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OVERVIEW

This application note gives several practical software examples using the unique features of the 8XC196MC micro-
controller. Each section uses one of the 8XC196MC features to perform a ‘‘typical’’ application. A brief explanation
of the peripheral used is given, followed by detailed analysis of a software example. The program source code is
listed, along with figures and flow charts.

This application note is meant to be used in conjunction with the 8XC196MC USER’S MANUAL, order number
272181.

The program examples were developed for several different hardware configurations, and may need to be modified
for the end user’s application.

All programs were assembled using the standard Intel ASM-96 assembler, along with the MC include file for register
names. Additional include files are required to support the windowed register names and look-up tables. The
program source code is available from the Intel bulletin board system:

The Intel Applications Bulletin Board System
(916) 356-3600 or (916) 356-3605

1200, 2400 Bps
8 DATA BITS
NO PARITY
1 STOP BIT

and

9600 Bps v.32, v.42
8 DATA BITS
NO PARITY
1 STOP BIT

All 8XC196MC files are under the embedded directory.
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1.0 UNDERSTANDING THE 8XC196MC/MD INTERRUPTS AND PTS

A microcontroller’s primary function is to provide real-time control of an instrument or device. The interrupt
control circuitry within a microcontroller permits real-time events to control program flow. When an event generates
an interrupt, the CPU services the interrupt before executing the next instruction. An internal peripheral, an external
signal, or an instruction can request an interrupt. In the simplest case, the device receives the request, performs the
service, and returns to the task that was interrupted.

1.1 Interrupt Processing

There are two options for interrupt service: software interrupt service routines via the Interrupt Controller and
microcoded hardware interrupt processing via the Peripheral Transaction Server (PTS). You can select either option
for each of the maskable interrupts. The nonmaskable interrupts (NMI, Software Trap, and Unimplemented Op-
code) are always serviced by interrupt service routines. Figure 1-1 illustrates the interrupt processing flow.

1.1.1 INTERRUPT CONTROLLER

The Interrupt Controller generates vectors to software interrupt service routines. When the hardware detects an
interrupt, it generates and executes an interrupt call. This pushes the contents of the program counter onto the stack
and then loads the program counter with the contents of the appropriate interrupt vector. The CPU vectors to the
address of the interrupt service routine, then executes the routine. Upon completion of the interrupt service routine,
the program counter is reloaded from the stack and program execution continues.

1.1.2 PERIPHERAL TRANSACTION SERVER (PTS)

The Peripheral Transaction Server (PTS) is a microcoded hardware interrupt handler. It can be used in place of a
standard interrupt service routine for each of the maskable interrupts. The PTS services interrupts with less over-
head; it does not modify the stack or the PSW, and it allows normal instruction flow to continue. For these reasons,
the PTS can service an interrupt in the time required to execute a single instruction.
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272282–30

Figure 1-1. Flow Diagram for PTS and Standard Interrupts
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The 8XC196MC/MD PTS operates in four special microcoded modes that enable it to complete specific tasks in
much less time than an equivalent interrupt service routine can. See Section 1.8 for a description of the PTS modes.

Each PTS interrupt requires a block of data called the PTS Control Block (PTSCB). The PTS vector table entries
point to the PTSCB. When a PTS interrupt occurs, the Priority Encoder selects the appropriate vector and fetches
the PTS Control Block (PTSCB). The PTSCB determines the mode, the number of transfers per cycle (if applicable),
the total number of cycles that will execute before the PTS requires servicing, and the source and/or destination of
data transfers (if applicable). Each PTS interrupt generates one PTS cycle.

NOTE:

The PTSCB must be located in register RAM, and must be aligned on a quad-word boundary (evenly divisible by
eight).

1.2 Interrupt Latency

Interrupt latency is the total delay between the time that the interrupt is generated and the time that the device
begins executing the interrupt service routine or PTS cycle. A delay occurs between the time that the interrupt is
generated and the time that it is acknowledged.

Acknowledgment is defined as when the CPU clears the interrupt pending bit that initiated the interrupt. If the
interrupt occurs earlier than four state times before the end of the current instruction, it may not be acknowledged
until after the next instruction finishes. This additional delay occurs because instructions are prefetched and pre-
pared a few state times before they are executed. Thus, the maximum delay between interrupt generation and
acknowledgment is four state times plus the execution time of the next instruction.

When a standard interrupt is acknowledged, the hardware clears the interrupt pending bit and forces a call to the
address contained in the corresponding interrupt vector after completing the current instruction. The procedure that
gets the vector and forces the call requires 11 state times. If the stack is in 16-bit 0 wait-state external RAM, the call
requires an additional 2 state times. When a PTS interrupt is acknowledged, it immediately vectors to the PTSCB
and begins executing the PTS cycle.

Execution of any of the following inhibits interrupts from being acknowledged until after the next instruction is
executed:

# the signed prefix opcode (FE) for the two-byte, signed multiply and divide instructions

# the Unimplemented Opcode interrupt

# the Software Trap interrupt

# any PTS cycle (back-to-back PTS cycles are not possible)

# any of these eight protected instructions: DI, EI, DPTS, EPTS, POPA, POPF, PUSHA, PUSHF.

All of these increase latency because an interrupt cannot occur until after the next instruction is executed.
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1.2.1 CALCULATING LATENCY

The maximum latency occurs when the interrupt occurs too late for acknowledgment following the current instruc-
tion. The following worst-case calculation assumes that the current instruction is not a protected instruction. To
calculate latency, add the following terms:

# Time for the current instruction to finish execution (4 state times).

Ð If this is a protected instruction, the instruction that follows it must also execute before the interrupt can be
acknowledged. Add the execution time of the instruction that follows a protected instruction.

# Time for the next instruction to execute. (The longest instruction, NORML, takes 39 state times. See Appendix A
for instruction execution times.)

# For standard interrupts only, the response time to get the vector and force the call

Ð 11 state times for an internal stack or 13 for an external stack

Please note that, depending on the number of words being transferred, the BMOV instruction could take longer than
39 state times to execute. In this case, the BMOVI instruction may be a better choice.

1.2.2 STANDARD INTERRUPT LATENCY

Figure 1-2 illustrates interrupt latency. The maximum latency for a standard interrupt is 56 state times (4 a 39 a 13).
This delay time does not include the time needed to execute the first instruction in the interrupt service routine or the
time to execute the instruction following a protected instruction.

272282–31

Figure 1-2. Standard Interrupt Response Time

1.2.3 PTS INTERRUPT LATENCY

The interrupt latency for a PTS interrupt is 43 state times (4 a 39). This delay time does not include the added delay
if the PTS is disabled (PSW.2 clear), if a protected instruction is being executed, or if a PTS request is already in
progress.
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272282–32

Figure 1-3. PTS Interrupt Response Time

1.3 Interrupt Priorities

Table 1-1 shows the default interrupt priorities (30 is highest and 0 is lowest). The Unimplemented Opcode and
Software Trap interrupts are not prioritized; they go directly to the Interrupt Controller for servicing and thus vector
immediately upon execution.

The Priority Encoder determines the priority of all other pending interrupt requests. NMI has the highest priority of
all prioritized interrupts, PTS interrupts have the next highest priority, and standard interrupts have the lowest. The
Priority Encoder selects the highest priority pending request for service.

Table 1-1. Interrupt Sources

Interrupt Service Symbol
Interrupt Source PTS Service

Name Vector Priority Name Vector Priority

NMI NMI INT15 0203EH 30 Ð Ð Ð

EXTINT Pin EXTINT INT14 0203CH 14 PTS14 0205CH 29

Peripheral Interrupt PI INT13 0203AH 13 PTS13* 0205AH 28

Capture/Compare5** CAPCOMP5 INT12 02038H 12 PTS12 02058H 27

Compare4** COMP4 INT11 02036H 11 PTS11 02056H 26

Capture/Compare4** CAPCOMP4 INT10 02034H 10 PTS10 02054H 25

Compare3 COMP3 INT09 02032H 09 PTS09 02052H 24

Capture/Compare3 CAPCOMP3 INT08 02030H 08 PTS08 02050H 23

Unimplemented Opcode Ð Ð 02012H Ð Ð Ð Ð

Software TRAP Instruction Ð Ð 02010H Ð Ð Ð Ð

Compare2 COMP2 INT07 0200EH 07 PTS07 0204EH 22

Capture/Compare2 CAPCOMP2 INT06 0200CH 06 PTS06 0204CH 21

Compare1 COMP1 INT05 0200AH 05 PTS05 0204AH 20

Capture/Compare1 CAPCOMP1 INT04 02008H 04 PTS04 02048H 19

Compare0 COMP0 INT03 02006H 03 PTS93 02046H 18

Capture/Compare0 CAPCOMP0 INT02 02004H 02 PTS02 02044H 17

A/D Conversion Complete ADÐDONE INT01 02002H 01 PTS01 02042H 16

Timer Overflow TOVF INT00 02000H 00 PTS00* 02040H 15

*This is a shared interrupt from the PIÐPEND register. Be aware that the PTS cannot determine the source of the PI
interrupt.
**These interrupts only exist on the 8XC196MD. They are reserved on the 8XC196MC.
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1.3.1 MODIFYING INTERRUPT PRIORITIES

The software can modify the default priorities of maskable interrupts by controlling the interrupt mask registers
(INTÐMASK, INTÐMASK1, and PIÐMASK). For example, you can specify which interrupts, if any, can
interrupt an interrupt service routine. The following code shows one way to prevent all interrupts, except EXTINT
(priority 14), from interrupting an EPA COMP3 interrupt service routine (priority 9).

COMP3 ISR:
PUSHA ; Save PSW, INT MASK, INT MASK1, & WSR

;(this disables all interrupts)
LDB INT MASK1, #01OOOOOOB ;Enable EXTINT only
EI ;Enable interrupt servicing

;
; Service the COMP3 interrupt
;

POPA ;Restore PSW, INT MASK, INT MASK1, &
;WSR registers

RET
CSEG AT 02032H ;fill in interrupt table

DCW COMP3 ISR ;
END

Note that location 02032H in the interrupt vector table must be loaded with the value of the label COMP3ÐISR
before the interrupt request occurs and that the COMP3 interrupt must be enabled for this routine to execute.

This routine, like all interrupt service routines, is handled in the following manner:

1. After the hardware detects and prioritizes an interrupt request, it generates and executes an interrupt call. This
pushes the program counter onto the stack and then loads it with the contents of the vector corresponding to the
highest priority, pending, unmasked interrupt. The hardware will not allow another interrupt call until after the
first instruction of the interrupt service routine is executed.

2. The PUSHA instruction, which is now guaranteed to execute, saves the contents of the PSW, INTÐMASK,
INTÐMASK1, and Window Select Register (WSR) onto the stack and then clears the PSW, INTÐMASK, and
INTÐMASK1. In addition to the arithmetic flags, the PSW contains the global interrupt enable bit (I) and the
PTS enable bit (PSE). By clearing the PSW and the interrupt mask registers, PUSHA effectively masks all
maskable interrupts, disables standard interrupt servicing, and disables the PTS. Because PUSHA is a protected
instruction, it also inhibits interrupt calls until after the next instruction executes.

3. The LDB INTÐMASK1 instruction enables those interrupts that you choose to allow to interrupt the service
routine. In this example, only EXTINT can interrupt the COMP3 interrupt service routine. By enabling or
disabling interrupts, the software establishes its own interrupt servicing priorities.

4. The EI instruction re-enables interrupt processing and inhibits interrupt calls until after the next instruction
executes.

5. The actual interrupt service routine executes within the priority structure established by the software.

6. At the end of the service routine, the POPA instruction restores the original contents of the PSW, INTÐMASK,
INTÐMASK1, and WSR registers; any changes made to these registers during the interrupt service routine are
overwritten. Because interrupt calls cannot occur immediately following a POPA instruction, the last instruction
(RET) will execute before another interrupt call can occur.

Notice that the ‘‘preamble’’ and exit code for this routine does not save or restore register RAM. The interrupt
service routine is assumed to allocate its own private set of registers from the lower Register File. The general-pur-
pose Register RAM in the lower Register File makes this quite practical. In addition, the RAM in the upper Register
File is available via windowing.

1.4 End-of-PTS Interrupts

An end-of-PTS interrupt is a ‘‘standard’’ interrupt, but it is generated by a bit being set in the PTSSRV register. The
Interrupt Controller processes it with an interrupt service routine that is stored in the memory location pointed to by
the standard interrupt vector. When the end-of-PTS interrupt vectors to the interrupt service routine, hardware
clears the PTSSRV bit.
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It is important to note that the end-of PTS interrupt does not affect the conventional interrupt pending bit. The end-
of-PTS interrupt is forced by the PTS microcode setting the corresponding PTSSRV bit. Thus, a conventional
interrupt and an end-of-PTS interrupt can occur simultaneously, and both will be serviced.

The end-of-PTS interrupt routine typically services the PTSCB and may also process data that was collected from
multiple PTS cycles. Before exiting, the interrupt service routine must set the PTSSEL bit to re-enable PTS interrupt
servicing for that interrupt. Figure 1-1 shows the program flow for processing of all interrupts.

1.5 Special Interrupts

The device supports three special interrupts: Unimplemented Opcode, Software Trap, and NMI. These interrupts are
not affected by the interrupt enable bit (I) in the PSW (PSW.1), and they cannot be masked. All of these interrupts
are serviced by the Interrupt Controller; they cannot be assigned to the PTS. Of these three, only NMI goes through
the Transition Detector and Priority Encoder. The other two special interrupts go directly to the Interrupt Control-
ler for servicing. Be aware that these interrupts are often assigned to special functions in Intel development tools.

1.5.1 UNIMPLEMENTED OPCODE

If the CPU attempts to execute an unimplemented opcode, an indirect vector through location 02012H occurs. This
prevents random software execution during hardware and software failures. The interrupt vector should contain the
starting address of an error routine that will not further corrupt an already erroneous situation. The Unimplemented
Opcode interrupt prevents other interrupts from being acknowledged until after the next instruction is executed.

1.5.2 SOFTWARE TRAP

The TRAP instruction (opcode 0F7H) causes an interrupt call that is vectored through location 02010H. The TRAP
instruction provides a single-instruction interrupt that is useful when debugging software or generating software
interrupts. The TRAP instruction prevents other interrupts from being acknowledged until after the next instruction
is executed.

1.5.3 NMI

The external NMI pin generates a Nonmaskable Interrupt for implementation of critical interrupt routines. NMI has
the highest priority of all the prioritized interrupts. It is passed directly from the Transition Detector to the Priority
Encoder, and it vectors indirectly through location 0203EH.

A Transition Detector samples NMI during Phase 1 (CLKOUT low) and latches the interrupt when a low-to-high
transition occurs. The interrupt input must be held high for at least one state time to guarantee recognition. Because
the interrupts are edge-triggered, only one interrupt is generated if an input is held high.

NOTE:

The interrupt detection logic can generate an interrupt if a momentary negative glitch occurs while the NMI pin is
held high. For this reason, NMI should normally be held low when not active.

For design symmetry with the INTÐPEND1 register, an NMI mask bit exists in the INTÐMASK1 register.
However, the mask bit has no function; NMI is enabled for both NMIÐMASK set and NMIÐMASK cleared. To
ensure compatibility with future products, always write zero to the NMI mask bit.

1.6 EPA Interrupts

Interrupts from the EPA to the core are handled in two ways. Event interrupts from all EPA modules except
COMP5 are mapped directly to the core interrupt unit as separate sources. These interrupts can be serviced either by
a software interrupt routine or by the PTS. The PI interrupt is a shared interrupt which includes the Compare5
(COMP5) and the Waveform Generator (WG) interrupts. Since the PTS cannot tell which interrupt source caused
the PI interrupt, it should not be used if more than one of the shared interrupts is unmasked.
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1.6.1 USING THE PTS TO SERVICE THE EPA

The PTS can be configured to service the individual EPA interrupts. For example, you could create four
PTS channels, one for each Capture module, 0–3. Set up each channel with a fixed source address (the
CAPCOMxÐTIME register), an auto-incrementing destination address (somewhere in RAM), and a transfer count
(n transfers). Select PTS service for each interrupt, and configure an EPA module for capture. Each time an event
occurs, the time is stored in CAPCOMxÐTIME and a PTS interrupt is generated. The PTS transfers the time value
from CAPCOMxÐTIME to a RAM location and decrements the transfer count. After n interrupts (PTS transfers)
occur on the channel, the transfer count equals zero, and a conventional software interrupt routine is initiated. This
software interrupt service routine could reinitialize the PTS channels and perhaps process the captured data arrays.

You can use a similar method to support multiple sequential output events programmed for a single pin. After one
output event executes, the resulting interrupt request causes the PTS to transfer the next event time from RAM into
CAPCOMxÐTIME. Since the PTS can take only a single action, it cannot change the control register. Therefore,
this method can be used only when the same action is to be reinitiated at different times or when the action is a pin
toggle. (See ‘‘Configuring the PTS’’ Section 1.8 for a complete discussion of the PTS modes.)

1.7 Programming the Interrupts

Table 1-2 lists the programmable registers that affect the performance and function of the Interrupt Controller and
PTS.

Table 1-2. Interrupt and PTS Control and Status Registers

Register Register
Description

Mnemonic Name

PIÐMASK Peripheral This register enables/disables the 4 shared interrupts
COMP5, WG, TF2, TF1Interrupt

Mask

Register

PIÐPEND Peripheral The bits in this register are set by hardware to indicate that an
interrupt is pending.Interrupt

Pending

Register

INTÐMASK Interrupt These registers enable/disable each maskable interrupt (that
is, each interrupt except Unimplemented Opcode, SoftwareINTÐMASK1 Mask
Trap, and NMl.)Registers

INTÐPEND Interrupt The bits in this register are set by hardware to indicate that an
interrupt is pending.INTÐPEND1 Pending

Registers

PSW Program This register contains one bit that globally enables or disables
servicing of all maskable interrupts and another that enablesStatus Word
or disables the PTS.

PTSSEL PTS This register selects either a PTS cycle or a standard interrupt
service routine for each of the fifteen maskable interruptSelect
requests.Register

PTSSRV PTS The bits in this register are set by microcode to request an
end-of-PTS interrupt.Service

Register
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1.7.1 SELECTING EITHER PTS OR STANDARD INTERRUPT SERVICE

The PTS Select register (PTSSEL) selects either a PTS cycle or a standard software interrupt service routine for each
of the maskable interrupt requests (see Figure 1-4). Setting a bit selects a PTS cycle; clearing a bit selects a standard
interrupt service routine. Note that both the PTSSEL and PTSSRV registers share the same bit names and locations
within their registers.

PSSSEL (0004H) and PTSSRV (0006H)

15 14 13 12 11 10 9 8

RSV EXTINT PI CAPCOMP5* COMP4 CAPCOMP4* COMP3 CAPCOMP3

7 6 5 4 3 2 1 0

COMP2 CAPCOMP2 COMP1 CAPCOMP1 COMP0 CAPCOMP0 ADÐDONE TOVF

RSV e RESERVED BIT. MUST WRITE AS 0.
* e THIS BIT RESERVED ON 8XC196MC. MUST WRITE AS 0.

Figure 1-4. PTSSEL Register

1.7.2 ENABLING PTS INTERRUPTS

When you assign an interrupt to the PTS, you must set up a PTS control block (PTSCB) for each interrupt source.
Once the control block is set up, you must enable both the PTS and the individual interrupt. The PTS enable (PSE)
bit in the Program Status Word (PSW.2) globally enables or disables the PTS. The EPTS instruction sets the bit,
which enables the PTS, and the DPTS instruction clears the bit, which disables the PTS. The bits in INTÐMASK
and INTÐMASK1 individually enable or disable the interrupts (see Figure 1-5). These bits must be set to service the
interrupt with the PTS.

The PTS does not require that global interrupt servicing be enabled. However, you must enable global interrupt
servicing to handle the end-of-PTS interrupt. The global interrupt enable (I) bit in the Program Status Word
(PSW.1) globally enables or disables the servicing of all maskable interrupts. The EI instruction sets the bit, which
enables standard interrupt servicing, and the DI instruction clears the bit, which disables standard interrupt servic-
ing.

NOTE:

PTS cycles will occur after a DI instruction, if the appropriate INTÐMASK and PTSSEL bits are set. However,
the end-of-PTS interrupt will not occur.

1.7.3 ENABLING STANDARD INTERRUPTS

When you assign an interrupt to a standard software service routine, you must enable both the servicing of the
interrupt and the individual interrupt. The global interrupt enable (I) bit in the Program Status Word (PSW.1)
globally enables or disables the servicing of all maskable interrupts. The EI instruction sets the bit, which enables
interrupt servicing. The DI instruction clears the bit, which disables interrupt servicing. The bits in INTÐMASK
and INTÐMASK1 individually enable or disable the interrupts (see Figure 1-5). Interrupts that occur while inter-
rupt servicing is globally disabled (PSW.1 cleared) are held in the interrupt pending registers.

10



AP-483

1.7.4 INTERRUPT MASK REGISTERS

The interrupt mask registers, INTÐMASK and INTÐMASK1 (Figure 1-5), enable or disable (mask) individual
interrupts. With the exception of the Nonmaskable Interrupt (NMI) bit (INTÐMASK1.7), setting a bit enables the
corresponding interrupt source; clearing a bit disables the source. A device reset or the PUSHA instruction clears the
interrupt mask registers (disabling interrupts). The PUSHF instruction clears INTÐMASK but does not clear
INTÐMASK1.

INTÐMASK (0008H)

7 6 5 4 3 2 1 0

COMP2 CAPCOMP2 COMP1 CAPCOMP1 COMP0 CAPCOMP0 ADÐDONE TOVF

INTÐMASK1 (0013H)
7 6 5 4 3 2 1 0

NMI
EXTINT PI CAPCOMP5* COMP4* CAPCOMP4* COMP3 CAPCOMP3

(RSV)

RSV e RESERVED BIT. MUST WRITE AS 0.
* e THIS BIT RESERVED ON 8XC196MC. MUST WRITE AS 0.

Figure 1-5. INTÐMASK and INTÐMASK1 Registers

1.7.5 INTERRUPT PENDING REGISTERS

When the Transition Detector detects an interrupt, it sets the corresponding bit in the INTÐPEND or
INTÐPEND1 register. This bit is set even if the individual interrupt is disabled (masked). The pending bit is cleared
when the program vectors to the interrupt service routine. INTÐPEND and INTÐPEND1 can be read, to deter-
mine which interrupts are pending. They can also be modified (written), either to clear pending interrupts or to
generate interrupts under software control.

INTÐPEND (0009H)

7 6 5 4 3 2 1 0

COMP2 CAPCOMP2 COMP1 CAPCOMP1 COMP0 CAPCOMP0 ADÐDONE TOVF

INTÐPEND1 (0012H)

7 6 5 4 3 2 1 0

NMI EXTINT PI CAPCOMP5* COMP4* CAPCOMP4* COMP3 CAPCOMP3

RSV e RESERVED BIT. MUST WRITE AS 0.
* e THIS BIT RESERVED ON 8XC196MC. MUST WRITE AS 0.

Figure 1-6. INTÐPEND and INTÐPEND1 Registers
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Care should be taken in writing code that modifies these registers. For example, an instruction sequence that clears a
pending bit could result in an interrupt being acknowledged after the sequence begins but before the bit is actually
cleared. In this case a five-state-time partial interrupt cycle occurs. That is, the interrupt process begins, but never
jumps to the interrupt service routine. This time delay can be avoided by making the code inseparable, in the sense
that an interrupt will not be acknowledged while the code is executing. The easiest way to do this is to use the logical
instructions in the two- or three-operand format, as in the example:

ANDB INT PEND,#01111111B ; Clears the COMP2 interrupt
ORB INT PEND,#10000000B ; Sets the COMP2 interrupt

The device does not acknowledge interrupts during execution of these ‘‘read-modify-write’’ instructions.

1.7.6 THE PERIPHERAL INTERRUPT (PI)

The Peripheral Interrupt (PI) is a ‘‘shared’’ interrupt, and signals that an interrupt has been generated by either the
Compare5 (COMP5) module or the Waveform Generator (WG). When any of these sources generate an interrupt,
the corresponding bit in the PIÐPEND register is set. If the bit is unmasked in the PIÐMASK register, the PI
interrupt pending bit in INTÐPEND1 is set. Figure 1-7 illustrates the relationship between these registers.

272282–33

RSV e RESERVED BIT. MUST WRITE AS 0.
* e THIS BIT RESERVED ON 8XC196MC. MUST WRITE AS 0.

Figure 1-7. PI Interrupt Sharing

The user interrupt routine can read the PIÐPEND register to determine what the source of the interrupt was. Note
that reading PIÐPEND clears all bits. Therefore, the value of the register must be stored in a shadow register if
more than one bit needs to be checked. Also note that the PIÐPEND bits cannot be set by writing to the
PIÐPEND register. This register is read only, writes will have no effect.

It is not necessary to read (clear) PIÐPEND to re-enable the PI interrupt function. The signals that set the
PIÐPEND bits will (if unmasked) always cause the PI bit to be set in INTÐPEND1.
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1.7.6.1 WG Interrupt

The WG interrupt is generated by the Waveform Generator reload compare function, discussed in Section 6. This
interrupt is typically used to calculate and/or reload the output and compare registers in the WFG. If the WFG
registers are all that need updating, the PTS can service this interrupt with a block move of data to these registers.

1.7.6.2 COMP5 Interrupt

The Compare5 interrupt is also shared through the PI. This interrupt is generated by the EPA in response to an EPA
compare event. See the user’s manual for information on using this function.

1.7.7 THE EXTINT INTERRUPT

The EXTINT interrupt is generated by the WFG protection circuitry, described in Section 6.10. Two bits in
the WGÐPROTECT register (Figure 6-14), Interrupt Type (IT) and Enable Sampling (ES) control the type of
external event which will cause EXTINT. EXTINT can be caused by a transition (rising or falling edge), or by a
constant level (high or low). Table 1-3 shows the combinations for these bits. The EXTINT interrupt sets the
EXTINT bit in the INTÐPEND1 register, and if unmasked in the INTÐMASK1 register, takes the vector located
at 203CH.

Table 1-3. EXTINT Mode Selection

ES IT
EXTINT Input

Characteristics

0 0 Falling Edge Triggered

0 1 Rising Edge Triggered

1 0 Low Level Triggered

1 1 High Level Triggered

The transition modes are selected by clearing the ES bit. To be a valid transition, the signal must remain asserted for
a minimum period of 2 Tosc (Tosc e 2/FXTAL). The IT bit controls whether a rising edge (IT e 1) or falling edge
(IT e 0) causes the interrupt.

The level modes are selected by setting the ES bit. To be a valid level, the signal must remain asserted for a minimum
period of 24 Tosc. When the signal is asserted, sample circuitry monitors the input level 3 times during a 24 Tosc
period. The signal must be asserted for each of the samples before it is recognized as valid. If the signal is valid, the
EXTINT interrupt is generated. The IT bit controls whether a high level (IT e 1) or low level (IT e 0) input signal
causes the interrupt.

The level mode is useful in noisy environments, where a noise spike might cause an unintended interrupt. Note that
the same signal which generates the EXTINT also generates the output disable signal, discussed in Section 6.10.

1.7.8 THE TOVF INTERRUPT

The Timer Overflow Interrupt (TOVF) is a ‘‘shared’’ interrupt, and signals that an interrupt has been generated by
either Timer 1 (TF1) or Timer 2 overflow/underflow (TF2). When these sources generate an interrupt, the corre-
sponding bit in the PIÐPEND register is set. If the bit is unmasked in the PIÐMASK register, the TOVF interrupt
pending bit in INTÐPEND is set. Figure 1-7 illustrates the relationship between these registers.

The user interrupt routine can read the PIÐPEND register to determine what the source of the interrupt was. Note
that reading PIÐPEND clears all bits. Therefore, the value of the register must be stored in a shadow register if
more than one bit needs to be checked. Also note that the PIÐPEND bits cannot be set by writing to the
PIÐPEND register. This register is read only, writes will have no effect.

It is not necessary to read (clear) PIÐPEND to re-enable the TOVF interrupt function. The signals that set the
PIÐPEND bits will (if unmasked) always cause the PI bit to be set in INTÐPEND1.
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1.8 Configuring the PTS

Each PTS interrupt requires a block of data called the PTS Control Block (PTSCB). The PTSCB determines the PTS
mode, the number of PTS cycles, and the address of the source and destination of data transfers. You must set up the
PTSCB for each interrupt source before enabling the corresponding PTS interrupts.

1.8.1 SETTING UP PTS CONTROL BLOCKS

Each PTS control block (PTSCB) requires eight data bytes in register RAM. The address of the first (lowest) byte is
stored in the PTS vector table in special-purpose memory (see Chapter 4). Figure 1-8 shows the PTSCB for each PTS
mode. Unused PTSCB bytes can be used as RAM. The SIO mode is unique in that it links two PTSCB’s together
(SIO Ý1 and SIO Ý2) in order to perform its function. The PTSVEC in SIO Ý1 points to the base address of SIO
Ý2.

NOTE:

The PTSCB must be located in register RAM, in page 00H. The location of the first byte of the PTSCB must be
aligned on a quad-word boundary (an address evenly divisible by 8).

Single Block A/D Scan
SIO Ý1 SIO Ý2

Transfer Transfer Mode

Unused Unused Unused PTSVEC1 (HI) Unused

Unused PTSBLOCK Unused PTSVEC1 (LO) SAMPTIME

PTSDST (HI) PTSDST (HI) PTSPTR2 (HI) BAUD (HI) DATA (HI)

PTSDST (LO) PTSDST (LO) PTSPTR2 (LO) BAUD (LO) DATA (LO)

PTSSRC (HI) PTSSRC (HI) PTSPTR1 (HI) EPAREG (HI) PTSCON1

PTSSRC (LO) PTSSRC (LO) PTSPTR1 (LO) EPAREG (LO) PORTMASK

PTSCON PTSCON PTSCON PTSCON PORTREG (HI)

PTSCOUNT PTSCOUNT PTSCOUNT PTSCOUNT P0RTREG (LO)

Figure 1-8. PTS Control BIocks

1.8.1.1 PTSCOUNT Register

In Single Transfer, Block Transfer, and A/D Scan modes, the first location of each PTSCB is the PTSCOUNT
register. PTSCOUNT defines the number of PTS cycles to be executed consecutively without software intervention.
Since PTSCOUNT is an 8-bit value, the maximum number of cycles is 255. PTSCOUNT is decremented at the end
of each PTS cycle. When PTSCOUNT reaches zero, hardware clears the corresponding PTSSEL bit and sets the
PTSSRV bit, which requests the end-of-PTS interrupt.

1.8.1.2 PTSCON Register

The second location of each PTSCB (except SIO Ý2) is the PTSCON register. The upper three bits of the PTSCON
register determine the PTS mode (Table 1-4).

Table 1-4. PTS Mode Select (PTSCON Bits 5–7)

Desired PTS Mode Bit 7 (M2) Bit 6 (M1) Bit 5 (M0)

Single Transfer 1 0 0

Block Transfer 0 0 0

A/D Scan 1 1 0

Serial Transmit Mode 0 1 1

Serial Receive Mode 0 0 1
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The PTS Mode determines the configuration of the remaining bits. PTSCON has one configuration for Single and
Block Transfer modes and A/D Scan mode (Figure 1-9), and one for the serial I/O modes (Figure 1-11).

PTSCON
7 6 5 4 3 2 1 0

M2 M1 M0 BW SU DU SI DI

Figure 1-9. PTSCON Register

Table 1-5. PTSCON Bits 0–4 for Single and Block Transfer Modes

Bit Bit Bit
Description

Number Mnemonic Name

0 DI PTSDST Setting this bit causes the PTS destination register to
increment at the end of each PTS cycle. (In Single TransferAuto-
mode, the DI and DU bits must be equal.)Increment

1 SI PTSSRC Setting this bit causes the PTS source register to increment at
the end of each PTS cycle. (In Single Transfer mode, the SIAuto-
and SU bits must be equal.)Increment

2 DU Update Setting this bit causes the PTSDST register to retain its final
value at the end of a PTS cycle. Clearing it causes the registerPTSDST
to revert to the value that existed at the beginning of the PTS
cycle. (In Single Transfer mode, the DI and DU bits must be
equal.)

3 SU Update Setting this bit causes the PTSSRC register to retain its final
value at the end of a PTS cycle. Clearing it causes the registerPTSSRC
to revert to the value that existed at the beginning of the PTS
cycle. (In Single Transfer mode, the SI and SU bits must be
equal.)

4 BW Byte/Word Setting this bit specifies a byte transfer. Clearing it specifies a
word transfer.Transfer

Table 1-6. PTSCON Bits 0–4 for A/D Scan Mode

Bit Bit Bit
Description

Number Mnemonic Name

0 Ð Ð Always one.

1 Ð Ð Always one.

2 Ð Ð Always zero.

3 SU Update Setting this bit causes the PTSPTR1 register to retain its final
value at the end of a PTS cycle. Clearing it causes the registerPTSPTR1
to revert to the value that existed at the beginning of the PTS
cycle.

4 Ð Ð Always zero.
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1.8.2 SINGLE TRANSFER MODE

Single Transfer mode is typically used with the EPA, in capture mode, to move the captured time value from the
SFR location to internal RAM for further processing.

In the Single Transfer mode, each PTS cycle transfers a single byte or word (selected by the BW bit in PTSCON)
from one memory location to another. The PTSCOUNT register specifies the number of transfers (each transfer is
one PTS cycle). The PTS moves the byte or word from the location pointed to by the source register (PTSSRC) to
the location pointed to by the destination register (PTSDST).

PTSSRC and PTSDST may point to any memory location; however, they must point to an even address if word
transfers are selected. Setting the auto-increment and update bits causes the PTS to increment the source (if SI and
SU are set) and/or destination (if DI and DU are set) address at the end of each PTS cycle. The address increments
by one if byte transfers are selected or by two if word transfers are selected. In Single Transfer mode, each pair of
auto-increment and update bits (SI/SU, DI/DU) must both be either set or cleared. Programming either pair to
unequal values selects an invalid mode. The source and destination can be incremented and updated independently of
one another. (The SI and SU pair must be equal, and the DI and DU pair must be equal. However, the two pairs,
SI/SU and DI/DU, need not be equal.)

1.8.2.1 Single Transfer Mode Example

The PTSCB in Table 1.7 defines nine PTS cycles. Each cycle moves a single word from location 20H to an external
memory location. The PTS transfers the first word to location 6000H. Then it increments and updates the destina-
tion address and decrements the PTSCOUNT register; it does not increment the source address. When the second
cycle begins, the PTS moves a second word from location 20H to location 6002H. When PTSCOUNT equals zero,
the PTS will have filled locations 6000H-600FH, and an end-of-PTS interrupt is generated.

Table 1-7. Single Transfer Mode PTSCB

Unused

Unused

PTSDST (HI) e 60H

PTSDST (LO) e 00H

PTSSRC (HI) e 00H

PTSSRC (LO) e 20H

PTSCON e 85H (Mode e 100, DI & DU e 1 BW e 0)

PTSCOUNT e 09H

1.8.3 BLOCK TRANSFER MODE

In Block Transfer mode, the PTS moves a block of bytes or words (selected by the BW bit in PTSCON) from one
memory location to another. The PTSBLOCK register specifies the number (from 1–32) of bytes or words in each
block. The PTS moves the block of bytes or words from the location pointed to by the source register (PTSSRC) to
the location pointed to by the destination register (PTSDST).

PTSSRC and PTSDST may point to any memory location; however, they must point to an even address if word
transfers are selected. Setting the auto-increment bits in the PTSCON register causes the PTS to increment the
source (SI set) and/or destination (DI set) address at the end of each PTS transfer. If the update bit is also set, the
incremented address is saved in the PTSSRC (SU set) or PTSDST (DU set) register after each PTS cycle. Setting
both the increment and update bits causes the source and/or destination address to be incremented after each cycle.
The registers increment by one if byte transfers are selected or by two if word transfers are selected. The increment
and update features may be selected independently (unlike in Single Transfer Mode).

16



AP-483

In this mode, it is important to differentiate between a PTS transfer and a PTS cycle. A PTS transfer is the movement
of a single byte or word from the source to the destination. A PTS cycle consists of the transfer of an entire block of
bytes or words. Because a PTS cycle is uninteruptable, the Block Transfer mode can create long interrupt latency.
The worst-case latency could be as high as 500 states. This worst-case latency assumes a block transfer of 32 words
from one external memory location to another using an 8-bit bus with no wait states.

1.8.3.1 Block Transfer Mode Example

The PTSCB in Table 1.8 defines three PTS cycles that will each transfer the bytes in memory locations 20H–24H to
one of the following blocks: 6000H–6004H, 6005H–6009H, or 600AH–600EH. Each PTS cycle transfers a block of
five bytes. The source and destination are incremented after each transfer, but only the destination is updated after
each cycle. The first byte of each cycle is always read from location 20H.

Table 1-8. Block Transfer Mode PTSCB

Unused

PTSBLOCK e 05H

PTSDST (HI) e 60H

PTSDST (LO) e 00H

PTSSRC (HI) e 00H

PTSSRC (LO) e 20H

PTSC0N e 17H (Mode e 000; DI, SI DU, BW e 1; SU e 0)

PTSCOUNT e 03H

1.8.4 A/D SCAN MODE

In the A/D Scan mode, the PTS causes the A/D converter to perform multiple conversions on one or more channels
and then stores the results. To use the A/D Scan mode, you must first set up a command/data table in memory
(Table 1-9). The command/data table contains A/D commands that are interleaved with blank memory locations.
The PTS stores the conversion results in these blank locations.

To initiate A/D Scan mode, enable the A/D Conversion Complete interrupt and assign it to the PTS, then have
software start the first conversion. When the A/D finishes the first conversion and generates an A/D Conversion
Complete interrupt, the PTS cycle is initiated.

During each PTS cycle, the PTS stores the results from the previous conversion and then executes the next conver-
sion command. Since the conversion results are not stored until the next PTS cycle, the last command location
should contain all zeros to prevent a final conversion from starting. Typically, the A/D commands are loaded into
the table from an external ROM. Only the amount of available memory limits the table size; it can reside in internal
or external RAM.

Table 1-9. A/D Scan Mode Command/Data Table

XXX a 0AH A/D Result 2

XXX a 8H Unused A/D Command 3

XXX a 6H A/D Result 1

XXX a 4H Unused A/D command 2

XXX a 2H A/D Result 0*

XXX Unused A/D command 1

*Result of the A/D conversion that initiates the PTS cycle.

In A/D Scan mode, the PTSCOUNT specifies the total number of A/D conversion cycles. The PTSPTR1 register
points to the table of conversion commands and results. Setting the UPDT bit in the PTSCON register (PTSCON.3)
causes the PTSPTR1 register to retain its final value at the end of the PTS cycle. Clearing it causes the register to
revert to the value that existed at the beginning of the PTS cycle. PTSPTR2 points to the ADÐRESULT register.
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1.8.4.1 PTS Cycles in A/D Scan Mode

Software must start the first A/D conversion. The A/D Conversion Complete interrupt initiates the PTS cycle. The
following actions occur after the PTS cycle begins:

1. The PTS reads the first command, stores it in a temporary location, and increments the PTSPTR1 register twice.
PTSPTR1 now points to the first blank location in the command/data table (address XXX a 2).

2. The PTS reads the ADÐRESULT register, stores the results of the first conversion into location XXX a 2 in
the command/data table, and increments the PTSPTR1 register twice. PTSPTR1 now points to XXX a 4.

3. The PTS loads the command from the temporary location into the ADÐCOMMAND register. This starts the
next A/D conversion cycle.

4. If UPDT (PTSCON.3) is clear, the PTSPTR1 register is reinitialized to its original value. The next cycle will use
the same command and overwrite previous data. If UPDT is set, the PTS saves the new contents of PTSPTR1
and it points to the next command.

5. PTSCOUNT is decremented and the CPU returns to regular program execution. When PTSCOUNT reaches
zero, hardware clears the corresponding PTSSEL bit and sets the PTSSRV bit, which requests the end-of-PTS
interrupt.

When the conversion started by the PTS cycle completes and the A/D generates the A/D Conversion Complete
interrupt, a new PTS cycle begins. Steps 1–5 repeat.

Because the lower six bits of the ADÐRESULT register contain status information, the end-of-PTS interrupt service
routine could shift the results data to the right six times to leave only the conversion results in the memory locations.

1.8.4.2 A/D Scan Mode Example 1

The command/data table shown in Table 1.10 sets up a series of A/D conversions, beginning with channel 7 and
ending with channel 4. Each table entry is a word (two bytes). Table 1-11 shows the corresponding PTSCB.

Software starts a conversion on Channel 7. Upon completion of the conversion, the A/D Conversion Complete
interrupt initiates the first PTS cycle. Step 1 stores the Channel 6 command in a temporary location and increments
PTSPTR1 to 3002H. Step 2 stores the result of the Channel 7 conversion in location 102H and increments PTSPTR1
to 3004H. Step 3 loads the Channel 6 command from the temporary location into the ADÐCOMMAND register to
start the next conversion. Step 4 updates PTSPTR1 (PTSPTR1 points to 3004H) and step 5 decrements
PTSCOUNT to 7. The next cycle begins by storing the Channel 5 command in the temporary location. During the
last cycle (PTSCOUNT e 1), the dummy command is loaded into the ADÐCOMMAND register and no conver-
sion is performed. PTSCOUNT is decremented to zero and the end-of-PTS interrupt is requested.

Table 1-10. Command/Data Table (Example 1)

Address Contents

300EH ADÐRESULT for ACH4

300CH 0000H (Dummy Command)

300AH ADÐRESULT for ACH5

3008H ADÐCOMMAND for ACH4

3006H ADÐRESULT for ACH6

3004H ADÐCOMMAND for ACH5

3002H ADÐRESULT for ACH7

3000H ADÐCOMMAND for ACH6

Table 1-11. A/D Scan Mode PTSCB (Example 1)

Unused

Unused

PTSPTR2 (HI) e 1FH

PTSPTR2 (LO) e AAH

PTSÐPTR1 (HI) e 30H

PTSÐPTR1 (LO) e 00H

PTSCON e CBH (Mode e 110, UPDT e 1)

PTSCOUNT e 04H
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1.8.4.3 A/D Scan Mode Example 2

Table 1-13 sets up a series of ten PTS cycles, each of which reads a single A/D channel and stores the result in a
single location (3002H). The UPDT bit (PTSCON.3) is cleared so that original contents of PTSPTR1 are restored
after the cycle. The command/data table is shown in Table 1-12.

Table 1-12. Command/Data Table (Example 2)

Address Contents

3002H ADÐRESULT for ACHx

3000H ADÐCOMMAND for ACHx

Table 1-13. A/D Scan Mode PTSCB (Example 2)

Unused

Unused

PTSPTR2 (HI) e 1FH

PTSPTR2 (LO) e AAH

PTSPTR1 (HI) e 30H

PTSPTR1 (LO) e 00H

PTSCON e C3H (Mode e 110, UPDT e 0)

PTSCOUNT e 0AH

Software starts a conversion on Channel x. When the conversion is finished and the A/D Conversion Complete
interrupt is generated, the first PTS cycle begins. The PTS stores the value of the ADÐRESULT register in location
3002H and then copies the conversion command from location 3000H to the ADÐCOMMAND register. The CPU
can process or move the conversion results data from the table before the next conversion completes and a new PTS
cycle begins. When the next cycle begins, PTSPTR1 again points to 3000H. The value of the ADÐRESULT register
is written to location 3002H and the command at location 3000H is re-executed.

1.8.5 SERIAL I/O MODES

Since the 8XC196MC/MD has no hardware UART, the serial I/O function is implemented using special PTS
modes. There are four basic serial modes of operation; several options are available within each of these modes.

The SIO mode require 2 PTSCB’s to completely configure all possible options. These blocks do not need to be
contiguous, but must be in register RAM and located on quad-word boundaries.

The serial modes are very versatile. The baud rate is established by an EPA channel, and up to 16 bits per character
(including parity and stop bits) may be transmitted/received. ln the synchronous modes, the shift clock can either be
input to or output by the 8XC196MC/MD. The data and clock may be assigned to most I/O pins in port 2 or port 7.
Ports 3, 4 and 5 do not support the serial I/O function.

Additional information on the PTS SIO modes can be found in the 8XC196MC User’s Manual. Software examples
are given in this Ap-Note, Chapters 2–5.
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272282–34

Figure 1-10. PTS SIO Control Blocks

1.8.5.1 PTSCOUNT Register

PTSCOUNT defines the number of PTS cycles to be executed consecutively without software intervention. Since
PTSCOUNT is an 8-bit value, the maximum number of cycles is 256 (with setting of 0). In the SIO modes,
PTSCOUNT determines how many bits will be transmitted or received. The different SIO modes have different
requirements for PTSCOUNT; refer to Sections 1.8.6 and 1.8.7 for detailed information.

Like in all other PTS modes, PTSCOUNT is decremented at the end of each PTS cycle. When PTSCOUNT reaches
zero, hardware clears the corresponding PTSSEL bit and sets the PTSSRV bit, which requests the end-of-PTS
interrupt.

1.8.5.2 PTSCON Register

The PTSCON register controls the type of serial mode that is implemented. The upper three bits determine if the
transmit or receive function is being generated. The other bits are described below in Table 1-14.

7 6 5 4 3 2 1 0

M2 M1 M0 SA RSV RSV SA MAJ

M2, M1, M0 FUNCTION
0 0 1 RECEIVE MODE
0 1 1 TRANSMIT MODE

RSV e RESERVED BITS. MUST WRITE AS 0.

Figure 1-11. PTSCON Register in SIO Modes
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Table 1-14. PTSCON Bits 0–4 for SIO Modes

Bit Bit Bit
Description

Number Mnemonic Name

0 MAJ Majority Setting this bit enables majority sampling. This is valid in
asynchronous receive mode only. Otherwise this bit must beSample
zero.

1 SA* Sync/Asynch Setting this bit enables the synchronous modes; clearing it
enables asynchronous modes. Both SA bits must have the
same value.

2 Ð Ð Always zero.

3 Ð Ð Always zero.

4 SA* Sync/Asynch Setting this bit enables the synchronous modes; clearing it
enables asynchronous modes. Both SA bits must have the
same value.

*Note that there are two SA bits. They must always be set to the same value.

1.8.5.3 EPAREG Register

The EPAREG holds the 16-bit address of the CAPCOMPxÐTIME or CAPxÐTIME register that is being used for
the SIO operation.

1.8.5.4 BAUD Register

The BAUD register holds a 16-bit value that is used to determine the baud rates for the SIO. The value is calculated
as follows:

Asynchronous modes:

BAUDÐVALUE e

FXTAL

4 c BAUDRATE c EPAÐPRESCALE

where
BAUDÐVALUE e 16-bit integer loaded into BAUD register
FXTAL e XTAL1 pin input frequency, Hz
BAUDRATE e baudrate in bits/seconds
EPAÐPRESCALE e amount of EPA timer prescaling, 1–64

Synchronous modes:

BAUDÐVALUE e

FXTAL

8 c BAUDRATE c EPAÐPRESCALE

where
BAUDÐVALUE e 16-bit integer loaded into BAUD register
FXTAL e XTAL1 pin input frequency, Hz
BAUDRATE e baudrate in bits/seconds
EPAÐPRESCALE e amount of EPA timer prescaling, 1–64

1.8.5.5 PTSVEC1 Register

This is a 16-bit pointer to the base address of the SIO Ý2 PTSCB.
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1.8.5.6 PORTREG Register

This is the 16-bit address of port that contains the TXD pin (PxÐREG) or the RXD pin (PxÐPIN).

1.8.5.7 PORTMASK Register

This register defines which pin of the port will be used for the TXD or RXD pin. The pin that is selected for this
function must e 1; all other bits must e 0.

1.8.5.8 PTSCON1 Register

This control register takes two different forms depending on whether asynchronous or synchronous mode is selected.

7 6 5 4 3 2 1 0

RSV RPAR PEN RSV RSV RSV FE TPAR

RSV e RESERVED BITS. MUST WRITE AS 0.

Figure 1-12. PTSCON1 in Asynchronous Mode

Table 1-15. PTSCON Bits 0–7 for Asynchronous SIO Mode

Bit Bit Bit
Description

Number Mnemonic Name

O TPAR Transmit Set this bit for even parity; clear for odd parity.

Parity

Control

1 FE Framing This bit is set if the stop bit received was not a one, otherwise
it is cleared. This bit must be reset at the start of everyError Flag
reception.

2 Ð Ð Always zero.

3 Ð Ð Always zero.

4 Ð Ð Always zero.

5 PEN Parity Enable Setting this bit enables Parity; clearing it disable parity.

Bit

6 RPAR Receive Before a reception, initialize to 0 for even and 1 for odd parity.
If at the end of a reception the bit is 1, a parity error hasParity
occurred. This bit must be initialized prior to each reception.Control/

Status

7 Ð Ð Always zero.
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7 6 5 4 3 2 1 0

RSV RSV RSV RSV RSV RSV TRC RSV

RSV e RESERVED BITS. MUST WRITE AS 0.

Figure 1-13. PTSCON1 in Synchronous Mode

Table 1-16. PTSCON Bits 0–7 for Synchronous SIO Mode

Bit Bit Bit
Description

Number Mnemonic Name

0 Ð Ð Always zero.

1 TRC Transmit/ Set this bit to receive or transmit data on first and every other
(odd numbered) PTS cycles. Clear bit to receive or transmitReceive
data on second and every other (even numbered) PTS cycles.Control
This bit must be initialized at the start of every transmission or
reception.

2 Ð Ð Always zero.

3 Ð Ð Always zero.

4 Ð Ð Always zero.

5 Ð Ð Always zero.

6 Ð Ð Always zero.

7 Ð Ð Always zero.

1.8.5.9 DATA Register

This 16-bit register holds the data to be transmitted or that has been received. In receive mode, data is shifted into
the most significant bit (bit 15), and shifts right with each successive bit received. The received bits will be left
justified, with the last bit received in the MSB position.

In transmit mode, the register must be loaded right justified. The bits will shift out to the right, the LSB being sent
first.

1.8.5.10 SAMPTIME Register

This 8-bit register controls the time between samples when majority sampling mode is used during asynchronous
receive only. If majority sampling is enabled, this register must contain a value between 1 and 31. Use the following
formula to calculate time between samples:

SAMPTIMEÐVALUE e

Tsam c FXTAL

2
b 9

where

Tsam e time between samples, ms
FXTAL e XTAL1 pin input frequency, MHz
SAMPTIMEÐVALUE e integer to load into SAMPTIME register. Must be 1–31

1.8.6 PTS ASYNCHRONOUS SIO RECEIVE MODE

To set up the PTS asynchronous SIO receive mode we need a EPA module to set up the timing interval between bits.
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During a receive operation, a CAPCOMP module is used, as we need to capture the leading edge of the ‘‘start’’ bit.
After the start bit has been captured, the EPA is switched to the compare mode, and time intervals are selected such
that the bit input value is sampled in the middle of each bit period. If majority sampling is selected, three consecutive
samples are taken, and the majority value is shifted into the DATA register.

After all samples are collected, the end-of-PTS interrupt is generated, and the data read out. The PTSCB’s must then
be reinitialized.

Figure 1-14 illustrates the sampling process during Asynchronous SIO mode. Chapter 5 contains a software example
of this mode.

272282–35

Figure 1-14. Asynchronous SIO Receive Mode Timing

1.8.6.1 PTS Asynchronous SIO Transmit Mode

To set up the PTS asynchronous SIO transmit mode we need an EPA module to set up the timing interval between
bits.

A shift clock is generated internally using an EPA compare module. Each time the EPA interrupt occurs, the PTS
shifts a bit out of the data register and onto the I/O pin. After the last bit is shifted out, the end-of-PTS interrupt is
used to reinitialize the PTSCB’s.

Figure 1-15 shows the timing when using the SIO transmit mode. Chapter 4 contains a software example of this
mode.

272282–36

Figure 1-15. Asynchronous SIO Transmit Mode Timing

1.8.6.2 PTS Synchronous SIO Receive Mode

To set up the PTS synchronous SIO receive mode we need an EPA module to set up the timing interval between bits.
This same module can either generate a shift clock output, or input an external shift clock.
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During receive operation, the EPA channel captures (or generates) the shift clock. Every other edge is used to shift
the value of the RXD pin into the DATA register. Either even or odd edges can accomplish this shift, depending on
system requirements.

After all samples are collected, the end-of-PTS interrupt is generated, and the data read out. The PTSCB’s must then
be reinitialized.

Figure 1-16 illustrates the sampling process during Synchronous SIO mode. Chapter 3 contains a software example
of this mode.

272282–37

Figure 1-16. Synchronous SIO Receive Mode Timing

1.8.7 PTS SYNCHRONOUS SIO TRANSMIT MODE

To set up the PTS synchronous SIO transmit mode we need an EPA module to set up the timing interval between
bits. This same module can either generate a shift clock output, or input an external shift clock.

During transmit operation, the EPA channel captures (or generates) the shift clock. Every other edge is used to shift
the value of the TXD pin out of the DATA register. Either even or odd edges can accomplish this shift, depending
on system requirements.

After all bits have been transmitted, the end-of-PTS interrupt is generated. The PTSCB’s must then be reinitialized.

Figure 1-17 illustrates the sampling process during Synchronous SIO mode. Chapter 2 contains a software example
of this mode.

272282–38

Figure 1-17. Synchronous SIO Transmit Mode Timing
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2.0 SYNCHRONOUS SERIAL DATA TRANSMISSION PROGRAM SAMPLE

2.1 Introduction

The synchronous serial data transmit function on the 8XC196MC/MD is performed in software, using the PTS
SSIO mode with an EPA channel. In this program example the EPA CAPCOMP0 channel is set-up to generate a
shift clock output (SCK) on P2.0. Each time a timer match is made between CAPCOMP0 and TIMER1, P2.0 is
toggled and an interrupt is generated. On every other interrupt, the PTS outputs the next bit of data on the output
pin, in this case P2.2 The time interval between interrupts establishes the baud rate. To transmit 8 data bits, a total of
16 PTS interrupt and one conventional (end-of-PTS interrupt) cycles occur. Figure 1-17 illustrates the timing of this
mode of operation.

2.1.1 END-OF PTS INTERRUPT

The final interrupt (when PTSCOUNT e 0) is called the end-of PTS interrupt. This interrupt will take the
conventional interrupt vector to CAPCOMP0ÐINT, and the PTS control block is serviced here. In this example,
PTSCOUNT is reloaded with 16, PTSCON1 is reloaded (this is required), and DATA0ÐW0ÐL is loaded with the
next data byte. The EPA CAPCOMP0 channel is reloaded, and this ‘‘primes the pump’’ to start the next data byte
transmission. A total of 16 bytes are transmitted.

2.2 Detailed Program Description

2.2.1 CONSTANT DECLARATIONS (Lines 1–46)

This section of the code defines the location of the PTS control block (PTSCB) registers, first as accessed through
64-byte window 4 (WSR e 24H) and then in their absolute locations (0100H–010EH) . By accessing the control
block through the window, loading and servicing of the PTSCB is much faster, and requires less code space. Note
that all PTSCB’s must be located on a quad-word boundary (divisible by 8).

Lines 39–41 define data storage for a transmit character buffer, a loop counter, and a flag register.

2.2.2 INTERRUPT VECTORS AND CCB (Lines 47–66)

Lines 47–49 fill the interrupt vector table location 2004H with the address of the conventional CAPCOMP0
interrupt service routine. This routine is known as the ‘‘end-of-PTS’’ interrupt routine.

Lines 55–58 define the chip configuration bytes, CCB and CCB1. These need to be configured for the particular
system that this program is run on.

Lines 64–65 fill the PTS interrupt vector table location 2044H (EPA CAPCOMP0 PTS interrupt) with the base
address of the PTSCB.

2.2.3 MAIN PROGRAM (Lines 67–135)

Lines 71–82 define the program starting location (2080H), set up the stack at 0200H, and disable and clear out all
pending interrupts.

Lines 84–93 initialize I/O port 2 (used for the clock and TXD outputs) and set up timer1 for the time base. This is
done through the windowed address of the special Function Registers (SFRs) . In line 89, the port pins are initialized
to 1, so the initial output value of SCK (P2.2) and TXD (P2.0) will be high. Because the CAPCOMP module (which
generates SCK) is used in the ‘‘toggle’’ mode, the initial value of P2.2 is critical to the polarity of the clock signal.

Lines 96–105 initialize most of the PTSCB. Line 106 enables the interrupt mask bit for the CAPCOMP0 module.

Line 111 defines the number of bytes to transmit and line 112 clears the transfer done flag, indicating that the
transmit operation is not yet complete.
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Line 113 fills in the number of bits to be transmitted in each word (in this case 8 bits). Note that the value loaded
into PTSCOUNT0ÐW0 is twice the number of bits to be transmitted. This number also is the number of PTS cycles
that will occur for each word transmitted.

Line 114 sets up the synchronization mode for the output data. The data can be made to change on EVEN numbered
PTS cycles (PTSCON10ÐW0 e 0) , or on ODD numbered PTS cycles (PTSCON10ÐW0 e 2).

Line 115 gets the first data byte from the transmit buffer TRANSMIT and loads it into the PTSCB
DATA0ÐW0ÐL register. At this point, the entire PTSCB has been initialized, and is ready for action!

Line 117 unmasks the PTS interrupt for CAPCOMP0.

Line 119 sets up the CAPCOMP0 module in the compare/toggle output mode by loading 70H to the
CAPCOMP0ÐCONÐW0 register.

Line 120 starts the operation of the CAPCOMP0 module by writing the time of the first interrupt to
CAPCOMP0ÐTIMEÐW0.

Note that to do this, the current TIMER1 value is read 80H is added to it, and the result is stored into
CAPCOMP0ÐTIMEÐW0. The value of 80H determines how long before the first PTS interrupt occurs. The user
must finish any initialization before this happens.

Lines 122–123 enable the PTS and conventional interrupts.

Lines 129–132 is a ‘‘do nothing’’ loop that monitors the TXDDONE flag and waits for the transmit operation to
complete sending 16 bytes (as determined by TÐCOUNT). When the operation is complete, the NOPs are executed,
and the user needs to place the next segment of code here.

2.2.4 END OF PTS INTERRUPT ROUTINE

The end-of PTS interrupt routine is entered immediately after the final PTS interrupt. It performs housekeeping
activities as detailed below.

Lines 141–144 PUSH the CPU status and interrupt masks onto the stack, disables CAPCOMP0 and clears any
pending interrupt it may have generated. Disabling CAPCOMP0 is an important point, as the final PTS cycle loads
the next SCK toggle time into CAPCOMP0. We do not want this toggle to occur, or else the clock polarity will
change due to the ODD number of toggles, and/or erroneous data may be output.

Line 145–146 check if 16 bytes have been transmitted yet. If yes, the program returns; otherwise, execution contin-
ues.

Lines 149–155 ‘‘refresh’’ the PTSCB registers that have changed. The next data byte is loaded into
DATA0ÐW0ÐL, PTSCOUNT0ÐW0 and PTSCON10ÐW0 are reloaded, and the PTS service is re-enabled by
setting the PTSSEL bit for CAPCOMP0.

Lines 156–158 restart the CAPCOMP0 module by loading CAPCOMP0ÐCONÐW0 and
CAPCOMP0ÐTIMEÐW0. Note that the time loaded into CAPCOMP0ÐTIMEÐW0 determines how long before
the next data transmission occurs.

Finally, lines 160–162 return program execution to the main program flow.

2.3 Top 5 Issues of Using the PTS/SSIO Transmit Mode

1. The SCK clock output must be from a CAPCOMP or COMP module output pin.

2. The port pins used for SCK and TXD must be initialized to the system-required logic level prior to starting any
data transmissions.

3. The first PTS cycle must be manually started before the transfer will begin (see line 120) . Once started, the bits
will shift out until the end-of-PTS interrupt occurs, or the PTS is disabled.
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4. The end-of-PTS interrupt routine must disable the CAPCOMP0 module used for SCK and clear the correspond-
ing interrupt pending bit (see lines 143–144).

5. The end-of-PTS interrupt routine must reload the DATA0, PTSCOUNT0 and PTSCON10 registers in the
PTSCB. The CAPCOMP1 PTSSEL bit must be set and CAPCOMP0ÐCON and CAPCOMP0ÐTIME must be
reloaded before additional data can be transmitted.

2.4 Program Example

1 ;****************************************
2 ; PTSCB address in vertical window 24H
3 ;****************************************
4 ;
5 PTSCOUNT0 W0 EQU 0C0H:BYTE
6 PTSCON0 W0 EQU 0C1H:BYTE
7 EPAREG0 W0 EQU 0C2H:W0RD
8 BAUDCONST0 W0 EQU 0C4H:W0RD
9 PTSVEC10 W0 EQU 0C6H:W0RD

10 PORTREG0 W0 EQU 0C8H:W0RD
11 PORTMASK0 W0 EQU 0CAH:BYTE
12 PTSCON10 W0 EQU 0CBH:BYTE
13 DATA0 W0 EQU 0CCH:W0RD
14 SAMPTIME0 W0 EQU 0CEH:W0RD
15 ;
16 DATA0 W0 L EQU 0CCH:BYTE
17 T1CONTROL W0 EQU 038H:BYTE
18 ;****************************************
19 ; absolute address of PTSCB
20 ;****************************************
21 ;
22 PTSCOUNT0 EQU 100H:BYTE
23 PTSCON0 EQU 101H:BYTE
24 EPAREG0 EQU 102H:W0RD
25 BAUDCONST0 EQU 104H:W0RD
26 PTSVEC10 EQU 106H:W0RD
27 PORTREG0 EQU 108H:W0RD
28 PORTMASK0 EQU 10AH:BYTE
29 PTSCON10 EQU 10BH:BYTE
30 DATA0 EQU 10CH:W0RD
31 SAMPTIME0 EQU 10EH:W0RD
32 T1CONTROL EQU 1F78H:W0RD
33 ;************************
34 ; USER DEFINED REGISTERS
35 ;************************
36 ;
37 RSEG AT 1AH
38 ;
39 TRANSMIT: DSB 17 ;transfer data area
40 T COUNT: DSW 1 ;transfer data index counter
41 TXDDONE: DSB 1 ;transfer done flag
42 ;
43 ;************************
44 ; INTERRUPT VECTOR TABLE
45 ;************************
46 ;
47 CSEG AT 2004H ;capture/compare module 0 interrupt

;location
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2.4 Program Example (Continued)

48
49 DCW CAPCOMP0 INT ;INT 02
50 ;
51 ;************************
52 ; CHIP CONFIGURATION BYTES
53 ;************************
54 ;
55 CSEG AT 2018H
56
57 DCW 20CFH ;CCB
58 DCW 20DCH ;CCB1
59 ;
60 ;************************
61 ; PTS VECTOR TABLE
62 ;************************
63 ;
64 CSEG AT 2044H ;capture/compare module 0 PTSCB

;location
65 DCW 100H ;PTSCB vector address
66 ;
67 ;************************
68 ; MAIN ROUTINE
69 ;************************
70 ;
71 CSEG AT 2080H
72
73 MAIN START:
74 DI ;disable interrupt
75 LD SP,#0200H ;set-up stack pointer
76 ;
77 ;Clear interrupt mask register
78 ;
79 CLRB INT MASK ;reset interrupt mask register
80 CLRB INT MASK1
81 LDB WSR,#3EH ;map 64 bytes to 1F80H–1FBFH
82 CLRB PI MASK W0 ;reset peripheral interrupt mask reg.
83 ;
84 ;Initialize port & timer
85 ;
86 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
87 LDB P2 MODE W0,R0 ;P2.0–P2.74LSIO
88 LDB P2 DIR W0,#00H ;P2.0–P2.74OUTPUT
89 LDB P2 REG W0,#0FFH ;P2.0–P2.74high
90 LDB P2 MODE W0,#01H ;P2.04EPA capture compare SCK send
91 ;
92 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
93 LDB T1CONTROL W0,#0C0H ;timer 1 enable, up count, clock
94 ;internal, pre-scale4div 1
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2.4 Program Example (Continued)

95 ;
96 ;Initialize PTSCB Mode
97 ;
98 LDB WSR,#24H ;map 64 bytes to 100H–13FH
99 LDB PTSCON0 W0,#72H ;SSIO transfer

100 LD EPAREG0 W0,#1F42H ;EPA capture/compare0 register address
101 LD BAUDCONST0 W0,#0D0H ;set baud rate
102 ; 9600 baud
103 LD PTSVEC10 W0,#108H ;pointer to PTSCB1
104 LD PORTREG0 W0,#1FD4H ;Port 2 contains TXD pin
105 LDB PORTMASK0 W0,#04H ;P2.24TXD
106 ORB INT MASK,#04H ;enable interrupt on capture/compare
107 ;module 0
108 ;
109 ;Set transfer data
110 ;
111 LD T COUNT,#16 ;set transfer data count
112 CLRB TXDDONE ;clear transfer done flag
113 LDB PTSCOUNT0 W0,#10H ;10H 4 (# of bits)*2
114 LDB PTSCON10 W0,#02H ;PTSCON1 - transfer on 1st PTS cycle
115 LDB DATA0 W0 L,TRANSMIT[T COUNT]
116 ;set transfer data
117 ORB PTSSEL,#04H ;enable PTS on capture/compare module 0
118 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
119 LDB CAPCOMP0 CON W0,#70H ;Compare - interrupt and toggle
120 ADD CAPCOMP0 TIME W0,TIMER1 W0,#80H
121 ;set first PTS & delay time
122 EPTS ;enable PTS
123 EI ;enable interrupt
124 ;
125 ;************************
126 ;Polling routine
127 ;************************
128 ;
129 LOOP:
130 JBC TXDDONE,0,LOOP ;check transfer done flag
131 NOP ;dummy command
132 NOP ;dummy command
133 ; - ;further user code here
134 ; -
135 ;
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2.4 Program Example (Continued)

136 ;************************************
137 ;end of PTS interrupt service routine
138 ;************************************
139 ;
140 CAPCOMP0 INT: end-of-PTS interrupt routine
141 PUSHA ;save PSW,INT MASK,INT MASK1,WSR
142 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
143 LDB CAPCOMP0 CON W0,#00H ;disable capture/compare module 0
144 ANDB INT PEND,#0FBH ;clear false pending interrupt
145 DJNZW T COUNT,CAPCOMP0 SKIP;decrement data counter & check end of

;transfer
146 LDB TXDDONE,#01H ;set done flag
147 BR CAPCOMP0 RET ;exit, entire buffer sent
148 CAPCOMP0 SKIP: ;prepare to xmit next word
149 LDB WSR,#24H ;map 64 bytes to 100H–13FH
150 LDB DATA0 W0 L,TRANSMIT[T COUNT]
151 ;set next transfer data
152 LDB PTSCOUNT0 W0,#10H ;(# of bits)*2
153 LDB PTSCON10 W0,#02H ;PTSCON1 - transfer on 1st PTS cycle
154 ;data to be transmitted
155 ORB PTSSEL,#04H ;enable PTS on capture/compare module 0
156 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
157 LDB CAPCOMP0 CON W0,#70H ;Compare - interrupt and toggle
158 ADD CAPCOMP0 TIME W0,EPA TIMER1 W0,#80H
159 ;set first PTS & delay time
160 CAPCOMP0 RET:
161 POPA ;load PSW,INT MASK,INT MASK1,WSR
162 RET ;return to main loop from
163 ;interrupt service routine
164 END
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272282–1

Figure 2-1. Flow ChartÐSSIO Transmit Initialization
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272282–2

272282–3

Figure 2-2. Flow ChartÐSSIO Transmit Interrupt Routine

3.0 SYNCHRONOUS SERIAL DATA RECEPTION PROGRAM EXAMPLE

3.1 Introduction

The synchronous serial data receive function on the 8XC196MC/MD is performed in software usig the PTS SSIO
mode with an EPA channel. In this program example the EPA CAPCOMP1 channel is used in the capture mode to
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receive a shift clock input on P2.1. Each time P2.1 is toggled, CAPCOMP1 generates an interrupt. The interrupts are
processed by the PTS, and on every other interrupt the PTS cycle reads the value on the input pin, in this case P2.3.
The values are shifted into the DATA1ÐW0ÐH register PTS control block. The time interval between interrupts
establishes the baud rate. To receive 8 data bits, a total of 16 PTS cycles and one conventional (end-of-PTS interrupt)
interrupt occur.

Because this example uses an external clock input, TIMER1 and the BAUDCONST1 register are not used. Note
that by changing the CAPCOMP1 module to compare mode, it would be possible for the synchronous clock to be
generated by the 8XC196MC and output to the external device. In this case the baud rate will be determined by
TIMER1 and BAUDCONST1.

Also note that the program flow is very similar to the PTS SSIO transmit mode.

3.1.1 END-OF PTS INTERRUPT

The final interrupt (when PTSCOUNT e 0) is called the end-of PTS interrupt. This interrupt will take the
conventional interrupt vector to CAPCOMP1ÐINT, and the PTS control block is serviced here. In this example,
DATA1ÐW0ÐH (which contains the incoming character) is stored in the RECEIVE buffer, PTSCOUNT is
reloaded with 16, PTSCON1 is reloaded (this is required), and the input buffer DATA1ÐW0 is cleared. The EPA
CAPCOMP1 channel is reloaded, and this ‘‘primes the pump’’ to start the next data byte reception. A total of
16 bytes are received.

3.2 Detailed Program Description

3.2.1 CONSTANT DECLARATIONS (Lines 1–42)

This section of the code defines the location of the PTS control block (PTSCB) registers, first as accessed through
64-byte window 4 (WSR e 24H) and then in their absolute locations (0110H–011EH) . By accessing the control
block through the window, loading and servicing of the PTSCB is much faster, and requires less code space. Note
that all PTSCB’s must be located on a quad-word boundary (divisible by 8).

Lines 37–41 define data storage for a receive character buffer, a loop counter, and a flag register.

3.2.2 INTERRUPT VECTORS AND CCB (Lines 43–66)

Lines 47–49 fill the interrupt vector table location 2008H with the address of the conventional CAPCOMP1
interrupt service routine. This routine is known as the ‘‘end-of-PTS’’ interrupt routine.

Lines 55–58 define the chip configuration bytes, CCB and CCB1. These need to be configured for the particular
system that this program is run on.

Lines 64–65 fill the PTS interrupt vector table location 2048H (EPA CAPCOMP1 PTS interrupt) with the base
address of the PTSCB.

3.2.3 MAIN PROGRAM (Lines 67–135)

Lines 71–82 define the program starting location (2080H), set up the stack at 0200H, and disable and clear out all
pending interrupts.

Lines 84–93 initialize I/O port 2 (used for the clock and RXD inputs) and set up timer1 for the time base. This is
done through the windowed address of the special Function Registers (SFRs) . In line 90, the unused port pins are
initialized to 1. Because the CAPCOMP1 module (which inputs SCK) is used in the ‘‘toggle’’ mode, the initial value
input to P2.1 is critical to the polarity of the clock signal.

Lines 97–105 initialize most of the PTSCB. Line 106 enables the interrupt mask bit for the CAPCOMP1 module.
Line 111 defines the number of bytes to receive and line 112 clears the transfer done flag, indicating that the receive
operation is not yet complete.
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Line 113 fills in the number of bits to be received for each word (in this case 8 bits). Note that the value loaded into
PTSCOUNT1ÐW0 is twice the number of bits to be received. This number also is the number of PTS cycles that
will occur for each word transmitted.

Line 114 sets up the synchronization mode for the input data. The data is sampled on EVEN numbered PTS cycles
(PTSCON11ÐW0 e 0).

Line 115 clears the receive register DATA1ÐW0 in the PTSCB. At this point, the entire PTSCB has been initial-
ized, and is ready for action!

Line 117 unmasks the PTS interrupt for CAPCOMP1.

Line 118 sets up the CAPCOMP1 module in the capture both edges mode by loading 30H to the
CAPCOMP1ÐCONÐW0 register.

Lines 119–120 enable the PTS and conventional interrupts.

Lines 126–129 are a ‘‘do nothing’’ loop that monitors the RXDDONE flag and waits for the transmit operation to
complete sending 16 bytes. When the operation is complete, the NOPs are executed, and the user needs to place the
next segment of code here.

3.2.4 END-OF-PTS INTERRUPT ROUTINE

The end-of-PTS interrupt routine is entered immediately after the final PTS interrupt. It performs housekeeping
activities as detailed below.

Lines 137–144 PUSH the CPU status and interrupt masks onto the stack, disables CAPCOMP1 and clears any
pending interrupt it may have generated.

Line 145–146 check If 16 bytes have been received yet. If yes, the program returns; otherwise, execution continues.

Lines 149–153 ‘‘refresh’’ the PTSCB registers that have changed. DATA1ÐW0 is cleared, PTSCOUNT1ÐW0 and
PTSCON11ÐW0 are reloaded, and the PTS service is re-enabled by setting the PTSSEL bit for CAPCOMP1.

Line 154 readies the CAPCOMP1 module to capture the next edge by loading CAPCOMP1ÐCONÐW0.

Finally, lines 155–157 return program execution to the main program flow.

3.3 Top 5 Issues of Using the PTS/SSIO Receive Mode

1. SCK can be either input to or output from the 8XC196MC/MD. If SCK is an output, either a CAPCOMP or
COMP module can be used. If SCK is an input, a CAPCOMP module must be used.

2. The port pin used for SCK (if an output) must be initialized to the system-required logic level prior to starting
any data transmissions.

3. The data reception will begin as soon as the clock pulses begin. If the 8XC196MC/MD is generating SCK, the
first PTS cycle must be manually started before the transfer will begin. Once started, the bits will shift in until the
end-of-PTS interrupt occurs, or the PTS is disabled.

4. The end-of-PTS interrupt routine must disable the CAPCOMP module used for SCK and clear the corresponding
interrupt pending bit (see lines 140–141)

5. The end-of-PTS interrupt routine must clear the DATA register, and reinitialize PTSCOUNT1 and PTSCON11
registers in the PTSCB. The CAPCOMP1 PTSSEL bit must be set and the CAPCOMP1ÐCON must be
reloaded before additional data can be received. Additionally, if the 8XC196MC/MD is generating (outputting)
SCK, CAPCOMP1ÐTIME would need to be reloaded.
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3.4 Program Example

1 ;****************************************
2 ; PTSCB address in vertical window 24H
3 ;****************************************
4 ;
5 PTSCOUNT1 W0 EQU 0D0H:BYTE
6 PTSCON1 W0 EQU 0D1H:BYTE
7 EPAREG1 W0 EQU 0D2H:W0RD
8 BAUDCONST1 W0 EQU 0D4H:W0RD
9 PTSVEC11 W0 EQU 0D6H:W0RD

10 PORTREG1 W0 EQU 0D8H:W0RD
11 PORTMASK1 W0 EQU 0DAH:BYTE
12 PTSCON11 W0 EQU 0DBH:BYTE
13 DATA1 W0 EQU 0DCH:W0RD
14 SAMPTIME1 W0 EQU 0DEH:W0RD
15 ;
16 DATA1 W0 H EQU 0DDH:BYTE
17 ;
18 ;****************************************
19 ; absolute address of PTSCB
20 ;****************************************
21 ;
22 PTSCOUNT1 EQU 110H:BYTE
23 PTSCON1 EQU 111H:BYTE
24 EPAREG1 EQU 112H:W0RD
25 BAUDCONST1 EQU 114H:W0RD
26 PTSVEC11 EQU 116H:W0RD
27 PORTREG1 EQU 118H:W0RD
28 PORTMASK1 EQU 11AH:BYTE
29 PTSCON11 EQU 11BH:BYTE
30 DATA1 EQU 11CH:W0RD
31 SAMPTIME1 EQU 11EH:W0RD
32 ;
33 ;************************
34 ; USER DEFINED REGISTERS
35 ;************************
36 ;
37 RSEG AT 1AH
38 ;
39 RECEIVE: DSB 17 ;receive data buffer
40 R COUNT: DSW 1 ;receive character counter
41 RXDDONE: DSB 1 ;transfer done flag
42 ;
43 ;************************
44 ; INTERRUPT VECTOR TABLE
45 ;************************
46 ;
47 CSEG AT 2008H ;capture/compare module 1 INT. location
48
49 DCW CAPCOMP1 INT ;INT 04
50 ;
51 ;*************************
52 ; CHIP CONFIGURATION BYTES
53 ;*************************
54 ;

36



AP-483

3.4 Program Example (Continued)

55 CSEG AT 2018H
56
57 DCW 20CFH ;CCB
58 DCW 20DCH ;CCB1
59 ;
60 ;************************
61 ; PTS VECTOR TABLE
62 ;************************
63 ;
64 CSEG AT 2048H ;capture/compare module 1 PTSCB

;location
65 DCW 110H ;PTSCB vector address
66 ;
67 ;************************
68 ; MAIN ROUTINE
69 ;************************
70 ;
71 CSEG AT 2080H
72
73 MAIN START:
74 DI ;disable interrupt
75 LD SP,#0200H ;set-up stack pointer
76 ;
77 ;Clear interrupt mask register
78 ;
79 CLRB INT MASK ;reset interrupt mask register
80 CLRB INT MASK1
81 LDB WSR,#3EH ;map 64 bytes to 1F80H–1FBFH
82 CLRB PI MASK W0 ;reset peripheral interrupt mask reg.
83 ;
84 ;Initialize port & timer
85 ;
86 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
87 LDB P2 MODE W0,R0 ;P2.0–P2.74LSIO
88 LDB P2 DIR W0,#0AH ;OUTPUTP42.0,P2.2,P2.4–P2.7
89 ;INPUT4P2.1,P2.3
90 LDB P2 REG W0,Ý0FFH ;P2.0–P2.74High
91 LDB P2 MODE W0,#02H ;P2.14EPA capture compare SCK receive
92 ;
93 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
94 ;
95 ;
96 ;
97 ;Initialize RXD Mode
98 ;
99 LDB WSR,#24H ;map 64 bytes to 0100H–013FH

100 LDB PTSCON1 W0,#32H ;SSIO receive
101 LD EPAREG1 W0,#1F46H ;CAPCOMP1 TIME address
102 LD BAUDCONST1 W0,#00D0H ;set baud rate
103 LD PTSVEC11 W0,#118H ;pointer to PTSCB1
104 LD PORTREG1 W0,#1FD6H ;Port 2 has RXD pin
105 LDB PORTMASK1 W0,#08H ;P2.14SCK, P2.34RXD
106 ORB INT MASK,#10H ;enable interrupt on capture/compare
107 ;module 1
108 ;
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3.4 Program Example (Continued)

109 ;Set receive mode
110 ;
111 LD R COUNT,#16 ;set receive data count
112 CLRB RXDDONE ;clear done flag
113 LDB PTSCOUNT1 W0,#10H ;(# of bits)*2
114 LDB PTSCON11 W0,#00H ;PTSCON1 - receive on 2nd PTS cycle
115 CLR DATA1 W0 ;clear receive data buffer
116 ORB PTSSEL,#10H ;enable PTS on capture/compare mod. 1
117 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
118 LDB CAPCOMP1 CON W0,#30H ;capture on both edge
119 EPTS ;enable PTS
120 EI ;enable interrupt
121 ;
122 ;************************
123 ;Polling routine
124 ;************************
125 ;
126 LOOP:
127 JBC RXDDONE,0,LOOP ;check receive done flag
128 NOP ;dummy command
129 NOP ;dummy command
130 ; - ;further user code here
131 ; -
132 ;
133 ;************************************
134 ;end of PTS interrupt service routine
135 ;************************************
136 ;
137 CAPCOMP1 INT: end-of-PTS interrupt routine
138 PUSHA ;save PSW,INT MASK,INT MASK1,WSR
139 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
140 LDB CAPCOMP1 CON W0,#00H ;disable capture/compare module 1
141 ANDB INT PEND,#0EFH ;clear false pending interrupt
142 LDB WSR,#24H ;map 64 bytes to 0100H–013FH
143 STB DATA1 W0 H,RECEIVE[R COUNT]
144 ;save received data
145 DJNZW R COUNT,CAPCOMP1 SKIP;decrement data counter & check end of

;receive
146 LDB RXDDONE,#01H ;set done flag
147 BR CAPCOMP1 RET ;finish data receive
148 CAPCOMP1 SKIP:
149 LDB PTSCOUNT1 W0,#10H ;(# of bits)*2
150 LDB PTSCON11 W0,#00H ;PTSCON1 - receive on 2nd PTS cycle
151 CLR DATA1 W0 ;clear receive data buffer
152 ORB PTSSEL,#10H ;enable PTS on capture/compare module 1
153 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
154 LDB CAPCOMP1 CON W0,#30H ;capture on both edge
155 CAPCOMP1 RET:
156 POPA ;load PSW,INT MASK,INT MASK1,WSR
157 RET ;return to main loop
158
159 END
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272282–4

Figure 3-1. Flow ChartÐSSIO Receive Initialization
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272282–5

272282–6

Figure 3-2. Flow ChartÐSSIO Receive Interrupt Routine
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4.0 ASYNCHRONOUS SERIAL DATA TRANSMISSION PROGRAM EXAMPLE

4.1 Introduction

The asychronous serial data transmit function on the 8XC196MC/MD is performed in software, using the PTS SIO
mode with an EPA channel. In this program example, the EPA CAPCOMP0 channel is set-up to generate the time
base for outputting serial data, thus determining the baud rate.

Transmissions are started by clearing the output pin which generates the ‘‘start’’ bit (0). The CAPCOMP0 module is
loaded with the time at which the first data bit should be driven onto the port. This time must correspond to 1 ‘‘bit
time’’ for the baud rate being used.

Each time a timer match is made between CAPCOMP0 and TIMER0, an interrupt is generated. The PTS outputs
the next bit of data on the output pin, in this case P2.0. The asynchronous transmit mode automatically transmits up
to 15 data bits, followed by an optional parity bit, and termininated by a ‘‘stop’’ bit (1) . If the parity bit is sent, a
maximum of 14 data bits may be sent (data a parity a stop e 16 maximum). To transmit 8 data bits with parity, a
total of 10 PTS interrupt and one conventional (end-of-PTS interrupt) cycles occur.

Note that data to be transmitted is right-justified in the PTSCB DATA0 register, and will be shifted out least
significant (rightmost) bit first.

The number of data bits that will be transmitted is determined by the number of PTS cycles, PTSCOUNT.
PTSCOUNT must equal data bits a parity bit a stop bit.

4.1.1 END-OF-PTS INTERRUPT

The final interrupt (when PTSCOUNT e 0) is called the end-of-PTS interrupt. This interrupt occurs immediately
after the stop bit is output, and takes the conventional interrupt vector to CAPCOMP0ÐINT, where the PTS
control block is serviced. In this example, DATA0ÐW0ÐL is loaded with the next data byte, PTSCOUNT is
reloaded with 10, and PTSCON10 is reloaded (this is required). Next, P2.0 is cleared creating the ‘‘start’’ bit for the
next data word to be transmitted. The EPA CAPCOMP0 channel is initialized, and CAPCOMP0ÐTIME is written
to, establishing the time at which the first data bit (BIT0, LSB) of the next word will be driven out. A total of
16 bytes are transmitted.

4.2 Detailed Program Description

4.2.1 CONSTANT DECLARATIONS (Lines 1–42)

This section of the code defines the location of the PTS control block (PTSCB) registers, first as accessed through
64-byte window 4 (WSR e 24H) and then in their absolute locations (0100H–010EH). By accessing the control
block through the window, loading and servicing of the PTSCB is much faster, and requires less code space. Note
that all PTSCB’s must be located on a quad-word boundary (divisible by 8).

Lines 37–41 define data storage for a transmit character buffer, a loop counter, and a flag register.

4.2.2 INTERRUPT VECTORS AND CCB (Lines 43–66)

Lines 47–49 fill the interrupt vector table location 2004H with the address of the conventional CAPCOMP0
interrupt service routine. This routine is known as the ‘‘end-of-PTS’’ interrupt routine.

Lines 55–58 define the chip configuration bytes, CCB and CCBI. These need to be configured for the particular
system that this program is run on.

Lines 64–65 fill the PTS interrupt vector table location 2044H (EPA CAPCOMP0 PTS interrupt) with the base
address of the PTSCB.
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4.2.3 MAIN PROGRAM (Lines 67–135)

Lines 71–82 define the program starting location (2080H), set up the stack at 0200H, and disable and clear out all
pending interrupts.

Lines 84–92 initialize I/O port 2 (used for the TXD output) and set up timer1 for the time base. This is done
through the windowed address of the special Function Registers (SFRs). In line 89, the port pins are initialized to 1,
so the initial output value of TXD (P2.0) will be high.

Lines 94–102 initialize most of the PTSCB. Line 103 enables the interrupt mask bit for the CAPCOMP0 module.

Line 108 defines the number of bytes to transmit and line 109 clears the transfer done flag, indicating that the
transmit operation is not yet complete.

Line 110 fills in the number of bits to be transmitted in each word (in this case 8 bits). This number also is the
number of PTS interrupts that will occur for each word transmitted.

Line 112 sets up the SIO mode for odd parity.

Line 113 gets the first data byte from the transmit buffer TRANSMIT and loads it into the PTSCB
DATA0ÐW0ÐL register. At this point, the entire PTSCB has been initialized, and is ready for action!

Line 115 unmasks the PTS interrupt for CAPCOMP0.

Line 117 begins transmission of the ‘‘start’’ bit by clearing P2.0.

Line 119 sets up the CAPCOMP0 module in the compare mode by loading 40H to the CAPCOMP0ÐCONÐW0
register.

Line 120 starts the operation of the CAPCOMP0 module by writing the time of the first interrupt to
CAPCOMP0ÐTIMEÐW0. Note that to do this, the current TIMER1 value is read and 1A0H is added to it, and
the result is stored into CAPCOMP0ÐTIMEÐW0. The value 1A0H determines how long before the first PTS
interrupt occurs, which transmits the first bit. 1A0H equals 1 bit time at 9600 baud. The program must finish any
initialization before this happens.

Lines 122–123 enable the PTS and conventional interrupts.

Lines 129–132 is a ‘‘do nothing’’ loop that monitors the TXDDONE flag and waits for the transmit operation to
complete sending 16 bytes. When the operation is complete, the NOPs are executed, and the user needs to place the
next segment of code here.

4.2.4 END-OF-PTS INTERRUPT ROUTINE

The end-of-PTS interrupt routine is entered immediately after the final PTS interrupt. It performs housekeeping
activities as detailed below.

Lines 140–146 PUSH the CPU status and interrupt masks onto the stack, disables CAPCOMP0 and clears any
pending interrupt it may have generated. Disabling CAPCOMP0 is an important point, as an additional PTS cycle
would shift out an additional data bit before it is wanted.

Line 147 checks if 16 bytes have been transmitted yet. If yes, the program sets the TXDDONE flag and returns;
otherwise, execution continues.

Lines 150–156 ‘‘refresh’’ the PTSCB registers that have changed. The next data byte is loaded into
DATA0ÐW0ÐL, PTSCOUNT0ÐW0 and PTSCON10ÐW0 are reloaded.

Lines 157–160 issue the ‘‘start’’ bit for the next word by clearing P2.0, and enable the PTS service by setting the
PTSSEL bit for CAPCOMP0.
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Lines 161–164 restart the CAPCOMP0 module by loading CAPCOMPÐCONÐW0 and
CAPCOMP0ÐTIMEÐW0. Note that the time loaded into CAPCOMP0ÐTIMEÐW0 determines how long before
the next data bit is output, and must equal 1 bit time.

Finally, lines 165–167 return program execution to the main program flow.

4.3 Top 5 Issues of Using the PTS/SIO Transmit Mode

1. The port pins used for TXD must be initialized to one prior to starting any data transmissions.

2. A zero is written to the TXD port pin to begin transmission of the ‘‘start’’ bit.

3. The first PTS cycle must be manually started immediately after the ‘‘start’’ bit has been written (see line 119).
Once started, the bits will shift out until the end-of-PTS interrupt occurs, or the PTS is disabled.

4. The end-of-PTS interrupt routine must disable the CAPCOMP module used for TXD and clear the correspond-
ing interrupt pending bit (see lines 143–144).

5. The end-of-PTS interrupt routine must reload the DATA0, PTSCOUNT0 and PTSCON10 registers in the
PTSCB. The port pin used for TXD must be cleared, thus generating the ‘‘start’’ bit. The CAPCOMP1 PTSSEL
bit must be set and CAPCOMP0ÐCON and CAPCOMP0ÐTIME must be reloaded.
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4.4 Program Example

1 ;****************************************
2 ; PTSCB address in vertical window 24H
3 ;****************************************
4 ;
5 PTSCOUNT0 W0 EQU 0C0H:BYTE
6 PTSCON0 W0 EQU 0C1H:BYTE
7 EPAREG0 W0 EQU 0C2H:W0RD
8 BAUDCONST0 W0 EQU 0C4H:W0RD
9 PTSVEC10 W0 EQU 0C6H:W0RD

10 PORTREG0 W0 EQU 0C8H:W0RD
11 PORTMASK0 W0 EQU 0CAH:BYTE
12 PTSCON10 W0 EQU 0CBH:BYTE
13 DATA0 W0 EQU 0CCH:W0RD
14 SAMPTIME0 W0 EQU 0CEH:W0RD
15 ;
16 DATA0 W0 L EQU 0CCH:BYTE
17 ;
18 ;****************************************
19 ; absolute address of PTSCB
20 ;****************************************
21 ;
22 PTSCOUNT0 EQU 100H:BYTE
23 PTSCON0 EQU 101H:BYTE
24 EPAREG0 EQU 102H:W0RD
25 BAUDCONST0 EQU 104H:W0RD
26 PTSVEC10 EQU 106H:W0RD
27 PORTREG0 EQU 108H:W0RD
28 PORTMASK0 EQU 10AH:BYTE
29 PTSCON10 EQU 10BH:BYTE
30 DATA0 EQU 10CH:W0RD
31 SAMPTIME0 EQU 10EH:W0RD
32 ;
33 ;************************
34 ; USER DEFINED REGISTERS
35 ;************************
36 ;
37 RSEG AT 1AH
38 ;
39 TRANSMIT: DSB 17 ;transfer data area
40 T COUNT: DSW 1 ;transfer data index counter
41 TXDDONE: DSB 1 ;transfer done flag
42 ;
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4.4 Program Example (Continued)

43 ;************************
44 ; INTERRUPT VECTOR TABLE
45 ;************************
46 ;
47 CSEG AT 2004H ;capture/compare module 0 interrupt

;location
48
49 DCW CAPCOMP0 INT ;INT 02
50 ;
51 ;*************************
52 ; CHIP CONFIGURATION BYTES
53 ;*************************
54 ;
55 CSEG AT 2018H
56
57 DCW 20CFH ;CCB
58 DCW 20DCH ;CCB1
59 ;
60 ;************************
61 ; PTS VECTOR TABLE
62 ;************************
63 ;
64 CSEG AT 2044H ;capture/compare module 0 PTSCB

;location
65 DCW 100H ;PTSCB vector address
66 ;
67 ;************************
68 ; MAIN ROUTINE
69 ;************************
70 ;
71 CSEG AT 2080H
72
73 MAIN START:
74 DI ;disable interrupt
75 LD SP,#0200H ;set-up stack pointer
76 ;
77 ;Clear interrupt mask register
78 ;
79 CLRB INT MASK ;reset interrupt mask register
80 CLRB INT MASK1
81 LDB WSR,#3EH ;map 64 bytes to 1F80H–1FBFH
82 CLRB PI MASK W0 ;reset peripheral interrupt mask reg.
83 ;
84 ;Initialize port & timer
85 ;
86 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
87 LDB P2 MODE W0,R0 ;P2.0–P2.74LSIO
88 LDB P2 DIR W0,#00H ;P2.0–P2.74OUTPUT
89 LDB P2 REG W0,#0FFH ;P2.0–P2.74high
90 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
91 LDB T1CONTROL W0,#0C0H ;timer 1 enable, up count, clock
92 ;internal, pre-scale4div 1
93 ;
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4.4 Program Example (Continued)

94 ;Initialize TXD Mode
95 ;
96 LDB WSR,#24H ;map 64 bytes to 100H–13FH
97 LDB PTSCON0 W0,#60H ;SIO transfer
98 LD EPAREG0 W0,#1F42H ;EPA capture/compare0 register address
99 LD BAUDCONST0 W0,#01A0H ;set baud rate 9600 @ 16 MHz

100 LD PTSVEC10 W0,#108H ;pointer to PTSCB1
101 LD PORTREG0 W0,#1FD4H ;Port 2 contains TXD pin
102 LDB PORTMASK0 W0,#01H ;P2.04TXD pin
103 ORB INT MASK,#04H ;enable interrupt on capture/compare
104 ;module 0
105 ;
106 ;Set transfer data
107 ;
108 LD T COUNT,#16 ;set transfer data count
109 CLRB TXDDONE ;clear transfer done flag
110 LDB PTSCOUNT0 W0,#0AH ;# of bits(including parity/stop bits
111 ;and excluding start bit)
112 LDB PTSCON10 W0,#21H ;PTSCON1 - odd parity
113 LDB DATA0 W0 L,TRANSMIT[T COUNT]
114 ;set transfer data
115 ORB PTSSEL,#04H ;enable PTS on capture/compare module 0
116 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
117 ANDB P2 REG W0,#0FEH ;clear P2.0 (start bit)
118 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
119 LDB CAPCOMP0 CON W0,#40H ;Compare - interrupt only
120 ADD CAPCOMP0 TIME W0,TIMER1 W0,#01A0H
121 ;start bit width
122 EPTS ;enable PTS
123 EI ;enable interrupt
124 ;
125 ;************************
126 ;Polling routine
127 ;************************
128 ;
129 LOOP:
130 JBC TXDDONE,0,LOOP ;check transfer done flag
131 NOP ;dummy command
132 NOP ;dummy command
133 ; -
134 ; -
135 ;
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4.4 Program Example (Continued)

136 ;************************************
137 ;end of PTS interrupt service routine
138 ;************************************
139 ;
140 CAPCOMP0 INT: ;end-of-PTS interrupt routine
141 PUSHA ;save PSW,INT MASK,INT MASK1,WSR
142 CAPCOMP0 LOOP:
143 JBC INT PEND,2,CAPCOMP0 LOOP ;wait interrupt for last PTS cycle
144 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
145 LDB CAPCOMP0 CON W0,#00H ;disable capture/compare module0
146 ANDB INT PEND,#0FBH ;clear false pending interrupt
147 DJNZW T COUNT,CAPCOMP0 SKIP ;check end of transfer
148 LDB TXDDONE,#01H ;set done flag
149 BR CAPCOMP0 RET ;finish transfer
150 CAPCOMP0 SKIP:
151 LDB WSR,#24H ;map 64 bytes to 100H–13FH
152 LDB DATA0 W0 L,TRANSMIT[T COUNT]
153 ;set next transfer data
154 LDB PTSCOUNT0 W0,#0AH ;# of bits(including parity/stop
155 ;bits and excluding start bit)
156 LDB PTSCON10 W0,#21H ;PTSCON1 - odd parity
157 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
158 ORB P2 REG W0,#01H ;set P2.0 (prepare start bit)
159 ANDB P2 REG W0,#0FEH ;clear P2.0 (start bit)
160 ORB PTSSEL,#04H ;enable PTS on capture/compare

module 0
161 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
162 LDB CAPCOMP0 CON W0,#40H ;Compare - interrupt only
163 ADD CAPCOMP0 TIME W0,TIMER1 W0,#01A0H
164 ;start bit width
165 CAPCOMP0 RET:
166 POPA ;load PSW,INT MASK,INT MASK1,WSR
167 RET ;return to main loop
168
169 END
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272282–7

272282–8

Figure 4-1. Flow ChartÐASIO Transmit Initialization
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272282–9

Figure 4-2. Flow ChartÐASIO Transmit Interrupt Routine

5.0 ASYNCHRONOUS SERIAL DATA RECEPTION PROGRAM SAMPLE

5.1 Introduction

The asynchronous serial data receive function on the 8XC196MC/MD is performed in software using the PTS SIO
mode with an EPA channel. In this program example the EPA CAPCOMP1 channel is initially used in the capture
falling edge mode to receive the data ‘‘start’’ bit input on P2.1. This generates a conventional interrupt (the same as
the ‘‘end of PTS’’ interrupt) which starts the asynchronous receive process.

This initial interrupt changes the CAPCOMP1 module to the compare mode, and sets the time of the next compare
to 1.5 bit times and enables the PTS. Thus, at exactly 1.5 bit times from the beginning of the start bit, the first PTS
cycle will sample the input data on P2.1 and shift it into the DATA1ÐW0 register.
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If majority sample mode is selected (as in this example), an additional sample is taken. If the two samples are
different, the data is sampled one more time to determine which polarity is correct. The time between samples is
controlled by the value of the SAMPTIME register in the PTSCB. Note that for each additional sample taken, the
execution time for the PTS cycle increases substantially. This is described in the 8XC196MC user manual section
12.3.5.

Each PTS cycle samples the input data on P2.1 and shifts the value into the DATA1ÐW0 register. The time interval
between cycles establishes the baud rate. To receive 8 data bits with parity, a total of 10 PTS cycles and two
conventional (end-of-PTS interrupt) interrupts occur.

5.1.1 END-OF-PTS INTERRUPT

The end-of-PTS interrupt services both the initial interrupt (as mentioned earlier) and the final interrupt (when
PTSCOUNT e 0). This interrupt takes the conventional interrupt vector to CAPCOMP1ÐINT, where it is
determined if this is the initial or final interrupt. This is done by reading CAPCOMP1ÐCON to see if the module is
in the capture or compare mode. If CAPCOMP1ÐCON.6 e 0, the capture mode is active indicating that this is the
initial ‘‘start’’ bit interrupt. In this case, the CAPCOMP1 module is switched to the compare mode, and
CAPCOMP1ÐTIME is loaded with the time to sample the first data bit (1.5 bit times). The PTS is enabled, and the
routine returns to a loop waiting for the rest of the data bits to be received.

If CAPCOMP1ÐCON.6 e 1 the compare mode is selected and this is the final interrupt. In this example,
PTSCON11 is checked to see if any errors occurred, and DATA1ÐW0ÐH (which contains the incoming character)
is stored in the RECEIVE buffer. PTSCOUNT1 is reloaded with 10, PTSCON11 is reloaded (this is required), and
the input buffer DATA1ÐW0 is cleared. The EPA CAPCOMP1ÐCON channel is set to the capture falling edge
mode, thus readying P2.1 to wait for the next start bit. A total of 16 bytes are received.

5.2 Detailed Program Description

5.2.1 CONSTANT DECLARATIONS (Lines 1–42)

This section of the code defines the location of the PTS control block (PTSCB) registers, first as accessed through
64-byte window 4 (WSR e 24H) and then in their absolute locations (0110H–011EH). By accessing the control
block through the window, loading and servicing of the PTSCB is much faster, and requires less code space. Note
that all PTSCB’s must be located on a quad-word boundary (divisible by 8).

Lines 37–41 define data storage for a receive character buffer, a character counter, and a flag register.

5.2.2 INTERRUPT VECTORS AND CCB (Lines 43–66)

Lines 47–49 fill the interrupt vector table location 2008H with the address of the conventional CAPCOMP1
interrupt service routine. This routine is known as the ‘‘end-of-PTS’’ interrupt routine.

Lines 55–58 define the chip configuration bytes, CCB and CCBI. These need to be configured for the particular
system that this program is run on.

Lines 64–65 fill the PTS interrupt vector table location 2048H (EPA CAPCOMP1 PTS interrupt) with the base
address of the PTSCB.

5.2.3 MAIN PROGRAM (Lines 67–135)

Lines 71–82 define the program starting location (2080H), set up the stack at 0200H, and disable and clear out all
pending interrupts.

Lines 84–93 initialize I/O port 2 (used for the RXD input) and set up timer1 for the time base. This is done through
the windowed address of the special Function Registers (SFRs) . In line 90, the unused port pins are initialized to 1.
Line 92 initializes the timer1 module.
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Lines 97–105 initialize most of the PTSCB. Line 106 enables the interrupt mask bit for the CAPCOMP1 module.
Line 111 defines the number of bytes to receive and line 112 clears the transfer done flag, indicating that the receive
operation is not yet complete.

Lines 113–116 set up the SIO asynchronous receive mode parameters, establishing the number of bits per word and
the parity.

Line 116 clears the receive register DATA1ÐW0 in the PTSCB. At this point, the entire PTSCB has been initial-
ized, and is ready for action!

Line 118 sets up the CAPCOMP1 module in the capture falling edge mode by loading 10H to the
CAPCOMP1ÐCONÐW0 register.

Lines 119–120 enable the PTS and conventional interrupts.

It is important to note that the PTSSEL bit for CAPCOMP1 has not yet been set. This is because the first interrupt
must be processed by a conventional ISR.

Lines 126–129 are a ‘‘do nothing’’ loop that monitors the RXDDONE flag and waits for the transmit operation to
complete sending 16 bytes. When the operation is complete, the NOPs are executed, and the user needs to place the
next segment of code here.

5.2.4 END-OF-PTS INTERRUPT ROUTINE (Lines 133–176)

As mentioned earlier, the end-of-PTS interrupt services both the initial interrupt (‘‘start’’ bit) and the final interrupt
(when PTSCOUNT e 0).

Line 138 PUSHes the CPU status and interrupt masks onto the stack. Line 140 checks the value of the
CAPCOMP1ÐCON register to determine if this is the ‘‘start’’ bit interrupt or the ‘‘end-of-PTS’’ interrupt. If
CAPCOMP1ÐCON.6 e 0 the program flow is switched to RXDÐSETUP, line 153, to process the ‘‘start’’ bit.

If CAPCOMP1ÐCON.6 e 1 the program flow continues and processes the ‘‘end-of-PTS’’ interrupt as follows:

Line 142 disables CAPCOMP1 and clears any pending interrupt it may have generated.

Lines 145–147 check for PTSCON11ÐW0 register to determine if a framing or parity error occurred. If there is an
error, the program jumps to the RXDÐERROR routine at line 162, sets an error code in the RXDDONE flag
register, and returns without performing any further housekeeping activity. This is just a ‘‘hook’’ for user written
code. Note that if this occurs, additional software needs to reinitialize the receive routine as required by the system
design.

Lines 147–152 store the received data in the RECEIVE buffer and check if 16 bytes have been received yet. If yes,
the program returns; otherwise, execution continues at CAPCONP1ÐSKIP (line 165).

On lines 162–171 the CAPCOMP1ÐSKIP routine ‘‘refreshes’’ the PTSCB registers that have changed.
PTSCOUNT1ÐW0 and PTSCON11ÐW0 are reloaded, and DATA1ÐW0 is cleared. The CAPCOMP1 module is
returned to the capture falling edge mode to wait for another ‘‘start’’ bit. Note that the PTSSEL bit for CAPCOMP1
in NOT set at this time, as the next interrupt needs to be a conventional ISR.

Finally, lines 172–175 return program execution to the main program flow.

5.3 Top 5 Issues of Using the PTS/SIO Receive Mode

1. The CAPCOMP module is used in the capture mode to trap the start bit, and the compare mode to receive the
data bits.

2. The capture of the ‘‘start’’ bit must cause a conventional interrupt, not a PTS cycle.

3. The end-of-PTS routine must determine if the ‘‘start’’ bit interrupt or the ‘‘real’’ end-of-PTS interrupt has caused
the routine to be entered. This is done by reading the CAPCOMPÐCON register to determine weather the
capture or compare mode is active.
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4. The end-of-PTS interrupt routine must disable the CAPCOMP module and clear the corresponding interrupt
pending bit (see lines 142–143).

5. The time loaded into CAPCOMPÐTIME after the ‘‘start’’ bit interrupt must equal 1.5 bit times so that each
following bit is sampled in the center of its period.

5.4 Program Example

1 ;****************************************
2 ; PTSCB address in vertical window 24H
3 ;****************************************
4 ;
5 PTSCOUNT1 W0 EQU 0D0H:BYTE
6 PTSCON1 W0 EQU 0D1H:BYTE
7 EPAREG1 W0 EQU 0D2H:W0RD
8 BAUDCONST1 W0 EQU 0D4H:W0RD
9 PTSVEC11 W0 EQU 0D6H:W0RD

10 PORTREG1 W0 EQU 0D8H:W0RD
11 PORTMASK1 W0 EQU 0DAH:BYTE
12 PTSCON11 W0 EQU 0DBH:BYTE
13 DATA1 W0 EQU 0DCH:W0RD
14 SAMPTIME1 W0 EQU 0DEH:W0RD
15 ;
16 DATA1 W0 H EQU 0DDH:BYTE
17 ;
18 ;****************************************
19 ; absolute address of PTSCB
20 ;****************************************
21 ;
22 PTSCOUNT1 EQU 110H:BYTE
23 PTSCON1 EQU 111H:BYTE
24 EPAREG1 EQU 112H:W0RD
25 BAUDCONST1 EQU 114H:W0RD
26 PTSVEC11 EQU 116H:W0RD
27 PORTREG1 EQU 118H:W0RD
28 PORTMASK1 EQU 11AH:BYTE
29 PTSCON11 EQU 11BH:BYTE
30 DATA1 EQU 11CH:W0RD
31 SAMPTIME1 EQU 11EH:W0RD
32 ;
33 ;************************
34 ; USER DEFINED REGISTERS
35 ;************************
36 ;
37 RSEG AT 1AH
38 ;
39 RECEIVE: DSB 17 ;receive data buffer
40 R COUNT: DSW 1 ;receive data index counter
41 RXDDONE: DSB 1 ;transfer done flag
42 ;
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5.4 Program Example (Continued)

43 ;************************
44 ; INTERRUPT VECTOR TABLE
45 ;************************
46 ;
47 CSEG AT 2008H ;capture/compare module 1 INT. location
48
49 DCW CAPCOMP1 INT ;INT 04
50 ;
51 ;*************************
52 ; CHIP CONFIGURATION BYTES
53 ;*************************
54 ;
55 CSEG AT 2018H
56
57 DCW 20CFH ;CCB
58 DCW 20DCH ;CCB1
59 ;
60 ;************************
61 ; PTS VECTOR TABLE
62 ;************************
63 ;
64 CSEG AT 2048H ;capture/compare module 1 PTSCB

location
65 DCW 110H ;PTSCB vector address
66 ;
67 ;************************
68 ; MAIN ROUTINE
69 ;************************
70 ;
71 CSEG AT 2080H
72
73 MAIN START:
74 DI ;disable interrupt
75 LD SP,#0200H ;set-up stack pointer
76 ;
77 ;Clear interrupt mask register
78 ;
79 CLRB INT MASK ;reset interrupt mask register
80 CLRB INT MASK1
81 LDB WSR,#3EH ;map 64 bytes to 1F80H–1FBFH
82 CLRB PI MASK W0 ;reset peripheral interrupt mask reg.
83 ;
84 ;Initialize port & timer
85 ;
86 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
87 LDB P2 MODE W0,R0 ;P2.0–P2.74LSIO
88 LDB P2 DIR W0,#02H ;OUTPUTP42.0,P2.2–P2.7,
89 ;INPUT4P2.1
90 LDB P2 REG W0,#0FFH ;P2.0–P2.74high
91 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
92 LDB T1CONTROL W0,#0C0H ;timer 1 enable, up count, clock
93 ;internal, pre-scale4div 1
94 ;
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5.4 Program Example (Continued)

95 ;Initialize RXD Mode

96 ;

97 LDB WSR,#24H ;map 64 bytes to 0100H–013FH

98 LDB PTSCON1 W0,#21H ;SIO receive

99 LDB SAMPTIME1 W0,#01H ;sample time for majority sample

100 LD EPAREG1 W0,#1F46H ;CAPCOMP1 TIME Address

101 ;

102 LD BAUDCONST1 W0,#01A0H ;set baud rate 9600 baud @ 16 MHz

103 LD PTSVEC11 W0,#118H ;pointer to PTSCB1

104 LD PORTREG1 W0,#1FD6H ;Port 2 has RXD pin

105 LDB PORTMASK1 W0,#02H ;P2.1 e RXD

106 ORB INT MASK,#10H ;enable interrupt on capture/

107 ;compare module 1

108 ;

109 ;Set receive mode

110 ;

111 LD R COUNT,#16 ;set receive data count

112 CLRB RXDDONE ;clear done flag

113 LDB PTSCOUNT1 W0,#0AH ;# of bits(including parity/stop bits

114 ;and excluding start bit)

115 LDB PTSCON11 W0,#60H ;PTSCON1 - odd parity

116 CLR DATA1 W0 ;clear receive data buffer

117 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH

118 LDB CAPC0MP1 C0N W0,#10H ;capture - negative edge

119 EPTS ;enab1e PTS

120 EI ;enable interrupt

121 ;

122 ;*****************

123 ; POLLING ROUTINE

124 ;*****************

125 ;

126 LOOP:

127 JBC RXDDONE,0,LOOP ;check receive done/error flag

128 NOP

129 NOP

130 ; - ;place user code here

131 ; -

132 ;

133 ;*************************************

134 ;end-of-PTS interrupt service routine

135 ;*************************************
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5.4 Program Example (Continued)

136 ;

137 CAPCOMP1 INT:

138 PUSHA ;save PSW,INT MASK,INT MASK1,WSR

139 LDB WSR,#3DH ;map 64bytes to 1F40H–1F7FH

140 JBC CAPCOMP1 CON W0,6,RXD SETUP

141 ;start bit or end-of-PTS

;interrupt?

142 LDB CAPCOMP1 CON W0,#00H ;disable capture/compare module 1

143 ANDB INT PEND,#0EFH ;c1ear false pending interrupt

144 LDB WSR,#24H ;map 64 bytes to 0100H–013FH

145 JBS PTSCON11 W0,1,RXD ERROR ;framing error?

146 JBS PTSCON11 W0,6,RXD ERROR ;parity error?

147 STB DATA1 W0 H,RECEIVE[R COUNT]
148 ;save received data

149 DJNZW R COUNT,CAPCOMP1 SKIP ;decrement data counter

150 ;& check end of receive

151 LDB RXDDONE,#01H ;set done f1ag

152 SJMP CAPCOMP1 RET ;finish data receive

153 RXD SETUP:

154 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH

155 JBS P2PIN W0,1,CAPCOMP1 RET ;detect false start bit

156 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH

157 LDB CAPCOMP1 C0N W0,#40H ;Compare - interrupt only

158 ADD CAPC0MP1 TIME W0,#0270H ;set first PTS cycle,

;CAPCOMP1 TIMEe

159 ;CAPCOMP1 TIME0(1.5*BAUDCONST)

160 ORB PTSSEL,#10H ;enable PTS on capture/compare

;module 1

161 SJMP CAPCOMP1 RET ;exit

162 RXD ERROR:

163 LDB RXDDONE,#03H ;set error code

164 SJMP CAPCOMP1 RET ;exit

165 CAPCOMP1 SKIP:

166 LDB PTSCOUNT1 W0,#0AH ;# of bits(including parity/

;stop bits

167 ;and excluding start bit)

168 LDB PTSCON11 W0,#60H ;PTSCON1 - odd parity

169 CLR DATA1 W0 ;clear receive data buffer

170 LDB WSR,#3DH ;map 64 bytes to 1F40H-1F7FH

171 LDB CAPCOMP1 CON W0,#10H ;capture - negative edge

172 CAPCOMP1 RET:

173 POPA ;load PSW,INT MASK,

174 ;INT MASK1,WSR

175 RET ;return to main loop

176 END
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272282–10

272282–11

Figure 5-1. Flow ChartÐASIO Receive Initialization
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272282–12

Figure 5-2. Flow ChartÐASIO Receive Interrupt Routine
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6.0 UNDERSTANDING THE WAVEFORM GENERATOR

6.1 Introduction

One of the unique features of the 8XC196MC/MD is the on-chip waveform generator (WFG). This peripheral
greatly simplifies the control software and external hardware used for generating synchronized PWM waveforms.
The WFG has three synchronized PWM modules, each with a phase compare register, a dead-time generator and
two programmable complimentary outputs. The WFG allows generation of 3 independent complimentary pairs of
PWM’s. However, the PWM’s share a common carrier frequency, dead-time, and mode of operation. Once initial-
ized, the WFG requires CPU intervention only to change PWM duty cycles. A block diagram of the WFG is shown
in Figure 6-1.

272282–39

Figure 6-1. Simplified WFG Block Diagram
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The WFG is divided into 3 functional areas: the timebase generator, the phase driver channel, and the control
section.

The timebase generator establishes the carrier period for the PWMs. This period is determined by the value in the
WGÐRELOAD register, along with the mode of operation. The timebase generator operates in 4 different modes,
allowing either centered or edge aligned PWM generation.

The center aligned PWM modes are desirable when driving 3-phase AC induction motors, as it results in minimum
harmonic content of the waveforms. This in turn results in more efficient operation of the power control circuitry
and the motor. Additionally, the carrier frequency is effectively doubled compared to edge aligned modes. Center
aligned mode operation is described in Section 6.5.

The edge aligned modes are used to generate conventional PWMs. The WFG adds its programmable carrier frequen-
cy/resolution, dead-time generation and complimentary output features, reducing external hardware requirements.
Edge aligned mode operation is described in Section 6.6.

The phase driver channels determine the duty cycle of the PWMs. There are 3 independent phase driver channels,
each with 2 programmable outputs. Each phase driver contains a programmable dead-time generator, which pre-
vents the complimentary outputs from being asserted at the same time. The output circuitry allows using the pins as
I/O or PWM, and allows selecting either asserted-high or asserted low output levels. An output disable feature is
provided which forces the outputs to their deasserted value in response to an external or software event.

The control section contains registers which determine the modes of operation and other configuration information.
A programmable protection circuit monitors the EXTINT input pin, and if a valid event is detected generates an
interrupt and disables the WFG outputs.

In the following discussions, output signals are described as being asserted or deasserted. When asserted, an active-
high output will be in the high (or ‘‘1’’) state, and when deasserted will be low (or ‘‘0’’). Conversely, when asserted,
an active-low output will be low (‘‘0’’), and when deasserted will be high (‘‘1’’).

6.2 Buffering

Figure 6-1 shows how the counters and registers are buffered. Synchronization of register loading is determined by
the mode of operation. Synchronization is necessary to prevent erroneous or non-symmetrical duty cycles from
occurring in the middle of a pulse train. Table 6-1 shows the conditions for updating the registers in the various
modes.

When the counter WGÐCOUNT is stopped (by clearing the EC bit in WGÐCON or if WGÐCOUNT e 0), the
WGÐCOMP registers are all loaded (/2 state time after their respective buffers are written. This allows for initializa-
tion of the WFG.

Note that in mode 3, WGÐRELOAD can be synchronized with an EPA event. This is a special EPA mode which is
enabled by setting the Peripheral Function Enable (PFE) bit in either the CAPCOMP0 or CAPCOMP2 EPA
channels.

Table 6-1. Conditions for Register Updates

Mode
PWM Counter Update Update Update Update
Type Operation WGÐRELOAD WGÐCOUNT WGÐCOMP WGÐOUT*

0 Centered Up/Down WGÐCOUNT e WGÐCOUNT e WGÐCOUNT e WGÐCOUNT e

WGÐRELOAD WGÐRELOAD WG RELOAD WG RELOAD

1 Centered Up/Down WGÐCOUNT e WGÐCOUNT e WGÐCOUNT e WGÐCOUNT e

WGÐRELOAD WGÐRELOAD WGÐRELOAD WGÐRELOAD
and and

WGÐCOUNT e 1 WGÐCOUNT e 1

2 Edge Up WGÐCOUNT e WGÐCOUNT e WGÐCOUNT e WGÐCOUNT e

WGÐRELOAD WGÐRELOAD WGÐRELOAD WGÐRELOAD

3 Edge Up WGÐCOUNT e WGÐCOUNT e WGÐCOUNT e EPA Event
WGÐRELOAD WGÐRELOAD WGÐRELOAD

and and and
EPA event EPA event EPA Event

* If SYNC bit e 1. Otherwise, changes take effect immediately.
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The SYNC bit in the WGÐOUT register (Figure 6-10) controls loading of the WGÐOUT register. The SYNC bit is
not buffered, so changes made to it take effect immediately. When SYNC e 1, changes to the WFG output pins are
synchronized according to Table 6-1. When SYNC e 0, the output pins are updated immediately. Note that
WGÐOUT should be initialized with SYNC e 0 to insure that the pins will be in the desired state when the WFG
is started.

When the WGÐRELOAD, WGÐCOMP, and WGÐOUT registers are read, the returned data is the value in the
buffer. The registers themselves cannot be accessed by the CPU.

6.3 The Timebase Generator

The timebase counter, WGÐCOUNT, is a multi-mode 16-bit counter which is clocked every TOSC ((/2 FXTAL).
This counter may be read by the CPU to determine its value at any time. The counter is controlled by the
WGÐCON register, Figure 6-4. WGÐCON configures the mode of WFG operation using the mode bits (M0 and
M1), enables and disables the counter (EC bit), and returns the Counter Status (CS bit). If 0000H is loaded into
WGÐCOUNT (via WGÐRELOAD), the counter will stop. When the counter is running, it continuously counts up
and/or down (mode dependent) between 0001H and the WGÐRELOAD value. Refer to Sections 6.5 and 6.6 for a
more complete description of counting modes.

6.3.1 CENTER ALIGNED MODE WGÐCOUNT OPERATION (MODES 0 AND 1)

When the 8XC196MC is first powered up and during reset, WGÐCOUNT is reset to 0000H. When the
WGÐRELOAD buffer is written with the counter stopped, the value is immediately transferred to WGÐCOUNT.
When the counter is started, it immediately begins counting down to 1. When the count e 1, the counter waits one
state time, and begins counting back up. When the count reaches the WGÐRELOAD value, it is updated from the
WGÐRELOAD register, and begins the down count again. This process produces a symmetrical ascending and
descending count whose period is equal to 2 c WGÐRELOAD. This can be visualized as a triangular wave, and is
illustrated in Figure 6-2.

The WGÐRELOAD register establishes the carrier period for the waveforms that will be generated. Formulas for
carrier period are given in Section 6.5.4 and 6.6.4.

272282–40

Figure 6-2. Modes 0 and 1 Counter Operation

6.3.2 EDGE ALIGNED MODE WGÐCOUNT OPERATION (MODES 2 AND 3)

When the 8XC196MC/MD is first powered up and during reset, WGÐCOUNT is reset to 0000H. When the
WGÐRELOAD buffer is written with the counter stopped, WGÐCOUNT is loaded with 0001. When the counter
is then started, it counts up until the WGÐRELOAD value is reached. At this time, WGÐCOUNT is reset to 1,
and up counting begins again. This process produces a smoothly ascending count whose period equals
WGÐRELOAD. This can be visualized as a sawtooth wave, illustrated in Figure 6-3. WGÐRELOAD is updated
when the counter is reset to 1, such that the following cycle will count to the new WGÐRELOAD value. In mode 3
only, an EPA event can force an early reset of the counter to 1.
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272282–41

Figure 6-3. Modes 2 and 3 Counter Operation

6.4 The WFG Control Register (WGÐCON)

The WFG control register is illustrated in Figure 6-4. The counter mode is selected by writing the mode bits M0 and
M1. Counter status is determined by reading the Counter Status (CS) bit. If the counter is currently counting up the
CS bit will be set (CS e 1); if down the CS bit will be clear (CS e 0). The counter is enabled by the enable counter
(EC) bit, which starts (EC e 1) and stops (EC e 0) counter operation. Additionally, bits 0 to 9 contain the 10-bit
dead-time value (DTÐVALUE) which determines the output dead-time. See Section 6.8 for further information on
dead-time.

272282–42

Figure 6-4. WGÐCON Register

6.5 Center Aligned PWM Modes (Modes 0 and 1)

6.5.1 POWER-UP INITIALIZATION

When power is first applied to the device and after a reset, all WG registers are reset to 0. The counter is stopped,
and all values written to the WFG registers take effect (/2 state time later ((/2 state time e 1/FXTAL). In modes 0
and 1, when WGÐRELOAD is first written the value will be transferred to WGÐCOUNT, and down counting
starts when the EC bit in WGÐCON is set. Figure 6-5 illustrates the PWM outputs generated in modes 0 and 1.
Note that when the WGÐRELOAD value is changed, both the carrier period and duty cycle change. To change the
carrier period without effecting the duty cycle, both must be proportionally changed at the same time immediately
after the WG interrupt.
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272282–43

Figure 6-5. WGÐCOUNT during Center Aligned PWM

6.5.2 WFG OUTPUT OPERATION

When counting up starting from one, the outputs are initially asserted. When WGÐCOUNT equals WGÐCOMP
the outputs are deasserted. The outputs remain deasserted during up counting and the following down counting until
the counter WGÐCOUNT equals WGÐCOMP. At this point, the outputs are asserted, the down count continues
until 1 is reached, and the process begins over.

This discussion neglects dead-time, discussed in Section 6.8. Note that if WGÐRELOAD is changed to a different
value, the carrier frequency and duty cycle of the PWM will both change. This is because the outputs remain
deasserted for a constant time, while the counter takes longer to cycle.

6.5.3 DIFFERENCES BETWEEN MODE 0 AND MODE 1

The difference between center aligned modes 0 and 1 is in when the WGÐCOMP and WGÐOUT registers are
updated (Table 6-1). For mode 0, these registers are updated only when WGÐCOUNT e WGÐRELOAD, at the
‘‘peak’’ of the triangle wave. In mode 1, they are updated twice during the carrier period. First, when WGÐCOUNT
e 1, at the ‘‘valley’’ of the triangle wave and again when WGÐCOUNT e WGÐRELOAD, at the ‘‘peak’’ of the
triangle wave.

6.5.4 FORMULAS FOR CARRIER PERIOD AND DUTY CYCLE

The formula for calculating the carrier period in center aligned mode is as follows:

Tc e

4 x WGÐRELOAD

FXTAL

where

WGÐRELOAD e 16-bit value
FXTAL e Processor clock frequency on XTAL1 pin, MHz
Tc e carrier period, ms
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To calculate the length of time an output is asserted, use the following formula (This neglects dead-time, which is
assumed to be minimal):

Toutput e

4 c WGÐCOMP

FXTAL

where

WGÐCOMP e 16-bit value, equal to or less than WGÐRELOAD
Toutput e Total time output is asserted, ms
FXTAL e Processor clock frequency on XTAL1 pin, MHz

To calculate the duty cycle given WGÐRELOAD and WGÐCOMP values in the center aligned mode, use the
following formula (Again, this neglects dead-time):

Duty Cycle e

WGÐCOMP

WGÐRELOAD
c 100 percent

6.6 Edge Aligned PWM Modes (Modes 2 and 3)

6.6.1 POWER-UP INITIALIZATION

When power is first applied to the device and after a reset, all WG registers are reset to 0. The counter is stopped,
and all values written to the WFG registers take effect (/2 state time later ((/2 state time e 1/FXTAL). In modes 2
and 3, up counting starts when the EC bit in WGÐCON is set. Figure 6-6 illustrates the PWM outputs generated in
modes 2 and 3. Note that when the WGÐRELOAD value is changed, both the carrier period and duty cycle
change. To change the carrier period without effecting the duty cycle, both must be proportionally changed at the
same time immediately after the WG interrupt.

272282–44

Figure 6-6. WGÐCOUNT during Edge Aligned PWM

6.6.2 WFG OUTPUT OPERATION

When counting up starting from one, the outputs are initially asserted (see Figure 6-6.) When WGÐCOUNT equals
WGÐCOMP the outputs are deasserted. The outputs remain deasserted for the rest of the up count. The ramp up
continues until WGÐCOUNT e WGÐRELOAD, when the counter is reset to 1 and the outputs are reasserted.
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This discussion neglects dead-time, which is discussed in Section 6.7. Note that if WGÐRELOAD is changed to a
different value, the carrier frequency and duty cycle of the PWM will both change. This is because the outputs
remain asserted for a constant time, while the counter takes longer to cycle.

6.6.3 DIFFERENCES BETWEEN MODES 2 AND 3

The difference between edge aligned modes 2 and 3 is when the WGÐCOMP and WGÐOUT registers are updated
(Table 6-1). For mode 2, these registers are updated only when WGÐCOUNT e WGÐRELOAD, at the ‘‘peak’’ of
the sawtooth wave. In mode 3, they are additionally updated when an EPA ‘‘peripheral function’’ (PFE) event
occurs. When the EPA event occurs, the counter will be reset to 1, the new WGÐRELOAD value loaded from the
buffer, and the up count restarted from 1. The PFE WG reload event can only be generated by the CAPCOMP0 and
CAPCOMP2, COMP0 and COMP2 (additionally, in the MD, CAPCOMP3 and COMP3) channels.

6.6.4 FORMULAS FOR CARRIER FREQUENCY AND DUTY CYCLE

The formula for calculating the carrier period in edge aligned mode is as follows:

Tc e

2 c WGÐRELOAD

FXTAL

where

WGÐRELOAD e 16-bit value
FXTAL e Processor clock frequency on XTAL1 pin, MHz
Tc e carrier period, ms

To calculate the length of time an output is asserted, use the following formula (this neglects dead-time, which is
considered to be minimal):

Toutput e

2 c WGÐCOMP

FXTAL

where
WGÐCOMP e 16-bit value, equal to or less than WGÐRELOAD
Toutput e Total time output is asserted, ms
FXTAL e Processor clock frequency on XTAL1 pin, MHz

To calculate the duty cycle given WGÐRELOAD and WGÐCOMP values in the edge aligned mode, use the
following formula (again, this neglects dead-time):

Duty Cycle e

WGÐCOMP

WGÐRELOAD
c 100 percent

6.7 Interrupt Generation

There are 2 interrupts associated with the WFG, WG and EXTINT. The WG interrupt is generated by the reload
compare function, while the EXTINT interrupt is generated by an external event.

6.7.1 THE WG INTERRUPT

The WG interrupt is a ‘‘shared’’ interrupt with COMP5, which sets the WG pending bit in the PIÐPEND register
(Figure 6-7). When unmasked in the PIÐMASK register, if either of these bits is set, the PI bit in the INTÐPEND1
will be set. In turn, if the PI bit is unmasked in the INTÐMASK1 register, the interrupt will take the vector located
at 203AH. The user interrupt routine can read the PIÐPEND register to determine what the source of the interrupt
was. Note that reading PIÐPEND clears all bits. Therefore, the value of the register must be stored in a shadow
register if more than one bit needs to be checked. Also note that the PIÐPEND bits cannot be set by writing to the
PIÐPEND register. This register is read only, writes will have no effect.
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272282–46

Figure 6-7. PI Interrupt Sharing

6.7.1.1 WG Interrupt Generation

In mode 0 the WG interrupt is generated once during the PWM period, when WGÐCOUNT e WGÐRELOAD.
In mode 1, the WG interrupt is generated twice: when WGÐCOUNT e 1 and also when WGÐRELOAD e

WGÐCOUNT. This corresponds to the maximum and minimum values of WGÐCOUNT (Figure 6-5).

In the edge aligned modes 2 and 3, the WG interrupt is generated once during the PWM period, when the counter is
reset to 1 at the end of each PWM period (Figure 6-6).

Note that if WGÐRELOAD contains too small a value, it is possible the counter will cycle too quickly for the
software interrupt routines to keep up. Each application must be carefully analyzed for this condition.

6.7.2 THE EXTINT INTERRUPT

The EXTINT interrupt is generated by the WFG protection circuitry, which is described in Section 6-10. Two bits in
WGÐPROTECT (Figure 6-13), Interrupt Type (IT) and Enable Sampling (ES) control the type of external event
which will cause EXTINT. EXTINT can be caused by a transition (rising or falling edge), or by a constant level
(high or low). Table 6-2 shows the combinations for these bits. The EXTINT interrupt sets the EXTINT bit in the
INTÐPEND1 register, and if unmasked in the INTÐMASKI register, takes the vector located at 203CH.

Table 6-2. EXTINT Mode Selection

ES IT
EXTINT Input
Characteristic

0 0 Falling Edge Triggered

0 1 Rising Edge Triggered

1 0 Low Level Triggered

1 1 High Level Triggered
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The transition modes are selected by clearing the ES bit. To be a valid transition, the signal must remain asserted for
a minimum period of 2 Tosc (Tosc e 2/FXTAL). The IT bit controls whether a rising edge (IT e 1) or falling edge
(IT e 0) causes the interrupt.

The level modes are selected by setting the ES bit. To be a valid level, the signal must remain asserted for a minimum
period of 24 Tosc. When the signal is asserted, sample circuitry monitors the input level 3 times during a 24 Tosc
period. The signal must be asserted for each of the samples before it is recognized as valid. If the signal is valid, the
EXTINT interrupt is generated. The IT bit controls whether a high level (IT e 1) or low level (IT e 0) input signal
causes the interrupt.

The level mode is useful in noisy environments, where a noise spike might cause an unintended interrupt. Note that
the same signal which generates the EXTINT also generates the output disable signal, discussed in Section 6.10.

6.8 Dead-Time Generator

The dead-time generator prevents an output and its compliment from being asserted at the same time. This may be
required by the power driver circuitry to prevent complimentary output drivers from being turned on at the same
time, resulting in catastrophic failure of the output circuitry! Protection from this condition is built into the
8XC196MC/MD, and is shown in Figure 6-8 (one of 3 channels).

6.8.1 DEAD-TIME GENERATOR OPERATION

The dead-time generator uses 2 internal signals to generate the non-overlapping output waveforms (Figure 6-9).
Signal WFG is output from the transition detector. Signal DT from the dead-time counter is asserted (high) only
when the counter has a value of 0. When a transition is detected from a phase comparator, the 10-bit dead-time
counter is loaded with the 10-bit dead-time value contained in WGÐCON, driving DT low. The timer then decre-
ments once every state time (1 state time e 2/FXTAL) until the count reaches 0. At this point the counter stops and
DT is driven high. Signal WFG is ANDed with DT, producing the WGÐEVEN signal. Signal WFGÝ is ANDed
with DT, producing the WGÐODD signal. The WGÐEVEN and WGÐODD signals are passed to the output
circuitry, described in Section 6.9.

272282–47

Figure 6-8. Dead-Time Generation
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6.8.2 DEAD-TIME CALCULATION

The length of the dead-time is calculated using the following formula:

DTÐVALUE e

Tdead c FXTAL

2

Where

DTÐVALUE e the 10-bit value loaded into WGÐCON
Tdead e dead-time, in ms
FXTAL e XTAL1 clock input frequency, MHz

6.8.3 EFFECT OF DEAD-TIME ON PWM DUTY CYCLE

For relatively long pulse widths, short dead-times have little effect on the duty cycle of the waveforms. However, as
the pulse width is narrowed and/or the dead-time is lengthened, the duty cycle will be affected and may need to be
taken into account (Figure 6-9).

Because there is no hardware limit on minimum PWM pulse width, it is also possible to deassert one of the WFG
outputs for the entire PWM period if the total dead-time is longer than the pulse width. For this reason, there should
be a software limit check preventing the pulse width from being less than 3 c Tdead.

272282–48

Figure 6-9. Effect of Dead-Time on WFG Duty Cycle

6.9 Output Control Circuitry

The output circuitry is controlled by the WGÐOUT register. WGÐOUT allows writing 0, 1, as well as assigning
WGÐEVEN or WGÐODD to the WFG output pins. A SYNC bit determines whether the WFG output pins are
updated immediately or only under conditions specified in Table 6-1. Additionally, two bits (PE6, PE7) control port
pins P6.6 and P6.7 and select I/O or PWM. A schematic of the output circuitry is given in Figure 6-11.
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WGÐOUT (1FC0H)

272282–49

Figure 6-10. WGÐOUT Register

6.9.1 PH CONTROL BITS

The PH control bits (Table 6-3) determine the values which are output on the WFG port pins. PHx.2 controls
whether the port pins are I/O (PHx.2 e 0) or connected to the WFG (PHx.2 e 1). By writing the appropriate value
to the PH bits, the port pins are driven high, low, or connected to the WGÐEVEN or WGÐODD signal.

Note that the WGÐOUT bits are arranged such that output mode selection is done in the upper byte, while pin
value is determined by the lower byte. This facilitates updating the pin values using a byte-write instruction, which is
faster than a word-write instruction.

Table 6-3. WG Output Configuration

Output Mode PHx.2 PHx.1 PHx.0 WGx (1, 3, 5) WGxÝ (0, 2, 4)

0 0 0 0 Low Low

1 0 0 1 Low High

2 0 1 0 High Low

3 0 1 1 High High

4 1 0 0 Low Low

5 1 0 1 Low WGÐEVEN

6 1 1 0 WGÐODD Low

7 1 1 1 WGÐODD WGÐEVENÝ

Table assumes OP0 e OP1 e 1 (active high outputs). Values are inverted if output assigned to active low by OP
bits

6.9.2 ENABLING AND DISABLING THE WFG OUTPUTS

The WFG outputs are enabled and disabled by a combination of the Disable Protection (DP) and Enable Output
(EO) bits in WGÐPROTECT (Figure 6-13). Note that for the outputs to be enabled, DP must e 0 and EO
must e 1. Whenever the WFG outputs are disabled, they are driven to their deasserted state. Table 6-4 summarizes
DP and EO bit combinations.
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Note that if the EO bit is set in software immediately following the EXTINT event, the outputs will only be disabled
for the time between the EXTINT event and the CPU write. This is because the EXTINT event generates a single
short pulse which resets the EO bit. The EO bit can be set back to 1 immediately following this by the CPU, even if
the EXTINT signal remains asserted. See Section 6-10 for a detailed explanation of the protection circuitry.

Table 6-4. Protection and Output Status

DP EO Protection/Output Status

0 0 Protection Enabled, Output Disabled

0 1 Protection Enabled, Output Enabled

1 0 Protection Disabled, Output Enabled

1 1 Protection Disabled, Output Enabled

6.9.3 OUTPUT POLARITY

Table 6-5 is given as an aid to understanding the polarity of the outputs when driven from the WFG. This table
assumes that OP0 e OP1 e 1. Signals will be inverted if the respective OP bits are cleared. For the cases illustrated
in Table 6-5, the high portion of the waveforms will get longer when dead time is increased. These drawings show a
duty cycle of about 15%. Note that the OP bits affect all 3 phase driver channels together.

Table 6-5. Output Polarities, Modes 4–7

Output Mode WGx (P6.1, P6.3, P6.5) OP1 e 1 WGÝ (P6.0, P6.2, P6.4) OP0 e 1

4 Low Always Low Always

5 Low Always

6 Low Always

7

6.9.4 OUTPUT SCHEMATIC

Figure 6-11 illustrates the output schematic for one channel of the WFG. Operation of the upper half is as follows: The
3 PH bits select the signal source connected to the 8-input MUX. The output of this MUX is ANDed with the ODÝ
signal generated by the protection circuitry (described in Section 6.10). This signal and its compliment feed a 2-input
output polarity select MUX controlled by the OP0 bit. Finally, the output of this MUX feeds the output drivers Q1
and Q2 which are connected to P6.0. Note that if RESET is asserted, Q1 and Q2 will be disabled and the weak pullup
Q5 will be turned on. Q5 can source about 10 mA, and is always turned on asynchronously with RESET. Q5 will
remain on until the first write of a ‘‘1’’ to the EO bit in WGÐPROTECT.
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The lower half of the circuit operates identically to the upper, with the exception that input MUX is connected to
different signals, and the polarity select MUX is controlled by the OP1 bit.

272282–52

Figure 6-11. WFG Output Schematic
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6.10 Protection Circuitry

The protection circuitry allows simultaneously deasserting all WFG outputs under software control or in response to
an external event. This same external event will also generate the EXTINT interrupt, allowing software to stage a
graceful recovery from an external error condition. Figure 6-12 is a block diagram of the protection circuitry, while
Figure 6-13 details the WGÐPROTECT register.

272282–53

Figure 6-12. Protection Circuitry

6.10.1 PROTECTION CIRCUITRY OPERATION

The EXTINT input pin feeds both a transition (edge) detector and a level sampler. The transition detector can detect
both a rising edge or a falling edge. However, to guarantee recognition as a valid transition, the input must remain
asserted for at least 2 Tosc (Tosc e 2/FXTAL). When a valid transition occurs, a single output pulse is generated.

The level detector can detect either a high or low level signal. To be recognized as a valid level, the signal must
remain asserted for a minimum period of 24 Tosc. When the signal is asserted, the level detect circuitry samples the
level 3 times during a 24 Tosc period. When a valid level occurs, a single output pulse is generated.

A 4-input MUX controlled by the Enable Sampling (ES) and Interrupt Type (IT) bits selects which sort of event to
recognize. The output pulse generates the EXTINT interrupt request, as well as resets the EO bit register (S-R latch,
bit 0 of the WGÐPROTECT register).

The output of the EO bit register is ORed with the Disable Protection (DP) bit to produce the Output Disable
(ODÝ) signal which is passed to the output circuitry. When ODÝ is low, the WFG outputs will be driven to their
deasserted state.

Note that if the EO bit is set in software immediately following the EXTINT generated pulse, the effect will be that
the outputs are never disabled. For this reason, the EXTINT interrupt routine should be used to write a default
output value to the WGÐOUT register which will take effect immediately.
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272282–45

Figure 6-13. The WGÐPROTECT Register

6.11 Software Example

The following software example allows the user to test operation of all the WFG registers, and observe how this
effects the output waveforms. This is designed to run on a MC ‘‘DEMO’’ board, but is easily modified to operate on
the MC ‘‘EVAL’’ board.

All variables are defined as words, and are masked to the appropriate length before being written to the WFG
registers. This method is not compact, but is easy to code for and debug!

When running the program under the RISM monitor, any variable can be changed by the following command:

WORD.VARABLE NAME

The result will be immediately apparent on the WFG outputs!

This program can be downloaded from the Intel BBS, and is named ‘‘WFGTEST1.A96’’.

272282–77
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6.11 Software Example (Continued)

272282–54
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6.11 Software Example (Continued)

272282–55
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6.11 Software Example (Continued)

272282–56
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6.11 Software Example (Continued)

272282–57

7.0 3-PHASE INDUCTION MOTOR CONTROL PROGRAM SAMPLE

7.1 Introduction

The following program example shows how the WFG can be used to generate a 3-phase output suitable for driving a
3-phase AC induction motor. Figure 7-1 shows a high-level view of how the 8XC196MC/MD would drive each
phase of the motor. Each phase of the motor is driven from a complimentary output power driver, with Q1 driven
from the WGx output, and Q2 driven by the WGxÝ outputs. Note that dead-time is required to prevent Q1 and Q2
from being on at the same time.
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272282–58

Figure 7-1. 3-Phase Induction Motor System

7.1.1 SINE LOOK-UP TABLE

In order to produce the 3 waveforms with a 120§ phase difference, a look-up table is used, Figure 7-2. This table
contains the normalized values of a 180§ segment of the sine function. Each value is a 15-bit integer, where
0 e sin(0) and 32,767 e sin(90). The table is arranged in 0.15§ increments (1200 entries) from 0§ to 179.85§. Since
the sine wave is symmetrical, 0§ to 180§ is used in the table, although other arrangements are possible.

272282–59

Figure 7-2. Sine Look-Up Table
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The U, V and W phase pointers into the table are calculated starting from the SINEÐPTR, which increments from
0 to 4800 on word boundaries, representing 360§. The U-phase is calculated directly using the SINEÐPTR, while
the V-phase adds 3200 (240§), and the W-phase adds 1600(120§). Figure 7-3 shows how the pointers are related.

Since the table is only 2400 bytes long, some manipulation of the pointers is done to wrap them around to the correct
table location. The software also keeps track of whether the phase is in the negative or positive part of the cycle.

272282–85

Figure 7-3. Raw Pointer Values

7.1.2 FREQUENCY-TO-VOLTAGE LOOK-UP TABLE

A frequency/voltage look-up table is also used in this example (called RAMDA in the program listing). This table is
read to determine what the RMS output voltage is for each modulation frequency. The RAMDA look-up table
stores the V/F relationship that is desired for a particular motor.

The RMS output voltage is determined by the percentage variation in the PWM duty cycles. Referring to Figure 7-1,
note that for a WFG duty cycle of 50%, the average output voltage will be 0V. This is called the phase neutral point.
As the duty cycle is changed upward to 100%, the average voltage will increase to aVsupply, and as the duty cycle
is lowered to 0%, the average voltage will decrease to bVsupply.

The amount of variation in the PWM duty cycle is called the modulation depth. Figure 7.4 shows the effect of
changing the modulation depth from 100% to 20%. The RMS voltage output will change from Vsupply to
0.2 c Vsupply. Note that the modulation frequency remains unchanged.

272282–61

Figure 7-4. Modulation Depth
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After the RAMDA and sine values are read from the tables, the PWM duty cycle is calculated using the following
formulae:

UÐPHASE e NEUTRAL a (RAMDAÐVALUE c SINEÐVALUE) [0§ to 180§]

UÐPHASE e NEUTRAL - (RAMDAÐVALUE c SINEÐVALUE) [180§ to 360§]

This calculation gives a 32-bit result, of which only the most significant word is used to load the WGÐCOMP
register. The phase neutral value (TC1Ð4) is equated to 417, which is (/2 of the maximum value of WGÐRELOAD,
giving a 50% duty cycle.

Finally, after the WGÐCOMP registers are loaded, the SINEÐPTR is stepped to its next value. The size of the
steps taken through the sine look-up table determine what the modulation frequency is. As this frequency increases,
the steps become larger, and for a given carrier frequency the sine wave will take on a more stair-step appearance.

7.1.3 OUTPUT WAVEFORMS

Figure 7-5 shows when the outputs are asserted. Note that each waveform represents WGx - WGxÝ. A value of a1
indicates that WGx is asserted, while a value of b1 indicates that WGxÝ is asserted. A value of 0 indicates that
both outputs are either asserted (we hope not!) or deasserted. This is a convenient way to display this information.

272282–62

Figure 7-5. WFG Output Drive

After the PWMs are integrated by a motor or transformer (typically an excellent low-pass filter), they will appear as
sine waves, illustrated in Figure 7-6.

272282–63

Figure 7-6. WFG Output Waveforms after Low-Pass Filter
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7.2 Detailed Program Description

7.2.1 CONSTANT DECLARATIONS (Lines 1–42)

Lines 5–9 define some of the operating conditions for the program. Minimum and maximum frequency limits are
established and the carrier frequency/period is defined.

Lines 16–30 define register variables that are used later in the program. Lines 32–41 define names for the upper and
lower half of long (32-bit) variables, and the FCOMMAND word variable.

7.2.2 INTERRUPT VECTORS AND CCB (Lines 43–57)

Lines 48 and 49 fill in the interrupt vector table with the locations of the WGÐINT and EXTÐINT interrupt
routines. Only conventional interrupts are used in this program example, no PTS routines.

Lines 56 and 57 define the chip configuration bytes, CCB and CCB1. These need to be configured for the particular
system that this program is run on.

7.2.3 MAIN PROGRAM (Lines 58–93)

Lines 62–69 define the program starting location (2080H), set up the stack at 0200H, and disable and clear out any
pending interrupts.

Line 70 unmasks the PI and EXTINT interrupts. Since the PI interrupt is a shared interrupt, line 73 unmasks the
WG interrupt bit in PIÐMASK.

Lines 77–85 initializes the variable values, and the pointers into the SINE and RAMDA look-up tables.

Lines 86–89 initialize the WFG output, protection and reload registers. Line 90 calls the WGÐINT interrupt
routine, which calculates and loads the WGÐCOMP registers, thus establishing the initial PWM duty cycles.
WGÐINT is described in detail in Section 7.2.4. Since WGÐCOUNT is stopped, the WGÐCOMP registers will be
immediately loaded with these initial values.

Line 91 starts the WGÐCOUNT counter running, and line 92 sets the PI interrupt bit. This forces WGÐINT to be
called again immediately after line 93, which enables the interrupts. This is necessary in order to load the
WGÐCOMP buffer registers with the next set of values.

7.2.4 POLLING ROUTINE (Lines 94–126)

Lines 102–114 read a value input on port 3, compare it against the FMIN and FMAX values and check that it is
within FMIN and FMAX bounds. The value is then stored in FCOMMAND, and output on port 4, which is
connected to some LED’s as a monitor. FCOMMAND is used by the following code to set-up the step-size the
pointers take through the sine look-up table. Note that this routine must be modified to run on any system which
uses external memory!

Lines 118 and 119 load the RAMDA pointer with FCOMMAND value, and multiply it by 8 (by shifting left 3).
Line 120 disables the interrupts, to protect the following code from unintended variable modification.

Line 121 calculates the offset into the RAMDA table based on the 8 c FCOMMAND value, and loads the table
value into the RAMDAÐACT variable. RAMDAÐACT is used in the WGÐINT routine in calculating the
modulation ‘‘depth’’ of the PWM, thus controlling what the voltage will be for a given output frequency.

Line 123 loads the SINEÐSTEP variable with the FCOMMAND value, establishing the ‘‘modulation’’ frequency,
the frequency of the output sine wave. Line 124 forces the steps to occur only on even addresses, otherwise a bogus
value can be accessed from the table.

Lines 125–126 re-enable the interrupts, and loop back to line 98, where port 3 is read again, starting the update
process again.
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7.2.5 WG INTERRUPT ROUTINE (Lines 127–211)

The WGÐINT interrupt routine is entered every carrier period. It calculates the new pointer positions, and the new
values for the WGÐCOMP registers. These calculations are performed for each phase, and then loaded into the
WGÐCOMP registers. The logic of these routines is a bit confusing, so only the top-level of each segment is detail
here. Refer to the flow charts (Figures 7-7 and 7-8) for a more detailed understanding.

Line 133 saves the current CPU status.

Lines 141–144 calculate the UÐPHASE value for positive portions of the sine wave, while lines 145–154 calculate
the UÐPHASE value for negative portions.

Lines 155–166 calculate the VÐPHASE value for positive portions of the sine wave, while lines 167–176 calculate
the VÐPHASE value for negative portions.

Lines 177–188 calculate the WÐPHASE value for positive portions of the sine wave, while lines 189–198 calculate
the WÐPHASE value for negative portions.

Lines 202–204 load the WGÐCOMP registers with the new duty cycles.

Lines 205–208 increment the SINEÐPTR to the next position in the sine table, and wrap-around the pointer as
necessary.

Lines 210–211 restore the CPU flags and return to the polling loop.

7.2.6 EXTINT INTERRUPT ROUTINE (Lines 212–223)

The EXTINT interrupt routine shown here is just a ‘‘hook’’ for some interrupt code that the user would use to shut-
down the device in response to some external condition.

7.2.7 SINE LOOK-UP TABLE (Lines 224–1429)

The SINE look-up table is discussed in Section 7-1. This table consists of 1200 word values representing the sine
function normalized to 32,767 e sin(90). These are input as an include file, file name SlNES.INC.

7.2.8 RAMDA LOOK-UP TABLE (Lines 1430–2235)

The RAMDA look-up table controls the modulation depth of the PWMs for any given modulation frequency. This
table consists of 400 word values for 0.25 Hz steps 0 Hz to 200 Hz. This table establishes the volts per frequency
transfer function for a given motor, and is very application dependent.

7.3 Top 5 Issues for the 3-Phase Induction Motor Control Example

1. WGÐINT execution time must be less than the carrier period.

2. The SINE look-up table only needs 0§ to 90§ to contain the necessary information for the pointers. However, 180§
or 360§ tables allow faster pointer calculation.

3. The RAMDA (modulation depth) table should be optimized for the motor being used. Simple V/F relationships
can be calculated instead of using a table.

4. It is best to maintain an odd number of carrier periods per 180§ of modulation in order to minimize harmonic
distortion.

5. The WG registers are initialized twice: The first time with the counter not running, which loads the registers
directly, and the second time immediately after the counter is started, which loads the buffers.
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7.4 Program Example

1 ;*************************************
2 ; WAVEFORM GENERATOR CARRIER FREQUENCY
3 ;*************************************
4 ;
5 CARRIER FREQ EQU 4800 ;4.8KHz
6 HALF PERIOD EQU 833 ;(1/CARRIER FREQ)/0.125E–6/2
7 NEUTRAL EQU HALF PERIOD/2 ;sine wave zero cross point
8 MIN FREQ EQU 6 ;minimum inverter frequency
9 MAX FREQ EQU 200 ;maximum inverter frequency

10 ;
11 ;************************
12 ;USER DEFINED REGISTERS
13 ;************************
14 RSEG AT 1AH
15
16 U PHASE: DSL 1
17 V PHASE: DSL 1
18 W PHASE: DSL 1
19 TEMP PHASE: DSL 1
20 FMAX: DSW 1
21 FMIN: DSW 1
22 TC1 2: DSW 1
23 TC1 4: DSW 1
24 SINE PTR: DSW 1
25 SINE PTR1: DSW 1
26 SINE STEP: DSW 1
27 RAMDA PTR: DSW 1
28 RAMDA ACT: DSW 1
29 FCOMMAND: DSW 1
30 TEMP1: DSB 1
31
32 U PHASE L EQU (U PHASE) :W0RD
33 U PHASE H EQU (U PHASE02) :W0RD
34 V PHASE L EQU (V PHASE) :W0RD
35 V PHASE H EQU (V PHASE02) :W0RD
36 W PHASE L EQU (W PHASE) :W0RD
37 W PHASE H EQU (W PHASE02) :W0RD
38 TEMP PHASE L EQU (TEMP PHASE) :W0RD
39 TEMP PHASE H EQU (TEMP PHASE02 :W0RD
40 FCOMMAND L EQU (FCOMMAND) :BYTE
41 FCOMMAND H EQU (FCOMMANDa1) :BYTE
42 ;
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7.4 Program Example (Continued)

43 ;************************
44 ; INTERRUPT VECTOR TABLE
45 ;************************
46 CSEG AT 203AH
47
48 DCW WG INT ;INT 13
49 DCW EXT INT ;INT 14
50
51 ;*************************
52 ; CHIP CONFIGURATION BYTES
53 ;*************************
54 CSEG AT 2018H
55 ;
56 DCW 20CFH ;CCB
57 DCW 20DCH ;CCB1
58 ;
59 ;************************
60 ; MAIN ROUTINE
61 ;************************
62 CSEG AT 2080H
63 MAIN START:
64 DI ;disable interrupt
65 LD SP,#0200H ;set-up stack pointer
66 ;
67 ;Clear interrupt mask register
68 ;
69 CLRB INT MASK ;reset interrupt mask register
70 LDB INT MASK1,#60H ;enable WG COUNTER and EXTINT
71 ;interrupt sources
72 LDB WSR,#3EH ;map 64 bytes to 1F80H–1FBFH
73 LDB PI MASK W0,#10H ;set-up peripheral interrupt mask reg.
74 ;
75 ;Initialize WG
76 ;
77 LD FMIN,#MIN FREQ ;set minimum inverter frequency
78 LD FMAX,#MAX FREQ ; maximum inverter frequency
79 LD TC1 4,#NEUTRAL ;sine wave phase neutral point
80 LD TC1 2,#HALF PERIOD ;half of carrier period
81 CLR SINE PTR ;clear sine table pointer
82 LD SINE STEP,FMIN ;set initial inverter frequency
83 LD RAMDA PTR,#48 ;set initial ramda
84 LD RAMDA ACT,RAMDA[RAMDA PTR]
85 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
86 LD WG OUT W0,#07FFH ;set WG output register
87 LDB WG PROTECT W0,#05H ;enable WG output,sampling circuit
88 ;and rising edge trigger
89 LD WG RELOAD W0,TC1 2 ;set half carrier period
90 CALL WG INT ;initialize WG COMPAREn register
91 LD WG CON W0,#0428H ;Mode0,td45us,start counter
92 LDB INT PEND1,#20H ;set next values to WG COMPAREn
93 EI ;enable interrupt
94 ;
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7.4 Program Example (Continued)

95 ;************************
96 ; POLLING ROUTINE
97 ;************************
98 LOOP:
99 ;

100 ;load modulation frequency
101 ;
102 LDB FCOMMAND L,P3PIN[0] ;load modulation frequency from DIP SW
103 CMP FCOMMAND,FMIN ;check lowest frequency
104 BGE NEXT1 ; if it’s lower than FMIN
105 LD FCOMMAND,FMIN ; then set FMIN
106 BR NEXT2
107 NEXT1:
108 CMP FCOMMAND,FMAX ;check highest frequency
109 BLE NEXT2 ; if it’s higher than FMAX
110 LD FCOMMAND,FMAX ; then set FMAX
111 NEXT2:
112 LDB TEMP1,FCOMMAND ;display frequency command on LED
113 NOTB TEMP1
114 STB TEMP1,P4REG[0]
115 ;
116 ;Set RAMDA and modulation frequency
117 ;
118 LD RAMDA PTR,FCOMMAND ;RAMDA PTR4FCOMMAND/0.25*2
119 SHL RAMDA PTR,#3 ; due to 0.25Hz step & word access
120 DI ;protect from individual modification
121 LD RAMDA ACT,RAMDA[RAMDA PTR]
122 ;refer to V/F table
123 LD SINE STEP,FCOMMAND ;set modulation frequency
124 ANDB SINE STEP,#0FEH ;disable odd address access
125 EI
126 SJMP LOOP
127 ;
128 ;*****************************
129 ; WG COUNTER INTERRUPT ROUTINE
130 ;*****************************
131 ;
132 WG INT:
133 PUSHA ;save PSW,INT MASK,INT MASK1,WSR
134 ;
135 ;U,V,W-phase modification
136 ;
137 U PHASE START:
138 LD WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
139 CMP SINE PTR,#2400 ;check zero cross point on sine u-wave
140 BGT U PHASE NEG ; if pointer l 2400 then do negative
141 U PHASE POS: ;U PHASE4NEUTRAL0RAMDA*SIN(u)
142 MULU U PHASE,RAMDA ACT,SINE[SINE PTR]
143 ADD U PHASE H,TC1 4,U PHASE H
144 BR U PHASE END
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7.4 Program Example (Continued)

145 U PHASE NEG:
146 SUB SINE PTR1,SINE PTR,#2400 ;get negative sine value
147 LD U PHASE L,R0 ;U PHASE4NEUTRAL1RAMDA*SIN(u)
148 LD U PHASE H,TC1 4
149 MULU TEMP PHASE,RAMDA ACT,SINE[SINE PTR1]
150 SUB U PHASE L,TEMP PHASE L
151 SUBC U PHASE H,TEMP PHASE H
152 BGE U PHASE END ;if U PHASE k 0
153 CLR U PHASE H ; then set U PHASE40
154 U PHASE END:
155 V PHASE START:
156 ADD SINE PTR1,SINE PTR,#3200 ;get sine table pointer 0120’
157 CMP SINE PTR1,#4800 ; check pointer overflow
158 BLE V PHASE 1 ; if pointer l 4800
159 SUB SINE PTR1,#4800 ; then wraparound pointer
160 V PHASE 1:
161 CMP SINE PTR1,#2400 ;check zero cross point on sine v-wave
162 BGT V PHASE NEG ; if pointer l2400 then do negative
163 V PHASE POS: ;V PHASE4NEUTRAL0RAMDA*SIN(v)
164 MULU V PHASE,RAMDA ACT,SINE[SINE PTR1]
165 ADD V PHASE H,TC1 4,V PHASE H
166 BR V PHASE END
167 V PHASE NEG:
168 SUB SINE PTR1,SINE PTR1,#2400 ;get negative sine value
169 LD V PHASE L,R0 ;V PHASE4NEUTRAL1RAMDA*SIN(v)
170 LD V PHASE H,TC1 4
171 MULU TEMP PHASE,RAMDA ACT,SINE[SINE PTR1]
172 SUB V PHASE L,TEMP PHASE L
173 SUBC V PHASE H,TEMP PHASE H
174 BGE V PHASE END ;if V PHASE k 0
175 CLR V PHASE H ; then set V PHASE40
176 V PHASE END:
177 W PHASE START:
178 ADD SINE PTR1,SINE PTR,#1600 ;get sine table pointer 1120’
179 CMP SINE PTR1,#4800 ; check pointer overflow
180 BLE W PHASE 1 ; if pointer l 4800
181 SUB SINE PTR1,#4800 ; then wraparound pointer
182 W PHASE 1:
183 CMP SINE PTR1,#2400 ;check zero cross point on sine w-wave
184 BGT W PHASE NEG ; if pointer k 0 then do negative
185 W PHASE POS: ;W PHASE4NEUTRAL0RAMDA*SINE(w)
186 MULU W PHASE,RAMDA ACT,SINE[SINE PTR1]
187 ADD W PHASE H,TC1 4,W PHASE H
188 BR W PHASE END
189 W PHASE NEG:
190 SUB SINE PTR1,SINE PTR1,#2400 ;get negative sine value
191 LD W PHASE L,R0 ;W PHASE4NEUTRAL1RAMDA*SIN(w)
192 LD W PHASE H,TC1 4
193 MULU TEMP PHASE,RAMDA ACT,SINE[SINE PTR1]
194 SUB W PHASE L,TEMP PHASE L
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7.4 Program Example (Continued)

195 SUBC W PHASE H,TEMP PHASE H
196 BGE W PHASE END ;if W PHASE k 0
197 CLR W PHASE H ; then set W PHASE40
198 W PHASE END:
199 ;
200 ;Modify PWM duty cycle, it will be loaded on next WG interrupt
201 ;
202 LD WG COMP1 W0,U PHASE H ;set next value to WG COMPARE1 reg.
203 LD WG COMP2 W0,V PHASE H ;set next value to WG COMPARE2 reg.
204 LD WG COMP3 W0,W PHASE H ;set next value to WG COMPARE3 reg.
205 ADD SINE PTR,SINE STEP ;set next sine table pointer
206 CMP SINE PTR,#4800 ; if pointer makes overflow
207 BLT WG INT END ; then reset pointer
208 CLR SINE PTR ; otherwise complete the modification
209 WG INT END:
210 POPA ;load PSW,INT MASK,INT MASK1,WSR
211 RET ;return to main loop
212 ;
213 ;***************************
214 ; EXTERNAL INTERRUPT ROUTINE
215 ;***************************
216 ;
217 EXT INT:
218 PUSHA ;save PSW,INT MASK,INT MASK1,WSR
219 -
220 -
221 -
222 POPA ;load PSW,INT MASK,INT MASK1,WSR
223 RET ;return to main loop
224 ;
225 ;************************************************
226 ;Sine table for sinusoidal 3 phase PWM generation
227 ;************************************************
228 ;
229 SINE: ;value by word (0.15§ step)
230 DCW 00000H ;sine(0)
- - ; -
830 DCW 07FFFH ;sin(90)
- - ; -

1429 DCW 00056H ;sin(179.85)
1430 ;
1431 ;************************************************
1432 ;V/F table for sinusoidal 3 phase PWM generation
1433 ;************************************************
1434 ;
1435 RAMDA: ;value by word (0.25Hz step)
1436 DCW 00000H ;Ramda(0Hz)
- - ; -
1836 DCW 00478H ;Ramda(100Hz)
- - ; -
2235 DCW 004B0H ;Ramda(200Hz)
2236
2237 END
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272282–13

272282–14

Figure 7-7. Flow ChartÐ3-Phase A.C. Induction Motor Initialization
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272282–15

Figure 7-8. Flow ChartÐ3-Phase A.C. Induction Motor WG Interrupt Routine
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272282–16

Figure 7-8. Flow ChartÐ3-Phase A.C. Induction Motor WG Interrupt Routine (Continued)
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8.0 3-PHASE DC BRUSHLESS MOTOR CONTROL PROGRAM SAMPLE

8.1 Introduction

The following program example shows how the WFG can be used to generate a 3-phase output suitable for driving a
DC brushless motor. Figure 8-1 shows a high-level view of how the 8XC196MC/MD will drive each phase of the
motor. Each phase of the motor is driven from a complimentary output power driver, with Q1 driven from the WGx
output, and Q2 driven by the WGxÝ outputs.

272282–64

Figure 8-1. 3-Phase DC Brushless Motor System

In this example, the PWM carry frequency is 20 kHz. The modulation frequency is adjustable from 6 Hz to 200 Hz,
and the duty cycle of the PWM controls the amount of motor torque. A look-up table establishes the relationship
between modulation frequency and duty cycle of the PWM.

In this example, the drive signals for the three motor phases U, V, and W are divided into 6 distinct segments, named
PHASE0 through PHASE5. The motor speed is determined by the time duration of these phases, and is controlled
by an EPA timer.

This example is an ‘‘open loop’’ speed control, with no speed sensor feedback. The duration of the phase segments is
determined by reading a DIP switch and converting this value to a time value loaded into the EPA timer. Each EPA
interrupt sets up the duration of the next phase segment.
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8.1.1 DRIVE WAVEFORMS

The output drive waveforms for the 3-phase DC brushless motor are illustrated in Figure 8-2. There are several
algorithms for driving DC brushless motors; this example shows only one possible method. Note that each waveform
represents WGx–WGxÝ. A positive value indicates that WGx is asserted, while a negative value indicates that
WGxÝ is asserted. A value of 0 indicates that both outputs are deasserted. This is a convenient way to display this
information.

272282–65

Figure 8-2. DC Brushless Phase Drive Waveforms

Each cycle of the drive waveform is divided into 6 unique phases, labeled PHASE0 through PHASE5. These should
not be confused with the 3 phases U, V and W which are the motor windings. The pulse burst on each output is a
fixed duty cycle, and creates an average positive DC level during the burst.

Table 8-1 illustrates that state of each output as the 6 phases are stepped through. An ‘‘On’’ means that the transistor
connected to the respective output is on, and conversely ‘‘Off’’ means it is off. Note that the sequencing of the
outputs is such that there is no possibility that both transistors can be on at the same time. Thus, no dead-time is
necessary in this example.

Table 8-1. WFG Output Sequencing

Phase WG1 (U) WG1Ý (UÝ) WG2 (V) WG2Ý (VÝ) WG3 (W) WG3Ý (WÝ) WGÐOUT

0 WFG Off Off Off Off On 2112H

1 Off Off WFG Off Off On 2218H

2 Off On WFG Off Off Off 2209H

3 Off On Off Off WFG Off 2421H

4 Off Off Off On WFG Off 2424H

5 WFG Off Off On Off Off 2106H
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In this example the outputs are ‘‘On’’ when the respective output is low. This is determined by the OP bits loaded
into WGÐOUT. Refer to Section 6.9 for more information on the output configurations.

After the PWMs are integrated by a motor or transformer (typically an excellent low-pass filter), they will approxi-
mate a trapezoidal waveform, illustrated in Figure 8-3.

272282–66

Figure 8-3. WFG Output Waveform after Low-Pass Filter

8.1.2 FREQUENCY-TO-VOLTAGE LOOK-UP TABLE

The graph in Figure 8-4 shows the current vs. speed characteristic used in this example. Note that maximum current
amplitude is applied at minimum speed.

272282–67

Figure 8-4. Amplitude vs Modulation Frequency Function
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A lookup table is used to implement the transfer characteristic in Figure 8-4 (called AMP in the program listing).
The table values are normalized to 100% e 65535 (0FFFFH), and entries are in 0.25 Hz intervals from
0 Hz–200 Hz. Since the frequency is software limited to 200 Hz, the table stops at 200 Hz (801 entries, 1602 bytes).

This table is read to determine the amplitude for each modulation frequency, and the PWM duty cycle is calculated
in the set amplitude routine using the following formula:

WGÐCOMP e

AMP c WGÐRELOAD

65,536

where

WGÐCOMP e the value to load into the phase compare register (variable name AMPLITUDE)
AMP e value from table
WGÐRELOAD e carrier period (variable name PI)

AMP c WGÐRELOAD yields a 32-bit result. By using only the most significant word of the result, the division by
65,536 is accomplished.

An EPA capture/compare register is set up to generate an interrupt for each of the 6 phases of the modulation
period. This interrupt routine checks to see which phase needs to be serviced, updates that output register
WGÐOUT (selecting the new output pin configuration), and loads the WGÐCOMP registers. Note that this
example uses WFG mode 3, which updates all the WG registers when the EPA PFE bit is set. See Section 6.2 and 6.6
for further explanation.

The time between EPA interrupts is called the step time (variable name STEP), and is (/6 of the modulation period
(due to the 6 phases).

8.2 Detailed Program Description

8.2.1 CONSTANT DECLARATIONS (Lines 1–27)

Lines 5–8 define some of the operating conditions for the program. Minimum and maximum frequency limits are
established and the carrier frequency/period is defined.

Lines 16–27 define register variables that are used later in the program.

8.2.2 INTERRUPT VECTORS AND CCB (Lines 28–48)

Lines 35, 39 and 40 fill in the interrupt vector table with the locations of the CAPCOM0ÐINT, WGÐINT and
EXTÐINT interrupt routines. Only conventional interrupts are used in this program example, no PTS routines.

Lines 47 and 48 define the chip configuration bytes, CCB and CCB1. These need to be configured for the particular
system that this program is run on.

8.2.3 MAIN PROGRAM INITIALIZATION (Lines 49–97)

Lines 54–57 define the program starting location (2080H), disable interrupts, and set up the stack at 0200H.

Lines 61 and 62 unmasks the CAPCOMP0, PI and EXTINT interrupts. Since the PI interrupt is a shared interrupt,
line 65 unmasks the WG interrupt bit in PIÐMASK.

Lines 69–75 initializes the variable values, and sets the initial modulation frequency to the minimum value.
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Lines 76–78 calculate the initial amplitude using the look-up table.

Line 79 initializes the phase register to phase0.

Lines 81–82 loads the carrier period into the WGÐRELOAD register and enables the interrupts.

Line 83 sets the interrupt pending bit for the PI interrupt, which results in an immediate call to the WGÐINT
interrupt routine. This routine checks which phase is active (0–5) and loads the compare register for that channel.
Note that WGÐCOUNT has not yet started, so the values are transferred directly from the buffer to the compare
register.

Lines 84–90 initialize the WFG output, protection, and control registers. The WFG counter is then started. PWM
output will start at this time.

Line 91 again sets the interrupt pending bit for the PI interrupt, which results in an immediate call to the
WGÐINT interrupt routine. This causes the compare buffer register to be loaded with the next set of values, since
WGÐCOUNT is now running.

Lines 93–96 set up the EPA CAPCOMP0 channel to interrupt at the end of the first phase. The compare mode with
Peripheral Function Enable (PFE) is used.

8.2.4 POLLING ROUTINE (Lines 98–134)

Lines 107–120 read a value input on port 3, compare it against the FMIN and FMAX values and check that it is
within FMIN and FMAX bounds. The value is then stored in FCOMMAND, and output on port 4, which is
connected to some LED’s as a monitor. FCOMMAND is used by the following code to set-up the step-size the
pointers take through the AMP look-up table. Note that due to using port 4 this routine must be modified to run on
any system which uses external memory!

Lines 124 and 125 uses FCOMMAND to form a pointer and get the amplitude from the AMP look-up table. Line
126 disables the interrupts, to protect the following code from unintended variable modification.

Lines 127–128 calculates the value AMPLITUDE, which is later loaded into WGÐCOMP establishing the duty
cycle of the PWM.

Lines 129–132 calculate the value of the STEP variable from the FCOMMAND value, establishing the modulation
frequency.

Lines 133–134 re-enable the interrupts, and loop back to line 107, where port 3 is read again, starting the update
process again.

8.2.5 WG INTERRUPT ROUTINE (Lines 135–173)

The WGÐINT interrupt routine is entered every carrier period. Lines 141–152 determine which of the 6 phases is
being serviced, and branches to the appropriate routine.

Lines 153–173 are the routines for the 6 phases. Each routine updates its corresponding WGÐCOMP register, and
returns.

8.2.6 CAPCOMP0 INTERRUPT ROUTINE (Lines 174–225)

The CAPCOMP0 interrupt routine is called each time the EPA CAPCOMP0 channel times out, at the end of each
of the 6 phases. Its purpose is to reassign the output pins as required, and to update the PWM duty cycle.

Lines 180–191 determine which of the 6 phases is active, and branches to the appropriate routine.
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Lines 192–218 service the active phase. First, the WGÐOUT register is loaded with the new output configuration.
Next, the WGÐCOMP registers are updated in the following manner:

if PHASE0, update WGÐCOMP1 only
if PHASE1, update WGÐCOMP1 and WGÐCOMP2
if PHASE2, update WGÐCOMP2 only
if PHASE3, update WGÐCOMP2 and WGÐCOMP3
if PHASE4, update WGÐCOMP3 only
if PHASE5, update WGÐCOMP3 and WGÐCOMP1

Note that if the phase interrupt is during the ‘‘center’’ of a PWM burst, only that WGÐCOMP register is updated.
If the phase interrupt is at the end of old/beginning of new PWM, both the old and new WGÐCOMP registers are
updated.

Line 220 increments the phase counter, and line 223 loads the time for the next CAPCOMP0 interrupt (1 step).

Lines 224–225 restore the CPU flags and return to the polling loop.

8.2.7 EXTINT INTERRUPT ROUTINE (Lines 226–237)

The EXTINT interrupt routine shown here is just a ‘‘hook’’ for some interrupt code that the user would use to shut-
down the device response to some external condition.

8.2.8 AMPLITUDE LOOK-UP TABLE (Lines 244–1044)

The amplitude look-up table is discussed in Section 8.1.2. This table consists of 800 word values representing the
amplitude vs. modulation frequency function. These are input as an include file, file name AMP.INC.

8.3 Top 4 Issues for the D.C. Brushless Motor Control Example

1. WGÐINT execution time must be less than the carrier period.

2. The AMP table should be optimized for the motor being used. Simple amplitude-to-frequency relationships can
be calculated instead of using a table.

3. The WG registers are initialized twice: The first time with the counter not running, which loads the registers
directly, and the second time immediately after the counter is started, which loads the buffers.

4. The outputs are initialized to one phase behind what the initial value of the PHASE variable is.
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8.4 Program Example

1 ;************************
2 ; WAVEFORM GENERATOR CARRIER FREQUENCY
3 ;************************
4 ;
5 CARRIER FREQ EQU 20000 ;20KHz
6 PERIOD EQU 400 ;(1/CARRIER FREQ)/0.125E–6
7 MIN FREQ EQU 6 ;minimum inverter frequency
8 MAX FREQ EQU 200 ;maximum inverter frequency
9 ;

10 ;************************
11 ;USER DEFINED REGISTERS
12 ;************************
13 ;
14 RSEG AT 1AH
15
16 STEP: DSL 1
17 AMPLITUDE: DSL 1
18 TC: DSW 1
19 FMAX: DSW 1
20 FMIN: DSW 1
21 AMP PTR: DSW 1
22 FCOMMAND: DSW 1
23 P TEMP: DSB 1
24 TEMP1: DSB 1
25 PHASE: DSB 1
26
27 FCOMMAND L EQU (FCOMMAND):BYTE
28 ;
29 ;************************
30 ; INTERRUPT VECTOR TABLE
31 ;************************
32 ;
33 CSEG AT 2004H
34
35 DCW CAPCOMP0 INT ;INT 02
36
37 CSEG AT 203AH
38
39 DCW WG INT ;INT 13
40 DCW EXT INT ;INT 14
41
42 ;************************
43 ; CHIP CONFIGURATION BYTES
44 ;************************
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8.4 Program Example (Continued)

45 CSEG AT 2018H
46 ;
47 DCW 20CFH ;CCB
48 DCW 20DCH ;CCB1
49 ;
50 ;************************
51 ; MAIN ROUTINE
52 ;************************
53 ;
54 CSEG AT 2080H
55 MAIN START:
56 DI ;disable interrupt
57 LD SP,#0200H ;set-up stack pointer
58 ;
59 ;Clear interrupt mask register
60 ;
61 LDB INT MASK,#04H ;enable CAPCOMP0 interrupt
62 LDB INT MASK1,#60H ;enable PI and EXTINT
63 ;interrupt sources
64 LDB WSR,#3EH ;map 64 bytes to 1F80H–1FBFH
65 LDB PI MASK W0,#10H ;set-up peripheral interrupt mask reg.
66 ;
67 ;Initialize WG
68 ;
69 LD TC,#PERIOD ;set PWM carrier period
70 LD FMIN,#MIN FREQ ;set minimum inverter frequency
71 LD FMAX,#MAX FREQ ; maximum inverter frequency
72 LD STEP,CLOCK I ;set initial inverter frequency
73 LD STEP02,CLOCK I02 ; init. freq.4CLOCK I/FMIN
74 MULUB FCOMMAND,FMIN,#6 ; init. STEP4init. freq./6
75 DIVU STEP,FCOMMAND ; (64phase number)
76 MULUB AMP PTR,FMIN,#8 ;set initial amplitude
77 MULU AMPLITUDE,TC,AMP[AMP PTR]
78 LD AMPLITUDE,AMPLITUDE02
79 CLRB PHASE ;reset phase counter
80 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
81 LD WG RELOAD W0,TC ;set PWM carrier period
82 EI ;enable interrupt
83 LDB INT PEND1,#20H ;set next values to WG COMPAREn
84 LD WG OUT W0,#0106H ;0000 0001 0000 0110B
85 ;set WG output register to phase 5
86 LD WG OUT W0,#2106H ;0010 0001 0000 0110B
87 ;set SYNC bit
88 LDB WG PROTECT W0,#05H ;enable WG output,sampling circuit
89 ;and rising edge trigger
90 LD WG CONT W0,#3400H ;Mode3,td40.0us,start counter
91 LDB INT PEND1,#20H ;set next values to WG COMPAREn
92 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
93 LDB T1CONTROL W0,#0C1H ;timer 1 enable, up count, clock
94 ;internal, pre-scale4div 2
95 LDB CAPCOMP0 CON W0,#44H ;comparator, peripheral enable
96 ADD CAPCOMP0 TIME W0,TIMER1 W0,STEP
97 ;set interrupt period
98 ;
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8.4 Program Example (Continued)

99 ;************************
100 ; POLLING ROUTINE
101 ;************************
102 ;
103 LOOP:
104 ;
105 ;load modulation frequency
106 ;
107 CLR FCOMMAND ;clear FCOMMAND register
108 LDB FCOMMAND L,P3PIN[0] ;load modulation frequency from DIP SW
109 CMP FCOMMAND,FMIN ;check lowest frequency
110 BGE NEXT1 ;if it’s lower than FMIN
111 LD FCOMMAND,FMIN ;then set to FMIN
112 BR NEXT2
113 NEXT1:
114 CMP FCOMMAND,FMAX ;check highest frequency
115 BLE NEXT2 ;if it’s higher than FMAX
116 LD FCOMMAND,FMAX ;then set to FMAX
117 NEXT2:
118 LDB TEMP1,FCOMMAND ;display frequency command on LED
119 NOTB TEMP1
120 STB TEMP1,P4REG[0]
121 ;
122 ;Set Amplitude
123 ;
124 LD AMP PTR,FCOMMAND ;AMP PTR4FCOMMAND/0.25*2
125 SHL AMP PTR,#3 ;due to 0.25Hz step & word access
126 DI ;protect from individual modification
127 MULU AMPLITUDE,TC,AMP[AMP PTR] ;refer to AMP table
128 LD AMPLITUDE,AMPLITUDE02
129 LD STEP,CLOCK I ;set inverter frequency
130 LD STEP02,CLOCK I02
131 MULUB FCOMMAND,#6
132 DIVU STEP,FCOMMAND
133 EI
134 SJMP LOOP
135 ;
136 ;*****************************
137 ; WG COUNTER INTERRUPT ROUTINE
138 ;*****************************
139 ;
140 WG INT:
141 PUSHA ;save PSW,INT MASK,INT MASK1,WSR
142 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
143 CMPB PHASE,#0 ;sieve by phase
144 BE PHASE0 WG
145 CMPB PHASE,#1
146 BE PHASE1 WG
147 CMPB PHASE,#2
148 BE PHASE2 WG
149 CMPB PHASE,#3
150 BE PHASE3 WG
151 CMPB PHASE,#4
152 BE PHASE4 WG
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8.4 Program Example (Continued)

153 PHASE5 WG: ;if phase45 then update WG COMP3
154 LD WG COMP3 W0,AMPLITUDE
155 BR WG INT END
156 PHASE0 WG: ;if phase40 then update WG COMP3
157 LD WG COMP3 W0,AMPLITUDE
158 BR WG INT END
159 PHASE1 WG: ;if phase41 then update WG COMP1
160 LD WG COMP1 W0,AMPLITUDE
161 BR WG INT END
162 PHASE2 WG: ;if phase42 then update WG COMP1
163 LD WG COMP1 W0,AMPLITUDE
164 BR WG INT END
165 PHASE3 WG: ;if phase43 then update WG COMP2
166 LD WG COMP2 W0,AMPLITUDE
167 BR WG INT END
168 PHASE4 WG: ;if phase44 then update WG COMP2
169 LD WG COMP2 W0,AMPLITUDE
170 BR WG INT END
171 WG INT END:
172 POPA ;load PSW,INT MASK,INT MASK1,WSR
173 RET ;return to main loop
174 ;
175 ;***************************
176 ; CAPCOMP0 INTERRUPT ROUTINE
177 ;***************************
178 ;
179 CAPCOMP0 INT:
180 PUSHA ;save PSW,INT MASK,INT MASK1,WSR
181 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
182 CMPB PHASE,#0 ;sieve by phase
183 BE PHASE0 CCM0
184 CMPB PHASE,#1
185 BE PHASE1 CCM0
186 CMPB PHASE,#2
187 BE PHASE2 CCM0
188 CMPB PHASE,#3
189 BE PHASE3 CCM0
190 CMPB PHASE,#4
191 BE PHASE4 CCM0
192 PHASE5 CCM0: ;if phase45 then do this
193 LD WG OUT W0,#2106H ;0010 0001 0000 0110B
194 LD WG COMP3 W0,AMPLITUDE ;update WG COMP3
195 LD WG COMP1 W0,AMPLITUDE ;update WG COMP1
196 CLRB PHASE ;clear phase
197 BR CAPCOMP0 INT END
198 PHASE0 CCM0: ;if phase40 then do this
199 LD WG OUT W0,#2112H ;0010 0001 0001 0010B
200 LD WG COMP1 W0,AMPLITUDE ;update WG COMP1
201 BR CAPCOMP1 1
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8.4 Program Example (Continued)

202 PHASE1 CCM0: ;if phase41 then do this
203 LD WG OUT W0,#2218H ;0010 0010 0001 1000B
204 LD WG COMP1 W0,AMPLITUDE ;update WG COMP1
205 LD WG COMP2 W0,AMPLITUDE ;update WG COMP2
206 BR CAPCOMP0 1
207 PHASE2 CCM0: ;if phase42 then do this
208 LD WG OUT W0,#2209H ;0010 0010 0000 1001B
209 LD WG COMP2 W0,AMPLITUDE ;update WG COMP2
210 BR CAPCOMP0 1
211 PHASE3 CCM0: ;if phase43 then do this
212 LD WG OUT W0,#2421H ;0010 0100 0010 0001B
213 LD WG COMP2 W0,AMPLITUDE ;update WG COMP2
214 LD WG COMP3 W0,AMPLITUDE ;update WG COMP3
215 BR CAPCOMP0 1
216 PHASE4 CCM0: ;if phase44 then do this
217 LD WG OUT W0,#2424H ;0010 0100 0010 0100B
218 LD WG COMP3 W0,AMPLITUDE ;update WG COMP3
219 CAPCOMP0 1:
220 INCB PHASE ;increment phase
221 CAPCOMP0 INT END:
222 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
223 ADD CAPCOMP0 TIME W0,STEP;set next interrupt period
224 POPA ;load PSW,INT MASK,INT MASK1,WSR
225 RET ;return to main loop
226 ;
227 ;***************************
228 ; EXTERNAL INTERRUPT ROUTINE
229 ;***************************
230 ;
231 EXT INT:
232 PUSHA ;save PSW,INT MASK,INT MASK1,WSR
233 -
234 -
235 -
236 POPA ;load PSW,INT MASK,INT MASK1,WSR
237 RET ;return to main loop
238 ;
239 ;************************
240 ; DATA TABLE
241 ;************************
242 ;
243 AMP: ;value by word (0.25Hz step)
- - ; -
268 DCW 64551 ;Amplitude(6Hz) 98.5%
- - ; -
644 DCW 49151 ;Amplitude(100Hz) 75%
- - ; -

1044 DCW 32768 ;Amplitude(200Hz) 50%
1045
1046 CLOCK I:
1047 DCL 2000000 ;1/5E-6 (EPA timer clock)
1048
1049 END
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272282–17

Figure 8-5. Flow ChartÐ3-Phase D.C. Brushless Motor Initialization
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272282–18

272282–19

Figure 8-6. Flow ChartÐ3-Phase D.C. Brushless Motor WGÐCOUNT Interrupt
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272282–20

Figure 8-7. Flow ChartÐ3-Phase D.C. Brushless Motor EPA Interrupt
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9.0 QUADRIPHASE STEPPING MOTOR CONTROL PROGRAM SAMPLE

9.1 Introduction

The following program example shows how the WFG can be used to generate a 4-phase output suitable for driving
stepper motor. Figure 9-1 shows a high-level view of how the 8XC196MC/MD will drive each phase of the motor.
Note that this is a unipolar design requiring only a single power supply.

272282–68

Figure 9-1. 4-Phase Stepper Motor System

In this example, the PWM carrier frequency is 20 kHz. The modulation frequency is adjustable from 6 Hz to 200 Hz,
and the duty cycle of the PWM controls the amount of motor torque. A look-up table establishes the relationship
between modulation frequency and duty cycle of the PWM.

9.1.1 DRIVE WAVEFORMS

The output drive waveform for the 4-phase stepper motor are illustrated in Figure 9-2. There are several algorithms
for driving stepper motors; this example shows only one possible method.

272282–69

Figure 9-2. 4-Phase Stepper Drive Waveforms

104



AP-483

Each cycle of the drive waveform is divided into 8 unique phases, labeled PHASE0 through PHASE7. These should
not be confused with the 2 output phases U and V which drive the motor windings. The pulse burst on each output is
a fixed duty cycle, and creates an average positive DC level during the burst.

Table 9-1 illustrates the states of each output as the 8 phases are stepped through. An ‘‘On’’ means that the transistor
connected to the respective output is on, and conversely ‘‘Off’’ means it is off. Note that with the unipolar drive
dead-time is not required.

Table 9-1. WFG Output Sequencing

Phase WG1 (U) WG1Ý (UÝ) WG2 (V) WG2Ý (VÝ) WGÐOUT

0 WFG Off Off WFG 2306H

1 WFG Off Off Off 2302H

2 WFG Off WFG Off 230AH

3 Off Off WFG Off 2308H

4 Off WFG WFG Off 2309H

5 Off WFG Off Off 2301H

6 Off WFG Off WFG 2305H

7 Off Off Off WFG 2304H

In this example the outputs are ‘‘On’’ when the respective output is low. This is determined by the OP bits loaded
into WGÐOUT. Refer to Section 6.9 for more information on the output configurations.

Figure 9-3 illustrates the averaged voltage output waveforms seen at the motor. Note that as the modulation
frequency is increased, the average voltage applied to the motor winding is decreased. Also note that when the
frequency is changed upward, the last pulse at the old frequency is cut short, so a smooth transition to the higher
frequency is made. Note that the PWM duty cycle changes immediately when the frequency is changed, such that
the average voltage applied to all driven windings is immediately reduced.

272282–70

Figure 9-3. Average Voltage Output Waveform at Motor
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The graph in Figure 9-4 shows the current vs speed characteristics used in this example. Note that maximum
amplitude (duty cycle) is applied at minimum speed.

272282–71

Figure 9-4. Amplitude vs Modulation Frequency Function

A look-up table is used to implement the transfer characteristic in Figure 9-4 (called AMP in the program listing).
The table values are normalized to 100% e 65535 (0FFFFH), and entries are in 0.25 Hz intervals from
0 Hz–200 Hz. Since the frequency is software limited to 200 Hz, the table stops at 200 Hz (801 entries, 1602 bytes).

This table is read to determine the amplitude for each modulation frequency, and the PWM duty cycle is calculated
in the set amplitude routine using the following formula:

WGÐCOMP e

AMP c WGÐRELOAD

65,536

where

WGÐCOMP e the value to load into the phase compare register (variable name AMPLITUDE)
AMP e value from table
WGÐRELOAD e carrier period (variable name PI)

AMP c WGÐRELOAD yields a 32-bit result. By using only the most significant word of the result, the division by
65,536 is accomplished.

An EPA capture/compare register is set up to generate an interrupt for each of the 8 phases of the modulation
period. This interrupt routine checks to see which phase needs to be serviced, updates the output register WGÐOUT
(selecting the new output pin configuration), and loads the WGÐCOMP registers.

The time between EPA interrupts is called the step time (variable name STEP), and is (/8 of the modulation period
(due to the 8 phases).
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9.2 Detailed Program Description

Note that this program is very similar to the DC brushless motor program in Section 8.

9.2.1 CONSTANT DECLARATIONS (Lines 1–29)

Lines 5–9 define some of the operating conditions for the program. Minimum and maximum frequency limits are
established, the carrier frequency/period and the clock frequency for the EPA channel are defined.

Lines 16–29 define register variables that are used later in the program.

9.2.2 INTERRUPT VECTORS AND CCB (Lines 30–49)

Lines 37 and 41 fill in the interrupt vector table with the locations of the CAPCOMP0ÐINT and EXTÐINT
interrupt routines. Only conventional interrupts are used in this program example, no PTS routines.

Lines 48 and 49 define the chip configuration bytes, CCB and CCB1. These need to be configured for the particular
system that this program is run on.

9.2.3 MAIN PROGRAM INITIALIZATION (Lines 50–95)

Lines 55–58 define the program starting location (2080H), disable interrupts, and set up the stack at 0200H.

Lines 62 and 63 unmask the CAPCOMP0 and EXTINT interrupts. Line 65 masks the WG interrupt bit in
PIÐMASK, as this is not used.

Lines 69–74 initializes the variable values, and sets the initial modulation frequency to the minimum value.

Lines 75–77 calculate the initial amplitude using the look-up table.

Line 78 initializes the phase register to phase1.

Lines 80–81 loads the carrier period into the WGÐRELOAD register and enables the interrupts.

Lines 84–89 initialize the WFG output, protection, and control registers. Note that WGÐCOUNT has not yet
started, so the values are transferred directly to the compare register.

Line 90 starts the WFG counter. PWM output will start at this time.

Lines 92–95 set up the EPA CAPCOMP0 channel to interrupt at the end of the first phase. The compare only mode
is used.

9.2.4 POLLING ROUTINE (Lines 96–134)

Lines 105–118 read a value input on port 3, compare it against the FMIN and FMAX values and check that it is
within FMIN and FMAX bounds. The value is then stored in FCOMMAND, and output on port 4, which is
connected to some LED’s as a monitor. FCOMMAND is used by the following code to set-up the step-size the
pointers take through the AMP look-up table. Note that this routine must be modified to run on any system which
uses external memory!

Line 122 forms the pointer into the AMP table by multiplying FCOMMAND by 8. Line 123 then disables the
interrupts to protect the following code from unintended variable modification.

Lines 124 and 125 gets the amplitude from the AMP look-up table.
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Lines 126–128 calculate the value of the STEP variable from the FCOMMAND value, establishing the modulation
frequency. This is later loaded into the EPA time register.

Lines 129–130 re-enable the interrupts, and loop back to line 105, where port 3 is read again, starting the update
process again.

9.2.5 CAPCOMP0 INTERRUPT ROUTINE (Lines 131–186)

The CAPCOMP0 interrupt routine is called each time the EPA CAPCOMP0 channel times out, at the end of each
of the 8 phases. Its purpose is to reassign the output pins as required, and to update the PWM duty cycle.

Lines 137–152 determine which of the 8 phases is active. and branches to the appropriate routine.

Lines 153–176 service the active phase. The WGÐOUT register is loaded with the new output configuration
according to the conditions below:

if PHASE0, update WGÐOUT with 2306H
if PHASE1, update WGÐOUT with 2302H
if PHASE2, update WGÐOUT with 230AH
if PHASE3, update WGÐOUT with 2308H
if PHASE4, update WGÐOUT with 2309H
if PHASE5, update WGÐOUT with 2301H
if PHASE6, update WGÐOUT with 2305H
if PHASE7, update WGÐOUT with 2304H and reset phase counter to 0.

Line 179 increments the phase counter, and lines 181–182 update the WGÐCOMP registers to the new duty cycle.

Line 184 loads the time for the next CAPCOMP0 interrupt (1 step).

Lines 185–186 restore the CPU flags and return to the polling loop.

9.2.6 EXTINT INTERRUPT ROUTINE (Lines 187–198)

The EXTINT interrupt routine shown here is just a ‘‘hook’’ for some interrupt code that the user would use to shut-
down the device in response to some external condition.

9.2.7 AMPLITUDE LOOK-UP TABLE (Lines 199–1005)

The amplitude look-up table is discussed in Section 9.1.2. This table consists of 800 word values representing the
amplitude vs modulation frequency function. These are input as an include file, file name APM.INC.

9.3 Top 3 Issues for the 4-Phase Stepper Motor Control Example

1. The AMP table should be optimized for the motor being used. Simple amplitude-to-frequency relationships can
be calculated instead of using a table.

2. The WG registers are initialized twice: The first time with the counter not running, which loads the registers
directly, and the second time immediately after the counter is started, which loads the buffers.

3. The outputs are initialized to one phase behind what the initial value of the phase value is.
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9.4 Program Example

1 ;*************************************
2 ; WAVEFORM GENERATOR CARRIER FREQUENCY
3 ;*************************************
4 ;
5 CARRIER FREQ EQU 20000 ;20KHz
6 PERIOD EQU 400 ;(1/CARRIER FREQ)/0.125E-6
7 CLOCK P EQU 62500 ;EPA clock frequency @ 1/64
8 MIN FREQ EQU 6 ;minimum pulse rate
9 MAX FREQ EQU 200 ;maximum pulse rate

10 ;
11 ;************************
12 ;USER DEFINED REGISTERS
13 ;************************
14 ;
15 RSEG AT 1AH
16
17 STEP: DSL 1
18 AMPLITUDE: DSL 1
19 TC: DSW 1
20 CLOCK I: DSW 1
21 FMAX: DSW 1
22 FMIN: DSW 1
23 AMP PTR: DSW 1
24 FCOMMAND: DSW 1
25 P TEMP: DSB 1
26 TEMP1: DSB 1
27 PHASE: DSB 1
28
29 FCOMMAND L EQU (FCOMMAND):BYTE
30 ;
31 ;************************
32 ; INTERRUPT VECTOR TABLE
33 ;************************
34 ;
35 CSEG AT 2004H
36
37 DCW CAPCOMP0 INT ;INT 02
38
39 CSEG AT 203CH
40
41 DCW EXT INT ;INT 14
42
43 ;*************************
44 ; CHIP CONFIGURATION BYTES
45 ;*************************
46 CSEG AT 2018H
47 ;
48 DCW 20CFH ;CCB
49 DCW 20DCH ;CCB1
50 ;
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9.4 Program Example (Continued)

51 ;************************
52 ; MAIN ROUTINE
53 ;************************
54 ;
55 CSEG AT 2080H
56 MAIN START:
57 DI ;disable interrupt
58 LD SP,#0200H ;set-up stack pointer
59 ;
60 ;Clear interrupt mask register
61 ;
62 LDB INT MASK,#04H ;enable CAPCOMP0 interrupt
63 LDB INT MASK1,#40H ;enable EXTINT interrupt
64 LDB WSR,#3EH ;map 64 bytes to 1F80H–1FBFH
65 CLRB PI MASK W0 ;clear peripheral interrupt mask reg.
66 ;
67 ;Initialize WG
68 ;
69 LD TC,#PERIOD ;set PWM carrier period
70 LD FMIN,#MIN FREQ ;set minimum pulse rate
71 LD FMAX,#MAX FREQ ;set maximum pulse rate
72 LD STEP,#CLOCK P ;set initial pulse rate
73 LD STEP02,#0
74 DIVU STEP,FMIN
75 MULUB AMP PTR,FMIN,#8 ;set initial amplitude
76 MULU AMPLITUDE,TC,AMP[AMP PTR]
77 LD AMPLITUDE,AMPLITUDE02
78 LDB PHASE,#1 ;initialize phase counter
79 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
80 LD WG RELOAD W0,TC ;set PWM carrier period
81 EI ;enable interrupt
82 LD WG COMP1 W0,AMPLITUDE ;set initial PWM duty cycle
83 LD WG COMP2 W0,AMPLITUDE
84 LD WG OUT W0,#0306H ;0000 0011 0000 0110B
85 ;set WG output register to phase0
86 LD WG OUT W0,#2306H ;0010 0011 0000 0110B
87 ;set SYNC bit
88 LDB WG PROTECT W0,#05H ;enable WG output,sampling circuit
89 ;and rising edge trigger
90 LD WG CON W0,#2400H ;Mode2,td40.0us,start counter
91 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
92 LDB T1CONTROL W0,#0C6H ;timer 1 enable, up count, clock
93 ;internal, pre-scale4div 64
94 LDB CAPCOMP0 CON W0,#40H ;comparator only
95 ADD CAPCOMP0 TIME W0,TIMER1 W0,STEP
96 ;
97 ;************************
98 ; POLLING ROUTINE
99 ;************************

100 ;
101 LOOP:
102 ;
103 ;load motor pulse rate
104 ;
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9.4 Program Example (Continued)

105 CLR FCOMMAND ;clear FCOMMAND register
106 LDB FCOMMAND L,P3PIN[0] ;load pulse rate from DIP SW
107 CMP FCOMMAND,FMIN ;check lowest rate
108 BGE NEXT1 ; if it’s lower than FMIN
109 LD FCOMMAND,FMIN ; then set FMIN
110 BR NEXT2
111 NEXT1:
112 CMP FCOMMAND,FMAX ;check highest rate
113 BLE NEXT2 ; if it’s higher that FMAX
114 LD FCOMMAND,FMAX ; then set FMAX
115 NEXT2:
116 LDB TEMP1,FCOMMAND ;display pulse rate on LED
117 NOTB TEMP1
118 STB TEMP1,P4REG[0]
119 ;
120 ;Set Amplitude
121 ;
122 MULUB AMP PTR,FCOMMAND,#8 ;set amplitude
123 DI ;protect from individual modification
124 MULU AMPLITUDE,TC,AMP[AMP PTR] ;refer to AMP table
125 LD AMPLITUDE,AMPLITUDE02
126 LD STEP,CLOCK P ;set pulse rate
127 LD STEP02,#0
128 DIVU STEP,FCOMMAND
129 EI
130 SJMP LOOP
131 ;
132 ;***************************
133 ; CAPCOMP0 INTERRUPT ROUTINE
134 ;***************************
135 ;
136 CAPCOMP0 INT:
137 PUSHA ;save PSW,INT MASK,INT MASK1,WSR
138 LDB WSR,#3FH ;map 64 bytes to 1FC0H–1FFFH
139 CMPB PHASE,#0 ;sieve by phase
140 BE PHASE0 CCM0
141 CMPB PHASE,#1
142 BE PHASE1 CCM0
143 CMPB PHASE,#2
144 BE PHASE2 CCM0
145 CMPB PHASE,#3
146 BE PHASE3 CCM0
147 CMPB PHASE,#4
148 BE PHASE4 CCM0
149 CMPB PHASE,#5
150 BE PHASE5 CCM0
151 CMPB PHASE,#6
152 BE PHASE6 CCM0
153 PHASE7 CCM0: ;if phase47 then do this
154 LD WG OUT W0,#2304H ;0010 0011 0000 0100B
155 CLRB PHASE ;clear phase
156 BR CAPCOMP0 INT END
157 PHASE0 CCM0: ;if phase40 then do this
158 LD WG OUT W0,#2306H ;0010 0011 0000 0110B
159 BR CAPCOMP0 1
160 PHASE1 CCM0: ;if phase41 then do this
161 LD WG OUT W0,#2302H ;0010 0011 0000 0010B
162 BR CAPCOMP0 1
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9.4 Program Example (Continued)

163 PHASE2 CCM0: ;if phase42 then do this
164 LD WG OUT W0,#230AH ;0010 0011 0000 1010B
165 BR CAPCOMP0 1
166 PHASE3 CCM0: ;if phase43 then do this
167 LD WG OUT W0,#2308H ;0010 0011 0000 1000B
168 BR CAPCOMP0 1
169 PHASE4 CCM0: ;if phase44 then do this
170 LD WG OUT W0,#2309H ;0010 0011 0000 1001B
171 BR CAPCOMP0 1
172 PHASE5 CCM0: ;if phase45 then do this
173 LD WG OUT W0,#2301H ;0010 0011 0000 0001B
174 BR CAPCOMP0 1
175 PHASE6 CCM0: ;if phase46 then do this
176 LD WG OUT W0,#2305H ;0010 0011 0000 0101B
177
178 CAPCOMP0 1:
179 INCB PHASE ;increment phase counter
180 CAPCOMP0 INT END:
181 LD WG COMP1 W0,AMPLITUDE ;update WG COMPn
182 LD WG COMP2 W0,AMPLITUDE
183 LDB WSR,#3DH ;map 64 bytes to 1F40H–1F7FH
184 ADD CAPCOMP0 TIME W0,STEP;set next interrupt period
185 POPA ;load PSW,INT MASK,INT MASK1,WSR
186 RET ;return to main loop
187 ;
188 ;***************************
189 ; EXTERNAL INTERRUPT ROUTINE
190 ;***************************
191 ;
192 EXT INT:
193 PUSHA ;save PSW,INT MASK,INT MASK1,WSR
194 -
195 -
196 -
197 POPA ;load PSW,INT MASK,INT MASK1,WSR
198 RET ;return to main loop
199 ;
200 ;************************
201 ; DATA TABLE
202 ;************************
203 ;
204 AMP: ;value by word (0.25Hz step)

- - ; -
229 DCW 64551 ;Amplitude(6Hz) 98.5%

- - ; -
605 DCW 49151 ;Amplitude(100Hz) 75%

- - ; -
1005 DCW 32768 ;Amplitude(200Hz) 50%
1216
1217 END
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272282–21

272282–22

Figure 9-5. Flow ChartÐ4-Phase Stepper Motor Initialization

113



AP-483

272282–23

Figure 9-6. Flow ChartÐ4-Phase Stepper Motor EPA Interrupt
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10.0 THE FREQUENCY GENERATOR (MD ONLY)

10.1 Introduction

The Frequency Generator (FG) peripheral produces a fixed 50% duty cycle waveform that can vary in frequency
from 4 kHz–1 MHz (@ FXTAL e 16 MHz). There are 2 Special Function Registers (SFR’s) directly associated
with the Frequency Generator, FREQÐGEN and FREQÐCNT. Additionally, P7.7 must be configured for its
special function in order for the frequency to be output. Figure 10-1 shows a block diagram of the FG.

272282–72

Figure 10-1. The Frequency Generator

When a value is written FREQÐGEN, it is transferred to the down counter. The down counter counts down to 0,
and reloads from FREQÐGEN. Each load toggles the D flip-flop, thus producing the 50% duty cycle output.

Figures 10-2 and 10-3 detail the FREQÐGEN and FREQÐCNT SFR’s. FREQÐGEN is an 8-bit read/write
register which controls the frequency of the FG. To calculate the value to load into FREQÐGEN, use the following
formula:

FREQÐGENÐVALUE e

FXTAL

16 c FREQÐOUT
b1

where

FREQÐGENÐVALUE e 8-bit value to load into FREQÐGEN
FXTAL e Frequency input on XTAL1 pin, MHz
FREQÐOUT e Output frequency, MHz
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272282–75

Figure 10-2. FREQÐGEN Register

The FREQÐCNT Register is a read-only SFR. It can be monitored to know the current value of the down-count.

272282–76

Figure 10-3. FREQÐCNT Register

10.2 Using the Frequency Generator

One application for the FG is to drive an infrared (IR) LED to transmit remote control data and/or control signals.
Figure 10-4 illustrates how the IR remote control system works.

272282–73

Figure 10-4. Infrared Remote Control Block Diagram

The FG is set to a carrier frequency in the 40 kHz range, and is switched on and off by writing to the port 7.7 mode
register. Information is transmitted in a serial format; many coding schemes are possible, Figure 10-5 illustrates the
code sequence used in the following software example.
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Zeros are represented by a 1 ms carrier burst followed by a 1 ms pause. Ones are represented by a 2 ms carrier burst
followed by a 2 ms pause.

272282–74

Figure 10-5. Encoding of Zeroes and Ones

At the receiving end, a photodiode receives the light pulses. Since there is a great deal of ambient light, a high-pass
filter rejects the low-frequency background light, while allowing the 40 kHz carrier to pass. This carrier is amplified
and detected to reproduce the original pulse sequence.
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10.3 Program to Transmit Data via Frequency Generator

The following software transmits a block of data serially using the FG. A carrier frequency of 40 kHz is selected. The
EPA COMPARE3 channel provides the time base for the ones and zeroes.

10.3.1 CONSTANT AND VARIABLE DECLARATIONS (Lines 1–81)

Lines 24–30 define the constants used by this program. These can be changed at assembly time as required.

Lines 36–48 define SFR locations as seen through a window. Required to allow using compact read-modify-write
instructions.

Lines 54–55 define the location of the Frequency Generator SFR’s.

Lines 65–81 define the variables used by the program.

10.3.2 MAIN PROGRAM (Lines 82–132)

Lines 87–93 define the program location and set up the interrupts and stack.

Lines 95–99 initialize port 7.7 for I/O, and set the pin low.

Lines 101–105 fill the data buffer with a ‘‘fill’’ character. An application would normally place a block of data here.

Lines 107–111 start timer1 operating with a 1 ms clock period, load the carrier frequency into the FG, and enable
the interrupts.

Lines 117–125 issue a 1 ms pulse on P2.0 for use with an oscilloscope monitor.

Lines 127–129 initialize the buffers and flag register needed by the sending interrupt routine.

Line 130 starts the buffer send by setting the interrupt pending bit for the COMPARE3 module.

Lines 131–132 loop waiting for the buffer send to complete. When done, the program starts over again.

10.3.3 COMPARE3 INTERRUPT ROUTINE

The Compare3 interrupt routine is entered each time the Compare3 channel times out. The interrupt can occur for
several different reasons. The type of service needed is tracked by a ‘‘flag’’ register, which contains 5 bits determining
the current status of the serial data stream. Those conditions are as follows:

1. A ‘‘one’’ is being transmitted

2. A ‘‘zero’’ is being transmitted

3. The next bit needs to be fetched

4. The next byte needs to be fetched

5. The buffer is finished being transmitted

Since the logic of these routines is a bit confusing, refer to the flow charts, Figures 10-6 and 10-7 for an explanation
of how this routine works.
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10.4 Program Example

Program to Transmit Data via Frequency Generator

272282–24
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10.4 Program Example (Continued)

Program to Transmit Data via Frequency Generator (Continued)

272282–25
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10.4 Program Example (Continued)

Program to Transmit Data via Frequency Generator (Continued)

272282–26
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10.4 Program Example (Continued)

Program to Transmit Data via Frequency Generator (Continued)

272282–27

122



AP-483

272282–28

Figure 10-6. Flow ChartÐFrequency Generator Initialization
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272282–29

Figure 10-7. Interrupt Routine Flow Diagram
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