1960° Processor Compiler

User's Manual

Order Number: 651230-004

Revision
001
002
003
004

Revision History
Initial Release

Revised for release 5.1
Revised for release 6.0

Revised for release 6.5

Date

02/96
01/97
12/97
12/98

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Literature Distribution Center
Intel Corporation

PO Box 5937

Denver, CO 80217-9808

Or you can call the following toll-free number:
1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel sales
office.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rightsis granted by this document. Except as provided in Intel’s Terms and Condi-
tionsof Salefor such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty,
relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose,
merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intend-
ed for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product
descriptions at any time, without notice. Contact your local sales office to obtain the latest specifications before placing
your order.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclo-
sure is subject to restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to the gov-
ernment, in accordance with the software license agreement as defined in FAR 52.227-7013.

Copyright o 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this per-
mission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this
one.

Permission isgranted to copy and distribute translations of thismanual into another language, under the above conditions
for modified versions.

*QOther brands and names are the property of their respective owners.

Copyright © 1997, 1998. Intel Corporation, All Rights Reserved.

Contents

Chapter 1 The CTOOLS Compilation System

NEW FEATUIESceeeieee e 1-1
Features of the Compilation System...........cccccceevviiiinnnnn. 1-1
Compatibility and Conformance to Standards....................... 1-2
About this Manualccooooiii i, 1-4
Audience DeSCHIPLIONcooi i 1-6
Licensing and CopyrightsS.........coooiiiiiiiiiiiiiniiiieece e 1-6
UNIX and Windows Conventions..........cccccceeeeeeeeeeeeeevnnnnne. 1-6
CUSTOMET SEIVICE ...t 1-6
Where Do You GO From HEre?ccoeeeveveieeieiiieeeeeiee e 1-7

Chapter 2 gcc960 Compiler Driver

Controlling the Compilation System with gcc960 2-1
Invoking the Compiler with gcc960ccevvvveviiiiiinee. 2-2
gcc960 Sample Command LineS.......ccoooveeeeeeeieieiieeneee, 2-4

Preprocessing a Source Fileuvveveiiiiviiiiinneennenne. 2-4
Generating a Preprocessed Source File 2-4
Generating Assembly Codeccevvviieiiiiiiiiiiiieeeee 2-5
Generating an Object Module with Debug
INFOrMAtioN ... 2-5
Generating an Executable..............cccccoeoiiiiiiiiiins 2-5
gcC960 Linker OPLtioNScceeuviiiiiiiee e 2-6
gcc960 and Predefined Macroscccoovveeveeeieeiieceeen, 2-7

i960® Processor Compiler User’s Manual

gcc960 and Environment Variablesoooevvveviiviiiviiiniennnen.. 2-9
gcC960 and File USE.......ccccuumiiiiiiiiiiiiiiieiieeiieeeieeeeeeee e 2-11
INPUL FILES .. 2-11
INCIUE FIlES ... 2-11
OULPUL FIlES... oo 2-12
I FIIES o 2-14
OCCO60 OPLIONS ...ttt 2-16
Option Arguments and SYNtax..............eeveeeeeeereeeeeeeneeneeeenenn. 2-17

Chapter 3 ic960 Compiler Driver

Controlling the Compilation System with ic960...................... 3-1
Invoking the Compiler with iC960ccooviiiiiiiiiieeinnnns 3-2
ic960 Sample Command LiNeScccceevviviiiiiiiiiiiieeenee 3-3

Preprocessing a Source Fileccccooiiiiiiiiieniinenn. 3-3
Generating a Preprocessed C++ Source File 3-3
Generating Assembly Codecccvvviviieiiniiiiiiiieeen 3-4
Generating an Object Module with Debug
INFOrMAtION 3-4
Generating an Executable.............ccooveiieiiiniii, 3-4
IC960 Linker OPLIONSuvviiiiiiiiiiiieee e 3-5
ic960 and Predefined Macroscccceeeveeiniiiiiieieee e 3-6
ic960 and Environment Variablescccccoeeei i, 3-8

iIC960 and File USEcovveviiiiiiiiieieeeeeee e, 3-11
INPUL FIIES .. 3-11
INCIUdE FIlES ... 3-11
Temporary Files ... 3-12
OULPUL FIlES. ..o 3-12

ICO60 OPLIONS ... e e 3-15

Option Arguments and SYNtax..............ueeeeeeeeereeeeeeeeeeeeeeenenn. 3-16

Chapter 4 Program-Wide Analysis and Optimization
INEFOAUCTION ... 4-1

Contents

Individual and Program-wide Optimizations..................... 4-1
ADOUL Profilingceeeeioiiiieiiee e 4-2
Creating Program-wide and Module-local Optimizations...... 4-2
Specifying the Program Database Directory 4-2
Compiling for Program-wide Optimization with
the fdb OPtON.......uiieiiiiii e 4-3
Global Decision Making and Optimization Using the gcdm
OPLION. . 4-3
Selecting Modules for Optimization with Substitution
SPECITICALIONS ..ot 4-4
Profiling Your Programceeviiiiiiiiiiieee e 4-5
Compiling for Profile Instrumentation with -fprof............... 4-5
Collecting @ Profile ... 4-5
Building Self-contained Profiles with gmpf960 4-6
Using Profiles During Global Decision Making
and Optimization with -gcdm,iprof............cccccceeeiiiiinnne. 4-7
Obtaining Program Coverage Analysis with gcov960 4-7
Using make To Perform Program-wide Optimizations 4-7
Adapting Makefiles for Program-wide Optimization.......... 4-8
Specifying the PDB in the Makefile..............c.cccoonne. 4-8

Replacing Optimization Options with fdb and gcdm 4-8
Using Linker Invocations with gcdm for Automatic

Management of Object Files at Link Time.................. 4-9
Using Makefiles with Program-wide Optimizations
for Common Development TasksS.........ccccovvviiiiinennnn.n. 4-10

Building an Optimized Program without Profiling....... 4-10
Building for Debugging without Program-wide

OPtiMIZAtiONS....ccccee e 4-10
Building an Instrumented Programccccccuvveveeeen. 4-11
Linking Using an +fprof Substitution 4-12
Compiling Using the fprof Option...........ccceevieeeiinnee 4-12
Building an Optimized Program with Profiling............ 4-13
Profiling a Program in PieCescccccvveeeniiiiinnnenn. 4-13

i960® Processor Compiler User’s Manual

vi

Chapter 5

Runtime Support for Profile Collection for the IxXWorks*

ENVIFONMENT ..ot 4-14
Runtime Support for Profile Collection..............ccccoeveiiieinnnn. 4-15
Profile Initializationcoevveeeee e, 4-15

Profile Data Merging and Data Format (gmpf960)

Merging Profile Data...........c..eeeieeiiiiiiiiiiiee e 5-1
gMPFIBO INVOCALION ..o 5-2
DISCUSSION ...ttt et 5-3
EXaMPIE e 5-3
Profile Format Specification..............ccccvvveiiiniiiiiiiieeee s 5-3
Profile Data StrUCTUIESooviiiiiiiiiiiieccee e 5-4
default.pf File FOrmat ..o 5-4
EXaMPIE o 5-5
Creating a Runtime Report with gmpf960............ccccceeevreinnns 5-5
USIiNG gMPFO60 ..o 5-6
USING GCOVIB0 ...ttt 5-7

Chapter 6 gcdm Decision Maker Option

gCAM OPLION SYNTAX ...uvvvviiiiieiiiiie e 6-1
gcdm OptioN ArQUMENTSeuiiiieeiee et ee e 6-2
Substitution CONtrolS..........evviiiiiiiiiiiee e 6-2
Substitution Specificationscccvveeeeeeeniiiiiiieeeeee. 6-3
Whole-program Optimization Option (Category 1)............ 6-3
Module-local Optimization Options (Category 2) 6-3
Miscellaneous Substitution Options (Category 3).............. 6-5
Substitution SUPPreSSIONcoovvciiiiieiieeeiiiiieeeeeeenn 6-6
External Reference Controls............cccceeeviiiiiiiiiiiie e 6-6
Inline Level CoNtrol ... 6-7
Input Profile Controlooeviiiiiiii e 6-7
Fast Memory CONtrolS...........coooiiiiiiiiiieeiiniiieieccee e 6-7
Dryrun CONLrOl........oooiiiiiieie e 6-8

Contents

RepOrt CONLrolSooeeeeiiiiiiiiii e 6-8
AeC=Tile oo 6-8
AIYTUN .o 6-8
FSUMMAIY ... e an e 6-8
[0 [=To1 RSy o] o TP 6-9
reall-graph..... .o 6-9
FTEVEBISE ... ittt ettt e e e e e e e e e e e nea s 6-11
o (o 1S TU = PP 6-11
TPIOFIE e 6-11
IVariablesoovviiiiiiiiiiie e 6-11

Module-set SPecificationcccceviiiiiiiiiiieeeiieie e 6-12

Chapter 7 C Language Implementation

Data Representationcocueeeiieiiiiiiiiiiieeee e 7-1
SCAIAIS ..o 7-1
AJOIrEOALES ...ttt 7-5

Structure AlIGNMENToooiiiiiiiiiee e 7-6
Bit Field AlIgnment...........covvvviiiiiniieee e 7-11
EXaMPIES .o 7-12
Other Type KeYWOrdSccueeeiiiiiiiiiiieeiee et 7-15

Calling CONVENLIONSoeiiiiiiiiiiiiiee e 7-15
DEfiNItIONS ..o 7-16
Parameter Assignment to Registers.........ccccoovvvvveeeeeennn. 7-18
Argument BIOCKSuuiiiiiiiiiiiieie e 7-18
RetUrn Valuescooiiiiiiiiiiiiiie e 7-19
Compiler Implementationccccceeriiiiiiiiieieee e 7-19

Object Module Section USe............oeveviiiiiiiiiiiiiiiiee i 7-20

Pragmas ..o 7-21
#pragma align [for gcc960 driver].......cccooviiiiiieeeeeennnnenns 7-21
#pragma align [for ic960, or for gcc960 with ic960

(o] o] (To] o | IS PP PO PUPPPPPPPTRN 7-23
Defaultooooie 7-23

vii

i960® Processor Compiler User’s Manual

viii

DISCUSSIONeeiiieee ettt 7-23
EXaMPIES .. 7-24
HPFAGIMA CAVE ...oeevririieeee et eee e e e e e eeenennas 7-27
Default..........ooviiiiiei e 7-27
OVEIVIEW ..ttt 7-27
Selecting Functions for Compression...............cccee..... 7-28
LINKING o 7-28
Runtime DecompreSSioNnocuuvveeeeeiniiiiiieeeee e 7-29
Special Code Generation for Secondary
FUNCHIONS ... 7-30
Debugging CAVE FUNCHIONS.........ccooeeiiiiiiiiiiieeeeee 7-30
HPragma COMPIESS ...uoieieeieieieririaee e eeeee e e e e e e eeenennas 7-31
Default.........c.ooeeeiieeee e 7-31
DISCUSSION ...t eeiti et 7-31
#pragma i960_align [for gcc960 and ic960] 7-32
DISCUSSIONeiiiieeeeiiiiie et 7-32
HPragma inline ... 7-32
Default..........ooeiiiieee e 7-33
DISCUSSION ...ttt 7-33
HPragma iNterruPL.........eeeveeeeeiiiiiieei e 7-33
Default.........c.ooeeeiieee e 7-33
DISCUSSIONceiiiieeeeiiiiie et 7-33
HPragmMa ST ... 7-35
#pragma longcall..........ccoeeiiiiiiiiiii 7-35
Default.........c.oveiiiieee e 7-35
DISCUSSIONcviiiieeeeiiiiie et 7-35
#pragma OPLiMIZEeeeveiiiiiiiiii e 7-36
HPragma PackKcceveeeiiiiiiii e 7-37
Using #pragma pack with gcc960’s #pragma
AlIGN < 7-37
HPFAgMA PUIE....ceieeiiiie e e 7-39
Default..........ooeiiiiii e 7-39

Contents

DISCUSSION ...t 7-39
HPragma SECHONccocuviiiiiiiiiiie et 7-40
DISCUSSION ...t 7-40
HPragma SYSEEIMccoiiiiiiii e 7-40
DISCUSSION ... 7-40
Language EXENSIONS.occuuiiiiiiiiee e 7-41
Statements and Declarations Inside of Expressions...... 7-42
Naming an EXpression’s TYPeccoccvvveeeeeeeiiiiiiiinieeeennnn 7-42
Referring to a Type with typeof..........ccccveeeiiiiiiiiinneeen. 7-43
Generalized Lvalues...........ccoooiiiiiiiiiiiiiiiccee e 7-44
Conditional Expressions with Omitted Middle
OPEIaANGSoviiiieieeeeee e 7-46
Arrays of Length Zero........cccccoeeiiiiiiiiiie 7-46
Non-lvalue Arrays Can Have Subscripts............cccceeeenn. 7-47
Arithmetic on Pointers to void and Pointers to
FUNCHIONS. ..o 7-47
Non-constant INItialiZers ... 7-48
COoNStruCtor EXPreSSIONSccovcuvviriiieeieeieieiiie e e 7-48
Declaring Attributes of FUNCHIONSccccoeeviiiiiiiieeeeen. 7-49
Inquiring about Alignment..........ccooiiiiiiiiieinnieeee e 7-50
Inline Functions Are as Fast as Macroscccc....... 7-50
Controlling Names Used in Assembly Code................... 7-52
Specifying Registers for Local Variables 7-53
Alternate KeYWOrdsc.oueeeiieiiiiiiiiiiieeeeeeiieeee e 7-53
Inline Assembly Languageccccoveiiiiiiieiieeeiiiiiiieeee e 7-54
INEFOAUCTION ... 7-54
RESOUICE USAQE......ovviiiiiieeeeeeeeeee e 7-54
ASM StAtEMENTSeoiiiiiiiie e 7-55
Syntax EXamples ... 7-55
Example 1: sf1 (SIMmpIe).......oevveeeeniiiiiiiiieeieiieiiee 7-56
Example 2: sf1 (Complex)cvvvvreeiiniiiiiiieeeeeees 7-56
Example 3: emul ... 7-56

i960® Processor Compiler User’s Manual

Example 4: SYNMOVQooveieiriiiiiiiieceie e 7-56
Example 5: attaddcccooiiiiiiiiiiieeee 7-56
Example 6: modpceccoociiiiiiiiii e, 7-56
asm Statement SYNtaxccoevevevvriiinieneeeeeeeeinn 7-56
asm Syntax EXplanations...........ccoccuvveeeieiiniiiiiinnneen. 7-57
AaSM KEYWOITvviiiiiiiiiiiie et 7-57
VOIALIIE ... 7-57
asM-tEMPIALEooeiiiiiiiii e 7-57
Substitution-direCtivecccceeeeeeiiiiiiieee e 7-58
ASM-INLEITACEuvviiiiiiie i 7-58
(COION) s 7-58
OUE-TIST. e 7-58
IN=LIST e 7-59
ClODDEI-IISt .. 7-59
OULPUL-SPEC ...coeviiiiiiie e 7-59
INPUE-SPEC ...ttt 7-59
ClODDEI-SPEC ... i 7-60
C language ODJECEc.evveiiiiiiie e 7-60
C language eXpreSSiONcoovveiriieeeeeennaiiiieeneeens 7-60
CONSEIAINT.....o it 7-60
Detailed EXamMPIESooeiviiiiiiiiiiiceee e 7-63
Example 1: sf1.c (SIMpIe) ..coooiiiiiiiiiiiiiiieeeeeee 7-63
Example 2: sf1.c (COmMPplex)cccvveveeiiiiiiiiiiieeeeeeeee 7-64
Example 3: emMul.C....c.eeviiiiiii e 7-65
Example 4: SYNMOVQ.C ..oovvveiniiiiiiiiiiiiiee e 7-67
Example 5: atadd.Cccooveeiiiiiiiiiiiiiieieeeeeee 7-69
Example 6: MOAPC.C....uvririiiiiiiiiiiiiieciie e 7-71
ASM FUNCHONS......euiiiiiiiii e 7-72
asm Function Definition Syntax...........ccccceveeeriininnnnn. 7-73
Template Selection ... 7-75
Selection Criteria and COErCion..........ccceeeeerieiivvieenennn. 7-75
Parameter ClasSeS........uuviiiiiiiiiiiiieieie e 7-78

Contents

Argument Categories.......cccceeeeevnivviernneen.
Template EXpansioncccccceuvvvvieenneen.
Preserving Register and Memory Values
Examples and Hints............cccceeeiiiinnn

Chapter 8 C++ Language Implementation

Data Representationc.ccccuvveeeeiiniiiiinnnnenn.
Calling Conventionsccoooviieeeeeeeenniiiieeeeee
Pragmas..........coooivimiiiiiii e

Specifying a Tag-Name with align, noalign,
0ri960_align......cccccuuvvvmeiiiiiiiiiieiiieeieeeeeeeeee
Specifying a Function Name with a Pragma
Link Time Considerations...........cccccevvevveevveenneen.
Calling C Functions from C++ccevveeeee.
Calling C++ Functions from C
asm Statements and asm Functions.............
Unimplemented C++ Language Features.........
Exception Handlingcccoevveeiiniiiiiinnnnn.
Run Time Type Information(RTTI)................
NaMESPACEScevvvviriieeieeieieee e
Debugging Information for Templates

Chapter 9 GCC960/ic960 Compatibility
char and short Parameters...........ccccccceeeene
enum Variable Byte Count............ccccceeeeeene
Char TYPES ..
Identifying Architecturesccccccoovvvviennneen.
#pragma align........ccoeeiiiiiiiiiiieee e
mic3.0-compat OPtioNcccovvviiiiiieeeeeennne
mic2.0-compat OPtioNcccovvviiviiieeeeneenne

Chapter 10 Position Independence and Reentrancy

Xi

i960® Processor Compiler User’s Manual

Position-independent Code and Data................ccceeveeeeeennnn. 10-1
Position-independent Data............cocoeeieeiieenicinceieeceeennne 10-1
Position-independent Code...........ccccvvveeiiiiiiiiiiiiiieeeeees 10-2
Guidelines for Writing Relocatable Programs................. 10-5

Reentrant FUNCLIONSccuviiiiiiiiiiiiiee e 10-6
Designing Reentrant FUNCLIONS............ccccoeeiiiiiiiiiiiienns 10-6

Chapter 11 Initializing the Execution Environment

SEAMUP COUE.....eeiieiiiiiie e 11-1
RAM-based Initializationcccovvveiiiiiiiiiiiieeieees 11-3
ROM-based Initialization..............cccovveiiiiiiiiiiiiiieeeeees 11-4

Linker Configuration FilesS ... 11-5
RAM-based Configuration File.............cccccoviiiiiiiiiinennnns 11-5
ROM-based Configuration Fileccccccooviiiiiiiiiinnnnnns 11-6

Chapter 12 Optimization

Optimization Categories and Mechanisms.............cccccueee..... 12-1
Common Sub-expression Elimination...............cccccceeees 12-3
Constant Expression Evaluation (Constant Folding) 12-4
Dead-Code Elimination ..o 12-4
Identity CollapSing.......cccuvviiiiieeiiiiiiie e 12-5
Constant Propagationccooeeeiiieeeeeeeennniiiiieieee e 12-6

Calls, Jumps, and Branches.........ccccccvvvveiiieiiiieeeee, 12-8
Branch OptimizationS ... 12-8
Branch Prediction...........ccccccviiii 12-9
Identification of Leaf FUNCLIONScoooiiiiiiiiiineiins 12-10
Inline Function EXPansioncccuvvvieeeenniiiiiiiieeeenee 12-10
Tail-call Eliminationceeverieeiimiieeeieeiieeieeiieeeeeene. 12-11

LOOP OPLIMIZALIONS ..o 12-13
Movement of Loop-invariant Code.............ccocvvvvvvneenn. 12-13
Induction Variable Elimination...........ccccccooviviiiiinneeinnnnns 12-13

Xii

Contents

LOOP UNIollingcovveeiiiiiiiiiieiee e 12-14
Memory OptiMIZatiONSuevvieiiiiieiie e 12-14
Global Alias ANalySiS.........ccovuiiiiiiiiiiie e 12-14
Variable Shadowing...........ccccoiiiiiiiiiiiieiiieeeeeee 12-14
REQISIEN USE ... 12-15
Local Variable Promotion...........ccccceeoiiiiiiiiieeiineeeeee, 12-15
Register Managementccuvvveeeeiiiiiiiiiiieeeee e 12-15
Register SPillingccoooviiiiiiiiie e 12-16
Instruction Selection and SequencCing.........ccccccoevvvvveeeeeen. 12-16
Code COMPIESSIONuiiiiiiiiiiiiiiee e 12-16
Code Schedulingcooviiiiiiiiii e 12-16
Specialized-instruction Selection..............ccccvvvveevveenenn. 12-17
Program-level Optimizationccoovvvieeieeeenniiiiieeieeenn 12-18
Inter-module Function INliningceevvvieniiiiiinnnen. 12-18
Superblock FOrmationc.ooccvieiiieiiiiiiiiiieeeee e 12-18
Profile-based Branch-prediction Bit Setting.................. 12-20
Optimizing Virtual Function Dispatchcccccccooviiiinne. 12-20

Chapter 13 Caveats

Aliasing ASSUMPLIONSceviiiiiieiiiiiiiie e 13-1
Alignment ASSUMPLIONS.........ocuiieiiiiiiieiiieee e 13-3
Volatile ODJECES ...vviiiiieiiiiiiiie e 13-4
Known Problems Using the Compilercccccooiiiiiiineeeennn. 13-6
TYPE PrOMOLION ...ociiiiiiiiiiiic et 13-6
Prototype SCOPEccoviiiiiiiieieeieiee e 13-6
longjmp and Volatile Data..........ccccceeviiiiiiriiiiiiieeeiiee 13-7
Incorrect debug information generated for arrays with
unspecified bounds. ..o 13-7
C Version Incompatibilitiesccceeiiiiiiiiiiiec i 13-7
String Constants Read-onlycccovviiiiiiiiiiniiiiiiine, 13-7
No Macro Argument Substitution in Strings 13-8
External Variables and Functions in Blocks.................... 13-8

xiii

i960® Processor Compiler User’s Manual

Xiv

Combining long with typedef Names ... 13-8
Using typedef Names in Function Parameters 13-8
Whitespace in Compound Assignment Operators........... 13-9
Flagging Unterminated Character Constants.................. 13-9
Disguised varargs or stdarg Routines.............ccccccceeeenns 13-9
TroubleShoOtiNGcooi i 13-9
Undefined ReferenCesooiiiiiiiiiiiiiiiiiiiiiiecieee e 13-9
C Interrupt Service Routine Failures............................. 13-10
Preventing Structure Paddingccccceeeviiiiiiiinneeennnins 13-11
Breakpoints Inside Interrupt Handlers.............ccccccoo. 13-14

Chapter 14 Messages

Glossary

Index

Figures

Messages on the Standard Error Device.............cccceeeunnee. 14-3
Messages in the Listing File ... 14-4
Natural AlIGNMENT ... 7-9
User-constrained AlIgNmentccccceveiniiiiiieceee e 7-10
Optimal Natural Alignment of std_structcccccceevvvveveennen. 7-13
Backward-compatible Natural Alignment of std_struct 7-14
#pragma noalign Alignment of std_structccccoecneee. 7-14
#pragma align Alignment of std_structcccccooviiiinnnnennn. 7-15
Memory for Hypothetical Position-independent

APPHCALION ..o 10-4
Superblock Formation ProCessccccceveeeeiiiiiiiieeiieeeenniis 12-19

Contents

Tables

Examples

Compiler LIMIS ...ooooiiiiieiiiecee e 1-3
Chapter DeSCIPLIONSoceiiiiiiiiiiiiee e 1-4
Linker Options Accepted by gcc960coooviiiiiiiiieeeeeennnns 2-7
gcc960 Interface Environment Variablesccccoeeeinnnns 2-10
Intermediate Inputs and OULPULScevvveeeriiiiiiiiiiiieeeeee 2-13
gCC960 OPLION SUMMAIY ...evviiieiiiiiiiieiie e 2-18
Mcore Supported ArchiteCturesccceveeeeriiiiiiiiieiieeeeee 2-46
Linker Options Accepted by iC960cccceeriiiiiiiiiiieieeeenns 3-5
Intermediate Inputs and OULPULSceveveeeriiiiiiiiiiiiieeeene 3-13
IC960 OPLIoN SUMMAIY ...oevviiiiiiiiiiie e 3-17
Gceore Supported ArchiteCturescccvveevvevveevieeeieeneeeene 3-37
Stop-after Option Phases and Outputcccccvvvvvveeveeeneene. 3-57
gcdm OptioN ArQUMENTSoeiiieeiiiiiiiieie e e 6-1
Scalar Data TYPEcuvieeiiiiiiieeiee e 7-2
Example Offset Valuesccccvveiiiiiiiiiiiiiee e 7-38
Return Value Class Matchingccccvvviviiiiiiiiiiieiiee e 7-77
Argument Category to Parameter Class Matching

=g o [@011 g ox o o 7-77
C Data Types and asm CIlasSesccccccevvivviiriieeeenniiiinnnn 7-80
Architecture Macros and Compatibilityccccceeeriiiiiinnnn. 9-2
Constants and Expression Evaluationccccccvvvevvenneeee. 12-2
Effects of Constant Expression Evaluation 12-4
Identity Collapsing EXamplescccovviiiiiiiiiiiiiiiiiieeeene 12-5
Sample .gld File ... 2-15
G @0 To [TP 5-6
gmpf -rprofile Sample Outputccceeeiiiiiiiiii e 5-7
gcovI60 Sample OULPULcceevviiiiiiiiie e 5-8

XV

i960® Processor Compiler User’s Manual

XVi

SFL.C (SIMPIE) e 7-63
SFL.C (COMPIEX) oo 7-64
EIMULC e 7-65
SYNMOVO.C ..ottt e 7-67
ALAAD.C o 7-69
MOUPC.C ittt e e e e e e e e e e e 7-71
Position-independent ROM Codeccoovvvviiiieeeinnnniinnnn. 10-3

The CTOOLS
Compilation System

This manual provides operating instructions and other information on the
CTOOL S compilation system. This system consists of a compiler and two
drivers that provide the user interface to the compiler, gcc960 and ic960.
These two interface drivers allow backward compatibility with software
developed using GNU/960 and CTOOL S960, respectively.

New Features
* Release 6.5 features support for 64-bit integers using long long type.

Features of the Compilation System

The compiler lets you use the following features to develop applications:

® Using either the gcc960 or ic960 compiler driver to invoke and control
tranglation and linking. See Chapter 2 “gcc960 Compiler Driver” or
Chapter 2 “ic960 Compiler Driver”.

® Creating a run-time performance profile of your application.
Optimizations based on this profile include inter-modul e optimizations
and preferential use of fast memory regions for variables that are
frequently accessed. For an overview of the program-wide
optimization process, including profile-driven optimization, see
Chapter 4 “Program-Wide Analysis and Optimization”. For
descriptions of other optimizations, refer to Chapter 12
“Optimization”.

1-1

1 i960® Processor Compiler User's Manual

1-2

® Caling functions written in i960 processor assembly language, or
including in-line assembly language in your C/C++ program. Chapter 7
“C Language Implementation”

® Stopping the compilation process to examine intermediate results after
syntax checking, preprocessing, compilation, assembly, or incremental
linking. (See Chapters 2, “gcc960 Compiler Driver” and , “ic960
Compiler Driver”.)

® Using asingle command to compile, assemble, and link modulesinto a
complete ROM-able or executable program. (See Chapters 2, “gcc960
Compiler Driver” and , “ic960 Compiler Driver”.)

® Using the CAVE pragmato compress functions, thus reducing code
size. During program execution, these functions are decompressed
when called. For more information on CAVE and the other pragmas,
see Chapter 7 “C Language Implementation”.

® Cresating blended code with the new - ncor e0- 3 and - Gcor e0- 3
options. With these options, you can generate code that is compatible
with multiplei960 processor types. For more information, see Chapters
2, “gcc960 Compiler Driver” and , “ic960 Compiler Driver”.

Compatibility and Conformance to Standards

The compiler runs on a UNIX* or a Windows* 95/NT* host system and
generates object code for any i960 commercial processor. The translation
and code generation phases use the instruction set for the i960 processor
that you specify.

The compiler's implementation of C conforms to the ANSI standard for the
C language (X3.159-1989). One exception is static poinitélipation in
applications using position-independent code or data (described in
Chapter 9 “GCC960/ic960 Compatibility”). Additionally, the compiler
allows use of in-line assembly language in the C source text.

The ANSI standard specifies that a conforming implementation of a C
compiler must meet minimum requirements for certain translation limits. In
all cases, the compiler exceeds ANSI limits. Table 1-1 lists the tested levels
for each translation limit and compares them to ANSI minimum
requirements. Available memory determines actual limits in a host system.

The CTOOLS Compilation System 1

Table 1-1 Compiler Limits

ANSI Tested
Limit Minimum Minimum
Control structure nesting levels 15 128
Conditional compilation nesting levels 6 32
Declarator modifiers 12 32
Declaration parenthesis nesting levels 31 64
Parenthesis nesting levels 32 128
Significant characters for internal identifier 31 128
Name length for external identifier 6 33
Identifiers in a single block 127 1024
Macros simultaneously defined 1024 4096
Parameters per function call 31 128
Characters in a logical line 509 4096
Characters in a string 509 4096
Bytes in an object 32767 65535
Include file nesting levels 8 32
Case labels in a switch 257 1024
Members in one structure or union 127 512
Enumeration constants in one enumeration 127 512
Structure nesting levels 15 64
External identifiers per file 511 2048
Parameters per macro 31 128

1-3

1 i960® Processor Compiler User's Manual

1-4

About this Manual

This manual contains the following chapters:

Table 1-2 Chapter Descriptions

Chapter

Number Title Description

1. The CTOOLS Introduces the compiler and provides
Compilation information on using this manual.

System

2. gcc960 Compiler Teaches you how to use the gcc960
Driver command-line interface and provides a

complete list of command line options.

3. ic960 Compiler Teaches you how to use the ic960
Driver command-line interface and provides a

complete list of command line options.

4. Program-wide Tells you how to use some of CTOOLS most
Analysis and powerful optimization features:
Optimization ® program-wide optimizations

® run-time profiling

5. Profile Data Explains how to use gmpf960 to merge the
Merging and execution profile data you collected in
Data Format Chapter 4 “Program-Wide Analysis and
(gmpf960) Optimization”. You also learn how to use

gmpf960 to create a report that shows how
many times each basic block was “hit” or run
during program execution.

6. gcdm Decision Describes the gcdmoption, which invokes
Maker Option the gcdm960 global optimization decision

maker during the link process. The decision
maker then invokes the compiler and linker
as necessary to perform program-wide
optimizations.

7. Language Describes data representation, register use,

Implementation

object file format use, and pragmas for
modifying code generation.

The CTOOLS Compilation System 1

Table 1-2

Chapter Descriptions

Chapter
Number

Title

Description

8.

10.

11.

12.

13.

14.

C++ Language
Implementation

gcc960 /ic960
Compatibility

Position
Independence
and Reentrancy

Initializing the
Execution
Environment

Optimization

Caveats

Messages

Describes the differences from the C
Language Implementation in the areas of
data representation, register use, and
pragmas.

Describes the incompatibilities between
ic960 and gcc960.

Provides information on writing 1960
processor applications that require

position-independent or reentrant programs.

Describes the initialization process for the
i960 processor execution environment,
including the startup assembly-language
routine, configuration files, and associated
options.

Describes the different ways in which the
compiler can optimize your program and
explains ways to control optimization.

This chapter provides useful programming
tips on:

® Aliasing assumptions

® Alignment assumptions

® Volatile object

® Known problems

® Cversion incompatibilities

® Troubleshooting

Describes the diagnostic messages that the
compiler produces.

1-5

1 i960® Processor Compiler User's Manual

1-6

Audience Description

This manual assumes that you are familiar with the i960 processor
architecture, C/C++ and assembly language programming, and your host
computer’s operating system.

Licensing and Copyrights

Refer to the 1960 Software Tools License Guide for licensing and copyright
information.

UNIX and Windows Conventions

This manual tells you how to use the compiler in both UNIX and Windows
95/NT systems. This manual uses the following conventions:

® Command-lines appear without a preceding prompt.

* Directory paths use the UNIX forward slash (/) rather than the
Windows backslash (\) for pathnames.

* Environment variables are referenced using the UNIX dollar-sign (e.g.,
$1 960BASE), not the Windows %character (e.g,.% 960BASEX)

E NOTE. InUNIX, only the dash (-) is accepted as a prefix for a
command-line option. In Windows, both the (-) and the (/) are accepted
as a prefix for a command-line option.

Customer Service

If you need service or assistance with CTOOLS, see your Getting Sarted
with the 1960 Processor Development Tools manual.

The CTOOLS Compilation System 1

Where Do You Go From Here?

If youinstalled the CTOOL S GNU interface, go to Chapter 2 “gcc960

Compiler Driver” for information on using the gcc960 compiler driver. If
you installed the CTOOLS/960 interface, go to Chapter “ic960 Compiler
Driver” for information on using this driver. Once you are familiar with the
compiler driver interface, you are ready to read Chapters 4, “Program-Wide
Analysis and Optimization” through 6, “gcdm Decision Maker Option”,
where you learn how to use some of the more advanced features of the
compilation system, including whole program optimizations, profiling, and
using the gcdm global decision maker program.

1-7

gcc960 Compiler Driver

This file describes how to use the gcc960 driver program to control the
compilation system. Topics include:

® “Controlling the Compilation System with gcc960”
® “gcc960 and Environment Variables”

® “gcc960 and File Use”

e “gld Files”

® *“gcc960 Options”

® “Option Arguments and Syntax”

Controlling the Compilation System with gcc960

gcc960-style translation and linking requires use of the gcc960 driver,
preprocessor, compiler, assembler, and linker.

The gcc960 compiler driveg€c960. exe in Windows,gcc960 on UNIX)
controls the preprocessarpp. exe in Windows,cpp. 960 on UNIX) and
the compiler §c1. exe in Windows,cc1. 960 on UNIX). Starting with
CTOOLS release 6.0 gcc960 also controls the new C++ compiler
(cclplus.exe in Windows, cclplus.960 on UNIX). It can also invoke the
assembler, linker, and gcdm960 optimization decision maker. The
command-line options and environment variables, described later in this
file, allow you to control the compilation.

The drivers invoke the appropriate modules to compile a file based on
filename extensions.

2-1

2 i960® Processor Compiler User's Manual

2-2

* Fileswith namesending with. cc, . cpp, and . cxx aretaken as C++
source to be preprocessed and compiled. In UNIX, filenames ending
with . C (uppercase) are treated as C++ source to be preprocessed and
compiled.

®* Fileswith namesending with . ii aretaken aspreprocessed C++
source to be compiled

®* Fileswithnamesendingin. c aretaken as C source to be preprocessed

and compiled.

* Fileswith namesendingin.i aretaken as preprocessor output to be
compiled.

® Compiler output files plus any input fileswith namesending in. s are
assembled.

* |nput fileswith names ending in . S (uppercase) are preprocessed and
then assembled. (UNIX only.)

® Theresulting object files, plus any other inpuit files, are passed to the
linker to produce an executable.

®* Program-wide and profile-directed optimizations can be performed
during the link step. For an overview of this capability, see
“Program-Wide Analysis and Optimization”.

Invoking the Compiler with gcc960

The gcc960 command-line syntax is:

gcc960 [-option]... [pathl]filenanme ... [@esponse-file]
gcc960 is the compiler driver executable filename.
option is a compiler option. Case is significant in options and

their arguments. Multiple single-character options
cannot be groupeddr is different from-d -r. When

two or more options contradict each other, the
right-most option in the command line takes precedence.
For example, the following command line sets the value
of the symboL to 132:

gcc960 -DL=80 -DL=132 proto.c

gcc960 Compiler Driver 2

NOTE. Note that the gcc960 compiler driver does not check the
command line options for validity. Invalid options are ignored without
producing a warning message.

On UNIX, the compiler recognizes a letter preceded by
ahyphen (-) as an option. In Windows, the compiler
recognizes aletter preceded by either ahyphen (-) or a
forward slash (/) as an option. For example, - A
specifies the architecture option for UNIX or Windows.
However, on a Windows system, you can also use / A
to specify the architecture option.

pat h identifies the directory containing the file named by
fil enane. Not specifying pat h for afil enane
causes gcc960 to search in the current directory. Each
f il ename not in the current directory requires a
separate pat h specification.

NOTE. Although Windows file pathnames require backslashes (1), this
manual shows paths using the forward slash required by UNIX (/).

fil enane is the name of a source, preprocessed source,
assembly-language, object module, or other file
(e.g., linker directivefile) to be processed by the
compilation system. The gcc960 command line
allows specification of more than one
fil enane.

2-3

2 i960® Processor Compiler User's Manual

2-4

@ esponse-file Open the named response file and read in its
contents as if they had been typed on the
command line. Response files are a convenient
way to store commonly-used command line
options, and away to get around the
128-character line length limit in Windows

Response files can contain comments. Lines
whose first non-whitespace character is# are
treated as comment lines, and ignored.

gcc960 Sample Command Lines

This section provides examples of how the compiler is commonly invoked.
All these examples assume that you have C source filesnamedt 1. ¢ and

t 2. ¢ or C++ sourcefilesname t 1. cc and t 2. cc. All examples assume
that you are generating code for the 1960 CA architecture.

Preprocessing a Source File

To preprocess a source file to stdout, use the command:

gcc960 -E tl.c

or

gcc960 -E t1l.cc

-E informs the compiler to preprocess the sourcefile.

Generating a Preprocessed Source File

To generate a preprocessed C/C++ source file use the foll owing command.
The command generates a preprocessed source filenamedt 1. i or for C++
t1l.ii.

gcc960 -Etl.c -o tl.i

or
gcc960 -Etl.cc -o tl.ii
-E instructs the gcc960 compiler to preprocess the source

file.

gcc960 Compiler Driver 2

-o filenane instructs the gcc960 compiler to redirect output to
fil enane.

Generating Assembly Code

This example generates assembly code for thei960 CA architecture. The
command lines below each generate an assembly language file named
tl.s.

gcc960 -S -ACA tl.c

or

gcc960 -Felf -S -ACA tl.cc

-Fel f specifies ELF object module format, which is required
for C++. The default object module format is b.out.

-S instructs the compiler to generate assembly code.

- ACA specifies the i960 CA architecture.

Generating an Object Module with Debug Information

To generate a object module with debug information, use the following
command.

gcc960 -¢c -g -ACA tl.c

or
gcc960 -Felf -¢c -g -ACAtl.cc

-g instructs the compiler to generate debug information.
-C instructs the compiler to generate an object file.

Generating an Executable

To generate an absolute module (executablefile) for a Cyclone board with a
CA processor, use the following command.

gcc960 -ACA -Tncyex -g -Otl.c t2.c -0 test
or
gcc960 -Felf -ACA -Tnctycx -g -Otl.cc t2.cc -0 test

The above command compiles the modulestl.c and t2.c and links them
with appropriate libraries to generate an absol ute modul e targeted for a
Cyclone i960 Cx evaluation board.

2-5

2 i960® Processor Compiler User's Manual

2-6

- Treycex use the linker directive file for a Cyclone i960 Cx
evaluation board.

-0 causes the compiler to perform some basic
optimizations on the generated code.

-0 test instructs the compiler to name the generated executable
test.

gcc960 Linker Options

When you do not specify atarget withthe Tt ar get option, gcc960 does not
attempt to link programs for a specific target board. Unless otherwise
specified source files with recognized extensions (e.g., . cc, . s) are
compiled and/or assembled, and the following linker command isissued:

gl d960 - AKB $@I60BASE/lib/crt960.0 file.o... -lqgf -lc -Im

To link for a different target, you can change the crt (startup) file and
specify board and monitor support libraries.

To link for another environment, the optionscrt and nost dl i b prevent
gcc960 from including the default startup files or librariesin the link,
allowing them to be fully specified by the user. For example:

gcc960 -crt -nostdlib nmycrt.o file.o... -lc -Inylib

You can invoke gcc960 to create object filesin either the b.out, COFF or
ELF object module format. The compilation system accepts the Fcof f
option to generate COFF and the Fel f option to generate ELF; these
options override the gcc960 driver's default format option, which is Fbout .

NOTE. ELF isthe only abject format supported when using C++

gcc960 Compiler Driver 2

Table 2-1 lists the linker options that gcc960 passes directly to the linker.

Table 2-1 Linker Options Accepted by gcc960

Option Name Description

e Entry point defines an entry point other than the default
for beginning execution of the program.

gcdm Decision invokes gcdm960 decision maker.

Maker

I Archive file specifies an archive file as input.

L Library search adds directories to search for libraries,
configuration files, and startup object files.

r Relocation retains relocation information in the output
object file.

S Strip strips line-number entries and symbol-table
entries from the linker's COFF output file.

u Unresolved introduces an unresolved symbol, causing the

Symbol linker to search symbol tables for resolution of
the reference.

X | x Compress X removes all symbols from the output symbol
table; x removes only local symbols.

y Trace symbol traces a symbol; indicates object files where it
appears and provides other information about
the symbol.

z Time stamp suppresses COFF time stamp in linker output
file.

gcc960 and Predefined Macros

Predefined macros within a program can act as constants during execution
or as values in conditional-compilation statements. Predefined macros
include ANSI C standard macros and macros specific to the 1960 processor
architecture. The U (Undefine) option removesi960 processor-specific
macros but not ANSI C standard macros.

Thefollowing macros are available in accordance with the ANSI C standard
for C, as described in the book, C: A Reference Manual:

_DATE__ __FILE _ __LINE_ __TIME_ __STDC

2-7

2 i960® Processor Compiler User's Manual

2-8

The following macros are predefined by the compilation system when
invoked with the gcc960 driver program:

__GCC960_VER

1960

__1960xx

_PIC

_PID

__1960_ABI __

is defined to a decimal number that can be used to check
the version number of the compiler. The number is
expressed in decimal as MimrPPPR, where Mis the major
version number, nmmis the minor version number, and
PPPPis an interna version number that is used to track
the patch level. So, for example, R6.0 patch level 4032
would have __ GCC960_VER defined to be 6004032.

indicates the 1960 processor environment. The compiler
defines__i 960 automatically. This macro can be used
to identify the parts of a program specific to the i960
processor.

indicates the 1960 processor instruction set in use. The
compiler automatically definesthe __i 960xx macro.
The xx iSSA, SB, KA, KB, CA, CF, JA, JF, JD, JT,
HA, HD, HT, RD,RP, RM RN, or VH. Definition of xx
depends on the specific 1960 processor instruction set
specified by the A (Architecture) option.

indicates that the generated code is
position-independent. The npi ¢
(Generate-for-position-independent-code) option causes
the__PI C macro to be defined.

indicates that the generated data s position-independent.
The npi d (Generate-for-position-independent-data)
option causesthe __PI D macro to be defined.

indicates that the generated code is 80960
ABI-Conformant. Themabi option causes this macro to
be defined.

__1960_BI G ENDI AN__

indicates that the generated code is arranged for
big-endian address space. The G (Big-endian) option
causes this macro to be defined.

gcc960 Compiler Driver 2
__STRICT_ANSI __

indicates that C constructs not conforming to the ANSI
standard should be flagged. The ansi (ANSI) option
causes this macro to be defined.

__CHAR_UNSI GNED__
indicates that the plain char type are treated like the
unsi gned char type. Thisisthe default.

gcc960 and Environment Variables

Environment variables specify default directories for input files, temporary
files, libraries, the assembler, and the linker. The compilation system uses
the following environment variables to set defaults:

2-9

2 i960® Processor Compiler User's Manual

Table 2-2 gcc960 Interface Environment Variables

Name Purpose

G60AS Specifies an alternate pathname for the assembler. Default is
@60BASE/ bi n/ gas960 (R60BASE\ bi n\ gas960. exe in Windows).

GO60BASE Specifies top-level directory containing the bi n, i ncl ude, and!l i b
subdirectories. GA60BASE is necessary for every phase of compilation and
linking. The compiler driver uses G960BASE/ | i b to invoke the
preprocessor and compiler. The driver uses G360BASE/ bi n to invoke the
assembler and linker. The preprocessor uses G960BASE/ i ncl ude to find
include files. The linker uses GA60BASE/ | i b to find libraries, startup
modules, and configuration files. G396 0BASE also sets defaults for other
environment variables in this list. Use these other environment variables to
override the paths from G960BASE.

60BI N Specifies an alternate pathname for binary files, such as the assembler and
linker. If set, GA60BI N overrides GO60BASE/ bi n.

3060CC1L Specifies an alternate pathname for the C compiler. The default is
GO60BASE/ | i b/ ccl. 960. (B960BASE\ | i b\ ccl. exe in Windows.)

P60CCLPLUS Specifies an alternate name for the C++ compiler when using the gcc960
driver. The default pathname is G960BASE/ | i b/ cc1pl us. 960
(G960BASE\ | i b\ cclpl us. exe in Windows).

GO60CPP Specifies an alternate pathname for the C preprocessor. The default is
GO60BASE/ | i b/ cpp. 960. (B960BASE\ | i b\ cpp. exe in Windows.)

0601 NC Specifies the include file directory. The default is G960BASE/ i ncl ude.

G60LD Specifies an alternate linker pathname. The default is
GO60BASE bi n/ gl d960 (960BASE\ bi n\ gl d960. exe in Windows.)

60LI B Specify library search path(s). The defaultis GO60BASE/ | i b.

G060PDB Specifies the program database directory for whole-program and profiling
optimizations.

GO60TMP, TMP, Specifies the directory used for temporary work files. Set it to the name of

or TMPDI R your temporary file directory.

| 960ERR Windows variable that enables you to redirect errors to st der r rather than

st dout (the default). To use this capability, set | 960ERR to any string, as
in:set | 960ERR="Enabl e stderr"

2-10

gcc960 Compiler Driver 2
gcc960 and File Use

The compiler, assembler, and linker al use filenames specified on the
gcc960 command line to find and create input and output files. 1n addition,
translation and linking require temporary work files.

Input Files

The gcc960 command line alows filename inputs that support specification
of assembly-language files, preprocessed source files, C/C++ sourcefiles,
object files, and libraries. The compiler driver determines the type of each
input file by the filename extension, as follows:

filenane.c indicates a C source file that can contain macros
and preprocessor directives.

filenane.cc, indicates a C++ source file that can contain macros

- Cpp, . CXX and preprocessor directives.

filenane.C indicates a C++ source file that can contain macros
and preprocessor directives (UNIX only).

filenane.i indicates a preprocessed C source file.

filenane.ii indicates a preprocessed C++ source file.

filenane.s indicates an assembly-language source file.

filenane.S indi cates an assembly-language sourcefile that can

contain preprocessor macros and directives.

The driver passes any other filename to the linker. The linker then
determines whether the fileis an object file, library, or configuration file.

Input files not needed for processing are not processed. For example, if you
specify an assembly-language (f i I enane. s) file and also specify the S
(Assembly) compile into assembly code option, gcc960 takes no action on
the assembly-language file.

Include Files

The gcc960 command line allows insertion of text from include files using
the#i ncl ude preprocessor directive.

2-11

2 i960® Processor Compiler User's Manual

2-12

L)

The 1, 1- and I. options affect the directories that are searched for the
file specified in the #i ncl ude directive. These options are described in
detail in the Option Arguments and Syntax section. In the absence of the |
option, gcc960 searches the current directory for include files followed by
the GA60BASE/ i ncl ude directory.

NOTE. Theincludefilesi cache. h, dcache. h,and t i mer . h used for
on-chip cache and timer control are not supported with the - ARP option.

Output Files

Specifying the options - E, - S, or - ¢ causes the compilation system to
produce output of the last phase that completes for each primary input file:
preprocessed source file, assembly-language file, or an unlinked object file
respectively. If no errors occur during processing, the output files created by
these options are usable as input to afuture gcc960 invocation. Table 2-3
lists the compilation phases and their inputs and outputs.

Specifying thecl i st option generates alisting. gcc960 produces a separate
list file for each primary C/C++ source file. Thelist file is named by
replacing the C or C++ filename extension with . L.

Specifying the - M option causes the preprocessor to output rules
describing the dependencies of each source file, suitable for use with a
“make” utility. The cl i st and - M options are described in detail in
“Option Arguments and Syntax”.

gcc960 Compiler Driver 2

Table 2-3 Intermediate Inputs and Outputs

Last Phase

Completed Option Inputs Outputs

preprocessing ME C/C++ source files display on standard

output

compilation S C/C++ source files assembly-language file
preprocessed files listing files

assembly c C/C++ source files unlinked object files
preprocessed files listing files
assembly files

linking (default) C/C++ source files list files
preprocessed files executable file
assembly files relinkable object file

unlinked object files
relinkable object
files

libraries
configuration files

When specifying only one primary input file, the o (Output) option names a
single output file. Specifying multiple primary input files, or not specifying
an output filename, causes gcc960 to use the primary input filenames to

derive corresponding output filenames with theform fi | enane. e, where:

fil ename isthe primary input filename without its extension.

e isasingle-letter extension indicating the contents of a
file, asfollows:

s indicates an assembly-language file from the S option.

0 indicates an object file from the ¢ option.

L indicates a listing file from the cl i st option.

Unless otherwise specified, the destination directory for any output fileis
the current working directory. If fi | enane. e aready existsin the
destination directory, the compilation system overwrites the existing file.

2-13

2 i960® Processor Compiler User's Manual

2-14

.gld Files

Thefilenamea. out isthe default for the executable COFF object file from
the linker, in the absence of an Output option. For ELF files, the default is
e. out and for bout files, the default is b. out .

The following examples illustrate the creation and use of output filename
extensions:

® Thecommandgcc960 -c -clist s proto.c protol.i
produces the object files pr ot 0. o and pr ot 01. o and thelisting files
proto.L andprotol. L.

® Thecommandgcc960 -c -0 proto vl.o -clist s proto.c
produces the object file pr ot o_v1. o and thelisting file pr ot 0. L.

® Thecommand gcc960 - ACA - Tntycx prot o. ¢ producesthe
executable fileb. out .

The . gl d filesprovide aconvenient mechanism for specifying default
options to the compiler and linker. It also provides a mechanism for
specifying the startup file and the libraries to be linked in. These files are
meant to be used with the gcc960 interface to the tools (GLD isan acronym
for gcc960 linker directive file even though it can be used to pass options to
the compiler as well).

By default, the installation program places several . gl d filesin the
directory $G960BASE/ | i b. These files have been written for the Cyclone
evaluation boards. To illustrate, the sample . gl d file given below is
written for the Cyclone i960 Cx processor-based evaluation board.

gcc960 Compiler Driver 2

Example 2-1 Sample .gld File
gcc: - ACA

crt:%'lcrt: 9% ~1/1ib/ % npid: % Gcrt960_e.o}%! G crt960_p. o}}
%' npid: %4 G crt960_b.o} %! G crt960.0}}}

Id: %! Ttext:-Ttext OxA0008000}% *: -defsym

_heap_si ze=0x20000; _heap_base=(_end+0xf) &-0xf; _heap_end=_heap_base+
_heap_si ze- 1; _stackbase=(_heap_end+0x40) &-0x3f -defsym

f pem CA_AC=0x100}

lib:%!nostdlib:-1mm -111}

Inthe . gl d file, you can place any optionsthat the tools accept on the
command line. The . gl d filein Example 2-1, includes options for the
gcc960 compiler driver and linker.

The command inthe gcc: section defines the architecture setting for the
gcc960 compiler driver. This setting is used throughout the compilation
process. The options following gcc: aretreated in the same fashion asiif
they were specified on the gcc960 invocation line.

The commandsinthe crt:, 1d:,and |ib: sectionsarewritten
conditionally so that they interact with gcc960 command line switches. For
example, the I'i b: section indicates that the linker should be involved
withthe -1 m and - 111 options, unlessthe gcc960 - nost | i b option
appears on the command line. These sections determine the startup code,
linker options and the libraries that are passed to the linker.

The crt: sectionisused to specify the startup code. In the example given
above, if the - crt option has not been specified on the compile line, then
the compiler driver uses the following for the startup code.

[P60BASE] /1 i b/ crt960_e.o if both -npi d and - G optionsare on
[P60BASE] /1 i b/ crt960_p.o if -npid optionison -G isoff

[P60BASE] /1 i b/ crt960_b.o if -npid optionisoff and - G ison
[®60BASE] /| i b/ crt 960. o if both - npi d and - G options are off

2-15

2 i960® Processor Compiler User's Manual

The I d: section contains options that are passed to the linker. This
exampl e includes commands to place the . t ext section at address
0xA0008000, and defines symbols used to specify the heap and stack
locations.

The l'i b: sectionin the above exampleis used to specify that the compiler
driver should passthe options -1 m and -1 11 tothelinker if the
-nostdl i b optionisoff. This causesthe linker to include the monitor and
the low-level librariesin its search path to look up unresolved symbols.

For more information on the linker directives used in this samplefile, see
the i960 Processor Software Uties User’s Guide

gcc960 Options

This section describes the gcc960 compiler driver options that allow control
of various aspects of compilation:

Input processingand Thec, E, and S are the Stop-after options.

output They stop the translation and linking process
after the preprocessing, syntax checking,
compilation, or assembly phase. A Stop-after
option causes the compilation system to save
the intermediate output of the last phase to
execute. The C (Keep-comments) and M(Mix)
options affect the contents of the output file.
The o (Output) option allows specification of
the output filename.

Specifying included Thei (Preinclude) and | (Searchinclude)
sour ce text options prepend and find include files of
C/C++ source text.

Defining macros The D (Define) and U (Undefine) options alow
specification of macros for conditional
compilation.

2-16

gcc960 Compiler Driver 2

Control contents of TheA (Architecture) Fcof f /Fel f /[Fbout

generated object code (Object-format)F (Fine-tune)f (Optimize)g
(Debug),G (Generate), and
(Optimization-level) options control the
instruction set, object format, debug
information, and optimization level.

Whole-program Thef db (Program Databasd)pr of

optimizations (Instrumentation), andcdm(Decision Maker)
options allow for creation and use of
information necessary for advanced
optimizations involving mitiple modules
and/or execution profiles. See “Program-Wide
Analysis and Optimization” for an overview of
whole-program and profile-driven

optimization.
Provide Information =~ Thea (ANSI) option affects messages the
on the compiling compiler produces about C/C++ syntax and
process semantics. The (Verbose)yV (Version), and

v960 (Version-exit) options display
information about preprocessor, compiler,
assembler, and linker options. The Version
option displays the versions of each
compilation component and the host operating
system. Th&V(Warnings) option allows fine
control of the level of warnings emitted.

Option Arguments and Syntax

Some compiler driver options take arguments. Case is significant in options
and arguments. A few options allow whitespace between the option and its
argument; this whitespace is shown in Table 2-4.

The options and arguments have default settings. In most cases, the option

is “off,” that is, not in effect. Default settings of options and arguments are
summarized in Table 2-4 and further discussed in the detailed description of
the option. Some option defaults are affected by environment variables,
which are described in thgetting Started manual.

2-17

2 i960® Processor Compiler User's Manual

2-18

[item

Thisfile uses the following notation:

Square brackets indicate that the enclosed item is

optional.

Horizontal ellipses indicate that you can use multiple

instances of the preceding item.

Table 2-4 gcc960 Option Summary (Sheet 1 of 3)

Option Name Purpose Default

Aarch Architecture Select the instruction set. AKB

ansi ANSI Detect non-ANSI source. off

C Comments Keep comments in preprocessor output. off

c Create Object Stop after creation of object file. off

clist arg ... Create listing Create a listing. off

crt Startup Do not use standard startup file. Use default

D macro Define Define macro. macro

[=value] (default is one) undefined

darg Definitions Control macro processing. off

E Preprocess Preprocess source; terminate. Do not stop

Fbout | Fcoff| Format Generate b.out, COFF or ELF object Fbout

Felf format.
fdb Database Build program database directory (PDB). No database
fprof Instrument Compile with instrumentation; build PDB. No instru-
mentation

f[no-larg Fine-Tune Enable or disable an option. Varies with
option

G Big-endian Generate big-endian code. off

gllevel] Debug Include debug information in objects. No debug info

gcdm,arg... Decision-make Invoke gcdm960 decision-maker. off

r

hlelp] Help Display invocation help; terminate. off

| directory Searchinclude Search directory for include files. off

-1 I-dash, I-dot Control include-file search order. off

gcc960 Compiler Driver 2

Table 2-4 gcc960 Option Summary (Sheet 2 of 3)
Option Name Purpose Default
ic960 iC-960 Accept iC-960 source dialect. off
imacros Macros File Specify macros file for preinclusion. off
filename
include Preinclude Prepend text to source files. off
filename
L directory Library Specify directory for library search. off
Directory
M|MD|MM| Make Generate make tool output. off
MMD
mstring Machine Machine-specific options. Varies with
option
nostdinc No Standard Exclude standard include (header) files. off
Include
nostdlib No Standard Excludes standard libraries. off
Libraries
O [level] Optimize Specify optimization level. (0]0]
o filename Output Name output file. Varies with
object format
P Preprocess Preprocessor output control. off
Output
pedantic Pedantic Controls ANSI error and warning off
[-errors] generation.
S Assembly Stop after assembly-language output. off
save-temps Save Save intermediate files. Do not save
Intermediate
Tfile.gld Target Specify configuration file. off
traditional Traditional Allow traditional C. off
trigraphs Trigraphs Support ANSI trigraphs. off
U macro Undefine Undefine macro. off
\% Version Display version information. No display
v960 Version-exit Display version information and exit. off
v Verbose Display invocation information. No display
W [no-]arg Warnings Enable/disable a warning. Varies

2-19

2 i960® Processor Compiler User's Manual

2-20

Table 2-4 gcc960 Option Summary (Sheet 3 of 3)
Option Name Purpose Default
w No Warnings Inhibits warnings. off
Zdirectory Program Specify location of program database G960PDB
database directory (PDB). specifies PDB

A (Architecture)

Selects instruction set.

Aarchi tecture

architecture isone of:

SA, SB, KA, KB, CA, CF, JA, JD, JF, JT, HA, HD, HT, RD, RP, RM RN, or VH.
Default

By default, the compiler uses the 1960 KB architecture.
Discussion

Usethe A (Architecture) option to specify the target instruction set. See al'so
the - ncor e0, - ncor el, - ncor e2, and - ntor e3 options that let you
generate code that is compatible with multiple i960 processor types.

Note that with release 5.1 and later using the - ARP or - ARD options
generates code that is compatible with current and proposed future
variations on the i960 Rx architecture.

You can use predefined macros in your source text to conditionally compile
code for the selected architecture. The compiler defines a preprocessor
macro indicating the selected architecture. The preprocessor macro takes
the form:

_ _i960xx

XX iSSA, SB, KA, KB, CA, CF, JA, JD, JF, JT, HA, HD, HT, RD,
RP, RM RN, or VH. The compiler selects the value of xx
according to the architecture you specify.

gcc960 Compiler Driver 2

The _ _i 960 macro is defined for all architecture selections. Use

_ _i 960 toidentify parts of your program specific to the i960 architecture
but not necessarily specific to a particular processor.

In addition, for compatibility with earlier releases, macros of the forms:
i960, i960_ , i960xx__and_ _i960 xx__ aredefined.

When you link object modules compiled with incompatible architectures,
the linker displays the following warning message:

file: architecture i960: XX i nconpati ble with out put

i 960: YY
file isthefirst file containing incompatible instructions the
linker encounters.
XX isone of the two-letter architecture abbreviations.
YY isone of the two-letter architecture abbreviations.
ansi (ANSI)
Disable non-ANS features.(C-specific

option)

Disables features of gcc960 that are incompatible with ANSI C, such as the
asminline andtypeof keywords, and nonstandard macros such as
I 80960. ansi aso enablesthe ANSI trigraph feature.

See the table shown under the t r adi t i onal option for asummary of the
macros defined when theansi or t radi ti onal options are used.

The dternate keywords _ _asm__, __inline__and_ _typeof _ _
continue to function even if you specify ansi . You would not want to use
themin an ANSI C program, of course, but it can be useful to put them in
header files that might be included in compilations done with ansi .

ansi does not cause non-ANSI programs to be rejected with errors. For
that, the pedant i c- error s optionisrequired in additionto ansi .

2-21

2 i960® Processor Compiler User's Manual

2-22

Themacro _ _STRI CT_ANSI _ _ ispredefined when theansi optionis
used. Some header files may notice this macro and refrain from declaring
certain functions or defining certain macros that the ANSI standard doesn't
call for; thisis to avoid interfering with any programs that might use these
names for other things.

C (Comments)

Keep comments.

Directs the compiler not to discard comments, and to pass them through to
the preprocessor output file. Comments in arguments of amacro cal are
copied to the output before expansion of the macro call. Used with the E
option.

c (Create Object)

Stop after creation of object file.

Directs the compilation system to stop after creating the object file(s).
Object filesare named by replacing . c, . cc, . cpp, . cxX,.i, .ii,.S,or
. s with. o at the end of theinput filenames. If you specify an object file as
input, the compiler does nothing with thefile.

clist (Listing)

Creates a listing.

clist arg...

gcc960 Compiler Driver 2

Generates alisting of the types described below. The list file has the name
fil enanme. L wherefilenameisthe name of the original C/C++ sourcefile.
Multiple arguments are allowed. ar g is one of the following letters:

S lists the primary source text, that is, source text from
files named on the command line.

[adds source text from included files to the primary
source text listing.

0 adds the assembly language generated by the compiler
to thelisting file.

m adds expanded preprocessor linesto the primary source
text listing.

c adds conditionally noncompiled source text to the

primary source text listing.

crt (Startup)

Omit standard startup file.

Do not use the standard startup file when linking. A replacement cr t file
should comefirst in the list of object files. For all i960 processor types
except the Rx, the standard startup fileis crt 960. o. For i960 Rx
processors, the standard startup fileis crtrp. o.

D (Define)

Defines a macro.

D macr o[=val ue]

With no =val ue, defines macr o as 1. (Thisis exactly the same asD
macro=1.)

2-23

2 i960® Processor Compiler User's Manual

2-24

D macro=val ue

Defines macr o asval ue.

d (Definitions)

Control macro processing.

® dD Tellsthe preprocessor to passal macro definitionsinto the output,
in their proper sequencein the rest of the outpuit.

* dM Tellsthe preprocessor to output only alist of the macro definitions
that are in effect at the end of preprocessing.

® dN LikedD except that the macro arguments and contents are
omitted. Only #def i ne macr o isincluded in the output.

These should be used only with - E, and they affect preprocessor output.

E (Preprocess)

Run only the C/C++ preprocessor.

Directs compilation system to preprocess all the C/C++ sourcefiles
specified and send the results to standard output.

gcc960 Compiler Driver 2

Fbout | Fcoff | Felf (Format)

Specifies the abject file format.

Fbout specifiesthe b.out object format. Thisisthe default. You
can add the g option to specify the style of
symbolic-debug symbols created. Note that you cannot
use this option with the - ARP or - ARD architecture
setting or with C++ modules.

Fcof f specifies the COFF object format, and causes the
assembler to be invoked as gas960c, rather than gas960.
You can add the g option to specify the style of
symbolic-debug symbols created. The compiler does not
support using the object module format with C++.

Fel f specifies the ELF object format, and causes the
assembler to be invoked as gas960e, rather than gas960.
If you add the g option, the DWAREF style of
symbolic-debug symbolsis used.

fdb (Database)

Builds optimization database.

All modules subject to program-wide optimization must be initially
compiled with the f db option. This option causes the insertion of program
database information in the object modules, and it requires a minimum
module-local optimization level of OL (although higher module-local
optimization levels are allowed).

This option does not otherwise change the code or data generated for the
object modules. It simply makes optimization information collected during
the initial compilation available to gcdm.

2-25

2 i960® Processor Compiler User's Manual

2-26

Before using thef db option, you should read “Program-Wide Analysis and
Optimization”, and “gcdm Decision Maker Option”.

If you intend to use execution profiles when optimizing your application,
you should read “Profile Data Merging and Data Format (gmpf960)”.

fprof (Instrument)

Instruments code for profile creation.

This option inserts execution profile instrumentation code into the code
generated during compilation, so that when the linked program is executed,
a profile can be collected.

Before using thé pr of option, read “Program-Wide Analysis and
Optimization” through “gcdm Decision Maker Option” for general
strategies on using CTOOLS profiling and other optimization features.

This option enables thedb option, which instructs the compiler to insert
program database information into the object modules and create the
program databasépr of also requires a minimum module-local
optimization level of O1 (although higher module-local optimization levels
are allowed).

When you use thepr of option, a special profiling library required for
profile collection (i bgf) is linked automatically. If your target
environment does not support file 1/0, you must exiidink an alternate
profiling library (i bg). The profiling libraries provided are described in
Chapter 2 of thé60 Processor Library Supplement.

Note that compiling with thépr of option creates object modules useful
only for collecting a profile. If you compile withpr of and later do not
want a profile, you must then use substitutions to replace every
instrumented module ipr og, or you must recompile the modules without
thef prof option. See “Program-Wide Analysis and Optimization” for
more information on this subject.

gcc960 Compiler Driver 2

f (Fine-Tune)

Enable or disable specific options.

In most cases, you will want to optimize code automatically by using the
various O optimizations. (See the section on the - O option.) In some cases,
however, you may want to enable or disable specific featuresfor agiven
optimization level. For example, at optimization level Q0, you cannot
enabl e instruction scheduling with f schedul e-i nsns. Aswith any
optimization process, you should first compile without the option and then
recompile with the desired option enabled/disabled. You can then compare
the generated assembly code and see if adding/removing the option
produced the desired result.

Before using any of these options, read “Program-Wide Analysis and
Optimization” through “gcdm Decision Maker Option” for an overview
using the compilation system’s performance features.

f[no-] access-control Enable/Disable all access checking.
This is normally used to work around
access control bugs.
faccess-control is the default.
This is C++ specific option.

f[no-]asm Do [not] recognizeasm i nl i ne or
t ypeof as a keyword. These words can
then be used as identifiers. You can use
__asm _,_ _inline__and
_ _typeof _ _ instead. This option
provides compatibility with strict ANSI
standards. Do not use this option with
C++ files. See also theansi option.

2-27

2 i960® Processor Compiler User's Manual

2-28

f[no-] bbr

f[no-]coal esce

f[no-]coerce

f[no-]cond-m smat ch

f[no-] condxform

f[no-] conserve-space

Enable/disable basic block
rearrangment. This option is normally
used in a second-pass recompilation,
but it can also be used in single-pass
compilation.

Coaesces memory referencesinto a
single larger memory reference, thus
taking better advantage of the 1960
processor’s burst bus. The compiler
only coalesces memory references that
can be proven to be contiguous and
whose base address can be proven to be
aligned properly. f coal esce enables
f shadow mem

Enable/disable byte/short optimization.

Allow/do not alow conditional
expressions with mismatched typesin
the second and third arguments of the
?: operator. The value of such an
expression isvoid.

Performs a special conditional
transformation that allows the use of
the 960 Jx, Hx, and Rx processors
sel<cc>, addo<cc>, and subo<cc>
instructions. You cannot use this
optimization unless the AJx, AHx, or
ARx option is specified.

Allocate uninitialized global variables
into the common segment, as C does.
This saves space in the executable at
the cost of not diagnosing duplicate
definitions. f no- conser ve- space is
the default. Thisis a C++ specific
option.

gcc960 Compiler Driver 2

f[no-] const prop Performs constant propagation and
folding. This optimization replaces uses
of variables known to have a constant
value with the constant value, allowing
other optimizations to see these
constants and possibly generate more
optimized code.

f[no-] copypr op Performs copy propagation. This
optimization replaces uses of registers
that are destinations of register to
register copies with the source register
(when possible). Thisallows
unnecessary copies to be deleted later
in the compilation.

f[no-]cse-foll owjunps During common subexpression
elimination (CSE), scan through jump
instructionsin only certain cases. This
is not as powerful as completely global
CSE, but alows for faster compilation.

f[no-] cse- ski p- bl ocks Enable/disable alimited form of global

CSE.
f[no]dol I ars-in- Accept “$” in identifiers. ANSI C
identifiers forbids “$” in identifiers.

fno-dollars-in-identifiersis
the default for C and
fdollars-in-identifiersisthe
default for C++.

f[no-] expensi ve- Perform/skip a number of minor

opti m zati ons optimizations that are relatively
expensive. This option is enabled with
optimization levelo2.

f[no-]1fancy-errors Display/do not display C/C++ source
line and caret) with error messages.

2-29

2 i960® Processor Compiler User's Manual

f[no-]float-store

f[no-]force-addr

f[no-]for-scope

f[no-]inline-functions

fint-alias-ptr

2-30

Store/do not store floating-point
variablesin registers, and do not
perform common sub-expression
elimination on floating point
expressions.

Force/do not force memory address
constants to be copied into registers
before doing arithmetic on them. This
may produce better code.

Limit the scope of variables declared in
afor-init statement to the for loop
itself, as specified by the draft C++
standard. When you specify

-f no-f or - scope, the scope of
variables declared in a
for-init-statement extends to the end of
the enclosing scope, as was the casein
old (traditional) implementations of
C++. f or - scope isthedefault. Thisis
a C++ specific option

Inline/do not inline all simple functions
into their callers. The compiler
heuristically decides which functions
are simple enough to be worth inlining
in thisway. When all callsto agiven
function areinlined, and the functionis
declared static, then the function is
normally not output as assembler code
inits own right.

indicates to the compiler that pointer
objects may be referenced as 32-bit
integers and vice versa.

gcc960 Compiler Driver 2

fint-alias-real indicates to the compiler thét oat
doubl e, andl ong doubl e objects (or
parts thereof) may be referenced as
32-bit integers and vice versa.

fint-alias-short indicates to the compiler that four-byte
integer objects may be referenced as
two-byte objects and vice versa.

The aliasing options listed above tell the compiler not to use certain kinds of
type information when disambiguating memory references, even though
ANSI C section 3.3 “Disambiguation Constraints,” allows this.

The rules enforced by the aliasing options are transitive. For example,
when user code accesses partsoafbl e objects ashort, then
fint-alias-real andfint-alias-short should both be used.

The rules are also applied recursivelysto uct s and unions. That is to
say, wherfint-al i as- ptr is in use, then a union that has a member of
pointer type is assumed to be aliased by 32-bit integers srrhyct s or
unions containing 32-bit integers.

Note that ANSI C 3.3 requires the compiler to assumectiat references
alias all types, so code usingar pointers is already correct and using
these options is not necessary.

Using all three aliasing options effectively disallows all use of type
information in memory disambiguation. This is bad both for compiler
performance and the efficiency of generated code.

f[no-]enumint-equiv Allow implicit conversion of integer
to enumeration types. Normally the
compiler allows conversion of enum
to int, but not vice versa.
f no- enumi nt - equi v is the
default. This is a C++ specific option.

2-31

2 i960® Processor Compiler User's Manual

2-32

f[no-] huge-obj ects

f[no-] keep-inline-

functions

f[no-]marry_mem

f[no-] menoi ze- | ookups
f[no-] save- menoi zed

fm x-asm

f[no-]rerun-cse-
after-1oop

The implementation of virtual
function calls assumes that the size of
an object can be represented with a
short integer. Use this flag to support
virtual function calls for objects that
cannot be represented by a short
integer. Use thisflag only if the
compiler requests you to do so. Note
that the C++ library sources need to
be recompiled with f huge- obj ect s
if you plan to link with the C++
libraries. f no- huge- obj ect s isthe
default. Thisisa C++-specific option.

Even when all callsto agiven
function areinlined, a separate
run-time callable version of the
function is still output.

Rejoin multi-word moves split apart
by f spl i t _nem(where possible).

Use heuristics to compile faster.
These heuristics are not enabled by
default, since they are only effective
for certain input files. Other input
files compile more slowly. You may
use either option to compile using
heuristics. These are C++ specific
options.

Intermix C/C++ code as comments
within the assembly code.

Re-run common subexpression
elimination after loop optimizations
have been performed.

gcc960 Compiler Driver 2

f[no-]sbl ock Enable/disable superblock formation.
Thisoption isnormally usedin a
second-pass recompilation, but it can
also be used in asingle-pass

compilation.
fsi gned-char | Make the type char be signed, like
fno-si gned- char si gned char (fsigned-char),or

make the type char beunsigned, like
unsi gned char

(f no- si gned- char).

f si gned- char isequivalent to

f no- unsi gned- char.

By default, char variablesaretreated
asunsi gned.

f[no-]schedul e-insns Attempt to reorder instructionsto
eliminate execution stalls due to
required data being unavailable. This
alows other instructions to be issued
until the result of a previously issued
instruction is required.

This option makes debugging more
difficult, since the code for multiple
C/C++ statements may become
intermixed, causing execution to
make numerous jumps while
single-stepping.

f[no-]schedul e-insns2 Similar to f schedul e-i nsns, but it
reguests an additiona pass of
instruction scheduling after register
alocation has been done.

2-33

2 i960® Processor Compiler User's Manual

2-34

f[no-]shadow- gl obal s

f[no-]shadow nem

f[no-]space- opt

f[no-]split_mem

f[no-]strict-prototype

Shadow memory |ocations with
global register variables where
possible. Memory locations that are
known not to change are temporarily
allocated to registers. This option
makes debugging more difficult,
since objects allocated in memory
may not aways be up-to-date.

Shadow memory |ocations with
register variables where possible.
Memory references whose addresses
are known to be the same are
temporarily allocated to registers.
This option makes debugging more
difficult, since objects dlocated in
memory may hot always be
up-to-date. f shadow memis similar
to f shadow- gl obal s, but its
analysisis considerably more
sophisticated. In most cases,

f shadow nemallows more
optimization than

f shadow- gl obal s, but compile
time is slower.

Optimize to reduce the size of the
generated code.

Split all multi-word moves into
sequences of single word moves to
improve copy propagation.

Treat afunction declaration with no
arguments, such asfft foo ();”,
to mean that the functidroo takes
no argumentg.stri ct - pr ot ot ype
is the default. This is a C++ specific
option.

gcc960 Compiler Driver 2

f[no-]this-is-variable Permit assignment to “this”.
fno-this-is-variableisthe
default. This is a C++ specific option.

f unsi gned- char | Make the typehar be unsigned, like
unsi gned char (f unsi gned- char) , or make the
typechar be signed, likei gned
char (fno-unsi gned-char).
f unsi gned- char is equivalent to
f nosi gned- char.

By defaultchar variables are treated
asunsi gned.
f[no-]strength-reduce Perform loop strength reduction and

eliminate induction variables. See the
Glossary for more information.

fsyntax-only Check the syntax of C/C++ source
file(s), without generating an object
file.

f[no-]thread-j unps Test whether a jump branches to a

location where another comparison
subsumed by the first is found. If so,
the first branch is redirected to either
the destination of the second branch
or to a point immediately following

it, depending on whether the
condition is known to be true or false.

f[no-Junroll-all-Ioops Perform the optimization of loop
unrolling on all loops. This is not
recommended as it increases code
size and usually degrades runtime
performancef unrol | -al | -1 oops
enables botlist r engt h-r educe
andfrerun-cse-after-1 oop.

2-35

2 i960® Processor Compiler User's Manual

2-36

f[no-Junroll -1 oops

fvirtual - opt

f[no-]volatile

f[no-]volatile-gl obal

Break up aloop into several iterations
of the loop body. Thistypically
improves performance, since the
loop’s exit condition is not checked
for each iteration. In afew cases,
however, the increased code size may
decrease performance.

This option uses severa decision
criteria determine how far to unroll a
loop. For example, when the loop
body is small and there are relatively
few iterations, it may choose to
completely unroll theloop. For loops
with larger bodies and more
iterations, it may partially unroll the
loop and change the increment
counter accordingly.

funrol | -1 oops enables both

f st rengt h-reduce and
frerun-cse-after-1 oop.

Optimizes the dispatch of virtual
functions. This optimization can be
used only in a 2-pass scheme. By
default, this optimization is not
enabled. This optimization can be

used only when certain conditions are
met. See “Optimizing Virtual
Function Dispatch” in Chapter 12 for
more details. This is a C++-specific
option.

Consider/do not consider all memory
references through pointers to be
volatile.

Consider/do not consider all
references to global variables to be
volatile.

gcc960 Compiler Driver 2

f[no-]writable-strings Store/do not store string constants in
the writable data segment and make
them unique. This is for
compatibility with old programs that
assume they can write into string
constants.

G (Big-endian)

Generate big-endian code.

Compile for atarget that uses big-endian memory. This option requires that
Fcof f or Fel f bein effect. This option is also passed to gas960c/gas960e
and gld960. When Gis specified, the preprocessor symbol

__1960_BI G_ENDI AN__ isdefined.

g (Debug)

Specifies debug information.

g [/evel]

where | evel specifiesthe amount of debug information. Note that the
meaning of level varies depending on the object format in use, as described
below.

Using g0 disables debug information. (Thisisthe same as not using the g
option.)

For b.out and COFF, debug level settings of g, g1, g2, and g3 al have the
same effect: they specify “normal” debug information.

2-37

2 i960® Processor Compiler User's Manual

2-38

When the default object-file format (b.out) is selected, DBX-style symbolic
debug directives suitable for use only with gdb960 are output.

For ELF/DWARF, debug level settings of g, g1, and g2 all have the same
effect: they specify all DWARF debug information except preprocessor
macros.

For ELF/DWAREF, adebug level setting of g3 specifies all DWARF debug
information, including preprocessor macros in the debug information. If
your debugger (like gdb960) does not make use of preprocessor macro
information, you can save space in your object files by dropping to
ELF/DWARF debug level 2.

The g (Debug) option does not inhibit optimization. When you specify the
g option but do not specify the O (Optimize) option, the optimization level
defaultsto O0.

Specifying an optimization level higher than G0 can inhibit the effectiveness
of the symbolic debug information. For example, if you set abreakpoint on
asource line that has been removed during optimization, the breakpoint is
never hit. Or if you try to print the value of avariable that has been
optimized away, an erroneous value isdisplayed. In general, asthe
optimization level increases, the reliability of the symbolic debug
information decreases.

When you are using the ELF object module format (Fel f), g causes the
compiler to produce DWARF debug information. This debug information
format is richer than that of other supported OMFs, and allows more
reliable debugging under optimization. However, even with DWAREF, there
are situations where debugging behavior does not agree with the debugging
behavior of unoptimized code.

gcdm,argl,arg]... (Decision Maker)

Invoke gcdm960 optimization decision

gcdm arg[, arg] . ..

gcc960 Compiler Driver 2

The gcdm option provides a high level of automation for whole-program or
profile-driven optimization processes. The compiler driver and the linker
both use the gcdm option and its arguments.

The gcdm option is flexible and powerful, and therefore requires a certain

level of understanding in order to useit effectively. For these reasons, it is
documented in a separate file (“gcdm Decision Maker Option”) in this
manual. Before using the gcdm option, you should read “Program-Wide
Analysis and Optimization”, and become familiar with the information in
“Profile Data Merging and Data Format (gmpf960)”.

| (Searchinclude)
Specifiesinclude file directory.

| directory

Addsdi rect or y to the end of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system
header file directories. When you use more thanl omgtion, the

directories are scanned in left-to-right order; the standard system directories
come after.

I- | I. (Include-dash, Include-dot)

Controls search order and paths.

l-] 1.
Any directories specified with options before the- option are searched
only for#i ncl ude " fil e"; they are not searched fgirncl ude <fil e>.

2-39

2 i960® Processor Compiler User's Manual

2-40

When additional directories are specified with | options after the | -, these
directories are searched for all #i ncl ude directives. (Ordinarily all |
directories are searched this way.)

Thel - option inhibits the use of the current directory as the first search
directory for #i ncl ude " fi/ e". The current directory is searched for
#include "file" only whenitisrequested explicitly with 1. (I "dot"). It
is not searched automatically with | - . Specifying both | - and1. alows
you to control which directories are searched before the current one and
which are searched &fter.

1c960 (iC-960 Compatibility)

Accept iC-960 source dialect.

Accept the same C dialect asic960 R3.0 or later. Note that this does not
make the generated code compatible. To make the generated code
compatible, the mi ¢3. 0- conpat option is necessary. Thisis a C-specific
option.

imacros (Macros File)

Specifies macrosfile.

imacros file

Process f i | e asinput, discarding the resulting output, before processing
theregular input file. Because the output generated from f i / e isdiscarded,
the only effect of i macr os fi/ e isto make the macrosdefinedinfil e
available for use in the main input. Any D and U options on the command
line are always processed beforei macr os fi / e, regardless of the order in

gcc960 Compiler Driver 2

that they are written. All thei ncl ude and i nacr os options are processed
in the order in that they are written. All i macr os options are processed
beforeall i ncl ude options.

include (Preinclude File)

Specifiesfile for preinclusion.

include file

Process f i | e asinput before processing the regular input file. In effect, the
contents of fi / e are compiled first. Any D and U options on the command
line are always processed beforei ncl ude fi / e, regardless of the order in
that they are written. All thei ncl ude and i nacr os options are processed
in the order in that they are written. All i macr os options are processed
beforeall i ncl ude options.

j (Errata)

Specifies processor errata.

j num
Usethej (Erratd) option to cause the compilation system to generate code

with workarounds for specified processor errata. A numargument of 1
generates code to work around the Cx processors DMA errata.

2-41

2 i960® Processor Compiler User's Manual

2-42

L (Library Directory)

Specifies directory for library search.

L directory

Adds di rect or y to thelist of directories to be searched for libraries. See
the 1960 Processor Software Utilities User’s Guide for a complete
explanation of the directory search order.

| (Library)

Soecifieslibrary for linking.

I I'ibrary

Search a standard list of directoriesfor alibrary file named
liblibrary.a.Thelinker usesthisfileasif it had been specified
precisely by hame.

Several standard directories are searched, plus any that you specify with L.

Normally the files found this way are library files — archive files whose
members are object files. The linker handles an archive file by scanning
through it for members that define symbols that so far have been referenced
but not defined. However, when the file found is an ordinary object file, it is
linked in the usual fashion. The only difference between usingapotion

and specifying a filename is thatsearches several directories. Under

normal operation, gcc960 supplies the optiogfs, | ¢, andl mto the linker.

For architectures without floating-point support, the optibris also

passed to the linker.

gcc960 Compiler Driver 2

M | MD | MM | MMD (Make)

Generate make tool output.

M Tells the preprocessor to output arule suitable for a
make tool describing the dependencies of each source
file. For each source file, the preprocessor outputs one
make rule whose target is the object filename for that
source file and whose dependencies are al the files
#i ncl udedinit. Thisrule can be asingle line or can be
continued with\ newl i ne if itislong. Using thisoption
stops compilation after preprocessing.

MM Like M but the output mentions only the user-header
filesincluded with #i ncl ude " fi I e". System header
filesincluded with #i ncl ude <fi | e> are omitted.

The Mand MM options output the dependecy information to stdout.

The MD and MVD options behave in afashion similar to the Mand MMoptions
respectively. However, the MD and MVD options write the dependency
information to the file filename.d instead of to stdout wherefilename is the
name of the C/C++ source file without the filename extension. These
options cause a separate dependency file to be generated for each of the
C/C++ sourcefiles.

These options stop compilation after preprocessing. The Mand MMoptions
also suppress the preprocessor output.

2-43

2 i960® Processor Compiler User's Manual

2-44

m (Machine-specific Options)

Various options.

mst ring
mabi

masm conpat

Specifies a machine-specific option.

Generate 80960 ABI-conformant code. This
causesthe char type to be signed, enums to be
four bytesin size and signed, and changes
default alignment rules for structs and unions.
See “C Language Implementation” for more
information.

Generate special Intel pseudo-operations for
long compare-and-branch operations. gas960,
gas960c, or gas960e do not require these
pseudo-ops in order to generate correct code,
but the ASM960 R3.5 or earlier assembler
generates out-of-range errors for these
instructions when this option is not used. This
should not be used with gas960, gas960c, or
gas960e, because thdispompare-and-branch
instructions are slower and larger than the
combined ones.

gcc960 Compiler Driver 2

ncave Generate all functions as CAV E secondary.
When you select ntave, the compiler generates
specia CAVE entriesfor all functionsin the
compilation unit. This prepares the functions
for link-time compression. The cave entries
resemble the following:

.section .text
_foo:
| da L1, reg
cal l __dispatcher
ret
.section cave
.word L2-L1,0
L1:
function body
L2:

At runtime, the dispatcher decompresses the
function bodies and transfers control to them.
This mechanism saves runtime memory.

See the discussion of #pr agnma cave in “C
Language Implementation” for information on

this option.

ncnpbr | Generate/do not generate code that uses

nmo- cnpbr compare-and-branch instructions whenever
possible.

ncode-al i gn | Generate/do not generate alignment directives

mo- nocode-al i gn prior to labels that are not entered from above.
ncode- al i gn is the default when the Cx or Hx
architecture is specified.

2-45

2 i960® Processor Compiler User's Manual

nmcor e0 | ntorel | generate code that is compatible with multiple

nmcore2 | ncore3 | 1960 processor types. Additionally, when you
use an - ncor e option, you can include another
- A switch to generate code that is optimized for
aparticular architecture, but still compatible
with a group of architectures. The table below
liststhearchitecturesthat are supported by each
-ntor e option and the - A options that you
can use with them.

Table 2-5 Mcore Supported Architectures

Option Name Compatible Architectures Can Be Used With

mcore0 Jx, HXx, Rx -AJA - AJD, - AJF, - AJT,
- AHA, - AHD, - AHT,
- ARD, - ARP, - ARM - ARN,

or - AVH* .

mcorel Kx, Sx, Cx, Jx, Hx Any architecture option
except - ARP, - ARD, - ARM
or- ARN.

mcore2 Jx, Hx -AJA -AJD, - AJF, - AJT,
- AHA, - AHD, - AHT or
- AVH* .

mcore3 Cx, Jx, Hx - ACA, - ACF, - AJA - AJD,
-AJF - AJT, - AHA, - AHD,
- AHT or - AVH*.

* Note that the big-endian mode is not supported for VH.

mdoubl e4 Generate code so that the size and alignment of
doubl e isthesameasf| oat .

m ong- doubl e4 Generate code so that the size and alignment of
| ong doubl e isthesameasf | oat .

2-46

gcc960 Compiler Driver 2

NOTE. Thendoubl e4 andm ong- doubl e4 options force floating-point
arguments to be passed in single-precision format. When your source
program explicitly calls functions (such assi n and pri nt f) that require
double-precision or extended-precision arguments, the arguments passed
to these functions are incorrect.

m 960_al i gn=n Alignsstruct dataon the byte boundary
that isamultiple of n. (Lega valuesare 1,
2,4,8,16))

m c- conpat Useic960 R2.0’srules for size and

m c2. 0- conpat alignment of types. This option also causes

the compiler to use the ic960 compiler’s
rules for promotion of char, unsi gned
char, short,and unsi gned short
types at function call and return.

m c¢3. 0- conpat Useic960 R3.0'srules for size and
alignment of types and other conventions.
These arelargely the same as gcc960's, but
1960 R3.0 selects the size of enuns based
on their value. Additionally, ic960 R3.0
assumes that type char issigned by default,
whereas gcc960 assumes it is unsigned.
Theni ¢3. 0- conpat option emulates
ic960's behavior.

2-47

2 i960® Processor Compiler User's Manual

m eaf - procedures | Generate/do not generate output that

mo- | eaf - procedures containsleaf procedures: these are

m ong-cal | s

npi ¢

npi d

nmpi d-saf e

2-48

procedures that may be entered with the
bal instruction rather thancal | . The
linker automatically promotescal |
instructionsinto bal instructions when
appropriate. This option makes debugging
more difficult. nl eaf - pr ocedur es isthe
default at O2 or higher.

Generate all call instructionsascal | j x
instead of cal | j . Thisisused where the
distance between the call site and the
called function may exceedcal | j 'srange.
Using this option degrades code execution
speed and increases code size.

Generate position-independent references
to any objectsin the text section. Such
objects are functions, const file-scope
variables, switch tables, and strings.
Position independent code references are
made relative to the current instruction
pointer (IP).

Generate position-independent references
to objectsin the bss, common, and data
sections. Such objects are non-const
file-scope variables, and strings when the
fwritabl e-strings optionisused.
Position independent data references are
maderelativeto register g12. Register g12
is not used for any other purpose.

Reserve register g12 as the position
independent data bias register, but do not
generate code for position independent
data.

gcc960 Compiler Driver 2

msof t - f | oat Generates output containing library calls
for architectures without on-chip floating
point support (all except KB, SB). Thisis
set automatically, based on the architecture

option.
mstrict-align| This option determines whether or not the
mo-strict-align compiler risks generating memory

references that are not provably aligned.
Whennstrict-al i gnisdisabled, the
compiler occasionally generates
potentially unaligned references when it
seems advantageous to do so. When
mstrict-alignisenabled, sequences of
smaller memory references are used
instead of larger ones that might not be
correctly aligned. The default is on for
1960 Cx and Jx processors.

mstrict-ref-def Generate code so that an uninitialized
file-scope variable definition causes space
tobe alocated inthe . bss section instead
of asa. conmsymbol. This enforces a
single unique definition of a variable.

ntail-call | Generate output that converts (does not

mo-tail -call convert) cal | instructionsimmediately
followed by r et instructions to branches
to the call target. While generating faster
code, this option makes debugging more
difficult. nt ai | - cal | isthe default at O2
or higher.

miai t =n Specifies the expected number of
wait-states for the memory being used in
the target. This can make a differencein
which optimizations are cost-effective and
in the instruction scheduling optimization.
n must bein the range 0.32.

2-49

2 i960® Processor Compiler User's Manual

2-50

nostdinc (No Standard Header Files)

Do not use standard header files.

Do not search the standard system directories for header files. Only the
directories specified with I options (and the current directory, when
appropriate) are searched. Using nost di nc and | -, you can eliminate all
directories from the search path except those you specify.

nostdlib (No Standard Libraries)

Do not use standard libraries.

Excludes standard libraries.

O (Optimize)

Specifies optimization level.

g level]

The d I evel] option specifies the level of optimization as described be-

low.

0] Turns optimization off, and additionally disables default
optimizations that may interfere with debugging. Thisis
the default.

Oor 01 These options enable basic optimizations, including:

advanced register allocation, common subexpression
elimination, loop invariant code motion, expression
simplification and instruction combination, jump

gcc960 Compiler Driver 2

optimization, dead-code elimination, and 1960
processor-specific peephole optimization. O1 is
equivaent to O. Thisisthe default setting when you use
thef db (Program Database) or f pr of (Instrument)
option.

Thislevel includes the Oor OL optimizations described
above, and the following additional optimizations:

f copypr op, f condxformfcse-fol | owjunps,

f cse-ski p- bl ocks, f expensi ve-optini zati ons,
frerun-cse-after-1oop,fschedul e-i nsns,

f schedul e-i nsns2, f shadow gl obal s,

fstrengt h-reduce.

The @ level enables strength-reduction, combination of
more than one variable value into a single register, copy
propagation, tail-call elimination, |eaf-procedure
optimization, and instruction reordering (scheduling) to
make use of the particular i960 processor’s pipeline and
superscalar capabilities.

Thislevel includes the @ optimizations described
above, and the following additional optimizations:

fcoerce,fconstprop,finline-functions,
f shadow mem funrol | -1 oops.

Thislevel includes the O3 optimizations described
above, and the following additional optimizations:

fcoal esce,fmarry_memfsplit_nmem

This setting specifies program-wide optimization.

Before using the C6 option, you should read
“Program-Wide Analysis and Optimization”, and “gcdm
Decision Maker Option”.

Note that theds level is not accepted directly by the
gcc960 driver. It is accepted only in thebst argument
of thegcdmoption.

2-51

2 i960® Processor Compiler User's Manual

2-52

0 (Output)

Specifies output filename.

o filename
Specifies output filename.

P (Preprocessor Output)

Preprocessor output control.

Inhibits generation of #-lines with line-number information in the output
from the preprocessor. Thisis useful when running the preprocessor on
non-C/C++ code that is intended for a program that might be confused by
the #-lines.

pedantic[-errors] (Pedantic)

Controls ANS messages

pedant i ¢ causesthe compilation system to issue all the warnings specified
by ANSI C (such as when text other than a comment follows #el se or
#endi f) and to reject programs that use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without
this option (though arare few requireansi). However, without this option,
certain GNU extensions and traditional C features are supported as well.
With this option, they are rejected.

pedant i ¢ does not cause warning messages for use of the alternate
keywords whose names begin and end with _ _ (double underscore).

gcc960 Compiler Driver 2

pedanti c-errors isthesameaspedanti c, except that it causes the
compilation system to issue errorsinstead of warnings.

S (Assembly)

Create assembly output.

Compile into assembly code but do not assemble. The assembly output
filename is made by replacing . c, . cc, .cpp, .cxx,. i, or .ii,
with. S, or . s a the end of the input filename. Do nothing for assembly
source files or object files specified as input.

save-temps (Save Intermediates)

Save intermediate files.

Store the usual “temporary” intermediate files permanently; place them in
the current directory and name them based on the source file. Thus,
compilingf oo. ¢ with-c -save-t enps would produce file§ oo.i and

f 0o. s, as well asg oo. o.

2-53

2 i960® Processor Compiler User's Manual

stdlibcpp

Link Sandard C++ libraries

Instructs the compiler to link in the standard C++ libraries when creating an
absolute module. The standard C++ libraries are included in the search path
ahead of the standard C libraries. The distribution includes only an
implementation of the C++ iostream classes. Future releases will add more
modules. Note that this option has no effect if nost dl i b isspecified.

T (Target)
Soecifies. gl d file.

Tstring where st r i ng identifies atarget-specific configuration
file, string. gl d.

Causes gce960 to configure itself for a specific target board.

traditional (Traditional)

Allow traditional C.

Attempt to support some aspects of traditional C compilers, specifically:

® All ext ern declarations take effect globally even when they are
written inside of a function definition. Thisincludes implicit
declarations of functions.

®* Thekeywordstypeof,inline,signed, const,andvol atil e are
not recognized.

2-54

gcc960 Compiler Driver 2

® Integer typesunsi gned short and unsi gned char promote to
unsi gnedint.

* All automatic variables not declared r egi st er are preserved by
| ongj np. Ordinarily, GNU C follows ANSI C: automatic variables not
declared vol at i | e may be clobbered.

® Inthe preprocessor, comments convert to nothing at al, rather thanto a
space. Thisallows traditional token concatenation.

® Inthe preprocessor, macro arguments are recognized within string
constantsin a macro definition (and their values are stringified, though
without additional quote marks, when they appear in such a context).
The preprocessor always considers a string constant to end at a
newline.

® Thepredefined macro _ _STDC__ is not defined when you use
traditional,but__GNUC__ is(sincethe GNU extensions that
_ _GNUC_ _ indicates are not affected by t r adi t i onal). When you
need to write header files that work differently depending on whether
traditional isinuse, by testing both of these predefined macros
you can distinguish four situations: GNU C, traditional GNU C, other
ANSI C compilers, and other C compilers.

® For C++ programs, t radi ti onal hasthe same effect as
-fthis-is-variabl e aswell asall the effects described above.

The following table summarizes the macros defined when the
traditional oransi optionisused.

__STRICT ANSI__~__STDC__ __GNUC__
traditional X
ansi X X X
none X X

2-55

2 i960® Processor Compiler User's Manual

2-56

trigraphs (Trigraphs)
Support ANS C trigraphs.

Process ANSI standard trigraph sequences. These are three-character
sequences, all starting with ??, that are defined by ANSI C to stand for
single characters. For example, ??/ standsfor\, so’??/n’ isacharacter
constant for a newline.

Theansi option also enables trigraphs.

U (Undefine)

Undefines a preprocessor macro.

Umacro
Undefines the named preprocessor macro.

gcc960 Compiler Driver 2

V (Version)

Display tool version numbers.

v (Verbose)

Display tool version numbers and
subprocess commands.

v960 (Version, exit)

Display tool version numbers and exit.

2-57

2 i960® Processor Compiler User's Manual

W (Warnings)

Enables/ disables specific warnings.

W st ring]

w With no arguments, this option prints extra
warning messages for certain events,
including:

| ongj np() war ni ngs

Warn when a nonvolatile automatic variable
might be changed by acall to | ongj np() .
These warnings are possible only in an
optimizing compilation.

The compiler sees only the callsto

setj nmp() . It cannot know where

| ongj nmp() iscaled; infact asignal handler
could call it at any point in the code. Asa
result, you may get a warning even when
thereisin fact no problem because

| ongj mp() cannot actually be called at the
place that would cause a problem.

returnandreturn(val ue)

Warn when a function can return either with
or without avalue. (Falling off the end of the
function body is considered returning with a
value)

2-58

gcc960 Compiler Driver 2
W (continued) null effect

Warn when an expression-statement contains
no side effects.

Nno-op comparison

Warn when an unsigned value is compared
against zero with < or <=,

between-ness comparison

Warn when a comparison like x<=y<=z i s
used; thisisequivalentto { (x<=y ? 1 :

0) <=z}, whichisadifferent interpretation
from that of ordinary mathematical notation.

obsolete stor age class specification

Warn when storage-class specifiers like
st ati c arenot first in adeclaration.
According to the ANSI C standard, this
usage is obsolescent.

partially bracketed initializer

Warn when an aggregate has a partially
bracketed initializer.

val | Enable the following warning options: W
Wehar - subscri pt s,Womrent , W or mat ,
W eturn-type, Ww tch, Wri graphs,
Wini nitialized, Winused. Thereisno
Wo- al | option.

Waggregate-return Warn when any functions that return
structures or unions are defined or called.

Wast-align Warn whenever apointer is cast such that the
required alignment of the target is increased.
For example, warn when achar * iscast to
anint * on machines where integers can be
accessed only at two- or four-byte
boundaries.

2-59

2 i960® Processor Compiler User's Manual

Wast - qual Warn whenever a pointer is cast so asto
remove atype qualifier from the target type.
For example, warn when aconst char * is
cast to an ordinary char *.

Wehar - subscripts Warn when an array subscript hastypechar .
Thisisacommon cause of error, as
programmers often forget that thistypeis
signed on some machines.

W oment Warn whenever a comment-start sequence
/ * appearsin acomment.

Weonver si on Warn when a prototype causes a type
conversion different from what would
happen to the same argument in the absence
of a prototype. Thisincludes conversions of
fixed point to floating and vice versa, and
conversions changing the width or
signedness of afixed point argument, except
when these are the same as the default

promotion.
V\ér r or Make all warnings into errors.
W or nat Check callstoprintf andscanf, etc., to

make sure that the arguments supplied have
types appropriate to the specified format
string.

W d-cl ash-/ en Warn whenever two distinct identifiers
match in thefirst / en characters. This may
help you prepare a program that compiles
with certain obsolete compilers. Thereisno
[no-] form of this option.

W nplicit Warn when a function is used without being
explicitly declared.

Whi ssi ng- braces Warn when an initializer is not completely
enclosed within braces.

2-60

gcc960 Compiler Driver 2

Whi ssi ng-prototypes Warn when aglobal function is defined
without a previous prototype declaration.
Thiswarning isissued even when the
definition itself provides a prototype. The
aim isto detect global functions that are not
declared in header files.

Whest ed- ext er ns Warn when an ext er n declaration is
encountered within a function.

Wover | oaded- vi rt ual Warn when a derived class function
declaration may be an error in defining a
virtual function. In a derived class, the
definitions of virtual functions must match
the type signature of a virtual function
declared in the base class. With this option,
the compiler warns when you define a
function with the same name as avirtua
function, but with a type signature that does
not match any declarations from the base
class. Who- over | oaded- vi rt ual isthe
default. Thisis a C++-specific option.

War ent heses Warn when parentheses are suggested around
an expression.
Wooi nter-arith Warn about anything that depends on the size

of afunction type or of voi d. gcc960 assigns
these types asize of 1, for conveniencein
calculations with voi d* pointers and
pointers to functions.

W edundant - decl s Warn when anything is declared more than
once in the same scope, even in cases where
multiple declaration is valid and changes
nothing.

W eor der Warn when the order of member initializers
given in the code does not match the order in
which they must be executed. Who- r eor der
isthe default. Thisis a C++-specific option.

2-61

2 i960® Processor Compiler User's Manual

W et urn-type Warn whenever afunction is defined whose
return-type defaultstoi nt . Alsowarn about
any r et ur n statement with no return-value
in afunction whose return-typeisnot voi d.

Wswi t ch Warn whenever aswi t ch statement has an
enumeral typeindex and lacksacase for
one or more of the named codes of that
enumeration.

Wshadow Warn whenever alocal variable shadows
another local variable.

Wst ri ct - pr ot ot ypes Warn when afunction is declared or defined
without specifying the argument types. An
old-style function definition is permitted
without awarning when it is preceded by a
declaration specifying the argument types.

Wradi tional ® Warn about certain constructs that
behave differently in traditional and
ANSI C:
M acro arguments occurring within string
constants in the macro body. These
would substitute the argument in
traditional C, but are part of the constant
in ANSI C.

* A function declared external in one
block and then used after the end of the

block.
* A switch statement has an operand of
type long.
W ri graphs Warn when any trigraphs are encountered

(assuming they are enabled).

2-62

gcc960 Compiler Driver 2

Wininitialized An automatic variable is used without first
being initialized. These warnings are
possible only in an optimizing compilation,
because they require data flow information
that is computed only when optimizing.
When no O option is given, these warnings
are not generated.

These warnings occur only for variables that
are candidates for register allocation.
Therefore, they do not occur for a variable
that isdeclaredvol at i | e, or whose address
istaken, or whose sizeisother than 1, 2, 4, or
8 bytes. Also, they do not occur for
structures, unions, or arrays, even when they
areinregisters.

There may be no warning about avariable
that is used only to compute a value that
itself is never used, because such
computations can be deleted by data flow
analysis before the warnings are printed.

2-63

2 i960® Processor Compiler User's Manual

Wininitialized

(continued)

2-64

These warnings are optional because gcc960
cannot foresee al the reasons why the code
might be correct despite appearing to have an
error. Hereisone example of how this can
happen:

{
int Xx;
switch (y)
{
case 1. x = 1;
br eak;
case 2. x = 4;
br eak;
case 3: Xx

}

foo (x);

1
ol

}

When the value of y isalways 1, 2 or 3, then
x is always initialized, but gcc960 doesn’t
know this. Here is another common case:

{

int save_y;
if (change_y) save y =y, y =
new.y;

if (change_y) y = save_y;
}

This has no bug becausave_y is used
only when it is set.

Some spurious warnings can be avoided if
you declare as vaiie all the functions/ou
use that never return.

gcc960 Compiler Driver 2

Winused Warn whenever a local variable is unused
aside from its declaration, and whenever a
function is declaredt at i ¢ but never
defined.

Wwmite-strings
Give string constants the typenst
char [/ engt h] so that copying the address
of one into a noronst char* pointer
generates a warning.

w (Inhibit Warnings)

Inhibits all warnings.

Z (Specify PDB)

Specifies PDB directory.

Zdirectory
Specifies the name of the program database (PDB) directory.

Before using this option, you should read “Program-Wide Analysis and
Optimization”, “Profile Data Merging and Data Format (gmpf960)”, and ,
“gcdm Decision Maker Option”.

2-65

1c960 Compiler Driver

This chapter describes how to use the ic960 driver program to control the
compilation system. Topics include:

* “Controlling the Compilation System with ic960”

®* “ic960 and File Use”

®* “ic960 Options”

®* “Option Arguments and Syntax”

Controlling the Compilation System with ic960

The ic960 compiler driver £960. exe in Windows,i c960 on UNIX)
controls the preprocessarpp. exe in Windows,cpp. 960 on UNIX) and
the compiler §c1. exe in Windows,cc1. 960 on UNIX). Starting with
CTOOLS release 6.0 ic960 also controls the new C++ compiler
(cclplus.exe in Windows, cclplus.960 on UNIX). It can also invoke the
assembler, linker, and gcdm960 optimization decision maker. The
command-line options and environment variables, described later in this
chapter, allow you to control the compilation.

The drivers invoke the appropriate modules to compile a file based on
filename extensions.

* Fileswith namesending with. cc, . cpp, and . cxx aretaken as C++
source to be preprocessed and compiled. In UNIX, filenames ending
with . C (uppercase) are treated as C++ source to be preprocessed and
compiled.

®* Fileswith namesending with . ii aretaken as preprocessed C++
source to be compiled

31

3i960® Processor Compiler User’s Manual

®* Fileswithnamesendingin. c aretaken as C source to be preprocessed

and compiled.

* Fileswith namesendingin.i aretaken as preprocessor output to be
compiled.

® Compiler output files plus any input files with namesending in. s are
assembled.

® |nput fileswith names ending in . S (uppercase) are preprocessed and
then assembled. (UNIX only.)

® Theresulting object files, plus any other inpuit files, are passed to the
linker to produce an executable.

®* Program-wide and profile-directed optimizations can be performed
during the link step. For an overview of this capability, see Chapter 4,
“Program-Wide Analysis and Optimization”.

Invoking the Compiler with ic960
The ic960 command-line syntax is:

ic960 [-option])... [pathlfilenane ...
i 960 is the compiler driver executable filename.
option is a compiler option. Case is significant in options and

their arguments.

On UNIX, the compiler driver recognizes a letter
preceded by a hyphen)(as an option. In Windows, the
driver recognizes a letter preceded by either a hyphen
(-) or a forward slash {j as an option.

For a complete description of the ic960 options, see the
ic960 Option Reference section. You can also use linker
invocation options in an ic960 command; see Table 3-1
for a summary of these options.

pat h identifies the directory containing the file named by
fil enane. Not specifyingpat h for afil enane
causes ic960 to search in the current directory. Each
fil ename not in the current directory requires a
separate specification ptt h.

3-2

ic960 Compiler Driver 3

E NOTE. Although Windows pathnames reguire backslashes (1), this
manual shows paths using the forward slash required by UNIX (/).

filename is the name of a source, assembly-language, or object
file to be processed by the compilation system. The
command line alows specification of more than one
[pathl] fil enane.

Table 3-1 lists the linker options that ic960 passes directly to the linker. To
pass other options to the linker, usethe W, ar g pass-through option.

1c960 Sample Command Lines

This section provides examples of how the compiler is commonly invoked.
All these examples assume that you have C source filesnamedt 1. ¢ and

t 2. ¢ or C++ sourcefilesname t 1. cc and t 2. cc. All examples assume
that you are generating code for the 1960 CA architecture.

Preprocessing a Source File
To preprocess a source file to stdout, use the command:

ic960 -Etl.c

or

ic960 -E tl.cc

-E informs the compiler to preprocess the sourcefile.

Generating a Preprocessed C++ Source File

To generate a preprocessed C/C++ source file use the following command.
The command generates a preprocessed source filenamedt 1. i (for C) or
t1l.ii (for C++).

ic960 -Ptl.c

or

ic960 -P tl.cc

3-3

3i960® Processor Compiler User’s Manual

34

-P instructs the ic960 compiler to preprocess the file and
store the output in <basenane>. i for C or
<basename>.ii for C++.

Generating Assembly Code

This example generates assembly code for thei960 CA architecture. The
command lines below each generate an assembly language file named
tl.s.

ic960 -S -ACA tl.c

or

i c960 -Felf -S -ACA tl.cc

-Fel f specifies ELF object module format, which is required
for C++. The default object module format is b.out.

-S instructs the compiler to generate assembly code.

- ACA specifies the i960 CA architecture.

Generating an Object Module with Debug Information

To generate a object module with debug information, use the following
command.

ic960 -¢c -g -ACAtl.c

or
ic960 -Felf -c -g -ACAtl.cc

-g instructs the compiler to generate debug information.
-C instructs the compiler to generate an object file.

Generating an Executable

To generate an absolute module (executablefile) for a Cyclone board with a
CA processor, use the following command.

i c960 -ACA -Tcycx -g -OL tl.c t2.¢c -0 test
or
ic960 -Felf -ACA -Tcycx -g -0OL tl.cc t2.cc -0 test

ic960 Compiler Driver 3

The above command compiles the source files and links them with
appropriate libraries to generate an absolute module targeted for a Cyclone
1960 Cx board.

-Teycex use the linker directive file for a Cyclone i960 Cx
evaluation board.

-0L causes the compiler to perform some basic
optimizations on the generated code.

-0 test instructs the compiler to name the generated executable
test.

1c960 Linker Options

Table 3-1

When you do not specify atarget withthe Tt ar get option, ic960 does not
attempt to link programs for a specific target board. Unless otherwise
specified, source files with recognized extensions (e.g., . cc, .s) are
compiled and/or assembled, and the following linker command is i ssued:

I nk960 -AKB file.o... -Ildf

ic960 linksin the profiling library (- | gf) by default. To avoid linking in the
profiling library, invoke Ink960 directly to perform your final link. You can
also link in your own libraries (libl, lib2...) if needed.

I nk960 -AKB file.o... -l1libl -11ib2

You can invokeic960 to create object filesin either the COFF or ELF aobject
module format. The compilation system acceptsthe Fcoff option to
generate COFF and the Fel f option to generate ELF. ELF isthe only
supported format for C++.

Fcof f isthe default. For more detailed information, see the following
discussions of compiler invocation and options.

Linker Options Accepted by ic960 (Sheet 1 of 2)

Option Name Description

I Archive file specifies an archive file as input.

X Compress removes local symbols from the output
symbol table.

3-5

3i960® Processor Compiler User’s Manual

Table 3-1 Linker Options Accepted by ic960 (Sheet 2 of 2)

Option Name Description

L Library search adds directories to search for libraries,
configuration files, and startup object files.

m Map creates a linker memory map file.

r Relocation retains relocation information in the output
object file.

S Strip strips line-number entries and symbol-table

entries from the linker's COFF output file.

T Target specifies the file describing the target
environment.

u Undefine introduces an unresolved symbol, causing the
linker to search symbol tables for resolution of
the reference.

gcdm Decision invokes gcdm960 decision maker.
Maker

For more information on the linker, see the i960 Processor Software
Utilities User’s Guide

ic960 and Predefined Macros

Predefined macros within a program can act as constants during execution
or as values in conditional-compilation statements. Predefined macros
include ANSI C macros and macros specific to the i960 processor
architecture. The U (Undefine) option can remove i960 processor-specific
macros but not ANSI C macros.

The following macros are available in accordance with the ANSI standard
for C, as described in the book, C: A Reference Manual
__DATE__ __FILE__ __LINE__ __TIME__ __STDC

The following macros are predefined by the compilation system when
invoked with the ic960 driver program:

__lco60 indicatesthe CTOOL S960 compilation system.

The compiler defines __ 1 C960 automaticaly,
when invoked with the ic960 driver.

3-6

ic960 Compiler Driver 3

__1C960_VER is defined to a decimal number that can be used
to check the version number of the compiler.
The number is expressed in decimal as
MrmPPPP, where Mis the magjor version number,
nmis the minor version number, and PPPPis an
internal version number that is used to track the
patch level. So, for example, R6.5 patch level
4008 has __1 C960_VER defined to be 6054008.

__i960 indicates the i960 processor environment. The
compiler defines __i 960 automatically. This
macro can be used to identify the parts of a
program specific to the i960 processor.

__1960xx indicates the 1960 processor instruction set in
use. The compiler automatically defines the
__1960xx macro. The xx isSA, SB, KA, KB,
CA, CF, JA, JD, JF, JT, HA, HD, HT, RD, RP, RM
RN, or VH. Definition of xx dependson the
specific 1960 processor instruction set specified
by the A (Architecture) option or the | 960ARCH
environment variable.

_PIC indicates that the generated code is
position-independent. The Gpc
(Generate-for-position- independent-code)
option causesthe __PI C macro to be defined.

_PID indicates that the generated dataiis
position-independent. The Gpd
(Generate-for-position- independent-data)
option causesthe __PI D macro to be defined.
__i960_ABlI __ indicates that the generated code is 80960
ABI-Conformant. The Gabi option causes this
macro to be defined.

__1960_BI G_ENDI AN indicatesthat the generated code is arranged for
big-endian address space. The G be
(Generate-big endian) option causes this macro
to be defined.

3-7

3i960® Processor Compiler User’s Manual

3-8

__STRICT_ANSI __
~_STRICT_ANSI

__SI GNED_CHARS__

indicates that C constructs not conforming to
the ANSI standard should be flagged. The a
(ANSI) option causes these macros to be
defined.

indicates that the plain char type are treated
likethesi gned char type. Thisisthe default.

__CHAR UNSI GNED__ indicates that the plain char type are treated

liketheunsi gned char type. TheG cu
(Generate-char-unsigned) option causes this
macro to be defined instead of

__SI GNED_CHARS__.

ic960 and Environment Variables

Environment variables

specify default directories for input files, temporary

files, libraries, the assembler, and the linker. In addition, the | 960ARCH
environment variable specifies the default architecture. The compilation

system uses the foll owi
| 960ARCH

| 960BASE

ng environment variables to set defaults:

specifies an architecture other than the i960 KB
processor for code generation. The possible
definitionsfor | 960ARCH are CA, CF, HA, HD, HT, KA,
KB, RD, RP, SA, SB, JA, JD, JF, JT,RM RN, or VH.
The A (Architecture) option overrides the
architecture specified in | 960ARCH. In the absence
of I 960ARCH and the Architecture option, the
compiler selects thei960 KB processor architecture.

contains the pathname of the top-level directory
containing the files and directories needed by the
compiler. Thisenvironment variable is necessary
for every phase of compilation. The driver uses

| 960BASE to find the preprocessor, compiler,
assembler, linker, and include files.

To invoke the preprocessor and compiler, the ic960
driver looksinthel i b directory under 1 960BASE.

ic960 Compiler Driver 3

To invoke the assembler and linker, the driver looks
inthebi n directory under the directory specified by
| 960BASE.

To find include files, the driver looks in the
i ncl ude directory under the directory specified by
| 960BASE.

The linker looks for libraries, startup modules, and
configuration filesinthel i b directory under the
directory specified by | 960BASE.

| 960AS specifies a non-default pathname for the assembl er.
The pathname must i nclude the name of the
executable. In the absence of | 960AS, ic960 looks
for the assembler in bi n under the directory
specified by | 960BASE.

| 960CC1PLUS Specifies an alternate name for the C++ compiler
when using the ic960 driver. The default pathname
iS1 960BASE/ | i b/ cclpl us. 960
(1 960BASE\ | i b\ cc1pl us. exe in Windows).

| 960CPP specifies an aternate name for the preprocessor.
The default pathnameis| 960BASE/ | i b/ cpp. 960
(1 960BASE\ | i b\ cpp. exe in Windows).

| 960CC1 specifies an aternate name for the compiler. The
default pathnameis| 960BASE/ | i b/ cc1. 960
(1 960BASE\ | i b\ cc1. exe in Windows).

| 960DM specifies an aternate name for the gcdm960
optimization decision maker.

| 960ERR The assembler, linker, and other tools can redirect
errorsto the standard error stream (st der r). To use
this capability, set the Windows environment
variable | 960ERRto any string, asin:
SET | 960ERR="Enabl e stderr"
Leaving | 960ERR unset directs error output to the
standard output stream (st dout).

3-9

3i960® Processor Compiler User’s Manual

3-10

1 9601 NC

1 960LI B, 1 960LLI B

1 960LD

| 960PDB

specifies a non-default pathname for the directory
containing include files. In the absence of

I 9601 NC, the driver looks for include filesin the

i ncl ude directory in the directory specified under
| 960BASE.

contain additional pathnames of libraries.
Definition of 1 960LI B causes the linker to search
for libraries in the directory specified by 1 960LI B.
In the absence of 1 960LI B, the linker searches the
l'i b directory inthe directory specified by

| 960BASE. Definition of | 960LLI B causes the
linker to search the directory specified by

| 960LLI B before searching thel i b directory in the
directory specified by | 960BASE. For a complete
description of the search algorithm used by the
linker, see the 1960 Processor Software Utilities
User’s Guide.

contains an alternate pathname of the linker. The
path must include the name of the executable. Inthe
absence of 1 960LD, ic960 looks for the linker in the
bi n directory under the directory specified by

| 960BASE.

defines the location of the program database for use
with profile-driven optimizations. The Yd (Program
Database) option overrides this environment
variable and allows specification of an alternate
database directory.

TEMP, TMP, TMPDI R, contain the pathname of the directory used for

&@60TVP

compiler temporary work files. In the absence of
these variables, the compiler attempts to write
temporary work files to the current working
directory in Windows, andto/t mp or / usr/ t np on
UNIX.

ic960 Compiler Driver 3
ic960 and File Use

The compiler, assembler, and linker all use filenames specified on the ic960
command line to find and create input and output files. In addition,
translation and linking require temporary work files. Environment
variables allow specification of default directories for work files.

Input Files

The ic960 command line alows filename inputs that support specification

of assembly-language files, preprocessed source files, C/C++ sourcefiles,

object files, and libraries. The compiler driver determines the type of each
input file by the filename extension, as follows:

filenane.c indicates a C source file that can contain macros and
preprocessor directives.

filenanme.cc, .cpp, indicatesa C++ sourcefilethat can contain
. CXX macros and preprocessor directives.

filenane.C indicates a C++ source file that can contain macros and
preprocessor directives (UNIX only).

filenane.i indicates a preprocessed C sourcefile.
filenane.ii indicates a preprocessed C++ sourcefile.
filenane.s indicates an assembly-language source file.

The driver passes any other filename to the linker. The linker then
determines whether the fileis an object file, library, or configuration file.

Input files not needed for processing are not processed. For example, if you
specify an assembly-language (f i I enane. s) file and also specify the S
(Save assembly) stop-after option, ic960 takes no action on the
assembly-language file because processing stops after compilation and
before assembly.

Include Files

The ic960 command line allows insertion of text from include files. Both
thei (Preinclude) option and the #i ncl ude preprocessor directive cause
text insertion.

311

3i960® Processor Compiler User’s Manual

3-12

L)

The #i ncl ude preprocessor directive causes a search of the directory or
directoriesindicated by the | (Searchinclude) option. In the absence of the
I option, ic960 searches the current directory, the directory defined by the

I 9601 NC environment variable, or the | 960BASE/ i ncl ude directory.

NOTE. Theincludefilesi cache. h, dcache. h,and t i mer . h used for
on-chip cache and timer control are not supported with the - ARP option.

Temporary Files

The compiler, assembler, and linker automatically create and delete
temporary work files. You need not remove temporary work files unless
your host system loses power or some other abnormal termination prevents
the compilation system from cleaning up its work files.

The compiler selects adirectory for temporary work files as follows:

G960TMP, TEMP, TMPDI R, TMP, . \ (Windows), / t np (UNIX), / usr/ t mp
(UNIX).

Output Files

Specifying a Stop-after option (- n, - Q - E, - P, - S, or - ¢) causes the
compilation system to produce a separate output file representing the output
of the last phase that completes for each primary input file. An output file
can be apreprocessed source file, an assembly-languagefile, alisting file, a
map file, or an unlinked object file. If no errors occur during processing,
the output files created by the stop-after option are usable as input to a
future ic960 invocation. Table 3-2 lists the compilation phases and their
inputs and outputs.

Specifying the Z (Listname) option allows specification of alist file
filename; ic960 places all listings in the single file specified. 1f you do not
use Z, ic960 produces aseparate list file for each primary C/C++ sourcefile.
Each filename hastheform il e. L, where fi | e isthe same name as the
C/C++ sourcefile.

ic960 Compiler Driver 3

Table 3-2

Intermediate Inputs and Outputs

Last Phase Stop-after
Completed Option Inputs Outputs
preprocessing P, E, or C/C++ source files preprocessed files
Q or display on
standard output
syntax n C/C++ source files syntax error list
checking preprocessed files listing files
compilation S C/C++ source files assembly-language
preprocessed files file
listing files
assembly c C/C++ source files unlinked object files
preprocessed files listing files
assembly files
linking (default) C/C++ source files list files
preprocessed files executable file
assembly files map file

unlinked object files
relinkable object
files

libraries
configuration files

relinkable object file

When specifying only one primary input file, the o (Output) option names a
single output file besidesthe listing file. Specifying multiple primary input
files, or not specifying an output filename, causesic960 to use the primary
input filenames to derive corresponding default output filenames with the
form fi | enane. e, where:

filenane

e

is the primary input filename without its extension.

isasingle-letter extension indicating the contents of a
file, asfollows:

i indicates a preprocessed C source file from the
P (Preprocess-files) stop-after option.

i i indicatesa preprocessed C++ source file from the
P (Preprocess-files) stop-after option.

s indicates an assembly-language file

3-13

3i960® Processor Compiler User’s Manual

3-14

from the S (Save assembly) stop-after
option.

o indicates an object file from thec
(Create-object) stop-after option.

L indicatesalisting file from the
z (List) option.

Unless otherwise specified, the destination directory for any output fileis
the current working directory. If i/ enane. e already existsin the
destination directory, the compilation system overwrites the existing file.

Thefilenamea. out isthe default for the executable COFF object file from
the linker, produced in the absence of the stop-after options and the Output
option. For ELFfiles, thedefaultise. out .

Creating alinker configuration file containing information for preparing an
absolutely relocated module, a module for incremental linking, or code
ready for programming into read-only memory (ROM) allowsfor additional
file types. For more information on linker configuration, see the i960
Processor Software Utilities User’s Guide.

The following examples illustrate the creation and use of output filename

extensions:

® Thecommandic960 -c -zs proto.c protol.i producesthe
object filespr ot 0. 0 and pr ot 01. o and thelisting filespr ot 0. L and
protol. L.

® Thecommandic960 -c -0 proto vl.o -zs proto.c
produces the object file pr ot 0. o and thelisting file pr ot o. L.

® Thecommandi c960 -ACA -Tcycx proto. c producesthe
executable filea. out .

ic960 Compiler Driver 3
1Ic960 Options

This section describes the ic960 compiler driver options that allow control
of various aspects of compilation:

Input processing Thec, E, n, P, Q and S are the Stop-after options.

and output They stop the translation and linking process after

the preprocessing, syntax checking, compilation,
or assembly phase. A Stop-after option causesthe
compilation system to save the intermediate
output of the last phase to execute.

The C (Kegp-comments) and M(Mix) options
affect the contents of the output file. The o
(Output) option allows specification of the output
filename.
Specifying Thei (Preinclude) and | (Searchinclude) options
included source prepend and find include files of C/C++ source
text text.

Defining macros The D (Define) and U (Undefine) options allow
specification of macros for conditional

compilation.
Control contents The A (Architecture), Fcof f / Fel f
of generated Object-format), F (Fine-tune), f (Optimize), g
object code (Debug), G(Generate), and O (Optimization-level)

options control the instruction set, object format,
debug information, and optimization level.

Assembler and The W(Pass) option relays options to the

linker support preprocessor, compiler, assembler, and linker. In
addition, ic960 recognizes some options as linker
options rather than compiler options. Table 3-1
lists the options that are relayed to the linker
without the Pass option. For more detailed
information on linker options, see the 1960
Processor Software Utilities User’s Guide.

3-15

3i960® Processor Compiler User’s Manual

Whole-program Thef db (Program Database)pr of

optimizations (Instrumentation), andcdm(Decision Maker)
options allow for creation and use of information
necessary for advanced optimizations involving
multiple modules and optional execution profiles.
See Chapter 4, “Program-Wide Analysis and
Optimization” for an overview of whole-program
and profile-driven optimization.

Provide Thew (Diagnostic) and (ANSI) options affect
Information on messages the compiler produces about C syntax
the compiling and semantics. The(List) andz (Listhname)
process options specify the contents and name of the

listing file. Thev (Verbose)y (Version), and

v960 (Version-exit) options display information
about preprocessor, compiler, assembler, and
linker options. The Version option displays the
versions of each compilation component and the
host operating system. Th¢(Warnings) option
allows fine control of the level of warnings
emitted.

Option Arguments and Syntax

Some compiler driver options take arguments. Whitespace is optional
between an option and its argument. Caseis significant in options and
arguments.

The options and arguments have default settings. In most cases, the option

is “off,” that is, not in effect. Default settings of options and arguments are
summarized in Table 3-3 and further discussed in the detailed description of
the option. Some option defaults are affected by environment variables, as
noted in the option descriptions.

This chapter uses the following notation:

[item Square brackets indicate that the enclosed item is
optional.

3-16

ic960 Compiler Driver 3

Horizontal dlipsesindicate that you can use multiple
instances of the preceding item.
If two or more options contradict each other, the right-most option in the

command line takes precedence. For example, the following command line
sets the value of the symbol L to 132:

i c960 -DL=80 -DL=132 proto.c

Table 3-3 ic960 Option Summary (Sheet 1 of 2)
Option Name Purpose Default
A arch Architecture Select the instruction set. AKB
a ANSI Warn about non-ANSI source. Do not warn
b size Limit-optimizati Limit optimization of functions with b 2500
ons more than size asm instructions.
C Keep-commen Keep comments in preprocessor output. Strip
ts comments
c Create-object Stop after creation of object file. Do not stop
D symbol Define Define symbol. symbol=1
[=value]
E Preprocess - Write preprocessed source to stdout; Do not stop
stdout terminate.
Fcoff | Felf Object-format Generate COFF or ELF object format. Fcoff
fdb Database Build program database (PDB). No database
fprof Instrument Compile with instrumentation; build No instrument-
PDB. ation
F [nolarg Fine-tune Adjust optimizations.
f [noJarg Additional Enable or disable an optimization.
fine-tune
G arg [,arg]... Generate Control code generation options. G cs,dc
g [level] Debug Include debug information in objects. No debug info
gcdm Decision-make Invoke gcdm960 decision-maker. Do not invoke
r gcdm960
h Help Display invocation help; terminate. No help text
| dir Searchinclude Search dir for include files.
i filename Preinclude Prepend text to source files.

317

3i960® Processor Compiler User’s Manual

Table 3-3 ic960 Option Summary (Sheet 2 of 2)
Option Name Purpose Default
J arg [,arg]... Miscellaneous Selects miscellaneous controls. J nogd
j num Errata Specify processor errata.
M Mix Mix C/C++ text with assembly output. No C text
n Syntax only Check syntax; list errors; terminate. Do not stop
O level Optimize Specify optimization level (0, 1, 2, or 5). o1
o filename Output Name output file. filename=a.out
P Preprocess - Write preprocessed source text to files; Do not stop
file terminate.
Q Dependencies Print include-file dependencies; No print
terminate.
S Save-assembl Save assembly-language output. Do not save
y
U symbol Undefine Undefine symbol.
\% Version Display version information. No display
v960 Version-exit Display version information and exit.
% Verbose Display invocation information. No display
W phase Pass Pass arguments to preprocessor,
arg [,arg]... compiler, assembler, or linker.
W [no-]arg Warnings Enable/disable a warning.
w level Diagnostic- Control diagnostic messages. level=1
level
Y d,dirname Program Specify location of program database. 1960PDB
database specifies
location
Z filename Listhame Name listing file. Compiler
generates
name
z arg List Produce listing file. No listing

ic960 Compiler Driver 3

A (Architecture)

Selects the instruction set.

Aarchi tecture
architectureisone of:
CA, CF, KA, KB, RD, RP, SA, SB, HA, HD, HT, JA, JD, JF, JT, RM RN, or VH.

Default

By default, the compiler uses the 1960 KB architecture. Thel 960ARCH
environment variable can override the default architecture.

Discussion

Usethe A (Architecture) option to specify the target instruction set. This
option overrides the environment variable | 960ARCH. See also the
-CGcore0,-Georel, -Geor e2, and - Gecor e3 options that |et you generate
code that is compatible with multiple i960 processor types.

E NOTE. Sarting with release 6.0, using the - ARP or - ARD option
generates code that is compatible with current and proposed future
variations on the i960 Rx architecture.

You can use predefined macros in your source text to conditionally compile

code for the selected architecture. The compiler defines a preprocessor

macro indicating the selected architecture. The preprocessor macro takes

the form:

__1960xx

XX iSCA, CF, KA, KB, RD, RP, SA, SB, HA, HD, HT, JA, JD, JF,
JT, RM RN, or VH. The compiler selects the value of xx
according to the architecture you specify.

3-19

3i960® Processor Compiler User’s Manual

3-20

In additionto __i 960xx, the __i 960 macro is defined for all architecture
selections. Use i 960 to identify parts of your program specific to the
1960 architecture but not necessarily specific to a particular processor.

In addition, for compatibility with earlier releases, macros of the forms:
i960, _i960_ , i960xx__and_ _i960 xx__ aredefined.

If you link object modules compiled with incompatible architectures, the

linker displays the following warning message:

file: architecture i960: XX i nconpati ble with out put

i 960: YY

file isthefirst file containing incompatible instructions the
linker encounters.

XX is one of the two-letter architecture abbreviations.
YY is one of the two-letter architecture abbreviations.
Example

The following example selectsthe i960 KA instruction set:
i c960 - AKA proto.c

a (ANSI)

Flags non-standard constructs.

a

Default

The compiler accepts constructs that are legal under Kernighan and
Ritchie's definition of the C language but that do not comply with the ANS
standard.

ic960 Compiler Driver 3
Discussion

Use the ANSI option to flag old-style C constructs that are legal according
to Kernighan and Ritchie's definition in The C Programming Language, but
are not legal according to the ANSI standard. When the ANSI optionisin
effect, the compiler prints warning messages for each occurrence. Thisisa
C-specific option.

NOTE. When thisoptionisin effect, if your program containsin-line
assembly-language (asm) statements, the compiler treatsthe statement as
a regular function call and produces code for the call. For example, if
your program contains the following line:
asn("flushreg");
The compiler produces the following code:

callj _asm
LFQ0. $:

asciz "flushreg"

The linker may then generate an error for an undefined extern for the
_asmcall.
To use asmstatements and functions with the a option, usethe __asm

keyword.

Specifying the a (ANSI) option can override the w (Diagnostic-level)
option, as follows:

-a-w2 has the same effect as - a - wi; that is, errors and major
warnings appear.

-a-wl errors and major warnings appear.

-a-wo errors and all warnings appear.

Example

The following example causes the compiler to issue an error message when
it encounters a non-standard C construct. Because of the ¢ (Create-object)
option, the compiler stops after creating an object file:

321

3i960® Processor Compiler User’s Manual

3-22

ic960 -c -a proto.c

Related Topic
W(Warnings) w (Diagnostic-level)

b (Limit-optimizations)

Limits optimizations.

bsi ze
size is apositive decimal integer.

Default

Having more than 2500 intermediate language statementsin afunction
causes the compiler to disable some global optimizations.

Discussion

Asfunction size increases, the compiler slows. The b (Limit-optimizations)
option allows you to alter the threshold at which optimizations are scaled
back when functions are too large to compile quickly.

Example

In the following example, the b (Limit-optimizations) option forces
suppression of global optimization for functionsin pr ot o. ¢ larger than
2000 intermediate language statements.

i c960 -b2000 -S proto.c

Related Topic
O(Optimize)

ic960 Compiler Driver 3

C (Keep-comments)

Keeps comments in preprocessor
output.

-E -C
-P -C

Default
All comments are stripped away.

Discussion

Use the C (K egp-comments) option to preserve comments normally stripped
by the preprocessor. This option modifies the E and P Stop-after options.
Using the C (Kegp-comments) option alone neither generates a preprocessor
listing nor stops the processing after the preprocessor phase.

Example

The following example uses the C (Keep-comments) option to modify the P
(Preprocess - file) option. The output is anewly created file named

prot o. i , containing the comments as they appear in the origina C source
text.

ic960 -P -C proto.c

Related Topics
E (Preprocess - stdout)P (Preprocess - file)

c (Create-object)

Create object file; terminate.

3-23

3i960® Processor Compiler User’s Manual

3-24

Default
Create an executable file after the link phase of the compilation process.

Discussion

If you specify c (Create-object) the compilation process terminates after the
assembler generates an object file. If you do not specify the o (Output)
option, the compiler writes the object fileto fi | enane. o, where

f il enane isthe source filename.

Examples

1. Thefollowing example produces the object file pr ot 0. o but no
executable file:
i c960 -c proto.c

2. Thefollowing example produces the object filespr ot 0. 0,t 1. 0, and
prot ol. o inthe current directory but creates no executable file:
i c960 -c proto.c tl.s protol.i

Related Topics

o (Output) Stop-after options

D (Define)

Define a symbol.

D synbol [=val ue]

synbol isasymbolic name.
val ue isavalue. The value can be any string.
Default

If you define symbol without specifying val ue, the preprocessor assigns
thevalue 1to symbol .

ic960 Compiler Driver 3
Discussion

Use the D (Define) option to create a symbol with agiven val ue. You can
use the D (Define) option more than once in an invocation.

You can use the D (Define) option with conditional compilation to create
macros to select source text during preprocessing. A macro defined in the
invocation command remains in effect for each module compiled, unless
you remove the macro with the #undef preprocessor directive or the U
(Undefine) option. The compilation system processes all the U (Undefine)
optionsin acommand-line only after processing all the D (Define) options.

Example

The following example invokes the preprocessor with D LONGPATH, so that
PATHLENGTH is defined with the value 128 in the source file. Since the
macro LONGPATH is defined without avalue, it defaultsto 1:

i c960 -c -D LONGPATH proto.c
The source text is:

#i f def LONGPATH
#defi ne PATHLENGTH 128
#el se

#defi ne PATHLENGTH 45
#endi f

Related Topics

#defi ne
#undef

U (Undefine)

E (Preprocess - stdout)

Preprocess; write output to screen;
terminate.

3-25

3i960® Processor Compiler User’s Manual

Default

After the link phase of the compilation process is complete, an executable
fileis produced.

Discussion

If you specify E, the compilation process terminates after preprocessing and
the compiler writes preprocessor output with line number directivesto
standard outpui.

Example

The following example runs only the preprocessor phase, sending the
preprocessed source text to the screen:

i c960 -E proto.c

Related Topic
Stop-after options

Fcoff | Felf (Format)

Specifies object format.

Fcof f specifies the COFF object format, and causes the
assembler to be invoked as asm960. You can add the g
option to specify the style of symbolic-debug symbols
created.

Fel f specifies the ELF object format, and causes the
assembl er to beinvoked as gas960e, rather than asm960.
If you add the g option, the DWAREF style of
symbolic-debug symbolsis used. ELF isthe only
supported format for C++.

3-26

ic960 Compiler Driver 3

NOTE. Unlike gcc960, ic960 does not support the b.out object module
format.

3-27

3i960® Processor Compiler User’s Manual

F (Fine-tune)

Adjust optimizations.

F arg[,arg]...

arg isany of:

F[no] ai

F[no] ca

F[no] cb

F[no]lp

F[no] pf

F[no] sa

sb | nosb

3-28

enables/disables procedure in-lining using
heuristics at optimization level 2.

enables/disables code alignment; generate (do
not generate) alignment directives prior to
labels that are not entered from above.

enables/disables use of compare and branch
instructions.

enables/disable code generation of functions
using the bal calling sequence at optimization
level 1 or 2. nol p isthe default at optimization
level 1, and | p isthe default at optimization
level 2.

Thisoption is obsolete. It isrecognized but has
no effect.

determines whether or not the compiler risks
generating memory references that are not
provably aigned. If Fnosa is selected, the
compiler occasionally generates potentialy
unaligned references when it seems
advantageous to do so. When Fsa is enabled,
sequences of smaller memory references are
used instead of larger ones that might not be
correctly aligned.

enables/disables superblock formation.
Suppressing this optimization may reduce your
application’s code size.

ic960 Compiler Driver 3

tce | notce enables/disables conversion of tail callsinto
branch instructions at optimization level 1 or 2.
not ce isthedefault at optimization level 1, and
t ce isthe default at optimization level 2.

Default

The set of optimizations performed is determined by the argument of the O
(Optimize) option.

Discussion

Use the F (Fine-tune) option to fine-tune how your code is optimized. For
general purposes, the optimization level specified with the O (Optimize)
option is sufficient. The optimizations performed at each level balance
considerations of code quality, ease of debugging, and compilation time.
However, circumstances can call for use of, or disabling of, some specific
optimizations.

Example

To disable heuristic function in-lining and leaf procedure generation when
compiling at optimization level 2, enter the following:

i c960 -F noai,nolp -2 proto.c

fdb (Database)

Builds optimization database.

All modules subject to program-wide optimization must be initially
compiled with the f db option. This option causes the insertion of program
database information in the object modules, and it implies a minimum
module-local optimization level of OL (although higher module-local
optimization levels are allowed).

3-29

3i960® Processor Compiler User’s Manual

3-30

This option does not otherwise change the code or data generated for the
object modulesin any way. It simply makes information collected during
initial modul e compilation available to the globa decision maker (gcdm).
Before using the f db option, you should read Chapter 4, “Program-Wide
Analysis and Optimization”, and Chapter 6, “gcdm Decision Maker
Option”.

If you intend to use execution profiles when optimizing your application,
you should read Chapter 5, “Profile Data Merging and Data Format
(gmpf960)”.

fprof (Instrument)

Instruments code for profile creation.

This compiler driver option inserts execution profile instrumentation code
into the generated code during compilation, so that when the linked
program is executed, a profile can be collected.

This option implies thé db option (described previously) that causes the
insertion of program database information in the object modules and the
creation of the program database. Sihgeof impliesf db, f pr of also
implies a minimum module-local optimization level of O1 (although high
module-local optimization levels are allowed).

When you compile with thépr of option, a special profiling library
required for profile collectionl { bgf) is linked automatically. If your
target environment does not support file I/0, you must eitiglimk an
alternate profiling libraryl(i bg). The profiling libraries provided are
identified in Chapter 2 of thi®60 Processor Library Supplement.

Note that when thépr of option is used in this manner, the generated
object module contains code is unsuitable for linking into programs that are
not supposed to collect profile information. To solve this problem, and
avoid having inappropriate instrumentation in widely-used library modules
for example, usef pr of with thegcdm subst option instead.

ic960 Compiler Driver 3

Before using thef pr of option, you should read Chapter 4, “Program-Wide
Analysis and Optimization”, Chapter 5, “Profile Data Merging and Data
Format (gmpf960)”, and Chapter 6, “gcdm Decision Maker Option”.

f (Additional Fine-tune)

Additional optimization adjustments.

f [no-larg

arg is any one of the optimizations listed below. This option takes only
one argument; use a separateption to enable/disable an optimization.

Thef [no-] ar g option is supported to allow access to optimization
controls that are supported by the gcc960 compiler driver.

Note that most of these options are controlled automatically by the various
Ooptimization levels. Therefore, some of them may be ignored for certain
compilations. For example, at optimization le@e| you cannot enable
instruction scheduling withschedul e-i nsns. To check whether one of
these options has the desired effect, compare the generated assembly code
with and without the option.

[no-]access- Enable all access checking. This is normally

control used to work around access control bugs.
Faccess-control is the default. This is
C++ specific option.

bbr Enable basic block rearrangement.

coal esce Coalesce adjacent memory references into a
single reference of a larger size, to take
advantage of the processor’s burst bus. Only
memory references that can be proven to be
contiguous and whose base address can be
proven to be aligned properly are coalesced.
This option implied shadow mem

coer ce Enable byte/short optimization.

331

3i960® Processor Compiler User’s Manual

3-32

cond-m snmatch

condxform

[no-] conserve-
space

const prop
copyprop
cse-fol |l owj unps
cse- ski p- bl ocks

[no]dollars-in-
identifiers

[no-]enumi nt -
equi v

expensi ve-
optim zati ons

float-store

Allow type mismatch in operands of the ?:
operator.

Enable 80960 conditional instructions.

Allocate uninitialized global variablesinto
the common segment, as C does. This saves
space in the executable at the cost of not
diagnosing duplicate definitions.

Fno- conserve- space isthe default. This
isa C++ specific option.

Enable constant propagation and folding.
Enable copy propagation.

Enable alimited form of global CSE.
Enable alimited form of global CSE.

Accept “$” in identifiers. ANSI C and C++
forbid “$” in identifiers.

Fno-doll ars-in-identifiers isthe
default wheransi is specified.

Allow implicit conversion of integer to
enumeration types. Normally the compiler
allows conversion of enum to int, but not
vice versaFno- enum i nt - equi v is the
default. This is a C++ specific option.

Enable some minor optimizations.

Do not store floating-point variables in
registers, and do not perform common
sub-expression elimination on floating-point
expressions.

ic960 Compiler Driver 3

[no-]for-scope Limit the scope of variables declared in a
for-init statementtotheforloopitself, as
specified by the draft C++ standard. When
you specify - f no- f or - scope, the scope of
variables declared in afor-init-statement
extends to the end of the enclosing scope, as
was the case in old versions of gcc960, and
other (traditional) implementations of C++.
ff or - scope isthe default. Thisisa C++
specific option

f or ce- addr Place address constants in registers before
use.

[no-] huge- The implementation of virtual function calls

obj ects assumes that the size of an object can be

represented with ashort integer. Use thisflag
to support virtual function calls for objects
that exceed the size that can be represented
by a short integer. Use thisflag only if the
compiler requests you to do so. Note that the
C++ library sources need to be recompiled
with Fhuge- obj ect s if you plan to link
withthe C++ libraries. Fno- huge- obj ect s

isthe default.

fint-alias-ptr Indicates to the compiler that pointer objects
may be referenced as 32-bit integers and
viceversa

fint-alias-real Indicates to the compiler that f | oat,

doubl e,and| ong doubl e objects (or parts
thereaf) may be referenced as 32-bit integers
and vice versa

3-33

3i960® Processor Compiler User’s Manual

fint-alias-short Indicates to the compiler that four-byte
integer objects may be referenced as
two-byte integer objects and vice versa

The aliasing options listed above tell the
compiler not to use certain kinds of type
information when disambiguating memory
references, even though it could do so
according to ANSI C section 3.3
(disambiguation constraints).

The rules enforced by the aliasing options
are transitive. For example, if user code
accesses parts of doubl e objectsasshort,
thenfint-alias-real and
fint-alias-short should both be used.

The rules are also applied recursively to
structs andunions. Thatisto say, if
fint-alias-ptr isinuse, thenaunion
that has amember of pointer typeisassumed
to be aliased by 32-bit integers or by
structures or unions containing

Note that ANSI C 3.3 requires the compiler
to assumethat char referencesaliasall
types, so code using char pointers for this
sort of thing is already correct and using
these optionsis not necessary.

Using all three aliasing options effectively
disallows all use of typeinformationin
memory disambiguation. Thisisbad both
for compiler performance and the efficiency
of generated code.

keep-inline- Emit out-of-line code for inlined functions.
functions
marry_nmem Rejoin multi-word moves split by

fsplit_nem

3-34

ic960 Compiler Driver 3

F[no-] menoi ze- Use heuristics to compile faster. These

| ookups heuristics are not enabled by default, since
F[no-]save- they are only effectivefor certaininput files.
menoi zed

Other input files compile more slowly. You
may use either option to compile using
heuristics. These are C++ specific options.

rerun-cse-after- Reiterate CSE after loop optimization.
| oop
shl ock Enable/disable superblock formation. This

option is normally used in a second-pass
recompilation, but it can also beused in a
single-pass compilation.

schedul e-i nsns Perform pre-register-all ocation scheduling.

schedul e-i nsns2 Perform post-register-all ocation scheduling.

shadow- gl obal s Shadow memory locations in registers.

shadow mem Like shadow- gl obal s, but more thorough.

space- opt Optimize for code size.

split_mem Split multi-word moves for copy
propagation.

strengt h-reduce Enable loop strength reduction.

F[no-]strict- Treat afunction declaration with no

prototype arguments, such astit foo ();”, to

mean that the functioioo takes no
argumentsFst ri ct - pr ot ot ype is the
default. This is a C++ specific option.

[no-]Jthis-is-varia Permit assignment to “this”.
bl e Fno-t hi s-is-vari abl e is the default.
This is a C++ specific option.

t hr ead- j unps Enable an advanced branch optimization.
unroll-all-1oops Unroll all loops.
unrol | -1 oops Unroll loops where deemed beneficial.

3-35

3i960® Processor Compiler User’s Manual

3-36

virtual - opt Optimizes the dispatch of virtual functions.
This optimization can be used only in a
2-pass scheme. By default, this optimization
isnot enabled. This optimization can be used
only when certain conditions are met. See
“Optimizing Virtual Function Dispatch” in
Chapter 12 for more details. This is a
C++-specific option.

vol atile Treat indirect memory references as volatile.
vol ati | e- gl obal Treat all memory references as volatile.
writable-strings Place string literals indat a section.

Default

The set of optimizations performed is determined by the argument of the
O (Optimize) option.

G (Generate)

Select code generation options.

G arg[,arqg] ...
ar g isone of the following:

abi Generate 80960 ABI-conformant code. This
causes thehar type to be signed, enums to be
four bytes in size and sighed, and changes
default alignment rules for structs and unions.
See Chapter 7, “C Language
Implementation”for more information.

ac=n Alignsst ruct data types on the byte boundary
specified byn. ncanbe 1, 2, 4, 8, or 16.

ic960 Compiler Driver 3

bc Generates code that is backwardly-compatible
with releases of ic960 before Release 3.0.

be Generates objects that execute in a big-endian
memory environment.

cave Generate all functions as CAVE secondary
functions.

core0|corel] generate code that is compatible with multiple

core2|core3 | 1960 processor types. Additionally, when you

usea - Gcor e option, you can include another
- A switch to generate code that is optimized for
aparticular architecture, but still compatible
with a group of architectures. The table below
lists the architectures that are supported by a

- Gcor e option and the - A options that you
can use with them.

Table 3-4 Gcore Supported Architectures

Option Name Compatible Can Be Used With
Architectures
Ccor e0 Jx, Hx, Rx -AJA - AJD - AJF,

-AJT, - AHA, - AHD,
- AHT, - ARD, - ARP, - ARM - ARN, or
- AVH* .

Ccorel KX, Sx, Cx, Jx, Hx Any architecture option except - ARP
- ARD, - ARM or- ARN.
Gecor e2 Jx, Hx -AJA - AJD - AJF,

-AJT, - AHA, - AHD, - AHT, or
- AVH* .

Gcor e3d Cx, Jx, Hx - ACA, - ACF, - AJA,
-AJD, - AJF, - JT,
- AHA, - AHD, - AHT, or - AVH*.

* Note that the big-endian mode is not supported for VH.

3-37

3i960® Processor Compiler User’s Manual

3-38

Cs Or cu Treatschar datatypesassi gned or unsi gned,
respectively. cs isthe default.

dc Specifies the relaxed ref-def external linkage model.
Thisisthe default.

ds Specifies the strict ref-def external linkage model.

pc Generates position-independent code.

pd Generates position-independent data.

pr Reserves register g12 containing the

position-independent data (PID) bias value.

wai t=n Specifies wait-state for memory accesses. nisin the
range O through 32, inclusive.

XC Specifies that all external callsin the module use the
extended-call mechanism.

Discussion

You can select multiple arguments either by specifying all of them,
separated by commas, as the argument of asingle G (Generate) option, or by
specifying each as the argument of a separate G (Generate) option. If you
specify conflicting arguments, the last one takes precedence.

Alignment Argument (ac): If you select ac=n, the compiler aligns

struct datatypeson n-byte boundaries. Thisisequivalent to aninitia
#pragma al i gn(n) and does not override any subsequent #pr agnma

al i gn(n) directives. Alignment valuescanonly be1, 2, 4, 8, or 16.

Chapter 7, “Position Independence and Reentrancy” describes alignment in
more detail.

Backward-compatible Argument (bc): If you selecbc, the compiler
generates object modules that can be linked with object modules translated
by ic960 Release 2.0. This option resolves the following compatibility
issues:

®* Thedefault alignment of individual st r uct datatypesfor ic960
Release 2.0 can differ from the default structure alignment for Release
3.0 and later releases. The Release 3.0 1¢c960 derives the default
alignment of ast r uct datatypefromitssize, by rounding up from the
size to the next power of 2 (to amaximum of 16). In code translated by

ic960 Compiler Driver 3

ic960 releases before 3.0, the alignment of the st r uct defaultsto the
alignment of the largest member of the st r uct . You must compile al
modules of a program with the same alignment.

For enum data types, the compiler selects a basic integral
representation type, choosing the narrowest type capable of
representing all of the enumeration values. The compiler can represent
the enumtype assi gned char, unsi gned char, short, unsi gned
short, ori nt, depending upon the range of enumeration values.
Before Release 3.0, the compiler used only signed types to represent
enumdatatypes. For example, a maximum enumeration value
between 128 and 255 inclusive, now represented as an unsi gned
char, wasrepresented asashort in Release 2.0.

The values of upper, unused bits of prototyped parameters and return
values smaller than 32 bits for ic960 Release 2.0 can differ from the
corresponding bit values for Releases 3.0 and later. The calling
convention for Release 3.0 does not extend the unused bits. The caled
function must extend into the unused bits of prototyped parameters and
the function using areturn value must extend into unused bits of the
return value. In code translated by ic960 rel eases that preceded 3.0, the
calling conventions extend into unused bits when passing prototyped
parameters and returning values smaller than 32 bits.

With this release of the compiler, the recipient of a narrow integral
value must assume that the high-order bits of the register containing the
value do not contain the appropriate zero- or sign-extension of the
value passed. It isthe recipient function’s responsibility to clean the
upper bits of a parameter or return value if necessary. Using the
Backward Compatible (bc) argument causes the compiler to use the
rules of prior releases. Before thisrelease of the compiler, narrow
integral values were aways sign- or zero-extended by the originator.
The Release 2.0 compiler, when used to compile for ani960 KB or SB
processor, returns | ong doubl e (80-bit) floating-point numbersin the
f pO floating-point register.

The Release 3.0 compiler, when used to compile for any 1960
processor, returns| ong doubl e floating-point numbersin the go, g1,
and g2 global registers. When Release 3.0 is used to compile for a
processor without a floating-point unit (e.g., the KA, SA, CA, or CF
processor), the compiler generates calls to the accelerated
floating-point library (“libh”). (Release 2.0 generated calls to the

3-39

3i960® Processor Compiler User’s Manual

FPAL floating-point-arithmetic library, but FPAL is no longer
supported.) You must recompile any KA, SA, CA, or CF module that
was compiled with ic960 R2.0 floating-point operations.

Big-endian Argument (be): If you select be, you inform the compiler
that the memory system of the entire program isin big-endian format. Only
the 960 Cx, Hx, and Jx processors support big- and little-endian format.
Do not use this argument with other 1960 architectures.

The compiler automatically passesthe G (Generate big-endian) option to the
assembler or linker if they areto be run.

Compression Assisted Virtual Execution (CAVE): If you select
cave, the compiler generates special CAVE entries for all functionsin the
compilation unit. This prepares the functions for link-time compression.
The CAVE entries resemble the following:
.section .text
_foo:

| da L1, reg

cal l __di spatcher

ret

.section cave

.word L2-L1,0
L1:

function body
L2:
At runtime, the dispatcher decompresses the function bodies and transfers
control to them. This mechanism saves runtime memory. (See the
discussion of #pr agma cave in Chapter 7, “C Language Implementation”
for more information.)

Signed and Unsigned Character Arguments (cs and cu): If you
selectcs, declarations ofhar are treated asi gned char. (This is the
default.)

If you selectcu, declarations of har are treated asnsi gned char.

Relaxed and Strict Linkage Definition Arguments (dc and ds): In

the default relaxed ref-def external linkage model (i.e.dthargument),

any variable declared with tlext er n keyword is a reference to a variable
and does not define storage. Somewhere in all the modules, a definition at
file-scope must exist. You can have multiple definitions. All definitions are

3-40

ic960 Compiler Driver 3

combined into a single storage location by the linker. Storageis allocated

for initialized variablesin the.. dat a section with the appropriate initializer.

Uninitialized definitions are allocated to the common sections using the

. conmassembly language directive. At link time one of the following

happens:

* If avariableisdefined with aninitializer in one module, and without an
initializer in all other modules, the linker allocates space for the object
inthe . dat a section.

® If nodefinitionsof avariableareinitiaized, all common references are
combined and allocated to the . bss section. With the relaxed ref-def
model, you cannot relocate uninitialized variables to named sections at
specific memory locations using the linker configuration language.

In the strict ref-def model (i.e., using the ds argument), only one definition
is alowed and all others must be declared with the keyword ext er n. You
cannot have more than one definition of an object with external linkage.
Storageisallocated to uninitialized file-scope variablesin the . bss section.
Initialized variables are allocated in the . dat a section with the appropriate
initializer. Using the strict ref-def model, you can rel ocate uninitialized
variables to named sections at specific memory locations using the linker
configuration language. For more detailed information about using the
linker, see the 1960 Processor Software Utilities User’s Guide.

Position Independence Arguments (pc, pd, and pr): If you select
pc, the compiler generates position-independent code and predefines the
__PI Cmacro.

NOTE. Applications built using the pc option cannot be linked with
assembly sources that contain cal | x or bal x instructions, since these
instructions are not position-independent.

If you select pd, the compiler generates position-independent data and
predefinesthe __PI D macro. Register g12 contains the bias value for the
data sections; its contents cannot be modified, even during the saving or
restoring process.

341

3i960® Processor Compiler User’s Manual

If you select pr, the compiler reserves register g12. Use this option for
position-dependent modul esto be combined with position-independent data
modules. See Chapter 10, “Position Independence and Reentrancy” for
more information on this subject.

Extended Call Argument (xc): Use the Extended Call argument when
your code calls external functions outside the range afdhé or bal

opcodes. When you use this argument, the compiler emitathé x
pseudo-opcode, which the linker translates to either of the MEM format
opcodegal | x orbal x. The linker decides which translation to perform
based on the symbol table entry for the defined function. The extended call
opcodes can address the enti¥é &ddress range. The extended call
instructions occupy two words of code space. The single word CTRL
formatcal | instructions occupy one word.

The compiler emits the CTRL formeal | j pseudo-opcode when calling
any function defined outside the current compilation module.

Examples

1. The following example aligns structures on 8-byte boundaries:
i c960 -Gac=8 proto.c

2. The following example generates a module that can be linked with
code resulting from an ic960 Release 2.0 translation:
i c960 -CGbc proto.c

3. The following example generates code in which variables declared as
char are treated asnsi gned char :

i c960 -CGcu proto.c
4. The following example generates position-independent code and data:
i c960 - CGpc, pd proto.c

3-42

ic960 Compiler Driver 3

Related Topics

A (Architecture) __PIC #pragma al i gn
| 960ARCH __PID #pragma i 960_al i gn
__1960xx
g (Debug)
Include debug information in object
module.
g [/evel]

where | evel specifiesthe amount of debug information. Note that the
meaning of level varies depending on the object format in use, as described
below.

Using g0 disables debug information. (Thisisthe same as not using the
g option.)

For COFF, debug level settings of g, g1, g2, and g3 all have the same
effect: they specify “normal” debug information.

For ELF/DWAREF, debug level settings @fg1, andg2 all have the same
effect: they specify all DWARF debug information except preprocessor
macros. A debug level setting g8 specifies all DWARF debug
information, including preprocessor macros in the debug information. If
your debugger (like gdb960) does not make use of preprocessor macro
information, you can save space in your object files by dropping to
ELF/DWARF debug level 2.

Theg (Debug) option does not inhibit optimization. If you specifyghe
option but do not specify the(Optimize) option, the optimization level
defaults to00.

Specifying an optimization level higher tham can inhibit the effectiveness

of the symbolic debug information. For example, if you set a breakpoint on
a source line for which the code has been optimized away, the breakpoint is
never hit. Or if you try to print the value of a variable that has been

3-43

3i960® Processor Compiler User’s Manual

optimized away, an erroneous value isdisplayed. In general, asthe
optimization level increases, the reliability of the symbolic debug
information decreases.

If you are using the ELF object module format (Fel f), then g causes the
compiler to produce DWARF debug information. This debug information
format is richer than that of other supported OMFs, and allows more
reliable debugging under optimization. However, even with DWAREF, there
are situations where debugging behavior does not agree with the debugging
behavior of unoptimized code.

gcdm (Decision Maker)

Invoke gcdm960 decision-maker.

gcdm arg[, arg] . ..

The gcdmoption providesahigh level of automation for the whole-program
or profile-driven optimization process. The compiler driver and the linker
both use the gcdmoption and its arguments.

The gcdmoption isflexible and powerful, and therefore requires a certain
level of understanding in order to useit effectively. For these reasons, it is
documented in a separate chapter (Chapter 6, “gcdm Decision Maker
Option”).

Before using thgcdmoption, you should read Chapter 4, “Program-Wide
Analysis and Optimization”, and become familiar with the information in
Chapter 5, “Profile Data Merging and Data Format (gmpf960)”.

h (Help)

Display invocation help; terminate.

3-44

ic960 Compiler Driver 3

Discussion

This option causes the compiler to display brief descriptions of each option
on the standard output device and then terminate.

| (Searchinclude)
Search alternate #include directory.

| dir
dir isadirectory containing files to be included.

Default

If youuse#i ncl ude "filenane" to specify afilenamethat isnot an

absolute pathname, the compiler searches directories in the following order:

1. thedirectory containing the primary C/C++ source file (the primary
directory).

2. if 19601 NCis defined, the directory specified by | 9601 NC.

3. if 19601 NCis not defined, thei ncl ude directory located under the
directory specified by | 960BASE.

For afil enane included with #i ncl ude <fi | enane>, the compiler
searches directories in the following order:

1. if 1 9601 NCisdefined, the directory specified by 1 9601 NC.

2. if 19601 NCis not defined, thei ncl ude directory located under the
directory specified by | 960BASE.

Discussion

Usel (Searchinclude) to specify additional directories for the preprocessor
to search to find files specified with #i ncl ude. The preprocessor searches
Searchinclude directories before the directory specified by | 9601 NC or

| 960BASE. If you use quotation marks (#i ncl ude " fil enane"), the
preprocessor searches the primary directory first. If you use angle brackets
(#i ncl ude <fil enanme>), the preprocessor does not search the primary
directory.

3-45

3i960® Processor Compiler User’s Manual

Examples

1. Inthefollowing example, the preprocessor searches:
— /usr/hone/ src (the directory containingr ot o. c)
— /usr/hone/incl ude (the Searchinclude directory)
— /usr/hone/ testincl ude (the directory specified bly9601 NC)
The environment variable definitions are:
— | 960BASE is set td usr/ | ocal /i 960
— 19601 NCis set td usr/ hone/ testi ncl ude
The command-line is:
— 1¢960 -1 /usr/hone/include /usr/home/src/proto.c
The source text contains:
— #include "proto.h"
2. Inthe following example, the preprocessor searches:
— /usr/hone/incl ude (the Searchinclude directory)
— Jusr/local/i960 (the directory specified bly960BASE)
Thel 960BASE environment variable is settasr/ | ocal /i 960
The command-line is:
— 1¢960 -1 /usr/hone/include /usr/home/src/proto.c
The source text contains:
— #include <proto. h>
If the preprocessor does not fipdot o. h, for either of these examples, the
compiler displays the following error message:

i c960 ERROR: "/usr/home/src/proto.c", line 1 --
proto.h: No such file or directory

3-46

ic960 Compiler Driver 3

Related Topics

#i ncl ude I 9601 NC Stop-after options
| 960BASE i (Preinclude)

| (Preinclude)

Prepend text file to primary source files.

i filenane
fil enane is the name of a C/C++ source text file.

Discussion

Usethei (Preinclude) option to prepend the text of a C/C++ source file or
include file to each C/C++ source file specified on the command line. This
option has the same effect as placing an #i ncl ude directive at line zero of
each C/C++ sourcefile.

The compiler searches for fi | enane in the same way asfor afile specified
with #i ncl ude using quotation marks. For adescription of includefile
searching rules, seethe | (Searchinclude) option description. The compiler
issues an error if thefile is not found.

Example
The following example prepends thefile gl obal s. h to thefilepr ot o. c:
i c960 -i globals.h proto.c

3-47

3i960® Processor Compiler User’s Manual

Related Topics

#i ncl ude | 9601 NC Stop-after options
| 960BASE I (Searchinclude)

J (Miscellaneous)

Selects miscellaneous controls.

J arg[,arg]...

Discussion

Use the J (Miscellaneous) option to specify miscellaneous controls. Two
such controls are gd (issue gcc960-style diagnostics) and nogd (issue
ic960-style diagnostics). gcc960-style diagnostics are more compact, and
do not include column position indicators.

Default
nogd (issue ic960-style diagnostics).

j (Errata)

Specifies processor errata.

j num Discussion

Usethej (Errata) option to cause the compilation system to generate code
with workarounds for specified processor errata. A numargument of 1
generates code to work around the Cx processors DMA errata.

3-48

ic960 Compiler Driver 3

M (Mix)

Mixes C/C++ source text with assembly
language output.

-S-M

Default

Assembly language output does not contain interleaved C/C++ source as
comments.

Discussion

Use the M(Mix) option to modify the S (Save-assembly) option to put
C/C++ source text as comments into the assembly language output file.
Using the M(Mix) option without the S (Save-assembly) option has no
effect.

Note that if you use the O (Optimize) option with the M(Mix) option, the
C/C++ source text comments can be mismatched to the assembly language
text, since optimization can reorder and eliminate assembly language
instructions.

Example

The following example produces the assembly language fileprot 0. s
containing C source text as comments:

ic960 -S -Mproto.c

Related Topics
O (Optimize) S (Save-assembly)

3-49

3i960® Processor Compiler User’s Manual

3-50

n (Check-syntax)

Check syntax; terminate.

n

Default

After the link phase of the compilation process is complete, an executable
fileis produced.

Discussion

If you specify n (Check Syntax Only) the compilation process terminates
after performing syntax and semantic checking. The compiler generates
diagnostic messages but produces no output.

Example

The following example runs a syntax check only on the file pr ot o. c,
generating no output file:

i c960 -n proto.c

O (Optimize)

gl evel]

Thed I/ evel] option specifiesthe level of optimization as described
below.

0] Disables optimizations, including those that may

interfere with debugging. Thisis the optimization level
if you usethe g (Debug) option.

ic960 Compiler Driver 3

o1 Enables basic optimizations, including: advanced
register allocation, common subexpression elimination,
loop invariant code motion, expression simplification
and instruction combination, jump optimization,
dead-code elimination, and 1960 processor-specific
peephole optimization. Thisis the default setting if you
do not use the g (Debug) option or when you use the
f db (Program Database) or f pr of (Instrument) options.

o2 Thislevel includes the O1 optimizations described
above, tail-call elimination, | eaf-procedure optimization,
and the following optimizations:

fcoal esce, f coerce, f condxform f const prop,

f copyprop,fcse-fol | owjunps,

f cse-ski p- bl ocks, f expensi ve-optini zati ons,
finline-functions,fmarry_nmem
frerun-cse-after-1oop,fschedul e-i nsns,

f schedul e-i nsns2, f shadow gl obal s,

f shadow mem fsplit_nmemfstrength-reduce,
funrol |l -1oops.

(03 This setting specifies program-wide optimization.
Before using the C6 option, you should read Chapter 4,
“Program-Wide Analysis and Optimization”, and
Chapter 6, “gcdm Decision Maker Option”.

Note that theds level is not accepted directly by the
ic960 driver. It is accepted only in thkebst argument
of thegcdmoption.

0 (Output)

Name output file.

o filenane

3-51

3i960® Processor Compiler User’s Manual

3-52

fil enane is the name of the file to receive the final output of the
compilation.

Default

If the linker isto be invoked, the default name of the linker’s output is
a.out for COFF ande. out for ELF. Otherwise, each output filenameis
determined by replacing the filename extension of each input file. Output
filenames' extensions depend on the Stop-after option in effect, as follows:
® P (Preprocessfile): filenanme.i (C) filenane.ii (C++)

®* S (Save-assembly): filenane.s

® ¢ (Create-object): filenane.o

Discussion

Use the o (Output) option to direct the final output of acompiler invocation

to aspecific file. Thefina output can be any of the following:

For E, Q and n, the output goes to st dout .

* |f you specify the P (Preprocess - file) option, the final output is the
result of preprocessing.

® If you specify the S (Save-assembly) option, the fina output is the
assembly language text generated by the compiler.

* If you specify the ¢ (Create-object) option, the final output isthe object
modul e generated by the assembler.

® Otherwise, the final output is the result of linking.

The compiler issues an error message if you use the o (Output) option and

do not invoke the linker when processing more than one inpuit file.

Related Topic
Stop-after options

ic960 Compiler Driver 3

P (Preprocess-file)

Preprocess; write output tofile;
terminate.

p

Default

After the link phase of the compilation processis compl ete, the compilation
system produces an executable file.

Discussion

If you specify the P, (Preprocess-file) option, the compilation process
terminates after preprocessing and the compiler writes preprocessor output
without line number directivesto afile. If you do not specify afilename
with the o (Output) option, thefileisfi/ enane.i (for C) or
filenane.ii (for C++), wherefi/ enanme isthe source filename without
its extension.

Example

The following example puts the preprocessed source for pr ot 0. c in the
fileprot o.i and the preprocessed sourcefor prot ol. c inthefile
protol.i:

i c960 -P proto.c protol.c

3-53

3i960® Processor Compiler User’s Manual

3-54

Related Topics
o (Output) Stop-after options

Q (Dependencies)

Print include-file dependencies;

Q

Discussion

If you specify Q (Dependencies), the compilation process terminates after
preprocessing and the compiler writes alist of dependency linesto standard
output. The dependency linestake theform obj ect: subfil e where
obj ect isan object filename derived from the name of aprimary C/C++
sourcefileand subf i | e isthe name of afile needed to create the object
file. The preprocessor generates one line for each subfi | e on which the
object file depends, including the primary C/C++ sourcefile. Preprocessor
directives for conditional compilation affect the output of the dependency
lines.

Example

The following example generates afile dependency list for dt est . c. File
dt est . c includesfilesdi nc. h, d2. h, and d3. h, asfollows:

#i ncl ude "dinc. h"
#i ncl ude "d2. h"
#i ncl ude "d3. h"

Filedi nc. h includesfiledad. h, asfollows:
#i ncl ude "dad. h"

Thefilesd2. h and d3. h do not include any files. Thefollowing command
compilesdt est . ¢ with Q resulting in file dependency lines:

ic960 Compiler Driver 3

i c960 -Q dtest.c
dtest.o: dtest.c
dtest.o: dinc.h
dtest.o: dad.h
dtest.o: d2.h
dtest.o: d3.h

Related Topics
#i ncl ude o (Output) Stop-after options

S (Save-assembly)

Compile; save assembly language
output; terminate.

S

Default

After the link phase of the compilation process is complete, the compiler
produces an executable COFF file. (Assembly language output is not
saved.)

Discussion

If you specify S (Save-assembly), the compilation process terminates after
the compiler generates assembly code and writes the output to afile. If you
do not specify afilename with the o (Output) option, the compiler writesthe
assembly language output to f i | enane. s, where fi | enane is the source
filename without its extension.

Use the M(Mix) option to create a mixture of assembly language source
code and corresponding C/C++ source code.

Examples

3-55

3i960® Processor Compiler User’s Manual

3-56

1. Thefollowing example creates the assembly language output from
proto.c intoproto.s:
i c960 -S proto.c

2. Thefollowing example creates pr ot 0. s, the assembly language file
for prot o. ¢, andt 1. s, the assembly language filefor t 1. c, in the
current directory:
ic960 -S proto.c -tl.c

Related Topics
M(Mix)o (Output)

Stop-after Options (n |Q|P|E| S| c)

Sop after the specified compilation

n| QI Pl El S| ¢

Default

After the link phase of the compilation processis complete, the compilation
system produces an executable file.

You can use the o (Output) option to specify a name for the executablefile.
The default output filenameisa. out (COFF) or e. out (ELF).

Discussion

Use one of the Stop-after options to halt the compilation process before
linking and to write the intermediate output to afile or standard output. You
can also use the o (Output) option to specify a filename for the output file.

Table 3-3 summari zes the processing and output other than listing the files
that result from each Stop-after option.

If you specify n (Syntax-checking), the compilation process terminates after
syntax and semantic checking are performed. The compiler generates
diagnostic messages but produces no output.

ic960 Compiler Driver 3

If you specify Q (Dependencies), the compilation process terminates after
preprocessing and the compiler writes alist of dependency linesto standard
output. The dependency linestake theform obj ect: subfil e where
obj ect isan object filename derived from the name of aprimary C/C++
sourcefileand subf i | e isthe name of afile needed to create the object
file. The preprocessor generates one line for each subfi | e on which the
object file depends, including the primary C/C++ sourcefile. Preprocessor
directives for conditional compilation affect the output of the dependency
lines.

Table 3-5 Stop-after Option Phases and Output

Name Option Processing Phases Output
Syntax-check n preprocessing, a list of diagnostic messages,
syntax-checking written to standard error
Dependencies Q preprocessing a list of file-dependence lines,
written to standard output
Preprocess - E preprocessing preprocessed source text with line
stdout number directives, written to
standard output
Preprocess - file P preprocessing preprocessed source text without
line number directives, written to
files
Save-assembly S preprocessing, assembly language, written to files
compilation
Create-object c preprocessing, object modules, written to files
compilation, and
assembly

If you specify E (Preprocess - stdout), the compilation process terminates
after preprocessing and the compiler writes preprocessor output with line
number directives to standard output. The o (Output) option does not affect
output from E.

If you specify P (Preprocess - file) the compilation process terminates after
preprocessing and the compiler writes preprocessor output without line
number directivesto afile. If you do not specify a filename with the o

3-57

3i960® Processor Compiler User’s Manual

3-58

(Output) option, the compiler writes preprocessor output to i | enane. i
(forC)or filenane.ii (for C++), where fi | enane isthe source
filename without its extension.

If you specify S (Save-assembly), the compilation process terminates after
the compiler generates assembly code and writes the output to afile. If you
do not specify afilename with the o (Output) option, the compiler writesthe
assembly language output to f i | enane. s, where fi | enane is the source
filename without its extension. If you also specify the M(Mix) option, the
assembly language output file al'so contains interleaved C/C++ source lines.

If you specify c (Create-object), the compilation process terminates after
the assembler generates an object file. If you do not specify the Output
option, the compiler writes the object fileto fi | enane. o, where

f il enane isthe source filename without its extension.

Examples

1. Thefollowing example puts the preprocessed source for pr ot 0. c in
thefileprot o. i and the preprocessed source for pr ot o1. c inthefile
protol.i:

i c960 -P proto.c protol.c

2. Thefollowing example runs only the preprocessor phase, sending the
preprocessed source text to the screen:
i c960 -E proto.c

3. Thefollowing example runs a syntax check only on thefile pr ot o. c,
generating no output file:
ic960 -n proto.c

4. The following example puts the assembly language output from
proto.c intoproto.s:
ic960 -S proto.c

5. Thefollowing example puts pr ot o. s, the assembly language file for
proto.c,andt 1. s, theassembly language filefor t 1. c, in the
current directory:
ic960 -S proto.c -tl.c

6. Thefollowing example produces the object file pr ot 0. o but no
executable file:

i c960 -c proto.c

ic960 Compiler Driver 3

7. Thefollowing example produces the object filespr ot 0. 0,t 1. 0, and
prot ol. o inthe current directory but creates no executablefile:
i c960 -c proto.c tl.s protol.

8. Thefollowing example lists file dependenciesfor dt est . c:
Thedt est . ¢ fileincludesthedi nc. h, d2. h, and d3. h files, as
follows:
#i nclude "dinc. h"
#include "d2. h"
#include "d3. h"
Thedi nc. h fileincludes the dad. h file, as#i ncl ude " dad. h".
Thed2. h and d3. h filesdo not include any files. The following
command compiles dt est . ¢ with - Q resulting in the following lines:

i c960 -Q dtest.c
dtest.o: dtest.c

dtest.o: dinc.h
dtest.o: dad.h
dtest.o: d2.h
dtest.o: d3.h

Related Topics

C (Keep-comments) o (Output) z (List)
M(Mix) V (Verbose)

U (Undefine)
Undefine symbol.

U synbol
synbol isasymbolic name.

Default
No symbols are undefined.

3-59

3i960® Processor Compiler User’s Manual

3-60

Discussion

Use the U (Undefine) option to remove preprocessor macro symbols.

Examples of symbols you can undefine include:

® the_ 1C960, i960and__i960xx macros, where xx is CA, CF, KA,
KB, SA, SB, JA, JD, JF, RM RN, or VH.

® the_ PICand__ Pl Dmacros

* symbolsyou have defined on the command line

® thesymbol for big-endian code generation, __i 960_BI G_ENDI AN

The compiler processes all the U (Undefine) options in acommand line only

after processing all the D (Define) options.

You cannot undefine or redefine the following predefined ANSI C macros:

__DATE__ isthe calendar date of the translation.

__FILE__ is the name of the current source file.

__LINE__ isthe line number of the current source program line.
_TIME__ is the calendar time of the tranglation.

__STDC indicates that the compiler conformsto ANSI C.
Example

The following examples both undefine the symbol __i 960KA:

i c960 - AKA -U__i 960KA proto.c
ic960 -AKA -U__i960KA -D _i 960KA=2 proto.c

ic960 Compiler Driver 3

Related Topics

A (Architecture) __1960xx _PIC

D (Defi ne) __1960 __PID

#define #undef
V (Version)

Display version information.

\Y

Default
The compiler does not display version information.

Discussion

Use the Vv (Version) option to display to standard error the name and
version, as shown below.

i c960 Version x.y.nnnn

X.y identifies the major release of the compiler

nnnn identifies the product’s patch level

Version information differs for each host system and for each release.

Related Topic
v (Verbose)

v (Verbose)

Display invocation information.

3-61

3i960® Processor Compiler User’s Manual

3-62

Default

The compilation system does not display individual phase invocation
information.

Discussion

Use thev (Verbose) option to display the standard errors from invocations
of the driver program, preprocessor, compiler, assembler, and linker. These
invocations are command lines generated by the driver program from the
files and W(Pass) options you specify in thei c960 command.

For example, if you specify the v (Verbose) option, the driver program
passesit tothe linker, even if you do not specifically use the W(Pass) option.
The linker displays on standard output the files linked according to the
following categories:

® input object files

* startupfile

® high-level libraries

® low-level libraries

Example
The following command-line requests verbose invocation information:
ic960 -v -T cycx -ACA -0 hello.out hello.c

Related Topics

| 960AS 1 960LD W(Pass)
| 960BASE Stop-after options V (Version)

v960 (Version, terminate)

Display version information and

terminate.

v960

ic960 Compiler Driver 3

Default
The compilation system does not display version information.

Discussion

Use thev960 (Version, terminate) option to display version information.
Thisisthe only thing the driver program does before terminating.

W (Pass)

Pass arguments to phases.

W phase, arg|, arg] .

phase isaletter identifying the phase to receive the arguments,
asfollows:

a indicates the assembler.

¢ indicates the compiler.

| indicates the linker.

p indicates the preprocessor.

arg isastring to be passed to and interpreted by the phase.
Each ar g is passed as a separate argument. If anarg
string contains whitespace, you must enclose the string
in quotation marks.

Discussion

Use the W(Pass) option to specify options for the preprocessor, compiler,
assembler, or linker. The driver program does not interpret the argument
strings; only the receiving phase interprets them.

Related Topic
Stop-after options

3-63

3i960® Processor Compiler User’s Manual

3-64

W (Warnings)

Enable or disable a warning.

W[no-]arg

TheW [no-] ar g option allows more fine-grained control over diagnostics

thanw [evel .
argisany of:

aggregate-return
al |
cast-align

cast - qual
char-subscripts
comment

conver si on

error

f or mat

id-clash-n

inplicit
m ssi ng- braces

warn if any functions return structures or
unions.

enable severa useful warnings. Hasno
Wo-al | form.

warn if apointer cast may not have the required
aignment.

warn if apointer cast removes atype qualifier.
warn if an array variable has type char .
warn whenever / * occursin a comment.

warn if a prototyped parameter causes a
different conversion from the conversion that
would take placeif the parameter were not
prototyped.

treat all warnings as errors.

check arguments of pr i nt f -family arguments
at compiletime.

warn if two identifiers match in the first n
characters.

warn if afunction is used before it is declared.

warn if an aggregate initializer is not fully
enclosed in braces.

ic960 Compiler Driver 3

m ssi ng- prototypes warn if afunction is defined beforeiit is
prototyped.

nest ed- ext erns warn if an ext er n declaration is detected
inside a function.

overl oaded-virtual Warnwhen aderived class function declaration
may be an error in defining avirtual function.
In aderived class, the definitions of virtual
functions must match the type signature of a
virtual function declared in the base class. With
thisoption, the compiler warns when you define
afunction with the same name as avirtual
function, but with a type signature that does not
match any declarations from the base class.

Who-over | oaded-vi rtual isthedefault.
Thisis a C++-specific option.

par ent heses warn if parentheses are suggested around an
expression.

poi nter-arith warn if the size afunction type or typevoi d is
used.

redundant - decl s warn if an object is declared twice in the same
scope.

reor der Warn when the order of member initializers

given in the code does not match the order in
which they must be executed. Who- r eor der is
the default. Thisis a C++-specific option.

return-type warn if any function implicitly returnsi nt , and
if any non-void function does not return avalue.

shadow warn if alocal variable shadows another local
variable.

strict-prototypes warn if afunction is declared without a
prototype.

swi tch warn if aswitch statement on an enumeration

type does not have a case for each enumerator.

3-65

3i960® Processor Compiler User’s Manual

3-66

traditional warn about contructs that behave differently in
traditional C and ANSI C.

trigraphs warn if any trigraphs are detected.

uninitialized warn if use of an uninitialized loca variableis
detected.

unused warn about objects that are never used.

write-strings warn if string constants are used in awritable
context.

w (Diagnostic-level)
Controls listing or display of diagnostic

w [evel

| evel isthelevel of diagnostic messagesto be listed or
displayed; can be 0, 1, or 2.

Default

The compiler displays error and major warning messages, that is, / evel
isil.

Discussion

Use the w (Diagnostic-level) option to suppress the warning messages that
highlight legal but questionable uses of C. Unlike errors, uses of C that
result in warning messages do not prevent the compiler from completing the
translation and linking process.

To choose the level of diagnostic messages, use one of the following for the
I evel argument:

0 to enable all warning and error messages

1 to enable magjor warning and error messages,
suppressing only minor warning messages

ic960 Compiler Driver 3

2 to enable only error messages, suppressing warning
messages

The a (ANSI) option always overrides the w2 option, forcing the compiler

to list or display warning messages.

The W(Warnings) option can be used to enabl e/disabl e specific warnings
that would otherwise fall under the control of the w (Diagnostic-level)
option. Thisis a C++-specific option.

Example
The following example displays warning and error diagnostic messages:
ic960 -c -wl proto.c

Related Topics
a (ANS) Stop-after options ~ W(Warnings)

Yd (Program database)

Specifies location of program database.

Yd, PDB_di rectory
PDB_di rectory specifiesthe directory containing the program database

(PDB).
Default
The environment variable | 960PDB specifies the location of the program
database.
Discussion

When linking an instrumented program to generate profile information,
during the Decision-making step, and during Profile-driven Recompilation,
the location of the program database (PDB) must be specified. You can use
the Yd (Program database) option to override | 960PDB or to indicate where
the PDB islocated if | 960PDB is not defined.

3-67

3i960® Processor Compiler User’s Manual

3-68

The PDB isadirectory that the compilation system uses to store various
filesthat it generates to contain information about the profile-driven
compilation of aprogram. It must be specified either viathe

Yd, PDB_di r ect or y option, or with the | 960PDB environment variable.

Z (Listname)

Names listing file.

Z filenane
fil enanme is the name of the listing file to be created.

Default

The compiler generates listing filenames from the primary source
filenames.

Discussion

Use the Z (Listname) option to name the listing file. If you specify more
than one source file on the command line, the compiler concatenates the
listings for all the source text filesinto the single f i | enane listing file.
Using the Z (Listname) option without the z (List) option generates alisting
file containing only primary source text.

Example

Thefollowing example producesthelisting filel i st . t containing a source
text listing for the file pr ot o. c:

ic960 -¢c -Z list.t proto.c

Related Topics
Stop-after optionsz (List)

ic960 Compiler Driver 3

z (List)

Produce listing file.

z arg. ..
arg is one of the following:
s lists the primary source text, that is, source
text from files named on the command line.
[adds included source text to the primary
source text listing.
0 adds the assembly language generated by
the compiler to the listing file.
m adds expanded preprocessor linesto the
primary source text listing.
c adds conditionally noncompiled source text
to the primary source text listing.
Default

The compiler does not produce any listing files.

Discussion

Usethe z (List) option to generate alisting file for each primary source file
and to specify the listing file contents. The ar g appliesto al listing files
produced. A listing file contains, at a minimum, the source text from the
primary source file and diagnostic messages according to the diagnostic
level. You can add other listing information by specifying one or more ar g
arguments instead of or in additiontos. Using thei , o, m or ¢ argument
impliesthe s argument.

Unless you specifically name the listing filename with the Z (Listhame)
option, the compiler derives alisting filename from each primary source
filename, asfollows:

base. L

3-69

3i960® Processor Compiler User’s Manual

I ncl ude

Leve

- qui et

base

isaprimary source filename, without its extension.

Example

The following example produces the listing file conpl ex. L and object file
conpl ex. o inthe current working directory for the sourcefile

conpl ex. c. Thelisting file contains primary source listing, included
source text, assembly language, source text that is conditionally compiled
out, and expanded macros.

i c960 -c -z cosm /conplex.c

Li ne

Number

Source Lines

Command line (ic960): ic960 -c -z cosm conplex.c
Conmmand line (ccl): /ffs/pl/dev/src/gcc960/tinct. sun4d/ccl
.960 -ic960 -ffancy-errors -sinfo /usr/tnp/ica29412.sin -fno-builtin

- Fcof f

-nkb -m c3. 0-conpat

-fno-inline-functions
-clist sionc -dend "ic960 -c -z cosmi conpl ex.c" -dunpbase conpl ex
-outz conplex.L -tnmpz /usr/tnp/ica29412.1tm /usr/tnp/ica29412.i -o
[usr/tnplica29412. s

=)
* %

PR R RRPRRPRRPRRRRRRERPR

3-70

.file

"conpl ex. c"

gcc2_conpi | ed.
___ghu_conpiled_c:

#i ncl ude "conpl ex. h"

-fsi gned- char

-wl -CO1

/* Define a struct for conplex numbers

with sonme nmacros */
#i f 1defined(conpl ex_h)

struct conpl ex {

doubl e x;
doubl e i;
s
#define | NI T_COVWPLEX(num real
num x =real; numi =img;

i mg) \

#defi ne ADD_COWPLEX(res, opl, op2) \

res.x =opl. x+op2. x; \

ic960 Compiler Driver 3

17 res.i =opl.i+op2.i;
18
19 #endi f [* ldefined(conmplex_h) */

extern void wite_conpl ex(struct conplex nunj;

mai n()

{

[oNeoNoNolNol i
[o2 3 8) I =N oV]

.text
.align 4
.def _main; .val _main; .scl 2; .type 0x40;
. endef
. gl obl _main
Function 'main’
Registers used: g0 gl g2 g3 g4 g5 g6 g7 fp r4*
r5* r6* r7*
_main:
| da 48(sp), sp
#Prol ogue stats:
Total Frame Size: 48 bytes
Local Variable Size: 48 bytes
Register Save Size: 0 regs, 0 bytes
#End Prol ogue#
0 7 register struct conplex X,vy, z;

0 9 |INT_COWLEX (x, 10.31, 4.25);
+++++ X .Xx = 10.31 ; X .i = 4.25 ; ;
| dal. 03100000000000004974el1,r 4
| daOx51eb851f,r4
| da0x40249eb8, r5
movlr4,r6
stlr6, 64(fp)
| da4. 25000000000000000000€0, r 4
movO0, r 4
| da0x40110000, r5
movlr4,r6
stlr6, 72(f p)
0 10 INIT_COWPLEX (y, 7.14, 5.23);
+++++ y .x = 7.14 ; y .i = 5.23; ;
1 da7. 13999999999999968026¢€0, r 4
| daOx28f5¢c28f,r4

371

3i960® Processor Compiler User’s Manual

3-72

| daOx401c8f5¢c, r5

movlr4,r6

stlr6, 80(fp)

| da5. 23000000000000042633€0, r 4
| daOx1eb851ec, r4

| daOx4014eb85, r5

movlr4,r6

stlr6, 88(fp)

0 11 ADD_COWPLEX (z, x, Y);
+++++ Z . X = X .X+ y.X; z .i = XxX.i+ y.i;;
0 12

| dal. 74499999999999992895e1,r 4
| da0x33333333,r4

| da0x40317333,r5

movlr4,r6

stlr6, 96(fp)

| da9. 48000000000000042633€0, r 4
| daOx8f 5¢c28f 6, r4

| da0x4022f5¢c2,r5

movlr4,r6

stlr6, 104(fp)

0 13 wite_conplex (z);

0 14

I dg96(fp), g0

callj_write_conpl ex

}

#EPI LOGUE:

ret

.def _main; .val . . scl -1; . endef

The listing file includes information about the compilation. The heading
line at the beginning of the listing contains the name and version of the
compiler, the printing date of the listing, and the name of the primary source
file. The next two lines of text describe the format of the listing. The
remainder of the file contains thelisting. The compiler does not paginate
the listing and does not wrap long lines.

The format of the source text listing is as follows:

ic960 Compiler Driver 3

i ncl ude- nesting-1level |ine-nunber source-Iline

i ncl ude-nesting- determines the depth of thefileinthe include

level file nesting hierarchy. Since lines from the
primary source file are always at level O, if you
do not list included source text, all source lines
inthelisting are at level 0. An asterisk (*)
following theinclude nesting level indicatesthe
first line of afile.

I i ne- number isthelocation of aline relative to the beginning
of the file containing that line.

source-1line isaline of source text.

A line with an expanded macro appears after the corresponding source line
in the following format:

source-1ine
+++++ nacro- expanded-1i ne

macr o- expanded- | i ne is the source line containing the expansion
of the macro.

The assembly language in the listing is similar to but not necessarily
identical to the intermediate assembly language form of the program
resulting from an S (Save-assembly) option. The compiler can add
symbolic names that improve readability of the listing but are not accepted
by the assembler.

Related Topics
Stop-after options w (Diagnostic-level) Z (Listname)

3-73

Program-Wde Analysisand
Optimization

Introduction

This chapter teaches you how to use some of CTOOL S most powerful
optimization features. This chapter discusses these topics:

® “Creating Program-wide and Module-local Optimizations”

* “Profiling Your Program”

* *“Using make To Perform Program-wide Optimizations”

®* “Runtime Support for Profile Collection”

To use the first two features you are going to:

1. Create a program database.

2. Specify which modules you want optimized.

3. Recompile your program using thé db option.

After these basic optimizations, you use profiling to gather information

about the runtime characteristic of your program and then optimize
performance based on that information.

The sections that follow describe the types of optimizations used in program
optimization.

Individual and Program-wide Optimizations

The compiler can perform sophisticated inter-module optimizations, such as
replacing function calls with expanded function bodies when the function
call sites and function bodies are in different object modules. These are
called program-wide optimizations because the compiler collects
information from multiple source modules before it makes final

41

I i960® Processor Compiler User's Manual

4-2

optimization decisions. Throughout this chapter, standard (i.e.,
non-program-wide) optimizations are referred to as module-local
optimizations.

About Profiling

The compiler can also collect information about the runtime behavior of a
program by instrumenting the program. The instrumented program can be
executed with typical input data, and the resultant program execution
profile can be used by the global decision making and optimization phase to
improve the performance of the final optimized program. The profile can
aso provide input to the global coverage analyzer tool (gcov960), which
gives users information about the runtime behavior of the program at the
source-code level.

Creating Program-wide and Module-local
Optimizations

Program-wide optimizations are enabled by options that tell the compiler to:

1. Build aprogram database during the compilation phase.

2. Invoke aglobal decision making and optimization step during the
linking phase.

3. Automatically substitute the resulting optimized modulesinto the final
program during the linking phase.

Specifying the Program Database Directory

The program database directory (PDB) is the repository for all
program-wide optimization information about a particular program. When
using program-wide optimizations, you must specify the correct PDB to all
compilation tools involved in building the program. Youinitialy create the
PDB, but the files within this directory are automatically managed by the
various pieces of the program-wide optimization system. Oncethisisdone,
you do not change the filesin the PDB.

Program-Wide Analysis and Optimization I

The PDB can be specified by setting the environment variable G360PDB
(gce960 driver) or 1 960PDB (1960 driver) to the correct location. You can
also specify the PDB at compiler invocation time with the zdi r (gcc960) or
vd, di r (ic960) option, as shown in the examples below.

gcc960 -Zmypdb foo.o0
ic960 -VYd, nypdb foo.0

Compiling for Program-wide Optimization with the fdb Option

All modules subject to program-wide optimization must be initially

compiled with the f db option (described in Chapter 2, “gcc960 Compiler
Driver” and Chapter 3, “ic960 Compiler Driver”). Using this option causes
the insertion of program database information in the object modules, and it
implies a minimum module-local optimization levelaf (although higher
module-local optimization levels are allowed).

Compiling with thef db option does not change the code or data generated
for the object modules in any way; this option simply makes information
collected during the initial compilation of the modules available to the
global decision making and optimization step.

Global Decision Making and Optimization Using the gcdm Option

The tool that performs the global decision making and optimization step is
called gcdm960. gcdm960 is invoked from within the linker whemdtlden
option is used. You can also use tleeimoption in the compiler driver
(gcc960 or ic960) to pass this option to the linker. Usingythienoption
causes gcdm960 to:

* automatically build and manage optimized object modulesin the PDB
® arrange with the linker for optimized object modules from the PDB to
be automatically substituted for some or all of the original object

modulesin the final program.

You can use multiple gcdmoptionsin alinker or compiler invocation

command, and each gcdmoption can have multiple comma-separated
arguments. (The gcdmoption and its arguments are fully described in
Chapter 4, “Program-Wide Analysis and Optimization”.)

43

I i960® Processor Compiler User's Manual

Selecting Modules for Optimization with Substitution Specifications

You tell gcdm960 which object modules to optimize and how to optimize
them with substitution specifications. Substitutions are specified by
arguments to the gcdmoption in the linker or compiler invocation.

The term “substitution” reflects the fact that the linker replaces yaur
files with optimized versions maintained in the PDB. Sucloafile from
the PDB is called a “substitution module.”

The example below illustrates the basic idea of substitution: It depicts an

ic960 invocation command that uses ¢feeimoption and thé&d andf db

options to accomplish program-wide optimization (without itiraf) for a

simple program.

ic960 -0 prog -Ttarg -Yd,./pdb -gcdm subst=+C6 -fdb fee.c

foo.c

(- Tt ar g specifies the linker directive file for the target execution

environment.)

The command accomplishes the following steps:

1. fee.c andfoo.c are compiled withi db, which inserts program
database information infcee. o andf oo. o.

2. The program is then linked to fopnog, at which time gcdm960 is
invoked with- Yd, . / pdb -gcdm subst =+05.

3. fee.o andfoo. o are replaced ipr og with versions from/ pdb

built at levelO5 optimization (that is, built with program-wide
optimizations).

E NOTE. Theoptimized replacementsfor f ee. o and f oo. o arepresentin
the linked program but never appear in the current working directory.

4-4

Program-Wide Analysis and Optimization I

Profiling Your Program

Compiling for Profile Instrumentation with -fprof

As mentioned above, information on the runtime behavior of the program
can be used by the compilation system during the global decision making
and optimization step. To instrument a program, use the f pr of optionin
addition to f db when compiling:

i c960 -Yd, nypdb -fdb -fprof -c foo.c

See Chapter 2, “gcc960 Compiler Driver” and Chapter 3, “ic960 Compiler
Driver” for more on thé pr of option. This command causes profile
instrumentation to be inserted irftoo. o so that when the linked program

is executed, a profile can be collected. Using runtime profiles to influence
the final optimization of your program requires you to build the program
twice: once to insert the instrumentation, as described here, and then again
so that the compilation system can substitute modules that are recompiled
with optimizations appropriate to their runtime behavior.

Collecting a Profile

If a program that contains one or more modules compiledfwithf is

linked with the standard libraries and then executed, a file named

def aul t . pf containing the profile for those modules is automatically
produced when the program exits. This is a “raw” profile containing
program counters that log how many times various statements in the source
program have been executed.

If you are not using the standard libraries, you must insert a call to a routine
that creates thprofile in an appropriate point in the program source code.
For instructions on this step, see the section titled Runtimpppd@ufor

Profile Collection (page 4-15). If you are using IxXWorks*, functions are
provided for collecting profiles (see page 4-14).

45

I i960® Processor Compiler User's Manual

4-6

Building Self-contained Profiles with gmpf960

A “raw” profile contains program counters, which count how many times
various statements in the source program have been executed. Information
in the PDB is needed to correlate these program counters with the source
program.

A raw profile (that is, a profile simply collected as described previously)
has a very short useful life. When changes are made in your source code,
any raw profiles previously obtained for that program are no longer
accepted by the global decision making and optimization step.

A “self-contained” profile captures the program structure from the PDB and
associates it with the program counters from the raw profile. When changes
are subsequently made to the source program, the global decision making
step interpolates or “stretches” the counters in the self-contained profile to
fit the changed program.

A self-contained profile can be continually used to optimize the program it
was collected for, even after days, weeks, or perhaps months worth of
changes to the program. This frees you from having to collect a new profile
every time the program changes, while still allowing profile-directed
optimizations. Depending upon the nature and quantity of changes to the
program, the accuracy of the profile gradually degrades over time as more
interpolation is done.

A self-contained profile must be generated from a raw profile before the
program that generated the raw profile is relinked. You should always
create a self-contained profile immediately after the raw profile is collected.

To create a self-contained profile, use the gmpf960 profile merger tool.
gmpf960 is invoked with the raw profile as an input file, as shown in this
example:

gnpf 960 -Z nypdb -spf pfile2.spf pfilel. pf

This command creates a self-contained prafilel e2. spf from the raw
profile pfil el. pf. The raw profilefi | el. pf was created by executing
the instrumented program that was linked usipgdb as the program
database directory. Thef and . spf filename extensions for the profile
files in this example are arbitrary; the different types of profiles are
recognized by their contents, not by their filename extensions.

Program-Wide Analysis and Optimization I

After a self-contained profile is created, you can specify it for the global
decision making and optimization step using thegcdm i prof =file
syntax as described in the next section.

Using Profiles During Global Decision Making and Optimization
with -gcdm,iprof

To supply aprofilefilepfi | e to the globa decision making and
optimization step, simply add the following option and argument to the
compiler or linker invocation command:

gcdm i prof =pfile

Thisisin addition to thegcdm subst option. Thei pr of argument can
specify either raw profiles or self-contained profiles.

Obtaining Program Coverage Analysis with gcov960

You can use both profile types asinput to the gcov960 coverage analyzer
tool, asfollows:

gcov960 -cm -Z ./pdb -iprof pfile.pf fee.c foo.c

This command produces a coverage report in the filesf ee. cov and
f 00. cov, using the profile pfi I e. pf.

Using make To Perform Program-wide Optimizations

Since the program-building tool “make” is so widely used, the
program-wide optimization features are designed to work well with it.
However, you need not use the make tool to effectively use program-wide
optimizations. If you do not use the make tool, you can skip this section.

Below is an example of a makefile (where g is set appropriately):
SUBST=

PROF=

MCODULES=*: *

OPT=-fdb

"-gcdm subst =$(MODULES) +$(SUBST) , i pr of =$(PROF) "
FLAGS=-Ttarg $(OPT)

OBJECTS=fee. o foo.0 nmain.o

4-7

I i960® Processor Compiler User's Manual

4-8

prog: $(OBJECTS) force
i c960 -0 prog $(FLAGS) $(OBIECTS)
.C.0:
ic960 -c $(FLAGS) $<
$(OBJECTS): nakefile
force:

While primitive, this makefile can be used to exercise severa significant
capabilities of the program-wide optimization system. Refer to this
exampl e as you read the following sections; the example and discussion can
help you determine the changes that must be made to your own makefiles (if
any) to perform program-wide optimizations.

Adapting Makefiles for Program-wide Optimization

This section discusses the example makefile and how the program-wide
optimization interface is expected to mesh with your current usage of
optimization and debug options.

Specifying the PDB in the Makefile

In anic960 or gcc960 development environment, you typically specify the
PDB by setting the | 960PDB or G360PDB environment variable outside of
any makefile, rather than changing makefiles to specify the PDB to every
tool invocation. The example makefile assumes that the PDB is specified
outside of the makefile in this manner.

The appropriate location for the PDB directory is probably in the directory
where the makefile compiles and links the object modules. For example,
the UNIX and Windows statements below are suitable for many users.
setenv | 960PDB ./ pdb (UNIX)

set 1960PDB ./ pdb (Windows)

Replacing Optimization Options with fdb and gcdm

Except for the definition of the OPT macro, the exampleistypical of simple
makefiles that use ordinary optimizations. From the point of view of the
makefile and/or the build system, the f db option combined with one or

Program-Wide Analysis and Optimization I

more gcdmoptionsis often a direct replacement for ordinary optimization
options such as O, because the compilation tools that accept ordinary
optimization options also accept program-wide optimization options.

Programs linked by direct invocation of the linker are exceptions to this
general rule. In such a case, the gcdmoption must be added to the linker
invocation.

Using Linker Invocations with gcdm for Automatic
Management of Object Files at Link Time

The example makefile always produces a program load module with the
same name. Since the options provided when the make tool is invoked
affect the linked program when there have been no apparent changesto the
source or object files, the makefile uses an artificial f or ce dependenceto
guarantee that the program is linked at every invocation of make. Thisisa
common practice, and keeps the makefile simple.

You could instead write the makefile so that different optionsto the link step
produce program load modules with different names. The artificia force
dependency could then be removed, perhaps saving an occasiond
unnecessary linker invocation. However, in the program-wide optimization
system there is no more reason to try to eliminate extralinker invocations
than there would be in an ordinary system. In fact, the devel opment
environment can often be simplified by forcing linker invocations (asin the
example makefile) for the following reasons:

®* Theglobal decision-making and optimization step manages the results
of previous work in the PDB so that all previously generated modules
are reused whenever possible. The system keeps multiple sets
(currently, two) of the most recently used substitution modulesin the
PDB, indexed by the substitutions that generated them. The makefile
is not aware of this management task, and is simpler as aresult.

® Even though program-wide optimizations can potentially trigger large
quantities of compilation and optimization work at link time, the
majority of thiswork usually occurs only the first time the programis
linked with a particular set of substitutions, or on the first link after
major changes are made to the program.

49

I i960® Processor Compiler User's Manual

4-10

® The automatic management of substitution modules (defined in the
Selecting Modules for Optimization with Substitution Specifications
section) greatly simplifies some development tasks that are difficult for
usersin an ordinary environment, such as maintaining both debug and
optimized versions of the object modules for a program. Given
modules already compiled with the f db option, users can have
alternate program load modul e versions built efficiently by simply
invoking the linker with appropriate gcdm subst options.

See the next section for examples of using the sample makefile to automate
program-wide optimizations.

Using Makefiles with Program-wide Optimizations for Common
Development Tasks

Building an Optimized Program without Profiling

Using the example makefile, if you want to obtain a program built with
program-wide optimizations, pass the options you want through the SUBST
macro when invoking the make tool. For example, if you want level C6
optimization, use:

make SUBST=06

This causes the object modules in the program to be compiled and then
linked with the options in the FLAGS macro. The make tool then issues the
following commands:
ic960 -c -Ttarg -fdb -gcdm subst=*:*+06,i prof= fee.c
ic960 -c -Ttarg -fdb -gcdm subst=*:*+06, i prof= foo.c
ic960 -0 prog -Ttarg -fdb -gcdm subst =*: *+05, i pr of =
fee.o foo.o
The link command causes substitution modules at optimization level 06 to
be built in the PDB to replace the original modulesf ee. o andf 0o. o inthe
program load module pr og. Thei pr of = option without afilename
indicates that you are not using a profile, which is the default behavior.

Building for Debugging without Program-wide Optimizations

If logic problems exist in the program, you can build a debug version of
pr og by invoking the make tool with:

Program-Wide Analysis and Optimization I

make SUBST=g+Q0

This causes the make tool to issue only the following link command

(assuming the sources haven't changed):

ic960 -0 prog -Ttarg -fdb -gcdm subst =*: *+g+Q0, i pr of =
fee.o foo.o0

The link command causes substitutionduleswith no optimization and

full debug information to be built in the PDB to replace the original

modules ee. o andf oo. o in the program load modupe og.

After debugging the problem and then fixing it by changing one of the
source files, you can reissue theke SUBST=C6 command to get another
program-wide optimized version pf og. Invoking the make tool
recompiles the changed source file and then links the program with the
substitutionspecification, as before. This causes the global decision
making and optimization step to recompile the previghisubstitution
modules as needed in the PDB, and those modules are then used in the
program load modulpr og.

Building an Instrumented Program

You can create a profile-instrumented program either of two ways: compile
source modules with thef pr of option, or link object modules using a
- gcdm subst =+f pr of substitution.
® When compiling with - f pr of , the object files generated in your
working directory contain profile-instrumented code.
®* When compiling with - gcdm subst =+f pr of , the
profile-instrumented object files reside in the PDB, not in your work
space.

These approaches both yield the same instrumented version of pr og.
However, compiling with the f pr of option creates object modules useful
only for collecting a profile. 1f you compile with thef pr of option and do
not want a profile, you must then use substitutions to replace every
instrumented module in pr og, or you must recompile the modules without
thef pr of option.

4-11

I i960® Processor Compiler User's Manual

4-12

Linking Using an +fprof Substitution

The example makefile requires no changes to accommodate this method;

just use:

make SUBST=f pr of

No files are recompiled unless source files have changed; only the

following link command is issued:

ic960 -0 prog -Ttarg -fdb -gcdm subst=*:*+f prof, i prof=
fee.o foo.o0

This command causes substitution modules with profile instrumentation to
be compiled in the PDB to replace the original modulesf ee. o and f oo. o
in the linked program pr og.

NOTE. Profiles collected with +f pr of substitutions must be made into
self-contained profiles before linking.

Compiling Using the fprof Option
To use thef pr of compiler option to create an instrumented load modul e;
1. Edit the makefileto add - f pr of to FLAGS.
2. Invoke the make tool without any substitutions, asfollows:
make SUBST=
Since the object files depend on the makefile, and the makefileis
edited, the make tool recompiles the modules before linking them:
ic960 -c -Ttarg -fdb -fprof -gcdm subst=*:*+ iprof=
fee.c
ic960 -c -Ttarg -fdb -fprof -gcdm subst=*:*+ iprof=
foo.c
ic960 -0 prog -Ttarg -fdb -fprof -gcdm subst=*:*+,i prof=
fee.o foo.o0
Since the substitution option list isempty, there are no substitutions, and the
instrumented modules from the current working directory are linked.

Program-Wide Analysis and Optimization I

Note that when you use the f pr of option in this manner, the generated
object module contains code that is unsuitable for linking into programs that
are not intended to collect profile information. To solve this problem, you
can use +f pr of withgcdm subst instead of using f pr of when
compiling.

Building an Optimized Program with Profiling

Assuming you have collected a profile named pr og. pf by executing the
instrumented version of pr og, you can then use it for program-wide
optimizations by invoking the make tool as follows:

make SUBST=056 PROF=pr og. pf

prog. pf canbeeither araw profile or aself-contained profile. If pr og. pf

is aself-contained profile, you can continue to use it as shown above, even
if changes are made to the program.

Profiling a Program in Pieces

Suppose that the target execution environment is memory limited so that

f ee. 0 and f 0o. o cannot both be instrumented for profiling at the same
time. You can use substitutions to make partially instrumented versions of
pr og, and then create self-contained profiles for each piece, as follows:
make SUBST=f pr of MODULES=":fe*"

Execute pr og to obtain raw profile def aul t . pf .

gnpf 960 -spf fel.spf default. pf
make SUBST=f pr of MODULES=":fo*"
Execute pr og to obtain anew raw profiledef aul t . pf .
gnpf 960 -spf fol.spf default. pf
Note that neither of the invocations of the make tool causes compilations;
the make tool simply issues alink command in each case. Each link
command constructs aversion of pr og that has alimited set of
instrumented modules:
ic960 -0 prog -Ttarg -fdb -fprof
-gcdm subst=:fe*+, iprof= fee.o foo.0
ic960 -0 prog -Ttarg -fdb -fprof -gcdm subst=:fo*+,
iprof= fee.o foo.0

4-13

I i960® Processor Compiler User's Manual

4-14

Note also that although the example contains only two modules, the strings
that select the modulesfor partial program instrumentation use a genera
regular expression mechanism. Such strings can select any possible subset
of the modulesin aprogram for any substitution. This mechanism is
discussed in detail with the gcdm subst optionin Chapter 6 “gcdm
Decision Maker Option”.

After creating the self-contained profilesl. spf andfol. spf, use
gmpfa60 to create a single merged self-contained profile:
gnpf 960 -spf prog.spf fel.spf fol.spf
The finalpr og. spf is identical to a profile obtained by instrumenting the
entire program at once. Now issue tiesdce command to get program-wide
optimizations guided byr og. spf :
make SUBST=06 PROF=pr og. spf
Again, the make tool performs no compilations. The following link
command is issued:
ic960 -0 prog -Ttarg -fdb -gcdm subst =*: *, +0b,

i prof =prog.spf fee.o foo.o

This causes substitutionodules at optimization leveb to be built
(guided by the profile ipr og. spf) to replace the original modulése. o
andf oo. o in the program load moduje og.

Runtime Support for Profile Collection for the
IXWorks* Environment

Starting with CTOOLS release 6.5, the CTOOLS distribution includes a
new profiling library that can be used in the Windriver Systems IxWorks*
runtime environment with an i960® Rx processor. The library is named
libixgrp.a and includes the following two routines that can be used to
initialize and collect profile data. Thdave routines can be invoked from
the Tornado* shell.

__ddnProfiledear():

This routine zeros all the profile counters and should be called at the
beginning of the profile collection run.

__ddnProfil eQutput():

Program-Wide Analysis and Optimization I

Thisroutine outputs all the profile information on to stdout and should be
called at the end of the profile collection run. The file default.pf is not
created when using IxWorks.

To link in thislibrary, usethel i xq linker switch.

NOTE. If you are generating a relocatable module using the r linker switch, make sure
that you use the P linker switch to include the profiling information used by the compiler in
the generated relocatable module.

Runtime Support for Profile Collection

When you link your instrumented program with the standard libraries
supplied with CTOOL S and startup code, when your program exits, araw
profile named def aul t . pf isautomatically produced in the current
directory. The format of thisfile is described in Chapter 5, “Profile Data
Merging and Data Format (gmpf960)”.

When you are not using the standard libraries or not using IxWorks, you
must provide code to initialize the profile counters and to dump the counters
in the required format, as described below.

Profile Initialization

Your startup code must call a profile initialization routine before calling
mai n. The address of the default initialization routine is held in the
predefined variable_profile_init_ptr. Hereis an example of a call
to the default initialization routine:

.comm _ profile_init_ptr

I d __profile_init_ptr, r6
cnpobe 0, r6, Of

| da 0(ip), go

| da -, 91

subo gl, g0, go

addo g0, r6, r6# adjust for PIC
callx (r6)

0:

4-15

Profile Data Merging and
Data Format (gmpf960)

This chapter explains how to use gmpf960 to merge the execution profile

data you learned how to collect in Chapter 4, “Profile Data Merging and

Data Format (gmpf960)”. You also learn how to use gmpf960 to create a
report that shows how many times each basic block was “hit” or run during
program execution.

Merging Profile Data

The gmpfo60 ulity combines the execution profiles created while
executing an instrumented program. Once the profiles are merged, the
gcdm960 utity uses the merged profile information to analyze the
program's run-time characteristics and make decisions about possible
program-level optimizations. For more information about gcdm960, see
Chapter 6, “gcdm Decision Maker Option”.

You can merge any mixture of the raw or self-contained profiles. See
Chapter 4, “Profile Data Merging and Data Format (gmpf960)”. The
merged profile is normally a self-contained profile, although you can merge
raw profiles into a single raw profile.

If the execution environment supports a file system, and the application
uses the supplied libraries, then the process of gathering and formatting the
data is automatic. When your instrumented program terminates, the profile
data filedef aul t . pf is automatically written.

5-1

5 i960® Processor Compiler User's Manual

gmpf960 Invocation

The profile-merge utility recognizes a letter preceded by a hyphen - (or on
Windows hosts only, aslash /) as an option. For example, - o specifiesthe
Ouitfile option on all hosts; / o is aso accepted on Windows hosts. gmpf960
uses the syntax:

gnpf 960 [-option]... {-spf | o outfile} infile
[infile]...

An opt i onisone of:

h displays alist of invocation options.

rprofile indicates how many times the counters for each basic
block were incremented, for those blocks that were hit.
Thisinformation is written to st dout .

t specifies that all input files are in text format.
v960 displays version information and exits.
Z pdb_dir specifies the program database directory. If the merged

output or any of the inputsis a self-contained profile,
you must specify the PDB with the Z option or via the
(960PDB or | 960PDB environment variable.

spf outfile causes a self-contained profile to be produced as outpuit.
Thisis the preferred usage of gmpf960.RWL Rabert W.
Lee

o outfile specifies the output file. If afile with that name aready
exigts, it is overwritten. You can even use the name of
one of the input files. White space is optional between
the option and argument. Note that this option is
supported only for merging raw profiles into another
raw profile.

infile specifies an input file. You can specify multiple input
filenames, gmpf960 processes them sequentialy. Input
files can be the results of a program execution or a
previous merging of profiles.

5-2

Profile Data Merging and Data Format (gmpf960) 5

Discussion

L)

Example

The gmpf960 utility merges the execution profilesin all i nfi I e filesand
stores the resulting profilein out fi I e. Input files can be either the output
from aprevious invocation of gmpf960, or the def aul t . pf profiles
created automatically when you run your instrumented program.

NOTE. Thetoolsthat accept profiles generally accept multiple profiles
and merge them in the same manner as gmpf960. However, gmpf960is
the only tool that actually produces profiles, and in particular, isthe only
tool that can produce a self-contained profile by conversion froma raw
profile. The other tools always perform the mergeinternally and discard
the merged profile after processing.

Thet option isuseful if your execution environment does not support
automatic creation of thedef aul t . pf profilefile. Uset if your input files
arein the text format described bel ow.

If thet option is not specified, the input files are assumed to bein their
default binary format. Input files can be either the output from a previous
invocation of gmpf960, or the def aul t . pf profiles created automatically
when you run your instrumented application.

The following command reads and processesr unl. pf, run2. pf,
run3. pf and merges the resultsinto the self-contained profile sunm spf .

gnpf 960 -spf summ spf runl.pf run2. pf run3. pf

Profile Format Specification

Normally, theraw profilefiledef aul t. pf iscreated automatically when
your application callsexi t . Alternatively, the gdb960 debugger supports a
profil e put command that you can use to extract the profile datafrom
target memory and writeit to def aul t . pf in the appropriate format.

5-3

5 i960® Processor Compiler User's Manual

If your execution environment does not support automatic generation of
def aul t . pf , you must manually extract the profile data from your
system’s memory and write it to afile in aformat recognized by gmpf960.

The remainder of this section describes where the profile dataresidesin tar-
get memory, and the file formats recognized by gmpf960.

Profile Data Structures

When you build an instrumented application, a supporting C data structure
isautomatically linked with your application. This data structureisused to
record your application's runtime behavior, or “profile.”

The profile data is maintained in an arrayoéi gned | ong integers,
called__profil e_data_start. The size of the array, in bytes, is given
by the symbol _profile_data_|length. __profile_data_l engthis
always a multiple of 4, and the number of elements in
__profile_data_start isgivenby (_profile_data_length / 4).

default.pf File Format

The filedef aul t . pf is a binary file containing the value of
__profile_data_l ength, followed by elements of
__profile_data_start. Each value is stored in the file as a 4-byte two's
complement unsigned integer. Furthermore, each value is stored in
little-endian byte order, regardless of the endiannegswftarget memory
and of your host system.

For example, assume thatpr of i | e_dat a_I engt h has the value 12 (12
bytes is three 4-byte words), and thapr of i | e_dat a_st art contains
the values 0x000090A4, 0x000000C7, and 0xO0008FDD. Then the binary
format of filedef aul t . pf (printed as hexadecimal words) would be:
0000000C

000090A4

00ooo00cC7

00008FDD

Depending on the tools available, you may find it difficult to create the
binary format required idef aul t . pf . To circumvent this step, you can
write the profile data to a file in text format, and then use gmpf960 to
translate the file into binary format.

54

Profile Data Merging and Data Format (gmpf960) 5

The text file format consists of thevalueof __profil e_data_l ength,
followed by thevaluesin __profil e_data_start. The numbers must
appear in the file as decimal, and must be separated by white space.

For example, assumethat __profi | e_dat a_| engt h hasthe value 20 (20
bytesisfive4-bytewords), andthat __profil e_data_start containsthe
values 20, 15, 100, 2, and 63. If you use atext editor to create the text
format of def aul t . pf, it would be:

20

20 15 100

2 63

Note that there is no requirement as to the number of entries per line. The
format definition of the text file simply requires that the numbers are
separated by white space.

Example

Assume that you have atext-format profileinfiledef aul t. t xt and a
binary-format profilein file def aul t . pf . The following invocations of
gmpf960 merge these two profiles, writing the results in the binary-format
filedef aul t . sum

gnpf 960 default.txt -o default.tnp

gnpf 960 default.pf default.tnp -spf default.sum

Any mixing of text, raw profile or self-contained profilesis alowed.

Creating a Runtime Report with gmpf960

You can also use gmpf960 to create a report that shows how many timesthe
counters for each basic block were incremented. The examples given below
assume that you compile and execute the following source file with the
-fprof option to gather aruntime profile.

5-5

5 i960® Processor Compiler User's Manual

5-6

Example 5-1 C Code

/* Source File - t.c */

int i, j;
mai n()
{
for (i =0; i <10; i++)
o=
return j;
}

To compile the above source file you can use the following command:
gcc960 - Fcoff -fprof -Tncycx t.c -Z pdb

The generated executable file a. out can be downloaded to a Cyclone
1960 Cx processor-based evaluation board and executed using the following
command

nondb -ser a.out
Thisexecution generatesthe def aul t . pf filewhich containsthe runtime

profile for the above execution. You can use either rprofile optionin
gmpf960 or the gcov960 coverage analyzer to get the coverage results after
running the program.

Using gmpf960

The command:

gnpf 960 -spf foo.spf -rprofile -Z pdb default. pf
generates the following output:

Profile Data Merging and Data Format (gmpf960) 5

Example 5-2 gmpf -rprofile Sample Output

Profile counts for nodule t.c=main$

Functi on name Li ne# Bl ock# Ti mes hit From
========================| s=======| ======| s========| ======

mai n | 4 | 0| 1] 1 rawinputs
mai n | 5 0| 1] 1 rawinputs
mai n | 5| 3 11 | 1 raw inputs
mai n | 5| 2| 10| 1 raw inputs
mai n | 6 | 1 10| 1 raw inputs
mai n | 8 | 4 | 1| 1 rawinputs

Notice that the in the example above, the expressionsin the f or loop and
theexpression j += i aretheonly oneswith multiple hits. The gcov960
sample output below provides you with the same information, however, the
number of hits for each statement is recorded to the left of theline.

Using gcov960

The command:

gcov960 -rl -Z pdb
generates the following output:

5-7

5 i960® Processor Compiler User's Manual

Example 5-3 gcov960 Sample Output

int i, j;
mai n()
1->/{
111 10 -> for (i =0; i <10; i++)
10 -> jot=iy
1-> return j;
}
Nunber of Bl ocks: 5
Nunber of Bl ocks Execut ed: 5
Nunber of Bl ocks Never Execut ed: 0
Percent age of Blocks in Source File that were executed: 100. 00%

Program dat abase:
Program profil e: defaul t. pf

Seethe i960 Processor Software Uties User’'s Guiddor more
information on gcov960.

5-8

gcdm Decision Maker

Option

This chapter describes the gcdmoption, which invokes the gcdm960 global
optimization decision maker during the link process. The decision maker
then invokes the compiler and linker as necessary to perform program-wide
optimizations. For an overview of how to use this option, see Chapter 4,
“Program-Wide Analysis and Optimization”.

gcdm Option Syntax

Thegcdmoption has the following syntax:

{ -1

! '} gcdm argunent[, argunent] ...

As with other options, you can use theelimiter only in Windows. The
gcdmoptionar gunent s and the sections that describe them are listed in

Table 6-1.

Table 6-1

gcdm Option Arguments (Sheet 1 of 2)

Section
gcdm Option Arguments Description Titles
® subst={module-set{option- Controls which modules Substitution
list} are substituted. Controls
® nosubst=module-set
. [no]ref=modul e-set Specifies whether External
functions or data defined Reference
in objects reside outside Controls

the current module set
presented to the linker.

6-1

6 i960® Processor Compiler User's Manual

Table 6-1

gcdm Option Arguments (Sheet 2 of 2)

Section
gcdm Option Arguments Description Titles
® inline=n Sets the level of inlining Inlining
used by the compiler. Level
Control
® iprof=file Causes profile Input Profile
information to be used in Control
program-wide
optimizations.
® sram=start, end],start, Specifies fast memory Fast
end]... regions (e.g., SRAM) to Memory
m=start, len[,start, len]... use for heavily Controls
referenced variables.
® dryrun Writes a list of the current Dryrun
subst commands to a Control
text file.
® dec=file Options for creating Report
® rsummary gcdm reports. Controls
® rdecisions
® rcall-graph
® rreverse
® rprofile
® rvariables

gcdm Option Arguments

Substitution Controls

The substitution controls alow you to substitute optimized modules into
your application (using gcdm subst), and to suppress unintended
substitutions (using gcdm nosubst). When a given object moduleis
named in multiple subst or nosubst options, thelast subst or nosubst
that names the module applies. The substitution controls also allow fine
control of how affected modules are optimized. The following subsections

gcdm Decision Maker Option 6

describe substitution and substitution suppression. Detailed information on
controlling optimizationsis presented in the discussion of opti on-1i st in
the next subsection.

Substitution Specifications

subst ={ nodul e-set}{option-1ist}

In the linked program, gcdm subst ={ nodul e- set}{option-1ist}
causes substitution of modules optimized according to the opt i on-1i st
for all of the modulesin nodul e- set. Notethat no spaceisallowed
between nodul e- set and opti on-1ist.

A nodul e- set specification isastring supplied by the user that names the
modules to be affected by the gcdmoption. For a description of how to
specify a nodul e- set, see “Module-set Specification” at the end of this
chapter.

An option-1jst can consist of one or more of the substitution options
discussed in three categories below. Note that the first two categories are
mutually exclusive; you can use substitution options from the third category
with those from either of the first two categories. (For example;@he
control is incompatible in a substitution with thiepr of control.) An

option list can also consists of a singlespecifying no substitution.

Whole-program Optimization Option (Category 1)
+0b

This option selects program-wid@timizations, including global function
inlining, superblock formation, and global alias analysis. This option is not
allowed in anopt i on-1i st with module-local (Category 2) options.

Module-local Optimization Options (Category 2)
+fprof +00 +01 +& +O3 +OM4

These module-local sutitsition options correspond to the @60 and ic960
drivers'- f pr of (Instrument) and On (Optimize) options described in
Chapter 2, “gcc960 Compiler Driver” and Chapter 3, “ic960 Compiler
Driver”. (The compilation system interprets th@n arguments correctly,

6-3

6 i960® Processor Compiler User's Manual

based on which compiler driver you are using.) The module-local
substitution options are not allowed in an opt i on- 1 st with
whole-program optimization (Category 1) options.

+f pr of causes generation of profile instrumentation, as
described for the- f pr of compiler option (in Chapter 2,
“gcc960 Compiler Driver” and Chapter 3, “ic960
Compiler Driver”). When thef pr of substitution
option is used (instead of thépr of compiler driver
option), only the substitution edules in the PDB
contain the actual instrumented code. This is useful in
some cases. For example, a library compiled wiitb
but without- f pr of is suitable both for users who do
not want to use program-wide optimizations, and for
those who do, as follows:

® All program database information required to
support program-wide optimizationsis present in
thelibrary, sinceit is compiled with - f db.

® Tocollect afull program profile (including the
library) for use with program-wide optimizations, a
substitution such as
-gcdm subst =*: * +f pr of generates a program
that is appropriately instrumented.

® If you do not use program-wide optimizations (that
is, you do not use gcdm,subst options), there is no
extraruntime overhead, and the program can be
optimized to any module-local optimization level
higher than -O0.

+Q0 +01L +O2 +3B +O4

allow substitutions of modules with various levels of

module-local optimization. (The compilation system

interprets the - On arguments correctly, based on which

compiler driver you areusing.) Thesearetypicaly used

for the following purposes:

® to substitute a few non-optimized modulesinto a
program built with program-wide optimizationsin
order to help debug it.

6-4

gcdm Decision Maker Option 6

® to specify amodule-loca optimization level other
than O1 with a +fprof substitution.

Miscellaneous Substitution Options (Category 3)
+g +asm pp+prog +clist+arg +fstring

These can be used with either the whole-program or module-loca
substitution options in Categories 2 and 3, above.

+g enabl es debug information generation for substitution
modul es.

+asm pp+prog causes pr og to be invoked after the assembly code for a
substitution module is generated, with the name of the
file containing the substitution assembly code asitsthird
argument. (The first two arguments areignored.) This
alows the post-processing of substitution assembly
code by user-supplied tools.

+clist+arg generates a listing contai ning assembly code and/or
preprocessed source code of each module selected by
the substitution into a file named nane. L in the current
working directory, where nane is the base filename of
the object module being substituted. ar g isastring
consisting of s, o or both. The s character causes
inclusion of the substitution module’s pre-processed
source code in the listing. Thecharacter causes
inclusion of the substitution module’s assembly code
in the listing. In order for preprocessed source code
to be displayed in listings generateddby st
substitutions, the modules must either have been
originally compiled with the ic960 driver or compiled
with the gcc960 driver using the ancy-errors
(ic960) orf mi x- asm(gcc960) option.

+fstring The +f st ri ng substitution options listed below apply
the corresponding individual - f st ri ng optimization
options discussed in Chapter 2, “gcc960 Compiler

6-5

6 i960® Processor Compiler User's Manual

6-6

Driver” and Chapter 3, “ic960 Compiler Driver”. The
no form of these options (e.gf no-unrol | -1 oops)
is also accepted.

+f bbr, +fcoal esce

+f condxform +fconstprop

+f copyprop, +fcse-followjunps

+f cse- ski p-bl ocks, +fdead-elim

+f expensi ve-optim zati ons, +ffunction-cse
+fmarry_nmem +f peephol e
+frerun-cse-after-1oop, +fsblock

+f sched- sbl ock, +fschedul e-i nsns

+f schedul e-i nsns2, +fshadow gl obal s

+f shadow- mem +f space- opt

+fsplit_nem +fstrength-reduce

+ft hread-junps, +funroll-all-Ioops
+funroll -1 oops

These options automatically default appropriately based
on the selected optimization level.

Substitution Suppression

nosubst =nodul e- set

Thenosubst =nmodul e- set argument suppresses stiogion for the

named modules.

This is equivalensithst =nodul e- set + (the

option-1ist consists only of & character)nosubst is typically used to
exclude a subset of modules from a previsuisst .

For example, thgcdmoption and argument:
-gcdm subst =*: *+Cb, nosubst =:i ntr_handl er

would substitute all mdules exceptnt r _handl er.

External Reference Controls

ref =nodul e- set

nor ef =npdul e- set

gcdm Decision Maker Option 6

These reference controls cause gcdm960 to assume/not assume that
functions or data defined in the objects named by nodul e- set are
referenced outside the set of object files presented to the linker. You would
normally user ef to keep the global decision making and optimization step
from discarding modules that appear to be unused. Thelast ref or nor ef
to name a given module applies. nor ef istypically used to exclude a
subset of modules from apreviousr ef . The defaultisnor ef .

Inline Level Control
inline=n
This gcdmoption argument controls how aggressively global inlining
decisions are made. n defaultsto 3, and n must be less than or equal to 4.
The higher the argument, the more aggressive the inlining, and the larger
your program may become. Note that inlining must be enabled (i.e., +C6
control is used) for this control to have any effect.

Input Profile Control
i prof=file

This control causesthe profileinformationin f i / e to be incorporated into
program-wide optimization decisions. fil e isaraw profile or a
self-contained profile.

See Chapter 4, “Program-Wide Analysis and Optimization” for a discussion
of profiles.

Fast Memory Controls

sramrhexst art, hexend[, hexstart, hexend] . . .
mrhexst art, hexl en[, hexstart, hexl en]. ..

The compilation system optimizes software to exploit on-chip cache and
data RAM areas when you specify the architecture with-theoption.

This optimization attempts to place the most heavily accessed data and
variables in fast RAM. fast memory controls (gcdm option). Jdwm

option lets you identify other SRAM areas that are available in a system.

6-7

6 i960® Processor Compiler User's Manual

6-8

Memory regions have an implicit order ranking with respect to the
optimization tools; the left-most region specified is assumed to be the most
desirable. Thus, the tools attempt to place the most heavily referenced
variables into the first memory region specified. When that region isfull,
the tools begin placing variables into the second region specified.

For example, the control m=0x210, Ox3F0 places the most heavily
referenced variablesin an SRAM address beginning at Ox210. Ox3FO0
specifies the length of the memory range to be used for this purpose.

Using the sr ankrOx100, Ox3f f control indicates to the system that the
memory range Ox100- Ox3f f isavailable for data placement.

See your processor manual for information on memory region alocations.

Dryrun Control

dryrun

Thedr yr un argument echoes the commands that would be executed to
implement all specified subst options into the report file, without actually
doing the optimization work.

Report Controls

The gcdmoption arguments listed here allow for creation of various
optimization reports and creating and naming a report file.

dec=file

Causes the optimization decisions report to be sent to i / e, instead of to
st dout (which iswhere reports appear by default).

dryrun

Echoes the commands that would be executed to implement all specified
subst optionsinto the report file, without actually doing the optimization
work.

rsummary
Printsa summary of program-wide optimization decisions to the report file.

gcdm Decision Maker Option 6
Thisisatypical r sunmary report:
Initial linked text size was 20720 bytes.

About 21760 bytes are assuned avail able for the final
text section.

0 variables were allocated to fast nenory.

2 function call sites were inlined.

The first line shows the size of the application’s text section before
program-wide optimization.

The second line shows the decision maker’s goal for the final size of the
application’s text section after program-wide optimization.

The third line shows that no variables were allocated into high-speed
memory.

The fourth line shows that two call sites were inlined.

When the-f virtual - opt option is supplied to the compiler, the
summary also includes the total number of virtual function calls and the
number of virtual function calls that have been resolved.

rdecisions

Creates a report that includes the initial and goal text sizes as described
above, as well as a list of variables allocated to fast memory, a list of the
estimated sizes of all functions before and after program-wide optimization,
and a list of inlined call sites.

Thel nl i ned ar cs section of the report lists call sites selected for inlining:
® Thecall er fieldisthe function containing the call site that isinlined.

® Thecall ee field is the function being called at the inline site.

® ThesSit e fieldisanumbering of the call sitein the calling function.
Thefirst call in the calling functionissite 1, the next call is site 2, and
soon. Thisfield isuseful for distinguishing between call siteswhen
the a function makes multiple calls to the same function.

® ThePercent fieldisthe percent of all dynamic calls for which this
call siteisresponsible.
®* TheHei ght field isthe height in the call tree of the called function.

rcall-graph
Creates a call graph report showing the dynamic behavior of the program.

6-9

6 i960® Processor Compiler User's Manual

6-10

® TheFunction Cal | ee field liststhe arcsin the call-graph. The
formatis:
Func
Cal l eel
Cal l ee2
Cal | ee3

Inthislisting Func isthe calling function. Cal I eel, Cal | ee2, and

Cal | ee3 arethe functionsthat are called from function Func. A ?inthe
calleefield indicates that this call siteisacall through apointer. Inthiscase
the compiler does not know what function is called from this call site.

® TheSite fieldisthe call site number of the call to thisfunction. Each
call sitein afunction is assigned a number starting with 1.

® TheCount field hastwo meanings. When applied to acalling function
the count is the number of times this function was called during all
profiled executions. When applied to acalled function the count is the
number of times this particular function was called from this specific
call site during all profiled executions.

® ThePercent fieldisthe percentage of the total number of profiled
dynamic callsthat this Count accounts for.

® ThesSize fieldisrelevant only for called functions; the value shown is
the number of intermediate language statements in the function before
program-wide optimization.

® For callees, the Reg field indicates how many registers were needed to
generate code for the function. For callers, the Reg field indicates how
many registers were used across the particular call site.

®* Thelnlinefiedisreevant only for called functions; avalue of 0
indicates that a called function was never inlined, and avalue of 1
indicates it was inlined one or more times.

NOTE. Functions that were not instrumented appear in the call graph
only if they are referenced by some function that was instrumented.

gcdm Decision Maker Option 6

rreverse

Prints areversed call graph to the report file. This control changes the
format of reports generated by ther cal | - gr aph control. When you use
rrever se, the call graph report lists all the sites where afunction is called
from, rather than listing the call sites of each function. In other words,
rather than listing each caller followed by its callees, the report lists each
callee followed by its calers.

rclosure
This control reports the transitive closure of all possible callee functions.

rprofile
Prints the profile counts for the basic blocks that were hit to the report file.

® Theli ne# field isthe line number within thefile.

®* TheBl ock# field isthe basic block that correspondsto thisline
number.

® TheTimes hit fieldisthe number of timesthat thisline of code was
executed.

® TheFr omfield indicates how the valuein the Ti nes hit fieldwas
obtained.

For values that were completely estimated by the decision maker, the field

contains “guess.”

For values obtained from profiles that were not subject to interpolation, this
field contains® Raw i nput s, wheren is the number of profile files used to
obtain the value.

For values obtained from interpolated profiles, this field contains
Stretched i nputs, wheren is the number of profile files used to obtain
the value.

rvariables

Lists the variables allocated to fast memory withor - sr amto the report
file.

® TheVari abl e field isthe name of the variable to be allocated to fast
memory.

6-11

6 i960® Processor Compiler User's Manual

6-12

The Si ze field isthe size of the variable in bytes.

The Usage Count field isthe number of times this variable was
accessed during execution of the program.

The Addr ess field isthe variable's address in fast memory.

Module-set Specification

A module-set specification (used in substitution controls and external
reference controls, described earlier in this chapter) selects a subset of zero
or more modules from the set consisting of all eligible modulesin the
program. A module-set specification has the format:

[archive]l : nodul e

The following rules govern module-set selection.

1.

The set of eligible modules are those linked into the program that were
compiled with the - f db compiler driver option (described in

Chapter 2, “gcc960 Compiler Driver” and Chapter 3, “ic960 Compiler
Driver”).

When either of the character®r+ appears twice in succession, that
character is quoted and the meaning is a single+ character.

When a module-set contains an unquotedharacter, it is interpreted
as a pair of regular expression strings in the style of the UNIX Bourne
shell, with the string to the left of thematching object file archives
and the string to the right of thematching individual object files. For
example:
— matches all eligible modules
— maitches only eligible modules not linked in from libraries
— a: b. o matche®. o from librarya, provided the module is

eligible
When a module-set contains no unquotetharacters, it is assumed to
be the name of a function or variable in the program. In this case, the
module-set refers to the object file that contains the definition of the
variable or the body of the function, provided the module containing
the variable definition or function body is eligible.
When a module-set is empty (that is, no characters occur between the
option and the character) the module-set defaults tq which refers
to all eligible modules in the program not linked in from libraries.

C Language
| mplementation

This chapter discusses the following topics:
* *“Data Representation”

® “Calling Conventions”

® “Object Module Section Use”

* “Pragmas”

®* “Language Extensions”

®* ‘“Inline Assembly Language”

Data Representation

Scalars

This section describes the scalar and aggregate data types recognized by the
compiler, the format and alignment of each type in memory, and the range

of values each type can take. For information on ANSI C data typeS; see

A Reference Manual.

The 1960 processors usdite-endian byte ordering, such that the address
of a 4-byte (32-bit) variable is the address of the low-order byte of the
variable. The 1960 Cx, Hx, and Jx processors also support big-endian
addressable memory, such that the address of a 4-byte (32-bit) variable is
the address of the high-order byte of the variable.

A scalar data type holds a single value, such as the integer value 42 or the
bit string10011. Table 7-1 lists scalar data types for the i960 processor.

7-1

; i960® Processor Compiler User's Manual

7-2

Table 7-1

Scalar Data Type (Sheet 1 of 3)

Data Type
unsigned char
[signed] char

unsigned short

[signed] short

unsigned int

[signed] int

unsigned long
[signed] long

unsigned long long

[signed] long long

float

double

long double

Size
(bytes)
1

1

16

Format
ordinal

2's-complem
ent integer
ordinal

2's-
complement
integer
ordinal

2's-complem
ent integer
ordinal

2's-
complement
integer
ordinal

2's-
complement
integer

single-
precision
floating-point
double-
precision
floating-point
extended-
precision
floating-point

Range
0 to 255
-128 to 127

0 to 65535
-32768 to 32767

0 to 4,294,967,295

-2,147,483,648 to
2,147,483,647

0 to 4,294,967,295

-2,147,483,648 to
2,147,483,647

Oto
18,446,744,073,709,551,615

-9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

1.17549435*10738 to
3.40282347*1038
(approximate absolute value)

2.2250738585072* 107398 to
1.7976931348623* 10308
(approximate absolute value)

3.362103143112094*1074932
t0 1.189731495357231*104932
(approximate absolute value)

1. Bitfields occupy as many bits as you assign them, up to a word (4 bytes), and their length need not
be a multiple of 8 bits (1 byte).

2. The enum data type is identical in size and range to char, short, or int data type, depending on the
range of constants in the enum declaration.

C Language Implementation ;

Table 7-1 Scalar Data Type (Sheet 2 of 3)

Size
Data Type (bytes) Format Range
bit field (unsigned 1t0 32 ordinal 0 to 2571 (Size is the number
value)® bits of bits in the bit field.)
bit field® 1t032 2's -2size-1 1g p(size-1).1 (Size is the
(signed value) bits complement number of bits in the bit field.)

integer

1. Bitfields occupy as many bits as you assign them, up to a word (4 bytes), and their length need not
be a multiple of 8 bits (1 byte).

2. The enum data type is identical in size and range to char, short, or int data type, depending on the
range of constants in the enum declaration.

7-3

; i960® Processor Compiler User's Manual

Table 7-1 Scalar Data Type (Sheet 3 of 3)

Size
Data Type (bytes) Format Range
pointer 4 address -
enum? 1,2,or 2's varies
4 complement
integer or
ordinal

1. Bitfields occupy as many bits as you assign them, up to a word (4 bytes), and their length need not
be a multiple of 8 bits (1 byte).

2. The enum data type is identical in size and range to char, short, or int data type, depending on the
range of constants in the enum declaration.

Compiler options (e.g., gcc960’s [no-] si gned- char or

f [no-] unsi gned- char ; ic960’sGecs or Geu) set thechar declaration
default tosi gned char orunsi gned char. Wide characters (character
constants prefixed with dr) are syntactically supported but semantically
identical to other character constants. Note that with gccB&0 defaults
tounsi gned, whereas ic960 defaults tmsi gned.

The approximate ranges oif oat , doubl e, andl ong doubl e data types
appear in Table 7-1.

E NOTE. On architectures with an internal floating-point unit
(80960KB/SB), the compiler uses 32-bit and 64-bit general registers for
intermediate results when performing calculations with f | oat and
doubl e data types. Therefore, the accuracy of these data typesis limited
to 32 bits and 64 bits, respectively. The compiler does use theinternal
floating-point registers (f po-f p3) when performing calculations with
| ong doubl e data types, yielding |EEE-754 accuracies at the expense of
execution speed and code size.

7-4

C Language Implementation ;

The aignment of ascaar datatypeisequal to its size. Although the
extended-precision floating-point representation of | ong doubl e requires
only 10 bytes (80 bits), the natural architectural alignment of | ong doubl e
is 16 bytes. Therefore, to accommodate the semantic requirements of the C
si zeof operator, the size of al ong doubl e is 16 bytes.

The following scalar alignments apply to individual scalars and to scalars
that are elements of an array or members of a structure or union:

char isaigned on a 1-byte boundary.
short isaigned on a 2-byte boundary.
i nt is aligned on a 4-byte boundary.
l ong | ong is aligned on a 8-byte boundary.
poi nter isaligned on a 4-byte boundary.
fl oat is aligned on a 4-byte boundary.
doubl e isaligned on an 8-byte boundary.

| ong doubl e isaligned on a 16-byte boundary.

Aggregates

An aggregate data type consists of one or more scalar data type objects. You
can declare the following aggregate data types:

array consists of one or more elements of asingle
datatype placed in contiguous locations from
first to last.

struct is a structure containing one or more scalar or

aggregate data types. The members are
allocated in the order they appear in the
definition but do not always occupy contiguous
locations.

union isasinglelocation that can contain any of a
specified set of scalar or aggregate data types.

7-5

; i960® Processor Compiler User's Manual

Structure Alignment

The aignment of a structure affects how much space the structure occupies
and how efficiently the processor can address the structure members. A
compiler option (for gcc960, ni 960_al i gn; for ic960, Gac) allows
selection of any of the following alignment options for structures:

Optimal natural
alignment

Backward-compatible
natural alignment

ABI-compatible
alignment

User-constrained
alignment

isthe default alignment. For structures smaller

than 16 bytes, this alignment is the size of the
structure rounded up to the nearest power of 2.
The compiler aligns structures of 16 bytes or
larger on 16-byte boundaries. Optimal natural
alignment produces the most efficient code for
assigning values to structures and for passing
structures as arguments.

aligns a structure according to the greatest
alignment requirement of any member of the
structure. This alignment provides higher data
density than optimal natural alignment and
produces code and data compatible with that
generated by ic960 releases before Release 3.0.

aligns a structure or union to the maximum of
the following:

the greatest alignment requirement of any
members of the structure; or

2 if the structure’s size is 2 and 4 if the
structure’s size is 3 or larger.

aligns a structure according to any legal value
you specify. A compiler option (for gcc960,

nm 960_al i gn; foric960,Gac) or#pr agma

i 960 _al i gn allows specification of
alignments of 1, 2, 4, 8, and 16. Alignments can
also be specified usingpr agma al i gn,
described in this chapter.

7-6

C Language Implementation ;

Structure alignment can result in unused space, called padding, between
members of the structure and between the last member and the end of the
space occupied by the structure. The padding at the end of the structureis
called tail padding. Because of differencesin padding under different
alignments, changing the alignment can change both the size of the
structure and the offsets of members relative to the beginning of the
structure.

The offset of a structure member from the beginning of the structure is as
follows:

® Under both forms of natural alignment, the offset of a structure
member is a multiple of the member’s natural alignment. For example,
since ashort aligns on a2-byte boundary, the offset of ashort
member from the beginning of a structureis a multiple of 2 bytes.

® Under user-constrained alignment, the offset of a structure member isa
multiple of the lesser of the member’s alignment or the alignment
constraint you specify.

® For example, in a1-byte alignment (noal i gn), the offset of ashort
member is not necessarily even.

The rulesfor structure member natural alignment are:

Scalar types align according to their natural architectura
alignment. For example, ashor t datatype
aligns on a 2-byte boundary.

Array types align according to the alignment of the array
elements. For example, an array of short data
type aligns on a 2-byte boundary.

7-7

; i960® Processor Compiler User's Manual

Union types align according to the greatest alignment
requirement of any member of the union. Inthe
example below, uni aligns on a4-byte
boundary since the alignment of c, the largest
element, is 4:

uni on unl {
short a;/* 2 bytes */
char b;/* 1 byte */
int c;/* 4 bytes */
b

Structure types align according to the alignment of the member

types either natural or user-constrained.

Specifying optimal or backward-compatible natural alignment changes the
size of astructure. Natural alignments differ only in tail padding. Member
offsets, and therefore the padding between members, are the same under
optimal natural alignment as under backward-compatible natural alignment.
For example, the following structure occupies memory as shown in Figure
7-1 under either optimal or backward-compatible natural alignment:

struct strcl

{
char a; [/* occupies byte 0 */
short b; /* occupies bytes 2 and 3 */
char «c¢; [/* occupies byte 4 */
i nt d; /* occupies bytes 8 through 11 */
s

Under optimal natural alignment, the size and alignment of thest r uct type
are both 16. Under backward-compatible natural alignment, the sizeis 12
and the alignment is 4.

7-8

C Language Implementation ;

Figure 7-1 Natural Alignment

7 07 07 07 0
T T T T T T T T T T T 1T T T T T T T T T T T T
b XXXX a Byte O
HXXXXXXXX c 4
d 8

0OsD829

Specifying a user-constrained alignment changes both the tail padding and
the padding between structure members, which can also affect the structure
size. A user-constrained alignment smaller than the natural alignment of a
structure can result in amore tightly packed structure, saving space but
slowing execution.

The examplein Figure 7-2 compares the layouts in memory of the
following structure under two different user-constrained alignments:

struct strcl /* Aignment is 2: Alignment is 1: */
{ I */
char a; [/* byte O byte 0 */
short b; /* bytes 2 and 3 bytes 1 and 2 */
char c¢; [/* byte 4 byte 5 */

d; /* bytes 6 through 9 bytes 4 through 7 */

i nt

b

7-9

; i960® Processor Compiler User's Manual

7-10

Figure 7-2 User-constrained Alignment

Alignment is 2; Size is 10
7 0 7 07
\

rrrrrrr T T T T T T
b XXXX

d XXXX

Alignment is 1; Size is 8
7 07 07

Byte O

Byte O

0OSD830

A user-constrained alignment larger than the natural alignment aligns the
structure on the natural-alignment boundaries. User-constrained alignment
can increase the amount of tail padding relative to natural alignment but
does not increase the padding between members of a structure. For
example, specifying an alignment of 16 for st r c1 alignsthe structureasin

Figure 7-1.

When a st ruct hasamember that isalso ast ruct , the aignments of the
member type and of the container need not be the same. For example:

struct NATURAL

{
char c1;
short s;
char c2;
}
struct CONSTRAI NED 1
{
char c¢;
struct NATURAL n;
}

C Language Implementation ;

If struct NATURAL has natural alignment, one byte of padding appears
between themembersc1 and s. Under optimal natural alignment, the sizeis
8 and the alignment is 8. Under backward compatible natural alignment, the
sizeis 6 and the alignment is 2. If st r uct CONSTRAI NED_1 hasa
user-constrained alignment of one, no padding appears between members ¢
and n, nor does any padding follow the member n. However, al of the
padding mentioned previously as part of st r uct NATURAL still appearsin
member n of st ruct CONSTRAI NED_1.

Bit Field Alignment

Every bit field lies entirely within some bit-field container that has the same
size and alignment asani nt ; that is, the container alignment is the smaller
of 4 or a user specified alignment. A bit field can cross byte boundaries but
cannot cross a container boundary.

Alignment of an individual bit field is necessary when the bit field,
unaligned, overruns the end of the container in which it starts. A bit-field
size of zero also forces bit-field alignment. The alignment of a bit field and
the position of the bit field within a structure are determined as follows:

®* Thebyte position of a bit field within a container is the current byte
offset in the structure modul o the container alignment. Thisvalueisthe
byte offset relative to the most recent container alignment boundary.
For example, if the container alignment is 1, the byte position is always
zero. If the container alignment is 4, the byte position can be 0, 1, 2,
or 3.

® The bit position of the bit field is the number of bits already allocated
in the current byte, plus eight times the container byte position. This
value isthe bit offset, in the range 0 to 31, relative to the most recent
container alignment boundary.

7-11

; i960® Processor Compiler User's Manual

7-12

® If thevalue of the container bit position plusthe size in bits of the new
bit field is greater than 32 or if the size of the new bit field is zero, the
compiler inserts padding to align the bit field on the next contai ner
alignment boundary. Bit-field alignment can result in padding of up to
31 bits. If the bit-field size is non-zero and the bit field fits entirely
within the current container, the compiler does not insert padding to
aign the bit field.

® For big-endian, the bit position within the container is 31 minus the
above-calculated bit position.

Examples

These examples show how different alignment pragmas alter the alignment
of the components of a structure. The structure is declared as follows:

struct std_struct
{
unsi gned char mla;
unsi gned char mlb;
i nt mia;
unsi gned short nRa;
unsi gned mnbit5:5;
unsigned nmbit7:7;
unsi gned mnbi t 6: 6;
doubl e nBa;
s

C Language Implementation ;

Figure 7-3 showsthe optimal natural alignment of the structure, without any
alignment pragma.

Figure 7-3 Optimal Natural Alignment of std_struct

7 07 07 07 0
L T T T T T 1T T T T 171
XXXXXXXX XXXXXXXX m1b mia Byte 0

m4a 4
XXXX mbit7 mbit5 m2a 8
XXXXXXXX MXXXXXXXX XXXXXXXX XX mbit6 12
m8a 16
m8a (continued) 20
24

XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
28

0SD401
Figure 7-4 shows the backward-compatible natural alignment of the
structure, without any alignment pragma but with the appropriate compiler
option for backward compatibility specified (for gcc960, ni c- conpat ; for
iCc960, Goc).

7-13

; i960® Processor Compiler User's Manual

7-14

Figure 7-4 Backward-compatible Natural Alignment of std_struct

7 07 07 07 0
T T

XXXXXXXX XXXXXXXX mlb mla Byte 0

méda 4

XXXX mbit7 mbit5 m2a 8

XXXXXXXX XXXXXXXX XXXXXXXX XX mbit6 12

m8a 16

m8a (continued) 20

0OSD831

Figure 7-5 shows st d_st r uct aligned on 1-byte boundaries, with the
following alignment pragma:
#pragma noal ign (std_struct)

Figure 7-5 #pragma noalign Alignment of std_struct

7 07 07 07 0
T T T T T T T T T T T T T
méa mlb mla Byte 0
m2a m4a (continued) 4
m8a XXXXXX mbit6 mbit7 mbit5 8
m8a (continued) 12
m8a (continued) 16

0SD402

C Language Implementation ;

Figure 7-6 shows st d_st r uct , aligned on 2-byte boundaries, as follows:
#pragma i 960_align (std_struct = 2)

Figure 7-6 #pragma align Alignment of std_struct

7 07 07 07 0
T T T T T T T T T T T T T T T
m4a mlb mla Byte 0
m2a mda (continued) 4
XXXXXXXXXXXXXX mbit6 mbit7 mbit5 8
m8a 12
m8a (continued) 16

0OsD1887

Other Type Keywords

Thevoi d datatype is neither a scalar nor an aggregate. Use voi d asthe
return type of afunction, to indicate that the function does not return a
value. Usevoi d * asa pointer to an unspecified data type.

Theconst andvol ati | e type qualifiers do not define data types. Rather,
they associate attributes with other types. Use const to specify that an
object isa constant and is not to be changed. Usevol at i | e to specify that
an object may change in ways unknown to the compiler. Optimization is
inhibited on vol at i | e objects. Inhibition of optimization is hecessary for
objects such as memory mapped 1/0 registers or data accessed by interrupt
functions.

Calling Conventions

This section describes the standard 1960 processor function calling
convention and describes how the compiler generates code to conform to
this calling convention.

7-15

; i960® Processor Compiler User's Manual

The standard 1960 processor calling convention places an absolute
minimum overhead on simple, commonly called functions with few
parameters. Thisis done by passing information between the calling
function and the called function in the i960 architecture's global registers as

much as possible.

Definitions

call-preserved register The register must have the same value upon

call-scratch register

exit from afunction asit did upon entry to
the function.

Theregister may have adifferent value upon
exit from afunction than it did upon entry to
the function.

The following list summarizes usage of the global registers g0 through g15
and the floating-point registers f p0-f p3.

g0...97

08...911

7-16

These eight registers pass parameters into the called
function from the calling function. If the return value
of the function is four words or lessin size, then the
return value is passed back to the calling functionin
registers g0 through g3. If the function returnsalong
double and generates code for the KB or SB
processor and compatibility with ic960 R2.0 is
requested, then registers g0 through g7 are
call-scratch registers.

These four registers may be used for parameter
passing in addition to g0 through g7. If a parameter
or a piece of a parameter is passed in one of these
registers, that register is considered a call-scratch
register. That register is considered a call-preserved
register otherwise. If the called function can not be
sure that aregister has had a parameter passed in it,
then the register must be considered a call-preserved
register.

C Language Implementation ;

gl2 gl12 isused asthe PID bias register if generating
code for position independent data (PID). g12 isa
call-preserved register.

gl3

g13 If the called function returns a struct or union larger
than four words, then the calling function passes a
pointer to the space allocated for the return value in
g13. g13 isacall-scratch register.

gls If the function requires an argument block, this
register contains a pointer to the argument block;
otherwiseit contains zero. If g14 contains zero upon
entry, then it must contain zero upon exit. If g14
contains a pointer to an argument block upon
function entry, then g14 is considered a call-scratch
register.
g14 may also be used to hold the return addresswhen
afunctioniscaled using a BAL instruction. In this
case, g14 must contain zero upon return from the
function. This dual usage of g14 means that a
function that requires an argument block cannot be
entered using a BAL instruction.

gl5 g15 isdefined by the 1960 architecture as the frame
pointer (FP).
fp0, fpil, If the function returns along double and

fp2, fp3 generates code for the KB or SB processor and
compatibility with ic960 R2.0 isrequested, then f pO
contains the return value of the function. f pO- f p3
are considered call-scratch registers.

AC The arithmetic control (AC) register is acall-scratch
register. The condition codes are not preserved across
afunction call.

7-17

; i960® Processor Compiler User's Manual

7-18

The 16 local registers (r 0 through r 15) are 32-bit registers that provide a
separate set of registers for each active function. Each time a functionis
called, the processor automatically sets up a new set of local registers for
that function and saves the local registers for the calling function.

The particular use of each local register is:

ro contains the previous frame pointer (pf p)
ri contains the stack pointer (sp)

r2 contains the return instruction pointer (ri p)
r3...rl5 are general-purpose registers

Parameter Assignment to Registers

Parameters are passed in ascending-numbered registers, starting with go, in
the order the parameters appear (Ieft-to-right) in the actua call. Both scalar
and small aggregate (4 words or less) parameters are passed in registers.

The size of a parameter’s data type determines the number of registers the
parameter occupies. A parameter with atype size of one word or less
occupies oneregister. A parameter with atype size of two words or less
occupies two registers, and so on up to four words and four registers.

A parameter’s type also determines in which register it must start. If the
type's dignment is 4 bytes or less then the parameter may be passed starting
in any register. If the type's alignment is 8 bytes then the parameter must be
passed starting in an even numbered register. If the type's alignment is 16
bytes then the parameter must be passed starting in g0, g4, or g8. Any gaps
left in the parameter registers due to alignment are not filled by following
parameters.

Argument Blocks

An argument block is used to pass parameters when the parameters cannot
be passed in registers. This can occur either because there are not enough
registers left to pass the parameter, or when the parameter is too large
(greater than 4 words) to passin registers. As soon as a parameter is passed
in an argument block, all further parameters get passed in the argument

C Language Implementation ;

block. The calling function is responsible for the creation of an argument
block if one is needed. When an argument block is created it must contain
enough space at the beginning to store all the possible parameter registers
g0-g11. Thusthe first 48 bytes of an argument block are reserved for
storing these registers. The first parameter passed in the argument block
starts at an address 48 bytes above the base of the argument bl ock.

Return Values

All return values four or fewer words in length are returned in registers
g0-g3. For return values larger than four words the calling function must
pass a pointer to amemory areato store the return value. Thisvaueis
passed in register g13. The called function returns such a value by copying
the value into the memory area pointed to by g13.

ic960 R4.5 implements a specia return mechanism for functions returning
long double, when generating code for ic960 R2.0 compatibility, and for a
processor with on-chip floating-point support. In such a case the return
valueisreturned in the f p0 register.

Compiler Implementation

For compatibility with past implementations, the compiler allows some
leniency in the implementation of the standard calling convention.

The compiler is more relaxed about the call-preserved status of g8-g11
across afunction call. At afunction call, the compiler assumes that the
called function may change g8-g11 if any parameters are passed in an
argument block, or if any parameters were passed in any of the registers
g8-g11. However, the compiler properly implements the calling convention
on the called function side, preserving g8-g11 as necessary to satisfy the
calling convention.

7-19

; i960® Processor Compiler User's Manual

Object Module Section Use

The compiler generates assembly language that uses the following object
file format sectionsto allocate storage for code and data:

. text The compiler places all assembly language
instructions and constant datain the. t ext section.
Constant data includesinitialized variables with the
const typequalifier, aswell as string and
floating-point literals.

.data The compiler places any initialized datain the. dat a
section. Initialized dataincludes any statically
allocated variables that you declare with an
initialization list.

. bss The compiler locates uninitialized datain the. bss
section as follows:

Uninitialized static variables go directly into. bss.

Uninitialized external variables are defined with

the. commdirective. If the command line specifies

the relaxed ref-def linkage (gcc960’s
mo-strict-ref-def option oric960'sGdc
option), the linker places these variablesdiax a if
an initializing definition exists in anotheradule.
Otherwise, the linker places these variableb#s.

If the command line specifies strict ref-def linkage
(gcc960'srst ri ct - r ef - def option or ic960'zds
option), all uninitialized static variables are placed
directly in the bss section.

7-20

C Language Implementation ;

For more discussion of object module formats, refer to the i960 Processor
Software Utilities User’s Guide.

E NOTE. The compiler does not allocate storage in any section for
variables declared asext er n. Sorageisallocated in the module
defining the variable.

Pragmas

Pragmas can supply implementation-defined information to the compiler.
This section describes the supported pragmas in a phabetical order. For
information about pragma syntax and pragmasin general, seeC: A
Reference Manual.

#pragma align [for gcc960 driver]
#pragma align n

n specifies the alignment value in bytes. Any of the
following values arevalid: 0, 1, 2, 4, 8, 16.

E NOTE. This pragma functions differently with the gcc960 and ic960
drivers.

The#pragma al i gn n feature sets the maximum formal alignment
requirement for structs/unionsto n bytes. n must be0, 1, 2, 4, 8, or 16; other
values are ignored. 0 instructs the compiler to revert to the maximum
alignment in use before the last #pr agma al i gn. n=16 is the default when
m c- conpat isnot enabled; n=1 isthe default under mi c- conpat .

7-21

; i960® Processor Compiler User's Manual

7-22

To get the dignment a for astruct or union u, given #pr agma al i gn n:

* let mbethe largest alignment of all members of u.

® et s be u's unpadded size rounded up to the next power of 2.

® thenalign(u) = max (m nmin (n, s)).

Thus, a structure can never be given an alignment requirement that is less
than the largest alignment required for any of its members; #pr agma al i gn
can be used only to limit the amount of extra padding added to improve the
alignment of the entire structure. Note that restricting structure alignment
padding can affect the size and performance of the generated code.

The following examples show how #pr agma al i gn can affect the
alocation of structs.

struct sO{ struct si1{ struct s2{
char x[9]; char x[8]; char vy;
b struct sO z; short z;
}; short zz;
1
#pragma: size of sO: size of s1: size of s2:
align 1 9 17 6
align 2 10 18 6
align 4 12 20 8
align 8 16 24 8
align 16 16 32 8

#pragma al i gn does not restrict the alignment of individual st ati c,
ext ern, or aut o variable allocations that happen to be structures. The
compiler aligns each separate memory variable allocation based strictly on
the size of the all ocation, without regard to the formal alignment
requirement of the variable’s type.

C Language Implementation ;

#pragma align [for ic960, or for gcc960 with ic960 option]
#pragma align [[(]size[)]]

#pragma align [(]identifier[=size][,...]1[)]
#pragma noalign [[(lidentifier[,...][)] 1
size specifies the alignment value in bytes. Any of the

following values arevalid: 1, 2, 4, 8, or 16.

identifier specifies the structure tag used in st r uct type
specifiers, as described in C: A Reference Manual.

E NOTE. This pragma functions differently with the gcc960 and ic960
drivers.

Specifies alignment values for structures and unions.

Default
The default is optimal natura alignment.

Discussion

Use #pr agnma al i gn to align structure members using the natura
aignment value or a specified alignment size. Use #pr agna noal i gn to
specify byte alignment only. #pr agna noal i gn is equivalent to #pr agna
ali gn withasizeof 1. Theal i gn and noal i gn pragmas specify
aignment valuesfor st ruct types.

The aignment pragma applies to the whole structure; you cannot specify
differing alignments for individual structure members. If you do not specify
si ze, the compiler uses natural alignment.

Since the scope of an alignment pragmais all subsequent source text,
nesting declarative scopes does not affect an existing alignment. However,
you can place an alignment pragmawithin a structure declaration, so that
the pragma affects any subsequent nested or top-level structure declaration.

7-23

; i960® Processor Compiler User's Manual

7-24

The compiler alignsastr uct type at the opening brace that brackets the
struct declaration list, according to the following rules:

Rule 1 If thest ruct type has atag and the tag identifier has
appeared in an alignment pragma, the alignment is
specified by the most recent alignment pragma for the
tag identifier.

Rule 2 If thest ruct type hasno tag and the st r uct
declaration list is nested within another st r uct

declaration list, the alignment is the same as that of the
immediately enclosing st r uct type.

Rule 3 For any other situation, the alignment is specified by the
most recent alignment pragma with no tag identifier.
The compiler generates warnings for the following condition:

* When an alignment pragma redefines the alignment for a specific
structure tag name:
#pragma align xyz=4
#pragma noal i gn xyz

Examples

The following examples show different ways nested structures can be
aigned:

#pragma noalign (outerl) /* Both outerl and innerl are
*/

#pragma noal ign (innerl) /* packed (aligned on */
struct outerl { /* 1-byte boundaries). */
struct innerl {
short sl1;
char c1;
} sil;
int i?2;
b
#pragma noal i gn (outer?2) /* outer2 is packed. */

struct outer2 {

struct inner2 {/* Since the inner structure has a tag
*/

short s2; /* (inner2) but no alignment specified,?*/

C Language Implementation ;

char c2; /* alignnment of inner2 uses the default*/
} sil; /* alignnment. The short s2 aligns on */

/* 2-byte boundaries and is the | argest*/
/* menber of inner2; thus the default */
/* alignment of inner2 is 2. */

#pragma noal i gn (outer3) /* outer3 is packed. */
struct outer3 {
struct { /* Since the inner structure has no tag, it*/

short s; /* is aligned the same as the imedi ately */

char c ; /* enclosing structure, outer3. Thus both */

} sil; /* structures are packed. */
int i?2;

b

The following example shows nested unnamed structure definitions and
alignment pragmas:
#pragma align my_structure = 16

struct my_structure /* 16-byte alignment */
{
char f1;
struct /* 16-byte alignnent */
{
int ff2;
} f2;
b
#pragma align my_structure2 = 16
struct my_structure?2 /* 16-byte alignment */
{
char f1;
#pragma align 4
struct /* 16-byte alignnent */
{
int ff2;
} 2
b

/* 1f no nore alignnent pragnas appear, any subsequent
* structs have 4-byte alignment.
*/

7-25

; i960® Processor Compiler User's Manual

7-26

The following example shows alignment of a structure using the structure

tagidentifier:

#pragma align my_structure

struct my_structure

{
b

char f1;

#pragma noal i gn ny_structure2

struct ny_structure?2

{
char f1;
b

#pragma align my_structure3

struct my_structure3

{
char f1;
b

/* natural alignment */

/* no alignment; i.e. */
/* 1-byte alignnent */

/* 16-byte alignment */

The following example shows alignment of structures without

identi fier specification:

#pragma align
struct ny_structure

{
b

#pragma noal i gn
struct ny_structure2

{

b
#pragma align 16
struct my_structure3

{
b

char f1;

char f1;

char f1;

/* natural alignment */

/* no alignment */

/* 16-byte alignment */

C Language Implementation ;

#pragma cave

#pragma cave [[(] function [...] [)]]

function specifies function(s) for the compiler to prepare
for compression. If no function is specified, the
pragma applies to all functions defined
following the pragma.

Prepares code for link-time compression and runtime decompression.

Default
The compiler does not prepare code for compression.

Overview

Compression assisted virtual execution (CAV E) reduces the physical
memory requirements of ROM-based applications through link-time
compression and on-demand runtime decompression of user-specified

functions. The compiler, linker, runtime dispatcher, and compression and
decompression routines cooperate to provide this feature. Codeis typically
compressed by aratio between 1.5 and 1.7. Runtime decompressi on speed
is about 30 clock cycles per byte of compressed code.

When the CAVE mechanism is used, either through pr agma cave or the
corresponding compiler driver options, selected functions in the application
are designated to be secondary functions. All other functions are termed
primary functions. The primary set should contain performance-critical
functions, which are not to be affected by the CAV E mechanisms; the
secondary set is subject to compression. Secondary functions are
compressed by the linker and reside in memory in compressed form. At
runtime, calls to secondary functions are intercepted by the CAVE
dispatcher and the functions are decompressed if necessary.

7-27

; i960® Processor Compiler User's Manual

7-28

Selecting Functions for Compression

The gcc960 ncave option, the ic960 Gcave option, or #pr agma cave are
used to designate the specified functions as secondary. You can use runtime
profile information generated by gcov960 to aid in selecting the set of
secondary functions.

Linking

The compiler places secondary function bodies within special CAVE
sections (nhamed cave) in each generated object file. The linker combines
all input CAVE sections into one output CAVE section. Due to
interdependencies between data or function addresses within compressed
secondary functions and their compressed representations, address
assignment must be done prior to compressing the secondary functions. As
aresult, agap is formed between the compressed CAVE section and the
section that follows, as shown below.

Before Linking After Linking

.text section .text section

compressed cave
uncompressed section

cave section

gap in memory

.data section

.data section

heap

heap

stack

stack

To utilize the compression savings the developer must use linker options or
directives to position the CAVE section last in read-only memory.

C Language Implementation ;

Runtime Decompression

During program execution secondary functions reside in memory in
compressed form. Every call to a secondary function is intercepted at
runtime by a specia dispatcher routine. The dispatch routine is contained in
thel i be library supplied with the tools. To ensure interception of all
secondary functions, including invocations through indirect calls or
interrupts, the compiler generates interceptor entriesin the. t ext section,
preceding the function bodiesin the cave section as follows:

.section .text

_foo:
| da L1, reg
cal l __di spatcher

ret

.section cave
.word L2-L1,0
L1:
function body
L2:

Here the location L1 of the secondary function body is passed to the
dispatcher. The word preceding the function body is set by the assembler to
indicate the uncompressed size.

The dispatcher performs the following steps:

Allocates a decompression buffer on the current runtime stack.

Saves the caller’s context.

Performs decompression.

Restores the caller’s context.

Invalidates the instruction cache.

Calls the decompressed secondary function.

S e o

The dispatcher prevents the runtime stack from being overrun by a long
chain of recursive invocations by reusing the functions that are already
active on the stack. The interceptor’s invocation of the dispatcher pushes a
unique return address on the runtime stack. The return address is then used
by the dispatcher to search the stack for the existing recursive activation. If
found, the function is called immediately.

7-29

; i960® Processor Compiler User's Manual

7-30

The dispatcher decompresses and executes secondary functions on the
current runtime stack. Allocation and freeing of decompression memory is
performed automatically through the call and return mechanism.

You must alocate more stack when using CAVE. The maximum additional
runtime stack requirement is the total size of all secondary functions that
may be active simultaneously.

Special Code Generation for Secondary Functions

When adecompressed secondary function isloaded on the runtime stack, its
runtime location is different from the link-time one. Absolute intra-function
and IP-relative inter-function references are invalid. These types of
reference are not used during code generation for CAV E functions.

Since taking the address of alabel isillegal in C, intra-function absolute
references can be generated only in ajump-table implementation of the

swi t ch statement. Restricting the swi t ch statement implementation in
secondary functionsto compare-and-branch instructions eliminates absol ute
intra-function references.

The IP-relative inter-function references are avoided in secondary functions
by generating the 80960 cal | x instruction instead of thecal | instruction.
Thecal | x instruction transfers control to absolute rather than I1P-relative
locations.

Debugging CAVE Functions

CAVE functions are decompressed and executed on the runtime stack. The

source-level debug information cannot be properly maintained in the

current implementation. Consequently, secondary functions can be

debugged only at the machine level. To debug:

1. Setabreakpoint on a CAVE function. Execution breaks on the first
interceptor instruction (I da L1, reg).

2. Step into the dispatcher.

Display the disassembled instructions of the dispatcher.

4. Thelast two instructions in the dispatcher are:

call x 80(r10)
ret

w

C Language Implementation ;

5. call x isacal to adecompressed secondary function. Set a breakpoint
on cal | x and step into the function.

6. Continue debugging the function on the machine level.

#pragma compress

#pragm conpress [[(]1 function|[,...]1 [)] 1

#pragma noconpress [[(] function [,...] [)] 1

function specifies the function for the compiler to compress or
not compress.

Controls the replacement of RISC instructions with CISC instructions.

Default

The compiler does not usually generate compressed (microcoded CISC)
instructions, but the code produced may still use complex addressing modes
for memory accesses. The compiler may generate single-line instructions
(e.g., cnpobl e) for two-line compare-and-branch instructions (e.g., cnpo
and bl e) but does not always do so.

Discussion

Theconpr ess and noconpr ess pragmas control the replacement of RISC
instructions with CISC instructions.

If code sizeis of primary importance, use conpr ess to replace RISC
instructions with CISC instructions, thereby compressing the code size.
Generated instructions use complex addressing modes. When conpr ess is
in effect, the compiler also generates single-line instructions for
compare-and-branch instructions when possible.

Use noconpr ess to use RISC instructions, increasing the number of
instructions but producing code that may run faster when instructions are
found in the instruction cache. Generated instructions do not use complex
addressing modes. Single-line instructions for compare-and-branch
instructions are not generated.

In addition, #pr agma conpr ess disables some optimizations that increase
code size greatly: automatic function inlining and loop unrolling.

7-31

; i960® Processor Compiler User's Manual

7-32

If you do not specify f unct i on, the code compression pragma applies to
all functions following the pragma. The compiler takes no action and issues
no warning when the function name is specified but not found.

#pragma i960_align [for gcc960 and ic960]

#pragma 1960 _align [[(]size[)]]
#pragma 1960 _align [(]identifier[=size]l[,...][)]
#pragma noi 960_align [[(]identifier[,...1[)]]

size specifies the alignment value in bytes. Any of the
following values arevalid: 1, 2, 4, 8, or 16.

identifier specifies the structure tag used in st r uct type
specifiers, as described in C: A Reference Manual.

Discussion

See the discussion of pragna al i gn (for ic960, or for gcc960 with the
i 960 option).

#pragma inline

#pragma inline [[(]1 function [...] [)] 1]
#pragma noinline [[(] function [...] [)]]
function specifies the function for the compiler to expand or not

to expand inline. If no function is specified, the pragma
appliesto all functions defined following the pragma.

Controls replacement of a function call with the function body.

C Language Implementation ;
Default

The compiler does not replace the function call with the function’s body.
The#pragmai nl i ne has effect at optimization level 1 and higher. Chapter

11, “C Language Implementation” describes optimization levels in more
detail.

Discussion

Use#pr agnma i nl i ne to replace a function call with the function body
expanded at the place of the function call. Expanding a function inline
increases the code size but decreases the execution time.

Note that a function that accepts a variable number of arguments cannot be
expanded inline.

#pragma interrupt

#pragma interrupt [[(] function [,...] [)
#pragma nointerrupt [[(] function [,...]

]]
011
function specifies the interrupt handler.
Specifies an interrupt handler.

Default
A function is not an interrupt handler.

Discussion

Use#pragma i nt er r upt to declare a function as an interrupt handler. The
i nterrupt pragma must precede the function definition. If no function is
specified, the pragma applies to all functions defined following the pragma.

For interrupt handlers, the compiler tries to use global and floating-point
registers only for a call. If the function uses any global or floating-point
registers, the compiler preserves the registers. For any call, the compiler
saves all registers excegst throughg11. A register in the ranggs through
gl1 is saved only if it may be changed in the called function.

7-33

; i960® Processor Compiler User's Manual

7-34

The compiler stores saved registersin contiguous locations, starting at
offset 0x40 from the frame pointer, as follows:
® g0 at0x40(fp)
® g4 at 0x50(fp)
* g8at0x60(fp)
* fpatOx7c(fp)
In processors with on-chip floating-point support, the compiler saves
floating-point registers f p0 through f p3 starting at 0x80(f p) .
An interrupt handler must not have parameters or return avalue.
vol atile int ready=0

int poll()

{

while (!ready)

} return ready;

#pragma i nterrupt (foo)
voi d foo(void)

{
ready=1;

NOTE. If aninterrupt function accesses variables that are also
accessed by the program, those variables should be declared vol at i | e.
If r eady isnot declared volatile, the optimizer may think that r eady is
always zero in function pol | and may create an infinite loop by
removing the test for (! r eady).

Note that pr agma i nt errupt and pragma i sr (described below) differ
only inwhere theregistersare saved. For pragnma i nt er r upt , the registers
are saved at known offsets. For pragna i sr, the compiler makes a
context-specific choice of where to save the registers.

C Language Implementation ;

Specifies routines to be compiled as interrupt service routines (i sr’s). The
syntax is:

#pragma isr [(] function_name [[,] function_nane
1...D)]

When a routine specified as an interrupt service routine is compiled, the
compiler generates code so that registers g0- g15 have the same values on
exit that they had when entering the function. In addition, the code
generated for the routine makes no assumptions about register g14’'s value
on entry. By guaranteeing these registers values and not assuming g14 to be
zero, #pragma i sr ensures that the routine’s address can be placed directly
in the interrupt vector table, and the state of the processor is the same at
routine exit as it was at routine entry.

#pragma isr

#pragma longcall

Specifies that a function should be called using the callx instruction
#pragma [no]longcall [(function [,.])]

function identifies the function(s) to which the pragma applies. If the
function is missing, then the pragama appliesto all functions called in the
compilation unit following the pragma

Default

The compiler will use calx to invoke functionsif the nl ong-cal | s (or
Gxc foric960) compilation switch isused, otherwisethe call instructionis
used.

Discussion

The call instruction executes faster than the callx instruction. However,
the target of acall instruction is limited to therange -21 to 221 - 1 bytes
in acall instruction. Inother words you cannot use acall instruction to
invoke a function that is located beyond this range. Using the longcall
pragmafor that function at the call site forces the compiler to use a callx
instruction instead of the call.

7-35

; i960® Processor Compiler User's Manual

7-36

The pragma longcall should be used at the call site; using the pragma
longcall at the definition of afunction will not cause a callx to be used at all
siteswhere the function isinvoked.

Pragmalongcall overridesthe -mlong-calls compiler switch.

With this pragmawe can restrict the use of a callx instructions only to those
call sites that need them.

#pragma optimize

#pragma optimze [(] [identifier =]"string"[,]
[identifier = "string"]... [)]

Enables or disables optimizations. If specified, the identifier denotes a

function with which the #pr agna opt i ni ze string is to be associated. The

string isa comma-separated list of optimizations to enable or disable.

Currently recognized optimizations are:

tce enabl e tail-call-elimination optimization
not ce disable tail-call-elimination optimization
I p enabl e |eaf-procedures optimization
nol p disable leaf-procedures optimization

If no function is specified then this pragma applies to the rest of thefile.
Any optimizations other than those recognized above are ignored.

C Language Implementation ;

#pragma pack
#pragma pack n
When used without an alignment pragma or option, this pragma has the
same effect for both the gcc960 driver and the ic960 driver: it restricts the
maximum alignment value that is honored for structure membersto n bytes.
A value of 0 tells the compiler to revert to the maximum field alignment in
use before the last #pr agma pack. Before the first #pr agna pack is
encountered, n=16.

E NOTE. The ic960 driver'pragma al i gn and the gcc960 and ic960

drivers’ pragma i 960_al i gn overridepr agma pack. The interaction of
pragnma pack and the gcc960 driverjsragma al i gn is described
below.

Using #pragma pack with gcc960’s #pragma align

When a member alignment requirement would exceed n, n is used instead

— both for assigning the member's offset within its structure, and for
determining the member's contribution to the structure's formal alignment
requirement. It does not, however, restrict the overall formal alignment
calculation for structures described for gcc98sagnma al i gn. To limit

a structure's formal alignment requirement (presumably to limit extra
padding at the end) you must use gcc96é@isagma al i gn in addition to
#pr agma pack.

For example:

#pragma pack 2

struct s{

char a;

int b;

1

7-37

; i960® Processor Compiler User's Manual

7-38

Table 7-2

s. b would be placed at offset 2 from the base of s; si zeof (struct s)
would be 6 under gcc960'8 c- conpat (#pragnma al i gn 1) and 8 under
default alignment#pr agna al i gn 16). The formal alignment requirement
of st ruct s would be 2 underi c- conpat and 8 under default alignment.

The examples in the tables below all use the following sample structure:
typedef struct {

char mi;

short nR;

doubl e nB;

char m;

i nt nb;
} s0;

Example Offset Values

Normal 1960 gcc960 Driver’s gcc960 Driver’s
Rules #pragma pack 4 #pragma pack 2
offset_of(s0, m1) 0x0 0x0 0x0
offset_of(s0, m2) 0x2 0x2 0x2
offset_of(s0, m3) 0x8 0x4 0x4
offset_of(sO, m4) 0x10 Oxc Oxc
offset_of(sO, m5) 0x14 0x10 Oxe
sizeof(s0) 0x20 0x20 0x20
#pragma pack 4 #pragma pack 2

#pragma pack 1

#pragma align 4

#pragma align 2

offset_of(s0, m1)
offset_of(s0, m2)
offset_of(s0, m3)
offset_of(s0, m4)
offset_of(s0, m5)
sizeof(s0)

0x0
0x1
0x3
Oxb
Oxc
0x10

0x0
0x2
0x4
Oxc
0x10
0x14

0x0
0x2
0x4
Oxc
Oxe
0x12

C Language Implementation ;
#pragma pure

Specifies that a function has no effects other than returning a computed
value and that it does so based solely on itsinput parameters.

#pragma [no]pure [(function [,...])]

function identifies the specific function to which the pragma
applies. If functi onismissing, the effect of the
pragmais applied to all functions called in the
compilation module following the pragma. If afunction
name is specified, the pragma must be placed before the
function definition.

Default

The compiler assumes functions are not pure and does not perform
optimizations possible with pure functions.

Discussion

pragma pur e informs the compiler that a named function has no effects

other than returning a computed value and that it does so based solely on its

input parameters. Specifically, the compiler assumes the following about

the function:

®* Nol/Oisperformed.

®* Nogloba variables or memory locations are read or modified.

®* No modifications of registers occur, except those explicitly defined by
the calling sequence.

This knowledge enables the compiler to perform optimizations around

function calls, optimizationsit could not perform without this knowledge. If

a function is “pure”, then the compiler can perform (around that function

call) constant propagation, common subexpression elimination,

global-variable migration, and dead-code elimination.

7-39

; i960® Processor Compiler User's Manual

7-40

#pragma section

Allows COFF or ELF section naming.
#pragma section [string]
string is alphanumeric characters a-z, A-Z, 0-9.

Discussion

This pragma causes al text, data and bss sections the compiler emits to be
suffixed with st ri ng. For COFF the string must be three characters or less
in length. For ELF, the string can be any length.

Using #pr agnma sect i on without st ri ng sets the suffix back to null (the
default).

This pragmais not supported for the b.out object format.

#pragma system

Specifies a system function.

#pragma system [[(] function [=index] [,...] [)
#pragma nosystem|[[(] function [=index] [,]

1]
DI]

function specifies the system function.
i ndex specifies the index into the system procedure table.
Discussion

If no function is specified, the pragma appliesto all functions defined or
called following the pragma. Use pr agna syst emto specify afunction to
be called from the system procedure table. The compiler generates a

cal I j x instruction for the system function call, which the linker replaces
with the following:

I da index, gl3
calls gl3

C Language Implementation ;

i ndex istheindex of the system function in the system
procedure table and is available to the linker
through the symbol table entry for the function.
Thisvalue must bein the range 0 to 259.

For information onthecal | j x and cal | s instructions and the system
function table, refer to the 1960 Processor Assembler User’s Guide.

You must associate a single system procedure table index with each system
function before the final link of your program. The linker generates an error
message for any system function that has no index or multiple conflicting
indexes.

You can make this association in either or both of the following ways, if the
defined index is consistent across all definitions:

®* Specify pr agna syst emat both the definition and the calling of the
function. The compiler then generates the appropriate symbol table
information, including the index.

® Usethe sysproc assembler directive to associate a system function
name with an index.

Since register g13 is used for the system function index, a system function
cannot return avalue larger than four words. Refer to the 1960 Processor
Software Utilities User’s Guide for more information.

Language Extensions

GNU C provides several language features not found in ANSI standard C.
(The pedant i ¢ option directs gcc960 to print awarning message if any of
these features is used.) To test for the availability of these featuresin
conditional compilation, check for a predefined macro __ GNUC__, whichis
automatically defined under gcc960 (but not under ic960).

7-41

; i960® Processor Compiler User's Manual

Statements and Declarations Inside of Expressions

A compound statement in parentheses can appear inside an expression. This
allows you to declare variables within an expression. For example:
({ int y =foo (); int z

if (y>0) z=y;

else z = - v;

z; })
isavalid (though slightly more complex than necessary) expression for the
absolute value of f oo() .
This feature is especially useful in making macro definitions “safe” (so that
they evaluate each operand exactly once). For example, the “maximum”
function is commonly defined as a macro in standard C as follows:
#define max(a,b) ((a) > (b) ? (a) : (b))
But this definition computes eitharor b twice, with bad results if the

operand has side effects. If you know the type of the operands (you can
assume nt), you can define the macro safely as follows:

#define maxint(a,b) \
({int _a=¢(a), _b=(b); _,a> _b? a: _b;})

Embedded statements are not allowed in constant expressions, such as the
value of an enumeration constant, the width of a bit field, or the initial value
of a static variable.

Naming an Expression’s Type

You can give a name to the type of an expression using at ypedef
declaration with an initializer. Here is how to define nane as atype name
for thetype of exp:

typedef nane = exp;

7-42

C Language Implementation ;

Thisisuseful in conjunction with the statements-within-expressions
feature. Here is how the two together can be used to define a safe
“maximum” macro that operates on any arithmetic type:
#define max(a, b) \
({typedef _ta = (a), _tb

_ta _a =(a); _tb _b =

a> _b? _a: b })
The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituteddandb.

= (b); \
(b); \

Referring to a Type with typeof

Another way to refer to the type of an expression is wjtheof . The
syntax of using of this keyword looks liké zeof , but the construct acts
semantically like a type name defined witpedef .

There are two ways of writing the argument yeof : with an expression
or with a type. Here is an example with an expression:

typeof (x[0](1))

This assumes thatis an array of functions; the type described is that of the
values of the functions.

Here is an example with a typename as the argument:
typeof (int *)
Here the type described is that of pointersno.

If you are writing a header file that must work when included in ANSI C
programs, write_t ypeof __ instead of ypeof.

7-43

; i960® Processor Compiler User's Manual

A t ypeof construct can be used anywhere atypedef name could be used.
For example, you can useit in adeclaration, in acast, or inside of si zeof
ortypeof .
® Thisdeclaresy with the type of what x pointsto.:
typeof (*x) vy;
® Thisdeclaresy asan array of such values:
typeof (*x) y[4];
® Thisdeclaresy asan array of pointersto characters:
typeof (typeof (char *)[4]) v;
It is equivalent to the following traditional C declaration:
char *y[4];
To see the meaning of the declaration using t ypeof , and why it might be a
useful way to write, try rewriting it with these macros:
#define pointer(T) typeof (T *)
#define array(T, N) typeof (T [N])
Now the declaration can be rewritten this way:
array (pointer (char), 4) vy;
Thus, array (poi nter (char), 4) isthetype of arrays of 4 pointersto
char.

Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as
Ivalues provided their operands are Ivalues. This means that you can take
their addresses or store values into them.

For example, a compound expression can be assigned, provided the last
expression in the sequenceis an Ivalue. These two expressions are

equivaent:
(a, b) += 5
a, (b += 5)

7-44

C Language Implementation ;

Similarly, the address of the compound expression can be taken. These two
expressions are equivalent:

& a, b)

a, &b

A conditional expression isavalid lvalue if itstypeis not void and the true
and false branches are both valid lvalues. For example, these two
expressions are equivalent:

(a?b:c) =5

(a?b=5: (c =5))

A castisavalid lvalueif its operand isvalid. Taking the address of the cast
is the same as taking the address without a cast, except for the type of the
result. For example, these two expressions are equivaent (but the second
may be valid when the type of a does not permit acast toi nt *):

&lint *)a

(int **)&a

A simple assignment whose left-hand side is a cast works by converting the
right-hand side first to the specified type, then to the type of the inner
left-hand side expression. After thisis stored, the valueis converted back to
the specified type to become the value of the assignment. Thus, if a hastype
char *, the following two expressions are equivalent:

(int)a =5

(int)(a = (char *)b)

An assignment-with-arithmetic operation such as += applied to a cast
performs the arithmetic using the type resulting from the cast, and then
continues as in the previous case. Therefore, these two expressions are
equivalent:

(int)a += 5

(int)(a = (char *) ((int)a + 5))

7-45

; i960® Processor Compiler User's Manual

7-46

Conditional Expressions with Omitted Middle Operands

The middle operand in a conditional expression may be omitted. Theniif the
first operand is nonzero, its value is the value of the conditional expression.
Therefore, the expression:

X ? .y

has the value of x if that isnonzero; otherwise, the value of y.

This example is perfectly equivalent to:

X ? Xy

In this simple case, the ability to omit the middle operand is not especially
useful. When it becomes useful iswhen the first operand does, or may (if it
isamacro argument), contain a side effect. Then repeating the operand in
the middle would perform the side effect twice. Omitting the middle

operand uses the value already computed without the undesirabl e effects of
recomputing it.

Arrays of Length Zero

Zero-length arrays are allowed. They are very useful asthe last element of a
structure that is really a header for a variable-length object:
struct line {
int | ength;
char contents[O0];
b
{
struct line *thisline
= (struct line *) malloc \
(sizeof (struct line) + this_length);
thisline->length = this_|length;
}

In standard C, you would have to give cont ent s alength of 1, which
means either you waste space or complicate the argument to mal | oc.

C Language Implementation ;

Subscripting is allowed on arraysthat are not Ivalues, even though the unary
& operator isnot. For example, thisisvalid though not valid in some other C
didects:

struct foo {int a[4];};

struct foo f();

bar (int index)

{

return f().a[index];

}

Non-lvalue Arrays Can Have Subscripts

Arithmetic on Pointers to void and Pointers to Functions

Addition and subtraction operations are supported on pointersto voi d and
on pointersto functions. Thisis done by treating the size of avoi d or of a
function as 1.

A consequence of thisisthat si zeof isalso allowed onvoi d and on
function types, and returns 1.

The Woi nt er-ari t h option requests awarning if these extensions are
used.

7-47

; i960® Processor Compiler User's Manual

7-48

Non-constant Initializers

The elements of an aggregate initializer for an automatic variable are not
required to be constant expressions. Here is an example of aninitializer
with run-time varying elements:

foo (float f, float Q)

{
float beat _freqs[2] = { f-g, f+g };

Constructor Expressions

Constructor expressions are supported. A constructor looks like a cast
containing an initializer. Its value is an object of the type specified in the
cast, containing the elements specified in theinitializer. The type must be a
structure, union or array type.

Assumethat st ruct foo and st ruct ur e are declared as shown:
struct foo {int a; char b[2];} structure;

Here is an example of constructing ast ruct f oo with a constructor:
structure = ((struct foo) {x + vy, 'a’, 0});

Thisis equivalent to writing the following:

{

struct foo temp ={x +y, 'a’, 0},

structure = temp;
}
You can also construct an array. If all the elements of the constructor are
(made up of) simple constant expressions, suitable for usein initializers,
then the constructor is a lvalue and can be coerced to a pointer to itsfirst
element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

C Language Implementation ;

Array constructors whose elements are not simple constants are hot very
useful because the constructor is not an Ivalue. There are only two valid
ways to use it: to subscript it, or initialize an array variable with it. The
former is probably slower than aswi t ch statement, while the latter does
the same thing an ordinary C initializer would do.

output = ((int[]) { 2, x, 28 }) [input];

Declaring Attributes of Functions

You can declare certain things about functions called in your program that
help the compiler optimize function calls.

A few functions, such asabort and exi t , cannot return. These functions
should be declared vol ati | e. For example:

extern volatile void abort ();

tellsthe compiler that it can assume that abort does not return. This makes

dlightly better code, but more importantly it helps avoid spurious warnings
of uninitialized variables.

Many functions do not examine any values except their arguments, and
have no effects except the return value. Such afunction can be subject to
common subexpression elimination and loop optimization just as an
arithmetic operator would be. These functions should be declared const .
For example:

extern const void square ();

says that the hypothetical function squar e is safe to call fewer times than
the program says. A function should not be declared const unless:

® nol/Oisperformed.

* nonon-local variables are read or modified either directly or via
pointers passed into the function.

7-49

; i960® Processor Compiler User's Manual

Inquiring about Alignment

The keyword __al i gnof __ allowsyou to inquire about how an object is
aligned, or the minimum alignment usually required by atype. Its syntax is
just like si zeof .

For example, the target machine requires adoubl e value to be aligned on
an 8-byte boundary, then __al i gnof __ (doubl e) is8. Thisistrue on the
1960 processor.

When the operand of __al i gnof __ isalvaluerather than atype, the value
isthe largest alignment that the Ivalue is known to have. It may have this
aignment as aresult of its datatype, or becauseit is part of a structure and
inherits alignment from that structure. For example, after this declaration:

struct foo { int x; char y; } fool;

thevalueof __al i gnof __ (fool.y) is4,thesameas__alignof
(i nt), even though the data type of f ool. y does not itself demand any
alignment.

Inline Functions Are as Fast as Macros

By declaring afunctioni nl i ne, you can direct the compiler to integrate

that function’s codeinto the code for its callers. This makes execution faster

by eliminating the function-call overhead; in addition, if any of the actua
argument val ues are constant, their known values may permit

simplifications at compile time so that not all of the inline function’s code
needs to be included.

To declare a function inline, use thel i ne keyword in its declaration. For
gcc960, use eitheml i ne or __i nli ne. For ic960, use _i nl i ne. For
example:
inline int
inc (int *a)
{

(*a) ++;
}
(If you are writing a header file to be included in ANSI C programs, write
__inline__instead of nli ne. See the Alternate Keywords section.)

7-50

C Language Implementation ;

You can also make all “simple enough” functions inline with the option
finline-functions. Note that certain usages in a function definition can
make it unsuitable for inline substitution.

When a function ignl i ne, if all calls to the function are integrated into the
callers, and the function’s address is never used, then the function’s own
assembler code is never referenced. In this case, the compiler does not
actually output assembler code for the function, unless you specify the
optionf keep-i nl i ne-functi ons. If there is a nonintegrated call, then

the function is compiled to assembler code as usual. The function must also
be compiled as usual if the program refers to its address, because that
reference can not be inlined.

Except when doing two-pass compilation, if an inline function is not

st ati c, then the compiler must assume that there may be calls from other
source files; since a global symbol can be defined only once in any
program, the function must not be defined in the other source files, so the
calls therein cannot be integrated. Therefore, asiean- c inline function

is always compiled on its own in the usual fashion.

If you specify both nl i ne andext er n in the function definition, then the
definition is used only for inlining. In no case is the function compiled on its
own, not even if you refer to its address explicSuch an address becomes

an external reference, as if you had only declared the function, and had not
defined it.

This combination of nl i ne andext er n has almost the effect of a macro.
The way to use it is to put a function definition in a header file with these
keywords, and put another copy of the definition (lackingi ne and

ext ern) in a library file. The definition in the header file causes most calls
to the function to be inlined. If any uses of the function remain, they refer to
the single copy in the library.

NOTE. Functioninlining occursonly at optimization level OL or higher.
Inline functions are not inlined at Q0. Inlining can be enabled with
finline-functions atOL, and it occursautomatically at 2.

7-51

; i960® Processor Compiler User's Manual

7-52

Controlling Names Used in Assembly Code

You can specify the name to be used in the assembler code for a C function
or variable by writingtheasm(or __asm__) keyword after the declarator as
follows:

int foo asm ("nyfoo") = 2;

This specifies that the name to be used for the variable f oo in the assembler
code should be nyf oo rather than the usual _f oo.

On systems where an underscore is normally prepended to the name of aC
function or variable, this feature allows you to define names for the linker
that do not start with an underscore.

You cannot use asmin thisway in afunction definition; but you can get the
same effect by writing a declaration for the function before its definition
and putting asmthere, like this:

extern func () asm ("FUNC");

func (x, vy)
int x, vy;

It is up to you to make sure that the assembler names you choose do not
conflict with any other assembler symbols. Also, you must not use aregister
name; that would produce completely invalid assembler code.

C Language Implementation ;

Specifying Registers for Local Variables

You can define alocal register variable with a specified register like this:
register int *foo asm ("r5");
r 5 isthe name of the register that should be used.

Defining such a register variable does not reserve the register; it remains
available for other uses in places where flow control determines the
variable'svalueisnot live. However, excessive use of thisfeature may leave
the compiler too few available registers to compile certain functions.

Alternate Keywords

Theoptiontradi tional disablescertain keywords; ansi disables certain
others. This causes trouble when you want to use GNU C extensions, or

ANSI C features, in a general-purpose header file that should be usable by

al programs, including ANSI C programs and traditional ones. The
keywordsasm t ypeof andi nli ne cannot be used since they won’t work
in a program compiled withnsi , while the keywordsonst , vol ati | e,

si gned, t ypeof andi nl i ne won't work in a program compiled with
traditional.

The way to solve these problems is to putat the beginning and end of
each problematical keyword. For example, usesm _ instead ohism
__const__ instead otonst, and__i nli ne__ instead of nl i ne.

Other C compilers won’t accept these alternative keywords; if you want to
compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords. It looks like this:

#i fndef _ GNUC__

#define __asm _ asm
#endi f

7-53

; i960® Processor Compiler User's Manual

7-54

Inline Assembly Language

Introduction

Two distinct styles of inline assembly language are supported by the
compilation system: asm statements and asm functions. The recommended
way to use inline assembly language is asm statements; asm functions are
supported for compatibility with previous CTOOL S960 rel eases.

Resource Usage

The compiler makes assumptions about the machine resources: registers
and memory. It manages access to these resources based on the C program,
and itsknowledge of the codeiit is generating, and inline assembly language
can viol ate these assumptions.

Both styles of inline assembly language provide the programmer with ways
to communicate the usage/madification of machine resources. Inline
assembly code that uses/modifies such machine resources without
informing the compiler may cause incorrect code to be generated by the
compiler.

Before and after each call to a C function, the compiler generates

instructions to preserve resources for the calling function while the called
function executes. For example, any general purpose registers that might be
updated by the called function must be saved on the stack before and after
each function call. The term for this resource management is “the calling
convention.”

The calling convention for a call to asmfunction differs from that of a

call to a C function. In particular, the compiler assumes by default that the
only resources used by aamfunction are its parameters, local

temporaries, and the return value. The compiler must be explicitly
informed about other resources that can be used asthéunction. The
compiler does not manipulate assembly language wathimfunctions. It

relies on the assembler to check the assembly language. The result is that
the compiler treats the body of aemfunction as text. The compiler parses

C Language Implementation ;

the text for symbolic names (parameters, local temporaries, and labels).
However, the compiler does not recognize function calls, memory
references, or explicit register usage within the asmfunction text.

asm Statements

You can use an asmstatement to pass an assembler instruction through the
compiler, and you can specify the instruction’s operands using C
expressions. Typically, asmis used to gain access to machine instructions
that have no corresponding C paradigm.

asmstatements are somewhat similar to function calls; both use parameter
mechanisms to help describe the statements’ inputs. In asmstatements,
however, an extensive mechanism is also provided for describing the asm’s
effects; the compiler can then assume that an asm has no effects or inputs
that are not explicitly stated. In contrast, a function call is assumed to read
or write all program variables unless proven otherwise. No such assumption
is made for asm statements.

E NOTE. The compiler assumes that the inserted assembly instructions
can only be executed immediately after the statement that precedes them,

and that after the inserted assembly instructions have been executed,

program execution resumes at the statement immediately following them.

Syntax Examples

The following brief syntax examples are provided here for reference when
studying the detailed grammar below. The effects and components of each
specific example are discussed in detail in the Examples section below.

7-55

; i960® Processor Compiler User's Manual

7-56

Example 1: sfl (Simple)
asmvol atile ("nov 0,sf1");

Example 2: sf1 (Complex)

asmvol atile ("nov sf1,9%9; nmov od, sf1":
"=&d" (old_mask) : "dI" (new_nask));

Example 3: emul
asm("enmul %, %R, %" : "=t" (tenp) : "dI" (inl), "dI"
(in2));

Example 4: synmovq

_asm _ volatile ("synnovg %, 98" : "=ni(*| AC_dst)
"m'(*1 AC_p),"d" (I AC_dst),"d"(1AC p)); }

Example 5: attadd
asm __volatile__("atadd %, 92, 94"
“=nt' (*p), " =d" (W np)

“di(val),"nt (*p),"d"(p));
Example 6: modpc

asm __volatile__("nodpc o, %4, 90" : "=d"(new_pc)
"dl " (mask), " 0" (new_pc)));

asm Statement Syntax
asmstatements have the following syntax:
asm|[volatile] (asmtenplate [asminterface]) ;

asmtenpl ate A Clanguage ASCII string containing zero or
moresubstitution-directives.

substi tution-directive% where no white space followsthe % and d
isadecimal digit.

asminterface
:[out-list][:[in-list][:clobber-Iist
1]

out-1list out put -spec [,out-list]...

in-list i nput-spec[,in-list]...

C Language Implementation ;

cl obber-1i st cl obber -spec [, cl obber-list]...

out put - spec "=constraint" (Clanguage obj ect)

i nput - spec "constraint" (Cl anguage expr essi on)
cl obber - spec "regname"

NOTE. Thekeywords__asmand __vol ati | e can be used in place of
asmandvol atil e.

asm Syntax Explanations

asm Keyword

asm statements begin with the keyword asm Alternatively, the keyword
__asmcan be used to ensure ANSI C compliance.

volatile

If the optional keyword vol at i | e isgiven, the asm isvolatile. Two
volatile asm statements are never moved past each other by optimizations,
and areferenceto avolatile variableis not moved relative to avolatile asm.
The dternate keyword __vol ati | e can be used to ensure ANSI C
compliance.

asm-template

asmtenplate A Clanguage ASCII string containing zero or more
substitution-directives.

The asm t enpl at e isa C language ASCII string that specifies how to
output the assembly code for an instruction. Most of the template is afixed
string; everything but the subst i t uti on-di recti ves (if there are any)
is passed through to the assembler. Substitution directive syntax is
explained below.

7-57

; i960® Processor Compiler User's Manual

7-58

L)

Generaly, thisfixed string is the body of the desired assembler instruction.
This can be any instruction valid for the current 1960 architecture.

NOTE. Thevalidity of the assembly codeis not checked by the compiler.

substitution-directive

substitution-directive¥ where no white space follows the % and d
isadecimal digit.

The character %occurring in the asm t enpl at e specifies where to

substitute operands into the assembly instruction. The %followed by a digit

n saystoinsert operand n at that point in the string. Operands are specified

intheasm’s out put - specs and i nput - specs. Operands are numbered 0

through 9. No more than 10 operands can be specified.

asm-interface
asminterface :[out-list][:[in-1ist][:clobber-1ist]]

The asm interface consists of three parts: an optiona out -/ i st, an
optional i n-1i st,and an optiona c/ obber -1 i st . These are separated by
colon characters (:). See the preceding discussion of Resource Usage for
background information on the asnt i nt er f ace specification.

: (colon)

The colon (:) character is used to separatethe out - /i st andin-1i st.
Another colon is used to separate the c/ obber - I i st if oneisused. If the
out-1ist ismissing, butanin-/ist isgiven, theinput list must be
preceded by two colons (: :) to take the place of the missing out - 1 i st.

out-list
out-1ist out put-spec[,out-list]...

Anout-1i st consists of one or more out put - specs separated by
commas. For the purposes of substitution inthe asm t enpl at e, each
out put - spec isnumbered. The first operand inthe out - / i st is

C Language Implementation ;

numbered O, the second is 1, and so on. Numbering is continuous through
theout-1ist,andintothej n-/ist. Thetotal number of operandsis
limited to 10 (i.e., 0-9). See subst it ution-directi ves above.

in-list

in-1ist i nput-spec|,in-list]...
Similartoan out -1 st,anin-1ist consists of one or more

i nput - specs separated by commas. For the purposes of substitution in the

asm t enpl at e, each i nput - spec is numbered, with the numbers
continuing from thosein the out -/ i st.

clobber-list
clobber-1ist clobber-spec]|,clobber-list]...

A cl obber-1i st tellsthe compiler that the asm uses or changes a real
machine register that is either coded directly into the asm or is changed
implicitly by the assembly instruction. The cl obber -1 i st isa
comma-separated list of cl obber - specs.

output-spec
output-spec "=constraint" (C language object)

The out put - specs tell the compiler about objects whose values can be
written by the inserted assembly instruction. In order to more fully describe
the output effects of the asm, you can list out put - specs that are not
actually referenced inthe asm t enpl at e. Seethesynnovq and at t add
examples below for specific examples of this.

input-spec

input-spec "constraint" (C language expression)

Thei nput - specs tell the compiler about expressions whose values may
be needed by the inserted assembly instruction. In order to more fully
describe the input requirements of the asm, you can list i nput - specs that
are not actually referenced in the asm t enpl at e. Seethe synnovq and
att add examples below for examples of this.

7-59

; i960® Processor Compiler User's Manual

7-60

clobber-spec
cl obber - spec "regnane"

Each c/ obber - spec specifiesthe name of asingle machine register that is
“clobbered.”

Resources that cannot be clobbered are:

f p(the frame pointer)
sp(the stack pointer)
ro,r1,r2(reserved)

gl4

C language object

This can be any assignable C language Ivalue. Typically this is just a
variable name. AC | anguage obj ect must be of a type that matches its
correspondingonst rai nt. A C | anguage obj ect used in an

out put - spec must be of a type such that it can be assigned into. Object
types must be the same size that theitst r ai nt s would match. For
example, the C typent is 32 bits; so is a global register. This would cause
no mismatch. An integer type would not match a quad-word, however. If
the object type andonst r ai nt do not match, the compiler attempts to
add code to fix the mismatch, but in general it is better practice to avoid
mismatches in the first place.

C language expression

This can be any legal C language expression. A<t anguage obj ect
above, aC | anguage expressi on must match its corresponding
constrai nt.Unlike aC | anguage obj ect used inout put - specs, aC
| anguage expressi on used ini nput - specs does not need to be
assignable.

constraint

EachC | anguage obj ect or C | anguage expressi on can have an
associatedonst r ai nt . Theconstrai nt is a string that tells the
compiler what its associated operand must look like in order for the
asm tenpl at e to generate a legal assembly instruction.

C Language Implementation ;

A constrai nt consists of one or more of the characters listed below. The
compiler generates code if necessary to makethe C | anguage obj ect or
expr essi on match one of the const r ai nt characters. The associated
operand is an integer literal or amachine register or an assembly label that
isput in place of a substitution directive.

In general, it is better to write the asm such that the compiler does not need
to generate extra code to make a const r ai nt match. An operand can
contain an empty const rai nt string if it is not used in the

asm tenpl at e.

Thevdlid const r ai nt characters are as follows:

= Specifies that the operand is assigned into. All
out put - spec constrai nt s must start with this
character.

& Unless an output operand usesthe & const r ai nt, the
compiler may allocate it in the same register as an unrelated
input operand, on the assumption that the inputs are
consumed before the outputs are produced. If the assembler
code consists of more than one instruction, this assumption
may be false. In this case, you should use the &
const rai nt for each output operand that may not overlap

an input.
d Allows any local or global word register.
r Allows any local or global word register.
I Allows any local register (r3-r15).
b Allows any global register (g0-g15).
t Allows any two-word register.
q Allows any quad-word register.
f Allows any floating-point register fpO through fp3. This

const rai nt isonly valid for thei960 KB and i960 SB
processors and only thenif the gcc960 nsof t - f | oat option
is not used.

m Allows any memory operand.

7-61

; i960® Processor Compiler User's Manual

I Allows a constant in the range O through 31. Thisisthe
alowable range for aliteral value in most instructions for
the 1960 processor.

n Allows aknown 32-bit constant.

Allows a 32-bit constant including a constant address.

G Allows afloating-point constant of 0.0.

H Allows afloating-point constant of 1.0.

F Allows afloating point constant with any value.

0-9 Thisisamatching const r ai nt . An operand that matches

operand n (0- 9) isalowed. If used, this must be the only
character in the const rai nt . The specified operand must
be an out put - spec, and the const r ai nt in which the
matching const r ai nt appears must bean i nput - spec.
Theasm t enpl at e should not refer to thisoperand, only to
the operand n specified. This constraint is often used to
ensure that an input operand and an output operand arein the
same register. Generadly, thisis unnecessary on the i960
architecture.

7-62

C Language Implementation ;

Detailed Examples

Example 1: sfl.c (Simple)

Thefollowing example refersto the short C program shown in Example 7-1
below. The asm instruction is shown in bold.

Example 7-1 sfl.c (Simple)

/* dears interrupt mask in sfl for i960 CA processor */
voi d clear_interrupt_nask()

{

}
Consider the line containing the asm:
asmvol atile ("mov 0,sf1");

® ‘"nov 0, sf1" isthe asmt enpl at e. It contains no
substitution-directives,andtheasmhasnoout-/ist or
in-1ist.ltsimply writesazerointo register sf 1. If sf 1 contains all
zeros, all interrupts except nni are disabled.

asmvolatile ("nmov 0,sf1");

Note that this asm can be coded without the input or output operands
because it neither uses nor affects any object or resources that the compiler
knows about.

7-63

; i960® Processor Compiler User's Manual

7-64

Example 7-2

Example 2: sfl.c (Complex)

The following exampl e refers to the short C program shown in Example
7-2. The asm containing the sf 1 instruction is shown in bold.

sfl.c (Complex)

/*

* Changes interrupt mask, and returns old interrupt nask
* for 1960 CA microprocessor. |llustrates & constraint.
*/

i nt change_i nterrupt_nask(int new_nmask)

{

int ol d_mask;
asmvolatile("mov sfl,%; nov %, sfl":

"=&d" (ol d_mask) : "dI" (new_mask));
return ol d_mask;

Consider the line containing the asm:

asmvol atile("nov sfl,%); nov %, sfl":

"=&d" (old_mask) : "dI" (new_nask));

* "novsfl, %; nov %, sf1" istheasmt enpl at e. The
asm t enpl at e actually contains two nov instructions. The first
writes the contents of register sf 1 onto operand O (ol d_nask) and the
second writes operand 1 (new_nask) into register sf 1.

e "=&d" (ol d_mask) istheonly out put - spec. It isthefirst operand
(operand 0). The" =&d" isthe const r ai nt . The = saysthat this
operand must be assignable. The & tells gcc960 not to allocate this
output in the same register as an input operand. Thisis necessary
because thefirst mov creates output before the second nov has used its
input. The d indicates that this operand must go in aword register. If
ol d_mask isnot aword register, the compiler will generates code
following the asm to copy the word register it chose for this output
operand into ol d_mask.

C Language Implementation ;

e "dI" (new_nask) istheonly i nput-spec.Itisoperand 1. The"dl "
constrai nt indicatesthat operand 1 must be in aword register, or be
aconstant from 0 to 31. The compiler generates extra code as necessary
to make sure new_mask matches one of the const r ai nt s before the
asm is generated.

Example 3: emul.c

The exampl e refers to Example 7-3 below. The asm containing the enul
instruction is shown in bold.

Example 7-3 emul.c

typedef struct

{
unsi gned int |032;
i nt hi32;

} i nt 64;

typedef int int32;

static inline
int64 asmemnul (int32 inl, int32 in2)

{
int64 tenp;
asm("emul %, %2,9%0": "=t" (tenp)
otdlt (inl), "di" (in2));
return tenp;
}
int32 nul 32_check_overflowmint32 a, int32 b)
{

inté4 t;
t = asmenmul(a, b);
if ((t.lo32 & 0x80000000) != 0)

{
if (t.hi32 == -1) /*upper32 matches |ower32 sign bit*/

return t.lo32;

}

el se

{
return t.lo32;

}

el se

7-65

; i960® Processor Compiler User's Manual

7-66

if (t.hi32 == 0) /*upper32 matches |ower32 sign bit */
return t.lo32;
}
overflow error("32 bit multiply overfl owed");
return t.lo32;

Consider the line containing the asm:
asnm("emul %,%, %" : "=t" (tenp) : "dI" (inl), "dI"
(in2));

"enmul %, 92, %0" istheasm t enpl at e. Theenul instruction takes
three arguments: src1, src2, and dst . These values are provided by
theout-/ist andin-1ist.

"=t" (tenp) istheonly out put - spec. Itisthe first operand, i.e.,
operand 0. The" =t " const rai nt indicates that this operand must go
in adoubleword register in order for the asnt t enp! at e to generate a
legal instruction.

"dl" (inl) isthefirsti nput - spec. Itisoperand 1. The"dI "
constrai nt indicates that operand 1 must be in aword register, or be
aconstant from 0 to 31 for the asm t enpl at e to generate alegal
instruction. The compiler generates the extra code as hecessary to make
surethevalueof i n1 will matches one of the const r ai nt s beforethe
asm is generated.

"dl" (in2) isthesecond i nput - spec. Itisoperand 2. Again the
"dl" constraint indicatesthat operand 1 must be in aword register,
or be a constant from 0 to 31. As before, the compiler makes sure that
the operand matches one of the const r ai nt s before generating the
asm. In this example, t enp is declared as alocal variable, and its type
(int64) has the necessary size (8 bytes) and alignment (8 bytes) to go
into atwo-word register. Similarly, i n1 and i n2 must match at least
one of their const r ai nt s because their size and aignment is the
same as that required for avalue in aword register.

C Language Implementation ;

Compile this example using:
gcec960 -S -2 emul . ¢

E NOTE. That no extra codeis generated to set up operands for the enul
asm

Example 4: synmovg.c

The following example refersto the short C program shown in Example 7-4
below. The asm containing the synnovq instruction is shown in bold.

Example 7-4 synmovq.c

struct I AC record {
unsi gned short field2;
unsi gned char fieldi;
unsi gned char nmessage_type;
unsigned long field3;
unsigned long field4;
unsigned long field5;

b

struct I AC record Cent | AC Space = { 0, 0x60, 0x40,0,0,0 };
static __inline__ void

post _interrupt(struct |AC record *1 AC p)

{

struct I AC record *I AC dst = (struct |IAC record *)0xFF000010;
__asm _ volatile ("synmovq %, 98" : "=nf"(*1AC_dst)
"m'(*I AC_p),"d" (I AC dst),"d"(IAC p)); }

7-67

; i960® Processor Compiler User's Manual

7-68

Consider the lines containing the asm:

_asm _ volatile ("synnovg %, 98" : "=ni(*| AC_dst)

"m'(*I AC_p),"d" (1 AC dst),"d" (1 AC_p));}

® “"synnovq %, 98" istheasm t enpl at e. synnmovq writesfour words
into reserved memory on the i960 KB processor, and then sends a
message to the 1960 processor telling it to do a software interrupt.
synnovq takestwo arguments, sr c and dst , where sr c isthelocation
to copy from, and dst isthelocation to copy to. These values are
provided by the out -1 i st andi n-1i st.

e "=pf (*| AC_ dst) istheonly out put - spec. It isthe first operand,
i.e., operand 0. The"=nt" const r ai nt indicates that any memory
operand can be used.

* "nt (*I AC_p) isthefirsti nput - spec. It isthe second operand, i.e.,
operand 1. Again, any memory operand can be used.

e "d" (I AC_dst) isthesecondi nput - spec. Itisthethird operand,
i.e., operand 2. The" d" const r ai nt indicatesthat any global or local
word register or a constant from 0 to 31 may be used. This register is
only read, not written, so it acts as its own input.

e "d" (IAC_p) isthethirdj nput - spec. Itisthe fourth operand, i.e.,
operand 3. Again, any globa or word register may be used.

NOTE. Inthisexample, four operands were specified, although the
asm t enpl at e required only two. The additional operands (in this
instance, operands 0 and 1) tell the compiler about objects whose values
may be changed by the asm statement or whose value the asm statement
may need. In this case, the asm modifies memory, which may affect
optimizations the compiler performs at runtime. The only actual output
from the asm is the memory written.

C Language Implementation ;
Example 5: atadd.c

Thefollowing example refersto the short C program shown in Example 7-5
below. The asm containing the at add instruction is shown in bold.

Example 7-5 atadd.c

static inline

int atadd(p, val)

volatile int *p;

int val;

{ .
int wnp;
asm _ volatile__("atadd %, 02, %" : "=n(*p)," =d" (w nmp)

“di(val),"nt (*p),"d"(p));

return wnp;

}

volatile int critical _var;

int other_var;

int add_crit()

{
atadd(&critical _var, 1);
if (atadd(&critical _var, 2) !'= 1)
at add(&ot her _var, 1);
}

Consider the lines containing the asm:

__asm_ __volatile__("atadd %, 92, 94"
"=nt (*p),"=d" (w)
“dit(val),"nt (*p),"d"(p));
® "atadd 9%, %, %" istheasm t enpl at e. at add adds to memory
and locks the bus until it is finished. This feature is used by
multi-processor systems. at add takes three arguments. These values
are provided by the out - Ii st andin-1i st.

e "=nt (*p) isthefirst out put - spec. Itisthefirst operand, i.e.,
operand 0. The"=nt' const r ai nt indicates that any memory operand
can be used.

7-69

; i960® Processor Compiler User's Manual

7-70

"=d" (wt np) isthesecond out put - spec. It isthe second operand,
i.e., operand 1. The"d" const rai nt indicatesthat any global or word
register can be used.

"dl " (val) isthefirsti nput - spec. It isthethird operand, i.e.,
operand 2. The" dl " const rai nt indicates that any global or word
register containing a constant in the range O through 31 can be used.
"n' (*p) isthesecond i nput - spec. Itisthe fourth operand, i.e.,
operand 3. Again, any memory operand may be used.

"d" (p) isthethird i nput - spec. It isthefifth operand, i.e.,

operand 4. Again, any globa or word register may be used.

NOTE. Again, this example specifies five operands, though the
asm t enpl at e requires only three. The additional operandstell the
compiler about objects whose values may be changed by the asm
statement or whose value the asm statement may need.

C Language Implementation ;

Example 6: modpc.c

Thefollowing example refersto the short C program shown in Example 7-6
below. The asm containing the nodpc instruction is shown in bold.

Example 7-6 modpc.c

extern inline unsigned
modpc (unsi gned new_pc, unsigned mask)

{
int wtnp;
_asm _ _ volatile__("nodpc 9%, %, 90" : "=d"(new_pc),
"dl " (mask),"0" (new_pc));
return new_pc;
}
i nt
rai se_priority int(n)
{
unsi gned cur _pc;
cur_pc = nmodpc(0, 0); /* just read the pc */
if ((cur_pc & 0x2) !'= 0)
{
/* we’re in supervisor node, so we can change it */
unsigned priority = ((cur_pc >> 16) & Ox1f) + n;
unsi gned priority_mask = Ox1f << 16;
if (priority > 31)
priority = 31,
cur_pc &= ~priority_mask;
cur_pc |= priority << 16;
nmodpc(cur _pc, priority_mask);
return 1;
}
return O;
}

7-71

; i960® Processor Compiler User's Manual

7-72

Consider the lines containing the asm:

__asm_ _ _volatile__("nodpc %, o4, 90" : "=d"(new_pc),

"dl " (mask),"0" (new_pc));

®* "modpc %, %, 0" istheasm t enpl at e. The nodpc instruction
reads and modifies the 1960 architecture’s process control register. The
instruction takes three arguments.

e "=d"(new_pc) istheonly out put - spec. Itisthefirst operand, i.e.,
operand 0. The " =d" const r ai nt indicates that thisis an output
operand, and that any global or local word register can be used.

e "dl"(mask) isthefirstinput - spec. Itisoperand 1. The"dI "
constrai nt indicatesthat the operand must be aword register, or bea
constant in the range 0 through 31. Note that operand 1 is referenced
twiceinthe asm t enpl at e because the nodpc instruction requires
the same input operand in two places.

® "0" (new_pc) isthesecondi nput - spec. Itisoperand 2. The" 0"
constraint indicates that this operand and operand O must be allocated
to the sameregister. Thisisrequired because in the asm t enpl at e
this register is both a source and a destination. Note that operand 2 is
not referenced in the asm t enpl at e, but that the reference to operand
O isalso the use of operand 2 as specified by the" 0" constraint.

Note that this example shows how the 0-9 constraint is used to match an
input to an output operand when a src/dst operand is needed in an

asm t enpl at e. This example also shows that input-only operands (such
asmask) can be freely referenced multipletimesinan asm t enpl at e
without needing to be specified multiple timesinthei n-1i st .

If you are writing a header file that should be includable in ANSI C
programs, use __asm__ instead of asm and __vol ati | e instead of
vol ati | e. See the Alternate Keywords section for more information.

asm Functions

An asmfunction definition is a special form of a prototyped function
definition. The keyword as mpreceding the return-type specifier identifies
an asmfunction definition. An asmfunction definition can occur anywhere
a C function definition can occur. However, the definition of an asm
function must precede any call to it.

C Language Implementation ;

NOTE. Anasmstatement or asmfunction should not issue an
assembler directive that changes the object modul e section to something
other than . t ext . The compiler assumes the as mstatement leaves the
assembler in the .asmsection.

When processing an asmfunction call, the compiler generates additional
instructions for loading registers, for other operations needed to pass
parameters, and for acceptance of areturn value. A call to an asmfunction
is not atrue function call, however, because the compiler expands the
assembly-language body of the function inline.

An asmfunction definition can contain one or more templates. The
compiler selects atemplate for expansion based on the values and datatypes
of arguments you specify and based on use of any return value in the
function call. Use of any C expression as an argument to an asmfunction is
legal.

Also, any of thefollowing are legal within an asmfunction:

® trigraphs
® gpliced lines (backslash-newline pairs)
* C-stylecomments(/*. . .*/)

® macros and preprocessor directives

asm Function Definition Syntax

The declaration syntax for asmfunctions and parameters is the same as
standard C function syntax. The following is an informal definition of asm
function syntax:

asm return-type nane (paraneter-decl arati ons)

{

% control -1ine
tenpl ate

[. . .]

}

7-73

; i960® Processor Compiler User's Manual

7-74

return-type
name

par anet er -
decl ar ati ons

control -1ine

tenpl ate

is the data type returned by the asmfunction.
isthe identifier used to invoke the asmfunction.

defines the data types and names of the asm
parameters.

introduces each t enpl! at e, defines the
parameter and return value classes, and
specifies any calling-convention or non-asm
processing.

is zero or more lines of text for processing by
the assembl er.

The following restrictions apply to as mparameter lists:

An asmfunction cannot be ast dar g function; that is, an asm
parameter list cannot contain an ellipsis(. . .).

Each declaration in an asmparameter list must include an identifier.
The data type of any asmparameter cannot be larger than 16 bytes.
The data type of an asmfunction return value cannot be larger than 16

bytes.

An asmfunction can contain zero or more expansion cases, each of which
starts on anew line and consists of a control line (starting with 99 followed
by atemplate. A control line can contain zero or more controls and can be
continued to the next line with a backslash immediately before the newline
character. A control can be any of the following:

a parameter-declaration list to specify return values or as mparameter

classes.

thecal | orerror keyword to cause an action other than asm

in-lining.

al abel declaration to declare alabel local to the asmfunction.
theuse orspi | | al | keyword to preserve registers and variables.
the pur e keyword to indicate that the as mfunction has no side effects.

An asmparameter declaration in a control line specifies the classes for any
parameters or return value. The keyword r et ur n isa special parameter
identifier, denoting the return value and specifying its class. A control line
can also contain declarations for local temporary variables.

C Language Implementation ;

The t enpl at e can be any text. The compiler performs some preprocessing
on the template text, but the assembly-language syntax checking is done by
the assembler.

Template Selection

When the compiler encounters a call to an as mfunction, the compiler

selects a template for expansion by comparing the call context with each

control line in the function definition. The call context includes:

* thecategory (value, datatype, and location) of each argument in the
call.

® aboolean that shows whether the function uses the returned value.

Selection Criteria and Coercion

If acontrol line containsan er r or or cal | control and no parameter
declarations, the control line unconditionally matches any call.

If acontrol line contains any parameter declarations or does not contain an
error orcal | control, the control line matches a call only when the
argument categories match the parameter declarations in the control line.

If anerror orcal | control line contains parameter declarations, the

compiler generates the message or function call only if the parameter

classes match the call context.

The compiler processes as mfunctions by doing the following:

® Checking the asmfunction for correct syntax and semantics. If any of
the following control lines are present, the compiler reports an error:

— error orcal | with any other controlspi | | al | , use, or
| abel)

— anerror control line with more than one line of template text
— acal | control line with any template text

® Reporting an error, if aner ror or cal | control line without parameter
declarations is not the last control line in the asmfunction definition.

7-75

; i960® Processor Compiler User's Manual

7-76

Ensuring that all control lines contain either parameter declarations or
an unconditionally matching control by adding default parameter
declarationsfor all parameters declared in the function prototypeto any
control line that does not already contain er r or, cal | , or parameter
declarations. This action includes adding parameter declarationsto a
control line containing spi | 1 al | , use, or | abel controls but no
parameter declarations. Default parameter declarations use t npr eg
classforreturnandreglit classfor parameters.

Ensuring that the last control line unconditionally matches any call
context. Unless the final control line in the as mfunction definition
contains nothing but aner r or or cal | control, the compiler adds a
final control line containing acal | control, asfollows:

%al | function;

Thedefault functi onforacal | control isan external function of the
same name as the asmfunction. The last control lineis the only one
that unconditionally matches any call context.

Comparing the call context to each control line, in sequence from

beginning to end of the as mfunction definition. The compiler expands

the template of the first control line that exactly matches the call

context. Tables 7-3 and 7-4 show how the call context and parameter

classes can match.

If no control line exactly matches the call context, attempting to coerce

the call context into one of the control lines, starting at the end of the

asmfunction and working back to the beginning.

— Al dconst instruction coerces a constant argument into a register.

— A novr instruction coerces a floating-point literal argument into a
register.

— Al dinstruction coerces a memory argument into a register.

— A nov instruction coerces a general-register argument into a
temporary variable.

— A ovr, novrl, ornovr e instruction coerces an argument that is
not a floating-point register or literal into a floating-point register
and coerces an argument that is a floating-point register or literal
into a general register.

Expanding the last control lineif no control line exactly matches the

call context and the call context cannot be coerced into the last

conditional control line.

C Language Implementation ;

Table 7-3 Return Value Class Matching?!
Return Value Use Return Class void ftmpreg tmpreg
not used . . .
used - . .

1. A bullet (*) indicates a match. A hyphen (-) indicates no match.

Table 7-4 Argument Category to Parameter Class Matching and Coercion?®
Argument Parameter Class
Category const ftmpreg freglit tmpreg reglit
Integer Constant ¢ Idconst, Idconst, Idconst .
(0-31) movr movr
Other Integer . Idconst, Idconst, Idconst Idcon
Constant movr movr st
Floating . movr . movr movr
Constant (0.0 or
1.0)
Other Floating - Idconst, Idconst, Idconst Idcon
Constant movr movr st
General-register - movr movr mov .
Variable
Memory - Id, movr Id, movr Id Id
General-register - movr movr . .
Temporary
Floating - . . movr movr
Register
Temporary

1. Abullet (*) indicates a match with no coercion needed. A hyphen (-) indicates no match and no
coercion possible. A movr instruction for coercion indicates that movr, movrl, or movre can be used.

777

; i960® Processor Compiler User's Manual

7-78

Parameter Classes

An asmparameter or return class can be any of the following:

t npr eg

ftnpreg

places the parameter in a genera - purpose register, of
the compiler’s choice, that the asmfunction can
modify. For at npr eg parameter longer than one word,
specify the number of registers needed in parentheses
after t npr eg.

For example, t npr eg(3) alocates three consecutive
registers. If t npr eg is specified without a number of
registers, the defaultist npreg(1).

A t npr eg return value aso occupies the specified
number of registers. If no classis specified forr et ur n,
thedefaultist npr eg(n) , wheren isthesizefrom1 to
4 needed to contain the return value.

The maximum number of parametersthat can be placed
inregistersis 10.

places the parameter in a floating-point register, of the
compiler’s choice, that the as mfunction can modify.
You can use f t npr eg only on processors with on-chip
floating-point support. When used to declarer et ur n,
ft npr eg places the return value in a fl oating-point
register.

C Language Implementation ;

reglit places the parameter in a genera - purpose register, of
the compiler’s choice. The asmfunction must not
modify the register.

If the parameter isaliteral, it can be used asis. Thus,
the asm body should use the parameter only in an
assembly language context that allows aliteral.

For aregl it parameter longer than one word, specify
the number of registers needed in parentheses after
reglit.Forexample, reglit (3) alocatesthree
consecutive registers. If regl i t is specified without a
number of registers, the defaultisreglit(1).

A reglit return vaue aso occupies the specified
number of registers. The declarationreglit return
isequivalenttot npreg return.

freglit places the parameter in a floating-point register of the
compiler’s choice. The asmfunction must not modify
theregister. You canusefregl it only on processors
with on-chip floating-point support. When used to
declarereturn,freglit placesthereturnvalueina
floating-point register. The declaration f r egl i t
returnisequivalenttoft npregreturn.

const indicates a constant expression. Theconst keyword
can be followed by:
(si gned- i nt eger) , specifying the indicated integer
value.
(signed-integer-I|ow
si gned- i nt eger - hi gh) , specifying an integer val ue
in the indicated range.
(0.0: 1.0), specifying afloating-point value of 0. 0
or 1. 0. Only use const to declare parameters, not
return.

voi d indicates that the return value is not used. Usevoi d to
declareonly r et ur n, not a parameter.

7-79

; i960® Processor Compiler User's Manual

7-80

Table 7-5

Declarations must be consistent between the as mfunction prototype and the
control line. If the asmclass of aparameter or return register does not match
the declared C parameter or return type, the compiler issues awarning
message. Table 7-5 lists the matching data types and classes.

C Data Types and asm Classes

Class Designations Data Types

reglit, tmpreg, reglit(1), any integer type; any pointer type; float; struct, or
tmpreg(1) union types of 1 to 4 bytes

reglit(2), tmpreg(2) double; struct, or union types of 5 to 8 bytes
reglit(3), tmpreg(3) long double; struct, or union types of 7 to 12 bytes
reglit(4), tmpreg(4) struct or union types of 13 to 16 bytes

freglit, ftmpreg float, double, or long double

NOTE. Avoidwriting a parameter declaration that can never match any
call context. Such a declaration creates a pocket of unreachable code.
For example, unreachable code results fromdeclaring a parameter in an
asmfunction prototype as an integer C type and declaring the
corresponding parameter inthe control lineasftnpregor freglit
class. The control line parameter declaration then matches only a
floating-point data type argument, but the parameter can accept only an
integer argument. Smilarly, when specifying an integer return typein a
function prototype, any r et ur n declaration specified in the control line
must al so be integer. The compiler recognizes when the parametersin the
function prototype and the control line are mismatched and issues a
message.

C Language Implementation ;

Argument Categories
An argument category can be any of the following:

Genera-register isaregister-resident value (e.g., ar egi st er

variable variable). Depending on the level of
optimization, this category can include a more
complex expression. During compilation, the
expression must evaluate to a register-resident
variable that is one of the operandsin the
expression. For example, the expressions x+0
and x*y/ y both evaluate to x.

Memory isamemory-resident value.

Generd-register-temp indicates an expression that the compiler cannot

orary evauateto asingle variable or constant. This
category includes most expressions containing
an operator. A common exceptionis an
expression in which the top-level operator
impliesindirection (that is, *,[], or - >). Such
an expression falls into the memory category.
Depending on the optimization level, the
general-regi ster-temporary category caninclude
an expression in which the top-level operator is
an assignment to a register-resident variable.
Floating-point values can also fall into this
category.

Floating-point-register indicates afloating-point expression that can be

-temporary classified more efficiently into a floating-point
register than into a general register. This
category is available only on processors with
on-chip floating-point support.

7-81

; i960® Processor Compiler User's Manual

7-82

Integer constant isa constant integer value. Depending on the

level of optimization, this category can include
an expression containing variable operands, if
the compiler can evaluate the expression to a
constant. For example, the expressions x+5- x,
x- 7, and x can evaluate to constants during
compilation if the value of x isaknown value at

compile time.
Floating-point is a constant floating-point value. The rules for
constant classifying arguments as fl oating-point

constants exactly parallel the rules for
classifying arguments as integer constants.

Template Expansion

Once the compiler selects an expansion case, one of the following
Sequences Occurs:

If the control line containsthe er r or control, the compiler reports an

error, using the first linefollowing theer r or control line as the text of
the error message. For example, invoking the following asmfunction

astraps(1) printsthe message Reached t r apl:

asmint traps (int i)

{

% const(1) i; error;
Reached trapl

% const(2) i; error;

Reached trap2

% error;

Reached traps without 1 or 2

}

More than one line of template text following an er r or control line
resultsin acompiler syntax error.

If the control line containsthecal | control, the compiler generates a
call to an external function usingthecal | assembly-language
instruction. You can specify the name of the external function, asin the
following example:

%all my_alt_afn;

C Language Implementation ;

® If youdo not specify anameinthecal | control, the compiler uses the
name of the asmfunction. For example, calling the following as
sel ect (3) resultsinacall to an external function named sel ect :
asmint select (int i)

{
% const(-2:2) i;

% cal | sel ect;
}

®* Any linesof template text following acal | control line result in a
compiler error.

® |f thecontrol line doesnot containcal | orerror, the compiler inserts
the selected template in the assembly-language output in place of the
asmfunction call.

Declarations
The control line can declare the following:

® parameters, including return
® J|ocal temporary variables
* labels

Parameter declarations and local temporary declarations are syntactically
identical. If the declared name is the same as a parameter declared in the
function prototype, a parameter is declared. Otherwise, the declaration is of
aloca temporary variable.

In the template text, the compiler replaces the name of any declared
parameter with the corresponding register or literal argument. Ther et urn
keyword becomes the name of the register in which the return value of the
asmfunction is expected. The compiler replaces the name of any local
variable with the name of an available register.

Youcanuseareglit ortnpreg classparameter or loca variable as an
integer aggregate containing up to four general-purpose registers, as
declared on the control line. To select a register, specify aninteger in
parentheses after the identifier. For example, i t mp(0) selectsthe first
register of i t np. If i t np isdeclared on the control lineasi t np(4),
specify i t np(3) to select the fourth register allocated for i t np.

7-83

; i960® Processor Compiler User's Manual

7-84

E NOTE. If atemplate uses a label, multiple expansions of that template
can result in more than one label with the same name, causing
ambiguous branch or jump destinations. To avoid this ambiguity, use the
I abel control to declare thelabel in the control line. The compiler then
generates a unique name for each declared label every time the

expansion case is selected.

Preserving Register and Memory Values

The following asm controls enable the compiler to preserve function
resource requirements:

use declares that certain registers can be read and/or
modified by the template. You can specify any of
registers g0 through g13, r 3 throughr 15, and f p0
through f p3, when present, asargumentstotheuse
control. For example, the following control line
preserves registers g5 through g8, r 3, and r 11:

% use g5, g6, g7, g8, r3, rii;

If any of the registers pf p, sp,ri p,gl4,orfp are
specified in ause control, the compiler issues an
error message.

spillall declares that some memory locations used outside
of the asmfunction can be modified or used by the
template. The compiler forces synchronization of
load and store operations at the function call; that is,
no load or store operation moves past the call of an
asmfunction containing thespi I | al | control.

C Language Implementation ;

pure declares that the named asmfunction has no effect
other than returning acomputed value. Specifically,
no I/O is performed, no global variables or memory
locations are read or modified, and no
maodifications of registers occur, except those
explicitly defined by the calling sequence. When
pur e is used, the compiler can perform
optimizations before and after each function call,
because pur e guarantees the asmfunction has no
effect other than returning the computed value. If a
functionis pur e, the compiler can perform
additional optimizations across the function call.

NOTE. If none of the above controls appear in text to direct
preservation of resources, the compiler makes the following
assumptions:

« The only registers used by an as mfunction are those implicitly assigned
by the compiler for parameters, local temporaries, and the return value.
» The asmfunction does not reference any non-volatile memory
locations.

» The asmfunction can have other side effects, such as performing 1/0.

Examples and Hints

You can define control lines in a sequence that selects the expansion case

based on the strictest comparison first, relaxing the matching criteria as

earlier expansion cases are rejected, as follows:

1. const andvoi dr et urn parameters.

2. ftnpregandfreglit parameters; for example, to match | ong
doubl e arguments.

3. tnpregandreglit parameters; for example, to matchi nt eger,
f1 oat, and doubl e arguments.

7-85

; i960® Processor Compiler User's Manual

7-86

Sequential Template Expansion. The following isa C language program
that uses an asmfunction with two expansion templates:

#define status_reg OXFEOOFFOO
asmint poll (void)
{
%void return; tnpreg t; spillall;
I d status_reg, t; #first tenpl ate
%reglit return; spillall;/* return the current status
*/

I d status_reg, return; #second tenpl ate
% error;
}
#defi ne DEVI CE_READY 0x00000001
mai n()
{
extern void service_device();

poll (); [*cl ear status bits*/

while (1) {

if (poll() & DEVI CE_READY)
servi ce_device();
}

}

Thefirst call of pol | does not use the return value and therefore matches
thevoi d r et ur n control line, expanding the first template. The second call
uses the return value and therefore matches the t npr eg r et ur n control,
expanding the second templ ate.

In thisexample, loading the status register also clearsthe status, so the pol |
function can be used just to clear the statusif the function return valueis
ignored. However, when the return value is ignored, the program must still
allocate aregister into which it can load the temporary value.

C Language Implementation ;

Compiling this program produces assembly language similar to the
following:
_main:
Id OxFEOOFFOO , g4; #first tenplate
L5:
Id OxFEOOFFOO , g4; #second tenplate
bbc 0, g4, L5
callj _service_device
b L5

IAC Breakpoint. The following example shows an asmblock that sends an
inter-agent communication (IAC) breakpoint to the processor. For
information on the IAC structure, see the i960 KB processor manual.
struct nessage {

unsi gned short field2;

unsi gned char fieldl

unsi gned char message_t ype;

unsi gned i nt field3;
unsi gned i nt field4;
unsi gned i nt field5;
} iac_struct;
/*
* This routine issues an | AC nessage to the |oca
* processor where the programresides. It accepts

* a pointer to a preforned | AC nessage as input and

* uses the synnmovq instruction to send the IAC to the
* processor.

*/

asm voi d send_i ac(struct message *base_nsg)

{

%void return; reglit base_nsg; tnpreg nyreg; spillall
| da Oxff 000010, nyreg /* load |l ocal | AC address */

synnovqg nyreg, base_nsg /* issue | AC nessage */
o%error;
Incorrect Ccall to send_iac
}
/*

7-87

; i960® Processor Compiler User's Manual

7-88

* Send a breakpoint IAC to the processor. The

* address is supplied by the routine that calls

* set_bp. Do not forget to enable breakpoints in the
* trace control. Fields 1, 2, and 5 are not used.

*/

voi d set_bp(unsigned int addrl1, unsigned int addr?2)

{

i ac_struct. message_type = 0x8f;
iac_struct.field3 = addr1;
iac_struct.field4 = addr 2;

send_i ac(& ac_struct);

}

In this example, the first line (asmvoi d send_i ac(struct nmessage
*base_nsg)) declares that the function does not return avalue and the
base_nsg argument is a pointer to a structure of type message.

The second and eighth lines contain braces. These lines begin and end the
function definition, which contains two expansion definitions.

The third lineis acontrol line containing three parameter declarations, as
follows:

%void return; reglit base_nsg; tnpreg myreg; spillall;
Thevoi d return; declaresthat no value isreturned by thisasmfunction.
Thereglit base_nsg; declaresthat the base_nsg parameter matches
either aliteral or aregister argument. Thet npr eg nmyr eg; declaresthat the
nyr eg local variableis atemporary register. Thespi | | al | control
informs the optimizer that this template references memory.

Thefourth and fifth linesload the |AC address into atemporary register and
issue an | AC message.

The sixth lineisacontrol line containing the er r or control and the seventh
lineisthe text of theer r or message.

If the compiler cannot coercethe call argumentsinto the previous expansion
definition (the declarations in the third line), the compiler displays the
following error message and aborts the compilation:

Incorrect Ccall to send_iac

C++ Language
| mplementation

The C++ implementation is consistent with the C language i mplementation
described in Chapter 7. This chapter highlights the differences from the C
language implementation. It also provides a description of the
unimplemented C++ features and description of the template
implementation limitations.

Data Representation

The C++ compiler follows the same rules as described in Chapter 7, “C
Language Implementation” for the format and alignment of various scalar
and aggregate data types. The C++ compiler, however, recognizes the
following scalar data types as well.

® ool : Thebool type hasthe samesize and alignment asani nt and
can be assigned a value of either true or false.

* reference: Referencesareimplemented internally as pointers.
However, these implementation details are transparent to the end user
and reference typesin general should be treated the same as the typeto
which they refer.

81

8 i960® Processor Compiler User's Manual

8-2

Pragmas

Calling Conventions

The C++ compiler follows the same calling conventions as described in
Chapter 7, “C Language Implementation”. However, be aware that the
compiler uses hidden parameters. Consider the following example:
cl ass Base {
public:
int set_a(int i) { a=1; }
private:
int a;
b
The implementation of member functieat _a uses a hidden parameter,
the address of the Base instance for which this member function was

invoked (thet hi s argument). As a result, the user should expect argument
i to be passed in registgt. Return values and register usage are handled
the same way as described in Chapter 7, “C Language Implementation”.

Pragmas can supply implementation-specific information to the compiler.

The CTOOLS C++ compiler supports the same set of pragmas as the

CTOOLS C compiler. However, certain pragmas behave differently in C++.

The following sections highlight these differences.

Specifying a Tag-Name with align, noalign, or i960_align

When you specify a tag-name with align, noalign, i960_align, the pragma

applies to all occurrences of that tag. For example:
pragme align str=2

struct str {

char c;

struct str {
char c;

} s

b

C++ Language Implementation 8

struct strl {

char c;

struct str {

char c;

} s1;

b
In the above example, the align pragma affects the alignment of types str,
str::str, and stri::str.
The compiler currently does not implement referring to a specific type-tag
(e.g., through the use of scope resolution operator) in a pragma:

pragma align stri::str=2 /1 will not work

Specifying a Function Name with a Pragma
When you specify afunction name with a pragma (e.g., pragma compress,
cave, inline, interrupt, isr), the pragma appliesto all occurrences of that
name.
pragme inline max

int max(int a, int b);
float max(float a, float b);

struct S {
int a, b;
int max(int a, int b);
b
In the above example, the inline pragma affects max (i nt, int),
mex(float, float),andS:: max(int, int)
The compiler does not allow specifying asingle instance of afunction name
in apragma. For example, the statement:
pragma inline S::nmax(int, int)

is not supported.

8-3

8 i960® Processor Compiler User's Manual

8-4

Link Time Considerations

The compiler createstwo new .t ext sectionsnamed ctors and
dtors.

® The ctors sectionisused toinitialize(construct) static objects.
® The dtors sectionisused to destroy static objects

Starting with CTOOL S 6.0 anew set of linker directive files are included
(. 1d files) for use with the ic960 driver. These new ld files place the
ctors and dtors sectionsimmediately after the . t ext section. The
C++ lostream library islinked immediately before the C high-level
libraries, as specified with the linker directive PRE_HLL.

With the gcc960 driver, usethe -stdl i bcpp optionto link in the C++
lostream library ahead of the C libraries and place thect ors and dtors
sections immediately after the . t ext section.

Calling C Functions from C++

Usethe extern "C' directive provided by the C++ language
/'l Exanpl e assumes that filel.cc and file2.c are |inked together
/1 Begin filel.cc
extern "C' {

int baz(int a, int b); /'l Conpiler does not do name
void foo(void); /1 mangl i ng

b

int baz(float); /1l Conpiler treats this as a

/'l C++ routine and does name nmangling

int baz(float f1)
{

return int(fl);

}

C++ Language Implementation 8

int main()

{

foo(); /1 invokes the definitionin file2.c

return baz(10, 20) + /'l invokes the definitionin file2.c
baz(fl oat (10.6));

}

/1 End filel.cc
/* Begin file2.c */

int baz(int a, int b)

{

return a + b;

}

void foo(void) {
baz(10, 20);
return;

}

/* End file2.c */

Calling C++ Functions from C

Usethe extern "C' directive provided by the C++ language.
/'l Exanpl e assumes that file3.cc and file4.c are |inked together
/1 begin file3.cc
extern "C' int baz(void);

extern "C' {
int foo(int a, int b)
{

return a + b;

}
}

8-5

8 i960® Processor Compiler User's Manual

int main()

{

return baz(); /1 invokes the function defined in file4.c

}

/!l end file3.cc

/* begin filed.c */
int baz()
{

return foo(10, 20); /* invokes function defined in file3.cc */

}

/* end filed.c */

asm Statements and asm Functions

The C++ compiler implements asm statementsin amanner that is consistent
with the C compiler. However, asm functions are not implemented in the
C++ compiler.

Unimplemented C++ Language Features

The current release does not implement the following C++ language
features:

Exception Handling

C++ provides constructsthat allow exceptionsto be raised and caught. The
current release does not implement C++ exception handling. The following
exampleillustrates the use of exception handling:

#i ncl ude <i ostream h>

int main()
{
int i;
try {
cout << "Enter an integer > 0 ";

8-6

C++ Language Implementation 8

cin >> i;

if (i <=0)
throw i nv_dat a;

}

catch (Invalid_Data) {
cout << "Invalid data input\n";
exit(10);

}

Run Time Type Information(RTTI)

C++ provides constructs that allow you to determine the type of an object
during execution. This makes it possible to write specialized code based on
the run-time type of the object. The current release does not implement
RTTI. The following exampleillustrates the use of RTTI:
#i ncl ude <typei nfo>
class B {
public:

virtual int foo();

b

class D {
public:
virtual int foo();

b

D di;
B *bp = &d;

int baz(B *bp)

{
if (typeid(*bp) == typeid(D))

8-7

8 i960® Processor Compiler User's Manual

8-8

do_sonething ...
el se
do_ot her _stuff

Namespaces

Namespaces allow a programmer to declare variable names without the fear
of a collision with names declared by other users. Namespaces allow two
independent library developers to use the same names for their library
routines and allows the user to choose between the two. The following
exampl e illustrates the use of hamespaces.

namespace A {
int max(int a, int b)

{

int tnp;
if (a > b)
tmp = ga;

el se

tnmp = b;
return tnp;

}

namespace B {
int max(int a, int b)

i nt

{

return a >b ? a: b;

}

tnp;

usi ng namespace A;

i nt

{

mai n()

C++ Language Implementation 8

tnp += max(10, 20); /1l Calls namespace A's max(int, int)

Debugging Information for Templates

Debugging information for templates is currently not supported.

8-9

GCC960/1c960
Compatibility

This chapter describes the incompatibilities between ic960 and gcc960, and
between the current release of gcc960 and other releases of ic960.

char and short Parameters

The ic960 R3.0 compiler expectschar and short parameters and return
valuesto be clean upon entry to and exit from procedures. Since thesetypes
are passed and returned in registers, this means that, in the case of si gned
types, the sign bit must be extended, and in the case of unsi gned types, the
high-order bits of the register must be zero. By default, gcc960 (and ic960
R4.5 and later) does not expect these values to be clean, and generates
appropriate operations to sign- or zero-extend these values on entry to or
exit from a procedure. This applies only to ANSI-compliant programs that
specify the type of parameters at declaration time in the function prototype.

gcc960 emulates ic960 R3.0's behavior if the i ¢3. 0- conpat or
m c2. 0- conpat options (see below) are selected.

enum Variable Byte Count

The ic960 R3.0 compiler creates enumvariables with only enough bytes of
precision to hold the requested enumeration. gcc960 always generates
4-byte enumvariables. gcc960 emulatesic960's behavior if the

m ¢3. 0- conpat option isselected. An enumvariable compatible with
ic960 releases prior to R3.0 can be achieved using the ni ¢2. 0- conpat
option.

9-1

9 i960® Processor Compiler User’s Guide

9-2

char Types

The ic960 compiler (all releases) treats default char typesassi gned,
whereas gcc960 treats them as unsi gned. gcc960 emulatesic960's
behavior if the i ¢3. 0- conpat or ni c2. 0- conpat options (see below)
are selected, or if thef si gned- char option isselected. The preprocessor
symbol __ CHAR_UNSI GNED__is set appropriately to allow programs to
determine which model isin use.

Identifying Architectures

Table 9-1

The traditions for architecture-identifying preprocessor macro definitions
are somewhat different between ic960 and gcc960. Both interfaces define
themacros __i 960, i 960xx, and _i 960, where xx isthe architecture
(e.g., CA for thei960 CA processor, as selected by the ACA option). These
are the recommended macros for testing for the 1960 processor architecture.

For compatibility reasons, the compilation system also defines additional
variations on these macros, as shown in Table 8-1.

Architecture Macros and Compatibility

gcc960 ic960
_ _i960_ _ X
_i960xx - X
_ _1960_xx_ _ X
_ _i1960xx_ _ X

#pragma align

ic960 and gcc960 both implement a#pr agnma al i gn directive. They
interpret the pragma differently, and the results (changesin the alignment of
members of structures) are not compatible. 1n the absence of this pragma,
1960 and gcc960 structures should be compatibly aligned. pr agna

i 960_al i gn isprovided for compatibility with ic960's pr agma al i gn,
and behaves the same for both compiler interfaces.

GCC960/ic960 Compatibility 9

The gcc960 i ¢3. 0- conpat option selects the appropriate behavior for
enumvariables, selects default si gned char variables, and selects clean

linkage (described above) for char and short parameters and return
values.

mic3.0-compat Option

mic2.0-compat Option

The gcc960 mi c2. 0- conpat option selects the same behaviors as

m ¢3. 0- conpat , except that the behavior for the enumvariableis subtly
different and the alignment rules for structure elements are changed to be
compatible with this (now obsol ete) release of ic960. The ni c- conpat
option supported in gcc960 R1.2 and R1.2.1 is now synonymous with

m c2. 0- conpat .

9-3

Position Independence and
Reentrancy

This chapter describes reentrancy and position-independence. Useit for
writing 1960 processor applications that require position-independent or
reentrant programs. Position independence enables relocation of both the
.text and. dat a sections.

Position-independent Code and Data

Position independence refers to an application that can be relocated when
loaded. The application can be loaded at various addresses, but the code and
data do not move during execution. This feature enables creation of
programs for specific EPROMs used in a system.

The ic960 driver'ss option with its argumentsc, pd andpr, or the gcc960
driver'snpi c, npi d andnpi d- saf e options, control generation of
position-independent code and data. For more information about
command-line options, see Chapter 2, “gcc960 Compiler Driver”, and
Chapter 3, “ic960 Compiler Driver”.

Position-independent Data

When the position-independent data option is specified, references to
variables in the program are made relativg1d. Initialization code for a
program must supply a data address bias in the position-independent data
bias registerg12). For all accesses to statically allocated variables, the
value ing12 is used to calculate the effective address. Regjsmust be
read-only for the entire program.

10-1

10 i960® Processor Compiler User's Guide

10-2

L)

For example, suppose abject _x isinthe. dat a or the. bss section.
Normally, the compiler generates an address of the object with an absolute
addressing mode:

lda _x, g0

When you compile your program with position-independent data, the
compiler generates thisinstruction to take the address of _x:

I da _x(g12), g0

NOTE. If PID isspecified, the valuein g12 must be correctly computed
and stored by user-provided startup code.

Position-independent Code

When the position-independent code option is specified, the compiler
computes effective addresses by biasing them based upon the instruction
pointer (i p).

Suppose object _x isinthe. t ext section. The compiler generates a code
bias address into a register at the beginning of any function that needs a
direct addressinthe. t ext section. It doesthisviaa code sequence similar
to this:

Ida O(ip), r3
| da . , ra
subo r4, r3, r3

which leavesthe biasin r 3. Then the compiler usesr 3 to bias the reference
to_x as

lda _x (r3), r4

The first three instructions compute the difference between the link time
address and load time address of the . t ext section.

For example, if the code section links to begin at address zero, the
subtraction result is the address at which the code section was actually
loaded. Even if the code section links to begin at some other address, the
subtraction result is still the correct value for biasing pointers into the code
section.

Position Independence and Reentrancy 10

Imagine designing two circuit boards for use in a new laser printer. ROM
chips on these boards contain type fonts and graphic elements. To provide
alternative printing capabilities, either board inserts into an optional slot in
the printer chassis. Memory allocated for each board is:

board 1 20000 - 3ffff
board 2 40000 - 5ffff

Although ROM and RAM for each board have different load addresses, the
controlling software for the printer must work correctly with either board in
use. In the printer, kernel ROM and RAM are at fixed addressesin low

memory. A large memory spaceis set aside for the kernel’s ROM and RAM.

Compiling the ROM code with the PID option and placing the correct bias
valuesin g12 makes the optional ROMs relocatable.

Figure 10-1 shows memory allocation for board 1. When the code executes,
the ROM code for either board loads at the correct address.

Example 10-1 Position-independent ROM Code

10-3

i960® Processor Compiler User's Guide

Figure 10-1 Memory for Hypothetical Position-independent Application

Top of Memory
Slot for Card 2
64 MB
Slot for Card 1
48 MB
Top of RAM
Frame Buffer
Slot RAM
g12
Kernel RAM (data)
16 MB
Kernel ROM (code)
(0]
OSD1678]

10-4

Position Independence and Reentrancy 10

Guidelines for Writing Relocatable Programs

A program can contain position-independent code (PIC),
position-independent data (PID), or both. Be aware of the following
restrictions:

® Use position-independence only where necessary, because a program
containing position-independent code may execute more slowly than
one without.

® Position-independent programs cannot be rel ocated during execution.

For all 1960 processors, the address space is flat (unsegmented) and
byte-addressable. Addresses run contiguously from 0 to 232-1. Programs can
allocate space for data, instructions, and stack anywhere within the flat
address space. However, the following restrictions apply:

® |nstructions must be aligned on word boundaries.

® Addresses FFO00000H through FFFFFFFFHin the upper 16 megabytes
of the address space are reserved for specific functions. Check with
your system hardware designer to determine the effects of use of the
addressesin this range.

® 0Oni960 Cx and Jx processors, the lower 1 kilobyte of address space
(addresses 0000H through 03FFH) is reserved for accessing internal
memory (RAM). On i960 Hx processors, the lower 2 KB isinternal
memory. Instruction fetch operations from this address range are not
allowed.

® The.dataand. bss sections must be relocated as a unit.

Because biasing occurs during code execution, the compiler does not
support static initialization of pointers with the address of a
position-independent object. The compiler generates a warning in these
cases.

For example, the following program has two pointers, p and g, whose initial
values might not be correct when position-independence is used.

static int i;
static int *p
static int *q
static int *r
int f();

int (*g) () =f;

& ;
0;
(int *) Ox7fff0000;

10-5

10 i960® Processor Compiler User's Guide

10-6

In the compiler’'s output, p contains the unbiased address of i , and g
contains the unbiased address of f . To use the initialized p or g, aprogram
must perform the correct biasing of values before the point where the
program uses the pointers.

Reentrant Functions

Reentrant functions can suspend execution, and later resume execution
from the same state at which the suspension took place. Current state data
must be preserved while areentrant function is suspended.

A reentrant function can be active in several different places, in any of the
following ways:

amulti-tasking situation with two or more threads executing in the
same memory space; for example, an interrupt handler

atime-sliced environment in which two or more processes are
executing, with one process active and all others suspended at any
giventime

arecursive function, with any one instance of afunction active while
all duplicate instances of the function are suspended

For a function to be reentrant, it must not:

modify memory or registersin use by a concurrent or suspended
function

reference shared variable data

call anon-reentrant function

Designing Reentrant Functions

Since the compiler cannot determine data use across modules, the compiler
does not issue any warnings for potentially non-reentrant code sequences.
For more information about library reentrancy, refer to the i960 Processor
Library Supplement.

Initializng the Execution
Environment

This chapter describes the initialization process for the 1960 processor
execution environment, including startup assembly-language routine,
configuration files, and associated options.

Startup Code

The startup routine is amodule that initializes the processor and library,
then invokes the user’s program. In addition to processor initialization, the
startup routine performs some initialization specific to random-access
memory (RAM-based) or read-only memory (ROM-based) target
environments. Since RAM-based applications typically operate under a
system monitor and load to the correct addresses after powering up the
board, the startup routine must initialize system monitor reguirements but
need not boot-load the program. For a ROM -based application, the startup
routine must:

* Put theinitialization boot record for the i960 processor in place.

® Configure system data structures correctly.

®* Makeinitialized dataavailablein the RAM address space.

For any program, the startup routine must initialize the i960 processor

registers as follows:

®* Provide aglobal entry point called st art. Thissymbol isthe entry
point for debug monitors.

® Initialize the frame pointer and stack pointer to the correct value.

* Initialize g14 to zero, as required by the i960 processor calling
convention.

11-1

11 i960® Processor Compiler User’s Guide

11-2

Fill the uninitialized . bss data sections with zeros.

Set the arithmetic controls (AC) register to 0x3B001000. For library
functions to execute correctly, the rounding mode bits of the AC must
be set to round-to-nearest, the floating-point normalizing bit must be
set, and the following faults must be masked:

— integer overflow

— floating-point overflow

— floating-point underflow

— floating-point inexact

Since the 1960 C-series and J-series processors AC register does not
alow setting of floating-point bits, use _set ac in the setup. The
_set ac and _get ac routines are independent of architecture and work
correctly for all 1960 architectures. Startup routines for KA, KB, SA,
and SB processors can aso use the nodac instruction as an aternative.

When writing code to initialize the C runtime environment, you must
address the following issues:

The startup code provides the bias value for position-independent data
sections. If the program contains position-independent data (PID),
startup code must initialize register g12 to the data-address bias. The
g12 register isthe data address bias register. The compiler generates
references to statically allocated variablesrelativeto g12. The
contents of g12 must be divisible by 16 (i.e., the address must be on a
quad-word boundary). After initialization, g12 must be considered
read-only; user code should not modify it.

If the gcc960 command line specifies npi d or the ic960 command line
contains the Generate option with the PID argument (- Gpd), the
compiler does not use g12 as ageneral purpose register. However, it
does use g12 to offset static variables, as explained above.

If the target environment includes the MON960 monitor, startup must
provide a global entry point called st ar t , used by debug monitors as the
entry point to the new program. Startup codemustcall __ LL_init to
perform all initialization specific to the processor and to the board.

Initialization differs for each processor and board. For example, some
board-specific startup routinesinitialize mem_end in the linker
configuration file instead of in __LL_i ni t . Each board-specific low-level
library included with the assembler contains an appropriate__LL_init.

Initializing the Execution Environment 11

See the startup filecr t 960. s under thesrc/ i b/1ibll/common
directory for an example.

® If aprogram uses the C runtime library, startup code must call
__HL_init toensure correct operation of all library functions,
including any 1/O routinessuch aspri nt f .

® The__HL_init functioncallsthe exit _init, _stdio_init,and
_thread_i nit routinesto allocate memory for library data structures
and to open standard devices. These routines require definition of
sbr k and open in the board-specific low-level library. The
__HL_init functionisin the architecture-specific high-level I i bc. a
library. For more information about high-level libraries, refer to the
1960 Processor Library Supplement.

® If performing profile-driven optimizations, the startup routine must call
aprofileinitialization routine before calling any instrumented
functions.

® If youarelinking in any C++ modules, startup code must call
_do_gl obal _ctors beforeyouinvokemai n. Seecrt 960. Sfor an
example.

® The startup routine also calls an executing program’s mai n function,
passing parameters to nai n if necessary. The startup routine also
performs cleanup after mai n returns, usually by calling exi t . If the
target environment supports program command-line arguments such as
argc andargv, cal __arg_i nit toinitialize such variables
immediately before calling the program mai n function. The
__arg_init functionisfoundinthe MON960 low-level library. This
function is described in the Library Supplement.

® Thelinker combines the startup routine with other object modules.
Normally, a configuration file provides the name of the startup file. To
override the startup file named in the configuration, use the linker C
(Startup) option. For more information on passing optionsto the linker
from the compiler invocation command line, see Chapter 2, “gcc960
Compiler Driver” or Chapter 3, “ic960 Compiler Driver”.

RAM-based Initialization

Thel i b/ cycx. | d configuration file links ther t 960. o startup file to run
a program under the MON960 monitor.

11-3

11 i960® Processor Compiler User’s Guide

11-4

ROM-based Initialization

ROM-based startup routines must ensure that all the variable dataisin
RAM. The routines must do the following:

® Physically move any system data structures that the program modifies;
move the structures to the RAM address space.
®* Movetheinitiaized variable data from ROM to the . dat a section.

®* Restart the processor, using the IAC (inter-agent communication) for
KA, KB, SA, and SB architectures, or using thesysct | instruction for
the Cx, Hx and Jx architectures.

A startup routine performs the following operations to create a ROM-based

application:

®* Createaninitiaization boot record as a separately translated module.

® Create architecture-specific data structures.

® Initialize any necessary board-specific memory subsystemsin either
the mai n or the startup routine of your program

Usethelinker to locate the initialization boot record, system data structures,

and program code in the appropriate memory location for the architecture

and board configuration, as follows:

® Put.text codesectionsinthe ROM addressrange

® Put.dataand.bss datainthe RAM addressrange

Use the linker to define variables used symbolically in the startup routine.

The linker automatically generates symbolsnamed __ Bsect i on for the
beginning and for the end of each section of your program.

The linker can generate the following symbols for the startup routine:

__Bdata is the starting address of RAM data

__Edata isthe end of the. dat a section

__Btext isthe starting address of the . t ext section
__Etext istheend of the. t ext section

__Ebss isthe end of the. bss section

__Bbss is the starting address of the . bss section
__Bctors is the starting address of the C++ . ct or s section
__Ectors isthe end of the C++ . ct or s section

Initializing the Execution Environment 11

__Bdtors is the starting address of the C++ . dt or s section

__Edtors isthe end of the C++ . dt or s section

It isaso possible to explicitly define variables in the configuration file.
Supplied configuration files contain definitions of the following:

user _st ack is the starting address of the user stack
super vi sor _st ackisthe starting address of the supervisor stack
i nt errupt _st ackisthe starting address of the interrupt stack

After linking, you can use the nrove command of the rom960 utility to
modify object module section headers and to place named data sections at
specified addresses or locations. This command should be used to
temporarily move the data sections into the ROM address space, usually
immediately after the . t ext section, and does not change the relocation
information contained in the section to be moved. The startup routine then
must copy the datato the RAM area specified by the linker.

Linker Configuration Files

A linker configuration file is alinker script that providesinformation to the
linker about the intended execution environment. Several linker
configuration files are provided, and each contains linker options to create a
complete and unique execution environment. Usethe T (Target) linker
option to specify the configuration file. For more detail on the T (Target)
option, see the 1960 Processor Software Utilities User’s Guide.

RAM-based Configuration File

The commands passed to the linker define the memory layout and location
of the linked program. Configuration information used by the linker
includes:

®* memory layout

® linker controls

® dtartup routine

® high-levd libraries

* low-level libraries

* floating-point support

11-5

11 i960® Processor Compiler User’s Guide

ROM-based Configuration File

The optional ROM-builder section of a configuration file contains
commands to be passed to the rom960 utility. rom960 commands must
begin with the #* charactersin columns 1 and 2. The i960 Processor
Software Utilities User’s Guide provides explanations and examples of
rom960 commands in a configuration file.

11-6

Optimization

Readable and maintainable source text is not always organized for efficient
execution. The compiler can optimize the arrangement of instructions and
data use for faster execution and smaller memory requirements. This
chapter describes the different ways in which the compiler can optimize
your program and explains ways to control optimization.

Optimization Categories and Mechanisms

Compiler optimizations affect these aspects of your program:

® constants and expression evaluation

® calls, jumps, and branches

® loop optimizations

®* memory optimizations

® register use

® jnstruction selection and sequencing

Some optimizations are independent of thei960 architecture and others take
specific advantage of the 1960 processor instruction set and registers.
Program-level optimizations are also available when profile data exists for
the program.

12-1

12 i960® Processor Compiler User's Guide

12-2

Table 12-1

Constants and Expression Evaluation

Optimization

ic960

gcc960

Register management
Branch prediction

Code compression
Constant-expression evaluation
Identity collapsing

Branch optimization
Char/short cleaning reduction
Dead-code elimination
Leaf-function identification
Local CSE elimination
Local-variable promotion
Loop-invariant code motion
Specialized-instruction selection
Tail-call elimination
Conditional transformation
Global alias analysis
Induction variable elimination
Instruction scheduling
Constant propagation

Loop unrolling

Memory access coalescing
Variable shadowing

Allocation of variables to fast memory
Inter-module, inline function expansion

Profile-based branch prediction bits setting

Basic block rearrangement
Superblock optimizations

any level

W W W W W NN DNDNDNMNDNDMNDNDMNDNDMNDNNMNNPEPEP PP RPARPDNP P P OO OO

any level

g o o000 WwWwwWwwWw W NN OO NN PP PEDNPEPE PP O O OO

Optimization 12

The compiler can simplify some arithmetic and boolean calculations
involving repeating expressions, constants, or operational identities.
Optimizations involving such simplifications are:

® common sub-expression elimination

® constant expression evaluation

® constant propagation

® identity collapsing

Each is explained in one of the following sections.

E NOTE. The following source examples are for illustration only. The
compiler performsits transformations on an internal representation, not
at the source level.

Common Sub-expression Elimination

Common sub-expression elimination detects and combines redundant
computations within an expression. For example, this line of source text
contains the sub-expression x[a] * y[b] [c] threetimes:

i = (x[a] * y[bl[c]) + (x[a] * y[bl[c]) + (x[a] * y[b][c]);
Instead of calculating x[a] * y[b] [c] three different times, the compiler
rewrites the expression to perform the calculation once and store the result
for reuse:

tenp = x[a] * y[b][c];

i = (temp) + (tenp) + (tenp);

The compiler eliminates common sub-expressions on the results of
floating-point operations and on integer operations. In some cases the
compiler can perform this optimization for common sub-expressions
separated by branch instructions.

Thisoptimization is performed by the O (Optimize) compiler option at level
1 (O1) and higher.

12-3

12 i960® Processor Compiler User's Guide

12-4

Constant Expression Evaluation (Constant Folding)

A constant expression contains only constant operands and simple
arithmetic operators. Instead of storing the numbers and operators for
computation when the program executes, the compiler evaluates the
constant expression and uses the result. Constant folding is another name

for this optimization.

The examplesin Table 12-2 show the effects of constant expression
evaluation. The variablesd and e are affected by bit-shift operations but are
still subject to constant expression evaluation.

Table 12-2 Effects of Constant Expression Evaluation

Original Source Text

Replacement

a=1+2;
b=3-4;
c=5*6;
d=(2<<1)+1;
e=(12>>2)+2;
f=1.2+3.8;
g=10.0*0.5;
h=i+2+5;

a=3;
b=-1;
c =30;
d=5;
e=5;
f=5.0;
g=>5.0;
h=i+7;

Any of the following data types can be operands subject to constant

expression evaluation:

® integers

* floating-point numbers

® pointers

Dead-Code Elimination

The compiler eliminates two kinds of dead code:

unused when code generates avalue that is nhot used
subsequently in the program or in its output.

unreachable

when the control flow of the program can never execute
the instructions.

Optimization 12

Unused code operations can arise from several sources, including:

* Naive code generation can produce operations that are uselessin some
contexts as part of a generic translation.

® Other optimizations, such as common sub-expression elimination, can
make some operations useless.

® Conditional compilation or other code improvements can eliminate the
uses of the results of an operation.

By analyzing a program, the compiler can detect and remove useless
operations from generated code.

Commonly, instructions become unreachable when function inlining
substitutes constants for variables or when the preprocessor substitutes
constants for preprocessor symbols. By analyzing the control flow in a
program, the compiler can detect many (though not all) instances of
unreachable instructions and remove them from the generated code.

Identity Collapsing

The compiler recognizes instances of arithmetic operations in which an
identity constant is one of the operands. For an identity constant, the result
of the operation is the same as one of the operands. The examplesin Table
12-3 demonstrate identity collapsing.

Table 12-3 Identity Collapsing Examples

Original Replacement
a+0 a
a*l a
a*0 0
x<<0 X
0>>y 0

Operations subject to identity collapsing include:
® addition or subtraction

* multiplication or division

® bitwiseleft or right shift

® hitwiseand, xor, or or

12-5

12 i960® Processor Compiler User's Guide

Constant Propagation

Programs often contain computationsthat produce the same value each time
the program is executed. Constant propagation involves tracking constant
values through the computations in a program. In arithmetic or conditional
operations, the compiler can sometimes eliminate less efficient memory or
register instructions, replacing them with an instruction sequence that uses
constant values. The compiler performs the following types of instruction
replacement:

12-6

An integer arithmetic instruction that always produces the same
constant valueresult is replaced by asingleinstruction (commonly | da
or mov) that copies the constant value into the destination register of
the origina instruction. For example, this program fragment uses an
addo to put the sum of 2 and 4 into g4:

nov 2, 02

nmov 4, g3

addo g2, 93, g4
After constant propagation, the code contains these optimized
instructions:

mv 2, 02

nov 4, g3

nmov 6, g4
Dead code elimination deletes the first two now-unused nov
instructions.
A conditional branch instruction for which the condition is known is
deleted. For example, this program fragment sets x equal toy+z if 2
and 4 are equd, which is never true:

a=2; b=4;

if (a==b)
X=y+z;

el se

X=y-Z;

After constant propagation, the code contains these optimized
instructions:

a=2; b=4;

it (0)

Optimization 12

X=y+2;

el se

X=y-2Z,
Dead-code elimination further reduces the instruction sequence by
removing the test and unreachable “then” part, leaving:

a=2; b=4;

X=y-2Z,
A conditional branch instruction for which the condition is found to
awaysbetrueis changed to an unconditional branch. For example, this
program fragment branchesto L1 if 2 islessthan or equal to 4, which

isaways true:
Before After
nov 2, g2
nmov 4, g3
cnpi g2, g3
bl e L1
addi g4, 95, g6
b L2
L1:
subi g4, g5, g6 subi g4, g5, g6
L2: L2:

A load operation from amemory location found to contain a constant
valueisreplaced by a copy of the constant value into the destination
register of the origina instruction. For example, the following program
fragment loads the constant value 5 from the memory location _i into
g3:

| da 5 02

st g2, _i

I d i, g3

st g3, _j

After constant propagation, the code contains these optimized
instructions:

| da 5 02

st g2, _i

| da 5 03

st g3, _j

12-7

12 i960® Processor Compiler User's Guide

12-8

® Complex memory-addressing modes are sometimes reduced to less
complex addressing modes when registers that are components of a
memory reference contain constant integer values. For example, this
code fragment contains a complex memory-addressing mode in the
third instruction:

nov 2, 02
| da _i, g3
I d 10(g3)[g2*4], g4
® After constant propagation, the code contains these optimized
instructions:
nov 2, 02
| da _i, g3
I d 18(g3), g4

Calls, Jumps, and Branches

For some branches or function calls, the compiler can replace the original
instructions with more efficient instructions to lower execution time or with
fewer instructions to reduce program size. Optimizations that perform such
restructuring include:

® branch optimization

® branch prediction for i960 Cx and Hx processors

* |eaf-function identification

® inlinefunction expansion

® tail-cal elimination

Branch Optimizations

Branch optimizations streamline the flow of program control by performing
the following actions:

® collapsing branch chains

* diminating branch-to-next-line sequences

* diminating branch-around-branch sequences

The following program fragments show branch optimizations.

Optimization 12

® Thisprogram fragment contains a branch directly to another branch
instruction. It doesn't matter whether the branch is conditional or
unconditional. After branch optimization, the branch chain is collapsed
to asingle branch.

Before After
cnpi g1, 92 cnpi gl, 92
bl . L1 bl .L2
.L1: .L1:

b . L2 b .L2

The final branch might be eliminated by the dead code optimization.

® Thisprogram fragment contains an unconditional branch to the label
directly following the branch. After branch optimization, the
branch-to-next-line sequence is eliminated:
Before After
b .L1 . L1:
.L1:
® Inthe next program fragment, an unconditional branch follows a
conditional branch. The compiler optimizes this branch sequence by
removing the unconditional branch and reversing the test on the
conditional branch.
Before After

cnpi gl, 92 cnpi gl, 92
be . L1 bne L2

b .L2 .L1:

.L1:

Branch Prediction

The 1960 Cx and Hx processors provide a branch-prediction bit in
conditional branch instructions. If the prediction is correct, the branch takes
no cycles to execute; otherwise, the branch takes one or more cycles. For
further information on execution speed during branch prediction, refer to
the 960 Cx Microprocessor User’s Manual.

If not profiling, the compiler uses these heuristics to set the
branch-prediction bit:

12-9

12 i960® Processor Compiler User's Guide

12-10

® For backward branches (likely aloop), the compiler predicts that the
branch is taken so that the loop is executed more than once.

* For forward branches (conditional operations such asi f -t hen
statements), the compiler predicts that the branch is not taken.

During profile-driven compilation, each branch’s observed behavior is used
to set the prediction bit.

Identification of Leaf Functions

The compiler identifies functions that can be called with branch-and-link
instruction sequences. The compiler then generates the correct function
prologue, epilogue, and symbol table information for the assembler. When
thisfunction iscalled, the compiler generatesthecal | j pseudo-instruction.
The linker optimizes the call to use branch-and-link instruction sequences.
A function called with branch-and-link instruction sequences does not
allocate a new stack frame, does not create a new register frame, and thus
executes faster than a function invoked with acal | instruction.

Neither the compiler nor the linker can absolutely identify a function called
indirectly through a function pointer as aleaf function. Therefore, the
compiler does not optimize such indirectly called functions to
branch-and-link instruction sequences.

For an explanation of the two entry points generated for |eaf procedures, see
the 1960 Processor Assembler User’s Guide and the 1960 Processor
Software Utilities User’s Guide.

Inline Function Expansion

Using calls to a function within a program usually takes less space but
reguires longer execution time than repeating the function body each time it
is needed. Inline function expansion replaces afunction call with the called
function body expanded in place. The inlining optimization increases speed
by eliminating call overhead and creates opportunities for further
optimization.

Optimization 12

The compiler provides user-controllable inlining using pragmai nl i ne,
and withthe __i nl i ne storage class. Additionally, at ic960 optimization
level 2, or gcc960 optimization level 3, the compiler performs more
automatic procedure inlining, based on heuristics.

In the following example, the swap function switches two numbers. The
source text contains a function call:

voi d swap(Xx,Yy) [* function body */
int *x, *y;
{
int tenp;
tenp = *x; *x = *y; *y = tenp;
mai ni)
{

if (a>Db) swap(&a, &b); [/* function call */
printf("The smaller nunmber is %\ n",a);

}..

After inline function expansion, the function body replaces the call:
mai n()
{
it (a> b)
{
int tenp;
tenp = a; a = b; b = tenp;
}

printf("The smaller nunmber is %\n",a);

}...

Tail-call Elimination

When acall directly precedes a return from a function, optimization can
sometimes replace the call with an unconditional branch to the called
function. This replacement saves execution time since a branch executes
faster than a call.

12-11

12 i960® Processor Compiler User's Guide

For example, the following a gorithm for Ackermann’s function uses tail
cals:

/* Ackermann's function with tail recursion */
int ack(int mint n)

{
if (m==0)
return n+l;
el se
if (n==0)
return ack(m1,1);
el se
return ack(m1, ack(mn-1));
}

Tail-call recursion elimination produces the following:
/* Ackermann's function with tail recursion elin nated

*/
int ack(int mint n)
{
| abel :
if (m==0)
return n+l;
el se
if (n==0)
{
n=1;
m-;
goto | abel;
}
el se
{
n = ack(mn-1);
m-;
goto | abel ;
}
}
Here is C code to illustrate a sinple tail recursion.
print_bool (int v)
{
if (v==0)

printf ("FALSE");

12-12

Optimization 12

el se
printf ("TRUE");
return;
}

Here is the generated assenbly code.
cnpi bne0, g0, L4

| da LCO, g0

b _printf
L4:

| da LC1, g0

b _printf

Loop Optimizations

Movement of Loop-invariant Code

Loops arethe bodies of do, whi | e, and f or statements. The loop-invariant
code optimization identifies computations that do not change within aloop
(loop-invariant code) and moves them to a point before the entry to the
loop.

Induction Variable Elimination

L oopsthat traverse arrays occur in many programs. To compute the address
for references in these arrays the compiler must multiply the array subscript
by the size of an array element.

Multiplication is a time-consuming operation. To generate faster code, the
compiler can someti mes replace the multiply operation with an add
operation.

These methods improve the performance of the code whenever avalue
computed in aloop isalinear function of aloop iteration variable. Indexing
arraysis the most common case.

12-13

12 i960® Processor Compiler User's Guide

12-14

Loop Unrolling

When the number of times aloop executes can be determined either at
compile time, or prior to executing the loop at run time, then this
optimization may be performed. L oop unrolling involves duplicating the
body of aloop 1 or more times, and changing the loop conditions so that the
same number of executions of the loop body occur. This optimization is
chosen based on many factors. Two such factors are the size of the loop
body and the complexity of the loop termination condition.

Memory Optimizations

Global Alias Analysis

The compiler gathersinformation about the interaction between loads and
storesin the program. With this information, the compiler can remove some
of the redundant |oad-store operations. Assignments into an array are one
applicable case.

Two names are aliases when they both reference the same memory location.
Without tracing the relationships of values and names, the compiler must
treat any value stored through a pointer, called an indirect store, asiif it
affected any memory location.

Variable Shadowing

The compiler may place amemory object in aregister throughout a

single-entry, single-exit region (such as aloop) when it can determine that

the following are dl true:

®* Thereare no references to memory within the region that could overlap
the candidate memory object.

®* The address of the candidate is a compile-time constant, or it is
constant throughout the single-entry, single-exit region and a reference
to the object’s address is guaranteed to happen at least once whenever
the code for the region is executed.

® There are no calls within the region.

Optimization 12

In thefollowing example, global migration causes p to be loaded once at the
beginning of the loop and stored once at the exit point.
static int*p;
while (*p 1= '\0")

p++;
Without this opti mization, the program loads and stores p once for each
iteration of the loop.

Register Use

The compiler can use registers to speed up data access. Register
optimizations are as follows:

® |ocal variable promotion
® register management
® register spilling

Local Variable Promotion

The compiler promotes aloca variable to aregister location when the
variable's address is not taken and its storage classisaut o or r egi st er.

Local variables stay in their register location through the life of the
function. Optimization level 0 suppresses local variable promotion and
assigns all variables with aut o storage class to stack locations.

Register Management

The register alocator phase of the compiler assigns al register operandsto
the physical registers. For the KB/SB processors, the physical registers
available for assignment include the four floating-point registers. For all
1960 processors, the physical general-purpose registers available for
assignment includer 3 through r 15, g0 through g11, and g13. You must
specify the compiler option for position-independent data (gcc9@0's
or npi d- saf e option or ic960'Zpd or Gor option) to makey12
unavailable for assignment. Due to the standard calling convengibhss
not available for register-operand assignment.

12-15

12 i960® Processor Compiler User's Guide

Register Spilling

Portions of the compiler that run before register alocation can produce code
that needs more physical registers than are available in the processor. The
register allocator must fit each function’s arbitrarily large burden of register
demands into the physical registersimplemented in the hardware. To
alocate available registers, the compiler must reuse each physical register
many times.

When the physical registers cannot meet the demands of a particular
function, the register allocator must insert a sequence of instructions, known
as spill code, to transfer long-lived va ues from some of the registersin
order to free the registers for more immediate demands.

Instruction Selection and Sequencing

In addition to other optimizations, the compiler can reduce or eliminate
instructions that have become redundant or useless. The compiler can also
eliminate less efficient instructions or replace them with instruction
sequences and addressing modes that take advantage of 1960 processor
features. These instruction opti mizations include:

® code compression
® code scheduling
® gpecidized instruction selection

Code Compression

The 1960 architecture provides complex addressing-mode instructions that
enable denser code generation. By default, the compiler triesto pick
addressing modes to maximize run-time performance, generally using amix
of complex and simple addressing modes. You can control this optimization
with #pr agna conpr ess, as described in Chapter 7, “Optimization”.

Code Scheduling

In code scheduling, the compiler modifies the sequence of instructions to
increase parallel execution. Although the effect of the code does not change,
code scheduling can often improve code performance.

12-16

Optimization 12

Since different members of the i960 family of processors provide varying
levels of hardware parallelism, the compiler orders the instructions
differently according to the specific processor for which codeis being
generated.

For example, on thei960 KA, KB, SA, and SB processors, the execution of
amemory operation can overlap the execution of an arithmetic instruction,
provided the memory operation occurs in the instruction stream first. The
following code computes the expression(b*13) + ¢ with these instructions:

ld _b, r4
muli r4, 13, r4
I d _C, r5

addi r5, r4, r4

To optimi ze this computation, the compiler moves the instruction that
fetches the value of ¢ ahead of the multiply instruction:

I d _b, ra

I d _Cc, r5

muli r4, 13, r4

addi r5, r4, r4

When this rearranged code executes, part of theinstructionl d _c, r5
executesin parallel with the multiplication. The instructionl d _b, r4
also executes partly in paralel with theinstructionl d _c, r5.

The same sort of rearrangement can improve performance on the CA and
CF processors, but more parallelism is possible because the CA and CF can
issue multiple instructions at one time and can execute more instruction
categoriesin paralel thanthe KA or KB.

For example, on the CA and CF processors, the compiler can a so substitute
oneinstruction for another that has the same effect but executesin a
different interna unit of the processor. The most common examples of such
substitution are conversions of nov instructionsto | da instructions, and
vice versa.

Specialized-instruction Selection

A number of 1960 processor instructions can help optimize code in special
situations. The special code sequences recognized by the compiler, and the
replacements used are as follows:

12-17

12 i960® Processor Compiler User's Guide

12-18

® A bitwise or instruction for which one of the operandsis a constant
with value 2, for some n, can becomeset bi t .

® A bitwise and instruction for which one of the operands is a constant
with value~(2™, for some n, can becomecl r bi t .

The 1960 processor has a complete set of bitwise-boolean instructions. The
compiler takes advantage of thisin translating expressions involving
bitwise-bool ean operations in which the operands or the results are negated.
For example, the operationsin the expression ~(a & b) becomeasingle
nand instruction. Similarly, (a | ~b) can usean or not instruction.

Multiplication of an integer or unsigned integer by a constant power of 2
becomes a left-shift operation. Similarly, division of an integer or unsigned
integer by a constant that is a power of 2 becomes a right-shift operation.

Program-level Optimization

After program development is complete, it is possible to use the compiler’'s
profile-driven optimizations to achieve the highest level of program
optimization, based on the program’s execution-time profile.

Inter-module Function Inlining

Given program profile data describing the typical behavior of the program,
the compiler knows what functions the program calls, from which call sites,
and how many times calls are made. Intelligent decisions can be made about
which functions to inline at which specific call sites. If afunction is called
from multiple sites, it is better to inline the function at frequently executed
call sites. Theinlining decisions are made by the gcdm960 program during
the profiling decision-making step. After the decisions have been made, the
compiler performs the inlining during profile-driven recompilation.

Superblock Formation

A superblock is a group of basic blocks that tend to execute in sequence (a
path) and can be entered only from their initial block. A superblock loopisa
superblock whose first block is the header of aloop, and for which

Optimization 12

Figure 12-1

execution flow out of the last block usually goes to the first block. In other
words, a superblock loop is aheavily iterated loop where a single path
through the loop is taken quite frequently.

These concepts areillustrated in Figure 12-1:

Superblock Formation Process

104 B

Ly

Trace ABD Superblock ABD Superblock Loop ABD

0SD1635

The left diagram shows that path A B D is heavily traveled and would
thus be detected as a superblock candidate. To form a superblock from this
candidate, it is necessary to remove the arc COO D. Thisis done as shown in
the middle diagram. Block D is duplicated, and block C isaltered to flow to
D'. The dashed arc from block B to block D indicates that it is likely that
these two blocks will be merged into a single block. This merging increases
the scope of the local optimizer and of the scheduler, optimizations that
work on a single block at atime. The superblock loop containing only
blocks A, B, and D isformed in the diagram on the right. An empty header

12-19

12 i960® Processor Compiler User's Guide

12-20

block, H, has been created, and the original single loop in the middle
diagram now becomes two loops, a nested superblock loop headed by A,
and an outer loop headed by H.

The fundamental advantage that superblock formation yieldsisthe removal
of data dependencies. In the diagram on the left, any data modificationsin
block C must be considered when optimizing the loop. These modifications
often have a negative effect, inhibiting the classic loop optimizations. For
example, if block C contains a procedure call, it appears to modify all
memory variables. Optimizations involving memory references are
inhibited in this case. In the diagram on the right, data modificationsin
block C do not effect loop optimizations in the superblock loop ABD.

Profile-based Branch-prediction Bit Setting

Without program profile data, the compiler uses afixed rule for setting the
branch-prediction bits for the processor.

With program profile data, the branch-prediction bits are set based on that
profile data. This setting is better for a given program.

Optimizing Virtual Function Dispatch

class A

{
public:

Generally, invoking avirtual function is more expensive than invoking a
non-virtual function in C++. Also, other function related optimizations
such as inlining cannot be performed on virtua functions. In many
situations, the call to the virtual function can be replaced by a direct call to
amember function, and if possibleit can beinlined at the call site. This
improves the runtime performance of the code. Consider the following
program segment:

virtual void f(int i)

{ printf("Function A::f called with %l\n,i");}

}ora

class B :

public A

Optimization 12

{
public:
virtual void f(int i)
{ printf("Function B::f called with %\n",i);}
} B
mai n()
{
a = &B;
a->f (10);
}

Thevirtual function call a- >f () awaysresolves at run timeto the
function B: : f . The virtual function optimization phase of the compiler not
only resolves this at compiletime, it alsoinlines B: : f into the function
mai n. Thisimproves the runtime performance.

This optimization is not enabled by default. It is performed only if invoked

with the appropriate switches. The two-pass framework is needed for this

optimization.

This optimization will not work correctly if

® The C++ code is not type safe. Suppose that you have aclass D that
isderived from class B, then the code is not type safe if a pointer to an
object of type B isused as a pointer to an object of type D.

® If aC++ object that has a virtual function associated with it is used, or
created in either C or assembly code.

® A C++filethat isapart of the application is not included in the
two-pass optimization scheme, or if the two-pass optimization is
performed incrementally.

12-21

Caveats

This chapter provides useful programming tips on:

“Aliasing Assumptions”

“Alignment Assumptions”

“Volatile Objects"C

“Known Problems Using the Compiler”
“C Version Incompatibilities”
“Troubleshooting”

Aliasing Assumptions

Some compiler optimizations (for exampiehadow- mem) use type
information as the basis for several assumptions. These assumptions
exclude some pairs of memory references as possible alias candidates.

If your program violates these assumptions, the compiler may generate code
that does not function as you intended.

Here are the rules the compiler uses:

character (i.,eghar, unsi gned char, si gned char) Ivalues

can access all objects, regardless of type.

ordinal (e.g.i nt,short, I ong, enun Ivalues can access only

real

ordinal objects of the same size (regardless of sign) or
character objects.

(e.g.f1 oat, doubl e, | ong doubl e) Ivalues can
access only real objects of the same size, or character
objects.

13-1

13 i960® Processor Compiler User's Guide

pointer Ivalues can access only objects of pointer type
(regardless of the types pointed to) or character objects.

structure Ivalues can access only the objects that can be accessed
by the members of the structure, or st r uct objects of
the same size, or character objects.

union Ivalues can access only the objects that can be accessed
by the members of the union, or union objects of the
same size, or character objects.

These rules are not as strict as those alowed by the relevant portion of the
ANSI standard (section 3.3), but they are still aggressive enough to cause
some problems with code developed for some compilers.
Thefint-alias-ptr,fint-alias-real,andfint-alias-short
compiler options relax these restrictions. See Chapter 2, “gcc960 Compiler
Driver” and Chapter 3, “ic960 Compiler Driver” for more information.

To make use of the higher optimization levels, you should examine your
code carefully and ensure that these rules are not violated.

Consider this code fragment:
doubl e *pqg, *pr, *ps;

int* pi, *pj;
*pg = *pr;
*pio= *pj;
*ps = *pr,

13-2

Caveats 13

The compiler might conclude that the value of * pr is unaffected by the
assignment to * pi , because double objects cannot legally be referenced by
i nt lvalues.

It might then use this conclusion to rewrite the above code as follows:
regi ster double t = *pr;

*pgq =t
*pi = *pj;
*ps = t;

Thisisfineaslong as*pi really doesn’t overlappr, but if your program
does something like:
doubl e d;
pi = (int *) &d;
pr = &d;
before it executes the second fragment, the wrong value would get stored in
*ps.

Alignment Assumptions

The compiler sometimes uses pointer type information when deciding
whether or not memory references are properly aligned for some
optimizations.

Thus, the compiler assumes that all pointer expressions are aligned as their
pointed-to types would indicate. For examgledoubl e *) e) is treated
as an assertion that the low 3 biteare0.

The compiler also infers more stringent alignment for individual variables
than would be indicated by their types alone, since it assumes that the
allocation is aligned according to the compiler's rules.

So, if your program defines global variables in assembly code that are
referenced by C routines, or if it has its own memory manager (

mal | oc), the allocations must be aligned according to the compiler's rules
or unaligned references may result.

13-3

13 i960® Processor Compiler User's Guide

Here is an example of how these assumptions are used:
#i ncl ude <string. h>

struct {
int si;
int s2;
int s3;
} *s; /* (1) *s is assuned to be 16 byte aligned */
extern char mybuf[23];
/[* (2) nybuf is assumed to be 16 byte aligned */
mencpy (nybuf, s, sizeof (*s));
The compiler would generate:
ldt (s), r
stt r, mnybuf

in lieu of the call to mentpy; the memory references would be unaligned
should the assumptions mentioned above prove false.

Volatile Objects

The compiler aggressively attempts to remove redundant memory
references (both loads and stores), and it attempts function inlining across
multiple . c files. If your program expects actual memory references to be
made at certain points in the program, you must make those references
volatile. Volatile objects are guaranteed to be updated at certain sequence

pointsin the program (e.g., between semicolons, &&, | | , ?: , and before
calls).

13-4

Caveats 13

Volatile objects are also presumed to have been changed in unknowable
way's between such points.

Here is an example of aprogram that fails because of a memory reference
that needs to be made volatile:

fiddle.c:
#define MY_PORT *((int *) 0x10000)

int read_ny_port ()
{ return MY_POCRT,;

}
f addl e. c:

while (read_ny_port() == 0)
/* do nothing */;
ok_go_do_sonething ();
Thisprogram isincorrect, but it functions as intended when compiled with
compilers that do not attempt inlining across . c files.
When these two files are compiled with global inlining, the compiler
translates the program to:
(1) while (MY_PORT == 0)
/* do nothing */;
ok_go_do_sonething ();
And, since MY_PORT appears to be loop invariant (because it isn't tilela
we then get:
(2) t = MY_PORT;
while (t == 0)

which loops forever if the first value read frgrdx1000 is 0.
All that is needed here is to malkg PORT volatile, as follows:
#define MY_PORT *((volatile int *) 0x10000)

This suppresses (2), &8 _PORT must be considered to have changed
between iterations of the loop.

13-5

13 i960® Processor Compiler User's Guide

13-6

Known Problems Using the Compiler

Here are some of the things that have caused trouble for people using the
compiler.

Type Promotion

Users often think it is a bug when the compiler reports an error for code like
this:
int foo (short);
int foo (x)
short Xx;

{...}

The error message is correct: this code really is erroneous, because the
old-style non-prototype definition passes subword integersin their
promoted types. In other words, the argument isreally ani nt , notashort.
The correct prototype isthis:

int foo (int);

Prototype Scope

Users often think it is abug when the compiler reports an error for code like
this:

int foo (struct munble *);

struct mumble { ... };

int foo (struct munble *x)

{ ...}

This codereally is erroneous, because the scope of the st ruct nunbl e
prototypeislimited to the argument list containing it. It does not refer to the
struct munbl e defined with file scope immediately below — they are two
unrelated types with similar names in different scopes.

But in the definition of oo, the file-scope type is used because that is
available to be inherited. Thus, the definition and the prototype do not
match, and you get an error.

Caveats 13

longjmp and Volatile Data

If you usel ongj np, beware of automatic variables. ANS| C says that
automatic variables that are not declared vol at i | e have undefined values
after al ongj np. And thisisal the compiler promises to do, becauseit is
very difficult to restore register variables correctly, and one of the
compiler's featuresisthat it can put variables in registers without being
asked.

Incorrect debug information generated for arrays with unspecified
bounds.

Consider the following example

int arr[];

The compiler generates debug information for the above declaration as if
arr wereanarray of 1integer. Asaresult, whenyoudoa ptype arr in
gdb960 thetype of arr isdisplayedas int [1].

C Version Incompatibilities

There are several noteworthy incompatibilities between Intel C for the
80960 architecture and some (non-ANSI) versions of C.

String Constants Read-only

The compiler normally makes string constants read-only. If several
identical-looking string constants are used, the compiler stores only one
copy of the string.

If thisis aproblem for your application, the best solution is to change the
program to use char -array variables with initialization strings for these
purposes instead of string constants. But if thisis not possible, you can use
thefwr it abl e-strings flag, which directs the compiler to handle string
constants the same way most C compilersdo. f t radi ti onal aso hasthis
effect, among others.

13-7

13 i960® Processor Compiler User's Guide

No Macro Argument Substitution in Strings
The compiler does not substitute macro arguments when they appear inside
of string constants. For example, the following macro:
#define foo(a) "a"
produces output “a” regardless of what the argument a is.

The ftraditional option directs the compiler to handle such cases
(among others) in the old-fashioned (non-ANSI) fashion.

External Variables and Functions in Blocks

Declarations of external variables and functions within a block apply only
to the block containing the declaration. In other words, they have the same
scope as any other declaration in the same place.

In some other C compilers, an extern declaration affects all the rest of the
file even if it happens within a block.

The ftraditional option directs the compiler to treat all extern
declarations as global, like traditional compilers.

Combining long with typedef Names
Intraditional C, you can combinelong , etc., with atypedef name, as shown
here:

typedef int foo;

typedef long foo bar;

In ANSI C, thisisnot allowed: long and other type modifiers require an
explicitint . Because this criterion is expressed by grammar rules rather
than C code, ftraditional cannot alter it.

Using typedef Names in Function Parameters

Some C compilers alow typedef names to be used as function parameters.
Because this criterion is expressed by grammar rules rather than C code,
ftraditional cannot alter it.

13-8

Caveats 13

Some C compilers allow whitespace in the middle of compound assignment
operators such as +=. The CTOOL S960 and GNU/960 compiler, following
the ANSI standard, does not allow this. Because this criterion is expressed
by grammar rules rather than C code, f t radi ti onal cannot alter it.

Whitespace in Compound Assignment Operators

Flagging Unterminated Character Constants

The compiler flags unterminated character constants inside of preprocessor
conditionals that fail. Some programs have English comments enclosed in
conditionals that are guaranteed to fail; if these comments contain
apostrophes, the compiler will probably report an error. For example, this
code produces an error:

#f 0

You can’t expect this to work.

#endif

The best solution to such a problem isto put the text into an actual C
comment delimited by /*...*/ . However, ftraditional suppresses
these error messages.

Disguised varargs or stdarg Routines

Disguised varargs routines (those that do not use varargs.h or
stdarg.h but that increment through a pointer assigned from the address
of an argument) do not work.

Troubleshooting

Undefined References

When trying to compile a program, a user may get error messages similar to
the following:

crt960.0: undefined reference to ‘heap_size’
¢rt960.0: undefined reference to *_setac’
crt960.0: undefined reference to *__LL_init’
_filbuf.c:47: (_filbuf): undefined reference to ‘_read’
exit.c:31: (_exit_init): undefined reference to

13-9

13 i960® Processor Compiler User's Guide

13-10

‘

__exit_create’

exit.c:39: (exit): undefined reference to ‘__exit_ptr’
fflush.c:38: (fflush): undefined reference to ‘*_write’
_flsbuf.c:105: (_flsbuf): undefined reference to *_write’
fclose.c:43: (fclose): undefined reference to ‘_close’
malloc.c:82: (malloc): undefined reference to ‘_sbrk’
malloc.c:60: (malloc): undefined reference to ‘_brk’

Problem:

When invoked with gcc960 -ACA -o fil enane fil enane.c ,the
compilation system tries to construct a b.out format executable file, fully
linked. A fully linked file implies a C-runtime startup file and several
runtime libraries. If the proper library list (in the proper order) is not added
to the invocation command, the error messages listed above may result.

Solution:

The preferred method of creating fully linked executablesis to use the target
configuration files, e.g., gcc960 -o filenane filenane.c -Targ.The
-T ar g option instructs the compiler to parse the file

$G960BASE/lib/ arg.gld , which contains definitions for the 1960
architecture flag, C-runtime filename, library lists, and section load
addresses. Target configuration files are supplied for al the 1960 processor
evaluation boards, and adding your own description file is as easy as
renaming and modifying an existing description file. Do not confuse
gcc960’'s-T option with ic960’s and gld960‘sT option.

C Interrupt Service Routine Failures

An application that uses interrupts extensively may have hand-built
assembler wrappers for each interrupt type, with each wrapper calling
specific C interrupt service routines. Some of the C interrupt service
routines may fail in mysterious ways, often in an operation fault.

Problem:

The C function calling convention requires that the i960 processor register
g14 contain the value zero for all functions that take fewer than 14 words of
parameters and are non-leaf procedures. Because of this, for most functions,

Caveats 13

the compiler assumes g14 to contain zero, and uses that register as a zero
constant. If your application happens to be interrupted with g14 containing
anon-zero value, then your C interrupt service routineis called with g14
containing a non-zero, but used as a zero constant.

Solution:

When calling any C function from assembly source, always zero g14 prior
to the function call. Also, be sure to save all global registers prior to calling
your C function, and restore those registers prior to returning from the
interrupted state.

Preventing Structure Padding

You may be using an i960 processor to communi cate with another
processor. The communication involves passing structures between the two
processors. The Intel compiler pads the structures, but the compiler for your
other processor does not, causing passed structure membersto contain
incorrect values. It is necessary to prevent the Intel compiler from padding
your structures and unions.

Problem:

The Intel compiler usesfairly strict data-type alignment rules, which take
advantage of the 1960 processor features supporting memory references.
Thisincreases the performance of programs running on the i960 processor,
but makes it more difficult to interface through structs/unions to other
processor types or to read binary data from afile.

Solution:

gcc960’'s#pr agma- al i gn lets you control the compiler's alignment rules
for aggregate data types on a per-definition basis, and therefore control the
padding added to the end of structures and unions.

In this case#pr agna- al i gn 1 could be added to your code before the
structure definition to remove trailing structure pads and properly match
structure membergpr agma- al i gn 0 could then be added after the
structure definition to return to normal alignment rules, thereby reducing its
impact on the performance of the entire program.

13-11

13 i960® Processor Compiler User's Guide

13-12

However, #pr agma- al i gn haslimitations. Although it can be used to
restrict the padding of aggregate data types (and arrays of those types) it
does not change the alignment rules for individua structure members. For
information on alignment rules for structure members, see the discussion of
pragna pack in Chapter 7, “C Language Implementation”.

Consider the following example:
struct test {

char first;
i nt second;
short third;

b

If you compiled the above structure without modification, the structure size
would be 16 bytes. If you defingat agnma al i gn 1 before the structure
definition, the structure size would be 12 bytes - four pad bytes removed. In
both cases, however, the position of the elements would not have changed,
with element “first” at address offset zero, element “second” at address
offset 4, and element “third” at address offset 8. This element placement
effectively creates three pad bytes between the first and second structure
elements.

To work around the limitations of intra-structure padding, consider the case
where the above structure must be read in from a binary file written by a
processot/tool pair that inserted zero (intra-struct) pad bytes.

Caveats 13

The following code demonstrates one way to perform that function:

#i ncl ude <unal i gn. h>
/* The follow ng structure is what gcc960 conpil es.
* The buffer, when filled, contains the sane
* structure in packed format - all pad bytes renoved. */
struct test {
char first;
i nt second;
short third;
} 960_struct;
unsi gned char packed[7];
/* sum of 960_struct el enent sizes */
/* Read binary data froma file and copy into a
* structure that has different alignnment rules. */
mai n()
{
i nt f desc;
unsi gned char *ptr;
/* Assune file opened and ready for reading...
* Then read one struct’s worth of bytes. */
if (read(fdesc, packed, 7) I=7) {
/* Handle read error. */

}
/* Fill up structure. Done. */
ptr = packed;

960_struct.first = *(char *)ptr;
ptr += sizeof(960_struct.first);
960_struct.second = GET_UNALIGNED(ptr,int);
[* *(int *)ptr; */
ptr += sizeof(960_struct.second);
960_struct.third = GET_UNALIGNED(ptr,short);
[* *(short *)ptr; */
}
Although the code shown above is expensive in terms of performance,
using #pragma align also has a significant performance penalty. To get
the best performance, use the default alignment rules and use pragmas only
where absolutely necessary. See the discussions of gcg96@'sa
al i gn andpr agma pack in Chapter 7, “C Language Implementation” for
a detailed discussion of alignment.

13-13

13 i960® Processor Compiler User's Guide

13-14

Breakpoints Inside Interrupt Handlers

If your application uses interrupts extensively, when debugging interrupt
handlers with gdb960, breakpoints set inside the handlers may not work and
may result in operation faults.

Problem:

When the 1960 processor invokes an interrupt handler, it first disables
tracing by saving, then clearing, the state of the trace-enable bit and the
trace-fault-pending flag. On return from the interrupt handler, the processor
restores the process-controls register to its state prior to the interrupt. This
restores the state of the trace-enable bit and the trace-fault-pending flag;
therefore, standard interrupt handlers cannot contain breakpoints.

Solution:

To set breakpoints inside an interrupt handler, you can modify that handler,
probably in the assembler wrapper, adding code to change the state of the
trace-enable bit.

Messages

This chapter describes the diagnostic messages that the compiler produces
when invoked with the ic960 driver, or with the gcc960 driver and the
ffancy-errors option. (Invoking the compiler with i c960 -Jgd
produces the corresponding gcc960-style message format and output.)

On UNIX systems, the compiler displays error messages, aong with the
erroneous source line, on the standard error device. In Windows systems,
messages appear on the standard output device. However, if | 960ERR IS
defined, messages appear on the standard error device. To display or
suppress warning messages, use the w (Diagnostic-level) compiler option.
Additionally, the h (Help), v (Verbose), and v (Version) options display
more information about the compiler, assembler, and linker invocations and
about the host system.

Diagnostic messages provide syntactic and semantic information about
source text. Syntactic information can include, for example, syntax errors
and use of non-ANSI C. Semantic information includes, for example,
unreachable code. If asource listing is requested, the compiler puts
diagnostic messagesin the program listing, as well asdisplaying them to the
standard error device.

14-1

1 I i960® Processor Compiler User's Guide

Several levels of diagnostic messages can occur:

Command-line report improper command-line options or
diagnostics arguments.

Warning messages report legal but questionable use of C. The
compiler displays some warnings by default. To
suppress all warning messages, set the
diagnostic level to 2. To enable all warning
messages, set the diagnostic level to 0.
Warnings do not stop translation and linking,
nor do they interfere with any output files.

Error messages report syntactic or semantic misuse of C. The
compiler always displays error messages.
Errors do not stop tranglation but do suppress
object code for the module containing the error.
Errors also prevent linking.

Catastrophic error report occurrences of the#er r or macro,

messages unrecognized command-line options, and file
input/output errors. Catastrophic error
conditions stop translation and linking. If a
catastrophic error ends compilation, the
compiler displays atermination message on the
standard error device.

Internal error If a compilation produces any internal errors,
messages contact Customer Support.

14-2

Messages 14
Messages on the Standard Error Device

Command-line messages appear on the standard error device in this form:
ic960 [ERROR | WARNI NG]: nessage
Other diagnostic messages appear on the standard error device in this form:

source-line
di agnosti c- poi nter
di agnosti c- nessage

source-line isthe line containing the error being reported.
di agnosti c- isacaret () located below the beginning of the
poi nter token that the diagnostic refersto.

di agnosti c- has this form:

nmessage

-~

ic960 /evel f

I evel isthe type of diagnostic message: WARNI NG,
ERROR, CATASTROPHI C ERROR, or
| NTERNAL ERRCR.

fil enanme names the sourcefile currently being processed.

I enanme, line Inn, -- nessage

I nn isthe line number, if available, where the
compilation system detects the condition.

nmessage explains the diagnostic.

The sour ce-1i ne and di agnost i c- poi nt er may be absent for those
messages that are not associated with any particular source code line.

The di agnost i c- poi nt er may be absent when the sour ce- i neis
present if the precise column for the error is not available.

14-3

1 I i960® Processor Compiler User's Guide

14-4

Messages in the Listing File

In a source listing, diagnostic lines follow the erroneous source lines. The
diagnostic linesin a source listing have this form:

>>>>> source-line
>>>>> djagnosti c-poi nter
>>>>> djagnostic- nessage

source-1line

di agnostic- poi nter

di agnosti c- nessage

i c960 [evel
| evel

filenane

| nn

nessage

filenane,

isthe line containing the error being
reported.

isacaret () located bel ow the beginning
of the token that the diagnostic refersto.

has thisform:
line Inn, -- nessage
is the type of diagnostic message:

WARNI NG, ERROR, CATASTROPHI C
ERROR, or | NTERNAL ERROR.

names the source file currently being
processed.

isthe line number, if available, where the
compilation system detects the condition.

explains the diagnostic.

The source-1ineanddi agnosti c- poi nt er may be absent for those
messages that are not associated with any particular source code line.

The di agnost i c- poi nt er may be absent when the sour ce- i ne is
present if the precise column for the error is not available.

Messages

14

If sour ce-1i neisshown, and the error being reported starts and ends on
that line, the filename and line number does not appear in the diagnostic
message. Thisis an example of alisting file containing diagnostic
messages:

ic960 5.0, Tue Nov 9 08:45:17 PST 1995 "ex_err.c"

I nclude Line
Level Nunmber Source-lines
o* 1 #include "ex_err.h"
>>>>> struct foo bar {
>>>>>
>>>>> ic960 ERROR "ex_err.h", line 2 -- syntax error before '{’
0 2
0 3 main ()
0 4 {
0 5 struct foo bar;
0 6 bar . x=3;
>>>>> bar . x=3;
>>>>> N N
>>>>> i c960 ERROR: invalid use of undefined type 'struct foo’
0 7}

14-5

Glossary

arithmetic control (AC)
register

basic block

calling convention

command-option file

common subexpression
elimination (CSE)

conditional compilation

For processors with on-chip floating-point support, the
register that contains the floating-point exception flags,
floating-point exception masks, and rounding-mode bits.
For processors without on-chip floating-point support,
the AC register isimplemented as a predefined variable
(f pem_CA_AQ).

An assembly language sequence of code that has one
entry point and one exit point.

The rules that specify the use of registers and the stack
for parameter passing and return values in function calls.

DOS command-line file, containing command-line
options, input filenames, and comments, to be specified
on the command line.

Avoid recomputing an expression if the compiler can
reuse a previously computed value of the same
expression.

Compiling only part of the source code, depending on the
preprocessor’s evaluation of conditions you specify.

Glossary-1

i960® Processor Compiler User’s Guide

Glossary-2

constant folding

constant propagation

dead function

execution environment

floating-point registers

gcdm960

global registers
gmpf960

inline assembly
language

inline function
expansion

instruction set

instrument

instrumented program

interrupt handler

Deducing at compile time that the value of an expression
isaconstant and using the constant in place of the
expression.

Replacing use of variables known to have a constant
value with the constant value.

A function which cannot be referenced during the profile
recompilation step. If afunction has been in-lined at all
known call sites, or if the function is never referenced,
then the function is dead.

The hardware and software of the system on which your
program executes.

Registersf p0 through f p3, available on processorswith
on-chip floating-point support.

The decision-making tool that analyzes profile data to
make optimization decisions.

Registers g0 through g15.

The utility that merges execution profiles for use by
gcdm960.

Assembly-language statements or functionsin the C
source text.

Replacing afunction call with the instructions that
comprise the function, rather than calling the function.

The set of all possible executable instructions.

Insert new code into an existing program so that
execution datais recorded at runtime.

A program that has had record keeping code inserted to
alow creation of arun-time profile of the program’s
execution.

A function to be called when an interrupt occurs.

Glossary

leaf function

macro

object module

padding

preprocessor file

primary source file

primary source text

profile-based

profile data
static profile data

A function that is called with a branch-and-link
instruction sequence.

An identifier that the preprocessor replaceswith C source
text that you specify.

The formatted object code resulting from compilation
and assembly.

Interleaving unused bytes between struct/union members
and at thetail of structs/unions to ensure that struct/union
members are properly aigned.

A text file generated by the compiler, containing the
intermediate source code after macro expansion, file
inclusion, and conditional compilation.

A file that contains C sourcetext, hasa. ¢ filename
extension, and is specified as an input file on the
command line.

The contents of the primary source file, without any text
from includefiles.

Optimizations that depend on profile information
gathered by execution of an instrumented program. The
term is interchangeabl e with profile-driven.

Both static and dynamic program level data.

Information that the compiler derives at compile time
about the program (e.g., which functions are defined in a
module, which functions are called from within a specific
function, which variables are defined in amodule, which
variables have had their addresses used).

Glossary-3

i960® Processor Compiler User’s Guide

strength reduction An optimization that substitutes expensive operations
such as multiplications with low-cost operations such as
addition or subtraction. Strength reduction also
eliminates unnecessary induction variables. For example,
consider the following C code fragment:

int v, a[10], j, t4, t5;
do {

= - 1

t4 =4 * j;

t5 = a[t4];

} while (t5 > v);

Note that the values of j and t 4 remain in lock-step;
every timethevalue of] decreasesby 1, that of t 4

tail call A call that immediately precedes the return to the calling
function.

unreachable code Code that can never execute because the flow-of-control
bypassesit.

Glossary-4

| ndex

Symbols

__GNUC__ macro, 2-55
__STDC__ macro, 2-55
__STRICT_ANSI__ macro, 2-55

A

access-control gcc960 option, 2-27
aliasing rules, 13-1
alignment

assumptions, 13-3

long double, 7-5

padding, 7-7

scalars, 7-5

structures, 7-6, 7-8
architecture macros, and compatibility, 9-2
asm function

argument category, 7-81
asm gcc960 option, 2-27

B

backslash (character), 1-6
bbr gcc960 option, 2-28
bbr ic960 option, 3-31
branch prediction, 12-20

C

¢ (Create-object) ic960 option, 3-56
char parameters, 9-1
char types, 9-2

character constants, unterminated, 13-9

clist (Listing) gcc960 option, 2-22
cmpbr gcc960 option, 2-45
coal esce gcc960 option, 2-28
coalesceic960 option, 3-31
code-align gcc960 option, 2-45
coerce gcc960 option, 2-28
coerce ic960 option, 3-31
compatibility, 1-2
compilation phases, 3-13
cond-mismatch gcc960 option, 2-28
cond-mismatch ic960 option, 3-32
condxform gcc960 option, 2-28
condxform ic960 option, 3-32
conserve-space gcc960 option, 2-28
conserve-space i ¢960 option, 3-32
constprop gcc960 option, 2-29
constprop ic960 option, 3-32
conventions

Windows and UNIX, 1-6
copyprop gcc960 option, 2-29
copyprop ic960 option, 3-32

Index-1

i960® Processor Compiler User’s Manual

Index-2

Create-object (c) ic960 option, 3-56
cse-follow-jumps gcc960 option, 2-29
cse-follow-jumps ic960 option, 3-32
cse-skip-blocks gec960 option, 2-29
cse-skip-blocks ic960 option, 3-32
customer service, 1-6

D

data types

aggregates, listed, 7-5
Debug (g) ic960 option, 3-43
Dependencies (Q) ic960 option, 3-56
Diagnostic-level (w) ic960 option, 3-66
dollars-in-identifiers gcc960 option, 2-29
dollars-in-identifiersic960 option, 3-32
dryrun control (gcdm option), 6-8

E

E (Preprocess - stdout) ic960 option, 3-56
enum variable byte size, 9-1
enum-int-equiz gcc960 option, 2-31
enum-int-equiz ic960 option, 3-32
environment variables, 3-8

for gcc960 interface, table of, 2-9
Errata (j) ic960 option, 3-48
expensive-optimizations gcc960 option, 2-29
expensive-optimizations ic960 option, 3-32
external reference controls (gcdm option), 6-7
external variables and functions in blocks, 13-8

F

fancy-errors gcc960 option, 2-29

fast memory controls (gcdm option), 6-7
fint-alias-ptr gcc960 option, 2-30
fint-alias-ptr ic960 option, 3-33

fint-alias-real gcc960 option, 2-31
fint-alias-real 1c960 option, 3-33
fint-alias-short gcc960 option, 2-31
fint-alias-short ic960 option, 3-34
float-store gcc960 option, 2-30
float-store ic960 option, 3-32
force-addr gcc960 option, 2-30
force-addr ic960 option, 3-33
fsyntax-only gcc960 option, 2-35

G

g (Debug) ic960 option, 3-43
G (Generate) ic960 option, 3-36
gcdm (Decision Maker) gcc960/ic960 option,
6-1
Generate (G) ic960 option, 3-36
gld files
described, 2-14
gmpf960 profile merger, 5-1

gmpf960 profile merger invocation command
and options, 5-2

H

huge-objects gcc960 option, 2-32
huge-objects ic960 option, 3-33
hyphen (-) character, 1-6

inline level control (gcdm option), 6-7
inline-functions gcc960 option, 2-30
input profile control (gcdm option), 6-7

J

j (Errata) ic960 option, 3-48

Index

J (Miscellaneous) ic960 option, 3-48

K

keep-inline-functions gcc960 option, 2-32
keep-inline-functionsic960 option, 3-34

L

leaf-procedures gcc960 option, 2-48
linker

options, 3-5
linker directivefiles

sample, 2-15
Listing (clist) gcc960 option, 2-22
longjmp and volatile data, 13-7

M

M (Mix) ic960 option, 3-49
mabi gcc960 option, 2-44

macro argument substitution in strings, 13-8

macros
predefined, 2-7, 3-6
marry_mem gcc960 option, 2-32
marry_mem ic960 option, 3-34
masm-compat gcc960 option, 2-44
mcave gcc960 option, 2-45
mcore0-3 gcc960 option, 2-46
memoi ze-lookups gcc960 option, 2-32
memoi ze-lookups ic960 option, 3-35
merging profile data using gmpf960, 5-1
messages, controlling, 3-66
mi960_align gcc960 option, 2-47
mic2.0-compat gcc960 option, 2-47, 9-3
mic3.0-compat gcc960 option, 2-47, 9-3
mic-compat gcc960 option, 2-47
Miscellaneous (J) ic960 option, 3-48

Mix (M) ic960 option, 3-49
mix-asm gcc960 option, 2-32
mlong-calls gcc960 option, 2-48
mlong-double4 gcc960 option, 2-46
module-set specification (gcdm option), 6-12
mpic gcc960 option, 2-48

mpid gcc960 option, 2-48

mpi d-safe gcc960 option, 2-48
msoft-float gcc960 option, 2-49
mstrict-ref-def gcc960 option, 2-49
mwait gcc960 option, 2-49

N

n (Syntax-check) ic960 option, 3-56

F, 3-32,3-33,3-35

f, 2-27, 2-28, 2-29, 2-30, 2-31, 2-32, 2-33, 2-34,
2-35, 2-36, 2-37, 3-31, 3-32, 3-33, 3-34, 3-35,
3-36

m, 2-45, 2-48, 2-49

W, 3-65

O

optimization, overview, 4-1
options
linker, 3-5
options, gcc960 compiler driver
summary list, 2-18
output files, 2-12, 3-12
overloaded-virtual ic960 option, 3-65

P

P (Preprocess - file) ic960 option, 3-56
pragmaalign, 9-2

pragmai960_align, 9-2

predefined macros, 2-7, 3-6

Index-3

i960® Processor Compiler User’s Manual

Index-4

Preprocess - file (P) ic960 option, 3-56
Preprocess - stdout (E) ic960 option, 3-56
profile format specification, 5-3

profile merger utility, 5-1

profiling, 4-1

program-wide optimization, 4-1

Q

Q (Dependencies) ic960 option, 3-56

R

reorder ic960 option, 3-65

report controls (gcdm option), 6-8
rerun-cse-after-loop gcc960 option, 2-32
rerun-cse-after-loop ic960 option, 3-35

S

S (Save-assembly) ic960 option, 3-56
Save-assembly (S) ic960 option, 3-56
save-memoized gcc960 option, 2-32
save-memoi zed i¢c960 option, 3-35
sblock gee960 option, 2-33
sblock ic960 option, 3-35
scalars

datatypes, 7-1
schedule-insns gcc960 option, 2-33
schedule-insnsic960 option, 3-35
schedule-insns2 gcc960 option, 2-33
schedule-insns2 ic960 option, 3-35
shadow-globals gcc960 option, 2-34
shadow-globals ic960 option, 3-35
shadow-mem gcc960 option, 2-34
shadow-mem ic960 option, 3-35
short parameters, 9-1

signed-char gcc960 option, 2-33
slash (/) character, 1-6
space-opt gcc960 option, 2-34
space-opt ic960 option, 3-35
split_mem gcc960 option, 2-34
split_mem ic960 option, 3-35

Stop-after (n, Q, P, E, S, c) ic960 options, 3-56

strength-reduce gcc960 option, 2-35
strength-reduce ic960 option, 3-35
strict-align gcc960 option, 2-49
strict-prototype gcc960 option, 2-34
strict-prototype ic960 option, 3-35
string constants, read-only, 13-7
Syntax-check (n) ic960 option, 3-56

T

this-is-variable gcc960 option, 2-35
thread-jumps gcc960 option, 2-35
thread-jumps ic960 option, 3-35
two-pass optimization, 4-1

U

unaigned references, preventing, 13-3
UNIX conventions, 1-6
unroll-all-loops gcc960 option, 2-35
unroll-all-loops ic960 option, 3-35
unroll-loops gcc960 option, 2-36
unroll-loops ic960 option, 3-35
unsigned-char gcc960 option, 2-35

\Y,

varargs routines, disguised, 13-9
volatile gcc960 option, 2-36
volatile ic960 option, 3-36

Index

volatile objects, 13-4
volatile-global gcc960 option, 2-36
volatile-global ic960 option, 3-36

w

w (Diagnostic-level) ic960 option, 3-66
Waggregate-return gcc960 option, 2-59
Woeast-align gcc960 option, 2-59
Weast-qual gcc960 option, 2-60
Wchar-subscripts gcc960 option, 2-60
Wcomment gec960 option, 2-60
Wconversion gcc960 option, 2-60
Werror gcc960 option, 2-60
Wformat gcc960 option, 2-60
whitespace in compound assignment operators,
139
Wid-clash-len gcc960 option, 2-60
Wimplicit gcc960 option, 2-60
Windows conventions, 1-6
Wmissing-braces gcc960 option, 2-60
Wmi ssing-prototypes gcc960 option, 2-61
Whested-externs gcc960 option, 2-61
work files, 3-12
Woverloaded-virtual gcc960 option, 2-61
Woparentheses gcc960 option, 2-61
Wpointer-arith gcc960 option, 2-61
Wredundant-decls gcc960 option, 2-61
Wreorder gcc960 option, 2-61
Wreturn-type gcc960 option, 2-62
writabl e-strings gcc960 option, 2-37
writable-strings ic960 option, 3-36
Wshadow gcc960 option, 2-62
Wstrict-prototypes gcc960 option, 2-62
Wswitch gcc960 option, 2-62
Witraditional gcc960 option, 2-62
Witrigraphs gcc960 option, 2-62

Wauninitialized gcc960 option, 2-63, 2-64
Wunused gcc960 option, 2-65
Wwrite-strings gcc960 option, 2-65

Index-5

