AB-34
APPLICATION BRIEF

Integer Square Root Routine for the $\mathbf{8 0 9 6}$

LIONEL SMITH
ECO APPLICATIONS ENGINEER

April 1989

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.
*Other brands and names are the property of their respective owners.
\dagger Since publication of documents referenced in this document, registration of the Pentium, OverDrive and iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation
P.O. Box 7641

Mt. Prospect, IL 60056-7641
or call 1-800-879-4683

INTEGER SQUARE ROOT CONTENTS
 PAGE

ROUTINE FOR THE 8096
Theory
.1
Practice . 1
Comments . 1

This Application Brief presents an example of calculating the square root of a 32 -bit signed integer.

Theory

Newton showed that the square root can be calculated by repeating the approximation:

Xnew $=($ R/Xold + Xold $) / 2$; Xold $=$ Xnew
where: R is the radicand
Xold is the current approximation of the square root
Xnew is the new approximation
until you get an answer you like. A common technique for deciding whether or not you like the answer is to loop on the approximation until Xnew stops changing. If you are dealing with real (floating point) numbers this technique can sometimes get you in trouble because it's possible to hang up in the loop with Xnew alternating between two values. This is not the case with integers. As an example of how it all works, consider taking the square root of 37 with an initial guess (Xold) of 1 :

$$
\begin{aligned}
& \text { Xnew }=(37 / 1+1) / 2=19 ; \text { Xold }=19 \\
& \text { Xnew }=(37 / 19+19) / 2=10 ; \text { Xold }=10 \\
& \text { Xnew }=(37 / 10+10) / 2=6 ; \text { Xold }=6 \\
& \text { Xnew }=(37 / 6+6) / 2=6 ; \text { Xold }=6-\text { done! }
\end{aligned}
$$

Note that in integer arithmetic the remainder of a division is ignored and the square root of a number is floored (i.e. the square root is the largest integer which, when multiplied by itself, is less than or equal to the radicand).

Practice

The only significant problem in implementing the square root calculation using this algorithm is that the division of R by Xold could easily be a 32 by 32 divide if R is a 32 bit integer. This is ok if you happen to have a 32 by 32 divide instruction, but most 16-bit machines (including the 8096) only provide a 32 by 16 divide. However, a little bit of creative laziness will allow us to squeeze by using the 32 by 16 bit divide on the 8096 .

The largest positive integer you can represent with a 32-bit two's complement number is $07 \mathrm{fff} \$ \mathrm{ffffh}$, or $2,147,483,647$. The square root of this number is 0b504h, or 46,340 . The largest square root that we can generate from a 32 -bit radicand can be represented in 16-bits. If we are careful in picking our initial Xold we can do all of the divisions with the 32 by 16 divide instruction we have available. Picking the largest possible 16-bit number (0ffffh) will always work although it may slow the calculation down by requiring too many iterations to arrive at the correct result. The algorithm below takes a slightly more intelligent approach. It uses the normalize instruction to figure out how many leading zeros the 32 -bit radicand has and picks an initial Xold based on this information. If there are 16 or more leading zeros then the radicand is less than 16 bits so an initial Xold of Offh is chosen. If the radicand is more than 16 bits then the initial Xold is calculated by shifting the value 0ffffh by half as many places as there were leading zeros in the radicand. To give credit where credit is due, I first saw this 'trick" in the January 1986 issue of Dr. Dobbs's Journal in a letter from Michael Barr of McGill University.

The routine was timed in a 12.0 Mhz 8096 as it calculated the square roots of all positive 32 -bit numbers, the following numbers include the CALL and return sequence and were measured using Timer 1 of the 8096.

Minimum Execution Time:	24 microseconds
Maximum Execution Time:	236 microseconds
Average Execution Time:	102 microseconds

Comments

The program module which follows is part of a collection of routines which perform integer and real arithmetic on a software implemented tagged stack. The top element of the stack is call TOS and is in fixed locations in the register file. Since the square root operation only involves TOS, further details of the stack structure are not shown.

MCS-96 MACRO ASSEMBLER	SQRT		05/12/86 10:44:30 PAGE
ERR LOC OBJECT	LINE	SOURCE STATEMENT	
0000	48	cseg	
	49	; ====	
	50	;	
0000	51	qstk_isqrt:	
	52	; Takes the square root of th	long integer in TOS
	53	; TOS \rightarrow Top of argument stack	
	54	; iTOS - iSQRT (TOS)	
	55	;	
0020	56	Xold set cx	
0000 A0341C	57	ld ax,tos_value	
0003 A0361E	58	ld dx,(tos_value+2)	
0006 371F07	59	bbc (dx+l),7,qsi05	; if (TOS < 0)
0009 C90119	60	push \#(isqrt_id*256+paramerr)	
000C EFOOOO	E 61	call interr	; Call interr.
000F FO	62	ret	; Exit
0010	63	qsi05:	
0010 0F221C	64	ax, bx	
0013 DF3B	65	qstk_isqrt0	
0015991022	66	bx,\#16	; if (TOS < 2**16)
0018 DA06	67	qsilo	
001A AlFF0020	68	Xold, \#0ffh	; Use Offh as first estimate.
OOlE 200A	69	qstk_isqrtloop	
0020	70	qsil0:	
0020180122	71	shrb bx,\#l	; else
0023 AlFFFF20	72	ld Xold, \#0ffffh	; Base the first estimate on the
0027082220	73	shr Xold, bx	; number of leading zeroes in TOS.
002A	74	qstk_isqrtloop;	
002A A0341C	75	ld ax,tos_value	; do
002D A0361E	76	ld dx,(tos_value+2)	; if (The divide will overflow)
0030 88201E	77	cmp dx,Xold	; The loop is done.
	78	bhe qstk_isqrt_done	
0035 8C201C	80	divu ax,Xold	; if ((ax=TOS/Xold) > = Xold)
0038 88201C	81	cmp ax,Xold	; The loop is done.
	82	bhe qstk_isqrt_done	
003D 0122	84	clr bx	; Xold=(ax+Xold)/2
003F 641C20	85	Xold, ax	
0042 A40022	86	bx,0	
0045 OC0120	87	Xold,\#1	
0048 27E0	88	br qstk_isqrtloop	; while (The loop is not done)
004A	89	qstk_isqrt_done:	
004A A02034	90	tos_value, Xold	; TOS=00:Xold
004D A00036	91	(tos_value+2),0	
0050	92	qstk_isqrt0:	
0050 F0	93	ret	; Exit
0051	94	end	

ASSEMBLY COMPLETED. NO ERROR(S) FOUND.

