
AP-715

Order Number: 272680-001

Interfacing an I2C Serial
EEPROM to an MCS® 96
Microcontroller

ROBIN MANELIS
Technical Marketing Engineer
Intel Automotive Operations

CHRIS BANYAI
Technical Marketing Engineer
Intel Automotive Operations

March 1995

APPLICATION
NOTE

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel’s Terms and conditions of
Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, 1996

iii

CONTENTS

PAGE PAGE

1.0 INTRODUCTION... 1

2.0 HARDWARE OVERVIEW 1
2.1 I2C Protocol Overview............................. 2
2.2 The EEPROM’s Read and Write

Operations... 4
2.3 Using the JR to Implement I2C................ 9

3.0 SOFTWARE OVERVIEW................................ 9
3.1 Source Code Listing 15
3.2 Performance Information....................... 27

AP-715

n

.

e-

re
eir

1)
re,
d

en
ion
ns
s-
r-

a-
1.0 INTRODUCTION

EEPROMs (electrically erasable, programmable read-only
memories) are commonly used with microcontrollers in
automotive applications to provide off-chip, nonvolatile,
alterable data storage. Off-chip nonvolatile memory pro-
vides flexibility to microcontroller applications for two
reasons. First, in the case of a catastrophic microcontroller
failure, information stored in an off-chip device can be re-
stored. This makes off-chip EEPROMs especially useful
as crash recorders. Second, a wide range of EEPROMs are
available with different operating modes and memory con-
figuration. Although microcontrollers with on-chip non-
volatile memory are also available, their operating modes
and memory configurations are limited.

In automotive applications, EEPROMs are useful for stor-
ing three categories of information: fixed parameters,
adaptive parameters, and historical information. Fixed pa-
rameters include items like an automobile serial/model
number, tire size, axle ratio, and vehicle weight. By storing
this kind of system-specific information, manufacturers
can use one control module, such as an anti-lock braking
system (ABS) or an air-bag controller, for a number of dif-
ferent vehicles. Adaptive parameters keep track of system
information that changes with time and use. An example of
an adaptive parameter is brake-pad wear. With this infor-
mation, control algorithms can adapt to a system’s chang-
ing conditions. Historical information includes the storage
of parameters such as fault codes, number of ABS stops,
the number of key turns, and tire air pressure. This infor-
mation is useful for diagnostic and failure analysis.

This application note demonstrates how to interface a
SGS-Thomson ST24C02A (EEPROM) to Intel’s
87C196JR (JR) using an I2C bus. Although the JR was
chosen for this example, any Intel MCS® 96 microcontrol-
ler with a synchronous serial I/O channel could be used

2.0 HARDWARE OVERVIEW

Two I/O pins and the synchronous serial I/O (SSIO) p
ripheral on the JR are used to implement the I2C bus inter-
face (Figure 1). The JR’s I/O pins, P6.6 and P6.7, we
chosen because software can dynamically switch th
function from low-speed I/O (LSIO) to SSIO. In SSIO
mode, P6.6 is the synchronous serial channel 1 clock (SC
signal and P6.7 is the serial data (SD1) signal. Therefo
P6.6 is connected to the EEPROM’s serial clock pin an
P6.7 is connected to the EEPROM’s serial data pin. Wh
the EEPROM receives data, it acknowledges the recept
by pulling the data signal low. For this reason, the JR pi
are configured as open-drain with external pull-up resi
tors. The minimum size of the pull-up resistors was dete
mined from the EEPROM specifications (VOL = 0.4V, IOL

= 3mA). The following sections give an overview of the
I2C protocol, describe the EEPROM read and write oper
tions, and demonstrate how to use the JR to implement I2C.
1

AP-715

 an
Figure 1. Circuit Diagram for Interfacing an EEPROM to an 87C196JR

A3024-01

8XC196JR EEPROM

P6.6/SC1

P6.7/SD1

SCL

SDA

E0

E1

E2

MODE

VCC

to VSS for Page Write
to VCC for Multibyte Write

5 kΩ

5 kΩ

VCC VSS VSS

2.1 I2C Protocol Overview bits of data, the receiver (either master or slave) creates
nd
he
o
ure
The I2C bus consists of two bidirectional signals: a serial
data (SDA) and a serial clock (SCL), which carry informa-
tion between devices connected to the I2C bus. The device
that controls the data transfer is referred to as the master,
and the device that the master is communicating with is the
slave. In this example, the JR is the master and the EE-
PROM is the slave.

With this protocol, data is transferred as 8-bit bytes. Each
transaction includes a start condition, one or more byte
transmissions (most-significant bit first), an acknowledge
condition, and a stop condition. The acknowledge condi-
tion indicates a successful data transfer. After receiving 8

acknowledge condition by driving SDA low. This makes
an open-drain pin configuration necessary. The SDA a
SCL signals are normally high, and data is latched on t
rising edge of SCL. Transitions on SDA with respect t
SCL create start, stop, and data change conditions. Fig
2 illustrates these conditions.
2

AP-715
Figure 2. Start, Stop, and Data Change Conditions

A3033-01

SDA

SCL

SDA

Start
Condition

SDA
Input

SDA
Change

Stop
Condition

1 2 3 7 8 9SCL

MSB Ack

SDA

1 2 3 7 8 9SCL

MSB Ack

Start
Condition

Stop
Condition
3

AP-715

in

the
-
ns
e-

te
a
i-

is
2.2 The EEPROM’s Read and Write
Operations

The ST24C02A EEPROM was chosen for this example
because it is a typical I2C EEPROM. This particular EE-
PROM consists of 256 bytes of memory organized as 256
× 8 bits; however, a wide range of memory sizes and con-
figurations are available to satisfy a range of applications.

The EEPROM supports three write and four read opera-
tions. In this example, the JR as the master controls data
transfers by providing the serial clock (SCL) and selecting
one of the read or write operations. The JR selects one of
the read or write operations by sending a device-select byte
to the EEPROM.

The EEPROM’s device-select byte (Figure 3) consists of a
device code, a chip-enable code, and a read/write (R/W)
bit. The device code, which is unique to the ST24C02A, is
1010. The chip-enable code corresponds to the chip-enable
pins. There are three chip-enable pins, E2–E0, making it
possible to interface up to eight slave EEPROMs. In this
example, these signals are strapped low; therefore, the chip
enable code is 000. The read/write bit, as the name implies,
selects a read or a write operation.

The EEPROM’s three write operations are illustrated
Figure 4. The byte write operation allows the master to
send one byte of data; the multibyte write, up to four bytes
of data; and the page write, up to eight bytes of data. For
page write operations, the data bytes must be located in
same row of memory (i.e., the five most-significant ad
dress bits, A7–A3, must be the same). The write operatio
are selected by clearing the read/write bit of the device-s
lect byte and driving the EEPROM’s MODE pin. The
MODE pin must be tied to either VCC or VSS for byte write
operations, to VCC for multibyte operations, and to VSS for
page write operations. As shown in Figure 4, each wri
operation is initiated by a start condition, followed by
write device-select byte, and terminated by a stop cond
tion. After each byte transfer, the receiver (which in th
case is the slave) sends an acknowledge signal.
4

AP-715
Figure 3. Device-select Byte

Figure 4. Write Operations

1 0 1 0 E2 E1 E0

Read/Write Bit

7

Chip-enable Code

R/W

Device Code

0

A3025-01

A3046-01

Dev Select

Start StopR/W

Slave
Ack

Dev Select Address Byte

Start

Stop

R/W

Slave
Ack

Slave
Ack

Data Byte 1

Slave
Ack

Data Byte N

Byte
Write

Multibyte Write
and
Page Write

Data Byte

Slave
Ack

Address Byte

Slave
Ack

Slave
Ack

Slave
Ack
5

AP-715

s
 In
s a

he
nal
or
e-
tes

JR
of

s
 1.
The EEPROM’s read operations are illustrated in Figure 5.
The read operations allow you to read one or more bytes of
data at the current address or a specified address. The EE-
PROM has an internal byte address counter. After a byte is
read or written, the counter is incremented. The current ad-
dress read allows the master to read one data byte at the
current address, while the sequential current address read
allows the master to read one or more data bytes starting at
the current address. The random address read allows the
master to read a data byte at a specified address, while the
sequential random address read allows the master to read
one or more data bytes starting at the specified address.

A start condition initiates a read operation. The sequence
for current address read and random address read opera-
tions are different. The current read operations read data
bytes starting at the address specified by the EEPROM’s
internal address counter. In these operations, after a start
condition, the master sends a read device-select byte to the

EEPROM. The random read operations read data byte
starting at the address specified by the address byte.
these operations, after a start condition, the master send
write device-select byte, followed by an address byte (t
specified address). The master then sends an additio
start condition, followed by a read device-select byte. F
all read operations, the EEPROM acknowledges devic
select bytes and the JR acknowledges received data by
(all but the last one). To terminate a read operation, the
sends a stop condition without acknowledging receipt
the last data byte.

The EEPROM bit-timing waveforms and specification
relevant to this example are shown in Figure 6 and Table
6

AP-715
Figure 5. Read Operations

A3047-01

Dev Select

Start R/W

Slave
Ack

Data Byte

Stop

No
Ack

Dev Select

Start

R/W

Slave
Ack

Data Byte1 Data Byte N

No
Ack

Master
Ack

Dev Select Address Byte

Slave
Ack

Dev Select

Current
Address
Read

Sequential
Current
Address
Read

Random
Address
Read

Sequential
Random
Address
Read

Master
Ack

Stop

Data Byte

Slave
Ack

Start Start

No
Ack

Stop

R/W

R/W

Slave
Ack

R/W

Dev Select Address Byte

Slave
Ack

Dev Select Data Byte 1

Slave
Ack

Start Start R/W

Slave
Ack

Data Byte N

No
Ack

Master
Ack

Stop

Master
Ack
7

AP-715
Figure 6. EEPROM AC Waveforms

A3032-01

Stop
Condition

Start
Condition

Write Cycle

Tw

TCHDH TCHDX

SCL

SDA IN

SCL

SDA OUT

TCLQV TCLQX

Data Output

Data Valid

SCL

SDA IN

TCHCL

TDLCL

TCLCH

TDXCX TCHDH

TDHDL
TCLDX

TCHDX

Start
Condition

SDA
Input

SDA
Change

Stop and
Bus Free
8

AP-715
Table 1. EEPROM AC Specifications

Symbol Parameter Min Max Unit

TCHCL Clock Pulse Width High 4 µs

TCLCH Clock Pulse Width Low 4.7 µs

TDLCL Input Low to Clock Low (start) 4 µs

TDXCX Input Transition to clock Transition 250 ns

TCHDH Clock High to Input High (stop) 4.7 µs

TCHDX (1) Clock High to Input Transition 4.7 µs

TCLDX Clock Low to Input Transition 0 µs

TDHDL Input High to Input Low (bus free) 4.7 µs

TCLQV Clock Low to Output Valid 0.3 3.5 µs

TCLQX Clock High to Output Transition 300 ns

TW (2) Write Time 10 ms

FC Clock Frequency 100 kHz

NOTES:
1. For a start condition, or following a write cycle.
2. In the multibyte write mode only, if addressed bytes are on two consecutive rows (upper five most-signifi-

cant bits are the same) the maximum programming time is doubled to 20 ms.
le
e
r-

,

s

d
h

The MCS 96 microcontroller product family operating
with a 16 MHz crystal and an SSIO baud rate of 100 kHz
satisfies these timings.

2.3 Using the JR to Implement I 2C

Two pins on the 87C196JR (JR) are used to implement the
I2C bus. These pins were chosen because their function
can be controlled either by software or by the synchronous
serial I/O (SSIO) peripheral. The JR’s flexible port struc-
ture allows for dynamic switching between low speed I/O
(LSIO) and special functions, which in this case is the
SSIO clock and data signals. Start, stop, and acknowledge
conditions are generated through software when the port
pins are configured as LSIO. Data is transmitted or re-
ceived via the SSIO peripheral when the port pins are con-
figured for SSIO operation. Using the JR’s SSIO provides
a faster, more efficient method for transmitting and receiv-
ing data than the traditional “bit-banging” method. If a par-
ticular application uses the SSIO, a similar method could
be implemented using the SIO peripheral in mode 0.

3.0 SOFTWARE OVERVIEW

As previously mentioned, three operations are availab
for writing data to the EEPROM and four operations ar
available for reading data from the EEPROM. These ope
ations are implemented by the BYTE_WR, MULTI_WR
PAGE_WR, CURRENT_RD, RANDOM_RD,
SEQ_CUR_RD, and SEQ_RAN_RD operation routine
shown in the “Source Code Listing” on page 15.

Typically an application would use one write and one rea
operation. The application requirements determine whic
write and read operation to use (Table 2).
9

AP-715
Table 2. Determining Which Write or Read Operation to Use

If an application requires that ... then use the ...

a single byte of data be written to the EEPROM per control loop byte write operation
(BYTE_WR)

four bytes of data be written to the EEPROM per control loop multibyte write operation
(MULTI_WR)

eight bytes of data be written to the EEPROM per control loop page write operation
(PAGE_WR)

a single byte at the current address† be read from the EEPROM per
control loop

current address read operation
(CURRENT_RD)

a specific number of bytes at the current address† be read from the
EEPROM per control loop

sequential current address read operation
(SEQ_CUR_RD)

a single byte at a specific address be read from the EEPROM per
control loop

random address read operation
(RANDOM_RD)

a specific number of bytes at a specific address be read from the
EEPROM per control loop

sequential random address read operation
(SEQ_RAN_RD)

† The current address refers to the address of the EEPROM’s internal address counter. This internal address counter is
incremented by one every time the EEPROM is written or read.
-

The write and read operations consist of different combi-
nations of start, stop, acknowledge, receive, and transmit
conditions (Figures 7–9). These conditions are implement-
ed by the START, TRANSMIT, RECEIVE,

SLAVE_ACK, MASTER_ACK, NO_ACK, and STOP
subroutines, which are shown following the operation rou
tines in the “Source Code Listing” on page 15.
10

AP-715
Figure 7. Write Operation Flow Charts

A3026-01

Transmit Write
Dev Sel Byte

Start

Slave Ack

Slave Ack

Slave Ack

Stop

Transmit
Address Byte

Transmit
Data Byte

Byte Write Multibyte Write and Page Write

Transmit Write
Dev Sel Byte

Start

Slave Ack

Slave Ack

Slave Ack

Transmit
Address Byte

Transmit
Data Byte 1

Slave Ack

Stop

Transmit
Data Byte N
11

AP-715
Figure 8. Read Operation Flow Charts

A3027-01

Transmit Read
Dev Sel Byte

Start

Slave Ack

No Ack

Stop

Receive
Data Byte

Current Address Read Sequential Current Address Read

Transmit Read
Dev Sel Byte

Start

Slave Ack

Master Ack

Master Ack

Receive
Data Byte 1

Receive
Data Byte 2

No Ack

Stop

Receive
Data Byte N
12

AP-715
Figure 9. Read Operation Flow Charts (Continued)

A3028-01

Transmit Write
Dev Sel Byte

Start

Slave Ack

Slave Ack

No Ack

Stop

Transmit
Address Byte

Receive
Data Byte

Random Address Read Sequential Random Address Read

Master Ack

Stop

Start

Slave Ack

Transmit Read
Dev Sel Byte

Transmit Write
Dev Sel Byte

Start

Slave Ack

Slave Ack

Transmit
Address Byte

Receive
Data Byte 1

Start

Slave Ack

Transmit Read
Dev Sel Byte

Master Ack No Ack

Receive
Data Byte N

Receive
Data Byte 2
13

AP-715

 as

ted
y
r.

he
re-

rip-
The start, stop, and acknowledge (slave_ack, master_ack,
and no_ack) subroutines implement the necessary condi-
tions by configuring the pins as LSIO, then writing com-
mands that either float the pins or drive them low. When
the pins are configured as high impedance (floating), the
external pull-up resistors drive the pins high. To create a
start condition, software pulls the data signal low while the
clock signal is high. To create a stop condition, software
pulls the data signal high while the clock signal is high. To
create a slave acknowledge condition, software creates a
ninth clock pulse by writing to the clock pin. During this
clock pulse, the data signal is put into a high impedance
state. The slave (EEPROM) can then acknowledge recep-
tions by pulling the data signal low. To create a master ac-
knowledge condition, software creates a ninth clock pulse.
During this clock pulse, the master (JR) pulls the data sig-
nal low via software to acknowledge receptions. Software
creates a no acknowledge condition by simply creating a
ninth clock pulse; the data signal remains unchanged. (The
no acknowledge condition is used to signal the end of a se-
quential read operation.)

The transmit and receive subroutine configures the pins
SSIO, then initializes the transfer by writing to the SSIO
control and baud rate registers. Transmissions are star
by writing the transmit buffer. Receptions are started b
setting the receiver enable bit in the SSIO control registe
The subroutine then polls the SSIO done flag. Once t
transmission or reception is complete, the processing
turns to the original write or read operation.

See the source code comments for more detailed desc
tions of each operation and subroutine.
14

AP-715
3.1 Source Code Listing

$debug
I2C MODULE MAIN
$nolist
$include(auto.inc) ;Equates for this program
$list
 p6pin_w1f equ 0d7h:byte ; (1fd7h)
 p6reg_w1f equ 0d5h:byte ; (1fd5h)
 p6dir_w1f equ 0d3h:byte ; (1fd3h)
 p6mode_w1f equ 0d1h:byte ; (1fd1h)
 ssio_baud_w1f equ 0b4h:byte ; (1fb4h)
 ssio_stcr1_w1f equ 0b3h:byte ; (1fb3h)
 ssio_stb1_w1f equ 0b2h:byte ; (1fb2h)
 ssio_stcr0_w1f equ 0b1h:byte ; (1fb1h)
 ssio_stb0_w1f equ 0b0h:byte ; (1fb0h)

;Constants defined for code readability.

 DevSelWr equ 0a0h ;EEPROM write select byte
 DevSelRd equ 0a1h ;EEPROM read select byte
 DataH equ 080h ;floats data line (P6.7)
 DataL equ 07fh ;drives data line low
 ClockH equ 040h ;floats clock line (P6.6)
 ClockL equ 0bfh ;drives clock line low
 DataClockH equ 0c0h ;floats clock and data line
 DataClockL equ 03fh ;drive clock and data line low
 ToLSIO equ 03fh ;configures pins P6.6 and P6.7 for LSIO
 ToSSIO equ 0c0h ;configures pins for SSIO

rseg at 1ch

 Addr_Pntr: dsw 1 ;pointer for input and output data tables
 Temp_2: dsw 1 ;counter for MULTI_WR and PAGE_WR routines
 Temp_1: dsw 1 ;temp storage for output and input data
 Byte_Addr: dsb 1 ;specifies the EEPROMs address
 Byte_Data: dsb 1 ;output data for the BYTE_WR routine
 Num_Bytes: dsb 1 ;indicates # of reads for seq rd routines
 Data_In: dsb 8 ;input data table, used by read routines

cseg
 DATAOUT: dcb 08h,09h ;output data table, data written to EEPROM
 dcb 0ah,0bh ; by the MULTI_WR and PAGE_WR routines
 dcb 0ch,0dh ;
 dcb 0eh,0fh ;

;Initialize the chip configuration bytes.

cseg at 2018h
 dcb 11001000b ;ccb
15

AP-715
 dcb 20h ;not used

cseg at 201ah
 dcb 11011010b ;ccb1
 dcb 20h ;not used

;*************************** User Code Starts Here ****************************

cseg at 2080h
 di ;disable interrupts
 dpts ;disable PTS
 ld sp,#9000h ;initialize stack
 ldb wsr,#1fh ;maps SSIO1 regs into lower register file
 orb p6dir_w1f,#0c0h ;config pins P6.6 and P6.7 as open drain

;******************************* BYTE_WR **************************************

; The BYTE_WR operation routine writes one byte of data to the EEPROM. This
; routine uses the START, TRANSMIT, SLAVE_ACK, and STOP subroutines. START
; generates a start condition. TRANSMIT uses the SSIO to write the
; write-device-select byte, the address byte (the EEPROM address to which the
; data byte should be written), and the data byte to the EEPROM. Before
; calling TRANSMIT, BYTE_WR writes the transmit data to Temp_1. After each
; write to the EEPROM, SLAVE_ACK is called. This routine generates a ninth
; clock pulse and checks to see that the EEPROM acknowledged each write.
; STOP generates a stop condition.

; Parameters passed to this routine:
; Byte_Addr <--- the EEPROM address to which the data byte should be written
; Byte_Data <--- the data byte

;**

BYTE_WR:
 scall START ;generate start condition
 ; data low then clock low
 ldb Temp_1,#DevSelWr
 scall TRANSMIT ;transmit write-select byte (A0)
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse

 ldb Temp_1,Byte_Addr
 scall TRANSMIT ;transmit byte address
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse

 ldb Temp_1,Byte_Data
 scall TRANSMIT ;transmit data byte
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse
16

AP-715
 scall STOP ;generate stop condition
 ; clock high then data high
 ret

;****************************** MULTI_WR **************************************

; The MULTI_WR operation routine writes four bytes of data to the EEPROM.
; This routine uses the START, TRANSMIT, SLAVE_ACK, and STOP subroutines.
; START generates a start condition. TRANSMIT uses the SSIO to send the
; write-device-select byte, the starting EEPROM address to which the data
; byte should be written, and the data bytes to the EEPROM. Before calling
; TRANSMIT, MULTI_WR writes the transmit data to Temp_1. After each write to
; the EEPROM, SLAVE_ACK is called. This routine generates a ninth clock
; pulse and checks to see that the EEPROM acknowledged each write. STOP
; generates a stop condition.

; Parameters passed to this routine:
; Byte_Addr <--- the EEPROM address to which data byte should be written
; DATAOUT <--- address of data table

;**

MULTI_WR:
 scall START ;generate start condition
 ; data low then clock low
 ldb Temp_1,#DevSelWr
 scall TRANSMIT ;transmit write-select byte (A0)
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse

 ldb Temp_1,Byte_Addr
 scall TRANSMIT ;transmit byte address
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse

 ldb Temp_2,#4 ;set up counter for four bytes
 ld Addr_Pntr,#DATAOUT ;set up Addr_Pntr as output data pointer

NEXT1:
 ldb Temp_1,[Addr_Pntr]+ ;get output data, increment pointer
 scall TRANSMIT ;transmit data byte
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse
 djnz Temp_2,NEXT1 ;continue until 4 bytes have been sent

 scall STOP ;generate stop condition
 ; clock high then data high
 ret
17

AP-715
;******************************* PAGE_WR **************************************

; The PAGE_WR operation routine writes eight bytes of data to the EEPROM.
; This routine uses the START, TRANSMIT, SLAVE_ACK, and STOP subroutines.
; START generates a start condition. TRANSMIT uses the SSIO to send the
; write-device-select byte, the starting EEPROM address to which the data
; byte should be written, and the data bytes to the EEPROM. Before calling
; TRANSMIT, PAGE_WR writes the transmit data to Temp_1. After each write to
; the EEPROM, SLAVE_ACK is called. This routine generates a ninth clock
; pulse and checks to see that the EEPROM acknowledged the write. STOP
; generates a stop condition.

; Parameters passed to this routine:
; Byte_Addr <--- the EEPROM address to which the data byte should be written
; DATAOUT <--- address of data table

; Note: The eight data bytes that this routine will write to the EEPROM must be
; located in the same row of memory (i.e., the five most-significant address
; bits, A7-A3, must be the same).

;**

PAGE_WR:
 scall START ;generate start condition
 ; data low then clock low
 ldb Temp_1,#DevSelWr
 scall TRANSMIT ;transmit write select byte (A0)
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse

 ldb Temp_1,Byte_Addr
 scall TRANSMIT ;transmit byte address
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse

 ldb Temp_2,#8 ;set up counter for eight bytes
 ld Addr_Pntr,#DATAOUT ;set up Addr_Pntr as output data pointer

NEXT2:
 ldb Temp_1,[Addr_Pntr]+ ;get output data, increment pointer
 scall TRANSMIT ;transmit data byte
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse
 djnz Temp_2,NEXT2 ;continue until 8 bytes have been sent

 scall STOP ;generate stop condition
 ; clock high then data high
 ret
18

AP-715
;****************************** CURRENT_RD ************************************

; The CURRENT_RD operation routine reads one byte of data from the EEPROM at
; the current address. The current address is the address specified by the
; EEPROM's internal address counter. This routine uses the START, TRANSMIT,
; RECEIVE, SLAVE_ACK, NO_ACK, and STOP subroutines. START generates a start
; condition. TRANSMIT uses the SSIO to write the read-device-select byte to
; the EEPROM. Before calling the TRANSMIT subroutine, CURRENT_RD writes the
; device-select byte to Temp_1. SLAVE_ACK generates a ninth clock pulse and
; checks to see that the EEPROM received the read-device-select byte.
; RECEIVE uses the SSIO to read the data byte located at the EEPROM's current
; address (specified by the its internal address counter). After the data
; byte is read from the EEPROM, NO_ACK is called. NO_ACK generates a ninth
; clock pulse. STOP generates a stop condition.

; Parameters modified by this routine:
; [Data_In] <--- byte read from the EEPROM

;**

CURRENT_RD:
 scall START ;generate start condition
 ; data low then clock low
 ldb Temp_1,#DevSelRd
 scall TRANSMIT ;transmit read select byte (A1)
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse

 scall RECEIVE ;receive data byte
 stb ssio_stb1_w1f,Data_In ;save the recieved data byte
 scall NO_ACK ;generate 9th clock pulse

 scall STOP ;generate stop condition
 ; clock high then data high
 ret

;****************************** RANDOM_RD *************************************

; The RANDOM_RD operation routine reads one byte of data from the EEPROM at
; the address specified by the address byte. This routine uses the START,
; TRANSMIT, RECEIVE, SLAVE_ACK, NO_ACK and STOP subroutines. START generates
; a start condition. TRANSMIT uses the SSIO to write the read-device-select
; byte and the address byte to the EEPROM. Before calling TRANSMIT,
; RANDOM_RD writes the transmit data to Temp_1. SLAVE_ACK generates a ninth
; clock pulse and checks to see that the EEPROM received the
; read-device-select byte. RECEIVE uses the SSIO to read the data byte
; located at the specifed EEPROM address. After the data byte is read from
; the EEPROM, NO_ACK is called. NO_ACK generates a ninth clock pulse. STOP
; generates a stop condition.
19

AP-715
; Parameters passed to this routine:
; Byte_Addr <--- EEPROM address of the data byte to be read

; Parameters modified by this routine:
; [Data_In] <--- byte read from the EEPROM

;**

RANDOM_RD:
 scall START ;generate start condition
 ; data low then clock low
 ldb Temp_1,#DevSelWr
 scall TRANSMIT ;transmit write-select byte (A0)
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse

 ldb Temp_1,Byte_Addr
 scall TRANSMIT ;transmit byte address
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse

 scall START ;generate new start condition
 ldb Temp_1,#DevSelRd ;load read-select byte
 scall TRANSMIT ;transmit read-select byte (A1)
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse
 scall RECEIVE ;receive data byte
 stb ssio_stb1_w1f,Data_In ;save the received data
 scall NO_ACK ;generate 9th clock pulse

 scall STOP ;generate stop condition
 ; clock high then data high
 ret

;***************************** SEQ_CUR_RD *************************************

; The SEQ_CUR_RD operation routine reads a specified number of bytes of data
; from the EEPROM at the current address. The current address is the address
; specified by the EEPROM's internal address counter. This routine uses the
; START, TRANSMIT, RECEIVE, SLAVE_ACK, MASTER_ACK, NO_ACK and STOP
; subroutines. START generates a start condition. TRANSMIT uses the SSIO to
; write the read-device-select byte to the EEPROM. Before calling TRANSMIT,
; CURRENT_RD writes the transmit byte to Temp_1. SLAVE_ACK generates a ninth
; clock pulse and checks to see that the EEPROM received the
; read-device-select byte. RECEIVE uses the SSIO to read the data bytes
; starting at the EEPROM's current address (specified by its internal address
; counter). After each data byte (except the last byte) is read from the
; EEPROM, MASTER_ACK is called. This routine generates a ninth clock pulse
; and acknowledges the received bytes. NO_ACK, which is called after the
; last byte of data is read, generates a ninth clock pulse. STOP generates a
20

AP-715
; stop condition.

; Parameters passed to this routine:
; Num_Bytes <--- number of bytes to be read from the EEPROM

; Parameters modified by this routine:
; [Data_In]+ <--- bytes read from the EEPROM

;**

SEQ_CUR_RD:
 scall START ;generate start condition
 ; data low then clock low
 ldb Temp_1,#DevSelRd
 scall TRANSMIT ;transmit write-select byte (A0)
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse

 ld Addr_Pntr,#Data_In ;set up Addr_Pntr as input data pointer

NEXT3:
 cmpb Num_Bytes,#1 ;check for last byte; do not want to send
 ; an acknowledge after last byte
 je NEXT4
 scall RECEIVE ;receive data byte
 stb ssio_stb1_w1f,[Addr_Pntr]+ ;save the received data byte, inc pointer
 scall MASTER_ACK ;acknowledge receipt of data byte
 ; generate 9th clock pulse
 decb Num_Bytes ;decrement number of bytes
 sjmp NEXT3 ;read next byte

NEXT4:
 scall RECEIVE ;read last byte
 stb ssio_stb1_w1f,[Addr_Pntr] ;save the received data byte
 scall NO_ACK ;generate 9th clock pulse
 scall STOP ;generate stop condition
 ; clock high then data high
 ret

;***************************** SEQ_RAN_RD *************************************

; The SEQ_RAN_RD operation routine reads a specified number of bytes of data
; starting at a specified EEPROM address. This routine uses the START,
; TRANSMIT, RECEIVE, SLAVE_ACK, MASTER_ACK, NO_ACK and STOP subroutines.
; START generates a start condition. TRANSMIT uses the SSIO to write the
; read-device-select byte and the specified address to the EEPROM. Before
; calling TRANSMIT, SEQ_RAN_RD writes the transmit data to Temp_1. SLAVE_ACK
; generates a ninth clock pulse and checks to see that the EEPROM received
; each write to it. RECEIVE uses the SSIO to read the data bytes starting at
; the specified EEPROM address. After each data byte is read from the EEPROM
21

AP-715
; (except the last one), MASTER_ACK is called. This subroutine generates a
; ninth clock pulse and acknowledges received data. After the last data byte
; is read from the EEPROM, NO_ACK is called. NO_ACK generates a ninth clock
; pulse. STOP generates a stop condition.

; Parameters passed to this routine:
; Num_Bytes <--- number of bytes to be read from the EEPROM
; Byte_Addr <--- starting EEPROM address of the bytes to be read

; Parameters modified by this routine:
; [Data_In]+ <--- bytes read from the EEPROM

;**

SEQ_RAN_RD:
 scall START ;generate start condition
 ; data low then clock low
 ldb Temp_1,#DevSelWr
 scall TRANSMIT ;transmit write-select byte (A0)
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse

 ldb Temp_1,Byte_Addr
 scall TRANSMIT ;transmit byte address
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse

 scall START ;generate new start
 ldb Temp_1,#DevSelRd ;load read-select byte
 scall TRANSMIT ;transmit read-select byte (A1)
 scall SLAVE_ACK ;check to see if EEPROM acknowledged write
 ; generate 9th clock pulse
 ld Addr_Pntr,#Data_In ;set up Addr_Pntr as input data pointer

NEXT6:
 cmpb Num_Bytes,#1 ;check for last byte, do not want to send
 ; an acknowledge after last byte
 je NEXT7
 scall RECEIVE ;receive data byte
 stb ssio_stb1_w1f,[Addr_Pntr]+ ;save the received data byte
 scall MASTER_ACK ;acknowledge receipt of data byte
 ; generate 9th clock pulse
 decb Num_Bytes ;decrement number of bytes
 sjmp NEXT6 ;read next byte

NEXT7:
 scall RECEIVE ;read last byte
 stb ssio_stb1_w1f,[Addr_Pntr] ;save the received data
 scall NO_ACK ;generate 9th clock pulse
 scall STOP ;generate stop condition
22

AP-715
 ; clock high then data high
 ret

;############################## START ###

; START generates a start condition. The pins are switched to their LSIO
; function, then put into a high impedence state so that the external
; resistors can pull the clock and data signals high. The data signal is then
; pulled low.

; The number of NOPs required to meet the timing requirements was determined
; using a 16MHz crystal. Execution time for a NOP is 4 state times.

; Fosc/2 * timing requirement = # of state times required.

;##

START:
 andb p6mode_w1f,#ToLSIO ;switch P6.6 and P6.7 to LSIO
 orb p6reg_w1f,#DataClockH ;float clock and data lines so that they
 ; can be pulled high by external resistor
 nop ;wait 4.7 us; see EEPROM timing spec Tchdx
 nop
 nop
 nop
 nop
 nop
 nop
 andb p6reg_w1f,#DataL ;pull data line low
 nop ;wait 4 us; see EEPROM timing spec Tdlcl
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 andb p6reg_w1f,#ClockL ;pull clock line low
 ret

;######################### RECEIVE AND TRANSMIT ###############################

; RECEIVE switches the pins to their SSIO function, starts the baud-rate
; generator, starts the receiver, and then transfers processing to SSIO_DONE.

; TRANSMIT initializes the transmitter, switches the pins to their SSIO
; function, starts the baud-rate generator, writes the transmit data to the
; transmit buffer to start the transmitter, and then transfers processing to
; SSIO_DONE.
23

AP-715
; Parameters passed to TRANSMIT:
; Temp_1 <--- transmit data

; The SSIO baud rate was determined for 16MHz operation. For other frequencies,
; use the following formula to determine the value to write to the SSIO
; baud-rate register. The most-significant bit must be set; it enables the
; baud-rate generator.

; baudrate = (Fosc/(100kHz * 8))-1.

; SSIO_DONE polls the done flag in the SSIO status register. When the flag is
; set, processing returns to the calling routine.

;##

RECEIVE:
 orb p6mode_w1f,#ToSSIO ;switch lines to SSIO
 ldb ssio_baud_w1f,#093h ;start baud-rate generator
 ldb ssio_stcr1_w1f,#088h ;configure SSIO for receive mode
 ; starts receiver
 sjmp SSIO_DONE

TRANSMIT:
 ldb ssio_stcr1_w1f,#0C8h ;configure SSIO for transmit mode
 orb p6mode_w1f,#ToSSIO ;switch lines to SSIO
 ldb ssio_baud_w1f,#093h ;start baud counter
 stb Temp_1,ssio_stb1_w1f ;write data to transmit buffer; this
 ; starts transmitter

SSIO_DONE:
 andb Temp_1,ssio_stcr1_w1f,#01h
 cmpb Temp_1,#01h ;wait for transmission/reception to finish
 jne SSIO_DONE

 orb p6reg_w1f,#DataH ;float data line so that master or slave
 ; can generate an acknowledge signal by
 ; pulling it low (clk line already low)
 andb p6mode_w1f,#ToLSIO ;switch lines to LSIO
 ret

;############################## SLAVE_ACK #####################################

; SLAVE_ACK floats the clock signal, generating the rising edge of the ninth
; clock pulse. SLAVE_ACK then reads the data signal. If the slave
; acknowledges the last write to it, the data signal will be low. If the
; signal is low, SLAVE_ACK pulls the clock signal low, generating the ninth
; clock pulse falling edge. If an acknowledge condition is not detected (data
; line is high) then processing is transfered to ACK_ERROR.

; The number of NOPs required to meet the timing requirements was determined
24

AP-715
; using a 16MHz crystal. Execution time for a NOP is 4 state times.

; Fosc/2 * timing requirement = # of state times required.

;##

SLAVE_ACK:
 orb p6reg_w1f,#ClockH ;generate rising edge of 9th clock pulse
 nop ;need 4 us or 32 state times at 16 MHz
 nop ; between clock high and clock low; see
 nop ; EEPROM timing spec Tchcl
 andb Temp_1,p6pin_w1f,#80h
 cmpb Temp_1,#80h ;check to see if EEPROM acknowledged the
 je ACK_ERROR ;transmission; if not go to error routine
 andb p6reg_w1f,#DataClockL ;generate falling edge of 9th clock pulse
 ret

ACK_ERROR:
 sjmp ACK_ERROR ;add error routine, EEPROM did not
 ; acknowledge transmission

;############################# MASTER_ACK #####################################

; MASTER_ACK pulls the data line low, generating an acknowledge condition.
; MASTER_ACK the generates the rising edge of the ninth clock pulse, followed
; by the falling edge.

; NO_ACK generates the ninth clock pulse; the data signal is left unchanged.

; The number of NOPs required to meet the timing requirements was determined
; using a 16MHz crystal. Execution time for a NOP is 4 state times.

; Fosc/2 * timing requirement = # of state times required.

;##

MASTER_ACK:
 andb p6reg_w1f,#DataL ;acknowledge reception by pulling data
 ; low
NO_ACK:
 orb p6reg_w1f,#ClockH ;generate rising edge of 9th clock pulse
 nop ;wait 4 us; see EEPROM timing spec Tchcl
 nop
 nop
 nop
 nop
 nop
 nop
 andb p6reg_w1f,#ClockL ;generate falling edge of 9th clock pulse
 ret
25

AP-715
;################################# STOP #######################################

; STOP generates a stop condition. The clock signal is put into a high
; impedance state so that the external resistor can pull it high. The pins are
; then switched to their LSIO function. The data signal is then put into a
; high impedance state so that the external resistor can pull it high.

; The number of NOPs required to meet the timing requirements was determined
; using a 16MHz crystal. Execution time for a NOP is 4 state times.

; Fosc/2 * timing requirement = # of state times required.

;##

STOP:
 orb p6reg_w1f,#ClockH ;float clock line so that ext resistor
 ; can pull it high
 andb p6mode_w1f,#ToLSIO ;switch lines to LSIO
 nop ;wait 4.7 us; see EEPROM timing spec Tchdh
 nop
 nop
 nop
 nop
 nop
 nop
 orb p6reg_w1f,#DataH ;float data line so that external resistor
 ; can pull it high
 ret

;***************************** End of Code ************************************
END
26

AP-715
3.2 Performance Information

Performance information is shown in Table 3. The execution times were measured using an 8XC196 emulator.

Table 3. Operation Execution Times

Subroutine
Execution Time

State Times Time at 16 MHz

BYTE_WR
(writes one byte to EEPROM)

2576 322 µs

MULTI_WR
(writes four bytes to EEPROM)

4896 621 µs

PAGE_WR
(writes eight bytes to EEPROM)

8240 1.03 ms

CURRENT_RD
(reads one byte from EEPROM)

1680 210 µs

RANDOM_RD
(reads one byte from EEPROM)

3456 432 µs

SEQ_CUR_RD†

(reads eight bytes from EEPROM)
9520 1.19 ms

SEQ_RAN_RD†

(reads eight bytes from EEPROM)
7360 920 µs

† This table indicates the execution time for reading eight bytes of data. However, the number of
consecutive bytes that these operations can read is unlimited.
27

	1.0 Introduction
	2.0 Hardware Overview
	2.1 I2C Protocol Overview
	2.2 The EEPROM’s Read and Write Operations
	2.3 Using the JR to Implement I2C

	3.0 Software Overview
	3.1 Source Code Listing
	3.2 Performance Information

	Figures
	Figure 1. Circuit Diagram for Interfacing an EEPRO...
	Figure 2. Start, Stop, and Data Change Conditions
	Figure 3. Device-select Byte
	Figure 4. Write Operations
	Figure 5. Read Operations
	Figure 6. EEPROM AC Waveforms
	Figure 7. Write Operation Flow Charts
	Figure 8. Read Operation Flow Charts
	Figure 9. Read Operation Flow Charts (Continued)

	Tables
	Table 1. EEPROM AC Specifications
	Table 2. Determining Which Write or Read Operation...
	Table 3. Operation Execution Times

