
i960® VH Embedded-PCI
Processor
Specification Update

November 1998
Notice: The 80960VH may contain design defects or errors known as errata. Characterized
errata that may cause 80960VH’s behavior to deviate from pubished specifications are
documented in this specification update.

Order Number: 273174-002

i960® VH Embedded-PCI Processor Specification Update

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The 80960VH may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.

Contents

Revision History ... 5

Preface... 6

Summary Table Of Changes.. 7

Identification Information.. 8

Errata ..11

Specification Changes ... 18

Specification Clarifications ... 19

Documentation Changes ... 20
i960® VH Embedded-PCI Processor Specification Update iii

Revision History
Revision History

Date Revision Description

11/10/98 002 Added Specification Clarification #3 and Documentation Changes #1, 2 and 3.
10/13/98 001 This is the new Specification Update document. It contains all identified errata

published prior to this date.
i960® VH Embedded-PCI Processor Specification Update 5

Preface

ust

es

ar
m the

cation
he
n
Preface

As of July, 1996, Intel has consolidated available historical device and documentation errata into
this document type called the Specification Update. We have endeavored to include all
documented errata in the consolidation process, however, we make no representations or
warranties concerning the completeness of the Specification Update.

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system manufacturers and
software developers of applications, operating systems, or tools.

Information types defined in Nomenclature are consolidated into the specification update and are
no longer published in other documents.

This document may also contain information that was not previously published.

Affected Documents/Related Documents

Nomenclature

Errata are design defects or errors. These may cause the 80690VH’s behavior to deviate from
published specifications. Hardware and software designed to be used with any given stepping m
assume that all errata documented for that stepping are present on all devices.

Specification Changes are modifications to the current published specifications. These chang
will be incorporated in any new release of the specification.

Specification Clarifications describe a specification in greater detail or further highlight a
specification’s impact to a complex design situation. These clarifications will be incorporated in
any new release of the specification.

Documentation Changes include typos, errors, or omissions from the current published
specifications. These will be incorporated in any new release of the specification.

Note: Errata remain in the specification update throughout the product’s lifecycle, or until a particul
stepping is no longer commercially available. Under these circumstances, errata removed fro
specification update are archived and available upon request. Specification changes, specifi
clarifications and documentation changes are removed from the specification update when t
appropriate changes are made to the appropriate product specification or user documentatio
(datasheets, manuals, etc.).

Title Order

i960® VH Processor Developer’s Manual 273173-001

i960® VH Embedded_PCI Processor Datasheet 273179-001
6 i960® VH Embedded-PCI Processor Specification Update

Summary Table Of Changes
Summary Table Of Changes

The following table indicates the errata, specification changes, specification clarifications, or
documentation changes which apply to the 80690VH product. Intel may fix some of the errata in a
future stepping of the component, and account for the other outstanding issues through
documentation or specification changes as noted. This table uses the following notations:

Codes Used in Summary Table

Stepping

X: Errata exists in the stepping indicated. Specification Change or
Clarification that applies to this stepping.

(No mark)

or (Blank box): This erratum is fixed in listed stepping or specification change does not
apply to listed stepping.

Page

(Page): Page location of item in this document.

Status

Doc: Document change or update will be implemented.

Fix: This erratum is intended to be fixed in a future step of the component.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

Eval: Plans to fix this erratum are under evaluation.

Row

Change bar to left of table row indicates this erratum is either new or
modified from the previous version of the document.
i960® VH Embedded-PCI Processor Specification Update 7

Identification Information
Identification Information

Topside Markings

Device ID Registers

A6040-01

i 9 6 0

9 7

F

K O R AE

W V H8 0 09 6
L
S
I NT LE

X X X X
X X X X

X X X A

M C

Device and Stepping

Processor Device
ID Register

(PDIDR - 1710H)
(g0)

Address Translation
Unit Revision ID

Register
(ATURID - 1208H)

i960® Core Processor
Device ID

(DEVICEID -
FF00 8710H)

80960VH A-0 0x08864013 0x00 0x00823013
8 i960® VH Embedded-PCI Processor Specification Update

Identification Information
Errata

Specification Changes

Specifications Clarifications

Item
Stepping

Page Status Errata
A-0 # #

1 X 11 NoFix Parity checking for inbound PCI address cycles is always
enabled for the ATU

2 X 11 NoFix DMA Descriptors appended to the end of a chain may not
execute

3 X 11 Eval Memory Controller Unit may assert an unexpected RAS# in
certain memory configurations

4 X 15 Eval Changing the limit register when a value exists in the
corresponding base address register may prevent access to
the address space

5 X 15 Eval P_REQ# is not deasserted when a single DWORD transfer
is retried

6 X 16 Fix Bit 0 of the ATURID register is permanently set to a one
7 X 16 NoFix Inbound ATU writes to non-existent 80960 local memory will

cause the next PCI configuration write cycle to target abort
on the PCI bus

8 X 16 NoFix Inbound configuration write cycles may latch invalid data on
the PCI bus if STOP# is asserted before the initiator asserts
IRDY# during the delayed request cycle

Item
Stepping

Page Status Specification Changes
A-0 # #

1 X 18 Doc The Memory Bank Extended MWE3:0# bits in the Memory
Bank Control Register can provide one clock of address hold
time during write cycles

Item
Stepping

Page Status Specification Clarifications
A-0 # #

1 X 19 Doc Multiple reads of the Base Address Register after writing all
1’s will return different values

2 X 19 Doc When determining memory address block size, accesses to
the Base Address Register must be 32-bit configuration
cycles

3 X 19 Doc Some PCI chipsets will break unaligned transactions into
two LOCKED# transactions on the PCI bus. This can livelock
the PCI bus if the LOCKED# transaction is directed at the
Address Translation Unit
i960® VH Embedded-PCI Processor Specification Update 9

Identification Information
Documentation Changes

Item
Document
Revision

Page Documentation Changes

1 273173-001 20 Section 1.2.3, Messaging Unit
2 273173-001 20 Section 1.3, i960® Core Processor Features (80960VH)
3 273173-001 20 Section 17.4.5, Inbound Interrupt Mask Register - IIMR
10 i960® VH Embedded-PCI Processor Specification Update

Errata

ity.

s that

) is set

DA)

lies to
r in

e last
sume

annel

stem
resses
Errata

1. Parity checking for inbound PCI address cycles is always enabled for the
ATU

Problem: The Parity Checking Enable bit (bit 06) in the Primary ATU Command Registers (local bus address
1204H) only affects inbound parity checking on PCI data cycles. Parity checking is always enabled
for address cycles regardless of this bit’s setting.

Implication: PCI masters that access 80960 local memory through the ATU’s must generate address par

Workaround: Make certain to connect the P_PAR signal from the 80690VH PCI bus. Use PCI master
generate address parity in all cases.

Status: For the steppings affected see the Summary Table Of Changes.

2. DMA Descriptors appended to the end of a chain may not execute
Problem: A descriptor appended to a DMA chain may not execute when the Chain Resume bit (bit 01

in the Channel Control Register. This occurs when:

1. The last descriptor of the existing chain is a DMA read, and

2. The Chain Resume bit is set when the last word of the DMA is being transferred.

When condition 1 and 2 occur, the DMA unit does not re-read the Next Descriptor Address (N
of the current descriptor.

This erratum exists for both aligned and unaligned DMA transfers.

Implication: A DMA transfer from an appended DMA descriptor may not execute.

Workaround: Two workarounds can be used to prevent this errata:

1. Add a NULL descriptor to the end of a chain where the last descriptor is a read. This app
original chains and to appended chains even when the appended chain is one descripto
length. The NULL descriptor has a Byte Count = 0000H, and an NDA of 0000H. A NULL
descriptor at the end of a DMA chain is appended in the normal manner — the NDA of th
descriptor of the existing chain is changed to point to the new chain — then the Chain Re
bit is set.

2. Append chains as normal, then poll the state of the Channel Active Flag (bit 10) in the Ch
Status Register. When flag is cleared, set the Chain Resume bit once more.

Status: For the steppings affected see the Summary Table Of Changes.

3. Memory Controller Unit may assert an unexpected RAS# in certain memory
configurations

Problem: The 80960VH MCU supports from one to four banks of DRAM. When the memory subsy
contains fewer than the maximum number of banks used in the 80960VH design, certain add
may cause the MCU to assert a RAS# to an empty bank. Table 1 shows the relationship between
the 80960 local memory address and the RAS# asserted by the MCU.
i960® VH Embedded-PCI Processor Specification Update 11

Errata
Implication: The MCU may assert RAS# to access a nonexistent 80960VH DRAM bank. This may occur when
the number of DRAM banks installed is less than the maximum number of DRAM banks used in
the 80960VH design. Two examples of when this problem can occur are:

• Re-mapping 80960VH DRAM after DRAM accesses occurred in a previous memory map.

• Initializing from 80960VH DRAM instead of using FLASH/ROM.

These two cases are described further in this erratum as CASE 1 - Re-mapping 80960VH DRAM
and CASE 2 - Initializing from 80960VH DRAM instead of FLASH/ROM.

CASE 1 - Re-mapping 80960VH DRAM

In an application using 1 Mbyte per bank/leaf and one Fast Page Mode (FPM) single-sided SIMM
populated in a four bank design (total DRAM = 1 Mbyte), the following registers are set:

Table 1. DRAM Bank/Leaf Size and RAS# Asserted

Non-Interleaved DRAM Interleaved DRAM
DRAM Base Address

Register (DBAR)
Address Boundary

DRAM Bank Control
Register (DBCR)

Bits 2:1

Address
Bits

RAS#
Signal

Asserted

Address
Bits

RAS#
Signal

Asserted
4 * Bank/Leaf Size

00
(1 Mbyte DRAM
per bank/leaf)

21:20 21:20 40 0000H
(4 Mbytes)

0 0 RAS0# 00, 01 RAS1:0#

0 1 RAS1#

1 0 RAS2# 10, 11 RAS3:2#

1 1 RAS3#

01
(4 Mbyte DRAM
per bank/leaf)

23:22 23:22 100 0000H
(16 Mbytes)

0 0 RAS0# 00, 01 RAS1:0#

0 1 RAS1#

1 0 RAS2# 10, 11 RAS3:2#

1 1 RAS3#

10
(16 Mbyte DRAM

per bank/leaf)

25:24 25:24 400 0000H
(64 Mbytes)

0 0 RAS0# 00, 01 RAS1:0#

0 1 RAS1#

1 0 RAS2# 10, 11 RAS3:2#

1 1 RAS3#

11
(64 Mbyte DRAM

per bank/leaf)

27:26 27:26 1000 0000H
(128 Mbytes)

 0 0 RAS0# 00, 01 RAS1:0#

 0 1 RAS1#

 1 0 RAS2# 10, 11 RAS3:2#

 1 1 RAS3#
12 i960® VH Embedded-PCI Processor Specification Update

Errata

s this

r

r bits
M

l not

.

DRAM Bank Control Register (DBCR) = 0x0000 0001
DRAM Base Address Register (DBAR) = 0xD000 0000

The DBCR and DBAR values imply an address range of 1 Mbyte from 0xD000 0000 to
0xD00F FFFF.

The following sequence can occur:

1. A write is issued to 80960 local address 0xD000 1000.

2. Since 1-Mbyte is the DRAM bank/leaf size, the MCU decodes the next two higher order bits
21:20 from within the address to determine which RAS# signal to assert during the DRAM
access.

3. Since address bits 21:20 = 002, the MCU asserts RAS0# (See Table 1).

4. The programmer then re-maps 80960VH DRAM by programming the DBAR to
0xDFE0 0000. The address range is now 0xDFE0 0000 - 0xDFEF FFFF.

5. When a read is issued to 0xDFE0 1000 (i.e., the same address offset written in Step 1), the
MCU asserts RAS2# because bits 21:20 = 102 (See Table 1). Data initially written to this
location in Step 1 cannot be read.

6. Because the DRAM was remapped, the MCU now asserts RAS2# to an unpopulated DRAM
bank and the data returned is invalid.

CASE 2 - Initializing from 80960VH DRAM instead of FLASH/ROM

When the 80960VH initializes from 80960 local memory instead of FLASH/ROM, the 80960VH’s
first instruction fetch of the IBR is hard-coded to address 0xFEFF FF30. When the MCU read
address, it asserts RAS2# or RAS3#, depending on the DRAM bank/leaf size.

In an application using 4 Mbyte per bank/leaf and two single-sided SIMMs populated in a fou
bank design (total DRAM = 8 Mbytes), the following registers are set:

DRAM Bank Control Register (DBCR) = 0x0000 0013
DRAM Base Address Register (DBAR) = 0xFE80 0000

The DBAR and DBCR values imply an address range of 8 Mbytes from 0xFE80 0000 to
0xFEFF FFFF.

The following sequence can occur:

1. A read of the IBR is issued to 0xFEFF FF30.

2. Since 4-Mbytes is the DRAM bank/leaf size, the MCU decodes the next two higher orde
23:22 from within the address to determine which RAS# signal to assert during the DRA
access.

3. IBR address bits 23:22 = 112, and the MCU asserts RAS3# (See Table 1).

4. RAS3# selects an unpopulated DRAM bank, the IBR will not be read, and the device wil
initialize.

Workaround: Two workarounds are presented. The CASE 1 WORKAROUND describes a software modification
The CASE 2 WORKAROUND describes a hardware modification.

CASE 1 WORKAROUND - Re-mapping 80960VH DRAM
i960® VH Embedded-PCI Processor Specification Update 13

Errata
When 80960VH memory subsystem contains unpopulated DRAM banks, the DBAR must be
aligned on an address boundary of a multiple of four times the DRAM bank/leaf size (for non-
interleaved or interleaved memory) to ensure the correct RAS# is asserted (See Table 1). Limit
80960 local memory accesses to the total amount of memory installed in the system.

Note: This workaround is for booting from Flash/ROM. See CASE 2 WORKAROUND for booting
from 80960VH DRAM.

CASE 2 WORKAROUND - Initializing from 80960VH DRAM instead of FLASH/ROM

In a standard DRAM configuration, RAS0# and RAS1# are routed to the front sides of the SIMMs,
and RAS2# and RAS3# are routed to the back sides of the SIMMs. To implement this workaround,
swap RAS0# and RAS2# and swap RAS1# and RAS3#. This routes RAS2# and RAS3# to the
front sides of their respective SIMMs, and routes RAS0# and RAS1# to the back sides of their
respective SIMMs (See Figure 1). To determine which RAS# is asserted for a particular address
and DRAM configuration, see Table 1.

In an application using 4 Mbytes per bank/leaf and two single-sided SIMMs populated in a four
bank design (total DRAM = 8 Mbytes), the following registers are set:

DRAM Bank Control Register (DBCR) = 0x0000 0013
DRAM Base Address Register (DBAR) = 0xFE80 0000

The DBCR and DBAR values imply an address range of 8 Mbytes from 0xFE80 0000 to
0xFEFF FFFF.

When initializing from 80960VH DRAM, the first instruction fetch of the IBR is hard-coded to
address 0xFEFF FF30; as a result, A23:22 = 112 and RAS3# is asserted. With the workaround in
place, the RAS# lines are swapped and RAS3# is connected to the front side of the second SIMM
and the IBR can be read.

Status: For the steppings affected see the Summary Table Of Changes.

Figure 1. DRAM RAS# Configurations

RAS0#

RAS1#

RAS2#

RAS3#

RAS0#

RAS2#

SIMM #1

WorkaroundStandard

RAS0#

RAS1#

RAS2#

RAS3#

RAS1#

RAS3#

SIMM #2

RAS0#

RAS1#

RAS2#

RAS3#

RAS3#

RAS1#

SIMM #2

RAS0#

RAS1#

RAS2#

RAS3#

RAS2#

RAS0#

SIMM #1
14 i960® VH Embedded-PCI Processor Specification Update

Errata

d it is
action

 on the
dlock
4. Changing the limit register when a value exists in the corresponding base
address register may prevent access to the address space

Problem: The 80960VH provides a programmable mechanism for defining the memory block size require-
ments. This mechanism utilizes a base address register (BAR) and corresponding limit register.
Any bit in a BAR becomes read-only when the corresponding bit in the associated limit register is
cleared. When a bit is set in the BAR before the corresponding bit in the associated limit register is
cleared, that bit in the BAR can no longer be cleared and remains set.

Implication: The address space defined by a BAR and limit register pair can become inaccessible if the limit
register is changed to define a larger address space when the BAR has already been programmed to
a non-zero value. This problem can exist with the following register pairs:

Since all bits in the BARs are used by the address detection logic, having a bit set (1) in the BAR,
which is clear (0) in the corresponding limit register creates a condition where no PCI address is
recognized as valid. For example:

Initial Settings:
PIALR = 0xFFFF F000 (default)
PIABAR = 0xFFA2 4000

When the PIALR is modified to 0xFFF0 0000 (bits 19:12 = 0), the PIABAR remains
programmed to 0xFFA2 4000 (bits 19:12 are read only).

Inbound address detection is determined from the 32-bit PCI address, the base address register
and the limit register. The algorithm for detection is:

When
PCI_Address & Limit_Register == Base_Register,
the PCI Address is claimed by the primary ATU.

Workaround: Before programming the limit register to a larger block size, clear all bits of the corresponding
BAR which are to be cleared (programmed to 0) in the limit register. For example:

Initial Settings:
PIALR = 0xFFFF F000 (default)
PIABAR = 0xFFA2 4000

To set the PIALR to 0xFFF0 0000 (bits 19:12 = 0), first program the PIABAR to 0xFFA0 0000
(or some larger address boundary — at least bits 19:12 = 0).

Status: For the steppings affected see the Summary Table Of Changes.

5. P_REQ# is not deasserted when a single DWORD transfer is retried
Problem: When the 80960VH is mastering a single DWORD transaction on the primary PCI bus an

retried, P_REQ# will not deassert after the retry. P_REQ# remains asserted until the trans
completes or aborts.

Implication: When the host system has not implemented arbitration that conforms to a fairness algorithm
80960VH’s primary PCI bus, the 80960VH will continue to own the bus and enter into a dea
condition.

Register Name Abbreviation 80960 local address

Primary Inbound Base Address Register PIABAR 0x1210

Primary Inbound Limit Register PIALR 0x1240

Expansion ROM Base Address Register ERBAR 0x1230

Expansion ROM Limit Register ERLR 0x1274
i960® VH Embedded-PCI Processor Specification Update 15

Errata

alid
feature
ss (one
or an
 that
cycle

 next
ns of

return
 the
mory

layed
itiator

l Bus
nitiator
. It is
e target
com-
Workaround: PCI Local Bus Specification, revision 2.1 section 3.4 states that arbiters are required to implement
a fairness algorithm. Make certain that the 80960VH design is used in a host system compliant to
the Arbitration section of the Specification.

Status: For the steppings affected see the Summary Table Of Changes.

6. Bit 0 of the ATURID register is permanently set to a one
Problem: Bit 0 of the ATU Revision ID register is permanently set to a one.

Implication: The ATURID register is a read/write register from the 80960 local bus. Since bit 0 of the ATURID
is always set, the bit operates as a read only bit. Writing any value to bit 0 will always read back a
one. Bits 7:1 of the ATURID remain read/write from the 80960 local bus.

Workaround: There is no workaround.

Status: For the steppings affected see the Summary Table Of Changes.

7. Inbound ATU writes to non-existent 80960 local memory will cause the next
PCI configuration write cycle to target abort on the PCI bus

Problem: The 80960VH’s memory controller has a bus monitor feature which asserts LRDYRCV# if v
data is not returned for 80960 local bus accesses in 127 P_CLK periods. The bus monitor
keeps the local bus from deadlocking if a local bus cycle addresses an invalid memory addre
that doesn’t return LRDYRCV# or nonexistent memory space). If the bus monitor expires f
inbound write cycle through the primary ATU, the next PCI configuration write cycle through
same ATU will target abort on the PCI bus. Note that even though the PCI configuration
target aborted, the appropriate address in configuration space is still written correctly.

Implication: If inbound ATU writes address local bus addresses that do not return LRDYRCV#, the
inbound PCI configuration write cycle will cause a target abort on the PCI bus. The implicatio
target aborts are system dependent.

Workaround: Ensure that inbound ATU write cycles always address local bus memory space that will
LRDYRCV#. This can be done by programming the ATU Inbound Limit Register (PIALR) and
Inbound Translate Value Register (PIATVR) to define a window to a region in 80960 local me
space that always returns LRDYRCV#, this will prevent the bus monitor timer from expiring.

Status: For the steppings affected see the Summary Table Of Changes.

8. Inbound configuration write cycles may latch invalid data on the PCI bus if
STOP# is asserted before the initiator asserts IRDY# during the delayed
request cycle

Problem: All inbound configuration write cycles are treated as delayed transactions. During the de
request cycle, the 80960VH (PCI target) latches valid data on the PCI bus and retries the in
by asserting STOP#. According to the Target Termination Signaling rules in the PCI Loca
Specification Revision 2.1 (Section 3.3.3.2.1), once an initiator sees STOP# asserted, the i
first must assert IRDY# and deassert FRAME# on the first cycle after IRDY# is asserted
recommended that IRDY# be asserted as soon as possible after STOP#. In the case of th
asserting STOP# before the initiator asserts IRDY#, the initiator is not required (although re
mended) to provide valid data on the PCI bus when IRDY# is asserted.
16 i960® VH Embedded-PCI Processor Specification Update

Errata

CI

rites
ration

ginal
re

ll not
 the
ts

tion
The problem is that the 80960VH does not recognize this particular case for configuration writes
and treats it as the delayed request cycle and latches data on the PCI bus. See the timing diagram
below. If the PCI master begins the cycle by inserting waitstates (IRDY# asserted) before STOP# is
asserted and doesn’t drive valid data on the PCI bus when IRDY# is asserted, the ATU will
incorrectly latch invalid data and write to the PCI configuration register.

Only inbound PCI configuration cycles are affected by this errata. The ATU does not treat P
memory writes and Memory write-invalidate as delayed transactions.

Implication: When used with PCI initiators that can assert IRDY# with invalid data for PCI configuration w
under the conditions described above, the 80960VH can write invalid data to a PCI configu
register.

Note that for the ATU to retire the delayed completion cycle, the initiator must reissue the ori
request with the same data. If the initiator reissues the initial request and asserts IRDY# befo
STOP# with valid data this time, the data will not match and the delayed completion cycle wi
be retired. Potentially, the reissued cycle can be retried until the discard timer expires. Once
discard timer expires, the cycle is accepted (this time with valid data) and the correct data ge
written into the PCI configuration register.

Workaround: Do not use the 80960VH with PCI initiators that insert IRDY# waitstates during PCI configura
cycles and drive invalid data on the bus when IRDY# is asserted following STOP#.

Status: For the steppings affected see the Summary Table Of Changes.
i960® VH Embedded-PCI Processor Specification Update 17

Specification Changes
Specification Changes

1. The Memory Bank Extended MWE3:0# bits in the Memory Bank Control
Register can provide one clock of address hold time during write cycles

Issue: The description for both Memory Bank 1 Extended MWE3:0# bit and Memory Bank 0 Extended
MWE3:0# bit should now read:

This bit field enables or disables extending the deassertion period for the MWE3:0# signal during
burst write cycles. The bit also enables one clock of MA11:0 and BE1:0 hold time relative to the
rising edge of MWE# during writes to this region.

• When cleared (0), deassertion period is one-half of a P_CLK period.

• When set (1), the deassertion period is extended by the wait state profile defined in the
MBWWSx registers in addition to the one-half clock in period. Also when set, the MA11:0
and BE1:0 keep their current state for one clock after MWE3:0# are deasserted. This also adds
an extra wait state.”
18 i960® VH Embedded-PCI Processor Specification Update

Specification Clarifications
Specification Clarifications

1. Mul tip le reads of the Base Addr ess Register after wri ting all 1’s wil l return
di fferent values

Issue: The 80960VH provides a programmable mechanism for defining the memory block size require-
ments. This mechanism uses the Base Address Register (BAR) and corresponding limit register.
80960VH initialization code programs into the limit register the desired value to be returned for
memory block size. To determine the memory block size requirements, write FFFF FFFFH or
FFFF FFFEH to the BAR, then read the BAR. On the first read, this value is the memory block size
(for example, the limit register value); all subsequent reads of the BAR will return a value other
than the memory block size.

2. When determining memory address block size, accesses to the Base
Address Register must be 32-bit configuration cycles

Issue: When determining block size requirements, the 80960VH’s Base Address Register (BAR) must be
accessed by 32-bit configuration cycles. Writing FFFF FFFFH or FFFF FFFEH to the BAR must
be performed as a 32-bit configuration write cycle. Reading the BAR, to determine the block size
requirements, must be a 32-bit configuration read cycle.

Configuration cycles not used to determine block size requirement can be performed as 8-, 16-, or
32-bit cycles.

3. Some PCI chipsets wil l break unalign ed transaction s in to two LOCKED#
transaction s on the PCI bus. This can li velock the PCI bus if the LOCKED#
transaction is directed at the Address Translation Unit

Issue: The ATU does not support PCI LOCKED# transactions. It has been observed that some PCI
chipsets may split an unaligned memory read access into two LOCKED# transactions on the PCI
bus. A livelock can occur if the ATU has a pending outbound write that occurs between the two
LOCKED# transactions. The PCI chipset will not accept the inbound write from the ATU until its
second LOCKED# read is flushed and the ATU will not accept the LOCKED# read from the PCI
chipset until it completes the outbound write. Because the ATU specifically does not support PCI
LOCKED# transactions, avoid performing unaligned reads of the ATU from a host processor
through a PCI chipset.
i960® VH Embedded-PCI Processor Specification Update 19

Documentation Changes

e

Documentation Changes

1. Section 1.2.3, Messaging Unit
Issue: Page 1-2, Section 1.2.3 of Chapter 1 incorrectly reads that the MU has four messaging

mechanisms.

The third sentence in Section 1.2.3 should read, “The MU has two messaging mechanisms.”

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

2. Section 1.3, i960® Core Processor Features (80960VH)
Issue: The core features description in the first paragraph and the Figure 1-2 label on Page 1-3, Section

1.3 of Chapter 1 are incorrect.

The first three sentences should read “The processing power of the 80960VH comes from th
80960JT processor core. The 80960JT is a new, scalar implementation of the i960 core
architecture. Figure 1-2 shows a block diagram of the 80960JT core processor.” The label in Figure
1-2 should read “80960JT Core Processor Block Diagram”.

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001

3. Section 17.4.5, Inbound Interrupt Mask Register - IIMR
Issue: The description information in Table 17-7 of Section 17.4.5 on page 17-9 is incomplete.

The description for Bit 06 in Table 17-7 should read “Reserved: must be set to ‘1’.”

Affected Docs: i960® VH Processor Developer’s Manual, 273173-001
20 i960® VH Embedded-PCI Processor Specification Update

	Revision History
	Preface
	Affected Documents/Related Documents
	Nomenclature

	Summary Table Of Changes
	Codes Used in Summary Table
	Stepping
	Page
	Status
	Row

	Identification Information
	Topside Markings
	Device ID Registers
	Errata
	Specification Changes
	Specifications Clarifications
	Documentation Changes

	Errata
	Specification Changes
	Specification Clarifications
	Documentation Changes

