
APPLICATION
BRIEF

AP-468

February 1995

Serial Port Mode 0
8X9XBH/KB/KC/KD

RICHARD N. EVANS

APPLICATIONS ENGINEER

Order Number: 272245-001



Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996



Serial Port Mode 0
8X9XBH/KB/KC/KD

CONTENTS PAGE

ABSTRACT ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

METHOD OF OPERATION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

Timing Considerations ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

Baud Rate ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

SETTING UP THE CONTROL
REGISTERS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

RECEIVE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

CONTENTS PAGE

TRANSMIT ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

EXAMPLE USING MODE 0 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

HARDWARE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

Inverter ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

OR Gate ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

DIP Switch ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

SOFTWARE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5





AB-46

ABSTRACT

This application brief explains how to program the
MCSÉ-96 device to operate the serial port in synchro-
nous mode. A 4-bit multiplier which utilizes mode 0
with a port expansion circuit is presented.

METHOD OF OPERATION

The serial port can be operated in a synchronous mode.
This mode was intended for port expansion using shift
registers. For example, the TXD pin is used to clock
both input and output data on RXD. The data is al-
ways one byte in length. Whenever a write to the serial
port buffer (SBUF) is performed, a train of eight pulses
is sent out TXD to clock the outgoing byte. Likewise,
whenever SBUF is read, a train of eight pulses is sent
out TXD to clock in the byte being read. See the
synchronous serial mode timing diagram shown in Fig-
ure 1.

Timing Considerations

All timings associated with the serial port are relative
to TOSC. Therefore, the timings are fixed whether
XTAL1 or T2CLK clocks the baud rate generator.

TDVXH Input Data Setup to Clock (TXD) Rising
Edge. In other words, the data has to be val-
id at TDVXH before the next TXD pulse ris-
es.

TQVXH Output Data Setup to Clock (TXD) Rising
Edge. The output bit will be valid before the
rising edge of the next TXD pulse for
TQVXH.

TXLXH Serial Port Clock Falling Edge to Rising
Edge. The low period for the TXD clock
cannot be changed. For the 8X9X, TXLXH
e 4 TOSC g50. For KB, KC and KD,
TXLXH e 4 TOSC g50 or 2 TOSC g50
depending on the baud rate register value.

NOTE:

See the A.C. Characteristics in the datasheets for the
timing specifications.

Baud Rate

Baud rate is a misused term. Baud rate is often used
interchangeably with bits per second (BPS). This sub-
stitution is not always true though. Baud rate is the
speed at which packets of information are passed per
second. It just so happens that with the MCS-96 family
the length of the information packet is 1 bit. Hence, the
baud rate measurement is the same as the bits per sec-
ond (BPS) for the MCS-96 serial port. The MCS-96 has
a 15-bit baud rate generator. The most significant bit
(bit 15) determines the clock source (XTAL1 or
T2CLK). There is a baud rate register (location 0EH).
This register is a byte wide. When loading the baud rate
register it must be written twice: first, the least signifi-
cant byte must be written to location 0EH, then the
most significant byte. See equation 1 for the baud rate
register formula.

BAUDÐVALUE e

FOSC

BAUD RATE c 2
b 1

OR

e

T2CLK

BAUD RATE

Equation 1: Serial Port Synchronous Mode 0

Baud Rate Register Equations

Setting up the baud rate generator is easy. The example
code (code 1) shows how to configure the baud rate
generator to run at 9600 baud with a 16 MHz crystal.

272245–1

Figure 1. Important Timings for Serial Port Mode 0

1



AB-46

BAUD VALUE EQU OEH ; BAUD RATE REGISTER

CSEG AT 2080H
LDB BAUD VALUE,40H ; SET UP BAUD RATE GENERATOR FOR
LDB BAUD VALUE,83H ; FOR 9600 BAUD AT A 16MHz CRYSTAL FREQUENCY

Code 1: Setting up Baud Rate Generator in Mode 0

SETTING UP THE CONTROL
REGISTERS

(16H) IOC1

272245–2

There are a few control registers that need to be utilized
for mode 0 operation. First, since TXD is shared on the
same pin as P2.0, we need to select the TXD function
of that pin. This is accomplished by setting bit 5 in
IOC1 (16H).

(11H) SPÐCON

272245–3

In order to set the serial port to operate in mode 0, the
serial port control register (SPÐCON 11H) needs to be
initialized. Bits 0 to 1 set the mode. Hence, setting them
to zero enables mode 0. Also, in the SPÐCON is the
receiver enable bit. Setting this bit (bit 3) enables the
receiver (see RECEIVE).

(11H) SPÐSTAT

272245–4

The serial port status register (SPÐSTAT 11H) is
located at the same address as SPÐCON. Writing to
address 11H loads the serial port control register.
Reading from 11H will read from the serial port status
register (SPÐSTAT). Two status bits of importance are
RI and TI. When set they indicate a receive completion
or a transmit completion respectively. The RI and TI
bits are cleared by reading SPÐSTAT.

(09H) INTÐMASK

272245–5

(200CH) SERIAL PORT interrupt vector location.

NOTE:

This interrupt is available on the 8X9X, KB, KC and
KD.

There are two ways to monitor the status of the receiver
and/or the transmitter. One is by polling the
SPÐSTAT register (specifically RI and TI), the other
is by using interrupts. RI is set whenever the receiver is
done receiving one byte in mode 0. Likewise, TI is set
whenever the transmitter has sent out one byte in mode
0. If the SERIAL PORT interrupt is masked in, then a
rising edge on RI or TI causes the SERIAL PORT
interrupt to be taken. The SERIAL PORT interrupt bit
in INTÐMASK (09H) is the inclusive OR of RI and
TI. Hence, either RI or TI can cause a SERIAL PORT
interrupt. Therefore, once the interrupt routine is en-
tered, SPÐSTAT has to be tested to determine which
interrupt (RI or TI) occurred.

(12H) INTÐMASK1

272245–6

(2030H) TI vector location
(2032H) RI vector location

NOTE:

These interrupts are available on the KB, KC, and
KDÐnot on the 8X9X.

Additional interrupt vectors exist on the KB, KC and
KD which make it easier to write code for the serial
port. To interrupt on just the receive completion, the
RI interrupt vector can be masked in. Similarly, the TI
interrupt has a separate vector for transmit completion.

2



AB-46

RECEIVE

Reading the SPÐSTAT register always clears the RI
bit and TI bit. If the RI bit is cleared while the
RECEIVER ENABLE bit (bit 3 in SPÐCON) is high,
then another reception is started. Hence, it is possible
to start another reception and overwrite the previous
one. Therefore, don’t poll SPÐSTAT to monitor the
receiver. Use the serial port interrupt, the receive inter-
rupt vector, or INTÐPEND1 (KB, KC and KD) to
test the RI bit for receive completion.

It is a good programming practice to use the serial port
interrupt or the RI interrupt for testing the RI bit.
First, load the interrupt vector location with the appro-
priate ISR routine address. Next, enable the interrupt
using either INTÐMASK or INTÐMASK1 depend-
ing on which interrupt is chosen. Now, enable inter-
rupts using the EI instruction. Then, disable the receiv-
er by clearing bit 3 in SPÐCON. Now the receiver is in
a known state. To start a reception initiate a rising edge
on the receiver enable bit (set bit 3 in SPÐCON).
When the service routine is entered, disable interrupts
(i.e., PUSHF or PUSHA) and read SBUF (07H) to
obtain the received byte. To start another reception,
clear the RI bit by reading SPÐSTAT. Then, enable
interrupts (i.e., POPF or POPA), and return from the
interrupt service routine. Clearing the RI bit while the
receiver is enabled starts a reception and allows another
serial port or receive interrupt to occur. To disable the
receiver simply clear the RECEIVER ENABLE bit in
SPÐCON. See the programming example in the fol-
lowing pages.

TRANSMIT

Transmitting a byte is much more straightforward.
First, load SBUF (07H) with the byte to be transmitted.
Two methods can be used to detect when transmit com-
pletion occurs: polling TI in SPÐSTAT, or using the
serial port interrupt or TI interrupt (KB, KC and KD).
Once again, using an interrupt to detect transmit com-
plete is good programming practice.

To set up the transmit interrupt service routine, load
the address of the ISR into either the serial port inter-
rupt vector (200CH) or the TI interrupt vector
(2030H). As with receive, mask in the appropriate in-
terrupt using either INTÐMASK or INTÐMASK1.
Enable interrupts with EI and load SBUF with the byte
to transmit.

When the interrupt service routine is entered disable
interrupts (i.e., PUSHF or PUSHA). After the routine
is executed another transmit can be started by loading
SBUF again. Clear the TI bit in SPÐSTAT by reading
SPÐSTAT. This action allows another transmit or se-
rial interrupt to occur. Enable interrupts before return-
ing from the service routine (i.e., POPF or POPA).
When the next transmit is done, another interrupt oc-
curs (serial or transmit).

EXAMPLE USING MODE 0

A programming example is included to demonstrate
most of the above procedures for implementing mode 0.
An evaluation board was used in conjunction with an
I/O port expansion circuit to test out the following
code. The program reads in one byte from an external
shift register. Then it multiplies the lower nibble by the
upper nibble. The product is transmitted to another ex-
ternal shift register and is displayed on LEDs. The larg-
est product is 0E1H which is 0FH x 0FH.

HARDWARE

The schematic for this example is pictured in Figure 2.
The data-in byte is generated by a DIP switch attached
to a parallel-in serial-out shift register (74LS165). The
output display is simply eight LEDs. The clock (TXD)
is used to clock the parallel-in serial-out shift register
(74LS165). This (74LS165) register has two modes: a
shift mode and a load mode. When the transmit part of
the circuit is activated, the 74LS165 is put into LOAD
mode so the transmit shift register is not interfered
with. To enable the transmit circuit, the TXD clock is
gated to the 74LS164 (serial-in parallel-out). The trans-
mit circuit is enabled by the active low signal
ENABLE. The RXD line is used for receiving and
transmitting.

Inverter

The inverter (74LS05) has an open-collector output. A
weak (15K) pull-up is used at the output. The purpose
of the weak pull-up is so the RXD (when used as an
output) can drive the data on RXD high or low. If a
regular inverter were used, then contention would exist
between RXD (when used as an output) and the invert-
er output. Notice that the input to the inverter is QH,
hence the output of the inverter is the actual data QH.

OR Gate

The OR gate is a switch for the TXD clock. TXD is at
one input. The other input is the ENABLE line (from
P2.6). When the ENABLE line is low, TXD passes
freely through the OR gate. However, when ENABLE
is high, the output of the OR gate is always high. As a
result there are no transistions at the output of the OR
gate and the 74LS164 is not clocked.

DIP Switch

The DIP switch is weakly pulled high (switch off) and
strongly driven low (switch on).

3



AB-46

Figure 2. I/O Port Expansion and Example Schematic

2
7
2
2
4
5
–
1
2

4



AB-46

SOFTWARE

See the program listing for the software part of this
example. Only the serial port interrupt is used in this
example. Hence, this program is compatible with
8X9XBH, KB, KC and KD. The flow chart in Figure 3
illustrates the algorithm.

272245–7

Figure 3. Flowchart of Example Mode 0 Program

During the initialize procedure the control registers are
set to a known state. The serial port interrupt is masked
in. Then the TXD function is enabled on its respective
pin. Next, the baud rate is set. The baud rate generator
can be clocked by either XTAL1 or T2CLK.

Now, the first receive is started. The shift register must
be loaded with the DIP switch byte. Hence, a proce-
dure is called to load the shift register and to set the

register to shift mode. Port 2 is used to output control
signals to the shift register and the transmit enable gate.
Clearing P2.7 loads the shift register. Setting P2.7 puts
the register in shift mode. Furthermore, to allow TXD
to clock the transmit shift register P2.6 must be cleared.
Setting P2.6 disables the TXD clock to the transmit
shift register. Port 2 is diagrammed below:

(10H) PORT 2

272245–8

The next step in starting a receive in this example is to
disable the clock to the transmit circuit (see above).
P2.6 is set by performing a logical OR. Next, mode 0 is
selected and the receiver is disabled by clearing all bits
in SPÐCON. Now, a rising edge on the REN bit is
initiated by setting bit 3 in SPÐCON. Finally,
SPÐSTAT is cleared by reading it. Note that a special
procedure was used to clear SPÐSTAT. This routine
only needs to be called for the 8X9XBH (see techbit
MC3391). The KB, KC and KD can simply do a LDB
temp, SPÐSTAT.

The foreground loop is entered until an interrupt oc-
curs. There is only one interrupt routineÐthe serial
port interrupt service routine. The first step in an inter-
rupt routine is to disable other interrupts and save the
flags. Next, the receiver is disabled by clearing
SPÐCON. Then, the TXD clock to the transmit cir-
cuitry is disabled by setting P2.6. The completion bits
RI and TI are cleared (call SPÐSTATÐrd) to allow
for the next interrupt. SPÐIMAGE is returned from
the SPÐSTATÐrd procedure. SPÐIMAGE contains
the status of the serial port upon entry into the service
routine. The RI bit is tested in SPÐIMAGE for receive
completion.

If a receive just finished, then a transmit is initiated.
First, the received byte is read in. Then, the nibbles are
multiplied. The TXD clock to the transmit circuitry is
enabled and the transmit is initiated.

Now, if a transmit caused the interrupt, then a receive
is started. First, the external shift register is loaded by
calling ‘‘loadÐshiftÐreg’’. Then, the receiver is en-
abled. A rising edge on REN starts another reception.
The RI bit has already been cleared because
SPÐSTATÐrd was called. Hence, when the interrupt
service routine is exited, the POPF enables interrupts
and allows for the receive interrupt to occur.

Once again, the foreground loop is entered to await
another interrupt.

5



AB-46

272245–9

6



AB-46

272245–10

7



AB-46

272245–11

8


	Abstract
	Method of Operation
	Timing Considerations
	Baud Rate

	Setting Up the Control Registers
	Receive
	Transmit
	Example Using Mode 0
	Hardware
	Inverter
	OR Gate
	DIP Switch

	Software
	EQUATION
	Equation 1: Serial Port Synchronous Mode 0 Baud Rate Register Equations

	FIGURES
	Figure 1. Important Timings for Serial Port Mode 0
	Figure 2. I/O Port Expansion and Example Schematic
	Figure 3. Flowchart of Example Mode 0 Program

	CODE
	Code 1: Setting up Baud Rate Generator in Mode 0


