intel . AP-468

APPLICATION
BRIEF

Serial Port Mode 0
SX9XBH/KB/KC/KD

RICHARD N. EVANS
APPLICATIONS ENGINEER

February 1995

Order Number: 272245-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

TSince publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996

Serial Port Mode 0

8X9XBH/KB/KC/KD
CONTENTS PAGE CONTENTS PAGE
ABSTRACT 1 TRANSMIT
METHOD OF OPERATION 1 EXAMPLE USING MODEO
Timing Considerations 1 HARDWARE
BaudRate ... 1 Inverter
SETTING UP THE CONTROL ORGateo i
REGISTERS ..., 2 DIPSWItCN oo

RECEIVEccooooooiiiiiii. 3 GOFTWARE

intgl.

ABSTRACT

This application brief explains how to program the
MCS®-96 device to operate the serial port in synchro-
nous mode. A 4-bit multiplier which utilizes mode O
with a port expansion circuit is presented.

METHOD OF OPERATION

The serial port can be operated in a synchronous mode.
This mode was intended for port expansion using shift
registers. For example, the TXD pin is used to clock
both input and output data on RXD. The data is al-
ways one byte in length. Whenever a write to the serial
port buffer (SBUF) is performed, a train of eight pulses
is sent out TXD to clock the outgoing byte. Likewise,
whenever SBUF is read, a train of eight pulses is sent
out TXD to clock in the byte being read. See the
synchronous serial mode timing diagram shown in Fig-
ure 1.

Timing Considerations

All timings associated with the serial port are relative
to Tosc. Therefore, the timings are fixed whether
XTAL1 or T2CLK clocks the baud rate generator.

Tpvxg Input Data Setup to Clock (TXD) Rising
Edge. In other words, the data has to be val-
id at Tpyxy before the next TXD pulse ris-
es.

Tqovxu Output Data Setup to Clock (TXD) Rising
Edge. The output bit will be valid before the
rising edge of the next TXD pulse for
Tovxn

Txrxg Serial Port Clock Falling Edge to Rising
Edge. The low period for the TXD clock
cannot be changed. For the 8X9X, Tx1xH
= 4 Tosc *50. For KB, KC and KD,
TXLXH =4 TOSC +50 or 2 TOSC +50
depending on the baud rate register value.

AB-46

NOTE:
See the A.C. Characteristics in the datasheets for the
timing specifications.

Baud Rate

Baud rate is a misused term. Baud rate is often used
interchangeably with bits per second (BPS). This sub-
stitution is not always true though. Baud rate is the
speed at which packets of information are passed per
second. It just so happens that with the MCS-96 family
the length of the information packet is 1 bit. Hence, the
baud rate measurement is the same as the bits per sec-
ond (BPS) for the MCS-96 serial port. The MCS-96 has
a 15-bit baud rate generator. The most significant bit
(bit 15) determines the clock source (XTAL1 or
T2CLK). There is a baud rate register (location OEH).
This register is a byte wide. When loading the baud rate
register it must be written twice: first, the least signifi-
cant byte must be written to location OEH, then the
most significant byte. See equation 1 for the baud rate
register formula.

BAUD_VALUE = — OS¢ _
BAUD RATE x 2

OR

_ T20LK
BAUD RATE

Equation 1: Serial Port Synchronous Mode 0
Baud Rate Register Equations

Setting up the baud rate generator is easy. The example
code (code 1) shows how to configure the baud rate
generator to run at 9600 baud with a 16 MHz crystal.

o A u\ u\ P\

—> TXLXL €—

DRZSIB\-IN X |0 1 2 X 3 4 5 >< [} 7 ><

TQVXH

RXD /|
DATA-OUT X 1o 1 2 X

DATA-IN
SAMPLED

272245-1

Figure 1. Important Timings for Serial Port Mode 0

n
AB-46
intgl.
BAUD_VALUE EQU OEH ; BAUD RATE REGISTER
CSEG AT 2080H
LDB BAUD_VALUE, 40H ; SET UP BAUD RATE GENERATOR FOR
LDB BAUD_VALUE, 83H ; FOR 9600 BAUD AT A 16MHz CRYSTAL FREQUENCY

Code 1: Setting up Baud Rate Generator in Mode 0

SETTING UP THE CONTROL
REGISTERS

(16H) 10C1

XXAX-XXXX

SELECT TXD / SELECT P2.0
272245-2

There are a few control registers that need to be utilized
for mode 0 operation. First, since TXD is shared on the
same pin as P2.0, we need to select the TXD function
of that pin. This is accomplished by setting bit 5 in
I0Cl1 (16H).

(11H) SP_CON

XXXX-XX00

[L oomoODE 0
01 MODE 1
10 MODE 2
11 MODE 3
RECEIVER ENABLE / RECEIVER DISABLE

272245-3

In order to set the serial port to operate in mode O, the
serial port control register (SP__CON 11H) needs to be
initialized. Bits O to 1 set the mode. Hence, setting them
to zero enables mode 0. Also, in the SP__CON is the
receiver enable bit. Setting this bit (bit 3) enables the
receiver (see RECEIVE).

(11H) SP_STAT
XXKX-XXXX
i—-* XMIT DONE /XMIT NOT DONE
RECEIVE DONE / RECEIVE NOT DONE
272245-4

The serial port status register (SP_STAT 11H) is
located at the same address as SP__CON. Writing to
address 11H loads the serial port control register.
Reading from 11H will read from the serial port status
register (SP__STAT). Two status bits of importance are
RI and TI. When set they indicate a receive completion
or a transmit completion respectively. The RI and TI
bits are cleared by reading SP__STAT.

(09H) INT_MASK

XAXX-XXXX

L SERIAL PORT IRPT/S.P. DONT IRPT

272245-5

(200CH) SERIAL PORT interrupt vector location.

NOTE:
This interrupt is available on the 8X9X, KB, KC and
KD.

There are two ways to monitor the status of the receiver
and/or the transmitter. One is by polling the
SP__STAT register (specifically RI and TI), the other
is by using interrupts. RI is set whenever the receiver is
done receiving one byte in mode 0. Likewise, TI is set
whenever the transmitter has sent out one byte in mode
0. If the SERIAL PORT interrupt is masked in, then a
rising edge on RI or TI causes the SERIAL PORT
interrupt to be taken. The SERIAL PORT interrupt bit
in INT__MASK (09H) is the inclusive OR of RI and
TI. Hence, either RI or TI can cause a SERIAL PORT
interrupt. Therefore, once the interrupt routine is en-
tered, SP__STAT has to be tested to determine which
interrupt (RI or TI) occurred.

(12H) INT_MASK1

XXXX-XXXX
L TRANSMIT INTERRUPT
RECEIVE INTERRUPT
272245-6

(2030H) TI vector location
(2032H) RI vector location

NOTE:
These interrupts are available on the KB, KC, and
KD—not on the 8X9X.

Additional interrupt vectors exist on the KB, KC and
KD which make it easier to write code for the serial
port. To interrupt on just the receive completion, the
RI interrupt vector can be masked in. Similarly, the TI
interrupt has a separate vector for transmit completion.

intgl.

RECEIVE

Reading the SP__STAT register always clears the RI
bit and TI bit. If the RI bit is cleared while the
RECEIVER ENABLE bit (bit 3 in SP__CON) is high,
then another reception is started. Hence, it is possible
to start another reception and overwrite the previous
one. Therefore, don’t poll SP__STAT to monitor the
receiver. Use the serial port interrupt, the receive inter-
rupt vector, or INT__PENDI1 (KB, KC and KD) to
test the RI bit for receive completion.

It is a good programming practice to use the serial port
interrupt or the RI interrupt for testing the RI bit.
First, load the interrupt vector location with the appro-
priate ISR routine address. Next, enable the interrupt
using either INT__MASK or INT__MASKI1 depend-
ing on which interrupt is chosen. Now, enable inter-
rupts using the EI instruction. Then, disable the receiv-
er by clearing bit 3 in SP__CON. Now the receiver is in
a known state. To start a reception initiate a rising edge
on the receiver enable bit (set bit 3 in SP__CON).
When the service routine is entered, disable interrupts
(i.e., PUSHF or PUSHA) and read SBUF (07H) to
obtain the received byte. To start another reception,
clear the RI bit by reading SP__STAT. Then, enable
interrupts (i.e., POPF or POPA), and return from the
interrupt service routine. Clearing the RI bit while the
receiver is enabled starts a reception and allows another
serial port or receive interrupt to occur. To disable the
receiver simply clear the RECEIVER ENABLE bit in
SP__CON. See the programming example in the fol-
lowing pages.

TRANSMIT

Transmitting a byte is much more straightforward.
First, load SBUF (07H) with the byte to be transmitted.
Two methods can be used to detect when transmit com-
pletion occurs: polling TI in SP__STAT, or using the
serial port interrupt or TI interrupt (KB, KC and KD).
Once again, using an interrupt to detect transmit com-
plete is good programming practice.

To set up the transmit interrupt service routine, load
the address of the ISR into either the serial port inter-
rupt vector (200CH) or the TI interrupt vector
(2030H). As with receive, mask in the appropriate in-
terrupt using either INT__MASK or INT__MASKI.
Enable interrupts with EI and load SBUF with the byte
to transmit.

When the interrupt service routine is entered disable
interrupts (i.e., PUSHF or PUSHA). After the routine
is executed another transmit can be started by loading
SBUF again. Clear the TI bit in SP__STAT by reading
SP__STAT. This action allows another transmit or se-
rial interrupt to occur. Enable interrupts before return-
ing from the service routine (i.e., POPF or POPA).
When the next transmit is done, another interrupt oc-
curs (serial or transmit).

AB-46

EXAMPLE USING MODE 0

A programming example is included to demonstrate
most of the above procedures for implementing mode 0.
An evaluation board was used in conjunction with an
I/0 port expansion circuit to test out the following
code. The program reads in one byte from an external
shift register. Then it multiplies the lower nibble by the
upper nibble. The product is transmitted to another ex-
ternal shift register and is displayed on LEDs. The larg-
est product is OE1H which is OFH x OFH.

HARDWARE

The schematic for this example is pictured in Figure 2.
The data-in byte is generated by a DIP switch attached
to a parallel-in serial-out shift register (74LS165). The
output display is simply eight LEDs. The clock (TXD)
is used to clock the parallel-in serial-out shift register
(74LS165). This (74LS165) register has two modes: a
shift mode and a load mode. When the transmit part of
the circuit is activated, the 74LS165 is put into LOAD
mode so the transmit shift register is not interfered
with. To enable the transmit circuit, the TXD clock is
gated to the 74L.S164 (serial-in parallel-out). The trans-
mit circuit is enabled by the active low signal
ENABLE. The RXD line is used for receiving and
transmitting.

Inverter

The inverter (74LS05) has an open-collector output. A
weak (15K) pull-up is used at the output. The purpose
of the weak pull-up is so the RXD (when used as an
output) can drive the data on RXD high or low. If a
regular inverter were used, then contention would exist
between RXD (when used as an output) and the invert-
er output. Notice that the input to the inverter is QH,
hence the output of the inverter is the actual data QH.

OR Gate

The OR gate is a switch for the TXD clock. TXD is at
one input. The other input is the ENABLE line (from
P2.6). When the ENABLE line is low, TXD passes
freely through the OR gate. However, when ENABLE
is high, the output of the OR gate is always high. As a
result there are no transistions at the output of the OR
gate and the 74LS164 is not clocked.

DIP Switch

The DIP switch is weakly pulled high (switch off) and
strongly driven low (switch on).

AB-46

ax.rL

c¢l—-Sveele
vOSTIbL
suyo Qfg
*X((€ 8 v €
vOSTIbL
swyo 0€g
1 '{{oA L Z T
vOSIVL
swyo o€g
1 '/-/n 11 9 Z1 €T
vOSTIvL POTSTIVL =
swyo Q¢ — _
L—1 HO ¥TIO D—m
H!(/.Nﬁ S o1 TI MM o0 S dTdYNa# 9 ed
1490 MIod¢5
vOSTbL ot | 39 S9TSThL
| _1 swyo 0g¢ w 50 a1/HS T L-2Zd
S - = a0 a HNI
x £ T] 6 v 4 ZJSt
G A B z i L CIRIEE] o
vOSTIVL GOSTbe 6 Ho M 2
sSUWIYO €€ e K1 W
- ; _ 3 &
_1((v~ £ 9 S a &
L—<awE> o 1%
POSTIbL M A
i suqo Qg€¢ Hds % =
| \ BN
S 6 1 Z v €
€ e]
0TS L
o
ST T E)
, vOSIbL > o 2
swyo og¢g = e
i = e |2
VRS T 2 i 2 3
ST | e [2
ST L= T
8-dId MS

HAOTCHO MO TCHO TEHO TCHO T MO TAMO T

Figure 2. 1/0 Port Expansion and Example Schematic

intgl.

SOFTWARE

See the program listing for the software part of this
example. Only the serial port interrupt is used in this
example. Hence, this program is compatible with
8X9XBH, KB, KC and KD. The flow chart in Figure 3
illustrates the algorithm.

START

INITIALIZE

o

ENABLE
INTERRUPTS

v
WAIT FOR

INTERRUPT
T

SERIAL INTERRUPT

A2
DISABLE
INTERRUPTS
SAVE FLAGS

ENABLE
INTERRUPTS
RESTORE
FLAGS

m START A
RECENE | /7|

R!

READ
BYTE

!

MULTIPLY UPPER|
NIBBLE BY THE
LOWER NIBBLE

J

TRANSMIT
PRODUCT

l

272245-7

Figure 3. Flowchart of Example Mode 0 Program

During the initialize procedure the control registers are
set to a known state. The serial port interrupt is masked
in. Then the TXD function is enabled on its respective
pin. Next, the baud rate is set. The baud rate generator
can be clocked by either XTAL1 or T2CLK.

Now, the first receive is started. The shift register must
be loaded with the DIP switch byte. Hence, a proce-
dure is called to load the shift register and to set the

AB-46

register to shift mode. Port 2 is used to output control
signals to the shift register and the transmit enable gate.
Clearing P2.7 loads the shift register. Setting P2.7 puts
the register in shift mode. Furthermore, to allow TXD
to clock the transmit shift register P2.6 must be cleared.
Setting P2.6 disables the TXD clock to the transmit
shift register. Port 2 is diagrammed below:

(10H) PORT 2

XXXX-XXXX

L DISABLE CLK TO XMIT / ENABLE CLK TO XMIT

SHIFT MODE / LOAD REGISTER
272245-8

The next step in starting a receive in this example is to
disable the clock to the transmit circuit (see above).
P2.6 is set by performing a logical OR. Next, mode 0 is
selected and the receiver is disabled by clearing all bits
in SP__CON. Now, a rising edge on the REN bit is
initiated by setting bit 3 in SP__CON. Finally,
SP__STAT is cleared by reading it. Note that a special
procedure was used to clear SP__STAT. This routine
only needs to be called for the 8X9XBH (see techbit
MC3391). The KB, KC and KD can simply do a LDB
temp, SP__STAT.

The foreground loop is entered until an interrupt oc-
curs. There is only one interrupt routine—the serial
port interrupt service routine. The first step in an inter-
rupt routine is to disable other interrupts and save the
flags. Next, the receiver is disabled by clearing
SP__CON. Then, the TXD clock to the transmit cir-
cuitry is disabled by setting P2.6. The completion bits
RI and TI are cleared (call SP__STAT__rd) to allow
for the next interrupt. SP__IMAGE is returned from
the SP__STAT__rd procedure. SP__ IMAGE contains
the status of the serial port upon entry into the service
routine. The RI bit is tested in SP__IMAGE for receive
completion.

If a receive just finished, then a transmit is initiated.
First, the received byte is read in. Then, the nibbles are
multiplied. The TXD clock to the transmit circuitry is
enabled and the transmit is initiated.

Now, if a transmit caused the interrupt, then a receive
is started. First, the external shift register is loaded by
calling “load__shift_ _reg”. Then, the receiver is en-
abled. A rising edge on REN starts another reception.
The RI bit has already been cleared because
SP__STAT__rd was called. Hence, when the interrupt
service routine is exited, the POPF enables interrupts
and allows for the receive interrupt to occur.

Once again, the foreground loop is entered to await
another interrupt.

AB-46 In

$debug
;**************'J(k**************‘k****k‘k*******************k********‘k***********************
;* TITLE: Mode 0 demonstration

* AUTHOR: Richard N. Evans

*

*

DATE: March 11, 1992 *
DESCRIPTION: *
This program demonstrates the receive and transmit *
functions of mode 0. The following program is tailored for *
the 8X9XBH,JF and is upward compatable with the KB and KC. *
Testing of this program was done on an MCS-96 Eval Board *
rev 3.1 with a 8096BH, 80C196KB, and 80Cl96KC running at *
12MHz. *
The code continually reads a byte from the receive *
*

*

*

*

*

*

*

*

*

*

s e e

*

*

*

*

*

*

*

*

*

* pbuffer. It then multiplies the upper nibble by the lower
* nibble. Then, it outputs the product via the transmit
*
*
*
*
*
*
*
*

buffer. The product is one byte in length.

One interrupt routine is necessary. The serial port
interrupt is used. Once entered, either a receive or
or transmit is executed. If a receive done caused the
interrupt, then the nibbles are multiplied and the product
is trasmitted. However, if a transmit done caused the

interrupt, then a receive is initiated.
sk s ok ok ok e e ok e ok ok ok sk ke ok ke ok ke R ok ke ok ke sk ok sk ok sk sk ok ok ok ok ok ok ok ok ok sk ok ke sk ok ok ke ok e ok sk ke sk ok ok e ok ok ke sk ke ok ok sk sk ke ok o ok ok s Sk Sk ke ok ke k ke ke ke

e s

;

$include (sfrs.equ)
;**'k*k'k***********************k****'k*k*********************k*******************************

; 76543210
INT_MASK_MSK EQU 01000000B
LI A== TIMER OVERFLOW
||| +=mmmmmmm A/D CONVERSION COMPLETE

HSI DATA AVAILABLE
HIGH SPEED OUTPUTS
HSI.O PIN

SOFTWARE TIMER
SERIAL PORT
EXTERNAL INTERRUPT
(EXTINT OR P0O.7 PIN)

e e N N N e e e

10C1_MSK EQU

; SELECT PWM / #SELECT P2.5

i EXTERNAL INTERRUPT ACH7 / #EXTINT

; TIMER 1 OVERFLOW INTERRUPT ENABLE / #DISABLE

; TIMER 2 OVERFLOW INTERRUPT ENABLE / #DISABLE

; HSO.4 OUTPUT ENABLE / #DISABLE

; SELECT TXD / #SELECT P2.0

; HSO.5 OUTPUT ENABLE / #DISABLE

H HSI INTERRUPT FIFO FULL / #HOLDING REGISTER

; LOADED

XMIT_OFF EQU 01000000B ; TRANSMIT OFF, USE: "OR"

; [= mm e DISABLE CLOCK TO XMIT CIRCUITRY / #ENABLE

; B el SHIFT / #LOAD FOR 74LS165

XMIT_ON EQU 10111111B ; TRANSMIT ON, "AND" MASK

; Fomm e DISABLE CLOCK TO XMIT CIRCUITRY / #ENABLE

BAUD_RATE_LO EQU O8H ; FASTEST RATE FOR MODE O -> 1.5MBAUD BH,JF
;AND 3MBAUD FOR KB,KC AT 12 MHZ

BAUD_RATE_HI EQU 80H ;USE XTAL1 TO CLOCK BAUD RATE GENERATOR

LOAD_SR_MSK EQU 01111111B ;LOAD SHIFT REGISTER

H B e SHIFT / #LOAD FOR 74LS165

SHIET EQU 100000008 ;PUT SHIFT REG IN SHIFT MODE, USE "OR"

; R b SHIFT / #LOAD FOR 74LS165

RBSRPE_MSK EQU 01111111B ;MASK FOR SP_STAT RB8/RPE BIT

i Fomm e RB8/RPE IN SP_STAT

RI_BNO EQU 06H ;BIT NUMBER OF RI IN SP_STAT

TI_BNO EQU 05H ;BIT NUMBER OF TI IN SP_STAT

RECV_ENABLE EQU 00001000B ;SP_CON

; B RECEIVER ENABLE

NIBBLE_SIZE EQU 04H ;THE LENGTH OF A NIBBLE IN BITS

UP_NIBBLE MSK EQU 00001111B ;MASK OFF UPPER NIBBLE OF A BYTE

CODE_START EQU 2080H ; STARTING ADDRESS OF CODE

TOP_STACK EQU OFOH ;TOP OF STACK ADDRESS

REGISTER_START EQU 01AH ; START OF USER REGISTER SPACE

SP_IRPT VECTOR EQU 200CH ;SERIAL PORT INTERRUPT VECTOR

272245-9

In

AB-46

cs

cs

fo

I3

;
s %
;

se

s %
;
I3
;
I3
;
sk
;
I3
;
. %
;
sk

;

eqg at SP_IRPT_VECTOR
dew serial_isr

rseg at REGISTER_START

temp: dsb 1 ;a temporary register

mltplier: dsb 1 smultiplier (upper nibble in byte read in)
;lower nibble in mltplier byte register

mltplicand: dsb 1 ;multiplicand (lower nibble in byte read in)
;lower nibble in mltplicand register

product: dsw 1 ;lower byte contains product

sp_image: dsb 1 ;contains serial port status

eqg at CODE_START
1d sp, #TOP_STACK ;set the stack pointer to the top of the stack
di
call init ;initialize registers and start reception
ei
reground:
br foreground ;wait for interrupt

serial_isr

This routine services the serial port interrupt. If
a receive or transmit is done, then the RI and TI bits get
set and this routine is vectored to.

If a receive caused the interrupt, then the byte is
read. The lower and upper nibbles are multiplied together.
Finally, the product is written to the serial buffer which
initiates a transmit.

If a transmit caused the interrupt. Then that means a
product was just written out the RXD pin. So, a receive is
initiated to get the next byte.

INPUT: sbuf
OUTPUT: product, mltplier, mltplicand, port2, sbuf, sp_image
CHANGED: temp, sp_con, sp_stat, (plus OUTPUT)

ke e sk ke e ke ok sk e sk sk ke ok sk ke ke Sk ok ok e sk ok ok o ok e ok ke sk ke ok ok sk ok ok sk e sk ke sk ok ok ok e ke sk ke e sk sk ok e s sk sk e ok ok ok ke ok ok sk sk ke sk ke sk e Sk ke ok ok ok ok sk ok sk ke ok ke ke ok ke ok
serial isr:

PR R R A s R]

33k ok sk e sk otk ok ok ok ek e sk ok ok sk ok ok ook ok ok ke ok ok sk ke sk ke ok ok sk sk ok ek ok ok ok ok s ok sk ok ks ok ok sk ok ok ok ke ok ke sk ke o ok ok Rk

3R ok ok ok ko ke sk e ok ok ok ek ke sk s ok ok sk sk sk sk ok ok sk ke ke ok ok ok ke ke ke sk sk ok ok ok kol sk sk ok ok ok sk sk sk sk ok ok ke ok sk ok ok S sk ok ok koK ok

3Rk Kok ok ok ok ke ok e sk ok ok ok ok sk ok ok ke S ok e ek ke sk ok ok ke Sk ek ke sk ke e ok ke ok ek ke ko ek ok ok ke Rk kR ek kR k ok

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

pushf ;save flags, disable irpts
clrb sp_con ;disable the receiver
1db port2, #XMIT_OFF ;disable the transmit circuitry
call sp_stat_rd ;get sp_image
ibs sp_image,RI_BNO,get_byte ;if receive irpt, goto receive routine
call load shift_reg ;load shift register, put in shift
1db sp_con,#RECV_ENABLE ;transmit done so enable receiver
br serial_isr_end ;exit isr
get_byte:
1db temp, sbuf ;read the received byte
1ldb mltplier, temp ;jmultiplier is the upper nibble in byte recvd
shrb mltplier, #NIBBLE_SIZE ;shift out the lower nibble and keep upper
andb mltplier, #UP_NIBBLE_MSK ;preserve multiplier nibble
ldb mltplicand, temp ;get multiplicand nibble from byte
andb mltplicand, #UP_NIBBLE_MSK ;mask off multiplier nibble
mulb product,mltplier,mltplicand ;multiply and get product
andb port2, #XMIT_ON ;enable clock to transmit circuit, put shift reg
;in load mode.
1db sbuf, product ;start transmission of product
rial_isr end: popf ;restore flags, and enable irpts
ret ;return to calling procedure

load_shift reg

This procedure will load the external shift register.
74LS165. A high to low transition on the shift/#load pin,
Hence, this routine outputs a high to low transition to por
port 2 are preserved.

INPUT:

The shift register is a
loads the shift register.
t 2. The other bits in

PR e R T T

* Ok ok k E %

272245-10

AB-46

In

;* OUTPUT:
;* CHANGED:

load_shift_reg:
orb
andb
orb
ret

;* CHANGED:

init:
1db
1db
1db
1db
call
orb
clrb
1db
call
ret

;¥ sp_stat_xd

;* instruction
;% INPUT:

;% OUTPUT:

;* CHANGED:

sp_stat_rd:
clrb

get_status:
1db
orb
jbs
jbs
andb
orb

ret

end

port2
port2

port2, #SHIFT
port2, §LOAD_SR_MSK
port2, #SHIFT

;jmake shift/#load high
;shift/#load goes low

;put in shift mode

;return to calling procedure

Te i
;* init

Px This procedure initializes some control registers and starts a receive.
.k

;

;* INPUT: sp_stat

;* OUTPUT: port2

int_mask, iocl, baud_reg, sp_con, sp stat, port2, temp, sp_image

int_mask, #INT_MASK_MSK
iocl, #10C1_MSK
baud_reg, #BAUD_RATE_LO
baud_reg, #BAUD_RATE_HI
load_shift_reg

port2, #XMIT_OFF

sp_con

sp_con, #RECV_ENABLE
sp_stat_rd

;***k**************?****************;***

;allow serial port irpt
;enable txd
;set the baud rate generator

:load the shift register and put in shift mode
;disable the clock to the transmit circuitry
;Disable receiver

*
*

PEFHE KK E KL LR LR E K IR Ik rk ok ke h kI h I H R AR Kk kdok ek ko k kb b ok kb ok sk sk ok ek kA d ok k k ok ok k ok sk k kR ARk kX

39 ek ek ke ok ek ok o ke ok Sk ok Sk ke sk s ek sk ok sk ok e Sk ok S bk o sk ko ok Sk k ok Rk Rk kR R R R R R R kR Rk

*
*
*
*
*
*
*

;enable receiver and put in mode 0, start recept

;clear RI bit
;return to calling program

;* This subroutine will clear RI, TI, and RB8 in sp stat. The other status bits are
;* preserved and returned in sp_image.

This subroutine is meant to replace the

"ldb sp_image,sp_stat".

sp_stat
sp_image
temp, sp_stat, sp_image

sp_image

temp, sp_stat
sp_image, temp

temp,RI_BNOG,get_status
temp, TI_BNO,get_status

sp_image, #RB8RPE_MSK
sp_image, temp

;********************************?*******************y***w*******+**********************

;clear status bits

;get current status

saccumulate status bits

;if ti is set, then read again

;if ri is set, then read again, otherwise ti

;and ri are clear

;clear out the RB8/RPE bit
;include the most recent copy of RB8/RPE

jreturn to calling procedure

ek sk Rk Rk kkok kR ok ks s sk s e ok ok ok sk ok ok ek S ek ke ko ok ok ok Sk Sk ok Rk ok Rk Rk ok sk ok ek kot ko

*
*
*
*
*
*
*
*
*

272245-11

	Abstract
	Method of Operation
	Timing Considerations
	Baud Rate

	Setting Up the Control Registers
	Receive
	Transmit
	Example Using Mode 0
	Hardware
	Inverter
	OR Gate
	DIP Switch

	Software
	EQUATION
	Equation 1: Serial Port Synchronous Mode 0 Baud Rate Register Equations

	FIGURES
	Figure 1. Important Timings for Serial Port Mode 0
	Figure 2. I/O Port Expansion and Example Schematic
	Figure 3. Flowchart of Example Mode 0 Program

	CODE
	Code 1: Setting up Baud Rate Generator in Mode 0

