board Flash.

11. Set board to boot from U27 socket.
Locate the four-position DIP switch labeled S1. Set S1.3 ROMSWAP
to the ON position. This exchanges the addresses of the CPU Module
ROM and the base board ROMs. When the switch is OFF the
processor boots from the CPU Module ROM; when the switch is ON
the processor boots from the base board ROMs.

12. Reset Base Board.
Locate the reset pushbutton labeled S2. Use this button to manually
reset the Cyclone base board and boot from the base board ROMs.

How to Add Benchmarking Routines to Your Code

Benchmarking is a common way to evaluate an architecture for its
performance. CTOOLS comes with two routines for benchmarking code.
These routines are called bentime() and init_bentime() .
init_bentime() is called once to program the on-board Counter/Timer to
periodically interrupt the processor. The bentime() routine returns the
time in microseconds based on the count from the interrupt handler,
timer_isr , and the current count read from the timer. By placing a call to
bentime() at the start and end of the code you are timing, the elapsed
time can be calculated by the difference between the second call to
bentime() and the first.

1. Choose Benchmarking.
2. Choose Qv Code.

NOTE. If you have trouble with this example, refer to Chapter 3 for
troubleshooting tips.

The i960 Hx CPU Example Programs5

5-79

3. Scroll through the chksum.c code for comments that refer to
“Benchmarking Routine”. You can add similar lines to the code that
you want to time.

4. Choose Make to compile, link, and download the program
automatically.

5. Execute the chksum program. Type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...
Time for Checksum was 1.566630 seconds. Value was
869e7960.
Program exited with code 01

6. Type: quit

Other i960 Processor Choices and the Remote Evaluation Facility

The i960 RISC processor family has a wide breadth of processors to match
your design’s price and performance needs. If you wish to evaluate other
i960 processor family members, contact your local distributor and order
different Cyclone CPU modules, or visit the Remote Evaluation Facility at
http://developer.intel.com/design/i960/testcntr

If you choose to order more CPU modules, you may rest assured that all
i960 processor modules plug-n-play with your QUICKval kit. This
configuration was specifically designed to protect your investment and offer
a low cost migration path for future needs.

NOTE. The i960 Rx Processor is not available through the Remote
Evaluation Facility.

6-1

The i960 Jx CPU
Example Programs 6

The i960 Jx processor family, nicknamed the Cobra series, is comprised of
five products offering a variety of features and performance levels. Using
Intel’s advanced design and process technologies, the Cobra series makes a
variety of choices from operation voltage, cache size and speed doubling
available to you.

Additionally, you can optimize your system’s performance with CTOOLS,
which includes a profile-driven compiler that can automatically optimize
your code based on its runtime behavior.

The following pages describe the example programs included with this kit.
Each example highlights a feature of the architecture or CTOOLS and
provides you with source code that can help shorten your software
development cycle. Table 6-1 provides descriptions of the tutorials included
in the i960 Jx QUICKval kit.

Table 6-1 QUICK val i960 Processor Sample Programs

Tutorial Description Source Files

Hello World: Uses simple printf statement to
verify system integrity.

hello.c : source file
system.c : system file

Memory Test: Used for system verification of
external memory. The programs perform byte,
short, or word writes to external memory, and
then they check the addresses written for
correctness.

memtst8.c: 8 bit memory
test memtst16.c : 16 bit
memory test memtst32.c : 32
bit memory test
system.c : system file

continued ☛

6-2

6Getting Started with the 80960 QUICKval Kit

Data Cache: Uses the minimum edit distance
algorithm to demonstrate the effectiveness of
the on-chip data cache. This example also
shows how to enable and disable the data
cache and how to configure an area of
memory for caching.

dcache.c : source file
system.c : system file

Instruction Cache: Uses a simple loop to
demonstrate how to enable and disable the
instruction cache. It also highlights the
performance advantage obtained when using
the on-chip instruction cache.

loop.c : source file

system.c : system file

Register Cache: Demonstrates using the
on-chip register cache in reducing the
interrupt latency for high priority interrupts.

reg_int.c : source file
low_int.s : interrupt handler
for low priority
high_int.s : interrupt
handler for high priority
system.c : system file

External Interrupts: Shows how to configure
the Cyclone board timers to trigger hardware
interrupts. This is also an example of using
interrupt handlers and placing the handlers in
the interrupt table.

cyint.c : source file
asm_fns.s : interrupt handler
for Sx
int_proc.s : interrupt
handler-all processors but Sx
t85c36.c : eval board timer
file
system.c : system file

Internal Interrupts: Simple timer example
showing how to overlay the memory-mapped
registers with a structure to program the
on-chip timers. This tutorial also shows how to
set up interrupt routines using the timers.

timrcntr.c : source
file
timers.c : on-chip timer file
system.c : system file

Halt Mode: This program shows how to make
the processor enter halt mode, a power saving
state that reduces energy consumption and
heat dissipation as it waits to continue code
execution. The example uses the on-chip
timers to trigger interrupts and “wake up” the
processor.

halt.c : source file
incremen.s : interrupt
handler
system.c : system file

continued ☛

Table 6-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

The i960 Jx CPU Example Programs6

6-3

Fault Handling: Shows how to set up the fault
handling procedures in the fault and system
procedure tables.

fault.c : source file
flt_proc.c : fault
procedures
asm_flt.s : assembly
functions to help generate
faults
system.c : system file

C Local Optimizations: Shows how to use
the C compiler with high levels of static
optimization for improved runtime
performance.

chksum.c , system.c :
source files

C Global Optimizations: Shows how to use
program-wide optimizations of the C compiler
for increased performance.

chksum.c ,
system.c :
source files

C++ Local Optimizations: Shows how to use
the C++ compiler with high levels of static
optimization for improved runtime
performance.

optimize.cpp : source file

C++ Global Optimizations: Shows how to
use program-wide optimizations of the C++
compiler for increased performance.

optimize.cpp : source file

C++ Virtual Function Optimizations: Shows
how a call to a virtual function can be replaced
by a direct call to a member function, and, if
possible, it may be inlined at the call site. This
improves the runtime performance of the
code.

optimize.cpp : source file

Profiling Lab: Teaches you how to use some
of CTOOLS advanced profiling features.

chksum.c : source file

Self-Contained Profile: Shows how to create
a self-contained profile that captures the
program structure and associates it with the
program counters from a raw profile. When
the source program changes, the global
decision making step interpolates or stretches
the counters in the self-contained profile to fit
the changed program.

quick.c : source file

continued ☛

Table 6-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

6-4

6Getting Started with the 80960 QUICKval Kit

Incremental Profiling: Shows how to profile
a program in pieces and then re-combine
them later, a useful methodology when the
target execution environment is memory
limited

fault.c , flt_proc.c ,
asm_flt.s , system.c :
source files

C Cave: Uses a tic-tac-toe game to show how
to reduce target memory requirements. The
text sections of compressed and
uncompressed tic-tac-toe executables are
compared. Additionally, this example
demonstrates how to specify functions for
compression.

ttt.c : source file

C++ Cave: Shows how to reduce target
memory requirements. The text sections of
compressed and uncompressed C++
executables are compared. This example also
shows how to specify functions for
compression.

cavecpp.cpp : source file

Linker Directive Language: Provides a
hyperlinked manual that describes the linker
command options. This tutorial is found in the
online help only, not in this manual.

Linker Consumption: Shows the ability of
the linker, gld960, to consume b.out-format,
COFF, or ELF object files and libraries in any
combination.

cyint.c , int_proc.s ,
t85c36.c , system.c :
source files

xlate960 Assembly Language Converter:
Shows how to use xlate960 to convert
assembly language code written for one i960
processor family member to that of another.

xlt.s : source file

i960 Processor Assembler
Pseudo-Instruction Support: Shows how to
use the new assembler pseudo-ops.

pseudop.c : source file

Debugging with gdb960: Uses the Go Fish
card game to teach a few useful debugger
commands.

fish.c : source file
system.c : system file

continued ☛

Table 6-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

The i960 Jx CPU Example Programs6

6-5

System Validation

Hello World

The program hello.c is used to verify your software and hardware system
integrity. The following steps provide instructions on how to compile, link,
download, and execute this program.

ELF/DWARF Debugging Format:
Demonstrates that at the highest level of
module-local optimization, it is possible to set
a breakpoint on an in-line function.

swap.c : source file

C++ DWARF-2 Debugging Format:
Demonstrates that at the highest level of
module-local optimization, it is possible to
debug a C++ application.

cppdwarf.cpp : source file

Retargeting MON960: Provides steps for
retargeting MON960. This tutorial is found in
the online help only, not in this manual.

Writing Flash: Demonstrates how to update
the version of MON960 on your evaluation
board.

80960 Family Benchmark: Shows how to
use this facility to compare your processor's
performance with other i960 family members.
This example uses a typical checksum
routine to show how to add benchmarking
routines into source code.

chksum.c , system.c :
source files

Remote Evaluation Facility: Guides you
through the use of this new benchmarking
facility on the World-Wide Web.

Table 6-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

6-6

6Getting Started with the 80960 QUICKval Kit

1. Verify that your software and hardware have been installed according
to the instructions in Chapter 2 through 3 and the frequency switch on
your CPU module is set as shown. The switch settings below set the
80960Jx CPU module frequency at 33 MHz.

1. Power your Cyclone evaluation platform and i960 Jx CPU module.
2. Double-click on the Hx Jx Cx & Sx QUICK val icon in the QUICKval

program group.
3. Configure you hardware.

• Select the 80960 Architecture tab
• Select Jx.
• Depending on the board you have installed, select either the

EP80960BB or PCI80960DP tab.
• Configure the software communication options to match those of

your evaluation board.
• Choose OK .

4. Choose Hello World .
5. Choose Make to compile, link, and download the program

automatically.
6. Use the gdb960 debugger to execute hello. Type:

run

7. The gdb960 debugger responds by displaying:
Hello...Welcome to the 80960JX QUICKval Kit!

SYSTEM CHECK COMPLETED!!

Now you may proceed with our Example Programs.

Program Exit: 01

(gdb960)

8. To exit the debugger, type: quit

OFF

1 2 3 4

SW1

The i960 Jx CPU Example Programs6

6-7

CONGRATULATIONS! You have successfully installed your software and
your hardware, compiled a program using gcc960, and downloaded and
executed the program on your evaluation board using the gdb960 debugger.

If you received any error messages during this process, refer to “If
Something Goes Wrong” on page 6-8.

Memory Test

The programs memtst8.c , memtst16.c , and memtst32.c are used to test
the external memory on the Cyclone base board.

Depending on the test that is run, an 8, 16, or 32-bit test is run on an area of
memory. The program writes F's and 0's to a memory location and reads the
location to verify the integrity of what was written. All three programs are
almost identical, with the exception of the casting of the variable *ADDR,
which allows you to perform different test types.

1. Choose Memory Test.
2. Choose a memory test. The options are, 8-bit Memory Test, 16-bit

Memory Test, or 32-bit Memory Test.
3. Choose Make to compile, link, and download the program

automatically.
4. Use the gdb960 debugger to execute memtst. Type:

run

NOTE. Below, memtst*.c refers to either the byte, short, or word
memory test example.

6-8

6Getting Started with the 80960 QUICKval Kit

5. For the 8-bit test, memtst8.c , the gdb960 debugger responds by
displaying:

This program will run a 8-bit test on the external memory.

Test to be implemented is byte test.
Starting address = a000dfb0
Ending address = a000ec30

Press enter to begin test with 0’s.
Number of errors that occurred is 0.

Begin test for f’s.

Press enter to continue.
Number of errors that occurred is 0.

All tests are complete.
Program exited with code 030.
(gdb960)

6. Exit the debugger. Type:
quit

If Something Goes Wrong

The following section describes a few actions that may help resolve errors
that may have occurred when invoking one of the tools. If you were unable
to get the proper response from the gdb960 debugger after executing the
above programs and the trouble-shooting hints described below do not help,
contact the 80960 Technical Support Group by phone at 1-800-628-8686 or
by E-mail at 960tools@intel.com.

MON960 Debug Monitor is Not Responding...

If the red FAIL LED (CR6) on the base board is lit, the monitor may not
have booted up correctly. Press the reset button (S2). If the red FAIL LED
remains lit, contact the 80960 Technical Support Group.

The i960 Jx CPU Example Programs6

6-9

Invoking the gcc960 Compiler Resulted in Errors...

The environment must be set-up as described in Chapter 2. If you chose the
default directories while installing CTOOLS, verify that the path names
C:\INTEL960\BIN have been added to your PATH variable and that the
following statement is in your autoexec.bat file. If you did not install
these tools using the default directories, make the appropriate change.

SET G960BASE=C:\INTEL960

Invoking the gld960 Linker Resulted in Errors...

Verify that the directory that contains the hello.c and memtst*.c
example programs also now has the object files, hello.o and memtst*.o .
If hello.o and memtst*.o do not exist, then the gcc960 compiler
command did not successfully create an object file. Re-compile hello.c
and memtst*.c to see if an error occurred during the compilation.

If hello.o and memtst*.o do not exist, make note of the error message
and contact the 80960 Technical Support Group.

NOTE. You did not use the default directories on installation, please
make sure the G960BASE environment variable is assigned
appropriately.

NOTE. Don’t forget to re-boot your system once you have made any
necessary changes to your autoexec.bat file.

6-10

6Getting Started with the 80960 QUICKval Kit

Invoking the gdb960 debugger resulted
in errors...

Serial communication error

A serial communication error causes the gdb960 debugger to respond by
displaying:

HDIL error (10), communication failure
HDIL error (10), communication failure

You can’t do that when your target is ‘exec’

Verify that the serial port you are using is the one you specified in the
gdb960 command line. Verify that your serial cable is properly connected to
the board and to your PC.

Parallel communication error

A parallel communication error causes the gdb960 debugger to respond by
displaying:

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type ‘show copying’ to see the conditions.
There is absolutely no warranty for GDB; type “show warranty” for
details.

gdb960.exe 6.0, Wed FEB 16 12:33:16 1998

GDB 5.10 (i486-intel-dos --target i960-intel-mon960), Copyright 1997

Free Software Foundation, Inc...(no debugging symbols found)...

Connected to com1 at 115200 bps.

(gdb960)

section 0, name .text, address 0xc0008000, size 0x50ec, flags 0x20

 writing section at 0xc0008000

Verify that the parallel port you are using is the one you specified in the
gdb960 command line. Verify that your parallel cable is properly connected
to the board and to your PC.

NOTE. If you are using the PCI-SDK evaluation platform, you may
specify -pci for PCI download and PCI communication.
For a list of all the gdb960 command line options, at a command prompt,
enter: gdb960 -h | more

The i960 Jx CPU Example Programs6

6-11

Data Cache Tutorial

The i960 Jx processors feature a 2-Kbyte, direct-mapped data cache that is
write-through and write-allocate. These processors have a line size of four
words. Each line in the cache has a valid bit; to reduce fetch latency on
cache misses, each word within a line also has a valid bit.

The purpose of the dcache.c program is to show the performance
advantage that can be obtained by the use of the data cache on the i960 Jx
microprocessor.

This example uses the Minimum Edit Distance (MED) algorithm in order to
show the effectiveness of using the data cache. The MED algorithm finds
the minimum number of edit steps required to change one string into
another.

This example is a real world example of using the data cache. This
algorithm maintains a cost matrix to determine which change to the string
being edited would incur the least cost. The cost matrix is a 2-D array
[1..n][1..m], where n and m are the sizes of the two strings.

The algorithm really shows the speed of the data cache due to three reads
for each write to the cost matrix. The algorithm reads from the cache to
determine which step to take next, then writes its choice in the cost matrix.
Since the writes to the data cache are write-through, there is no
improvement for writes to the data cache. The Write-Through feature
maintains coherency between the data cache and external memory.

The source code includes system files, system.c and system.h , that
includes a macro and an assembly function that simplifies issuing data
cache control instructions.

Also, the example shows how to define an area of memory to make data
cacheable by using the Logical Memory Configuration (LMCON) registers.
The address of the area to make cacheable is programmed into the Logical
Memory Address Register (LMADR). The mask is programmed into the
Logical Memory Mask Register (LMMR).

1. Choose Cache Examples.
2. Choose Data Cache.
3. Choose Qv Code.

6-12

6Getting Started with the 80960 QUICKval Kit

4. Scroll through the dcache.c code to see the calls to the macro,
dcctl_contrl .

5. Open and scroll through the system.h and system.c code to see the
macro and assembly function, dcctl_control and i960_dcctl .

6. Choose Make to compile, link, and download the program
automatically.

7. Use the gdb960 debugger to execute dcache . Type:
run

The debugger responds by displaying:
Minimum Edit Distance algorithm makes reads from the data cache.

This routine will determine how many steps are needed to convert:

StringA: 80960 QUICKval EvalKit

TO StringB: i960(R) HxJxCxSx & Kx

Starting timed routine with data cache on ...

RESULT: 18 moves are required to convert string A to string B

Elapsed Time On = 0.004048 seconds

Elapsed Time for routine with data cache off ...

RESULT: 18 moves are required to convert string A to string B.

Elapsed Time Off = 0.004581 seconds

IMPROVEMENT: 11.6 percent

(gdb960)

8. Type: quit

9. Select Results.

Instruction Cache Tutorial

The i960 Jx processor comes equipped with 4 KB of two-way set-
associative instruction cache. The instruction cache boosts your
application’s performance by reducing the number of instruction fetches
from external memory. The cache provides fast execution of code and loops
of code in the cache.

NOTE. Your actual run times may vary.

The i960 Jx CPU Example Programs6

6-13

The loop.c program demonstrates the performance boost obtained by
running a loop completely within versus outside of the instruction cache.

The source code includes system files, system.c and system.h that
includes a macro and an assembly function that simplifies issuing
instruction cache control instructions.

1. Choose Cache Examples.
2. Choose Instruction Cache.
3. Choose Qv Code.
4. Scroll through the loop.c code to see the calls to the macro,

icache_control .
5. Open and scroll through the system.h and system.c code to see the

macro and assembly function, icache_control and i960_icctl .
6. Choose Make to compile, link, and download the program

automatically.
7. Use the gdb960 debugger to execute loop . Type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/loop
Simple loop timed with instruction cache off ...
Elapsed Time Off = 2.259 seconds

Simple loop timed with instruction cache on ...
Elapsed Time On = 0.798 seconds

IMPROVEMENT : 64.7 percent
Program exited with code 01
(gdb960)

8. Type: quit

9. Select Results.

Register Cache

The i960 Jx processor provides fast storage of local registers for call and
return operations by using an internal local register cache. Up to eight local
register sets can be contained in the cache before sets must be saved in
external memory. The default cache size is five register sets. The register set
is all the registers (i.e., r0 through r15). The processor uses a 128-bit wide
bus to store local register sets quickly to the register cache.

6-14

6Getting Started with the 80960 QUICKval Kit

To decrease interrupt latency, software can reserve a number of frames in
the local register cache solely for high priority interrupts (interrupted state
and process priority greater than or equal to 28). When a frame is reserved
for high-priority interrupts, the local registers of the code interrupted by a
high-priority interrupt can be saved to the local register cache without
causing a frame flush to memory.

This program demonstrates the use of the on-chip register cache in reducing
the interrupt latency for high priority interrupts. First, high priority
interrupts are timed using the register cache, then low priority interrupts are
timed without the use of the register cache.

1. Choose Cache Examples.
2. Choose Register Cache.
3. Choose Qv Code.
4. Scroll through the reg_int.c code and find the

PRCB_Ptr -> reg_cache_config assignment. That is where the
Register Cache Configuration Word in the Processor Control Block
gets written. It is assigned to allocate all 8 frames for high priority
interrupts.

5. Open and scroll through the high_int.s and low_int.s files. The
high_int.s file contains the interrupt handling procedure for the high
priority interrupts, and the file low_int.s contains the interrupt
handling procedure for the low priority interrupts.

6. Choose Make to compile, link, and download the program
automatically.

7. Use the gdb960 debugger to execute reg_int . Type:
run

The debugger responds by displaying:
Starting program: C:\quickval/reg_int
Triggering Interrupts ... Register Cache USED ...
RESULT: Timeon is 0.000113 seconds
Triggering Interrupts ... Register Cache NOT USED ...
RESULT: Timeoff is 0.000115 seconds
IMPROVEMENT: 1.7 percent
Program exited with code 01.
(gdb960)

8. Exit the debugger, type: quit

9. Select Results.

The i960 Jx CPU Example Programs6

6-15

External Interrupts Tutorial

The purpose of this program, cyint.c , is to show the steps required when
dealing with an interrupt triggered externally by the evaluation board timers.
The cyint.c source code contains step-by-step instructions to save you
time when you program interrupts for your application. int_proc.s is the
interrupt handler, and t85c36.c contains the functions to program the
evaluation board timers.

The example performs the following steps in the handling of a hardware
interrupt.

• Modify the ICON register
• Modify the IMAP register
• Cache the interrupt vector and the interrupt handling procedure
• Lower the processor priority
• Modify the IMSK register
• Clear the IPND register
• Generate the hardware interrupt using the evaluation board timers

Complete these steps:

1. Choose Interrupt Examps .
2. Choose External Interrupts .
3. Choose Qv Code.
4. Scroll through the cyint.c source to see the code for setting up and

handling a hardware interrupt triggered by the evaluation board timers.
5. Open and scroll through the t85c36.c and t85c36.h files to see the

definitions and routines for programming the evaluation board timers.
You can simplify the programming of the evaluation board timers by
including this code in your own applications.

6. Choose Make to compile, link, and download the program
automatically.

6-16

6Getting Started with the 80960 QUICKval Kit

7. Use the gdb960 debugger to execute cyint . Type:

run

The debugger responds by displaying:
interrupt count = 83

interrupt count = 96

interrupt count = 108

interrupt count = 121

interrupt count = 133

interrupt count = 145

interrupt count = 157

interrupt count = 170

interrupt count = 182

Program exited with code 020.

(gdb960)

8. Type: quit

Internal Interrupts Tutorial

A key feature of the i960 Jx processor are the dual, fully independent 32-bit
timer units. Each is programmed by use of the timer registers. These
registers are memory-mapped within the processor, addressable on 32-bit
boundaries. The timers have a single shot mode and auto-reload capabilities
for continuous operation. Each timer has an independent interrupt request to
the processor’s interrupt controller. Each timer can generate a fault when it
detects unauthorized writes from user mode.

The timrcntr.c program demonstrates how to use the structures and
routines found in timers.c to easily program either timer to cause periodic
interrupts.

1. Choose Interrupt Examps .
2. Choose Internal Interrupts .
3. Choose Qv Code.

NOTE. Your actual interrupt counts may vary.

The i960 Jx CPU Example Programs6

6-17

4. Scroll through the timrcntr.c code to see the code for setting up a
timer to cause a hardware interrupt.

5. Open and scroll through timers.c and timers.h files to see the
definitions and routines for programming the on-chip timers. You can
simplify the programming of the timer by including this code in your
own applications.

6. Choose Make to compile, link, and download the program
automatically.

7. Use the gdb960 debugger to execute timrcntr . Type:
run

The debugger responds by displaying the current count of each timer
every time timer0 causes an interrupt.

8. Type: quit

Halt Mode

Another key enhancement of the i960 Jx processor — not available on any
other i960 processor family members — is the halt CPU instruction.

Entry into HALT mode by the halt instruction causes the following actions
to occur:

• Interrupts are enabled or disabled based on the value of the src1
argument supplied in the halt instruction.

• The processor ensures that all previous load and store operations have
completed before continuing. If the bus queues are not empty, the
processor asserts the BSTAT pin and waits for the bus queues to empty.

• The processor attempts to reduce power consumption to more
efficiently wait for the exit from HALT mode.

The i960 Jx processor’s power needs drop by approximately an order of
magnitude while in HALT mode. Code execution stops but the processor
maintains its internal state and can still respond to certain internal and
external events.

6-18

6Getting Started with the 80960 QUICKval Kit

The internal timers, when enabled, continue to decrement each cycle during
HALT mode and can even force the processor out of HALT mode if either
timer generates an interrupt of sufficient priority.

The processor responds normally to external events such as interrupt
requests, hardware RESET, and HOLD requests.

1. Choose Halt Mode.
2. Choose QV Code.
3. Scroll through the halt.c code to see a call to the function Halt_Mode

(ENABLE).
4. Open and scroll through system.c and system.h files to see the

definitions and routines for programming HALT Mode. You can
simplify the programming of the HALT Mode by including this code
into your own applications.

5. Choose Make to compile, link, and download the program
automatically.

6. Use the gdb960 debugger to execute halt . Type:
run

The debugger responds by displaying:
HALT MODE
POWER SAVINGS
I WILL NOW ENTER HALT MODE !!!
I will not execute any instructions, and I will save
power !!!
I will wait for an interrupt in 268,435,455 bus
cycles to wake me up !!!

Look at the CR5 LED on the Cyclone board to see when
I continue running!!!

Program exited with code 01.
(gdb960)

The i960 Jx CPU Example Programs6

6-19

The halt.c program is controlled by a while loop. At the head of the loop,
a message concerning HALT Mode is printed. The 32 bit on-chip timers are
then configured to count down and trigger an interrupt. Lastly, the HALT
Mode instruction is executed. When the timer counts down, it triggers an
interrupt which "wakes" up the processor. The interrupt handler increments
a variable which controls the while loop. The loop will be executed 3 times.

It is important to notice that the CR5 LED (Run LED) goes out while the
processor is in HALT Mode, and when the interrupt is triggered and the
processor “wakes” up, the CR5 LED lights because it starts executing code.

7. Exit the debugger. Type: quit

Fault Handling

These programs, fault.c , flt_proc.c , asm_flt.s , and system.c ,
show the steps taken in setting up the fault handling procedures in the fault
and system procedure tables. The faults are then triggered one by one.

6-20

6Getting Started with the 80960 QUICKval Kit

Table 6-2 i960 Jx Processor Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

Number Name

Number
or Bit
Position Name

0H OVERRIDE NA NA See your
microprocessor
user’s manual

0H PARALLEL NA See your
microprocessor
user’s manual

1H TRACE Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

INSTRUCTION

BRANCH

CALL

RETURN

PRERETURN

SUPERVISOR

MARK

0001 0002H

0001 0004H

0001 0008H

0001 0010H

0001 0020H

0001 0040H

0001 0080H

2H OPERATION 1H

2H

3H

4H

INVALID_OPCODE

UNIMPLEMENTED

UNALIGNED

INVALID_OPERAND

0002 0001H

0002 0002H

0002 0003H

0002 0004H

3H ARITHMETIC 1H

2H

INTEGER_OVERFLOW

ZERO-DIVIDE

0003 0001H

0003 0002H

4H Reserved

5H CONSTRAINT 1H RANGE 0005 0001H

6H Reserved

7H PROTECTION Bit 1 LENGTH 0007 0002H

9H Reserved

AH TYPE 1H MISMATCH 000A 0001H

BH - FH Reserved

The i960 Jx CPU Example Programs6

6-21

1. Choose Fault Handling.
2. Choose QV Code.
3. Scroll through the fault.c code to see a call to the function

load_flt_proc(). This function loads the fault handling procedures into
the fault and/or the system table.

4. Open and scroll through the flt_proc.c and asm_flt.s files. The
flt_proc.c file contains the fault handling procedures, and the file
asm_flt.s is used to help generate the faults.

5. Choose Make to compile, link, and download the program
automatically.

6. Use the gdb960 debugger to execute fault . Type:
run

The debugger responds by displaying the Fault Type and the Fault
Subtype for each fault handled. The address of the faulting instruction
is given (see Table 6-2).

7. Type: quit

Static, Global, and Profile-Driven Optimizations

Optimizing compilers provide you with a means of developing high
performance code without detailed knowledge of the architecture.
Engineers who understand the features of the i960 architecture developed
gcc960 to provide optimizations that take full advantage of the i960
processor. In general, optimizing compilation takes more time and may
require more memory for large functions. However, the benefit in runtime
performance is well worth it.

NOTE. When compiling, disregard the compiler warning:
Warning: unaligned register

This is one of the faults that will be handled.

6-22

6Getting Started with the 80960 QUICKval Kit

There are several levels of optimization available. Typically, low levels of
optimizations are used during the debugging phase. Certain optimizations
can cause significant code changes that may make high-level debugging
difficult. Once your application is functioning properly, you can increase its
runtime performance by using a higher level of optimization.

Release 5.0 and later of the development tools support the ELF object
module format and DWARF version 2.0 debug information format. The new
format enables more accurate mapping between source and object code at
higher optimization levels and ease debugging of production code.

The C optimization example uses a program called chksum.c . The C++
examples use a program called optimize.cpp

C No Optimization
1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Local Optimizations.
4. Choose Make -O0 to compile without optimizations, link, and

download the program automatically.
5. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 16.343843 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

C Static Optimization

Use the following commands to compile the chksum.c program using the
highest level of optimization without using runtime behavior, or
program-wide optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Local Optimizations.

The i960 Jx CPU Example Programs6

6-23

4. Choose Make -O4 to compile with optimizations, link, and download
the program automatically.

5. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 3.908083 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

7. Choose Results.

C++ No Optimization
1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Local Optimizations.
5. Choose Make -O0 to compile without optimizations, link, and

download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 10.9502 seconds.
Program exited normally

7. Type: quit

C++ Static Optimization

Use the following commands to compile the optimize.cpp program using
the highest level of optimization without using runtime behavior, or
program-wide optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.

6-24

6Getting Started with the 80960 QUICKval Kit

3. Choose C++ Optimizations.
4. Choose C++ Local Optimizations.
5. Choose Make -O4 to compile without optimizations, link, and

download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 8.27324 seconds.
Program exited normally

7. Type: quit

8. Choose Results.

C Global Optimization

Use the following commands to compile the chksum.c with program
program-wide optimizations, which are sophisticated, inter-module
optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Global Optimizations.
4. Choose Make +O5 to compile with optimizations, link, and download

the program automatically.
5. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 1.871137 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

7. Choose Results.

The i960 Jx CPU Example Programs6

6-25

C++ Global Optimization

Use the following commands to compile the optimize.cpp program using
the program program-wide optimizations, which are sophisticated,
inter-module optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Global Optimizations.
5. Choose Make+05 to compile with optimizations, link, and download

the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 8.206485 seconds.
Program exited normally

7. Type: quit

8. Choose Results.

Instrumentation, Profile Creation, Decision-making, and
Profile-Driven Re-Compilation

A 89% improvement in C code performance is significant, but there is
another level of optimization that is uniquely available through Intel’s
CTOOLS compilers: profile-driven optimization. This two-pass
compilation procedure allows the compiler to make optimizations based on
runtime behavior as well as the static information used by conventional
optimizations.

The compiler can perform sophisticated inter-module optimizations, such as
replacing function calls with expanded function bodies when the function
call sites and function bodies are in different object modules. These are
called program-wide optimizations because the compiler collects
information from multiple source modules before it makes final
optimization decisions. Standard (i.e., non-program-wide) optimizations are
referred to as module-local optimizations.

6-26

6Getting Started with the 80960 QUICKval Kit

Program-wide optimizations are enabled by options that tell the compiler to:

1. Build a program database during the compilation phase.
2. Invoke a global decision making and optimization step during the

linking phase.
3. Automatically substitute the resulting optimized modules into the final

program before the end of the linking phase.

The compiler can also collect information about the runtime behavior of a
program by instrumenting the program. The instrumented program can be
executed with typical input data, and the resultant program execution profile
can be used by the global decision making and optimization phase to
improve the performance of the final optimized program. The profile can
also provide input to the global coverage analyzer tool (gcov960), which
gives users information about the runtime behavior of the program at the
source-code level.

1. Choose Compiler.
2. Choose Profiling Optimizations .
3. Choose Profiling Lab .
4. Follow the Profiling Tutorial link in the online help.

Using profile-driven optimization, an increase in runtime performance of
52% is obtained. The average 80960 application can expect to gain 15 to
30% performance improvement through the use of this technology. This
boost in performance is available to you without any further investment in
hardware.

C++ Virtual Function Optimizations

Invoking a virtual function is more expensive than invoking a non-virtual
function in C++. Also, other function-related optimizations such as inlining
cannot be performed on virtual functions. In many situations, however, the
call to the virtual function can be replaced by a direct call to a member
function and if possible it can be inlined at the call site. This improves the
runtime performance of the code.

Use the following commands to compile the optimize.cpp program.

1. Choose Compiler.
2. Choose Static Optimizations.

The i960 Jx CPU Example Programs6

6-27

3. Choose C++ Optimizations.
4. Choose C++ Virtual Opts .
5. Choose Make -NoVOpt to compile without virtual function

optimizations, link, and download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 8.20649 seconds.
Program exited normally

7. Type: quit

8. Choose Make -VOpt to compile with virtual function optimizations,
link, and download the program automatically.

9. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 7.20885 seconds.
Program exited normally

10. Type: quit

11. Choose Results.
The virtual function optimizations yielded a 12% improvement.

Note the runtime performance at each optimization level as shown below.

Table 6-3 i960 Processor Optimization Results

Optimization Level C Execution Time C++ Execution Time

no optimization (-O0) 16.343843 seconds 10.9502 seconds

maximum static (-O4) 3.908083 seconds 8.27324 seconds

global optimization 1.871137 seconds 8.206485 seconds

profile-driven 1.871134seconds NA

Virtual Function
Optimization

NA 7.20885 seconds

6-28

6Getting Started with the 80960 QUICKval Kit

Building Self-contained Profiles with gmpf960

A raw profile contains program counters that record how many times
various statements in the source program have been executed. Information
in the PDB is needed to correlate these program counters with the source
program. A raw profile has a very short useful life. When changes are made
in the source code, any raw profiles previously obtained for that program are
no longer accepted by the global decision making and optimization step.

A self-contained profile captures the program structure from the PDB and
associates it with the program counters from the raw profile. When changes
are subsequently made to the source program, the global decision making
step interpolates or stretches the counters in the self-contained profile to fit
the changed program.

A self-contained profile can be used to optimize a program even after days,
weeks, or perhaps months worth of changes to the program. This frees you
from having to collect a new profile every time the program changes, while
still allowing profile-directed optimizations. Depending upon the nature and
quantity of changes to the program, the accuracy of the profile gradually
degrades over time as more interpolation is done.

A self-contained profile must be generated from a raw profile before the
program that generated the raw profile is relinked. You should always create
a self-contained profile immediately after the raw profile is collected.

1. Choose Compiler.
2. Choose Profiling Optimizations .
3. Choose Self-Contained.
4. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

The i960 Jx CPU Example Programs6

6-29

5. Specify the program database directory.
The PDB can be specified by setting the environment variable
G960PDB.
For example, if you chose the default directory during installation,
enter:
SET G960PDB=C:\quickval\prof_lab\lab_pdb

Or, specify the PDB at compiler invocation time with the Zdir option,
as shown in the example below.
gcc960 -Zmypdb foo.o

6. Compile for profile instrumentation.
Insert profile instrumentation into quick so that when the linked
program is executed, a profile can be collected. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,subst=:*+fprof -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A { arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyjx specifies mcyjx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-gcdm,subst=:* The tool that performs the global decision making
and optimization step is invoked from within the
linker when the gcdm option is used. The
substitution control specifies a module-set
specification of only eligible modules not linked
in from libraries.

+fprof causes generation of profile instrumentation.

-o quick the executable file will be named quick

quick.c the source file

6-30

6Getting Started with the 80960 QUICKval Kit

7. Collect a Profile
If a program that contains one or more modules compiled with fprof
is linked with the standard libraries and then executed, a file named
default.pf containing the profile for those modules is automatically
produced when the program exits. Type:
gdb960 -t mon960 -b 115200 -r com1 -D lpt1 quick

The options in this gdb960 compiler command are:

-t mon960 MON960 is on the target

-b 115200 use 115200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

quick the executable file

8. Use the gdb960 debugger to execute quick . Enter:
run

9. Exit the debugger. Enter:
quit

10. Enter the command:
gmpf960 -spf quick.pf default.pf

The options in this gmpf960 compiler command are:

-spf causes a self-contained profile, quick.pf , to be
produced as output.

default.pf The input profile.

11. Recompile the quick.c source code using the profiling information
obtained by the instrumentation. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=quick.pf -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyjx specifies mcyjx.gld .

The i960 Jx CPU Example Programs6

6-31

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-Gcdm,iprof=quick.pf

This supplies a profile file quick.pf to the
global decision making and optimization step.

-o quick the executable file will be named quick

quick.c the source file

12. Change the control structure of quick.c.

Edit quick.c . Find the procedure called QUICK. In this procedure,
there is a control structure:
for(i = 2; i <= SORTELEMENTS; i+=1)

{

(LOGIC)

}

Change the control structure to:
i = 2;

while (i <= SORTELEMENTS)

{

(LOGIC)

i+=1;

}

13. Compile the new quick.c using the interpolated profile. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=quick.pf -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyjx specifies mcyjx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

6-32

6Getting Started with the 80960 QUICKval Kit

-Gcdm,iprof=quick.pf

This supplies a profile file quick.pf to the
global decision making and optimization step.

-o quick the executable file will be named quick

quick.c the source file

Notice that the global decision making and optimization option
(-gcdm) accepts the interpolated profile, quick.pf .

Profiling a Program in Pieces

Suppose that the target execution environment is memory limited so that all
your programs cannot be instrumented for profiling at the same time. You
can use substitutions to make partially instrumented versions of the final
executable, and then create self-contained profiles for each piece. Each
executable created in this way has a limited set of instrumented modules.

After you’ve created the self-contained profiles, you can use gmpf960 to
create a single merged self-contained profile. The final, merged
self-contained profile is identical to a profile obtained by instrumenting the
entire program at once.

In this example, you use the fault handling example programs to show
incremental profiling.

1. Choose Compiler.
2. Choose Profiling Optimizations.
3. Choose Incremental.
4. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

NOTE. The beauty of this example is that the global decision making
and optimization option (-gcdm) accepts the interpolated profile,
quick.pf , not the results of running this example.

The i960 Jx CPU Example Programs6

6-33

5. Specify the program database directory.
You can specify the PDB by setting the environment variable G960PDB.
For example, if you chose the default directory during installation,
enter:
SET G960PDB=C:\quickval\prof_lab\lab_pdb

Or, specify the PDB at compiler invocation time with the Zdir option,
as shown in the example below.
gcc960 -Zmypdb foo.o

6. Insert profile instrumentation into fault so that when the linked
program is executed, a profile can be collected. The instrumented
modules in this version of fault are from the files fault.c and
flt_proc.c . Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,subst=:f*+fprof -o fault fault.c flt_proc.c
asm_flt.s system.c

-Fcoff creates a COFF format output file.

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyjx specifies mcyjx.gld .

-fdb all modules subject to program-wide optimization
must be initially compiled with the fdb option.

-gcdm,subst=:f*

The tool that performs the global decision making
and optimization step is invoked from within the
linker when the gcdm option is used. The
substitution control specifies a module-set
specification of only the files that begin with f.

+Fprof causes generation of profile instrumentation.

-o fault names the executable file fault .

fault.c the source files.

flt_proc.c the fault procedures.

6-34

6Getting Started with the 80960 QUICKval Kit

asm_flt.s the assembly file to generate faults.

system. c system file.

7. Collect the profile.
When a program that contains one or more modules compiled with
fprof is linked with the standard libraries and then executed, a file
named default.pf containing the profile for those modules is
automatically produced when the program exits. Type:
gdb960 -t mon960 -b 9600 -r com1 -D lpt1 fault

-t mon960 MON960 is on the target

-b 115200 use 115200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

fault the executable file

8. Use the gdb960 debugger to execute fault . Enter:
run

9. Exit the debugger. Enter:
quit

10. Build the self-contained profiles with gmpf960.
To create a self-contained profile, use the gmpf960 profile merger tool.
gmpf960 is invoked with the raw profile as an input file. Enter:
gmpf960 -spf prof1.pf default.pf

-spf causes a self-contained profile, prof1.pf , to be
produced as output.

default.pf The input profile.

The resultant self-contained profile, prof1.pf , has a limited set of
instrumented modules.

The i960 Jx CPU Example Programs6

6-35

11. Insert profile instrumentation into fault so that when the linked
program is executed, a profile can be collected. The instrumented
modules in this version of fault are from the file system.c . Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,subst=:s*+fprof -o fault fault.c flt_proc.c
asm_flt.s system.c

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyjx specifies mcyjx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-Gcdm,subst=:s*

The tool that performs the global decision making
and optimization step is invoked from within the
linker when the gcdm option is used. The
substitution control specifies a module-set
specification of only the files that begin withs .

+fprof causes generation of profile instrumentation.

-o fault names the executable file fault .

fault.c the source files

flt_proc.c the fault procedures

asm_flt.s the assembly file to generate faults

system.c system file

6-36

6Getting Started with the 80960 QUICKval Kit

12. Collect the profile.
If a program that contains one or more modules compiled with fprof
is linked with the standard libraries and then executed, a file named
default.pf containing the profile for those modules is automatically
produced when the program exits. Type:
gdb960 -t mon960 -b 9600 -r com1 -D lpt1 fault

-t mon960 MON960 is on the target

-b 115200 use 115200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

fault the executable file

13. Use the gdb960 debugger to execute fault . Enter:
run

14. Exit the debugger. Enter:
quit

15. Build the self-contained profiles with gmpf960.
To create a self-contained profile, use the gmpf960 profile merger tool.
gmpf960 is invoked with the raw profile as an input file. Enter:
gmpf960 -spf prof2.pf default.pf

-spf causes a self-contained profile, prof2.pf , to be
produced as output.

default.pf the input profile.

The resultant self-contained profile, prof2.pf , has a limited set of
instrumented modules.

16. Merge all the self-contained profiles into one.
The final prof.pf profile is identical to a profile obtained by
instrumenting the entire program at once. Type:
gmpf960 -spf prog.pf prof1.pf prof2.pf

-spf causes a self-contained profile, prog.pf , to be
produced as output.

prof1.pf an input self-contained profile.

prof2.pf an input self-contained profile.

The i960 Jx CPU Example Programs6

6-37

17. Recompile the fault handling source code using the profiling
information obtained by the instrumentations. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=prog.pf -o fault fault.c flt_proc.c
asm_flt.s system.c

-Fcoff create a COFF format output file.

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyjx specifies mcyjx.gld .

-fdb all modules subject to program-wide optimization
must be initially compiled with the fdb option.

-Gcdm,iprof=prog.pf

This supplies a profile file prog.pf to the global
decision making and optimization step.

-o fault names the executable file fault.

fault.c the source file.

flt_proc.c the fault procedures.

asm_flt.s the assembly file to generate faults.

system.c system file.

Compression Assisted Virtual Execution (CAVE)

This CTOOLS feature allows non-critical parts of an application’s machine
code to be stored in memory in compressed form resulting in reduced target
memory requirements. The code is expanded into native machine code on
demand for execution.

NOTE. The beauty of this example is the methodology of incremental
profiling, not the result of running the example.

6-38

6Getting Started with the 80960 QUICKval Kit

CAVE reduces the physical memory requirements of ROM-based
applications through link-time compression and on-demand runtime
decompression of user-specified functions. The compiler, linker, runtime
dispatcher, and compression and decompression routines cooperate to
provide this feature. Code is typically compressed by a ratio of between 1.5
and 1.7. Runtime decompression speed is about 30 clock cycles per byte of
compressed code.

When the CAVE mechanism is used, selected functions in the application
are designated to be secondary functions. All other functions are termed
primary functions. The primary set should contain performance-critical
functions, that are not to be affected by the CAVE mechanisms; the
secondary set is subject to compression. Secondary functions are
compressed by the linker and reside in memory in compressed form. At
runtime, calls to secondary functions are intercepted by the CAVE
dispatcher and the functions are decompressed if necessary.

Note that due to the overhead of decompressing code at runtime, only
non-performance critical code should be secondary functions, such as error
handling code or initialization code. You can use runtime profile
information generated by gcov960 to aid in selecting the set of secondary
functions.

This example uses a tic-tac-toe game to show how to reduce target memory
requirements. The text sections of compressed and uncompressed tic-tac-toe
executables are compared. Additionally, this example demonstrates how to
specify functions for compression.

For the sake of demonstration, we compress performance-critical code in
the tic-tac-toe program. The purpose of this example is to show the reduced
text section of the executable, not demonstrate run times.

C Example
1. Choose Compiler.
2. Choose C Cave.
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

The i960 Jx CPU Example Programs6

6-39

4. Use the gcc960 mcave option or #pragma cave to designate the
specified functions as secondary. In the tic-tac-toe example, ttt.c ,
the following #pragma has been added:
#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)

where Initialize, Winner, Other, Play, Evaluate,
Best_Move, Describe, Move, and Game are all functions to be
compressed.

5. Edit ttt.c . Make sure the #pragma cave program line is
commented out:
/*#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)*/

6. Compile the tic-tac-toe program. Enter:
gcc960 -A{arch} -Fcoff -T{Link-dir} -o ttt ttt.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy jx specifies mcyjx .gld.

-o ttt names the executable file ttt

ttt.c input file

7. Check the text section size of the uncompressed program. Enter:
gsize960 ttt

The option in this command is:

ttt name of the executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the uncompressed text section.

8. Edit ttt.c . Make sure the #pragma cave program line is
uncommented:
#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)

6-40

6Getting Started with the 80960 QUICKval Kit

9. Compile the tic-tac-toe program with the pragma program line. Enter:
gcc960 -A{arch} -Fcoff -T{Link-dir} -o ttt ttt.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy jx specifies mcyjx .gld.

-o ttt names the executable file ttt

ttt.c input file

10. Check the text section size of the compressed program. Enter:
gsize960 ttt

The option in this command is:

ttt executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the compressed text section. In this example,
you can expect a code size reduction of approximately 1 percent. Here
are some typical results for the supported processor types:

Table 6-4 Uncompressed Text Sections

State
80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Uncompressed 33,764 32,944 32,768 32,976 31,600

Table 6-5 After Function Compression

State
80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Compressed
Text

31,908 30,832 30,816 30,832 29,648

Cave Section 1,818 1,770 1,746 1,800 1,776

Total 33,726 32,602 32,562 32,632 31,424

The i960 Jx CPU Example Programs6

6-41

Note that the purpose of this example is to teach you how to use the CAVE
feature with programs. Though the improvements are small, you can expect
much better results with real-world programs of approximately 100 Kbytes
and larger, especially if the software has many non-critical functions.

C++ Compression Assisted Virtual Execution (CAVE)

1. Choose Compiler.
2. Choose C++ Cave.
3. Choose Make. The following tutorial is displayed in the QUICKval

browser, and the command lines may be entered at the Command
Prompt window.

4. Use the gcc960 mcave option or #pragma cave designate the
specified functions as secondary. In the C++ example, cavecpp.cpp ,
the following #pragma has been added:
#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

where initSetName , initSetDept , initSetGpa ,
initSetNumPubs , isOutstanding , printName , and
InitializeRecords are all functions to be compressed, i.e., all
functions are secondary functions. All other functions of the program
are primary functions.
The primary set should contain performance-critical functions that are
not to be affected by the CAVE mechanism; the secondary set is subject
to compression. Secondary functions are compressed by the linker and
reside in memory in compressed form.
The C++ compiler behaves in essentially the same manner as the C
compiler when the mcave or Gcave options are used - generating all
functions in the compilation unit for which this option is in effect
as secondary.

Table 6-6 Improvement

80960Rx 80960Hx 80960Jx 80960Cx 80960Sx

0.1% 1.0 % 0.6 % 1.0 % 0.6 %

6-42

6Getting Started with the 80960 QUICKval Kit

A user typically designates a single function as secondary through
the use of pragma cave . The following statement for example
designates the function max as secondary.
pragma cave max

However in C++ overloaded functions have the same name. Member
functions of two different classes are also allowed to have the same
name and these member functions can in turn have the same name as a
function with file scope.
When a user specifies a function as secondary through the use of
pragma cave , the C++ compiler treats all functions with this name as
secondary. To illustrate, consider the following example:
ifdef PRAGMA
pragma cave max
endif

int max(int a, int b)
{
return a > b ? a : b;
}

float max(float a, float b)
{
return a > b ? a : b;
}

class Tclass1 {
int a, b;
public:
int max();
};

int Tclass1::max()
{
return a > b ? a : b;
}

The i960 Jx CPU Example Programs6

6-43

class Tclass2 {
float a, b;
public:
float max();
};

float Tclass2::max()
{
return a > b ? a : b;
}

Tclass1 t1;
Tclass2 t2;

The Compiler treats all the following functions as secondary.
int max(int, int);
float max(float, float);
int Tclass1::max();
float Tclass2::max();

5. Choose Qv Code. Edit cavecpp.cpp . Make sure the #pragma
cave program line is commented out:
//#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

6. Compile the C++ program. Enter:
gcc960 -A{ arch } -Felf -T{ Link-dir } -stdlibcpp -o
cavecpp cavecpp.cpp

The options in this command are:

-Felf create an ELF format output file

-A{ arch } specifies the architecture. For example, -AHD
specifies an 80960HD

-T{ Link-dir } specifies the linker directive file. For example,
-Tmcy jx specifies mcy jx .gld .

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-o cavecpp specifies the executable file cavecpp

cavecpp.cpp input file

6-44

6Getting Started with the 80960 QUICKval Kit

7. Check the text section size of the uncompressed program. Enter:
gsize960 cavecpp

The option in this command is:

cavecpp specifies the executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the uncompressed text section.

8. Choose Qv Code and edit cavecpp.cpp . Make sure the #pragma
cave program line is uncommented:
#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

9. Compile the C++ program with the pragma program line. Enter:
gcc960 -A{ arch } -Felf -T{ Link-dir } -stdlibcpp
-o cavecpp cavecpp.cpp

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy jx specifies mcy jx .gld .

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-o cavecpp specifies the executable file ttt

cavecpp.cpp specifies the input file
10. Check the text section size of the compressed program. Enter:

gsize960 cavecpp

The option in this command is:

cavecpp executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the compressed text section. In this example, you can
expect a code size reduction of approximately 1 percent. Here are some
typical results for the supported processor types:

The i960 Jx CPU Example Programs6

6-45

Note that the purpose of this example is to teach you how to use the CAVE
feature with programs. Though the improvements are small, you can expect
much better results with real-world programs of approximately 100 Kbytes
and larger, especially if the software has many non-critical functions.

Linker Consumption

You can link b.out-format, COFF or ELF object files and libraries in any
combination. To determine a file format, the linker examines the first two
bytes of the file. An unrecognized value indicates a linker-directive file.
This feature is useful when using third-party archives with CTOOLS
runtime libraries and your application code. The runtime libraries are
shipped in ELF format only (effective with the 5.0 version of the tools).
Each can potentially have a different OMF, and the linkage still completes.

Table 6-7 Uncom pressed Text Sections

80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Uncompressed 89,788 84,196 83,512 84,196 81,764

Table 6-8 After Function Com pression

80960Rx Size 80960Hx Size 80960Jx Size 80960Cx Size 80960Sx Size

Compressed
 Text

87,612 81,892 81,512 81,892 79,796

Cave
Section

1,920 1,546 1,514 1,546 1,512

Total 89,532 83,438 83,026 83,438 81,308

Table 6-9 Im provement

80960Rx 80960Hx 80960Jx 80960Cx 80960Sx

1% 1% 1% 1% 1%

6-46

6Getting Started with the 80960 QUICKval Kit

If the linker generates a different output format than the input, the linker
does not copy debug information from the input file to the output file.
Because of this, you should use only one OMF.

The symbol tables of each OMF are abbreviated when crossing OMF
boundaries. For example, when you include a b.out OMF file in a linkage
where the output file OMF is COFF format, none of the debug information
from the b.out file is copied into the output COFF file.

1. Choose Linker and Utilities .
2. Choose Linker Consumption.
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

NOTE. As of version 5.0 of the tools, all runtime libraries are shipped in
ELF format only.

 GLD960

 b.out COFF ELF

 b.out COFF ELF

The i960 Jx CPU Example Programs6

6-47

4. Compile the first file in COFF format. Enter:
gcc960 -Fcoff -A {arch} -c t85c36.c

The options in this command are:

-Fcoff creates a COFF format output file.

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-c compile, but do not link.

t85c36.c input file.

5. Compile the second file in ELF format. Enter:
gcc960 -Felf -A {arch} -c system.c

The options in this command are:

-Felf creates an ELF format output file.

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-c compiles, but does not link.

system.c input file.

6. Compile the third file in b.out format. Enter:
gcc960 -Fbout -A {arch} -c -r cyint.c int_proc.s

The options in this command are:

-Fbout creates a b.out format output file.

-A {arch} specifies the architecture. For example, -AHD

specifies an 80960HD

-c compiles, but does not link.

-r allows unresolved references.

cyint.c the source file.

int_proc.s the interrupt handler.

7. Generate an absolute file in ELF format by linking files in b.out-format,
ELF format, and COFF format. The absolute file could have also been
in b.out-format or COFF format. Enter:
gld960 -Felf -T {Link-dir} -A {arch} -o elf t85c36.o
system.o cyint.o int_proc.o

6-48

6Getting Started with the 80960 QUICKval Kit

The options in this command are:

-Felf specifies the absolute file as ELF format.

-T {Link-dir} specifies the linker directive file. For example,
-Tcyjx specifies cyjx.gld .

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-o elf names the executable file elf .

cyint.o file in b.out-format.

int_proc.o file in b.out-format.

t85c36.o file in COFF format.

system.o file in ELF format.

XLATE960 Tutorial

This tutorial shows how to use the xlate960 utility provided with CTOOLS
release 6.0. xlate960 is the 80960 translation utility that generates i960
Rx-compatible code sequences to replace instructions and addressing
modes that are only available on other i960 processors.

1. If you are using the Hx Jx Cx & Sx QUICK val software, Choose
Linker and Utilities . If using the Rx QUICK val software, this step is
not necessary.

2. Choose xlate960 Tutorial.
3. Choose Qv Code.

The assembly file, xlt.s , is loaded into the editor shown on your screen.
This program is a contrived example that really does not do any useful
work. It was written to help demonstrate how to migrate assembly code to

NOTE. The beauty of this example is the functionality of the linker, not
the result of running the example.

The i960 Jx CPU Example Programs6

6-49

the Rx Strategy. This program supports i960 processor functionality that is
not available when using the Rx Strategy. xlt.s has two complex
addressing modes:

• indexed
• ip-relative

and three classes of instructions

• arithmetic (scanbit)
• triple word /quad word instructions (quad word move)
• integer/overflow behavior (addi)

that demonstrate behavior not supported under the Rx Strategy.

If xlt.s were compiled with the -AJF architecture option, there would
be no compilation errors. However, if xlt.s were compiled with the
-ARD or -ARP architecture options, compilation errors would stop the
build. The offending instructions and addressing modes would have to be
translated to Rx Strategy compatible instructions and addressing modes.
xlate960 can do this automatically for you, with only a little user
interaction.

Looking at the xlt.s File

To understand what the xlt.s file is doing, please review the xlt.s file
in an editor. The lines that violate the Rx Strategy are detailed below:

Line 83: bx 24(ip)

IP-relative addressing is not available when specifying an i960 Rx
processor-based target.

6-50

6Getting Started with the 80960 QUICKval Kit

The xlate960 utility replaces the above bx 24(ip) operation with the
following instruction sequence that duplicates the functionality of the bx

24(ip) operation:

#xlate-beginbx 24(ip)

#xlate-err“Fill in register for E0”

#xlate-warn“Verify use of local labels ‘8’ and ‘9’”

#xlate-err“Verify that register g14 can be clobbered”

bal .+4

8: lda 24+9f-8b(g14),E0; 9:

bx (E0)

#xlate-end

The line beginning with #xlate-begin marks the start of the code added
by the xlate960 utility to replace the bx 24(ip) instruction, and the line
beginning with #xlate-end marks the end of the code. All translation
errors are marked with a comment of the form #xlate-err . More subtle
translation incompatibilities are flagged with a #xlate-warn comment.

Above, three non-comment lines were added to replace the bx 24(ip)

instruction. However, based on the suggestions of the comments, these
lines may require manual editing. Manual translation is demonstrated later
in the tutorial.

Line 126: st r9,_VariableArray[r11*8]

Indexed addressing modes are not available when specifying an i960 Rx
processor-based target. The xlate960 utility replaces the above st

r9,_VariableArray[r11*8] operation with the following instruction
sequence that duplicates the functionality of the

st r9,_VariableArray[r11*8] operation:

#xlate-beginst r9,_VariableArray[r11*8]

#xlate-err“Fill in register for E1”

shlo3,rll,E1

st r9,_VariableArray(E1)

#xlate-end

The i960 Jx CPU Example Programs6

6-51

Two instructions were inserted by the xlate960 utility to replace the

st r9,_VariableArray[r11*8] operation. Also, as before, it may be
necessary to edit these two instructions to complete code migration.

Line 160: scanbit r9,r8

The scanbit instruction is not guaranteed to set the condition code with
the Rx Strategy.

Line 208: addi r10,r11,r8

The addi instruction is not supported with the i960 Rx architectures.

Line 239: movq r8,g8

The movq instruction is not supported with the i960 Rx architectures. The
instruction sequence inserted by xlate960 to replace the movq instruction
does not test for unaligned or overlapping registers. It is left to the
programmer to ensure that the registers used do not overlap and that the
registers are aligned. The programmer can do this by making sure the code
is compatible with existing i960 processors before running the code through
xlate960. The programmer should not experience unaligned or overlapping
registers if the code has been assembled for another processor prior to
running it through xlate960.

Using xlate960

To prove that xlt.s compiles unaltered as code designed for earlier i960
processors, complete the following steps:

1. Choose Make. The following tutorial is displayed in the QUICKval
browser, and the command lines may be entered at the Command
Prompt window.

2. Enter the following command in the Command Prompt window
provided:
gcc960 -AJF -Fcoff -Tmcyjx -o xlt xlt.s

The options in this command are:

-AJF sets the target architecture for the compiler.

-Fcoff sets the object file type as COFF.

6-52

6Getting Started with the 80960 QUICKval Kit

-Tmcyjx uses the linker directive file for the Jx
architecture.

-o xlt sets the object file name as xlt (optional).

xlt.s specifies the input source file.

3. To run the program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci xlt

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

-r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

xlt specifies the executable file.

4. At the (gdb960) prompt, enter: run

The program prints out:
• the value of register r11 before and after the ip-relative branch.
• the value of the displacement in the index with displacement

addressing mode.
• the condition code before and after the scanbit instruction.
• the condition code before and after the add instruction.
• the result of performing the movq instruction.

The i960 Jx CPU Example Programs6

6-53

5. At the (gdb960) prompt, enter: quit

To prove that xlt.s does not compile unaltered using the Rx Strategy,
complete the following steps:

6. Enter the following command in the Command Prompt window
provided:
gcc960 -AR{ P|D } -Fcoff -Tmcyrx -o xlt xlt.s

-AR{ P|D } sets the target architecture for the compiler. Since
you are compiling for the Rx Strategy, use the
available i960 Rx architecture options -ARP or
-ARD.

-Fcoff sets the object file type as COFF.

-Tmcyrx uses the linker directive file for the i960 Rx
architecture.

-o xlt sets the object file name as xlt (optional).

xlt.s specifies the input source file.

There are errors during the compilation. The errors are:
xlt.s:83: Register is not in target architecture:
"(ip)".

xlt.s:126: indexed addressing mode not available

xlt.s:208: Opcode is not in target architecture:
"addi".

xlt.s:239: Opcode is not in target architecture:
"movq".

These errors must be resolved before the program compiles using the
-ARD or -ARP architecture flags.

xlate960 generates Rx-compatible code sequences to replace those
instructions and addressing modes that appear in the JF processor causing
errors above.

NOTE. The significance of this example is not in the results of the
running program, but in the code translation performed by xlate960 in
the next few steps.

6-54

6Getting Started with the 80960 QUICKval Kit

7. Enter the following command in the Command Prompt window
provided:
xlate960 xlt.s

The previous command converts instructions in xlt.s to
Rx-compliant instructions, placing the output into the file xlt.xlt .
The output in the Command Prompt window is:
C:\INTEL960\BIN\XLATE960.EXE: Output file
'xlt.xlt' requires further manual translation.

This message above means you must edit the output file xlt.xlt to
finish the translation to i960 Rx-compliant code.

You Are now ready to Edit the xlt.xlt file.

8. Open xlt.xlt in an editor.
The output file produced by xlate960 is identical to the input file except
for the instances where translation occurred. Each instruction that was
translated is replaced with a sequence of the following format in the
output file:
#xlate-beginoriginal instruction

<translation errors or warnings, marked by xlate-err
or xlate-warn>

<translation routine>

#xlate-end

The i960 Jx CPU Example Programs6

6-55

9. Find the translation points in xlt.xlt by searching the file for
#xlate-begin flags.
There are five translation points in the file.
At the first translation point beginning on line 84 of xlt.xlt , note
two #xlate-err translation errors and the #xlate-warn
translation warning. The first translation error is:

#xlate-err "Fill in register for E0"

The following two instructions are found on lines 89 and 90 of the
translation routine:
lda 24+9f-8b(g14),E0; 9:

bx (E0)

Fill in a register that can be used for the place holder E0 that does not
affect the program logic (i.e., choose a register that is not being used).
In our example, it is all right to use register r13. So, edit the code and
change E0 to r13:
lda 24+9f-8b(g14),r13; 9:

bx (r13)

The next translation error is:
#xlate-err"Verify that register g14 can be clobbered"

The translation routine uses register g14 on line 89. Since g14 can
be overwritten, it does not need to be changed. The translation warning
reported is:
#xlate-warn"Verify use of local labels '8' and '9' "

The translation routine uses the local labels '8' and '9'. Since they do
not conflict with other local labels used in the program, no change is
needed.
Lastly, the original program, xlt.s , made a branch ahead by 24 plus
the contents of the ip-register. The translation routine discredits the
displacement number due to added instructions, and it is now necessary
to change the displacement to 28.

10. So, edit the translation routine and change 24 to 28 to maintain the
correct logic:
lda 28+9f-8b(g14),r13; 9:

6-56

6Getting Started with the 80960 QUICKval Kit

11. Find the next translation point; it is the following:
#xlate-beginst r9,_VariableArray[r11*8]

The translation error reported is:
#xlate-err"Fill in register for E1"

Like previously, all that is necessary is to use a register for the
placeholder E1 that is not used and that does not affect the logic of the
program. This time, register r15 is all right.

12. Edit the code on lines 138 and 139 from:
shlo3,r11,E1

st r9,_VariableArray(E1)

to the following:
shlo3,r11,r15

st r9,_VariableArray(r15)

13. In order for the program to print the correct displacement after the
translation, the code needs a little more editing. On line 128 of the
xlt.xlt file, the following code segment begins:
lda LC9,g0

mov r15,g1

callj_printf

mov g0,g4

Move this code segment to line 139 of the file. The segment thus
occupies lines 139 through 142. Make sure to delete the code segment
from lines 128 through 131.

14. Translation point three concerning the scanbit instruction had no
translation warnings or errors.

15. View translation point four; it starts with the following:
#xlate-beginaddi r10,r11,r8

The translation warning for this translation routine is:
#xlate-warn"Loss of faulting behavior"

and the translation routine is:
addor10,r11,r8

xlate960 uses the xlate-warn comment lines to indicate instances where
the translated code has subtle differences from the original code. Here,
the addo instruction differs from the addi instruction because it

The i960 Jx CPU Example Programs6

6-57

does not fault when an overflow is generated. If overflow behavior is
important to the program’s operation, you would need to rewrite the
code to manually check for an overflow condition.

16. Finally, view translation point five; it starts with the following:
#xlate-beginmovq r8,g8

The translation warning for this translation routine is:
#xlate-warn"Does not test for unaligned or
overlapping registers"

and the translation routine is:
mov r8,g8

mov r9,g9

mov r10,g10

mov r11,g11

Because our original code was 80960-compatible, the movq instruction
was aligned and did not access overlapping registers. However, the
translator draws our attention to the fact that invalid code would be
generated when either of these conditions were present. Since neither
are, you can ignore this warning.

17. The program has been manually translated. Close the xlt.xlt file.

Running the New Rx-compatible Source Code
1. Copy the xlt.xlt file to another file. At the command prompt, enter:

copy xlt.xlt xltconv.s

2. To compile the Rx-compatible code, enter:
gcc960 -AR{ P|D } -Fcoff -Tmcyrx -o xlt xltconv.s

The options in this command are:

-AR{ P|D } sets the target architecture for the compiler. Since
you are compiling for the Rx Strategy, use the
available i960 Rx architecture options -ARP or
-ARD.

-Fcoff sets the object file type as COFF.

 -Tmcyrx uses the linker directive file for the i960 Rx
architecture.

-o xlt sets the object file name as xlt (optional).

xltconv.s specifies the input source file.

6-58

6Getting Started with the 80960 QUICKval Kit

3. To run the program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci xlt

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

 -r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

xlt specifies the executable file.

4. At the (gdb960) prompt, enter: run

The program prints out:
• the value of register r11 before and after the ip-relative branch.
• the value of the displacement in the index with displacement

addressing mode.
• the condition code before and after the scanbit instruction.
• the condition code before and after the add instruction.
• the result of performing the movq instruction.

5. At the (gdb960) prompt, enter: quit

CONGRATULATIONS! You have translated source code written for
earlier i960 processors. The source code is now Rx-compatible!

The i960 Jx CPU Example Programs6

6-59

Assembler Pseudo-instruction Tutorial

This tutorial demonstrates the use of pseudo-instructions that have been
added to the CTOOLS assembler to ease migration between processors.
The tutorial that follows demonstrates how to enable and disable the
instruction cache for the i960 Cx, Hx, Jx, and Rx microprocessors using
microprocessor specific instructions. The tutorial then demonstrates how
easy it is to enable and disable the instruction cache using only one pair of
pseudo-instructions.

What Are Pseudo-instructions?

A number of pseudo-instructions (pseudo-ops) have been added to the
CTOOLS assembler to ease the migration between processors. These
pseudo-ops provide an architecture-independent method for performing
some of the more common low-level processing operations. Using these
pseudo-ops should reduce the number of changes required when moving
assembly code from one i960 processor to another.

When you use any of the new i960 pseudo-instructions, you are required to
re-assemble your source code before running it on a new target platform
(e.g., from Cx to Jx). The assembler selects the best processor instructions
to replace the pseudo-instructions based on the processor targeted.

pseudop.c: Editing the File for the Cx Microprocessor
1. If you are using the Hx Jx Cx & Sx QUICKval software, choose

Linker and Utilities . If using the Rx QUICKval software, this step is
not necessary.

2. Choose Pseudo-op Tutorial
3. Choose Make. The following tutorial is displayed in the QUICKval

browser, and the command lines may be entered at the Command
Prompt window.

6-60

6Getting Started with the 80960 QUICKval Kit

4. Choose Qv Code. View the file pseudop.c loaded into the editor.
Scroll down the file to view the two procedures: cache_off() and
cache_on() . Both procedures contain no code initially.

cache_off() looks like:
cache_off()

{

}

5. Add the code necessary to disable the instruction cache for the Cx
microprocessor. Between the brackets of the cache_off()
procedure, add the following line exactly:
__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(DISABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

The cache_off() procedure should look like this:
cache_off()

{

__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(DISABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

}

This procedure, cache_off() , uses the instruction cache control
processor instruction sysctl . This instruction is valid in the i960 Cx
processor for managing and controlling the instruction cache. sysctl
is used above to disable the instruction cache. Also, the
CONFIGURE_ICACHE and DISABLE_ICACHE constants are found in
the system.h file that is included in the pseudop.c file.

The i960 Jx CPU Example Programs6

6-61

6. Likewise, edit the cache_on() procedure adding the following line
exactly:
__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(ENABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

The cache_on() procedure should look like this:
cache_on()

{

__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(ENABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

}

Similarly, the cache_on() procedure for the Cx microprocessor uses
the instruction cache control processor instruction sysctl . sysctl
is used directly above to enable the instruction cache.

7. Save the pseudop.c file.

Running pseudop.c for the Cx Microprocessor

1. Compile and run the pseudop.c program to show that it works as
desired.

2. In the Command Prompt window, enter the following commands:
gcc960 -AC{ F|A } -Fcoff -Tmcycx -o pseudop pseudop.c

The options in this command are:

-AC{ F|A } sets the target architecture for the compiler. For
this example, choose the Cx architecture, -ACF

or -ACA

-Fcoff sets the object file type as coff.

NOTE. If you do not have an i960 Cx microprocessor, you cannot run
this example; however, you can still compile the code to verify that it
compiles without error.

6-62

6Getting Started with the 80960 QUICKval Kit

-Tmcycx sets the linker directive file for the Cx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

If you have a Cx microprocessor and want to run the program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are: 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

-r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are: com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

3. At the (gdb960) prompt, enter: run

The program prints out the performance advantage of running the
program with the instruction cache enabled versus disabled.

The i960 Jx CPU Example Programs6

6-63

4. At the (gdb960) prompt, enter: quit

pseudop.c: Migrating the File to the Jx/Hx/Rx Microprocessor

Since the i960 Jx, Hx, and Rx microprocessors use the same processor
instruction to enable and disable the instruction cache, this migration
supports all three processors.

In order to use the program, pseudop.c , modified in the first part of this
tutorial to support the Jx, Hx, or Rx microprocessor, it must first be
migrated to those processors since they do not use the sysctl instruction
to enable and disable the instruction cache.

1. Choose Qv Code. View the file pseudop.c loaded into the editor.
Scroll down the file to view the two procedures: cache_off() and
cache_on() .
cache_off() contains the Cx specific code and looks like:
cache_off()

{

__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(DISABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

}

NOTE. The beauty of this example is not the results of the running
program, but the fact that the code works with instructions chosen
specifically for the Cx architecture. Of course, this is what is expected.
This program becomes more interesting when you start using
pseudo-instructions.

6-64

6Getting Started with the 80960 QUICKval Kit

2. Change the code to disable the instruction cache for the i960 Jx/Hx/Rx
microprocessors. Between the brackets of the cache_off()
procedure, delete the previously added line and insert the following line
exactly:
__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_OFF),"d"(0),"d"(0));

The cache_off() procedure should now look like this:
cache_off()

{

__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_OFF),"d"(0),"d"(0));

}

This procedure, cache_off() , uses the instruction cache control
processor instruction icctl . This instruction is valid in the 80960
Jx/Hx/Rx processors for managing and controlling the instruction
cache. icctl is used above to disable the instruction cache. Also,
the ICACHE_OFF constant is found in the system.h file that is
included in the pseudop.c file.

3. Likewise, edit the cache_on() procedure deleting the previously
added line and inserting the following line exactly:
__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_ON),"d"(0),"d"(0));

The cache_on() procedure should now look like this:
cache_on()

{

__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_ON),"d"(0),"d"(0));

}

Similarly, the cache_on() procedure for the Jx/Hx/Rx
microprocessors use the instruction cache control processor instruction
icctl . icctl is used directly above to enable the instruction cache.

4. Save the pseudop.c file.

The i960 Jx CPU Example Programs6

6-65

Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors
1. Compile and run the pseudop.c program to show that it works as

desired.

2. In the Command Prompt window, enter the following commands:
For the Jx Microprocessor:
gcc960 -AJ{ F|D|A } -Fcoff -Tmcyjx -o pseudop pseudop.c

The options in this command are:

-AJ{ AF|D|T } sets the target architecture for the compiler. For
this example, to choose the Jx architecture, -AJA ,
-AJF , -AJD , or -AJT

-Fcoff sets the object file type as coff.

-Tmcyjx sets the linker directive file for the Jx architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For the Hx Microprocessor:
gcc960 -AH{D|A} -Fcoff -Tmcyhx -o pseudop pseudop.c

The options in this command are:

-AH{ D|A } sets the target architecture for the compiler. For
this example, to choose the Hx architecture, -AHD
or -AHA

-Fcoff sets the object file type as coff.

-Tmcyhx sets the linker directive file for the Hx
architecture.

NOTE. If you do not have an i960 Jx, Hx, or Rx microprocessor, you
cannot run this example; however, you can still compile the code to verify
that it compiles without error.

6-66

6Getting Started with the 80960 QUICKval Kit

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For Rx Microprocessor:
gcc960 -AR{ P|D } -Fcoff -Tmcyrx -o pseudop pseudop.c

The options in this command are:

-AR{ P|D } sets the target architecture for the compiler. For
this example, to choose the Rx architecture:

-ARP or -ARD

-Fcoff sets the object file type as coff.

-Tmcyrx sets the linker directive file for the Rx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

3. If you have a Jx, Hx, or Rx microprocessor and want to run the
program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

 -r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are com1, com2, com3, and com4.

The i960 Jx CPU Example Programs6

6-67

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

4. At the (gdb960) prompt, enter: run

The program prints out the performance advantage of running the
program with the instruction cache enabled versus disabled.

5. At the (gdb960) prompt, enter: quit

pseudop.c: Adding Pseudo-Ops to the Program

As can be seen, it is neither easy nor fun migrating code from one processor
to another, especially when your code is many thousands of lines long.
Fortunately, pseudo-instructions have been added to the CTOOLS
assembler to ease migration between processors.

1. Choose Qv Code. View the file pseudop.c loaded into the editor.
You are ready now to rewrite this program using pseudo-instructions.
Scroll down the file to view the two procedures: cache_off() and
cache_on() .
cache_off() contains the i960 Jx/Hx/Rx microprocessor specific
code:
cache_off()

{

__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_OFF),"d"(0),"d"(0));

}

NOTE. The beauty of this example is not the results of the running
program, but the fact that the code works with instructions chosen
specifically for the architecture in question. Of course, this is what is
expected. This program becomes more interesting when you start using
pseudo-instructions.

6-68

6Getting Started with the 80960 QUICKval Kit

2. Change the code to disable the instruction cache for ALL processors.
Between the brackets of the cache_off() procedure, delete the
previously added line and insert the following line exactly:

__asm__ __volatile__("ic_disable r5");

The cache_off() procedure should now look like this:
cache_off()

{

 /* local register r5 is used to hold the status
returned */

__asm__ __volatile__("ic_disable r5");

}

This procedure, cache_off() , uses the pseudo-instruction
ic_disable . When this program, pseudop.c , is compiled for a
specific 80960 processor by using a -A architecture flag, the best
instructions for that architecture are chosen to replace the

ic_disable pseudo-op. Thus, pseudo-ops ease migration between
processors. Also, notice only one argument to the pseudo-op is
necessary. The icctl instruction requires three arguments.
Programming with pseudo-ops can be simpler. Pseudo-instructions are
also available to perform the other instruction cache management and
controlling functions, such as cache invalidation.

3. Likewise, edit the cache_on() procedure deleting the previously
added line and inserting the following line exactly:
__asm__ __volatile__("ic_enable r5");

The cache_on() procedure should now look like this:
cache_on()

{

 /* local register r5 is used to hold the status
returned */

__asm__ __volatile__("ic_enable r5");

}

Similarly, cache_on() uses a pseudo-instruction: ic_enable .
When this program, pseudop.c , is compiled for a specific 80960
processor, the best instruction for that architecture is chosen to replace
the ic_enable pseudo-op.

4. Save the pseudop.c file.

The i960 Jx CPU Example Programs6

6-69

Running pseudop.c with Pseudo-instruction
1. Compile and run the pseudop.c program to show that the

pseudo-instructions work as desired. To prove that the best instruction
is chosen for the architecture, compile the code for the Cx
microprocessor and then the Jx, Hx, or Rx microprocessor.

2. In the Command Prompt window, enter the following command:
gcc960 -AC{ F|A } -Fcoff -Tmcycx -o pseudop pseudop.c

The options in this command are:

-AC{ F|A } sets the target architecture for the compiler. For
this example, choose the Cx architecture, -ACF

or -ACA.

-Fcoff sets the object file type as coff.

-Tmcycx sets the linker directive file for the Cx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

When compiled, warnings may be generated. The warnings are
generated just to point out this simple fact: when you use any of the
new i960 pseudo-instructions, you are required to re-assemble your
source code before running it on a new target platform (e.g., from Cx to
Jx). The assembler selects the best instructions to replace the
pseudo-instructions based on the processor targeted.

3. If you have a Cx microprocessor and want to run the program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are: 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

6-70

6Getting Started with the 80960 QUICKval Kit

-r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are: com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

4. At the (gdb960) prompt, enter: run

The program prints out the performance advantage of running the
program with the instruction cache enabled versus disabled.

The result of this example is similar to using instructions specifically
chosen for the Cx architecture. So, using pseudo-instructions can
maintain the logic of your code, while easing migration to future i960
microprocessors.

5. At the (gdb960) prompt, enter: quit

NOTE. The beauty of this example is not the results of the running
program, but the fact that the code works as expected with
pseudo-instructions.

NOTE. If you do not have an i960 Jx, Hx, or Rx microprocessor, you
cannot run this example; however, you can still compile the code to verify
that it compiles without error.

The i960 Jx CPU Example Programs6

6-71

Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors
Now you are ready to compile the code for the Jx, Hx, or Rx microprocessor
to demonstrate similar results on a different processor.

1. In the Command Prompt window, enter the following commands:
For the Jx Microprocessor:
gcc960 -AJ{ F|D|A } -Fcoff -Tmcyjx -o pseudop pseudop.c

The options in this command are:

-AJ{ A|F|D|T } sets the target architecture for the compiler. For
this example, to choose the Jx architecture, -AJA ,
-AJF , -AJD , or -AJT

-Fcoff sets the object file type as coff.

-Tmcyjx sets the linker directive file for the Jx architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For the Hx Microprocessor:
gcc960 -AH{ D|A } -Fcoff -Tmcyhx -o pseudop pseudop.c

The options in this command are:

-AH{ D|A } sets the target architecture for the compiler. For
this example, to choose the Hx architecture, -AHD
or -AHA

-Fcoff sets the object file type as coff.

-Tmcyhx sets the linker directive file for the Hx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For Rx Microprocessor:
gcc960 -AR{ P|D } -Fcoff -Tmcyrx -o pseudop pseudop.c

The options in this command are:

-AR{ P|D } sets the target architecture for the compiler. For
this example, to choose the Rx architecture, -ARP
or -ARD

-Fcoff sets the object file type as coff.

6-72

6Getting Started with the 80960 QUICKval Kit

-Tmcyrx sets the linker directive file for the Rx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

2. If you have a Jx, Hx, or Rx microprocessor and want to run the
program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

 -r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

3. At the (gdb960) prompt, enter: run

The result of this example is the same as using instructions specifically
chosen for the Jx, Hx, or Rx architecture. So, using
pseudo-instructions does not change the logic of the program. It only
eases future migration of your code to future i960
microprocessors.

The i960 Jx CPU Example Programs6

6-73

4. At the (gdb960) prompt, enter: quit

When compiled, warnings may be generated. The warnings are
generated just to point out this simple fact: When you use any of the
new i960 pseudo-instructions, you are required to re-assemble your
source code before running it on a new target platform (e.g., from Cx to
Jx). The assembler selects the best instructions to replace the
pseudo-instructions based on the processor targeted.

CONGRATULATIONS! You can now start using pseudo-instructions in
your code to ease migration of your code to future i960 processors.

Debugging with gdb960

A software debugger is a useful tool that allows you to learn more about the
behavior of an application program while it is running on a target or
simulator. gdb960 is a source-level debugger that allows you to interact with
your application program running on a target system through the debug
monitor, MON960. MON960 is resident on the Cyclone CPU module.

This example uses the card game, Go Fish, and is designed to teach you a
few debugger commands so that you can further examine the example
programs provided with this kit or your own programs. In the card game,
Go Fish, you and the computer each get several cards. You take turns
guessing which cards are in each other’s hands. When you guess correctly,
you acquire that card. If you don’t guess correctly, you need to “Go Fish”
and draw another card from the pack. When you get four-of-a-kind, you
remove those cards from your hand. The objective of the game is to have the
most sets of four-of-a-kind when either you or the computer has no cards
remaining in your hands.

1. Choose Debugger.
2. Choose gdb960 Tutorial.

NOTE. This example uses the command line interface to gdb960. The
program also features a Graphical User Interface in both Windows and
UNIX. See The gdb960 User’s Manual for more information.

6-74

6Getting Started with the 80960 QUICKval Kit

3. Choose Make to compile, link, and download the program
automatically.
The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Do Not Type Run! First, use the gdb960 debugger to set a breakpoint
at function main() . Type:
break main

The debugger responds by displaying:
Breakpoint 1 set at 0xa0008570: file fish.c, line 209.

5. Set a second breakpoint at line 275. Type:
break 275

The debugger responds by displaying:
Breakpoint 2 set at 0xa0008bc4: file fish.c, line 275.

6. To execute the program from the beginning, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/fish
Breakpoint 1, main() at fish.c, 209.
209 srand();

NOTE. DEBUGGING SHORTCUTS
Abbreviations for gdb960 commands are accepted as long as they are
unambiguous.
To run, enter: r
To break, enter: br
To list, enter: l
To continue, enter: c
To print, enter: p
To clear, enter: cl
To quit, enter: qu
For help, enter: he

The i960 Jx CPU Example Programs6

6-75

7. To display the code at the breakpoint, type:
list

The debugger displays lines 204-213 of the fish.c source. To see the
next ten lines, type list again.

8. To continue executing the program from this location, type:
continue

The debugger responds by displaying:
Continue.
Would you like instructions[n]?

9. Reply by typing y for yes or <Enter> or n for no.
your hand is: A A 6 6 8 8 9
Breakpoint 2, game() at fish.c:275.
275 if(!move(yourhand,myhand,g=guess(),0))break;

10. In the source code in step 9, there are two variable arrays, myhand and
yourhand . Myhand is the computer’s hand and yourhand is yours. To
look at the card in the computer’s hand, type:
print myhand

The debugger responds by displaying:
$1=“000\000\000\001\000\002\000\001\000\000\001\002\000”

myhand[0] does not represent a card.
myhand[1] represents the number of Aces.
myhand[2] represents the number of 2s, and so on.
The same order of cards is represented in the array, yourhand .
If a King is drawn by either player, myhand[13] or yourhand[13]
will appear when you print the array.

11. Using the ability to see the computer’s hand, you are able to beat the
computer every time. Clear the first breakpoint at the function main()
and continue playing the game, looking at the computer’s hand any
time you need to. To clear the breakpoint at main() , type:
clear main

The debugger responds by displaying:
Deleted breakpoint 1

12. To continue executing the program, type:
continue

6-76

6Getting Started with the 80960 QUICKval Kit

13. If you need further assistance beating the computer, contact the 80960
Technical Support Group for more hints.

14. Type: quit

Debugging Optimized Code

CTOOLS can use the ELF object module format and DWARF Version 2
debug information format as described in the 80960 Embedded Application
Binary Interface (ABI) Specification (order number 631999). The new
formats enable more accurate mapping between source and object code at
higher optimization levels and ease production code debugging.

This example shows that at the highest level of module-local optimization, it
is possible to set a breakpoint on an inline function using ELF/DWARF,
while with COFF this is not possible.

1. Choose Debugger.
2. Choose C ELF/DWARF Format .
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Compile swap.c with no module-local optimizations (no inlining). This
shows that the procedure swap is not inlined. Enter:
gcc960 -Felf -T {Link-dir} -A {arch} -O0 -S swap.c

The options in this command are:

-Felf creates an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyjx specifies mcyjx.gld .

-O0 no module-local optimizations

-S generate assembly code from the source code

swap.c input file

The i960 Jx CPU Example Programs6

6-77

5. Edit swap.s (the generated assembly file from swap.c). In the
function _main , see the call to the procedure swap:
callj _swap

This is an out-of-line call to the procedure swap. The function swap
has not been inlined.

6. Now, compile swap.c with the highest level of module-local
optimizations. This inlines the procedure swap.
gcc960 -Felf -T {Link-dir} -A {arch} -O4 -S swap.c

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyjx specifies mcyjx.gld .

-O4 highest level of module-local optimizations

-S generate assembly code from the source code

swap.c input file

7. Edit swap.s (the generated assembly file from swap.c). In the
function _main , note the call to the procedure swap does not exist:
callj _swap /* Does Not Exist*/

The procedure swap has been inlined.
8. Recompile using the -O4 optimization level, the ELF/DWARF format,

and add debugging information.
gcc960 -Felf -T {Link-dir} -A {arch} -O4 -g -o swap swap.c

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyjx specifies mcyjx .gld.

-O4 highest level of module-local optimizations

-g include debug information in object file

6-78

6Getting Started with the 80960 QUICKval Kit

-o swap names the executable file swap

swap.c input file

9. Download the executable file, swap, to the Cyclone eval board
memory. Enter:

gdb960 -t mon960 -b 115200 -r com1 -D lpt1 swap

The options in this command are:

-t mon960 MON960 is on the target

-b 115200 use 155200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

swap the executable file

10. DO NOT TYPE RUN!
First, set a breakpoint on the procedure swap. Enter:
break swap

The debugger responds by displaying:
breakpoint 1 @0xa00080f0:file swap.c, line 43

breakpoint 2 @0xa0008148:file swap.c, line 54

Breakpoint 1 is the out-of-line reference to the procedure swap.
Breakpoint 2 is the inline reference to the procedure swap.

Swap.c was compiled with a high level of module-local optimizations
that included function inlining, and it is still possible to set a breakpoint
on the inline function. Breakpoint 2 stops program execution.

11. To execute the program, enter:
run

The debugger responds by displaying:
Breakpoint 2, main() @ swap.c: 54

54 printf(ìThe smallest number is %d\nî,a);

12. To continue the program, enter:
c

When the program has finished, enter:
quit

The i960 Jx CPU Example Programs6

6-79

13. Compile using the -O4 optimization level, the COFF format, and add
debugging information.

gcc960 -Fcoff -T {Link-dir} -A {arch} -g -O4 -o swap swap.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcyjx specifies mcyjx.gld .

-O4 highest level of module-local optimizations

-g include debug information in object file

-o swap names the executable file swap

swap.c input file

14. Download the executable file, swap, to the Cyclone eval board
memory. Enter:
gdb960 -t mon960 -b 115200 -r com1 -D lpt1 swap

The options in this command are:

-t mon960 MON960 is on the target

-b 115200 use 155200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

swap the executable file

15. DO NOT TYPE RUN!!
First, set a breakpoint on the procedure swap. Enter:
break swap

The debugger responds by displaying:
breakpoint 1 @0xa00080f0

Breakpoint 1 is the out-of-line reference to the procedure swap. Notice
that no inline breakpoint has been set. This breakpoint does not stop
execution of the program.
Swap.c was compiled with a high level of module-local optimizations
that included function inlining, and it is not possible to set a breakpoint
on the inline function. Program execution does not stop.

6-80

6Getting Started with the 80960 QUICKval Kit

16. To execute the program, enter:
run

The debugger responds by displaying the smallest number from the
swap. There is no break in program execution.

17. When the program has finished, enter:
quit

You have now seen that with the ELF/DWARF format, it is now
possible to debug your production code, even after high levels of
program optimization.

Debugging Optimized C++ Code Tutorial

The C++ compiler generates debug information using the DWARF format
when the -g option is specified with the -Felf option. This debug
information format is richer than that of other supported OMFs, and allows
more reliable debugging under optimization.

This tutorial demonstrates that at the highest level of module-local
optimization, debugging a C++ application is still possible due to the
DWARF debug format.

In this example, you compile a C++ program using the -O0 optimization
compiler option, which disables all optimizations, including those that may
interfere with debugging. The same C++ program is then compiled using
the highest-level of module-local optimization, -O4 .

There are several levels of program optimization available with the
CTOOLS development tool suite. Typically, low levels of optimization are
used during the debugging phase. Certain optimizations can cause
significant code changes that may make high-level debugging difficult.
Once the application is functioning properly, the application's performance
may be increased by using a higher level of optimization. The static
optimization options are:

O0 Turn optimization off

O1 Basic optimization

O2 strength-reduction, instruction scheduling for
pipelining, etc...

The i960 Jx CPU Example Programs6

6-81

O3 O2 plus fconstprop, finline-functions , etc...

O4 O3 plus fsplit-mem, fmarry-mem, fcoalesce

Level O4 is the highest level of static optimization. Please refer to the
i960 Processor Compiler User's Guide for more information on
ELF/DWARF and compiler optimizations.

In this tutorial, you compile and debug a C++ program, cppdwarf.cpp ,
that contains many of the advanced features of the C++ language, including:

• Classes
• Public, protected, and private variable accessibility
• Virtual functions
• Scope operators
• Overloaded functions
• Class inheritance

Using ELF/DWARF, both levels of optimization, -O0 and -O4 , retain the
C++ program structure so that the above features may be investigated.

1. Choose Debugger.
2. Choose C++ ELF/DWARF Format .
3. Choose Make. The following tutorial is displayed in the QUICKval

browser, and the command lines may be entered at the Command
Prompt window.

4. Compile the program using the -O0 optimization level. In the
Command Prompt window, enter the following command:
gcc960 -Felf -A{ arch } -T{ Link-dir } -stdlibcpp -O0 -g
-o cppdwarf cppdwarf.cpp

The options in this command are:

-Felf creates an ELF format output file.

-A{arch} specifies the architecture. For example, -AHD
specifies an 80960HD.

-T{Link-dir} specifies the linker directive file. For example,
-Tmcy jx specifies mcyjx .gld.

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

6-82

6Getting Started with the 80960 QUICKval Kit

-O0 specifies the lowest level of module-local
optimizations.

-g includes debug information in object file.

-o cppdwarf specifies the executable file cppdwarf .

cppdwarf.cpp specifies the input file cppdwarf.cpp .

5. Run the program using the debugger, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -D
{ parallel port } -pci cppdwarf

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-t mon960 is optional since mon960 is the
default.

-b 115200 sets the baud rate for serial communication
(optional). This option, -b 115200 , is not
needed when the serial port is not being used.
Possible baud rates are 1200, 2400, 9600, 19200,
38400, 57600, and 115200.

-r com1 sets the port to use for serial communication
(optional). This option, -r com1 , is not needed
when the serial port is not being used; however,
the -pci option is required when no serial port
is used. Possible serial ports are com1, com2, ...
com99.

-D lpt1 sets the code download option for the parallel port
(optional). This option, -D lpt1 , is not needed
when the serial port or PCI bus is used for code
download. Possible parallel ports are lpt1 and
lpt2.

The i960 Jx CPU Example Programs6

6-83

-pci sets the code download option for the PCI bus
(optional). When no serial port is specified, the
PCI bus is used for serial communication also.
The -r comx option is required when the PCI
bus is not used (i.e., when the -pci option is not
used).

cppdwarf specifies the executable file cppdwarf .

6. Do Not Enter Run!
Now you are ready to examine some features of the downloaded C++
program, cppdwarf.cpp . A C++ class in the program is person .
The gdb960 command ptype may be used to display a description of
a data type, including classes.
At the (gdb960) prompt, enter:
ptype person

The following data type information concerning the class person
appears:

Example 6-1 person Class

type = class person {

 protected:

 char name[40];

 char dept[40];

 public:

 void setName ();

 void setName (char *);

 void setDept ();

 void setDept (char *);

 void printName ();

 virtual int isOutstanding ();

 virtual char * getDept ();

}

6-84

6Getting Started with the 80960 QUICKval Kit

Please note the following concerning the above output:
• The entire class information for person is displayed, including

variables and member functions.
• The public , protected , and private variable accessibility

qualifiers are displayed for variables and member functions.
• All member functions are displayed, including virtual functions

and overloaded functions.
Another C++ class in the program is professor , which inherits from
the person class. Again, you use the gdb960 command ptype to
display a description of the professor class.

7. At the (gdb960) prompt, enter:
ptype professor

The following data type information concerning the class professor
appears:

Please note the following concerning the above output:
• The entire class information for professor is displayed,

including variables and member functions.
• The public , protected , and private variable accessibility

qualifiers are displayed for variables and member functions.
• All member functions are displayed, including virtual functions

and overloaded functions.
• type = class professor : public person indicates that

the professor class inherits from the person class.

Example 6-2 professor Class

type = class professor : public person {

 private:

 int numPubs;

 public:

 void setNumPubs ();

 void setNumPubs (int);

 virtual int isOutstanding ();

}

The i960 Jx CPU Example Programs6

6-85

8. You are ready to set some breakpoints.

a. First, set a breakpoint on the overloaded function setNumPubs in
the professor class. At the (gdb960) prompt, enter:
break professor::setNumPubs

The following information concerning breakpoints is displayed:
[0] cancel

[1] all

[2] professor::setNumPubs(int) at
cppdwarf.cpp:125

[3] professor::setNumPubs(void) at
cppdwarf.cpp:118

Option 0 cancels the breakpoint operation. Option 1 sets a
breakpoint on all the professor::setNumPubs functions.
Option 2 sets a breakpoint on
professor::setNumPubs(int) on line 125 of
cppdwarf.cpp . Similarly, option 3 only sets a breakpoint on
professor::setNumPubs(void) on line 118 of
cppdwarf.cpp .

b. Set a breakpoint on all professor::setNumPubs functions. At
the > prompt, enter: 1

The following information about breakpoints is displayed:
Breakpoint 1 at 0xa00083d0: file cppdwarf.cpp,
line 125.

Breakpoint 2 at 0xa0008358: file cppdwarf.cpp,
line 118.

c. Set a breakpoint on the virtual function
professor::isOutstanding . At the (gdb960) prompt, enter:
break professor::isOutstanding

The following information concerning breakpoints is displayed:
Breakpoint 3 at 0xa0009080: file cppdwarf.cpp,
line 110.

9. You are now ready to start the program. At the (gdb960) prompt, enter:
run

Notice that the program stops at all three of the breakpoints.

10. To continue after a break, use the gdb960 command continue , or
enter the keyboard shortcut c .

6-86

6Getting Started with the 80960 QUICKval Kit

11. At the (gdb960) prompt, enter: quit

The results of the debug session were as expected because no
optimizations had been performed on the source code during
compilation. You can now recompile the cppdwarf.cpp program
using the highest-level of module-local optimization and repeat the
previous debug session.

12. Compile the program using the -O4 optimization level. In the
Command Prompt window, enter the following command:
gcc960 -Felf -A{ arch }-T{ Link-dir } -stdlibcpp -O4 -g
-o cppdwarf cppdwarf.cpp

The options in this command are:

-Felf create an ELF format output file

-A{ arch } specifies the architecture. For example, -AHD
specifies an 80960HD

-T{ Link-dir } specifies the linker directive file. For example,
-Tmcy jx specifies mcy jx .gld .

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-O4 highest level of module-local optimizations

-g include debug information in object file

-o cppdwarf specifies the executable file cppdwarf

cppdwarf.cpp input file

13. Run the program using the debugger, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -D
{ parallel port } -pci cppdwarf

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-t mon960 is optional since mon960 is the
default.

-b 115200 sets the baud rate for serial communication
(optional). This option, -b 115200 , is not
needed when the serial port is not being used.
Possible baud rates are: 1200, 2400, 9600, 19200,
38400, 57600, and 115200.

The i960 Jx CPU Example Programs6

6-87

-r com1 sets the port to use for serial communication
(optional). This option, -r com1 , is not needed
when the serial port is not being used; however,
the -pci option is required when no serial port
is used. Possible serial ports are: com1, com2, ...
com99.

-D lpt1 sets the code download option for the parallel port
(optional). This option, -D lpt1 , is not needed
when the serial port or PCI bus is used for code
download. Possible parallel ports are: lpt1 and
lpt2.

-pci sets the code download option for the PCI bus
(optional). When no serial port is given, the PCI
bus is used for serial communication also. The

-r comx option is required when the PCI bus is
not used (i.e., when the -pci option is not used.)

cppdwarf specifies the executable file.

14. Do Not Enter Run!
You are now ready to investigate some features of the downloaded C++
program, cppdwarf.cpp . A C++ class in the program is person .
The gdb960 command ptype may be used to display a description of
a data type, including classes. At the (gdb960) prompt, enter:
ptype person

Please note, the output matches that of Example 6-1, “person Class”.
Optimizations did not affect the person class output. It is the same
as the first debug session.

15. Another C++ class in the program is professor , which inherits from
the person class. Once again, you use the gdb960 command ptype to
display a description of the professor class. At the (gdb960)
prompt, enter:
ptype professor

Again please note, the output matches that of Example 6-2, “professor
Class”. Optimizations did not affect the professor class output. It
is the same as the first debug session.

6-88

6Getting Started with the 80960 QUICKval Kit

16. You are now ready to set some breakpoints.

a. First, set a breakpoint on the overloaded function setNumPubs
in the professor class. At the (gdb960) prompt, enter:
break professor::setNumPubs

The following information concerning breakpoints is displayed:
[0] cancel

[1] all

[2] professor::setNumPubs(int) at
cppdwarf.cpp:125

[3] professor::setNumPubs(void) at
cppdwarf.cpp:118

Option 0 cancels the breakpoint operation. Option 1 sets a
breakpoint on all the professor::setNumPubs functions.
Option 2 only sets a breakpoint on
professor::setNumPubs(int) on line 125 of
cppdwarf.cpp . Similarly, option 3 only sets a breakpoint on
professor::setNumPubs(void) on line 118 of
cppdwarf.cpp .

b. Set a breakpoint on all professor::setNumPubs functions, so
At the > prompt, enter: 1.
The following information about breakpoints is displayed:
Breakpoint 1 at 0xa00082e4: file cppdwarf.cpp,
line 125.

Breakpoint 2 at 0xa0008294: file cppdwarf.cpp,
line 118.

c. Finally, set a breakpoint on the virtual function
professor::isOutstanding . At the (gdb960) prompt, enter:
break professor::isOutstanding

The following information concerning breakpoints is displayed:
Breakpoint 3 at 0xa0008960: file cppdwarf.cpp,
line 111.

The i960 Jx CPU Example Programs6

6-89

17. You are now ready to start the program. At the (gdb960) prompt, enter:
run

Notice that the program does not stop at all three of the breakpoints. As
can be seen, the DWARF debug information format is very rich, and
allows more reliable debugging under optimization. However, even
with DWARF, there are situations where debugging behavior does not
agree with the debugging behavior of unoptimized code.

18. To continue after a break, use the gdb960 command continue , or
enter the keyboard shortcut c .

19. At the (gdb960) prompt, enter: quit

CONGRATULATIONS! You may now know how to use ELF/DWARF to
debug your optimized C++ code.

Writing Flash

This example teaches you the following:

• Writing to flash on the Cyclone base board.
• Booting off of the flash in socket U27 of the Cyclone base board, as

opposed to the flash on the CPU Module.
• Setting the Cyclone base board to 12 volts.
• Using mondb.exe as a simple utility to download and execute an

application program on the target board running MON960.
• Using mondb.exe to write flash.
• Building a new monitor for a particular i960 microprocessor family

member.
• Retargeting MON960 for other boards.

NOTE. In order to write to flash on your Cyclone base board, you need
a 12 volt power supply. Also, these instructions are used with the
CTOOLS 6.0 and MON960 3.2.3 toolsets.

6-90

6Getting Started with the 80960 QUICKval Kit

Complete this step:

1. Choose MON960.
2. Choose Writing Flash.
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Identify the Flash on the Cyclone base board.
A blank Flash chip ships on each Cyclone base board in socket U22. To
write MON960 to Flash, you must move the blank Flash from socket
U22 to socket U27.

5. Set the Cyclone base board voltage to 12 volts.
Locate the four-position DIP switch labeled S1. Flip S1.1 to the ON
position. This enables VPP to the Cyclone base board Flash.

6. Power up the Cyclone eval base board
Locate the four-pin connector that interfaces to a secondary power
supply labeled J6. Three of the connector pins connect to +5 VDC,
+12 VDC and ground. (On the PCI-SDK Platform, +12 VDC and +5
VDC power is supplied through the edge connector.)

7. Edit Version.c .
a. Change directories to where the version.c file resides. The

default installation directory for CTOOLS is:
c:\intel960\src\mon960\common

If you cannot find the mon960 directory, You need to install
MON960 as directed in the MON960 Debug Monitor User’s
Manual.
Version.c contains the following information:

const char mon_version_byte = nn; /* version n.n = nn */

const char base_version[] = "MON960 n.n.n";

const char build_date[] = __DATE__;

b. Change the file contents to reflect that this is your version of
MON960. For example, change
const char base_version[] = "MON960 n.n.n";

to:
const char base_version[] = "MY MON960";

c. Save Version.c .

The i960 Jx CPU Example Programs6

6-91

8. Build the new MON960 from source (optional)
By default the source for MON960 is located at:
c:\intel960\src\mon960\common

You may use the pre-built version of MON960 there, or build a custom
verion. To create a custom version:
a. Copy makefile.xxx to

c:\intel960\src\mon960\common\makefile .
where xxx is one of the following make files:
makefile.ic (ic960 interface, COFF format)
makefile.ie (ic960 interface, ELF format)
makefile.gc (gcc960 interface, COFF format)
makefile.ge (gcc960 interface, ELF format)

b. Issue the commands:
nmake -s makefile

cyjx

This creates a file called cyjx.fls .
9. Write the Flash

To write the Flash, use the mondb.exe utility located in the
intel960\bin\ directory. If you are going to use the pre-built
MON960 files, they are located in the intel960\roms directory. For
example, if you used the default installation directory and are using the
pre-built MON960 files for the 80960Jx, enter:
mondb -ser com1 -par lpt1 -ef -ne
c:\intel960\roms\cy j x.fls

The options in this command are:
-ser com1 use serial port 1
-par lpt1 use parallel port 1
-ne no execute
-ef erase Flash
cyjx.fls input Flash filename
Note also that if you built a version of MON960 from the source code
as described previously, the cyjx.fls file will be located in the
c:\intel960\src\mon960\common\ directory.

6-92

6Getting Started with the 80960 QUICKval Kit

10. Set Board Voltage Back To +5 VDC
Locate the four-position DIP switch labeled S1. Set S1.1 to the OFF
position. This disables VPP to Cyclone EP base board Flash and
protects the Flash. Note that the PCI80960DP and i960 Jx evaluation
platforms do not boot when VPP is enabled and MON960 is running
from the evaluation board Flash.

11. Set board to boot from U27 socket
Locate the four-position DIP switch labeled S1. Set S1.3 ROMSWAP
to the ON position. This exchanges the addresses of the CPU Module
ROM and the base board ROMs. When the switch is OFF the
processor boots from the CPU Module ROM; when the switch is ON
the processor boots from the base board ROMs.

12. Reset Base Board
Locate the reset pushbutton labeled S2. Use this button to manually
reset the Cyclone base board and boot from the base board ROMs.

How to Add Benchmarking Routines to Your Code

Benchmarking is a common way to evaluate an architecture for its
performance. CTOOLS comes with two routines for benchmarking code.
These routines are called bentime() and init_bentime() .
init_bentime() is called once to program the on-board Counter/Timer to
periodically interrupt the processor. The bentime() routine returns the
time in microseconds based on the count from the interrupt handler,
timer_isr , and the current count read from the timer. By placing a call to
bentime() at the start and end of the code you are timing, the elapsed
time can be calculated by the difference between the second call to
bentime() and the first.

1. Choose Benchmarking.
2. Choose Qv Code.

NOTE. If you have trouble with this example, refer to Chapter 3 for
troubleshooting tips.

The i960 Jx CPU Example Programs6

6-93

3. Scroll through the chksum.c code for comments that refer to
“Benchmarking Routine”. You can add similar lines to the code that
you want to time.

4. Choose Make to compile, link, and download the program
automatically.

5. Execute the chksum program. Type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...
Time for Checksum was 6.233021 seconds. Value was
869e7960.
Program exited with code 01

6. Type: quit

Other i960 Processor Choices and the Remote Evaluation Facility

The i960 RISC processor family has a wide breadth of processors to match
your design’s price and performance needs. If you wish to evaluate other
i960 processor family members, contact your local distributor and order
different Cyclone CPU modules, or visit the Remote Evaluation Facility at
http://developer.intel.com/design/i960/testcntr

If you choose to order more CPU modules, you may rest assured that all
i960 processor modules plug-n-play with your QUICKval kit. This
configuration was specifically designed to protect your investment and offer
a low cost migration path for future needs.

NOTE. The i960 Rx Processor is not available through the Remote
Evaluation Facility.

7-1

The i960 Cx CPU
Example Programs 7

The i960 CA and CF superscalar microprocessors represent Intel’s
commitment to provide a spectrum of reliable, cost-effective,
high-performance processors that satisfy the requirements of today’s
innovative microprocessor-based products. The i960 Cx processors are
designed for applications which require greater performance on a single
chip than is usually found in an entire embedded system. The sheer speed of
the i960 Cx processors enriches traditional embedded applications and
makes many new functions possible at a reduced cost. These embedded
processors are versatile; they are found in diverse products such as laser
printers, X-terminals, bridges, routers, PC add-in cards and server
motherboards.

Additionally, you can optimize your system’s performance with CTOOLS,
which includes a profile-driven compiler that can automatically optimize
your code based on its runtime behavior.

The following pages describe the example programs included with this kit.
Each example highlights a feature of the architecture or CTOOLS and
provides you with source code that can help shorten your software
development cycle. Table 7-1 provides descriptions of the tutorials included
in the i960 Cx QUICKval kit.

7-2

7Getting Started with the 80960 QUICKval Kit

Table 7-1 QUICK val i960 Processor Sample Programs

Tutorial Description Source Files

Hello World: Uses simple printf statement to
verify system integrity.

hello.c : source file
system.c : system file

Memory Test: Used for system verification of
external memory. The programs perform byte,
short, or word writes to external memory, and
then they check the addresses written for
correctness.

memtst8.c: 8 bit memory
test memtst16.c : 16 bit
memory test memtst32.c : 32
bit memory test
system.c : system file

Data Cache: Uses the minimum edit distance
algorithm to demonstrate the effectiveness of
the on-chip data cache. This example also
shows how to enable and disable the data
cache and how to configure an area of
memory for caching.

dcache.c : source file
system.c : system file

Instruction Cache: Uses a simple loop to
demonstrate how to enable and disable the
instruction cache. It also highlights the
performance advantage obtained when using
the on-chip instruction cache.

loop.c : source file

system.c : system file

External Interrupts: Shows how to configure
the Cyclone board timers to trigger hardware
interrupts. This is also an example of using
interrupt handlers and placing the handlers in
the interrupt table.

cyint.c : source file
asm_fns.s : interrupt handler
for Sx
int_proc.s : interrupt
handler-all processors but Sx
t85c36.c : eval board timer
file
system.c : system file

Fault Handling: Shows how to set up the fault
handling procedures in the fault and system
procedure tables.

fault.c : source file
flt_proc.c : fault
procedures
asm_flt.s : assembly
functions to help generate
faults
system.c : system file

continued ☛

The i960 Cx CPU Example Programs7

7-3

DMA Controller (i960 Cx): Provides an
example of programming the DMA controller
of the 80960 CX microprocessor. This
example is setup for block mode chaining
transfer.

dma.c : source file
int_rout.c : DMA interrupt
handling routines
dma.s : configures DMA
channel 0 and provide chained
linked buffers.
system.c : system file

C Local Optimizations: Shows how to use
the C compiler with high levels of static
optimization for improved runtime
performance.

chksum.c , system.c :
source files

C Global Optimizations: Shows how to use
program-wide optimizations of the C compiler
for increased performance.

chksum.c ,
system.c :
source files

C++ Local Optimizations: Shows how to use
the C++ compiler with high levels of static
optimization for improved runtime
performance.

optimize.cpp : source file

C++ Global Optimizations: Shows how to
use program-wide optimizations of the C++
compiler for increased performance.

optimize.cpp : source file

C++ Virtual Function Optimizations: Shows
how a call to a virtual function can be replaced
by a direct call to a member function, and, if
possible, it may be inlined at the call site. This
improves the runtime performance of the
code.

optimize.cpp : source file

Profiling Lab: Teaches you how to use some
of CTOOLS advanced profiling features.

chksum.c : source file

Self-Contained Profile: Shows how to create
a self-contained profile that captures the
program structure and associates it with the
program counters from a raw profile. When
the source program changes, the global
decision making step interpolates or stretches
the counters in the self-contained profile to fit
the changed program.

quick.c : source file

continued ☛

Table 7-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

7-4

7Getting Started with the 80960 QUICKval Kit

Incremental Profiling: Shows how to profile
a program in pieces and then re-combine
them later, a useful methodology when the
target execution environment is memory
limited

fault.c , flt_proc.c ,
asm_flt.s , system.c :
source files

C Cave: Uses a tic-tac-toe game to show how
to reduce target memory requirements. The
text sections of compressed and
uncompressed tic-tac-toe executables are
compared. Additionally, this example
demonstrates how to specify functions for
compression.

ttt.c : source file

C++ Cave: Shows how to reduce target
memory requirements. The text sections of
compressed and uncompressed C++
executables are compared. This example also
shows how to specify functions for
compression.

cavecpp.cpp : source file

Linker Directive Language: Provides a
hyperlinked manual that describes the linker
command options. This tutorial is found in the
online help only, not in this manual.

Linker Consumption: Shows the ability of
the linker, gld960, to consume b.out-format,
COFF, or ELF object files and libraries in any
combination.

cyint.c , int_proc.s ,
t85c36.c , system.c :
source files

i960 Processor Assembler
Pseudo-Instruction Support: Shows how to
use the new assembler pseudo-ops.

pseudop.c : source file

Debugging with gdb960: Uses the Go Fish
card game to teach a few useful debugger
commands.

fish.c : source file
system.c : system file

ELF/DWARF Debugging Format:
Demonstrates that at the highest level of
module-local optimization, it is possible to set
a breakpoint on an in-line function.

swap.c : source file

continued ☛

Table 7-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

The i960 Cx CPU Example Programs7

7-5

System Validation

Hello World

The program hello.c is used to verify your software and hardware system
integrity. The following steps provide instructions on how to compile, link,
download, and execute this program.

C++ DWARF-2 Debugging Format:
Demonstrates that at the highest level of
module-local optimization, it is possible to
debug a C++ application.

cppdwarf.cpp : source file

Retargeting MON960: Provides steps for
retargeting MON960. This tutorial is found in
the online help only, not in this manual.

Writing Flash: Demonstrates how to update
the version of MON960 on your evaluation
board.

80960 Family Benchmark: Shows how to
use this facility to compare your processor's
performance with other i960 family members.
This example uses a typical checksum
routine to show how to add benchmarking
routines into source code.

chksum.c , system.c :
source files

Remote Evaluation Facility: Guides you
through the use of this new benchmarking
facility on the World-Wide Web.

Table 7-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

7-6

7Getting Started with the 80960 QUICKval Kit

1. Verify that your software and hardware have been installed according
to the instructions in Chapter 2 through 3 and the frequency switch on
your CPU module is set as shown. The switch settings below set the
80960Cx CPU module frequency at 40 MHz.

2. Power your Cyclone evaluation platform and i960 Cx CPU module
3. Double-click on the Hx Jx Cx & Sx QUICK val icon in the QUICKval

program group.
4. Configure you hardware.

• Select the 80960 Architecture tab
• Select Cx.
• Depending on the board you have installed, select either the

EP80960BB or PCI80960DP tab.
• Configure the software communication options to match those of

your evaluation board.
• Choose OK

5. Choose Hello World .
6. Choose Make to compile, link, and download the program

automatically.
7. Use the gdb960 debugger to execute hello. Type:

run

8. The gdb960 debugger responds by displaying:
Hello...Welcome to the 80960CX QUICKval Kit!

SYSTEM CHECK COMPLETED!!

Now you may proceed with our Example Programs.

Program Exit: 01

(gdb960)

9. To exit the debugger, type: quit

CONGRATULATIONS! You have successfully installed your software and
your hardware, compiled a program using gcc960, and downloaded and
executed the program on your evaluation board using the gdb960 debugger.

OFF

1 2 3 4

SW1

The i960 Cx CPU Example Programs7

7-7

If you received any error messages during this process, refer to “If
Something Goes Wrong” on page 7-8.

Memory Test

The programs memtst8.c , memtst16.c , and memtst32.c are used to test
the external memory on the Cyclone base board.

Depending on the test that is run, an 8, 16, or 32-bit test is run on an area of
memory. The program writes F's and 0's to a memory location and reads the
location to verify the integrity of what was written. All three programs are
almost identical, with the exception of the casting of the variable *ADDR,
which allows you to perform different test types.

1. Choose Memory Test.
2. Choose a memory test. The options are, 8-bit Memory Test, 16-bit

Memory Test, or 32-bit Memory Test.
3. Choose Make to compile, link, and download the program

automatically.
4. Use the gdb960 debugger to execute memtst. Type:

run

5. For the 8-bit test, memtst8.c , the gdb960 debugger responds by
displaying:

This program will run a 8-bit test on the external memory.

Test to be implemented is byte test.
Starting address = a000dfb0
Ending address = a000ec30

Press enter to begin test with 0’s.
Number of errors that occurred is 0.

Begin test for f’s.

NOTE. Below, memtst*.c refers to either the byte, short, or word
memory test example.

7-8

7Getting Started with the 80960 QUICKval Kit

Press enter to continue.
Number of errors that occurred is 0.

All tests are complete.
Program exited with code 030.
(gdb960)

6. Exit the debugger. Type:
quit

If Something Goes Wrong

The following section describes a few actions that may help resolve errors
that may have occurred when invoking one of the tools. If you were unable
to get the proper response from the gdb960 debugger after executing the
above programs and the trouble-shooting hints described below do not help,
contact the 80960 Technical Support Group by phone at 1-800-628-8686 or
by E-mail at 960tools@intel.com.

MON960 Debug Monitor is Not Responding...

If the red FAIL LED (CR6) on the base board is lit, the monitor may not
have booted up correctly. Press the reset button (S2). If the red FAIL LED
remains lit, contact the 80960 Technical Support Group.

Invoking the gcc960 Compiler Resulted in Errors...

The environment must be set-up as described in Chapter 2. If you chose the
default directories while installing CTOOLS, verify that the path names
C:\INTEL960\BIN have been added to your PATH variable and that the
following statement is in your autoexec.bat file. If you did not install
these tools using the default directories, make the appropriate change.

SET G960BASE=C:\INTEL960

NOTE. You did not use the default directories on installation, please
make sure the G960BASE environment variable is assigned
appropriately.

The i960 Cx CPU Example Programs7

7-9

Invoking the gld960 Linker Resulted in Errors...

Verify that the directory that contains the hello.c and memtst*.c
example programs also now has the object files, hello.o and memtst*.o .
If hello.o and memtst*.o do not exist, then the gcc960 compiler
command did not successfully create an object file. Re-compile hello.c
and memtst*.c to see if an error occurred during the compilation.

If hello.o and memtst*.o do not exist, make note of the error message
and contact the 80960 Technical Support Group.

Invoking the gdb960 Debugger Resulted
in Errors...

Serial communication error

A serial communication error causes the gdb960 debugger to respond by
displaying:

HDIL error (10), communication failure
HDIL error (10), communication failure

You can’t do that when your target is ‘exec’

Verify that the serial port you are using is the one you specified in the
gdb960 command line. Verify that your serial cable is properly connected to
the board and to your PC.

NOTE. Don’t forget to re-boot your system once you have made any
necessary changes to your autoexec.bat file.

NOTE. If you are using the PCI-SDK evaluation platform, you may
specify -pci for PCI download and PCI communication.
For a list of all the gdb960 command line options, at a command prompt,
enter: gdb960 -h | more

7-10

7Getting Started with the 80960 QUICKval Kit

Parallel communication error

A parallel communication error causes the gdb960 debugger to respond by
displaying:

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type ‘show copying’ to see the conditions.
There is absolutely no warranty for GDB; type “show warranty” for
details.

gdb960.exe 6.0, Wed FEB 16 12:33:16 1998

GDB 5.10 (i486-intel-dos --target i960-intel-mon960), Copyright 1997

Free Software Foundation, Inc...(no debugging symbols found)...

Connected to com1 at 115200 bps.

(gdb960)

section 0, name .text, address 0xc0008000, size 0x50ec, flags 0x20

 writing section at 0xc0008000

Verify that the parallel port you are using is the one you specified in the
gdb960 command line. Verify that your parallel cable is properly connected
to the board and to your PC.

Data Cache Tutorial (80960CF Only)

The i960CF processor has a 1-Kbyte direct mapped data cache which
enhances performance by reducing the number of load and store accesses to
external memory. The data cache can return up to a quad word (128 bits) to
the register file in a single clock cycle on a cache hit.

External memory is configured as cacheable or non-cacheable on a
region-by-region basis, using special bits in the memory region
configuration registers MCON0-15. This makes it easy to partition a system
into cacheable regions (local memory) and non-cacheable regions.

The i960CF processor implements a simple coherency mechanism. The data
cache can also be enabled, disable or invalidated on a global basis through
programming.

This example uses the Minimum Edit Distance (MED) algorithm in order to
show the effectiveness of using the data cache. The MED algorithm finds
the minimum number of edit steps required to change one string into
another.

The i960 Cx CPU Example Programs7

7-11

This example is a real world example of using the data cache. This
algorithm maintains a cost matrix to determine which change to the string
being edited would incur the least cost. The cost matrix is a 2-D array
[1..n][1..m], where n and m are the sizes of the two strings.

The algorithm really shows the speed of the data cache due to three reads
for each write to the cost matrix. The algorithm reads from the cache to
determine which step to take next, then writes its choice in the cost matrix.
Since the writes to the data cache are write-through, there is no
improvement for writes to the data cache. The Write-Through feature
maintains coherency between the data cache and external memory.

The source code includes system files, system.c and system.h , that
includes a macro and an assembly function that simplifies issuing data
cache control instructions.

1. Choose Cache Examples.
2. Choose Data Cache.
3. Choose Qv Code.
4. Scroll through the dcache.c code to see the calls to the macro,

dcctl_contrl .
5. Open and scroll through the system.h and system.c code to see the

macro and assembly function, dcctl_control and i960_dcctl .
6. Choose Make to compile, link, and download the program

automatically.
7. Use the gdb960 debugger to execute dcache . Type:

run

The debugger responds by displaying:
Minimum Edit Distance algorithm makes reads from the data cache.

This routine will determine how many steps are needed to convert:

StringA: 80960 QUICKval EvalKit

TO StringB: i960(R) HxJxCxSx & Kx

Starting timed routine with data cache on ...

RESULT: 18 moves are required to convert string A to string B

Elapsed Time On = 0.001446 seconds

Elapsed Time for routine with data cache off ...

7-12

7Getting Started with the 80960 QUICKval Kit

RESULT: 18 moves are required to convert string A to string B.

Elapsed Time Off = 0.003189 seconds

IMPROVEMENT: 54.7 percent

(gdb960)

8. Type: quit

9. Select Results.

Instruction Cache Tutorial (80960CF Only)

The instruction cache enhances performance by reducing the number of
instruction fetches from external memory. The cache provides fast
execution of cached code and loops of code in the cache and also provides
more bus bandwidth for data operations in external memory. The i960 Cx
processors’ instruction cache is a two-way set associative cache, organized
in two sets of eight-word lines. Each line is composed of four two-word
blocks which can be replaced independently.

• The i960CA processor cache is 1 Kbyte, organized as two sets of 16
eight-word lines.

• The i960CF processor cache is 4 Kbyte, organized as two sets of 64
eight-word lines.

 The loop.c program demonstrates the performance boost obtained by
running a loop completely within versus outside of the instruction cache.

The source code includes system files, system.c and system.h, that includes
a macro and an assembly function that simplifies issuing instruction cache
control instructions.

1. Choose Cache Examples.
2. Choose Instruction Cache.
3. Choose Qv Code.
4. Scroll through the loop.c code to see the calls to the macro,

icache_control .

NOTE. Your actual run times may vary.

The i960 Cx CPU Example Programs7

7-13

5. Open and scroll through the system.h and system.c code to see the
macro and assembly function, icache_control and i960_icctl .

6. Choose Make to compile, link, and download the program
automatically.

7. Use the gdb960 debugger to execute loop . Type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/loop
Simple loop timed with instruction cache off ...
Elapsed Time Off = 3.341 seconds

Simple loop timed with instruction cache on ...
Elapsed Time On = 0.873 seconds

IMPROVEMENT : 73.9 percent
Program exited with code 01
(gdb960)

8. Type: quit

9. Select Results.

External Interrupts Tutorial

The purpose of this program, cyint.c , is to show the steps required when
dealing with an interrupt triggered externally by the evaluation board timers.
The cyint.c source code contains step-by-step instructions to save you
time when you program interrupts for your application. int_proc.s is the
interrupt handler, and t85c36.c contains the functions to program the
evaluation board timers.

The example performs the following steps in the handling of a hardware
interrupt.

• Modify the ICON register
• Modify the IMAP register
• Cache the interrupt vector and the interrupt handling procedure
• Lower the processor priority
• Modify the IMSK register
• Clear the IPND register
• Generate the hardware interrupt using the evaluation board timers

7-14

7Getting Started with the 80960 QUICKval Kit

Complete these steps:

1. Choose Interrupt Examps .
2. Choose External Interrupts .
3. Choose Qv Code.
4. Scroll through the cyint.c source to see the code for setting up and

handling a hardware interrupt triggered by the evaluation board timers.
5. Open and scroll through the t85c36.c and t85c36.h files to see the

definitions and routines for programming the evaluation board timers.
You can simplify the programming of the evaluation board timers by
including this code in your own applications.

6. Choose Make to compile, link, and download the program
automatically.

7. Use the gdb960 debugger to execute cyint . Type:
run

The debugger responds by displaying:
interrupt count = 70

interrupt count = 85

interrupt count = 98

interrupt count = 110

interrupt count = 122

interrupt count = 134

interrupt count = 147

interrupt count = 159

interrupt count = 171

Program exited with code 020.

(gdb960)

8. Type: quit

NOTE. Your actual interrupt counts may vary.

The i960 Cx CPU Example Programs7

7-15

Fault Handling

These programs, fault.c , flt_proc.c , asm_flt.s , and system.c , show
the steps taken in setting up the fault handling procedures in the fault and
system procedure tables. The faults are then triggered one by one.

Table 7-2 i960 Cx Processor Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

Number Name

Number
or Bit
Position Name

0H PARALLEL NA See your
microprocessor
user’s manual

1H TRACE Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

INSTRUCTION

BRANCH

CALL

RETURN

PRERETURN

SUPERVISOR

MARK

0001 0002H

0001 0004H

0001 0008H

0001 0010H

0001 0020H

0001 0040H

0001 0080H

2H OPERATION 1H

2H

3H

4H

INVALID_OPCODE

UNIMPLEMENTED

UNALIGNED

INVALID_OPERAND

0002 0001H

0002 0002H

0002 0003H

0002 0004H

3H ARITHMETIC 1H

2H

INTEGER_OVERFLOW

ZERO-DIVIDE

0003 0001H

0003 0002H

4H Reserved

5H CONSTRAINT 1H RANGE 0005 0001H

6H Reserved

7H PROTECTION Bit 1 LENGTH 0007 0002H

9H Reserved

AH TYPE 1H MISMATCH 000A 0001H

BH - FH Reserved

7-16

7Getting Started with the 80960 QUICKval Kit

1. Choose Fault Handling.
2. Choose QV Code.
3. Scroll through the fault.c code to see a call to the function

load_flt_proc(). This function loads the fault handling procedures into
the fault and/or the system table.

4. Open and scroll through the flt_proc.c and asm_flt.s files. The
flt_proc.c file contains the fault handling procedures, and the file
asm_flt.s is used to help generate the faults.

5. Choose Make to compile, link, and download the program
automatically.

6. Use the gdb960 debugger to execute fault . Type:
run

The debugger responds by displaying the Fault Type and the Fault
Subtype for each fault handled. The address of the faulting instruction
is given (see Table 7-2).

7. Type: quit

DMA Tutorial

A key enhancement of the i960 Cx processor — only available on this i960
processor family member — is the integrated DMA controller.

The DMA controller concurrently manages up to four independent DMA
channels. Each channel supports memory-to-memory transfers where the
source and destination can be any combination of internal data RAM or
external memory. The DMA mechanism provides two unique methods for
performing DMA transfers:

• Demand-mode transfers (synchronized to external hardware). Typically
used for transfers between an external device and memory.

NOTE. When compiling, disregard the compiler warning:
Warning: unaligned register

This is one of the faults that will be handled.

The i960 Cx CPU Example Programs7

7-17

• Block-mode transfers (non-synchronized). Typically used to move
blocks of data within memory.

To perform a DMA operation, the DMA controller uses microcode, the
core’s multi-process resources, the bus controller and internal hardware
dedicated to the DMA controller. For more information, please reference
the i960 Cx Processor User’s Manual, chapter 13.

1. Choose DMA .
2. Choose QV Code.
3. Scroll through the dma.c code to see the steps for setting up the DMA

controller which are listed directly to the left.
4. Open and scroll through int_rout.c and sdma.s files. int_rout.c

is the DMA interrupt handling routine, and sdma.s will configure
DMA channel 0 and provide chained linked buffers.

5. Choose Make to compile, link, and download the program
automatically.

6. Use the gdb960 debugger to execute dma. Type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/dma
Buffer transfer #1 complete.
Buffer transfer #2 complete.
Buffer transfer #3 complete.
Program exited with code 041.
(gdb960)

The Buffer Transfers above used block-mode transfers
(non-synchronized). This method moved blocks of data within
memory.

7. Exit the debugger, type:
quit

Static, Global, and Profile-Driven Optimizations

Optimizing compilers provide you with a means of developing high
performance code without detailed knowledge of the architecture.
Engineers who understand the features of the i960 architecture developed
gcc960 to provide optimizations that take full advantage of the i960

7-18

7Getting Started with the 80960 QUICKval Kit

processor. In general, optimizing compilation takes more time and may
require more memory for large functions. However, the benefit in runtime
performance is well worth it.

There are several levels of optimization available. Typically, low levels of
optimizations are used during the debugging phase. Certain optimizations
can cause significant code changes that may make high-level debugging
difficult. Once your application is functioning properly, you can increase its
runtime performance by using a higher level of optimization.

Release 5.0 and later of the development tools support the ELF object
module format and DWARF version 2.0 debug information format. The new
format enables more accurate mapping between source and object code at
higher optimization levels and ease debugging of production code.

The C optimization example uses a program called chksum.c . The C++
examples use a program called optimize.cpp

C No Optimization
1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Local Optimizations.
4. Choose Make -O0 to compile without optimizations, link, and

download the program automatically.
5. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 12.928249 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

The i960 Cx CPU Example Programs7

7-19

C Static Optimization

Use the following commands to compile the chksum.c program using the
highest level of optimization without using runtime behavior, or
program-wide optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Local Optimizations.
4. Choose Make -O4 to compile with optimizations, link, and download

the program automatically.
5. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 1.967685 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

7. Choose Results.

C++ No Optimization
1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Local Optimizations.
5. Choose Make -O0 to compile without optimizations, link, and

download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 7.1205 seconds.
Program exited normally

7. Type: quit

7-20

7Getting Started with the 80960 QUICKval Kit

C++ Static Optimization

Use the following commands to compile the optimize.cpp program using
the highest level of optimization without using runtime behavior, or
program-wide optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Local Optimizations.
5. Choose Make -O4 to compile without optimizations, link, and

download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 5.80158 seconds.
Program exited normally

7. Type: quit

8. Choose Results.

C Global Optimization

Use the following commands to compile the chksum.c with program
program-wide optimizations, which are sophisticated, inter-module
optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Global Optimizations.
4. Choose Make +O5 to compile with optimizations, link, and download

the program automatically.

The i960 Cx CPU Example Programs7

7-21

5. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 1.945978 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

7. Choose Results.

C++ Global Optimization

Use the following commands to compile the optimize.cpp program using
the program program-wide optimizations, which are sophisticated,
inter-module optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Global Optimizations.
5. Choose Make+05 to compile with optimizations, link, and download

the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 5.82517 seconds.
Program exited normally

7. Type: quit

8. Choose Results.

7-22

7Getting Started with the 80960 QUICKval Kit

Instrumentation, Profile Creation, Decision-making, and
Profile-Driven Re-Compilation

A 85% improvement in C code performance is significant, but there is
another level of optimization that is uniquely available through Intel’s
CTOOLS compilers: profile-driven optimization. This two-pass
compilation procedure allows the compiler to make optimizations based on
runtime behavior as well as the static information used by conventional
optimizations.

The compiler can perform sophisticated inter-module optimizations, such as
replacing function calls with expanded function bodies when the function
call sites and function bodies are in different object modules. These are
called program-wide optimizations because the compiler collects
information from multiple source modules before it makes final
optimization decisions. Standard (i.e., non-program-wide) optimizations are
referred to as module-local optimizations.

Program-wide optimizations are enabled by options that tell the compiler to:

1. Build a program database during the compilation phase.
2. Invoke a global decision making and optimization step during the

linking phase.
3. Automatically substitute the resulting optimized modules into the final

program before the end of the linking phase.

The compiler can also collect information about the runtime behavior of a
program by instrumenting the program. The instrumented program can be
executed with typical input data, and the resultant program execution profile
can be used by the global decision making and optimization phase to
improve the performance of the final optimized program. The profile can
also provide input to the global coverage analyzer tool (gcov960), which
gives users information about the runtime behavior of the program at the
source-code level.

1. Choose Compiler.
2. Choose Profiling Optimizations .
3. Choose Profiling Lab .
4. Follow the Profiling Tutorial link in the online help.

The i960 Cx CPU Example Programs7

7-23

Using profile-driven optimization, an increase in runtime performance of
1.1% is obtained. The average 80960 application can expect to gain 15 to
30% performance improvement through the use of this technology. This
boost in performance is available to you without any further investment in
hardware.

C++ Virtual Function Optimizations

Invoking a virtual function is more expensive than invoking a non-virtual
function in C++. Also, other function-related optimizations such as inlining
cannot be performed on virtual functions. In many situations, however, the
call to the virtual function can be replaced by a direct call to a member
function and if possible it can be inlined at the call site. This improves the
runtime performance of the code.

Use the following commands to compile the optimize.cpp program.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Virtual Opts .
5. Choose Make -NoVOpt to compile without virtual function

optimizations, link, and download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 5.82517 seconds.
Program exited normally

7. Type: quit

8. Choose Make -VOpt to compile with virtual function optimizations,
link, and download the program automatically.

7-24

7Getting Started with the 80960 QUICKval Kit

9. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 4.941154 seconds.
Program exited normally

10. Type: quit

11. Choose Results.

The virtual function optimizations yielded a 15.2% improvement.

Note the runtime performance at each optimization level as shown below.

Building Self-contained Profiles with gmpf960

A raw profile contains program counters that record how many times
various statements in the source program have been executed. Information
in the PDB is needed to correlate these program counters with the source
program. A raw profile has a very short useful life. When changes are made
in the source code, any raw profiles previously obtained for that program are
no longer accepted by the global decision making and optimization step.

A self-contained profile captures the program structure from the PDB and
associates it with the program counters from the raw profile. When changes
are subsequently made to the source program, the global decision making
step interpolates or stretches the counters in the self-contained profile to fit
the changed program.

Table 7-3 i960 Processor Optimization Results

Optimization Level C Execution Time C++ Execution Time

no optimization (-O0) 12.928249 seconds 7.1205 seconds

maximum static (-O4) 1.967685 seconds 5.80158 seconds

global optimization 1.945978 seconds 5.82517 seconds

profile-driven 1.945967seconds NA

Virtual Function
Optimization

NA 4.941154 seconds

The i960 Cx CPU Example Programs7

7-25

A self-contained profile can be used to optimize a program even after days,
weeks, or perhaps months worth of changes to the program. This frees you
from having to collect a new profile every time the program changes, while
still allowing profile-directed optimizations. Depending upon the nature and
quantity of changes to the program, the accuracy of the profile gradually
degrades over time as more interpolation is done.

A self-contained profile must be generated from a raw profile before the
program that generated the raw profile is relinked. You should always create
a self-contained profile immediately after the raw profile is collected.

1. Choose Compiler.
2. Choose Profiling Optimizations .
3. Choose Self-Contained.
4. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

5. Specify the program database directory.
The PDB can be specified by setting the environment variable
G960PDB.
For example, if you chose the default directory during installation,
enter:
SET G960PDB=C:\quickval\prof_lab\lab_pdb

Or, specify the PDB at compiler invocation time with the Zdir option,
as shown in the example below.
gcc960 -Zmypdb foo.o

6. Compile for profile instrumentation.
Insert profile instrumentation into quick so that when the linked
program is executed, a profile can be collected. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,subst=:*+fprof -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A { arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcycx specifies mcycx.gld .

7-26

7Getting Started with the 80960 QUICKval Kit

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-gcdm,subst=:* The tool that performs the global decision making
and optimization step is invoked from within the
linker when the gcdm option is used. The
substitution control specifies a module-set
specification of only eligible modules not linked
in from libraries.

+fprof causes generation of profile instrumentation.

-o quick the executable file will be named quick

quick.c the source file

7. Collect a Profile
If a program that contains one or more modules compiled with fprof
is linked with the standard libraries and then executed, a file named
default.pf containing the profile for those modules is automatically
produced when the program exits. Type:
gdb960 -t mon960 -b 115200 -r com1 -D lpt1 quick

The options in this gdb960 compiler command are:

-t mon960 MON960 is on the target

-b 115200 use 115200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

quick the executable file

8. Use the gdb960 debugger to execute quick . Enter:
run

9. Exit the debugger. Enter:
quit

The i960 Cx CPU Example Programs7

7-27

10. Enter the command:
gmpf960 -spf quick.pf default.pf

The options in this gmpf960 compiler command are:

-spf causes a self-contained profile, quick.pf , to be
produced as output.

default.pf The input profile.

11. Recompile the quick.c source code using the profiling information
obtained by the instrumentation. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=quick.pf -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcycx specifies mcycx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-Gcdm,iprof=quick.pf

This supplies a profile file quick.pf to the
global decision making and optimization step.

-o quick the executable file will be named quick

quick.c the source file

12. Change the control structure of quick.c.

Edit quick.c . Find the procedure called QUICK. In this procedure,
there is a control structure:
for(i = 2; i <= SORTELEMENTS; i+=1)

{

(LOGIC)

}

Change the control structure to:
i = 2;

while (i <= SORTELEMENTS)

{

(LOGIC)

i+=1;

}

13. Compile the new quick.c using the interpolated profile. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=quick.pf -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcycx specifies mcycx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-Gcdm,iprof=quick.pf

This supplies a profile file quick.pf to the
global decision making and optimization step.

-o quick the executable file will be named quick

quick.c the source file

Notice that the global decision making and optimization option
(-gcdm) accepts the interpolated profile, quick.pf .

NOTE. The beauty of this example is that the global decision making
and optimization option (-gcdm) accepts the interpolated profile,
quick.pf , not the results of running this example.

The i960 Cx CPU Example Programs7

7-29

Profiling A Program In Pieces

Suppose that the target execution environment is memory limited so that all
your programs cannot be instrumented for profiling at the same time. You
can use substitutions to make partially instrumented versions of the final
executable, and then create self-contained profiles for each piece. Each
executable created in this way has a limited set of instrumented modules.

After you’ve created the self-contained profiles, you can use gmpf960 to
create a single merged self-contained profile. The final, merged
self-contained profile is identical to a profile obtained by instrumenting the
entire program at once.

In this example, you use the fault handling example programs to show
incremental profiling.

1. Choose Compiler.
2. Choose Profiling Optimizations.
3. Choose Incremental.
4. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

5. Specify the program database directory.
You can specify the PDB by setting the environment variable G960PDB.
For example, if you chose the default directory during installation,
enter:
SET G960PDB=C:\quickval\prof_lab\lab_pdb

Or, specify the PDB at compiler invocation time with the Zdir option,
as shown in the example below.
gcc960 -Zmypdb foo.o

6. Insert profile instrumentation into fault so that when the linked
program is executed, a profile can be collected. The instrumented
modules in this version of fault are from the files fault.c and
flt_proc.c . Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,subst=:f*+fprof -o fault fault.c flt_proc.c
asm_flt.s system.c

-Fcoff creates a COFF format output file.

7-30

7Getting Started with the 80960 QUICKval Kit

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcycx specifies mcycx.gld .

-fdb all modules subject to program-wide optimization
must be initially compiled with the fdb option.

-gcdm,subst=:f*

The tool that performs the global decision making
and optimization step is invoked from within the
linker when the gcdm option is used. The
substitution control specifies a module-set
specification of only the files that begin with f.

+Fprof causes generation of profile instrumentation.

-o fault names the executable file fault .

fault.c the source files.

flt_proc.c the fault procedures.

asm_flt.s the assembly file to generate faults.

system. c system file.

7. Collect the profile.
When a program that contains one or more modules compiled with
fprof is linked with the standard libraries and then executed, a file
named default.pf containing the profile for those modules is
automatically produced when the program exits. Type:
gdb960 -t mon960 -b 9600 -r com1 -D lpt1 fault

-t mon960 MON960 is on the target

-b 115200 use 115200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

fault the executable file

8. Use the gdb960 debugger to execute fault . Enter:
run

The i960 Cx CPU Example Programs7

7-31

9. Exit the debugger. Enter:
quit

10. Build the self-contained profiles with gmpf960.
To create a self-contained profile, use the gmpf960 profile merger tool.
gmpf960 is invoked with the raw profile as an input file. Enter:
gmpf960 -spf prof1.pf default.pf

-spf causes a self-contained profile, prof1.pf , to be
produced as output.

default.pf The input profile.

The resultant self-contained profile, prof1.pf , has a limited set of
instrumented modules.

11. Insert profile instrumentation into fault so that when the linked
program is executed, a profile can be collected. The instrumented
modules in this version of fault are from the file system.c . Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,subst=:s*+fprof -o fault fault.c flt_proc.c
asm_flt.s system.c

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcycx specifies mcycx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-Gcdm,subst=:s*

The tool that performs the global decision making
and optimization step is invoked from within the
linker when the gcdm option is used. The
substitution control specifies a module-set
specification of only the files that begin withs .

+fprof causes generation of profile instrumentation.

-o fault names the executable file fault .

fault.c the source files

7-32

7Getting Started with the 80960 QUICKval Kit

flt_proc.c the fault procedures

asm_flt.s the assembly file to generate faults

system.c system file

12. Collect the profile.
If a program that contains one or more modules compiled with fprof
is linked with the standard libraries and then executed, a file named
default.pf containing the profile for those modules is automatically
produced when the program exits. Type:
gdb960 -t mon960 -b 9600 -r com1 -D lpt1 fault

-t mon960 MON960 is on the target

-b 115200 use 115200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

fault the executable file

13. Use the gdb960 debugger to execute fault . Enter:
run

14. Exit the debugger. Enter:
quit

15. Build the self-contained profiles with gmpf960.
To create a self-contained profile, use the gmpf960 profile merger tool.
gmpf960 is invoked with the raw profile as an input file. Enter:
gmpf960 -spf prof2.pf default.pf

-spf causes a self-contained profile, prof2.pf , to be
produced as output.

default.pf the input profile.

The resultant self-contained profile, prof2.pf , has a limited set of
instrumented modules.

16. Merge all the self-contained profiles into one.
The final prof.pf profile is identical to a profile obtained by
instrumenting the entire program at once. Type:
gmpf960 -spf prog.pf prof1.pf prof2.pf

-spf causes a self-contained profile, prog.pf , to be
produced as output.

The i960 Cx CPU Example Programs7

7-33

prof1.pf an input self-contained profile.

prof2.pf an input self-contained profile.

17. Recompile the fault handling source code using the profiling
information obtained by the instrumentations. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=prog.pf -o fault fault.c flt_proc.c
asm_flt.s system.c

-Fcoff create a COFF format output file.

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcycx specifies mcycx.gld .

-fdb all modules subject to program-wide optimization
must be initially compiled with the fdb option.

-Gcdm,iprof=prog.pf

This supplies a profile file prog.pf to the global
decision making and optimization step.

-o fault names the executable file fault.

fault.c the source file.

flt_proc.c the fault procedures.

asm_flt.s the assembly file to generate faults.

system.c system file.

NOTE. The beauty of this example is the methodology of incremental
profiling, not the result of running the example.

7-34

7Getting Started with the 80960 QUICKval Kit

Compression Assisted Virtual Execution (CAVE)

This CTOOLS feature allows non-critical parts of an application’s machine
code to be stored in memory in compressed form resulting in reduced target
memory requirements. The code is expanded into native machine code on
demand for execution.

CAVE reduces the physical memory requirements of ROM-based
applications through link-time compression and on-demand runtime
decompression of user-specified functions. The compiler, linker, runtime
dispatcher, and compression and decompression routines cooperate to
provide this feature. Code is typically compressed by a ratio of between 1.5
and 1.7. Runtime decompression speed is about 30 clock cycles per byte of
compressed code.

When the CAVE mechanism is used, selected functions in the application
are designated to be secondary functions. All other functions are termed
primary functions. The primary set should contain performance-critical
functions, that are not to be affected by the CAVE mechanisms; the
secondary set is subject to compression. Secondary functions are
compressed by the linker and reside in memory in compressed form. At
runtime, calls to secondary functions are intercepted by the CAVE
dispatcher and the functions are decompressed if necessary.

Note that due to the overhead of decompressing code at runtime, only
non-performance critical code should be secondary functions, such as error
handling code or initialization code. You can use runtime profile
information generated by gcov960 to aid in selecting the set of secondary
functions.

This example uses a tic-tac-toe game to show how to reduce target memory
requirements. The text sections of compressed and uncompressed tic-tac-toe
executables are compared. Additionally, this example demonstrates how to
specify functions for compression.

For the sake of demonstration, we compress performance-critical code in
the tic-tac-toe program. The purpose of this example is to show the reduced
text section of the executable, not demonstrate run times.

The i960 Cx CPU Example Programs7

7-35

C Example
1. Choose Compiler.
2. Choose C Cave.
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Use the gcc960 mcave option or #pragma cave to designate the
specified functions as secondary. In the tic-tac-toe example, ttt.c ,
the following #pragma has been added:
#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)

where Initialize, Winner, Other, Play, Evaluate,

Best_Move, Describe, Move, and Game are all functions to be
compressed.

5. Edit ttt.c . Make sure the #pragma cave program line is
commented out:
/*#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)*/

6. Compile the tic-tac-toe program. Enter:
gcc960 -A{arch} -Fcoff -T{Link-dir} -o ttt ttt.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy cx specifies mcycx .gld.

-o ttt names the executable file ttt

ttt.c input file

7. Check the text section size of the uncompressed program. Enter:
gsize960 ttt

The option in this command is:

ttt name of the executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the uncompressed text section.

7-36

7Getting Started with the 80960 QUICKval Kit

8. Edit ttt.c . Make sure the #pragma cave program line is
uncommented:
#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)

9. Compile the tic-tac-toe program with the pragma program line. Enter:
gcc960 -A{arch} -Fcoff -T{Link-dir} -o ttt ttt.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy cx specifies mcycx .gld.

-o ttt names the executable file ttt

ttt.c input file

10. Check the text section size of the compressed program. Enter:
gsize960 ttt

The option in this command is:

ttt executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the compressed text section. In this example,
you can expect a code size reduction of approximately 1 percent. Here
are some typical results for the supported processor types:

Table 7-4 Uncompressed Text Sections

State
80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Uncompressed 33,764 32,944 32,768 32,976 31,600

The i960 Cx CPU Example Programs7

7-37

Note that the purpose of this example is to teach you how to use the CAVE
feature with programs. Though the improvements are small, you can expect
much better results with real-world programs of approximately 100 Kbytes
and larger, especially if the software has many non-critical functions.

C++ Compression Assisted Virtual Execution (CAVE)

1. Choose Compiler.
2. Choose C++ Cave.
3. Choose Make.The following tutorial is displayed in the QUICKval

browser, and the command lines may be entered at the Command
Prompt window.

4. Use the gcc960 mcave option or #pragma cave designate the
specified functions as secondary. In the C++ example, cavecpp.cpp ,
the following #pragma has been added:
#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

where initSetName , initSetDept , initSetGpa ,
initSetNumPubs , isOutstanding , printName , and
InitializeRecords are all functions to be compressed, i.e., all
functions are secondary functions. All other functions of the program
are primary functions.

Table 7-5 After Function Compression

State
80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Compressed
Text

31,908 30,832 30,816 30,832 29,648

Cave Section 1,818 1,770 1,746 1,800 1,776

Total 33,726 32,602 32,562 32,632 31,424

Table 7-6 Improvement

80960Rx 80960Hx 80960Jx 80960Cx 80960Sx

0.1% 1.0 % 0.6 % 1.0 % 0.6 %

7-38

7Getting Started with the 80960 QUICKval Kit

The primary set should contain performance-critical functions that are
not to be affected by the CAVE mechanism; the secondary set is subject
to compression. Secondary functions are compressed by the linker and
reside in memory in compressed form.
The C++ compiler behaves in essentially the same manner as the C
compiler when the mcave or Gcave options are used - generating all
functions in the compilation unit for which this option is in effect
as secondary.
A user typically designates a single function as secondary through
the use of pragma cave . The following statement for example
designates the function max as secondary.
pragma cave max

However in C++ overloaded functions have the same name. Member
functions of two different classes are also allowed to have the same
name and these member functions can in turn have the same name as a
function with file scope.
When a user specifies a function as secondary through the use of
pragma cave , the C++ compiler treats all functions with this name as
secondary. To illustrate, consider the following example:
ifdef PRAGMA
pragma cave max
endif

int max(int a, int b)
{
return a > b ? a : b;
}

float max(float a, float b)
{
return a > b ? a : b;
}

class Tclass1 {
int a, b;
public:
int max();
};

The i960 Cx CPU Example Programs7

7-39

int Tclass1::max()
{
return a > b ? a : b;
}

class Tclass2 {
float a, b;
public:
float max();
};

float Tclass2::max()
{
return a > b ? a : b;
}

Tclass1 t1;
Tclass2 t2;

The Compiler treats all the following functions as secondary.
int max(int, int);
float max(float, float);
int Tclass1::max();
float Tclass2::max();

5. Choose Qv Code. Edit cavecpp.cpp . Make sure the #pragma

cave program line is commented out:
//#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

6. Compile the C++ program. Enter:
gcc960 -A{ arch } -Felf -T{ Link-dir } -stdlibcpp -o
cavecpp cavecpp.cpp

The options in this command are:

-Felf create an ELF format output file

-A{ arch } specifies the architecture. For example, -AHD
specifies an 80960HD

-T{ Link-dir } specifies the linker directive file. For example,
-Tmcy cx specifies mcy cx .gld .

7-40

7Getting Started with the 80960 QUICKval Kit

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-o cavecpp specifies the executable file cavecpp

cavecpp.cpp input file

7. Check the text section size of the uncompressed program. Enter:
gsize960 cavecpp

The option in this command is:

cavecpp specifies the executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the uncompressed text section.

8. Choose Qv Code and edit cavecpp.cpp . Make sure the #pragma
cave program line is uncommented:
#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

9. Compile the C++ program with the pragma program line. Enter:
gcc960 -A{ arch } -Felf -T{ Link-dir } -stdlibcpp
-o cavecpp cavecpp.cpp

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy cx specifies mcy cx .gld .

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-o cavecpp specifies the executable file ttt

cavecpp.cpp specifies the input file
10. Check the text section size of the compressed program. Enter:

gsize960 cavecpp

The option in this command is:

cavecpp executable file

The i960 Cx CPU Example Programs7

7-41

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the compressed text section. In this example, you can
expect a code size reduction of approximately 1 percent. Here are some
typical results for the supported processor types:

Note that the purpose of this example is to teach you how to use the CAVE
feature with programs. Though the improvements are small, you can expect
much better results with real-world programs of approximately 100 Kbytes
and larger, especially if the software has many non-critical functions.

Linker Consumption

You can link b.out-format, COFF or ELF object files and libraries in any
combination. To determine a file format, the linker examines the first two
bytes of the file. An unrecognized value indicates a linker-directive file.
This feature is useful when using third-party archives with CTOOLS

Table 7-7 Uncom pressed Text Sections

80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Uncompressed 89,788 84,196 83,512 84,196 81,764

Table 7-8 After Function Com pression

80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Compressed
Text

87,612 81,892 81,512 81,892 79,796

Cave Section 1,920 1,546 1,514 1,546 1,512

Total 89,532 83,438 83,026 83,438 81,308

Table 7-9 Im provement

80960Rx 80960Hx 80960Jx 80960Cx 80960Sx

1% 1% 1% 1% 1%

7-42

7Getting Started with the 80960 QUICKval Kit

runtime libraries and your application code. The runtime libraries are
shipped in ELF format only (effective with the 5.0 version of the tools).
Each can potentially have a different OMF, and the linkage still completes.

If the linker generates a different output format than the input, the linker
does not copy debug information from the input file to the output file.
Because of this, you should use only one OMF.

The symbol tables of each OMF are abbreviated when crossing OMF
boundaries. For example, when you include a b.out OMF file in a linkage
where the output file OMF is COFF format, none of the debug information
from the b.out file is copied into the output COFF file.

1. Choose Linker and Utilities .
2. Choose Linker Consumption.
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

NOTE. As of version 5.0 of the tools, all runtime libraries are shipped in
ELF format only.

 GLD960

 b.out COFF ELF

 b.out COFF ELF

The i960 Cx CPU Example Programs7

7-43

4. Compile the first file in COFF format. Enter:
gcc960 -Fcoff -A {arch} -c t85c36.c

The options in this command are:

-Fcoff creates a COFF format output file.

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-c compile, but do not link.

t85c36.c input file.

5. Compile the second file in ELF format. Enter:
gcc960 -Felf -A {arch} -c system.c

The options in this command are:

-Felf creates an ELF format output file.

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-c compiles, but does not link.

system.c input file.

6. Compile the third file in b.out format. Enter:
gcc960 -Fbout -A {arch} -c -r cyint.c int_proc.s

The options in this command are:

-Fbout creates a b.out format output file.

-A {arch} specifies the architecture. For example, -AHD

specifies an 80960HD

-c compiles, but does not link.

-r allows unresolved references.

cyint.c the source file.

int_proc.s the interrupt handler.

7. Generate an absolute file in ELF format by linking files in b.out-format,
ELF format, and COFF format. The absolute file could have also been
in b.out-format or COFF format. Enter:
gld960 -Felf -T {Link-dir} -A {arch} -o elf t85c36.o
system.o cyint.o int_proc.o

7-44

7Getting Started with the 80960 QUICKval Kit

The options in this command are:

-Felf specifies the absolute file as ELF format.

-T {Link-dir} specifies the linker directive file. For example,
-Tcycx specifies cycx.gld .

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-o elf names the executable file elf .

cyint.o file in b.out-format.

int_proc.o file in b.out-format.

t85c36.o file in COFF format.

system.o file in ELF format.

Assembler Pseudo-instruction Tutorial

This tutorial demonstrates the use of pseudo-instructions that have been
added to the CTOOLS assembler to ease migration between processors.
The tutorial that follows demonstrates how to enable and disable the
instruction cache for the i960 Cx, Hx, Jx, and Rx microprocessors using
microprocessor specific instructions. The tutorial then demonstrates how
easy it is to enable and disable the instruction cache using only one pair of
pseudo-instructions.

What are Pseudo-instructions?

A number of pseudo-instructions (pseudo-ops) have been added to the
CTOOLS assembler to ease the migration between processors. These
pseudo-ops provide an architecture-independent method for performing

NOTE. The beauty of this example is the functionality of the linker, not
the result of running the example.

The i960 Cx CPU Example Programs7

7-45

some of the more common low-level processing operations. Using these
pseudo-ops should reduce the number of changes required when moving
assembly code from one i960 processor to another.

When you use any of the new i960 pseudo-instructions, you are required to
re-assemble your source code before running it on a new target platform
(e.g., from Cx to Jx). The assembler selects the best processor instructions
to replace the pseudo-instructions based on the processor targeted.

pseudop.c: Editing the File for the Cx Microprocessor
1. If you are using the Hx Jx Cx & Sx QUICKval software, choose

Linker and Utilities . If using the Rx QUICKval software, this step is
not necessary.

2. Choose Pseudo-op Tutorial.
3. Choose Make. The following tutorial is displayed in the QUICKval

browser, and the command lines may be entered at the Command
Prompt window.

4. Choose Qv Code. View the file pseudop.c loaded into the editor.
Scroll down the file to view the two procedures: cache_off() and
cache_on() . Both procedures contain no code initially.
cache_off() looks like:
cache_off()

{

}

5. Add the code necessary to disable the instruction cache for the Cx
microprocessor. Between the brackets of the cache_off()
procedure, add the following line exactly:
__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(DISABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

7-46

7Getting Started with the 80960 QUICKval Kit

The cache_off() procedure should look like this:
cache_off()

{

__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(DISABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

}

This procedure, cache_off() , uses the instruction cache control
processor instruction sysctl . This instruction is valid in the i960 Cx
processor for managing and controlling the instruction cache. sysctl
is used above to disable the instruction cache. Also, the
CONFIGURE_ICACHE and DISABLE_ICACHE constants are found in
the system.h file that is included in the pseudop.c file.

6. Likewise, edit the cache_on() procedure adding the following line
exactly:
__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(ENABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

The cache_on() procedure should look like this:
cache_on()

{

__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(ENABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

}

Similarly, the cache_on() procedure for the Cx microprocessor uses
the instruction cache control processor instruction sysctl . sysctl
is used directly above to enable the instruction cache.

7. Save the pseudop.c file.

The i960 Cx CPU Example Programs7

7-47

Running pseudop.c for the Cx Microprocessor

1. Compile and run the pseudop.c program to show that it works as
desired.

2. In the Command Prompt window, enter the following commands:
gcc960 -AC{ F|A } -Fcoff -Tmcycx -o pseudop pseudop.c

The options in this command are:

-AC{ F|A } sets the target architecture for the compiler. For
this example, choose the Cx architecture, -ACF

or -ACA

-Fcoff sets the object file type as coff.

-Tmcycx sets the linker directive file for the Cx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

If you have a Cx microprocessor and want to run the program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are: 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

NOTE. If you do not have an i960 Cx microprocessor, you cannot run
this example; however, you can still compile the code to verify that it
compiles without error.

7-48

7Getting Started with the 80960 QUICKval Kit

-r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are: com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

3. At the (gdb960) prompt, enter: run

The program prints out the performance advantage of running the
program with the instruction cache enabled versus disabled.

4. At the (gdb960) prompt, enter: quit

pseudop.c: Migrating the File to the Jx/Hx/Rx Microprocessor

Since the i960 Jx, Hx, and Rx microprocessors use the same processor
instruction to enable and disable the instruction cache, this migration
supports all three processors.

NOTE. The beauty of this example is not the results of the running
program, but the fact that the code works with instructions chosen
specifically for the Cx architecture. Of course, this is what is expected.
This program becomes more interesting when you start using
pseudo-instructions.

The i960 Cx CPU Example Programs7

7-49

In order to use the program, pseudop.c , modified in the first part of this
tutorial to support the Jx, Hx, or Rx microprocessor, it must first be
migrated to those processors since they do not use the sysctl instruction
to enable and disable the instruction cache.

1. Choose Qv Code. View the file pseudop.c loaded into the editor.
Scroll down the file to view the two procedures: cache_off() and
cache_on() .
cache_off() contains the Cx specific code and looks like:
cache_off()

{

__asm__ __volatile__("sysctl %0,%1,%2" ::"d"
(((CONFIGURE_ICACHE)<<8)|

(DISABLE_ICACHE)|((0)<<16)),"d"(0),"d"(0));

}

2. Change the code to disable the instruction cache for the i960 Jx/Hx/Rx
microprocessors. Between the brackets of the cache_off()
procedure, delete the previously added line and insert the following line
exactly:
__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_OFF),"d"(0),"d"(0));

The cache_off() procedure should now look like this:
cache_off()

{

__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_OFF),"d"(0),"d"(0));

}

This procedure, cache_off() , uses the instruction cache control
processor instruction icctl . This instruction is valid in the 80960
Jx/Hx/Rx processors for managing and controlling the instruction
cache. icctl is used above to disable the instruction cache. Also,
the ICACHE_OFF constant is found in the system.h file that is
included in the pseudop.c file.

7-50

7Getting Started with the 80960 QUICKval Kit

3. Likewise, edit the cache_on() procedure deleting the previously
added line and inserting the following line exactly:
__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_ON),"d"(0),"d"(0));

The cache_on() procedure should now look like this:
cache_on()

{

__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_ON),"d"(0),"d"(0));

}

Similarly, the cache_on() procedure for the Jx/Hx/Rx
microprocessors use the instruction cache control processor instruction
icctl . icctl is used directly above to enable the instruction cache.

4. Save the pseudop.c file.

Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors
1. Compile and run the pseudop.c program to show that it works as

desired.

2. In the Command Prompt window, enter the following commands:
For the Jx Microprocessor:
gcc960 -AJ{ F|D|A } -Fcoff -Tmcyjx -o pseudop pseudop.c

The options in this command are:

-AJ{ AF|D|T } sets the target architecture for the compiler. For
this example, to choose the Jx architecture, -AJA ,
-AJF , -AJD , or -AJT

-Fcoff sets the object file type as coff.

-Tmcyjx sets the linker directive file for the Jx architecture.

NOTE. If you do not have an i960 Jx, Hx, or Rx microprocessor, you
cannot run this example; however, you can still compile the code to verify
that it compiles without error.

The i960 Cx CPU Example Programs7

7-51

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For the Hx Microprocessor:
gcc960 -AH{D|A} -Fcoff -Tmcyhx -o pseudop pseudop.c

The options in this command are:

-AH{ D|A } sets the target architecture for the compiler. For
this example, to choose the Hx architecture, -AHD
or -AHA

-Fcoff sets the object file type as coff.

-Tmcyhx sets the linker directive file for the Hx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For Rx Microprocessor:
gcc960 -AR{ P|D } -Fcoff -Tmcyrx -o pseudop pseudop.c

The options in this command are:

-AR{ P|D } sets the target architecture for the compiler. For
this example, to choose the Rx architecture:

-ARP or -ARD

-Fcoff sets the object file type as coff.

-Tmcyrx sets the linker directive file for the Rx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

3. If you have a Jx, Hx, or Rx microprocessor and want to run the
program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

7-52

7Getting Started with the 80960 QUICKval Kit

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

 -r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

4. At the (gdb960) prompt, enter: run

The program prints out the performance advantage of running the
program with the instruction cache enabled versus disabled.

5. At the (gdb960) prompt, enter: quit

NOTE. The beauty of this example is not the results of the running
program, but the fact that the code works with instructions chosen
specifically for the architecture in question. Of course, this is what is
expected. This program becomes more interesting when you start using
pseudo-instructions.

The i960 Cx CPU Example Programs7

7-53

pseudop.c: Adding Pseudo-Ops to the Program

As can be seen, it is neither easy nor fun migrating code from one processor
to another, especially when your code is many thousands of lines long.
Fortunately, pseudo-instructions have been added to the CTOOLS
assembler to ease migration between processors.

1. Choose Qv Code. View the file pseudop.c loaded into the editor.
You are ready now to rewrite this program using pseudo-instructions.
Scroll down the file to view the two procedures: cache_off() and
cache_on() .
cache_off() contains the i960 Jx/Hx/Rx microprocessor specific
code:
cache_off()

{

__asm__ __volatile__("icctl
%0,%1,%2"::"d"(ICACHE_OFF),"d"(0),"d"(0));

}

2. Change the code to disable the instruction cache for ALL processors.
Between the brackets of the cache_off() procedure, delete the
previously added line and insert the following line exactly:

__asm__ __volatile__("ic_disable r5");

The cache_off() procedure should now look like this:
cache_off()

{

 /* local register r5 is used to hold the status
returned */

__asm__ __volatile__("ic_disable r5");

}

This procedure, cache_off() , uses the pseudo-instruction
ic_disable . When this program, pseudop.c , is compiled for a
specific 80960 processor by using a -A architecture flag, the best
instructions for that architecture are chosen to replace the
ic_disable pseudo-op. Thus, pseudo-ops ease migration between
processors. Also, notice only one argument to the pseudo-op is
necessary. The icctl instruction requires three arguments.
Programming with pseudo-ops can be simpler. Pseudo-instructions are
also available to perform the other instruction cache management and
controlling functions, such as cache invalidation.

7-54

7Getting Started with the 80960 QUICKval Kit

3. Likewise, edit the cache_on() procedure deleting the previously
added line and inserting the following line exactly:
__asm__ __volatile__("ic_enable r5");

The cache_on() procedure should now look like this:
cache_on()

{

 /* local register r5 is used to hold the status
returned */

__asm__ __volatile__("ic_enable r5");

}

Similarly, cache_on() uses a pseudo-instruction: ic_enable .
When this program, pseudop.c , is compiled for a specific 80960
processor, the best instruction for that architecture is chosen to replace
the ic_enable pseudo-op.

4. Save the pseudop.c file.

Running pseudop.c with Pseudo-instruction
1. Compile and run the pseudop.c program to show that the

pseudo-instructions work as desired. To prove that the best instruction
is chosen for the architecture, compile the code for the Cx
microprocessor and then the Jx, Hx, or Rx microprocessor.

2. In the Command Prompt window, enter the following command:
gcc960 -AC{ F|A } -Fcoff -Tmcycx -o pseudop pseudop.c

The options in this command are:

-AC{ F|A } sets the target architecture for the compiler. For
this example, choose the Cx architecture, -ACF

or -ACA.

-Fcoff sets the object file type as coff.

-Tmcycx sets the linker directive file for the Cx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

When compiled, warnings may be generated. The warnings are
generated just to point out this simple fact: when you use any of the
new i960 pseudo-instructions, you are required to re-assemble your

The i960 Cx CPU Example Programs7

7-55

source code before running it on a new target platform (e.g., from Cx to
Jx). The assembler selects the best instructions to replace the
pseudo-instructions based on the processor targeted.

3. If you have a Cx microprocessor and want to run the program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are: 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

-r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are: com1, com2, com3, and com4.

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

4. At the (gdb960) prompt, enter: run

The program prints out the performance advantage of running the
program with the instruction cache enabled versus disabled.

NOTE. The beauty of this example is not the results of the running
program, but the fact that the code works as expected with
pseudo-instructions.

7-56

7Getting Started with the 80960 QUICKval Kit

The result of this example is similar to using instructions specifically
chosen for the Cx architecture. So, using pseudo-instructions can
maintain the logic of your code, while easing migration to future i960
microprocessors.

5. At the (gdb960) prompt, enter: quit

Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors
Now you are ready to compile the code for the Jx, Hx, or Rx microprocessor
to demonstrate similar results on a different processor.

1. In the Command Prompt window, enter the following commands:
For the Jx Microprocessor:
gcc960 -AJ{ F|D|A } -Fcoff -Tmcyjx -o pseudop pseudop.c

The options in this command are:

-AJ{ A|F|D|T } sets the target architecture for the compiler. For
this example, to choose the Jx architecture, -AJA ,
-AJF , -AJD , or -AJT

-Fcoff sets the object file type as coff.

-Tmcyjx sets the linker directive file for the Jx architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For the Hx Microprocessor:
gcc960 -AH{ D|A } -Fcoff -Tmcyhx -o pseudop pseudop.c

The options in this command are:

-AH{ D|A } sets the target architecture for the compiler. For
this example, to choose the Hx architecture, -AHD
or -AHA

-Fcoff sets the object file type as coff.

NOTE. If you do not have an i960 Jx, Hx, or Rx microprocessor, you
cannot run this example; however, you can still compile the code to verify
that it compiles without error.

The i960 Cx CPU Example Programs7

7-57

-Tmcyhx sets the linker directive file for the Hx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

For Rx Microprocessor:
gcc960 -AR{ P|D } -Fcoff -Tmcyrx -o pseudop pseudop.c

The options in this command are:

-AR{ P|D } sets the target architecture for the compiler. For
this example, to choose the Rx architecture, -ARP
or -ARD

-Fcoff sets the object file type as coff.

-Tmcyrx sets the linker directive file for the Rx
architecture.

-o pseudop sets the object file name as pseudop (optional).

pseudop.c specifies the input source file.

2. If you have a Jx, Hx, or Rx microprocessor and want to run the
program, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -pci
pseudop

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-b 115200 sets the baud rate for serial communication
(optional). This option is not needed when the
serial port is not being used. Possible baud rates
are 1200, 2400, 9600, 19200, 38400, 57600, and
115200.

 -r com1 sets the port to use for serial communication.
This option is not needed when the serial port is
not being used; however, the -pci option is
required when no serial port is used. Possible
serial ports are com1, com2, com3, and com4.

7-58

7Getting Started with the 80960 QUICKval Kit

-pci sets the code download option for the PCI bus.
When no serial port is given, the PCI bus is used
for serial communication also. The -r comx

option is required when the PCI bus is not used
(i.e., when the -pci option is not used).

pseudop specifies the executable file.

3. At the (gdb960) prompt, enter: run

The result of this example is the same as using instructions specifically
chosen for the Jx, Hx, or Rx architecture. So, using
pseudo-instructions does not change the logic of the program. It only
eases future migration of your code to future i960
microprocessors.

4. At the (gdb960) prompt, enter: quit

When compiled, warnings may be generated. The warnings are
generated just to point out this simple fact: When you use any of the
new i960 pseudo-instructions, you are required to re-assemble your
source code before running it on a new target platform (e.g., from Cx to
Jx). The assembler selects the best instructions to replace the
pseudo-instructions based on the processor targeted.

CONGRATULATIONS! You can now start using pseudo-instructions in
your code to ease migration of your code to future i960 processors.

Debugging with gdb960

A software debugger is a useful tool that allows you to learn more about the
behavior of an application program while it is running on a target or
simulator. gdb960 is a source-level debugger that allows you to interact with
your application program running on a target system through the debug
monitor, MON960. MON960 is resident on the Cyclone CPU module.

This example uses the card game, Go Fish, and is designed to teach you a
few debugger commands so that you can further examine the example
programs provided with this kit or your own programs. In the card game,
Go Fish, you and the computer each get several cards. You take turns
guessing which cards are in each other’s hands. When you guess correctly,
you acquire that card. If you don’t guess correctly, you need to “Go Fish”
and draw another card from the pack. When you get four-of-a-kind, you

The i960 Cx CPU Example Programs7

7-59

remove those cards from your hand. The objective of the game is to have the
most sets of four-of-a-kind when either you or the computer has no cards
remaining in your hands.

1. Choose Debugger.
2. Choose gdb960 Tutorial.
3. Choose Make to compile, link, and download the program

automatically.
The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

NOTE. This example uses the command line interface to gdb960. The
program also features a Graphical User Interface in both Windows and
UNIX. See The gdb960 User’s Manual for more information.

NOTE. DEBUGGING SHORTCUTS
Abbreviations for gdb960 commands are accepted as long as they are
unambiguous.
To run, enter: r
To break, enter: br
To list, enter: l
To continue, enter: c
To print, enter: p
To clear, enter: cl
To quit, enter: qu
For help, enter: he

7-60

7Getting Started with the 80960 QUICKval Kit

4. Do Not Type Run! First, use the gdb960 debugger to set a breakpoint
at function main() . Type:
break main

The debugger responds by displaying:
Breakpoint 1 set at 0xa0008570: file fish.c, line 209.

5. Set a second breakpoint at line 275. Type:
break 275

The debugger responds by displaying:
Breakpoint 2 set at 0xa0008bc4: file fish.c, line 275.

6. To execute the program from the beginning, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/fish
Breakpoint 1, main() at fish.c, 209.
209 srand();

7. To display the code at the breakpoint, type:
list

The debugger displays lines 204-213 of the fish.c source. To see the
next ten lines, type list again.

8. To continue executing the program from this location, type:
continue

The debugger responds by displaying:
Continue.
Would you like instructions[n]?

9. Reply by typing y for yes or <Enter> or n for no.
your hand is: A A 6 6 8 8 9
Breakpoint 2, game() at fish.c:275.
275 if(!move(yourhand,myhand,g=guess(),0))break;

10. In the source code in step 9, there are two variable arrays, myhand and
yourhand . Myhand is the computer’s hand and yourhand is yours. To
look at the card in the computer’s hand, type:
print myhand

The i960 Cx CPU Example Programs7

7-61

The debugger responds by displaying:
$1=“000\000\000\001\000\002\000\001\000\000\001\002\000”

myhand[0] does not represent a card.
myhand[1] represents the number of Aces.
myhand[2] represents the number of 2s, and so on.
The same order of cards is represented in the array, yourhand .
If a King is drawn by either player, myhand[13] or yourhand[13]
will appear when you print the array.

11. Using the ability to see the computer’s hand, you are able to beat the
computer every time. Clear the first breakpoint at the function main()
and continue playing the game, looking at the computer’s hand any
time you need to. To clear the breakpoint at main() , type:
clear main

The debugger responds by displaying:
Deleted breakpoint 1

12. To continue executing the program, type:
continue

13. If you need further assistance beating the computer, contact the 80960
Technical Support Group for more hints.

14. Type: quit

Debugging Optimized Code

CTOOLS can use the ELF object module format and DWARF Version 2
debug information format as described in the 80960 Embedded Application
Binary Interface (ABI) Specification (order number 631999). The new
formats enable more accurate mapping between source and object code at
higher optimization levels and ease production code debugging.

This example shows that at the highest level of module-local optimization, it
is possible to set a breakpoint on an inline function using ELF/DWARF,
while with COFF this is not possible.

1. Choose Debugger.
2. Choose C ELF/DWARF Format .
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

7-62

7Getting Started with the 80960 QUICKval Kit

4. Compile swap.c with no module-local optimizations (no inlining). This
shows that the procedure swap is not inlined. Enter:
gcc960 -Felf -T {Link-dir} -A {arch} -O0 -S swap.c

The options in this command are:

-Felf creates an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcycx specifies mcycx.gld .

-O0 no module-local optimizations

-S generate assembly code from the source code

swap.c input file

5. Edit swap.s (the generated assembly file from swap.c). In the
function _main , see the call to the procedure swap:
callj _swap

This is an out-of-line call to the procedure swap. The function swap
has not been inlined.

6. Now, compile swap.c with the highest level of module-local
optimizations. This inlines the procedure swap.
gcc960 -Felf -T {Link-dir} -A {arch} -O4 -S swap.c

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcycx specifies mcycx.gld .

-O4 highest level of module-local optimizations

-S generate assembly code from the source code

swap.c input file

7. Edit swap.s (the generated assembly file from swap.c). In the
function _main , note the call to the procedure swap does not exist:
callj _swap /* Does Not Exist*/

The procedure swap has been inlined.

The i960 Cx CPU Example Programs7

7-63

8. Recompile using the -O4 optimization level, the ELF/DWARF format,
and add debugging information.

gcc960 -Felf -T {Link-dir} -A {arch} -O4 -g -o swap swap.c

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy cx specifies mcycx .gld.

-O4 highest level of module-local optimizations

-g include debug information in object file

-o swap names the executable file swap

swap.c input file

9. Download the executable file, swap, to the Cyclone eval board
memory. Enter:

gdb960 -t mon960 -b 115200 -r com1 -D lpt1 swap

The options in this command are:

-t mon960 MON960 is on the target

-b 115200 use 155200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

swap the executable file

10. Do Not Type Run!
First, set a breakpoint on the procedure swap. Enter:
break swap

The debugger responds by displaying:
breakpoint 1 @0xa00080f0:file swap.c, line 43

breakpoint 2 @0xa0008148:file swap.c, line 54

Breakpoint 1 is the out-of-line reference to the procedure swap.
Breakpoint 2 is the inline reference to the procedure swap.

7-64

7Getting Started with the 80960 QUICKval Kit

Swap.c was compiled with a high level of module-local optimizations
that included function inlining, and it is still possible to set a breakpoint
on the inline function. Breakpoint 2 stops program execution.

11. To execute the program, enter:
run

The debugger responds by displaying:
Breakpoint 2, main() @ swap.c: 54

54 printf(ìThe smallest number is %d\nî,a);

12. To continue the program, enter:
c

When the program has finished, enter:
quit

13. Compile using the -O4 optimization level, the COFF format, and add
debugging information.

gcc960 -Fcoff -T {Link-dir} -A {arch} -g -O4 -o swap swap.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcycx specifies mcycx.gld .

-O4 highest level of module-local optimizations

-g include debug information in object file

-o swap names the executable file swap

swap.c input file

The i960 Cx CPU Example Programs7

7-65

14. Download the executable file, swap, to the Cyclone eval board
memory. Enter:
gdb960 -t mon960 -b 115200 -r com1 -D lpt1 swap

The options in this command are:

-t mon960 MON960 is on the target

-b 115200 use 155200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

swap the executable file

15. Do Not Type Run!!
First, set a breakpoint on the procedure swap. Enter:
break swap

The debugger responds by displaying:
breakpoint 1 @0xa00080f0

Breakpoint 1 is the out-of-line reference to the procedure swap. Notice
that no inline breakpoint has been set. This breakpoint does not stop
execution of the program.
Swap.c was compiled with a high level of module-local optimizations
that included function inlining, and it is not possible to set a breakpoint
on the inline function. Program execution does not stop.

16. To execute the program, enter:
run

The debugger responds by displaying the smallest number from the
swap. There is no break in program execution.

17. When the program has finished, enter:
quit

You have now seen that with the ELF/DWARF format, it is now
possible to debug your production code, even after high levels of
program optimization.

7-66

7Getting Started with the 80960 QUICKval Kit

Debugging Optimized C++ Code Tutorial

The C++ compiler generates debug information using the DWARF format
when the -g option is specified with the -Felf option. This debug
information format is richer than that of other supported OMFs, and allows
more reliable debugging under optimization.

This tutorial demonstrates that at the highest level of module-local
optimization, debugging a C++ application is still possible due to the
DWARF debug format.

In this example, you compile a C++ program using the -O0 optimization
compiler option, which disables all optimizations, including those that may
interfere with debugging. The same C++ program is then compiled using
the highest-level of module-local optimization, -O4 .

There are several levels of program optimization available with the
CTOOLS development tool suite. Typically, low levels of optimization are
used during the debugging phase. Certain optimizations can cause
significant code changes that may make high-level debugging difficult.
Once the application is functioning properly, the application's performance
may be increased by using a higher level of optimization. The static
optimization options are:

O0 Turn optimization off

O1 Basic optimization

O2 strength-reduction, instruction scheduling for
pipelining, etc...

O3 O2 plus fconstprop, finline-functions , etc...

O4 O3 plus fsplit-mem, fmarry-mem, fcoalesce

Level O4 is the highest level of static optimization. Please refer to the
i960 Processor Compiler User's Guide for more information on
ELF/DWARF and compiler optimizations.

The i960 Cx CPU Example Programs7

7-67

In this tutorial, you compile and debug a C++ program, cppdwarf.cpp ,
that contains many of the advanced features of the C++ language, including:

• Classes
• Public, protected, and private variable accessibility
• Virtual functions
• Scope operators
• Overloaded functions
• Class inheritance

Using ELF/DWARF, both levels of optimization, -O0 and -O4 , retain the
C++ program structure so that the above features may be investigated.

1. Choose Debugger
2. Choose C++ ELF/DWARF Format
3. Choose Make. The following tutorial is displayed in the QUICKval

browser, and the command lines may be entered at the Command
Prompt window.

4. Compile the program using the -O0 optimization level. In the
Command Prompt window, enter the following command:
gcc960 -Felf -A{ arch } -T{ Link-dir } -stdlibcpp -O0 -g
-o cppdwarf cppdwarf.cpp

The options in this command are:

-Felf creates an ELF format output file.

-A{arch} specifies the architecture. For example, -AHD
specifies an 80960HD.

-T{Link-dir} specifies the linker directive file. For example,
-Tmcy cx specifies mcycx .gld.

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-O0 specifies the lowest level of module-local
optimizations.

-g includes debug information in object file.

-o cppdwarf specifies the executable file cppdwarf .

cppdwarf.cpp specifies the input file cppdwarf.cpp .

7-68

7Getting Started with the 80960 QUICKval Kit

5. Run the program using the debugger, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -D
{ parallel port } -pci cppdwarf

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-t mon960 is optional since mon960 is the
default.

-b 115200 sets the baud rate for serial communication
(optional). This option, -b 115200 , is not
needed when the serial port is not being used.
Possible baud rates are 1200, 2400, 9600, 19200,
38400, 57600, and 115200.

-r com1 sets the port to use for serial communication
(optional). This option, -r com1 , is not needed
when the serial port is not being used; however,
the -pci option is required when no serial port
is used. Possible serial ports are com1, com2, ...
com99.

-D lpt1 sets the code download option for the parallel port
(optional). This option, -D lpt1 , is not needed
when the serial port or PCI bus is used for code
download. Possible parallel ports are lpt1 and
lpt2.

-pci sets the code download option for the PCI bus
(optional). When no serial port is specified, the
PCI bus is used for serial communication also.
The -r comx option is required when the PCI
bus is not used (i.e., when the -pci option is not
used).

cppdwarf specifies the executable file cppdwarf .

6. Do Not Enter Run!
Now you are ready to examine some features of the downloaded C++
program, cppdwarf.cpp . A C++ class in the program is person .
The gdb960 command ptype may be used to display a description of
a data type, including classes.

The i960 Cx CPU Example Programs7

7-69

At the (gdb960) prompt, enter:
ptype person

The following data type information concerning the class person

appears:

Please note the following concerning the above output:
• The entire class information for person is displayed, including

variables and member functions.
• The public , protected , and private variable accessibility

qualifiers are displayed for variables and member functions.
• All member functions are displayed, including virtual functions

and overloaded functions.
Another C++ class in the program is professor , which inherits from
the person class. Again, you use the gdb960 command ptype to
display a description of the professor class.

7. At the (gdb960) prompt, enter:
ptype professor

Example 7-1 person Class

type = class person {

 protected:

 char name[40];

 char dept[40];

 public:

 void setName ();

 void setName (char *);

 void setDept ();

 void setDept (char *);

 void printName ();

 virtual int isOutstanding ();

 virtual char * getDept ();

}

7-70

7Getting Started with the 80960 QUICKval Kit

The following data type information concerning the class professor
appears:

Please note the following concerning the above output:
• The entire class information for professor is displayed,

including variables and member functions.
• The public , protected , and private variable accessibility

qualifiers are displayed for variables and member functions.
• All member functions are displayed, including virtual functions

and overloaded functions.
• type = class professor : public person indicates that

the professor class inherits from the person class.
8. You are ready to set some breakpoints.

a. First, set a breakpoint on the overloaded function setNumPubs in
the professor class. At the (gdb960) prompt, enter:
break professor::setNumPubs

The following information concerning breakpoints is displayed:
[0] cancel

[1] all

[2] professor::setNumPubs(int) at
cppdwarf.cpp:125

[3] professor::setNumPubs(void) at
cppdwarf.cpp:118

Example 7-2 professor Class

type = class professor : public person {

 private:

 int numPubs;

 public:

 void setNumPubs ();

 void setNumPubs (int);

 virtual int isOutstanding ();

}

The i960 Cx CPU Example Programs7

7-71

Option 0 cancels the breakpoint operation. Option 1 sets a
breakpoint on all the professor::setNumPubs functions.
Option 2 sets a breakpoint on

professor::setNumPubs(int) on line 125 of
cppdwarf.cpp . Similarly, option 3 only sets a breakpoint on
professor::setNumPubs(void) on line 118 of
cppdwarf.cpp .

b. Set a breakpoint on all professor::setNumPubs functions. At
the > prompt, enter: 1

The following information about breakpoints is displayed:
Breakpoint 1 at 0xa00083d0: file cppdwarf.cpp,
line 125.

Breakpoint 2 at 0xa0008358: file cppdwarf.cpp,
line 118.

c. Set a breakpoint on the virtual function
professor::isOutstanding . At the (gdb960) prompt, enter:
break professor::isOutstanding

The following information concerning breakpoints is displayed:
Breakpoint 3 at 0xa0009080: file cppdwarf.cpp,
line 110.

9. You are now ready to start the program. At the (gdb960) prompt, enter:
run

Notice that the program stops at all three of the breakpoints.

10. To continue after a break, use the gdb960 command continue , or
enter the keyboard shortcut c .

11. At the (gdb960) prompt, enter: quit

The results of the debug session were as expected because no
optimizations had been performed on the source code during
compilation. You can now recompile the cppdwarf.cpp program
using the highest-level of module-local optimization and repeat the
previous debug session.

7-72

7Getting Started with the 80960 QUICKval Kit

12. Compile the program using the -O4 optimization level. In the
Command Prompt window, enter the following command:
gcc960 -Felf -A{ arch }-T{ Link-dir } -stdlibcpp -O4 -g
-o cppdwarf cppdwarf.cpp

The options in this command are:

-Felf create an ELF format output file

-A{ arch } specifies the architecture. For example, -AHD
specifies an 80960HD

-T{ Link-dir } specifies the linker directive file. For example,
-Tmcy cx specifies mcy cx .gld .

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-O4 highest level of module-local optimizations

-g include debug information in object file

-o cppdwarf specifies the executable file cppdwarf

cppdwarf.cpp input file

13. Run the program using the debugger, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -D
{ parallel port } -pci cppdwarf

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-t mon960 is optional since mon960 is the
default.

-b 115200 sets the baud rate for serial communication
(optional). This option, -b 115200 , is not
needed when the serial port is not being used.
Possible baud rates are: 1200, 2400, 9600, 19200,
38400, 57600, and 115200.

-r com1 sets the port to use for serial communication
(optional). This option, -r com1 , is not needed
when the serial port is not being used; however,
the -pci option is required when no serial port
is used. Possible serial ports are: com1, com2, ...
com99.

The i960 Cx CPU Example Programs7

7-73

-D lpt1 sets the code download option for the parallel port
(optional). This option, -D lpt1 , is not needed
when the serial port or PCI bus is used for code
download. Possible parallel ports are: lpt1 and
lpt2.

-pci sets the code download option for the PCI bus
(optional). When no serial port is given, the PCI
bus is used for serial communication also. The

-r comx option is required when the PCI bus is
not used (i.e., when the -pci option is not used.)

cppdwarf specifies the executable file.

14. Do Not Enter Run!
You are now ready to investigate some features of the downloaded C++
program, cppdwarf.cpp . A C++ class in the program is person .
The gdb960 command ptype may be used to display a description of
a data type, including classes. At the (gdb960) prompt, enter:
ptype person

Please note, the output matches that of Example 7-1, “person Class”.
Optimizations did not affect the person class output. It is the same
as the first debug session.

15. Another C++ class in the program is professor , which inherits from
the person class. Once again, you use the gdb960 command ptype to
display a description of the professor class. At the (gdb960)
prompt, enter:
ptype professor

Again please note, the output matches that of Example 7-2, “professor
Class”. Optimizations did not affect the professor class output. It
is the same as the first debug session.

7-74

7Getting Started with the 80960 QUICKval Kit

16. You are now ready to set some breakpoints.

a. First, set a breakpoint on the overloaded function setNumPubs
in the professor class. At the (gdb960) prompt, enter:
break professor::setNumPubs

The following information concerning breakpoints is displayed:
[0] cancel

[1] all

[2] professor::setNumPubs(int) at
cppdwarf.cpp:125

[3] professor::setNumPubs(void) at
cppdwarf.cpp:118

Option 0 cancels the breakpoint operation. Option 1 sets a
breakpoint on all the professor::setNumPubs functions.
Option 2 only sets a breakpoint on
professor::setNumPubs(int) on line 125 of
cppdwarf.cpp . Similarly, option 3 only sets a breakpoint on
professor::setNumPubs(void) on line 118 of
cppdwarf.cpp .

b. Set a breakpoint on all professor::setNumPubs functions, so
At the > prompt, enter: 1.
The following information about breakpoints is displayed:
Breakpoint 1 at 0xa00082e4: file cppdwarf.cpp,
line 125.

Breakpoint 2 at 0xa0008294: file cppdwarf.cpp,
line 118.

c. Finally, set a breakpoint on the virtual function
professor::isOutstanding . At the (gdb960) prompt, enter:
break professor::isOutstanding

The following information concerning breakpoints is displayed:
Breakpoint 3 at 0xa0008960: file cppdwarf.cpp,
line 111.

The i960 Cx CPU Example Programs7

7-75

17. You are now ready to start the program. At the (gdb960) prompt, enter:
run

Notice that the program does not stop at all three of the breakpoints. As
can be seen, the DWARF debug information format is very rich, and
allows more reliable debugging under optimization. However, even
with DWARF, there are situations where debugging behavior does not
agree with the debugging behavior of unoptimized code.

18. To continue after a break, use the gdb960 command continue , or
enter the keyboard shortcut c .

19. At the (gdb960) prompt, enter: quit

CONGRATULATIONS! You may now know how to use ELF/DWARF to
debug your optimized C++ code.

Writing Flash

This example teaches you the following:

• Writing to flash on the Cyclone base board.
• Booting off of the flash in socket U27 of the Cyclone base board, as

opposed to the flash on the CPU Module.
• Setting the Cyclone base board to 12 volts.
• Using mondb.exe as a simple utility to download and execute an

application program on the target board running MON960.
• Using mondb.exe to write flash.
• Building a new monitor for a particular i960 microprocessor family

member.
• Retargeting MON960 for other boards.

NOTE. In order to write to flash on your Cyclone base board, you need
a 12 volt power supply. Also, these instructions are used with the
CTOOLS 6.0 and MON960 3.2.3 toolsets.

7-76

7Getting Started with the 80960 QUICKval Kit

Complete this step:

1. Choose MON960.
2. Choose Writing Flash.
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Identify the Flash on the Cyclone base board.
A blank Flash chip ships on each Cyclone base board in socket U22. To
write MON960 to Flash, you must move the blank Flash from socket
U22 to socket U27.

5. Set the Cyclone base board voltage to 12 volts.
Locate the four-position DIP switch labeled S1. Flip S1.1 to the ON
position. This enables VPP to the Cyclone base board Flash.

6. Power up the Cyclone eval base board
Locate the four-pin connector that interfaces to a secondary power
supply labeled J6. Three of the connector pins connect to +5 VDC,
+12 VDC and ground. (On the PCI-SDK Platform, +12 VDC and +5
VDC power is supplied through the edge connector.)

7. Edit Version.c .
a. Change directories to where the version.c file resides. The

default installation directory for CTOOLS is:
c:\intel960\src\mon960\common

If you cannot find the mon960 directory, You need to install
MON960 as directed in the MON960 Debug Monitor User’s
Manual.
Version.c contains the following information:

const char mon_version_byte = nn; /* version n.n = nn */

const char base_version[] = "MON960 n.n.n";

const char build_date[] = __DATE__;

b. Change the file contents to reflect that this is your version of
MON960. For example, change
const char base_version[] = "MON960 n.n.n";

to:
const char base_version[] = "MY MON960";

c. Save Version.c .

The i960 Cx CPU Example Programs7

7-77

8. Build the new MON960 from source (optional)
By default the source for MON960 is located at:
c:\intel960\src\mon960\common

You may use the pre-built version of MON960 there, or build a custom
verion. To create a custom version:
a. Copy makefile.xxx to

c:\intel960\src\mon960\common\makefile .
where xxx is one of the following make files:
makefile.ic (ic960 interface, COFF format)
makefile.ie (ic960 interface, ELF format)
makefile.gc (gcc960 interface, COFF format)
makefile.ge (gcc960 interface, ELF format)

b. Issue the commands:
nmake -s makefile

cycx

This creates a file called cycx.fls .
9. Write the Flash

To write the Flash, use the mondb.exe utility located in the
intel960\bin\ directory. If you are going to use the pre-built
MON960 files, they are located in the intel960\roms directory. For
example, if you used the default installation directory and are using the
pre-built MON960 files for the 80960Cx, enter:
mondb -ser com1 -par lpt1 -ef -ne
c:\intel960\roms\cy cx.fls

The options in this command are:
-ser com1 use serial port 1
-par lpt1 use parallel port 1
-ne no execute
-ef erase Flash
cycx.fls input Flash filename
Note also that if you built a version of MON960 from the source code
as described previously, the cycx.fls file will be located in the
c:\intel960\src\mon960\common\ directory.

7-78

7Getting Started with the 80960 QUICKval Kit

10. Set Board Voltage Back To +5 VDC
Locate the four-position DIP switch labeled S1. Set S1.1 to the OFF
position. This disables VPP to Cyclone EP base board Flash and
protects the Flash. Note that the PCI80960DP and i960 Cx evaluation
platforms do not boot when VPP is enabled and MON960 is running
from the evaluation board Flash.

11. Set board to boot from U27 socket
Locate the four-position DIP switch labeled S1. Set S1.3 ROMSWAP
to the ON position. This exchanges the addresses of the CPU Module
ROM and the base board ROMs. When the switch is OFF the
processor boots from the CPU Module ROM; when the switch is ON
the processor boots from the base board ROMs.

12. Reset Base Board
Locate the reset pushbutton labeled S2. Use this button to manually
reset the Cyclone base board and boot from the base board ROMs.

How to Add Benchmarking Routines to Your Code

Benchmarking is a common way to evaluate an architecture for its
performance. CTOOLS comes with two routines for benchmarking code.
These routines are called bentime() and init_bentime() .
init_bentime() is called once to program the on-board Counter/Timer to
periodically interrupt the processor. The bentime() routine returns the
time in microseconds based on the count from the interrupt handler,
timer_isr , and the current count read from the timer. By placing a call to
bentime() at the start and end of the code you are timing, the elapsed
time can be calculated by the difference between the second call to
bentime() and the first.

1. Choose Benchmarking.
2. Choose Qv Code.

NOTE. If you have trouble with this example, refer to Chapter 3 for
troubleshooting tips.

The i960 Cx CPU Example Programs7

7-79

3. Scroll through the chksum.c code for comments that refer to
“Benchmarking Routine”. You can add similar lines to the code that
you want to time.

4. Choose Make to compile, link, and download the program
automatically.

5. Execute the chksum program. Type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...
Time for Checksum was 2.609590 seconds. Value was
869e7960.
Program exited with code 01

6. Type: quit

Other i960 Processor Choices and the Remote Evaluation Facility

The i960 RISC processor family has a wide breadth of processors to match
your design’s price and performance needs. If you wish to evaluate other
i960 processor family members, contact your local distributor and order
different Cyclone CPU modules, or visit the Remote Evaluation Facility at
http://developer.intel.com/design/i960/testcntr

If you choose to order more CPU modules, you may rest assured that all
i960 processor modules plug-n-play with your QUICKval kit. This
configuration was specifically designed to protect your investment and offer
a low cost migration path for future needs.

NOTE. The i960 Rx Processor is not available through the Remote
Evaluation Facility.

8-1

The i960 Sx CPU
Example Programs 8

With a full 32-bit internal architecture and a 16-bit external bus, the i960
SA/SB embedded processors are faster than all other 16-bit processors on
the market. Although the powerful i960 SA/SB components are actually the
low-end members of the i960 microprocessor family, these high-speed
processors are ideal for today’s more demanding applications, such as
entry-level page printers, I/O controllers, games and communications
products. The integrated burst control reduces bus bottlenecks. The
powerful 32-bit CPU increases throughput. And the high level of integration
minimizes chip count to lower system costs.

The i960 SB processor is pin-compatible with the i960 SA processor, and
integrates an IEEE 754 compatible floating point unit. The i960 SA/SB
microprocessors are object code-compatible with all of the i960
microprocessor family members, including the mid-range i960 KA/KB
processors, the superscalar i960 CA/CF processors, and the military i960
MC processor.

Additionally, you can optimize your system’s performance with CTOOLS,
which includes a profile-driven compiler that can automatically optimize
your code based on its runtime behavior.

The following pages describe the example programs included with this kit.
Each example highlights a feature of the architecture or CTOOLS and
provides you with source code that can help shorten your software
development cycle. Table 8-1 provides descriptions of the tutorials included
in the i960 Sx QUICKval kit.

8-2

8Getting Started with the 80960 QUICKval Kit

Table 8-1 QUICK val i960 Processor Sample Programs

Tutorial Description Source Files

Hello World: Uses simple printf statement to
verify system integrity.

hello.c : source file
system.c : system file

Memory Test: Used for system verification of
external memory. The programs perform byte,
short, or word writes to external memory, and
then they check the addresses written for
correctness.

memtst8.c: 8 bit memory
test memtst16.c : 16 bit
memory test memtst32.c : 32
bit memory test
system.c : system file

External Interrupts: Shows how to configure
the Cyclone board timers to trigger hardware
interrupts. This is also an example of using
interrupt handlers and placing the handlers in
the interrupt table.

cyint.c : source file
asm_fns.s : interrupt handler
for Sx
int_proc.s : interrupt
handler-all processors but Sx
t85c36.c : eval board timer
file
system.c : system file

C Local Optimizations: Shows how to use
the C compiler with high levels of static
optimization for improved runtime
performance.

chksum.c , system.c :
source files

C Global Optimizations: Shows how to use
program-wide optimizations of the C compiler
for increased performance.

chksum.c ,
system.c :
source files

C++ Local Optimizations: Shows how to use
the C++ compiler with high levels of static
optimization for improved runtime
performance.

optimize.cpp : source file

C++ Global Optimizations: Shows how to
use program-wide optimizations of the C++
compiler for increased performance.

optimize.cpp : source file

C++ Virtual Function Optimizations: Shows
how a call to a virtual function can be replaced
by a direct call to a member function, and, if
possible, it may be inlined at the call site. This
improves the runtime performance of the
code.

optimize.cpp : source file

Profiling Lab: Teaches you how to use some
of CTOOLS advanced profiling features.

chksum.c : source file

continued ☛

The i960 Sx CPU Example Programs8

8-3

Self-Contained Profile: Shows how to create
a self-contained profile that captures the
program structure and associates it with the
program counters from a raw profile. When
the source program changes, the global
decision making step interpolates or stretches
the counters in the self-contained profile to fit
the changed program.

quick.c : source file

C Cave: Uses a tic-tac-toe game to show how
to reduce target memory requirements. The
text sections of compressed and
uncompressed tic-tac-toe executables are
compared. Additionally, this example
demonstrates how to specify functions for
compression.

ttt.c : source file

C++ Cave: Shows how to reduce target
memory requirements. The text sections of
compressed and uncompressed C++
executables are compared. This example also
shows how to specify functions for
compression.

cavecpp.cpp : source file

Linker Directive Language: Provides a
hyperlinked manual that describes the linker
command options. This tutorial is found in the
online help only, not in this manual.

Debugging with gdb960: Uses the Go Fish
card game to teach a few useful debugger
commands.

fish.c : source file
system.c : system file

ELF/DWARF Debugging Format:
Demonstrates that at the highest level of
module-local optimization, it is possible to set
a breakpoint on an in-line function.

swap.c : source file

C++ DWARF-2 Debugging Format:
Demonstrates that at the highest level of
module-local optimization, it is possible to
debug a C++ application.

cppdwarf.cpp : source file

Retargeting MON960: Provides steps for
retargeting MON960. This tutorial is found in
the online help only, not in this manual.

Table 8-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

8-4

8Getting Started with the 80960 QUICKval Kit

System Validation

Hello World

The program hello.c is used to verify your software and hardware system
integrity. The following steps provide instructions on how to compile, link,
download, and execute this program.

1. Verify that your software and hardware have been installed according
to the instructions in Chapter 2 through 3 and the frequency switch on
your CPU module is set as shown.
• SW1 Set for Serial Port UART PLX PCI 9060.
• SW2 Set for 20Mhz Sx CPU module frequency.

1. Power your Cyclone evaluation platform and i960 Sx CPU module
2. Double-click on the Hx Jx Cx & Sx QUICK val icon in the QUICKval

program group.

Writing Flash: Demonstrates how to update
the version of MON960 on your evaluation
board.

80960 Family Benchmark: Shows how to
use this facility to compare your processor's
performance with other i960 family members.
This example uses a typical checksum
routine to show how to add benchmarking
routines into source code.

chksum.c , system.c :
source files

Remote Evaluation Facility: Guides you
through the use of this new benchmarking
facility on the World-Wide Web.

Table 8-1 QUICK val i960 Processor Sample Programs (continued)

Tutorial Description Source Files

OFF

1 2 3 4

OFF

1 2 3 4

SW1 SW2

The i960 Sx CPU Example Programs8

8-5

3. Configure you hardware.
• Select the 80960 Architecture tab
• Select Sx.
• Depending on the board you have installed, select either the

EP80960BB or PCI80960DP tab.
• Configure the software communication options to match those of

your evaluation board.
• Choose OK

4. Choose Hello World .
5. Choose Make to compile, link, and download the program

automatically.
6. Use the gdb960 debugger to execute hello. Type:

run

7. The gdb960 debugger responds by displaying:
Hello...Welcome to the 80960SX QUICKval Kit!

SYSTEM CHECK COMPLETED!!

Now you may proceed with our Example Programs.

Program Exit: 01

(gdb960)

8. To exit the debugger, type: quit

CONGRATULATIONS! You have successfully installed your software and
your hardware, compiled a program using gcc960, and downloaded and
executed the program on your evaluation board using the gdb960 debugger.

If you received any error messages during this process, refer to “If
Something Goes Wrong” on page 8-7.

Memory Test

The programs memtst8.c , memtst16.c , and memtst32.c are used to test
the external memory on the Cyclone base board.

Depending on the test that is run, an 8, 16, or 32-bit test is run on an area of
memory. The program writes F's and 0's to a memory location and reads the
location to verify the integrity of what was written. All three programs are
almost identical, with the exception of the casting of the variable *ADDR,
which allows you to perform different test types.

8-6

8Getting Started with the 80960 QUICKval Kit

1. Choose Memory Test.
2. Choose a memory test. The options are, 8-bit Memory Test, 16-bit

Memory Test, or 32-bit Memory Test.
3. Choose Make to compile, link, and download the program

automatically.
4. Use the gdb960 debugger to execute memtst. Type:

run

5. For the 8-bit test, memtst8.c , the gdb960 debugger responds by
displaying:

This program will run a 8-bit test on the external memory.

Test to be implemented is byte test.
Starting address = a000dfb0
Ending address = a000ec30

Press enter to begin test with 0’s.
Number of errors that occurred is 0.

Begin test for f’s.

Press enter to continue.
Number of errors that occurred is 0.

All tests are complete.
Program exited with code 030.
(gdb960)

6. Exit the debugger. Type:
quit

NOTE. Below, memtst*.c refers to either the byte, short, or word
memory test example.

The i960 Sx CPU Example Programs8

8-7

If Something Goes Wrong

The following section describes a few actions that may help resolve errors
that may have occurred when invoking one of the tools. If you were unable
to get the proper response from the gdb960 debugger after executing the
above programs and the trouble-shooting hints described below do not help,
contact the 80960 Technical Support Group by phone at 1-800-628-8686 or
by E-mail at 960tools@intel.com.

MON960 Debug Monitor is Not Responding...

If the red FAIL LED (CR6) on the base board is lit, the monitor may not
have booted up correctly. Press the reset button (S2). If the red FAIL LED
remains lit, contact the 80960 Technical Support Group.

Invoking the gcc960 Compiler Resulted in Errors...

The environment must be set-up as described in Chapter 2. If you chose the
default directories while installing CTOOLS, verify that the path names
C:\INTEL960\BIN have been added to your PATH variable and that the
following statement is in your autoexec.bat file. If you did not install
these tools using the default directories, make the appropriate change.

SET G960BASE=C:\INTEL960

NOTE. You did not use the default directories on installation, please
make sure the G960BASE environment variable is assigned
appropriately.

NOTE. Don’t forget to re-boot your system once you have made any
necessary changes to your autoexec.bat file.

8-8

8Getting Started with the 80960 QUICKval Kit

Invoking the gld960 Linker Resulted in Errors...

Verify that the directory that contains the hello.c and memtst*.c
example programs also now has the object files, hello.o and memtst*.o .
If hello.o and memtst*.o do not exist, then the gcc960 compiler
command did not successfully create an object file. Re-compile hello.c
and memtst*.c to see if an error occurred during the compilation.

If hello.o and memtst*.o do not exist, make note of the error message
and contact the 80960 Technical Support Group.

Invoking the gdb960 Debugger Resulted
in Errors...

Serial communication error

A serial communication error causes the gdb960 debugger to respond by
displaying:

HDIL error (10), communication failure
HDIL error (10), communication failure

You can’t do that when your target is ‘exec’

Verify that the serial port you are using is the one you specified in the
gdb960 command line. Verify that your serial cable is properly connected to
the board and to your PC.

NOTE. If you are using the PCI-SDK evaluation platform, you may
specify -pci for PCI download and PCI communication.
For a list of all the gdb960 command line options, at a command prompt,
enter: gdb960 -h | more

The i960 Sx CPU Example Programs8

8-9

Parallel communication error

A parallel communication error causes the gdb960 debugger to respond by
displaying:

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type ‘show copying’ to see the conditions.
There is absolutely no warranty for GDB; type “show warranty” for
details.

gdb960.exe 6.0, Wed FEB 16 12:33:16 1998

GDB 5.10 (i486-intel-dos --target i960-intel-mon960), Copyright 1997

Free Software Foundation, Inc...(no debugging symbols found)...

Connected to com1 at 115200 bps.

(gdb960)

section 0, name .text, address 0xc0008000, size 0x50ec, flags 0x20

 writing section at 0xc0008000

Verify that the parallel port you are using is the one you specified in the
gdb960 command line. Verify that your parallel cable is properly connected
to the board and to your PC.

External Interrupts Tutorial

The purpose of this program, cyint.c , is to show the steps required when
dealing with an interrupt triggered externally by the evaluation board timers.
The cyint.c source code contains step-by-step instructions to save you
time when you program interrupts for your application. asm_fns.sam is
the interrupt handler, and t85c36.c contains the functions to program the
evaluation board timers.

The example performs the following steps in the handling of a hardware
interrupt.

• Modify the ICON register
• Modify the IMAP register
• Cache the interrupt vector and the interrupt handling procedure

NOTE. Your actual run times may vary.

8-10

8Getting Started with the 80960 QUICKval Kit

• Lower the processor priority
• Modify the IMSK register
• Clear the IPND register
• Generate the hardware interrupt using the evaluation board timers

Complete these steps:

1. Choose Interrupt Examps .
2. Choose External Interrupts .
3. Choose Qv Code.
4. Scroll through the cyint.c source to see the code for setting up and

handling a hardware interrupt triggered by the evaluation board timers.
5. Open and scroll through the t85c36.c and t85c36.h files to see the

definitions and routines for programming the evaluation board timers.
You can simplify the programming of the evaluation board timers by
including this code in your own applications.

6. Choose Make to compile, link, and download the program
automatically.

7. Use the gdb960 debugger to execute cyint . Type:
run

The debugger responds by displaying:
interrupt count = 314

interrupt count = 328

interrupt count = 343

interrupt count = 358

interrupt count = 373

interrupt count = 388

interrupt count = 403

interrupt count = 418

interrupt count = 432

Program exited with code 020.

(gdb960)

8. Type: quit

The i960 Sx CPU Example Programs8

8-11

Static, Global, and Profile-Driven Optimizations

Optimizing compilers provide you with a means of developing high
performance code without detailed knowledge of the architecture.
Engineers who understand the features of the i960 architecture developed
gcc960 to provide optimizations that take full advantage of the i960
processor. In general, optimizing compilation takes more time and may
require more memory for large functions. However, the benefit in runtime
performance is well worth it.

There are several levels of optimization available. Typically, low levels of
optimizations are used during the debugging phase. Certain optimizations
can cause significant code changes that may make high-level debugging
difficult. Once your application is functioning properly, you can increase its
runtime performance by using a higher level of optimization.

Release 5.0 and later of the development tools support the ELF object
module format and DWARF version 2.0 debug information format. The new
format enables more accurate mapping between source and object code at
higher optimization levels and ease debugging of production code.

The C optimization example uses a program called chksum.c . The C++
examples use a program called optimize.cpp

C No Optimization
1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Local Optimizations.
4. Choose Make -O0 to compile without optimizations, link, and

download the program automatically.

NOTE. Your actual interrupt counts may vary.

8-12

8Getting Started with the 80960 QUICKval Kit

5. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 81.141323 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

C Static Optimization

Use the following commands to compile the chksum.c program using the
highest level of optimization without using runtime behavior, or
program-wide optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Local Optimizations.
4. Choose Make -O4 to compile with optimizations, link, and download

the program automatically.
5. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 9.874086 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

7. Choose Results.

C++ No Optimization
1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Local Optimizations.

The i960 Sx CPU Example Programs8

8-13

5. Choose Make -O0 to compile without optimizations, link, and
download the program automatically.

6. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 42.0705 seconds.
Program exited normally

7. Type: quit

C++ Static Optimization

Use the following commands to compile the optimize.cpp program using
the highest level of optimization without using runtime behavior, or
program-wide optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Local Optimizations.
5. Choose Make -O4 to compile without optimizations, link, and

download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 31.2296 seconds.
Program exited normally

7. Type: quit

8. Choose Results.

8-14

8Getting Started with the 80960 QUICKval Kit

C Global Optimization

Use the following commands to compile the chksum.c with program
program-wide optimizations, which are sophisticated, inter-module
optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C Global Optimizations.
4. Choose Make +O5 to compile with optimizations, link, and download

the program automatically.
5. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...

Time for Checksum was 7.254407 seconds. Value was

869e7960.
Program exited with code 01

6. Type: quit

7. Choose Results.

C++ Global Optimization

Use the following commands to compile the optimize.cpp program using
the program program-wide optimizations, which are sophisticated,
inter-module optimizations.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Global Optimizations.
5. Choose Make+05 to compile with optimizations, link, and download

the program automatically.

The i960 Sx CPU Example Programs8

8-15

6. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 28.0329 seconds.
Program exited normally

7. Type: quit

8. Choose Results.

Instrumentation, Profile Creation, Decision-making, and
Profile-Driven Re-Compilation

An 91% improvement in C code performance is significant, but there is
another level of optimization that is uniquely available through Intel’s
CTOOLS compilers: profile-driven optimization. This two-pass
compilation procedure allows the compiler to make optimizations based on
runtime behavior as well as the static information used by conventional
optimizations.

The compiler can perform sophisticated inter-module optimizations, such as
replacing function calls with expanded function bodies when the function
call sites and function bodies are in different object modules. These are
called program-wide optimizations because the compiler collects
information from multiple source modules before it makes final
optimization decisions. Standard (i.e., non-program-wide) optimizations are
referred to as module-local optimizations.

Program-wide optimizations are enabled by options that tell the compiler to:

1. Build a program database during the compilation phase.
2. Invoke a global decision making and optimization step during the

linking phase.
3. Automatically substitute the resulting optimized modules into the final

program before the end of the linking phase.

The compiler can also collect information about the runtime behavior of a
program by instrumenting the program. The instrumented program can be
executed with typical input data, and the resultant program execution profile
can be used by the global decision making and optimization phase to

8-16

8Getting Started with the 80960 QUICKval Kit

improve the performance of the final optimized program. The profile can
also provide input to the global coverage analyzer tool (gcov960), which
gives users information about the runtime behavior of the program at the
source-code level.

1. Choose Compiler.
2. Choose Profiling Optimizations .
3. Choose Profiling Lab .
4. Follow the Profiling Tutorial link in the online help.

Using profile-driven optimization, an increase in runtime performance of
27% is obtained. The average 80960 application can expect to gain 15 to
30% performance improvement through the use of this technology. This
boost in performance is available to you without any further investment in
hardware.

C++ Virtual Function Optimizations

Invoking a virtual function is more expensive than invoking a non-virtual
function in C++. Also, other function-related optimizations such as inlining
cannot be performed on virtual functions. In many situations, however, the
call to the virtual function can be replaced by a direct call to a member
function and if possible it can be inlined at the call site. This improves the
runtime performance of the code.

Use the following commands to compile the optimize.cpp program.

1. Choose Compiler.
2. Choose Static Optimizations.
3. Choose C++ Optimizations.
4. Choose C++ Virtual Opts .
5. Choose Make -NoVOpt to compile without virtual function

optimizations, link, and download the program automatically.
6. To execute the program, type:

run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 28.0329 seconds.
Program exited normally

The i960 Sx CPU Example Programs8

8-17

7. Type: quit

8. Choose Make -VOpt to compile with virtual function optimizations,
link, and download the program automatically.

9. To execute the program, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/optimize
Now starting C++ routine ...

Time for C++ routine was 24.0449 seconds.
Program exited normally

10. Type: quit

11. Choose Results.

The virtual function optimizations yielded a 14.2% improvement.

Note the runtime performance at each optimization level as shown below.

Building Self-contained Profiles with gmpf960

A raw profile contains program counters that record how many times
various statements in the source program have been executed. Information
in the PDB is needed to correlate these program counters with the source
program. A raw profile has a very short useful life. When changes are made
in the source code, any raw profiles previously obtained for that program are
no longer accepted by the global decision making and optimization step.

Table 8-2 i960 Processor Optimization Results

Optimization Level C Execution Time C++ Execution Time

no optimization (-O0) 81.141323 seconds 42.0705 seconds

maximum static (-O4) 9.874086 seconds 31.2296 seconds

global optimization 7.254407 seconds 28.0329 seconds

profile-driven 7.20885seconds NA

Virtual Function
Optimization

NA 24.0449 seconds

8-18

8Getting Started with the 80960 QUICKval Kit

A self-contained profile captures the program structure from the PDB and
associates it with the program counters from the raw profile. When changes
are subsequently made to the source program, the global decision making
step interpolates or stretches the counters in the self-contained profile to fit
the changed program.

A self-contained profile can be used to optimize a program even after days,
weeks, or perhaps months worth of changes to the program. This frees you
from having to collect a new profile every time the program changes, while
still allowing profile-directed optimizations. Depending upon the nature and
quantity of changes to the program, the accuracy of the profile gradually
degrades over time as more interpolation is done.

A self-contained profile must be generated from a raw profile before the
program that generated the raw profile is relinked. You should always create
a self-contained profile immediately after the raw profile is collected.

1. Choose Compiler.
2. Choose Profiling Optimizations .
3. Choose Self-Contained.
4. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

5. Specify the program database directory.
The PDB can be specified by setting the environment variable
G960PDB.
For example, if you chose the default directory during installation,
enter:
SET G960PDB=C:\quickval\prof_lab\lab_pdb

Or, specify the PDB at compiler invocation time with the Zdir option,
as shown in the example below.
gcc960 -Zmypdb foo.o

6. Compile for profile instrumentation.
Insert profile instrumentation into quick so that when the linked
program is executed, a profile can be collected. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,subst=:*+fprof -o quick quick.c

The i960 Sx CPU Example Programs8

8-19

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A { arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcysx specifies mcysx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-gcdm,subst=:* The tool that performs the global decision making
and optimization step is invoked from within the
linker when the gcdm option is used. The
substitution control specifies a module-set
specification of only eligible modules not linked
in from libraries.

+fprof causes generation of profile instrumentation.

-o quick the executable file will be named quick

quick.c the source file

7. Collect a Profile
If a program that contains one or more modules compiled with fprof
is linked with the standard libraries and then executed, a file named
default.pf containing the profile for those modules is automatically
produced when the program exits. Type:
gdb960 -t mon960 -b 115200 -r com1 -D lpt1 quick

The options in this gdb960 compiler command are:

-t mon960 MON960 is on the target

-b 115200 use 115200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

quick the executable file

8. Use the gdb960 debugger to execute quick . Enter:
run

8-20

8Getting Started with the 80960 QUICKval Kit

9. Exit the debugger. Enter:
quit

10. Enter the command:
gmpf960 -spf quick.pf default.pf

The options in this gmpf960 compiler command are:

-spf causes a self-contained profile, quick.pf , to be
produced as output.

default.pf The input profile.

11. Recompile the quick.c source code using the profiling information
obtained by the instrumentation. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=quick.pf -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcysx specifies mcysx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-Gcdm,iprof=quick.pf

This supplies a profile file quick.pf to the
global decision making and optimization step.

-o quick the executable file will be named quick

quick.c the source file

12. Change the control structure of quick.c.

Edit quick.c . Find the procedure called QUICK. In this procedure,
there is a control structure:
for(i = 2; i <= SORTELEMENTS; i+=1)

{

(LOGIC)

}

The i960 Sx CPU Example Programs8

8-21

Change the control structure to:
i = 2;

while (i <= SORTELEMENTS)

{

(LOGIC)

i+=1;

}

13. Compile the new quick.c using the interpolated profile. Type:
gcc960 -Fcoff -T {Link-dir} -A {arch} -fdb
-gcdm,iprof=quick.pf -o quick quick.c

The options in this gcc960 compiler command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcysx specifies mcysx.gld .

-fdb All modules subject to program-wide
optimization must be initially compiled with the
fdb option.

-Gcdm,iprof=quick.pf

This supplies a profile file quick.pf to the
global decision making and optimization step.

-o quick the executable file will be named quick

quick.c the source file

Notice that the global decision making and optimization option
(-gcdm) accepts the interpolated profile, quick.pf .

NOTE. The beauty of this example is that the global decision making
and optimization option (-gcdm) accepts the interpolated profile,
quick.pf , not the results of running this example.

8-22

8Getting Started with the 80960 QUICKval Kit

Compression Assisted Virtual Execution (CAVE)

This CTOOLS feature allows non-critical parts of an application’s machine
code to be stored in memory in compressed form resulting in reduced target
memory requirements. The code is expanded into native machine code on
demand for execution.

CAVE reduces the physical memory requirements of ROM-based
applications through link-time compression and on-demand runtime
decompression of user-specified functions. The compiler, linker, runtime
dispatcher, and compression and decompression routines cooperate to
provide this feature. Code is typically compressed by a ratio of between 1.5
and 1.7. Runtime decompression speed is about 30 clock cycles per byte of
compressed code.

When the CAVE mechanism is used, selected functions in the application
are designated to be secondary functions. All other functions are termed
primary functions. The primary set should contain performance-critical
functions, that are not to be affected by the CAVE mechanisms; the
secondary set is subject to compression. Secondary functions are
compressed by the linker and reside in memory in compressed form. At
runtime, calls to secondary functions are intercepted by the CAVE
dispatcher and the functions are decompressed if necessary.

Note that due to the overhead of decompressing code at runtime, only
non-performance critical code should be secondary functions, such as error
handling code or initialization code. You can use runtime profile
information generated by gcov960 to aid in selecting the set of secondary
functions.

This example uses a tic-tac-toe game to show how to reduce target memory
requirements. The text sections of compressed and uncompressed tic-tac-toe
executables are compared. Additionally, this example demonstrates how to
specify functions for compression.

For the sake of demonstration, we compress performance-critical code in
the tic-tac-toe program. The purpose of this example is to show the reduced
text section of the executable, not demonstrate run times.

The i960 Sx CPU Example Programs8

8-23

C Example
1. Choose Compiler.
2. Choose C Cave.
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Use the gcc960 mcave option or #pragma cave to designate the
specified functions as secondary. In the tic-tac-toe example, ttt.c ,
the following #pragma has been added:
#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)

where Initialize, Winner, Other, Play, Evaluate,

Best_Move, Describe, Move, and Game are all functions to be
compressed.

5. Edit ttt.c . Make sure the #pragma cave program line is
commented out:
/*#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)*/

6. Compile the tic-tac-toe program. Enter:
gcc960 -A{arch} -Fcoff -T{Link-dir} -o ttt ttt.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcysx specifies mcysx .gld.

-o ttt names the executable file ttt

ttt.c input file

7. Check the text section size of the uncompressed program. Enter:
gsize960 ttt

The option in this command is:

ttt name of the executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the uncompressed text section.

8-24

8Getting Started with the 80960 QUICKval Kit

8. Edit ttt.c . Make sure the #pragma cave program line is
uncommented:
#pragma cave(Initialze, Winner, Other, Play,
Evaluate, Best_Move, Describe, Move, Game)

9. Compile the tic-tac-toe program with the pragma program line. Enter:
gcc960 -A{arch} -Fcoff -T{Link-dir} -o ttt ttt.c

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcysx specifies mcysx .gld.

-o ttt names the executable file ttt

ttt.c input file

10. Check the text section size of the compressed program. Enter:
gsize960 ttt

The option in this command is:

ttt executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the compressed text section. In this example,
you can expect a code size reduction of approximately 1 percent. Here
are some typical results for the supported processor types:

Table 8-3 Uncompressed Text Sections

State
80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Uncompressed 33,764 32,944 32,768 32,976 31,600

The i960 Sx CPU Example Programs8

8-25

Note that the purpose of this example is to teach you how to use the CAVE
feature with programs. Though the improvements are small, you can expect
much better results with real-world programs of approximately 100 Kbytes
and larger, especially if the software has many non-critical functions.

C++ Compression Assisted Virtual Execution (CAVE)

1. Choose Compiler.
2. Choose C++ Cave.
3. Choose Make.The following tutorial is displayed in the QUICKval

browser, and the command lines may be entered at the Command
Prompt window.

4. Use the gcc960 mcave option or #pragma cave designate the
specified functions as secondary. In the C++ example, cavecpp.cpp ,
the following #pragma has been added:
#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

where initSetName , initSetDept , initSetGpa ,
initSetNumPubs , isOutstanding , printName , and
InitializeRecords are all functions to be compressed, i.e., all
functions are secondary functions. All other functions of the program
are primary functions.

Table 8-4 After Function Compression

State
80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Compressed
Text

31,908 30,832 30,816 30,832 29,648

Cave Section 1,818 1,770 1,746 1,800 1,776

Total 33,726 32,602 32,562 32,632 31,424

Table 8-5 Improvement

80960Rx 80960Hx 80960Jx 80960Cx 80960Sx

0.1% 1.0 % 0.6 % 1.0 % 0.6 %

8-26

8Getting Started with the 80960 QUICKval Kit

The primary set should contain performance-critical functions that are
not to be affected by the CAVE mechanism; the secondary set is subject
to compression. Secondary functions are compressed by the linker and
reside in memory in compressed form.
The C++ compiler behaves in essentially the same manner as the C
compiler when the mcave or Gcave options are used - generating all
functions in the compilation unit for which this option is in effect
as secondary.
A user typically designates a single function as secondary through
the use of pragma cave . The following statement for example
designates the function max as secondary.
pragma cave max

However in C++ overloaded functions have the same name. Member
functions of two different classes are also allowed to have the same
name and these member functions can in turn have the same name as a
function with file scope.
When a user specifies a function as secondary through the use of
pragma cave , the C++ compiler treats all functions with this name as
secondary. To illustrate, consider the following example:
ifdef PRAGMA
pragma cave max
endif

int max(int a, int b)
{
return a > b ? a : b;
}

float max(float a, float b)
{
return a > b ? a : b;
}

class Tclass1 {
int a, b;
public:
int max();
};

The i960 Sx CPU Example Programs8

8-27

int Tclass1::max()
{
return a > b ? a : b;
}

class Tclass2 {
float a, b;
public:
float max();
};

float Tclass2::max()
{
return a > b ? a : b;
}

Tclass1 t1;
Tclass2 t2;

The Compiler treats all the following functions as secondary.
int max(int, int);
float max(float, float);
int Tclass1::max();
float Tclass2::max();

5. Choose Qv Code. Edit cavecpp.cpp . Make sure the #pragma

cave program line is commented out:
//#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

6. Compile the C++ program. Enter:
gcc960 -A{ arch } -Felf -T{ Link-dir } -stdlibcpp -o
cavecpp cavecpp.cpp

The options in this command are:

-Felf create an ELF format output file

-A{ arch } specifies the architecture. For example, -AHD
specifies an 80960HD

-T{ Link-dir } specifies the linker directive file. For example,
-Tmcy sx specifies mcy sx .gld .

8-28

8Getting Started with the 80960 QUICKval Kit

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-o cavecpp specifies the executable file cavecpp

cavecpp.cpp input file

7. Check the text section size of the uncompressed program. Enter:
gsize960 cavecpp

The option in this command is:

cavecpp specifies the executable file

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the uncompressed text section.

8. Choose Qv Code and edit cavecpp.cpp . Make sure the #pragma
cave program line is uncommented:
#pragma
cave(initSetName,initSetDept,initSetGpa,initSetNumPu
bs,isOutstanding,printName,InitializeRecords)

9. Compile the C++ program with the pragma program line. Enter:
gcc960 -A{ arch } -Felf -T{ Link-dir } -stdlibcpp
-o cavecpp cavecpp.cpp

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcy sx specifies mcy sx .gld .

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-o cavecpp specifies the executable file ttt

cavecpp.cpp specifies the input file
10. Check the text section size of the compressed program. Enter:

gsize960 cavecpp

The option in this command is:

cavecpp executable file

The i960 Sx CPU Example Programs8

8-29

The sizer responds by displaying the sizes of the various code sections.
Write down the size of the compressed text section. In this example, you can
expect a code size reduction of approximately 1 percent. Here are some
typical results for the supported processor types:

Note that the purpose of this example is to teach you how to use the CAVE
feature with programs. Though the improvements are small, you can expect
much better results with real-world programs of approximately 100 Kbytes
and larger, especially if the software has many non-critical functions.

Debugging with gdb960

A software debugger is a useful tool that allows you to learn more about the
behavior of an application program while it is running on a target or
simulator. gdb960 is a source-level debugger that allows you to interact with
your application program running on a target system through the debug
monitor, MON960. MON960 is resident on the Cyclone CPU module.

Table 8-6 Uncom pressed Text Sections

80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Uncompressed 89,788 84,196 83,512 84,196 81,764

Table 8-7 After Function Com pression

80960Rx
Size

80960Hx
Size

80960Jx
Size

80960Cx
Size

80960Sx
Size

Compressed
Text

87,612 81,892 81,512 81,892 79,796

Cave Section 1,920 1,546 1,514 1,546 1,512

Total 89,532 83,438 83,026 83,438 81,308

Table 8-8 Im provement

80960Rx 80960Hx 80960Jx 80960Cx 80960Sx

1% 1% 1% 1% 1%

8-30

8Getting Started with the 80960 QUICKval Kit

This example uses the card game, Go Fish, and is designed to teach you a
few debugger commands so that you can further examine the example
programs provided with this kit or your own programs. In the card game,
Go Fish, you and the computer each get several cards. You take turns
guessing which cards are in each other’s hands. When you guess correctly,
you acquire that card. If you don’t guess correctly, you need to “Go Fish”
and draw another card from the pack. When you get four-of-a-kind, you
remove those cards from your hand. The objective of the game is to have the
most sets of four-of-a-kind when either you or the computer has no cards
remaining in your hands.

1. Choose Debugger.
2. Choose gdb960 Tutorial.
3. Choose Make to compile, link, and download the program

automatically.
The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

NOTE. This example uses the command line interface to gdb960. The
program also features a Graphical User Interface in both Windows and
UNIX. See The gdb960 User’s Manual for more information.

The i960 Sx CPU Example Programs8

8-31

4. Do Not Type Run! First, use the gdb960 debugger to set a breakpoint
at function main() . Type:
break main

The debugger responds by displaying:
Breakpoint 1 set at 0xa0008570: file fish.c, line 209.

5. Set a second breakpoint at line 275. Type:
break 275

The debugger responds by displaying:
Breakpoint 2 set at 0xa0008bc4: file fish.c, line 275.

6. To execute the program from the beginning, type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/fish
Breakpoint 1, main() at fish.c, 209.
209 srand();

NOTE. DEBUGGING SHORTCUTS
Abbreviations for gdb960 commands are accepted as long as they are
unambiguous.
To run, enter: r
To break, enter: br
To list, enter: l
To continue, enter: c
To print, enter: p
To clear, enter: cl
To quit, enter: qu
For help, enter: he

8-32

8Getting Started with the 80960 QUICKval Kit

7. To display the code at the breakpoint, type:
list

The debugger displays lines 204-213 of the fish.c source. To see the
next ten lines, type list again.

8. To continue executing the program from this location, type:
continue

The debugger responds by displaying:
Continue.
Would you like instructions[n]?

9. Reply by typing y for yes or <Enter> or n for no.
your hand is: A A 6 6 8 8 9
Breakpoint 2, game() at fish.c:275.
275 if(!move(yourhand,myhand,g=guess(),0))break;

10. In the source code in step 9, there are two variable arrays, myhand and
yourhand . Myhand is the computer’s hand and yourhand is yours. To
look at the card in the computer’s hand, type:
print myhand

The debugger responds by displaying:
$1=“000\000\000\001\000\002\000\001\000\000\001\002\000”

myhand[0] does not represent a card.
myhand[1] represents the number of Aces.
myhand[2] represents the number of 2s, and so on.
The same order of cards is represented in the array, yourhand .
If a King is drawn by either player, myhand[13] or yourhand[13]
will appear when you print the array.

11. Using the ability to see the computer’s hand, you are able to beat the
computer every time. Clear the first breakpoint at the function main()
and continue playing the game, looking at the computer’s hand any
time you need to. To clear the breakpoint at main() , type:
clear main

The debugger responds by displaying:
Deleted breakpoint 1

12. To continue executing the program, type:
continue

The i960 Sx CPU Example Programs8

8-33

13. If you need further assistance beating the computer, contact the 80960
Technical Support Group for more hints.

14. Type: quit

Debugging Optimized Code

CTOOLS can use the ELF object module format and DWARF Version 2
debug information format as described in the 80960 Embedded Application
Binary Interface (ABI) Specification (order number 631999). The new
formats enable more accurate mapping between source and object code at
higher optimization levels and ease production code debugging.

This example shows that at the highest level of module-local optimization, it
is possible to set a breakpoint on an inline function using ELF/DWARF,
while with COFF this is not possible.

1. Choose Debugger.
2. Choose C ELF/DWARF Format .
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Compile swap.c with no module-local optimizations (no inlining). This
shows that the procedure swap is not inlined. Enter:
gcc960 -Felf -T {Link-dir} -A {arch} -O0 -S swap.c

The options in this command are:

-Felf creates an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcysx specifies mcysx.gld .

-O0 no module-local optimizations

-S generate assembly code from the source code

swap.c input file

8-34

8Getting Started with the 80960 QUICKval Kit

5. Edit swap.s (the generated assembly file from swap.c). In the
function _main , see the call to the procedure swap:
callj _swap

This is an out-of-line call to the procedure swap. The function swap
has not been inlined.

6. Now, compile swap.c with the highest level of module-local
optimizations. This inlines the procedure swap.
gcc960 -Felf -T {Link-dir} -A {arch} -O4 -S swap.c

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcysx specifies mcysx.gld .

-O4 highest level of module-local optimizations

-S generate assembly code from the source code

swap.c input file

7. Edit swap.s (the generated assembly file from swap.c). In the
function _main , note the call to the procedure swap does not exist:
callj _swap /* Does Not Exist*/

The procedure swap has been inlined.
8. Recompile using the -O4 optimization level, the ELF/DWARF format,

and add debugging information.
gcc960 -Felf -T {Link-dir} -A {arch} -O4 -g -o swap swap.c

The options in this command are:

-Felf create an ELF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcysx specifies mcysx .gld.

-O4 highest level of module-local optimizations

-g include debug information in object file

The i960 Sx CPU Example Programs8

8-35

-o swap names the executable file swap

swap.c input file

9. Download the executable file, swap, to the Cyclone eval board
memory. Enter:

gdb960 -t mon960 -b 115200 -r com1 -D lpt1 swap

The options in this command are:

-t mon960 MON960 is on the target

-b 115200 use 155200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

swap the executable file

10. DO NOT TYPE RUN!
First, set a breakpoint on the procedure swap. Enter:
break swap

The debugger responds by displaying:
breakpoint 1 @0xa00080f0:file swap.c, line 43

breakpoint 2 @0xa0008148:file swap.c, line 54

Breakpoint 1 is the out-of-line reference to the procedure swap.
Breakpoint 2 is the inline reference to the procedure swap.

Swap.c was compiled with a high level of module-local optimizations
that included function inlining, and it is still possible to set a breakpoint
on the inline function. Breakpoint 2 stops program execution.

11. To execute the program, enter:
run

The debugger responds by displaying:
Breakpoint 2, main() @ swap.c: 54

54 printf(ìThe smallest number is %d\nî,a);

12. To continue the program, enter:
c

When the program has finished, enter:
quit

13. Compile using the -O4 optimization level, the COFF format, and add
debugging information.

gcc960 -Fcoff -T {Link-dir} -A {arch} -g -O4 -o swap swap.c

8-36

8Getting Started with the 80960 QUICKval Kit

The options in this command are:

-Fcoff create a COFF format output file

-A {arch} specifies the architecture. For example, -AHD
specifies an 80960HD

-T {Link-dir} specifies the linker directive file. For example,
-Tmcysx specifies mcysx.gld .

-O4 highest level of module-local optimizations

-g include debug information in object file

-o swap names the executable file swap

swap.c input file

14. Download the executable file, swap, to the Cyclone eval board
memory. Enter:
gdb960 -t mon960 -b 115200 -r com1 -D lpt1 swap

The options in this command are:

-t mon960 MON960 is on the target

-b 115200 use 155200 baud rate

-r com1 use serial port 1

-D lpt1 use parallel port 1

swap the executable file

15. Do Not Type Run!!
First, set a breakpoint on the procedure swap. Enter:
break swap

The debugger responds by displaying:
breakpoint 1 @0xa00080f0

Breakpoint 1 is the out-of-line reference to the procedure swap. Notice
that no inline breakpoint has been set. This breakpoint does not stop
execution of the program.
Swap.c was compiled with a high level of module-local optimizations
that included function inlining, and it is not possible to set a breakpoint
on the inline function. Program execution does not stop.

The i960 Sx CPU Example Programs8

8-37

16. To execute the program, enter:
run

The debugger responds by displaying the smallest number from the
swap. There is no break in program execution.

17. When the program has finished, enter:
quit

You have now seen that with the ELF/DWARF format, it is now
possible to debug your production code, even after high levels of
program optimization.

Debugging Optimized C++ Code Tutorial

The C++ compiler generates debug information using the DWARF format
when the -g option is specified with the -Felf option. This debug
information format is richer than that of other supported OMFs, and allows
more reliable debugging under optimization.

This tutorial demonstrates that at the highest level of module-local
optimization, debugging a C++ application is still possible due to the
DWARF debug format.

In this example, you compile a C++ program using the -O0 optimization
compiler option, which disables all optimizations, including those that may
interfere with debugging. The same C++ program is then compiled using
the highest-level of module-local optimization, -O4 .

There are several levels of program optimization available with the
CTOOLS development tool suite. Typically, low levels of optimization are
used during the debugging phase. Certain optimizations can cause
significant code changes that may make high-level debugging difficult.
Once the application is functioning properly, the application's performance
may be increased by using a higher level of optimization. The static
optimization options are:

O0 Turn optimization off

O1 Basic optimization

O2 strength-reduction, instruction scheduling for
pipelining, etc...

8-38

8Getting Started with the 80960 QUICKval Kit

O3 O2 plus fconstprop, finline-functions , etc...

O4 O3 plus fsplit-mem, fmarry-mem, fcoalesce

Level O4 is the highest level of static optimization. Please refer to the
i960 Processor Compiler User's Guide for more information on
ELF/DWARF and compiler optimizations.

In this tutorial, you compile and debug a C++ program, cppdwarf.cpp ,
that contains many of the advanced features of the C++ language, including:

• Classes
• Public, protected, and private variable accessibility
• Virtual functions
• Scope operators
• Overloaded functions
• Class inheritance

Using ELF/DWARF, both levels of optimization, -O0 and -O4 , retain the
C++ program structure so that the above features may be investigated.

1. Choose Debugger.
2. Choose C++ ELF/DWARF Format .
3. Choose Make. The following tutorial is displayed in the QUICKval

browser, and the command lines may be entered at the Command
Prompt window.

4. Compile the program using the -O0 optimization level. In the
Command Prompt window, enter the following command:
gcc960 -Felf -A{ arch } -T{ Link-dir } -stdlibcpp -O0 -g
-o cppdwarf cppdwarf.cpp

The options in this command are:

-Felf creates an ELF format output file.

-A{arch} specifies the architecture. For example, -AHD
specifies an 80960HD.

-T{Link-dir} specifies the linker directive file. For example,
-Tmcy sx specifies mcysx .gld.

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

The i960 Sx CPU Example Programs8

8-39

-O0 specifies the lowest level of module-local
optimizations.

-g includes debug information in object file.

-o cppdwarf specifies the executable file cppdwarf .

cppdwarf.cpp specifies the input file cppdwarf.cpp .

5. Run the program using the debugger, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -D
{ parallel port } -pci cppdwarf

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-t mon960 is optional since mon960 is the
default.

-b 115200 sets the baud rate for serial communication
(optional). This option, -b 115200 , is not
needed when the serial port is not being used.
Possible baud rates are 1200, 2400, 9600, 19200,
38400, 57600, and 115200.

-r com1 sets the port to use for serial communication
(optional). This option, -r com1 , is not needed
when the serial port is not being used; however,
the -pci option is required when no serial port
is used. Possible serial ports are com1, com2, ...
com99.

-D lpt1 sets the code download option for the parallel port
(optional). This option, -D lpt1 , is not needed
when the serial port or PCI bus is used for code
download. Possible parallel ports are lpt1 and
lpt2.

8-40

8Getting Started with the 80960 QUICKval Kit

-pci sets the code download option for the PCI bus
(optional). When no serial port is specified, the
PCI bus is used for serial communication also.
The -r comx option is required when the PCI
bus is not used (i.e., when the -pci option is not
used).

cppdwarf specifies the executable file cppdwarf .

6. Do Not Enter Run!
Now you are ready to examine some features of the downloaded C++
program, cppdwarf.cpp . A C++ class in the program is person .
The gdb960 command ptype may be used to display a description of
a data type, including classes.
At the (gdb960) prompt, enter:
ptype person

The following data type information concerning the class person
appears:

Example 8-1 person Class

type = class person {

 protected:

 char name[40];

 char dept[40];

 public:

 void setName ();

 void setName (char *);

 void setDept ();

 void setDept (char *);

 void printName ();

 virtual int isOutstanding ();

 virtual char * getDept ();

}

The i960 Sx CPU Example Programs8

8-41

Please note the following concerning the above output:
• The entire class information for person is displayed, including

variables and member functions.
• The public , protected , and private variable accessibility

qualifiers are displayed for variables and member functions.
• All member functions are displayed, including virtual functions

and overloaded functions.
Another C++ class in the program is professor , which inherits from
the person class. Again, you use the gdb960 command ptype to
display a description of the professor class.

7. At the (gdb960) prompt, enter:
ptype professor

The following data type information concerning the class professor
appears:

Please note the following concerning the above output:
• The entire class information for professor is displayed,

including variables and member functions.
• The public , protected , and private variable accessibility

qualifiers are displayed for variables and member functions.
• All member functions are displayed, including virtual functions

and overloaded functions.
• type = class professor : public person indicates that

the professor class inherits from the person class.

Example 8-2 professor Class

type = class professor : public person {

 private:

 int numPubs;

 public:

 void setNumPubs ();

 void setNumPubs (int);

 virtual int isOutstanding ();

}

8-42

8Getting Started with the 80960 QUICKval Kit

8. You are ready to set some breakpoints.

a. First, set a breakpoint on the overloaded function setNumPubs in
the professor class. At the (gdb960) prompt, enter:
break professor::setNumPubs

The following information concerning breakpoints is displayed:
[0] cancel

[1] all

[2] professor::setNumPubs(int) at
cppdwarf.cpp:125

[3] professor::setNumPubs(void) at
cppdwarf.cpp:118

Option 0 cancels the breakpoint operation. Option 1 sets a
breakpoint on all the professor::setNumPubs functions.
Option 2 sets a breakpoint on
professor::setNumPubs(int) on line 125 of
cppdwarf.cpp . Similarly, option 3 only sets a breakpoint on
professor::setNumPubs(void) on line 118 of
cppdwarf.cpp .

b. Set a breakpoint on all professor::setNumPubs functions. At
the > prompt, enter: 1

The following information about breakpoints is displayed:
Breakpoint 1 at 0xa00083d0: file cppdwarf.cpp,
line 125.

Breakpoint 2 at 0xa0008358: file cppdwarf.cpp,
line 118.

c. Set a breakpoint on the virtual function
professor::isOutstanding . At the (gdb960) prompt, enter:
break professor::isOutstanding

The following information concerning breakpoints is displayed:
Breakpoint 3 at 0xa0009080: file cppdwarf.cpp,
line 110.

9. You are now ready to start the program. At the (gdb960) prompt, enter:
run

Notice that the program stops at all three of the breakpoints.

10. To continue after a break, use the gdb960 command continue , or
enter the keyboard shortcut c .

The i960 Sx CPU Example Programs8

8-43

11. At the (gdb960) prompt, enter: quit

The results of the debug session were as expected because no
optimizations had been performed on the source code during
compilation. You can now recompile the cppdwarf.cpp program
using the highest-level of module-local optimization and repeat the
previous debug session.

12. Compile the program using the -O4 optimization level. In the
Command Prompt window, enter the following command:
gcc960 -Felf -A{ arch }-T{ Link-dir } -stdlibcpp -O4 -g
-o cppdwarf cppdwarf.cpp

The options in this command are:

-Felf create an ELF format output file

-A{ arch } specifies the architecture. For example, -AHD
specifies an 80960HD

-T{ Link-dir } specifies the linker directive file. For example,
-Tmcy sx specifies mcy sx .gld .

-stdlibcpp instructs the compiler to link in the standard C++
libraries when creating an absolute module.

-O4 highest level of module-local optimizations

-g include debug information in object file

-o cppdwarf specifies the executable file cppdwarf

cppdwarf.cpp input file

13. Run the program using the debugger, enter:
gdb960 -t mon960 -b { baudrate } -r { comport } -D
{ parallel port } -pci cppdwarf

The options in this command are:

-t mon960 specifies that MON960 is on the target (optional).

-t mon960 is optional since mon960 is the
default.

-b 115200 sets the baud rate for serial communication
(optional). This option, -b 115200 , is not
needed when the serial port is not being used.
Possible baud rates are: 1200, 2400, 9600, 19200,
38400, 57600, and 115200.

8-44

8Getting Started with the 80960 QUICKval Kit

-r com1 sets the port to use for serial communication
(optional). This option, -r com1 , is not needed
when the serial port is not being used; however,
the -pci option is required when no serial port
is used. Possible serial ports are: com1, com2, ...
com99.

-D lpt1 sets the code download option for the parallel port
(optional). This option, -D lpt1 , is not needed
when the serial port or PCI bus is used for code
download. Possible parallel ports are: lpt1 and
lpt2.

-pci sets the code download option for the PCI bus
(optional). When no serial port is given, the PCI
bus is used for serial communication also. The

-r comx option is required when the PCI bus is
not used (i.e., when the -pci option is not used.)

cppdwarf specifies the executable file.

14. Do Not Enter Run!
You are now ready to investigate some features of the downloaded C++
program, cppdwarf.cpp . A C++ class in the program is person .
The gdb960 command ptype may be used to display a description of
a data type, including classes. At the (gdb960) prompt, enter:
ptype person

Please note, the output matches that of Example 8-1, “person Class”.
Optimizations did not affect the person class output. It is the same
as the first debug session.

15. Another C++ class in the program is professor , which inherits from
the person class. Once again, you use the gdb960 command ptype to
display a description of the professor class. At the (gdb960)
prompt, enter:
ptype professor

Again please note, the output matches that of Example 8-2, “professor
Class”. Optimizations did not affect the professor class output. It
is the same as the first debug session.

The i960 Sx CPU Example Programs8

8-45

16. You are now ready to set some breakpoints.

a. First, set a breakpoint on the overloaded function setNumPubs
in the professor class. At the (gdb960) prompt, enter:
break professor::setNumPubs

The following information concerning breakpoints is displayed:
[0] cancel

[1] all

[2] professor::setNumPubs(int) at
cppdwarf.cpp:125

[3] professor::setNumPubs(void) at
cppdwarf.cpp:118

Option 0 cancels the breakpoint operation. Option 1 sets a
breakpoint on all the professor::setNumPubs functions.
Option 2 only sets a breakpoint on
professor::setNumPubs(int) on line 125 of
cppdwarf.cpp . Similarly, option 3 only sets a breakpoint on
professor::setNumPubs(void) on line 118 of
cppdwarf.cpp .

b. Set a breakpoint on all professor::setNumPubs functions, so
At the > prompt, enter: 1.
The following information about breakpoints is displayed:
Breakpoint 1 at 0xa00082e4: file cppdwarf.cpp,
line 125.

Breakpoint 2 at 0xa0008294: file cppdwarf.cpp,
line 118.

c. Finally, set a breakpoint on the virtual function
professor::isOutstanding . At the (gdb960) prompt, enter:
break professor::isOutstanding

The following information concerning breakpoints is displayed:
Breakpoint 3 at 0xa0008960: file cppdwarf.cpp,
line 111.

8-46

8Getting Started with the 80960 QUICKval Kit

17. You are now ready to start the program. At the (gdb960) prompt, enter:
run

Notice that the program does not stop at all three of the breakpoints. As
can be seen, the DWARF debug information format is very rich, and
allows more reliable debugging under optimization. However, even
with DWARF, there are situations where debugging behavior does not
agree with the debugging behavior of unoptimized code.

18. To continue after a break, use the gdb960 command continue , or
enter the keyboard shortcut c .

19. At the (gdb960) prompt, enter: quit

CONGRATULATIONS! You may now know how to use ELF/DWARF to
debug your optimized C++ code.

Writing Flash

This example teaches you the following:

• Writing to flash on the Cyclone base board.
• Booting off of the flash in socket U27 of the Cyclone base board, as

opposed to the flash on the CPU Module.
• Setting the Cyclone base board to 12 volts.
• Using mondb.exe as a simple utility to download and execute an

application program on the target board running MON960.
• Using mondb.exe to write flash.
• Building a new monitor for a particular i960 microprocessor family

member.
• Retargeting MON960 for other boards.

NOTE. In order to write to flash on your Cyclone base board, you need
a 12 volt power supply. Also, these instructions are used with the
CTOOLS 6.0 and MON960 3.2.3 toolsets.

The i960 Sx CPU Example Programs8

8-47

Complete this step:

1. Choose MON960.
2. Choose Writing Flash.
3. Choose Make.

The following tutorial is also displayed in the browser. Enter your
commands in the Command Prompt window provided.

4. Identify the Flash on the Cyclone base board.
A blank Flash chip ships on each Cyclone base board in socket U22. To
write MON960 to Flash, you must move the blank Flash from socket
U22 to socket U27.

5. Set the Cyclone base board voltage to 12 volts.
Locate the four-position DIP switch labeled S1. Flip S1.1 to the ON
position. This enables VPP to the Cyclone base board Flash.

6. Power up the Cyclone eval base board
Locate the four-pin connector that interfaces to a secondary power
supply labeled J6. Three of the connector pins connect to +5 VDC,
+12 VDC and ground. (On the PCI-SDK Platform, +12 VDC and +5
VDC power is supplied through the edge connector.)

7. Edit Version.c .
a. Change directories to where the version.c file resides. The

default installation directory for CTOOLS is:
c:\intel960\src\mon960\common

If you cannot find the mon960 directory, You need to install
MON960 as directed in the MON960 Debug Monitor User’s
Manual.
Version.c contains the following information:

const char mon_version_byte = nn; /* version n.n = nn */

const char base_version[] = "MON960 n.n.n";

const char build_date[] = __DATE__;

b. Change the file contents to reflect that this is your version of
MON960. For example, change
const char base_version[] = "MON960 n.n.n";

to:
const char base_version[] = "MY MON960";

c. Save Version.c .

8-48

8Getting Started with the 80960 QUICKval Kit

8. Build the new MON960 from source (optional)
By default the source for MON960 is located at:
c:\intel960\src\mon960\common

You may use the pre-built version of MON960 there, or build a custom
verion. To create a custom version:
a. Copy makefile.xxx to

c:\intel960\src\mon960\common\makefile .
where xxx is one of the following make files:
makefile.ic (ic960 interface, COFF format)
makefile.ie (ic960 interface, ELF format)
makefile.gc (gcc960 interface, COFF format)
makefile.ge (gcc960 interface, ELF format)

b. Issue the commands:
nmake -s makefile

cysx

This creates a file called cysx.fls .
9. Write the Flash

To write the Flash, use the mondb.exe utility located in the
intel960\bin\ directory. If you are going to use the pre-built
MON960 files, they are located in the intel960\roms directory. For
example, if you used the default installation directory and are using the
pre-built MON960 files for the 80960Sx, enter:
mondb -ser com1 -par lpt1 -ef -ne
c:\intel960\roms\cy sx.fls

The options in this command are:
-ser com1 use serial port 1
-par lpt1 use parallel port 1
-ne no execute
-ef erase Flash
cysx.fls input Flash filename
Note also that if you built a version of MON960 from the source code
as described previously, the cysx.fls file will be located in the
c:\intel960\src\mon960\common\ directory.

The i960 Sx CPU Example Programs8

8-49

10. Set Board Voltage Back To +5 VDC
Locate the four-position DIP switch labeled S1. Set S1.1 to the OFF
position. This disables VPP to Cyclone EP base board Flash and
protects the Flash. Note that the PCI80960DP and i960 Sx evaluation
platforms do not boot when VPP is enabled and MON960 is running
from the evaluation board Flash.

11. Set board to boot from U27 socket
Locate the four-position DIP switch labeled S1. Set S1.3 ROMSWAP
to the ON position. This exchanges the addresses of the CPU Module
ROM and the base board ROMs. When the switch is OFF the
processor boots from the CPU Module ROM; when the switch is ON
the processor boots from the base board ROMs.

12. Reset Base Board
Locate the reset pushbutton labeled S2. Use this button to manually
reset the Cyclone base board and boot from the base board ROMs.

How to Add Benchmarking Routines to Your Code

Benchmarking is a common way to evaluate an architecture for its
performance. CTOOLS comes with two routines for benchmarking code.
These routines are called bentime() and init_bentime() .
init_bentime() is called once to program the on-board Counter/Timer to
periodically interrupt the processor. The bentime() routine returns the
time in microseconds based on the count from the interrupt handler,
timer_isr , and the current count read from the timer. By placing a call to
bentime() at the start and end of the code you are timing, the elapsed
time can be calculated by the difference between the second call to
bentime() and the first.

1. Choose Benchmarking.
2. Choose Qv Code.

NOTE. If you have trouble with this example, refer to Chapter 3 for
troubleshooting tips.

8-50

8Getting Started with the 80960 QUICKval Kit

3. Scroll through the chksum.c code for comments that refer to
“Benchmarking Routine”. You can add similar lines to the code that
you want to time.

4. Choose Make to compile, link, and download the program
automatically.

5. Execute the chksum program. Type:
run

The debugger responds by displaying:
Starting program: C:\QUICKVAL/chksum
Now starting Comersum routine ...
Time for Checksum was 18.173298 seconds. Value was
869e7960.
Program exited with code 01

6. Type: quit

Other i960 Processor Choices and the Remote Evaluation Facility

The i960 RISC processor family has a wide breadth of processors to match
your design’s price and performance needs. If you wish to evaluate other
i960 processor family members, contact your local distributor and order
different Cyclone CPU modules, or visit the Remote Evaluation Facility at
http://developer.intel.com/design/i960/testcntr

If you choose to order more CPU modules, you may rest assured that all
i960 processor modules plug-n-play with your QUICKval kit. This
configuration was specifically designed to protect your investment and offer
a low cost migration path for future needs.

NOTE. The i960 Rx Processor is not available through the Remote
Evaluation Facility.

A-1

Communicating with
MON960 via Serial Port A

MON960 is an Intel debug monitor resident on the Cyclone CPU module
board. It is a full-featured monitor, providing the capability to read and
write to memory, disassemble processor instructions, set breakpoints, step
through instructions, display and modify registers, trace variables, and
download executables via the XMODEM protocol.

MON960 is used to provide the communication link between a program
executing on the target board and a host-resident debugger such as gdb960.
You can also use MON960 to download and execute programs without a
debugger via the use of the terminal emulator that is provided with
QUICKval, as in the following example.

1. Make sure you have compiled and linked the hello program, as
described in Chapters 4 through 8.

2. Open the Options menu on the QUICKval main window, choose
Terminal .

3. Open the Setup menu on the terminal window, and choose Port.
• Set the baud rate field to 9600 baud.
• Set the Data bits to 8.
• Set the Stop bits to 1.
• Set the Parity to None.
• Set the Flow Control to None.
• Set the Connector to the serial port you are using.
• Choose OK .

A-2

A Getting Started with the 80960 QUICKval Kit

4. Open the File Transfer menu and choose Protocol.
5. From the drop-down box on the Protocol window:

• Choose XModem-CRC.
• Choose OK .

6. Enter <cr> several times to invoke MON960. The monitor responds
by displaying:

MON960 User Interface: Version MON960 x.x MM/DD/YYYY

Cyclone Baseboard; for i960 xx at xx Mhz with xMB DRAM;

xx stepping number xx

Copyright Intel Corporation
=>

7. From the terminal emulation prompt, type:
download

MON960 responds by displaying:
Downloading

8. Open the File Transfer menu, and choose Upload.
9. in the Send File window, select the file hello and choose OK . If you

installed QUICKval to the default directory and compiled hello.c as
instructed in chapters 4 through 8, the file is located at c:\quickval .
Downloading the program to the Cyclone board begins once you have
selected your file. After downloading has completed, MON960
displays:
-- Download complete --
Start address is : A0008000
=>

To execute the program, type:

go

NOTE. The Cyclone board default baud rate is 9600 baud. However,
the Cyclone board supports a maximum baud rate of 115200. Your
initial diagnostic messages are not readable until after you press
<Enter> several times in the terminal window.

Communicating with MON960 via Serial PortA

A-3

MON960 responds by displaying:

Hello... Welcome to the 80960xx QUICKval Kit!

System Check Completed!!

Now you may proceed with our Example Programs.

Program Exit: 01
=>

10. Open the File menu and choose Exit to terminate this session.

NOTE. Refer to the MON960 Debug Monitor User’s Guide for more
information on performing simple debugging tasks with the MON960
debug monitor’s user interface (UI).

B-1

The Saxsoft Webster*
Browser B

The 80960 QUICKval includes an integrated web browser to display the
online help and provide you with tutorials. If you have an internet
connection, you can even use this program to browse the web. This is handy
because there are some places in the online information system that point
you to the Intel World-Wide Web Site (www.intel.com) for specification
updates, technical support, and many other resources. To use Webster to
browse the web via proxy server, open the Settings menu and set the
connection settings to the same as your existing browser (e.g., Microsoft
Internet Explorer* or Netscape Navigator*).

If you use a dialer to connect to the internet, Webster asks you if you want to
connect when you click on a remote link.

NOTE. When inputting your proxy settings to Webster, it is
recommended that you manually type the information. Do not simply cut
and paste the settings from your existing browser. The Windows
Clipboard may carry over non-printing (non-viewable) characters that
are not part of the correct text. The path may look correct, but the hidden
characters may cause Webster to fail to reach your proxy server.

	Getting Started with the 80960 QUICKval Kit
	Disclaimer
	Contents
	1 Introduction
	About this Kit
	What's New In CTOOLS
	About This Manual
	Intel Support Services
	Notation Conventions

	2 Software Installation
	System Requirements
	Installing CTOOLS
	Installing CTOOLS in Windows95/Windows NT 4.0
	Windows NT 3.51 Installation
	AUTOEXEC.BAT Change Summary

	Installing the QUICKval Example Programs
	Installing QUICKval Example Programs in Windows95/ Windows NT 4.0

	Where Do You Go From Here?

	3 Hardware Installation
	Inspecting Your Board
	Installing Your CPU module
	Setting Your Base Board Switches
	Setting Your CPU Module Switches
	Setting the CPU Module Frequency Switch
	Setting Your CPU Module Interrupt Switch
	Installing MON960 on the IQ80960Rx Platform
	Items Needed
	If You Are Using an IQ80960RP (5V) Evaluation Board
	If You Are Using an IQ80960RD/RPLV (3.3V) Evaluation Board

	Connecting the Evaluation Base Board to the Host
	PCI80960DP
	Connecting the Serial Communications Cable (Optional)
	Connecting the Parallel Communications Cables (Optional)

	IQ80960Rx
	Connecting the Serial Communications Cable (Optional)

	EP80960BB

	Where Do You Go From Here?
	Troubleshooting the PCI-SDK and IQ-SDK Platforms
	Verifying the PCI-SDK and IQ-SDK Platforms

	4 The i960 Rx CPU Example Programs
	System Validation
	Hello World
	Memory Test

	If Something Goes Wrong
	MON960 Debug Monitor is Not Responding...
	Invoking the gcc960 Compiler Resulted in Errors...
	Invoking the gld960 Linker Resulted in Errors...
	Invoking the gdb960 Debugger Resulted in Errors...

	Data Cache Tutorial
	Instruction Cache Tutorial
	DMA Example
	How Does This Program Work?
	Positive Address Decoding
	Writing the Destination
	What Does This Example Do?
	DMA Tutorial
	Messaging Unit Example
	Example Description
	Address Translation
	Example Structure
	Rp_code.c

	Messaging Unit Tutorial
	Host Program DOS Window

	i960 Rx Processor Program Command Prompt Window
	Program Termination

	Static, Global, and Profile-Driven Optimizations
	C No Optimization
	C Static Optimization
	C++ No Optimization
	C++ Static Optimization
	C Global Optimization
	C++ Global Optimization

	Instrumentation, Profile Creation, Decision-making, and Profile-Driven Re-Compilation
	C++ Virtual Function Optimizations
	Building Self-contained Profiles with gmpf960
	Compression Assisted Virtual Execution (CAVE)
	C Example

	C++ Compression Assisted Virtual Execution (CAVE)
	XLATE960 Tutorial
	Looking at the xlt.s File
	Using xlate960
	Running the New Rx-compatible Source Code

	Assembler Pseudo-instruction Tutorial
	What Are Pseudo-instructions?
	pseudop.c: Editing the File for the Cx Microprocessor

	Running pseudop.c For the Cx Microprocessor
	pseudop.c: Migrating the File to the Jx/Hx/Rx Microprocessor
	Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors
	pseudop.c: Adding Pseudo-Ops to the Program
	Running pseudop.c with Pseudo-instruction
	Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors

	Debugging with gdb960
	Debugging Optimized Code
	Debugging Optimized C++ Code Tutorial
	Writing Flash on the IQ80960RP Evaluation Board
	Writing Flash on the IQ80960RD Evaluation Board
	Rx Initialization Example
	Module: INIT.S
	Module: MAIN.C
	MODULE: CYRP_HW.C
	MODULE: MONITOR.C

	Other i960 Processor Choices and the Remote Evaluation Facility

	5 The i960 Hx CPU Example Programs
	System Validation
	Hello World
	Memory Test

	If Something Goes Wrong
	MON960 Debug Monitor is Not Responding...
	Invoking the gcc960 Compiler Resulted in Errors...
	Invoking the gld960 Linker Resulted in Errors...
	Invoking the gdb960 Debugger Resulted in Errors...

	Data Cache Tutorial
	Instruction Cache Tutorial
	Register Cache
	External Interrupts Tutorial
	Internal Interrupts Tutorial
	Fault Handling
	Static, Global, and Profile-Driven Optimizations
	C No Optimization
	C Static Optimization
	C++ No Optimization
	C++ Static Optimization
	C Global Optimization
	C++ Global Optimization

	Instrumentation, Profile Creation, Decision-making, and Profile-Driven Re-Compilation
	C++ Virtual Function Optimizations
	Building Self-contained Profiles with gmpf960
	Profiling a Program in Pieces
	Compression Assisted Virtual Execution (CAVE)
	C Example

	C++ Compression Assisted Virtual Execution (CAVE)
	Linker Consumption
	Assembler Pseudo-instruction Tutorial
	What Are Pseudo-instructions?
	pseudop.c: Editing the File for the Cx Microprocessor

	Running pseudop.c for the Cx Microprocessor
	pseudop.c: Migrating the File to the Jx/Hx/Rx Microprocessor
	Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors
	pseudop.c: Adding Pseudo-Ops to the Program
	Running pseudop.c with Pseudo-instruction
	Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors

	Debugging with gdb960
	Debugging Optimized Code
	Debugging Optimized C++ Code Tutorial
	Writing Flash
	How to Add Benchmarking Routines to Your Code
	Other i960 Processor Choices and the Remote Evaluation Facility

	6 The i960 Jx CPU Example Programs
	System Validation
	Hello World
	Memory Test

	If Something Goes Wrong
	MON960 Debug Monitor is Not Responding...
	Invoking the gcc960 Compiler Resulted in Errors...
	Invoking the gld960 Linker Resulted in Errors...
	Invoking the gdb960 debugger resulted in errors...

	Data Cache Tutorial
	Instruction Cache Tutorial
	Register Cache
	External Interrupts Tutorial
	Internal Interrupts Tutorial
	Halt Mode
	Fault Handling
	Static, Global, and Profile-Driven Optimizations
	C No Optimization
	C Static Optimization
	C++ No Optimization
	C++ Static Optimization
	C Global Optimization
	C++ Global Optimization

	Instrumentation, Profile Creation, Decision-making, and Profile-Driven Re-Compilation
	C++ Virtual Function Optimizations
	Building Self-contained Profiles with gmpf960
	Profiling a Program in Pieces
	Compression Assisted Virtual Execution (CAVE)
	C Example

	C++ Compression Assisted Virtual Execution (CAVE)
	Linker Consumption
	XLATE960 Tutorial
	Looking at the xlt.s File
	Using xlate960
	Running the New Rx-compatible Source Code

	Assembler Pseudo-instruction Tutorial
	What Are Pseudo-instructions?
	pseudop.c: Editing the File for the Cx Microprocessor

	Running pseudop.c for the Cx Microprocessor
	pseudop.c: Migrating the File to the Jx/Hx/Rx Microprocessor
	Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors
	pseudop.c: Adding Pseudo-Ops to the Program
	Running pseudop.c with Pseudo-instruction
	Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors

	Debugging with gdb960
	Debugging Optimized Code
	Debugging Optimized C++ Code Tutorial
	Writing Flash
	How to Add Benchmarking Routines to Your Code
	Other i960 Processor Choices and the Remote Evaluation Facility

	7 The i960 Cx CPU Example Programs
	System Validation
	Hello World
	Memory Test

	If Something Goes Wrong
	MON960 Debug Monitor is Not Responding...
	Invoking the gcc960 Compiler Resulted in Errors...
	Invoking the gld960 Linker Resulted in Errors...
	Invoking the gdb960 Debugger Resulted in Errors...

	Data Cache Tutorial (80960CF Only)
	Instruction Cache Tutorial (80960CF Only)
	External Interrupts Tutorial
	Fault Handling
	DMA Tutorial
	Static, Global, and Profile-Driven Optimizations
	C No Optimization
	C Static Optimization
	C++ No Optimization
	C++ Static Optimization
	C Global Optimization
	C++ Global Optimization

	Instrumentation, Profile Creation, Decision-making, and Profile-Driven Re-Compilation
	C++ Virtual Function Optimizations
	Building Self-contained Profiles with gmpf960
	Profiling A Program In Pieces
	Compression Assisted Virtual Execution (CAVE)
	C Example

	C++ Compression Assisted Virtual Execution (CAVE)
	Linker Consumption
	Assembler Pseudo-instruction Tutorial
	What are Pseudo-instructions?
	pseudop.c: Editing the File for the Cx Microprocessor

	Running pseudop.c for the Cx Microprocessor
	pseudop.c: Migrating the File to the Jx/Hx/Rx Microprocessor
	Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors
	pseudop.c: Adding Pseudo-Ops to the Program
	Running pseudop.c with Pseudo-instruction
	Running pseudop.c for the i960 Jx/Hx/Rx Microprocessors

	Debugging with gdb960
	Debugging Optimized Code
	Debugging Optimized C++ Code Tutorial
	Writing Flash
	How to Add Benchmarking Routines to Your Code
	Other i960 Processor Choices and the Remote Evaluation Facility

	8 The i960 Sx CPU Example Programs
	System Validation
	Hello World
	Memory Test

	If Something Goes Wrong
	MON960 Debug Monitor is Not Responding...
	Invoking the gcc960 Compiler Resulted in Errors...
	Invoking the gld960 Linker Resulted in Errors...
	Invoking the gdb960 Debugger Resulted in Errors...

	External Interrupts Tutorial
	Static, Global, and Profile-Driven Optimizations
	C No Optimization
	C Static Optimization
	C++ No Optimization
	C++ Static Optimization
	C Global Optimization
	C++ Global Optimization

	Instrumentation, Profile Creation, Decision-making, and Profile-Driven Re-Compilation
	C++ Virtual Function Optimizations
	Building Self-contained Profiles with gmpf960
	Compression Assisted Virtual Execution (CAVE)
	C Example

	C++ Compression Assisted Virtual Execution (CAVE)
	Debugging with gdb960
	Debugging Optimized Code
	Debugging Optimized C++ Code Tutorial
	Writing Flash
	How to Add Benchmarking Routines to Your Code
	Other i960 Processor Choices and the Remote Evaluation Facility

	A Communicating with MON960 via Serial Port
	B The Saxsoft Webster Browser

