
APPLICATION
NOTE

AP-445

April 1992

8XC196KR Peripherals:

A User’s Point of View

ROB KOWALCZYK

STEVE McINTYRE

Order Number: 270873-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1995

8XC196KR Peripherals: A User’s Point of View

CONTENTS PAGE

1.0 INTRODUCTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

1.1 8XC196KR Overview ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

1.1.1 General DescriptionÐCPU ÀÀÀÀÀÀ 8

1.1.2 Integrated I/O Subsystem ÀÀÀÀÀÀ 9

1.2 New 8XC196KR Instructions ÀÀÀÀÀÀÀÀÀ 9

1.2.1 52 Lead Device ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

1.3 Windowing ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

1.3.1 Examples of Vertical
Windows ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

1.4 Top 5 Issues With Windowing ÀÀÀÀÀÀÀ 14

2.0 INTERRUPTS AND THE
PERIPHERAL TRANSACTION
SERVER (PTS) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

2.1 PTS Execution ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15

2.2 PTS Modes ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

2.2.1 Single Transfer Mode ÀÀÀÀÀÀÀÀÀÀ 16

2.2.2 Single Transfer Mode
Example ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 17

2.2.3 Block Transfer Mode ÀÀÀÀÀÀÀÀÀÀ 17

2.2.4 Block Transfer Mode
Example ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 19

2.2.5 A/D Scan Mode, PWM Mode
and PWM Toggle Mode ÀÀÀÀÀÀÀÀÀÀÀ 22

2.3 PTS Latency Times ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22

2.4 Top 5 Issues with PTS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22

3.0 UNDERSTANDING THE PORTS ÀÀÀÀÀÀ 23

3.1 Port 0 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

3.2 Port 1 / 2 /6 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

3.3 Port 3 /4 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 26

3.4 Port 5 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 26

3.5 Top 5 Issues with the Ports ÀÀÀÀÀÀÀÀÀ 27

CONTENTS PAGE

4.0 SERIAL I/O PORT (SIO PORT) ÀÀÀÀÀÀÀ 27

4.1 Serial Port SFRs ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 27

4.1.1 SPÐCONTROL ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 28

4.1.2 SPÐSTATUS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 28

4.2 Baud Rate Generation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 28

4.3 SIO Port Configuration ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 29

4.4 Mode 0: Synchronous
Communications ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 30

4.5 Mode 1: Standard Asynchronous
Serial I/O ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 30

4.5.1 Setting Up Mode 1
Operation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 31

4.5.2 SIO and the PTS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 32

4.6 Modes 2 and 3: 9 Bit
Communications Modes ÀÀÀÀÀÀÀÀÀÀÀÀÀ 35

4.7 Top 5 Issues with the SIO ÀÀÀÀÀÀÀÀÀÀÀ 36

5.0 SYNCHRONOUS SERIAL I/O AND
PERIPHERAL TRANSACTION
SERVER ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 36

5.1 SSIO Port SFRs ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 37

5.2 Example 1 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 38

5.3 Using the PTS and Handshake
Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 38

5.4 SSIO and the PTS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 39

5.5 Top 5 Issues with the SSIO ÀÀÀÀÀÀÀÀÀ 40

6.0 ANALOG TO DIGITAL
CONVERTER ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 41

6.1 A/D Command Register (ADÐ
COMMAND) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 41

6.2 A/D Time Register (ADÐTIME) ÀÀÀÀÀ 41

6.3 A/D Test Register (ADÐTEST) ÀÀÀÀÀ 42

6.4 A/D Result Register (ADÐ
RESULT) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 43

6.5 Example A/D Programs ÀÀÀÀÀÀÀÀÀÀÀÀ 45

6.5.1 Using the A/D with the PTS ÀÀÀÀ 45

6.6 Threshold Detection ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 49

6.7 A/D Test Modes ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 49

6.8 Top 5 Issues with the A/D ÀÀÀÀÀÀÀÀÀÀ 50

CONTENTS PAGE

7.0 EVENT PROCESSOR ARRAY
(EPA) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 50

7.1 Timers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 50

7.1.1 Timer Examples ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 51

7.2 EPA Input/Output Structure ÀÀÀÀÀÀÀÀ 51

7.3 EPA Interrupts ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 53

7.4 Input Capture ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 54

7.4.1 HSI Example Ý1 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 54

7.4.2 HSI Example Ý2: ABS ÀÀÀÀÀÀÀÀÀ 55

CONTENTS PAGE

7.5 EPA HSO Generation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 59

7.5.1 Square Wave Generation ÀÀÀÀÀÀ 59

7.5.2 PWM Signal Generation
Without PTS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 61

7.5.3 PWM Generation With PTS ÀÀÀÀ 63

7.5.4 PWM Generation Using
Software ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 66

7.6 Top 5 Issues with the EPA ÀÀÀÀÀÀÀÀÀÀ 69

Figures

1-1 Figure 1-1. 8XC196KR Block Diagram ÀÀ 7

1-2 Figure 1-2. 8XC196KR Memory Map ÀÀÀ 8

1-3 Figure 1-3. Special Function RegistersÀÀ 8

1-4 Figure 1-4. Special Function RegistersÀÀ 9

1-5 Figure 1-5. 128-Byte Windows ÀÀ 12

1-6 Figure 1-6. 64-Byte Windows ÀÀÀ 12

1-7 Figure 1-7. 32-Byte Windows ÀÀÀ 12

2-1 Figure 2-1. 8XC196KR Interrupt Priorities ÀÀ 15

2-2 Figure 2-2. PTS Control Blocks (PTSCB) ÀÀÀ 16

2-3 Figure 2-3. PTS Control Single TransferÀÀ 16

2-4 Figure 2-4. PTS Control Block Transfer ÀÀ 19

2-5 Figure 2-5. PTS Interrupt Response Time ÀÀ 22

3-1 Figure 3-1. Input Port 0 StructureÀÀ 23

3-2 Figure 3-2. Ports 1, 2, 5 & 6 (and 3 / 4 - see notes) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

3-3 Figure 3-3. Port 1, 2, and 6 Truth Table ÀÀ 25

3-4 Figure 3-4. Port Reset Values ÀÀ 25

3-5 Figure 3-5. Port 5 Truth Table ÀÀ 27

4-1 Figure 4-1. SPÐCONTROL Register ÀÀ 27

4-2 Figure 4-2. SPÐSTATUS Register ÀÀ 28

4-3 Figure 4-3. SPÐBAUD Register Equations ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 29

4-4 Figure 4-4. Common Baud Rate Values ÀÀ 29

4-5 Figure 4-5. Serial Port Frames, Mode 1, 2 and 3ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 30

5-1 Figure 5-1. SSIO Control Register ÀÀÀ 37

5-2 Figure 5-2. SSIO Transmit/Receive TimingsÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 37

6-1 Figure 6-1. ADÐCOMMAND Register ÀÀÀ 41

6-2 Figure 6-2. ADÐTIME Register ÀÀÀ 42

6-3 Figure 6-3. A/D Error vs. Conversion Time ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 42

6-4 Figure 6-4. ADÐTEST RegisterÀÀÀ 42

6-5 Figure 6-5. ADÐRESULT Register ÀÀ 43

6-6 Figure 6-6. A Typical A/D Transfer Function Error, with Offset and Full Scale Errors ÀÀÀ 44

6-7 Figure 6-7. Program Segment to Initialize A/D and Convert on ACH5 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 45

6-8 Figure 6-8. Example A/D Scan Mode Table ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 46

7-1 Figure 7-1. TIMERÐCONTROL RegisterÀÀÀ 50

7-2 Figure 7-2. EPAÐCONTROL Register ÀÀÀ 51

7-3 Figure 7-3. The EPAÐPEND and EPAÐMASK Registers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 53

7-4 Figure 7-4. EPA Interrupt Priority VectorÀÀ 53

7-5 Figure 7-5. Wheel Speed Signal for each WheelÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 55

7-6 Figure 7-6. Output Generated by Program 11 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 60

7-7 Figure 7-7. Output of Program 12 and 13ÀÀÀ 63

Programs

Program 1a, b. Send 30 bytes over the SIO using the PTS in Single Xfer ModeÀÀÀÀÀÀÀ 18, 19

Program 2a, b. Using the EXTINT with the PTS Block Transfer Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 20, 21

Program 3. SIO Communication via Polling the SPÐStatus Bits (TI and RI)ÀÀÀÀÀÀÀÀÀÀ 31

Program 4a, b, c. Using the PTS with both the TI and RI InterruptsÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 32, 33, 34

Program 5. SSIO, Send One Byte ÀÀÀ 38

Program 6. SSIO, Send One Byte in Handshake Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 39

Program 7. SSIO and the PTS ÀÀ 40

Program 8a, b. A/D Scan Mode using the PTSÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 47, 48

Program 9. Start an A/D Conversion on a Positive Input Edge ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 54

Program 10a, b, c. ABS Input Frequency Detection using the PTS and EPA Inputs ÀÀÀÀ 56, 57, 58

Program 11. Generating 2 PWM Pulses Using No CPU Overhead ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 60

Program 12. PWM Generation Using Interrupts ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 62

Program 13. Generate a PWM on EPA0 using the PTS Toggle Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 64

Program 14. Generate a PWM Using the PTS PWM Mode and Re-Map Feature ÀÀÀÀÀÀ 65

Program 15a, b. Generate a PWM Output Using EPA9 and Software InterruptsÀÀÀÀÀÀÀÀ 67, 68

AP-445

1.0 INTRODUCTION

High Speed Event control is a common occurrence in
todays control applications. Also mixing analog and
digital control in the same application is becoming a
necessity.

In 1982 Intel introduced the first member of the 16-bit
microcontroller family (MCSÉ-96): the 8096 device.
This family has grown from that first introduction to
todays 4th generation of highly integrated, 1 micron
CHMOS technology members. The 8XC196KR,

8XC196KQ, 8XC196JR, and 8XC196JQ. (Known
hereafter as 8XC196KR).

These devices combine high speed 16- and 32-bit preci-
sion calculation capability (100% instruction set com-
patible with the MCS-96 product family) with a dedi-
cated I/O subsystem that has no equal. Figure 1-1 illus-
trates the complete functional blocks that make up the
8XC196KR devices.

This Ap-note will briefly describe the 8XC196KR CPU
and peripherals with example applications for each.

270873–1

Figure 1-1. 8XC196KR Block Diagram

7

AP-445

1.1 8XC196KR Overview

1.1.1 GENERAL DESCRIPTION – CPU

The 8XC196KR instructions are a true instruction su-
per set of past 8096 devices (8X9XBH and
8XC196KB). It uses a 16-bit ALU which operates on
512 bytes of registers instead of an accumulator. Like
the 8096, any location within the 512 byte register file
can be used as source or destinations for most of the
instruction addressing modes.

This register to register architecture is common to the
MCS-96 family. Many of the instructions can operate
on bytes, words and double words from anywhere in
the 64K byte address space. To assist in the under-
standing of the 8XC196KR memory, a map is shown in
Figure 1-2.

Address Type of Memory

0FFFFh
External Memory

06000h

05FFFh
Internal/External EPROM

02080h

0207Fh Internal/External EPROM

0205Eh (Int. Vectors/Open/Reserved)

0205Dh Internal/External EPROM

02030h (Int. Vectors)

0202Fh Internal/External EPROM

02020h (Security Key)

0201Fh Internal/External EPROM

02014h (CCB0/CCB1/Reserved)

02013h Internal/External EPROM

02000h (Int. Vectors)

01FFFh
Internal SFR Registers

01F00h

01EFFh
External Memory

00500h

004FFh
Internal Code RAM

00400h

003FFh
External Memory

00200h

001FFh
Internal Register RAM

00018h

00017h
Internal Core SFR Registers

00000h

Figure 1-2. 8XC196KR Memory Map

The lower 24 bytes of the register file contain Special
Function Registers (SFRs) that are used to control on-
chip peripherals (similar to past 8096 devices). In addi-
tion to these SFRs, the 8XC196KR device has 256
more SFRs located from 1F00H through 1FFFH. All
RAM memory (Register memory from 0000H to
01FFH and Code RAM memory from 0400H to
04FFH) can be kept alive using the low current power-
down or idle modes.

Accessing RESERVED SFR/data memory locations are
not allowed. Memory locations 1F00h through 1F5Fh
are also considered RESERVED.

Figures 1-3 and 1-4 show the layout and reset values of
the SFRs on the 8XC196KR. Most of these registers
are Read and Writable (unlike those in past 8096 devic-
es).

SFR Location RESET Value R/W

POPIN 1FDAH XXH R

P3PIN 1FFEH XXH R

P3REG 1FFCH 0FFH R/W

P4PIN 1FFFH XXH R

P4REG 1FFDH 0FFH R/W

P1PIN 1FD6H XXH R

P1REG 1FD4H 0FFH R/W

P1IO 1FD2H 0FFH R/W

P1SSEL 1FD0H 00H R/W

P2PIN 1FCFH 1XXXXXXXB R

P2REG 1FCDH 7FH R/W

P2IO 1FCBH 7FH R/W

P2SSEL 1FC9H 80H R/W

P6PIN 1FD7H XXH R

P6REG 1FD5H 0FFH R/W

P6IO 1FD3H 0FFH R/W

P6SSEL 1FD1H 00H R/W

P5PIN 1FF7H 1XXXXXXXB R

P5REG 1FF5H 0FFH R/W

P5IO 1FF3H 0FFH R/W

P5SSEL 1FF1H 80H R/W

INTÐMASK 0008H 00H R/W

INTÐMASK1 0013H 00H R/W

INTÐPEND 0009H 00H R/W

INTÐPEND1 0012H 00H R/W

PTSÐSRV 0006H 00H R/W

PTSÐSELECT 0004H 00H R/W

WDT 000AH 00H R

Figure 1-3. Special Function Registers

8

AP-445

SFR Location RESET Value R/W

USFR 1FF6H XXH W

SLPCMD 1FFAH 00H R/W
SLPSTAT 1FF8H 00H R/W
SLPFUNREG 1FFBH 00H R/W

EPAIPV 1FA8H 00H R
EPAÐMASK 1FA0H 0000H R/W
EPAÐPEND 1FA2H 0000H R/W
EPAÐMASK1 1FA4H 00H R/W
EPAÐPEND1 1FA6H 00H R/W

TIMER1 1F9AH 0000H R/W
TIMER1ÐCONTROL 1F98H 00H R/W
TIMER2 1F9EH 0000H R/W
TIMER2ÐCONTROL 1F9CH 00H R/W

ADÐTIME 1FAFH 0FFH R/W
ADÐTEST 1FAEH 0C0H R/W
ADÐCOMMAND 1FACH 0C0H R/W
ADÐRESULT 1FAAH 07F80H R/W

SPÐBAUD 1FBCH 0000H W
SPÐCONTROL 1FBBH 0E0H R/W
SPÐSTATUS 1FB9H 0BH R/W
SBUFÐTX 1FBAH 00H R/W
SBUFÐRX 1FB8H 00H R/W

SSIOÐBAUD 1FB4H 0XXXXXXXB W
SSIOÐSTCR1 1FB3H 00H R/W
SSIOÐSTCR0 1FB1H 00H R/W
SSIOÐSTB1 1FB2H 00H R/W
SSIOÐSTB0 1FB0H 00H R/W

COMPÐTIME1 1F8EH XXXXH R/W
COMPÐTIME0 1F8AH XXXXH R/W
COMPÐCONTROL1 1F8CH 00H R/W
COMPÐCONTROL0 1F88H 00H R/W

EPAÐTIME9 1F86H XXXXH R/W
EPAÐTIME8 1F82H XXXXH R/W
EPAÐTIME7 1F7EH XXXXH R/W
EPAÐTIME6 1F7AH XXXXH R/W
EPAÐTIME5 1F76H XXXXH R/W
EPAÐTIME4 1F72H XXXXH R/W
EPAÐTIME3 1F6EH XXXXH R/W
EPAÐTIME2 1F6AH XXXXH R/W
EPAÐTIME1 1F66H XXXXH R/W
EPAÐTIME0 1F62H XXXXH R/W
EPAÐCONTROL9 1F84H 00H R/W
EPAÐCONTROL8 1F80H 00H R/W
EPAÐCONTROL7 1F7CH 00H R/W
EPAÐCONTROL6 1F78H 00H R/W
EPAÐCONTROL5 1F74H 00H R/W
EPAÐCONTROL4 1F70H 00H R/W
EPAÐCONTROL3 1F6CH 0FE00H R/W
EPAÐCONTROL2 1F68H 00H R/W
EPAÐCONTROL1 1F64H 0FE00H R/W
EPAÐCONTROL0 1F60H 00H R/W

Figure 1-4. Special Function Registers

1.1.2 INTEGRATED I/O SUBSYSTEM

Some of the I/O features on the 8XC196KR are similar
to past 8096 devices. But, a great deal of the I/O and
it’s specific functions have changed for the better.

For example, the WatchDog Timer (WDT) is an inter-
nal timer which can be used to reset the system when
software fails to operate properly. On past 8096 devices
this feature was turned off until initially written. On the
8XC196KR devices, the Chip Configuration Byte
(CCB1) contains a bit (bit 3) which can have this fea-
ture always enabled. Now if software fails before it gets
to the WDT initialization code, it will reset the system.

The 8XC196KR device still contains an Analog to Dig-
ital converter, High Speed Input Capture and Output
Compare called Event Processor Array (EPA), an inte-
grated 16-bit timer/counter subsystem, and Asynchro-
nous/Synchronous Serial I/O.

In addition to the above peripherals, the 8XC196KR
device has an additional Synchronous Serial I/O port,
an Additional timer/counter, faster interrupt response
capability through the Peripheral Transaction Server
(PTS), an 8 bit slave port that allows other CPUs in the
system to request information from the 8XC196KR
through interrupt control, and an additional 8 pins of
I/O.

This integration of I/O, memory, ALU capability, and
overall system speed makes the 8XC196KR device a
perfect fit in such applications as: Motor Control, En-
gine Control, Anti-lock Brakes, Suspension Control,
Hard Disk Drive Controllers, Printer Control, as well
as many others.

1.2 New 8XC196KR Instructions

The 8XC196KR device is an instruction super set of
the past 8096 devices (8X9XBH , 8XC196KB). The
software used to Assemble / Compile / Link and Lo-
cate programs still holds true for the 8XC196KR.
(ASM96, RL96, iC96, PL/M96,)

The 8XC196KR device has additional instructions not
seen before by MCS-96 programmers. These 6 new in-
structions are EPTS (Enable PTS) / DPTS (Disable
PTS), XCH (eXCHange word) / XCHB (eXCHange
Byte), BMOVI (Interruptable Block MOVe), and
TIJMP (Table Indirect JuMP).

9

AP-445

BMOVI Interruptable Block Move has the same
form and function as the BMOV instruc-
tion except the interrupt request status is
checked after each move is completed. If
an interrupt is pending and unmasked
the block move operation is suspended
and the interrupt service routine is in-
voked. Following the end of the interrupt
service routine the block move continues.
The BMOVI instruction, unlike the
BMOV, will update the counter register,
if interrupted.

Assembly Language:

PTRs CNT

BMOVI Lreg , Wreg

Object code:

0CDH kwregl klregl

DPTS Disable PTS (Peripheral Transaction
Server) by clearing the PSE flag in the
PSW register.

Assembly Language:

DPTS

Object code:

0ECH

EPTS Enable PTS (Peripheral Transaction
Server) by setting the PSE flag in the
PSW register.

Assembly Language:

EPTS

Object code:

0EDH

TIJMP Table Indirect Jump, jumps to an ad-
dress selected out of a table of addresses.
This is a three operand instruction with
one operand pointing to the base of the
jump table, a second pointing indirectly
to a 7-bit index value (0 to 128 decimal)
and a third is an immediate operand (7-
bit) which is used as a mask for the index
value.

Assembly Language:

BASE INDEX MASK

TIJMP Wreg1,[Wreg2], ÝMask

Object code:

0E2H kwreg2l kmaskl kwreg1l

XCH/XCHB Exchange Word and Exchange Byte, ex-
changes the contents of two memory lo-
cations. The immediate and indirect ad-
dressing modes are NOT supported, only
the direct and indexed (short and long).

Assembly Language:

DST SRC

XCHB Breg1, Breg2

XCHB Breg1, Offset [Wreg2]
XCH Wreg1, Wreg2

XCH Wreg1, Offset [Wreg2]

Object Code:

14H Breg2 Breg1

1BH Wreg2 offsetÐlow ÀoffsetÐhighÓ breg1

04H Wreg2 Wreg1

0BH Wreg2 offsetÐlow ÀoffsetÐhighÓ wreg1

For short indexed addressing modes the second offset
byte is omitted from the object code stream. For long
indexed addressing mode, both bytes of offset are re-
quired, making the instruction a 5 byte instruction.

1.2.1 52 LEAD DEVICES

Intel offers a 52 lead version of the 8XC196KR device:
the 8XC196JR and 8XC196JQ devices. The first sam-
ples and production units use the 8XC196KR die and
bond it out in a 52 lead package.

It is important to point out some functionality differ-
ences because of future devices or to remain software
consistent with the 68 lead device. Because of the ab-
sence of pins on the 52 lead device some functions are
not supported.

52 Lead Unsupported Functions:

Analog Channels 0 and 1.
INST pin functionality.
SLPINT pin support.
HLDÝ/HLDAÝ functionality.
External clocking/direction of Timer1.
WRHÝ or BHE functions.
Dynamic buswidth.
Dynamic wait state control.

The following is a list of recommended practices when
using the 52 lead device:

(1) External Memory. Use an 8-bit bus mode only.
There is neither a WRHÝ or BUSWIDTH pin. The
bus can not dynamically switch from 8- to 16-bit or
vice versa. Set the CCB bytes to an 8-bit only mode,
using WRÝ function only.

10

AP-445

(2) Wait State Control. Use the CCB bytes to configure
the maximum number of wait states. If the READY
pin is selected to be a system function, the device
will lockup waiting for READY. If the READY
pin is configured as LSIO (default after RESET),
the internal logic will receive a logic ‘‘0’’ level and
insert the CCB defined number of wait states in the
bus cycle. DON’T USE IRC e ‘‘111’’.

(3) NMI support. The NMI is not bonded out. Make
the NMI vector at location 203Eh vector to a Re-
turn instruction. This is for glitch safety protection
only.

(4) Auto-Programming Mode. The 52 lead device will
ONLY support the 16-bit zero wait state bus during
auto-programming.

(5) EPA4 through EPA7. Since the JR and JQ devices
use the KR silicon, these functions are in the device,
just not bonded out. A programmer can use these as
compare only channels or for other functions like
software timer, start and A/D, or reset timers.

(6) Slave Port Support. The Slave port can still be used
on the 52 lead devices. The only function removed
is the SLPINT output function.

(7) Port Functions. Some port pins have been removed.
P5.7, P5.6, P5.5, P5.1, P6.2, P6.3, P1.4 through
P1.7, P2.3, P2.5, P0.0 and P0.1. The PxREG,
PxSSEL, and PxIO registers can still be updated
and read. The programmer should not use the cor-
responding bits associated with the removed port
pins to conditionally branch in software. Treat these
bits as RESERVED.

Additionally, these port pins should be setup inter-
nally by software as follow:

1. Written to PxREG as ‘‘1’’ or ‘‘0’’.

2. Configured as Push/Pull, PxIO as ‘‘0’’.

3. Configured as LSIO.

This configuration will effectively strap the pin
either high or low. DO NOT Configure as Open
Drain output ‘‘1’’, or as an Input pin. This device
is CMOS.

1.3 Windowing

The 8XC196KR contains 512 bytes of memory, located
from 00h to 1FFh. An additional 256 bytes of on chip
SFRs (Special Function Registers) located at 1F00h–
1FFFh. Accesses directly to any location other than
00h–FFh would require a 16 bit address.

The 8XC196KR device has a mechanism known as ver-
tical windowing which allows portions of 16-bit memo-

ry (0000–1FFh and 1F00h–1FFFh) to be remapped to
an 8-bit address in the 0080h - 00FFh register RAM
area.

Any address accesses using an 8-bit re-mapped address
will be windowed through to the 16-bit address.

The 8XC196KR core has the capability to add up to 1K
of register RAM (0000–03FFh) and 1K of SFR space
(1C00–1FFFh). However, only 512 bytes of register
RAM is accessible along with 256 bytes of SFRs (loca-
tions 1F00–1FFFh). 1F00h through 1F5Fh is considered
RESERVED. Only the non-RESERVED locations
should be selected for windowing. Any attempt to win-
dow outside this area will result in reading of all 1’s and
writing to the bit bucket. In addition, the SFRs located
from 1FE0h–1FFFh can NOT be accessed through any
window. Any attempt to write these register through a
window will have no effect on these SFRs; reading these
registers through a window will result in FFh or FFFFh
being read.

Windows can be selected to be either 32, 64 or 128
bytes, and will be mapped into locations E0h- -FFh,
C0h–FFh, or 80h–FFh, respectively. Control over the
window is obtained through the use of the WSR regis-
ter located at 14h. The bit map of the WSR depends
somewhat on the size of the window. The MSB of the
WSR is not used for windowing, but rather is used to
control whether or not outside bus masters can request
control of the external bus (HOLD/HLDA enabling).
The next three bits either determine the size of the win-
dow, or, for 64 and 32 byte windows, part of the offset
address.

Bits 6,5 and 4 determine which ‘‘window’’ size from
memory is to be used. Bits 3,2,1, and 0 determine which
block the device will window to.

For example, suppose the programmer wanted a win-
dow of 128 bytes. First, visualize the memory as being
divided into consecutive blocks of 128 bytes each. Note
that there is a gap from 400h– 1EFFh. This will make
15 blocks of 128 bytes that can be windowed through
80h–0FFh (skipping memory between 400h–1EFFh).

Number the blocks starting with zero. Furthermore,
assume that the programmer wanted to window ad-
dresses from 180h–1FFh to 80–FFh. This is the third
block of 128 bytes in memory. The fifteen block will be
1F80h–1FFFh (starting with 0000h). This means that
the WSR should contain ‘‘001’’ in the upper bits 6,5,
and 4, to select 128 byte windowing, and ‘‘0011’’ (3) in
the lower nibble to select block number 3.

11

AP-445

Figures 1-5, 1-6, and 1-7 illustrate all valid codes for
the WSR (on the 8XC196KR), and the corresponding
windows opened. Using other WSR values (other than
‘‘00’’) is not supported or recommended.

The WSR register is stacked on a PUSHA instruction.
This will save the WSR value on the stack while execut-
ing an Interrupt Service Routine (ISR). A PUSHA in-
struction has no affect on the WSR register. Before re-
turning from the ISR, a POPA will return the WSR to
the previous value prior to entering the ISR.

128 Byte ‘‘Window’’

WSR Window Remapped

x001 0000 0000

x001 0001 0080

x001 0010 0100 0080

x001 0011 0180
to

x001 1110 1F00
00FF

x001 1111 1F80

Figure 1-5. 128-Byte Windows

64 Byte ‘‘Window’’

WSR Window Remapped

x010 0000 0000

x010 0001 0040

x010 0010 0080

x010 0011 00C0
00C0

x010 0100 0100
to

x010 0101 0140
00FF

x010 0110 0180

x010 0111 01C0

x011 1101 1F40

x011 1110 1F80

x011 1111 1FC0

Figure 1-6. 64-Byte Windows

32 Byte ‘‘Window’’

WSR Window Remapped

x100 0000 0000

x100 0001 0020

x100 0010 0040

x100 0011 0060

x100 0100 0080

x100 0101 00A0

x100 0110 00C0

x100 0111 00E0 00E0

x100 1000 0100
to

x100 1001 0120
00FF

x100 1010 0140

x100 1011 0160

x100 1100 0180

x100 1101 01A0

x100 1110 01C0

x100 1111 01E0

x111 1011 1F60

x111 1100 1F80

x111 1101 1FA0

x111 1110 1FC0

x111 1111 1FE0

Figure 1-7. 32-Byte Windows

12

AP-445

1.3.1 EXAMPLES OF VERTICAL WINDOWS

To fully understand the windowing capability, some
working examples are needed. Window 1Fh will be
used; this remaps memory from 1F80h–1FFFh to
0080h–00FFh (00E0–00FFh have no effect on the
SFRs because they will be windowed to memory
mapped I/O locations 1FE0h through 1FFFh).

Assume the following code segment is executed without
windowing. The results of this will be compared with
the same code being executed with a window active.

(1) ClrB WSR
(2) Ld 9Ah,#3000h
(3) Ld 86h,9Ah
(4) Ld 70h,86h[0]
(5) Ld 72h,1F9Ah[0]
(6) Ld 82h,[9Ah]
(7) St 76h,0Ah[9Ah]

Three assumptions shall be made concerning the state
of memory before the above code is executed: 1) Loca-
tion 3000h contains 0303h, 2) location 76h contains
0A0Ah, and 3) the value in timer1 is 1111h (timer is
not active). After the code is executed, the registers will
be in the following state:

(1) WSR: 00h
(2) 9Ah: 3000h
(3) 86h: 3000h
(4) 70h: 3000h
(5) 72h: 1111h
(6) 82h: 0303h
(7) 300Ah: 0A0Ah

These results are consistent with what would normally
be expected without knowledge of windowing. Let the
following code be executed with all of the above as-
sumptions intact, but with windowing. Locations from
1F80h–1FFFh will be window through 0080h–00FFh.

(1) LdB WSR, #1Fh
(2) Ld 9Ah,#1234h
(3) Ld 86h,9Ah
(4) Ld 70h,86h[0]
(5) Ld 72h,1f9Ah[0]
(6) Ld 82h,[9Ah]
(7) St 76h,0Ah[9Ah]

Assume that location 1234h contains 0202h, 0080h
contains 3000h, and 76h still contains 0A0Ah. The fol-
lowing results will be obtained:

(1) WSR: 1Fh
(2) 1F9Ah: 1234h
(3) 1F86h: 1234h
(4) 70h: 3000h
(5) 72h: 1234h
(6) 1F82h: 0202h
(7) 123Eh: 0A0Ah

Contrast this with the results from the first code seg-
ment and note the following differences.

(1) The WSR is loaded with the windowed value that
remaps 80h through 0FFh to 1F80h through
1FFFh.

(2) The immediate addressing mode moves immediate
data through the window, into the 16-bit address of
1F9Ah, not 009Ah.

(3) Using the direct addressing mode, both the source
(9Ah) and the destination (86h) are affected by the
open window. This will move data from absolute
address 1F9Ah (TIMER1) and place it in absolute
address 1F86h (EPAÐTIME9).

(4) Here the short indexed addressing mode is used to
load register 70h from absolute location 80h a 00h.
Notice that windowing does not affect any part of
this example. Location 70h is not in the window.
The indexed offset value (80h) is a constant and is
NOT 1F80h. And lastly, register 0 (00) is not win-
dowable.

(5) This is similar to example (4). Only the long in-
dexed addressing mode is used. Here the 16-bit off-
set (1F9Ah) is added to the contents of the 00 regis-
ter to get the address 1F9Ah. The contents of
1F9Ah is then stored in register 72h. No window
affect.

(6) The indirect example has a great affect by window-
ing. Both the source and destination for this ad-
dressing mode refers to 8-bit registers. Hence, the
contents of 1F9Ah is read and used as a pointer to a
16-bit address. That value is stored through the
window to 1F82h (EPAÐTIME8). If Auto-incre-
menting were used, the register 9Ah (1F9Ah
through the window) would be incremented by 2.

(7) Lastly the Indexing mode example with the index
register being affected by the window. Register 9Ah
(1F9Ah through the window) is read and offset by
immediate value Ý0Ah forming 123Eh. This ad-
dress (123Eh) is the destination for register 76h (un-
affected by the window).

As a final example, consider the following piece of
code; try to determine exactly what it does before read-
ing on.

(1) LdB WSR, #40h
(2) OrB 0F3h, #18h
(3) LdB 80h, #0E1h
(4) LdB 0EAh, #1Eh
(5) StB 80h, 0EAh
(6) St 0E0h, 0F8h
(7) LdB 0F4h, 0E0h

13

AP-445

Which window was opened? The WSR was written a
0100000b, which selects a 32 byte window, starting at
block 0. So 00h–1Fh was windowed to E0h–FFh.
Next, INTÐMASK1 was accessed through the win-
dow, and the Receive Interrupt (RI) and the Transmit
Interrupt (TI) of the serial port were enabled.

The next three instructions are dangerous as they enable
the watchdog timer.

The stack pointer is then set to 0000h and finally, the
window is reset by accessing the window select register
(WSR) through a window!

1.4 Top 5 Issues With Windowing
1. The PUSHA will NOT clear the WSR. But a POPA

will restore the WSR from the stack.

2. Both source and destination bytes of the Direct Ad-
dressing Mode can be affected by the window select-
ed.

3. The Offset in the Indexed Addressing Mode is NOT
windowable.

4. The PTS uses all 16-bit addresses and is therefore
unaffected by the window selected.

5. Without proper understanding of the window mech-
anism, the user can get into big trouble using win-
dows. Beware the window!

2.0 INTERRUPTS AND THE
PERIPHERAL TRANSACTION
SERVER (PTS)

The PTS is a microcoded hardware interrupt service
routine that ‘‘steals’’ bus cycles to execute. It is able to

do a special encoded interrupt service routine in the
time it takes to execute one instruction.

In a way, the PTS is a one instruction interrupt service
routine that executes without stack or PSW being modi-
fied, and with minimum CPU overhead. A simple PTS
cycle is only 1.875uS at 16 MHz (less than it takes to
do a divide and just a 1 state time longer than a multi-
ply).

There is a new bit in the PSW to control the global
enable of PTS interrupts (PSE bit in the PSW). This bit
is set using the EPTS instruction and disabled using the
DPTS instruction which is discussed in the new in-
struction section of this document.

On past 8096 devices an interrupt requests sets the
INTÐPEND bit in the core, the core looks at the cor-
responding INTÐMASK bit to see if it should ‘‘vec-
tor’’ to a software interrupt service routine. Also pro-
vided that the interrupts are enabled (I bit in the PSW).
This type of interrupt response is still on the
8XC196KR devices.

The 8XC196KR core implements a small twist to those
events. Before ‘‘vectoring’’ to the software interrupt
routine, the core checks another bit: the corresponding
PTSÐSELECT bit (location 04H:WORD). If this bit is
also set, the core will vector to a microcoded interrupt
service routine INSTEAD of the software interrupt
service routine (provided the PSE bit in the PSW is also
set).

The PTS is able to perform a DMA-like response to
any interrupt source. Figure 2-1 illustrates the location,
priority and source for all of the PTS interrupt vectors
available on the 8XC196KR.

14

AP-445

All PTS interrupts have higher priority than normal soft-
ware interrupts. There is a vector for the EPAINTx in-
terrupts, but it is NOT possible to do PTS cycles using
this vector due to the nature of the INTÐPEND bit (See
the EPA section for details).

There is no PTS vector for the NMI, TRAP, or Unim-
plemented Opcode. Also the PTS will not function
while in Idle.

2.1 PTS Execution

As in normal software interrupt response, the current
instruction is completed before the PTS interrupt cycle
executes. The internal priority handler, handles the re-
quests based on their priority. Next the PTS vector is
read from the vector table to get the address of the PTS
Control Block (PTSCB).

As with any instruction there are opcodes and oper-
ands. The PTSCB is no exception. It defines the ‘‘in-
struction’’ to execute when an interrupt request comes
in. The first word is the ‘‘opcode’’. In some PTS modes
the whole word is used, and in others it only uses the
high byte of the word. (see individual PTS modes for
details). The next three words are the operands of the
PTS interrupt cycle.

If the 8XC196KR device is running from external mem-
ory, this interrupt vector fetch may be the only evidence
that a PTS cycle has executed.

The CPU executes the proper PTS instruction based on
the contents of the PTS Control Block (Moving data
from one location to another, internal or external - do-
ing the special PWM / PWM toggle - or A/D scan
modes).

Instead the PTS executes a single microcoded instruc-
tion that resides in Register RAM (locations 0000H to
01FFH). Code RAM can not be used for PTS control
blocks.

The PTSCB is a set of registers that defines how the
PTS cycle is to be performed.

This PTS control block or RAM registers are al-
ways on QUAD word boundaries (address e

0000000xxxxxx000). The assembler will not give an er-
ror message if this QUAD word boundary rule is violat-
ed. If the PTS vector points to a non-QUAD word bound-
ary, upon execution of this PTS cycle, the CPU will
round down to the nearest QUAD word boundary.

Number Source
Vector

Priority
Location

PTS15 NMI - RESERVED ÐÐÐ

INT15 Non Maskable Interrupt 203EH 30

PTS14 EXTINT 205CH 29

PTS13 reserved 205AH 28

PTS12 RI 2058H 27

PTS11 TI 2056H 26

PTS10 XFR1 2054H 25

PTS09 XFR0 2052H 24

PTS08 CBF 2050H 23

PTS07 IBF 204EH 22

PTS06 OBE 204CH 21

PTS05 A/D Done 204AH 20

PTS04 EPAINT0 2048H 19

PTS03 EPAINT1 2046H 18

PTS02 EPAINT2 2044H 17

PTS01 EPAINT3 2042H 16

PTS00 EPAINTX (RESERVED) 2040H 15

INT14 EXTINT Pin 203CH 14

INT13 RESERVED 203AH 13

INT12 Receive SIO Interrupt 2038H 12

INT11 Transmit SIO Interrupt 2036H 11

INT10 SSIO channel 1 transfer 2034H 10

INT09 SSIO channel 0 transfer 2032H 9

INT08 Command Buffer Full SLP 2030H 8

SPECIAL Illegal Opcode 2012H N/A

SPECIAL TRAP instruction 2010H N/A

INT07 Input Buffer Full 200EH 7

INT06 Output Buffer Empty 200CH 6

INT05 A/D Complete 200AH 5

INT04 EPAINT0 2008H 4

INT03 EPAINT1 2006H 3

INT02 EPAINT2 2004H 2

INT01 EPAINT3 2002H 1

INT00 EPAINTX 2000H 0

Figure 2-1. 8XC196KR Interrupt Priorities

15

AP-445

UNUSED UNUSED UNUSED UNUSED CONST2(HI)

UNUSED PTSÐBURST UNUSED UNUSED CONST2(LO) (OPERAND Ý3

PTSÐDEST(HI) PTSÐDEST(HI) REG (HI) CONST1(HI) CONST1(HI)

PTSÐDEST(LO) PTSÐDEST(LO) REG (LO) CONST1(LO) CONST1(LO) (OPERAND Ý2

PTSÐSOURCE(HI) PTSÐSOURCE(HI) S/D (HI) PTSÐSOURCE(HI) PTSÐSOURCE(HI)

PTSÐSOURCE(LO) PTSÐSOURCE(LO) S/D (LO) PTSÐSOURCE(LO) PTSÐSOURCE(LO) (OPERAND Ý1

PTSÐCONTROL PTSÐCONTROL PTSÐCONTROL PTSÐCONTR OL PTSÐCONTROL

PTSVECx PTSCOUNT PTSCOUNT PTSCOUNT UNUSED UNUSED (OPCODE

Single Transfer Block Transfer A/D Mode PWM Mode PWM Toggle

Figure 2-2. PTS Control Blocks (PTSCB)

Figure 2-2 shows the 5 PTS modes available on the
8XC196KR devices. The bytes in the PTSCB labeled
‘‘UNUSED’’ can be used by the users’ program as reg-
ister RAM space. The PTS does not require informa-
tion from these UNUSED locations and the data in the
UNUSED locations will not be altered in any way.

2.2 PTS Modes

The PTSCB defines the mode or type of PTS cycle to
perform when the interrupt request comes in. Five
modes are provided on the 8XC196KR: a Single Trans-
fer Mode, a Block Transfer Mode, an A/D Scan Mode,
and two PWM Modes.

Any of these modes can be used for ANY interrupt
source associated with the PTS vectors (except
EPAINTx). ie: The A/D Scan was specifically de-
signed to function with the A/D peripheral, but if the
user can think of an application where the A/D scan
mode would be used with the SIO peripheral, or any
other peripheral it can be done.

2.2.1 SINGLE TRANSFER MODE

The Single Transfer Mode of PTS cycle can transfer
data from any address to any other address in memory.
The data can be a word or a byte, and the source and/
or destination pointers can be optionally incremented.

This PTS mode uses six bytes out of the eight byte in
the PTS Control Block. The other 2 bytes can be used as
regular scratch pad register. The PTS cycle has NO EF-
FECT on these two registers.

Below is the PTS Control Byte description for the Sin-
gle Transfer Mode.

PTSÐCONTROL

7 6 5 4 3 2 1 0

M2 M1 M0 B/W SU DU SI DI

1 0 0 X X X X X

M0

M1 100 PTS Single Transfer Mode Select Bits

M2(
B/W Byte (1)/Word (0) Transfer

SU Update PTSÐSOURCE at the end-of-PTS

DU Update PTSÐDEST at the end-of-PTS

SI PTSÐSOURCE auto increment

DI PTSÐDEST auto increment

Figure 2-3. PTS Control Single Transfer

The PTS Vector points to the first byte in the block.
That byte is the COUNT register. The COUNT
(PTSÐCOUNT) holds the number of PTS cycles to be
performed before a normal software interrupt is called.

The PTSÐCOUNT register contains a value that is
decremented at the end of the PTS cycle. When equal
to zero the PTSÐSELECT bit is cleared and the
PTSÐSRV bit is set. This causes a normal software
interrupt routine to execute following the last PTS cy-
cle.

The next byte (PTS Vector a 1) contains the PTS Con-
trol (PTSÐCONTROL). This byte is present for all
modes of operation. It defines the PTS mode, whether
the PTS cycle is a word or byte transfer, and if the
source and/or destination pointers should be incre-
mented and/or updated during and at the end of the
PTS cycle.

Figure 2-3 is an illustration of the PTSÐCONTROL
register for the Single Transfer Mode.

16

AP-445

Notice that there is a bit for UPDATE and a bit for
INCREMENT. Typically these are used in the Block
Transfer Mode. The source and/or destination pointer
is incremented if the bit is set. This increment happens
after the PTS transfers the single byte or word to the
destination pointer address.

The UPDATE bit in the control byte is set if the newly
formed address (created by the increment function) is
to be placed in the PTS control block source and desti-
nation pointer words.

In the Single transfer mode it makes no sense to incre-
ment without updating the pointers, or vice versa.

The Next word in the PTSCB is a Source Pointer. This
word points to a 16-bit address (anywhere in memory).
It can be an SFR location, or point to off chip memory.

If the PTS cycle directs data moves to read or write to
external memory, an external bus cycle will be evident
externally. If the PTS cycle is directed internally, no
external evidence, other than the PTS vector fetch.

The last used word in the PTSCB is the Destination
Pointer. It too points to ANYWHERE in the 64K ad-
dress space.

2.2.2 SINGLE TRANSFER MODE EXAMPLE

Suppose that there is a 30 character message that needs
to be transmitted out the Serial I/O port. The PTS can
be setup to execute every time a transmit (TI) interrupt
is requested.

The program would setup the serial port according to
the application. The PTS vector at location 2056H
would point to a QUAD word in the register RAM (IE:
01F8H) containing the PTSCB. The Source pointer in
the PTSCB would point to the beginning message byte
plus one (the first byte is sent manually). The Destina-
tion pointer in the PTSCB would point to the SBUFÐ
TX special function register (location 1FBAH).

The PTSÐCOUNT would equal the number of byte to
be transmitted minus one (the one that is send manual-
ly to start the SIO going).

The PTSÐCONTROL is set for ‘‘Single transfer
mode’’, Byte, Source is incremented and updated, and
the destination is NOT increment or updated. (i.e.,
PTSÐCTRL e 10011010B).

PTSÐCOUNT e (30 b 1) e 29
PTSÐCONTROL e 9AH
PTSÐSOURCE e Buffer a 1
PTSÐDEST e SBUFÐTX (1FBAh)

The main line program set up the PTS, Port 2, INTÐ
MASK1 bit for the TI interrupt, and the PTSÐSE-
LECT bit for the TI interrupt is also set. Lastly the
Interrupts and PTS Interrupts are enabled through the
EI and EPTS instructions.

To get the ball rolling the first character is sent to the
SIO (SFR register SBUFÐTX). When the first charac-
ter is sent over the serial port, the TI interrupt requests
a PTS cycle. The PTS cycle will read the next byte from
the message buffer and write it to the SBUFÐTX regis-
ter. The Source pointer is incremented to point to the
next byte of the message.

This continues until the PTSÐCOUNT is decremented
to zero. When this happens, the PTSÐSELECT bit is
reset (‘‘0’’), and the PTSÐSRV bit is set. This indicates
to the core that all the PTS cycles have been serviced
and need to be setup again. As soon as the PTSÐSRV
bit is set a normal software interrupt service routine for
the TI interrupt is executed (depending on the interrupt
priorities and pending interrupts).

This example is shown below.

2.2.3 BLOCK TRANSFER MODE

The block transfer mode is very similar to the single
transfer mode. It too transfers data from memory to
memory on interrupt requests. The difference is the
number of transfers performed for each interrupt re-
quest.

The block transfer mode is able to transfer upto 32
bytes or words for each interrupt request. Since the PTS
cycle cannot be interrupted, it is possible to have long
latency times when using the block transfer mode. For
example: if a block transfer mode is transferring 32
words from an external memory location to another ex-
ternal memory location, the latency could be as much as
500 to 600 states times.

Like the single transfer mode, the block transfer mode
has a PTSÐCOUNT register (works identical to the
single transfer mode).

PTSÐSOURCE and PTSÐDEST pointers that point
to the source and destination addresses for the transfer.
And a PTSÐCTRL that identifies the PTS mode,
word/byte, increment and/or update pointer bits.

An additional byte (PTSÐBURST) contains the num-
ber of transfers to perform for each interrupt request.
The maximum number of transfers per interrupt re-
quest is 32.

17

AP-445

270873–16

Program 1a. Send 30 bytes over the SIO using the PTS in Single Xfer Mode

18

AP-445

270873–17

Program 1b. Send 30 bytes over the SIO using the PTS in Single Xfer Mode

PTSÐCONTROL

7 6 5 4 3 2 1 0

M2 M1 M0 B/W SU DU SI DI

0 0 0 X X X X X

M0

M1 000 PTS Block Transfer Mode Select Bits

M2(
B/W Byte (1)/Word (0) Transfer

SU Update PTSÐSOURCE at the end-of-PTS

DU Update PTSÐDEST at the end-of-PTS

SI PTSÐSOURCE auto increment

DI PTSÐDEST auto increment

Figure 2-4. PTS Control Block Transfer

2.2.4 BLOCK TRANSFER MODE EXAMPLE

Suppose that each time an EXTINT rising edge inter-
rupt happens, a set of 8 word registers is to be initial-
ized with data from an EPROM table.

The code would initialize the EXTINT pin as special
function/input, setup the PTS Control Block, and set
the INTÐMASK1, PTSÐSELECT, EI, and EPTS
bits to perform a PTS cycle for each EXTINT request.

The PTS Control Block would be as follows:

The PTSÐBURST equals 8 (for the 8 word registers
that need to be initialized each EXTINT request), The
PTSÐCOUNT is set to the number of times before

a software interrupt service routine would occur, in this
case: 5 (there are 5 different tables in EPROM to be
loaded into the same set of registers). The PTSÐ
SOURCE contains the address of the first word
EPROM location to be read, The PTSÐDEST con-
tains the address of the first word register to be initial-
ized.

The PTSÐCTRL byte contains ‘‘00001011’’. With this
control, the block transfer mode is selected, it is set to
transfer WORDs instead of bytes, the source pointer is
both incremented and updated, while the destination
pointer is only incremented not updated.

When the EXTINT request comes in, the PTS will
transfer data from the EPROM table of 8 words to the
8 word register. Between each transfer, both the source
and destination pointers are incremented.

When the PTS block transfer mode is complete, the
PTSÐCOUNT is decremented and the new source ad-
dress created by the PTS is placed in the PTSÐ
SOURCE pointer (updated) and is pointing to:
(EPROM address a 8). But, the destination address
formed by the PTS is NOT placed in the PTSÐDEST
location. The PTSÐDEST pointer remains pointing at
the first word of the 8 registers.

When the next EXTINT request comes in, the next
block of 8 words from the EPROM table is written to
the 8 word registers.

The coded example is shown on the following page.

19

AP-445

270873–18

Program 2a. Using the EXTINT with the PTS Block Transfer Mode

20

AP-445

270873–19

Program 2b. Using the EXTINT with the PTS Block Transfer Mode

21

AP-445

2.2.5 A/D SCAN MODE, PWM MODE AND PWM
TOGGLE MODE

There are three other special modes of the PTS. Each
are designed to work with specific peripherals on the
8XC196KR devices, but can be used with any interrupt
source in the PTSÐSELECT (except EPAINTx).

Each of these modes: A/D Scan Mode, PWM Toggle
Mode and PWM Mode will be described later in this
document. The A/D Scan Mode will be described in
the A/D section and the PWM Toggle and PWM
Modes in the EPA section.

2.3 PTS Latency Times

Since the PTS is simply an interrupt routine handled in
microcode, it too has latency associated with its execu-
tion. As with normal software interrupts, the PTS has
to wait until the current instruction has been processed
before executing. The longest latency comes in within 4
states of the next instruction to be executed and the
next instruction is a NORML (assuming that the PTS
is enabled, and no non-interruptable block transfer PTS
or BMOV instruction is to be executed).

That latency time is 43 state times.

The PTS cycle will be performed following the
NORML instruction. Documented in Figure 2- 5 is the
amount of states required to perform the PTS cycle.
This time INCLUDES the vector to the PTS Control
Block.

2.4 Top 5 Issues with PTS
(1) Make sure that the PTS control block is on QUAD

word boundaries.

(2) The PTS can not be used with the EPAINTx inter-
rupt vector.

(3) The PTS control block does not use windows (16 bit
addresses only).

(4) Setting up the PTS:

1. Initialize PTS vector

2. Initialize PTS Control Block

3. Set PTSÐSELECT bit

4. Enable PTS

(5) Beware of any anomolies on A-step silicon (Read
8XC196KR Erratas Carefully).

270873–2

Figure 2-5. PTS Interrupt Response Time

22

AP-445

270873–3

NOTE:
Q1, Q2 and Q3 are ESD Protection Devices

Figure 3-1. Input Port 0 Structure

3.0 UNDERSTANDING THE PORTS

The 87C196KR/KQ/JR/JQ devices all have bidirec-
tional ports that double as special function peripheral
ports (EPA, SIO, SSIO, A/D, etc.). When the device is
reset, most of these ports (P2.7 is an exception) are
configured as Low Speed I/O, Open Drain output, with
a weak pull up. In order to use these ports as their
special function, they MUST be configured.

All the ports (except Port 0) have the same internal
design. Some of the signals that drive the port cell are
different. Below is a discussion about configuring and
using these ports as either LSIO or Special Function
Peripheral.

3.1 Port 0

The analog input pins on the 8XC196KR device are
also called the Port 0 pins. These pins are input only.
The input structure is shown in Figure 3-1.

These port pins are input only and do not need to be
configured if using them as analog input pins or digital
inputs.

The input pins are sampled on Phase 1 and read into
the bus on Phase 2. They have internal voltage clamp-
ing devices (ESD) as well as a 150 Ohm series poly
resister. (See Figure 3-1).

Because of the way the multiplexer is designed (for
minimum A/D errors), the maximum input current on
any analog input is 1 mA. With this spec the A/D will
yield an additional error on adjacent channels. Exam-
ple: Force 1mA on channel 4; Channels 3 and 5 will
have additional LSB errors.

Digital inputs are read through the P0PIN register
(BYTE location 1FDAH). The A/D section of this
document discusses the special function A/D peripher-
al.

This port should be straight forward, as it exists on all
prior MCSÉ-96 devices.

23

AP-445

270873–4

* Q2 and Q3 and 150 Ohms Poly Resistor is for Input Protection.

Figure 3-2. Ports 1, 2, 5 & 6 (and 3 / 4 - see notes)

3.2 Port 1 / 2 / 6

These port pins are much different from the ‘‘quasi-bi-
directional’’ ports seen on prior MCSÉ-96 devices.
These are NOT ‘‘quasi-bidirectional’’ port pins. They
do however, have some traits of quasi-bidirectional.
(See Figure 3-2).

These pins have Schmitt trigger CHMOS inputs (with
about 100mV of hysteresis and a VIL e 0.3VCC and
VIH e 0.7VCC) and CHMOS Outputs configurable as
Open Drain or Push/Pull.

After the FALLING edge of RESET the signal PPU is
active. The duration of the PPU is controlled by an R-
C network that varies in width for different tempera-
tures and process files, but it is at least 100 nS long. The
transistor associated with the PPU signal is about 5-
24K Ohms (E1mA / 5V drop). This pullup is used to
charge pin loads before coming out of reset.

The active low RESET signal, will activate the WKPU
signal. This signal stays active till the user program
writes to the PxSSEL register associated with each pin
(‘‘x’’ stands for 1, 2, or 6).

The E150K X pullup that was present on the quasi-bi-
directional ports is also present on the KR ports, but it
can ONLY be turned off after RESET by writing to the
PxSSEL register. The write to the PxSSEL register does
the actual turning off of the WKPU signal, the data
written makes no difference. Subsequent writes to the
PxSSEL have no affect on the WKPU signal. On the
next RESET low signal the WKPU signal will be
turned on again.

This also means that the 1 to 0 input switching currents
are at their worst case condition (50uA max) when the
WKPU signal is active. If the pullup is turned off, there
basically is NO/Little switching current.

24

AP-445

PORT 1, 2, and 6 Truth Table

PxIO 0 0 1 1 0 0 1 1

PxREG 0 1 0 1 X X X X

PxSFIO X X X X 0 1 0 1

PxSSEL 0 0 0 0 1 1 1 1

QU off on off off off on off off

QD on off on off on off on off

PxPIN Low High Low HZ* Low High Low HZ

Port Config. Push/Pull Open Drain Push/Pull Open Drain

Port Function LSIO Special Function

* During RESET and until first write to PxSSEL, WKPU is active.

Figure 3-3. Port 1, 2, and 6 Truth Table

The combinational logic is used to define the output.
After writing to the PxREG register and the PxIO reg-
ister, the port is configured as either PUSH/PULL or
OPEN DRAIN (Provided the internal weak pullup was
turned off by writing to the PxSSEL register). Figure 3-
3 is a truth table for the combinational logic.

The PxSFIO register is an internal register that the spe-
cial function peripheral writes to control the port. It is
not visible to the core or the user. It’s contents are seen
at the port pin if the port is configured for special func-
tion (PxSSEL e ‘‘1’’) and output (Push/Pull or Open
Drain).

After RESET the PxIO register is e ‘‘FFH’’ (Open
Drain, Input). The PxREG is set to a ‘‘FFH’’ and the
PxSSEL e LSIO. Even though the user accepts this as
the port conditions, it is recommended that he at least
configure the PxSSEL register after RESET in order to
turn off the WKPU signal.

For example: If PORT 1 is configured as Low Speed
Input port; write to the P1REG register (‘‘FFH’’), then
write the P1IO register (‘‘FFH’’ for open drain, Input),
then finally write to the P1SSEL register (‘‘00H’’ to
select LSIO, and turn off internal WKPU signal).

Figure 3-4 is a list of all the special function registers
associated with ports 0, 1, 2, 3, 4, and 6 with their
respective absolute locations. These registers can be
‘‘windowed’’ via the WSR register in the core.

SFR Location RESET Value

POPIN 1FDAH XXH

P3PIN 1FFEH XXH

P3REG 1FFCH 0FFH

P4PIN 1FFFH XXH

P4REG 1FFDH 0FFH

P1PIN 1FD6H XXH

P1REG 1FD4H 0FFH

P1IO 1FD2H 0FFH

P1SSEL 1FD0H 00H

P2PIN 1FCFH 1XXXXXXXB

P2REG 1FCDH 7FH

P2IO 1FCBH 7FH

P2SSEL 1FC9H 80H

P6PIN 1FD7H XXH

P6REG 1FD5H 0FFH

P6IO 1FD3H 0FFH

P6SSEL 1FD1H 00H

P5PIN 1FF7H 1XXXXXXXB

P5REG 1FF5H 0FFH

P5IO 1FF3H 0FFH

P5SSEL 1FF1H 80H

Figure 3-4. Port Reset Values

25

AP-445

3.3 Port 3 / 4

On past MCSÉ-96 devices, these ports have been open-
drain. This is still true for the KR device ports 3 and 4.
They are the Address and Data bus as well as open
drain input/output port pins.

The structure of this port is similar in layout to the
structure of the other ports 1, 2, and 6. The differences
lie in the inputs to the port circuitry (OE, PPU and
WKPU). The ports (3 / 4) have a PxREG and a PxPIN
SFR register (see Figure 4 for absolute locations), but it
does not have a PxSSEL or a PxIO SFR register. This
means that the ports CANNOT be structured as
PUSH/PULL or open drain. The circuit is hard wired
to configure these pins as OPEN DRAIN only.

As stated in the Port 1/2 and 6 section, the WKPU
signal gets turned off by the write to the PxSSEL regis-
ter. These ports don’t have a PxSSEL register, therefore
the WKPU signal is connected directly to the RESET
signal. This means that while the RESET is active (low)
the WKPU is also active. The WKPU signal is turned
off when the RESETÝ goes inactive.

The PPU signal that is usually connected to an R-C
circuit and triggered by RESET FALLING edge is
NOT connected. The PPU signal is ALWAYS inactive.

The last thing to note about PORT 3 and 4 hardware is
the OE signal. Since there is no PxIO bit associated
with each pin of these ports, the OE signal is always an
open drain configuration. (On ports 1/2/5/6 the OE is:
PxREG AND PxIO, on ports 3/4 the OE is: PxREG
AND PxIO with PxIO hardwired to a ‘‘1’’ only -
OPEN DRAIN.

Port 3 has an alternative function of Slave Port. Later
revisions of this document will include discussions of
this function.

It is also possible that future KX core devices will have
push/pull capability on ports 3 and 4, when used as
ports (not as system bus pins).

3.4 Port 5

The structure for PORT 5 is very similar to that of
Ports 1 / 2 and 6. It too has Schmitt trigger CHMOS
inputs and CHMOS Outputs (See previous sub-sec-
tions). However, some of the input circuitry has been
optimized for high speed input capabilities.

When the port is configured as a system function, the
P5IO register has NO affect on configuring the port.

For example, if the P5.0 pin (ALE/ADV) is configured
as a system function (ALE/ADV), the port will be con-
figured as Push/Pull regardless of the value in the
P5IO register. This is true for all of port 5 pins. The
system function defines whether the port is push/pull
output or an input pin. (Open drain output is not a
feature of the system functions).

The RD (P5.3) is also special in that the QD and QU
transistors are stronger for higher loading capabilities.

WKPU and PPU signals are also present on port 5 and
need to be dealt with accordingly by writing to
P5SSEL) register to turn off the 150K Ohm reset pull-
up.

After RESET the port 5 pins are configured as LSIO. If
the EA is strapped to run from external memory, the
ALE/ADV (P5.0) and the RD (P5.3) are configured as
system functions.

Configuring these pins as system functions will allow
the device to read the CCB0 (2018H) and CCB1
(201AH) from the external memory device.

The rest of port 5 will either be configured by the soft-
ware program or by the CCB0/CCB1 reads.

For example: The READY (P5.6) pin comes out of
reset as a LSIO not as READY. If the CCB0 and CCB1
data directs the 8XC196KR device to use the READY
pin to control wait states and the IRC field is e ‘‘111’’
(max wait states are defined by ready), the device could
lock up if the READY pin were to continue being an
LSIO pin.

In this case the internal logic would re-configure the
READY pin as a system (READY) function. Hence,
no lock up condition.

If other pins on Port 5 are used as system functions, the
PxSSEL register must be written. This will turn off the
WKPU signal and configure the port as either LSIO or
system function.

Note that the SLPINT (P5.4) has a third function. If
this pin is driven to a logical low on the rising edge of
RESET, the KR device will enter the ONCE (ON-Cir-
cuit Emulation) test mode. This mode tri-states all de-
vice pins except power pins and XTAL1 / XTAL2.

For the above reason, it is recommended that the P5.4
(SLPINT) pin be used as an OUTPUT ONLY pin. The
internal weak pullup will insure that this pin is high
prior to RESET rising edge is not loaded.

26

AP-445

PORT 5 Truth Table

PxIO 0 0 1 1 X X

PxREG 0 1 0 1 X X

PxSFIO X X X X 0 1

PxSSEL 0 0 0 0 1 1

QU off on off off off on

QD on off on off on off

PxPIN Low High Low HZ* Low HZ

Port Config. Push/Pull Open Drain Push/Pull

Port Function LSIO System

* During RESET and until first write to PxSSEL, WKPU is active.

Figure 3-5. Port 5 Truth Table

3.5 Top 5 Issues With the Ports
(1) Setup the ports to match the applications needs:

1. Write to PxREG

2. Write to PxIO

3. Write to PxSSEL

(2) P2.2/EXTINT, The external interrupt is a special
port function. Therefore, EXTINT function is se-
lected by setting PxSSEL bit 2.

(3) If the EA is strapped to run from external memory
(low), the ALE and RD pins are hardwired to sys-
tem functions.

(4) The 150K Ohms weak pullup resister is turned on
by the RESET low signal, and turned off by the first
write to the PxSSEL register.

(5) Beware of the SLPINT/P5.4 being driven low on
the rising edge of RESET (this will enter ONCE
mode).

4.0 SERIAL I/O PORT (SIO PORT)

The serial port on the 8XC196KR has one synchronous
mode and three asynchronous modes. Both the receiver
and the transmitter are double buffered. This allows for
the reception of a second byte before the first byte has
been read, and uninterrupted transmissions, respective-
ly. The synchronous mode (MODE 0) is often used for
shift register based I/O expansion. Mode 1 is an 8 bit
asynchronous mode used for normal communications
like RS-232C, while modes 2 and 3 are 9 bit data asyn-
chronous modes which are specially designed for multi-
processor communications.

The serial port on the 8XC196KR is capable of sending
two distinct interrupts to the core; a receive (RI), and a
transmit (TI) interrupt. There are separate mask bits
for these two sources in the INTÐMASK1 register

which is located at 13H. These mask bits can be used to
disable (‘‘0’’) and enable (‘‘1’’) interrupts to the core,
but the RI and TI bits of the SPÐSTATUS register
will be set regardless of the setting of the mask bits.
There are separate RI and TI vectors which are located
at 2038h and 2036h respectively.

4.1 Serial Port SFRs

Control and status of the serial port is accomplished by
using five dedicated registers: the Serial Port Control
register (SPÐCONTROL) at location 1FBBh, the Seri-
al Port Status register (SPÐSTATUS) at 1FB9h, the
Serial Port Baud Rate Register (SPÐBAUD) at loca-
tion 1FBCh, the Serial Port Transmit Buffer Register
(SBUFÐTX) at location 1FBAh, and the Serial Port
Receive Buffer Register (SBUFÐRX) at location
1FB8h. These are all byte addressable registers except
SPÐBAUD. It is word addressable. A map of these
registers is shown below in Figures 4- 1, 4-2, and 4-3.

SPÐCONTROL 1FBBH:byte

7 6 5 4 3 2 1 0

X X X TB8 REN PEN M2 M1

TB8 9th Bit for transmission

REN Enables the receiver

PEN Enables Parity (even)

M2,M1- 00 Mode 0 / Sync

01 Mode 1 / Async (std)

10 Mode 2 / Async (9th bit enable)

11 Mode 3 / Async (9th bit data)

Figure 4-1. SPÐCONTROL Register

27

AP-445

4.1.1 SPÐCONTROL

The SPÐCONTROL register controls various aspects
of the serial port’s operation. The lower two bits (bit 1
and bit 0) selected which mode the serial port is in:
Mode 0 e 00, Mode 1 e 01, Mode 2 e 10 and Mode
3 e 11.

Bit 2 of SPÐCONTROL controls whether parity is be-
ing used. When it is high (1), even parity for mode 1 or
mode 3 is selected. NOTE: Parity cannot be enabled for
mode 2.

Bit 3 is used to enable the receiver (RXD to SBUFÐ
RX).

Bit 4 is used to determine the setting of the ninth data
bit in modes 2 and 3 during transmissions. It is cleared
after each transmission and must be reset for each data
byte whose 9th bit is to be set.

Bits 7, 6, and 5 of the SPÐCONTROL register is re-
served and should be written as zeros for compatibility
with future products.

4.1.2 SPÐSTATUS

The SPÐSTATUS register contains status information
about the serial port. It is very important to keep in
mind that when this register is read, the RPE, TI, RI,
OE, and FE bits will be cleared. This mandates the use
of a shadow register (see example program 3) if more
than one bit is to be tested.

SPÐSTATUS 1FB9H:byte

7 6 5 4 3 2 1 0

RB8/RPE RI TI FE TXE OE X X

RB8 Set if 9th bit set (no parity)

RPE Set if parity enabled and parity error

RI Set after last data bit received

TI Set at End of last data bit sent

FE Set if no STOP bit found

TXE Set when byte is in SBUFÐTX

OE Set if overrun error occurred

Figure 4-2. SPÐSTATUS Register

Bit 2 is the Overflow Error bit, and is set when a new
byte is loaded into SBUFÐRX (by the receiver) before
the previous byte has been read. This alerts the user

that some information was lost because it wasn’t read in
time. In this case, SBUFÐRX will contain the last byte
received. The old data is lost.

The Transmitter Empty (TXE) bit (bit 3) is set if the
transmit buffer is empty and SBUFÐTX register is
able to take up to two bytes. TXE will be cleared as
soon as the first byte is written to SBUFÐTX register.
Only one byte may be written to SBUFÐTX if TI
alone is set. The TI bit (bit 5) is set as soon as transmis-
sion of the last data bit is complete and so indicates that
the transmitter is ready to take another byte.

Bit 4 is the framing error bit. It gets set when a valid
stop bit can not be found for a received byte.

Note: The 8XC196KR A-step device will not generate a
framing error if the last data bit sent is a 1. The part
needs to see a low to high transition in order to detect the
stop bit. This is fixed on later steppings.

The RI bit (bit 6) is set after the last data bit is sampled.
This happens approximately in the middle of the bit
time. It should be noted that if the SIO port is run in
loop-back mode (with the transmitter and receiver tied
together), the transmit flag (TI) will be set approxi-
mately 1 bit time before the receive interrupt (RI) flag
is set.

The Receive Bit 8 (RB8, bit 7) is used when the port is
configured in modes 2 or 3. This bit is set when the 8th
data bit is set (counting from 0). The other function of
this bit is the receive parity error bit (RPE). This will
be set if an even parity error was detected by the receiv-
er.

Bits 1 and 0 of the SPÐSTATUS register are reserved.
Any data in these bits is to be ignored.

4.2 Baud Rate Generation

The SIO has a dedicated Baud Rate Generator clock.
Baud rates for all modes are determined by the contents
of a word register (SPÐBAUD) at 1FBCh. While this
is a 16 bit register, only the lower 15 bits actually deter-
mine the baud rate. The MSB selects one of two sources
for the input frequency to the baud rate generator.
When it is set to a 1, the frequency on the XTAL1 pin
is selected as a source to the baud rate clock. If it is 0,
the frequency on the T1CLK pin (P6.2) is used. SPÐ
BAUD is a write only register; it will read all 1’s. It can
be updated via word writes to locations 1FBCh.

28

AP-445

The value to be placed in SPÐBAUD for a given baud
rate depends on both the mode and clock selected and
can be calculated as follows:

270873–51

Figure 4-3. SPÐBaud Register Equations

The equations used are different for both the synchro-
nous and asynchronous modes, and for the internal
(XTAL1) or external (T1CLK) clocks. The maximum
frequency on the T1CLK pin is 4MHz. The T1CLK
input is NOT prescaled.

The following table lists various baud rates, the value to
be programmed into SPÐBAUD, and the error associ-
ated with the resulting baud rate.

Baud SPÐBAUD Value %

Rate Mode 0 Others Errors

9600 8340H 8067H 0.16%

4800 8682H 80CFH 0.16%

2400 8D04H 81A0H 0.16%

1200 9A0AH 8340H 0.04%

300 E82BH 8D04H 0.01%

Figure 4-4. Common Baud Rate Values

4.3 SIO Port Configuration

Before the SIO unit can be used, two port 2 I/O pins
(P2.0 and P2.1) MUST be configured. This is handled
by writing to the P2SSEL register (1FC9h), the P2IO
register (1FCBh), and the P2REG (1FCDh). Note that
these are byte registers (See port section for details).

Setting the P2SSEL.0 bit to a 1 tells the port logic that
pin P2.0 is to be controlled using an internal special
function source and not act as a general purpose I/O
port pin. Clearing P2IO.0 causes pin 0 to become a
push/pull output. Similarly, if the RXD pin is to be
used as an input/output, bit 1 of P2SSEL, P2IO, and
P2REG must all be set to 1. Writing a 1 to P2IO.1
configures pin P2.1 to become an input/open drain out-
put. Forcing a 1 in P2REG.1 is needed to insure that
the pull down associated with that pin is turned off.
Thus, RXD may be used, in mode 0, as both an input
and an output with an external pullup The following
code segment demonstrates how to set up port 2 for use
with SIO.

270873–20

29

AP-445

270873–5

Figure 4-5. Serial Port Frames, Mode 1, 2 and 3

4.4 Mode 0: Synchronous
Communications

Mode 0 is a synchronous mode which is commonly
used for shift register based I/O expansion. In this
mode the TXD pin outputs the clock (a set of 8 pulses)
and the RXD pin either transmits or receives the data.
Data is transmitted/received 8 bits at a time with the
LSB first.

Mode 0 can be entered by first setting up port 2 as
described above, and then setting up the SIO by writing
the desired baud rate to the SPÐBAUD register and
writing the proper control value to the SPÐCON-
TROL register. P2.1 must have an external pullup at-
tached as it is configured as an input/open-drain out-
put.

Reception starts when a 1 is written to the REN (Re-
ceiver Enable) bit in the serial port control (SPÐCON-
TROL) register. If REN is already high, clearing the
RI flag will start a reception. After the reception is
complete, the RI flag will be set and an RI interrupt
will be generated if enabled. In order to avoid a partial
unwanted reception, the receiver must be disabled by
clearing the REN bit in the SPÐCONTROL register
before the RI bit is cleared. If the SPÐSTATUS regis-

ter is read before writing to SPÐCONTROL, RI will
automatically be cleared, thus starting a new reception.

Starting a transmission in mode 0 requires writing a
byte to SBUFÐRX register. A set of 8 pulses will be
sent out from the TXD pin, and the data will be sent
out of the RXD pin. NOTE: This is the only mode for
which RXD can be used as an output. After the data
has been shifted out, TI will be set and a TI interrupt
will be generated if enabled.

4.5 Mode 1: Standard Asynchronous
Serial I/O

Mode 1 is a standard asynchronous communications
mode. The data frame used is shown in Figure 4-5. It
consists of 10 bits; a start bit, 8 data bits, and a stop bit.
If parity is enabled (PENe1) then a parity bit is sent in
place of the last data bit. Only even parity is supported
on the 8XC196KR. Parity is also checked upon recep-
tion, and if an error is detected, RPE (Receiver Parity
Error) in SPÐSTATUS is set.

The transmit and receive functions are controlled by
separate clocks, but both clocks operate at the same
frequency. The transmit clock starts as soon as the
baud rate generator is initialized, but the receive shift
clock is reset when a 1 to 0 transition is received (sig-
naling a start bit reception).

30

AP-445

270873–21

Program 3. SIO Communication via Polling the SPÐSTATUS Bits (TI and RI)

4.5.1 SETTING UP MODE 1 OPERATION:

The following code demonstrates how to set up mode 1
with no parity at 9600 baud, assuming a 16MHz. Also,
polling the RI and TI status bits with the use of a shad-
ow register is demonstrated. It is very important to set
up port 2 properly since the serial port shares pins with
this port.

The next section of code sets up the serial port. First,
the baud rate register, SPÐBAUD is programmed. The
high bit is set, indicating that the internal clock,
XTAL1, is to be used. The control register, SPÐCON-
TROL, is set for mode 1, no parity, and the receiver is
enabled.

Reading the SPÐSTATUS register will automatically
clear various bits, so a shadow register is used because
the contents are to be checked twice (once for RI and
once for TI bits) so that they can be acted upon later.
The above program illustrates several points about us-
ing a shadow register for the SPÐSTATUS register.
First, the shadow register needs to be updated to reflect
the current status of the SPÐSTATUS register. This is
handled by ORing the shadowÐstat register with the
SPÐSTATUS register. Second, it is important to clear
the various flags in the shadowÐstat register after they
have been acted upon. This is handled by clearing the
RI bit in the shadow register after reading the data in
the buffer, and by clearing the TI bit in the shadow
register after transmitting new data.

31

AP-445

270873–22

Program 4a. Using the PTS with both the TI and RI Interrupts

4.5.2 SIO AND THE PTS

The final example in this section demonstrates the use
of interrupts and the PTS with the serial port.

In this example both the RI and TI interrupts are being
used with the PTS. Each PTS control block is pro-
grammed for the single transfer mode.

The RXD and TXD pins are strapped in loop back
mode and the message being sent out the TXD is being
received in the RXD and placed into external RAM at
location 221Dh through 231Ch.

The serial port is configured for 9600 baud using a ex-
ternal XTAL of 16 MHz. The Port 2 pins are config-
ured accordingly (TXD e push/pull, RXD e open
drain-input, and both are special function selected,
P2SSEL e 3h).

32

AP-445

270873–23

Program 4b. Using the PTS with both the TI and RI Interrupts

33

AP-445

270873–24

Program 4c. Using the PTS with the TI and RI Interrupts

34

AP-445

The PTS control blocks (both RI and TI) are initialized
and the interrupt mask and PTSÐSELECT bits are
also set.

Lastly the program sends the first byte from the buffer
to the SIO SBUF Transmit register. This starts the
transmission/reception process rolling.

The TI PTS cycle send the data out the SBUFÐTX.
The RI PTS cycle receives the byte and transfers it to
external RAM locations 221D to 231Ch.

After the PTS transfers are completed a normal soft-
ware interrupt request (for both RI and TI) is executed.
This will flag to the main line program that the PTS is
completed.

Lastly the receiver (RXD) is disabled, and the Parity
and Framing errors are checked.

4.6 Modes 2 and 3: 9 Bit
Communications Modes

Modes 2 and 3 are asynchronous 9 bit communications
modes. In mode 2, parity can NOT be enabled. Howev-
er, the 9th bit is used to determine whether or not a
receive interrupt will occur. If the 9th bit being received
is set, RI will be set and a receive interrupt will occur.
This allows for a selectable reception link.

For transmission in mode 2, the state of the 9th bit is
determined by the setting of bit 4 (TB8). If TB8 is 1, the
9th bit will be set. TB8 is cleared after each transmis-
sion and so it must be written before each (‘‘1’’) trans-
mission.

Mode 3 is similar to mode 2 except that parity can be
enabled and that the receiver will generate an interrupt
(set RI) every time a byte is received (independent of
the state of the 9th bit).

Modes 2 and 3 work very well together in a multi-proc-
essor environment. The master processor will operate
in mode 3. While the slaves will usually operate in
mode 2. When the master wants to talk to a slave, it
will first set the 9th bit high with the address byte. The
slaves (operating in mode 2) will be interrupted and the
one that is being addressed can switch to mode 3. The
two processors can then talk (with the 9th bit clear),
and the other slave processors will not be interrupted.

Setting up modes 2 and 3 is just like setting up the other
modes. Port 2 must be set up, the baud rate written,
and the control register programmed.

Below are two program segments (one for the master
and one for a slave) which demonstrate the use of these
modes.

NOTE: THE SEGMENTS ILLUSTRATED ARE
JUST THAT. THEY ASSUME THAT THE PORTS
ARE SET UP AS NEEDED.

270873–25

35

AP-445

270873–26

There are a few points which should be emphasized
about the above program segments. First, the master
always operates in mode 3. Second, the slave operates
in mode 2 while it is idle, but switches to mode 3 when
the master is talking to it. Finally, the master only sets
the 9th bit when it is sending out an address of the slave
that it wishes to communicate with. This is done so that
the other slaves will not be interrupted unless an ad-
dress is being broadcast over the serial link.

4.7 Top 5 Issues with the SIO
(1) When using the T1CLK as the clock to the serial

port, make sure that the pin (P6.2) is special select-
ed (P6SSEL bit 2 e 1).

(2) When using the RI and TI flags in the SPÐ
STATUS register, use a shadow register in RAM.

(3) Make sure that the SIO port pins are set up accord-
ing to the application:

1. Write to P2REG

2. Write to P2IO

3. Write to P2SSEL

(4) Parity is not possible with Mode 2.

(5) SBUFÐTX and SBUFÐRX registers are separate
register (unlike past 8096/80C196 devices) and are
BOTH double buffered.

5.0 SYNCHRONOUS SERIAL I/O AND
PERIPHERAL TRANSACTION
SERVER

The Synchronous Serial I/O (SSIO) unit of the
8XC196KR has two identical channels, each capable of
transmit and/or receive functions, with a shared baud
rate generator. The SSIO will provide simultaneous bi-
directional communications between synchronous seri-
al I/O devices (as between two KR processors, or other
serial peripherals). Listed below are a few of the many
modes possible with the SSIO:

Master Transceiver (half duplex mode, single
SSIO channel)

Slave Transceiver (half duplex mode, single SSIO
channel)

Dual Channel Masters with common clock (full
duplex, lock-step synchronous)

Dual Channel Slaves with common clock (full du-
plex, lock-step synchronous)

Dual Channel with different clocks (master trans-
mits clock, slave receives clock)

The two channels share a single baud bate generator. It
internally provides baud rates from 15.75K baud to 2
Meg at 16MHz. Both channels can be used with the
Peripheral Transaction Server (PTS) using the Hand-
shake mode.

Both SSIO channels have distinct interrupts to the core
(XFR0 and XFR1). Each channel has a separate mask
bit in the INTÐMASK1 register located at 13H. The
mask bits are used to enable (‘‘1’’) or disable (‘‘0’’) in-
terrupts to the core. However, the INTÐPEND1
XFR0 and XFR1 bits, will be set regardless of the set-
ting of the mask bits.

SSIO channel 0 interrupt vector through location
2032H and channel 1 through location 2034H.

36

AP-445

270873–6

Figure 5-2. SSIO Transmit/Receive Timings

5.1 SSIO Port SFRs

Control of the Baud Rate Generator is accomplished by
using the SSIOÐBAUD Register at location 1FB4H.
This register includes an enable bit (bit 7, 1eenable)
and seven bits to select a baud rate (bits 6 through 0)
from 15.75 KHz to 2 MHz using a 16 MHz crystal or
11.82 KHz to 1.5 MHz with a 12 MHz crystal. After
reset this register is cleared, resulting in the generator
being disabled with a clock value of 2 MHz (16 MHz
crystal). Each SSIO channel can be clocked from an
external source, through the SC0 or SC1 pins (slave
mode).

While writes to the SSIOÐBAUD register will enable
and set the baud rate value, reads of this register will
return the current state of the baud rate clock with bit 7
returning the clock pin current state and bits 0 to 6
returning the current down count in the generator.

Control registers SSIOÐSTCR0 or SSIOÐSTCR1 are
used to configure the two SSIO channels. The following
figure defines the functions for each bit:

SSIOÐSTCRn byte 1FB1h and 1FB3h

7 6 5 4 3 2 1 0

M/S T/R TRT THS STE ATR OUF TBS

M/S Master/Slave

T/R Transmit/Receive

TRT Transmitter/Receiver Toggle

THS Transceiver Handshake Select

STE Single Transfer Enable

ATR Auto Transfer Re-enable

OUF Overflow/Underflow Flag

TBS Transceiver Buffer Status

Figure 5-1. SSIO Control Register

Bit 7 defines the mode of the channel. A ‘‘1’’ will pro-
gram MASTER, while a ‘‘0’’ will program SLAVE.
This refers to whether the SSIO clock pin will either
transmit (master) or receive (slave) a clock.

At this point it is important to note that the SC0 and SC1
pin is fed back internally to clock the channel. Even
when in MASTER mode the clock is fed back. Because
of this, the SCx pin MUST be configured as Special
Function pins (P6SSEL bits 4 and 6 e 1). It is not
possible to shift the data out without the SCx pin selected
as special function.

Bit 6 controls whether the channel is to receive (‘‘0’’) or
transmit (‘‘1’’) data in/out of the data pin (SD0, SD1).

Bit 5 controls whether bit 6 is to be toggled to the
opposite state (‘‘1’’) after transmission or reception is
complete, or left alone (‘‘0’’). Setting bit 5 will change
the channel from an output to an input or vice versa,
after each byte reception or transmission.

Bit 4 controls whether the channel is to be used as
handshake (‘‘1’’) or as a normal shift register (‘‘0’’). See
handshake mode for details.

Bit 3 controls transmission or reception enabling. If this
bit is set (‘‘1’’) it will either transmit the data when the
SSIOÐSTBx register is loaded, or enable reception of
data in the SSIOÐSTBx register.

Bit 2 controls whether bit 3 is to automatically re-en-
abled (set) when reception or transmission is complete.
With this feature, the user need only write to the
SSIOÐSTBx register and the SSIO peripheral will
transmit immediately.

37

AP-445

The last two bits of this register are status bits. Bit 1
refers to data integrity (overflow/underflow). This bit is
initialized by the user program, and updated by the
core with each byte received or transmitted.

Bit 0 refers to the status of the SSIOÐSTBx register.
The user code MUST initialize this bit. If the channel is
a transmit channel, this bit set (1) means that the
SSIOÐSTBx register is empty and waiting for data. If
the channel is a receive channel, this bit cleared (0),
means that the SSIOÐSTBx register is empty.

Note that on RESET this register is cleared, setting the
channel into a receive, slave mode, and the status of the
SSIOÐSTBx is empty. If modified to a transmit, chan-
nel, make sure the user code sets (1) bit 0, indicating
that the buffer (SSIOÐSTBx) is empty.

5.2 Example 1

In this first example, the SSIO channel 0 sends data out
and that data is received on the SSIO channel 1 (loop
back mode). A Baud rate of 2 MHz is selected.

Both channels are jumpered together (clocks and data
pins). It is important to first setup the port 6 pins prior
to any SSIO transmissions or receptions.

Since Channel 0 is sending data in a master mode, SC0
(P6.4) and SD0 (P6.5) are set to be push/pull output
pins. Conversely, Channel 1 is receiving both a clock
and data and sets SC1 (P6.6) and SD1 (P6.7) as open
drain input pins.

270873–27

270873–28

Program 5. SSIO, Send One Byte

In the above example, the port pins are configured, and
the SSIO channel control registers are set to values that
would either transmit or receive information in the
SSIOÐSTBx registers.

Since only one byte is being received, only the STE bit
in the control registers were set once. The write to the
SSIOÐSTB0 register will send that byte out the SSIO
channel 0 to channel 1’s SSIOÐSTB1 register (since
the two channels are in loop back mode).

5.3 Using the PTS and Handshake
Mode

The SSIO Handshake Mode requires the output of the
clock to be defined as an open drain and used with
external pull up resisters.

The main difference between handshake and normal
clock mode is the clock edge that the data is clocked
in/out on (See Figure 5-2). In the normal mode, the
clock is low, and on the rising edge data is clocked in.
The falling edge of the clock is used to change the data.
In the handshake mode, this is inverted. The clock is
high, and on the falling edge the data is clocked in. The
rising edge is used to change the data.

If the PTS is used to transmit data, there needs to be
some signal that tells the transmitter that the receiver
has received the transmitted data. If there were no sig-
nal, the PTS would continuously send data out, regard-
less if the receiver acknowledges the information or not.

38

AP-445

For this reason, the handshake mode was implemented.
When the transmission of data is complete, the master
clock is left to float (this is why the clock MUST BE
setup as open drain output). The receiver, upon recep-
tion of the last bit, will pull its clock pin low and hold it
low until the SSIOÐSTBx register is read by the re-
ceive processors program. This acknowledges reception
of data and that the SSIOÐSTBx register is ready to
receive information.

The master SSIO channel will sense the release of the
clock line by the receiver, and start the next transmis-
sion.

270873–29

270873–30

Program 6. SSIO, Send Byte in Handshake Mode

The following example uses open drain on both data
and clock lines (only clock is required to be open drain
in order to function in the handshake mode). The two
SSIO channels are still in loop back mode.

Note that in Example 1 the push-pull and open drain
modes were used. After reviewing the code from both
Examples 1 and 2 the only difference is the set up of the
P6IO register and SSIO Control Registers 0 and 1.

5.4 SSIO and the PTS

In Example 3 the Peripheral Transaction Server (PTS)
and the SSIO moves data from the SSIO receive regis-
ter to a block of memory using the PTS. Since the PTS
is used to transmit and receive data, the handshake
mode is used. (SSIO0 and SSIO1 are in loop back
mode).

For reasons previously described, it is a good program-
ming practice to use the handshake mode when using the
PTS with the SSIO peripheral.

270873–31

39

AP-445

270873–32

270873–33

Program 7. SSIO and the PTS

In the above example several things should be noted.
Data is sent out the SSIO0 and received in SSIO1 at
50K baud.

Channel 0 is setup to transmit the first byte, then wait
for the receive channel to read the SSIOÐSTB1 to
transmit the next byte (this is accomplished through
the SSIO Handshake mode and PTS interrupts on both
XFR0 and XFR1).

The PTS is sending information from the SOURCEÐ
BYTE to the DESTÐBYTE at 50k baud.

After 255 transfers and receptions, a normal software
interrupt is generated. This software interrupts just
starts the process all over again.

The most recent data sent and received will be in
SOURCEÐBYTE and DESTÐBYTE.

One way to delay the processor from sending out an-
other byte would be to NOT use the PTS to receive the
byte. The transmit could still be used with the PTS, but
the next byte would not be sent until the first byte is
received. (Also using the handshake mode).

Using the normal software interrupts to receive the in-
formation and the PTS to send the information means
that the processor can still be left to do other processing
with higher baud rates of communication.

5.5 Top 5 Issues with the SSIO
(1) Sending Data

1. Setup Port 6

2. Set SSIOÐBAUD

3. Set Control with STE bit set

4. Send by writing to STB

40

AP-445

(2) Receiving Data

1. Setup Port 6

2. Set SSIOÐBAUD

3. Set Control with STE bit set

4. Wait for reception.

(3) Using the PTS with high baud rates will require a
great deal CPU time.

(4) Initialize both the TBS and OUF bits accordingly
when writing to the SSIOÐSTCRx registers.

(5) When using the PTS, use the Handshake Mode
only.

6.0 ANALOG TO DIGITAL
CONVERTER

The analog to digital converter on the 8XC196KR is
very versatile. It can perform an 8-bit or 10-bit conver-
sion, perform voltage threshold detection, and has two
test modes for converting on Analog GND and VREF.

There are 8 input channels which are multiplexed to
the converter. The sample and conversion times for any
channel are programmable, allowing the part to per-
form fast convertions at any frequency of operation.

The A/D has 4 dedicated SFRs which control its oper-
ation. These are the ADÐCOMMAND, ADÐTIME,
ADÐTEST, and ADÐRESULT registers, located at
1FACh, 1FAFh, 1FAEh, and 1FAAh respectively.

6.1 A/D Command Register (ADÐ
COMMAND)

Figure 6-1 shows a diagram of the ADÐCOMMAND
register. The lower three bits select the channel to be
converted. Bit 3 determines when the conversion
should start. If cleared, the conversion will be started
by the Event Processor Array (EPA), if set the conver-
sion will start within 3 state times of writing to the
ADÐCOMMAND register.

Bits 4 and 5 are the mode bits. Bit 4’s function is depen-
dant upon whether the A/D is performing a normal
conversion, or is in threshold mode. If the A/D is per-
forming a regular conversion, bit 5 should be cleared
and bit 4 will determine 8- (‘‘1’’) or 16-bit (‘‘0’’) conver-
sions.

With bit 5 set, the threshold mode is selected. Clearing
bit 4 tells the A/D to detect when the value is above the
threshold value; setting bit 4 indicates a value below the
threshold should be detected.

The upper 2 bits of the ADÐCOMMAND are re-
served and should be written as ‘‘00’’ to maintain com-
patibility with future products.

If the ADÐCOMMAND register is written while a
conversion is being performed, the old conversion will
be aborted and a new one will start. The A/D done bit
in the ADÐRESULT register will NOT be set until the
completion of the second conversion.

270873–7

Figure 6-1. ADÐCOMMAND Register

6.2 A/D Time Register (ADÐTIME)

The ADÐTIME register, shown in Figure 6-2, allows
the sample window and conversion time (per bit) to be
optimized by the user depending on the clock speed of
the ’196KR. The Sample time controls how long the
analog input voltage is connected to the sample capaci-
tor. It must be long enough to properly charge the sam-
ple capacitor, but if it is too long, the input voltage may
change and introduce error. The Conversion time de-
fines the length of time to convert one bit. It needs to be
long enough to allow the comparitor to settle, but can-
not be to long or the sample capacitor will discharge
and introduce error.

The upper 3 bits of this register program the sample
time (SAM), while the lower 5 bits program the conver-
sion time (CONV).

41

AP-445

270873–8

Figure 6-2. ADÐTIME Register

Sample time (in states) e

4*SAM a 1
Conversion time (in states) e

Ý of bits * (CONVa1) a 1.5

In order to guarantee an A/D specification of g3LSBs,
the sample time should be at least 3.5mS and the con-
version time should be at least 16.5mS. (Consult the
latest specs for the most current values.)

The ADÐTIME register could be programmed to do a
conversion in less than 4us, but the results would be
about 200mV off.

Valid ranges for the SAMple window are 1-7 and the
CONVersion timer should be between 2 and 31 inclu-
sive. This yields a valid range for the ADÐTIME regis-
ter of 22h-FFH. The ADÐTIME register should never
be written with all zeros.

Assuming that the sample time is set such that the sam-
ple capacitor charges properly. The accuracy will still
be a function of conversion time as show in Figure 6-3.
This graph was obtained by testing several (typical) de-
vices across automotive temperature range (b40§ to
a125§). Note that the conversion accuracy drops off
VERY rapidly for conversion times under 10mS.

As an example consider an 8XC196KR running at
16Mhz. This gives a state time of 125ns, which means
that to meet minimum specs on a 10-bit conversion,the
SAM should be programmed with a 7h and CONV
should be 0Dh (EDh should be placed in ADÐTIME.)

Note: When determining the sample time, it is extremely
important for the user to consider the input circuitry as-
sociated with the channel being converted. The circuitry
must be able to supply enough current to charge a 2 pF
capacitance with a 1mA leakage current in the specified
time.

270873–9

Figure 6-3. A/D Error vs. Conversion Time

6.3 A/D Test Register (ADÐTEST)

The ADÐTEST register, shown in Figure 6-4, can be
used to enable two test modes, and to modify the zero
offset of the A/D. Conversions can be performed on
either Analog Ground or VREF, to gain insight as to
the transfer function of the A/D. Small amounts of
zero offset error can be corrected by using the offset
adjustment.

For compatibility with future products, the command
register should be written to select channel 7 when per-
forming conversions on VREF or AGND.

270873–10

Figure 6-4. ADÐTEST Register

42

AP-445

Bit 0 of ADÐTEST is the test enable bit. It should be
clear to perform normal conversions on any of the eight
analog inputs, and set to perform conversions on VREF
or AGND.

Bit 1 selects between VREF (‘‘1’’) or AGND (‘‘0’’). Bits
2 and 3 control the offset adjustment as shown in Fig-
ure 6-4. Later a sample program will be presented
which demonstrates how to adjust the offset. Small
amounts of offset errors, both negative and positive,
can be adjusted through these bits. When the ADÐRE-
SULT register is read, the effected result (after offset
adjustment) will be reflected, automatically.

The upper four bits are reserved and should be written
as all 0’s.

Figure 6-6 shows a typical low temperature (b40§ C)
graph of absolute error vs input voltage. This depicts
many different types of errors inherent in the conver-
sion process. The zero offset error can be seen, about
4mV, as well as the full-scale error, about 8mV.

Another effect which generally only shows up at low
temperatues is a ‘‘bowing’’ S curve that can be seen
across the entire transfer function. This is caused by
small amounts of noise accumulated across the entire
resister ladder.

At higher temperatures, bowing dissappears, leaving
only the stair-step or saw tooth effect. This is usually
caused by errors in the resister ladder when the values
‘‘foldback’’ to conserve space.

6.4 A/D Result Register (ADÐ
RESULT)

The last SFR is the ADÐRESULT register shown in
Figure 6.5. The lower three bits in this word register
contain the channel number that was converted. Bit 3 is
the BUSY bit and is set approximately 8 state times
after a conversion is started. Bits 4 and 5 are reserved
(ignore read value).

270873–11

Figure 6-5. ADÐRESULT Register

The remaining 10 MSB bits contain the result of the
conversion. If an 8-bit conversion was performed, the
result will be stored in the MSBs (bits 8-15) of ADÐ
RESULT. The lower two bits (bits 6 and 7) are unde-
fined.

In threshold detection mode, the upper 10-bits of ADÐ
RESULT should be programmed with an 10-bit value
which serves as the threshold. Once threshold mode is
entered, continuous conversions are performed on the
selected channel until the desired threshold crossing oc-
curs (5mV resolution). Conversions will then stop and
an interrupt pending will be issued.

43

AP-445

270873–12

Figure 6-6. A Typical A/D Transfer Function Error, with Offset and Full Scale Errors

44

AP-445

270873–34

Figure 6-7. Program Segment to Initialize A/D and Convert on ACH5

6.5 Example A/D Programs

In this section, a few examples will be presented on
using the A/D. The first program segment shows how
to start a 10 bit conversion on channel 5. The ADÐ
TIME register is set-up, followed by writing to the
ADÐCOMMAND register. The ADÐRESULT regis-
ter is then polled until the conversion is complete.

6.5.1 USING THE A/D WITH THE PTS

The Peripheral Transaction Server (PTS) can be used
with the A/D, allowing up to 256 conversions without
CPU intervention. In the example program below, the
PTS is used to perform 8 10-bit conversions (one for
each channel).

The A/D scan mode in the PTS is used to perform this
function. It operates as follows:

1. The word pointed to by PTSÐSD is read. The lower
byte is saved in a temporary location within the
ALU.

2. PTSÐSD pointer is incremented by two.

3. The register pointed to be PTSÐREG is read and
stored at the location pointed to by PTSÐSD.

4. PTSÐREG is then incremented by two.

5. The value that was saved in (1) is stored in the regis-
ter pointed to by PTSÐREG.

6. PTSÐSD is optionally updated.

7. PTSÐCOUNT is decremeneted.

45

AP-445

When PTSÐCOUNT reaches zero, the PTSÐSE-
LECT bit for the A/D is cleared and the PTSÐSRV
bit for the A/D is set causing a normal interrupt to
happen.

The PTSÐREG is set up to point to the ADÐRE-
SULT register (It can only point to Register RAM or
SFR locations), thus it is read every PTS cycle, and
when PTSÐREG is incremented by two, it points to
the ADÐCOMMAND register which is then written.

Since the last thing that the PTS cycle does is a load
into the ADÐCOMMAND register (to start another
conversion), the last value in the A/D result RAM ta-
ble should be loaded with 0000h. This will NOT start
an A/D conversion when the last channel is complete
(Remember that the process starts with a conversion
started manually).

The table format is shown in Figure 6-8:

ADÐRESULT for ACH0 : WORD

DUMMY COMMAND ‘‘00’’ : WORD

ADÐRESULT for ACH1 : WORD

ADÐCOMMAND for ACH0 : WORD

ADÐRESULT for ACH2 : WORD

ADÐCOMMAND for ACH1 : WORD 16 WORDs

ADÐRESULT for ACH3 : WORD of

ADÐCOMMAND for ACH2 : WORD A/D results

ADÐRESULT for ACH4 : WORD and

ADÐCOMMAND for ACH3 : WORD A/D commands

ADÐRESULT for ACH5 : WORD

ADÐCOMMAND for ACH4 : WORD

ADÐRESULT for ACH6 : WORD

ADÐCOMMAND for ACH5 : WORD

ADÐRESULT for ACH7 : WORD

ADÐCOMMAND for ACH6 : WORD PTSÐSOURCE

ADÐCOMMAND for ACH7 is done manually to start
the scan

Figure 6-8. Example A/D Scan Mode Table

The routine starts off by initializing ADÐTEST and
ADÐTIME. The PTS control block is then setup with
PTSÐREG pointing to ADÐRESULT and PTSÐSD
pointing to the start of the table. The next block of code
sets up the table by filling all of the A/D command
slots.

For simplicity in coding, each A/D channel is done in
succession (7 t 0). However, any order conversions
can be performed, as well as any bit combination (10-
or 8-bit conversions).

Interrupts for the A/D are masked (enabled) in both
the core and PTS. Then the A/D is started by writing
to the ADÐCOMMAND register (starting an A/D on
channel 7).

After the first sample is completed, the PTS reads the
result and stores it in a table. It then loads the next
command, from the table, into the ADÐCOMMAND
register. This is repeated until 8 values have been read.
Note the that last command (for the 8th read/write) is
a ‘‘dummy’’ command and does not start another A/D
conversion, as the A/D doesn’t need to be restarted.

After 8 samples are collected, the A/D interrupt serv-
ice routine is called and the data table is ‘‘cleaned up’’
by shifting all of the data words to the right by 6. This
leaves just the sample value in the data table.

46

AP-445

270873–35

Program 8a. A/D Scan Mode using the PTS

47

AP-445

270873–36

Program 8b. A/D Scan Mode using the PTS

48

AP-445

6.6 Threshold Detection

The threshold mode on the A/D allows the CPU to be
notified when the value on one of the A/D channels
crosses either above or below a predetermined value.
The following code demonstrates one possible applica-
tion of this A/D mode.

The A/D is set up to monitor a channel and generate
an interrupt when the value on it passes above 2.5 V.
The conversion is started and the 8XC196KR is put
into idle mode. When the A/D determines that the val-
ue on ADCH0 is greater than 2.5 V, an interrupt is
generated and the CPU exits the idle mode.

270873–37

When the A/D conversion value crosses above the 2.5
volt level, set by the upper byte of the ADÐCOM-
MAND register. The device will exit idle mode and
execute the ADÐISR interrupt service routine.

6.7 A/D Test Modes

The A/D on the 8XC196KR can perform conversions
on AGND or VREF. This allows for the software detec-
tion of offset and full-scale/gain errors. Small amounts
of offset errors can be adjusted by writing to the ADÐ
TEST register (bits 2/3).

The following code segment attempts to minimize the
offset error. The method used is very straight-forward.
The routine is called by the main routine. It starts by
assuming that a b5.0mv offset is the best adjustment
for offset correction. It then performs 16 conversions
on AGND, summing the results. If the sum is more
than 8 then the next higher offset value is tried. This is
repeated until an offset with less than 8 on 16 conver-
sions is found, or, if none can be found, a2.5mv is
used. The code will return to the main routine with the
best offset value in the ADÐTEST register.

270873–38

49

AP-445

TIMER1 e 1F98H:Byte

TIMER2 e 1F9CH:Byte

CE - ‘‘0’’ Disable Timer, ‘‘1’’ Enable Timer

UD - ‘‘0’’ Count Down, ‘‘1’’ Count Up

TIMERnÐCONTROL

7 6 5 4 3 2 1 0

CE UD M2 M1 M0 P2 P1 P0

M2,M1,M0

0 0 0 ClockeXtal1, DirectioneUD

x 0 1 ClockeTxClk, DirectioneUD

0 1 0 ClockeXtal1, DirectioneTxDir

0 1 1 ClockeTxClk, DirectioneTxDir

1 0 0 ClockeT1 Overflow, DirectioneUD

1 1 0 ClockeT1 Overflow, DirectioneT1

1 1 1 Quadrature Counting, TxClk & TxDir

P2,P1,P0

0 0 0 %1 (or Xtal/4 - 250nS at 16MHz)

0 0 1 %2 (or Xtal/8 - 500nS at 16MHz)

0 1 0 %4 (or Xtal/16 - 1mS at 16MHz)

0 1 1 %8 (or Xtal/32 - 2mS at 16MHz)

1 0 0 %16 (or Xtal/64 - 4mS at 16MHz)

1 0 1 %32 (or Xtal/128 - 8mS at 16MHz)

1 1 0 %64 (or Xtal/256 - 16mS at 16MHz)

1 1 1 RESERVED

Figure 7-1. TIMERÐCONTROL Register

6.8 Top 5 Issues with the A/D
(1) Small amounts of offset errors can be adjusted using

the ADÐTEST register.

(2) ADÐCOMMAND and ADÐRESULT are two
(2) separate SFRs.

(3) Threshold Detect Mode of the A/D does a continu-
ous conversion on one channel.

(4) Conversion times of less than 16uS and Sample
times of less than 3.5uS will not produce less than
g 3 LSB error.

(5) In the ADÐTEST register, the LSB bit is the EN-
ABLE bit for the Convert on AGND or VREF. Bit 1
is the control bit for which to convert (1 for VREF 0
for AGND).

7.0 EVENT PROCESSOR ARRAY
(EPA)

7.1 Timers

The EPA has two 16-bit timers/counters, which are
controlled by two registers, TIMER1ÐCONTROL
and TIMER2ÐCONTROL at 1F98h and 1F9Ch, re-
spectively. The values of the timers can be read at
1F9Ah and 1F9Eh (TIMER1 and TIMER2). The max-
imum count rate of each timer is based on the internal

clock rate divided by 4. This yields a resolution of
250ns at 16MHz. In addition, TIMER2 can be pro-
grammed to count when TIMER1 over/under flows,
allowing a 32- bit counter to be formed.

Although the EPA can not capture or compare on 32-bit
values, an EPA channel can be programmed to interrupt
on any number of TIMER1 overflows. In addition,
TIMER2, with the increment on overflow, can still be
prescaled.

Both timers can be clocked by an internal or external
clock with internal or external direction (Up/Down)
control. Quadrature clocking is also available, allowing
for easy interfacing with an encoder wheel.

The timers do not have auto-reload features, but encoder
wheel interface can be acheived through a small amount
of PTS interface. This will not be demonstrated in this
paper.

Timer overflows are mapped into the EPAINTx inter-
rupt in the core. However, each timer has its own mask
and interrupt pending bit in the EPAÐMASK1 and
EPAÐPEND1 registers.

Figure 7-1 shows a map of the TIMERnÐCONTROL
register. Bit 7 is the timer enable bit, and controls
whether the timer is active. Bit 6 is the internal direc-
tion control (Up e 1, Down e 0).

50

AP-445

The next three bits (bits 5–3) are the mode control bits.
They determine if the clock and direction control
should be internal or external, or if quadrature clocking
should be used.

The three least significant bits control the prescale to be
applied to the clock. These range from a divide by 1
(internal clock/4) to a divide by 64 (internal clock/
256). This prescale is applied to both internal AND
external clocks. NOTE: When using an external clock,
the timer will count on EACH edge of the clock (assum-
ing no prescaling is in effect).

The time registers (TIMER1 and TIMER2) are both
readable and writable. This allows for more flexibility
in the generation of interrupts.

7.1.1 TIMER EXAMPLES

The code segment below shows how to set up a soft-
ware timer which will generate an interrupt in 1 mS.
TIMER1 is first loaded with 1000 (decimal). Then it is
programmed to count down, once per microsecond.
The EPAÐMASK1 is set up to allow interrupts on
TIMER1 overflows or underflows.

The interrupt occurs when the TIMER1 rolls under
0000. The interrupt service routine for EPAINTx will
have to determine which source caused the interrupt
and take whatever action is needed. An example of this
is given later in the EPA outputs section.

270873–39

7.2 EPA Input/Output Structure

The EPA section has ten (10) Capture/Compare mod-
ules which each support timed event input and output
for a single pin. There are also two Compare only mod-
ules (COMP0 and COMP1) which share their outputs
with two of the EPA channels (EPA8 and EP9 respec-
tively). The Capture mode can be used to generate an
interrupt on an input edge, reset the opposite time base
timer, start an A/D conversion, or simply capture the
time a transition of its input pin occurred.

The Compare function is for output time events. It can
change the state of its output pin when its time base
timer matches the value in its EPAÐTIMEn register.
Also, an EPA channel has the option of resetting its
own timer as well as the opposite timer, or start a timed
A/D conversions.

There are two dedicate SFRs for each EPA channel
that control the operation. These are EPAÐCON-
TROLn, and EPAÐTIMEn registers. The EPAÐ
CONTROLn is detailed in Figure 7-2.

The EPAÐCONTROLn set of registers are used to
configure their associated pin. The bit map of the con-
trol register is as follows:

EPAÐCONTROLn

8 7 6 5 4 3 2 1 0

RM TB CE M1 M0 RE AD ROT ON/RT

RM - ‘‘1’’ Enables Remapping (EPA1 and

EPA3 Only)

TB - ‘‘0’’ e Timer1, ‘‘1’’ e Timer2

CE - ‘‘1’’ Enables Comparator

M1,M0 Capture Compare

0 0 No Op Interrupt Only

0 1 Capture b edge Output ‘‘0’’

1 0 Capture a edge Output ‘‘1’’

1 1 Capture a/b edge Toggle Output

RE - ‘‘1’’ e Lock Time Entry

AD - ‘‘1’’ e Start A/D Conversion

ROT - ‘‘0’’ e Same Timer as TB, ‘‘1’’ e Opposite

ON/RT - Overrun/Reset Timer Enable

Figure 7-2. EPAÐCONTROL Register

51

AP-445

RM Bit 8 of EPAÐCONTROL. This only has an
effect on channels 1 and 3. Setting this bit en-
ables the lower adjacent channel to set/reset/
toggle the channels output pin. This allows
channels 0 and 1 to control the same output
(channel 1’s), or channels 2 and 3 to control
output on channel 3. Clearing this bit disables
the remap feature.

EPAÐCONTROL1 and EPAÐCONTROL3
must be written as WORDs.

TB Bit 7 is used to select which timer should be
used as the time base for captures or com-
pares. A ‘‘0’’ selects TIMER1, and a ‘‘1’’ se-
lects TIMER2.

CE Bit 6 selects between capture and compare
modes: ‘‘0’’ selects capture mode while ‘‘1’’ en-
ables the comparator. By enabling the com-
parator any mode will cause an interrupt.
While enabling the capture function, only gen-
erates an interrupt when modes 1, 2, or 3 is
used.

Mx Mode bits. Bits 5 and 4 are the mode select
bits. They operate as follows:

In Capture Mode

M1 M0 Action

0 0 no operation

0 1 capture on a edges

1 0 capture on b edges

1 1 capture a/b edges

In Compare Mode

M1 M0 Action

0 0 no operation

0 1 reset output pin

1 0 set output pin

1 1 toggle output pin

RE Bit 3 can be used to ‘‘lock’’ a Compare func-
tion. When set to ‘‘1’’, the compare function is
always enabled. When clear, the event will oc-
cur only once, and then the EPAÐTIMEn
value must be rewritten.

AD Bit 2, when set will start an A/D conversion
when a capture or compare event occurs. It
has no effect when clear.

ROT Bit 1. In Capture, a ‘‘1’’ resets opposite base
timer (not TB), while a ‘‘0’’ has no action. In
Compare, a ‘‘1’’ selects opposite base timer
(not TB) for reset, while a ‘‘0’’ selects the TB
bit timer for reset.

ON/RT Bit 0. On Captures, a ‘‘1’’ means that the old
data can be overwritten on an overrun, while a
‘‘0’’ means that the new data is lost (ignored)
on overruns. In Compare, a ‘‘1’’ means that
the timer selected by TB and ROT will be re-
set. A ‘‘0’’ will have no action.

The EPAÐTIMEn register has two functions, depend-
ing on the mode of the channel. In Capture mode, the
register is double buffered and holds the time of the
transition (i.e., the value of the selected timer at the
instant the transition was detected is saved in the
EPAÐTIMEn register). If the old time has not been
read and the buffer is full when a new transition occurs,
an overrun interrupt request will occur.

An interrupt is generated on the load of the EPAÐ
TIMEn value, either from the buffer or directly if the
buffer is empty. The EPAÐTIMEn value must read
each interrupt service in order to obtain more than one
interrupt.

In Compare mode, EPAÐTIMEn is programmed with
the time that events are to occur. Mutiple events can
occur per time match. For example, the output pin can
be made to set/reset/toggle, and generate internal func-
tions such as starting the A/D and resetting a timer.

Note: The EPA and Compare CONTROLn registers
should be written as words.

52

AP-445

EPAÐPEND (1FA2H:Word), EPAÐMASK (1FA0H:Word)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EPA EPA EPA EPA EPA EPA OVR OVR OVR OVR OVR O VR OVR OVR OVR OVR

INT4 INT5 INT6 INT7 INT8 INT9 INT0 INT1 INT2 INT3 INT4 INT5 INT6 INT7 INT8 INT9

EPAINT4 - Highest Priority
EPAINT5 - .

. .

. .

. .

. .

. .
OVRTMR1 -
OVRTMR2 - Lowest Priority

EPAÐPEND1 (1FA6H: Byte), EPAÐMASK1
(1FA4H: Byte)

7 6 5 4 3 2 1 0

rsv rsv rsv rsv
COMP COMP OVR OVR

CH0 CH1 TMR1 TMR2

Figure 7-3. The EPAÐPEND and EPAÐMASK Registers

7.3 EPA Interrupts

There are 24 sources of interrupts within the EPA; 12
event interrupts (10 Capture/Compare and 2 compare
only), 10 input overflow interrupts (for overrun errors)
and two timer overflow interrupts.

Interrupts can be masked either in the core (for events
on channels 0-3), or in the EPA mask registers for all
other sources. See Figure 7-3 for bit map of EPAÐ
MASK, and EPAÐMASK1. All channels excluding
EPA0-3 share a common interrupt request line to the
core, via EPAINTx. This means that EPA channels 0-3
can have their interrupt requests serviced directly,
while all other sources must be decoded.

The decoding is handled by the use of the EPAIPV
(EPA Interrupt Priority Vector) which is located at
1FA8h. This register always contains a code for the
next highest priority interrupt which is both pending
and masked. All EPAIPV values are shown in FIG-
URE 7-4.

This register is designed to be used in conjunction with
the TIJMP instruction to vector to the appropriate in-
terrupt service routine. The EPAIPV should be read
until it returns 00h before exiting the EPAINTx service
routine. This insures that all pending and masked inter-
rupts have been acted upon; also this is the only way to
clear the EPAINTx pending bit in the INTÐPEND
and pending bits in the EPAÐPEND / EPAÐPEND1
registers.

When using the EPAIPV with the TIJMP instruction,
some care must be used. The EPAIPV register always

returns a number with the LSB clear. (ie 02,04 ...).
However, the TIJMP multiplies this by two when cal-
culating the offset into the jump table. The result of this
is that consecutive jump vectors will not be consecutive
in memory. There will always be an unused word be-
tween them.

See the program example 16 in the EPA outputs section
for details on using EPAIPV with TIJMP.

The EPAÐMASK and EPAÐMASK1 registers are
only word addressable. Do NOT attempt to write to
them as bytes as this will have no effect.

EPAIPV (1FA8H: Byte)

7 6 5 4 3 2 1 0

0 0 PV5 PV4 PV3 PV2 PV1 0

rsv Reserved

PV1-PV5 Encoded Highest Priority Interrupt Val-
ues from 2-28H.

0 e No Interrupt 14H e OVRINT4

pending 12H e OVRINT5

28H e EPAINT4 10H e OVRINT6

26H e EPAINT5 0EH e OVRINT7

24H e EPAINT6 0CH e OVRINT8

22H e EPAINT7 0AH e OVRINT9

20H e EPAINT8 08H e Compare Channel 0

1EH e EPAINT9 06H e Compare Channel 1

1CH e OVRINT0 04H e TIMER1 Overflow

1AH e OVRINT1 02H e TIMER2 Overflow

18H e OVRINT2

16H e OVRINT3

Figure 7-4. EPA Interrupt Priority Vector

53

AP-445

270873–40

Program 9. Start an A/D Conversion on a Positive Input Edge

7.4 Input Capture

The Capture modules of the EPA can be used, among
other things, to time-stamp events which occur on EPA
input channels. When an event occurs, the value of the
selected timer is loaded into the EPAÐTIME registers
associated with the channel on which it occurred. If the
EPAÐTIME register is full, then the data is buffered.
However, if the buffer is also full, then either the new
data, or the data in the buffer will be lost, depending on
the state of the ON/RT bit in the EPAÐCONTROLn
register.

An interrupt is generated each time the EPAÐTIMEn
register is loaded; whether directly or from the buffer.
Therefore, the EPAÐTIMEn register must be read
even if the data is not being used to allow another inter-
rupt to be generated.

7.4.1 HSI EXAMPLE Ý1

Consider the problem of synchronizing an A/D conver-
sion with a clock pulse. This can be done using an EPA
capture channel which is programmed to start an A/D
conversion. (See Program 9).

First, the A/D is programmed to perform a conversion
on channel 3. The conversion is programmed to be
started by the EPA. Next Port baud 1.0 is set up for use
by the EPA, and EPA0 is programmed to look for a
rising edge.

When the EPA senses a rising edge on channel 0, it
stores the value in TIMER1 into EPAÐTIME0, and
starts the A/D converter.

54

AP-445

270873–13

Figure 7-5. Wheel Speed Signal for each Wheel

7.4.2 HSI EXAMPLE Ý2 : ABS

One problem in implementing an Anti-Lock Braking
System is determining the individual speed of the
wheels. The following program 10a shows one way (us-
ing both the EPA and PTS) to calculate the speed of a
wheel. It is easy to modify the program to perform
speed calculations for 4 wheels. Just add in three more
EPA channels, and PTS control blocks.

It is assumed that a square wave is fed into an EPA
channel whose frequency is proportional to the speed of
the wheel. EPA channel 0 is used to look for rising
edges. The number of rising edges seen in a five milli-
second interval is counted, and this is used to determine
the average wheel speed.

The PTS is used to count the number of pulses re-
ceived, and to determine the first and last time that a
rising edge is detected during a five millisecond loop.

Figure 7-5 shows a sample input to the EPA. The fol-
lowing sequence of events takes place to determine the
wheel speed:

1. The first edge in the 5ms interval causes a normal
EPA interrupt. The time from EPAÐTIME0 is
saved into ITIME. The PTS is enabled to handle
counting the rest of the edges.

2. Edges 2 through ‘‘n’’ cause a PTS cycle to occur. The
PTS moves EPAÐTIME0 to FTIME and decre-
ments PTSCOUNT. If the PTSCOUNT is initialized
to 0FFh, negating PTSCOUNT will yield the num-
ber of edges captured by the PTS plus the first edge
seen by the normal interrupt for edge 1.

3. The 5ms interrupt disables the PTS channel (so the
next rising edge will cause a normal software inter-
rupt repeating the cycle). It also calculates the wheel
speed using the following formula:

Speed e

(Ftime-Itime)*convÐfact

NEG(PTSÐCOUNT)

55

AP-445

270873–41

Program 10a. ABS Input Frequency Detection using the PTS and EPA Inputs

56

AP-445

270873–42

Program 10b. ABS Input Frequency Detection using the PTS and EPA Inputs

57

AP-445

270873–43

Program 10c. ABS Input Frequency Detection using the PTS and EPA Inputs

58

AP-445

7.5 EPA HSO Generation

Control over the generation of HSO, High Speed Out-
put, is gained by the use of two SFRs, EPAÐCON-
TROLn and EPAÐTIMEn (‘‘n’’ designates the num-
ber 0-9, of the EPA channel) for each output. The
EPAÐCONTROLn register controls the nature of the
action to be taken when the EPAÐTIMEn register
matches the value in the specified time base register
(i.e., either TIMER1 or TIMER2).

The event must be programmed by first writing to the
EPAÐCONTROLn register, and then to the EPAÐ
TIMEn register. If the RE bit in the EPAÐCON-
TROLn register is set, then the event programmed will
occur every time a match between the time base and
EPAÐTIMEn occurs; otherwise the event will be dis-
abled after the first match occurrence, and can be re-en-
abled by writing to the EPAÐTIMEn register.

Note, Port1 must be configured for use by the EPA
before any HSO can be generated. This is accomplished
by writing a 1 to P1REG.n to turn off the pull-down,
writing a 0 to the P1IO.n register to configure the pin
as an output, and lastly, writing a 1 to P1SSEL.n bit to
select P1.n for use by the EPA.

An interrupt will be generated each time a match oc-
curs on an enabled channel (i.e., one for which EPAÐ
CONTROL was written). Depending on the channel
on which the interrupt occurs, it can be masked in one
of two places: either in the core for channels 0-3, or in
the EPA mask registers and the core EPAINTx bit for
all other channels. See the EPA interrupt section for
details.

7.5.1 SQUARE WAVE GENERATION

To generate a simple square wave output, the following
code can be used. It first configures pin P1.1 for use
with the EPA as a push/pull output. Next EPA chan-
nel 1 is configured to toggle its output, with automatic
event re-enable, every time the value in Timer1 matches
EPAÐTIME1. EPAÐTIME1 is initialized to be
3000h and Timer1 is set-up. Now, the EPA will auto-
matically toggle EPA1 every time the value in Timer1
reaches 3000h.

270873–44

A square wave with a duty cycle of other than 50% can
be generated by using two channels in conjunction
(EPA0 and EPA1, EPA2 and EPA3, COMP0 and
EPA8, or COMP1 and EPA9). The following code gen-
erates two square waves, one with a 30% duty cycle,
and the other with a 60% duty cycle. Both square
waves have the same frequency.

First, the program configures Port 6 pins 0 and 1 for
use by the EPA. Then the EPA channels are set up. For
the 30% duty cycle wave, EPA8 is programmed to
clear the output pin after 100 counts of TIMER1.
COMP0 is programmed to set the output pin after 300
counts, and then reset the timer. Both channels have
the re-enable bit set so the event will repeat automati-
cally.

The 60% duty cycle is produced in a similar way, ex-
cept that COMP1 is not programmed to reset the timer
as this is being handled by COMP0.

59

AP-445

270873–14

Figure 7-6. Output Generated by Program 11

270873–45

Program 11. Generating 2 PWM Pulses Using No CPU Overhead

60

AP-445

7.5.2 PWM SIGNAL GENERATION WITHOUT
PTS

Up to four PWM outputs can be generated in a manner
similar to the square wave generation shown on the
previous page.

One way to change the duty cycle would be to write a
routine which monitors the state of the output. When it
goes low, EPAÐTIMEx register could be changed. If
EPAÐTIMEx was written when the clock was high, it
would be possible for the duty cycle to become 100%
for one cycle. (If EPAÐTIMEx was written to a value
less than TIMER1.)

Two nice things about using this method to generate a
PWM is that it doesn’t require any CPU or PTS over-
head to maintain. And, any frequency and duty cycle
can be produced with 16-bit resolution for both.

However, two EPA channels are being used for each
PWM signal, and one dedicated timer is needed.

It is possible to generate a PWM signal using only one
channel. Thus, up to 10 slower PWM signals can be
generated. The code below demonstrates the method.
For simplicity, only one PWM is produced.

The method used is similar to the HSO/CAM method
used on other MCS-96 devices, such as the 8XC196KB.
A wide range of duty cycles and frequencies can be
produced. Only one timer is used.

The first segment of code sets up the registers used to
hold the high (Const1) and low (Const2) time values of
the PWM output. The next section configured
PORT1.0 to be used by the EPA as an output. Follow-
ing this, the EPAÐCONTROL0 register is pro-
grammed. It is set up to toggle the output pin every
time the value of TIMER1 matches EPAÐTIME0.

The RE bit should NOT be set as the EPAÐTIME0
register will be re-written after each edge, enabling the

next event. The last part of the main loop starts TIM-
ER1 running at 1us per count, and enables the EPA0
interrupt in the core.

The interrupt service routine is requested each time the
EPAÐTIME0 matches TIMER1. It checks the state of
the PWM output (EPA0), to determine which value to
add to the EPAÐTIME0 register to set up for the next
edge.

For example if the output is high, the value of Const1 is
added to EPAÐTIME0 and stored back into EPAÐ
TIME0. The interrupt service routine will take 90 state
times to set up a rising edge, plus an additional seven if
the duty cycle has to be changed, and 79 states to set up
a falling edge.

The duty cycle can be changed by modifying the values
of Const1 and Const2. However, their sum must be
kept the same to avoid changing the frequency. To
change the duty cycle using the above code, the new
values for the constants should be written to NConst1
and NConst2, followed by the setting of the ‘‘valid’’
flag.

In the previous example, it is assumed that the frequen-
cy is measured from rising edge to rising edge. So the
values of the constants are changed by the interrupt
service routine only after a rising edge was set up (i.e.,
the output is currently low). This insures that the fre-
quency will not change momentarily.

61

AP-445

270873–46

Program 12. PWM Generation Using Interrupts

62

AP-445

7.5.3 PWM GENERATION WITH PTS

The PTS has two modes which can be used to generate
PWM signals: PWM (up to 2 PWMs) and PWM TOG-
GLE (up to 4 PWMs). The latter uses the same method
as shown on the previous page, but the PTS instead of a
ISR handles updating the EPAÐTIME0 register.

Program 13 produces the same results, but uses the
PTS in PWM TOGGLE mode. The first block of code
initializes the PTS control block. The PWM toggle
mode is used, with the source registering pointing to
the EPAÐTIME0 register. Const1 and Const2 are cho-
sen so that a 2KHz waveform with a 20% duty cycle is
produced.

PORT1 is then configured, EPA channel 0 is pro-
grammed, and TIMER1 is started. It is important to
note that EPA0 is forced low. This insures that the prop-
er polarity PWM is generated. The EPA will just toggle
the output, not caring what the initial state was.

EPAINT0 is enabled in both the core and the PTSÐ
SELECT register. This allows the PTS to continuously
set up the edges, instead of having the CPU handle it.

However, due to a bug in the interrupt handler on A-Step
silicon, an interrupt service routine for EPAINT0 is still
needed. If a PTS interrupt should occur within the laten-
cy time of the starting of another normal interrupt, the
PTS interrupt will NOT be serviced, but rather a call
will be made to the interrupt routine corresponding to
the PTS interrupt. Therefore, the interrupt service rou-
tine for EPAINT0 should set the interrupt pending bit
for EPAINT0 and exit. This will force a call to the PTS
service routine.

Note that the PTS routine only takes 15 states to exe-
cute; this is more than an 80% reduction in the time
needed to maintain a PWM output.

The PWM Toggle PTS cycle operates as follows:

1) The value pointed to by PTSÐSOURCE is read.

2) Const1 or Const2 is added to this value, depending
on the state of TBIT in PTSÐCONTROL.
TBITe0 selects Const1

3) The result is stored back into the value pointed to by
PTSÐSOURCE. The TBIT is then toggled.

The duty cycle can be changed in the program by first
writing the new values for PTSÐCONST1 and PTSÐ
CONST2 into NCONST1 and NCONST2, respective-
ly. Then the PTS should be disabled from servicing
EPA0 interrupts.

The EPA0 ISR will change the duty cycle. If the output
pin is in the high state when it is called, it will perform
a ‘‘manual’’ PTS cycle to set up the falling edge.

When it is called and the output is in a low state, it will
update the PTS constants and re-enable the PTS for
EPA0. Lastly, it will force a call to the PTS by setting
the INTÐPEND bit for EPA0.

Program 14’s methods work well for generating PWM
output as long as there is enough time between edges
for either the CPU or the PTS to set up the next edge.
However, if two edges are placed very close together,
there will not be enough time to set up the second edge.

270873–15

Figure 7-7. Output of Program 12 and 13

63

AP-445

270873–47

Program 13. Generate a PWM on EPA0 using the PTS Toggle Mode

64

AP-445

270873–48

Program 14. Generate a PWM Using the PTS PWM Mode and the Re-Map Feature

65

AP-445

The PWM mode of the PTS can be used to work
around this. Two EPA channels are used together (ei-
ther EPA0 and EPA1 or EPA2 and EPA3). (See Pro-
gram 14) One channel will control the rising edge, and
the other will control the falling edge of the output.
Thus, there is no need for the PTS or the CPU to inter-
vene between the edges, allowing them to be placed
closer together. However, there must be time to set up
two edges before another edge can occur. Program 14
demonstrates this mode with the PTS.

The code is similar to what was presented above, but
there are a few differences to be pointed out. First,
there are two PTS control blocks. One controls the time
from rising edge to rising edge, and the other controls
the time from falling edge to falling edge. Normally,
these should be the same.

The frequency of the PWM wave is controlled by the
constants in the two PTS control blocks, and the fre-
quency of TIMER1. The duty cycle is controlled by the
difference of the two time registers, EPAÐTIME0 and
EPAÐTIME1. For this example the pulse will be high
for 50ms.

The duty cycle can be changed in a manner similar to
that which was used in the previous PTS example.
Note, however, that only EPA1 needs to be disconnect-
ed from the PTS, as it controls the falling edge.

Another thing to note is the manner in which the two
EPA channels are configured. EPA0 is set up to force
EPA1 high when EPAÐTIME0 matches TIMER1,
while EPA1 is set up to clear EPA1 when EPAÐ
TIME1 matches TIMER1. Also, the 8th bit in EPAÐ
CONTROL1 must be set to a 1. This is to allow EPAÐ
CONTROL0 to control EPA1.

A word of caution is needed here: do NOT set both
EPAÐTIME0 and EPAÐTIME1 to the same value
and expect to get a 0% duty cycle PWM. This will not
happen due to the fact that when there is a conflict be-
tween EPA commands (i.e., set and clear the pin at the
same time), the EPA will toggle the pin at the EPAÐ
TIME value.

Finally, note that the PWM output appears at EPA1
(or EPA3 if EPA2 and EPA3 are working together).
Thus, PORT1 pin 1 is configured as an output for the
EPA. Pin 1.0 can still be used as an LSIO pin.

7.5.4 PWM GENERATION USING SOFTWARE

As a final example Program 15, creating an PWM out-
put on channel 9, will be considered. Since only chan-
nels 0-3 have direct interrupt lines to the core and PTS,
this example will also demonstrate the use of the
TIJMP instruction. The PTS cannot be used with chan-
nels 4-9 since there is only one bit in the PTSÐ
SELECT register for all 5 channels. The PTS cannot
determine which channel caused the interrupt, and is
therefore unable to modify the proper EPAÐTIMEn
register.

NOTE: Parts of the jump vector table were left out. They
all contain a jump to the error routine.

This program is very similar to the first PWM example,
except that a different EPA channel is used. Since
EPA9 is used, and it doesn’t have a direct interrupt line
to the CPU, the following changes have been made.
First the EPAINT9 bit in the EPAÐMASK register
has been set, allowing EPA9 interrupts to occur. The
EPAINTx flag in the INTÐMASK has also been set.

66

AP-445

270873–49

Program 15a. Generate a PWM Output Using EPA9 and Software Interrupts

67

AP-445

270873–50

Program 15b. Generate a PWM Output Using EPA9 and Software Interrupts

68

AP-445

The interrupt service routine has also changed, since
now the exact source of the interrupt must be deter-
mined in software. A TIJMP instruction is used to min-
imize overhead. The TIJMP table contains pointers to
the various interrupt service routines. Actually, the ta-
ble consists of two interleaved tables due to the way in
which TIJMP and the EPAIPV register work together:
The EPAIPV vector always is a multiple of 2, and the
TIJMP instruction multiplies by 2 to calculate the off-
set into the table. Thus offsets into the jump table will
always be a multiple of 4. (This may change on latter
parts.)

The TIJMP instruction takes three arguments: base lo-
cation of the table, an offset into the table, and a mask
for the offset. The mask for the offset can be used to
change the interrupt priorities, but does nothing in the
example. The EPAIPV (EPA Interrupt Priority Vec-
tor) always contains a value indicating the highest pri-
ority interrupt that is pending (and masked). This regis-
ter should be read until it returns a 00h, indicating that
all interrupts have been processed. This is the only way
to clear the EPAÐPEND and EPAÐPEND1 register
and INTÐPEND bit 0 in the core. The above example
does this by ending each EPA interrupt source’s service
routine with another TIJMP instruction. When the

EPAIPV returns a 00h, flow is handed over to the
EXIT subroutine, which handles exiting from the
EPAINTx service routine.

7.6 Top 5 Issues with the EPA
(1) Read the EPAÐTIME register after each EPA (in-

put capture) interrupt.

(2) All EPAÐCONTROL and COMPÐCONTROL
registers should be written as WORD. This will
make the users code compatible with future KX de-
vices. Reserved bits are written to zero.

(3) PWM Generation can be accomplished via:

1. 10 PWMs with Software Interrupts (EPA0–
EPA9)

2. 4 PWMs with PTS PWM Toggle Mode (EPA0–
EPA3).

3. 2 PWMs with PTS PWM Mode and re-mapping
outputs (EPA1 and EPA3)

4. 4 PWMs using a dedicated Timer with Re-map-
ping (EPA1, EPA3, EPA8 and EPA9).

(4) Before exiting an EPAINTx interrupt service rou-
tine, the EPAIPV register MUST be read until it
equals ‘‘00’’.

(5) Due to a Bug in A-step Silicon, the EPAÐMASK1
and EPAÐPEND1 must be written as words.

69

	1.0 INTRODUCTION
	1.1 8XC196KR Overview
	1.1.1 GENERAL DESCRIPTION — CPU
	1.1.2 INTEGRATED I/O SUBSYSTEM

	1.2 New 8XC196KR Instructions
	1.2.1 52 LEAD DEVICES

	1.3 Windowing
	1.3.1 EXAMPLES OF VERTICAL WINDOWS

	1.4 Top 5 Issues With Windowing

	2.0 INTERRUPTS AND THE PERIPHERAL TRANSACTION SERVER (PTS)
	2.1 PTS Execution
	2.2 PTS Modes
	2.2.1 SINGLE TRANSFER MODE
	2.2.2 SINGLE TRANSFER MODE EXAMPLE
	2.2.3 BLOCK TRANSFER MODE
	2.2.4 BLOCK TRANSFER MODE EXAMPLE
	2.2.5 A/D SCAN MODE, PWM MODE AND PWM TOGGLE MODE

	2.3 PTS Latency Times
	2.4 Top 5 Issues with PTS

	3.0 UNDERSTANDING THE PORTS
	3.1 Port 0
	3.2 Port 1 / 2 / 6
	3.3 Port 3 / 4
	3.4 Port 5
	3.5 Top 5 Issues With the Ports

	4.0 SERIAL I/O PORT (SIO PORT)
	4.1 Serial Port SFRs
	4.1.1 SP_CONTROL
	4.1.2 SP_STATUS

	4.2 Baud Rate Generation
	4.3 SIO Port Configuration
	4.4 Mode 0: Synchronous Communications
	4.5 Mode 1: Standard Asynchronous Serial I/O
	4.5.1 SETTING UP MODE 1 OPERATION:
	4.5.2 SIO AND THE PTS

	4.6 Modes 2 and 3: 9 Bit Communications Modes
	4.7 Top 5 Issues with the SIO

	5.0 SYNCHRONOUS SERIAL I/O AND PERIPHERAL TRANSACTION SERVER
	5.1 SSIO Port SFRs
	5.2 Example 1
	5.3 Using the PTS and Handshake Mode
	5.4 SSIO and the PTS
	5.5 Top 5 Issues with the SSIO

	6.0 ANALOG TO DIGITAL CONVERTER
	6.1 A/D Command Register (AD_ COMMAND)
	6.2 A/D Time Register (AD_TIME)
	6.3 A/D Test Register (AD_TEST)
	6.4 A/D Result Register (AD_RESULT)
	6.5 Example A/D Programs
	6.5.1 USING THE A/D WITH THE PTS

	6.6 Threshold Detection
	6.7 A/D Test Modes
	6.8 Top 5 Issues with the A/D

	7.0 EVENT PROCESSOR ARRAY (EPA)
	7.1 Timers
	7.1.1 TIMER EXAMPLES

	7.2 EPA Input/Output Structure
	7.3 EPA Interrupts
	7.4 Input Capture
	7.4.1 HSI EXAMPLE #1
	7.4.2 HSI EXAMPLE #2 : ABS

	7.5 EPA HSO Generation
	7.5.1 SQUARE WAVE GENERATION
	7.5.2 PWM SIGNAL GENERATION WITHOUT PTS
	7.5.3 PWM GENERATION WITH PTS
	7.5.4 PWM GENERATION USING SOFTWARE

	7.6 Top 5 Issues with the EPA

	FIGURES
	Figure 1-1. 8XC196KR Block Diagram
	Figure 1-2. 8XC196KR Memory Map
	Figure 1-3. Special Function Registers
	Figure 1-4. Special Function Registers
	Figure 1-5. 128-Byte Windows
	Figure 1-6. 64-Byte Windows
	Figure 1-7. 32-Byte Windows
	Figure 2-1. 8XC196KR Interrupt Priorities
	Figure 2-2. PTS Control Blocks (PTSCB)
	Figure 2-3. PTS Control Single Transfer
	Figure 2-4. PTS Control Block Transfer
	Figure 2-5. PTS Interrupt Response Time
	Figure 3-1. Input Port 0 Structure
	Figure 3-2. Ports 1, 2, 5 & 6 (and 3 / 4 - see notes)
	Figure 3-3. Port 1, 2, and 6 Truth Table
	Figure 3-4. Port Reset Values
	Figure 3-5. Port 5 Truth Table
	Figure 4-1. SP_CONTROL Register
	Figure 4-2. SP_STATUS Register
	Figure 4-3. SP_Baud Register Equations
	Figure 4-4. Common Baud Rate Values
	Figure 4-5. Serial Port Frames, Mode 1, 2 and 3
	Figure 5-1. SSIO Control Register
	Figure 5-2. SSIO Transmit/Receive Timings
	Figure 6-1. AD_COMMAND Register
	Figure 6-2. AD_TIME Register
	Figure 6-3. A/D Error vs. Conversion Time
	Figure 6-4. AD_TEST Register
	Figure 6-5. AD_RESULT Register
	Figure 6-6. A Typical A/D Transfer Function Error, with Offset and Full Scale Errors
	Figure 6-7. Program Segment to Initialize A/D and Convert on ACH5
	Figure 6-8. Example A/D Scan Mode Table
	Figure 7-1. TIMER_CONTROL Register
	Figure 7-2. EPA_CONTROL Register
	Figure 7-3. The EPA_PEND and EPA_MASK Registers
	Figure 7-4. EPA Interrupt Priority Vector
	Figure 7-5. Wheel Speed Signal for each Wheel
	Figure 7-6. Output Generated by Program 11
	Figure 7-7. Output of Program 12 and 13

	PROGRAMS
	Program 1a. Send 30 bytes over the SIO using the PTS in Single Xfer Mode
	Program 1b. Send 30 bytes over the SIO using the PTS in Single Xfer Mode
	Program 2a. Using the EXTINT with the PTS Block Transfer Mode
	Program 2b. Using the EXTINT with the PTS Block Transfer Mode
	Program 3. SIO Communication via Polling the SP_STATUS Bits (TI and RI)
	Program 4a. Using the PTS with both the TI and RI Interrupts
	Program 4b. Using the PTS with both the TI and RI Interrupts
	Program 4c. Using the PTS with the TI and RI Interrupts
	Program 5. SSIO, Send One Byte
	Program 6. SSIO, Send Byte in Handshake Mode
	Program 7. SSIO and the PTS
	Program 8a. A/D Scan Mode using the PTS
	Program 8b. A/D Scan Mode using the PTS
	Program 9. Start an A/D Conversion on a Positive Input Edge
	Program 10a. ABS Input Frequency Detection using the PTS and EPA Inputs
	Program 10b. ABS Input Frequency Detection using the PTS and EPA Inputs
	Program 10c. ABS Input Frequency Detection using the PTS and EPA Inputs
	Program 11. Generating 2 PWM Pulses Using No CPU Overhead
	Program 12. PWM Generation Using Interrupts
	Program 13. Generate a PWM on EPA0 using the PTS Toggle Mode
	Program 14. Generate a PWM Using the PTS PWM Mode and the Re-Map Feature
	Program 15a. Generate a PWM Output Using EPA9 and Software Interrupts
	Program 15b. Generate a PWM Output Using EPA9 and Software Interrupts

