inte| . AP-445

APPLICATION
NOTE

8XC196KR Peripherals:

A User’s Point of View

ROB KOWALCZYK
STEVE McINTYRE

April 1992

Order Number: 270873-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

TSince publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1995

8XC196KR Peripherals: A User’s Point of View

CONTENTS PAGE
1.0 INTRODUCTION 7
1.1 8XC196KR Overview 8
1.1.1 General Description—CPU 8
1.1.2 Integrated I/O Subsystem 9
1.2 New 8XC196KR Instructions 9
1.2.152 Lead Device 10
1.3Windowingo.ool 11
1.3.1 Examples of Vertical
Windowsl 13
1.4 Top 5 Issues With Windowing 14
2.0 INTERRUPTS AND THE
PERIPHERAL TRANSACTION
SERVER(PTS) ...t 14
2.1 PTS Execution 15
22PTSModescoovvviinnn... 16
2.2.1 Single Transfer Mode 16
2.2.2 Single Transfer Mode
Examplel 17
2.2.3 Block Transfer Mode 17
2.2.4 Block Transfer Mode
Examplel 19
2.2.5 A/D Scan Mode, PWM Mode
and PWM Toggle Mode 22
2.3PTSLatency Times 22
2.4 Top 5lssues withPTS 22
3.0 UNDERSTANDING THE PORTS 23
BAPort0 ... 23
32Port1/2/6 ... 24
33Port3/4 ... 26
34Ports ... 26
3.5 Top 5 Issues with the Ports 27

CONTENTS PAGE
4.0 SERIAL 1/0 PORT (SIO PORT) 27
41 SerialPortSFRs 27
411SP_CONTROL 28
41.2SP_STATUS 28
4.2 Baud Rate Generation 28
4.3 SIO Port Configuration 29
4.4 Mode 0: Synchronous
Communications 30
4.5 Mode 1: Standard Asynchronous
Serial I/O ... 30
4.5.1 Setting Up Mode 1
Operationc.oooon 31
452SI0andthePTS 32
4.6 Modes 2 and 3: 9 Bit
Communications Modes 35
4.7 Top 5 Issues withthe SIO 36

5.0 SYNCHRONOUS SERIAL 1/0 AND
PERIPHERAL TRANSACTION

SERVER ...l 36
51SSIOPortSFRs ...t 37
5.2Examplet ...l 38
5.3 Using the PTS and Handshake

Mode 38
5.48SSI0Oandthe PTS 39
5.5 Top 5 Issues withthe SSIO 40

6.0 ANALOG TO DIGITAL

CONVERTER 41
6.1 A/D Command Register (AD__

COMMAND)cooiiiiiiia 41

6.2 A/D Time Register (AD_TIME) 41
6.3 A/D Test Register (AD_TEST) 42
6.4 A/D Result Register (AD__

RESULT) ..ooviiiiiiiiie e 43
6.5 Example A/D Programs 45
6.5.1 Using the A/D with the PTS 45
6.6 Threshold Detection 49
6.7 A/DTestModes 49

6.8 Top 5 Issues withthe A/D 50

CONTENTS PAGE
7.0 EVENT PROCESSOR ARRAY
(EPA) . 50
7ATIMers ... 50
7.1.1 Timer Examples 51
7.2 EPA Input/Output Structure 51
7.3EPAInterrupts 53
7.4 nputCapture 54
7.4.1 HSI Example #1 54

7.4.2 HSI Example #2: ABS 55

CONTENTS PAGE
7.5 EPAHSO Generation 59
7.5.1 Square Wave Generation 59

7.5.2 PWM Signal Generation
WithoutPTS 61

7.5.3 PWM Generation With PTS 63

7.5.4 PWM Generation Using
Software ...l 66

7.6 Top 5 Issues withthe EPA 69

1-1
1-2
1-3
1-4
1-5

1-7

21
2-2

2-5

6-3

6-5
6-6
6-7
6-8

7-1
7-2
7-3
7-4
7-5
7-6
7-7

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.

Figure 5-1.
Figure 5-2.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.

Figures

8XC196KR Block Diagramcouiinie e 7
BXC196KR Memory Mapt it 8
Special Function Registers 8
Special Function Registerst 9
128-Byte WINdOWSo e e e e 12
B4-Byte WINAOWSot e e 12
32-Byte WINdOWSo oo e 12
8XC196KR Interrupt Priorities 15
PTS Control Blocks (PTSCB)o e 16
PTS Control Single Transfer.ot 16
PTS Control Block Transfer ...t 19
PTS Interrupt Response Timettt 22
Input Port O Structure. 23
Ports1,2,5&6(@nd3/4-seenotes)c.covviieinienennnn.. 24
Port1,2,and6 TruthTable 25
PortResetValues i 25
Port5TruthTable e 27
SP_CONTROLRegIStercoiittii e 27
SP_STATUS REGISterttt e 28
SP_BAUD Register Equations i 29
CommonBaudRateValues i 29
Serial Port Frames,Mode 1,2and 3.......... ... i, 30
SSIO Control Registert e 37
SSIO Transmit/Receive TIMINGS, 37
AD_COMMAND ReQISteruuriiii it 41
AD_TIME Register i e e 42
A/DErrorvs. Conversion TIME, 42
AD_TESTRegISter. 42
AD_RESULT Registerttt i 43
A Typical A/D Transfer Function Error, with Offset and Full Scale Errors ... 44
Program Segment to Initialize A/D and Converton ACH5 45
Example A/DScanModeTableccoiiiiiiiiiiininnn.. 46
TIMER_CONTROL ReQ@ISter. 50
EPA_CONTROL Register ..o 51
The EPA_PEND and EPA_MASK Registers 53
EPA Interrupt Priority Vector. 53
Wheel Speed Signal foreachWheel........... 55
Output Generated by Program 11 o i 60
Outputof Program12and 13 i, 63

Program 1a, b.
Program 2a, b.
Program 3.
Program 4a, b, c.
Program 5.
Program 6.
Program 7.
Program 8a, b.
Program 9.
Program 10a, b, c.
Program 11.
Program 12.
Program 13.
Program 14.
Program 15a, b.

Programs

Send 30 bytes over the SIO using the PTS in Single Xfer Mode. 18,19
Using the EXTINT with the PTS Block TransferMode 20, 21
SIO Communication via Polling the SP_Status Bits (Tland RI).......... 31
Using the PTS with both the Tl and Rl Interrupts 32,33, 34
SSIO, Send ONEBYtE ..o e 38
SSIO, Send One Byte in HandshakeMode 39
SSIOandthe PTS 40
A/D Scan Mode usingthe PTS. it 47,48
Start an A/D Conversion on a Positive InputEdge 54
ABS Input Frequency Detection using the PTS and EPA Inputs 56,57, 58
Generating 2 PWM Pulses Using No CPU Overhead 60
PWM Generation Using Interrupts i 62
Generate a PWM on EPAO using the PTS ToggleMode 64
Generate a PWM Using the PTS PWM Mode and Re-Map Feature 65
Generate a PWM Output Using EPA9 and Software Interrupts. 67, 68

intgl.

1.0 INTRODUCTION

High Speed Event control is a common occurrence in
todays control applications. Also mixing analog and
digital control in the same application is becoming a
necessity.

In 1982 Intel introduced the first member of the 16-bit
microcontroller family (MCS®-96): the 8096 device.
This family has grown from that first introduction to
todays 4th generation of highly integrated, 1 micron
CHMOS technology members. The 8XC196KR,

AP-445

8XC196KQ, 8XCI196JR, and 8XC196JQ. (Known
hereafter as 8XC196KR).

These devices combine high speed 16- and 32-bit preci-
sion calculation capability (100% instruction set com-
patible with the MCS-96 product family) with a dedi-
cated I/0 subsystem that has no equal. Figure 1-1 illus-
trates the complete functional blocks that make up the
8XC196KR devices.

This Ap-note will briefly describe the 8XC196KR CPU
and peripherals with example applications for each.

1
1
H ON-CHIP
256 BYTES EPROM L Voo
'l CODE RAM (OPTIONAL) POWER |1 Veg
1 AND 1 v
11| pERIPHERAL 1 l e B >
: 1 | TRansAcTION T Yss
o S(ERVE)R MEMORY } CONTROL SIGNALS
M- PTS # CONTROLLER

'

W/ PREFETCH QUEUE ‘

} ADDR/DATA BUS

-

B

>

VREF — T A/D CONVERTER

o] EVENT PROCESSOR

A

(10 BIT)

4
PROGRAMMABLE
INTERRUPT
CONTROLLER

ACHO-7

>
1
ANGND ———] (8 CHANNELS]
1
1 SERIAL 1/0
- (
UART)
: (5510) TIMER 1&2
1
1
9

ARRAY
(Hs10)
1/0 PORTS
A
- N o o o A N e e o

v

o o-amewe

1 [

° EErEEER

< OO0 0000

a SEERERE

270873-1

Figure 1-1. 8XC196KR Block Diagram

AP-445

1.1 8XC196KR Overview

1.1.1 GENERAL DESCRIPTION - CPU

The 8XC196KR instructions are a true instruction su-
per set of past 8096 devices (8X9XBH and
8XC196KB). It uses a 16-bit ALU which operates on
512 bytes of registers instead of an accumulator. Like
the 8096, any location within the 512 byte register file
can be used as source or destinations for most of the
instruction addressing modes.

This register to register architecture is common to the
MCS-96 family. Many of the instructions can operate
on bytes, words and double words from anywhere in
the 64K byte address space. To assist in the under-
standing of the 8XC196KR memory, a map is shown in
Figure 1-2.

Address Type of Memory
OFFFFh

06000h External Memory
05FFFh

02080h Internal/External EPROM
0207Fh Internal/External EPROM
0205Eh (Int. Vectors/Open/Reserved)
0205Dh Internal/External EPROM
02030h (Int. Vectors)
0202Fh Internal/External EPROM
02020h (Security Key)
0201Fh Internal/External EPROM
02014h (CCB0/CCB1/Reserved)
02013h Internal/External EPROM
02000h (Int. Vectors)
01FFFh .
01F00N Internal SFR Registers
01EFFh

00500 External Memory
004FFh

00400h Internal Code RAM
003FFh

00200h External Memory
001FFh .

00018h Internal Register RAM
00017h .
00000h Internal Core SFR Registers

Figure 1-2. 8XC196KR Memory Map

intgl.

The lower 24 bytes of the register file contain Special
Function Registers (SFRs) that are used to control on-
chip peripherals (similar to past 8096 devices). In addi-
tion to these SFRs, the 8XC196KR device has 256
more SFRs located from 1FOOH through 1FFFH. All
RAM memory (Register memory from O0000H to
01FFH and Code RAM memory from 0400H to
04FFH) can be kept alive using the low current power-
down or idle modes.

Accessing RESERVED SFR/data memory locations are
not allowed. Memory locations 1F00h through 1F5Fh
are also considered RESERVED.

Figures 1-3 and 1-4 show the layout and reset values of
the SFRs on the 8XC196KR. Most of these registers
are Read and Writable (unlike those in past 8096 devic-
es).

SFR Location | RESET Value | R/W
POPIN 1FDAH XXH R
P3PIN 1FFEH XXH R
P3REG 1FFCH OFFH R/W
P4PIN 1FFFH XXH R
P4REG 1FFDH OFFH R/W
P1PIN 1FD6H XXH R
P1REG 1FD4H OFFH R/W
P110 1FD2H OFFH R/W
P1SSEL 1FDOH 00H R/W
P2PIN 1FCFH IXXXXXXXB | R
P2REG 1FCDH 7FH R/W
P210 1FCBH 7FH R/W
P2SSEL 1FC9H 80H R/W
P6PIN 1FD7H XXH R
P6REG 1FD5H OFFH R/W
P610 1FD3H OFFH R/W
P6SSEL 1FD1H 00H R/W
P5PIN 1FF7H IXXXXXXXB | R
P5REG 1FF5H OFFH R/W
P510 1FF3H OFFH R/W
P5SSEL 1FF1H 80H R/W
INT_MASK 0008H 00H R/W
INT_MASK1 0013H OOH R/W
INT_PEND 0009H 00H R/W
INT_PEND1 0012H 00H R/W
PTS_SRV 0006H 00H R/W
PTS_SELECT | 0004H 00H R/W
WDT 000AH 00H R

Figure 1-3. Special Function Registers

intgl.

SFR Location|RESET Value|R/W
USFR 1FF6H XXH W
SLPCMD 1FFAH 00H R/W
SLPSTAT 1FF8H 00H R/W
SLPFUNREG 1FFBH 00H R/W
EPAIPV 1FA8H 00H R
EPA_MASK 1FAOH 0000H R/W
EPA_PEND 1FA2H 0000H R/W
EPA_MASK1 1FA4H OOH R/W
EPA_PEND1 1FAGH 00H R/W
TIMER1 1F9AH 0000H R/W
TIMER1_CONTROL| 1F98H OOH R/W
TIMER2 1F9EH 0000H R/W
TIMER2_CONTROL| 1F9CH 00H R/W
AD__TIME 1FAFH OFFH R/W
AD__TEST 1FAEH 0COH R/W
AD_COMMAND 1FACH 0COH R/W
AD_RESULT 1FAAH 07F80H |R/W
SP_BAUD 1FBCH 0000H W
SP_CONTROL 1FBBH OEOH R/W
SP__STATUS 1FB9H OBH R/W
SBUF__TX 1FBAH 00H R/W
SBUF__RX 1FB8H 00H R/W
SSIO_BAUD 1FB4H | OXXXXXXXB W
SSIO_STCR1 1FB3H 00H R/W
SSIO_STCRO 1FB1H 00H R/W
SSIO_STB1 1FB2H OOH R/W
SSIO_STBO 1FBOH 00H R/W
COMP__TIME1 1F8EH XXXXH R/W
COMP__TIMEO 1F8AH XXXXH R/W
COMP_CONTROL1| 1F8CH 00H R/W
COMP_CONTROLO| 1F88H 00H R/W
EPA_TIME9 1F86H XXXXH R/W
EPA_TIMES8 1F82H XXXXH R/W
EPA_TIME7 1F7EH XXXXH R/W
EPA_TIME6 1F7AH XXXXH R/W
EPA_TIME5 1F76H XXXXH R/W
EPA_TIME4 1F72H XXXXH R/W
EPA_TIME3 1F6EH XXXXH R/W
EPA_TIME2 1F6AH XXXXH R/W
EPA_TIME1 1F66H XXXXH R/W
EPA_TIMEO 1F62H XXXXH R/W
EPA_CONTROL9 1F84H OOH R/W
EPA_CONTROLS8 1F80H 00H R/W
EPA_CONTROL7 1F7CH OOH R/W
EPA_CONTROL6 1F78H 00H R/W
EPA_CONTROL5 1F74H OOH R/W
EPA_CONTROL4 1F70H 00H R/W
EPA_CONTROLS3 1F6CH OFEOOH [R/W
EPA_CONTROL2 1F68H OOH R/W
EPA_CONTROL1 1F64H OFEOOH [R/W
EPA_CONTROLO 1F60H OOH R/W

Figure 1-4. Special Function Registers

AP-445

1.1.2 INTEGRATED 1/0 SUBSYSTEM

Some of the I/0 features on the 8XC196KR are similar
to past 8096 devices. But, a great deal of the I/O and
it’s specific functions have changed for the better.

For example, the WatchDog Timer (WDT) is an inter-
nal timer which can be used to reset the system when
software fails to operate properly. On past 8096 devices
this feature was turned off until initially written. On the
8XC196KR devices, the Chip Configuration Byte
(CCBI1) contains a bit (bit 3) which can have this fea-
ture always enabled. Now if software fails before it gets
to the WDT initialization code, it will reset the system.

The 8XC196KR device still contains an Analog to Dig-
ital converter, High Speed Input Capture and Output
Compare called Event Processor Array (EPA), an inte-
grated 16-bit timer/counter subsystem, and Asynchro-
nous/Synchronous Serial I/0.

In addition to the above peripherals, the 8XCI196KR
device has an additional Synchronous Serial I/O port,
an Additional timer/counter, faster interrupt response
capability through the Peripheral Transaction Server
(PTS), an 8 bit slave port that allows other CPUs in the
system to request information from the 8XC196KR
through interrupt control, and an additional 8 pins of
1/0.

This integration of I/0, memory, ALU capability, and
overall system speed makes the 8XCI196KR device a
perfect fit in such applications as: Motor Control, En-
gine Control, Anti-lock Brakes, Suspension Control,
Hard Disk Drive Controllers, Printer Control, as well
as many others.

1.2 New 8XC196KR Instructions

The 8XC196KR device is an instruction super set of
the past 8096 devices (8X9XBH , 8XC196KB). The
software used to Assemble / Compile / Link and Lo-
cate programs still holds true for the 8XCI196KR.
(ASM96, RL96, iC96, PL/M96,

The 8XC196KR device has additional instructions not
seen before by MCS-96 programmers. These 6 new in-
structions are EPTS (Enable PTS) / DPTS (Disable
PTS), XCH (eXCHange word) / XCHB (eXCHange
Byte), BMOVI (Interruptable Block MOVe), and
TIJMP (Table Indirect JuMP).

AP-445

BMOVI Interruptable Block Move has the same
form and function as the BMOYV instruc-
tion except the interrupt request status is
checked after each move is completed. If
an interrupt is pending and unmasked
the block move operation is suspended
and the interrupt service routine is in-
voked. Following the end of the interrupt
service routine the block move continues.
The BMOVI instruction, unlike the
BMOYV, will update the counter register,
if interrupted.

Assembly Language:

PTRs CNT
BMOVI Lreg, Wreg
Object code:
0CDH <wreg> <lreg>

DPTS Disable PTS (Peripheral Transaction

Server) by clearing the PSE flag in the
PSW register.
Assembly Language:
DPTS
Object code:

OECH

EPTS Enable PTS (Peripheral Transaction

Server) by setting the PSE flag in the
PSW register.
Assembly Language:
EPTS
Object code:

OEDH

TIJMP Table Indirect Jump, jumps to an ad-
dress selected out of a table of addresses.
This is a three operand instruction with
one operand pointing to the base of the
jump table, a second pointing indirectly
to a 7-bit index value (0 to 128 decimal)
and a third is an immediate operand (7-
bit) which is used as a mask for the index
value.

Assembly Language:

BASE INDEX MASK
TIUMP Wreg1,[Wreg2], #Mask
Object code:
OE2H <wreg2> <mask> <wreg1>

10

intgl.

XCH/XCHB Exchange Word and Exchange Byte, ex-
changes the contents of two memory lo-
cations. The immediate and indirect ad-
dressing modes are NOT supported, only
the direct and indexed (short and long).

Assembly Language:

DST SRC
XCHB Breg1, Breg2
XCHB Bregf1, Offset [Wreg2]
XCH Wreg1, Wreg2
XCH Wregf, Offset [Wreg2]

Object Code:

14H Breg2 Breg1l

1BH Wreg2 offset__low {offset__high} breg1
04H Wreg2 Wregt

OBH Wreg2 offset__low {offset__high} wreg1

For short indexed addressing modes the second offset
byte is omitted from the object code stream. For long
indexed addressing mode, both bytes of offset are re-
quired, making the instruction a 5 byte instruction.

1.2.1 52 LEAD DEVICES

Intel offers a 52 lead version of the 8XC196KR device:
the 8XC196JR and 8XC196JQ devices. The first sam-
ples and production units use the 8XC196KR die and
bond it out in a 52 lead package.

It is important to point out some functionality differ-
ences because of future devices or to remain software
consistent with the 68 lead device. Because of the ab-
sence of pins on the 52 lead device some functions are
not supported.

52 Lead Unsupported Functions:

Analog Channels 0 and 1.

INST pin functionality.

SLPINT pin support.

HLD#/HLDA # functionality.
External clocking/direction of Timerl.
WRH# or BHE functions.

Dynamic buswidth.

Dynamic wait state control.

The following is a list of recommended practices when
using the 52 lead device:

(1) External Memory. Use an 8-bit bus mode only.
There is neither a WRH# or BUSWIDTH pin. The
bus can not dynamically switch from 8- to 16-bit or
vice versa. Set the CCB bytes to an 8-bit only mode,
using WR # function only.

intgl.

(2) Wait State Control. Use the CCB bytes to configure
the maximum number of wait states. If the READY
pin is selected to be a system function, the device
will lockup waiting for READY. If the READY
pin is configured as LSIO (default after RESET),
the internal logic will receive a logic “0” level and
insert the CCB defined number of wait states in the
bus cycle. DON’T USE IRC = “111”.

(3) NMI support. The NMI is not bonded out. Make
the NMI vector at location 203Eh vector to a Re-
turn instruction. This is for glitch safety protection
only.

(4) Auto-Programming Mode. The 52 lead device will
ONLY support the 16-bit zero wait state bus during
auto-programming.

(5) EPA4 through EPA7. Since the JR and JQ devices
use the KR silicon, these functions are in the device,
just not bonded out. A programmer can use these as
compare only channels or for other functions like
software timer, start and A/D, or reset timers.

(6) Slave Port Support. The Slave port can still be used
on the 52 lead devices. The only function removed
is the SLPINT output function.

(7) Port Functions. Some port pins have been removed.
P5.7, P5.6, P5.5, P5.1, P6.2, P6.3, P1.4 through
P1.7, P2.3, P2.5, P0.0 and PO.1. The PxREG,
PxSSEL, and PxIO registers can still be updated
and read. The programmer should not use the cor-
responding bits associated with the removed port
pins to conditionally branch in software. Treat these
bits as RESERVED.

Additionally, these port pins should be setup inter-
nally by software as follow:
1. Written to PxREG as “1” or “0”.
2. Configured as Push/Pull, PxIO as “0”.
3. Configured as LSIO.
This configuration will effectively strap the pin
either high or low. DO NOT Configure as Open

Drain output “1”, or as an Input pin. This device
is CMOS.

1.3 Windowing

The 8XC196KR contains 512 bytes of memory, located
from 00h to 1FFh. An additional 256 bytes of on chip
SFRs (Special Function Registers) located at 1FOOh—
1FFFh. Accesses directly to any location other than
00h—-FFh would require a 16 bit address.

The 8XC196KR device has a mechanism known as ver-
tical windowing which allows portions of 16-bit memo-

AP-445

ry (0000-1FFh and 1FOOh- 1FFFh) to be remapped to
an 8-bit address in the 0080h - O0FFh register RAM
area.

Any address accesses using an 8-bit re-mapped address
will be windowed through to the 16-bit address.

The 8XCI96KR core has the capability to add up to 1K
of register RAM (0000-03FFh) and 1K of SFR space
(1CO00-1FFFh). However, only 512 bytes of register
RAM is accessible along with 256 bytes of SFRs (loca-
tions 1FO0—1FFFh). 1FOOh through 1F5Fh is considered
RESERVED. Only the non-RESERVED locations
should be selected for windowing. Any attempt to win-
dow outside this area will result in reading of all 1’s and
writing to the bit bucket. In addition, the SFRs located
from 1FEOh—I1FFFh can NOT be accessed through any
window. Any attempt to write these register through a
window will have no effect on these SFRs; reading these
registers through a window will result in FFh or FFFFh
being read.

Windows can be selected to be either 32, 64 or 128
bytes, and will be mapped into locations EOh- -FFh,
COh-FFh, or 80h—FFh, respectively. Control over the
window is obtained through the use of the WSR regis-
ter located at 14h. The bit map of the WSR depends
somewhat on the size of the window. The MSB of the
WSR is not used for windowing, but rather is used to
control whether or not outside bus masters can request
control of the external bus (HOLD/HLDA enabling).
The next three bits either determine the size of the win-
dow, or, for 64 and 32 byte windows, part of the offset
address.

Bits 6,5 and 4 determine which “window” size from
memory is to be used. Bits 3,2,1, and 0 determine which
block the device will window to.

For example, suppose the programmer wanted a win-
dow of 128 bytes. First, visualize the memory as being
divided into consecutive blocks of 128 bytes each. Note
that there is a gap from 400h— 1EFFh. This will make
15 blocks of 128 bytes that can be windowed through
80h—-O0FFh (skipping memory between 400h—1EFFh).

Number the blocks starting with zero. Furthermore,
assume that the programmer wanted to window ad-
dresses from 180h—1FFh to 80—FFh. This is the third
block of 128 bytes in memory. The fifteen block will be
1F80h-1FFFh (starting with 0000h). This means that
the WSR should contain “001” in the upper bits 6,5,
and 4, to select 128 byte windowing, and “0011” (3) in
the lower nibble to select block number 3.

11

AP-445

Figures 1-5, 1-6, and 1-7 illustrate all valid codes for
the WSR (on the 8XC196KR), and the corresponding
windows opened. Using other WSR values (other than
“00”) is not supported or recommended.

The WSR register is stacked on a PUSHA instruction.
This will save the WSR value on the stack while execut-
ing an Interrupt Service Routine (ISR). A PUSHA in-
struction has no affect on the WSR register. Before re-
turning from the ISR, a POPA will return the WSR to
the previous value prior to entering the ISR.

intgl.

32 Byte “Window”

128 Byte “Window”

WSR Window Remapped
x001 0000 0000
x001 0001 0080
x001 0010 0100 0080
X001 0011 0180 to
x001 1110 1F00 00FF
x001 1111 1F80

Figure 1-5. 128-Byte Windows

64 Byte “Window”

WSR Window Remapped

x010 0000 0000

x010 0001 0040

x010 0010 0080

x010 0011 00CO 00Co
x010 0100 0100 to
x010 0101 0140 00FF
x010 0110 0180

X010 0111 01C0

x011 1101 1F40

x011 1110 1F80

X011 1111 1FCO

WSR Window Remapped

x100 0000 0000

x100 0001 0020

x100 0010 0040

x100 0011 0060

x100 0100 0080

x100 0101 00AO

x100 0110 00C0

x100 0111 00EO 00EO
x100 1000 0100 to
x100 1001 0120 00FF
x100 1010 0140

x100 1011 0160

x100 1100 0180

x100 1101 01A0

x100 1110 01C0

x100 1111 01EO0

x111 1011 1F60

x111 1100 1F80

x111 1101 1FAO

x111 1110 1FCO

x111 1111 1FEO

Figure 1-6. 64-Byte Windows

12

Figure 1-7. 32-Byte Windows

intgl.

1.3.1 EXAMPLES OF VERTICAL WINDOWS

To fully understand the windowing capability, some
working examples are needed. Window 1Fh will be
used; this remaps memory from 1F80h-1FFFh to
0080h—O00FFh (O0E0O-OOFFh have no effect on the
SFRs because they will be windowed to memory
mapped I/0 locations 1FEOh through 1FFFh).

Assume the following code segment is executed without
windowing. The results of this will be compared with

the same code being executed with a window active.

1) ClrB WSR

(

(2) Ld 9Ah,#3000h
(3) Ld 86h,9Ah

(4) Ld 70h,86h[0]
(5) Ld 72h,1F9AR[0]
(6) Ld 82h, [9Ah]
(7) St 76h,0Ah[9AN]

Three assumptions shall be made concerning the state
of memory before the above code is executed: 1) Loca-
tion 3000h contains 0303h, 2) location 76h contains
0AOA, and 3) the value in timerl is 1111h (timer is
not active). After the code is executed, the registers will
be in the following state:

(1) WSR: 00h

(2) 9Ah: 3000h
(3) 86h: 3000h
(4) 70h: 3000h
(5) 72h: 1111lh
(6) 82h: 0303h
(7) 300Ah: 0AOAh

These results are consistent with what would normally
be expected without knowledge of windowing. Let the
following code be executed with all of the above as-
sumptions intact, but with windowing. Locations from
1F80h-1FFFh will be window through 0080h—00FFh.

(1) LdB WSR, #1Fh
(2) Ld 9Ah,#1234h
(3) Id 86h, 94Ah

(4) Ld 70h,86h[0]
(5) Id 72h,1£9Ah[0]
(6) Id 82h, [9Ah]
(7) st 76h,0Ah[9Ah]

Assume that location 1234h contains 0202h, 0080h
contains 3000h, and 76h still contains 0AOA. The fol-
lowing results will be obtained:

(1) WSR: 1Fh

(2) 1F9Ah: 1234h
(3) 1F8eh: 1234h
(4) 70h: 3000h
(5) 72h: 1234h
(8) 1F82h: 0202h
(7) 123Eh: 0AOAh

AP-445

Contrast this with the results from the first code seg-
ment and note the following differences.

(1) The WSR is loaded with the windowed value that
remaps 80h through OFFh to 1F80h through
1FFFh.

(2) The immediate addressing mode moves immediate
data through the window, into the 16-bit address of
1F9Ah, not 009Ah.

(3) Using the direct addressing mode, both the source
(9Ah) and the destination (86h) are affected by the
open window. This will move data from absolute
address 1F9Ah (TIMER1) and place it in absolute
address 1F86h (EPA__TIMEDY).

(4) Here the short indexed addressing mode is used to
load register 70h from absolute location 80h + 0Oh.
Notice that windowing does not affect any part of
this example. Location 70h is not in the window.
The indexed offset value (80h) is a constant and is
NOT 1F80h. And lastly, register 0 (00) is not win-
dowable.

(5) This is similar to example (4). Only the long in-
dexed addressing mode is used. Here the 16-bit off-
set (1IF9AN) is added to the contents of the 00 regis-
ter to get the address 1F9Ah. The contents of
1F9Ah is then stored in register 72h. No window
affect.

(6) The indirect example has a great affect by window-
ing. Both the source and destination for this ad-
dressing mode refers to 8-bit registers. Hence, the
contents of 1F9A is read and used as a pointer to a
16-bit address. That value is stored through the
window to 1F82h (EPA__TIMES). If Auto-incre-
menting were used, the register 9Ah (1F9Ah
through the window) would be incremented by 2.

(7) Lastly the Indexing mode example with the index
register being affected by the window. Register 9Ah
(1F9Ah through the window) is read and offset by
immediate value #0Ah forming 123Eh. This ad-
dress (123Eh) is the destination for register 76h (un-
affected by the window).

As a final example, consider the following piece of
code; try to determine exactly what it does before read-
ing on.

(1) LdB WSR, #40h
(2) OrB OF3h, #18h
(3) LAB 80h, #OElh
(4) LAB OEAh, #1Eh
(5) StB 80h, OEAh
(8) St 0EOh, OF8h
(7) LB OF4h, OEOh

13

AP-445

Which window was opened? The WSR was written a
0100000b, which selects a 32 byte window, starting at
block 0. So 00h—1Fh was windowed to EOh—-FFh.
Next, INT_MASK]1 was accessed through the win-
dow, and the Receive Interrupt (RI) and the Transmit
Interrupt (TI) of the serial port were enabled.

The next three instructions are dangerous as they enable
the watchdog timer.

The stack pointer is then set to 0000h and finally, the
window is reset by accessing the window select register
(WSR) through a window!

1.4 Top 5 Issues With Windowing

1. The PUSHA will NOT clear the WSR. But a POPA
will restore the WSR from the stack.

2. Both source and destination bytes of the Direct Ad-

dressing Mode can be affected by the window select-
ed.

3. The Offset in the Indexed Addressing Mode is NOT
windowable.

4. The PTS uses all 16-bit addresses and is therefore
unaffected by the window selected.

5. Without proper understanding of the window mech-
anism, the user can get into big trouble using win-
dows. Beware the window!

2.0 INTERRUPTS AND THE
PERIPHERAL TRANSACTION
SERVER (PTS)

The PTS is a microcoded hardware interrupt service
routine that “steals” bus cycles to execute. It is able to

14

intgl.

do a special encoded interrupt service routine in the
time it takes to execute one instruction.

In a way, the PTS is a one instruction interrupt service
routine that executes without stack or PSW being modi-
fied, and with minimum CPU overhead. A simple PTS
cycle is only 1.875uS at 16 MHz (less than it takes to
do a divide and just a 1 state time longer than a multi-

ply).

There is a new bit in the PSW to control the global
enable of PTS interrupts (PSE bit in the PSW). This bit
is set using the EPTS instruction and disabled using the
DPTS instruction which is discussed in the new in-
struction section of this document.

On past 8096 devices an interrupt requests sets the
INT__PEND bit in the core, the core looks at the cor-
responding INT__MASK bit to see if it should “vec-
tor” to a software interrupt service routine. Also pro-
vided that the interrupts are enabled (I bit in the PSW).
This type of interrupt response is still on the
8XC196KR devices.

The 8XC196KR core implements a small twist to those
events. Before “vectoring” to the software interrupt
routine, the core checks another bit: the corresponding
PTS__SELECT bit (location 04H:WORD). If this bit is
also set, the core will vector to a microcoded interrupt
service routine INSTEAD of the software interrupt
service routine (provided the PSE bit in the PSW is also
set).

The PTS is able to perform a DMA-like response to
any interrupt source. Figure 2-1 illustrates the location,
priority and source for all of the PTS interrupt vectors
available on the 8XCI196KR.

intgl.

All PTS interrupts have higher priority than normal soft-
ware interrupts. There is a vector for the EPAINTX in-
terrupts, but it is NOT possible to do PTS cycles using
this vector due to the nature of the INT__PEND bit (See
the EPA section for details).

There is no PTS vector for the NMI, TRAP, or Unim-
plemented Opcode. Also the PTS will not function
while in Idle.

2.1 PTS Execution

As in normal software interrupt response, the current
instruction is completed before the PTS interrupt cycle
executes. The internal priority handler, handles the re-
quests based on their priority. Next the PTS vector is
read from the vector table to get the address of the PTS
Control Block (PTSCB).

As with any instruction there are opcodes and oper-
ands. The PTSCB is no exception. It defines the “in-
struction” to execute when an interrupt request comes
in. The first word is the “opcode”. In some PTS modes
the whole word is used, and in others it only uses the
high byte of the word. (see individual PTS modes for
details). The next three words are the operands of the
PTS interrupt cycle.

If the 8XC196KR device is running from external mem-
ory, this interrupt vector fetch may be the only evidence
that a PTS cycle has executed.

The CPU executes the proper PTS instruction based on
the contents of the PTS Control Block (Moving data
from one location to another, internal or external - do-
ing the special PWM / PWM toggle - or A/D scan
modes).

Instead the PTS executes a single microcoded instruc-
tion that resides in Register RAM (locations 0000H to
01FFH). Code RAM can not be used for PTS control
blocks.

The PTSCB is a set of registers that defines how the
PTS cycle is to be performed.

This PTS control block or RAM registers are al-
ways on QUAD word boundaries (address =
0000000xxxxxx000). The assembler will not give an er-
ror message if this QUAD word boundary rule is violat-
ed. If the PTS vector points to a non-QUAD word bound-
ary, upon execution of this PTS cycle, the CPU will
round down to the nearest QUAD word boundary.

AP-445
Number Source L\c:i:ttioc:n Priority
PTS15 NMI - RESERVED _
INT15 Non Maskable Interrupt 203EH 30
PTS14 EXTINT 205CH 29
PTS13 reserved 205AH 28
PTS12 RI 2058H 27
PTS11 Tl 2056H 26
PTS10 XFR1 2054H 25
PTS09 | XFRO 2052H 24
PTS08 CBF 2050H 23
PTS07 IBF 204EH 22
PTS06 OBE 204CH 21
PTS05 | A/D Done 204AH 20
PTS04 EPAINTO 2048H 19
PTS03 EPAINT1 2046H 18
PTS02 EPAINT2 2044H 17
PTSO01 EPAINT3 2042H 16
PTS00 EPAINTX (RESERVED) 2040H 15
INT14 EXTINT Pin 203CH 14
INT13 RESERVED 203AH 13
INT12 Receive SIO Interrupt 2038H 12
INT11 Transmit SIO Interrupt 2036H 11
INT10 SSIO channel 1 transfer 2034H 10
INT09 SSIO channel 0 transfer 2032H 9
INTO8 Command Buffer Full SLP | 2030H 8
SPECIAL | lllegal Opcode 2012H N/A
SPECIAL | TRAP instruction 2010H N/A
INTO7 Input Buffer Full 200EH 7
INTO6 Output Buffer Empty 200CH 6
INTO5 A/D Complete 200AH 5
INTO4 EPAINTO 2008H 4
INTO3 EPAINT1 2006H 3
INTO2 EPAINT2 2004H 2
INTO1 EPAINT3 2002H 1
INTOO EPAINTX 2000H 0

Figure 2-1. 8XC196KR Interrupt Priorities

15

u
AP-445 |n
®
UNUSED UNUSED UNUSED UNUSED CONST2(HI)
OPERAND #3
UNUSED PTS_BURST UNUSED UNUSED CONST2(LO)
PTS__DEST(HI) PTS__DEST(HI) REG (HI) CONST1(HI) CONST1(HI)
} OPERAND #2
PTS__DEST(LO) PTS__DEST(LO) REG (LO) CONST1(LO) CONST1(LO)
PTS_SOURCE(HI) | PTS_SOURCE(HI) S/D (HI) PTS_SOURCE(HI) | PTS_SOURCE(HI) } OPERAND #1
PTS__SOURCE(LO) | PTS_SOURCE(LO) S/D (LO) PTS_SOURCE(LO) | PTS_SOURCE(LO)
PTS_CONTROL PTS_CONTROL |PTS_CONTROL| PTS_CONTR OL PTS_CONTROL } OPCODE
PTSVEC — PTSCOUNT PTSCOUNT PTSCOUNT UNUSED UNUSED
Single Transfer Block Transfer A/D Mode PWM Mode PWM Toggle

Figure 2-2. PTS Control Blocks (PTSCB)

Figure 2-2 shows the 5 PTS modes available on the
8XC196KR devices. The bytes in the PTSCB labeled
“UNUSED?” can be used by the users’ program as reg-
ister RAM space. The PTS does not require informa-
tion from these UNUSED locations and the data in the
UNUSED locations will not be altered in any way.

2.2 PTS Modes

The PTSCB defines the mode or type of PTS cycle to
perform when the interrupt request comes in. Five
modes are provided on the 8XC196KR: a Single Trans-
fer Mode, a Block Transfer Mode, an A/D Scan Mode,
and two PWM Modes.

Any of these modes can be used for ANY interrupt
source associated with the PTS vectors (except
EPAINTx). ie: The A/D Scan was specifically de-
signed to function with the A/D peripheral, but if the
user can think of an application where the A/D scan
mode would be used with the SIO peripheral, or any
other peripheral it can be done.

2.2.1 SINGLE TRANSFER MODE

The Single Transfer Mode of PTS cycle can transfer
data from any address to any other address in memory.
The data can be a word or a byte, and the source and/
or destination pointers can be optionally incremented.

This PTS mode uses six bytes out of the eight byte in
the PTS Control Block. The other 2 bytes can be used as
regular scratch pad register. The PTS cycle has NO EF-
FECT on these two registers.

Below is the PTS Control Byte description for the Sin-
gle Transfer Mode.

16

PTS_CONTROL
7 6 5 4 3 2 1|0

M2 | M1 | MO | B/W | SU | DU | SI | DI
1 0 0 X X X | X|X

Mo
M1 100 PTS Single Transfer Mode Select Bits
M2
B/W Byte (1)/Word (0) Transfer
SU Update PTS_SOURCE at the end-of-PTS
DU Update PTS__DEST at the end-of-PTS

SI PTS__SOURCE auto increment
DI PTS__DEST auto increment

Figure 2-3. PTS Control Single Transfer

The PTS Vector points to the first byte in the block.
That byte is the COUNT register. The COUNT
(PTS_COUNT) holds the number of PTS cycles to be
performed before a normal software interrupt is called.

The PTS__COUNT register contains a value that is
decremented at the end of the PTS cycle. When equal
to zero the PTS__SELECT bit is cleared and the
PTS_SRYV bit is set. This causes a normal software
interrupt routine to execute following the last PTS cy-
cle.

The next byte (PTS Vector + 1) contains the PTS Con-
trol (PTS_CONTROL). This byte is present for all
modes of operation. It defines the PTS mode, whether
the PTS cycle is a word or byte transfer, and if the
source and/or destination pointers should be incre-
mented and/or updated during and at the end of the
PTS cycle.

Figure 2-3 is an illustration of the PTS__ CONTROL
register for the Single Transfer Mode.

intgl.

Notice that there is a bit for UPDATE and a bit for
INCREMENT. Typically these are used in the Block
Transfer Mode. The source and/or destination pointer
is incremented if the bit is set. This increment happens
after the PTS transfers the single byte or word to the
destination pointer address.

The UPDATE bit in the control byte is set if the newly
formed address (created by the increment function) is
to be placed in the PTS control block source and desti-
nation pointer words.

In the Single transfer mode it makes no sense to incre-
ment without updating the pointers, or vice versa.

The Next word in the PTSCB is a Source Pointer. This
word points to a 16-bit address (anywhere in memory).
It can be an SFR location, or point to off chip memory.

If the PTS cycle directs data moves to read or write to
external memory, an external bus cycle will be evident
externally. If the PTS cycle is directed internally, no
external evidence, other than the PTS vector fetch.

The last used word in the PTSCB is the Destination
Pointer. It too points to ANYWHERE in the 64K ad-
dress space.

2.2.2 SINGLE TRANSFER MODE EXAMPLE

Suppose that there is a 30 character message that needs
to be transmitted out the Serial I/O port. The PTS can
be setup to execute every time a transmit (TI) interrupt
is requested.

The program would setup the serial port according to
the application. The PTS vector at location 2056H
would point to a QUAD word in the register RAM (IE:
01F8H) containing the PTSCB. The Source pointer in
the PTSCB would point to the beginning message byte
plus one (the first byte is sent manually). The Destina-
tion pointer in the PTSCB would point to the SBUF__
TX special function register (location 1FBAH).

The PTS__COUNT would equal the number of byte to
be transmitted minus one (the one that is send manual-
ly to start the SIO going).

The PTS_CONTROL is set for “Single transfer
mode”, Byte, Source is incremented and updated, and
the destination is NOT increment or updated. (i.e.,
PTS_CTRL = 10011010B).

PTS__COUNT =301 =29
PTS__CONTROL = 9AH
PTS__SOURCE = Buffer + 1
PTS__DEST = SBUF__TX (IFBAh)

AP-445

The main line program set up the PTS, Port 2, INT__
MASKI1 bit for the TI interrupt, and the PTS__SE-
LECT bit for the TI interrupt is also set. Lastly the
Interrupts and PTS Interrupts are enabled through the
EI and EPTS instructions.

To get the ball rolling the first character is sent to the
SIO (SFR register SBUF__TX). When the first charac-
ter is sent over the serial port, the TI interrupt requests
a PTS cycle. The PTS cycle will read the next byte from
the message buffer and write it to the SBUF__TX regis-
ter. The Source pointer is incremented to point to the
next byte of the message.

This continues until the PTS__COUNT is decremented
to zero. When this happens, the PTS__SELECT bit is
reset (“°0”), and the PTS__SRYV bit is set. This indicates
to the core that all the PTS cycles have been serviced
and need to be setup again. As soon as the PTS__SRV
bit is set a normal software interrupt service routine for
the TI interrupt is executed (depending on the interrupt
priorities and pending interrupts).

This example is shown below.

2.2.3 BLOCK TRANSFER MODE

The block transfer mode is very similar to the single
transfer mode. It too transfers data from memory to
memory on interrupt requests. The difference is the
number of transfers performed for each interrupt re-
quest.

The block transfer mode is able to transfer upto 32
bytes or words for each interrupt request. Since the PTS
cycle cannot be interrupted, it is possible to have long
latency times when using the block transfer mode. For
example: if a block transfer mode is transferring 32
words from an external memory location to another ex-
ternal memory location, the latency could be as much as
500 to 600 states times.

Like the single transfer mode, the block transfer mode
has a PTS__COUNT register (works identical to the
single transfer mode).

PTS_SOURCE and PTS__DEST pointers that point
to the source and destination addresses for the transfer.
And a PTS__CTRL that identifies the PTS mode,
word/byte, increment and/or update pointer bits.

An additional byte (PTS_BURST) contains the num-
ber of transfers to perform for each interrupt request.
The maximum number of transfers per interrupt re-
quest is 32.

17

AP-445

Sdebug

Snolist

Sinclude (kr.inc)
Slist

; This program demonstrates the use of the serial port in
; in mode 1. The PTS is used to send data.

; This program sends 30 bytes of dat out the serial port

;i windows for SRFs

b 1f
P2SSEL_W EQU 0CSh:byte ; window to 1fc9
P2REG_W EQU 0CDh:byte ; window to lfed
PRIO_W EQU O0CBh:byte ; window to 1fcb
SP_BAUD_W EQU 0BCh:word ; window to 1fbc
SP_CONTROL_W EQU 0BBh:byte ; window to 1fbb
SP_STATUS_ W EQU 0B9h:byte ; window to 1fb9
SBUF_TX_W EQU 0BAh:byte ; window to 1fba
CSEG AT 2086h sets up pointer to TI interrupt service
dew TI_ISR
CSEG AT 2056h ;pointer to PTS control block for TI
dew TI_PTS_CNT

Temp EQU 30H

RSEG AT 0ECH ;PTS transmit control Block
TI_PTS_CNT: DSB 1 ; Transmit Interrupt Count register
TI_PTS_CON: DSB 1 ; Control register
TI_PTS_SRC: DsSw 1 ; Source pointer
TI_PTS_DST: DSW 1 ; Destination pointer
CSEG AT 2080H
TI_START:
; Set up Egn 2 and serial port control
B WSR, #1FH ; Open window 1FH
Ld SP,#0500h ; init stack
1db SP_CONTROL_W, #01H ; SIO mode 1 enable receiver and parity
id SP_BAUD_W, #8067H ; baud rate = 9600 at 16MHz
orb P2REG_W, #(02h
orb P2SSEL_W, #03h ; Select TxD and RxD peripheral
1db P2I0_W, #02H ; RxD = Input
ClIrB WSR
et up PTS transmit control block
Ldb TI_PTS_CNT, #(Buffer_end-Buffer-1) ; load count
Ldb TI_PTS_CON, #100110108 ; single byte transfer mode
Ld TI_PTS_SRC, #Buffer ; beginning of the buffer
Ld TI_PTS_DST, #SBUF_TX ; point to %BUF_TX
LdB INT_MASK1, #00001000B ; Enable TI interrupts
Ld PTS_SELECT, #0800H ; Enable TI of PTS
LdB Temp, [TI_PTS_SRC]+
StB Temp, SBUF_TX ; start transmission
EPTS ; enable PTS
E ; enable interrupts

; The PTS will now handle the transmission of charecters.
; When a PTS routine is done, the TI interrupt rountine below
; will be called. This just notes that the PTS routine is finished.

’

wait: Br Wait

; There is a bug with the interrupt server on the 196. It is possible for
;the wrong routine to be called. During the latency period for a normal
jinterrupt, if a PTS interrupt occurs, the normal interrupt routine for the
;PTS interrupt will be erroneously executed.

270873-16

18

Program 1a. Send 30 bytes over the SIO using the PTS in Single Xfer Mode

intgl.

AP-445

; Due to this bug, it is possible to enter these interrupt service
routines before the PTS transfer is complete. Therefore it is necessary
to check to see if the PTS_SELECT bit for a given routine is set. If
it is, a PTS call should have been made, so the routine aborts and
forces the call be setting the proper INT_PEND bit.

TI_ISR:
PUSHA
JBS PTS_SELECT+13,abortl
POPA
RET
abort1:
ORB INT_PEND1,#08h
POPA
RET
Buffer:
DCB ‘This is a test of the PTS.” ; 26
DCB T2
Buffer_end:
end

; force call to PTS to correct bug

270873-17

PTS_CONTROL
7 6 5 4 3 2 (1|0
M2 | M1 | MO | B/W | SU|DU|SI|DI
0 0 0 X X | X [X]X

MO0

M1 000 PTS Block Transfer Mode Select Bits
M2

B/W Byte (1)/Word (0) Transfer

SU Update PTS_SOURCE at the end-of-PTS
DU Update PTS_DEST at the end-of-PTS

SI PTS_SOURCE auto increment

DI PTS_DEST auto increment

Figure 2-4. PTS Control Block Transfer

2.2.4 BLOCK TRANSFER MODE EXAMPLE

Suppose that each time an EXTINT rising edge inter-
rupt happens, a set of 8 word registers is to be initial-
ized with data from an EPROM table.

The code would initialize the EXTINT pin as special
function/input, setup the PTS Control Block, and set
the INT_MASK1, PTS_SELECT, EI, and EPTS
bits to perform a PTS cycle for each EXTINT request.

The PTS Control Block would be as follows:
The PTS__BURST equals 8 (for the 8 word registers

that need to be initialized each EXTINT request), The
PTS_COUNT is set to the number of times before

Program 1b. Send 30 bytes over the SIO using the PTS in Single Xfer Mode

a software interrupt service routine would occur, in this
case: 5 (there are 5 different tables in EPROM to be
loaded into the same set of registers). The PTS__
SOURCE contains the address of the first word
EPROM location to be read, The PTS__DEST con-
tains the address of the first word register to be initial-
ized.

The PTS__CTRL byte contains “00001011”. With this
control, the block transfer mode is selected, it is set to
transfer WORDs instead of bytes, the source pointer is
both incremented and updated, while the destination
pointer is only incremented not updated.

When the EXTINT request comes in, the PTS will
transfer data from the EPROM table of 8 words to the
8 word register. Between each transfer, both the source
and destination pointers are incremented.

When the PTS block transfer mode is complete, the
PTS_COUNT is decremented and the new source ad-
dress created by the PTS is placed in the PTS__
SOURCE pointer (updated) and is pointing to:
(EPROM address + 8). But, the destination address
formed by the PTS is NOT placed in the PTS__DEST
location. The PTS__DEST pointer remains pointing at
the first word of the 8 registers.

When the next EXTINT request comes in, the next
block of 8 words from the EPROM table is written to
the 8 word registers.

The coded example is shown on the following page.

19

AP-445 |n-te| .

$nolist
$include (macro.kr)
Slist

R A T

; This program demonstrates the use of the EXTINT being used ;
; with the PTS. Each time an EXTINT rising edge interrupts ;

; the KR device, an 8 word block transfer PTS cycle initial- ;

; izes and 8 word register bank. ;

PIRPIEIIILRIPIIOILIRIIIIEIL LRIV RIRILESPREIIRRIIIDINIIIEIIENI Y

;; windows for SRFs

B 1f

P2SSEL_W EQU 0CSh:byte ; window to 1fc9

P2REG_W EQU 0CDh:byte ; window to 1fcd

P2IO_W EQU O0CBh:byte ; window to 1fcb
CSEG AT 203CH ;sets up pointer to EXTINT interrupt Service
dew EXTINT_ISR
CSEG AT 205Ch ;pointer to PTS control block for EXTINT
dew EXTINT_PTS_CNT

RSEG AT 0EOH ;PTS transmit control Block

~

EXTINT_PTS_CNT: DSB 1 ; Count register
EXTINT_PTS_Con: DSB 1 ; Control register
EXTINT_PTS_SRC: DSW 1 ; Source pointer
EXTINT_PTS_DST: DSW 1 ; Destination pointer
EXTINT_PTS_BST: DSB 1 ; Burst Count
DSEG AT 400H
REGS: DSW 8 ; 8 word registers that will get the data
CSEG AT 2080H
EXTINT_START:
; Set up port 2
WSR, #1FH ; Open window 1FH
I_d SP,#0500h ; init stack
orb P2REG_W, #00000100B ; write out a 1 (open drain / input)
orb P2SSEL_W, #04H ; Select EXTINT peripheral
orb PIO_W, #04H ; RxD = Input
CirB WSR
;set up PTS control block
Ldb EXTINT_PTS_CNT, #5 ; load count with 5 characters

Ldb EXTINT_PTS_CON, #0Bh ; Block/word/SU/SI/DI

Ld EXTINT_PTS_SRC, #TABLE ; point to the beginning of the table

Ld EXTINT_PTS_DST, #REGS ; point to 8 word registers

LdB EXTINT_PTS_BST, #8 ; 8 word transfer per EXTINT request
;set up the interrupts

LdB INT_MASKI, #01000000B ; Enable EXTINT interrupt

Ld PTS_SELECT, #4000H ; Enable EXTINT of PTS
EPTS ; enable PTS
El ; enable interrupts

270873-18

20

Program 2a. Using the EXTINT with the PTS Block Transfer Mode

in‘tel . AP-445

; The PTS will now handle the transfer of information from 5 different

; EPROM tables, into 8 registers in the Code RAM. When the 5Sth one is loaded
; the PTS will reset the PTS_SELECT bit 14, and set the PTS_SRV bit 14, this

; will immediately execute a software EXTINT interrupt service routine.

; At this time the EPROM table pointer will be reset to TABLE and the Count

; will be reset to 5, and the PTS_SELECT bit 14 will be set again.

wait:
Br Wait

; There is a bug with the interrupt server on the 196. It is possible for
;the wrong routine to be called. During the latency period for a normal
;interrupt, if a PTS interrupt occurs, the normal interrupt routine for the
;PTS interrupt will be erroneously executed.

; Due to this bug, it is possible to enter these interrupt service
;routines before the PTS transfer is complete. Therefore it is necessary
;to check to see if the PTS_SELECT bit for a given routine is set. If
;it is, a PTS call should have been made, so the routine aborts and
;forces the call be setting the proper INT_PEND bit.
EXTINT_ISR:
PUSHA
JBS PTS_SELECT+1,6,ABORT_EXTINT
; Legal EXTINT interrupt service routine call - reset PTSCB.
Ldb EXTINT_PTS_CNT, #5 ; load count with 5
Ld EXTINT_PTS_SRC, #TABLE; point to the beginning of the table
Or PTS_SELECT, #4000H ; re-enable EXTINT to PTS
POPA
RET
; If here, BUG occured
ABORT_EXTINT:
ORB INT_PEND1,#40h ; reset PEND bit
POPA ; and return
RET
Table:
DCW 1111H,1111H,1111H,1111H,1111H,1111H,1111H,1111H
DCW 2222H,2222H,2222H,2222H,2222H,2222H,2222H,2222H
DCW 3333H,3333H,3333H,3333H,3333H,3333H,3333H,3333H
DCW 4444H 4444H 4444H ,4444H,4444H 4444H,4444H 4444H
DCW 5555H,5555H,5555H,5555H,5555H,5555H,5555H,5555H
end

270873-19

Program 2b. Using the EXTINT with the PTS Block Transfer Mode

21

AP-445

2.2.5 A/D SCAN MODE, PWM MODE AND PWM
TOGGLE MODE

There are three other special modes of the PTS. Each
are designed to work with specific peripherals on the
8XC196KR devices, but can be used with any interrupt
source in the PTS__SELECT (except EPAINTX).

Each of these modes: A/D Scan Mode, PWM Toggle
Mode and PWM Mode will be described later in this
document. The A/D Scan Mode will be described in
the A/D section and the PWM Toggle and PWM
Modes in the EPA section.

2.3 PTS Latency Times

Since the PTS is simply an interrupt routine handled in
microcode, it too has latency associated with its execu-
tion. As with normal software interrupts, the PTS has
to wait until the current instruction has been processed
before executing. The longest latency comes in within 4
states of the next instruction to be executed and the
next instruction is a NORML (assuming that the PTS
is enabled, and no non-interruptable block transfer PTS
or BMOV instruction is to be executed).

That latency time is 43 state times.

intgl.

The PTS cycle will be performed following the
NORML instruction. Documented in Figure 2- 5 is the
amount of states required to perform the PTS cycle.
This time INCLUDES the vector to the PTS Control
Block.

2.4 Top 5 Issues with PTS
(1) Make sure that the PTS control block is on QUAD
word boundaries.

(2) The PTS can not be used with the EPAINTX inter-
rupt vector.

(3) The PTS control block does not use windows (16 bit
addresses only).

(4) Setting up the PTS:
1. Initialize PTS vector
2. Initialize PTS Control Block
3. Set PTS_SELECT bit
4. Enable PTS

(5) Beware of any anomolies on A-step silicon (Read
8XCI196KR Erratas Carefully).

4321 39—

EXECUTION ENDING , " END
S\NSTRUCT\ON NORML gg”NORML”

VECTOR TO PTS
CONTROL BLOCK PTS gg PTS g

EXTINT |

PTS INTERRUPT ROUTINE ‘

PENDING
BIT SET

16 Mhz PTS
RESPONSE TIME

1.625uS + 1.254S/Xfer & Cmm e e e e e e e
1.625uS + 1.6254uS/Xfer o _ L o e e mmm oo
162505 + 2uS/XfOr o o e e m e e mmm e
187548 o e e mmem— -

262545 dccmmmecmeemmmm—————n

342548 e e e e e e mm———————

LATENCY TIME
‘ 43 STATE TIMES

SINGLE
| (INT/INT) 18 STATEs |
SINGLE
| (INT/EXT) 21 STATEs |
SINGLE
(EXT/EXT) 24 STATEs BYTE
OR
WORD
BLOCK
| ant/wny 13 STATEsl 10/ Xfer |
BLOCK
| xr/mn 13 STATEsl +13/Xfor |
BLOCK
| (EXT/EXT) 13 STATES| +16/Xfer |
PWM/PWM, TOGRLE
| / (Mﬁm) 15 STATEsI
A/D MOD
| /| %NT/M) 21 STATEs |
A/D MODE
| (NT/ExT) 24 STATES |
270873-2

Figure 2-5. PTS Interrupt Response Time

22

AP-445

Veet Vyef

L

PIN

NOTE:
Q1, Q2 and Q3 are ESD Protection Devices

TO A/D

MUX 1500

: A

Q3 Q2
AGND
BUS Q D
—
CLK
RD POPIN
SAMPLE

270873-3

Figure 3-1. Input Port 0 Structure

3.0 UNDERSTANDING THE PORTS

The 87C196KR/KQ/JR/JQ devices all have bidirec-
tional ports that double as special function peripheral
ports (EPA, SIO, SSIO, A/D, etc.). When the device is
reset, most of these ports (P2.7 is an exception) are
configured as Low Speed 1/0, Open Drain output, with
a weak pull up. In order to use these ports as their
special function, they MUST be configured.

All the ports (except Port 0) have the same internal
design. Some of the signals that drive the port cell are
different. Below is a discussion about configuring and
using these ports as either LSIO or Special Function
Peripheral.

3.1 Port0

The analog input pins on the 8XC196KR device are
also called the Port O pins. These pins are input only.
The input structure is shown in Figure 3-1.

These port pins are input only and do not need to be
configured if using them as analog input pins or digital
inputs.

The input pins are sampled on Phase 1 and read into
the bus on Phase 2. They have internal voltage clamp-
ing devices (ESD) as well as a 150 Ohm series poly
resister. (See Figure 3-1).

Because of the way the multiplexer is designed (for
minimum A/D errors), the maximum input current on
any analog input is 1 mA. With this spec the A/D will
yield an additional error on adjacent channels. Exam-
ple: Force ImA on channel 4; Channels 3 and 5 will
have additional LSB errors.

Digital inputs are read through the POPIN register
(BYTE location 1FDAH). The A/D section of this
document discusses the special function A/D peripher-
al.

This port should be straight forward, as it exists on all
prior MCS®-96 devices.

23

]
AP-445 |n‘te|
®
T T T COMBINATIONAL LOGIC ~ -~~~ ~~~~~7~=======7====~ K
1 Vee o 1
1 OE (FUNCTION OF PxI0 & (PxREG OR PxSFIO) 1
1 PUSH/PULL Q — 1
1 OR 1
: OPEN DRAIN PXREG# OR PERIPHERAL OUTPUT# (PxSFIO) :
1 1
! —] !
1 1
1 1
1 1
1 1

fo— prus

fo— wkpu#

1500 TO INPUT

AnS h

* Q2 and Q3 and 150 Ohms Poly Resistor is for Input Protection.

270873-4

Figure 3-2. Ports 1,2, 5 & 6 (and 3 / 4 - see notes)

3.2 Port1/2/6

These port pins are much different from the “quasi-bi-
directional” ports seen on prior MCS®-96 devices.
These are NOT “quasi-bidirectional” port pins. They
do however, have some traits of quasi-bidirectional.
(See Figure 3-2).

These pins have Schmitt trigger CHMOS inputs (with
about 100mV of hysteresis and a Vi, = 0.3V¢c and
Vig = 0.7Vcce) and CHMOS Outputs configurable as
Open Drain or Push/Pull.

After the FALLING edge of RESET the signal PPU is
active. The duration of the PPU is controlled by an R-
C network that varies in width for different tempera-
tures and process files, but it is at least 100 nS long. The
transistor associated with the PPU signal is about 5-
24K Ohms (~ ImA / 5V drop). This pullup is used to
charge pin loads before coming out of reset.

24

The active low RESET signal, will activate the WKPU
signal. This signal stays active till the user program
writes to the PxSSEL register associated with each pin
(“x” stands for 1, 2, or 6).

The ~ 150K Q pullup that was present on the quasi-bi-
directional ports is also present on the KR ports, but it
can ONLY be turned off after RESET by writing to the
PxSSEL register. The write to the PxSSEL register does
the actual turning off of the WKPU signal, the data
written makes no difference. Subsequent writes to the
PxSSEL have no affect on the WKPU signal. On the
next RESET low signal the WKPU signal will be
turned on again.

This also means that the 1 to O input switching currents
are at their worst case condition (50uA max) when the
WKPU signal is active. If the pullup is turned off, there
basically is NO/Little switching current.

in‘tel . AP-445

PORT 1, 2, and 6 Truth Table
PxIO 0 0 1 1 0 0 1 1
PxREG 0 1 0 1 X X X X
PxSFIO X X X X 0 1 0 1
PxSSEL 0 0 0 0 1 1 1 1
Qu off on off off off on off off
Qp on off on off on off on off
PxPIN Low High Low Hz* Low High Low HZ
Port Config. Push/Pull Open Drain Push/Pull Open Drain
Port Function LSIO Special Function
* During RESET and until first write to PxSSEL, WKPU is active.
Figure 3-3. Port 1, 2, and 6 Truth Table
The combinational logic is used to define the output. .
After writing to the PXREG register and the PxIO reg- SFR Location RESET Value
ister, the port is configured as either PUSH/PULL or POPIN 1FDAH XXH
OPEN DRAIN (Provided the internal weak pullup was
turned off by writing to the PxSSEL register). Figure 3- P3PIN 1FFEH XXH
3 is a truth table for the combinational logic. P3REG 1FFCH OFFH
. . . . P4PIN 1FFFH XXH
The PxSFIO register is an internal register that the spe- P4AREG 1FFDH OFFH
cial function peripheral writes to control the port. It is
not visible to the core or the user. It’s contents are seen P1PIN 1FD6H XXH
at the port pin if the port is configured for special func- P1REG 1FD4H OFFH
tion (PxSSEL = “1”) and output (Push/Pull or Open P110 1FD2H OFFH
Drain). P1SSEL 1FDOH 00H
After RESET the PxIO register is = “FFH” (Open P2PIN 1FCFH 1XXXXXXXB
Drain, Input). The PXxXREG is set to a “FFH” and the P2REG 1FCDH 7FH
PxSSEL = LSIO. Even though the user accepts this as P210 1FCBH 7FH
the port conditions, it is recommended that he at least P2SSEL 1FC9H 80H
configure the PxSSEL register after RESET in order to
turn off the WKPU signal. PGPIN 1FD7H XXH
P6REG 1FD5H OFFH
For example: If PORT 1 is configured as Low Speed P6IO 1FD3H OFFH
Input port; write to the PIREG register (“FFH”), then P6SSEL 1FD1H O00H
write the P1IO register (“FFH” for open drain, Input),
then finally write to the P1SSEL register (“00H” to P5PIN 1FF7H IXXXXXXXB
select LSIO, and turn off internal WKPU signal). PSREG 1FF5H OFFH
P510 1FF3H OFFH
Figure 3-4 is a list of all the special function registers P5SSEL 1FF1H 80H

associated with ports 0, 1, 2, 3, 4, and 6 with their
respective absolute locations. These registers can be
“windowed” via the WSR register in the core.

Figure 3-4. Port Reset Values

25

AP-445

3.3 Port3/4

On past MCS®-96 devices, these ports have been open-
drain. This is still true for the KR device ports 3 and 4.
They are the Address and Data bus as well as open
drain input/output port pins.

The structure of this port is similar in layout to the
structure of the other ports 1, 2, and 6. The differences
lie in the inputs to the port circuitry (OE, PPU and
WKPU). The ports (3 / 4) have a PXREG and a PxPIN
SFR register (see Figure 4 for absolute locations), but it
does not have a PxSSEL or a PxIO SFR register. This
means that the ports CANNOT be structured as
PUSH/PULL or open drain. The circuit is hard wired
to configure these pins as OPEN DRAIN only.

As stated in the Port 1/2 and 6 section, the WKPU
signal gets turned off by the write to the PXxSSEL regis-
ter. These ports don’t have a PxSSEL register, therefore
the WKPU signal is connected directly to the RESET
signal. This means that while the RESET is active (low)
the WKPU is also active. The WKPU signal is turned
off when the RESET # goes inactive.

The PPU signal that is usually connected to an R-C
circuit and triggered by RESET FALLING edge is
NOT connected. The PPU signal is ALWAYS inactive.

The last thing to note about PORT 3 and 4 hardware is
the OE signal. Since there is no PxIO bit associated
with each pin of these ports, the OE signal is always an
open drain configuration. (On ports 1/2/5/6 the OE is:
PxREG AND PxIO, on ports 3/4 the OE is: PXREG
AND PxIO with PxIO hardwired to a “1” only -
OPEN DRAIN.

Port 3 has an alternative function of Slave Port. Later
revisions of this document will include discussions of
this function.

It is also possible that future KX core devices will have
push/pull capability on ports 3 and 4, when used as
ports (not as system bus pins).

3.4 Port5s

The structure for PORT 5 is very similar to that of
Ports 1 / 2 and 6. It too has Schmitt trigger CHMOS
inputs and CHMOS Outputs (See previous sub-sec-
tions). However, some of the input circuitry has been
optimized for high speed input capabilities.

When the port is configured as a system function, the
P5IO register has NO affect on configuring the port.

26

intgl.

For example, if the P5.0 pin (ALE/ADY) is configured
as a system function (ALE/ADY), the port will be con-
figured as Push/Pull regardless of the value in the
P5IO register. This is true for all of port 5 pins. The
system function defines whether the port is push/pull
output or an input pin. (Open drain output is not a
feature of the system functions).

The RD (P5.3) is also special in that the Qp and Qu
transistors are stronger for higher loading capabilities.

WXKPU and PPU signals are also present on port 5 and
need to be dealt with accordingly by writing to
P5SSEL) register to turn off the 150K Ohm reset pull-

up.

After RESET the port 5 pins are configured as LSIO. If
the EA is strapped to run from external memory, the
ALE/ADYV (P5.0) and the RD (P5.3) are configured as
system functions.

Configuring these pins as system functions will allow
the device to read the CCBO (2018H) and CCBI
(201AH) from the external memory device.

The rest of port 5 will either be configured by the soft-
ware program or by the CCB0O/CCBI reads.

For example: The READY (P5.6) pin comes out of
reset as a LSIO not as READY. If the CCBO and CCB1
data directs the 8XC196KR device to use the READY
pin to control wait states and the IRC field is = “111”
(max wait states are defined by ready), the device could
lock up if the READY pin were to continue being an
LSIO pin.

In this case the internal logic would re-configure the
READY pin as a system (READY) function. Hence,
no lock up condition.

If other pins on Port 5 are used as system functions, the
PxSSEL register must be written. This will turn off the
WXKPU signal and configure the port as either LSIO or
system function.

Note that the SLPINT (P5.4) has a third function. If
this pin is driven to a logical low on the rising edge of
RESET, the KR device will enter the ONCE (ON-Cir-
cuit Emulation) test mode. This mode tri-states all de-
vice pins except power pins and XTAL1 / XTAL2.

For the above reason, it is recommended that the P5.4
(SLPINT) pin be used as an OUTPUT ONLY pin. The
internal weak pullup will insure that this pin is high
prior to RESET rising edge is not loaded.

AP-445

PORT 5 Truth Table

PxIO 0 0 1 1 X X
PxREG 0 1 0 1 X X
PxSFIO X X X X 0 1
PxSSEL 0 0 0 0 1 1
Qu off on off off off on
Qp on off on off on off
PxPIN Low High Low Hz* Low HZ
Port Config. Push/Pull Open Drain Push/Pull
Port Function LSIO System

* During RESET and until first write to PxSSEL, WKPU is active.
Figure 3-5. Port 5 Truth Table

3.5 Top 5 Issues With the Ports
(1) Setup the ports to match the applications needs:

1. Write to PXREG
2. Write to PxIO
3. Write to PxSSEL

(2) P2.2/EXTINT, The external interrupt is a special
port function. Therefore, EXTINT function is se-
lected by setting PxSSEL bit 2.

(3) If the EA is strapped 1 to run from external memory
(low), the ALE and RD pins are hardwired to sys-
tem functions.

(4) The 150K Ohms weak pullup resister is turned on
by the RESET low signal, and turned off by the first
write to the PxSSEL register.

(5) Beware of the SLPINT/P5.4 being driven low on
the rising edge of RESET (this will enter ONCE
mode).

4.0 SERIAL 1/0 PORT (SIO PORT)

The serial port on the 8XC196KR has one synchronous
mode and three asynchronous modes. Both the receiver
and the transmitter are double buffered. This allows for
the reception of a second byte before the first byte has
been read, and uninterrupted transmissions, respective-
ly. The synchronous mode (MODE 0) is often used for
shift register based I/0 expansion. Mode 1 is an 8 bit
asynchronous mode used for normal communications
like RS-232C, while modes 2 and 3 are 9 bit data asyn-
chronous modes which are specially designed for multi-
processor communications.

The serial port on the 8XC196KR is capable of sending
two distinct interrupts to the core; a receive (RI), and a
transmit (TI) interrupt. There are separate mask bits
for these two sources in the INT__MASKI register

which is located at 13H. These mask bits can be used to
disable (“0”) and enable (“‘1”) interrupts to the core,
but the RI and TI bits of the SP__STATUS register
will be set regardless of the setting of the mask bits.
There are separate RI and TI vectors which are located
at 2038h and 2036h respectively.

4.1 Serial Port SFRs

Control and status of the serial port is accomplished by
using five dedicated registers: the Serial Port Control
register (SP__CONTROL) at location 1FBBAh, the Seri-
al Port Status register (SP__STATUS) at 1FB9h, the
Serial Port Baud Rate Register (SP_BAUD) at loca-
tion 1FBCh, the Serial Port Transmit Buffer Register
(SBUF__TX) at location 1FBAh, and the Serial Port
Receive Buffer Register (SBUF_RX) at location
1FB8h. These are all byte addressable registers except
SP__BAUD. It is word addressable. A map of these
registers is shown below in Figures 4- 1, 4-2, and 4-3.

SP_CONTROL 1FBBH:byte
7 6 5 4 3 2 1 0

| x| x| x| e8| REN]| PEN | M2 | M1]

TB8 9th Bit for transmission

REN Enables the receiver

PEN Enables Parity (even)

M2,M1- 00 Mode 0 / Sync
01 Mode 1 / Async (std)
10 Mode 2 / Async (9th bit enable)
11 Mode 3 / Async (9th bit data)

Figure 4-1. SP_CONTROL Register

27

AP-445

4.1.1 SP_CONTROL

The SP_CONTROL register controls various aspects
of the serial port’s operation. The lower two bits (bit 1
and bit 0) selected which mode the serial port is in:
Mode 0 = 00, Mode 1 = 01, Mode 2 = 10 and Mode
3 =11

Bit 2 of SP__CONTROL controls whether parity is be-
ing used. When it is high (1), even parity for mode 1 or
mode 3 is selected. NOTE: Parity cannot be enabled for
mode 2.

Bit 3 is used to enable the receiver (RXD to SBUF__
RX).

Bit 4 is used to determine the setting of the ninth data
bit in modes 2 and 3 during transmissions. It is cleared
after each transmission and must be reset for each data
byte whose 9th bit is to be set.

Bits 7, 6, and 5 of the SP__CONTROL register is re-
served and should be written as zeros for compatibility
with future products.

4.1.2 SP_STATUS

The SP__STATUS register contains status information
about the serial port. It is very important to keep in
mind that when this register is read, the RPE, TI, RI,
OE, and FE bits will be cleared. This mandates the use
of a shadow register (see example program 3) if more
than one bit is to be tested.

SP_STATUS 1FB9H:byte
7 6 5 4 3 2 10

RBs/RPE | RI| TI| FE| TXE | 0E | X[X

RB8 Set if 9th bit set (no parity)

RPE Set if parity enabled and parity error
RI Set after last data bit received

TI Set at End of last data bit sent

FE Set if no STOP bit found

TXE Set when byte is in SBUF__TX

OE Set if overrun error occurred

Figure 4-2. SP_STATUS Register
Bit 2 is the Overflow Error bit, and is set when a new

byte is loaded into SBUF__RX (by the receiver) before
the previous byte has been read. This alerts the user

28

intgl.

that some information was lost because it wasn’t read in
time. In this case, SBUF__RX will contain the last byte
received. The old data is lost.

The Transmitter Empty (TXE) bit (bit 3) is set if the
transmit buffer is empty and SBUF__TX register is
able to take up to two bytes. TXE will be cleared as
soon as the first byte is written to SBUF__TX register.
Only one byte may be written to SBUF__TX if TI
alone is set. The TI bit (bit 5) is set as soon as transmis-
sion of the last data bit is complete and so indicates that
the transmitter is ready to take another byte.

Bit 4 is the framing error bit. It gets set when a valid
stop bit can not be found for a received byte.

Note: The 8XC196KR A-step device will not generate a
framing error if the last data bit sent is a 1. The part
needs to see a low to high transition in order to detect the
stop bit. This is fixed on later steppings.

The RI bit (bit 6) is set after the last data bit is sampled.
This happens approximately in the middle of the bit
time. It should be noted that if the SIO port is run in
loop-back mode (with the transmitter and receiver tied
together), the transmit flag (TI) will be set approxi-
mately 1 bit time before the receive interrupt (RI) flag
is set.

The Receive Bit 8 (RBS, bit 7) is used when the port is
configured in modes 2 or 3. This bit is set when the 8th
data bit is set (counting from 0). The other function of
this bit is the receive parity error bit (RPE). This will
be set if an even parity error was detected by the receiv-
er.

Bits 1 and 0 of the SP__STATUS register are reserved.
Any data in these bits is to be ignored.

4.2 Baud Rate Generation

The SIO has a dedicated Baud Rate Generator clock.
Baud rates for all modes are determined by the contents
of a word register (SP__BAUD) at 1FBCh. While this
is a 16 bit register, only the lower 15 bits actually deter-
mine the baud rate. The MSB selects one of two sources
for the input frequency to the baud rate generator.
When it is set to a 1, the frequency on the XTAL1 pin
is selected as a source to the baud rate clock. If it is O,
the frequency on the TICLK pin (P6.2) is used. SP__
BAUD is a write only register; it will read all 1’s. It can
be updated via word writes to locations 1FBCh.

intgl.

The value to be placed in SP__BAUD for a given baud
rate depends on both the mode and clock selected and
can be calculated as follows:

SP_BAUD IFBCH : word
Mode 0: i Mode 1,2,3:
|
XTAL1 ' XTAL1
- | -
BAND * 2 | BAND™ 16
1
or : or
TICLK ' TICLK
|
Baud ' BAND * 8
1
1
270873-51

Figure 4-3. SP_Baud Register Equations

The equations used are different for both the synchro-
nous and asynchronous modes, and for the internal
(XTAL1) or external (TICLK) clocks. The maximum
frequency on the TICLK pin is 4MHz. The TICLK
input is NOT prescaled.

The following table lists various baud rates, the value to
be programmed into SP__BAUD, and the error associ-
ated with the resulting baud rate.

Baud SP_BAUD Value %
Rate Mode 0 Others Errors
9600 8340H 8067H 0.16%
4800 8682H 80CFH 0.16%
2400 8D04H 81A0H 0.16%
1200 9A0AH 8340H 0.04%
300 E82BH 8D04H 0.01%

Figure 4-4. Common Baud Rate Values

AP-445

4.3 SIO Port Configuration

Before the SIO unit can be used, two port 2 I/O pins
(P2.0 and P2.1) MUST be configured. This is handled
by writing to the P2SSEL register (1IFC9h), the P21O
register (1IFCBh), and the P2REG (1FCDh). Note that
these are byte registers (See port section for details).

Setting the P2SSEL.O bit to a 1 tells the port logic that
pin P2.0 is to be controlled using an internal special
function source and not act as a general purpose I/0
port pin. Clearing P2I0.0 causes pin O to become a
push/pull output. Similarly, if the RXD pin is to be
used as an input/output, bit 1 of P2SSEL, P2IO, and
P2REG must all be set to 1. Writing a 1 to P2IO.1
configures pin P2.1 to become an input/open drain out-
put. Forcing a 1 in P2REG.1 is needed to insure that
the pull down associated with that pin is turned off.
Thus, RXD may be used, in mode 0, as both an input
and an output with an external pullup The following
code segment demonstrates how to set up port 2 for use
with SIO.

"» PORT 2 SFR'S used with windows

EQU OEBH:BYTE ; Window to 1FCBH
EQU OE9H:BYTE ; Window to 1FOO9H
EQU OEDH:BYTE ; Window to 1IFCDH

mIoW
P25Sal_W
P2REG_W

;Port_Configure
LdB WSR, #7Eh
OrB P2REG_W, #h
OrB P2IO_W, #02h
AndBP2I0_W, #0FEh
OrB P2SSei_W, #03h

; Window 1fc0-1fdf to eO-ff
; Force 1 at P2.1

; set P2.1 as IN/OD output
; set P2.0 and P/P output

; Set P2.0 and P2.1 for SIO

270873-20

29

AP-445

s1op \sTART /00X XD 2XD 3X04aX05X0eX07/ sTop
—— 10-8iT FRAME ———]

|<—8-BITS OF DATA —>|

PROGRAMMABLE 9TH BIT
11-BIT FRAME

270873-5

Figure 4-5. Serial Port Frames, Mode 1,2 and 3

4.4 Mode 0: Synchronous
Communications

Mode 0 is a synchronous mode which is commonly
used for shift register based I/O expansion. In this
mode the TXD pin outputs the clock (a set of 8 pulses)
and the RXD pin either transmits or receives the data.
Data is transmitted/received 8 bits at a time with the
LSB first.

Mode O can be entered by first setting up port 2 as
described above, and then setting up the SIO by writing
the desired baud rate to the SP__BAUD register and
writing the proper control value to the SP__CON-
TROL register. P2.1 must have an external pullup at-
tached as it is configured as an input/open-drain out-
put.

Reception starts when a 1 is written to the REN (Re-
ceiver Enable) bit in the serial port control (SP_CON-
TROL) register. If REN is already high, clearing the
RI flag will start a reception. After the reception is
complete, the RI flag will be set and an RI interrupt
will be generated if enabled. In order to avoid a partial
unwanted reception, the receiver must be disabled by
clearing the REN bit in the SP__CONTROL register
before the RI bit is cleared. If the SP__STATUS regis-

30

ter is read before writing to SP__CONTROL, RI will
automatically be cleared, thus starting a new reception.

Starting a transmission in mode O requires writing a
byte to SBUF__RX register. A set of 8 pulses will be
sent out from the TXD pin, and the data will be sent
out of the RXD pin. NOTE: This is the only mode for
which RXD can be used as an output. After the data
has been shifted out, TI will be set and a TI interrupt
will be generated if enabled.

4.5 Mode 1: Standard Asynchronous
Serial 1/0

Mode 1 is a standard asynchronous communications
mode. The data frame used is shown in Figure 4-5. It
consists of 10 bits; a start bit, 8 data bits, and a stop bit.
If parity is enabled (PEN = 1) then a parity bit is sent in
place of the last data bit. Only even parity is supported
on the 8XC196KR. Parity is also checked upon recep-
tion, and if an error is detected, RPE (Receiver Parity
Error) in SP__STATUS is set.

The transmit and receive functions are controlled by
separate clocks, but both clocks operate at the same
frequency. The transmit clock starts as soon as the
baud rate generator is initialized, but the receive shift
clock is reset when a 1 to O transition is received (sig-
naling a start bit reception).

]
| n‘tel AP-445
®
;* SIO SFRs used with windows
SP_BAUD_W EQU OFCH:WORD ; Window to 1FBCH
SP_STATUS_ W EQU OF9H:BYTE ; Window to 1FB9H
SP_CONTROL_W EQU OFBH:BYTE ; Window to 1FBBH
SBUF_RX_W EQU OF8H:BYTE ; Window to 1FB8H
SBUF_TX_W EQU OFAH:BYTE ; Window to 1FBAH
N PORT 2 SFR’S used with windows
RIO W EQU OEBH:BYTE ; Window to 1FCBH
P2SSel W EQU OESH:BYTE ; Window to 1FCSH
P2REG_W EQU OEDH:BYTE ; Window to 1FCDH
. resensirenseeresaseen
; * program equates *
1 serseessessensrarase
shadow_stat EQU 0COh:BYTE ; shadow register for SP_STATUS
buffer EQU 0C1h:BYTE ; temp storage for /O
. etesssssssscsnsese
; * main routine *
cseg at 2080h
Start:
DI ; Disable Interrupts
DPTS ; Disable PTS
LD SP,#0500h ; Initalize Stack
LDB shadow_stat,#00h ; dear shadow register
LDB WSR, #07Eh ; Window 1fcO-1dff to e0-ff
;Port_Configure
ORB P2REG_W, #02h ; Force 1 at P2.1
ORB P2SSel_W,#00000011b ; Set P2.0 and P2.1 for SIO
ORB P210_W,#00000010b ; set P2.1 for input (RXD)
AndBP2IO_W,#11111110b ; set P2.0 for output (TXD)
LDB WSR,#07Dh ; Window 1fa0-1fbff to eO-ff
;510 _Configure
LD SP_BAUD_W,#8067h ; Set to 9600 baud, XTAL1=16Mhz
LDB SP_Control_W,#00001001b ; Mode 1, receiver enb, no parity
begin_IO:
LDB SBUF_TX_W,#0EAh ; send data out
loop:
ORB shadow_statSP_STATUS W ; read status of %m
JBC shadow_stat,6,Check_trans ; if RI=0, check
LDB buffer SBUF_RX_W ; else read input buffer
AndBshadow_stat,#0BFh ; dear shadow RI bit
Check_trans:
JBC shadow_stat,5loop ; if TI=0, loop back
LDB SBUF_TX_W, buffer ; else write out data
AndBshadow_stat,#0DFh ; clear shadow TI bit
SJMP loop ; and so on
270873-21

Program 3. SIO Communication via Polling the SP_STATUS Bits (Tl and RI)

4.5.1 SETTING UP MODE 1 OPERATION:

The following code demonstrates how to set up mode 1
with no parity at 9600 baud, assuming a 16MHz. Also,
polling the RI and TI status bits with the use of a shad-
ow register is demonstrated. It is very important to set
up port 2 properly since the serial port shares pins with
this port.

The next section of code sets up the serial port. First,
the baud rate register, SP__BAUD is programmed. The
high bit is set, indicating that the internal clock,
XTALL, is to be used. The control register, SP__CON-
TROL, is set for mode 1, no parity, and the receiver is
enabled.

Reading the SP__STATUS register will automatically
clear various bits, so a shadow register is used because
the contents are to be checked twice (once for RI and
once for TI bits) so that they can be acted upon later.
The above program illustrates several points about us-
ing a shadow register for the SP__STATUS register.
First, the shadow register needs to be updated to reflect
the current status of the SP__STATUS register. This is
handled by ORing the shadow__stat register with the
SP__STATUS register. Second, it is important to clear
the various flags in the shadow__stat register after they
have been acted upon. This is handled by clearing the
RI bit in the shadow register after reading the data in
the buffer, and by clearing the TI bit in the shadow
register after transmitting new data.

31

AP-445

intgl.

MCS-96 MACRO ASSEMBLER PTS_SIO

SOURCE FILE: PTS_SIO.A%
OBJECT FILE: PTS_510.08J

DOS 3.30 (@38-N) MCS-9%6 MACRO ASSEMBLER, V1.1

02/01/90 02:05:41 PAGE 1

00F8 327 TI_PTS_CNT: DsB 1
00F9 328 TI_PTS_CON: DSB 1
00FA 329 TI_PTS_SRC: Dsw 1
00FC 330 TI_PTS_DST: Dsw 1

ERR LOC OBJECT LINE SOURCE STATEMENT
1 Sdebug
2 S$nolist
287 ;;I.;;‘..N.......n.uu.-....,.u....A........u.“....“.....
288 ;
289 ;
290 ; This program demonstrates the use of the serial port in
291 ; in mode 1. The PTS is also used to both send and receive
292 ; data.
293 ;
294 ; This program was tested on the '196kr SBE with the serial
295 ; ports receiver and transmitter tied together. Place a
296 ; jumper from E3-A to E6-A if you wish to run this code on
297 ; the SBE.
298 ;
2” s
300 bH
301 5 windows for SRFs
3m B 1f
3@ i
00C9 304 P2SSEL_W EQU 0C%h:byte ; window to 1fc9
00CD 305 P2REG_W EQU 0CDh:byte ; window to 1fcd
00CB 306 PRRIO_ W EQU 0CBh:byte ; window to lfcb
' 00BC 307 SP_BAUD W EQU 0BCh:word ; window to 1fbc
00BB 308 SP_CONTROL_W EQU OBBh:byte ; window to 1fbb
00B9 309 SP_STATUS W EQU 0B9h:byte ; window to 1fb9
00BA 310 SBUF_TX_W EQU OBAh:byte ; window to 1fba
00B8 n SBUF_RX_W EQU OB8h:byte ; window to 1fb8
312
313
2036 314 CSEG AT 2036H sets up pointer to Tl interrupt service
2036 E920 315 dewTI_ISR
316
2038 317 CSEG AT 2038h sets up pointer to Rl interrupt service
2038 F720 318 dewRI_ISR
319
2036 320 CSEG AT 2056h ;pointer to PTS control block for TI
2056 E000 321 dewTI_PTS_CNT
ky23
2058 323 CSEG AT 2058h ;pointer to PTS control block for RI
2058 FO00 324 dewRI_PTS_CNT
325
00F8 326 RSEG AT OF8H ;PTS transmit control Block

; Transmit Interrupt Count register
; Control register

; Source pointer

; Destination pointer

270873-22

Program 4a. Using the PTS with both the Tl and Rl Interrupts

4.5.2 SIO AND THE PTS

The final example in this section demonstrates the use
of interrupts and the PTS with the serial port.

In this example both the RI and TI interrupts are being

used with the PTS. Each PTS control block is pro-
grammed for the single transfer mode.

32

The RXD and TXD pins are strapped in loop back
mode and the message being sent out the TXD is being
received in the RXD and placed into external RAM at
location 221Dh through 231Ch.

The serial port is configured for 9600 baud using a ex-
ternal XTAL of 16 MHz. The Port 2 pins are config-
ured accordingly (TXD = push/pull, RXD = open
drain-input, and both are special function selected,
P2SSEL = 3h).

2080

2087
208A
208E
2091

2097
209A

209C
209F
20A2
20A6

20AA
20AD
20B0
20B4

2088
20BB
20BF

20C5
20CB

20CC
20CC
20CF

2002
20D5
2008
20DB
20DE
20E1

20E3

20E5
20E5

20E7
20E7

AP-445
332 RSEG AT OFCh ;PTS receive control Block
333 RI_PTS_CNT: DSB 1 ; receive interrupt count register
334 RI_PTS_CON: DSB 1 ; control register
335 RI_PTS_SRC: DSW 1 ; Source pointer
336 RI_PTS_DST: DSW 1 ; Destination pointer
338
339 CSEG AT 2080H
340 TI_START:
341
342 ; Set up port 2 and serial port control
343
B11F14 344 LdB WSR, #1FH ; Open window 1FH
A1004018 345 Ld SP,#0500h ; init stack CODE RAM
B10DBB 346 Idb SP_CONTROL_W, #0DH ; mode 1 enable rec and parity
A16780BC 3471d SP_BAUD_W, #8067H ; baud rate = 9600 at 16MHz
9102CD 348 orb P2REG_W, #02h
9102CB 349 orb P2IO_W, #02H ; RxD = Input
71FECB 350 andb P2IO_W, #0FEh ; TxD = Output
9103C9 351 orb P2SSEL_W, #(03H ; Select TxD and RxD peripheral
1114 352 CirB WSR
353
354 set up PTS transmit control block
355
B1FEEQO 35 Ldb TI_PTS_CNT, #254 ; load count with 254 characters
B19AE1 357 Ldb TI_PTS_CON, #10011010B ; single byte transfer mode
A10521E2 358 Ld TI_PTS_SRC, #TABLE ; point to the beginning of the table
A1BA1FE4 359 Ld TI_PTS_DST, #SBUF_TX ; point to SBUF_TX as destination
360 ;
361 et up PTS receive control block
362
B1FFR) 363 Ldb RI_PTS_CNT, #255 1255 since entire recp. done by PTS
B195F1 364 Ldb RI_PTS_CON, #10010101B
A11D2F4 365 Ld RI_PTS_DST, #BUFFER ; point to destination buffer
A1B81FR2 366 Ld RI_PTS_SRC, #SBUF_RX ; point to SBUF_RX as source
367
B11813 368 LdB INT_MASK1, #00011000B ; Enable RI and TI interrupts
A1001804 369 Ld PTS_SELECT, #1800H ; Enable RI and TI of PTS
B1FFDO 370 Ldb O0DOh,#0FFh ; flag for PTS routines complete
B2E3D1 371 LdB OD1h, (TI_PTS_SRCl+
C701BAIFD1 372 StB 0D1h, SBUF_TX ; start transmission
373 EPTS ; enable PTS
FB 375 El ; enable interrupt
376
377 ; The PTS will now handle the transmission and reception of characters.
378 ; When a PTS routine is done, the TI (or RI) interrupt routine below
379 ; will be called. These routines just clear a flag to note that the
380 ; PTS routine is finished.
381 wait:
9900D0 382 ampb 0DOh, #00h
D7FB 38 Jne wait swait around for PTS to finish
384 ;useful stuff done here
385 dpts sturn off the PTS
B17D14 387 Ldb WSR#7Dh activate window 7Dh
B101BB 388 Ldb SP_CONTROL_W,#01h ;disable receiver
90B97F 389 OrB 07Fh,SP_STATUS_W ;Read status of port
3F7R07 390 JoS 07Fh,7,P_error ;check for parity error
3C7R06 391 JbS 07Fh,4,Fr_error ;check for framing errors
1114 392 Clrb WSR
Z7FE 393 Br $
354
395 P_erron:
27FE 39 Br S
397
398 Fr_error:
2Z7FE 39 Br $
270873-23

Program 4b. Using the PTS with both the Tl and Rl Interrupts

33

]
AP-445 |n‘te| .
400
401 ; There is a bug with the interrupt server on the 196. It is possible for
402 ;the wrong routine to be called. During the latency period for a normal
403 interrupt, if a PTS interrupt occurs, the normal interrupt routine for the
404 ;PTS interrupt will be erroneously executed.
405
406 ; Due to this bug it is possible to enter these interrupt service
407 routines before the PTS transfer is complete. Therefore it is necessary
408 to check to see if the PTS_SELECT bit for a given routine is set. If
409 it is, a PTS aall should have been made, so the routine aborts and
410 forces the call be setting the proper INT_PEND bit.
411
20E9 412 TI_ISR:
413
414 PUSHA
20EA 3B0505 416 JBS PTS_SELECT+1,3,abort1
20ED 710FDO 417 AndB 0DOh,#0Fh ; mark Xmittion complete
418 POPA
20F1 R 420 RET
20F2 421 abortl:
20R2 91081 422 ORB INT_PEND1,#08h ; PTS to correct bug
423 POPA
20F6 3] 425 RET
426
20F7 427 RI_ISR:
428
429 PUSHA
20F8 3C0505 431 JBS PTS_SELECT+1,4,abort2
20FB 71FODQ 432 andb 0DOh, #0F0h ; mark RI complete
433 POPA
20FF R 44 RET
2100 436 abort2:
2100 911012 437 ORB INT_PEND1,#10h ; force PTS RI routine
438 POPA
2104 R 440 RET
41
2105 442 Table:
2105 5468697320697320 443 DCB
‘This is a test of the PTS and the Serial Port’,0AH,0DH ;47
214 4920616D20707269 444 DCB
‘l am printing out 255 characters via the SIO ’,0AH,0DH 94
2163 6174203936303020 445 DCB
‘at 9600 baud, 16MHz operating frequency, and ‘,0AH,0DH ;141
2192 6D6F64652081206F 446 DCB
‘mode 1 operation. 1234567890123456790123456 ‘', 0AH,0DH ;188
21C1 3738393031323334 447 DCB
'78901234567890123456789012345678901234567",0AH,0DH ;231
21EC 636F64652062792E 48 DCB
‘code by.....SMc/RMK’,0AH,0DH,0AH,0D 255
2204 449 Table_end:
2204 2020202020202020 450 DCB ’ ! ; Buffer ending
221D 451 BUFFER: ; start of PTS RX input buffer
452
221D 453 end
270873-24

34

Program 4c. Using the PTS with the Tl and Rl Interrupts

intgl.

The PTS control blocks (both RI and TI) are initialized
and the interrupt mask and PTS__SELECT bits are
also set.

Lastly the program sends the first byte from the buffer
to the SIO SBUF Transmit register. This starts the
transmission/reception process rolling.

The TI PTS cycle send the data out the SBUF__TX.
The RI PTS cycle receives the byte and transfers it to
external RAM locations 221D to 231Ch.

After the PTS transfers are completed a normal soft-
ware interrupt request (for both RI and TI) is executed.
This will flag to the main line program that the PTS is
completed.

Lastly the receiver (RXD) is disabled, and the Parity
and Framing errors are checked.

4.6 Modes 2 and 3: 9 Bit
Communications Modes

Modes 2 and 3 are asynchronous 9 bit communications
modes. In mode 2, parity can NOT be enabled. Howev-
er, the 9th bit is used to determine whether or not a
receive interrupt will occur. If the 9th bit being received
is set, RI will be set and a receive interrupt will occur.
This allows for a selectable reception link.

For transmission in mode 2, the state of the 9th bit is
determined by the setting of bit 4 (TBS). If TB8 is 1, the
9th bit will be set. TBS is cleared after each transmis-
sion and so it must be written before each (*‘1”") trans-
mission.

Mode 3 is similar to mode 2 except that parity can be
enabled and that the receiver will generate an interrupt
(set RI) every time a byte is received (independent of
the state of the 9th bit).

Modes 2 and 3 work very well together in a multi-proc-
essor environment. The master processor will operate
in mode 3. While the slaves will usually operate in
mode 2. When the master wants to talk to a slave, it
will first set the 9th bit high with the address byte. The
slaves (operating in mode 2) will be interrupted and the
one that is being addressed can switch to mode 3. The
two processors can then talk (with the 9th bit clear),
and the other slave processors will not be interrupted.

Setting up modes 2 and 3 is just like setting up the other
modes. Port 2 must be set up, the baud rate written,
and the control register programmed.

AP-445

Below are two program segments (one for the master
and one for a slave) which demonstrate the use of these
modes.

NOTE: THE SEGMENTS ILLUSTRATED ARE
JUST THAT. THEY ASSUME THAT THE PORTS
ARE SET UP AS NEEDED.

; MASTER
CSEG
Initial_Start:
DI ; Disable Interrupts
DPTS
LD SP,#0500h ; Initialize Stack
LdB Wsr, #7Eh ; HCO-1fdf -> eO-ff
Clr Timel
SIO_Configure:
LdB Wsr,#07Dh ; 1£a0-1fbf -> eO-ff

LD sp_baud_W,#8067h ; Enable 9600 baud
LDB sp_control_W,#1Bh ; Mode 3, Rec En, TB8
cal:

LDB SBUF_TX_W,#03h ; See if slave #3 is there
cntl:
DJNZ Timel,cntl
DINZ Timel+1,entl ; Wait about .07 second
JBC sp_status_w,6,nores; slave respond
CmpB 0f8h,#0h ; correct slave?

JNE error
LDB slvstat, #0ffH ; slave respond flag

; do whatever is needed to complete transaction with

slave
nores:
CLRB WSR ; No windows open
Self:
SIMP Self
error:
SIMP error
; SLAVE
cseg at 2038 ; set up RI interrupt pointer
DCW RILISR
CSEG
Initial_Start:
DI ; Disable Interrupts
DPTS
LDB mode#02h ; we start in mode 2
LD SP#0500h ; Initialize Stack
LDB WSR#7Eh ; Window 1fCO-1fdf -> eO-ff
SIO_Configure:

; 1fa0-1fbf -> e0-ff
LD SP_BAUD_W,#8067H ; Enable 9600 baud
LDB SP_Control_W #0Ah ; Mode 2, Rec Enabled
ORB INT_MASK1,#10h ; Enable Rec Int
El ; enable interrupts
self: SJMP self

,: RI_Interrupt Service Routine

RI_ISR:
PUSHA
INCB 80h ; count times in interrupt
CMPB mode,#03h ; see if we are in mode3
JE cont ; if not, check ID

CMPB OfBh,#my_id ; is master talking to me?
JNE out ; no so just leave

; yes switch to mode 3

; note mode switched

; echo slave id number

270873-25

35

AP-445

out:
POPA
RET

cont:
. 1o whatever :3 needed here
; like wnterpret commands, transfer data, ect.

POPA
RET
END

270873-26

There are a few points which should be emphasized
about the above program segments. First, the master
always operates in mode 3. Second, the slave operates
in mode 2 while it is idle, but switches to mode 3 when
the master is talking to it. Finally, the master only sets
the 9th bit when it is sending out an address of the slave
that it wishes to communicate with. This is done so that
the other slaves will not be interrupted unless an ad-
dress is being broadcast over the serial link.

4.7 Top 5 Issues with the SIO

(1) When using the TICLK as the clock to the serial
port, make sure that the pin (P6.2) is special select-
ed (P6SSEL bit 2 = 1).

(2) When using the RI and TI flags in the SP__
STATUS register, use a shadow register in RAM.

(3) Make sure that the SIO port pins are set up accord-
ing to the application:

1. Write to P2REG
2. Write to P2IO
3. Write to P2SSEL
(4) Parity is not possible with Mode 2.

(5) SBUF_TX and SBUF__RX registers are separate
register (unlike past 8096/80C196 devices) and are
BOTH double buffered.

36

intgl.

5.0 SYNCHRONOUS SERIAL 1/0 AND
PERIP