
i960 Processor
Library Supplement
Order Number: 651231-003

Revision Revision History Date

-001 Original Issue. 02/96

-002 Revised for Release 5.1. 01/97

-003 Revised for Release 6.0. 12/97

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Intel Corporation
PO Box 5937
Denver, CO 80217-9808

Or you can call the following toll-free number:

1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel
sales office.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel
or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and
Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied
warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular
purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications
and product descriptions at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's Software License Agreement, or in the case of software delivered to
the government, in accordance with the software license agreement as defined in FAR 52.227-7013.

Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim
copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above
conditions for modified versions.

* Other brands and names are the property of their respective owners.

printed on
recycled paper Copyright 1996-1997. Intel Corporation. All rights reserved.

Contents

iii

Chapter 1 Overview
Compatibility With Standards... 1-1
Deciding Which Libraries to Use.. 1-2
Using Functions... 1-2
Retargeting the Libraries ... 1-3
About This Manual... 1-3
Related Publications.. 1-3
Customer Service .. 1-4
Copyrights ... 1-4

Chapter 2 Using the Libraries
Linking Libraries and Object Modules................................ 2-1

Library Files .. 2-2
Library List .. 2-4
Linking Sequence ... 2-12

Using the Floating-point Libraries 2-13
Including the Header Files... 2-14
Retargeting for Multi-tasking and Reentrancy.................... 2-16
Identifying Run-time Errors .. 2-16
Compiling for ANSI Compliance .. 2-17

Chapter 3 Header Files

Chapter 4 Library Functions

i960 Processor Library Supplement

iv

Chapter 5 Customizing the Libraries
Making the Libraries Reentrant.. 5-2

Reentrancy Defined .. 5-2
Writing Reentrant Functions.. 5-5
Primitive Function Descriptions 5-18

Retargeting the Libraries ... 5-37
Function Interdependencies.. 5-37
System Call Descriptions .. 5-38

Chapter 6 Accelerated Floating-point Library
Floating-point Library Definition ... 6-1
Conventions... 6-2
Using the Subroutines ... 6-3

Floating-point Formats Supported................................. 6-3
Parameter and Return Value Implementation 6-4
Floating-point Arithmetic Control Usage........................ 6-4
Fault Handling... 6-5
Code Example .. 6-6

Subroutine Reference.. 6-8
Unmasked Floating-point Fault Handling........................... 6-45

Parameters ... 6-46
Return Values ... 6-49
Fault-handling Subroutines ... 6-49

Appendix A Function Interdependencies

Index

Contents

v

Tables
2-1 Library Use Abbreviation Table................................. 2-4
5-1 Category 1: Reentrant Functions.............................. 5-7
5-2 Category 2: Reentrant Except for Setting errno........ 5-9
5-3 Category 3: Reentrant Except for Setting

fpem_CA_AC.. 5-10
5-4 Category 4: Non-reentrant .. 5-11
5-5 Category 5: Unspecified ... 5-12
5-6 Memory Handling Functions for Reentrancy............. 5-15
6-1 Global Register Usage.. 6-4
6-2 ___add?f3 Global Register Usage............................ 6-9
6-3 ___add?f3 Arithmetic Control Usage........................ 6-9
6-4 ___add?f3 Possible Faults 6-10
6-5 ___ceil?f2 Global Register Usage 6-11
6-6 ___ceil?f2 Arithmetic Control Usage......................... 6-11
6-7 ___ceil?f2 Possible Faults .. 6-11
6-8 ___floor?f2 Global Register Usage........................... 6-12
6-9 ___floor?f2 Arithmetic Control Usage 6-13
6-10 ___floor?f2 Possible Faults 6-13
6-11 ___cls?fsi Global Register Usage............................. 6-14
6-12 ___cls?fsi Return Values .. 6-15
6-13 ___cmp?f2 Global Register Usage........................... 6-16
6-14 ___cmp?f2 Return Values .. 6-16
6-15 ___cmp?f2 Arithmetic Control Usage 6-17
6-16 ___cmp?f2 Possible Faults....................................... 6-17
6-17 ___div?f3 Global Register Usage 6-18
6-18 ___div?f3 Arithmetic Control Usage 6-18
6-19 ___div?f3 Possible Faults... 6-19
6-20 ___extend?f?f2 Global Register Usage.................... 6-20
6-21 ___extend?f?f2 Arithmetic Control Usage 6-20
6-22 ___extend?f?f2 Possible Faults................................ 6-21

i960 Processor Library Supplement

vi

6-23 ___fix* Global Register Usage.................................. 6-22
6-24 ___fix* Arithmetic Control Usage 6-23
6-25 ___fixuns?fsi Input and Return Values 6-23
6-26 ___float* Global Register Usage............................... 6-24
6-27 ___floatsisf and ___floatunssisf Arithmetic

Control Usage... 6-25
6-28 ___float* Possible Faults .. 6-25
6-29 ___logb?f2 Global Register Usage 6-26
6-30 ___logb?f2 Arithmetic Control Usage 6-26
6-31 ___logb?f2 Possible Faults....................................... 6-27
6-32 ___mul?f3 Global Register Usage 6-28
6-33 ___mul?f3 Arithmetic Control Usage 6-28
6-34 ___mul?f3 Possible Faults.. 6-28
6-35 ___rem?f3 Global Register Usage............................ 6-29
6-36 ___rem?f3 Integer Return Values............................. 6-30
6-37 ___rem?f3 Arithmetic Control Usage 6-30
6-38 ___rem?f6 Possible Faults 6-31
6-39 ___rint?f2 Global Register Usage............................. 6-32
6-40 ___rint?f2 Arithmetic Control Usage 6-32
6-41 ___rint?f2 Possible Faults... 6-32
6-42 ___rmd?f3 Global Register Usage............................ 6-33
6-43 ___rmd?f3 Arithmetic Control Usage 6-34
6-44 ___rmd?f3 Possible Faults 6-34
6-45 ___round?f2 Global Register Usage......................... 6-35
6-46 ___round?f2 Arithmetic Control Usage..................... 6-35
6-47 ___round?f2 Possible Faults 6-36
6-48 ___round?fsi Global Register Usage 6-37
6-49 ___round?fsi Arithmetic Control Usage 6-37
6-50 ___round?fsi Possible Faults.................................... 6-37
6-51 ___rounduns?fsi Global Register Usage 6-39
6-52 ___rounduns?fsi Arithmetic Control Usage............... 6-39

Contents

vii

6-53 ___scale?fsi?f Global Register Usage...................... 6-40
6-54 ___scale?fsi?f Arithmetic Control Usage 6-41
6-55 ___scale?fsi?f Possible Faults 6-41
6-56 ___sub?f3 Global Register Usage............................ 6-42
6-57 ___sub?f3 Arithmetic Control Usage 6-42
6-58 ___sub?f3 Possible Faults.. 6-43
6-59 ___trunc?f?f2 Global Register Usage....................... 6-44
6-60 ___trunc?f?f2 Arithmetic Control Usage 6-44
6-61 Faults for __trunc?f?f2.. 6-45
6-62 Possible Values for the opcode Parameter............... 6-47
A-1 Cross-reference of low-level functions...................... A-1

Overview

1-1

1
This chapter introduces the libraries and this manual. It also identifies
sources of detailed or supplemental information.

The i960 processor libraries ease application development by providing:

• interfaces to standard and custom execution environments
• C, C++, and assembly-language functions
• macro definitions and type declarations
• a variety of linkable files and library sources
• floating-point emulation libraries

Compatibility With Standards

The libraries provide standard and i960 processor-specific library and
header files. The standard parts of the C libraries are compatible with the
ANSI X3.159-1989 standard for the C language. Note, however, that the
following ANSI C functions are implemented as stubs and do not return
meaningful values.

clock
localeconv
mblen
mbstowcs
mbtowc
rename

setlocale
strcoll
strxfrm
system
wcstombs
wctomb

The C++ portion of the libraries include the Free Software Foundation’s
implementation of the C++ Iostream classes.

The i960 processor-specific parts of the libraries:

• provide for more efficient use of the Cx, Hx, Jx, Kx, Rx, and Sx
processor implementations

• emulate the KB processor's floating-point extensions

i960 Processor Library Supplement

1-2

1
• include low-level libraries for the MON960-supported evaluation

boards.

To make porting programs from other systems easier, the libraries also
include selected functions defined in the IEEE Standard 1003.1-1988
Portable Operating System Interface for Computer Environments
(POSIX), UNIX System Laboratories, Inc. System V Interface Definition
(SVID), and other sources added for completeness. However, library
functions do not necessarily fully conform to the POSIX standard.

For details on the POSIX standard, see the IEEE Standard 1003.1-1988,
IEEE Standard Portable Operating System Interface for Computer
Environments, by IEEE, Inc. For information on SVID, see the System V
Interface Definition, by UNIX System Laboratories, Inc. The next section
of this chapter provides ordering information for POSIX and SVID
publications.

Deciding Which Libraries to Use

To select the appropriate libraries, startup code, and object files for your
target environment and the particular i960 processor you are using, read
Chapter 2.

Using Functions

If you are using functions and macros specific to the i960 architecture read
Chapter 3 to learn about the non-ANSI header files and Chapter 4 to learn
about non-ANSI run-time library functions. The standard ANSI C
run-time library functions are described in C: A Reference Manual.

Overview

1-3

1
Retargeting the Libraries

To retarget the libraries for execution in your own hardware environment,
to write additional functions needed for reentrant programs, and to find
reference information on target system calls and other low-level,
non-portable functions, read Chapters 1 and 5.

About This Manual

This i960 Processor Library Supplement is a supplement to Part 2 of
C: A Reference Manual. The i960 Processor Library Supplement
describes the processor-specific and board-specific libraries and header
files. This manual does not describe the ANSI standard C libraries and
header files which are described in C: A Reference Manual. For
information on standard C libraries, see C: A Reference Manual, by
Samuel P. Harbison and Guy L. Steele, Jr., published by Prentice Hall,
1991. This book is available from Intel under order number 480628.

Portions of this manual use materials reprinted and adapted from IEEE
Standard 1003.1-1988, IEEE Standard Portable Operating System
Interface for Computer Environments, copyright 1988 by The Institute of
Electrical and Electronics Engineers with the permission of the IEEE
Standards Department. Text appearing in this document adapted from
IEEE Standard 1003.1-1988 does not represent the approved IEEE
Standard. In the event of a discrepancy between the version in this manual
and the original standard version, the original version takes precedence.

Throughout this manual, “ANSI” refers to ANSI X3.159-1989 standard
for the C language.

Related Publications

For information on related publications, see Getting Started with the i960
Processor Software Tools.

i960 Processor Library Supplement

1-4

1
Customer Service

For customer service information, see Getting Started with the i960
Processor Software Tools.

Copyrights

Refer to the i960 Software Tools License Guide for licensing and copyright
statements.

Using the Libraries

2-1

2
This chapter tells you how to use the libraries provided with CTOOLS in
your programs. If your program uses any library functions, you must:

• Include the header files to use the library function declarations and
type and macro definitions. See the i960 Processor Compiler User's
Guide for information on including the headers.

• Compile your source text to produce an object module compatible
with the libraries.

• Link your application object modules to the appropriate libraries, as
discussed in the following section. The i960 Processor Software
Utilities User's Guide explains how to use the linker.

Linking Libraries and Object Modules

The libraries consist of a set of portable or high-level libraries and a set of
primitive or low-level libraries for each of the i960 KA/SA, KB/SB, Cx,
Jx, Hx, and Rx processor variations. You can use functions from the
high-level libraries without modification in many different execution
environments.

However, many functions in the high-level libraries call functions in the
low-level libraries. The low-level libraries are specific to the evaluation
boards which support the Intel MON960 debug monitor.

For execution in any other environment, you often have to rewrite or
supplement the functions in the low-level libraries for your particular
target environment.

The following sections discuss the different library files you can link with
your application program.

i960 Processor Library Supplement

2-2

2
Library Files

For complete information about library names, see the Library List
section, below. The library files are named following this general scheme:

lib[abbr][arch][qualifier].a

• abbr is an abbreviation of a library name. For example:
 c contains the standard ANSI C functions.
 m contains the standard ANSI math functions.
 h contains the accelerated floating-point functions for

processors without on-chip floating-point support.
 ll contains a MON960 low-level library.
 I contains the C++ Iostream library.

• arch if present, indicates the processor(s) the library can be used for:
 ca for Cx, Hx, and Jx processors.
 jx for Jx-tuned floating-point libraries.
 ka for KA and SA processors.
 kb for KB and SB processors.
 rp for Rx processors.
 If arch is not present, the library can be used for all architectures

(e.g., libll.a).
• qualifier if present, means that the library was generated with

specific compiler options. All libraries contain position-independent
code (PIC). Additionally:
 _p or p means that the library contains position-independent data

(PID).
 _b or b indicates a big-endian library for Cx, Hx, and Jx

applications.
 _e or e indicates a PID and big-endian library for Cx, Hx, and Jx

applications.

Note that the libh library was designed in such a way that it can be used
with both PID and non-PID programs, even though it has no p qualifier in
its name.

Using the Libraries

2-3

2
If your application is a PIC program (linked with the -pc or -pb linker
option), all of your modules must be compiled with the compiler's PIC
option (-mpic for gcc960; -Gpc for ic960). Otherwise, the linker
generates a warning.

If your application is not a PIC program, you can link PIC and non-PIC
modules.

If your application is a PID program (linked with the -pd or -pb linker
option), all modules and libraries must be PID. In other words, your
modules must be compiled with gcc960's -mpid or -mpid-safe options
or ic960's -Gpd or -Gpr option and linked with the appropriate _p

libraries. Otherwise, the linker generates a warning.

If your application is not a PID program, link only non-PID modules.

The low-level library for MON960-based targets is libll.a . This library
contains the low-level libraries for evaluation boards that support the Intel
MON960 debug monitor.

Use libllp.a for PIC/PID programs.

Use libll.a for non-PID programs.

Use libllb.a for big-endian programs.

Use liblle.a for PID, big-endian programs.

Note that the libraries are supplied using the ELF object module format.
The linker will automatically convert the libraries to your selected object
module format.

Intel provides versions of the low-level libraries specific to the i960 Rx
processor, libllrp.a and libllrpp.a . Note that the i960 Rx processor
does not support big endian byte order. Because of this, no big endian
libraries are provided for the i960 Rx processor.

i960 Processor Library Supplement

2-4

2
Library List

Table 2-1 explains the abbreviations found in the library listings. All
libraries shipped with the compiler are listed below Table 2-1.

Table 2-1 Library Use Abbreviation Table

Abbreviation Meaning

BE Big-endian.

CA Use for 80960Cx, Hx, and Jx applications.

FILE-SYSTEM For profiling libraries. This library is for applications
which have file system services such as read, write,
open, and close calls available to them.

JX Jx-tuned floating-point library.

KA Use for KA and SA applications.

KB Use for KB and SB applications.

NO-FILE-SYS For profiling libraries. This library is for applications
which do not have file system services such as read,
write, open, and close calls available to them.

If these calls are not supported, use libq.

If the calls are supported, use libqf.

If you are using the Intel MON960 debug monitor, use
libqf which has file system support in it.

PID The library contains position-independent data (PID).

RP Use for 80960Rx applications.

The files in the left column below are in I960BASE/lib (ic960 interface),
or in G960BASE/lib (gcc960 interface).

The usage of each library is abbreviated in the right-hand column.

Using the Libraries

2-5

2
crt Startup Files

Your linked program must contain startup code to initialize the execution
environment and the libraries in the first module that executes. The
libraries include the following startup modules:

crt960.o
crt960_p.o PID
crt960_b.o BE
crt960_e.o PID,BE

crtrp.o RP
crtrp_p.o RP,PID

libi C++ IOstream Library

CTOOLS now provides the libraries listed below, which provide Free
Software Foundation's implementation of C++ Iostream classes.

libica.a CA
libica_b.a CA,BE
libica_e.a CA,PID,BE
libica_p.a CA,PID

libika.a KA
libika_p.a KA,PID

libikb.a KB
libikb_p.a KB,PID

libirp.a RP
libirp_p.a RP,PID

The associated C++ header files are included in a separate sub-directory
named cxxinc in the CTOOLS distribution.

i960 Processor Library Supplement

2-6

2
libc ANSI Standard Library

This is the ANSI C standard library, in ELF format.

libcca.a CA
libcca_b.a CA,BE
libcca_e.a CA,PID,BE
libcca_p.a CA,PID

libcka.a KA
libcka_p.a KA,PID

libckb.a KB
libckb_p.a KB,PID

libcrp.a RP
libcrp_p.a RP,PID

libm ANSI Math Functions

This library contains the ANSI C standard math functions.

The libst.a library provides minimal function definitions to resolve
external references during linking without adding the unnecessary code for
full floating-point functionality. Use this library instead of libm xx .a if
your program does not perform any floating-point number operations. The
functions in libst.a do nothing more than resolve external references, so
you can link this library with PID programs, and with any architecture.

libmca.a CA
libmca_b.a CA,BE
libmca_e.a CA,BE,PID
libmca_p.a CA,PID

libmka.a KA
libmka_p.a KA,PID

libmkb.a KB
libmkb_p.a KB,PID

libmrp.a RP
libmrp_p.a RP,PID

Using the Libraries

2-7

2
libst.a
libstb.a BE
libste.a BE,PID
libstp.a PID

libstrp.a RP
libstrpp.a RP,PID

libh Floating-point Library

This is the floating-point arithmetic library. Note that all of the libh

libraries can be used in either PIC/PID or non-PIC/PID applications.

This library contains accelerated floating-point functions for processors
without on-chip floating-point support. These functions implement
floating-point operations without using any floating-point instructions.

libhca.a CA
libhca_b.a CA,BE
libhca_e.a CA,BE,PID
libhca_p.a CA,PID

libhjx.a JX
libhjx_b.a JX,BE
libhjx_e.a JX,BE,PID
libhjx_p.a JX,PID

libhka.a KA
libhka_p.a KA,PID

libhrp.a RP
libhrp_p.a RP,PID

For information on these libraries, see Chapter 6.

i960 Processor Library Supplement

2-8

2
libfp Alternate Floating-point Library

This is an alternate floating-point arithmetic library. This library cannot
be used in PIC/PID applications. It can be used as a partial replacement
for libh . It is somewhat faster than libh although less accurate.

libfp.a KA/CA
libfpb.a BE
libfpe.a BE,PID
libfpp.a PID

libfprp.a RP
libfprpe.a RP,PID

libq/libqf Profiling Libraries

These are the libraries supplied to support profile-driven optimization.
See the discussion of profiling in your compiler manual for details.

libq.a NO-FILE-SYSTEM
libqb.a NO-FILE-SYSTEM,BE
libqe.a NO-FILE-SYSTEM,PID,BE
libqp.a PID,NO-FILE-SYSTEM

libqf.a FILE-SYSTEM
libqfb.a FILE-SYSTEM,BE
libqfe.a FILE-SYSTEM,PID,BE
libqfp.a PID,FILE-SYSTEM

libqrp.a RP,NO-FILE-SYSTEM
libqrpp.a RP,NO-FILE-SYSTEM,PID

libqfrp.a RP,FILE-SYSTEM
libqfrpp.a RP,FILE-SYSTEM,PID

Using the Libraries

2-9

2
libll MON960 Low-level Support Library

This is the low-level support library for evaluation boards that support the
Intel MON960 debug monitor.

libll.a
libllb.a BE
liblle.a PID,BE
libllp.a PID

libllrp.a RP
libllrpp.a RP,PID

libmon Monitor Support Library

This provides a calls interface for benchmark timing, flash memory, and
ghist960 programming.

libmn.a
libmnb.a BE
libmne.a PID,BE
libmnp.a PID

libmnrp.a RP
libmnrpp.a RP,PID

libhs ghist960 Support Library

This is the ghist960 support library.

libhs.a
libhsb.a BE
libhse.a PID,BE
libhsp.a PID

libhsrp.a RP
libhsrpp.a RP,PID

i960 Processor Library Supplement

2-10

2
librom Flash Support Library

This is the flash support library. All libraries support serially re-usable
programs.

librm.a
librmb.a BE
librme.a PID,BE
librmp.a PID

librmrp.a RP
librmrpp.a RP,PID

C Linker Directive Files

See the i960 Processor Software Utilities Guide for more information on
the linker (lnk960, gld960) and linker directive files.

cycx.ld Cyclone Cx
cycxb.ld Cyclone Cx,BE
cycxbfls.ld Cyclone Cx,BE,flash
cycxfls.ld Cyclone Cx,flash
cycxp.ld Cyclone Cx,PID
cycxpfls.ld Cyclone Cx,PID,flash

cyhx.ld Cyclone Hx
cyhxfls.ld Cyclone Hx,flash

cyjx.ld Cyclone Jx
cyjxb.ld Cyclone Jx,BE
cyjxbfls.ld Cyclone Jx,BE,flash
cyjxfls.ld Cyclone Jx,flash
cyjxp.ld Cyclone Jx,PID
cyjxpfls.ld Cyclone Jx,PID,flash

cykx.ld Cyclone Kx
cykxp.ld Cyclone Kx,PID

cysx.ld Cyclone Sx
cysxp.ld Cyclone Sx,PID

cyrx.ld Cyclone RP
cyrxp.ld Cyclone RP,PID
cyrxfls.ld Cyclone RP,flash
cyrxpfls.ld Cyclone RP,flash,PID

Using the Libraries

2-11

2
C++ Linker Directive Files

The compiler distribution includes the following new linker directive files.
These linker directive files are meant to be used when linking in C++
modules using the ic960 driver to form an absolute file.

cycc.ld Cyclone Cx
cyccb.ld Cyclone Cx,BE
cyccbfls.ld Cyclone Cx,BE,flash
cyccfls.ld Cyclone Cx,flash
cyccp.ld Cyclone Cx,PID
cyccpfls.ld Cyclone Cx,PID,flash

cyhc.ld Cyclone Hx
cyhcfls.ld Cyclone Hx,flash

cyjc.ld Cyclone Jx
cyjcb.ld Cyclone Jx,BE
cyjcbfls.ld Cyclone Jx,BE,flash
cyjcfls.ld Cyclone Jx,flash
cyjcp.ld Cyclone Jx,PID
cyjcpfls.ld Cyclone Jx,PID,flash

cykc.ld Cyclone Kx
cykcp.ld Cyclone Kx,PID

cysc.ld Cyclone Sx
cyscp.ld Cyclone Sx,PID

cyrc.ld Cyclone RP
cyrcp.ld Cyclone RP,PID
cyrcfls.ld Cyclone RP,flash
cyrcpfls.ld Cyclone RP,flash,PID

These new linker directive files allocate the sections “ctors” and “dtors” to
proper locations and request the linker to include the C++ standard
libraries in the search path for unresolved externals. The standard C++
libraries are searched ahead of the standard C libraries. The “ctors” and
“dtors” sections are used to initialize/destroy static objects.

When generating an absolute module targeted for a Cyclone Cx board
with an i960 CA processor, you would use a command such as:

ic960 -Tcycx -ACA t1.c t2.c

i960 Processor Library Supplement

2-12

2
To include C++ modules in the absolute file, use a command such as:

ic960 -Tcycc -ACA t1.cc t2.c

The argument -Tcycc instructs the compiler to generate code for a
Cyclone Cx board and to link in the C++ Iostream class library. Note that
the gcc960 invocation options are not affected and remain the same.
Therefore, you can continue using a command such as:

gcc960 -Fcoff -Tmcycx -ACA t1.cc t2.c

gcc960 Configuration Files

mcycx.gld Cyclone Cx
mcycxfls.gld Cyclone Cx,flash
mcyhx.gld Cyclone Hx
mcyhxfls.gld Cyclone Hx,flash
mcyjx.gld Cyclone Jx
mcyjxfls.gld Cyclone Jx,flash
mcykx.gld Cyclone Kx
mcyrx.gld Cyclone RP
mcyrxfls.gld Cyclone RP,flash
mcysx.gld Cyclone Sx

Linking Sequence

The linking order of libraries and object modules in your program depends
on the file sequence you specify on the linker command line or in the
linker configuration file. See the linker chapter of the i960 Processor
Utilities User's Guide for information on the linking sequence.

To correctly link and execute your program, you must use the following
order when you specify startup modules, libraries, and your program
modules for linking:

1. startup code
2. program modules
3. user-defined libraries, if any
4. profiling library, statistical profiler library, flash support library
5. C++ Iostream (if specified)

Using the Libraries

2-13

2
6. standard C library
7. standard math library
8. low-level, board-specific library
9. accelerated floating-point library, for the i960 KA, SA, Cx, Hx, and Jx

processors only.

Using the Floating-point Libraries

The i960 KB and SB microprocessors implement in hardware the full i960
floating-point instruction set. The i960 processor computational model is
fully compatible with IEEE standard P754 and allows the compiler to
generate efficient floating-point instruction sequences, reducing the
amount of object code generated. Programs ported from environments
that do not conform to the IEEE standard can behave unpredictably,
especially when floating-point exceptions occur.

Note that to use libfp.a , you must link both libfp.a and libh xx .a into
your application. Furthermore, libfp.a must be specified to the linker
before libh xx .a is specified.

The libm xx .a and libm xx _p.a standard math libraries can use either
floating-point instructions or simulated floating-point operations.
Functions in libmkb.a and libmkb_p.a , for processors with on-chip
floating-point support, use floating-point instructions implemented in the
processor instruction set. Functions in libmka.a , libmca.a ,
libmka_p.a and libmca_p.a , for processors without on-chip
floating-point support, call low-level functions in libhka.a and
libhca.a . The libh xx .a functions simulate floating-point instructions
and can be used with both PIC/PID and non-PIC/PID programs.

Floating-point functions in libh xx support all levels of precision
supported by the i960 architecture, as follows:

• Single-precision functions use the float data type.
• Double-precision functions use the double data type. Hyperbolic

functions are available in double precision only.
• Extended-precision functions use the long double data type.

i960 Processor Library Supplement

2-14

2
Since the floating-point functions round computations to the nearest
representable least-significant digit, results using different rounding modes
can differ. You can use macros and functions from the fpsl.h header file
to set the rounding mode.

The floating-point functions comply with the IEEE P754 standard
specification on operations with Not-a-Number elements (NaNs). If the
arguments to a function are invalid for the operation or involve a Signaling
NaN (SNaN), a Quiet NaN (QNaN) is returned and the FPX_INVOP

exception is flagged. Functions process and return QNaNs without
flagging any exceptions.

See Chapter 6 for more information on the floating-point emulation
libraries.

Since the i960 Cx/Hx/Jx processors do not implement the floating-point
bits in the arithmetic controls (AC) register, your Cx/Hx/Jx program must
reserve a word in memory to contain the AC floating-point bits. This
memory location must be named fpem_CA_AC. For fastest memory
access, locate fpem_CA_AC in the i960 Cx/Hx/Jx processor's internal data
RAM.

NOTE. You cannot locate fpem_CA_AC into the data section of a PID
program. You can allocate memory for fpem_CA_AC in the linker
configuration file. To modify fpem_CA_AC, use the functions declared in
the fpsl.h header file. The libmca.a and libhca.a libraries use
fpem_CA_AC as an extension of the AC register; however, the libmstb.a

library does not use fpem_CA_AC.

Including the Header Files

To use a function defined in a library, you must include an external
declaration of that function in your program. The header files contain
declarations for the library functions and for variables and values that you

Using the Libraries

2-15

2
can use with the library functions. Including header files can make
developing a correct and efficient program easier, as follows:

• Some functions, such as those that accept float data types as
arguments, require prototyped declarations. Since all function
declarations in the header files are correctly prototyped, including the
appropriate header files ensures that your use of a function matches
the library definition of that function. You can write your own
external declaration for any library function or variable, but doing so
does not guarantee an exact match. The header files also define data
types that exactly match the data types of function parameters and
macros that provide convenient names for correct argument values.

• Some functions are also defined as macros or as inline
assembly-language functions in the header files. Code resulting from
a macro or inline assembly-language function expansion can execute
more quickly and occupy less space than the code generated for a
function call. Also, if you use a macro or assembly-language
function, you need not link the library module containing the function.

To use the library function rather than the macro defined in an included
header file, use #undef to remove the macro definition after defining the
macro and before invoking the function. C: A Reference Manual
describes how to define, use, and remove macros. As an alternative to
removing the macro definition, you can disable macro expansion for the
function identifier by putting parentheses around the function identifier in
the function invocation. For example:

main()
{ (macro_name) (a);
}

You can include a header file in the same way as including any other
source text file. The i960 Processor Compiler User's Guide explains how
to use compiler options to include files.

i960 Processor Library Supplement

2-16

2
Retargeting for Multi-tasking and Reentrancy

Low-level functions depend directly on the specific operation of the
execution environment. The low-level libraries define functions for
input/output (I/O), initialization, and cleanup specific to the MON960
debug monitor execution environments. You must rewrite these functions
for execution in any other environment.

Additional low-level functions, such as thread and semaphore functions
used in multi-tasking applications, are provided as stubs. An application
involving multiple threads of execution can require that you implement the
thread and semaphore functions. Chapter 5 explains how to rewrite the
supplied low-level functions and how to implement new functions for
multi-tasking and reentrant operation.

Since high-level functions are independent of the execution environment,
you do not need to rewrite them. However, some high-level functions call
low-level functions to perform I/O, initialization, and cleanup operations.
If the high-level functions used in your program call low-level functions,
you must rewrite the called low-level functions for your program to
execute on any system other than those using the MON960 debug monitor.
Chapter 5 explains the dependencies between specific high-level and low-
level functions in the libraries. See Appendix A for a cross-reference list
of low-level functions.

Identifying Run-time Errors

In addition to returning an error-indicator value, most library functions can
set the value of the errno macro to provide more specific information
about the cause of an error. The errno macro, defined in the errno.h

header file, is specified by the ANSI standard to provide information about
an error that has occurred.

Using the Libraries

2-17

2
The value of errno is useful when information about the most recent error
is relevant. Once errno has been set because of an error, its value does
not change until another error occurs. You can use errno effectively in
the following ways:

• If a function can both set errno and return an error value, the return
value of the function indicates whether an error occurred and the
value of errno identifies the most recent error that has occurred.

• If a function can set errno but cannot return an error value, your
program can identify an error occurring in the function as follows:
 Set errno to 0 immediately before calling the function, so that

errno does not contain a record of any previous error.
 Test errno immediately after the function returns. If errno is

not 0, an error has occurred in the function. The value of errno

identifies the most recent error that has occurred.

The errno.h header file defines error macros that expand to the values
used for errno . Include the errno.h header file via the #include

directive.

Compiling for ANSI Compliance

You can use the a ic960 or ansi gcc960 compiler driver option to
conditionally compile out all non-ANSI declarations and definitions from
the ANSI-standard header files and to disable inline assembly-language
functions and statements.

Header Files

3-1

3
The library header files contain source text declarations of library
functions, variables, macros, and inline assembly functions. This chapter
describes the non-ANSI header files and five of the ANSI header files
which also contain compiler-specific information.

Chapter 4 of this supplement and Part II of C: A Reference Manual give
more information on the operation and use of the individual ANSI
functions and data types.

These ANSI library header files are described in C: A Reference Manual:

assert.h Assertion evaluation.

ctype.h Character testing and mapping.

errno.h Error condition variables and macros.

float.h Characteristics of floating-point types.

limits.h Implementation limits.

locale.h Localization. Although the locale.h header
file declares functions and defines macros for
localization, the libraries do not support
localization.

math.h Floating point math. Also described in this
chapter.

setjmp.h Non-local jumps.

signal.h Signal and interrupt handling. Also described in
this chapter.

stdarg.h Variable arguments.

i960 Processor Library Supplement

3-2

3
stddef.h Standard language additions.

stdio.h Stream input/output. Also described in this
chapter.

stdlib.h Utilities. Also described in this chapter.

string.h String handling.

time.h Date and time. Also described in this chapter.

These are the non-ANSI library header files described in this chapter:

afpfault.h Accelerated floating-point library fault handling
support. See Chapter 6 for information on fault
handling support for the “libh” libraries.

alloca.h Defines the alloca function.

fcntl.h File access flag definitions.

fpsl.h Floating-point operation control.

__macros.h Defines macros for include files.

reent.h Primitive functions for reentrant programming.

search.h Linear search functions.

stat.h File types and access permissions.

std.h Standard system functions.

types.h System V data-type definitions.

unalign.h Defines special macros.

varargs.h Defines macros for variable argument lists.

The following pages describe the non-ANSI header files and five ANSI
header files (math.h , signal.h , stdio.h , stdlib.h , and time.h)
which also contain compiler-specific information. These files are listed in
alphabetical order by the names of the header files.

Header Files

3-3

3
afpfault.h
Accelerated floating-
point library
fault handler.
non-ANSI

Discussion

This header file defines the interface to be used with the stub routines for
fault handling provided in the AFP library (libh xx .a). The stub routines
can be replaced in the library by user-defined routines as long as the
interface defined in afpfault.h is used.

See Chapter 6 for a detailed discussion of floating-point library fault
handling facilities.

alloca.h
Defines the alloca

function.
non-ANSI

Discussion

The alloca.h header file declares the alloca function.

i960 Processor Library Supplement

3-4

3
fcntl.h
File access flag
definitions.
non-ANSI

Discussion

The fcntl.h header file defines macros for the flag values passed to the
open function when opening a file. See Chapter 5 for a description of the
open function.

The following macros set the access mode when you open a file:

O_RDONLY Open a file in read-only mode.

O_RDWR Open a file in read-write (update) mode.

O_WRONLY Open a file in write-only mode.

The following macros set the file status for identifying and opening a file:

O_APPEND Set the file pointer to the end of the file before
each write operation.

O_CREAT Create a new file.

O_EXCL Use exclusive mode when opening the file.

O_TRUNC Truncate the existing file's length to zero.

The following macros set the file type for the format of information to be
read or written:

O_BINARY Open a binary file.

O_TEXT Open an ASCII file.

Header Files

3-5

3
fpsl.h
Floating-point
operation control.
non-ANSI

Discussion

The fpsl.h header file declares functions for controlling the i960
processor. floating-point operations and defines macros to be used as
arguments to those functions. This header file also declares some non-
ANSI math functions.

Use the following floating-point control functions, as described in
Chapter 4, to read and modify parts of the arithmetic control (AC) register:

fp_getround read and modify the current rounding mode.
fp_setround

fp_getmasks read and modify the current exception masks.
fp_setmasks

fp_getflags read and modify the current exception flags.
fp_setflags

fp_clrflags clears all the flags and returns the former flag
values.

fp_clriflag clears the interrupt overflow flag.

fp_getenv read and modify the current floating-point
fp_setenv environment.

_getac read and modify the entire AC register.
_setac

i960 Processor Library Supplement

3-6

3
The following macros are valid arguments for the floating-point control
functions. Use the following macros to read and write the floating-point
exception flags:

FPX_INVOP isolates the invalid-operation exception flag.

FPX_ZDIV isolates the divide-by-zero exception flag.

FPX_OVFL isolates the overflow exception flag.

FPX_UNFL isolates the underflow exception flag.

FPX_INEX isolates the inexact-result exception flag.

FPX_CLEX clears all the exception flags.

FPX_ALL sets all the exception flags.

Use the following macros to specify the rounding mode:

FP_RN sets the rounding mode to round to nearest.

FP_RM sets the rounding mode to round toward minus
infinity.

FP_RP sets the rounding mode to round toward plus
infinity.

FP_RZ sets the rounding mode to round toward zero
(truncate).

Header Files

3-7

3
The members of the _ac structure, defined in fpsl.h , isolate the fields of
the AC register, as follows:

struct _ac {
 unsigned int cc : 3; /* condition code */
 unsigned int as : 4; /* arithmetic status */
 unsigned int : 1;
 unsigned int iovfl_flg : 1; /* integer overflow flag */
 unsigned int : 3;
 unsigned int iovfl_msk : 1; /* integer overflow mask */
 unsigned int : 2;
 unsigned int nif : 1; /* no-imprecise-faults flag */
 unsigned int fpflags : 5; /* fltg-pt-exception flags */
 unsigned int : 3;
 unsigned int fpmasks : 5; /* fltg-pt-exception masks */
 unsigned int nornmode : 1; /* normalizing mode */
 unsigned int rndmode : 2; /* rounding mode */
};

The fpsl.h header file also declares non-ANSI functions. Function
names ending with f , such as fp_logbf , take and return single-precision
values. Function names ending with l , such as fp_logbl , take and return
extended-precision values. The rest of the function names (e.g., fp_logb)
take and return double-precision values.

The non-ANSI functions are:

fp_logbf return the base-2 logarithm.
fp_logb

fp_logbl

fp_remf return the remainder.
fp_rem

fp_reml

fp_rmdf return the remainder (IEEE).
fp_rmd

fp_rmdl

i960 Processor Library Supplement

3-8

3
fp_roundf round to an integral value.
fp_round

fp_roundl

fp_scalef perform a scaling operation.
fp_scale

fp_scalel

__macros.h
Defines macros for
include files.
non-ANSI

Discussion

The __macros.h header file defines macros used by the other include
files. These macros are defined for portability of the system include files,
and are subject to change with each compiler release.

math.h
Floating-point math.
ANSI

Discussion

The math.h header file declares both ANSI-standard and i960-specific
floating-point arithmetic functions. The ANSI-standard part of math.h is
described in C: A Reference Manual.

Header Files

3-9

3
The ANSI-standard mathematics functions are declared as
double-precision floating-point functions for all i960 processors. The
following mathematics functions are also available as single-precision
floating-point functions on all i960 processors:

atanf
atan2f
ceilf
cosf

expf
floorf
fabsf
logf

powf
sinf
sqrtf
_IEEE_sqrtf
tanf

NOTE. There are two implementations of sqrt for each precision. The
_IEEE_sqrt and _IEEE_sqrtf functions are fully IEEE-754 conformant
in that they perform fault checking as specified in the IEEE-754
specification. The ANSI versions, sqrt and sqrtf , unconditionally set
errno to EDOM when given inappropriate values.

The following single-precision versions of ANSI-standard floating-point
functions are available for i960 processors with on-chip floating-point
support:

acosf
asinf

log10f

If you do not specify the -a (ic960) or -ansi (gcc960) option when
compiling, math.h declares the following non-ANSI functions in addition
to the standard functions:

square returns the square of a number.

hypot returns the hypotenuse.

i960 Processor Library Supplement

3-10

3
If you do not specify the -a or -ansi (ANSI) option (-a for ic960, -ansi

for gcc960) when compiling and the i960 processor is without on-chip
floating-point support, math.h declares the following non-ANSI functions
in addition to the standard functions:

_IEEE_sqrt double precision

_IEEE_sqrtf single precision

If you do not specify the -a or -ansi (ANSI) option (-a for ic960, -ansi

for gcc960) when compiling, the math.h header file also defines the
following structure data type for handling complex numbers:

struct complex { double x, y };

See Chapter 4 for a description of the _IEEE_sqrtf , hypot , and square

functions.

reent.h
Primitive functions for
reentrant programming.
non-ANSI

Discussion

The reent.h header file declares the low-level input/output (I/O) and
thread functions used for reentrant programming. Many portable
functions in the libraries call these low-level functions.

Since low-level functions interact directly with the execution environment,
you must rewrite them to conform to your execution environment, as
described in Chapter 5.

Header Files

3-11

3
search.h
Linear search functions.
non-ANSI

Discussion

The search.h header file declares the linear search functions lfind and
lsearch . Use lfind and lsearch to find items in an unsorted list, as
described in Chapter 4.

signal.h
Signal and interrupt
handling.
ANSI

Discussion

Both the ANSI and POSIX standards describe signals as conditions that
can be reported asynchronously during program execution. The
signal.h header file provides declarations and definitions for handling
ANSI and POSIX signals. The ANSI signal-handling functions and
macros are described in C: A Reference Manual. The non-ANSI signal
macros defined in signal.h are:

SIGREAD indicates that a physical read operation has
returned an end-of-file value.

SIGWRITE indicates that a write operation has failed.

SIGALLOC indicates that memory allocation has failed.

i960 Processor Library Supplement

3-12

3
SIGFREE indicates that an invalid pointer argument has

been passed to a deallocation function.

SIGUSR1 is user-defined.

SIGUSR2 is user-defined.

SIGSIZE indicates the number of defined signals.

stat.h
File types and access
permissions.
POSIX

Discussion

The stat.h header file defines macros used as masks to check and set the
type and access permissions of files on the host system supporting the
execution vehicle. The stat.h header file also declares the fstat and
stat functions, described in Chapter 5, and the structure stat , used as an
argument to fstat and stat .

Additional status and file-type macros defined in stat.h are available for
UNIX compatibility and are not supported on Windows.

Header Files

3-13

3
std.h
System functions.
non-ANSI

Discussion

The std.h header file declares operating system functions.

stdio.h
Stream input/output.
ANSI

Discussion

The stdio.h header file declares functions for stream input and output
(I/O). The ANSI part of stdio.h is described in C: A Reference Manual.
In addition, if you do not specify the -a or -ansi (ANSI) option (-a for
ic960, -ansi for gcc960) when compiling, stdio.h defines the following
non-ANSI functions:

fcloseall closes all open files.

fdopen opens a file.

fgetchar reads a character.

fileno gets the file descriptor for a stream.

flushall empties all input and output buffers.

fputchar writes a character.

getw reads a word.

i960 Processor Library Supplement

3-14

3
putw writes a word.

rmtmp removes a temporary file.

See Chapter 4 for a detailed description of the use of each function.

stdlib.h
Utilities.
ANSI

Discussion

The stdlib.h header file declares general utility functions. The ANSI
contents of stdlib.h are described in C: A Reference Manual. In
addition, if you do not specify the -a or -ansi (ANSI) option (-a for
ic960, -ansi for gcc960), stdlib.h defines the following non-ANSI
functions:

ecvt , fcvt , convert a floating-point number to a string.
gcvt

getopt returns the next letter in the argument that
matches a letter in the string argument.

itoa converts an integer to a string.

itoh converts an integer to hexadecimal.

ltoa , ltos convert a long integer to a string.

ltoh converts a long integer to hexadecimal.

ultoa converts an unsigned long integer to a string.

utoa converts an unsigned integer to a string.

See Chapter 4 for a detailed description of each function.

Header Files

3-15

3
string.h
Character array
manipulation.
ANSI

Discussion

The string.h header file declares functions for manipulating character
arrays. The ANSI contents of string.h are described in C: A Reference
Manual. In addition, if you do not specify the -a or -ansi (ANSI) option
(-a for ic960, -ansi for gcc960), string.h defines the following
non-ANSI functions:

memicmp compares two strings in memory, ignoring case.

strdup duplicates a string.

stricmp compare two strings, ignoring distinctions
strnicmp between uppercase and lowercase.

strlwr convert a string to lowercase or to uppercase,
strupr respectively.

strnset assign values to characters in a string.
strset

strrev reverses the order of characters in a string.

See Chapter 4 for a detailed description of each function.

i960 Processor Library Supplement

3-16

3
time.h
Date and time.
ANSI

Discussion

The time.h header file provides functions and macros for determining the
current time, elapsed time, and timezone. The non-ANSI time functions
are described in Chapter 4. The ANSI-standard part of time.h is
described in C: A Reference Manual. If you do not specify the -a or
-ansi (ANSI) option (-a for ic960, -ansi for gcc960), time.h also
defines the following:

daylight macro indicates whether daylight savings time is in
effect.

timezone macro provides the difference in seconds between
Coordinated Universal Time and local time.

tzname macro provides a pair of strings that identify the name
of the time zone and the name of the daylight
savings time.

tzset function sets the values of daylight , timezone , and
tzname .

See the tzset entry in Chapter 4 for a description of these facilities.

Header Files

3-17

3
types.h
System V data-type
definitions.
non-ANSI

Discussion

The types.h header file defines the following data types used for
compatibility with UNIX System V:

uchar are the same as unsigned char .
u_char

ushort are the same as unsigned short .
u_short

uint are the same as unsigned int .
u_int

ulong are the same as unsigned long .
u_long

dev_t is the same as short . The stat structure uses
this data type to identify a device.

off_t is the same as long . The stat structure uses
this data type to contain a file size in bytes.

mode_t is the same as unsigned long .

size_t is the same as unsigned .

i960 Processor Library Supplement

3-18

3
unalign.h
Defines special macros.
non-ANSI

Discussion

This include file defines special macros for accessing 16-bit short and
32-bit word-length quantities on unaligned addresses. Unaligned accesses
are faster with the i960 CA processor using the compiler-scheduled
instructions than allowing the microcode and/or bus controller to handle
them.

The macros defined are:

GET_UNALIGNED_WORD
SET_UNALIGNED_WORD

For word accesses which are unaligned more than 10% of the time, and
the alignment is not always 2-byte.

GET_UNALIGNED2_WORD
SET_UNALIGNED2_WORD

For word accesses which are unaligned more than 10% of the time and the
alignment is always 2-byte.

GET_UNALIGNED_SHORT
SET_UNALIGNED_SHORT

For signed short accesses which are unaligned more than 10% of the time.

GET_UNALIGNED_UNSIGNED_SHORT
SET_UNALIGNED_UNSIGNED_SHORT

For unsigned short accesses which are unaligned more than 10% of the
time.

Header Files

3-19

3
Use standard C syntax for naturally aligned data references (structure
fields not under #pragma pack or #pragma align and pointer
dereferences without a cast). The macros in this file provide a method of
abstracting non-natural data references so that the application does not
have to concern itself with how unaligned accesses are performed.

By default, the macros are generated for unaligned accesses in little-
endian memory regions. If the preprocessor symbol
__i960_BIG_ENDIAN__ is defined, the macros are generated for big-
endian memory accesses. The compiler option -G defines
__i960_BIG_ENDIAN__ .

If you are a big-endian memory user using an i960 CA processor D-step
(or later) part, the chip supports unaligned accesses in big-endian memory
regions. Earlier (pre-D-step) parts will fault on any unaligned accesses in
big-endian memory regions.

Therefore, if you have a pre-D-step part and there is a possibility that a
memory access will be unaligned, you must use one of the UNALIGNED or
UNALIGNED2 macros above or you will get a fault.

i960 Processor Library Supplement

3-20

3
varargs.h
Defines macros for
variable argument lists.
non-ANSI

Discussion

The varargs.h header file defines macros that provide a means of
writing procedures that accept variable argument lists and which are
portable to pre-ANSI C environments.

The macros defined are:

va_alist is used in a function header to declare a variable
argument list.

va_arg returns the next argument in the list pointed to by
its parameters.

va_dcl is a declaration for va_alist .

va_end is used to finish up.

va_start is called to initialize parameters to the beginning
of the list.

See C: A Reference Manual for a discussion of these facilities.

Library Functions

4-1

4
This chapter describes the library functions that are not fully described in
C: A Reference Manual.

These functions are portable and you need not rewrite them to retarget
your application program. However, some of these functions can call
primitive functions that must be rewritten for any execution environment
not supported by the Intel MON960 debug monitor. Retargeting is
described in Chapter 5. See Appendix A for a cross-reference list of the
primitive functions.

ecvt, fcvt, gcvt
Convert floating-point
number to string.

char *ecvt (double value , int count , int * dec , int * sign);

char *fcvt (double value , int count , int * dec , int * sign);

char *gcvt (double value , int count , char * buffer);

value is the floating-point number to be converted.

count is the desired number of digits in the converted
string, excluding the terminating null character.

dec is a pointer to a variable containing the implied
position of the decimal point in the converted
string.

i960 Processor Library Supplement

4-2

4
sign is a pointer to a variable containing the sign of

the floating-point value.

buffer is a pointer to a buffer for the converted string.

Header File stdlib.h

Discussion

Use ecvt , fcvt , or gcvt to convert value to a null-terminated character
string. The converted string contains only digits and the terminating null
character. The gcvt function stores the string at the location pointed to by
buffer .

The count argument specifies how many digits are stored after the
implied decimal point. If the conversion produces more than count digits,
the low-order digit is rounded. If count is larger than the number of
digits, the string is padded with zeros to fill the specified length. For
gcvt , the buffer must be large enough to hold the converted string and
terminating null character.

If possible, gcvt formats the string in the decimal (%f) format used by the
printf function; otherwise, gcvt formats the string in the exponential
(%e) format. You use also ecvt to format the string in the exponential
format used by printf or fcvt to format the string in decimal format.

The converted string contains only digits. To find the position of the
implied decimal point and sign, use dec and sign after the function call.
The dec argument points to an integer that indicates the decimal position
relative to the beginning of the string. A negative or zero value indicates a
position preceding the first digit in the string. The sign argument points
to an integer that indicates the sign of the floating-point string. The
integer is zero for a positive value and non-zero for a negative value.

NOTE. The ecvt , fcvt , and gcvt functions are not reentrant. Use the
sprintf function, described in C: A Reference Manual, instead for
portability.

Library Functions

4-3

4
Returns

The ecvt , fcvt , and gcvt functions return a pointer to the converted
string. These functions do not return any special value to indicate an
error.

Related Topic

sprintf (C: A Reference Manual)

fcloseall
Close all open streams.

int fcloseall (void);

Header File stdio.h

Discussion

Use this function to close all currently open files. The fcloseall

function, however, does not close stdin , stdout , or stderr .

Returns

The fcloseall function returns the number of files closed, which can be
zero or greater. This function does not return any special value to indicate
an error.

Related Topics

fopen (C: A Reference Manual)
stderr (C: A Reference Manual)
stdin (C: A Reference Manual)
stdout (C: A Reference Manual)

i960 Processor Library Supplement

4-4

4
fdopen
Open a stream with a
file descriptor.
POSIX 8.2.2

FILE *fdopen (int fildes , char * mode);

fildes is the file descriptor.

mode is one of the file opening modes used by the
fopen function described in the C: A Reference
Manual, except that the w and w+ modes do not
cause truncation of the file.

Header File stdio.h

Discussion

Use this function to open a stream and associate it with the file descriptor
fildes . The file to be associated with fildes must already be open.

You cannot open a stream in a mode incompatible with the mode of the
file. For example, if the file is open for writing, you cannot open the
stream for reading or for updating.

Returns

On successful completion, fdopen returns a pointer to the stream;
otherwise fdopen returns a NULL pointer, which indicates an invalid file
mode.

Related Topics

fcntl.h (Chapter 3)
fopen (C: A Reference Manual)
open (C: A Reference Manual)

Library Functions

4-5

4
fgetchar
Read character from
standard input stream.

int fgetchar (void);

Header File stdio.h

Discussion

Use this function to read a character from the standard input stream,
stdin . For example, the following program uses fgetchar to echo the
input to the screen, one character at a time:

#include <stdio.h>
main()
{
 int ch;
 fputs("Enter Data Terminated by EOF >", stdout):
 while ((ch = fgetchar()) != EOF)
 fputc (ch, stdout);
}

Returns

On successful completion, fgetchar returns the next character from
stdin ; otherwise, fgetchar returns EOF. Since EOF is a legal int value,
use the feof or ferror function, described in C: A Reference Manual, to
check for an actual error.

Related Topics

feof (C: A Reference Manual)
ferror (C: A Reference Manual)
stdin (C: A Reference Manual)

i960 Processor Library Supplement

4-6

4
fileno
Get file descriptor
for stream.
POSIX 8.2.1

int fileno (FILE * stream);

stream is a pointer to an open stream.

Header File stdio.h

Discussion

Use this function to get the file descriptor associated with the given
stream . This function lets you use the file-descriptor I/O calls (for
example, read , write , and lseek) on streams.

To mix the two I/O systems, such as open vs. fopen , you must flush all
I/O buffers when going from the buffered system to the unbuffered
system. If you omit this step, you can lose data.

Returns

On successful completion, fileno returns the file descriptor. This
function does not return any special value to indicate an error.

Related Topics

fdopen open (Chapter 5)
fopen (C: A Reference Manual) read (Chapter 5)
lseek (Chapter 5) write (Chapter 5)

Library Functions

4-7

4
flushall
Flush all streams.

int flushall (void);

Header File stdio.h

Discussion

Use this function to write output stream buffers to the associated files and
clear open input streams of their contents. The flushall function does
not close the streams.

Returns

The flushall function returns the number of streams successfully
flushed. This function does not return any special value to indicate an
error.

fputchar
Write a character to
standard output stream.

int fputchar (int c);

c is the character to be written.

Header File stdio.h

i960 Processor Library Supplement

4-8

4
Discussion

Use this function to write a character to stdout . The fputchar function
is the same as fputc(c,stdout) . For example, the following program
uses the fputchar function to echo console input to the screen one
character at a time:

#include <stdio.h>
main()
{
 int ch;
 fputs("Enter Data Terminated by EOF ",stdout);
 while((ch=fgetchar()) != EOF)
 fputchar(ch);
}

Returns

On successful completion, fputchar returns the character written;
otherwise, fputchar returns EOF. Since EOF is a legal int value, use the
ferror function, described in C: A Reference Manual, to check for an
actual error.

Related Topics

ferror (C: A Reference Manual)
fgetchar

fputc (C: A Reference Manual)

Library Functions

4-9

4
fp_getenv, fp_setenv
Read and modify
arithmetic controls
(i960 processor-
specific).

unsigned fp_getenv (void);

unsigned fp_setenv (unsigned val);

val is the bit pattern for setting the arithmetic
controls.

Header File fpsl.h

Discussion

Use fp_getenv to read the floating-point bits of the arithmetic controls
(AC) register. Use fp_setenv to set the floating-point bits of the AC
register. For example, the following statement sets the rounding mode for
round-to-nearest, sets normalizing mode on, masks all exceptions other
than the invalid-operation exception, and clears all exception flags:

(void) fp_setenv(0x3b000000);

For more information on the AC register, see your assembler user's guide.

Returns

On successful completion, fp_getenv returns the current AC register
contents and fp_setenv returns the previous AC register contents. These
functions do not return any special value to indicate an error.

i960 Processor Library Supplement

4-10

4
fp_getflags, fp_setflags, fp_clrflags, fp_clriflag
Read and modify
floating-point
exception flags
(i960 processor-
specific).

int fp_getflags (void);

int fp_setflags (int val);

int fp_clrflags (int val);

int fp_clriflag (void);

val is the bit pattern for setting the exception flags.

Header File fpsl.h

Discussion

Use fp_getflags to read the current exception flags from the floating-
point AC register. Use fp_setflags to set any of the exception flags to 1
and fp_clrflags to clear any of the exception flags to zero. Use
fp_clriflag to clear the interrupt overflow flag. The fp_setflags and
fp_clrflags functions also return the previous values of all the
exception flags. For example, the following statement fetches the
exception flags into the fpex_flags variable:

fpex_flags = fp_getflags();

The fp_setflags and fp_clrflags functions use only the 5 low-order
bits of val . To operate on any particular flag, set the corresponding bit in
val to 1 as follows:

• Set val bit 0 to change the overflow flag (bit 16 of the AC register).
• Set val bit 1 to change the underflow flag (bit 17 of the AC register).
• Set val bit 2 to change the invalid-operation flag (bit 18 of the AC

register).

Library Functions

4-11

4
• Set val bit 3 to change the zero-divide flag (bit 19 of the AC register).
• Set val bit 4 to change the inexact flag (bit 20 of the AC register).

Returns

On successful completion, fp_getflags returns the current exception
flags values. The fp_setflags , fp_clrflags , and fp_clriflag

functions return the previous flag values. These functions do not return
any special value to indicate an error.

Related Topics
fpgetenv, fp_setenv

fp_getmasks, fp_setmasks
Read and modify
floating-point
exception masks
(i960 processor-
specific).

int fp_getmasks (void);

int fp_setmasks (int val);

val is the bit pattern for setting the exception masks.

Header File fpsl.h

i960 Processor Library Supplement

4-12

4
Discussion

Use fp_getmasks to read the current exception mask bits from the
floating-point AC register. Use fp_setmasks to set any of the exception
mask bits to a specified value. For example, the following statement
masks the invalid-operation exception:

(void) fp_setmasks(0x04);

The fp_setmasks function uses only the 5 low-order bits of val . To
operate on any particular mask bit, set the corresponding bit in val as
follows:

• Set val bit 0 to change the overflow mask (bit 24 of the AC register).
• Set val bit 1 to change the underflow mask (bit 25 of the AC register).
• Set val bit 2 to change the invalid-operation mask (bit 26 of the AC

register).
• Set val bit 3 to change the zero-divide mask (bit 27 of the AC

register).
• Set val bit 4 to change the inexact mask (bit 28 of the AC register).

Returns

On successful completion, fp_getmasks returns the current mask values
and fp_setmasks returns the previous values. These functions do not
return any special value to indicate an error.

Related Topics

fpgetenv , fp_setenv

Library Functions

4-13

4
fp_getround, fp_setround
Read and modify
floating-point
rounding mode
(i960 processor-
specific).

int fp_getround (void);

int fp_setround (int val);

val is the bit pattern for setting the rounding mode.

Header File fpsl.h

Discussion

Use fp_getround to read the current rounding mode from the floating-
point AC register. Use fp_setround to set the rounding mode to a
specified value. The fp_setround function also returns the previous
value of the rounding mode. For example, the following statement sets the
rounding mode to truncate and saves the previous rounding mode in the
save_rm variable:

save_rm = fp_setround(3);

These functions use only the two low-order bits of val , forcing the
rounding mode value to be in the range 0 to 3. To specify a rounding
mode, you can use the following values for val :

• Use 0 to specify round-to-nearest.
• Use 1 to specify rounding down (toward minus infinity).
• Use 2 to specify rounding up (toward plus infinity).
• Use 3 to specify truncation (toward 0).

i960 Processor Library Supplement

4-14

4
Returns

On successful completion, fp_getround returns the current rounding
mode and fp_setround returns the previous rounding mode. These
functions do not return any special value to indicate an error.

Related Topics
fpgetenv, fp_setenv

_getac, _setac
Read and modify
arithmetic controls
(i960 processor-
specific).

unsigned _getac (void);

unsigned _setac (unsigned val);

val is the bit pattern for setting the arithmetic
controls.

Header File fpsl.h

Discussion

Use _getac to read the current value of the arithmetic controls (AC)
register. Use _setac to set the AC register. The _setac function also
returns the previous value of the AC register. For example, the following
statement sets the arithmetic controls correctly for the C run-time library
functions, including the integer overflow fault, floating-point overflow
fault, floating-point underflow fault, floating-point zero-divide fault,
floating-point inexact fault, denormalized numbers, and round-to-nearest
rounding mode:

old_ac = _setac(0x3b001000)

Library Functions

4-15

4
You can use _getac and _setac on any i960 processor even though the
i960 CA processor uses the fpem_CA_AC external variable. The libm xx

floating-point library for each processor contains an appropriate
implementation of these functions.

The operation of _getac and _setac on each processor is as follows:

• On the i960 CA and CF processors, _getac returns the value of the AC
register ORed with fpem_CA_AC. The _setac function sets both the
AC register and fpem_CA_AC.

• On other i960 processors, _getac and _setac return and set the AC
register value, respectively.

Returns

On completion, _getac returns the value of the AC register or the
fpem_CA_AC variable. The _setac function returns the previous value of
the AC register or the fpem_CA_AC variable. These functions do not
return any special value to indicate an error.

Related Topics
fp_getenv, fp_setenv

getw
Read integer
from stream.
SVID

int getw (FILE * stream);

stream identifies the input stream.

Header File stdio.h

i960 Processor Library Supplement

4-16

4
Discussion

Use this function to read the next two bytes from the stream opened by
fopen or creat . The apparent behavior of this function can vary due to
word length and byte ordering in the environment in which the stream is
written using putw . For example, the following program copies the binary
file filename.in to the file filename.out :

#include <stdio.h>

main()
{
 FILE *instream, *outstream;

 int word;

 if (!(instream = fopen("filename.in", "rb")))
 return;

 if (!(outstream = fopen("filename.out", "wb")))
 { fclose(instream);
 return;
 }

 while ((word = getw(instream)) != EOF)
 putw(word, outstream);

 fclose(outstream);
 fclose(instream);
}

Returns

On successful completion, getw returns the input word; otherwise, getw

returns EOF as an error or end-of-file indicator.

Since the error and end-of-file indicators are both EOF, which can also be a
valid data word, use feof and ferror to distinguish between end-of-file,
an error, or a valid return of EOF.

Library Functions

4-17

4
Related Topics

creat (Chapter 5) fopen (C: A Reference Manual)
feof (C: A Reference Manual) putw

ferror (C: A Reference Manual)

getopt
Get option letter from
argument vector.

int (getopt)(int argc , char ** argv , char * optstring);

argc the number of pointers in argv .

argv points to the index of the next command line argument
to be processed.

optstring points to the string containing the option letters.

Header File stdlib.h

Discussion

Function getopt returns the next option letter in argv that matches a
letter in optstring . optstring must contain the option letters
recognized by the command line command using getopt() . If a letter is
followed by a colon, the option is expected to have an argument or group
of arguments which must be separated from it by white space.

optarg is set to point to the start of the option argument on return from
getopt .

getopt places the argv index of the next argument to be processed in
optind . The external function optind() is initialized to 1 before the
first call to getopt .

i960 Processor Library Supplement

4-18

4
When all options have been processed (up to the first non-option
argument) getopt returns -1. The special option "-- " can be used to
delimit the end of the options; when it is encountered, -1 is returned and
"-- " is skipped.

Returns

This function returns the next option letter in argv that matches a letter in
optstring .

hypot
Find the Euclidean
distance.

double hypot (double x, double y);

x and y are double-precision floating-point values.

Header File math.h

Discussion

Use this function to find and return the hypotenuse for sides of lengths x

and y , that is, the square root of the sum of the squares of x and y .

Returns
()x y2 2+

Library Functions

4-19

4
_IEEE_sqrt, _IEEE_sqrtf
Determine the IEEE
conformant square root
of a value.

double _IEEE_sqrt(double x);

float _IEEE_sqrtf(float x);

x is a user provided value.

Header File math.h

Discussion

The _IEEE_sqrt and _IEEE_sqrtf functions produce the square root of
the value provided in x . The _IEEE_sqrt functions conform fully to
IEEE-754. _IEEE_sqrtf provides single precision accurracy.
_IEEE_sqrt provides double precision accurracy.

Return Value

Upon successful completion, _IEEE_sqrtf returns the single precision
square root of the value in x . The function performs fault checking in
conformance with the IEEE-754 specification.

Upon successful completion, _IEEE_sqrt returns the double precision
square root of the value in x . The function performs fault checking in
conformance with the IEEE-754 specification.

i960 Processor Library Supplement

4-20

4
itoa
Convert integer to
string.

char *itoa (int value , char * string , int radix);

value is the integer to be converted.

string is a pointer to the string.

radix is the radix of value , in the range 2 through 36.

Header File stdlib.h

Discussion

Use this function to convert the input integer value to the equivalent
null-terminated character string and store the result in string . Specify
the sign of value and the base of the conversion with the radix

argument. The absolute value of radix must be in the range 2 through
36. If radix is negative, value is interpreted as signed. If radix is
positive, value is interpreted as unsigned. For example, the following
program converts the number in value to a decimal ASCII string in the
string variable and prints the value of string :

#include <stdlib.h>
#include <stdio.h>

main()
{
 int value;
 char string[34];
 char * num;

 value = 12;
 num = itoa(value, string, 10);
 printf("%s\n", string);
}

Library Functions

4-21

4
The string buffer must be large enough to hold the ASCII representation
of the largest integer possible in your execution environment.

Returns

The itoa function returns a pointer to the string. This function does not
return any special value to indicate an error.

Related Topic

sprintf (C: A Reference Manual)

itoh
Convert integer to
hexadecimal.

char *itoh (int n, char * buffer);

n is the integer to be converted.

buffer is a pointer to the string.

Header File stdlib.h

Discussion

Use this function to convert the input integer n into the equivalent
null-terminated hexadecimal string in the buffer pointed to by buffer .
The buffer must be large enough to hold the hexadecimal representation of
the largest integer possible in your execution environment. This function
converts all hexadecimal characters to lowercase. For example, the
following program converts the number in the variable n to a hexadecimal
ASCII string in hexstr and prints the hexstr :

#include <stdlib.h
#include <stdio.h

i960 Processor Library Supplement

4-22

4
main()
{
 unsigned int n;
 char hexstr[9];
 char * number;

 n = 0x3ff;
 number = itoh(n, hexstr);
 printf("%s\n", hexstr);
}

For portability, use sprintf with the %x conversion specifier.

Returns

The itoh function returns a pointer to the string. This function does not
return any special value to indicate an error.

Related Topic

sprintf (C: A Reference Manual)

lfind, lsearch
lfind - Linear search
lsearch - Linear search
and update.
SVID

char *lfind (const char * key , const char * base ,
 unsigned * nelp , unsigned width ,
 int (* compar)(const void *, const void *));

char *lsearch (const char * key , char * base ,
 unsigned * nelp , unsigned width ,
 int (* compar)(const void *, const void *));

key is a pointer to the value to be searched for.

Library Functions

4-23

4
base is a pointer to the first element in the array.

nelp is a pointer to the number of elements in the
array.

width is the size, in bytes, of each element in the array.

compar points to the function to compare each element in
the array with the key .

Header File search.h

Discussion

Use lfind or lsearch to perform a linear search of an array of elements
beginning at base and searching to the first occurrence of key . The value
of nelp points to the number of elements in the array. width indicates the
size of each element in bytes. The array need not be sorted.

If lsearch does not find a match, it adds key to the end of the array, and
returns a pointer to the new position of key . Since lsearch does not
allocate space for a new element, you must ensure that space is available
for the element.

You must supply the comparison function that compar points to. The
comparison function must take two arguments pointing to the elements to
be compared, return 0 if the elements are identical, and return non-zero
otherwise.

Returns

Both functions return a pointer to the first match. If lfind does not find a
match, it returns a NULL pointer. If lsearch appends key to the array, the
return value is a pointer to the new key element in the array. These
functions do not return any special value to indicate an error.

Related Topic

bsearch (C: A Reference Manual)

i960 Processor Library Supplement

4-24

4
ltoa, ltos
Convert long integer to
string.

char *ltoa (long num, char * string , int radix);

char *ltos (long num, char * string , int radix);

num is the integer to be converted.

string is the pointer to the string.

radix is the radix of num, in the range 2 through 36

decimal.

Header File stdlib.h

Discussion

Use ltoa to convert the supplied long int value in num to the equivalent
ASCII string in the string buffer using base radix , which must be in the
range 2 through 36 decimal. For example, the following program uses
ltoa to convert a number in the variable number to an ASCII string in the
variable longstr and prints the longstr string:

#include <stdlib.h>
#include <stdio.h>

main()
{
 long number;
 char longstr[12];
 char * buf;

 number = 10223444L;
 buf = ltoa(number, longstr, 10);
 /* longstr contains "10223444" */
 printf("%s\n", longstr);
}

Library Functions

4-25

4
For ltos , radix can be an integer value from 2 to 36 or -2 to -36

decimal. The absolute value of radix is the number base of the input
argument. A negative radix indicates that the input value is a signed

long . A positive radix indicates an unsigned long input.

The buffer must be large enough to hold the largest number possible in
your execution environment. The string is null-terminated.

Returns

The ltoa and ltos functions return a pointer to the string. This function
does not return any special value to indicate an error.

Related Topics

ltoh

ultoa , utoa

ltoh
Convert long integer to
hexadecimal.

char *ltoh (unsigned long num, char * string);

num is the integer to be converted.

string is the pointer to the string.

Header File stdlib.h

i960 Processor Library Supplement

4-26

4
Discussion

Use this function to convert the long integer value in num into the
equivalent hexadecimal string in the string buffer. The buffer must be
large enough to hold the hexadecimal representation of the largest possible
integer. For example, the following program uses ltoh to convert the
number in the variable number to an ASCII value in the variable hexstr

and prints the hexstr string:

#include <stdlib.h>
#include <stdio.h>

main()
{
 unsigned long number;
 char hexstr[9];
 char * buf;

 number = 10223444L;
 buf = ltoh(number, hexstr);
 /* hexstr contains "9BFF54" */
 printf("%s\n", hexstr);
}

For portability, use sprintf with the %lx conversion specifier.

Returns

The ltoh function returns a pointer to the string. This function does not
return any special value to indicate an error.

Related Topics

ltoa, ltos

sprintf (C: A Reference Manual)
ultoa, utoa

Library Functions

4-27

4
memicmp
Compare characters in
memory, ignore case.

int memicmp (const void * ptr1 , const void * ptr2 ,
unsigned len);

ptr1 points to the source string.

ptr2 points to the destination string.

len is the number of characters to compare.

Header File string.h

Discussion

Use this function to compare two strings lexicographically, ignoring
differences between lowercase and uppercase. The memicmp function is a
case-insensitive version of the ANSI function memcmp. As such, memicmp

compares len characters, starting at ptr1 , with len characters at ptr2 .
The result indicates whether the first string is less than, equal to, or greater
than the second string, ignoring the case of each string. The digits in the
strings are compared lexicographically; that is, as characters and not as
values. For example, 2 is greater than 13, but 02 is less than 13.

Returns

If the first string is lexicographically less than the second (ignoring case),
memicmp returns a negative integer. If the first string is greater (ignoring
case), memicmp returns a positive integer. If the strings are equal,
memicmp returns 0. This function does not return any special value to
indicate an error.

i960 Processor Library Supplement

4-28

4
Related Topics

memcmp (C: A Reference Manual)
stricmp

strnicmp

putw
Write integer to stream.
SVID

int putw (int w, FILE * stream);

w contains the two bytes to be written.

stream Identifies the output stream.

Header File stdio.h

Discussion

Use this function to write w to the specified stream. This function writes
the least-significant byte of the word first.

Returns

On successful completion, putw returns the word written, which can be
EOF. You can use feof and ferror to distinguish between an error and a
valid return of EOF.

Related Topics

feof (C: A Reference Manual)
ferror (C: A Reference Manual)
getw

Library Functions

4-29

4
rmtmp
Remove temporary files.

int rmtmp (void);

Header File stdio.h

Discussion

Use this function to close and delete any files opened by the function
tmpfile , described in C: A Reference Manual.

Returns

The rmtmp function returns the number of files deleted. This function
does not return any special value to indicate an error.

Related Topic

tmpfile (C: A Reference Manual)

square
Square a number.

double square (double val);

val is the number to be squared.

Header File math.h

i960 Processor Library Supplement

4-30

4
Discussion

Use this function to calculate the square of the number val (that is, val *
val).

Returns

The square function returns the value of val * val . This function does
not return any special value to indicate an error.

strdup
Duplicate string.

char *strdup (const char * s);

s points to a character string to be copied.

Header File string.h

Discussion

Use this function to copy the character string pointed to by s . The malloc

function is called to obtain the memory space needed for the copy. Use
free to return the memory space when the program no longer needs it.

Returns

The strdup function returns a pointer to the duplicate string placed in
memory. This function returns NULL if malloc cannot allocate the
required memory.

Library Functions

4-31

4
Related Topics

free (C: A Reference Manual)
malloc (C: A Reference Manual)

stricmp
Compare strings, ignore
case.

int stricmp (const char * s1 , const char * s2);

s1 , s2 point to the strings to be compared.

Header File string.h

Discussion

Use this function to compare two strings lexicographically, ignoring
distinctions between lowercase and uppercase. The stricmp function is a
case-insensitive version of the ANSI strcmp function. As such, stricmp

compares the first null-terminated string to the second and returns a value
based on whether the first string is lexicographically less than, greater
than, or the same as the second string, ignoring case. For example, the
following program compares two strings and prints the results if the strings
are equal:

#include <stdio.h>
#include <string.h>

main()
{
 int result;
 char *str3="compUter";
 char *str4="CoMputeR";

if (stricmp(str3,str4)==0)
 printf("Strings %s and %s are equal (case-insensitive)\n",
 str3,str4);
}

i960 Processor Library Supplement

4-32

4
Returns

The stricmp function returns an integer greater than, equal to, or less
than 0, depending on whether the string pointed to by s1 is
lexicographically greater than, equal to, or less than the string pointed to
by s2 , ignoring case in both strings. This function does not return any
special value to indicate an error.

Related Topics

memicmp

strcmp (C: A Reference Manual)
strnicmp

strlwr, strupr
Convert string to lower
or upper case.

char *strlwr (char * s);

char *strupr (char * s);

s points to the string to be converted.

Header File string.h

Discussion

Use the strlwr function to convert any uppercase alphabetic characters in
the string, pointed to by s , to lowercase.

Use strupr to convert any lowercase alphabetic characters in the string,
pointed to by s , to uppercase.

Library Functions

4-33

4
These functions modify strings without moving them, so their input and
return values are the same. These functions resemble the ANSI tolower

and toupper functions, but apply to an entire string rather than a single
character.

Returns

The strlwr and strupr functions return a pointer to the modified string.
This function does not return any special value to indicate an error.

Related Topics

tolower (C: A Reference Manual)
toupper (C: A Reference Manual)

strnicmp
Compare strings, ignore
case.

int strnicmp (const char * s1 , const char * s2 , size_t n);

s1 , s2 point to the strings to be compared.

n is the maximum number of characters in the
strings to be compared.

Header File string.h

Discussion

Use this function to compare two strings lexicographically, ignoring
distinctions between lowercase and uppercase. The strnicmp function is
a case-insensitive version of the ANSI strncmp function. As such, this
function compares up to n characters of the first null-terminated string to

i960 Processor Library Supplement

4-34

4
the second and returns a value based on whether the first string is
lexicographically less than, greater than, or the same as the second string
(ignoring case).

For example, the following program compares two strings and prints the
results if the strings are equal:

#include <string.h>
#include <stdio.h>

main()
{
 char *str1="hello world";
 char *str2="HELLO";
 char *str3="compUting";
 char *str4="CoMputeR";

 if (strnicmp(str1,str2,5)==0)
 { printf("The first 5 characters of the strings %s",str1);
 printf(" and %s are equal (case-
 insensitive).\n",str2);
 }
 if (strnicmp(str3,str4,6)==0)
 { printf("The first 6 characters of the strings %s",str3);
 printf(" and %s are equal (case-
 insensitive).\n",str4);
 }
}

Returns

The strnicmp function returns an integer less than, greater than or equal
to zero depending on whether the first n characters of the string pointed to
by s1 are less than, greater than or equal to the first n characters of the
string pointed to by s2 . This function does not return any special value to
indicate an error.

Library Functions

4-35

4
Related Topics

memicmp

stricmp

strncmp (C: A Reference Manual)

strnset
Set characters in string.

char *strnset (char * s, int c , size_t n);

s points to the string to be set.

c is the character-coded integer value to be
assigned to characters in the string.

n is the number of characters to be set.

Header File string.h

Discussion

Use this function to set n number of characters of the string s to the
value c .

Returns

The strnset function returns a pointer to the string. This function does
not return any special value to indicate an error.

Related Topic

strset

i960 Processor Library Supplement

4-36

4
strrev
Reverse characters in
string.

char *strrev (char * s);

s points to the string to be reversed.

Header File string.h

Discussion

Use this function to reverse the order of characters in the string pointed to
by s , leaving the terminating null character at the end.

Returns

The strrev function returns the pointer to the modified string. This
function does not return any special value to indicate an error.

strset
Set characters in string.

char *strset (char * s, int c);

s points to the string to be set.

c is the character-coded integer value to be
assigned to the characters in the string.

Header File string.h

Library Functions

4-37

4
Discussion

Use this function to set all the characters in the string pointed to by s ,
except the required terminating null character, to the value c .

Returns

The strset function returns a pointer to the string. This function does not
return any special value to indicate an error.

Related Topic

strnset

tzset
Set time zone variables.
SVID

void tzset (void);

Header File time.h

Discussion

Use this function to set the values of the following macros:

daylight provides the daylight savings time flag. The flag
value is 0 if daylight savings time is in effect and
nonzero otherwise. The default value is 1. The
daylight value has the type int .

i960 Processor Library Supplement

4-38

4
timezone provides the difference, in seconds, between

Greenwich Mean Time (GMT) and local time.
For example, the timezone value for Eastern
Standard Time (EST) is 18000 . The timezone

value has the type long .

tzname provides a pair of strings identifying the time
zone. The data type of each tzname value is
declared as follows:

extern char *tzname[2]

The default value of tzname[0] is PST,
indicating Pacific Standard Time, and of
tzname[1] is DST, indicating daylight savings
time.

The tzset function uses the TZ environment variable, specifying the
relevant system time zone, to set the values of the daylight , timezone ,
and tzname global variables. The value of TZ must be in the form:

aaan [bbb]

aaa and bbb are sequences of three arbitrary characters.

n is the signed difference in hours from Greenwich
Mean Time. A negative value indicates a
location east of Greenwich, England.

The bbb string is optional. Including bbb indicates that daylight savings
time is currently in effect. The default value for TZ is PST8.

For example, when daylight is 1, TZ is EST5EDT for New York,
CST6CDT for Illinois, MST7MDT for Colorado, and PST8PDT for Oregon.

Related Topics

time (Chapter 5)
time.h (Chapter 3)

Library Functions

4-39

4
ultoa, utoa
Convert unsigned long
to string.
Convert unsigned
integer to string.

char *ultoa (unsigned long value , char * string , int radix);

char *utoa (unsigned int value , char * string , int radix);

value is the value to be converted.

string is a pointer to the string.

radix is the radix of value , in the range 2 through 36
decimal.

Header File stdlib.h

Discussion

Use ultoa to convert the unsigned long value value to the equivalent
null-terminated character string and store the result in string . Use utoa

to convert the unsigned int value value to the equivalent
null-terminated character string and store the result in string . Specify
the radix of conversion with the radix argument, which must be in the
range 2 through 36 decimal.

For example, the following program converts a value to a string and prints
it:

#include <stdio.h>
#include <stdlib.h>
main()
{
 unsigned int val;
 char *buffer;
 char * buf;

i960 Processor Library Supplement

4-40

4
 buffer=malloc(10);
 val=0x5689;
 buf=utoa(val,buffer,4); /* buffer is "11122021" */
 fputs(buffer,stdout);
 free(buffer);
}

The string buffer must be large enough to hold the ASCII representation
of the largest integer possible in your execution environment.

For portability, use sprintf with the %lo , %ld , or %lx conversion
specifiers, if radix is 8, 10, or 16, respectively, instead of calling ultoa .
Use sprintf with the %o, %d, or %x conversion specifiers, if radix is 8,
10, or 16, respectively, instead of calling utoa .

Returns

The ultoa and utoa functions return pointers to the converted strings.
These functions do not return any special value to indicate an error.

Related Topics

ltoa , ltos

ltoh

sprintf (C: A Reference Manual)

Customizing the Libraries

5-1

5
The libraries support reentrancy under environments using single-thread
applications for supported monitors and evaluation boards. Environments
other than the evaluation boards directly supported by the MON960
retargetable monitor require retargeting of the low-level,
environment-dependent libraries. Additionally, use of monitors not
supported by the supplied board-specific libraries forces retargeting of the
low-level, board-dependent libraries.

This chapter describes several types of reentrancy and explains how to
rewrite low-level library functions and system calls for applications that
use an unsupported board, monitor, or type of reentrancy.

Creating custom monitor libraries requires attention to the C run-time
library reentrancy material presented in the Making the Libraries
Reentrant section, which includes the following:

• how concurrent tasks and functions can share data without conflict
• how rewritten low-level functions must operate

Retargeting an application to run on other than a MON960-supported
evaluation board requires attention to the retargeting information in
Retargeting the Libraries section, which includes the following:

• how the library functions use system calls
• how rewritten system calls must operate

i960 Processor Library Supplement

5-2

5
Making the Libraries Reentrant

This section

• defines reentrancy and associated terms
• describes the problems of persistent data
• describes the actions a newly written reentrant function must perform
• lists stubs to act as guides for the writing of new low-level routines.

This section assumes familiarity with the environment in which a new
application will run and some familiarity with the issues of reentrancy.

Reentrancy Defined

This section contains a list of terms and definitions used in the discussion
of reentrancy, a general definition of reentrancy, and a description of
persistent data. The information in this section supports the writing of
reentrant functions.

Terms

The remainder of this chapter uses the following terms:

context data data that multiple threads can share that
are directly referenced by functions.

multi-tasking allow more than one task or process
execution environments (referred to as a thread) to be active

concurrently.

parallel reentrancy two or more processes can execute a
function simultaneously.

persistent data consists of data structures and other
variables that the libraries maintain
outside of any function, to preserve data
between function calls or to
communicate data between functions.
Persistent data can change during
execution. The program allocates and

Customizing the Libraries

5-3

5
initializes all persistent data structures as
needed during startup and does not
depend on a loader to store initial values.

recursive reentrancy a process can suspend one instance of
the function, start and execute another
instance to completion, and reactivate
the suspended instance.

thread an independent execution of code that
has its own instruction pointer and stack.
For example, in a simple embedded
control application, an interrupt handler
constitutes a separate thread of
execution.

thread data data unique to the thread. The data
cannot be shared.

time-slice reentrancy execution can alternate or rotate
between two or more processes
executing the function. One process is
active and the others are suspended at
any given time.

Types of Reentrancy

A reentrant function can be active in two or more instantiations at once.
In all cases of reentrancy, any given instance of the function must be able
to operate on memory locations and processor registers without destroying
the memory and register values used by any suspended or concurrent
instantiation.

For example, in a multi-tasking environment, a reentrant function can be
called from two or more concurrent threads without causing conflicting
updates to the data structures used by the function.

i960 Processor Library Supplement

5-4

5
The three types of multiple instantiation follow:

Parallel Two or more processes can execute a function
simultaneously. Multi-tasking execution
environments allow more than one task or
process (referred to as a thread) to be active
concurrently.

Time-sliced Execution can alternate or rotate between two or
more processes executing the function. One
process is active and the others are suspended at
any given time.

Recursive A process can suspend one instance of the
function, start and execute another instance to
completion, and reactivate the suspended
instance.

Persistent Data

Of the types of data the libraries use, only persistent data presents a
problem for reentrancy. Because persistent data exists outside the
function, separate instantiations of a function must not destroy data needed
by other instantiations. Persistent data occurs in the following two forms:

Thread data must be unique to the thread and cannot be
shared. This category includes, for example, the
errno variable, the random number seed, and
buffers containing structure and string return
values of specific C functions. Thread data can
be modified as a side effect rather than as the
primary intent of a function call.

Context data is the only data directly referenced by functions
that multiple threads can share. You can directly
reference other shared data through pointers
passed to functions, but data referenced in that
way is not protected.

Customizing the Libraries

5-5

5
The context of a thread is the data space that can
be shared between concurrent threads, and
context data is shared between two or more
threads in a context. The two classes of
shareable data are:

• The exit handler and open I/O stream lists.
• Currently open streams, including the

standard streams stdin , stdout , stderr .

The libraries process open streams independently
of the clean-up lists that exit processes. All
threads in a single context can share streams or
each thread can have its own streams.

Writing Reentrant Functions

This section contains criteria and procedures necessary for writing
reentrant functions and low-level reentrancy support functions. This
section contains:

• general requirements for reentrant functions
• prerequisites for ROM based reentrant functions
• a list of actions each new function must perform
• a detailed discussion of each action
• tables of low-level memory handling functions and existing library

functions which do not support reentrancy.

General Reentrancy Requirements

Reentrancy is possible when references to persistent data are made under
the following conditions:

• Data is not shared between processes.
• References are controlled by preventing other processes from

updating the data in conflicting ways.

The portable functions in the libraries are reentrant and support reentrant
use of their data if the execution environment provides reentrant
supporting access functions. Since the access functions in the libraries do

i960 Processor Library Supplement

5-6

5
not support reentrant operation, you must replace these functions with
access functions appropriate to your execution environment.

There are four categories of reentrancy:

Category 1: Reentrant
• These functions call no other functions that are not known to be

reentrant.
• All variables are local, stored on the stack or in a register.
• Functions can read statically allocated constant data.
• Functions can read and write data pointed to by parameters that were

passed to the function. In such cases it is the caller's place to assure
that the data is correctly accessed/protected if the function is
reentered.

Category 2: Reentrant Except for Setting errno
• These routines are reentrant except for their setting of the errno

variable.

Category 3: Reentrant Except for Setting fpem_CA_AC
• These routines are reentrant if at interrupt, or thread context change,

the current state of the fpem_CA_AC is saved and restored. Note that
for K- and S-series processors, there is no fpem_CA_AC, and therefore
these routines are all reentrant for these processors.

Category 4: Non-reentrant
• Uses statically allocated variables that are not accessed via thread data

structure.

Category 5: Unspecified
• Uses statically allocated variables that are accessed via thread data

structure.
• Any routine that does IO is unspecified.

Using these categories, the entry points of the standrd C and math libraries
and the accelerated and alternate floating-point libraries are categorized in
the following tables. Note that some functions are in two categories
(e.g., sscanf is in both Category 1 and Category 2).

Customizing the Libraries

5-7

5
Table 5-1 Category 1: Reentrant Functions

libc C Library

_getch ediv itoa qsort strrchr

_Ldoprnt feof itoh setlocale strrev

_Lmodeparse ferror labs strcat strrpos

_putch isalnum ltoa strchr strrpos

_thread_init isalpha ltoh strcmp strset

_tolower isascii ltos strcoll strspn

_toupper iscntrl mblen strcpy strstr

abs isdigit mbstowcs strftime strupr

atoi isdigit mbtowc stricmp strxfrm

bcmp isgraph memchr strlen system

bcopy islower memcmp strlwr tolower

bcopy isodigit memcpy strnicmp toupper

bsearch isprint memicmp strnset ultoa

bzero ispunct memmove strpos utoa

clock isspace memset strpos wcstombs

div isupper mktime strrchr wctomb

libm Math Library

__clsdfsi _Lclog2xf _Lmatherr _Lylog2xl fabsl

__clssfsi _Lclog2xl _Lratan2 atan fmod

__clstfsi _Lclogep2x _Lratan2f atanf fp_clriflag

_AFP_dp2a _Lclogep2xf _Lratan2l atanl frexp

_AFP_mZERO_S _Lclogep2xl _Ls_do_mul copysign modf

_AFP_tp2a _Ld_do_mul _Lsatan2 copysignf sinl

_Lclass _Lexp2m1 _Lsatan2f copysignl square

_Lclassf _Lexp2m1f _Lsatan2l cosl tanl

_Lclassl _Lexp2m1l _Lylog2x fabs

_Lclog2x _Lhypot_util _Lylog2xf fabsf

continued ☛

i960 Processor Library Supplement

5-8

5
Table 5-1 Category 1: Reentrant Functions (continued)

libh Accelerated Floating-point Library

__fixdfsi AFP_Fault_Invalid_Operation_S

__fixsfsi AFP_Fault_Invalid_Operation_T

__fixtfsi AFP_Fault_Overflow_D

__fixunsdfsi AFP_Fault_Overflow_S

__fixunssfsi AFP_Fault_Overflow_T

__fixunstfsi AFP_Fault_Reserved_Encoding_D

__floatsidf AFP_Fault_Reserved_Encoding_S

__floatsitf AFP_Fault_Reserved_Encoding_T

__floatunssidf AFP_Fault_Underflow_D

__floatunssitf AFP_Fault_Underflow_S

AFP_Fault_Inexact_D AFP_Fault_Underflow_T

AFP_Fault_Inexact_S AFP_Fault_Zero_Divide_D

AFP_Fault_Inexact_T AFP_Fault_Zero_Divide_S

AFP_Fault_Invalid_Operation_D AFP_Fault_Zero_Divide_T

libfp Alternate Floating-point Library

__absdf2 __fixsfsi __subsf3 dplog fpatn

__abssf2 __fixunsdfsi __truncdfsf2 dpsin fpcos

__adddf3 __fixunssfsi __truncdfsf2_g960 dpsqrt fpexp

__addsf3 __floatsidf ceilf dptan fpln

__cmpdf2 __floatsisf dascbin dpxtoi fplog

__cmpsf2 __muldf3 dbinasc eptodp fpsin

__divdf3 __mulsf3 dpatn faint fpsqrt

__divsf3 __negdf2 dpcos fascbin fptan

__extendsfdf2 __negsf2 dpexp fbinasc fpxtoi

__fixdfsi __subdf3 dpln floorf

Customizing the Libraries

5-9

5
Table 5-2 Category 2: Reentrant Except for Setting errno

libc C Library

atol sprintf strerror strtoul

ldiv sscanf strtol vsprintf

libm Math Library

_AFP_INF_D _Lqerrorf atan2l log sinh

_AFP_INF_S _Lqexpm1 atof log10 sqrt

_AFP_int_pow _Lstrtoe cos log10f sqrtf

_AFP_int_powf _Lstrtof cosf log10l sqrtl

_AFP_NaN_D acos cosh logf strtod

_AFP_NaN_S acosf exp logl tan

_AFP_QNaN_D asin expf pow tanf

_AFP_QNaN_S asinf expm1 powf tanh

_Lfltscan atan2 hypot sin

_Lqerror atan2f ldexp sinf

i960 Processor Library Supplement

5-10

5
Table 5-3 Category 3: Reentrant Except for Setting fpem_CA_AC

libc C Library

sprintf sscanf vsprintf

libm Math Library

__Lnan1 _Lisnan difftime fp_remf log10

__Lnan1f _Lisnanf exp fp_reml log10f

__Lnan1l _Lisnanl expf fp_rmd log10l

_getac _Lqerror expm1 fp_rmdf log1p

_IEEE_sqrt _Lqexpm1 expm1f fp_rmdl log1pf

_IEEE_sqrtf _Lquickexit floor fp_round log1pl

_Lfaultexit _Lquickexitf floorf fp_roundf logf

_Lfaultexitf _Lquickexitl floorl fp_roundl logl

_Lfaultexitl _setac fp_clrflags fp_scale pow

_Lflt_interface acos fp_getenv fp_scalef powf

_Lfltprnt acosf fp_getflags fp_scalel sinh

_Lfltscan asin fp_getmasks fp_setenv sqrt

_Lfpd_exit asinf fp_getround fp_setflags sqrtf

_Lfpe_exit ceil fp_logb fp_setmasks tanh

_Lfpi_exit ceilf fp_logbf fp_setround

_Lfpi_quickexit ceill fp_logbl hypot

_Lfps_exit cosh fp_rem log

continued ☛

Customizing the Libraries

5-11

5
Table 5-3 Category 3: Reentrant Except for Setting fpem_CA_AC (continued)

libh Floating-point Library

___extenddftf2 __floatunssisf __rmddf3 __subsf3 ceill

___extendsfdf2 __floordf2 __rmdsf3 __subtf3 floor

___extendsftf2 __floorsf2 __rmdtf3 __truncdfsf2 floorf

__adddf3 __floortf2 __rounddf2 __truncdfsf2_g960 floorl

__addsf3 __logbdf2 __rounddfsi __trunctfdf2 fp_clrflags

__addtf3 __logbsf2 __roundsf2 __trunctfsf2 fp_clriflag

__ceildf2 __logbtf2 __roundsfsi AFP_NaN_D fp_getenv

__ceilsf2 __muldf3 __roundtf2 AFP_NaN_S fp_getflags

__ceiltf2 __mulsf3 __roundtfsi AFP_NaN_T fp_getmasks

__cmpdf2 __multf3 __roundunsdfsi AFP_RRC_D fp_getround

__cmpsf2 __remdf3 __roundunssfsi AFP_RRC_D_2 fp_setenv

__cmptf2 __remsf3 __roundunstfsi AFP_RRC_S fp_setflags

__divdf3 __remtf3 __scaledfsidf AFP_RRC_S_2 fp_setmasks

__divsf3 __rintdf2 __scalesfsisf AFP_RRC_T fp_setround

__divtf3 __rintsf2 __scaletfsitf ceil

__floatsisf __rinttf2 __subdf3 ceilf

Table 5-4 Category 4: Non-reentrant

libc C Library

free localeconv raise tmpfile

getenv localtim realloc tmpnam

getopt malloc signal tzset

libm Math Library

ecvt fcvt gcvt

i960 Processor Library Supplement

5-12

5
Table 5-5 Category 5: Unspecified

libc C Library

_assert exit fprintf getchar putw

_exit_init fclose fputc gets rand

_filbuf fcloseall fputchar getw remove

_flsbuf fdopen fputs gmtime rewind

_HL_init fflush fread init_c rmtmp

_Ldoscan fgetc freopen lfind scanf

_stdio_init fgetchar fscanf lsearch setbuf

abort fgetpos fseek perror setvbuf

asctime fgets fsetpos printf strtok

atexit fileno ftell putc ungetc

clearerr flushall fwrite putchar vfprintf

ctime fopen getc puts vprintf

Note that all routines under the C++ Iostream library are also considered
unspecified.

ROM Reentrancy Requirements

If your application executes in read-only memory (ROM), any libraries
you use must be written and compiled so that they meet the following
constraints:

• You can place only constants in the code segment in ROM.
• You must place data that can change during execution in the data

segment in random-access memory (RAM).
• You must place the instructions that initialize RAM data in the code

segment in ROM.
• Each library you use meets all of the constraints for programming into

ROM.

Customizing the Libraries

5-13

5
Contents of Reentrant Functions

To avoid data conflicts, the following three criteria must be true for newly
written functions:

• Startup routines must initialize a context.
• The new function must create and maintain its own data pointers.
• The new function must call semaphores to protect itself from the

influence of other instantiations.

Initializing a New Context

Startup code must initialize both thread data and context data for reentrant
and ROM applications. To start a new context, your startup code must call
the thread-initialization functions in the following order:

1. _thread_init initializes non-shared data.
2. _exit_init initializes memory for the exit handler.
3. _stdio_init initializes the standard I/O streams.

Both the startup code for the context and the initialization code for each
thread must call _thread_init . A new thread starting within an existing
context initializes only the data that it does not share. A new thread can
call _exit_init , _stdio_init , or both, depending on the data that it
shares, as follows:

• If a single call to exit is to terminate all threads within a context,
then:
 The startup code for the context must call _exit_init exactly

once.
 Subsequent threads in the context must not call exit_init .

• If exit is to terminate only the thread that calls it, then each thread in
the context must call _exit_init .

• When two or more threads of a context share standard I/O streams
(stdin , stdout , and stderr), the startup code for the context must
call _stdio_init exactly once to initialize the context for those
threads. Any thread that has its own standard streams must call
_stdio_init .

i960 Processor Library Supplement

5-14

5
Each of these initialization functions calls a corresponding function to
allocate memory for the data. Since these functions, declared in the
header file reent.h , depend on the execution environment, you must
implement versions appropriate to your execution environment. The file
_create.c contains sample source code for these functions in a
single-thread (not reentrant) implementation. The memory allocation
functions are:

_exit_create allocates memory for the exit handler, either
local to the thread or global within the context.

_stdio_create allocates I/O buffers for the standard I/O
streams, either local to the thread or global
within the context.

_thread_create allocates data space for the thread. This block of
memory is associated only with the calling
thread.

Each of these initialization functions operates as a special-purpose malloc

function: the function takes an argument that specifies the amount of
memory requested and returns a pointer to a block of memory at least that
big. The calling thread then owns that block of memory.

To finish initializing the standard streams, _stdio_init also calls the
function _stdio_stdopen . When called with an argument of 0, 1, or 2,
_stdio_stdopen returns the file number associated with stdin , stdout ,
or stderr , respectively.

NOTE. Make sure replacement startup code calls the initialization
functions listed in Table 5-2. The table lists the functions, the libraries in
which each is located, and the action of the function. These low-level
functions make no additional calls which require attention. For a list of
additional functions and the calls each function makes, refer to
Appendix A.

Customizing the Libraries

5-15

5
Table 5-6 Memory Handling Functions for Reentrancy

Usage Name Operation

initialization (These
functions are in the
high-level libraries.)

_exit_init

_stdio_init

_thread_init

Initializes the exit handler for a
new thread in a context.

Initializes the standard I/O
streams for a new thread in a
context.

Initializes non-shared data for
a new thread in a context.

memory allocation
(These functions are in
the MON960 debug
monitor library.)

_exit_create

_stdio_create

_thread_create

Allocates memory for the exit
handler.

Allocates standard stream
buffers associated with a
given thread.

Allocate for a given thread.

memory access
(These functions are in
the MON960 debug
monitor library.)

_exit_ptr

_stdio_ptr

_thread_ptr

_tzset_ptr

Returns a pointer to exit lists.

Returns pointers to the
standard streams.

Returns a pointer to the
thread data space.

Returns a pointer to the _tzset
structure containing time zone
information.

synchronization
(These functions are in
the MON960 debug
monitor library.)

_semaphore_delete

_semaphore_init

_semaphore_signal

_semaphore_wait

Frees resources associated
with a semaphore.

Initializes a semaphore for a
multi-tasking context.

Releases a memory location.

Queues requests for access
to a memory location.

i960 Processor Library Supplement

5-16

5
Creating Pointers to Data

All library functions that access thread or context data use one of the
following access functions to obtain a pointer to the data:

_errno_ptr returns a pointer to the errno flag.

_exit_ptr returns a pointer to the exit lists.

_stdio_ptr returns a pointer to the standard streams.

_thread_ptr returns a pointer to the block of memory unique
to the calling thread.

To return the same pointers as _exit_create , _stdio_create , and
_thread_create for the current thread, the access functions you write
must use the information used by the execution environment to manage
the threads of execution. The file _create.c contains sample source
code for these functions in a single-thread (not reentrant) implementation.

The errno macro contains a value indicating the cause of the most recent
error that has occurred in execution. The address of errno is the value
returned from the _errno_ptr and _thread_create functions. Any
function that can set errno must be able to write to that address.

Calling Semaphore Functions

To prevent different threads from performing conflicting updates,
functions that access context data must call the following semaphore
functions:

_semaphore_delete frees resources associated with a
semaphore.

_semaphore_init initializes a semaphore for a context.

_semaphore_wait queues requests for access to a memory
location.

_semaphore_signal releases a memory location.

Customizing the Libraries

5-17

5
The _semaphore_init function initializes a semaphore. Library
functions later call _semaphore_wait before updating the associated
data. All but the first call to _semaphore_wait with a given address must
be queued for access to that address until the function using the data
releases the address by calling _semaphore_signal . Depending on the
environment, the implementation of _semaphore_init need not be as
comprehensive as the complete interface between threads of a context.
For example, if threads can share I/O streams but exit terminates only the
thread that calls it, then _semaphore_wait needs to be used only to
synchronize access to a stream, not to coordinate the exit lists.

If threads of a context share exit handlers and share open-stream lists but
do not share streams, you can implement the semaphore-queueing
functions as follows:

• If the address passed to _semaphore_wait is within the region
allocated by _exit_create , then either the exit-handler list or the
open-file list is currently being manipulated.

• If the address passed to _semaphore_wait is not within the region
allocated by _exit_create , then a stream is currently being
accessed.

Alternatively, you can implement _semaphore_wait simply so that it
disables interrupts and _semaphore_signal so that it re-enables them.
However, this simpler implementation cannot work in an environment
where I/O is interrupt-driven.

NOTE. The macro implementations of getc , getchar , putc and
putchar do not invoke semaphore operations.

The library allocates void pointers associated with each I/O stream, with
the list of open streams, and with the list of exit handlers. Although the
library functions never use these pointers, the addresses of these pointers
are used as arguments to semaphore functions. You can specify what a

i960 Processor Library Supplement

5-18

5
semaphore function stores in any pointer. For example, as an additional
context to support semaphores, your _semaphore_init can allocate a
block of memory and reference the memory through a pointer.

The file _semaph.c contains sample source code for these functions in a
single-thread (not reentrant) implementation.

To provide reentrancy, you must replace the stub semaphore functions in
the libraries with functions appropriate to your execution environment.

The stub semaphore functions are:

_semaphore_delete

_semaphore_init

_semaphore_signal

_semaphore_wait

Primitive Function Descriptions

The low-level functions in the libraries do not depend on a particular
operating system and are designed for single-thread (not reentrant)
execution. If your execution environment supports memory sharing
between concurrent processes, then you must replace the library of
single-thread functions with a library that supports reentrant execution.
Source file templates for some of the low-level functions are supplied with
the libraries. The low-level templates are in these files in
src/lib/libll/common:

_arg_ini.c isatty.c

c_init.c _map_len.c

_create.c _semaph.c

c_term.c _stdopen.c

_def_sig.c _tzset.c

getend.c

Customizing the Libraries

5-19

5
This section lists function descriptions to help you implement
replacements for library functions. The header files listed with the
function descriptions provide the macros, function prototypes, and other
symbols used by the functions. Appendix A shows which high-level
libraries call these primitive functions.

NOTE. A few low-level functions only call additional low-level functions.
Because they only call other functions, they need not be rewritten. A note
appears in the discussion section of the functions which do not need to be
rewritten.

_arg_init
Sets up the argv and
argc arguments for the
main function.

struct { int argc; char ** argv } _arg_init(void);

Header File None required

Discussion

This function sets up the argv and argc arguments for the main function.

Returns

The _arg_init function returns the appropriate value for the first
parameter to main(argc) in g0, and the appropriate value for the second
parameter to main(argv) in g1.

i960 Processor Library Supplement

5-20

5
Related Topic
_HL_init

_errno_ptr
Get a pointer to the
errno variable.

struct _stdio *_errno_ptr (void);

Header File reent.h

Discussion

This function provides a pointer to errno variable for the current thread.

Returns

The address of the errno variable for the current thread.

Related Topics

None.

_exit_create
Allocate space for exit
list.

struct _exit *_exit_create (unsigned nbyte);

nbyte is the amount of memory in bytes requested.

Header File reent.h

Customizing the Libraries

5-21

5
Discussion

This function allocates nbyte bytes of memory, associates the allocated
space with the thread of execution from which it was called, and returns a
pointer to the allocated space. Any subsequent call to the function
_exit_ptr from the same thread must return the same pointer.

If exit terminates all threads in a context, the startup code must call
_exit_create exactly once and _exit_create need not associate the
memory it allocates with a particular thread. If exit terminates only the
calling thread, _exit_create must be called for each thread as it is
established.

NOTE. The library functions require the _exit structure as declared in
the header file reent.h .

Returns

The _exit_create function returns a pointer to an area of memory at
least nbyte bytes long.

Related Topics
exit, _exit
_exit_init
_exit_ptr

_exit_init
Initialize exit handler.

int _exit_init (void):

Header File reent.h

i960 Processor Library Supplement

5-22

5
Discussion

This function calls _exit_create to allocate space for the _exit

structure and initializes _exit as follows:

• sets the open-file list pointer to null

• sets the exit-handler count to 0

You need not rewrite this high-level function.

NOTE. The library functions require the _exit structure as declared in
the header file reent.h .

Returns

The _exit_init function returns no value.

Related Topics
exit, _exit
_exit_create
_exit_ptr

_exit_ptr
Get a pointer to the exit
handler list.

struct _exit *_exit_ptr (void);

Header File reent.h

Customizing the Libraries

5-23

5
Discussion

This function returns the same pointer as _exit_create if called from the
same thread. This pointer points to the memory space allocated by
_exit_create . If exit terminates all threads in a context, _exit_ptr

need not return a unique pointer for each thread.

NOTE. The library functions require the _exit structure as declared in
the header file reent.h .

Returns

The _exit_ptr function must return the same pointer as did
_exit_create when called by this thread.

Related Topics

exit , _exit

_exit_create

_exit_init

_HL_init
Perform high-level
library initializations.

void _HL_init (void);

Header File None required

i960 Processor Library Supplement

5-24

5
Discussion

This function, included in the architecture-specific libc xx .a high-level
libraries, performs all necessary high-level library initializations. These
initializations ensure correct operation of all library functions, including
any I/O functions such as printf . The _HL_init function calls the
_exit_init , stdio_init , and _thread_init functions.

You need not rewrite this high-level function.

Returns

The _HL_init function returns no value.

Related Topics
_arg_init
_exit_init
_LL_init
_stdio_init
_thread_init

_LL_init
Perform low-level
library initializations.

void _LL_init (void);

Header File None required

Customizing the Libraries

5-25

5
Discussion

This function, included in the board-specific low-level libraries, performs
all necessary chip and board initialization functions. For example, in
addition to initializing the i960 data structures, the startup function must
set mem_end to point to the end of available memory used by sbrk .

Returns

The _LL_init function returns no value.

Related Topics
brk, sbrk
_HL_init

_semaphore_delete
Delete semaphores.

void _semaphore_delete (void **);

Header File reent.h

Discussion

This function frees any resources attached to the semaphore associated
with the pointer argument.

Returns

The _semaphore_delete function returns no value.

i960 Processor Library Supplement

5-26

5
Related Topics
_semaphore_init
_semaphore_signal
_semaphore_wait

_semaphore_init
Initialize semaphore.

void _semaphore_init (void **);

Header File reent.h

Discussion

This function creates and initializes a unique semaphore associated with
the pointer argument. The high-level library calls _semaphore_init

before using any other semaphore operation. Use semaphore operations to
control updates to context data.

Returns

The _semaphore_init function returns no value.

Related Topics
_HL_init
_semaphore_delete
_semaphore_signal
_semaphore_wait

Customizing the Libraries

5-27

5
_semaphore_signal
Release a semaphore.

void _semaphore_signal (void **);

Header File reent.h

Discussion

This function releases the semaphore associated with the pointer argument
as flow of execution leaves a critical section of the code or as an operation
finishes using a critical memory location. Releasing the semaphore allows
a waiting thread to enter the critical section of the code or access the
critical memory location.

NOTE. The macro implementations of getc , getchar , putc , and
putchar do not use semaphore functions.

Returns

The _semaphore_signal function returns no value.

Related Topics
_semaphore_delete
_semaphore_init
_semaphore_wait

i960 Processor Library Supplement

5-28

5
_semaphore_wait
Enter a critical region.

void _semaphore_wait (void **);

Header File reent.h

Discussion

This function acquires the semaphore associated with the pointer argument
if the semaphore is free. Otherwise, _semaphore_wait suspends the
calling thread until _semaphore_signal releases the semaphore. If more
than one thread can call _semaphore_wait with the same pointer before
that semaphore becomes free, you must implement some form of
thread-queueing mechanism.

NOTE. The macro implementations of getc , getchar , putc , and
putchar do not use semaphore functions.

Returns

The _semaphore_wait function returns no value.

Related Topics
_semaphore_delete
_semaphore_init
_semaphore_signal

Customizing the Libraries

5-29

5
_stdio_create
Allocate space for
stream data.

struct _stdio *_stdio_create (unsigned nbyte);

nbyte is the amount of memory in bytes to be allocated.

Header File reent.h

Discussion

This function allocates nbyte bytes of memory, associates the allocated
space with the calling thread of execution, and returns a pointer to the
space. A subsequent call to the function _stdio_ptr from the same
thread must return the same pointer. If standard streams are shared
between threads, the startup code must call _stdio_create exactly once
and _stdio_create need not associate the memory it allocates with a
particular thread.

NOTE. The library functions require the _stdio structure as declared in
the header file reent.h .

This function is called by _stdio_init . Note also that this function can
also perform other thread or context initialization required by the target
environment.

Returns

The _stdio_create function returns a pointer to an area of memory at
least nbyte bytes long.

i960 Processor Library Supplement

5-30

5
Related Topics
_stdio_init
_stdio_ptr
_stdio_stdopen

_stdio_init
Initializes standard
streams.

int _stdio_init (void)

Header File reent.h

Discussion

This function initializes the open-stream list with the following standard
streams:

stdin is the standard input stream.

stdout is the standard output stream.

stderr is the standard error stream.

You need not rewrite this high-level function.

Returns

The _stdio_init function returns no value.

Related Topics
_HL_init
_stdio_create
_stdio_ptr
_stdio_stdopen

Customizing the Libraries

5-31

5
_stdio_ptr
Get a set of pointers to
the standard streams.

struct _stdio *_stdio_ptr (void);

Header File reent.h

Discussion

This function provides a pointer to the data structure representing the
standard streams for the calling thread. If two or more threads share
standard streams, _stdio_ptr need not return a unique pointer for each
thread.

NOTE. The library functions require the _stdio structure as declared in
the header file reent.h .

Returns

The _stdio_ptr function must return the same pointer as
_stdio_create when called by this thread.

Related Topics
_stdio_create
_stdio_init
_stdio_stdopen

i960 Processor Library Supplement

5-32

5
_stdio_stdopen
Open a standard stream.

int _stdio_stdopen (int str);

str indicates which stream to open.

Header File reent.h

Discussion

This function opens the standard stream and returns the associated file
number. The argument str selects the stream to be opened, as follows:

0 selects stdin .

1 selects stdout .

2 selects stderr .

Returns

The _stdio_stdopen returns the file number for the selected standard
stream.

Related Topics
_stdio_create
_stdio_init
_stdio_ptr

Customizing the Libraries

5-33

5
_thread_create
Allocate data space for
a thread.

struct _thread *_thread_create (unsigned nbyte);

Header File reent.h

Discussion

This function allocates nbyte bytes of memory, uniquely associates the
allocated space with the current thread of execution, and returns a pointer
to the allocated space. A subsequent call to the function _thread_ptr

from the same thread must return the same pointer.

This function is called by _thread_init .

NOTE. The library functions require the _thread structure as declared
in the header files.

Returns

The _thread_create function returns a pointer to an area of memory
uniquely associated with the calling thread of at least nbyte bytes long.

Related Topics
_thread_init
_thread_ptr

i960 Processor Library Supplement

5-34

5
_thread_init
Initialize thread data
space.

int _thread_init (void);

Header File reent.h

Discussion

This function calls _thread_create to allocate space for the _thread

structure and initializes _thread as follows:

• sets errno to 0
• sets the random number seed to 1

NOTE. The library functions require the _thread structure as declared
in the header file reent.h .

You need not rewrite this high-level function.

Returns

The _thread_init function returns no value.

Related Topics
_HL_init
_thread_create
_thread_ptr

Customizing the Libraries

5-35

5
_thread_ptr
Get a pointer to thread
data space.

struct _thread *_thread_ptr (void);

Header File reent.h

Discussion

This function returns a pointer to the data structure for the calling thread.

NOTE. The library functions require the _thread structure as declared
in the header file reent.h .

Returns

The _thread_ptr function must return the same pointer as
_thread_create when called by this thread.

Related Topics
_thread_create
_thread_init

i960 Processor Library Supplement

5-36

5
_tzset_ptr
Get time zone data.

struct _tzset *_tzset_ptr (void);

Header File reent.h , time.h

Discussion

The structure _tzset is declared as follows:

struct _tzset
 {
 char *_tzname[2];
 long _timezone;
 int _daylight;
 }

The timezone , daylight , and tzname macros and the localtime ,
strftime , ctime , and mktime functions call _tzset_ptr to obtain
information about the effective time zone. The _tzset_ptr function uses
the structure _tzset that contains members corresponding to timezone ,
daylight , and tzname .

If the effective timezone is not available in your execution environment,
you can implement _tzset_ptr with a function that returns a NULL

pointer.

Returns

The _tzset_ptr function returns a pointer to the _tzset structure
containing time zone information. If the time zone information is not
available in the execution environment, _tzset_ptr returns the NULL

pointer value.

Customizing the Libraries

5-37

5
Related Topics

time

time.h (Chapter 3)

Retargeting the Libraries

To rewrite the library functions for a new execution environment, follow
these steps:

1. Determine what environment-dependent library functions your
application uses, both directly by calls in your source text and
indirectly by calls from other library functions. Some of the
environment-independent library functions depend on startup code to
initialize data structures. The startup code in turn depends on
operating system services and some environment-dependent functions.
In restricted environments, some library functions are not useful or are
not easy to implement. You need not implement functions that your
application does not use.

2. Use the function descriptions in this manual and in C: A Reference
Manual, to implement the new library functions.

3. Compile or assemble the new functions.
4. Create one or more new libraries with the new functions.
5. Link the new libraries to your application.

Function Interdependencies

See Table A-1 in the appendix for a list of functions that are directly or
indirectly environment-dependent.

i960 Processor Library Supplement

5-38

5
System Call Descriptions

This section describes the system calls for guidance in retargeting the
libraries. These functions are not contained in the libraries of portable
functions. The libraries provide the necessary functions for the Intel
MON960 debug monitor-supported target environments. To use the
libraries in a custom execution environment, you must provide system call
functions appropriate for that environment.

close
Close a file.
POSIX 6.3.1

int close (int filedes);

filedes is an open file descriptor.

Header File std.h

Discussion

Use this function to close the file associated with the file descriptor
filedes . The file descriptor is then available for reuse.

Returns

On successful completion, close returns 0; otherwise, close returns -1 .

Related Topics

creat

fileno (Chapter 4)
open

Customizing the Libraries

5-39

5
creat
Create a new file or
rewrite an existing one.

int creat (char * path , int mode);

path is a valid pathname for a file in the execution
environment.

mode is the permission setting which applies only to a
newly created file.

Header File std.h

Discussion

Use this function to create a new file, or to open and truncate an existing
file, for writing. If path does not exist, creat creates a new file with the
given mode settings then opens the file for writing; otherwise, creat

truncates the file length to zero before opening the file for writing.

The permission setting, indicated by mode, only applies to a newly created
file. creat sets the settings after closing the new file for the first time.
You must specify one of the following access modes, as defined in the
fcntl.h header file:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Returns

Upon successful completion, creat sets the file pointer to the beginning
of the file, and returns the new file number. Otherwise, creat returns -1
and sets errno to EACCES, EMFILE, or ENOENT.

i960 Processor Library Supplement

5-40

5
Related Topics

close

fileno (Chapter 4)
open

_exit
Terminate a process.
POSIX 3.2.2

void _exit (int status);

status is the value to be returned to the execution
environment when the process terminates.

Header File std.h

Discussion

Use this function to terminate the calling process and to close all files that
are open in the calling process. The function exit calls _exit to
terminate execution of a program without returning through all the
currently active calling functions.

The exit function performs cleanup actions before the process exits. The
_exit function circumvents any further cleanup.

The status value must be recognizable to the operating system or
execution environment. By convention, a non-zero value indicates normal
program termination.

Returns

The _exit function never returns to the program.

Customizing the Libraries

5-41

5
Related Topics
_exit_create
_exit_init
_exit_ptr

ioctl
Determines whether the
I/O stream is a terminal
device.

ioctl (int filnum , int com, int arg);

filnum is a file number obtained from a creat or open

system call.

com is the function ioctl is to perform.

arg is an argument specific to com if needed.

Header File ioctl.h

Discussion

Use this function to determine whether or not an I/O stream is a terminal.
The library only uses the first parameter, filnum . If you are rewriting
your own low-level library, you can ignore the com and arg parameters.
These two parameters exist for historical reasons and compatibility with
UNIX.

Returns

Upon successful completion, ioctl returns a value greater than or equal
to 0 if the I/O stream came from a terminal device. If not, ioctl returns a
value less than 0.

i960 Processor Library Supplement

5-42

5
Related Topic
isatty

isatty
Identify a terminal
device.
POSIX 4.7.2

int isatty (int filnum);

filnum is a file number obtained from a creat or open

system call.

Header File isatty.h

Discussion

The isatty function identifies whether the file associated with filnum is
a terminal device.

Returns

Upon successful completion, isatty returns a 1 if filnum is associated
with a terminal device, and 0 otherwise. If filnum is an invalid file
number, isatty returns 0 and sets errno to EBADF.

Related Topics
creat
open
ioctl

Customizing the Libraries

5-43

5
lseek
Move the read/write
file pointer.
POSIX 6.5.3

long lseek (int filnum , long int offset , int whence);

filnum is a file number obtained from a creat or open

system call.

offset is the number of bytes to increment the file
pointer from the starting position.

whence is the starting position of the file pointer.

Header File std.h

Discussion

Use this function to change the file pointer associated with filnum using
the following procedure:

1. Set the file pointer to the beginning of the file, to the end of the file, or
leave the file pointer unchanged, according to whence , as follows:

0 set the file pointer to the beginning of the file

1 leave the file pointer at the current location

2 set the file pointer to the end of the file

2. Add the value of offset to the file pointer. The value of offset can
be any positive, zero, or negative integer.

Returns

On successful completion, lseek returns the resulting offset in bytes from
the beginning of the file; otherwise, lseek returns -1 and sets errno to
EBADF. An lseek operation on a non-disk file returns -1 .

i960 Processor Library Supplement

5-44

5
_map_length
Simulate file-to-stream
mapping.

int _map_length (int filnum , const void * buf ,
 size_t nbyte);

filnum is the file number.

buf is the input buffer for the stream.

nbyte is the position of a character in the input buffer
relative to the beginning of the buffer.

Header File std.h

Discussion

Use this function to compensate for the mapping between characters in
streams and files. The ftell function calls _map_length to compute one
character's position in the stream buffer relative to its position in the file
format supported by the execution environment. These positions can be
different if, for instance, a carriage-return/newline pair is translated to a
newline character (and vice-versa) on reading and writing ASCII
characters. The ftell function obtains the approximate file position from
lseek . Your implementation of _map_length must adjust this file
position to agree with the number of bytes actually in the buffer, based on
how input and output strings are processed in your application.

Since mapping is normally one-to-one for streams opened in binary mode,
your implementation of _map_length can use filnum to obtain
information about the file mode.

Returns

The _map_length function returns the number of characters needed to
represent the nbytes of data in the buffer buf .

Customizing the Libraries

5-45

5
open
Open a file and
set mode.
POSIX 5.3.1

int open (const char * path , int oflag [, mode_t mode]);

path points to the pathname of the file to be opened.

oflag indicates how the file is to be opened for reading
and/or writing.

mode is the access mode to be set for a new file. This
argument is legal, and required, only when
oflag includes O_CREAT, described below.

Header File std.h , fcntl.h , types.h

Discussion

Use open to get a file descriptor which is associated with the file
identified by path . The access modes and status flags of the open file
descriptor are set according to oflag .

For oflag , you must specify one of the following access modes, defined
in fcntl.h :

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

See the discussion of the fcntl.h header file in Chapter 2 for definition
of the POSIX file access mode macros.

i960 Processor Library Supplement

5-46

5
In addition to the required access mode, you can also use one or more of
the following file status flags in oflag :

O_APPEND Perform all writes at the end of the file.

O_CREAT Creates a new file, unless you specify O_EXCL

and the file already exists.

O_EXCL Used only with O_CREAT, returns an error value
instead of opening any existing file.

O_TRUNC Truncates any existing file named path to 0
bytes.

To use more than one status flag, you must add (+) or bitwise
inclusive-OR (|) them together in the call to open .

Specify the third argument (mode_t mode) only if oflag includes
O_CREAT. This argument is required with O_CREAT, but has no affect if
the file identified by path already exists (see the discussion of O_EXCL).
The mode argument sets the file permission bits for the file.

In addition to the POSIX file status flags, the following status flags are
supported:

O_BINARY Open in binary mode.

O_TEXT Open in text mode.

These modes are mutually exclusive; do not OR them.

Returns

On successful completion, open returns the lowest numbered unused file
descriptor. The file descriptor is used to reference the file in calls to the
ioctl , isatty , close , lseek , read , and write functions. If an error
occurs, open returns -1 and sets errno to EACCES, EEXIST, EMFILE, or
ENOENT.

Customizing the Libraries

5-47

5
Related Topics

close

creat

fcntl.h (Chapter 3)
fstat

isatty

lseek

read

stat.h (Chapter 3)
write

read
Read from a file.
POSIX 6.4.1

int read (int filnum , char * buf , unsigned int nbyte);

filnum is a file number obtained from a creat or open

system call.

buf is the input buffer.

nbyte is the number of bytes to be read.

Header File std.h

Discussion

Use read to read nbyte bytes from the file associated with filnum into
the buffer pointed to by buf .

Reading proceeds from the file position indicated by the file offset
associated with filnum . The read function increments the file offset by
the number of bytes written. If the file position, indicated before the read
operation begins, is after the end of file, no bytes are read.

For example, if the text file representation of the operating environment
does not exactly match the C stream representation (e.g., for newlines or
tabs), the read function maps from the file representation to the stream
representation for files opened in text mode.

i960 Processor Library Supplement

5-48

5
Returns

Upon successful completion, read returns the number of bytes actually
read and placed in the buffer. This number can be less than nbyte if the
file is associated with a communication line or if the number of bytes left
in the file is less than nbyte bytes. The read function returns zero on
reaching end-of-file.

If the read operation does not complete successfully, read returns -1 and
sets errno to EBADF.

sbrk
Change data segment
space allocation.

void *sbrk (unsigned incr);

incr is the incremental change in number of bytes to
the size of the data segment.

Header File std.h

Discussion

Use sbrk to dynamically change the amount of space allocated for the
data segment of the calling process. This function resets the break value
of the process and allocates the requested space. The break value is the
address of the first location beyond the end of the data segment. The size
of the data segment increases as the break value increases.

The sbrk function adds incr bytes to the break value and changes the
allocated space accordingly. Any newly allocated space is not initialized.

The malloc function calls sbrk when not enough memory is available in
the heap to satisfy an allocation request. Memory allocated with sbrk

cannot be freed or reallocated with free or realloc .

Customizing the Libraries

5-49

5
If the specified incr increases the size of the data segment above the
system-imposed maximum, sbrk fails without changing the allocated
space.

Returns

The sbrk function must return a quadword-aligned pointer. Upon
successful completion, sbrk returns the address of the acquired memory
area, that is, the old break pointer value. If the allocation request cannot
be satisfied, either function returns -1 .

Related Topic

malloc (C: A Reference Manual)

sig*
Provide signal handling.

void _sig_abrt_dfl(void); /* abort */
void _sig_alloc_dfl(void); /* allocation error */
void _sig_fpe_dfl(void); /* floating-point exception
*/
void _sig_free_dfl(void); /* bad free pointer */
void _sig_ill_dfl(void); /* illegal instruction */
void _sig_int_dfl(void); /* interrupt */
void _sig_read_dfl(void); /* read error */
void _sig_segv_dfl(void); /* segment violation */
void _sig_term_dfl(void); /* software termination */
void _sig_write_dfl(void); /* write error */

void _sig_null(void); /* an unmasked signal occurred
*/

Header File signal.h

i960 Processor Library Supplement

5-50

5
Discussion

The raise function uses each function, described above, as the default
signal handler for the corresponding signal. Each signal handler takes the
signal number of the raised signal as its argument.

Raising an ignored signal (i.e., one which is set to SIG_IGN) results in a
call to _sig_null which takes no action.

Related Topics
raise
_HL_init
signal.h

stat
Obtain file status.
POSIX 5.6.2

int stat (char path , struct stat * buf);

path is a pathname to a file. All directories in path

must be searchable.

buf is a pointer to a structure of type stat , into
which information about the file is placed.

Header File stat.h

Customizing the Libraries

5-51

5
Discussion

Use stat to get the status of the file identified by path and to store the
information in the stat structure pointed to by buf . For example, the
following program tests the status of a file:

#include <stdio.h>
#include <time.h>
#include <stat.h>

char filename[40];
main()
{
 char *date;
 int ret;
 struct stat buf;

 strcpy(filename,"testfile");

 if(ret=stat(filename,&buf)){
 fprintf(stderr,"stat failure error %d\n",ret);
 abort();
 }

 date=asctime(localtime(&buf.st_ctime));
 printf("\n %s",date);
 printf("\n %d mode",buf.st_mode);
 printf("\n %d size",buf.st_size);
}

The stat function stores the status information in the stat structure to
which buf points. Useful members of the stat structure are:

st_mode is a bit mask in which:

• The S_IFCHR bit indicates that the file
escriptor is associated with a character
device.

• The S_IFREG bit indicates that it is
associated with a normal file.

• The file permission bits indicate the mode in
which the file is currently open.

i960 Processor Library Supplement

5-52

5
st_size indicates the size of a file. If the file descriptor

refers to a character device, such as a printer or a
console screen, this value is 1.

st_mtime contains the time and date of the last
modification of the file. Use the time functions
to interpret this value.

st_atime contains the time and date of the last time the file
was accessed. Use the time functions, declared
in the time.h header file, to interpret this value.

st_ctime contains the time and date of when the file was
created. Use the time functions to interpret this
value.

Chapter 3 lists status macros defined in the stat.h header file for use
with the stat function.

Returns

On successful completion, stat returns 0; otherwise, stat returns -1 and
sets errno to EBADF.

time
Get the system time.

time_t time (time_t * tloc);

tloc points to a variable containing the system time.

Header File time.h

Customizing the Libraries

5-53

5
Discussion

The time function returns the current time, measured in seconds since
00:00:00 Greenwich Mean Time (GMT), January 1, 1970.

If the value of tloc is non-zero, the return value is stored in the location
to which tloc points.

Returns

Upon successful completion, time returns the current system time.

Related Topics

time.h (Chapter 3)
tzset (Chapter 4)
_tzset_ptr

unlink
Delete a filename.
POSIX 5.5.1

int unlink(char * filename);

filename is the pathname of the file to be deleted.

Header File std.h

Discussion

Use this function to delete the file specified by filename. This function
performs the same task as the remove function, described in C: A
Reference Manual.

i960 Processor Library Supplement

5-54

5
Returns

On successful completion, unlink returns zero; otherwise, unlink

returns a non-zero value.

write
Write to a file.
POSIX 6.4.2

int write (int filedes , const void * buf , unsigned nbyte);

filedes is an open file descriptor.

buf points to the buffer containing the bytes to be
written to the file.

nbyte is the number of bytes to be written to the file.

Header File std.h

Discussion

Use write to write nbytes bytes from the buffer pointed to by buf to the
file identified by the open file descriptor filedes .

Writing proceeds from the file position indicated by the file offset
associated with filedes . The write function increments the file offset
by the number of bytes written. If the result is greater than the length of
the file, the file is extended.

The O_APPEND flag used with creat or open causes the offset to be set to
the end of the file before writing begins.

If the text file representation of the operating environment does not
exactly match the C stream representation, (e.g., for newlines or tabs), the
write function maps from the stream representation to the file
representation for files opened in the text mode.

Customizing the Libraries

5-55

5
Returns

On successful completion, write returns the number of bytes written to
the file associated with filedes . This number is always less than or
equal to nbyte . If write returns a number less than nbyte , an error
occurred but some bytes were written. If write is unable to process any
characters it returns -1 , and sets errno to EBADF or ENOSPC.

Related Topics

creat

open

stat.h (Chapter 3)

Accelerated Floating-point Library

6-1

6
This chapter describes the accelerated floating-point library called “the
AFP library” or "libh.” (See Chapter 2 for a list of the actual library
archive file names.)

Floating-point Library Definition

The accelerated floating-point library is a set of high speed assembly
language subroutines that enable the i960 KA, SA, Cx, Jx, Hx, or Rx
processors to perform floating-point operations. These processors do not
support on-chip floating-point operations.

This library is used with the gcc960 and ic960 compilation system. When
compiling for the processors without on-chip floating-point support, the
compiler translates C language floating-point statements into assembly
language instructions containing calls to libh subroutines.

The floating-point library is packaged as a collection of common object
file format (ELF) subroutines. Several versions of the library are
provided, as described in Chapter 2 of this manual.

To use a floating-point library, link your application with it. It should be
the last library specified in the link sequence. Also, include the
afpfault.h header file, which defines the interface to the stub routines
provided for fault-handling. For more information on linking, see the i960
Processor Software Utilities User's Guide.

Assembly language programmers can place direct calls to the libh
subroutines in their source text. The libh subroutines can also be called
from C language source, but little is gained because the compiler
optimizes C language floating-point code very efficiently. All examples in
this manual show the subroutine names beginning with three underscore

i960 Processor Library Supplement

6-2

6
characters, as they appear in assembly language source. Use only two
underscore characters if you call libh subroutines directly from C language
source. The following examples highlight this difference:

__addsf3 for use in assembly language source.

__addsf3 for use in C language source.

To effectively use the floating-point library, you must understand the
floating-point features of the KB processor, many of which are emulated
in floating-point library subroutines.

Conventions

In this chapter, the following notation is used:

dst the destination operand or return value of a
subroutine.

src1 the first source operand or parameter of a
subroutine.

src2 the second source operand or parameter of a
subroutine.

The following definitions are also used throughout this manual:

integer a two's complement 32-bit integer value.

unsigned integer an unsigned 32-bit integer value.

Accelerated Floating-point Library

6-3

6
Using the Subroutines

This section explains the use of the floating-point subroutines in the
accelerated floating-point library, and describes the supported
floating-point formats, parameter passing, return values, and fault
handling. It includes a sample C program and the assembly language text
generated by the compiler.

The libh subroutines must be invoked with the call or callx instructions.
They cannot be invoked with the branch-and-link (bal) or
branch-and-link-extended (balx) instructions.

Floating-point Formats Supported

The floating-point library supports the IEEE 754 single-precision and
double-precision floating-point formats. The floating-point library also
meets IEEE 754 extended-precision criteria for double-extended formats.
The implemented operations fully meet the requirements of the IEEE 754
Floating-point Standard for accuracy of results and handling of special
representations. In accordance with the IEEE 754 standard, all the results
of libh operations are equivalent to an infinitely precise value correctly
rounded to the result format. The floating-point library handles special
representations such as NaNs, signed zeros and signed infinities in
accordance with the IEEE 754 standard.

The floating-point library treats cases that are undefined or
implementation specific in the IEEE 754 standard in the same fashion as
the i960 KB processor, with one exception. While the KB processor can
return a NaN value with the sign bit either cleared or set, libh always
returns a NaN value with the sign bit set. Therefore, if your code must be
portable across all the i960 processors, do not perform calculations that
depend on the sign bit of NaN values. This practice is recommended by
the IEEE 754 standard.

For detailed information on these floating-point formats and standards,
see the IEEE Standard for Binary Floating-point Arithmetic and the
i960 KA/KB Microprocessor Programmer's Reference Manual.

i960 Processor Library Supplement

6-4

6
Parameter and Return Value Implementation

Parameter passing and operand configuration follow the compiler calling
sequence. See your compiler user's guide for details.

The libh subroutines use source operands for parameters and destination
operands for return values. The subroutines use only the global registers
g0 through g6 for operands. They do not use literals or floating-point
temporary registers. Table 6-1 indicates how libh uses specific global
registers for src1 , src2 and dst depending on the numeric type of the
value.

Table 6-1 Global Register Usage

Numeric Type src1 src2 dst

extended g0-g2 g4-g6 g0-g2

double g0-g1 g2-g3 g0-g1

other g0 g1 g0

For example, the ___addtf3 subroutine uses the register triplet g0-g2 for
src1 , g4-g6 for src2 and g0-g2 for dst .

The subroutine ___truncdfsf uses the register pair g0-g1 for src1 and
register g0 for dst .

Floating-point Arithmetic Control Usage

The floating-point library uses the arithmetic control floating-point bits in
the same fashion as the KB processor. See the i960 Processor Assembler
User's Guide for information on the arithmetic control register.

The floating-point library uses the floating-point bits of the on-chip
arithmetic control register for the KA processor. The CA processor does
not have floating-point bits, so libh emulates them. If you are using libh

Accelerated Floating-point Library

6-5

6
with the CA processor, you must allocate a word of static memory for the
emulation of the floating-point bits. To do this, include the following
statement in your linker configuration file:

SFP_AC:
{
fpem_CA_AC =.;
} > isram

The compiler library subroutine fp_setenv writes to the floating-point
arithmetic control bits. The compiler library subroutine fp_getenv reads
the floating-point arithmetic control bits. These subroutines write to and
read from the on-chip arithmetic control floating-point bits for the KA
processor. They write to and read from the emulated arithmetic control
floating-point bits for the CA processor. Use these subroutines instead of
the modac instruction to access the arithmetic control floating-point bits if
you want your code to be portable across all i960 processors.

Fault Handling

The floating-point library triggers the same faults, under the same
circumstances, as the KB processor. As with the KB processor, all faults
can be masked except for the reserved-encoding fault. With single- and
double-precision floating-point values, setting the normalizing-mode bit of
the floating-point arithmetic controls allows denormalized values to be
used as operands for arithmetic operations, thus preventing the occurrence
of reserved-encoding faults.

The floating-point library handles masked and unmasked integer-overflow
faults and masked floating-point faults in the same fashion as the KB
processor. Depending on the processor, libh uses either the real or
emulated floating-point-fault bits of the arithmetic controls. However,
libh handles unmasked floating-point faults differently as explained later
in this chapter.

i960 Processor Library Supplement

6-6

6
Code Example

Example 6-2 shows the assembly language text generated by the compiler
from the C source in Example 6-1. The assembly language contains calls
to the ___divdf3 and ___fixdfsi subroutines.

Example 6-1 Sample C Program

#include <stdio.h>

main()
{
 int i;
 double d1,d2,d3;

 d2 = 12.0;
 d3 = 5.0;

 d1 = d2/d3;
 i = d1;
 printf("i=%d, d1=%f\n",i,d1);
}

Line 4 of Example 6-2 on the next page shows the compiler invocation
command for the program. Line 16 contains the call to the ___divdf3

subroutine. Line 18 contains the call to the ___fixdfsi subroutine.

Accelerated Floating-point Library

6-7

6
Example 6-2 Assembly Language Generated From Sample C Program

1. # FE version : 1.22
2. # BE version : X5.0.317
3. # Time of compilation : Thu May 1 15:30:27 1995
4. # Command line : ic960 -S -O1 -AKA afp_ex.c
5. .ident "ic960 X5.0.317 host ",0x2acb250d
6. .file "afp_ex.c"
7. .text
8. .align 4
9. .globl _main
10. _main:
11. .def _main; .val _main; .scl 2; .type 0x44; .endef
12. ldl C1,r12
13. ldl C2,g4
14. movl r12,g0
15. movl g4,g2
16. callj __divdf3
17. movl g0,r12
18. callj __fixdfsi
19. mov g0,r4
20. lda .3,g0
21. mov r4,g1
22. movl r12,g2
23. b _printf
24. #Function Statistics
25. # Blocks 1
26. # Instructions 12
27. # Instructions/Block 12
28. # Loads 2
29. # Stores 0
23. # Calls 0
30. # Registers used r4 r12 r13 g0 g1 g2 g3 g4 g5
31. #
32. .def _main; .val .; .scl -1; .endef

continued ☛

i960 Processor Library Supplement

6-8

6
Example 6-2 Assembly Language Generated From Sample C Program

(continued)

33. align 4
34. .C3:
35. .asciz "i=%d, d1=%f\n"
36. align 3
37. .C2:
38. .word 0x00000000, 0x40140000
39. .align 3
40. .C1
41. .word 0x00000000, 0x40280000

Subroutine Reference

This section contains an entry for each function type. The entries are
ordered alphabetically with the wildcard characters ? or * replacing the
variable portion of the function name. Each entry contains a discussion
that describes how each subroutine uses operands, arithmetic controls and
faults. Where necessary, the discussion describes the relationships
between the source and destination operands.

___add?f3
Addition

___addsf3
___adddf3
___addtf3

Accelerated Floating-point Library

6-9

6
Discussion

These subroutines operate as follows:

___addsf3 adds two single-precision floating-point values.

___adddf3 adds two double-precision floating-point values.

___addtf3 adds two extended-precision floating-point
values.

The ___add?f3 subroutines perform addition as:

src1 + src2 -> dst

Table 6-2 shows how the ___add?f3 subroutines use global registers.

Table 6-2 ___add?f3 Global Register Usage

Subroutine src1 src2 dst

___addsf3 g0(single) g1(single) g0(single)

___adddf3 g0-g1(double) g2-g3(double) g0-g1(double)

___addtf3 g0-g2(extended) g4-g6(extended) g0-g2(extended)

Table 6-3 shows how the ___add?f3 subroutines use the Arithmetic
Control register.

Table 6-3 ___add?f3 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Rounding mode
Normalizing mode

Bits set Exception flags

Table 6-4 shows possible faults for the ___add?f3 subroutines.

i960 Processor Library Supplement

6-10

6
Table 6-4 ___add?f3 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized and the
normalizing mode bit in the arithmetic controls
is not set. One or both operands are
unnormals.

Floating underflow Normalized result is too small for destination
format.

Floating overflow Result is too large for destination format.

Floating invalid operation Operands are infinities with different signs.
One or more operands is an SNaN value.

Floating inexact Result cannot be represented exactly in
destination format. Floating overflow occurred
and the overflow exception was masked.

___ceil?f2
Round up to integral
value

___ceilsf2
___ceildf2
___ceiltf2

Discussion

These subroutines operate as follows:

___ceilsf2 Single-precision round up to integral value.

___ceildf2 Double-precision round up to integral value.

___ceiltf2 Extended-precision round up to integral value.

Accelerated Floating-point Library

6-11

6
The ___ceil?f2 subroutines convert an operand to the smallest integral
floating-point value not less than src as:

src -> dst

Table 6-5 shows how the ___ceil?f2 subroutines use global registers.

Table 6-5 ___ceil?f2 Global Register Usage

Subroutine src dst

___ceilsf2 g0(single) g0(single)

___ceildf2 g0-g1(double) g0-g1(double)

___ceiltf2 g0-g2(extended) g0-g2(extended)

Table 6-6 shows how the ___ceil?f2 subroutines use the Arithmetic
Control register.

Table 6-6 ___ceil?f2 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Rounding mode
Normalizing mode

Bits set Exception flags

Table 6-7 shows possible faults for the ___ceil?f2 subroutines.

Table 6-7 ___ceil?f2 Possible Faults

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating invalid operation Operand is an SNaN value.

Floating inexact Operand is not an integral value.

i960 Processor Library Supplement

6-12

6
___floor?f2
Round down to integral
value

___floorsf2
___floordf2
___floortf2

Discussion

These subroutines operate as follows:

___floorsf2 Single-precision round down to integral value.

___floordf2 Double-precision round down to integral value.

___floortf2 Extended-precision round down to integral value.

The ___floor?f2 subroutines convert an operand to the largest integral
floating-point value not greater than src as:

src -> dst

Table 6-8 shows how the ___floor?f2 subroutines use global registers.

Table 6-8 ___floor?f2 Global Register Usage

Subroutine src dst

___floorsf2 g0(single) g0(single)

___floordf2 g0-g1(double) g0-g1(double)

___floortf2 g0-g2(extended) g0-g2(extended)

Table 6-9 shows how the ___floor?f2 subroutines use the Arithmetic
Control register.

Accelerated Floating-point Library

6-13

6
Table 6-9 ___floor?f2 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Rounding mode
Normalizing mode

Bits set Exception flags

Table 6-10 shows possible faults for the ___floor?f2 subroutines.

Table 6-10 ___floor?f2 Possible Faults

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating invalid operation Operand is an SNaN value.

Floating inexact Operand is not an integral value.

___cls?fsi
Classify floating-point
number

___clssfsi
___clsdfsi
___clstfsi

i960 Processor Library Supplement

6-14

6
Discussion

These subroutines operate as follows:

___clssfsi classifies a single-precision floating-point values.

___clsdfsi classifies a double-precision floating-point
values.

___clstfsi classifies an extended-precision floating-point
values.

The ___cls?fsi subroutines classify floating-point values as:

src -> dst

Table 6-11 shows how the ___cls?fsi subroutines use global registers.

Table 6-11 ___cls?fsi Global Register Usage

Subroutine src dst

___clssfsi g0(single) g0 (integer)

___clsdfsi g0-g1(double) g0 (integer)

___clstfsi g0-g2(extended) g0 (integer)

The classify operator returns an integer value indicating the result of the
classification. The possible classifications and their return values are
given in Table 6-12.

Accelerated Floating-point Library

6-15

6
Table 6-12 ___cls?fsi Return Values

Classification Return Value

Zero s000

Denormalized number s001

Normal finite number s010

Infinity s011

Quiet NaN s100

Signaling NaN s101

Reserved encoding s110

Return Value is shown in binary bits, and

s is the sign bit of the value passed.

These return values are consistent with the bit patterns stored in the
arithmetic-status bits of the arithmetic controls register by the i960 KB
processor's classr and classrl floating-point instructions.

The classify operator does not read the arithmetic control register and does
not generate any faults.

___cmp?f2
Comparison

___cmpsf2
___cmpdf2
___cmptf2

i960 Processor Library Supplement

6-16

6
Discussion

These subroutines operate as follows:

___cmpsf2 compares two single-precision floating-point
values.

___cmpdf2 compares two double-precision floating-point
values.

___cmptf2 compares two extended-precision floating-point
values.

The ___cmp?f2 subroutines compare floating-point values as:

src1 ? src2 -> dst

Table 6-13 shows how the ___cmp?f2 subroutines use global registers.

Table 6-13 ___cmp?f2 Global Register Usage

Subroutine src1 src2 dst

___cmpsf2 g0(single) g1(single) g0,AC(integer)

___cmpdf2 g0-g1(double) g2-g3(double) g0,AC(integer)

___cmptf2 g0-g2(extended) g4-g6(extended) g0,AC(integer)

The comparison operator returns an integer value indicating the result of
the comparison. Table 6-14 gives the possible return values and their
meanings.

Table 6-14 ___cmp?f2 Return Values

Return Value Meaning

-1 src1 < src2

 0 src1 = src2

 1 src1 > src2

 3 src1, src2, or both are NaN

Accelerated Floating-point Library

6-17

6
The ___cmp?f2 subroutines also set the condition-code flags of the
Arithmetic Control register to indicate the result of the comparison.
Therefore, after a comparison, your program can branch conditionally
without examining the return value.

Table 6-15 shows how the ___cmp?f2 subroutines use the Arithmetic
Control register.

Table 6-15 ___cmp?f2 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Normalizing mode

Bits set Exception flags
Condition code

Table 6-16 shows possible faults for the ___cmp?f2 subroutines.

Table 6-16 ___cmp?f2 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized and the
normalizing mode bit in the arithmetic controls
is not set. One or both operands are
unnormals.

Floating invalid operation One or more operands is an SNaN value.

___div?f3
Division

___divsf3
___divdf3
___divtf3

i960 Processor Library Supplement

6-18

6
Discussion

These subroutines operate as follows:

___divsf3 divides two single-precision floating-point
values.

___divdf3 divides two double-precision floating-point
values.

___divtf3 divides two extended-precision floating-point
values.

The ___div?f3 subroutines perform division as:

src1 / src2 -> dst .

Table 6-17 shows how the ___div?f3 subroutines use global registers.

Table 6-17 ___div?f3 Global Register Usage

Subroutine src1 src2 dst

___divsf3 g0(single) g1(single) g0(single)

___divdf3 g0-g1(double) g2-g3(double) g0-g1(double)

___divtf3 g0-g2(extended) g4-g6(extended) g0-g2(extended)

Table 6-18 shows how the ___div?f3 subroutines use the Arithmetic
Control register.

Table 6-18 ___div?f3 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks

Rounding mode

Normalizing mode

Bits set Exception flags

Table 6-19 shows possible faults for the ___div?f3 subroutines.

Accelerated Floating-point Library

6-19

6
Table 6-19 ___div?f3 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized and the
normalizing mode bit in the arithmetic controls
is not set. One or both operands are
unnormals.

Floating underflow Result is too small for destination format.

Floating overflow Result is too large for destination format.

Floating zero divide The src1 operand is 0 and the src2 operand
is numeric and finite.

Floating invalid operation Both operands are infinities or both operands
are zero. One or more operands is an SNaN
value.

Floating inexact Result cannot be represented exactly in
destination format. Floating overflow occurred
and the overflow exception was masked.

___extend?f?f2
Single to double
conversion

___extenddftf2
___extendsfdf2
___extendsftf2

Discussion

These subroutines operate as follows:

___extenddftf2 converts a double-precision
floating-point value to an extended-
precision floating-point value.

i960 Processor Library Supplement

6-20

6
___extendsfdf2 converts a single-precision

floating-point value to a double-
precision floating-point value.

___extendsftf2 converts a single-precision
floating-point value to an extended-
precision floating-point value.

The ___extend?f?f2 subroutines perform floating-point conversion as:

src -> dst

Table 6-20 shows how the ___extend?f?f2 subroutines use global
registers.

Table 6-20 ___extend?f?f2 Global Register Usage

Subroutine src dst

___extenddftf2 g0-g1(double) g0-g2(extended)

___extendsfdf2 g0(single) g0-g1(double)

___extendsftf2 g0(single) g0-g2(extended)

Table 6-21 shows how the ___extend?f?f2 subroutines use the
Arithmetic Control register.

Table 6-21 ___extend?f?f2 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Normalizing mode

Bits set Exception flags

Table 6-22 shows possible faults for the ___extend?f?f2 subroutines.

Accelerated Floating-point Library

6-21

6
Table 6-22 ___extend?f?f2 Possible Faults

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating invalid operation Source operand is an SNaN value.

___fix*
Floating-point to integer
conversion with
truncation

___fixsfsi
___fixdfsi
___fixtfsi
___fixunssfsi
___fixunsdfsi
___fixunstfsi

Discussion

These subroutines operate as follows:

___fixsfsi converts a single-precision floating-point value
to a two's-complement 32-bit integer with
truncation.

___fixdfsi converts a double-precision floating-point value
to a two's-complement 32-bit integer with
truncation.

___fixtfsi converts an extended-precision floating-point
value to a two's-complement 32-bit integer with
truncation.

i960 Processor Library Supplement

6-22

6
___fixunssfsi converts a single-precision floating-point value

to an unsigned 32-bit integer with truncation.

___fixunsdfsi converts a double-precision floating-point value
to an unsigned 32-bit integer with truncation.

___fixunstfsi converts an extended-precision floating-point
value to an unsigned 32-bit integer with
truncation.

The ___fix* subroutines convert a floating-point value to an unsigned
32-bit integer as:

src -> dst

Table 6-23 shows how the ___fix* subroutines use global registers.

Table 6-23 ___fix * Global Register Usage

Subroutine src dst

___fixsfsi g0(single) g0(integer)

___fixdfsi g0-g1(double) g0(integer)

___fixtfsi g0-g2(extended) g0(integer)

___fixunssfsi g0(single) g0(unsigned)

___fixunsdfsi g0-g1(double) g0(unsigned)

___fixunstfsi g0-g2(extended) g0(unsigned)

Table 6-24 shows how the ___fix* subroutines use the Arithmetic
Control register.

Accelerated Floating-point Library

6-23

6
Table 6-24 ___fix * Arithmetic Control Usage

AC Register Bits

Bits set Exception flags

The following are the possible faults for the ___fix* subroutines.

Integer overflow Floating-point value exceeds the signed integer
range (___fix?fsi only).

Table 6-25 shows the input values and the returned value for the
___fixuns?fsi subroutines. Integer overflow is not signaled, however.

Table 6-25 ___fixuns?fsi Input and Return Values

Input Value Range Returned Value

greater than or equal to 232 0xFFFFFFFF

from 232 - 1 through -232 - 1 Two's complement of the integer
representing that value.

less than or equal to -232 0

Integer overflow is not signaled.

___float*
Integer to floating-point
conversion

___floatsisf
___floatsidf
___floatsitf
___floatunssisf
___floatunssidf
___floatunssitf

i960 Processor Library Supplement

6-24

6
Discussion

These subroutines operate as follows:

___floatsisf converts a two's-complement 32-bit integer to a
single-precision floating-point value.

___floatsidf converts a two's-complement 32-bit integer to a
double-precision floating-point value.

___floatsitf converts a two's-complement 32-bit integer to an
extended-precision floating-point value.

___floatunssisf converts an unsigned 32-bit integer to a single-
precision floating-point value.

___floatunssidf converts an unsigned 32-bit integer to a double-
precision floating-point value.

___floatunssitf converts an unsigned 32-bit integer to an
extended-precision floating-point value.

The ___float* subroutines convert an unsigned 32-bit integer to a
floating-point value as:

src -> dst

Table 6-26 shows how the ___float* subroutines use global registers.

Table 6-26 ___float * Global Register Usage

Subroutine src dst

___floatsisf g0(integer) g0(single)

___floatsidf g0(integer) g0-g1(double)

___floatsitf g0(integer) g0-g2(extended)

___floatunssisf g0(unsigned) g0(single)

___floatunssidf g0(unsigned) g0-g1(double)

___floatunssitf g0(unsigned) g0-g2(extended)

Accelerated Floating-point Library

6-25

6
Arithmetic controls are used by the ___floatsisf and
___floatunssisf subroutines only. Table 6-27 shows how the
___floatsisf and ___floatunssisf subroutines use the Arithmetic
Control register.

Table 6-27 ___floatsisf and ___floatunssisf Arithmetic Control Usage

AC Register Bits

Bits read Rounding mode

Bits set Exception flags

Table 6-28 shows possible faults for the ___float* subroutines.

Table 6-28 ___float * Possible Faults

Fault Cause

Floating inexact Result cannot be represented exactly in
destination format.

___logb?f2
Extract unbiased
exponent

___logbsf2
___logbdf2
___logbtf2

i960 Processor Library Supplement

6-26

6
Discussion

These subroutines operate as follows:

___logbsf2 extracts an unbiased single-precision exponent.

___logbdf2 extracts an unbiased double-precision exponent.

___logbtf2 extracts an unbiased extended-precision
exponent.

The ___logb?f2 subroutines extract an unbiased exponent as:

src -> dst

Table 6-29 shows how the ___logb?f2 subroutines use global registers.

Table 6-29 ___logb?f2 Global Register Usage

Subroutine src dst

___logbsf2 g0(single) g0(single)

___logbdf2 g0-g1(double) g0-g1(double)

___logbtf2 g0-g2(extended) g0-g2(extended)

Table 6-30 shows how the ___logb?f2 subroutines use the Arithmetic
Control register.

Table 6-30 ___logb?f2 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Normalizing mode

Bits set Exception flags

Table 6-31 shows possible faults for the ___logb?f2 subroutines.

Accelerated Floating-point Library

6-27

6
Table 6-31 ___logb?f2 Possible Faults

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating invalid operation Operands are infinities with different signs. One
or more operands is an SNaN value.

Floating zero divide Operand is 0.

___mul?f3

Multiplication

___mulsf3
___muldf3
___multf3

Discussion

These subroutines operate as follows:

___mulsf3 multiplies two single-precision floating-point
values.

___muldf3 multiplies two double-precision floating-point
values.

___multf3 multiplies two extended-precision floating-point
values.

The ___mul?f3 subroutines perform multiplication as:

src1 * src2 -> dst

Table 6-32 shows how the ___mul?f3 subroutines use global registers.

i960 Processor Library Supplement

6-28

6
Table 6-32 ___mul?f3 Global Register Usage

Subroutine src1 src2 dst

___mulsf3 g0(single) g1(single) g0(single)

___muldf3 g0-g1(double) g2-g3(double) g0-g1(double)

___multf3 g0-g2(extended) g4-g6(extended) g0-g2(extended)

Table 6-33 shows how the ___mul?f3 subroutines use the Arithmetic
Control register.

Table 6-33 ___mul?f3 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Rounding mode
Normalizing mode

Bits set Exception flags

Table 6-34 shows possible faults for the ___mul?f3 subroutines.

Table 6-34 ___mul?f3 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized and the
normalizing mode bit in the arithmetic controls
is not set. One or both operands are
unnormals.

Floating underflow Normalized result is too small for destination
format.

Floating overflow Result is too large for destination format.

Floating invalid operation One operand is 0 and the other operand is
infinity. One or more operands is an SNaN
value.

Floating inexact Result cannot be represented exactly in
destination format. Floating overflow occurred
and the overflow exception was masked.

Accelerated Floating-point Library

6-29

6
___rem?f3

Remaindering

___remsf3
___remdf3
___remtf3

Discussion

These subroutines implement the KB remr instruction. They operate as
follows:

___remsf3 returns a single-precision KB remainder.

___remdf3 returns a double-precision KB remainder.

___remtf3 returns an extended-precision KB remainder.

The ___rem?f3 subroutines perform remaindering as:

src1 <rem> src2 -> dst

Table 6-35 shows how the ___rem?f3 subroutines use global registers.

Table 6-35 ___rem?f3 Global Register Usage

Subroutine src1 src2 dst dst2

___remsf3 g0(single) g1(single) g0(single) g1(integer)

___remdf3 g0-g1
(double)

g2-g3
(double)

g0-g1
(double)

g2(integer)

___remtf3 g0-g2
(extended)

g4-g6
(extended)

g0-g2
(extended)

g4(integer)

i960 Processor Library Supplement

6-30

6
The ___rem?f3 subroutines offer assembly language access to an integer
return value as shown under dst2 in Table 6-35. The upper 28 bits of this
integer value are set to zero, while the four low order bits match the
arithmetic status field bits of the KB remr instruction. Table 6-36 shows
the possible integer return values and their meanings.

Table 6-36 ___rem?f3 Integer Return Values

Return Value Meaning

0 QS, set if the remainder after the QR reduction would be
non-zero (the "sticky" bit of the quotient)

1 QR, the value the next quotient bit would have if one
more reduction were performed (the "round" bit of the
quotient)

2 Q0, the last quotient bit

3 Q1, the next-to-last quotient bit

Table 6-37 shows how the ___rem?f3 subroutines use the Arithmetic
Control register.

Table 6-37 ___rem?f3 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Normalizing mode

Bits set Exception flags

Table 6-38 shows possible faults for the ___rem?f3 subroutines.

Accelerated Floating-point Library

6-31

6
Table 6-38 ___rem?f6 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized and the
normalizing mode bit in the arithmetic controls
is not set. One or both operands are
unnormals.

Floating invalid operation src1 is infinite and/or src2 is 0. One or more
operands is an SNaN value.

___rint?f2
Round to nearest
integral value

___rintsf2
___rintdf2
___rinttf2

Discussion

These subroutines operate as follows:

___rintsf2 Single-precision round to nearest integral value.

___rintdf2 Double-precision round to nearest integral value.

___rinttf2 Extended-precision round to nearest integral
value.

The ___rint?f2 subroutines perform rounding as:

src -> dst

Table 6-39 shows how the ___rint?f2 subroutines use global registers.

i960 Processor Library Supplement

6-32

6
Table 6-39 ___rint?f2 Global Register Usage

Subroutine src dst

___rintsf2 g0(single) g0(single)

___rintdf2 g0-g1(double) g0-g1(double)

___rinttf2 g0-g2(extended) g0-g2(extended)

Table 6-40 shows how the ___rint?f2 subroutines use the Arithmetic
Control register.

Table 6-40 ___rint?f2 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Normalizing mode

Bits set Exception flags

Table 6-41 shows possible faults for the ___rint?f2 subroutines.

Table 6-41 ___rint?f2 Possible Faults

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating invalid operation Operand is an SNaN value.

Floating inexact Operand is not an integral value.

Accelerated Floating-point Library

6-33

6
___rmd?f3

IEEE Remaindering

___rmdsf3
___rmddf3
___rmdtf3

Discussion

These subroutines perform IEEE 754 remaindering as follows:

___rmdsf3 returns a single-precision IEEE remainder.

___rmddf3 returns a double-precision IEEE remainder.

___rmdtf3 returns an extended-precision IEEE remainder.

The ___rmd?f3 subroutines perform IEEE 754 remaindering as:

src1 <rmd> src2 -> dst

Table 6-42 shows how the ___rmd?f3 subroutines use global registers.

Table 6-42 ___rmd?f3 Global Register Usage

Subroutine src1 src2 dst dst2

___rmdsf3 g0(single) g1(single) g0(single) g1(unsigned)

___rmddf3 g0-g1
(double)

g2-g3
(double)

g0-g1
(double)

g2(unsigned)

___rmdtf3 g0-g2
(extended)

g4-g6
(extended)

g0-g2
(extended)

g4(unsigned)

The ___rmd?f3 subroutines offer assembly language access to an
unsigned integer return value as shown under dst2 in Table 6-42. This
integer return value is comprised of the least significant 32 bits of the
magnitude of the integral quotient, rounded per the IEEE remaindering
operation.

i960 Processor Library Supplement

6-34

6
Table 6-43 shows how the ___rmd?f3 subroutines use the Arithmetic
Control register.

Table 6-43 ___rmd?f3 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Normalizing mode

Bits set Exception flags

Table 6-44 shows possible faults for the ___rmd?f3 subroutines.

Table 6-44 ___rmd?f3 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized and the
normalizing mode bit in the arithmetic controls
is not set. One or both operands are
unnormals.

Floating invalid operation src1 is infinite and/or src2 is zero. One or
more operands is an SNaN value.

___round?f2

Round to integral value

___roundsf2
___rounddf2
___roundtf2

Accelerated Floating-point Library

6-35

6
Discussion

These subroutines operate as follows:

___roundsf2 Single-precision round to integral value.

___rounddf2 Double-precision round to integral value.

___roundtf2 Extended-precision round to integral value.

The ___round?f2 subroutines convert an operand to an integral
floating-point value as:

src -> dst

Table 6-45 shows how the ___round?f2 subroutines use global registers.

Table 6-45 ___round?f2 Global Register Usage

Subroutine src dst

___roundsf2 g0(single) g0(single)

___rounddf2 g0-g1(double) g0-g1(double)

___roundtf2 g0-g2(extended) g0-g2(extended)

Table 6-46 shows how the ___round?f2 subroutines use the Arithmetic
Control register.

Table 6-46 ___round?f2 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Rounding mode
Normalizing mode

Bits set Exception flags

Table 6-47 shows possible faults for the ___round?f2 subroutines.

i960 Processor Library Supplement

6-36

6
Table 6-47 ___round?f2 Possible Faults

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating invalid operation Operand is an SNaN value.

Floating inexact Operand is not an integral value.

___round?fsi
Floating-point to integer
conversion with
rounding

___roundsfsi
___rounddfsi
___roundtfsi

Discussion

These subroutines operate as follows:

___roundsfsi converts a single-precision floating-point value
to a two's-complement 32-bit integer.

___rounddfsi converts a double-precision floating-point value
to a two's-complement 32-bit integer.

___roundtfsi converts an extended-precision floating-point
value to a two's-complement 32-bit integer.

The ___round?fsi subroutines round the results according to the integer
type of the destination operand and the setting of the rounding-mode flags
of the floating-point arithmetic controls. They perform conversions as:

src -> dst

Accelerated Floating-point Library

6-37

6
Table 6-48 shows how the ___round?fsi subroutines use global
registers.

Table 6-48 ___round?fsi Global Register Usage

Subroutine src dst

___roundsfsi g0(single) g0(integer)

___rounddfsi g0-g1(double) g0(integer)

___roundtfsi g0-g2(extended) g0(integer)

Table 6-49 shows how the ___round?fsi subroutines use the Arithmetic
Control register.

Table 6-49 ___round?fsi Arithmetic Control Usage

AC Register Bits

Bits read Rounding mode

Bits set Integer overflow flag

Table 6-50 shows possible faults for the ___round?fsi subroutines.

Table 6-50 ___round?fsi Possible Faults

Fault Cause

Integer overflow Floating-point value exceeds the signed integer
range.

i960 Processor Library Supplement

6-38

6
___rounduns?fsi
Floating-point to
unsigned integer
conversion with
rounding

___roundunssfsi
___roundunsdfsi
___roundunstfsi

Discussion

These subroutines operate as follows:

___roundunssfsi converts a single-precision floating-point value
to an unsigned 32-bit integer.

___roundunsdfsi converts a double-precision floating-point value
to an unsigned 32-bit integer.

___roundunstfsi converts an extended-precision floating-point
value to an unsigned 32-bit integer.

The ___rounduns?fsi subroutines round the results according to the
integer type of the destination operand and the setting of the
rounding-mode flags of the floating-point arithmetic controls. They
perform conversions as:

src -> dst

Table 6-51 shows how the ___rounduns?fsi subroutines use global
registers.

Accelerated Floating-point Library

6-39

6
Table 6-51 ___rounduns?fsi Global Register Usage

Subroutine src dst

___roundunssfsi g0(single) g0(unsigned)

___roundunsdfsi g0-g1(double) g0(unsigned)

___roundunstfsi g0-g2(extended) g0(unsigned)

Table 6-52 shows how the ___rounduns?fsi subroutines use the
Arithmetic Control register.

Table 6-52 ___rounduns?fsi Arithmetic Control Usage

AC Register Bits

Bits read Rounding mode

The ___rounduns?fsi subroutines return the hexadecimal value
0xFFFFFFFF when the result is too large to be represented as an unsigned
32-bit integer. Integer overflow is not signaled, however.

___scale?fsi?f
Scale floating-point
value by signed integer
value

___scalesfsisf
___scaledfsidf
___scaletfsitf

i960 Processor Library Supplement

6-40

6
Discussion

These subroutines operate as follows:

___scalesfsisf scales a single-precision floating-point value.

___scaledfsidf scales a double-precision floating-point value.

___scaletfsitf scales an extended-precision floating-point
value.

The ___scale?fsi?f subroutines scale the source floating-point value by
the signed 32-bit integer operand as:

src1 * 2 src2 -> dst .

Since they have operands of different types, the ___scale?fsi?f

subroutines may require special handling in user-supplied fault handlers,
as described later in this chapter. The first operand is always a floating-
point value, and the second is always a signed integer.

Table 6-53 shows how the ___scale?fsi?f subroutines use global
registers.

Table 6-53 ___scale?fsi?f Global Register Usage

Subroutine src1 src2 dst

___scalesfsisf g0(single) g1(integer) g0(single)

___scaledfsidf g0-g1(double) g2(integer) g0-g1(double)

___scaletfsitf g0-g2(extended) g4(integer) g0-g2(extended)

Table 6-54 shows how the ___scale?fsi?f subroutines use the
Arithmetic Control register.

Accelerated Floating-point Library

6-41

6
Table 6-54 ___scale?fsi?f Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Normalizing mode

Bits set Exception flags

Table 6-55 shows possible faults for the ___scale?fsi?f subroutines.

Table 6-55 ___scale?fsi?f Possible Faults

Fault Cause

Floating reserved encoding Operand is denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating underflow Normalized result is too small for destination
format.

Floating overflow Result is too large for destination format.

Floating invalid operation Operand is an SNaN value.

Floating inexact Floating overflow occurred and the overflow
exception was masked.

___sub?f3
Subtraction

___subsf3
___subdf3
___subtf3

i960 Processor Library Supplement

6-42

6
Discussion

These subroutines operate as follows:

___subsf3 subtracts two single-precision floating-point
values.

___subdf3 subtracts two double-precision floating-point
values.

___subtf3 subtracts two extended-precision floating-point
values.

The ___sub?f3 subroutines perform subtraction as:

src1 - src2 -> dst

Table 6-56 shows how the ___sub?f3 subroutines use global registers.

Table 6-56 ___sub?f3 Global Register Usage

Subroutine src1 src2 dst

___subsf3 g0(single) g1(single) g0(single)

___subdf3 g0-g1(double) g2-g3(double) g0-g1(double)

___subtf3 g0-g2(extended) g4-g6(extended) g0-g2(extended)

Table 6-57 shows how the ___sub?f3 subroutines use the Arithmetic
Control register.

Table 6-57 ___sub?f3 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Rounding mode
Normalizing mode

Bits set Exception flags

Table 6-58 shows possible faults for the ___sub?f3 subroutines.

Accelerated Floating-point Library

6-43

6
Table 6-58 ___sub?f3 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized
and the normalizing mode bit in the
arithmetic controls is not set. One or
both operands are unnormals.

Floating underflow Normalized result is too small for
destination format.

Floating overflow Result is too large for destination
format.

Floating invalid operation Operands are infinities of like signs.
One or more operands is an SNaN
value.

Floating inexact Result cannot be represented exactly
in destination format. Floating
overflow occurred and the overflow
exception was masked.

___trunc?f?f2
Double to single
conversion

___truncdfsf2
___trunctfdf2
___trunctfsf2

i960 Processor Library Supplement

6-44

6
Discussion

These subroutines operate as follows:

___truncdfsf2 converts a double-precision floating-point value
to a single-precision floating-point value.

___trunctfdf2 converts an extended-precision floating-point
value to a double-precision floating-point value.

___trunctfsf2 converts an extended-precision floating-point
value to a single-precision floating-point value.

The ___trunc?f?f2 subroutines round the results according to the setting
of the rounding-mode flags of the floating-point arithmetic controls. They
perform floating-point format conversions as:

src -> dst

Table 6-59 shows how the ___trunc?f?f2 subroutines use global
registers.

Table 6-59 ___trunc?f?f2 Global Register Usage

Subroutine src dst

___truncdfsf2 g0-g1(double) g0(single)

___trunctfdf2 g0-g2(extended) g0-g1(double)

___trunctfsf2 g0-g2(extended) g0(single)

Table 6-60 shows how the ___trunc?f?f2 subroutines use the
Arithmetic Control register.

Table 6-60 ___trunc?f?f2 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks Rounding mode
Normalizing mode

Bits set Exception flags

Table 6-61 shows possible faults for the ___trunc?f?f2 subroutines.

Accelerated Floating-point Library

6-45

6
Table 6-61 Faults for __trunc?f?f2

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating underflow Result is too small for destination format.

Floating overflow Result is too large for destination format.

Floating invalid operation Source operand is an SNaN value.

Floating inexact Result cannot be represented exactly in
destination format. Floating overflow occurred
and the overflow exception was masked.

Unmasked Floating-point Fault Handling

This section describes the way that the floating-point library handles
unmasked floating-point faults and tells you how to create custom
unmasked fault-handling subroutines.

The libh libraries contain eighteen unmasked fault-handling subroutines.
Three subroutines are available for each of the six floating-point faults.
The floating-point faults are: inexact result, invalid operation, overflow,
reserved encoding, underflow, and zero divide. For each of these faults,
the libh library provides a subroutine for single-precision operations, a
subroutine for double-precision operations and a subroutine for extended-
precision operations.

When a floating-point fault occurs during the execution of a libh
subroutine, and the specific fault is unmasked in the arithmetic controls,
control is transferred to the appropriate fault-handling subroutine.
Parameter passing and operand configuration follow the compiler calling
sequence. See your compiler user's guide for details.

The default libh fault-handling subroutines return values and take no
action. These subroutines are not intended for use by any application,
serving only as placeholders for user-supplied fault-handling subroutines.

i960 Processor Library Supplement

6-46

6
You can create custom fault-handling subroutines by writing C
subroutines based on the prototype declarations of the fault-handling
subroutines contained in the floating-point libraries. When the program is
linked, the linker uses your version of the subroutines in place of the
subroutines in the libh libraries.

The rest of this section describes the prototype declarations for the
fault-handling subroutines and describes the actions of the fault-handling
subroutines contained in the libh libraries. The src subdirectory under the
I960BASE or G960BASE directory contains example source code for
fault-handling subroutines if you have installed source.

See the i960 KA/KB Microprocessor Programmer's Reference Manual for
more information on fault handling and floating-point faults.

Parameters

The fault-handling subroutines take either two or three parameters,
depending on whether the fault is detected before or after the operation of
the faulting subroutine.

The floating-point subroutines allow handling from underflow, overflow
and inexact-result faults after the operation of the faulting subroutine. The
fault-handling subroutines for these faults take two parameters. The first
parameter, named result , is the properly rounded dst operand from the
faulting subroutine. In the case of underflow or overflow faults, the
result parameter is scaled to make it representable in the floating-point
format of the subroutine.

Additional libh subroutines handle reserved-encoding, invalid-operation
and zero-divide faults before the operation of the faulting subroutine. The
single- and double-precision fault-handling subroutines for these faults
take three parameters. The extended-precision subroutines take two
parameters, as described at the end of this section. The first two
parameters in both cases are named src1 and src2 . They are the src1

and src2 operands from the faulting subroutine.

Accelerated Floating-point Library

6-47

6
The last parameter for all the fault-handling subroutines is named opcode .
This parameter is an integer value that indicates the operation of the
faulting subroutine. Using this indicator, your fault-handling subroutine
can branch conditionally on the operation of the calling floating-point
subroutine. Table 6-62 shows the possible values for the opcode

parameter, in decimal, and their operations.

Table 6-62 Possible Values for the opcode Parameter

Opcode Value Operation

1 ___add?f3 or ___sub?f3

2 ___div?f3

3 ___mul?f3

4 ___floatsisf

5 ___floatunssisf

6 ___trunctfdf2

7 ___extenddftf2

8 ___trunctfsf2

9 ___extendsftf2

10 ___truncdfsf2

11 ___extendsfdf2

12 ___cmp?f2

13 ___scale?fsi?f

14 ___logb?f2

15 ___rem?f3

16 ___rint?f2

17 ___rmd?f3

18 ___round?f2

19 ___ceil?f2

20 ___floor?f2

i960 Processor Library Supplement

6-48

6
Thus, the single-precision subroutine prototype for the inexact-result fault
is as follows:

float AFP_Fault_Inexact_S(float result , int opcode);

result is the properly rounded dst operand from the
faulting subroutine.

opcode is an integer value indicating the operation of the
faulting subroutine.

The double-precision subroutine prototype for the invalid-operation fault
is as follows:

double AFP_Fault_Invalid_Operation_D(double src1 , double
src2 , int opcode);

src1 is the src1 operand from the faulting subroutine.

src2 is the src2 operand from the faulting subroutine.

opcode is an integer value indicating the operation of the
faulting subroutine.

The extended-precision subroutines for faults that occur before the
operation take two parameters rather than three. These subroutines pack
both the src2 operand from the faulting subroutine and the opcode value
into a single union construct named src2 . This packing optimizes global
register usage. Example 6-3 shows how the union construct is defined.

Example 6-3 Union Definition

union fild {
 struct {
 int w1, w2, w3, op;
 } f1 ;
 long double f2 ;
}

The f2 field contains the src2 operand from the faulting subroutine. The
f1.op field contains the opcode value.

Accelerated Floating-point Library

6-49

6
Therefore, the extended-precision subroutine prototype for the
invalid-operation fault is as follows:

long double AFP_Fault_Invalid_Operation_D(long double
src1 , union fild src2);

src1 is the src1 operand from the faulting subroutine.

src2.f2 is the src2 operand from the faulting subroutine.

src2.f1.op is the opcode value.

Return Values

The faulting subroutine returns the return value from the fault-handling
subroutines.

The fault-handling subroutines provided with the floating-point libraries
return the value zero for faults detected prior to the floating-point
operation and return the result parameter for faults detected after the
operation.

Fault-handling Subroutines

The following sections describe each of the available subroutines.

Inexact Result

The prototype declarations for the inexact-result fault-handling
subroutines are:

float AFP_Fault_Inexact_S(float result , int opcode);

double AFP_Fault_Inexact_D(double result , int opcode);

long double AFP_Fault_Inexact_T(long double result , int
opcode);

result is the properly rounded dst operand from the
faulting subroutine.

opcode is an integer value indicating the operation of the
faulting subroutine. See the Parameters section
for the possible values for the opcode parameter
and their meanings.

i960 Processor Library Supplement

6-50

6
The default subroutines supplied with libh return the result parameter.

Invalid Operation

The prototype declarations for the invalid-operation fault-handling
subroutines are:

float AFP_Fault_Invalid_Operation_S(float src1 , float
src2 , int opcode);

double AFP_Fault_Invalid_Operation_D(double src1 , double
src2 , int opcode);

long double AFP_Fault_Invalid_Operation_T(long double
src1 , union fild src2);

src1 is the src1 operand from the faulting subroutine.

src2 is the src2 operand from the faulting subroutine.
For the AFP_Fault_Invalid_Operation_T

subroutine, this value is in src2.f2 .

opcode is an integer value indicating the operation of the
faulting subroutine. For the
AFP_Fault_Invalid_Operation_T subroutine,
this value is in src2.f1.op . See the Parameters
section for the possible values for the opcode

parameter and their meanings.

See the Parameters section for an explanation of the fild union.

When any of the subroutines listed below result in an invalid-operation
fault, the src1 operand must be an SNaN. Do not reference the src2

operand when dealing with an invalid-operation fault resulting from these
subroutines:

___ceil?f2
___floor?f2
___extend?f?f2
___logb?f2
___rint?f2
___round?f2
___scale?fsi?f
___trunc?f?f2

The default subroutines supplied with libh return the value zero.

Accelerated Floating-point Library

6-51

6
Overflow

The prototype declarations for the overflow fault-handling subroutines are:

float AFP_Fault_Overflow_S(float result , int opcode);

double AFP_Fault_Overflow_D(double result , int opcode);

long double AFP_Fault_Overflow_T(long double result , int
opcode);

result is the properly rounded dst operand from the
faulting subroutine scaled by 2-192 for single-
precision operations, 2-1536 for double-precision
operations and 2-24576 for extended-precision
operations. If massive overflow occurs, the
result parameter is the properly signed infinity.

opcode is an integer value indicating the operation of the
faulting subroutine. See the Parameters section
for the possible values for the opcode parameter
and their meanings.

The ___scale?fsi?f and trunc?f?f2 subroutines may produce results
massively exceeding the representable range of the result parameter's
floating-point format. If the exponent adjustment described above does
not bring the value within representable range, an infinity of the proper
sign is used.

This subroutine receives a single value which is the properly rounded
result after scaling of the faulting operation. When the overflow exception
is masked, either a properly signed infinity or a maximum magnitude finite
number (depending on the current rounding mode) is returned and the
overflow flag bit in the Arithmetic Controls register is set. The default
subroutine supplied with libh returns the result parameter.

i960 Processor Library Supplement

6-52

6
Reserved Encoding

The prototype declarations for the reserved-encoding fault-handling
subroutines are:

float AFP_Fault_Reserved_Encoding_S(float src1 , float
src2 , int opcode);

double AFP_Fault_Reserved_Encoding_D(double src1 , double
src2 , int opcode);

long double AFP_Fault_Reserved_Encoding_T(long double
src1 , union fild src2);

src1 is the src1 operand from the faulting subroutine.

src2 is the src2 operand from the faulting subroutine.
For the AFP_Fault_Reserved_Encoding_T

subroutine, this value is in src2.f2 .

opcode is an integer value indicating the operation of the
faulting subroutine. For the
AFP_Fault_Reserved_Encoding_T subroutine,
this value is in src2.f1.op . See the Parameters
section for the possible values for the opcode

parameter and their meanings.

See the Parameters section for an explanation of the fild union.

When any of the operations listed below result in a reserved-encoding
fault, the src1 operand must be the denormal or unnormal value which
caused the fault. Do not reference the src2 operand when dealing with a
reserved-encoding fault resulting from these operations:

___extend?f?f2
___logb?f2
___rint?f2
___round?f2
___scale?fsi?f
___trunc?f?f2

The default subroutines supplied with libh return the value zero.

Accelerated Floating-point Library

6-53

6
NOTE. Reserved-encoding faults cannot be masked. However, setting the
normalizing-mode bit of the floating-point arithmetic controls prevents
reserved-encoding faults with single- and double-precision values. This
action permits denormalized values to be used as operands for arithmetic
operations.

Underflow

The prototype declarations for the underflow fault-handling subroutines
are:

float AFP_Fault_Underflow_S(float result , int opcode);

double AFP_Fault_Underflow_D(double result , int opcode);

long double AFP_Fault_Underflow_T(long double result , int
opcode);

result is the properly rounded dst operand from the
faulting subroutine scaled by 2192 for
single-precision operations, 21536 for
double-precision operations and 224576 for
extended-precision operations. If massive
underflow occurs, the result parameter is the
properly signed zero.

opcode is an integer value indicating the operation of the
faulting subroutine. See the Parameters section
for the possible values for the opcode parameter
and their meanings.

This subroutine receives a single value which is the properly rounded
result after scaling of the faulting subroutine. When the underflow
exception is masked, either a properly signed zero or a denormalized
number (depending on the magnitude of the result) is returned and the
underflow flag bit in the Arithmetic Controls register is set. The default
subroutine supplied with libh returns the scaled value.

i960 Processor Library Supplement

6-54

6
Zero Divide

The prototype declarations for the zero-divide fault-handling subroutines
are:

float AFP_Fault_Zero_Divide_S(float src1 , float src2 , int
opcode);

double AFP_Fault_Zero_Divide_D(double src1 , double src2 ,
int opcode);

long double AFP_Fault_Zero_Divide_T(long double src1 ,
union fild src2);

src1 is the src1 operand from the faulting subroutine.
src1 must be a finite non-zero value.

src2 is the src2 operand from the faulting subroutine.
src2 must be a signed zero value. For the
AFP_Fault_Zero_Divide_T subroutine, this
value is in src2.f2 .

opcode is an integer value indicating the operation of the
faulting subroutine. opcode must be the value 2

for division. For the
AFP_Fault_Zero_Divide_T subroutine, this
value is in src2.f1.op . See the Parameters
section for the possible values for the opcode

parameter and their meanings.

See the Parameters section for an explanation of the fild union.

The ___scale?fsi?f and ___logb?f2 subroutines signal a zero-divide
when the src1 operand is zero. Do not reference the src2 operand when
dealing with a zero-divide fault resulting from a ___scale?fsi?f or
___logb?f2 operation.

Function
Interdependencies

A-1

A
High-level functions often refer to low-level functions. Table A-1 shows
which low-level functions are required by each high-level function. If you
are retargeting your application to run in other than a directly supported
environment, you must rewrite the functions shown in the right column.
These functions are described in Chapter 5 or in C: A Reference Manual.

Table A-1 Cross-reference of low-level functions

This high-level function: Depends on these low-level functions:

_exit_init _errno_ptr, _semaphore_init

_exit_create,

_HL_init _arg_init, _sig_int_dfl,

_err_no_ptr, _sig_null,

_exit_create, _sig_read_dfl,

_exit_ptr, _sig_segv_dfl,

_LL_init, _sig_term_dfl,

_semaphore_init, _sig_write_dfl,

_semaphore_signal, _stdio_create,

_semaphore_wait, _stdio_ptr,

_sig_abrt_dfl, _stdio_stdopen,

_sig_alloc_dfl, _thread_create,

_sig_fpe_dfl, isatty,

_sig_ill_dfl, sbrk

_sig_free_dfl,

continued ☛

i960 Processor Library Supplement

A-2

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

_stdio_init _err_no_ptr, _sig_null,

_exit_ptr, _sig_read_dfl,

_semaphore_init, _sig_segv_dfl,

_semaphore_signal, _sig_term_dfl,

_semaphore_wait, _sig_write_dfl,

_sig_abrt_dfl, _stdio_create,

_sig_alloc_dfl, _stdio_ptr,

_sig_fpe_dfl, _stdio_stdopen,

_sig_free_dfl, isatty,

_sig_ill_dfl, sbrk

_sig_int_dfl,

abort _err_no_ptr, _sig_int_dfl,

_exit, _sig_null,

_sig_abrt_dfl, _sig_read_dfl,

_sig_alloc_dfl, _sig_segv_dfl,

_sig_fpe_dfl, _sig_term_dfl,

_sig_free_dfl, _sig_write_dfl,

_sig_ill_dfl,

acos _err_no_ptr

asctime _err_no_ptr

asin _err_no_ptr

assert _err_no_ptr, _sig_null,

_exit, _sig_read_dfl,

_exit_ptr, _sig_segv_dfl,

_map_length,

continued ☛

Function Interdependencies

A-3

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

assert (continued) _semaphore_signal, _sig_int_dfl,

_semaphore_wait, _sig_term_dfl,

_sig_abrt_dfl, _sig_write_dfl,

_sig_alloc_dfl, _stdio_ptr,

_sig_fpe_dfl, lseek,

_sig_free_dfl, write

_sig_ill_dfl,

atan _err_no_ptr

atan2 _err_no_ptr

atan2f _err_no_ptr

atan2l _thread_ptr

atanf _err_no_ptr

atanl _thread_ptr

atexit _exit_ptr, _semaphore_wait

_semaphore_signal,

atof _err_no_ptr

atol _err_no_ptr

calloc _err_no_ptr, _sig_null,

_sig_abrt_dfl, _sig_read_dfl,

_sig_alloc_dfl, _sig_segv_dfl,

_sig_fpe_dfl, _sig_term_dfl,

_sig_free_dfl, _sig_write_dfl,

_sig_ill_dfl, sbrk

_sig_int_dfl,

continued ☛

i960 Processor Library Supplement

A-4

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

clearerr _semaphore_signal, _semaphore_wait

cosh _err_no_ptr,

ctime _err_no_ptr, _sig_null,

_sig_abrt_dfl, _sig_read_dfl,

_sig_alloc_dfl, _sig_segv_dfl,

_sig_fpe_dfl, _sig_term_dfl,

_sig_free_dfl, _sig_write_dfl,

_sig_ill_dfl, _tzset_ptr,

_sig_int_dfl, sbrk

div _err_no_ptr,

exit _err_no_ptr, _sig_null,

_exit, _sig_read_dfl,

_exit_ptr, _sig_segv_dfl,

_map_length, _sig_term_dfl,

_semaphore_delete, _sig_write_dfl,

_semaphore_signal, _stdio_ptr,

_semaphore_wait, _thread_ptr,

_sig_abrt_dfl, c_term,

_sig_alloc_dfl, close,

_sig_fpe_dfl, lseek,

_sig_free_dfl, sbrk,

_sig_ill_dfl, unlink,

_sig_int_dfl, write

exp _err_no_ptr

continued ☛

Function Interdependencies

A-5

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

expf _err_no_ptr

fclose _err_no_ptr, _sig_int_dfl,

_exit_ptr, _sig_null,

_map_length, _sig_read_dfl,

_semaphore_delete, _sig_segv_dfl,

_semaphore_signal, _sig_term_dfl,

_semaphore_wait, _sig_write_dfl,

_sig_abrt_dfl, _stdio_ptr,

_sig_alloc_dfl, close,

_sig_fpe_dfl, lseek,

_sig_free_dfl, unlink,

_sig_ill_dfl, write

fcloseall _err_no_ptr, _sig_int_dfl,

_exit_ptr, _sig_null,

_map_length, _sig_read_dfl,

_semaphore_delete, _sig_segv_dfl,

_semaphore_signal, _sig_term_dfl,

_semaphore_wait, _sig_write_dfl,

_sig_abrt_dfl, _stdio_ptr,

_sig_alloc_dfl, close,

_sig_fpe_dfl, lseek,

_sig_free_dfl, unlink,

_sig_ill_dfl, write

continued ☛

i960 Processor Library Supplement

A-6

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

fdopen _err_no_ptr, _sig_ill_dfl,

_exit_ptr, _sig_int_dfl,

_semaphore_init, _sig_null,

_semaphore_signal, _sig_read_dfl,

_semaphore_wait, _sig_segv_dfl,

_sig_abrt_dfl, _sig_term_dfl,

_sig_alloc_dfl, _sig_write_dfl,

_sig_fpe_dfl, isatty,

_sig_free_dfl, sbrk

fflush _err_no_ptr, _semaphore_wait,

_exit_ptr, lseek,

_map_length, write

_semaphore_signal,

fgetc _err_no_ptr, _sig_int_dfl,

_exit_ptr, _sig_null,

_map_length, _sig_read_dfl,

_semaphore_signal, _sig_segv_dfl,

_semaphore_wait, _sig_term_dfl,

_sig_abrt_dfl, _sig_write_dfl,

_sig_alloc_dfl, lseek,

_sig_fpe_dfl, read,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

continued ☛

Function Interdependencies

A-7

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

fgetchar _err_no_ptr, _sig_null,

_exit_ptr, _sig_read_dfl,

_map_length, _sig_segv_dfl,

_semaphore_signal, _sig_term_dfl,

_semaphore_wait, _sig_write_dfl,

_sig_abrt_dfl, _stdio_ptr,

_sig_alloc_dfl, lseek,

_sig_fpe_dfl, read,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

_sig_int_dfl,

fgetpos _err_no_ptr, _semaphore_wait,

_exit_ptr, lseek,

_map_length, write

_semaphore_signal,

fgets _err_no_ptr, _sig_int_dfl,

_exit_ptr, _sig_null,

_map_length, _sig_read_dfl,

_semaphore_signal, _sig_segv_dfl,

_semaphore_wait, _sig_term_dfl,

_sig_abrt_dfl, _sig_write_dfl,

_sig_alloc_dfl, lseek,

_sig_fpe_dfl, read,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

continued ☛

i960 Processor Library Supplement

A-8

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

fileno _err_no_ptr, _semaphore_wait,

_exit_ptr, lseek,

_map_length, write

_semaphore_signal,

flushall _err_no_ptr, _semaphore_wait,

_exit_ptr, lseek,

_map_length, write

_semaphore_signal,

fopen _err_no_ptr, _sig_int_dfl,

_exit_ptr, _sig_null,

_semaphore_init, _sig_read_dfl,

_semaphore_signal, _sig_segv_dfl,

_semaphore_wait, _sig_term_dfl,

_sig_abrt_dfl, _sig_write_dfl,

_sig_alloc_dfl, close,

_sig_fpe_dfl, isatty,

_sig_free_dfl, open,

_sig_ill_dfl, sbrk

fprintf _err_no_ptr, _semaphore_wait,

_exit_ptr, lseek,

_map_length, write

_semaphore_signal,

continued ☛

Function Interdependencies

A-9

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

fputc _err_no_ptr, _sig_int_dfl,

_semaphore_signal, _sig_null,

_semaphore_wait, _sig_read_dfl,

_sig_abrt_dfl, _sig_segv_dfl,

_sig_alloc_dfl, _sig_term_dfl,

_sig_fpe_dfl, _sig_write_dfl,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

fputchar _err_no_ptr, _sig_null,

_semaphore_signal, _sig_read_dfl,

_semaphore_wait, _sig_segv_dfl,

_sig_abrt_dfl, _sig_term_dfl,

_sig_alloc_dfl, _sig_write_dfl,

_sig_fpe_dfl, _stdio_ptr,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

_sig_int_dfl,

fputs _err_no_ptr, _sig_fpe_dfl,

_semaphore_signal, _sig_null,

_semaphore_wait, _sig_read_dfl,

_sig_abrt_dfl, _sig_segv_dfl,

_sig_alloc_dfl, _sig_term_dfl,

_sig_free_dfl, _sig_write_dfl,

_sig_ill_dfl, sbrk,

_sig_int_dfl, write

continued ☛

i960 Processor Library Supplement

A-10

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

fread _err_no_ptr, _sig_int_dfl,

_exit_ptr, _sig_null,

_map_length, _sig_read_dfl,

_semaphore_signal, _sig_segv_dfl,

_semaphore_wait, _sig_term_dfl,

_sig_abrt_dfl, _sig_write_dfl,

_sig_alloc_dfl, lseek,

_sig_fpe_dfl, read,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

free _err_no_ptr, _sig_int_dfl,

_sig_abrt_dfl, _sig_null,

_sig_alloc_dfl, _sig_read_dfl,

_sig_fpe_dfl, _sig_segv_dfl,

_sig_free_dfl, _sig_term_dfl,

_sig_ill_dfl, _sig_write_dfl,

freopen _err_no_ptr, close,

_exit_ptr, isatty,

_map_length, lseek,

_semaphore_init, open,

_semaphore_signal, unlink,

_semaphore_wait, write

fscanf _err_no_ptr, _semaphore_wait

_semaphore_signal,

continued ☛

Function Interdependencies

A-11

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

fseek _err_no_ptr, _semaphore_wait,

_exit_ptr, lseek,

_map_length, write

_semaphore_signal,

fsetpos _err_no_ptr, _semaphore_wait,

_exit_ptr, lseek,

_map_length, write

_semaphore_signal,

ftell _err_no_ptr, _semaphore_wait,

_exit_ptr, lseek,

_map_length, write

_semaphore_signal,

fwrite _err_no_ptr, _sig_ill_dfl,

_semaphore_signal, _sig_int_dfl,

_semaphore_wait, _sig_null,

_sig_abrt_dfl, _sig_read_dfl,

_sig_alloc_dfl, _sig_segv_dfl

_sig_fpe_dfl, _sig_term_dfl,

_sig_free_dfl, _sig_write_dfl

getc _err_no_ptr, _sig_int_dfl,

_exit_ptr, _sig_null,

_map_length, _sig_read_dfl,

_semaphore_signal, _sig_segv_dfl,

_semaphore_wait, _sig_term_dfl,

_sig_abrt_dfl, _sig_write_dfl,

_sig_alloc_dfl, lseek,

_sig_fpe_dfl, read,

continued ☛

i960 Processor Library Supplement

A-12

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

getc (continued) _sig_free_dfl, sbrk,

_sig_ill_dfl, write

getchar _err_no_ptr, _sig_null,

_exit_ptr, _sig_read_dfl,

_map_length, _sig_segv_dfl,

_semaphore_signal, _sig_term_dfl,

_semaphore_wait, _sig_write_dfl,

_sig_abrt_dfl, _stdio_ptr,

_sig_alloc_dfl, lseek,

_sig_fpe_dfl, read,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

_sig_int_dfl,

getopt _err_no_ptr, write

gets _err_no_ptr, _sig_null,

_exit_ptr, _sig_read_dfl,

_map_length, _sig_segv_dfl,

_semaphore_signal, _sig_term_dfl,

_semaphore_wait, _sig_write_dfl,

_sig_abrt_dfl, _stdio_ptr,

_sig_alloc_dfl, lseek,

_sig_fpe_dfl, read,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

_sig_int_dfl,

continued ☛

Function Interdependencies

A-13

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

getw _err_no_ptr, _sig_int_dfl,

_exit_ptr, _sig_null,

_map_length, _sig_read_dfl,

_semaphore_signal, _sig_segv_dfl,

_semaphore_wait, _sig_term_dfl,

_sig_abrt_dfl, _sig_write_dfl,

_sig_alloc_dfl, lseek,

_sig_fpe_dfl, read,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

gmtime _thread_ptr

hypot _err_no_ptr

ldexp _err_no_ptr,

ldiv _err_no_ptr,

localtime _err_no_ptr, _sig_read_dfl,

_sig_abrt_dfl, _sig_segv_dfl,

_sig_alloc_dfl, _sig_term_dfl,

_sig_fpe_dfl, _sig_write_dfl,

_sig_free_dfl, _thread_ptr,

_sig_ill_dfl, _tzset_ptr,

_sig_int_dfl, sbrk

_sig_null,

log _err_no_ptr,

log10 _err_no_ptr,

logf _err_no_ptr,

continued ☛

i960 Processor Library Supplement

A-14

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

malloc _err_no_ptr, _sig_null,

_sig_abrt_dfl, _sig_read_dfl,

_sig_alloc_dfl, _sig_segv_dfl,

_sig_fpe_dfl, _sig_term_dfl,

_sig_free_dfl, _sig_write_dfl,

_sig_ill_dfl, sbrk

_sig_int_dfl,

mktime _err_no_ptr, _sig_read_dfl,

_sig_abrt_dfl, _sig_segv_dfl,

_sig_alloc_dfl, _sig_term_dfl,

_sig_fpe_dfl, _sig_write_dfl,

_sig_free_dfl, _thread_ptr,

_sig_ill_dfl, _tzset_ptr,

_sig_int_dfl, sbrk

_sig_null,

perror _err_no_ptr, _semaphore_wait,

_exit_ptr, _stdio_ptr,

_map_length, lseek,

_semaphore_signal, write

pow _err_no_ptr

powf _err_no_ptr,

printf _err_no_ptr, _semaphore_wait,

_exit_ptr, _stdio_ptr,

_map_length, lseek,

_semaphore_signal, write

continued ☛

Function Interdependencies

A-15

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

putc _err_no_ptr, _sig_int_dfl,

_semaphore_signal, _sig_null,

_semaphore_wait, _sig_read_dfl,

_sig_abrt_dfl, _sig_segv_dfl,

_sig_alloc_dfl, _sig_term_dfl,

_sig_fpe_dfl, _sig_write_dfl,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

putchar _err_no_ptr, _sig_null,

_semaphore_signal, _sig_read_dfl,

_semaphore_wait, _sig_segv_dfl,

_sig_abrt_dfl, _sig_term_dfl,

_sig_alloc_dfl, _sig_write_dfl,

_sig_fpe_dfl, _stdio_ptr,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

_sig_int_dfl,

puts _err_no_ptr, _sig_null,

_semaphore_signal, _sig_read_dfl,

_semaphore_wait, _sig_segv_dfl,

_sig_abrt_dfl, _sig_term_dfl,

_sig_alloc_dfl, _sig_write_dfl,

_sig_fpe_dfl, _stdio_ptr,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

_sig_int_dfl,

continued ☛

i960 Processor Library Supplement

A-16

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

putw _err_no_ptr, _sig_int_dfl,

_semaphore_signal, _sig_null,

_semaphore_wait, _sig_read_dfl,

_sig_abrt_dfl, _sig_segv_dfl,

_sig_alloc_dfl, _sig_term_dfl,

_sig_fpe_dfl, _sig_write_dfl,

_sig_free_dfl, sbrk,

_sig_ill_dfl, write

raise _err_no_ptr, _sig_int_dfl,

_sig_abrt_dfl, _sig_null,

_sig_alloc_dfl, _sig_read_dfl,

_sig_fpe_dfl, _sig_segv_dfl,

_sig_free_dfl, _sig_term_dfl,

_sig_ill_dfl, _sig_write_dfl,

rand _thread_ptr

realloc _err_no_ptr, _sig_null,

_sig_abrt_dfl, _sig_read_dfl,

_sig_alloc_dfl, _sig_segv_dfl,

_sig_fpe_dfl, _sig_term_dfl,

_sig_free_dfl, _sig_write_dfl,

_sig_ill_dfl, sbrk

_sig_int_dfl,

remove _err_no_ptr, unlink

rewind _err_no_ptr, _semaphore_wait,

_exit_ptr, lseek,

_map_length, write

_semaphore_signal,

continued ☛

Function Interdependencies

A-17

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

rmtmp _err_no_ptr, _sig_int_dfl,

_exit_ptr, _sig_null,

_map_length, _sig_read_dfl,

_semaphore_delete, _sig_segv_dfl,

_semaphore_signal, _sig_term_dfl,

_semaphore_wait, _sig_write_dfl,

_sig_abrt_dfl, _stdio_ptr,

_sig_alloc_dfl, close,

_sig_fpe_dfl, lseek,

_sig_free_dfl, unlink,

_sig_ill_dfl, write

scanf _err_no_ptr, _semaphore_wait,

_semaphore_signal, _stdio_ptr

setbuf _err_no_ptr, _semaphore_wait

_semaphore_signal,

setvbuf _err_no_ptr, _semaphore_wait

_semaphore_signal,

signal _err_no_ptr, _sig_int_dfl,

_sig_abrt_dfl, _sig_null,

_sig_alloc_dfl, _sig_read_dfl,

_sig_fpe_dfl, _sig_segv_dfl,

_sig_free_dfl, _sig_term_dfl,

_sig_ill_dfl, _sig_write_dfl

sin _errno_ptr

sinf _errno_ptr

sinh _errno_ptr

continued ☛

i960 Processor Library Supplement

A-18

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

sqrt _errno_ptr

sqrtf _errno_ptr

sscanf _err_no_ptr, _semaphore_wait

_semaphore_signed

strdup _err_no_ptr, _sig_int_dfl,

_sig_abrt_dfl, _sig_null,

_sig_alloc_dfl, _sig_read_dfl,

_sig_fpe_dfl, _sig_segv_dfl,

_sig_free_dfl, _sig_term_dfl,

_sig_ill_dfl, _sig_write_dfl

strerror _errno_ptr

strftime _err_no_ptr, _sig_null,

_sig_abrt_dfl, _sig_read_dfl,

_sig_alloc_dfl, _sig_segv_dfl,

_sig_fpe_dfl, _sig_term_dfl,

_sig_free_dfl, _sig_write_dfl,

_sig_ill_dfl, _tzset_ptr,

_sig_int_dfl, sbrk

strtod _errno_ptr

strtok _errno_ptr

strtol _errno_ptr

strtoul _errno_ptr

svand _errno_ptr

tan _errno_ptr

tanf _errno_ptr

tanh _errno_ptr

continued ☛

Function Interdependencies

A-19

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

tmpfile _err_no_ptr, _sig_null,

_exit_ptr, _sig_read_dfl,

_semaphore_init, _sig_segv_dfl,

_semaphore_signal, _sig_term_dfl,

_semaphore_wait, _sig_write_dfl,

_sig_abrt_dfl, close,

_sig_alloc_dfl, isatty,

_sig_fpe_dfl, open,

_sig_free_dfl, sbrk,

_sig_ill_dfl, stat

_sig_int_dfl,

tmpnam _err_no_ptr, stat

tzset _err_no_ptr, _sig_null,

_sig_abrt_dfl, _sig_read_dfl,

_sig_alloc_dfl, _sig_segv_dfl,

_sig_fpe_dfl, _sig_term_dfl,

_sig_free_dfl, _sig_write_dfl,

_sig_ill_dfl, _tzset_ptr,

_sig_int_dfl, sbrk

ungetc _err_no_ptr, _sig_int_dfl,

_semaphore_signal, _sig_null,

_semaphore_wait, _sig_read_dfl,

_sig_abrt_dfl, _sig_segv_dfl,

_sig_alloc_dfl, _sig_term_dfl,

_sig_fpe_dfl, _sig_write_dfl,

_sig_free_dfl, sbrk

_sig_ill_dfl,

continued ☛

i960 Processor Library Supplement

A-20

A
Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

vfprintf _err_no_ptr, _semaphore_wait,

_exit_ptr, lseek,

_map_length, write

_semaphore_signal,

vprintf _err_no_ptr, _semaphore_wait,

_exit_ptr, _stdio_ptr,

_map_length, lseek,

_semaphore_signal, write

Index

Index-1

A

_ac structure, 3-7

acosf function, 3-9

addition subroutines, 6-9

AFP library, 6-1

afpfault.h fault-handling header file, 3-3

afpfault.h header file, 6-1

alloca.h header file, 3-3

ANSI math library, 2-6

ANSI standard library, 2-6

architectures supported by libh library, 6-1

architectures supported by the libraries, 2-1

_arg_init function, 5-19

arithmetic control register, 6-4

asinf function, 3-9

atan2f function, 3-9

atanf function, 3-9

B-C

bal and balx instructions, 6-3

C linker directive files, 2-10

C++ IOstream library, 2-5

C++ linker directive files, 2-11

call and callx instructions, 6-3

ceilf function, 3-9

classify floating-point number
subroutines, 6-14

close function, 5-38

comparison subroutines, 6-16

compatibility

of libraries, 2-1

with ANSI C standard, 2-17

with standards, 1-1

complex structure, 3-10

context data, defined, 5-2

conventions, notational, 6-2

copyrights, 1-4

cosf function, 3-9

_create.c file, 5-13, 5-14, 5-16

creat function, 5-39

cross-reference of high-level libraries, A-1

crt startup files, list of, 2-5

customer service, 1-4

customizing the libraries, 5-1

D

data formats supported, 6-3

daylight macro, 3-16, 4-37

dev_t data type, 3-17

division subroutines, 6-18

documents, related, 1-2, 1-3, 3-1

double to single conversion subroutines, 6-44

i960 Processor Library Supplement

Index-2

E

ecvt function, 3-14, 4-1

errno macro, address, 5-16

_errno_ptr function, 5-20

errors, identifying at run-time, 2-16

example of generated assembly
language, 6-6, 6-7

exit function, 5-14, 5-17

_exit function, 5-40

exit handler, list, 5-17

_exit_create function, 5-14, 5-15, 5-17, 5-20

_exit_init function, 5-13, 5-15, 5-21

_exit_ptr function, 5-15, 5-16, 5-23

expf function, 3-9

extract unbiased exponent subroutines, 6-26

F

fabsf function, 3-9

fault handling, 6-5

subroutines

inexact result, 6-49

invalid operation, 6-50

opcode parameter, 6-47

overflow, 6-51

parameters, 6-46

prototype declarations, 6-46

reserved encoding, 6-52

return values, 6-49

underflow, 6-53

zero divide, 6-54

union construct, 6-48

fcloseall function, 3-13

fcntl.h file access flags header file, 3-4

fcvt function, 3-14, 4-1

fdopen function, 3-13, 4-4

fgetchar function, 3-13, 4-5

fileno function, 3-13, 4-6

flash support library, 2-10

floating-point arithmetic

control, 6-4

formats, 6-3

floating-point libraries, using, 2-13

floating-point library, 2-7, 2-8

floating-point to integer conversion
subroutines, 6-21, 6-36, 6-38

floorf function, 3-9

floseall function, 4-3

flushall function, 3-13, 4-7

fp_clrflags function, 3-5, 4-10

fp_clriflag function, 3-5, 4-10

fp_getenv and fp_setenv functions, 6-5

fp_getenv function, 3-5, 4-9

fp_getflags function, 3-5, 4-10

fp_getmasks function, 3-5, 4-11

fp_getround function, 3-5, 4-13

fp_logb function, 3-7

fp_logbf function, 3-7

fp_logbl function, 3-7

fp_rem function, 3-7

fp_remf function, 3-7

fp_reml function, 3-7

FP_RM macro, 3-6

fp_rmd function, 3-7

fp_rmdf function, 3-7

fp_rmdl function, 3-7

Index

Index-3

fp_rmdl function, 3-7

FP_RN macro, 3-6

fp_round function, 3-8

fp_roundf function, 3-8

fp_roundl function, 3-8

FP_RP macro, 3-6

FP_RZ macro, 3-6

fp_scale function, 3-8

fp_scalef function, 3-8

fp_scalel function, 3-8

fp_setenv function, 3-5, 4-9

fp_setflags function, 3-5, 4-10

fp_setmasks function, 3-5, 4-11

fp_setround function, 3-5, 4-13

fpem_CA_AC external variable, 4-15

fpsl.h floating-point operation control
header file, 3-5

fputchar function, 3-13, 4-7

FPX_ALL macro, 3-6

FPX_CLEX macro, 3-6

FPX_INEX macro, 3-6

FPX_INVOP macro, 3-6

FPX_OVFL macro, 3-6

FPX_UNFL macro, 3-6

FPX_ZDIV macro, 3-6

fstat function, 3-12

function interdependencies, A-1

G

gcc960 configuration files, 2-12

gcvt function, 3-14, 4-1

_getac function, 3-5, 4-14

GET_UNALIGNED_SHORT macro, 3-18

GET_UNALIGNED_UNSIGNED_SHORT
macro, 3-18

GET_UNALIGNED_WORD macro, 3-18

GET_UNALIGNED2_WORD macro, 3-18

getc function, 5-17

getchar function, 5-17

getopt function, 3-14, 4-17

getw function, 3-13, 4-15

ghist960 support library, 2-9

H

header files

for fault handling, 6-1

including, 2-15

list of, 3-1

high-level libraries, A-1

_HL_init function, 5-23

hypot function, 3-9, 4-18

I

IEEE 754 standard, 6-3

_IEEE_sqrt function, 3-10, 4-19

_IEEE_sqrtf function, 3-9, 3-10, 4-19

inexact result fault, 6-49

infinities, signed, 6-3

initialization

data, 5-13

functions, 5-15

memory allocation, 5-13, 5-14

startup code, 5-13

stream I/O, 5-13, 5-14

instructions for calling subroutines, 6-3

i960 Processor Library Supplement

Index-4

integer, defined, 6-2

integer to floating-point conversion
subroutines, 6-24

interrupt handling, 5-17

interrupt-driven I/O, 5-17

invalid operation fault, 6-50

ioctl function, 5-41

isatty function, 5-42

itoa function, 3-14, 4-20

itoh function, 3-14, 4-21

L

lfind function, 4-22

libc ANSI standard library, 2-6

libfp alternate floating-point library, 2-8

libh floating-point library, 2-7

libh library, 6-1

libhis ghist960 support library, 2-9

libi C++ IOstream library, 2-5

libll MON960 low-level support library, 2-9

libm ANSI math library, 2-6

libmon Monitor low-level support library, 2-9

libq/libqf profiling libraries, 2-8

libraries

list of, 2-4

retargeting, 5-1

library files, names of, 2-2

librom flash support library, 2-10

licensing, 1-4

linker configuration file, 6-4

linker directive files, 2-9

linking library files, sequence, 2-12

linking sequence, 2-12

linking the floating-point library, 6-1

_LL_init function, 5-24

log10f function, 3-9

logf function, 3-9

low-level libraries, A-1

lsearch function, 4-22

lseek function, 5-43

ltoa function, 3-14, 4-24

ltoh function, 3-14, 4-25

ltos function, 3-14, 4-24

M

__macros.h include macros header file, 3-8

malloc function, 5-13, 5-14

manuals, related, 1-2, 1-3, 3-1

_map_length function, 5-44

math.h header file, 3-8

memicmp function, 3-15, 4-27

memory allocation, 5-15

initialization, 5-13, 5-14

startup code, 5-13, 5-14

modac instruction, 6-5

mode_t data type, 3-17

MON960 low-level support library, 2-9

monitor support library, 2-9

multiplication subroutines, 6-27

multi-tasking, see also reentrancy, 5-5

data, 5-4

function calls, 5-4

multi-tasking execution environments,
defined, 5-2

Index

Index-5

N-O

NaN as return value, 6-3

notational conventions, 6-2

O_APPEND macro, 3-4, 5-46

O_BINARY macro, 3-4, 5-46

O_CREAT macro, 3-4, 5-46

O_EXCL macro, 3-4, 5-46

off_t data type, 3-17

open function, 5-45

O_RDONLY macro, 3-4, 5-45

O_RDWR macro, 3-4, 5-45

O_TEXT macro, 3-4, 5-46

O_TRUNC macro, 3-4, 5-46

overflow fault, 6-51

O_WRONLY macro, 3-4, 5-45

P

parallel reentrancy, defined, 5-2

parameter passing, 6-4

persistent data, defined, 5-2

powf function, 3-9

precision of results, 6-3

primitive functions, descriptions, 5-18

processors, and floating-point support, 6-1

profiling libraries, 2-8

publications, related, 1-2, 1-3, 3-1

putc function, 5-17

putchar function, 5-17

putw function, 3-14, 4-28

R

read function, 5-47

recursive reentrancy, defined, 5-2

reent.h header file, 5-13, 5-14

reent.h reentrancy header file, 3-10

reentrancy

data access, 5-16

data usage, 5-5

exit handler, 5-13

functions, 5-16

initialization, 5-13

memory access, 5-13, 5-17

memory handling functions, 5-15

multi-tasking, 5-4

of functions, 5-6–5-12

recursive, 5-4

semaphores, 5-16, 5-17

stream I/O, 5-17

streams, 5-13

synchronization, 5-13

time-sliced, 5-4

register usage, 6-4

remaindering subroutines, 6-29, 6-33

reserved encoding fault, 6-52

retargeting, process preview, 5-37

retargeting the libraries, 16, 5-1

return value implementation, 6-4

rmtmp function, 3-14, 4-29

round to integer subroutines, 6-10, 6-12, 6-31,
6-35

i960 Processor Library Supplement

Index-6

S

sbrk function, 5-48

scale floating-point by integer
subroutines, 6-40

search.h linear search header file, 3-11

_semaph.c file, 5-18

_semaphore_delete function, 5-15, 5-16, 5-25

_semaphore_init function, 5-15, 5-16, 5-18,
5-26

semaphore I/O, 5-17

semaphores

functions, 5-15

interrupt-driver I/O, 5-17

memory access, 5-17

stream I/O, 5-17

_semaphore_signal function, 5-15, 5-16, 5-27

_semaphore_wait function, 5-15, 5-16, 5-28

_setac function, 3-5, 4-14

SET_UNALIGNED_SHORT macro, 3-18

SET_UNALIGNED_UNSIGNED_SHORT
macro, 3-18

SET_UNALIGNED_WORD macro, 3-18

SET_UNALIGNED2_WORD macro, 3-18

SIGALLOC macro, 3-11

SIGFREE macro, 3-12

sign bit, 6-3

signal handlers, list of, 5-49

signal.h header file, 3-11

SIGREAD macro, 3-11

SIGSIZE macro, 3-12

SIGUSR1 macro, 3-12

SIGUSR2 macro, 3-12

SIGWRITE macro, 3-11

sinf function, 3-9

single to double conversion subroutines, 6-19

size_t data type, 3-17

sprintf function, 4-3

sqrtf function, 3-9

square function, 3-9, 4-29

standard streams, initialization, 5-13, 5-14

standards, compatibility with, 1-1

startup code

data initialization, 5-13

memory allocation, 5-13, 5-14

stream initialization, 5-13

startup files, list of, 2-5

stat function, 3-12, 5-50

stat structure, 3-17

stat.h file type and permission
header file, 3-12

std.h system function header file, 3-13

stderr stream, 5-5, 5-13, 5-14

stdin stream, 5-5, 5-13, 5-14

_stdio_create function, 5-14, 5-15, 5-29

stdio.h header file, 3-13

_stdio_init function, 5-13 thru 5-15, 5-30

_stdio_ptr function, 5-15, 5-16, 5-31

_stdio_stdopen function, 5-32

stdlib.h header file, 3-14

stdout stream, 5-5, 5-13, 5-14

strdup function, 3-15, 4-30

stream input/output

initialization, 5-13, 5-14

lists, 5-5

stricmp function, 3-15, 4-31

string.h header file, 3-15

Index

Index-7

strlwr function, 3-15, 4-32

strnicmp function, 3-15, 4-33

strnset function, 3-15, 4-35

strrev function, 3-15, 4-36

strset function, 3-15, 4-36

strupr function, 3-15, 4-32

subroutine descriptions, 6-8

subroutine names for calling from
assembly and C, 6-2

subroutines, how to call, 6-3

subtraction subroutines, 6-42

sunction interdependencies, 5-37

synchronization, functions, 5-15

system call descriptions, 5-38

T

tanf function, 3-9

_thread_create function, 5-14, 5-15, 5-33

thread data, defined, 5-2

thread, defined, 5-2

_thread_init function, 5-13, 5-15, 5-34

_thread_ptr function, 5-15, 5-16, 5-35

time function, 5-53

time.h header file, 3-16

time-sliced reentrancy, defined, 5-2

timezone macro, 3-16, 4-37

types.h System V types header file, 3-17

TZ environment variable, 4-37

tzname macro, 3-16, 4-37

tzset function, 3-16, 4-37

_tzset_ptr function, 5-15, 5-36

U

u_char data type, 3-17

u_int data type, 3-17

u_long data type, 3-17

u_short data type, 3-17

uchar data type, 3-17

uint data type, 3-17

ulong data type, 3-17

ultoa function, 3-14, 4-39

unalign.h special macros header file, 3-18

underflow fault, 6-53

underscore characters, in subroutine
names, 6-2

union construct, 6-48

unlink function, 5-53

unsigned integer, defined, 6-2

ushort data type, 3-17

utoa function, 3-14, 4-39

V

va_arg macro, 3-20

va_dcl declaration, 3-20

va_end macro, 3-20

va_list macro, 3-20

va_start macro, 3-20

varargs.h variable argument list
header file, 3-20

W-Z

write function, 5-54

zero divide fault, 6-54

zeros, signed, 6-3

	i960® Processor Library Supplement
	Disclaimer
	Contents
	1 Overview
	Compatibility With Standards
	Deciding Which Libraries to Use
	Using Functions
	Retargeting the Libraries
	About This Manual
	Related Publications
	Customer Service
	Copyrights

	2 Using the Libraries
	Linking Libraries and Object Modules
	Library Files
	Library List
	Linking Sequence

	Using the Floating-point Libraries
	Including the Header Files
	Retargeting for Multi-tasking and Reentrancy
	Identifying Run-time Errors
	Compiling for ANSI Compliance

	3 Header Files
	4 Library Functions
	ecvt, fcvt, gcvt
	fcloseall
	fdopen
	fgetchar
	fileno
	flushall
	fputchar
	fp_getenv, fp_setenv
	fp_getflags, fp_setflags, fp_clrflags, fp_clriflag
	fp_getmasks, fp_setmasks
	fp_getround, fp_setround
	_getac, _setac
	getw
	getopt
	hypot
	_IEEE_sqrt, _IEEE_sqrtf
	itoa
	itoh
	lfind, lsearch
	ltoa, ltos
	ltoh
	memicmp
	putw
	rmtmp
	square
	strdup
	stricmp
	strlwr, strupr
	strnicmp
	strnset
	strrev
	strset
	tzset
	ultoa, utoa

	5 Customizing the Libraries
	Making the Libraries Reentrant
	Reentrancy Defined
	Writing Reentrant Functions
	Primitive Function Descriptions

	Retargeting the Libraries
	Function Interdependencies
	System Call Descriptions

	6 Accelerated Floating-point Library
	Floating-point Library Definition
	Conventions
	Using the Subroutines
	Floating-point Formats Supported
	Parameter and Return Value Implementation
	Floating-point Arithmetic Control Usage
	Fault Handling
	Code Example

	Subroutine Reference
	Unmasked Floating-point Fault Handling
	Parameters
	Return Values
	Fault-handling Subroutines

	A Function Interdependencies
	Index

