intel®

AB-34

APPLICATION BRIEF

Integer Square Root Routine for the 8096

LIONEL SMITH ECO APPLICATIONS ENGINEER

April 1989

Order Number: 270523-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

†Since publication of documents referenced in this document, registration of the Pentium, OverDrive and iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation P.O. Box 7641 Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996

INTEGER SQUARE ROOT ROUTINE FOR THE 8096 Theory

CONTENTS	PAGE
Theory	1
Practice	1
Comments	1

intel

This Application Brief presents an example of calculating the square root of a 32-bit signed integer.

Theory

Newton showed that the square root can be calculated by repeating the approximation:

Xnew = (R/Xold + Xold)/2; Xold = Xnew

where: R is the radicand

Xold is the current approximation of the square root

Xnew is the new approximation

until you get an answer you like. A common technique for deciding whether or not you like the answer is to loop on the approximation until Xnew stops changing. If you are dealing with real (floating point) numbers this technique can sometimes get you in trouble because it's possible to hang up in the loop with Xnew alternating between two values. This is not the case with integers. As an example of how it all works, consider taking the square root of 37 with an initial guess (Xold) of 1:

Xnew = (37/1 + 1)/2 = 19; Xold = 19 Xnew = (37/19 + 19)/2 = 10; Xold = 10 Xnew = (37/10 + 10)/2 = 6; Xold = 6 Xnew = (37/6 + 6)/2 = 6; Xold = 6 - done!

Note that in integer arithmetic the remainder of a division is ignored and the square root of a number is floored (i.e. the square root is the largest integer which, when multiplied by itself, is less than or equal to the radicand).

Practice

The only significant problem in implementing the square root calculation using this algorithm is that the division of R by Xold could easily be a 32 by 32 divide if R is a 32 bit integer. This is ok if you happen to have a 32 by 32 divide instruction, but most 16-bit machines (including the 8096) only provide a 32 by 16 divide. However, a little bit of creative laziness will allow us to squeeze by using the 32 by 16 bit divide on the 8096.

The largest positive integer you can represent with a 32-bit two's complement number is 07fff\$ffffh, or 2,147,483,647. The square root of this number is 0b504h, or 46,340. The largest square root that we can generate from a 32-bit radicand can be represented in 16-bits. If we are careful in picking our initial Xold we can do all of the divisions with the 32 by 16 divide instruction we have available. Picking the largest possible 16-bit number (Offffh) will always work although it may slow the calculation down by requiring too many iterations to arrive at the correct result. The algorithm below takes a slightly more intelligent approach. It uses the normalize instruction to figure out how many leading zeros the 32-bit radicand has and picks an initial Xold based on this information. If there are 16 or more leading zeros then the radicand is less than 16 bits so an initial Xold of Offh is chosen. If the radicand is more than 16 bits then the initial Xold is calculated by shifting the value Offffh by half as many places as there were leading zeros in the radicand. To give credit where credit is due, I first saw this 'trick" in the January 1986 issue of Dr. Dobbs's Journal in a letter from Michael Barr of McGill University.

The routine was timed in a 12.0 Mhz 8096 as it calculated the square roots of all positive 32-bit numbers, the following numbers include the CALL and return sequence and were measured using Timer 1 of the 8096.

Minimum Execution Time:	24 microseconds
Maximum Execution Time:	236 microseconds
Average Execution Time:	102 microseconds

Comments

The program module which follows is part of a collection of routines which perform integer and real arithmetic on a software implemented tagged stack. The top element of the stack is call TOS and is in fixed locations in the register file. Since the square root operation only involves TOS, further details of the stack structure are not shown.

AB-34

intel

MCS-96 MACRO ASSEMBI DOS MCS-96 MACRO ASS SOURCE FILE: ROOT2.6 OBJECT FILE: ROOT2.0	LER SQ SEMBLER, A96 DBJ	RT 05/12/86 10:44:30 PAGE 1 V1.1
CONTROLS SPECIFIED I	IN INVOC	ATION COMMAND: NOSE
ERK LUC OBJECT	TINE	SUURCE STATEMENT
	1	; Sant module
	23	·
	4	· 32 hit integer square root for the 8096
	5	,
	6	, public_astk_isart : TOP← SQUARE_ROOT(TOP)
	7	extrn interr:entry : Integer error routine
	8	;
	9	id stags for stack integer routines
0019	10	isqrt_id equ 19h
	11	;
	12	; error codes
	13	;
0000	14	overflow equ OOh
0001	15	paramerr equ Olh
0002	16	invalid_input equ O2h
	17	
0010	18	oseg at lch
	19	; =========
0010	20	ax: dsw 1
0010	21	al equ ax:byte
0010	22	an equ (ax+1):byte
OOLE	23	ax: asw 1
0020	24	cx; usw I
0022	20	pX; USW I
0018	27	sp equ ion.word
	28	
0030	29	oseg at 30b
	30	: =========
0030	31	qstk_reg:
0030	32	dsl 1 ; make sure of alignment
0030	33	next equ qstk_reg:word ; pointer to next element in the arg stack.
0032	34	tos_tag equ (qstk_reg+2);word
0034	35	tos_value:
0034	36	dsl l ; 32 bit integer
	37	;
0000	38	cseg
	39	; ====
	40	pi macro param
	41	bnc param
	42	enam
	43	hhe means nonem
	44	po papam
	40	endm
	47	Seject
	- /	

intel

MCS-96 MA	ACRO ASSEMBLE	R SQRT				05/12/86 10:44:30 PAGE 2
ERR LOC	OBJECT	LINE	SOURCE	STATEMENT		
0000		48	cseg			
		49	; =====			
		50	;			
0000		51	qstk_isqrt:			
		52	; Takes the	square root of	the long i	integer in TOS
		53	; $TOS \rightarrow Top$	of argument sta	ck	
		54	; iTOS -	iSQRT(TOS)		
		55	;			
002	20	56	Xold se	t cx		
0000	A0341C	57	ld	ax,tos_value		
0003	A0361E	58	ld	dx,(tos_value+2)	
0006	371F07	59	bbc	(dx+1),7,qsi05	; if	(TOS < 0)
0009	C90119	60	push	#(isqrt_id*256+	paramerr)	
0000	EF0000	E 61	call	interr	;	Call interr.
000F	FO	62	ret		;	Exit
0010		63	qsi05:			
0010	0F221C	64	normal	ax, bx		
0013	DF3B	65	be	qstk_isqrt0		
0015	991022	66	cmpb	bx,#16	; if	(TOS < 2**16)
0018	DA06	67	ble	qsil0		
001A	A1FF0020	68	ld	Xold, #Offh	;	Use Offh as first estimate.
001E	200A	69	br	qstk_isqrtloop		
0020		70	qsil0:			
0020	180122	71	shrb	bx,#l	; els	Se
0023	Alffff20	72	ld	Xold, #Offffh	;	Base the first estimate on the
0027	082220	73	shr	Xold, bx	;	number of leading zeroes in TOS.
002A		74	qstk_isqrtl	pop;		
002A	A0341C	75	ld	ax,tos_value	; do	
002D	A0361E	76	ld	dx,(tos_value+2);	if (The divide will overflow)
0030	88201E	77	cmp	dx,Xold	;	The loop is done.
		78	bhe	qstk_isqrt_done		
0035	802010	80	divu	ax,Xold	;	if ((ax=TOS/Xold) >= Xold)
0038	882010	81	cmp	ax,Xold	;	The loop is done.
		82	bhe	qstk_isqrt_done		T]] (
003D	0122	84	cir	DX	;	Xold=(ax+Xold)/2
003F	641020	85	add	Xold,ax		
0042	A40022	86	adde	bx,0		
0045	000120	87	shrl	Xold,#1		
0048	27E0	88	pr	qstk_1sqrt1oop	; whi	lle (The loop is not done)
004A	102034	89	qstk_isqrt_	TOUR:		-00.14
004A	A02034	90	10	tos_value, xold	; 103	5=00:X01d
004D	A00036	91		(tos_varue+2),0		
0050	FO	92	qstk_1sqrt0	•		+
0050	ru	93	1.61		; EXI	
0051		94	end			
ASSEMBLY	COMPLETED.	NO ERROR(S)	FOUND.			

AB-34