
APPLICATION
NOTE

AP-248

September 1987

Using The 8096

IRA HORDEN

MCO APPLICATIONS ENGINEER

Order Number: 270061-002

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996

Using The 8096 CONTENTS PAGE

1.0 INTRODUCTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

2.0 8096 OVERVIEW ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

2.1. General Description ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

2.1.1. CPU Section ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

2.1.2. I/O Features ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 4

2.2. The Processor Section ÀÀÀÀÀÀÀÀÀÀÀÀÀ 4

2.2.1. Operations and Addressing
Modes ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 4

2.2.2. Assembly Language ÀÀÀÀÀÀÀÀÀ 7

2.2.3. Interrupts ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

2.3. On-Chip I/O Section ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

2.3.1. Timer/Counters ÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

2.3.2. HSI ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

2.3.3. HSO ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

2.3.4. Serial Port ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

2.3.5. A to D Converter ÀÀÀÀÀÀÀÀÀÀÀÀ 16

2.3.6. PWM Register ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 17

3.0 BASIC SOFTWARE EXAMPLES ÀÀÀÀÀÀ 19

3.1. Using the 8096’s Processing
Section ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 19

3.1.1. Table Interpolation ÀÀÀÀÀÀÀÀÀÀ 19

3.1.2. PL/M-96 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22

3.2. Using the I/O Section ÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

3.2.1. Using the HSI Unit ÀÀÀÀÀÀÀÀÀÀ 24

3.2.2. Using the HSO Unit ÀÀÀÀÀÀÀÀÀ 25

3.2.3. Using the Serial Port in
Mode 1 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 29

3.2.4. Using the A to D ÀÀÀÀÀÀÀÀÀÀÀÀ 31

4.0 ADVANCED SOFTWARE
EXAMPLES ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 31

4.1. Simultaneous I/O Routines under
Interrupt Control ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 31

4.2. Software Serial Port Using the
HSIO Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 34

4.3. Interfacing an Optical Encoder to
the HSI Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 39

5.0 HARDWARE EXAMPLE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 51

5.1. EPROM Only Minimum
System ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 51

5.2. Port Reconstruction ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 53

6.0 CONCLUSION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 54

7.0 BIBLIOGRAPHY ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 54

CONTENTS PAGE

APPENDICES

Appendix A. Basic Software
Examples ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-1

A.1. Table Lookup 1 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-1

A.2. Table Lookup 2 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-3

A.3. PLM-96 Code with Expansion ÀÀÀÀÀÀÀÀ A-5

A.4. Pulse Measurement ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-11

A.5. Enchanced Pulse Measurement ÀÀÀÀ A-13

CONTENTS PAGE

A.6. PWM Using the HSO ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-15

A.7. Serial Port ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-19

A.8. A to D Converter ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-21

Appendix B. HSO and A to D Under
Interrupt Control ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ B-1

Appendix C. Software Serial Port ÀÀÀÀÀÀ C-1

Appendix D. Motor Control Program ÀÀÀ D-1

Figures

2-1. 8096 Block Diagram ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

2-2. Memory Map ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

2-3. SFR Layout ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

2-4. Major I/O Functions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 4

2-5. Instruction Summary ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

2-6. Instruction Format ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

2-7. Interrupt Sources ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

2-8. Interrupt Vectors and Priorities ÀÀÀÀÀÀÀ 8

2-9. Interrupt Structure Block
Diagram ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 9

2-10. The PSW Register ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

2-11. HSI Unit Block Diagram ÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

2-12. HSI Mode Register ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

2-13. HSO Command Register ÀÀÀÀÀÀÀÀÀÀÀÀ 12

2-14. HSO Block Diagram ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

2-15. Serial Port Control/Status
Register ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

2-16. Baud Rate Formulas ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

2-17. Baud Rate Values for 10, 11, 12
MHz ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15

2-18. Multiprocessor Communication ÀÀÀÀÀÀ 16

2-19. A to D Result/Command
Register ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 17

2-20. PWM Output Waveforms ÀÀÀÀÀÀÀÀÀÀÀÀ 18

2-21. PWM to Analog Conversion
Circuitry ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 18

3-1. Using the HSIO to Monitor Rotating
Machinery ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 28

3-2. Serial Port Level Conversion ÀÀÀÀÀÀÀÀ 30

4-1. 10-Bit Asynchronous Frame ÀÀÀÀÀÀÀÀÀ 35

4-2. Optical Encoder and Waveforms ÀÀÀÀ 39

4-3. Filtered Encoder Waveforms ÀÀÀÀÀÀÀÀ 40

4-4. Schematic of Optical Encoder to
8096 Interface ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 41

4-5. Motor Driver Circuitry ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 41

4-6. Mode State Diagram ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 44

4-7. Motor Control Modes ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 49

5-1. Minimum System Configuration ÀÀÀÀÀ 52

Listings

3-1. Include File DEMO96.INC ÀÀÀÀÀÀÀÀÀÀÀ 19

3-2. ASM-96 Code for Table Lookup
Routine 1 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 20

3-3. ASM-96 Code for Table Lookup
Routine 1 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

3-4. PLM-96 Code for Table Lookup
Routine 1 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

3-5. 32-Bit Result Multiply Procedure for
PLM-96 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

3-6. Measuring Pulses Using the HSI
Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

3-7. Enhanced HSI Pulse Measurement
Routine ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 25

3-8. Generating a PWM with the HSO ÀÀÀÀ 26

3-9. Changes to Declarations for HSO
Routine ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 27

3-10. Driver Module for HSO PWM
Program ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 27

3-11. Using the Serial Port in Mode 1 ÀÀÀÀÀÀ 29

3-12. Scanning the A to D Channels ÀÀÀÀÀÀÀ 31

4-1. Using Multiple I/O Devices ÀÀÀÀÀÀÀÀÀÀ 32

4-2. Software Serial Port
Declarations ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 35

4-3. Software Serial Port Interface
Routines ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 36

4-4. Software Serial Port Initialization
Routine ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 36

4-5. Software Serial Port Transmit
Process ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 37

4-6. Receive Process ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 37

4-7. Motor Control HSO.0 Timer
Routine ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 42

4-8. Motor Control HSI Data Available
Routine ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 44

4-9. Motor Control Mode 1 Routines ÀÀÀÀÀ 45

4-10. Motor Control Mode 0 Routines ÀÀÀÀÀ 46

4-11. Motor Control Software Timer 1
Routine ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 47

4-12. Motor Control Next Position
Lookup ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 49

4-13. Motor Control Timer Interrupt
Routine ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 50

4-14. Motor Control Software Timer
Interrupt Handler ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 50

4-15. Motor Control Software Timer 2
Routine ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 51

AP-248

1.0 INTRODUCTION

High speed digital signals are frequently encountered in
modern control applications. In addition, there is often
a requirement for high speed 16-bit and 32-bit precision
in calculations. The MCSÉ-96 product line, generically
referred to as the 8096, is designed to be used in appli-
cations which require high speed calculations and fast
I/O operations.

The 8096 is a 16-bit microcontroller with dedicated
I/O subsystems and a complete set of 16-bit arithmetic
instructions including multiply and divide operations.
This Ap-note will briefly describe the 8096 in section 2,
and then give short examples of how to use each of its
key features in section 3. The concluding sections fea-
ture a few examples which make use of several chip
features simultaneously and some hardware connection
suggestions. Further information on the 8096 and its
use is available from the sources listed in the bibliogra-
phy.

2.0 8096 OVERVIEW

2.1. General Description

Unlike microprocessors, microcontrollers are generally
optimized for specific applications. Intel’s 8048 was op-
timized for general control tasks while the 8051 was
optimized for 8-bit math and single bit boolean opera-
tions. The 8096 has been designed for high speed/high
performance control applications. Because it has been
designed for these applications the 8096 architecture is
different from that of the 8048 or 8051.

There are two major sections of the 8096; the CPU
section and the I/O section. Each of these sections can
be subdivided into functional blocks as shown in Figure
2-1.

270061–1

Figure 2-1. 8096 Block Diagram

1

AP-248

2.1.1. CPU SECTION

The CPU of the 8096 uses a 16-bit ALU which operates
on a 256-byte register file instead of an accumulator.
Any of the locations in the register file can be used for
sources or destinations for most of the instructions.
This is called a register to register architecture. Many
of the instructions can also use bytes or words from
anywhere in the 64K byte address space as operands. A
memory map is shown in Figure 2-2.

In the lower 24 bytes of the register file are the register-
mapped I/O control locations, also called Special
Function Registers or SFRs. These registers are used to
control the on-chip I/O features. The remaining 232
bytes are general purpose RAM, the upper 16 of which
can be kept alive using a low current power-down
mode.

270061–2

Figure 2-2. Memory Map

2

AP-248

Figure 2-3 shows the layout of the register mapped
I/O. Some of these registers serve two functions, one if
they are read from and another if they are written

to. More information about the use of these registers is
included in the description of the features which they
control.

270061–3

Figure 2-3: SFR Layout

3

AP-248

2.1.2. I/O FEATURES

Many of the I/O features on the 8096 are designed to
operate with little CPU intervention. A list of the major
I/O functions is shown in Figure 2-4. The Watchdog
Timer is an internal timer which can be used to reset
the system if the software fails to operate properly. The
Pulse-Width-Modulation (PWM) output can be used as
a rough D to A, a motor driver, or for many other
purposes. The A to D converter (ADC) has 8 multi-
plexed inputs and 10-bit resolution. The serial port has
several modes and its own baud rate generator. The
High Speed I/O section includes a 16-bit timer, a 16-bit
counter, a 4-input programmable edge detector, 4 soft-
ware timers, and a 6-output programmable event gener-
ator. All of these features will be described in section
2.3.

2.2. The Processor Section

2.2.1. OPERATIONS AND ADDRESSING MODES

The 8096 has 100 instructions, some of which operate
on bits, some on bytes, some on words and some on
longs (double words). All of the standard logical and
arithmetic functions are available for both byte and
word operations. Bit operations and long operations are
provided for some instructions. There are also flag ma-
nipulation instructions as well as jump and call instruc-
tions. A full set of conditional jumps has been included
to speed up testing for various conditions.

Bit operations are provided by the Jump Bit and Jump
Not Bit instructions, as well as by immediate masking
of bytes. These bit operations can be performed on any
of the bytes in the register file or on any of the special
function registers. The fast bit manipulation of the
SFRs can provide rapid I/O operations.

A symmetric set of byte and word operations make up
the majority of the 8096 instruction set. The assembly
language for the 8096 (ASM-96) uses a ‘‘B’’ suffix on a
mnemonic to indicate a byte operation, without this
suffix a word operation is indicated. Many of these op-
erations can have one, two or three operands. An exam-
ple of a one operand instruction would be:

NOT Value1 ; Value1 : e 1’s complement (Value1)

A two operand instruction would have the form:

ADD Value2,Value1 ; Value2 : e Value2 a Value1

A three operand instruction might look like:

MUL Value3,Value2,Value1 ;

Value3 : e Value2* Value1

The three operand instructions combined with the reg-
ister to register architecture almost eliminate the neces-
sity of using temporary registers. This results in a faster
processing time than machines that have equivalent in-
struction execution times, but use a standard architec-
ture.

Long (32-bit) operations include shifts, normalize, and
multiply and divide. The word divide is a 32-bit by 16-
bit operation with a 16-bit quotient and 16-bit remain-
der. The word multiply is a word by word multiply
with a long result. Both of these operations can be done
in either the signed or unsigned mode. The direct un-
signed modes of these instructions take only 6.5 micro-
seconds. A normalize instruction and sticky bit flag
have been included in the instruction set to provide
hardware support for the software floating point pack-
age (FPAL-96).

Major I/O Functions

High Speed Input Unit Provides Automatic Recording of Events

High Speed Output Unit Provides Automatic Triggering of Events and Real-Time Interrupts

Pulse Width Modulation Output to Drive Motors or Analog Circuits

A to D Converter Provides Analog Input

Watchdog Timer Resets 8096 if a Malfunction Occurs

Serial Port Provides Synchronous or Asynchronous Link

Standard I/O Lines Provide Interface to the External World when other Special Features
are not needed

Figure 2-4. Major I/O Functions

4

AP-248

Mnemonic
Oper-

Operation (Note 1)
Flags

Notes
ands Z N C V VT ST

ADD/ADDB 2 D w D a A & & & & u Ð

ADD/ADDB 3 D w B a A & & & & u Ð

ADDC/ADDCB 2 D w D a A aC v & & & u Ð

SUB/SUBB 2 D w D b A & & & & u Ð

SUB/SUBB 3 D w B b A & & & & u Ð

SUBC/SUBCB 2 D w D b A a C b 1 v & & & u Ð

CMP/CMPB 2 D b A & & & & u Ð

MUL/MULU 2 D, D a 2 w D * A Ð Ð Ð Ð Ð ? 2

MUL/MULU 3 D, D a 2 w B * A Ð Ð Ð Ð Ð ? 2

MULB/MULUB 2 D, D a 1 w D * A Ð Ð Ð Ð Ð ? 3

MULB/MULUB 3 D, D a 1 w B * A Ð Ð Ð Ð Ð ? 3

DIVU 2 D w (D, D a 2)/A, D a 2 w remainder Ð Ð Ð & u Ð 2

DIVUB 2 D w (D, D a 1)/A, D a 1 w remainder Ð Ð Ð & u Ð 3

DIV 2 D w (D, D a 2)/A, D a 2 w remainder Ð Ð Ð ? u Ð 2

DIVB 2 D w (D, D a 1)/A, D a 1 w remainder Ð Ð Ð ? u Ð 3

AND/ANDB 2 D w D and A & & 0 0 Ð Ð

AND/ANDB 3 D w B and A & & 0 0 Ð Ð

OR/ORB 2 D w D or A & & 0 0 Ð Ð

XOR/XORB 2 D w D (excl. or) A & & 0 0 Ð Ð

LD/LDB 2 D w A Ð Ð Ð Ð Ð Ð

ST/STB 2 A w D Ð Ð Ð Ð Ð Ð

LDBSE 2 D w A; D a 1 w SIGN(A) Ð Ð Ð Ð Ð Ð 3, 4

LDBZE 2 D w A; D a 1 w 0 Ð Ð Ð Ð Ð Ð 3, 4

PUSH 1 SP w SP b 2; (SP) w A Ð Ð Ð Ð Ð Ð

POP 1 A w (SP); SP w SP a 2 Ð Ð Ð Ð Ð Ð

PUSHF 0 SP w SP b 2; (SP) w PSW; 0 0 0 0 0 0
PSW w 0000H I w 0

POPF 0 PSW w (SP); SP w SP a 2; I w & & & & & & &

SJMP 1 PC w PC a 11-bit offset Ð Ð Ð Ð Ð Ð 5

LJMP 1 PC w PC a 16-bit offset Ð Ð Ð Ð Ð Ð 5

BR (indirect) 1 PC w (A) Ð Ð Ð Ð Ð Ð

SCALL 1 SP w SP b 2; (SP) w PC; Ð Ð Ð Ð Ð Ð 5
PC w PC a 11-bit offset

LCALL 1 SP w SP b 2; (SP) w PC; Ð Ð Ð Ð Ð Ð 5
PC w PC a 16-bit offset

RET 0 PC w (SP); SP w SP a 2 Ð Ð Ð Ð Ð Ð

J (conditional) 1 PC w PC a 8-bit offset (if taken) Ð Ð Ð Ð Ð Ð 5

JC 1 Jump if C e 1 Ð Ð Ð Ð Ð Ð 5

JNC 1 Jump if C e 0 Ð Ð Ð Ð Ð Ð 5

JE 1 Jump if Z e 1 Ð Ð Ð Ð Ð Ð 5

Figure 2-5. Instruction Summary

NOTES:
1. If the mnemonic ends in ‘‘B’’, a byte operation is performed, otherwise a word operation is done. Operands D, B, and A
must conform to the alignment rules for the required operand type. D and B are locations in the register file; A can be
located anywhere in memory.
2. D, D a 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned.
3. D, D a 1 are consecutive BYTES in memory; D is WORD aligned.
4. Changes a byte to a word.
5. Offset is a 2’s complement number.

5

AP-248

Mnemonic
Oper-

Operation (Note 1)
Flags

Notes
ands Z N C V VT ST

JNE 1 Jump if Z e 0 Ð Ð Ð Ð Ð Ð 5

JGE 1 Jump if N e 0 Ð Ð Ð Ð Ð Ð 5

JLT 1 Jump if N e 1 Ð Ð Ð Ð Ð Ð 5

JGT 1 Jump if N e 0 and Z e 0 Ð Ð Ð Ð Ð Ð 5

JLE 1 Jump if N e 1 or Z e 1 Ð Ð Ð Ð Ð Ð 5

JH 1 Jump if C e 1 and Z e 0 Ð Ð Ð Ð Ð Ð 5

JNH 1 Jump if C e 0 or Z e 1 Ð Ð Ð Ð Ð Ð 5

JV 1 Jump if V e 1 Ð Ð Ð Ð Ð Ð 5

JNV 1 Jump if V e 0 Ð Ð Ð Ð Ð Ð 5

JVT 1 Jump if VT e 1; Clear VT Ð Ð Ð Ð 0 Ð 5

JNVT 1 Jump if VT e 0; Clear VT Ð Ð Ð Ð 0 Ð 5

JST 1 Jump if ST e 1 Ð Ð Ð Ð Ð Ð 5

JNST 1 Jump if ST e 0 Ð Ð Ð Ð Ð Ð 5

JBS 3 Jump if Specified Bit e 1 Ð Ð Ð Ð Ð Ð 5, 6

JBC 3 Jump if Specified Bit e 0 Ð Ð Ð Ð Ð Ð 5, 6

DJNZ 1 D w D b 1; if D i 0 then
PC w PC a 8-bit offset Ð Ð Ð Ð Ð Ð 5

DEC/DECB 1 D w D b 1 & & & & u Ð

NEG/NEGB 1 D w 0 b D & & & & u Ð

INC/INCB 1 D w D a 1 & & & & u Ð

EXT 1 D w D; D a 2 w Sign (D) & & 0 0 Ð Ð 2

EXTB 1 D w D; D a 1 w Sign (D) & & 0 0 Ð Ð 3

NOT/NOTB 1 D w Logical Not (D) & & 0 0 Ð Ð

CLR/CLRB 1 D w 0 1 0 0 0 Ð Ð

SHL/SHLB/SHLL 2 C w msb Ð Ð Ð Ð Ð Isb w 0 & ? & & u Ð 7

SHR/SHRB/SHRL 2 0 x msb Ð Ð Ð Ð Ð Isb x C & ? & 0 Ð & 7

SHRA/SHRAB/SHRAL 2 msb x msb Ð Ð Ð Ð Ð Isb x C & & & 0 Ð & 7

SETC 0 C w 1 Ð Ð 1 Ð Ð Ð

CLRC 0 C w 0 Ð Ð 0 Ð Ð Ð

CLRVT 0 VT w 0 Ð Ð Ð Ð 0 Ð

RST 0 PC w 2080H 0 0 0 0 0 0 8

DI 0 Disable All Interrupts (I w 0) Ð Ð Ð Ð Ð Ð

EI 0 Enable All Interrupts (I w 1) Ð Ð Ð Ð Ð Ð

NOP 0 PC w PC a 1 Ð Ð Ð Ð Ð Ð

SKIP 0 PC w PC a 2 Ð Ð Ð Ð Ð Ð

NORML 2 Left Shift Till msb e 1; D w shift count & ? 0 Ð Ð Ð 7

TRAP 0 SP w SP b 2; (SP) w PC
PC w (2010H) Ð Ð Ð Ð Ð Ð 9

Figure 2-5. Instruction Summary (Continued)

NOTES:
1. If the mnemonic ends in ‘‘B’’, a byte operation is performed, otherwise a word operation is done. Operands D, B, and A
must conform to the alignment rules for the required operand type. D and B are locations in the register file; A can be
located anywhere in memory.
5. Offset is a 2’s complement number.
6. Specified bit is one of the 2048 bits in the register file.
7. The ‘‘L’’ (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at
2080H.
9. The assembler will not accept this mnemonic.

6

AP-248

One operand of most of the instructions can be used
with any one of six addressing modes. These modes
increase the flexibility and overall execution speed of
the 8096. The addressing modes are: register-direct, im-
mediate, indirect, indirect with auto-increment, and
long and short indexed.

The fastest instruction execution is gained by using ei-
ther register direct or immediate addressing. Register-
direct addressing is similar to normal direct addressing,
except that only addresses in the register file or SFRs
can be addressed. The indexed mode is used to directly
address the remainder of the 64K address space. Imme-
diate addressing operates as would be expected, using
the data following the opcode as the operand.

Both of the indirect addressing modes use the value in a
word register as the address of the operand. If the indi-
rect auto-increment mode is used then the word register
is incremented by one after a byte access or by two after
a word access. This mode is particularly useful for ac-
cessing lookup tables.

Access to any of the locations in the 64K address space
can be obtained by using the long indexed addressing

mode. In this mode a 16-bit 2’s complement value is
added to the contents of a word register to form the
address of the operand. By using the zero register as the
index, ASM96 (the assembler) can accept ‘‘direct’’ ad-
dressing to any location. The zero register is located at
0000H and always has a value of zero. A short indexed
mode is also available to save some time and code. This
mode uses an 8-bit 2’s complement number as the offset
instead of a 16-bit number.

2.2.2. ASSEMBLY LANGUAGE

The multiple addressing modes of the 8096 make it easy
to program in assembly language and provide an excel-
lent interface to high level languages. The instructions
accepted by the assembler consist of mnemonics fol-
lowed by either addresses or data. A list of the mne-
monics and their functions are shown in Figure 2-5.
The addresses or data are given in different formats
depending on the addressing mode. These modes and
formats are shown in Figure 2-6.

Additional information on 8096 assembly language is
available in the MCS-96 Macro Assembler Users
Guide, listed in the bibliography.

270061–B3

Figure 2-6. Instruction Format

7

AP-248

270061–4

Figure 2-7. Interrupt Sources

2.2.3. INTERRUPTS

The flexibility of the instruction set is carried through
into the interrupt system. There are 20 different inter-
rupt sources that can be used on the 8096. The 20
sources vector through 8 locations or interrupt vectors.
The vector names and their sources are shown in Fig-
ure 2-7, with their locations listed in Figure 2-8. Con-
trol of the interrupts is handled through the Interrupt
Pending Register (INTÐPENDING), the Interrupt
Mask Register (INTÐMASK), and the I bit in the
PSW (PSW.9). Figure 2-9 shows a block diagram of the
interrupt structure. The INTÐPENDING register
contains bits which get set by hardware when an inter-
rupt occurs. If the interrupt mask register bit for that
source is a 1 and PSW.9 e 1, a vector will be taken to
the address listed in the interrupt vector table for that

Vector

Source
Location

Priority
(High (Low
Byte) Byte)

Software 2011H 2010H Not Applicable
Extint 200FH 200EH 7 (Highest)
Serial Port 200DH 200CH 6
Software Timers 200BH 200AH 5
HSI.0 2009H 2008H 4
High Speed 2007H 2006H 3

Outputs
HSI Data 2005H 2004H 2

Available
A/D Conversion 2003H 2002H 1

Complete
Timer Overflow 2001H 2000H 0 (Lowest)

Figure 2-8. Interrupt Vectors and Priorities

8

AP-248

source. When the vector is taken the INTÐPENDING
bit is cleared. If more than one bit is set in the INTÐ
PENDING register with the corresponding bit set in
the INTÐMASK register, the Interrupt with the high-
est priority shown in Figure 2-8 will be executed.

The software can make the hardware interrupts work in
almost any fashion desired by having each routine run
with its own setup in the INTÐMASK register. This
will be clearly seen in the examples in section 4 which
change the priority of the vectors in software. The

270061–5

Figure 2-9. Interrupt Structure Block Diagram

9

AP-248

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Z N V VT C Ð I ST INTÐMASK

WHERE:

Z is the zero flag. It is set when the result of an operation is zero.

N is the negative flag. It is set to the algebraically correct sign of the result regardless of overflows.

V is the overflow flag. It is set if an overflow occurs.

VT is the overflow trap flag. It is set when the VT flag is set and cleared by JVT, JNVT, or CLRVT.

C is the carry flag. It is set if a carry was generated by the prior operation.

I is the global interrupt enable bit.

ST is the sticky bit. It is set during a right shift if a one was shifted into and then out of the carry flag.

INTÐMASK is the interrupt mask register and contains bits which individually enable the 8 interrupt vectors.

Figure 2-10. The PSW Register

PSW (shown in Figure 2-10), stores the INTÐMASK
register in its lower byte so that the mask register can
be pushed and popped along with the machine status
when moving in and out of routines. The action of
pushing flags clears the PSW which includes PSW.9,
the interrupt enable bit. Therefore, after a PUSHF in-
struction interrupts are disabled. In most cases an inter-
rupt service routine will have the basic structure shown
below.

INT VECTOR:

PUSHF
LDB INT MASK, #xxxxxxxxB
EI
-
- ;Insert service routine here
-

POPF
RET

The PUSHF instruction saves the PSW including the
old INTÐMASK register. The PSW, including the in-
terrupt enable bit are left cleared. If some interrupts
need to be enabled while the service routine runs, the
INTÐMASK is loaded with a new value and inter-
rupts are globally enabled before the service routine
continues. At the end of the service routine a POPF in-

struction is executed to restore the old PSW. The RET
instruction is executed and the code returns to the de-
sired location. Although the POPF instruction can en-
able the interrupts the next instruction will always exe-
cute. This prevents unnecessary building of the stack by
ensuring that the RET always executes before another
interrupt vector is taken.

2.3. On-Chip I/O Section

All of the on-chip I/O features of the 8096 can be ac-
cessed through the special function registers, as shown
in Figure 2-3. The advantage of using register-mapped
I/O is that these registers can be used as the sources or
destinations of CPU operations. There are seven major
I/O functions. Each one of these will be considered
with a section of code to exemplify its usage. The first
section covered will be the High Speed I/O, (HSIO),
subsystem. This section includes the High Speed Input
(HSI) unit, High Speed Output (HSO) unit, and the
Timer/Counter section.

2.3.1. TIMER/COUNTERS

The 8096 has two time bases, Timer 1 and Timer 2.
Timer 1 is a 16-bit free running timer which is incre-
mented every 8 state times. (A state time is 3 oscillator
periods, or 0.25 microseconds with a 12 MHz crystal.)

10

AP-248

270061–6
Pulse measurement with 2.0 msec resolution
Input transitions trigger the recording of the reference

Timer (16-bit) and triggered input(s) (4-bit)

Figure 2-11. HSI Unit Block Diagram

Its value can be read at any time and used as a refer-
ence for both the HSI section and the HSO section.
Timer 1 can cause an interrupt when it overflows, and
cannot be modified or stopped without resetting the
entire chip. Timer 2 is really an event counter since it
uses an external clock source. Like Timer 1, it is 16-bits
wide, can be read at any time, can be used with the
HSO section, and can generate an interrupt when it
overflows. Control of Timer 2 is limited to increment-
ing it and resetting it. Specific values can not be written
to it.

Although the 8096 has only two timers, the timer flexi-
bility is equal to a unit with many timers thanks to the
HSIO unit. The HSI enables one to measure times of
external events on up to four lines using Timer 1 as a
timer base. The HSO unit can schedule and execute
internal events and up to six external events based on
the values in either Timer 1 or Timer 2. The 8096 also
includes separate, dedicated timers for the baud rate
generator and watchdog timer.

2.3.2. HSI

The HSI unit can be thought of as a message taker
which records the line which had an event and the time
at which the event occurred. Four types of events can
trigger the HSI unit, as shown in the HSI block dia-
gram in Figure 2-11. The HSI unit can measure pulse
widths and record times of events with a 2

270061–7
Where each 2-bit mode control field
defines one of 4 possible modes:

00 8 positive transitions
01 Each positive transition
10 Each negative transition
11 Every transition (positive and negative)

Figure 2-12. HSI Mode Register

11

AP-248

microsecond resolution. It can look for one of four
events on each of four lines simultaneously, based on
the information in the HSI Mode register, shown in
Figure 2-12. The information is then stored in a seven
level FIFO for later retrieval. Whenever the FIFO con-
tains information, the earliest entry is placed in the
holding register. When the holding register is read, the
next valid piece of information is loaded into it. Inter-
rupts can be generated by the HSI unit at the time the

holding register is loaded or when the FIFO has six or
more entries.

2.3.3. HSO

Just as the HSI can be thought of as a message taker,
the HSO can be thought of as a message sender. At
times determined by the software, the HSO sends mes-

270061–8

Figure 2-13. HSO Command Register

270061–9

Figure 2-14. HSO Block Diagram

12

AP-248

sages to various devices to have them turn on, turn off,
start processing, or reset. Since the programmed times
can be referenced to either Timer 1 or Timer 2, the
HSO makes the two timers look like many. For exam-
ple, if several events have to occur at specific times, the
HSO unit can schedule all of the events based on a
single timer. The events that can be scheduled to occur
and the format of the command written to the HSO
Command register are shown in Figure 2-13.

The software timers listed in the figure are actually 4
software flags in I/O Status Register 1 (IOS1). These
flags can be set, and optionally cause an interrupt, at
any time based on Timer 1 or Timer 2. In most cases
these timers are used to trigger interrupt routines which
must occur at regular intervals. A multitask process
can easily be set up using the software timers.

A CAM (Content Addressable Memory) file is the
main component of the HSO. This file stores up to
eight events which are pending to occur. Every state
time one location of the CAM is compared with the
two timers. After 8 state times, (two microseconds with
a 12 MHz clock), the entire CAM has been searched
for time matches. If a match occurs the specified event
will be triggered and that location of the CAM will be
made available for another pending event. A block dia-
gram of the HSO unit is shown in Figure 2-14.

2.3.4. Serial Port

Controlling a device from a remote location is a simple
task that frequently requires additional hardware with
many processors. The 8096 has an on-chip serial port to
reduce the total number of chips required in the system.

270061–10

NOTE:
TI and RI are cleared when SPÐCON is read.

Figure 2-15. Serial Port Control/Status Register

13

AP-248

The serial port is similar to that on the MCS-51 prod-
uct line. It has one synchronous and three asynchro-
nous modes. In the asynchronous modes baud rates of
up to 187.5 Kbaud can be used, while in the synchro-
nous mode rates up to 1.5 Mbaud are available. The
chip has a baud rate generator which is independent of
Timer 1 and Timer 2, so using the serial port does not
take away any of the HSI, HSO or timer flexibility or
functionality.

Control of the serial port is provided through the
SPCON/SPSTAT (Serial Port CONtrol/Serial Port
STATus) register. This register, shown in Figure 2-15,
has some bits which are read only and others which are
write only. Although the functionality of the port is
similar to that of the 8051, the names of some of the
modes and control bits are different. The way in which
the port is used from a software standpoint is also
slightly different since RI and TI are cleared after each
read of the register.

The four modes of the serial port are referred to as
modes 0, 1, 2 and 3. Mode 0 is the synchronous mode,
and is commonly used to interface to shift registers for
I/O expansion. In this mode the port outputs a pulse
train on the TXD pin and either transmits or receives
data on the RXD pin. Mode 1 is the standard asyn-
chronous mode, 8 bits plus a stop and start bit are sent
or received. Modes 2 and 3 handle 9 bits plus a stop and
start bit. The difference between the two is, that in
Mode 2 the serial port interrupt will not be activated
unless the ninth data bit is a one; in Mode 3 the inter-
rupt is activated whenever a byte is received. These two
modes are commonly used for interprocessor communi-
cation.

Using XTAL1:

Mode 0:
Baud
Rate

e

XTAL1 frequency

4*(Ba1)
; B i 0

Others:
Baud
Rate

e

XTAL1 frequency

64*(Ba1)

Using T2CLK:

Mode 0:
Baud
Rate

e

T2CLK frequency

B
; B i 0

Others:
Baud
Rate

e

T2CLK frequency

16*B
; B i 0

Note that B cannot equal 0, except when using
XTAL1 in other than mode 0.

Figure 2-16. Baud Rate Formulas

Baud rates for all of the modes are controlled through
the Baud Rate register. This is a byte wide register
which is loaded sequentially with two bytes, and inter-
nally stores the value as a word. The least significant
byte is loaded to the register followed by the most sig-
nificant. The most significant bit of the baud value de-
termines the clock source for the baud rate generator. If
the bit is a one, the XTAL1 pin is used as the source, if
it is a zero, the T2 CLK pin is used. The formulas
shown in Figure 2-16 can be used to calculate the baud
rates. The variable ‘‘B’’ is used to represent the least
significant 15 bits of the value loaded into the baud rate
register.

The baud rate register values for common baud rates
are shown in Figure 2-17. These values can be used
when XTAL1 is selected as the clock source for serial
modes other than Mode 0. The percentage deviation
from theoretical is listed to help assess the reliability of
a given setup. In most cases a serial link will work if
there is less than a 2.5% difference between the baud
rates of the two systems. This is based on the assump-
tion that 10 bits are transmitted per frame and the last
bit of the frame must be valid for at least six-eights of
the bit time. If the two systems deviate from theoretical
by 1.25% in opposite directions the maximum toler-
ance of 2.5% will be reached. Therefore, caution must
be used when the baud rate deviation approaches
1.25% from theoretical. Note that an XTAL1 frequen-
cy of 11.0592 MHz can be used with the table values
for 11 MHz to provide baud rates that have 0.0 percent
deviation from theoretical. In most applications, how-
ever, the accuracy available when using an 11 MHz
input frequency is sufficient.

Serial port Mode 1 is the easiest mode to use as there is
little to worry about except initialization and loading
and unloading SBUF, the Serial port BUFfer. If parity
is enabled, (i.e., PENe1), 7 bits plus even parity are
used instead of 8 data bits. The parity calculation is
done in hardware for even parity. Modes 2 and 3 are
similar to Mode 1, except that the ninth bit needs to be
controlled and read. It is also not possible to enable
parity in Mode 2. When parity is enabled in Mode 3 the
ninth bit becomes the parity bit. If parity is not enabled,
(i.e., PEN e 0), the TB8 bit controls the state of the
ninth transmitted bit. This bit must be set prior to each
transmission. On reception, if PEN e 0, the RB8 bit
indicates the state of the ninth received bit. If parity is
enabled, (i.e., PEN e 1), the same bit is called RPE
(Receive Parity Error), and is used to indicate a parity
error.

14

AP-248

XTAL1 Frequency e 12.0 MHz

Baud Rate Baud Register Value Percent Error

19.2K 8009H a2.40

9600 8013H a2.40

4800 8026H b0.16

2400 804DH b0.16

1200 809BH b0.16

300 8270H 0.00

XTAL1 Frequency e 11.0 MHz

19.2K 8008H a0.54

9600 8011H a0.54

4800 8023H a0.54

2400 8047H a0.54

1200 808EH b0.16

300 823CH a0.01

XTAL1 Frequency e 10.0 MHz

19.2K 8007H b1.70

9600 800FH b1.70

4800 8020H a1.38

2400 8040H b0.16

1200 8081H b0.16

300 8208H a0.03

Figure 2-17. Baud Rate Values for 10, 11, 12 MHz

The software used to communicate between processors
is simplified by making use of Modes 2 and 3. In a basic
protocol the ninth bit is called the address bit. If it is set
high then the information in that byte is either the ad-
dress of one of the processors on the link, or a com-
mand for all the processors. If the bit is a zero, the byte
contains information for the processor or processors
previously addressed. In standby mode all processors
wait in Mode 2 for a byte with the address bit set.
When they receive that byte, the software determines if
the next message is for them. The processor that is to

receive the message switches to Mode 3 and receives
the information. Since this information is sent with the
ninth bit set to zero, none of the processors set to Mode
2 will be interrupted. By using this scheme the overall
CPU time required for the serial port is minimized.

A typical connection diagram for the multi-processor
mode is shown in Figure 2-18. This type of communica-
ton can be used to connect peripherals to a desk top
computer, the axis of a multi-axis machine, or any oth-
er group of microcontrollers jointly performing a task.

15

AP-248

270061–11

Figure 2-18. Multiprocessor Communication

Mode 0, the synchronous mode, is typically used for
interfacing to shift registers for I/O expansion. The
software to control this mode involves the REN (Re-
ceiver ENable) bit, the clearing of the RI bit, and writ-
ing to SBUF. To transmit to a shift register, REN is set
to zero and SBUF is loaded with the information. The
information will be sent and then the TI flag will be set.
There are two ways to cause a reception to begin. The
first is by causing a rising edge to occur on the REN
bit, the second is by clearing RI with REN e 1. In
either case, RI is set again when the received byte is
available in SBUF.

2.3.5. A to D CONVERTER

Analog inputs are frequently required in a microcon-
troller application. The 8097 has a 10-bit A to D con-
verter that can use any one of eight input channels. The
conversions are done using the successive approxima-
tion method, and require 168 state times (42 microsec-
onds with a 12 MHz clock.)

The results are guaranteed monotonic by design of the
converter. This means that if the analog input voltage
changes, even slightly, the digital value will either stay
the same or change in the same direction as the analog

input. When doing process control algorithms, it is fre-
quently the changes in inputs that are required, not the
absolute accuracy of the value. For this reason, even if
the absolute accuracy of a 10-bit converter is the same
as that of an 8-bit converter, the 10-bit monotonic con-
verter is much more useful.

Since most of the analog inputs which are monitored by
a microcontroller change very slowly relative to the 42
microsecond conversion time, it is acceptable to use a
capacitive filter on each input instead of a sample and
hold. The 8097 does not have an internal sample and
hold, so it is necessary to ensure that the input signal
does not change during the conversion time. The input
to the A/D must be between ANGND and VREF.
ANGND must be within a few millivolts of VSS and
VREF must be within a few tenths of a volt of VCC.

Using the A to D converter on the 8097 can be a very
low software overhead task because of the interrupt and
HSO unit structure. The A to D can be started by the
HSO unit at a preset time. When the conversion is com-
plete it is possible to generate an interrupt. By using
these features the A to D can be run under complete
interrupt control. The A to D can also be directly

16

AP-248

A/D Command Register

270061–12

A/D Result Register

270061–13

Figure 2-19. A to D Result/Command Register

controlled by software flags which are located in the
ADÐRESULT/ADÐCOMMAND Register, shown
in Figure 2-19.

2.3.6. PWM REGISTER

Analog outputs are just as important as analog inputs
when connecting to a piece of equipment. True digital
to analog converters are difficult to make on a micro-
processor because of all of the digital noise and the
necessity of providing an on chip, relatively high cur-
rent, rail to rail driver. They also take up a fair amount
of silicon area which can be better used for other fea-
tures. The A to D converter does use a D to A, but the
currents involved are very small.

For many applications an analog output signal can be
replaced by a Pulse Width Modulated (PWM) signal.
This signal can be easily generated in hardware, and

takes up much less silicon area than a true D to A. The
signal is a variable duty cycle, fixed frequency wave-
form that can be integrated to provide an approxima-
tion to an analog output. The frequency is fixed at a
period of 64 microseconds for a 12 MHz clock speed.
Controlling the PWM simply requires writing the de-
sired duty cycle value (an 8-bit value) to the PWM
Register. Some typical output waveforms that can be
generated are shown in Figure 2-20.

Converting the PWM signal to an analog signal varies
in difficulty, depending upon the requirements of the
system. Some systems, such as motors or switching
power supplies actually require a PWM signal, not a
true analog one. For many other cases it is necessary
only to amplify the signal so that it switches rail-to-rail,
and then filter it. Switching rail-to-rail means that the
output of the amplifier will be a reference value when
the input is a logical one, and the output will

17

AP-248

be zero when the input is a logical zero. The filter can
be a simple RC network or an active filter. If a large
amount of current is needed a buffer is also required.
For low output currents, (less than 100 microamps or
so), the circuit shown in Figure 2-21 can be used.

The RC network determines how quiet the output is,
but the quieter the output, the slower it can change.
The design of high accuracy voltage followers and ac-
tive filters is beyond the scope of this paper, however
many books on the subject are available.

270061–14

Figure 2-20. PWM Output Waveforms

270061–15
*This resistor limits Rise Time to reduce spikes and high frequency noise.

Figure 2-21. PWM to Analog Conversion Circuitry

18

AP-248

3.0 BASIC SOFTWARE EXAMPLES

The examples in this section show how to use each I/O
feature individually. Examples of using more than one
feature at a time are described in section 4. All of the
examples in this ap-note are set up to be used as listed.
If run through ASM96 they will load and run on an
SBE-96. In order to insure that the programs work, the
stack pointer is initialized at the beginning of each pro-
gram. If the programs are going to be used as modules
of other programs, the stack pointer initialization
should only be used at the beginning of the main pro-
gram.

To avoid repetitive declarations the ‘‘include’’ file ‘‘DE-
MO96.INC’’, shown in Listing 3-1, is used. ASM-96
will insert this file into the code file whenever the direc-
tive ‘‘INCLUDE DEMO96.INC’’ is used. The file con-
tains the definitions for the SFRs and other variables.
The include statement has been placed in all of the ex-
amples. It should be noted that some of the lab-

els in this file are different from those in the file
8096.INC that is provided in the ASM-96 package.

3.1. Using the 8096’s Processing
Section

3.1.1. TABLE INTERPOLATION

A good way of increasing speed for many processing
tasks is to use table lookup with interpolation. This can
eliminate lengthy calculations in many algorithms. Fre-
quently it is used in programs that generate sine wave-
forms, use exponents in calculations, or require some
non-linear function of a given input variable. Table
lookup can also be used without interpolation to deter-
mine the output state of I/O devices for a given state of
a set of input devices. The procedure is also a good
example of 8096 code as it uses many of the software
features. Two ways of making a lookup table are de-
scribed, one way uses more calculation time, the second
way uses more table space.

270061–16

Listing 3-1. Include File DEMO.96.INC

19

AP-248

In both methods the procedure is similar. Values of a
function are stored in memory for specific input values.
To compute the output function for an input that is not
listed, a linear approximation is made based on the
nearest inputs and nearest outputs. As an example, con-
sider the table below.

If the input value was one of those listed then there
would be no problem. Unfortunately the real world is
never so kind. The input number will probably be 259
or something similar. If this is the case linear interpola-
tion would provide a reasonable result. The formula is:

Delta Out e

UpperOutput-Lower Output

Upper Input-Lower Input
*(Actual Input-Lower Input)

Actual Output e Lower Output a Delta Out
For the value of 259 the solution is:

Delta Out e

900-400

300-200
*(259-200) e

500

100
*59 e 5 * 59 e 295

Actual Output e 400 a 295 e 695

To make the algorithm easier, (and therefore faster), it
is appropriate to limit the range and accuracy of the
function to only what is needed. It is also advantageous
to make the input step (Upper Input-Lower Input)
equal to a power of 2. This allows the substitution of
multiple right shifts for a divide operation, thus speed-
ing up throughput. The 8096 allows multiple arithmetic
right shifts with a single instruction providing a very
fast divide if the divisor is a power of two.

For the purpose of an example, a program with a 12-bit
output and an 8-bit input has been written. An input
step of 16 (2**4) was selected. To cover the input range
17 words are needed, 255/16 a 1 word to handle val-
ues in the last 15 bytes of input range. Although only
12 bits are required for the output, the 16-bit architec-
ture offers no penalty for using 16 instead of 12 bits.

The program for this example, shown in Listing 3-2,
uses the definitions and equates from Listing 3-1, only
the additional equates and definitions are shown in the
code.

Input Value Relative Table Address Table Value

100 0001H 100
200 0002H 400
300 0003H 900
400 0004H 1600

270061–17

Listing 3-2. ASM-96 Code for Table Lookup Routine 1

20

AP-248

270061–18

Listing 3-2. ASM-96 Code for Table Lookup Routine 1 (Continued)

If the function is known at the time of writing the soft-
ware it is also possible to calculate in advance the
change in the output function for a given change in the
input. This method can save a divide and a few other
instructions at the expense of doubling the size of the

lookup table. There are many applications where time
is critical and code space is overly abundant. In these
cases the code in Listing 3-3 will work to the same
specifications as the previous example.

270061–19

Listing 3-3. ASM-96 Code For Table Lookup Routine 2

21

AP-248

270061–20

Listing 3-3. ASM-96 Code for Table Lookup Routine 2 (Continued)

By making use of the second lookup table, one word of
RAM was saved and 16 state times. In most cases this
time savings would not make much of a difference, but
when pushing the processor to the limit, microseconds
can make or break a design.

3.1.2. PL/M-96

Intel provides high level language support for most of
its micro processors and microcontrollers in the form of
PL/M. Specifically, PL/M refers to a family of lan-
guages, each similar in syntax, but specialized for the
device for which it generates code. The PL/M syntax is
similar to PL/1, and is easy to learn. PLM-96 is the
version of PL/M used for the 8096. It is very code
efficient as it was written specifically for the MCS-96
family. PLM-96 most closely resembles PLM-86, al-
though it has bit and I/O functions similar to PLM-51.
One line of PL/M-code can take the place of many

lines of assembly code. This is advantageous to the pro-
grammer, since code can usually be written at a set
number of lines per hour, so the less lines of code that
need to be written, the faster the task can be completed.

If the first example of interpolation is considered, the
PLM-96 code would be written as shown in Listing 3-4.
Note that version 1.0 of PLM-96 does not support 32-
bit results of 16 by 16 multiplies, so the ASM-96 proce-
dure ‘‘DMPY’’ is used. Procedure DMPY, shown in
Listing 3-5, must be assembled and linked with the
compiled PLM-96 program using RL-96, the relocator
and linker. The command line to be used is:

RL96 PLMEX1.OBJ, DMPY.OBJ, PLM96.LIB &
to PLMOUT.OBJ ROM (2080H-3FFFH)

22

AP-248

270061–21

Listing 3-4. PLM-96 Code For Table Lookup Routine 1

270061–22

Listing 3-5. 32-Bit Result Multiply Procedure For PLM-96

23

AP-248

Using PLM, code requires less lines, is much faster to
write, and easier to maintain, but may take slightly
longer to run. For this example, the assembly code gen-
erated by the PLM-96 compiler takes 56.75 microsec-
onds to run instead of 30.75 microseconds. If PLM-96
performed the 32-bit result multiply instead of using
the ASM-96 routine the PLM code would take 41.5
microseconds to run. The actual code listings are
shown in Appendix A.

3.2. Using the I/O Section

3.2.1. USING THE HSI UNIT

One of the most frequent uses of the HSI is to measure
the time between events. This can be used for frequency
determination in lab instruments, or speed/acceleration
information when connected to pulse type encoders.
The code in Listing 3-6 can be used to determine the
high and low times of the signals on two lines. This
code can be easily expanded to 4 lines and can also be
modified to work as an interrupt routine.

Frequently it is also desired to keep track of the num-
ber of events which have occurred, as well as how often
they are occurring. By using a software counter this
feature can be added to the above code. This code de-
pends on the software responding to the change in line
state before the line changes again. If this cannot be
guaranteed then it may be necessary to use 2 HSI lines
for each incoming line. In this case one HSI line would
look for falling edges while the other looks for rising
edges. The code in Listing 3-7 includes both the counter
feature and the edge detect feature.

The uses for this type of routine are almost endless. In
instrumentation it can be used to determine frequency
on input lines, or perhaps baud rate for a self adjusting
serial port. Section 4.2 contains an example of making a
software serial port using the HSI unit. Interfacing to
some form of mechanically generated position informa-
tion is a very frequent use of the HSI. The applications
in this category include motor control, precise position-
ing (print heads, disk drives, etc.), engine control and

270061–23

Listing 3-6. Measuring Pulses Using The HSI Unit

24

AP-248

transmission control. The HSI unit is used extensively
in the example in section 4.3.

3.2.2. USING THE HSO UNIT

Although the HSO has many uses, the best example is
that of a multiple PWM output. This program, shown
in Listing 3-8, is simple enough to be easily understood,
yet it shows how to use the HSO for a task which can
be complex. In order for this program to operate, an-
other program needs to set up the on and off time vari-
ables for each line. The program also requires that a

HSO line not change so quickly that it changes twice
between consecutive reads of I/O Status Register 0,
(IOS0).

A very eye catching example can be made by having the
program output waveforms that vary over time. The
driver routine in Listing 3-10 can be linked to the above
program to provide this function. Linking is accom-
plished using RL96, the relocatable linker for the 8096.
Information for using RL96 can be found in the
‘‘MCS-96 Utilities Users Guide’’, listed in the bibliogra-
phy. In order for the program to link, the register dec-

270061–24

Listing 3-7. Enhanced HSI Pulse Measurement Routine

25

AP-248

270061–25

Listing 3-8. Generating a PWM with the HSO

26

AP-248

laration section (i.e., the section between ‘‘RSEG’’ and
‘‘CSEG’’) in Listing 3-8 must be changed to that in
Listing 3-9.

The driver routine simply changes the duty cycle of the
waveform and sets the second HSO output to a fre-

quency twice that of the first one. A slightly different
driver routine could easily be the basis for a switching
power supply or a variable frequency/variable voltage
motor driver. The listing of the driver routine is shown
in Listing 3-10.

270061–26

Listing 3-9. Changes to Declarations for HSO Routine

270061–27

Listing 3-10. Driver Module for HSO PWM Program

27

AP-248

270061–28

Listing 3-10. Driver Module for HSO PWM Program (Continued)

Since the 8096 needs to keep track of events which of-
ten repeat at set intervals it is convenient to be able to
have Timer 2 act as a programmable modulo counter.
There are several ways of doing this. The first is to
program the HSO to reset Timer 2 when Timer 2
equals a set value. A software timer set to interrupt at
Timer 2 equals zero could be used to reload the CAM.
This software method takes up two locations in the
CAM and does not synchronize Timer 2 to the external
world.

To synchronize Timer 2 externally the T2 RST (Timer
2 ReSeT) pin can be used. In this way Timer 2 will get
reset on each rising edge of T2 RST. If it is desired to
have an interrupt generated and time recorded when
Timer 2 gets reset, the signal for its reset can be taken
from HSI.0 instead of T2RST. The HSI.0 pin has its
own interrupt vector which functions independently of
the HSI unit.

Another option available is to use the HSI.1 pin to
clock Timer 2. By using this approach it is possible to
use the HSI to measure the period of events on the
input to Timer 2. If both of the HSI pins are used
instead of the T2RST and T2CLK pins the HSIO unit
can keep track of speed and position of the rotating
device with very little software overhead. This type of
setup is ideal for a system like the one shown in Figure
3-1, and similar to the one used in section 4.3.

In this system a sequence of events is required based on
the position of the gear which represents any piece of
rotating machinery. Timer 2 holds the count of the
number of tooth edges passed since the index mark. By
using HSI.1 as the input to Timer 2, instead of T2
CLK, it is possible to determine tooth count and time
information through the HSI. From this information
instantaneous velocity and acceleration can be calculat-
ed. Having the tooth edge count in Timer 2 means

270061–29

Figure 3-1. Using the HSIO to Monitor Rotating Machinery

28

AP-248

that the HSO unit can be used to initiate the desired
tasks at the appropriate tooth count. The interrupt rou-
tine initiated by HSI.0 can be used to perform any soft-
ware task required every revolution. In this system, the
overhead which would normally require extensive soft-
ware has been done with the hardware on the 8096,
thus making more software time available for control
programs.

3.2.3. USING THE SERIAL PORT IN MODE 1

Mode 1 of the serial port supports the basic asynchro-
nous 8-bit protocol and is used to interface to most
CRTs and printers. The example in Listing 3-11 shows
a simple routine which receives a character and then

transmits the same character. The code is set up so that
minor modifications could make it run on an interrupt
basis. Note that it is necessary to set up some flags as
initial conditions to get the routine to run properly. If it
was desired to send 7 bits of data plus parity instead of
8 bits of data the PEN bit would be set to a one. Inter-
processor communication, as described in section 2.3.4,
can be set up by simply adding code to change RB8 and
the port mode to the listing below. The hardware
shown in Figure 3-2 can be used to convert the logic
level output of the 8096 to g12 or 15 volt levels to
connect to a CRT. This circuit has been found to work
with most RS-232 devices, although it does not con-
form to strict RS-232 specifications. If true RS-232
conformance is required then any standard RS-232
driver can be used.

270061–30

Listing 3-11. Using the Serial Port in Mode 1

29

AP-248

270061–31

Listing 3-11. Using the Serial Port in Mode 1 (Continued)

270061–32

Figure 3-2. Serial Port Level Conversion

30

AP-248

3.2.4. USING THE A TO D

The code in Listing 3-12 makes use of the software flags
to implement a non-interrupt driven routine which
scans A to D channels 0 through 3 and stores them as
words in RAM. An interrupt driven routine is shown in
section 4.1. When using the A to D it is important to
always read the value using the byte read commands,
and to give the converter 8 state times to start convert-
ing before reading the status bit.

Since there is no sample and hold on the A to D con-
verter it may be desirable to use an RC filter on each
input. A 100X resistor in series with a 0.22 uf capacitor
to ground has been used successfully in the lab. This
circuit gives a time constant of around 22 microseconds
which should be long enough to get rid of most noise,
without overly slowing the A to D response time.

4.0 ADVANCED SOFTWARE
EXAMPLES

Using the 8096 for applications which consist only of
the brief examples in the previous section does not

really make use of its full capabilities. The following
examples use some of the code blocks from the previous
section to show how several I/O features can be used
together to accomplish a practical task. Three examples
will be shown. The first is simply a combination of sev-
eral of the section 3 examples run under an interrupt
system. Next, a software serial port using the HSIO
unit is described. The concluding example is one of in-
terfacing the HSI unit to an optical encoder to control a
motor.

4.1. Simultaneous I/O Routines under
Interrupt Control

A four channel analog to PWM converter can easily be
made using the 8096. In the example in Listing 4 ana-
log channels are read and 3 PWM waveforms are gen-
erated on the HSO lines and one on the PWM pin.
Each analog channel is used to set the duty cycle of its
associated output pin. The interrupt system keeps the
whole program humming, providing time for a back-
ground task which is simply a 32 bit software counter.
To show which routines are executing and in which

270061–33

Listing 3-12. Scanning the A to D Channels

31

AP-248

order, Port 1 output pins are used to indicate the cur-
rent status of each task. The actual code listing is in-
cluded in Appendix B.

The initialization section, shown in Listing 4-1a, clears
a few variables and then loads the first set of on and off
times to the HSO unit. Note that 8 state times must

be waited between consecutive loads of the HSO. If this
is not done it is possible to overwrite the contents of the
CAM holding register. An A/D interrupt is forced by
setting the bit in the Interrupt Pending register. This
causes the first A/D interrupt to occur just after the
Interrupt Mask register is set and interrupts are en-
abled.

Listing 4-1. Using Multiple I/O Devices

270061–34

Listing 4-1a. Initializing the A to D to PWM Program

32

AP-248

270061–35

Listing 4-1a. Initializing the A to D to PWM program (Continued)

270061–36

Listing 4-1b. Interrupt Driven HSO Routine

33

AP-248

270061–37

Listing 4-1c. Interrupt Driven A to D Routine

The HSO routine shown in Listing 4-1b is slightly dif-
ferent than the one in section 3. All of the HSO lines
turn on at the same time, only the turn-off-time is var-
ied between lines. This action is what is most common-
ly required for multiple PWM outputs and simplifies
the software. A comparison is made between Timer1
and the next HSO turn on time at the beginning of the
routine. If the next turn on time has passed, then the
on-times are loaded into the CAM, otherwise the off
times are loaded.

The maximum number of events in the CAM at any
given time is 7. This occurs when the first line to turn
off does so, causing the off-times for all of the lines to
be loaded. For two of the lines there will be an offtime,
an on-time, and the just loaded off-time. The other line
(the one that just turned off) will have only the on-time
and the just loaded off-time.

A/D conversions are performed by the code in Listing
4-1c about every 60 microseconds, 42 for the conver-
sion, the rest for overhead. The A/D routine sets up the
HSO and PWM on and off times. Since the A/D

has a ten bit output, the most significant 8 bits are
rounded up or down based on the least significant two
bits.

4.2. Software Serial Port Using the
HSIO Unit

There are many systems which require more than one
serial port, an example is a system which must commu-
nicate with other computers and have an additional
port for a local console. If the on-board UART is being
used as an inter-processor link, the HSIO unit can be
used to interface the 8096 to an additional asynchro-
nous line.

Figure 4-1 shows the format of a standard 10-bit asyn-
chronous frame. The start bit is used to synchronize the
receiver to the transmitter; at the leading edge of the
START bit the receiver must set up its timing logic to
sample the incoming line in the center of each bit. Fol-
lowing the start bit are the eight data bits which are
transmitted least significant bit first. The STOP bit is
set to the opposite state of the START bit to guar-

34

AP-248

270061–38

Figure 4-1. 10-bit Asynchronous Frame

antee that the leading edge of the START bit will cause
a transition on the line; it also provides for a dead time
on the line so that the receiver can maintain its syn-
chronization.

The remainder of this section will show how a full-du-
plex asynchronous port can be built from the HSIO
unit. There are four sections to this code:

1. Interface routines. These routines provide a proce-
dural interface between the interrupt driven core of
the software serial port and the remainder of the ap-
plication software.

2. Initialization routine. This routine is called during
the initialization of the overall system and sets up the
various variables used by the software port.

3. Transmit ISR. This routine runs as an ISR (interrupt
service routine) in response to an HSO interrupt in-
terrupt. Its function is to serialize the data passed to
it by the interface routines.

4. Receive ISRs. There are two ISRs involved in the
receive process. One of them runs in response to an
HSI interrupt and is used to synchronize the receive
process at the leading edge of the start bit. The sec-
ond receive ISR runs in response to an HSO generat-
ed software timer interrupt, this routine is scheduled
to run at the center of each bit and is used to deseri-
alize the incoming data.

The routines share the set of variables that are shown in
Listing 4-2. These variables should be accessed only by
the routines which make up the software serial port.

270061–39

Listing 4-2. Software Serial Port Declarations

35

AP-248

The table also shows the declarations for the com-
mands issued to the HSO unit. In this example HSI.2 is
used for receive data and HSO.5 is used for transmit
data, although other HSI and HSO lines could have
been used.

The interface routines are shown in Listing 4-3. Data is
passed to the port by pushing the eight-bit character
into the stack and calling charÐout, which waits for
any in-process transmission to complete and stores the
character into the variable serialÐout. As the data is

stored the START and STOP bits are added to the data
bits. The routine charÐin is called when the applica-
tion software requires a character from the port. The
data is returned in the ax register in conformance to
PLM 96 calling conventions. The routine csts can be
called to determine if a character is available at the port
before calling charÐin. (If no character is available
charÐin will wait indefinitely).

The initialization routine is shown in Listing 4-4. This
routine is called with the required baud rate in the

270061–40

Listing 4-3. Software Serial Port Interface Routines

270061–41

Listing 4-4. Software Serial Port Initialization Routine

36

AP-248

stack; it calculates the bit time from the baud rate and
stores it in the variable baudÐcount in units of TIM-
ER1 ticks. An HSO command is issued which will initi-
ate the transmit process and then the remainder of the
variables owned by the port are initialized. The routine
initÐreceive is called to setup the HSI unit to look for
the leading edge of the START bit.

The transmit process is shown in Listing 4-5. The HSO
unit is used to generate an output command to the
transmit pin once per bit time. If the serialÐout regis-
ter is zero a MARK (idle condition) is output. If the
serialÐout register contains data then the least sig-

nificant bit is output and the register shifted right one
place. The framing information (START and STOP
bits) are appended to the actual data by the interface
routines. Note that this routine will be executed once
per bit time whether or not data is being transmitted. It
would be possible to use this routine for additional low
resolution timing functions with minimal overhead.

The receive process consists of an initialization routine
and two interrupt service routines, hsiÐisr and soft-
wareÐtimerÐisr. The listings of these routines are
shown in Listings 4-6a,4-6b, and 4-6c respectively. The

270061–42

Listing 4-5. Software Serial Port Transmit Process

Listing 4-6. Receive Process

270061–43

Listing 4-6a. Software Serial Port Receive Initialization

37

AP-248

270061–44

Listing 4-6b. Software Serial Port Start Bit Detect

270061–45

Listing 4-6c. Software Serial Port Data Reception

38

AP-248

start is detected by the hsiÐisr which schedules a soft-
ware timer interrupt in one-half of a bit time. This first
sample is used to verify that the START bit has not
ended prematurely (a protection against a noisy line).
The software timer service routine uses the variable
rcveÐstate to determine whether it should check for a
valid START bit, deserialize data, or check for a valid
STOP bit. When a complete character has been re-
ceived it is moved to the receive buffer and initÐreceive
is called to set up the receive process for the next char-
acter. This routine is also called when an error (e.g.,
invalid START bit) is detected.

Appendix C contains the complete listing of the rou-
tines and the simple loop which was used to initialize
them and verify their operation. The test was run for
several hours at 9600 baud with no apparent malfunc-
tion of the port.

4.3. Interfacing an Optical Encoder to
the HSI Unit

Optical encoders are among one of the more popular
devices used to determine position of rotating equip-
ment. These devices output two pulse trains with edges
that occur from 2 to 4000 times a revolution.

Frequently there is a third line which generates one
pulse per revolution for indexing purposes. Figure 4-2
shows a six line encoder and typical waveforms. As can
be seen, the two waveforms provide the ability to deter-
mine both position and direction. Since a microcontrol-
ler can perform real time calculations it is possible to
determine velocity and acceleration from the position
and time information.

Interfacing to the encoder can be an interesting prob-
lem, as it requires connecting mechanically generated
electrical signals to the HSI unit. The problems arise
because it is difficult to obtain the exact nature of the
signals under all conditions.

The equipment used in the lab was a Pittman 9400 se-
ries gearmotor with a 600 line optical encoder from
Vernitech. The encoder has to be carefully attached to
the shaft to minimize any runout or endplay. Fortu-
nately, Pitmann has started marketing their motors
with ball bearings and optical encoders already in-
stalled. It is recommended that the encoder be mounted
to the motor using the exact specifications of the encod-
er manufacturer and/or a good machine shop.

270061–46
Inside track generates Phase A. Outside track generates Phase B.

Figure 4-2. Optical Encoder and Waveforms

39

AP-248

Digital filtering external to the 8096 is used on the en-
coder signals. The idealized signals coming from the
encoder and after the digital filter are shown in Figure
4-3. The circuitry connecting the encoder to the 8096
requires only two chips. A one-shot constructed of
XOR gates generates pulses on each edge of each sig-
nal. The pulses generated by Phase A are used to clock
the signal from Phase B and vice versa. The hardware is
shown in Figure 4-4. CMOS parts are used to reduce
loading on the encoder so that buffers are not needed.
Note that T2CLK is clocked on both edges of both
filtered phases.

By using this method repetitive edges on a single phase
without an edge on the other phase will not be passed
on to the 8096. Repetitive edges on a phase can occur
when the motor is stopped and vibrates or when it is
changing direction. The digital filtering technique caus-
es a little more delay in the signal at slow speeds than
an analog filter would, but the simplicity trade off is
worthwhile. The net effect of digital filtering is losing
the ability to determine the first edge after a direction
change. This does not affect the count since the first
edge in both directions is lost.

If it is desired to determine when each edge occurs be-
fore filtering, the encoder outputs can be attached di-
rectly to the 8096. As these would be input signals, Port
0 is the most likely choice for connection. It would not
be required to connect these lines to the HSI unit, as
the information on them would only be needed when
the motor is going very slowly.

The motor is driven using the PWM output pin for
power control and a port pin for direction control. The
8096 drives a 7438 which drives 2 opto-isolators. These
in turn drive two VFETs. A MOV (Metal Oxide Varis-
tor, a type of transient absorber) is used to protect the
VFETs, and a capacitor filters the PWM to get the best
motor performance. Figure 4-5 shows the driver cir-
cuitry. To avoid noise getting into the 8096 system, the
g15 volt power supply is isolated from the 8096 logic
power supply.

This is the extent of the external circuitry required for
this example. All of the counting and direction detec-
tion are done by the 8096. There are two sections to the
example: driving the motor and interfacing to the en-
coder. The motor driver uses proportional control with

270061–47

NOTES:
Phase AÊ is Phase A clocked by Phase B
Phase BÊ is Phase B clocked by Phase A

Figure 4-3. Filtered Encoder Waveforms

40

AP-248

some modifications and a braking algorithm. Since the
main point of this example is I/O interfacing, the mo-
tor driver will be briefly described at the end of this
section.

In order to interface to the encoder it is necessary to
know the types of waveforms that can be expected. The
motor was accelerated and decelerated many times us-
ing different maximum voltages. It was found that the

270061–48

Figure 4-4. Schematic of Optical Encoder to 8096 Interface

270061–49

Figure 4-5. Motor Driver Circuitry

41

AP-248

motor would decelerate smoothly until the time be-
tween encoder edges was around 100 microseconds. At
this point the motor would either continue to decelerate
slowly, or would suddenly stop and reverse. The latter
case is the one that was most problematic.

After a brief overview, each section of the program will
be described separately, with the complete listing in-
cluded in the Appendix D. In order to make debugging
easier, as well as to provide insight into how the pro-
gram is working, I/O port 1 is used to indicate the
program status. This information consists of which rou-
tine the program is in and under which mode it is oper-
ating. The main program sections are: Main loop, HSI
interrupt, Timer 2 check, and Motor drive. There are
also minor sections such as initialization, timer over-
flow handling, and software timer handling. Tying ev-
erything together is some overhead and glue. Where the
glue is not obvious it will be discussed, otherwise it can
be derived from the listings.

The program is a main loop which does nothing except
serve as a place for the program to go when none of the
interrupt routines are being run. All of the processing is
done on an interrupt basis.

There are three basic software modes which are in-
voked depending on the speed of the motor. The modes
referred to as 0, 1 and 2, in order from slowest to fastest
operation. When the program is running the operating

mode is indicated by the lower 2 bits of Port 1, with the
following coding:

P1.0 P1.1 Mode Description

0 0 0 HSI looks at every edge
1 0 1 HSI looks at Phase A edges only
0 1 2 Timer 2 used instead of HSI
1 1 2 (alternate form of above)

The example is easiest to see if mode 2 is described first,
followed by mode 1 then mode 0. In mode 2 Timer 2 is
used to count edges on the incoming signal. A software
timer routine, which is actually run using HSO.0, uses
the Timer 2 value to update a LONG (32-bit) software
counter labeled POSITION. The HSO routine runs ev-
ery 260 microseconds. The HSO.0 interrupt is used in-
stead of an actual software timer because of the ability
to easily unmask it while other software timer routines
are running.

In the code in Listing 4-7, the mode is first determined.
For the first pass ignore the code starting with the label
inÐmodeÐ1. Starting with inÐmodeÐ2 the counter is
incremented or decremented based on bit zero of DI-
RECT. If DIRECT.0 e 0 the motor is going back-
ward, if it is a 1 the motor is going forward. Next the
count difference is checked to see if it is slow enough to
go into mode 1. If not the routine returns to the code it
was running when the interrupt occurred.

270061–50

Listing 4-7. Motor Control HSO.0 Timer Routine

42

AP-248

270061–51

Listing 4-7. Motor Control HSO.0 Timer Routine (Continued)

If the pulse rate is slow enough to go to mode 1, the
transition is made by enabling HSI.0 and HSI.1. Both
of these lines are connected to the same encoder line,
with HSI.0 looking for rising edges and HSI.1 looking
for falling edges. The HSIÐTIME register is read to
speed up clearing the HSI FIFO and the LAST1Ð
TIME value is set up so the mode 1 routine does not
immediately put the program into another mode. The
HSI FIFO is then cleared, the Timer 2 value used
throughout this routine is saved, and the routine re-
turns.

This routine still runs in modes 0 and 1, but in an
abbreviated form. The section of code starting with the
label inÐmode1 checks to see if the pulses are coming
in so slowly that both HSI lines can be checked. If this
is the case then all of the HSIs are enabled and the
program returns. This routine is the secondary method
for going from mode 1 to mode 0, the primary method
is by checking the time between edges during the HSI
routine, which will be described later.

The HSO routine will enable mode 0 from mode 1 if
two edges are not received every 260 microseconds. The
primary method, (under the HSI routine), can only

enable mode 0 after an edge is received. This could
cause a problem if the last 2 edges on Phase A before
the encoder stops were too close to enable mode 0. If
this happened, mode 0 would not be enabled until after
the encoder started again, resulting in missed edges on
Phase B. Using the HSO routine to switch from mode 1
to mode 0 eliminates this problem.

Figure 4-6 shows a state diagram of how the mode
switching is done. As can be seen, there are two sources
for most of the mode decisions. This helps avoid prob-
lems such as the one mentioned above.

When either Mode 1 or Mode 0 is enabled the HSI
interrupt routine performs the counting of edges, while
the HSO routine only ensures that the correct mode is
running. The routines for modes 0 and 1 share the same
initialization and completion sections, with the main
body of code being different.

The initialization routine is similar to many HSI rou-
tines. The flags are checked to ensure that the HSI
FIFO data is valid, and then the FIFO is read. Next,
the main body of code (for either mode 0 or mode 1) is

43

AP-248

270061–52

NOTES:
Mode 0: HSI Examines edges on Phase A and B
Mode 1: HSI Examines edges on Phase A only
Mode 2: TIMER 2 stores edgecount

Figure 4-6. Mode State Diagram

270061–53

Listing 4-8. Motor Control HSI Data Available Routine

44

AP-248

run. At the end time and count values are saved and the
holding register is checked for another event. Listing 4-
8 contains the initialization and completion sections of
the HSI routine.

Listing 4-9 is the main body of the Mode 1 routine.
Before any calculations are done in Mode 1, the incom-
ing pulse period is measured to see if it is too fast or too
slow for mode 1. The time period between two edges is
used so that the duty cycle of the waveform will not
affect mode switching. If it is determined that Mode 2
should be set, Port 1.1 is set, all of the HSI lines are
disabled, and the HSI fifo is cleared. If Mode 0 is to be
set all of the HSI lines are enabled and the variable
LASTÐSTAT is cleared. LASTÐSTAT e 0 is used as
a flag to indicate the first HSI interrupt in Mode 0 after
Mode 1. After the mode checking and setting are com-
plete the incremental value in Timer 2 is used to update

POSITION. The program then returns to the comple-
tion section of the routine.

There is a lot more code used in Mode 0 than in Mode
1, most of which is due to the multiple jump statements
that determine the current and previous state of the
HSI pins. In order to save execution time several blocks
of code are repeated as can be seen in Listing 4-10. The
first determination is that of which edge had occurred.
If a Phase A edge was detected the LAST1ÐTIME and
LAST2ÐTIME variables are updated so a reference to
the pulse frequency will be available. These are the
same variables used under Mode 1. A test is also made
to see if the edges are coming fast enough to warrant
being in Mode 1, if they are, the switch is made. If the
last edge detected was on Phase B, the information is
used only to determine direction.

270061–54

Listing 4-9. Motor Control Mode 1 Routines

45

AP-248

270061–55

Listing 4-10. Motor Control Mode 0 Routines

46

AP-248

After mode correctness is confirmed and the LASTxÐ
TIME values are updated the LASTÐSTAT (Last
Status) variable is used to determine the current direc-
tion of travel. The POSITION value is then updated in
the direction specified by the last two edges and the
status is stored. Note that the first time in Mode 0 after
being in Mode 1, the Mode 1 doneÐchk routine is used
to update POSITION, instead of the routines goingÐ
fwd and goingÐrev from the Mode 0 section of code.
The completion section of code is then executed.

Providing the PWM value to drive the motor is done by
a routine running under Software Timer 1. The first
section of code, shown in Listing 4-11a, has to do with
calculating the position and timer errors. Listing 4-11b
shows the next section of code where the power to be
supplied to the motor is calculated. First the direction
is checked and if the direction is reverse the absolute
value of the error is taken. If the error is greater than
64K counts, the PWM routine is loaded with the maxi-
mum value. The next check is made to see if the motor

is close enough to the desired location that the power to
it should be reversed, (i.e., enter the Braking mode). If
the motor is very close to the position or has slowed to
the point that is likely to turn around, the HoldÐPosi-
tion mode is entered.

The determination of which modes are selected under
what conditions was done empirically. All of the pa-
rameters used to determine the mode are kept in RAM
so they can be easily changed on the fly instead of by
re-assembling the program. The parameters in the list-
ing have been selected to make the motor run, but have
not been optimized for speed or stability. A diagram of
the modes is shown in Figure 4-7.

In the HoldÐPosition mode power is eased onto the
motor to lock it into position. Since the motor could be
stopped in this mode, some integral control is needed,
as proportional control alone does not work well when
the error is small and the load is large. The BOOST
variable provides this integral control by increasing the
output a fixed amount every time period in which the

Listing 4-11. Motor Control Software Timer 1 Routine

270061–56

Listing 4-11a. Motor Control Software Position Counter

47

AP-248

270061–57

Listing 4-11b: Motor Control Power Algorithm

48

AP-248

270061–58

Figure 4-7. Motor Control Modes

error does not get smaller. Once the error does get
smaller, usually because the motor starts moving,
BOOST is cleared.

A sanity check can be performed at this point to double
check that the 8096 has proper control of the motor. In
the example the worst that can happen is the proto-

270061–59

Listing 4-12. Motor Control Next Position Lookup

49

AP-248

type will need to be reset, so the sanity check was not
used. If one were desired, it could be as simple as
checking a hardware generated direction indicator, or
as complex as checking motor condition and other en-
vironmental factors.

After all checks have been made, the power value is
loaded to the RPWR register using a software inversion
to compensate for the hardware inversion. Direction is
determined next and the power and direction are
changed in adjacent instructions with interrupts dis-
abled to prevent changing power without direction and
vice versa.

To exercise the program logic the desired position is
changed based on the time value using the code and
lookup table shown in Listing 4-12.

The remaining sections of the program are relatively
simple, but worth discussing briefly. The initialization
routine initializes the I/O features and places several
variables from ROM into RAM. Having these variables
in RAM makes it easier to tweak the algorithm. Timer
1 is expanded into a 32-bit timer by the interrupt rou-
tine shown in Listing 4-13.

Software timer overhead is handled by the routine
shown in Listing 4-14. In this routine the status of each
timer bit is checked in a shadow register. If any of the
timers have expired the appropriate routine is called.

270061–60

Listing 4-13. Motor Control Timer Interrupt Routine

270061–B2

Listing 4-14. Motor Control Software Timer Interrupt Handler

50

AP-248

270061–61

Listing 4-15: Motor Control Software Timer 2 Routine

The last routine, shown in Listing 4-15, is the Software
Timer 2 routine which outputs some variables to exter-
nal RAM. It also keeps LAST1ÐTime within 1800H
of Timer1 to prevent overflows from occurring when
the Mode 0 and Mode 1 software check this variable.

A complete listing of the program as it is used in our
lab can be found in Appendix D. For a given motor or
encoder it will probably be necessary to change some of
the time constants on the first page of the listing. With
the motor used in our experimentation, pulses are
missed from time to time when direction changes
quickly. If the motor were not as fast to turn around or
the encoder were mounted better these problems should
disappear. The missing pulses occur when switching
from Mode 1 to Mode 0, other than that no anomalies
were found in the lab.

Prior to the version of code just discussed, several at-
tempts were made, one of which could be used under
certain constraints. It is possible to use only modes 2
and 0 to monitor the encoder, provided the encoder

always operates smoothly and provides at least 200 mi-
croseconds between the last several edges of Phase A
before reversing. This idea was originally tried because
the motor was not characterized thoroughly at first,
and caused problems because of the motors tendency to
stop suddenly when its speed was low.

If an encoder has a lower line count and therefore more
time between output pulses the two mode solution can
be used. The software for the two mode version can be
easily extracted form the three mode version, so it will
not be presented.

5.0 HARDWARE EXAMPLE

5.1. EPROM Only Minimum System

The diagram in Figure 5-1 illustrates how to connect an
8096 in a minimum configuration system. Either 2764s
or 27128s can be used in the system. Note that the
lower EPROM contains the even bytes while the upper

51

AP-248

270061–62

Figure 5-1 (1 of 2).

one contains the odd bytes, and the addressing is not
fully decoded. This means that the addressing on a
2764 will be such that the lower 4K of each EPROM is
mapped at 0000H and 4000H while the upper

4K is mapped at 2000H. If the program being loaded is
16 Kbytes long the first half is loaded into the second
half of the 2764s and vice versa. A similar situation
exists when using 27128s.

52

AP-248

270061–63

Figure 5-1 (2 of 2).

This circuit will allow most of the software presented in
this ap-note to be run. In a system designed for proto-
typing in the lab it may be desirable to buffer the I/O
ports to reduce the risk of burning out the chip during
experimentation. One may also want to enhance the
system by providing RC filters on the A to D inputs, a
precision VREF power supply, and additional RAM.

5.2. Port Reconstruction

If it is desired to fully emulate a 8396 then I/O ports 3
and 4 must be reconstructed. It is easiest to do this if

the usage of the lines can be restricted to inputs or
outputs on a port by port rather than line by line basis.
The ports are reconstructed by using standard memory-
mapped I/O techniques, (i.e., address decoders and
latches), at the appropriate addresses. If no external
RAM is being used in the system then the address de-
coding can be partial, resulting in less complex logic.

The reconstructed I/O ports will work with the same
code as the on chip ports. The only difference will be
the propagation delay in the external circuitry.

53

AP-248

6.0 CONCLUSION

An overview of the MCS-96 family has been presented
along with several simple examples and a few more
complex ones. The source code for all of these pro-
grams are available in the Insite Users Library using
order code AE-16. Additional information on the 8096
can be found in the Microcontroller Handbook and it is
recommended that this book be in your possession be-
fore attempting any work with the MCS-96 family of
products. Your local Intel sales office can assist you in
getting more information on the 8096 and its hardware
and software development tools.

7.0 BIBLOGRAPHY
1. MSC-96 Macro Assembler User’s Guide, Intel Cor-

poration, 1983.

Order number 122048-001.

2. Microcontroller Handbook (1985), Intel Corpora-
tion, 1984.

Order number 210918-002.

3. MSC-96 Utilities User’s Guide, Intel Corporation,
1983.

Order number 122049-001.

4. PL/M-96 User’s Guide, Intel Corporation, 1983.

Order number 122134-001.

54

AP-248

APPENDIX A
BASIC SOFTWARE EXAMPLES

A.1. Table Lookup 1

2
7
0
0
6
1
–
6
4

A-1

AP-248

A.1. Table Lookup 1 (Continued)

2
7
0
0
6
1
–
6
5

A-2

AP-248

A.2. Table Lookup 2

2
7
0
0
6
1
–
6
6

A-3

AP-248

A.2. Table Lookup 2 (Continued)

2
7
0
0
6
1
–
6
7

A-4

AP-248

A.3. PLM-96 Code with Expansion

2
7
0
0
6
1
–
6
8

A-5

AP-248

A.3. PLM-96 Code with Expansion (Continued)

2
7
0
0
6
1
–
6
9

2
7
0
0
6
1
–
7
0

A-6

AP-248

A.3. PLM-96 Code with Expansion (Continued)

2
7
0
0
6
1
–
7
1

A-7

AP-248

A.3. PLM-96 Code with Expansion (Continued)

2
7
0
0
6
1
–
7
2

A-8

AP-248

A.3. PLM-96 Code with Expansion (Continued)

2
7
0
0
6
1
–
7
3

A-9

AP-248

A.3. PLM-96 Code with Expansion (Continued)

2
7
0
0
6
1
–
7
4

A-10

AP-248

A.4. Pulse Measurement

2
7
0
0
6
1
–
7
5

A-11

AP-248

A.4. Pulse Measurement (Continued)

2
7
0
0
6
1
–
7
6

A-12

AP-248

A.5. Enhanced Pulse Measurement

2
7
0
0
6
1
–
7
7

A-13

AP-248

A.5. Enhanced Pulse Measurement (Continued)

2
7
0
0
6
1
–
7
8

A-14

AP-248

A.6. PWM Using the HSO

2
7
0
0
6
1
–
7
9

A-15

AP-248

A.6. PWM Using the HSO (Continued)

2
7
0
0
6
1
–
8
0

A-16

AP-248

A.6. PWM Using the HSO (Continued)

2
7
0
0
6
1
–
8
1

A-17

AP-248

A.6. PWM Using the HSO (Continued)

2
7
0
0
6
1
–
8
2

A-18

AP-248

A.7. Serial Port

2
7
0
0
6
1
–
8
3

A-19

AP-248

A.7. Serial Port (Continued)

2
7
0
0
6
1
–
8
4

A-20

AP-248

A.8. A to D Converter

2
7
0
0
6
1
–
8
5

A-21

AP-248

A.8. A to D Converter (Continued)

2
7
0
0
6
1
–
8
6

A-22

AP-248

APPENDIX B
HSO AND A TO D UNDER INTERRUPT CONTROL

2
7
0
0
6
1
–
8
7

B-1

AP-248

2
7
0
0
6
1
–
8
8

B-2

AP-248

2
7
0
0
6
1
–
8
9

B-3

AP-248

2
7
0
0
6
1
–
9
0

B-4

AP-248

APPENDIX C
SOFTWARE SERIAL PORT

2
7
0
0
6
1
–
9
1

C-1

AP-248

2
7
0
0
6
1
–
9
2

C-2

AP-248

2
7
0
0
6
1
–
9
3

C-3

AP-248

2
7
0
0
6
1
–
9
4

C-4

AP-248

2
7
0
0
6
1
–
9
5

C-5

AP-248

2
7
0
0
6
1
–
9
6

C-6

AP-248

APPENDIX D
MOTOR CONTROL PROGRAM

2
7
0
0
6
1
–
9
7

D-1

AP-248

2
7
0
0
6
1
–
9
8

D-2

AP-248

2
7
0
0
6
1
–
9
9

D-3

AP-248

2
7
0
0
6
1
–
A

0

D-4

AP-248

2
7
0
0
6
1
–
A

1

D-5

AP-248

2
7
0
0
6
1
–
A

2

D-6

AP-248

2
7
0
0
6
1
–
A

3

D-7

AP-248

2
7
0
0
6
1
–
A

4

D-8

AP-248

2
7
0
0
6
1
–
A

5

D-9

AP-248

2
7
0
0
6
1
–
A

6

D-10

AP-248

2
7
0
0
6
1
–
A

7

D-11

AP-248

2
7
0
0
6
1
–
A

8

D-12

AP-248

2
7
0
0
6
1
–
A

9

D-13

AP-248

2
7
0
0
6
1
–
B

0

D-14

AP-248

2
7
0
0
6
1
–
B

1

D-15

INTEL CORPORATION, 2200 Mission College Blvd., Santa Clara, CA 95052; Tel. (408) 765-8080

INTEL CORPORATION (U.K.) Ltd., Swindon, United Kingdom; Tel. (0793) 696 000

INTEL JAPAN k.k., Ibaraki-ken; Tel. 029747-8511

Printed in U.S.A./xxxx/0296/B10M/RP SM

Microcontroller Operation

	1.0 Introduction
	2.0 8096 Overview
	2.1. General Description
	2.1.1. CPU Section
	2.1.2. I/O Features

	2.2. The Processor Section
	2.2.1. Operations and Addressing Modes
	2.2.2. Assembly Language
	2.2.3. Interrupts

	2.3. On-Chip I/O Section
	2.3.1. Timer/Counters
	2.3.2. HSI
	2.3.3. HSO
	2.3.4. Serial Port
	2.3.5. A to D Converter
	2.3.6. PWM Register

	3.0 Basic Software Examples
	3.1. Using the 8096's Processing Section
	3.1.1. Table Interpolation
	3.1.2. PL/M-96

	3.2. Using the I/O Section
	3.2.1. Using the HSI Unit
	3.2.2. Using the HSO Unit
	3.2.3. Using the Serial Port in Mode 1
	3.2.4. Using the A to D

	4.0 Advanced Software Examples
	4.1. Simultaneous I/O Routines under Interrupt Control
	4.2. Software Serial Port Using the HSIO Unit
	4.3. Interfacing an Optical Encoder to the HSI Unit

	5.0 Hardware Example
	5.1. EPROM Only Minimum System
	5.2. Port Reconstruction

	6.0 Conclusion
	7.0 Bibliography
	Appendix A Basic Software Examples
	A.1. Table Lookup 1
	A.2. Table Lookup 2
	A.3. PLM-96 Code with Expansion
	A.4. Pulse Measurement
	A.5. Enhanced Pulse Measurement
	A.6. PWM Using the HSO
	A.7. Serial Port
	A.8. A to D Converter

	Appendix B HSO and A to D Under Interrupt Control
	Appendix C Software Serial Port
	Appendix D Motor Control Program
	FIGURES
	Figure 2-1. 8096 Block Diagram
	Figure 2-2. Memory Map
	Figure 2-3: SFR Layout
	Figure 2-4. Major I/O Functions
	Figure 2-5. Instruction Summary
	Figure 2-6. Instruction Format
	Figure 2-7. Interrupt Sources
	Figure 2-8. Interrupt Vectors and Priorities
	Figure 2-9. Interrupt Structure Block Diagram
	Figure 2-10. The PSW Register
	Figure 2-11. HSI Unit Block Diagram
	Figure 2-12. HSI Mode Register
	Figure 2-13. HSO Command Register
	Figure 2-14. HSO Block Diagram
	Figure 2-15. Serial Port Control/Status Register
	Figure 2-16. Baud Rate Formulas
	Figure 2-17. Baud Rate Values for 10, 11, 12 MHz
	Figure 2-18. Multiprocessor Communication
	Figure 2-19. A to D Result/Command Register
	Figure 2-20. PWM Output Waveforms
	Figure 2-21. PWM to Analog Conversion Circuitry
	Figure 3-1. Using the HSIO to Monitor Rotating Machinery
	Figure 3-2. Serial Port Level Conversion
	Figure 4-1. 10-bit Asynchronous Frame
	Figure 4-2. Optical Encoder and Waveforms
	Figure 4-3. Filtered Encoder Waveforms
	Figure 4-4. Schematic of Optical Encoder to 8096 Interface
	Figure 4-5. Motor Driver Circuitry
	Figure 4-6. Mode State Diagram
	Figure 4-7. Motor Control Modes
	Figure 5-1 (1 of 2).
	Figure 5-1 (2 of 2).

	LISTINGS
	Listing 3-1. Include File DEMO.96.INC
	Listing 3-2. ASM-96 Code for Table Lookup Routine 1
	Listing 3-3. ASM-96 Code For Table Lookup Routine 2
	Listing 3-4. PLM-96 Code For Table Lookup Routine 1
	Listing 3-5. 32-Bit Result Multiply Procedure For PLM-96
	Listing 3-6. Measuring Pulses Using The HSI Unit
	Listing 3-7. Enhanced HSI Pulse Measurement Routine
	Listing 3-8. Generating a PWM with the HSO
	Listing 3-9. Changes to Declarations for HSO Routine
	Listing 3-10. Driver Module for HSO PWM Program
	Listing 3-11. Using the Serial Port in Mode 1
	Listing 3-12. Scanning the A to D Channels
	Listing 4-1. Using Multiple I/O Devices
	Listing 4-1a. Initializing the A to D to PWM Program
	Listing 4-1b. Interrupt Driven HSO Routine
	Listing 4-1c. Interrupt Driven A to D Routine
	Listing 4-2. Software Serial Port Declarations
	Listing 4-3. Software Serial Port Interface Routines
	Listing 4-4. Software Serial Port Initialization Routine
	Listing 4-5. Software Serial Port Transmit Process
	Listing 4-6. Receive Process
	Listing 4-6a. Software Serial Port Receive Initialization
	Listing 4-6b. Software Serial Port Start Bit Detect
	Listing 4-6c. Software Serial Port Data Reception
	Listing 4-7. Motor Control HSO.0 Timer Routine
	Listing 4-8. Motor Control HSI Data Available Routine
	Listing 4-9. Motor Control Mode 1 Routines
	Listing 4-10. Motor Control Mode 0 Routines
	Listing 4-11. Motor Control Software Timer 1 Routine
	Listing 4-11a. Motor Control Software Position Counter
	Listing 4-11b: Motor Control Power Algorithm
	Listing 4-12. Motor Control Next Position Lookup
	Listing 4-13. Motor Control Timer Interrupt Routine
	Listing 4-14. Motor Control Software Timer Interrupt Handler
	Listing 4-15: Motor Control Software Timer 2 Routine

