80296S A Microcontroller
User’s Manual

intel.

We Value Your Opinion

Dear Intel Customer:

Your feedback will help us provide the information you need to design systems incorporating the
80296SA microcontroller. Your responses will guide us in developing other manuals and new ver-

sions of this one.

Does the manual contain the information that you need? If not, what's missing?

What do you like the most about this manual?

What do you like the least about this manual?

How would you rate the overall quality of this manual?
excellent very good good

Name

___ fair

Title

Company

Address

City, State or Country

Zip or Postal Code

Phone

Fax

Intel products used

Type of application

Please fax this form to (602)554-7674 or mail it to

Intel Corporation SPG Tech Pubs, Mail Stop CH6-224

5000 W. Chandler Blvd.
Chandler, AZ 85226

or send e-mail to mhbethel@inside.intel.com

Thank you.

intel.

80296SA
Microcontroller
User’'s Manual

September 1996

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth-
erwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
*Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

Copyright © INTEL CORPORATION, 1996

intgl.
CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL

11 MANUAL CONTENTS ...ttt 1-1

12 NOTATIONAL CONVENTIONS AND TERMINOLOGYcccovviiiiiiiiiiieine 1-3

1.3 RELATED DOCUMENTS ..ottt s

14 APPLICATION SUPPORT SERVICES
141 World Wide Webccccoooviiniiiiiiecies
1.4.2 CompuServe Forums
143 FAXBACK SEIVICE ...ooiiiiiiitiiie ettt
144 Bulletin Board System (BBS)coi i

CHAPTER 2
ARCHITECTURAL OVERVIEW
2.1 TYPICAL APPLICATIONS................
2.2 FUNCTIONAL OVERVIEW
221 (0o] = PSP
22.1.1 CPUccccveeen.
2.2.1.2 Register File
222 Execution Unit
2.2.3 Memory Interface Unit
2.2.4 Bus Controller and Chip-select Unit

2.3 INTERNAL TIMINGcciiiiiiei ittt ettt te et e ee e e e e e e e e e e s se s s nenabbnreeees
231 Clock and Power Management LOGICccceoiiieiriiieiiiee et 2-7
2.3.2 INEINAL TIMING et et e e et esne e e s nneee s 2-8

2.3.21 Power Management OPLONSccoiiiieiiiieiiiie et 2-11

2.4 INTERNAL PERIPHERALSottt 2-12
2,41 O POMS ottt ettt et 2-12
2.4.2 SErial I/O (SIO) POIiiiiiiietieeeet ettt 2-12
243 Event Processor Array (EPA) and Timer/COUNLErSccovvveeiiiieniiieeiiiie e 2-12
24.4 Pulse-width Modulator (PWM)coiiiiiiiieiiee e
245 INEITUPE CONTIOIET ...

25 SPECIAL OPERATING MODESccoiiiiiiiiiieie et

2.6 CHIP CONFIGURATION REGISTERS

2.7 DESIGN CONSIDERATIONS FOR 80C196NU TO 80296SA CONVERSIONS......... 2-16

CHAPTER 3

DIGITAL SIGNAL PROCESSING

3.1 DIGITAL SIGNAL PROCESSING OVERVIEWcooiiiiiiieiiiiecce e 3-1

3.2 DSP REGISTERS ... oot 3-1

3.3 ENHANCED INSTRUCTION SET ..cutiiiiiiieiiieiiieeeie et 3-2

80296SA USER'S MANUAL

3.3.1 Addition and Subtraction (ADDC and SUBC) INStruCtionscccceeeveeeniivveeeenninnns
3.3.1.1 ADDC INSIUCHION .iitiiiiiiiiiiiiiesieesre ettt sr e nree e
3.3.1.2 SUBC INStructionccccceeeeiiiiieeenennnns

3.3.2 Multiply-Accumulate (MAC) Instructions

3.33 Move (MSAC and MVAQC) INSIFUCLIONS ...cc.ooiuiiiieeeiiiiiie e e e e
3.3.3.1 Move Saturated Integer From Accumulator (MSAC) Instruction
3.3.3.2 Move Double-word from Accumulator (MVAC) INStructioncccccceeeeriiieeeennn.

3.34 Repeat (RPT, RPTI, RPTxxx, RPTIXXX) INStruCtioNScccoveeiiiiiiiiieeiiiieeee e
3.3.4.1 Repeat Next (RPT) INSIUCHONcccuiiieeiiiiiiiee et et raaeee e
3.3.4.2 Repeat Next Conditional (RPTxxx) Instruction
3.3.4.3 Repeat Next Interruptible (RPTI) Instruction
3.3.4.4 Repeat Next Conditional Interruptible (RPTIxxx) Instruction

3.35 Return from Interrupt (RETI) INStrUCHIONo..evviiiiiiiiii e

3.4 REPEAT COUNTER (RPT_CNT) REGISTERceoiiiiiiiiiieee e
3.5 ACCUMULATOR ...ttt et s e e e e s ann e e e nees

3.5.1 Accumulator RegIStEr (ACC_DX) ..uvviieeeiiiiieeeeeciiiie e e e eriiree e e s sre e e e e s sbee e e e essraaeaeeenees

3.5.2 Accumulator Control and Status Register (ACC_STAT) ..ocoovviiieeeiiiiiieeeeeerieeeeeee
3.5.2.1 Saturation Mode (SME)ccccocuiiieieiiiiiiie et
3.5.2.2 Fractional Mode

3.5.3 Accumulator Operation Limit

3.6 INDEX REGISTERS ...ttt

3.6.1 Index Pointer (IDX0 and IDX1) REQISIEISuvuiiieiiiiiiieeeiiiiiiee e esiiiie e e siireee e e

3.6.2 Index Control Byte (ICBO and ICB1) REQISIErSccvvveeeeiiiiiiie e esviiveee e

3.6.3 Index Reference (ICX0 and ICX1) REQISIEISccocviiiiiiiiiiiiieiiiee e

3.7 APPLICATION EXAMPLE ...ttt e e e e e aiaeanearaees

CHAPTER 4
PROGRAMMING CONSIDERATIONS
4.1 OVERVIEW OF THE INSTRUCTION SETcccititiiiiitie ettt 4-1
41.1 BIT OPEIANGS ..ttt e e anr e e nne e e nnnee s 4-2
41.2 BYTE OPErANUS ...ooeiiiieiitiie ettt ettt e e ene e s nnnee s 4-2
4.1.3 SHORT-INTEGER OPEIandscccceeiiiiiiiiiiiiiiiniiee ittt 4-2
414 WORD OPEIANGS ...oeiiiiiiiiiiiiitie ettt ettt ettt e et e e sb e sbb e e stb e e b e etbeeensreennnes 4-3
415 INTEGER OPEIANAS ...coiiiiiiiiiiiieiiieesitee ettt e et e st e 4-3
4.1.6 DOUBLE-WORD OPEIANASccveiiiiiieiiiieitiiee sttt ettt ettt nneeeaiee e 4-3
4.1.7 LONG-INTEGER OPEIaNdSceeeiiviiiiiiieitiie e sttt eiieeestiee ettt sneesaniee e 4-4
4.1.8 QUAD-WORD OPEIANASeviiiteieeitiee ettt ettt e e e e ninee s 4-4
4.1.9 CONVEIING OPEIANGS ...eeeieiiiiiiie ittt ettt e e e ne e s 4-4
4.1.10 COoNAItIONAI JUMPS ..eiiiiiiiiiiiie sttt ettt sr e e s nre e e et e ennes 4-5
4.1.11 Floating POINt OPEratiONSc.veeiiiiieiiiie ittt e e e et 4-5
4.1.12 EXtended INSIIUCHIONSccuviiiiiieiiee ettt e e ne e 4-5
4.1.13 Instructions That Were Removed from the 80296SAcccoeeviiieiiieeiiiiee e 4-6
4.1.14 Instructions That Were Enhanced for the 80296SAccccviiiiiiiieiiiiic e 4-6
4.1.15 Instructions That Were Added for the 80296SA

Int6|® CONTENTS

4.2 ADDRESSING MODES.cotiiitiiiiiiieiee ettt et
42.1 D1 (=Yoo [0 | =11 [o PP SRTPPRPIN
422 IMMediate AdArESSINGcoiiiiiiiiiie e e e e ae e e e e staaeee s
4.2.3 INAIrECE ADArESSING .cvviiiiii ettt e e e e s sttt e e e e e sanbraaeaeeeaees

4.2.3.1 Extended Indirect ADdressingcccceveeiviiivereeeinnns
4.2.3.2 Indirect Addressing with Autoincrement
4.2.3.3 Extended Indirect Addressing with Autoincrement
4.2.3.4 Indirect Addressing with the Stack POINter ..o
424 INAdEXEA AQUIESSINGeeeiieeieiiiiii ettt e ettt ee e e et e e e e e e beneea e e e e saeneeaeesanees
4.2.4.1 Short-indexed AdAreSSINGc..ueeeiiiiiiiiie et
4.2.4.2 Long-indexed AdAreSSIiNGc..ceeeiiiiiiiieeiiiiiiiee ettt e e e e e e
4.2.4.3 Extended Indexed Addressing
4244 Zero-indeXed AAArESSINGc.ueeeeiiiiiiiiiieeeeiiiieea e eeee e e s eee e e e e e e e e e e e e anbeeeeaaann
4245 Extended Zero-indexed AdAreSSiNgoccoeieiiiiiiieeiieaiaiieee e ee e eeeea e

4.3 CONSIDERATIONS FOR CROSSING PAGE BOUNDARIES........cccooviiieeeeeee 4-13
4.4 SOFTWARE PROTECTION FEATURES AND GUIDELINESc.ococviviiiniiinne, 4-13

CHAPTER 5
MEMORY PARTITIONS
5.1 MEMORY MAP OVERVIEW........uiiiiiiiiiiie ettt see st eenneee e e snseessneeesnnaeesnseeenns 5-1
5.2 MEMORY PARTITIONS ...ttt et e e nbe e e s nen e 5-4
5.2.1 EXTEINAI MEBIMOTY ..iiiiiiiitie ettt e e e st e e e et e e e e s s sbe e e e e s sntbeeeeennnnes 5-5
5.2.2 Program and Special-purpose MEMOIYcovviiiiiiiiiiie it 5-5
5.2.2.1 Program Memory in Page FFH
5.2.2.2 Special-purpOSE MEMOIYeiiiiiiiiiiiiee ettt e e e e e e e e e e e e
5.2.2.3 Reserved Memory LOCAIONScccuueiiiiiiiiiieeeeeaiiee e e et e e e et e e e e e eneeae e e e eneees
5.2.2.4 INEITUPL VECIOIS .viiiiiiiiiiiiiiiiie ettt ettt e e e e e e e e e e s s e s e s s s s s naanrebebranee
5.2.2.5 Chip Configuration BYESccciiiiiiiiieiiiiiiiieeeeiiiie s e e e esitie e e e e eeiarn e e e e einevae e e e annenns
5.2.3 Internal RAM (Code RAM)oiiiiiii ettt e e e e et ae e e et eae e
5.2.4 Peripheral Special-function Registers (SFRS)cccvivveiiiiiiiiee e 5-7
5.2.5 Register File ...
5.2.5.1 General-purpose Register RAM
5.2.5.2 Stack Pointer (SP)cceoviiiiiiieiieiie e
5.2.5.3 CPU Special-function Registers (SFRs)
5.3 WINDOWINGcoiitieiitieeeee et e e et e e et e e st e e asteeesnteeesnseeeassaeeansaeesneneaaseeesanseeennes
5.3.1 Selecting a Window
5.3.2 Addressing a Location Through a Window

5.3.2.1 32-byte WIindowing EXampPleuiiiiiiiiiiiii e
5.3.2.2 64-byte WIndowing EXampleuuiiiiiiiiiii e
5.3.2.3 128-byte Windowing Examplecccccceviiinnnennnnns
5.3.2.4 Using the Linker Locator to Set Up a Window
5.3.3 Windowing and Addressing MOGESccccuiiiieeiiiiiiiee e esiiiie e s esiiiree e e sievaeae e eeens
5.4 FETCHING CODE AND DATA IN THE 1-MBYTE AND 64-KBYTE MODES.............. 5-22

80296SA USER’S MANUAL Int6|®

CHAPTER 6
INTERRUPTS
6.1 OVERVIEW OF THE INTERRUPT CONTROL CIRCUITRYoooiiiiiiiiiniic e 6-1
6.2 INTERRUPT SIGNALS AND REGISTERScooiiiiieiiii e 6-4
6.3 INTERRUPT SOURCES, PRIORITIES, AND VECTOR ADDRESSESccccceevenn. 6-5
6.3.1 Reassigning Vector Addresses
6.3.2 Special Interrupts
6.3.2.1 Unimplemented Opcode
L A 1o 11117 V(=T I - o PRSP
B.3.2.3 NI i

6.3.3 External INterrupt SigNalSvvviiiiiiiiee e
6.3.4 Shared INterrupt REQUESTSuviiiiiieiiiei et te e e e eataae e e e s sasbaaeeeeeenees
6.4 INTERRUPT LATENCY Lottt e e et ee e e e e e s e s s snnssenaneees
6.4.1 Situations that Increase Interrupt LatenCyccooccivieieeiiiiiiee e cciiiie e siiviie e e 6-12
6.4.2 (O 1wl 0] Fo1 g o = 1 =] Lo YA SRR
6.4.2.1 Worst-case INerrupt LAENCYccoooiiiiiiiiiiiiiiiieieiie et e e e e es s srinnneeeneees
6.5 PROGRAMMING THE INTERRUPTS.................
6.5.1 Determining the Source of an Interrupt

CHAPTER 7
/0 PORTS

7.1 1/O PORTS OVERVIEW ...ttt ettt ettt a e sibbe e e e e snsanaeaeas
7.2 CONFIGURING THE PORT PINS
7.2.1 Configuring Ports 1-4 and EPORT

7.2.2 Port Configuration Exampleccccoivnieiiiieeinieeee
7.3 USING THE SPECIAL-FUNCTION SIGNALS

7.3.1 Address Signals (EPORT) ..ocouiiiiiiiiiiiie ettt
7.3.2 Bus-control Signals (POI 2)coouiiiiiiiieiiie e
7.3.3 Chip-select Signals (PO 3)ooiiiiiiiiieiiiee et
7.3.4 EPA and Timer Signals (POt 1)ooouiiiiiiiiiiie et
7.3.5 External Interrupt Signals (Ports 2 and 3)ccccveiiiieiiiieeeiiiee e
7.3.6 PWM SIgNAIS (POI 4) oottt
7.3.7 Serial I/0 Port Signals (POrts 1 and 2)ccceeiiiieiiiiiieiiieeniee e

7.4 I/0 PORT INTERNAL STRUCTURES
7.4.1 Internal Structure for the Extended 1/0 Port (EPORT)

7.4.2 Internal Structure for POIS 1—4 ...
CHAPTER 8
SERIAL I/O (SIO) PORT
8.1 SERIAL 1/O (SIO) PORT FUNCTIONAL OVERVIEWccooiiiiiiiiieeeiiee e 8-1
8.2 SERIAL 1/0O PORT SIGNALS AND REGISTERS ... 8-3
8.3 SERIAL PORT MODES ..ottt ettt e e s eate e e e e et ee e e e ennees 8-6
8.3.1 Synchronous Mode (MOOE)c.ueuuiiiiiiiiiiiee ettt 8-6

Vi

Int6|® CONTENTS

8.3.2 Asynchronous Modes (Modes 1, 2, and 3)ccccveeieiiiiiiiie e 8-7
8.3.21 Mode1l
8.3.2.2 Mode 2
8.3.2.3 Mode 3

8.3.2.4 Multiprocessor COMMUNICALIONSueeiieiiiiiiiiiae e iiiiee e ettt e e e eeeeeee e 8-9
8.4 PROGRAMMING THE SERIAL PORTcoiiiiiiiiiiieieeee ettt 8-10
8.4.1 Configuring the Serial POrt PINSoooiiiiiii e 8-10
8.4.2 Programming the Control REQISLETcoii i a e 8-10
8.4.3 Programming the Baud Rate and CIOCK SOUICEcooiiiiiiiiiiiiiiiiee e 8-13
8.4.4 Enabling the Serial Port Interrupts
8.45 Determining Serial POrt STAtUSoooiuiiiiiiiiii e e
CHAPTER 9
PULSE-WIDTH MODULATOR
9.1 PWM FUNCTIONAL OVERVIEW.....ccutiiiiiiiiiiieiie ettt
9.2 PWM SIGNALS AND REGISTERS
9.3 PWM OPERATION ...ttt sttt ettt sttt skt sae e bt sabesnb e et e e neenne e e
9.4 PWM PERIPHERAL DISABLE CONTROL.....cuitiiiiiiiiiiiiiiiiiiiiieeieeeee e
9.5 PROGRAMMING THE FREQUENCY AND PERIOD
9.6 PROGRAMMING THE DUTY CYCLEttt
9.6.1 Sample CalCUIALIONScouiiiiiiie e s
9.6.2 Enabling the PWM OULPULSooiiiieiiiie et
9.6.3 Generating ANalog OULPULScoiiiiiiiiiieiiiee ettt e
CHAPTER 10
EVENT PROCESSOR ARRAY (EPA)
10.1 EPA FUNCTIONAL OVERVIEW ..ottt ettt a e e e s e s e s e 10-1
10.2 EPA AND TIMER/COUNTER SIGNALS AND REGISTERSccccoociviee e 10-2
10.3 TIMER/COUNTER FUNCTIONAL OVERVIEW........ccociiiiiiiieiieiie e 10-4
10.3.1 Cascade Mode (TIMEr 2 ONIY) ...cooiiiieiiii it ee et e e eeee e 10-6
10.3.2 Quadrature CIOCKING MOAESccoiiiuiiiiiiiiiiiiiiie ettt 10-6
10.4 EPA CHANNEL FUNCTIONAL OVERVIEW 10-8
10.4.1 Operating in Capture Modeccuveeeee. 10-9
10.4.1.1 EPAOverrunscc......... 10-11
10.4.1.2 Preventing EPA Overruns .. 10-12
10.4.2 Operating in COMPAre MOUEoooiuiiiiiiieiiiie et 10-12
10.4.2.1 Generating a Low-speed PWM OULPULccoviiiiiiiieniieeeriiieenieeesie e 10-12
10.4.2.2 Generating the High-speed PWM OULPULcccoiiieeiiiiieiiiceeee e 10-13
10.5 PROGRAMMING THE EPA AND TIMER/COUNTERS.......ccccci i 10-14
10.5.1 Configuring the EPA and Timer/Counter Signalscccccceevriiiinieeeniiieenieee e 10-14
10.5.2 Programming the TIMEISc.ceoiiiiiiiiiiiiiie ettt 10-14
10.5.3 Programming the Capture/Compare Channelscccceovieeeiiiieniee e 10-18
10.6 ENABLING THE EPA INTERRUPTS ..ottt 10-23

vii

80296SA USER’S MANUAL Int6|®

10.7 DETERMINING EVENT STATUS ...ttt 10-25

CHAPTER 11
MINIMUM HARDWARE CONSIDERATIONS

1.1 MINIMUM CONNECTIONSottt
1201 UNUSEA INPULS Loeiiiiiiiiiiiiie ettt ettt e e e ettt ee e e e s ettt e e e e e etbsaaaeeeesnsaaneeeeaanen
11.1.2 1/O Port Pin CONNECLIONScciiiiiiiiieiiiiiiiieiee sttt

11.2 APPLYING AND REMOVING POWERcociiiiiiiieiiciit et

11.3 NOISE PROTECTION TIPSccceviiiiiiricreene,

11.4 THE ON-CHIP OSCILLATOR CIRCUITRY

11.5 USING AN EXTERNAL CLOCK SOURCE

11.6 RESETTING THE DEVICEcocoii ittt
11.6.1 Generating an EXternal RESELocuuiiiiiiiiiiiiie e
11.6.2 Issuing the Reset (RST) INSFUCLIONcooiiieiiiiiiiiiiiei e
11.6.3 Issuing an lllegal IDLPD Key Operandccoooceeeieaiiieeieenanieieeaeesieeeeees e

CHAPTER 12
SPECIAL OPERATING MODES
12.1 SPECIAL OPERATING MODE SIGNALS AND REGISTERS........cccccoiiiiiiiienieniene 12-1
12.2 REDUCING POWER CONSUMPTION
12.3 IDLE MODEottt e e e e e e e e e e ettt e et et aa e e e e e e e e nann
12,4 STANDBY MODE ...ttt e e e e e e e e s s e s s bbbt e e eeeeaaaeeeeenas
12.4.1 Enabling and Disabling Standby MOAecocueeiiiiiiiiiieiiee e
12.4.2 Entering Standby MOOEoooiiiiiiiiiiiie e s
12.4.3 EXiting Standby MOUEccoiiiiiiiiieiic e
12.5 POWERDOWN MODEccoiiiiiiitiiiiiiii ettt eree e e e e e e e e e e s ss s saaanneneneees
12.5.1 Enabling and Disabling Powerdown Mode
12.5.2 Entering Powerdown Mode
12.5.3 Exiting Powerdown Modec.ccccevvviens
12.5.3.1 Generating a Hardware Reset
12.5.3.2 Asserting an External Interrupt Signal
12.5.3.3 SeleCtiNg C1 .ooooiiiiiiiii e
12,6 ONCE MODE......ccotiiiiitiitieee ettt s st e e
12.7 ADDITIONAL POWER CONSERVATION FEATURES.........ccociiieiiiinciceeeee i
12.8 RESERVED TEST MODES.......cccioiiiiiiiiicie ittt

CHAPTER 13
INTERFACING WITH EXTERNAL MEMORY

13.1 INTERNAL AND EXTERNAL ADDRESSEScccccoiiiiiiiniienie e

13.2 EXTERNAL MEMORY INTERFACE SIGNALS AND REGISTERS

13.3 THE CHIP-SELECT UNIT....oiitiitiiieiiieiie sttt sttt sre e s
13.3.1 Defining Chip-select Address RANGESccceeeiiiiiiiiiiiee et
13.3.2 Controlling BUS PAramMetersoiuueiieiaiiiiiiieeeeiiiiieee e et ee e e e seeeeae e e s eeneeeaeaaanes

viii

Int6|® CONTENTS

13.3.3 Chip-select Unit Initial CoNditioNSccocciiiiieiiiiiiiic e 13-14
13.3.4 Programming the Chip-seleCt REQISIErSccocviiiiiieiiiiiiiee e 13-14
13.3.5 Example of @ Chip-SeleCt SEIUPccvviiieiiiiiiieie e e 13-15
13.3.6 Example of a Chip-select Setup Using the Remap Featurecccccvvveeeevnnnn. 13-16
13.4 CHIP CONFIGURATION REGISTERS AND CHIP CONFIGURATION BYTES 13-17

13.5 BUS WIDTH AND MULTIPLEXING
13.5.1 A 16-bit Example System

13.5.2 16-Dit BUS TIMINGS ..ottt et et e e e et et e e e e e senneeeeeeaans
13.5.3 8-Dit BUS TIMINGS .ooiiiiiiiiie ettt ettt e e e et e e e e e reeeaaseanee
13.5.4 Comparison of Multiplexed and Demultiplexed BUSESccccoviiiiiiieeiiiiiiiiineeenn. 13-29
13.6 WAIT STATES (READY CONTROL).....ccitiiiteiiiiieeie ettt 13-29
13.7 BUS-HOLD PROTOGCOLceiitiiiiiieitie sttt ettt 13-32
13.7.1 Enabling the Bus-hold ProtocCol ... 13-34
13.7.2 Disabling the Bus-hold Protocol ... 13-34
13.7.3 HOI LAENCY ...ttt ettt e e e e et et e e e e e stneneeaeeanes 13-35
13.7.4 Regaining BUS CONIIOloiuuiiiieiiiiiiiiee ettt e e ree e e e 13-35
13.8 WRITE-CONTROL MODES ...ttt ettt 13-35
13.9 SYSTEM BUS AC TIMING SPECIFICATIONScooiiiiiiiiieiiieeeiece e 13-38
13.9.1 Deferred BUS-CYCIE MOUEccoouiiiiiiiiiiiie ittt 13-40
13.9.2 Explanation of AC SYMDOIScccvviiiiiiiiiiiiiie e 13-41
13.9.3 AC Timing DefiNItIONSc.eviiiiiiiiiiiieiei et e 13-42
APPENDIX A

INSTRUCTION SET REFERENCE

APPENDIX B
SIGNAL DESCRIPTIONS

B.1 FUNCTIONAL GROUPINGS OF SIGNALS
B.2 SIGNAL DESCRIPTIONS ...
B.3 DEFAULT CONDITIONS ...ttt ettt e s e e

APPENDIX C
REGISTERS

GLOSSARY

INDEX

80296SA USER’S MANUAL Int6|®

FIGURES
Figure Page
2-1 80296SA Detailed BIOCK DIagramccccocuirieieiiiiiiiie e eciies e e s e e siaaaee e senees 2-2
2-2 80296SA BIOCK DIAQIaM ..c..uvviiiee ettt ee ettt et e e s e e e et ae e e e s sataaeae e s erraes
2-3 Block Diagram of the Core
2-4 Instruction Pipeline.....................
2-5 ClOCK CFCUITTY ettt ettt e e ettt e e e e et e e e s mnbe e e e e e nnbee e e e e anreneeaean
2-6 Internal Clock Phases (Assuming PLL is Bypassed)........ccoooueieeaiiiiiiieee e 2-8
2-7 Effect of Clock Mode on CLKOUT Frequency
2-8 Chip Configuration 0 (CCRO0) Register
2-9 Chip Configuration 1 (CCR1) Register
3-1 MSAC INSLrUCtiON EXAMIPIE......eiiiiieei ittt ee e e eeeeeee e
3-2 Repeat Counter (RPT_CNT) REQISIENeiiiiiiiiiiee et
3-3 Accumulator (ACC_0X) REGISLEL ...cciiieeiiei e ee et ee e e e e e eieee e e

3-4 Accumulator Control and Status (ACC_STAT) Register
3-5 Index Pointer (IDXx) Registers .
3-6 Index Control Byte (ICBX) REQISIEIS........ccieeiiiiiiie it e e
3-7 Index Reference (ICXX) REJISIEIS......c.uuiiiieeiieeiee ettt
3-8 Application Code lllustration

3-9 FIR Filter Block Diagram

5-1 16-Mbyte Address Space...........

5-2 Pages FFH and O0H............ooiiiiiiiie ettt e e st e e e e s eaeeeaeennees
5-3 Register File MEmOIY MaP ..coccoiiuiiiei ettt ettt e e e et baa e e s eevaeeae s
5-4 Windowing .
5-5 Window Selection (WSR) REQISIENcoiiiieiiieeee et
5-6 Window Selection 1 (WSR1) REQISLENccei ittt e et e e
6-1 Interrupt Structure Block Diagram...................

6-2 Interrupt Service Flow Diagram.....................

6-3 NMI Pending (NMI_PEND) Register

6-4 Interrupt Control (INT_CONX) Registers

6-5 Interrupt Vector Address (VECT_ADDR) ReQISIErcooiiiiiiiiiiiiiieeeeiiee e
6-6 External Interrupt Control (EXTINT_CON) Register

6-7 Worst-case Interrupt Response Time

6-8 Interrupt Mask (INT_MASK) Register .
6-9 Interrupt Mask 1 (INT_MASKL) REQISIENccccuiiiieeiciiiiie ettt a e e
6-10 Interrupt In-progress (IN_PROGX) REQISLEIScccoiuuiiirieiiiiiiiea e eiiiiiie e e e siiieeee e
6-11 Interrupt Pending (INT_PEND) Register

6-12 Interrupt Pending 1 (INT_PEND1) Register

7-1 EPORT Internal Structurec.cccoveeeennnn.

7-2 POrts 1—4 INternal SHUCTUIEcooiviiiie ittt e
8-1 SIO Block Diagram (MOAE 0)......cccuuriieeiiiiiiiee et e e e et e e e e eittre e e e e sanaaee e e s strae e e e s snveeeas
8-2 SIO Block Diagram (Mode 1, 2, and 3)

8-3 YT o [0 Ty 11 o USROS
8-4 Serial Port Frames for MOde 1ooiiiiiiiie e
8-5 Serial Port Frames in Mode 2 and 3..............

8-6 Serial Port Control (SP_CON) Register

Int6|® CONTENTS

FIGURES
Figure Page
8-7 Serial Port Baud Rate (SP_BAUD) REQIStercvviiiiiiiiiecciiiee et 8-14
8-8 Serial Port Status (SP_STATUS) REQISIENccoiiiieeiiiiieee e 8-17
9-1 PWM BIOCK DIGQIAIM ...ioiiiiiiiie ettt e ettt e e e e e e e et be e e e et aa e e e s nnaaeaeaaaas
9-2 PWM Output Waveforms
9-3 Control (CON_REGO) REQISLETcoueiieiiieiiiiiie e ettt et e e e e e e e ameeee e e e anneaee 9-7
9-4 PWM Control (PWMx_CONTROL) REQISLEIScoiiiiiiiiiieeeeiiiiee et 9-8
9-5 D/A Buffer Block Diagram...........ccccceveeeiiivereeeniiiineeesinnnn.
9-6 PWM to Analog Conversion Circuitry
10-1 EPA Block Diagram.........ccccceeeviinieeesiciviinenn, .
10-2 EPA TIMEI/COUNLEISiiiiieie ettt ettt ettt e e et ee e e e et e ee e e e anne e e e e s anseeeaannn
10-3 Quadrature Mode INTEIACEuuuiiiiiiiiieiie e e e e e e e
10-4 Quadrature Mode Timing and Count.............
10-5 A Single EPA Capture/Compare Channel
10-6 EPA Simplified Input-capture Structure..........
10-7 Valid EPA INPUE EVENLS ...viiiiiiiciie ettt et a e e e etraeeee e
10-8 Timer 1 Control (TLCONTROL) Register
10-9 Timer 2 Control (T2CONTROL) Register
10-10 Timer x Time (TIMERX) Registers.................
10-11 EPA Control (EPAXx_CON) Registers.............
10-12 EPA Time (EPAX_TIME) REQISIEISuvviiiieiiiiiiie e e eiiitie e e esttteee e e e st ae e e s enivanaee e e
10-13 EPA Interrupt Mask (EPA_MASK) REQISIENcoiiiirieiiiiiiiee et e e 10-24
10-14 Interrupt Mask (INT_MASK) Register............
10-15 Interrupt Mask 1 (INT_MASK1) Register
10-16 EPA Interrupt Pending (EPA_PEND) ReQISIEr.......ccueiiiiiiiiiieee e 10-26
11-1 Minimum Hardware Connectionsccocveeviveeniveennne.
11-2 Power and Return Connections
11-3 On-chip Oscillator Circuit............cccocvvvveeerinns
11-4 External Crystal CONNECLIONSoiiiiiiiiie ettt ee et eeeee e eees
11-5 External Clock CONNECHIONSuiiiiiiiiie et e e e e e e eaee
11-6 External Clock Drive Waveforms...................
11-7 Reset Timing Sequence
11-8 Internal Reset Circuitry...............
11-9 MINIMUM RESEE CIICUIL ..eveeiiiiiie ettt e e eaee
11-10 Example of a System ReSet CIrCUIL..........ciiiiiiiiiiiee it ieeeeee e
12-1 Clock Control During Power-saving Modes
12-2 Power-up and Power-down Sequence When Using an External Interrupt................. 12-9
12-3 EXIEINAI RC CIrCUIL....eeeeiiiee ettt e
12-4 Typical Voltage on the RPD Pin While Exiting Powerdown
13-1 Calculation of a Chip-Select QULPUL.........cc.eeiee it
13-2 Address Compare (ADDRCOMX) Registers..
13-3 Address Mask (ADDRMSKX) REQISIEISccoiiuuiiiiieeiiiieiie et eieeee e
13-4 Bus Control (BUSCONX) REQISIEISuueiieeiiiiiiiee e eiiitiie e rtiieee e eeieeee e eeeeeeae e
13-5 Example System for Setting Up Chip-select Outputs
13-6 Chip Configuration 0 (CCRO) REQISIENuviieeiiiiiiiee ettt

Xi

80296SA USER’S MANUAL Int6|®

Figure
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
B-1
B-2

Xii

FIGURES

Chip Configuration 1 (CCR1) REQISIEruuviieeiiiiiiiie ettt
Multiplexing and Bus Width OptionS..........ccoiiiiiiieiiiiiiiie e
Bus Activity for FOUr TYPeS Of BUSES........ccciiiiiiiiiieeiiiiiiie e s esttiree e e siveee e e sivaanee e
16-bit External Devices in Demultiplexed Mode
Timings for Multiplexed and Demultiplexed 16-bit BUSES...........c.eeeeeiiiiiiieeeeeriiieenn. 13-26
Timings for Multiplexed and Demultiplexed 8-bit BUSES...........cccuuvieeiiiiiiieeeeeriiieeen. 13-28
READY Timing Diagram — Multiplexed Mode..................

READY Timing Diagram — Demultiplexed Mode
HOLD#, HLDA# TiMIiNGccovviriiiiiiiecie e

Write-control Signal WavefOrmMsc.uueiii i
Decoding WRL#H and WRHZH ...
A System with 8-bit and 16-bit Buses
Multiplexed System Bus Timingccccveee..

Demultiplexed System Bus Timing....................

Deferred Bus-cycle Mode Timing Diagram..........ccoeeeiiivieeeeeiiiiie e e ssviinee e
80296SA 100-pin SQFP PaCKAJEciieiiiiiiiiei et
80296SA 100-pin QFP PACKAGEeeeieiiiiiiiieei ettt e e

Int6|® CONTENTS

TABLES
Table
1-1 Handbooks and Product INfOrmationcooeeiiiiiiiinncc e
1-2 P Y o] o] [Tor= o g T A\ To] (=R PPPPUPPRRN
1-3 MCS® 96 Microcontroller DAtasSheets...............c.cvevveeeveeeseeeeseeeeeeseees e eseeseseeeneneeen
1-4 Intel Application Support Services
2-1 Features of the 8029BSA ...t e e e e e e e nnee
2-2 State Times at Various FrEQUENCIESeiiiiiiiiieiear e e e
2-3 Relationships Between Input Frequency, Clock Multiplier, and State Times
3-1 DSP Control and Status Registers................
3-2 Enhanced Instruction Set for the 80296SA
3-3 Multiply-Accumulate Instruction Bit Definition
3-4 Multiply-Accumulate INSrUCtION Stuiiiiiiiiiiiie et
35 Accumulator Usage Examples
3-6 Repeat INStructionscccceeeeeivieeieenicinenn,
3-7 Repeat Instruction Exit Conditions
3-8 Effect of SME and FME Bit COmMbDINatioNS............coviiiiiiiiiiiiiecceee e
4-1 Data TYPe DefiNItiONSeeiiiiiiiiiee et a e
4-2 Equivalent Data Types for Assembly and C Programming Languages............ccccccuue.
4-3 CONVEITING DAA TYPES ... tieeiiei it ee ettt e e e e et e e e s ettt e e e e s e tae e e e e esannbeeeeeeannntaeeeaeannees
4-4 Definition of Temporary Registers
5-1 B0296SA MEMOIY MaAP..iiiiiiiiiiiiiie ittt e e e e e e e e s s b e et e e eaeasasssssassnnnbtntnranees
5-2 80296SA Special-purpose Memory Addresses
5-3 Peripheral SFRS ..o
5-4 Register File MemOory AQArESSEScoiuueiiieeiiiiee ettt eieee e
5-5 B0296SA CPU SFRS ...cccuiiiiiiiiesitie e et eee st e st e st e e staeeessaeeesneeaessteeesnseeesnseeesnaeean
5-6 Selecting a Window of Peripheral SFRS...........cccoiiiiiiiiiieeeec e
5-7 Selecting a Window of the Upper Register File...........cccoveviiiiiiiiiii e
5-8 Selecting a Window of the Internal Code RAM
5-9 Selecting a Window of EXternal MEmOIY..........coocviiiiiiiiiiieeeeee e
5-10 Windowed Base Addresses
6-1 Interrupt Signalscccocveennee.
6-2 Interrupt Registers
6-3 Interrupt Sources, Vectors, and Priorities
6-4 INT_CONX Address and RESEE SAteSc.ccciiiviiiieciiiirie et ese e
6-5 Programming the Interrupts
7-1 Microcontroller I/0O Ports.............
7-2 Microcontroller Port Signals
7-3 Port Control and Status Registers.........ccocceevcvviieeeeinnnne
7-4 Control Register Values for Each Configuration
7-5 Port Configuration EXamPIEc.cuviiiiiiiiiiiie et
7-6 Port Pin States After Reset and After Example Code Execution
7-7 AAArESS SIONQUS ..ttt e e e et e e e e et e e e e e e nee e e e e s antbeeeeeannnes
7-8 BUS-CONEIOl SIGNAIS ...cooeiiieiii ettt e e s e e e e annes
7-9 Chip-select Signals......................

7-10 EPA and Timer Signals

xiii

80296SA USER’S MANUAL Int6|®

Table
7-11
7-12
7-13
8-1
8-2
8-3
8-4

9-1
9-2
9-3
9-4
10-1
10-2
10-3
10-4
10-5
11-1
12-1
12-2
12-3
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
A-1

A-2
A-3

A-5
A-6
A-7
A-8

Xiv

TABLES

Page
External INterrupt SIgN@AIScoouiiiiii e e e sbaee e e eaee 7-10
PWIM SIGNAIS ...ttt e e e et e e e e e bt e e s eatea e e e e enssraeaaeennes
Y (@ S (o T 1 =SSP PSRRI
Serial Port Signals
Serial Port Control and Status REQISIEIS.....c.coiiuiiiiiiiiiiii e
Port Register Settings for the SIO SIigNaAlSuoeiiiiiiiie e

SP_BAUD Values When Using the Internal Clock at 25 MHz
SP_BAUD Values When Using the Internal Clock at 50 MHz
PWM SIgNalS....ccoiiiiiiiii ittt et

PWM Control and Status REQISEIS.uiiiiiiiiiiiee et e e
PWM OULPUL FIEOUENCIES .ottt ettt ettt ee e e et e e e e e e e e e e e annes
PWM Output Alternate Functions...................

EPA and Timer/Counter Signals....................

EPA Control and Status Registers
Quadrature Mode Truth TabIleuviiii i
Action Taken When a Valid EAQe OCCUIScccoeiiiiiiiaeaiiiee et
Example EPA Control Register Settings
Minimum Required Signals...........cccccceeennee.

Operating Mode Control Signalscccccveveeiiiiiieneeeiens
Operating Mode Control and Status Registers
80296SA CIOCK MOUES ..ottt et
Example of Internal and External Addresses
BUS-CONEIOI SIGNAISceeiieiee e
External Memory Interface REJISLEIScvviiiiiiiiriie et
Base Addresses for Several Sizes of the Address Range

BUSCONX Registers for the Example System
Results for the Chip-select Examplecccccvveeeeeinnnen.

READY Signal Timing DefinitioNS.uiiiiiiiiiee e
HOLD#, HLDA# Timing DefinitioNscooiiiiiiiiaiiieee e
Maximum Hold LatencCycoccueiieeiiiiiieeeeniiiiee e

Write Signals for Standard and Write Strobe Modes
AC Timing Symbol DefinitionSccouiiieiiiiiiiiie e
External Memory Systems Must Meet These Specifications
The Microcontroller Meets These Specifications
Opcode Map (Left Half)eveiiiie e
Opcode Map (Right Half)
Processor Status Word (PSW) Flags
Effect of PSW Flags or Specified Conditions on Conditional Jump Instructions......... A-5
PSW Flag Setting Symbols
Operand Variables
INSTFUCTION SEL ...ttt e et e e e e ettt e e e e eat e e e e s s e be e e e e s sannaeeeaeanns
INSTPUCEION OPCOUES ...ttt e e e e e e e e e e e e e nnraeaeeenn
Number of Bytes for Each Instruction and Hexadecimal Opcodes............ccccvvveeennn. A-64
Instruction Execution Times (in State TiMEeS)ucceiiiiiieiee e e e A-72

Int6|® CONTENTS

Table

B-1
B-2

B-4
B-5
c-1
c-2

c-4
C-5
C-6
c-7

C-9

C-10
C-11
C-12
C-13
C-14
C-15
C-16
C-17

TABLES

80296SA Signals Arranged by FUNCLONoooiiiiiiiiiiiiicic e B-1
Description of Columns Of Table B-3.........cooiiiiiiieiiiiiiec et B-4
SIGNAl DESCHIPLONSeeiiiiiiiii et e e e et e e s e e e st ar e e e e entaaaeaeas
Definition of Status Symbols
80296SA Default Signal CoNAItiONSc.eeeiiiiiiiiieie e
Modules and Related REQISIEScciiiuiiiiiiiiiiiee et
Register Name, Address, and Reset State....

Effect of SME and FME Bit Combinations.....

ADDRCOMx Addresses and Reset States....

ADDRMSKXx Addresses and Reset States
BUSCONX Addresses and ReSet StatesS.........cccuuiiieiiiiiiiie e
EPAx_CON Addresses and Reset States
EPAx_TIME Addresses and Reset States

INT_CONXx Address and Reset States..........

Px_DIR Addresses and RESEt StateS........cciviuviiiiiiiiiiiee et e siireie et seiaee e
Px_MODE Addresses and ReSet StatesSoocueiiiaiiiiiiieeiiiiiie et
Special-function Signals for Ports 1—4...........

Px_PIN Addresses and Reset States............

Px_REG Addresses and Reset States
PWMx_CONTROL Addresses and Reset States
WSR Settings and Direct Addresses for Windowable SFRS............cccccoccvivieeecinnen. C-63
WSR1 Settings and Direct Addresses for Windowable SFRS............cccccciiiiiiinnnen. C-67

XV

intel.
1

Guide to This Manual

intel.

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 80296SA embedded microcontroller. It is intended for use by both
software and hardware designers familiar with the principles of microcontrollers. This chapter
describes what you'll find in this manual, lists other documents that may be useful, and explains
how to access the support services we provide to help you complete your design.

1.1 MANUAL CONTENTS

This manual contains several chapters and appendixes, a glossary, and an index. This chapter,
Chapter 1, provides an overview of the manual. This section summarizes the contents of the re-

maining chapters and appendixes. The remainder of this chapter describes notational conventions
and terminology used throughout the manual, provides references to related documentation, de-

scribes customer support services, and explains how to access information and assistance.

Chapter 2 — Architectural Overview — provides an overview of the device hardware. It de-
scribes the core, internal timing, internal peripherals, and special operating modes. It also de-
scribes the chip configuration bytes (CCBs) and the chip configuration registers (CCRs), which
control many aspects of the microcontroller’s operation.

Chapter 3— Digital Signal Processing— describes the advanced mathematical features of the
80296SA that enable it to perform digital signal processing functions. The 80296SA incorporates
enhanced instructions for multiplication, shifting, and multiply-accumulate operations. It also has

a dedicated 32-bit barrel shifter for manipulating data and a 40-bit accumulator register for stor-
ing the results. The instructions and accumulator support signed and unsigned integers as well as
signed fractional data.

Chapter 4 — Programming Considerations —provides an overview of the instruction set, de-
scribes general standards and conventions, and defines the operand types and addressing mode
supported by the MC96 microcontroller family. (For additional information about the instruc-

tion set, see Appendix A.)

Chapter 5 — Memory Partitions — describes the addressable memory space of the device. It
describes the memory partitions, explains how to use windows to increase the amount of memory
that can be accessed with direct addressing, and lists all special-function registers (SFRs) with
their addresses.

Chapter 6 — Interrupts — describes the interrupt controller and programmable priority
scheme. It also explains interrupt programming and control.

I 1-1

80296SA USER'S MANUAL Int6|®

Chapter 7 — 1/0O Ports — describes the input/output ports and explains how to configure the
pins for general-purpose input/output or for special functions.

Chapter 8 — Serial I/0 (SIO) Port —describes the asynchronous/synchronous serial I/O (S10)
port and explains how to program it.

Chapter 9 — Pulse-width Modulator — provides a functional overview of the pulse width
modulator (PWM) modules, describes how to program them, and provides sample circuitry for
converting the PWM outputs to analog signals.

Chapter 10 — Event Processor Array (EPA) —describes the event processor array, a tim-
er/counter-based, high-speed input/output unit. It describes the timer/counters and explains how
to program the EPA and how to use the EPA to produce pulse-width modulated (PWM) outputs.

Chapter 11 — Minimum Hardware Considerations —describes options for providing the ba-
sic requirements for device operation within a system, discusses other hardware considerations,
and describes device reset options.

Chapter 12 — Special Operating Modes —provides an overview of the idle, powerdown,
standby, and on-circuit emulation (ONCE) modes and describes how to enter and exit each mode.

Chapter 13 — Interfacing with External Memory — lists the signals and registers used for
interfacing to external devices. It discusses the bus width and memory configurations, the bus-
hold protocol, write-control modes, and internal wait states and ready control. Finally, it provides
timing information for the system bus.

Appendix A — Instruction Set Reference —provides reference information for the instruction

set. It describes each instruction; defines the processor status word (PSW) flags; shows the rela-
tionships between instructions and PSW flags; and lists hexadecimal opcodes, instruction
lengths, and execution times. (For additional information about the instruction set, see Chapter 4,
“Programming Considerations.”)

Appendix B — Signal Descriptions —provides reference information for the device pins, in-
cluding descriptions of the pin functions, reset status of the 1/0 and control pins, and package pin
assignments.

Appendix C — Registers —provides a compilation of all special-function registers (SFRs), ar-
ranged alphabetically by register mnemonic. It also includes tables that list the windowed direct
addresses for all SFRs in each possible window.

Glossary —defines terms with special meaning used throughout this manual.

Index — lists key topics with page number references.

1-2 I

Int€|® GUIDE TO THIS MANUAL

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used throughout this manual. The Glossary defines
other terms with special meanings.

The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used in an instruction, the symbol prefixes
an immediate value in immediate addressing mode.

addresses In this manual, both internal and external addresses use the number
of hexadecimal digits that correspond with the number of available
address bits. For example, the highest possible internal address is
shown as FFFFFFH, while the highest possible external address is
shown as FFFFFH.

When writing code, use the appropriate address conventions for the
software tool you are using. (In general, assemblers require a zero
preceding an alphabetic hexadecimal character and an “H” following
any hexadecimal value, so FFFFFFH must be written as OFFFFFFH.
ANSI ‘C’ compilers require a zero plus an “x” preceding a
hexadecimal value, so FFFFFFH must be written as OxFFFFFF.)
Consult the manual for your assembler or compiler to determine its
specific requirements.

assert and deassert The termsassertand deassertrefer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (low or high) is defined by the signal name. Active-low
signals are designated by a pound symbol (#) suffix; active-high
signals have no suffix. To assert RD# is to drive it low; to assert ALE
is to drive it high; to deassert RD# is to drive it high; to deassert ALE
is to drive it low.

clear and set The termgclear andsetrefer to the value of a bit or the act of giving
it a value. If a bit is cleaits value is “0”; clearing a bit gives it a “0”
value. If a bit is set, its value is “1"; setting a bit gives it a “1” value.

f Lowercase “f" represents the internal operating frequency. See
“Internal Timing” on page 2-8 for details.

instructions Instruction mnemonics are shown in upper case to avoid confusion.
In general, you may use either upper case or lower case when
programming. Consult the manual for your assembler or compiler to
determine its specific requirements.

I 1-3

80296SA USER'S MANUAL Int6|®

italics

numbers

register bits

register names

reserved bits

reserved registers

1-4

Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x andy, wherex represents the first variable agdepresents the
second variable. For example, in registg&r MODEY, X represents

the variable that identifies the specific port associated with the
register, andy represents the register bit variable (7:0 or 15:0).
Variables must be replaced with the correct values when configuring
or programming registers or identifying signals.

Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the charactét. Decimal and binary numbers are
represented by their customary notations. (That is, 255 is a decimal
number and 1111 1111 is a binary number. In some cases, th8letter
is appended to binary numbers for clarity.)

Bit locations are indexed by 7:0 (or 15:0), where bit 0 is the least-
significant bit and bit 7 (or 15) is the most-significant bit. An

individual bit is represented by the register name, followed by a
period and the bit number. For example, WSR.7 is bit 7 of the
window selection register. In some discussions, bit names are used.

Register mnemonics are shown in upper case. For example, TIMER2
is the timer 2 register; timer 2 is the timer. A register name containing
a lowercase italic character represents more than one register. For
example, thex in Px_REG indicates that the register name refers to
any of the port data registers.

Certain bits are described ssservedbits. In illustrations, reserved
bits are indicated with a dash (—). These bits are not used in this
device, but they may be used in future implementations. To help
ensure that a current software design is compatible with future imple-
mentations, reserved bits should be cleared (given a value of “0”) or
left in their default states, unless otherwise noted. Do not rely on the
values of reserved bits; consider them undefined.

Certain special-function register (SFR) locations are described as
reserved These locations are not used in this microcontroller, but
they may be used in future implementations. To help ensure that a
current software design is compatible with future implementations,
do not use these locations.

Int€|® GUIDE TO THIS MANUAL

signal names Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. For example, the EPA signals are named
EPAOQ, EPAL, EPA2, et®ort pins are represented by the port abbre-
viation, a period, and the pin number (e.g., P2.0, P2.1); a range of
pins is represented byk:z (e.g., P2.4:0 represents five port pins:
P2.4, P2.3, P2.2, P2.1, P2.0). A pound symbol (#) appended to a
signal name identifies an active-low signal.

t Lowercase “t” represents the internal operating period. See “Internal
Timing” on page 2-8 for details.

units of measure The following abbreviations are used to represent units of measure:
A amps, amperes

DCV direct current volts
Kbytes kilobytes

kHz kilohertz

kQ kilo-ohms

mA milliamps, milliamperes
Mbytes megabytes

MHz megahertz

ms milliseconds

mw milliwatts

ns nanoseconds

pF picofarads

W waltts

\% volts

MA microamps, microamperes
uF microfarads

VS microseconds

uwW microwatts

X Lowercasex (italic) represents a variable. Variables must be replaced
with the correct values when configuring or programming registers
or identifying signals.

X Uppercase X (no italics) represents an unknown value or an
irrelevant (“don’t care”) state or condition. The value may be either
binary or hexadecimal, depending on the context. For example,
2XAFH (hex) indicates that bits 11:8 are unknown; 10XXB (binary)
indicates that the two least-significant bits are unknown.

y Lowercasgy (italic) represents a variable. Variables must be replaced
with the correct values when configuring or programming registers
or identifying signals.

I 1-5

80296SA USER’S MANUAL

1.3 RELATED DOCUMENTS

intel.

The tables in this section list additional documents that you may find useful in designing systems
incorporating MCS 96 microcontrollers. These are not comprehensive lists, but are a representa-
tive sample of relevant documents. For a complete list of available printed documents, please or-
der the literature catalog (order number 210621). To order documents, please call the Intel

literature center for your area (see Table 1-4 on page 1-8).

Table 1-1. Handbooks and Product Information

Title and Description Order Number

Intel Embedded Quick Reference Guide 272439

Solutions for Embedded Applications Guide 240691

Data on Demand fact sheet 240952

Data on Demand annual subscription (6 issues; Windows* version) 240897
Complete set of Intel handbooks on CD-ROM.

Handbook Set — handbooks and product overview 231003
Intel’s product line handbooks containing datasheets, application notes, article
reprints and other design information on microprocessors, peripherals, embedded
controllers, memory components, single-board computers, microcommunications,
software development tools, and operating systems.

Embedded Microcontrollers t 270646
Datasheets and architecture descriptions for Intel’s three industry-standard micro-
controllers, the MCS 48, MCS 51, and MCS 96 microcontrollers.

Peripheral Components 296467
Comprehensive information on Intel’s peripheral components, including
datasheets, application notes, and technical briefs.

Flash Memory (2 volume set) 210830
A collection of datasheets and application notes devoted to techniques and
information to help design semiconductor memory into an application or system.

Packaging * 240800
Detailed information on the manufacturing, applications, and attributes of a variety
of semiconductor packages.

Automotive Products 231792
Application notes and article reprints on topics including the MCS 51 and MCS 96
microcontrollers. Documents in this handbook discuss hardware and software
implementations and present helpful design techniques.

Embedded Applications (1995/96) 270648
Datasheets, architecture descriptions, and application notes on topics including
flash memory devices, networking chips, and MCS 51 and MCS 96 microcon-
trollers. Documents in this handbook discuss hardware and software implementa-
tions and present helpful design techniques.

Development Tools Handbook 272326
Information on third-party hardware and software tools that support Intel's
embedded microcontrollers.

T Included in handbook set (order number 231003)

1-6

Int€|® GUIDE TO THIS MANUAL

Table 1-2. Application Notes

Title Order Number
AP-125, Designing Microcontroller Systems for Electrically Noisy Environments T11 210313
AP-155, Oscillators for Microcontrollers Tt 230659
AP-406, MCS® 96 Analog Acquisition Primer TT1 270365
AP-445, 8XC196KR Peripherals: A User’s Point of View T 270873
AP-477, Low Voltage Embedded Design Tt 272324
AP-715, Interfacing an I2C Serial EEPROM to an MCS® 96 Microcontroller 272680
AP-717, Migration from the 8XC196Nx to the 80296SA 272730

T Included in Automotive Products handbook (order number 231792)
Tt Included in Embedded Applications handbook (order number 270648)
1t Included in Automotive Products and Embedded Applications handbooks

Table 1-3. MCS® 96 Microcontroller Datasheets

Title Order Number
8XC196NP Commercial CHMOS 16-Bit Microcontroller ¥ 272459
80C196NU Commercial CHMOS 16-Bit Microcontroller t 272644
80296SA Commercial CHMOS 16-Bit Microcontroller 272748

T Included in Embedded Microcontrollers handbook (order number 270646)

1.4 APPLICATION SUPPORT SERVICES

You can get up-to-date technical information from a variety of electronic support systems: the
World Wide Web, CompuServe, the FaxBack* service, and Intel's Brand Products and Applica-
tions Support bulletin board service (BBS). These systems are available 24 hours a day, 7 days a
week, providing technical information whenever you need it.

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. Pacific Standard Time (PST). Outside the U.S. and Canada, please con-
tact your local distributor. You can order product literature from Intel literature centers and sales
offices.

Table 1-4 lists the information you need to access these services.

80296SA USER'S MANUAL Int6|®

Table 1-4. Intel Application Support Services

Service U.S. and Canada Asia-Pacific and Japan Europe
World Wide Web | URL: http://www.intel.com/ | URL: http://www.intel.com/ | URL: http://www.intel.com/
CompuServe go intel go intel go intel
FaxBack* 800-525-3019 503-264-6835 +44(0)1793-496646
916-356-3105
BBS 503-264-7999 503-264-7999 +44(0)1793-432955
916-356-3600 916-356-3600
Help Desk 800-628-8686 Please contact your local | Please contact your local
916-356-7999 distributor. distributor.
Literature 800-548-4725 708-296-9333 +44(0)1793-431155 England
+81(0)120 47 88 32 +44(0)1793-421777 France
+44(0)1793-421333 Germany

1.4.1 World Wide Web

We offer a variety of technical and product information through the World Wide Web
(URL: http://www.intel.com/design/mcs96). Also visit Intel’s Web site for financials, history, and
news.

1.4.2 CompuServe Forums

Intel maintains several CompuServe forums that provide a means for you to gather information,
share discoveries, and debate issues. Type “go intel” for access. The INTELC forum is set up to
support designers using various Intel components. For information about CompuServe access and
service fees, call CompuServe at 1-800-848-8199 (U.S.) or 614-529-1340 (outside the U.S.).

1.4.3 FaxBack Service

The FaxBack service is an on-demand publishing system that sends documents to your fax ma-
chine. You can get product announcements, change naotifications, product literature, device char-
acteristics, design recommendations, and quality and reliability information from FaxBack 24
hours a day, 7 days a week.

Think of the FaxBack service as a library of technical documents that you can access with your

phone. Just dial the telephone number and respond to the system prompts. After you select a doc-
ument, the system sends a copy to your fax machine.

1-8

Int€|® GUIDE TO THIS MANUAL

Each document is assigned an order number and is listed in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc-
ument order numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list
the title, status, and order number of each document that has been added, revised, or deleted dur-
ing the past eight weeks. The daily update catalogs are numbered with the subject catalog number
followed by a zero. For example, for the complete microcontroller and flash catalog, request doc-
ument number 2; for the daily update to the microcontroller and flash catalog, request document
number 20.
The following catalogs and information are available at the time of publication:

1. Solutions OEMsubscription form
Microcontroller and flash catalog
Development tools catalog
Systems catalog
Multimedia catalog
Multibus and iRMX® software catalog and BBS file listings
Microprocessor, PCl, and peripheral catalog

Quality and reliability and change notification catalog

© ©® N o g k& 0D

IAL (Intel Architecture Labs) technology catalog

1.4.4 Bulletin Board System (BBS)

Intel's Brand Products and Applications Support bulletin board system (BBS) lets you download
files to your PC. The BBS has the latégpBUILDER software, hypertext manuals and
datasheets, software drivers, firmware upgrades, application notes and utilities, and quality and
reliability data.

Any customer with a PC and modem can access the BBS. The system provides automatic config-

uration support for 1200- through 19200-baud modems. Use these modem settings: no parity, 8
data bits, and 1 stop bit (N, 8, 1).

I 1-9

80296SA USER'S MANUAL Int6|®

To access the BBS, just dial the telephone number (see Table 1-4 on page 1-8) and respond to the
system prompts. During your first session, the system asks you to register with the system oper-
ator by entering your name and location. The system operator will set up your access account
within 24 hours. At that time, you can access the files on the BBS.

NOTE

In the U.S. and Canada, you can get a BBS user’s guide, a master list of BBS
files, and lists of FaxBack documents by calling 1-800-525-3019. Use these
modem settings: no parity, 8 data bits, and 1 stop bit (N, 8, 1).

1-10 I

intel.

Architectural
Overview

intel.

CHAPTER 2
ARCHITECTURAL OVERVIEW

The 16-bit 80296SA CHMOS microcontroller is designed to handle high-speed calculations and
fast input/output (I/O) operations. The core of the 80296SA differs from that of earli€? BECS
microcontroller cores. It was designed to provide a significant performance increase while main-
taining object-code compatibility with earlier MCS 96 microcontrollers. Major contributors to the
performance increase are the 80296SA’s pipelined architecture, improved math performance, and
new hardware and instructions to support embedded digital signal processing applications. The
80296SA is pin-compatible with the 8XC196NP and 80C196NU, allowing you to place an
80296SA into a socket designed for the 8XC196NP or 80C196NU and improve your system’s
performance.

2.1 TYPICAL APPLICATIONS

MCS 96 microcontrollers are typically used for high-speed event control systems. Commercial
applications include modems, motor-control systems, printers, photocopiers, air conditioner con-
trol systems, disk drives, and medical instruments. Automotive customers use MCS 96 microcon-
trollers in engine-control systems, airbags, suspension systems, and antilock braking systems
(ABS). The 80296SA is especially well suited to applications that benefit from its fast instruction
execution times and digital signal processing functions, such as mass storage applications.

Table 2-1 lists the features of the 80296SA, and Figure 2-1 shows a detailed block diagram.

Table 2-1. Features of the 80296SA

. . Register | ooqopata | /O Pins | EPA | sio | pwm | Chip- | External
Device Pins RAM) select | Interrupt
RAM (Note 2) | Pins | Ports | Channels . .
(Note 1) Pins Pins
80296SA | 100 | 512 bytes | 2 Kbytes 64 4 1 3 6 4

NOTES:

1. Register RAM amount includes the 24 bytes allocated to core special-function registers (SFRs) and the
stack pointer.

2. 1/0 pins include address, data, and bus control pins and 32 I/O port pins.

I 2-1

80296SA USER'S MANUAL Int9|®

Code/Data
RAM
e Koo
< Memory Addr Bus (24) /\ {\
K —N Baud-
{} N Xl sio rate
Memory Data Bus (16) —/] Generator
L~
hip-select
Bus Control Signals, A | :‘/,\ ¢ I[L)J:ﬁ ec A¢>
N 1] \r
A19:16 Bus A N
Controller \ 14
: N\ Peripheral |4 N
AT50 Ko [Peripheral k-
LN
ADIS0 — Interface @) L |
N] PwMm
Aligner
Queue
T
Instruction |1 L] Interrupt : :
Sequencer |\] Controller
[© I © \4/‘: —] Timer 1
/ N Source 1 Addr (24)\ 4 N3 :) EPA Timer 2
\] Source 1 Data lTl‘/ a é
p; @
D i G RE .
Source 2 Addr (24) 8 2 © <
\ Source 2 Data (16, 2 > (:',; o‘;;
S =] > >
) it 11 1 gl |2 8| |a
M SE 2 8 S
Register File Intiﬂgge \:"’ . =) %
ALU (3-port RAM) onit . K > s s
£l |5
RV i HEE
/ Destination Addr (24) a a
\ Destination Data (16)
A3175-02

Figure 2-1. 80296SA Detailed Block Diagram

2-2

Int6|® ARCHITECTURAL OVERVIEW

2.2 FUNCTIONAL OVERVIEW

Figure 2-2 is a simplified block diagram that shows the major blocks within the microcontroller.
The shaded area of Figure 2-2 encompasses the core, clock and power management logic, internal
code/data RAM, the bus controller, and the chip-select unit. Al communication among these
blocks takes place through the 24-bit memory address bus. Outside the shaded area are the inter-
nal peripherals: general-purpose input/output (1/0O) ports, serial input/output (SIO) port, pulse-
width modulator (PWM), event processor array (EPA), and programmable interrupt controller.
The peripheral interface communicates through the 8-bit peripheral address bus.

Core Bus
Controller
Code/Data
RAM
Clock and Chip-select
Power Mgmt. Unit
Peripheral
Interface
Interrupt
/10 SIO PWM EPA Controller
A3182-01

Figure 2-2. 80296SA Block Diagram

2.21 Core

The core of the 80296SA (Figure 2-3) consists of the central processing unit (CPU) and memory
interface unit. The CPU contains the aligner and instruction sequencer, the execution unit, and the
register file. A 24-bit memory address bus connects the CPU and memory interface unit; an ex-
tension of this bus connects the memory interface unit to the bus controller. An 8-bit peripheral
address bus allows communication with the interrupt controller and internal peripherals.

2-3

80296SA USER'S MANUAL Int6|®

CPU
Aligner and Execution Unit Register File Memory
Instruction : Interface Unit
Sequencer Register :
10-byte Queue | |32—bit Barrel Shifterl
[Muttiply | [Divide |
| 40-bit Accumulator |
| 24-bit Slave PC|| | [24-bit Master PC |

Microcode ROM PSW

| Constants Registerl

| Bit-select Register | |Stack Pointerl

| Loop Counter | |CPUSFRs|

A2848-01

Figure 2-3. Block Diagram of the Core
2211 CPU

The 80296SA implements a pipelined architecture. The pipelined microcode engine controls the
CPU, instructing the execution unit to perform operations using bytes, words, or double-words
from either the 256-byte lower register file or throughvindow that directly accesses higher
memory. (See Chapter 5, “Memory Partitions,” for more information about the register file and
windowing.) In addition, two automatic indexing registers (IDX0 and IDX1) provide indirect ac-
cess to the entire 16-Mbyte internal address space. CPU instructions move from the memory in-
terface unit into the queue, then into the instruction sequencer, and finally into the execution
pipeline. The aligner and instruction sequencer maintain a steady flow of instructions into the
pipeline. The pipeline has four stages: fetch, decode, read-execute, and execute-write. Instruc-
tions move sequentially through the pipeline stages, as shown in Figure 2-4.

2-4

ARCHITECTURAL OVERVIEW

&

o e W
W e e
\(\5: \)e“c’e‘ Fe\(‘x\ Decode Read e/\ec“‘ D()\'\e

: D

0

(

(

0
G

(

(

(3]
-,

—-(6(5(4(36 2

(]
-,

(]
-,

—(a(6(5(46 3

—(8(7(6(56

—~ N N N
N

—~ N N N
-

—-(o(8(7(66 5

.) -
0 =

A3061-01

(]
-,

1N

(3]
-,

Yuaaa; 6 (5 (4

Figure 2-4. Instruction Pipeline

2212 Register File

The register file is divided into an upper and a lower file. In the lower register file, the lowest 24-
byte section is allocated to the CPU’s special-function registers (SFRs) and the stack pointer,
while the remainder is available as general-purpose register RAM. The upper register file con-
tains only general-purpose register RAM. The register RAM can be accessed as bytes, words, or
double-words.

The execution unit accesses the upper and lower register files differently. The lower register file
is always directly accessible with direct addressing (see “Addressing Modes” on page 4-8). The
upper register file is accessible with direct addressing only wiredowingis enabled. Other-

wise, the upper register file is accessed indirectly, through the memory interface unit. Windowing
is a technique that maps blocks of the upper register file wiadowin the lower register file.

See Chapter 5, “Memory Partitions,” for more information about the register file and windowing.

2.2.2 Execution Unit

The execution unit contains the 16-bit arithmetic logic unit (ALU), the divide unit, the multiply
unit, the 32-bit barrel shifter, and the 40-bit hardware accumulator. It also contains the master pro-
gram counter (PC), the processor status word (PSW), a constants register, a bit-selection register,
and a loop counter.

I 2-5

80296SA USER'S MANUAL Int6|®

The ALU handles general arithmetic and logical operations. The divide unit processes division
instructions independently. The multiply unit processes both normal multiplication instructions
and multiply-accumulate (MAC) operations. The barrel shifter processes all shifts, and the accu-
mulator is used for all multiply-accumulate operations.

The 24-bit master program counter (PC) provides a linear, nonsegmented 16-Mbyte memory
space. The master PC contains the address of the next instruction and has a built-in incrementer
that automatically loads the next sequential address. However, if a jump, interrupt, call, or return
changes the address sequence, the ALU loads the appropriate address into the master PC.

The PSW contains one bit that globally enables or disables servicing of all maskable interrupts,
and six Boolean flags that reflect the state of your program. (Table A-2 on page A-4 describes the
status flags.) The execution unit speeds up calculations by storing constants (e.g., 0, 1, and 2) in
the constants register so that they are readily available when complementing, incrementing, or
decrementing bytes or words. In addition, the constants register generates single-bit masks, based
on the bit-selection register, for bit-test instructions. The six-bit loop counter counts repetitive
shifts.

2.2.3 Memory Interface Unit

All memory except the register file is accessed through the memory interface unit. The memory
interface unit drives the memory bus, which consists of an internal memory bus and the external
address/data bus. It receives memory-access requests from either the register file or the prefetch
gueue. Data accesses have priority over instruction prefetches. Instruction prefetches are trans-
parent to the register file. When the memory interface unit receives a request from the prefetch
gueue, it fetches the code from the address contained in the slave program counter (PC). Having
the next instruction immediately available in the queue can increase execution performance, since
the processor need not wait for the master PC to update the address. If a jump, interrupt, call, or
return changes the address sequence, however, the master PC loads the new address into the sla
PC, the CPU flushes both the instruction queue and the pipeline, the memory interface unit fetch-
es the code from the new address, and processing resumes.

NOTE

When using a logic analyzer to debug code, remember that instructions are
preloaded into the prefetch queue and are not necessarily executed
immediately after they are fetched. Also remember that up to four instructions
can be executing in different stages of the pipeline.

2.2.4 Bus Controller and Chip-select Unit

The memory interface unit accesses the internal code/data RAM through the bus controller unless
the RAM iswindowedinto the register file. It also accesses the chip-select unit through the bus
controller. The peripheral bus interface enables access to the internal peripherals.

In addition to its 16-bit address/data bus, the 80296SA has an extended addressing port consisting
of 4 external address pins, for a total of 20 address pins. With 20 address pins, this microcontroller
can access up to 1 Mbyte of external address space. Like the 8XC196NP and 80C196NU, the
80296SA incorporates a chip-select unit to simplify access to external memory devices. Unlike
the chip-select unit of the earlier microcontrollers, which decoded only the lower 20 address bits,

2-6

Int6|® ARCHITECTURAL OVERVIEW

the 80296SA’s chip-select unit decodes all 24 bits of the internal address. You can assign each
chip-select a range of addresses in up to 1-Mbyte segments. Therefore, with 6 chip-select outputs,
the 80296SA can access up to 6 Mbytes of memory. Refer to “Memory Map Overview” on page
5-1 and “The Chip-select Unit” on page 13-8 for details.

2.3 INTERNAL TIMING

This section describes the internal clock circuitry and power management logic.

2.3.1 Clock and Power Management Logic

The 80296SA’s clock circuitry (Figure 2-5) implements phase-locked loop and clock multiplier
circuitry, which can substantially increase the CPU clock rate while using a lower-frequency in-
put clock.

Disable
PLL
(Powerdown)
FxraL1 |J-| Phase .
XTALL D L Comparator Filter
2
=
: &
. Phase-
-
e locked
xTAL2 [} 5 Oscillator
&
3 .
Disable E D|se|1:|)3|e Clgck Input Phase-locked Loop
Oscillator 0 (Powerdown) Clock Multiplier
(Powerdown) <
f Divide-by-two
Circuit
hil Disable Clocks
PLLEN1 D 2 (Standby, Powerdown)
\
PLLEN2
D Peripheral Clocks (PH1, PH2)
Clock CLKOUT
Generators
—| |—> CPU Clocks (PH1, PH2)
Disable Clocks
(Idle, Standby, Powerdown)
A3063-02

Figure 2-5. Clock Circuitry

2-7

80296SA USER'S MANUAL Int6|®

NOTE
This manual uses lowercase “f” to represent the internal clock frequency. For
the 80296SA, f is equal to eitheg 1, 2FKqa 1, OF 4Fra 1, depending on
the clock multiplier mode, which is controlled by the PLLEN1 and PLLEN2
input pins. The “f” frequency is routed through the divide-by-two circuit to the
clock generators, which produce the two nonoverlapping internal timing
signals, PH1 and PH2.

2.3.2 Internal Timing

The clock circuitry accepts an input clock signal on XTAL1 provided by an external crystal or
oscillator. This frequency is routed either through the phase-locked loop and multiplier circuitry
or directly to the divide-by-two circuit. The multiplier circuitry can double or quadruple the input
frequency (kra.1)- The frequency (f) input to the divide-by-two circuit is eithgfF1, 2FKqrar 10

or 4K, 1. depending on the PLLEN1 and PLLEN2 pins. The clock generators accept the fre-
guency (f/2) from the divide-by-two circuit and produce two active-high, nonoverlapping internal
timing signals, PH1 and PH2. The clock circuitry routes separate internal clock signals to the
CPU and the peripherals for flexibility in power management.

The rising edges of PH1 and PH2 generate the internal CLKOUT signal (Figure 2-6). It also out-
puts the CLKOUT signal on the CLKOUT pin. Because of the complex logic in the clock circuit-
ry, the signal on the CLKOUT pin is a delayed version of the internal CLKOUT signal. This delay
varies with temperature and voltage.

ST VY A Y A U A VY A O

-t it —>] :

:*(— 1 State Time ——»<€— 1 State Time —3

PH1 i ! !

PHZE /_\ m_

CLKOUT ,

Phase 1 Phase2 | Phasel ' Phase2 .

A0805-01

Figure 2-6. Internal Clock Phases (Assuming PLL is Bypassed)

The combined period of phase 1 and phase 2 of the internal CLKOUT signal defines the basic
time unit known as atate timeor state Table 2-2 lists state time durations at various frequencies.

2-8 I

Table 2-2. State Times at Various Frequencies

ARCHITECTURAL OVERVIEW

(Frequency Ifnput to the State Time
Divide-by-two Circuit)
12.5 MHz 160 ns
25 MHz 80 ns
50 MHz 40 ns

The following formulas calculate the frequency of PH1 and PH2, the duration of a state time, and
the duration of a clock period (t).

PH1 = - = PH2 State Time =

—~IN
=+l

NI —

Because the microcontroller can operate at many frequencies, this manual defines time require-
ments (such as instruction execution times) in terms of state times rather than specific measure-
ments. Datasheets list AC characteristics in terms of clock periods (t).

Table 2-3 details the relationships between the input frequengy (55 the configuration of
PLLEN1 and PLLEN2, the operating frequency (f), the clock period (t), and state times.

Table 2-3. Relationships Between Input Frequency, Clock Multiplier, and State Times

Fyrac1 f t
(Frequency PLLEN2:1 | Multiplier (Input Frequency to (Clock State Time
on XTAL1) the Divide-by-two Circuit) Period)
50 MHz t 00 1 50 MHz 20 ns 40 ns
00 1 25 MHz 40 ns 80 ns
25 MHz
01 2 50 MHz 20 ns 40 ns
00 1 12.5 MHz 80 ns 160 ns
12.5 MHz 01 2 25 MHz 40 ns 80 ns
11 4 50 MHz 20 ns 40 ns

T Assumes an external clock. The maximum frequency for an external crystal oscillator is 25 MHz.

Figure 2-7 illustrates the timing relationships between the input frequepgy {F the operating
frequency (f), and the CLKOUT signal with each of the three valid PN configurations.
(Since the maximum operating frequency is 50 MHz, only a 12.5 MHz external clock frequency
allows all three clock multiplier modes.)

2-9

80296SA USER'S MANUAL Int6|®

| Txten

XTALL ./—\—/—\ J

(12.5 MHz)

g o [

PLLEN2:1=00 t=80ns |

CLKOUT /I \ /-

Jo T

PLLEN2:1=01 |<—1t=40ns —>|

CLKOUT ./—\—/———\—/-

et alalalalaWal;

PLLEN2:1=11
> | t=20ns

CLKOUT ./__/__/__/__/_

A3160-02

Figure 2-7. Effect of Clock Mode on CLKOUT Frequency

2-10

Int6|® ARCHITECTURAL OVERVIEW

23.2.1 Power Management Options

The power saving modes selectively disable internal clocks to conserve power when the micro-
controller is inactive. This microcontroller has three power-saving modes: idle, standby, and pow-
erdown. If the power-saving modes are enabled in CCBO, the microcontroller enters a power-
saving mode after executing the IDLPD instruction with a valid key (an invalid key causes a de-
vice reset). Figure 2-5 on page 2-7 illustrates the clock circuitry of the 80296SA.

In idle mode, the CPU stops executing instructions, but the peripheral clocks remain active. Pow-
er consumption drops to about 40% of normal execution mode consumption. Either a hardware
reset or any enabled interrupt source will bring the microcontroller out of idle mode.

In standby mode, all internal clocks are frozen at logic state zero, but the oscillator and phase-
locked loop continue to run. Power consumption drops to about 10% of normal execution mode
consumption. Either a hardware reset or any enabled external interrupt source will bring the mi-
crocontroller out of standby mode.

In powerdown mode, all internal clocks are frozen at logic state zero and the internal oscillator is
shut off. The register file, internal code and data RAM, and most peripherals retain their data if
V¢ is maintained. Power consumption drops into the pW range.

You can conserve additional power by disabling the serial 1/0 port’s baud-rate counter and the
pulse-width modulator’s duty-cycle counter when the peripherals are not being used. See “Chap-
ter 8, “Serial I/O Port,” and Chapter 9, “Pulse-width Modulator,” for details.

2-11

80296SA USER'S MANUAL Int6|®

2.4 INTERNAL PERIPHERALS

The internal peripheral modules provide special functions for a variety of applications. This sec-
tion provides a brief description of the peripherals; subsequent chapters describe them in detail.

2.4.1 1/O Ports

80296SA has five 1/O ports, ports 1-4 and the EPORT. In general, you can configure individual
port pins to serve as general-purpose I/O or to carry special-function signals associated with on-
chip peripherals or off-chip components.

Ports 1-4 are eight-bit, bidirectional 1/0O ports. Only the lower nibble of port 4 is implemented in
current package offerings. Port 1 provides 1/O pins for the four event processor array (EPA) mod-
ules and the two timers. Port 2 is used for the serial /0 (SIO) port, two external interrupts, and
bus hold functions. Port 3 is used for chip-select functions and two external interrupts. Port 4
(functionally only a 4-bit port) provides I/O pins associated with the three on-chip pulse-width
modulators. The EPORT provides address lines A19:16 to support extended addressing. See
Chapter 7, “I/O Ports,” for more information.

2.4.2 Serial I/O (SIO) Port

The serial I/0 (SI0) port is an asynchronous/synchronous port that includes a universal asynchro-
nous receiver and transmitter (UART). The UART has one synchronous mode (mode 0) and three
asynchronous modes (modes 1, 2, and 3) for both transmission and reception. The asynchronous
modes are full duplex, meaning that they have dedicated receive and transmit data signals. The
receiver is buffered, so the reception of a second byte can begin before the first byte is read. The
transmitter is also buffered, allowing continuous transmissions. See Chapter 8, “Serial I/O (SIO)
Port,” for details.

2.4.3 Event Processor Array (EPA) and Timer/Counters

The event processor array (EPA) performs high-speed input and output functions associated with
its timer/counters. In the input mode, the EPA monitors an input for signal transitions. When an
event occurs, the EPA records the timer value associated with it. Thisguseevent. In the

output mode, the EPA monitors a timer until its value matches that of a stored time value. When
a match occurs, the EPA triggers an output event, which can set, clear, or toggle an output pin.
This is acompareevent. Both capture and compare events can initiate interrupts, which can be
serviced by either the interrupt controller or the PTS.

Timer 1 and timer 2 are 16-bit up/down timer/counters that can be clocked internally or external-
ly. Each timer/counter is callediaer if it is clocked internally and eounterif it is clocked ex-
ternally. See Chapter 10, “Event Processor Array (EPA),” for additional information on the EPA
and timer/counters.

2.4.4 Pulse-width Modulator (PWM)

The output waveform from each PWM channel is a variable duty-cycle pulse with a programma-
ble frequency that occurs every 256, 512, or 1024 state times, as programmed. Several types of
motors require a PWM waveform for most efficient operation. When filtered, the PWM wave-

2-12 I

Int6|® ARCHITECTURAL OVERVIEW

form produces a DC level that can change in 256 steps by varying the duty cycle. The number of
steps per PWM period is also programmable (8 bits). See Chapter 9, “Pulse-width Modulator,”
for more information.

2.4.5 Interrupt Controller

The 80296SA’s interrupt controller differs from that of earlier MCS 96 microcontrollers. This en-
hanced interrupt controller features two priority methods. The first method is compatible with
earlier MCS 96 microcontrollers. For this method, the interrupt vector table begins at FF2000H,
and you use the mask registers to modify the default interrupt priorities. The second method al-
lows you to program the priority of each maskable interrupt. For this method, the interrupt con-
troller generates a unique vector for the assigned priority level. You can also choose to relocate
the interrupt vector table. See Chapter 6, “Interrupts,” for more information.

2.5 SPECIAL OPERATING MODES

In addition to the normal execution and power-saving modes, the microcontroller operates in spe-
cial-purpose mode. On-circuit emulation (ONCE) mode electrically isolates the microcontroller
from the system. By invoking the ONCE mode, you can test the printed circuit board while the
microcontroller is soldered onto the board. See Chapter 12, “Special Operating Modes,” for more
information about power-saving and ONCE modes.

2.6 CHIP CONFIGURATION REGISTERS

Two chip configuration bytes (CCBs) located in ROM control the basic configuration of the mi-
crocontroller. These bytes are loaded into the chip configuration registers (CCRSs) as part of the
reset sequence. Once they are loaded, the CCRs control many aspects of the microcontroller’s op-
eration. Figures 2-8 and 2-9 illustrate the CCRs and describe their functions.

I 2-13

80296SA USER'S MANUAL Int6|®

CCRO no direct accesst

The chip configuration 0 (CCRO) register enables or disables the IDLPD #2 and IDLPD #3 instructions
and selects the write-control mode. It also contains the bus-control parameters for fetching chip
configuration byte 1.

7 0
1 1 ws1 wso || DEMUX | BHE# BW16 PD
Bit Bit Function
Number Mnemonic
7:6 1 To guarantee proper operation, write ones to these bits.
5:4 WS1:0 Wait States

These bits, along with the READY pin, control the number of wait states
that are used for an external fetch of chip configuration byte 1 (CCB1).

WS1 WSO

0 0 0 wait states
0 1 5 wait states
1 0 10 wait states
1 1 15 wait states

If the programmed number of wait states is greater than zero and READY
is low when this programmed number of wait states is reached, additional
wait states are added until READY is pulled high. If the programmed
number of wait states is equal to zero, hold the READY pin high.
Programming the number of wait states equal to zero and holding the
READY pin low produces unpredictable results.

3 DEMUX Select Demultiplexed Bus

Selects the demultiplexed bus mode for an external fetch of CCB1:
0 = multiplexed — address and data are multiplexed on AD15:0.

1 = demultiplexed — data only on AD15:0.

2 BHE# Write-control Mode

Selects the write-control mode, which determines the functions of the

BHE#/WRH# and WR#/WRL# pins for external bus cycles:

0 = write strobe mode: the BHE#/WRH# pin operates as WRH#, and the
WR#/WRL# pin operates as WRL#.

1 = standard write-control mode: the BHE#/WRH# pin operates as
BHE#, and the WR#/WRL# pin operates as WR#.

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

Figure 2-8. Chip Configuration 0 (CCRO) Register

2-14

Int6|® ARCHITECTURAL OVERVIEW

CCRO (Continued) no direct access’

The chip configuration 0 (CCRO) register enables or disables the IDLPD #2 and IDLPD #3 instructions
and selects the write-control mode. It also contains the bus-control parameters for fetching chip
configuration byte 1.

7 0
1 1 WS1 WSO | | DEMUX BHE# BW16 PD
Bit Bit Function
Number Mnemonic
1 BW16 Buswidth Control
Selects the bus width for an external fetch of CCB1.:
0 = 8-bit bus
1 = 16-bit bus
0 PD Powerdown Enable

Enables or disables the IDLPD #2 and IDLPD #3 instructions. When
enabled, the IDLPD #2 instruction causes the microcontroller to enter
powerdown mode and the IDLPD #3 instruction causes the
microcontroller to enter standby mode.

0 = disable powerdown and standby modes
1 = enable powerdown and standby modes

If your design uses powerdown or standby mode, set this bit when you
program the CCBs. If it does not, clearing this bit when you program the
CCBs will prevent accidental entry into powerdown or standby mode.
(Chapter 12, “Special Operating Modes,” discusses powerdown and
standby modes.)

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

Figure 2-8. Chip Configuration 0 (CCRO0) Register (Continued)

CCR1 no direct accesst

The chip configuration 1 (CCR1) register selects the 64-Kbyte or 1-Mbyte addressing mode.

7 0
1 1 o | 1 || 1 0 MODE64 | o0 |
Nuatber Mne?r:tonic Function
7:6 1 To guarantee proper operation, write ones to these bits.
5 0 To guarantee proper operation, write zero to this bit.
4:3 1 To guarantee proper operation, write ones to these bits.

The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

Figure 2-9. Chip Configuration 1 (CCR1) Register

2-15

80296SA USER'S MANUAL Int6|®

CCRL (Continued) no direct access’

The chip configuration 1 (CCR1) register selects the 64-Kbyte or 1-Mbyte addressing mode.

! 0
1 1 o | 1 || 1 0 MODE64 | o0 |
Bit Bit)
Number Mnemonic Function
0 To guarantee proper operation, write zero to this bit.

MODE®64 Addressing Mode

Selects 64-Kbyte or 1-Mbyte addressing.
0 = selects 1-Mbyte addressing

1 = selects 64-Kbyte addressing

In 1-Mbyte mode, code can execute from almost anywhere in the
address space. In 64-Kbyte mode, code can execute only from page
FFH. (See “Fetching Code and Data in the 1-Mbyte and 64-Kbyte Modes”
on page 5-22 for more information.)

0 0 Reserved; for compatibility with future devices, write zero to this bit.

The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

Figure 2-9. Chip Configuration 1 (CCR1) Register (Continued)

2.7 DESIGN CONSIDERATIONS FOR 80C196NU TO 80296SA CONVERSIONS

This section summarizes differences to consider when converting your design requirements from
the 80C196NU to the 80296SA.

Instructions will execute more quickly on the 80296SA than on the 80C196NU. If your
software uses timing loops, you will need to analyze them for proper timing.

Because of the pipelined architecture, instruction execution does not stall on the 80296SA
to allow for wait states when writing to an external device. If an external write is followed
by an external read, the read can occur before the write completes. To avoid this possibility
if it is an issue in your system, use no-operation (NOP) instructions between the store and
load instructions to cover the wait states required for the write.

For the 80296SA, opcodes 10H, EEH, EDH, and ECH will generate an illegal opcode
interrupt. Opcode E5H is an illegal opcode in the 80C196NU, but is the opcode for the
return-from-interrupt (RETI) instruction in the 80296SA.

The 80296SA has several new and enhanced instructions to support embedded digital signal
processing applications.

The 80296SA’s accumulator is 40 bits, while the 80C196NU’s is 32 bits.

2-16

Int6|® ARCHITECTURAL OVERVIEW

* The 80296SA's register file is 512 bytes (00—1FFH), while the 80C196NU’s is 1 Kbyte
(00-3FFH). If your software expects memory in the upper 512 bytes of the register file
(200-3FFH), or if you window higher memory into that area, you must provide external
memory in those locations.

* The 80296SA has 2 Kbytes of internal code/data RAM (FFF800-FFFFFFH in 1-Mbyte
mode, FFF800—-FFFFFFH and 00F800-00FFFFH in 64-Kbyte mode). We recommend that
you use this RAM for time-critical code (e.g., interrupt service routines) or time-critical
data (e.g., data tables for digital signal processing, the stack, or the interrupt vector table).

* The 80296SA’s CPU special-function registers and stack pointer (00—19H) must be
accessed with direct addressing.

* The 80296SA can window additional memory (including two segments of external
memory) into the lower register file via window selection register 1 (WSR1). The
80C196NU can window sections of the upper register file or special-function registers with
WSR1, but cannot window external memory.

* The 80296SA has a 10-byte prefetch queue, while the 80C196NU has an 8-byte queue.

* The 80296SA’s chip-select unit decodes all 24 internal address bits, allowing unique access
to 6 Mbytes of external memory. In addition, the chip-select unit uses a priority method to
prevent two chip-select outputs from being active at the same time.

* The 80296SA’s chip configuration bytes and chip-select unit configuration registers select
either 5, 10, or 15 internal wait states, while the 80C196NU'’s select either 1, 2, or 3.

* The 80296SA’s deferred bus mode is controlled by the chip-select unit, while the
80C196NU's is controlled by the chip configuration bytes.

* The 80296SAs external interrupt inputs can be programmed as either edge-triggered or
level-sensitive inputs.

* When the 80296SA’s timers are operated independently (rather than cascaded), they
overflow only on the 0000—FFFFH or FFFF—0000H boundary. If you implemented a
workaround to check the overflow boundaries on an 80C196NU design, you will need to
verify it for the 80296SA.

* For additional power conservation, the 80296SA allows you to individually disable the
serial I/O port’s baud-rate counter and the pulse-width modulator’s duty-cycle counter when
those peripherals are not being used.

¢ Indirect and indexed PUSH and POP operations relative to the stack pointer work
differently on the 80296SA than on the 8XC196NP and 80C196NU. The 8XC196NP and
80C196NU microcontrollers calculate the address based on the value ofdfter3fs
updated, but the 80296SA calculates the address based on the value di¢far&iPis
updated.

I 2-17

intel.

Digital Signal
Processing

intel.

CHAPTER 3
DIGITAL SIGNAL PROCESSING

Several digital signal processing (DSP) enhancements were made to the 80296SA architecture.
These enhancements increase the 80296SAs overall math performance compared to previous
MCS® 96 microcontrollers.

Together with the architectural enhancements, new and modified instructions manipulate the
80296SA's 40-bit accumulator efficiently to reduce execution cycle time. The instructions sup-
port signed and unsigned integers as well as signed fractional numbers. The overall impact of the
microcontroller’s enhanced digital signal processing functionality, combined with the register-to-
register flexibility of the MCS 96 architecture, offers an efficient, math-intensive platform incor-
porated into a single-chip solution.

This chapter describes the new and modified instruction set, the 40-bit accumulator, and the index
registers. Examples for using the signal processing hardware and software algorithms are provid-
ed where needed for clarification.

3.1 DIGITAL SIGNAL PROCESSING OVERVIEW

Digital signal processing (DSP) is a methodology that uses mathematical algorithms to analyze
and extract information from complex digital signals.

The 80296SAs signal processing enhancements and increased mathematical computation re-
sources, together with appropriate software algorithms, enable it to perform digital signal pro-
cessing functions with precision. The 80296SA can search and retrieve data from lookup tables
more quickly, with less CPU overhead, than earlier MCS 96 microcontrollers. (See “Application
Example” on page 3-19.)

3.2 DSP REGISTERS

Table 3-1 describes the control and status registers associated with digital signal processing.

Table 3-1. DSP Control and Status Registers

Mnemonic Address Description
ACC_00 000CH Accumulator Value
ACC_02 00OEH These registers specify the current count of the accumulator. You
ACC_04 0006H can write to this register to clear or preload a value into the
accumulator.
ACC_STAT 000BH Accumulator Control and Status

This register enables and disables fractional and saturation
modes and contains three status flags that indicate the status of
the accumulator’s contents.

ICBO 1FC3H Index Control
ICB1 1FC7H

These registers control the automatic increment and decrement
feature of the index pointers.

3-1

80296SA USER’S MANUAL

intel.

Table 3-1. DSP Control and Status Registers (Continued)

Mnemonic Address Description

ICX0 0010H Index Reference

ICX1 0016H These registers allow you to indirectly access the address
location being pointed to by the index register.

IDX0 1FCOH Index Pointer

IDX1 1FCaH These 24-bit registers serve as pointers to any location within the
address space.

RPT_CNT 0004H Repeat Counter
This register specifies the count value for the next instruction
following the repeat instruction.

3.3 ENHANCED INSTRUCTION SET

There are 17 new and modified instructions for the 80296SA, each listed in Table 3-2. These in-
structions for handling digital signal processing routines can be divided into four basic categories:

¢ Add and subtract instructions — ADDC and SUBC

¢ Multiply-accumulate (MAC) instructions — MAC, MACR, MACRZ, MACZ, SMAC,
SMACR, SMACRZ, and SMACZ

* Move instructions — MSAC and MVAC
* Repeat instructions — RPT, RB& RPTI, and RP™xx

Additionally, the return from interrupt (RET]I) instruction reduces interrupt overhead to aid in im-
plementing multiply-accumulate operations.

3-2

Int€|® DIGITAL SIGNAL PROCESSING

Table 3-2. Enhanced Instruction Set for the 80296SA

Instruction Description
2 | ADDC Add word operands with carry
2
E SUBC Subtract word operands with borrow
MAC Unsigned multiply-accumulate
% MACR Unsigned multiply-accumulate with automatic data relocation
g MACRZ Unsigned multiply-accumulate with zeroed accumulator and automatic data relocation
§ MACZ Unsigned multiply-accumulate and zeroed accumulator
i SMAC Signed multiply-accumulate
E— SMACR Signed multiply-accumulate with automatic data relocation
§ SMACRZ Signed multiply-accumulate with zeroed accumulator and automatic data relocation
SMACZ Signed multiply-accumulate with zeroed accumulator
o | MSAC Move saturated long-word from accumulator
§ MVAC Move long-word from accumulator
- RPT Unconditional uninterruptible repeat of next instruction
§ RPTxxx Conditional uninterruptible repeat of next instruction
& RPTI Unconditional interruptible repeat of next instruction
RPTIxxx Conditional interruptible repeat of next instruction
RETI Return from interrupt

3.3.1 Addition and Subtraction (ADDC and SUBC) Instructions

The add with carry (ADDC) and subtract with borrow (SUBC) instructions are used to add and
subtract constants to and from the accumulator.

3.3.1.1 ADDC Instruction

ADDC (add signed word to accumulator with carry) adds the source and destination word oper-
ands and the carry flag, and stores the sum into the destination address.

If the destination address is the accumulator, the word is added to (ACC_02).

If the destination address is the accumulator, and saturation is enabled in the accumulator control
and status (ACC_STAT) register, then a saturated addition is performed. (Refer to “Saturation
Mode (SME)” on page 3-15.)

3.3.1.2 SUBC Instruction

SUBC (subtract signed word from accumulator with borrow) subtracts the source word operand
from the destination word operand, stores the result in the destination operand, and sets the carry
flag as the complement of borrow.

If the destination address is the accumulator, the word is subtracted from (ACC_02).

80296SA USER'S MANUAL Int6|®

If the destination address is the accumulator, and saturation is enabled in the accumulator control
and status (ACC_STAT) register, then a saturated subtraction is performed.

3.3.2 Multiply-Accumulate (MAC) Instructions

There are eight multiply-accumulate (MAC) instructions for the 80296SA. Their basic functions
are to:

¢ clear the accumulator before execution (denoted by a “Z” suffix on the core MAC
mnemonic)

* relocate the source 2 (SRC2) word within a data table (denoted by an “R” suffix on the core
MAC mnemonic)

¢ operate on signed numbers (denoted by an “S” prefix on the core MAC mnemonic)

The new multiply-accumulate instructions have the same opcodes as the multiply instructions,
MUL and MULU. The 80296SA differentiates the instructions by the destination operand. If the
destination operand address is less than 10H (0—FH), the 80296SA executes a multiply-accumu-
late instruction and automatically stores the result in the accumulator. If the destination operand
is equal to or greater than 10H, the 80296SA executes a basic multiplication instruction.

The four least-significant bits of the destination operand address determine what operation a giv-
en instruction will execute (see Table 3-3). All the possible functional combinations of the mul-
tiply-accumulate instruction set are listed in Table 3-4 with detailed descriptions.

Table 3-3. Multiply-Accumulate Instruction Bit Definition

Bit Bit Function
Number Mnemonic
(if bit = 1) Bit=1 Bit=0
3 Z Zero accumulator after multiply Do not zero accumulator
2 R Relocate SRC2 after operation Do not relocate SRC2
1 Reserved for future expansion; write zero to this bit
0 S Signed MAC operation Unsigned MAC operation

3-4

Int€|® DIGITAL SIGNAL PROCESSING

Table 3-4. Multiply-Accumulate Instruction Set

Destination Address
(Accumulator) Instruction

b Description
Mnemonic p

Bit3 |Bit2 [Bitl T| Bit0 || Hex

Multiplies two unsigned 16-bit operands and
0 0 0 0 00H | MAC adds the 32-bit result to the value currently in
the accumulator.

Multiplies two signed 16-bit operands and
0 0 0 1 01H | SMAC adds the 32-bit result to the value currently in
the accumulator.

Multiplies two unsigned 16-bit operands and
adds the 32-bit result to the value currently in

0 1 0 0 04H | MACR the accumulator. The SRC2 data is relocated
in memory to the SRC2 address plus two.
Multiplies two signed 16-bit operands and

0 1 0 1 05H | SMACR adds the 32-bit result to the value currently in

the accumulator. The SRC2 data is relocated
in memory to the SRC2 address plus two.

Multiplies two unsigned 16-bit operands,
1 0 0 0 08H | MACZ clears the 40-bit accumulator, and stores the
32-bit result to the accumulator.

Multiplies two signed 16-bit operands, clears
1 0 0 1 09H | SMACZ the 40-bit accumulator, and stores the 32-bit
result to the accumulator.

Multiplies two unsigned 16-bit operands,
clears the 40-bit accumulator, and stores the
1 1 0 0 OCH | MACRZ 32-bit result to the accumulator. The SRC2
data is relocated in memory to the SRC2
address plus two.

Multiplies two signed 16-bit operands, clears
the 40-bit accumulator, and stores the 32-bit
1 1 0 1 ODH | SMACRZ result to the accumulator. The SRC2 data is
relocated in memory to the SRC2 address plus
two.

T Reserved for future expansion; write zero to this bit.

As previously stated, the multiplication instructions, MUL and MULU, share opcodes with the
multiply-accumulate instructions. When you execute a MAC-related instruction (i.e., a destina-
tion address in the range of 00—0FH), the 80296SA automatically stores the result in the accumu-
lator. The examples in Table 3-5 illustrate the results of consecutive multiply-accumulate
instructions. Listed for each row of the table below are the three-operand multiply-accumulate
instruction syntax, the equivalent three-operand multiply instruction syntax, the result, and the
updated accumulator register value.

80296SA USER'S MANUAL Int6|®

Table 3-5. Accumulator Usage Examples

MAC Syntax t Equiv_alent 3-ope_rand SRC1xSRC2 Accumulator

(3-operand) Multiply Instruction Value
MAC rl, r2 MULU OOH, r1,r2 0200H 0200H
MACZ r3, #28H MULU 08H, r3, #28H 0780H 0780H
SMAC 13,12 MULU O01H,r3,r2 0600H 0D80H
MACRZ 15, r4 MULU OCH, 15, r4 1400H 1400H
SMACZ 15,16 MULU 09H, 15, r6 1800H 1800H
SMAC rl, #14H MULU 01H, r1, #14H 0140H 1940H

T Initial register values: ACC =0, r1 = 10H, r2 = 20H, r3 = 30H, r4 = 40H, r5 = 50H, r6 = 60H

NOTE

The multiply-accumulate operation syntax does not include a destination
operand because the accumulator is always the destination address.

3.3.3 Move (MSAC and MVAC) Instructions

There are two move instructions for the 80296SA — MSAC and MVAC. They are used to save
accumulator values to other locations in memory when necessary. When you use these instruc-
tions, the 80296SA saves the accumulator results to a temporary register without modifying the
accumulator.

The MSAC and MVAC instructions are barrel shifter-related instructions. This is because they
are supported by the “left and right shift normalize” function that the barrel shifter unit performs.

3331 Move Saturated Integer From Accumulator (MSAC) Instruction

The move saturated integer from accumulator (MSAC) instruction allows a 32-bit signed value
to be rotated from the accumulator to a register or memory location at a double-word boundary
address using a 32-bit barrel shifter.

Case studies one and two below illustrate the MSAC operation when the accumulator contains
the positive value 0123 ABCDH:

CASE 1: MSAC r2,#27 ;rotate right 12, result in r2 is BCDO 123AH
CASE 2: MSAC r2,#23 ;rotate right 8, result in r2 is CD01 7FFFH

The syntax for this instruction shows the result destination address followed by the bit pointer.
(The bit pointer is the position of the bit that will assume the most-significant bit (MSB) position
of the low destination word (bit 15), the destination sign bit.)

To conceptualize the wrapping affect of the 32-bit barrel shifter and determine the rotation direc-
tion and shift count for all 32 bits, you must first subtract the value fifteen (for bit position 15)
from the bit pointer.

¢ If the result is negative, a shift left is performed.
¢ If the result is positive, a shift right is performed.

If a saturation is detected, the latched saturation bit in the ACC_STAT register is set. (MSAC is
valid only for signed values.)

3-6

Int€|® DIGITAL SIGNAL PROCESSING

In case study one above, for example, the bit pointer, minus fifteen, equals the value twelve. This
is interpreted as shift accumulator bit #27 twelve positions to the right (see Figure 3-1). In this
case, the extracted result after all bits have been shifted is BCDO 123AH.

MSAC r2, #27
31 27 0
acc | [[[1]] [[[T
_’—ﬁ 27-15 = +12 (Shift right for 12 counts)
2 [[[]] | | HEER
31 15 0
A3243-01

Figure 3-1. MSAC Instruction Example

NOTE
The bit pointer is specified either as an immediate value in the range 0-31 or
as a register in the range 20—FFH. The value in the register must be in the
range 0-31.

If a positive value is to be extracted from the accumulator, the sign bit of the accumulator (bit 31),
the destination sign bit, and all of the bits between them, must be zero.

* If not, the extracted number will not accurately represent the value in the accumulator. As a
result, the value in the low destination word of the extracted number will saturate to the
maximum positive number 7FFFH, as in case study two, above.

If a negative value is to be extracted from the accumulator, the sign bit of the accumulator (bit
31), the destination sign bit, and all of the bits between them, must be one.

* If not, the extracted number will not accurately represent the value in the accumulator and
the value in the low destination word of the extracted number will saturate to the maximum
negative number 8000H.

Cases studies three and four below illustrate the MSAC operation when the accumulator contains
the negative value F865 ABCDH:
CASE 3: MSAC r2,#27 ;BCDF 865AH accurately represents the
;accumulator
CASE 4: MSAC r2,#7 ;zeros left of bit 7 force saturation of
;65AB CDF8H, result is saturated to
;65AB 8000H

NOTE

The high destination word is not modified by the saturation logic. The
saturation adjustment affects only the low destination word.

3-7

80296SA USER'S MANUAL Int6|®

3.3.3.2 Move Double-word from Accumulator (MVAC) Instruction

The move double-word from accumulator (MVAC) instruction allows a 32-bit value to be rotated
from the accumulator to a register or memory location at a double-word boundary address utiliz-
ing a 32-bit barrel shifter.

The MVAC instruction does not make adjustments for saturation (as the MSAC instruction does).
As a result, the extracted result value is never altered. The accumulator control and status register
do not become modified during operation.

Case study five below illustrates the MVAC operation when the accumulator contains the value
0123 ABCDH:

CASE 5: MVAC r2,#11 ;rotate left 4, result in r2 is 123A BCDOH

When MVAC is executed with a shift value of eleven, bit 11 of the accumulator is placed in bit
position 15 of the destination low word, and bit 12 of the accumulator becomes bit position 0 of
the destination high word. The remaining bits wrap in a similar fashion.

3.3.4 Repeat (RPT, RPTI, RPT xxx, RPTIxxx) Instructions

There are four repeat instructions for the 80296SA — RPT, RPTkxFAnd RPTxxx You can
use these instructions to operate on the repeat counter (RPT_CNT) register and on the instruction
following the repeat instruction (see Table 3-6).

Repeat instructions affect the operation of the next instruction executed in code, and vary only in
exit conditions and interruptibility.

An instruction following a repeat instruction is limited to non-branching instructions only. Exam-
ples of instructions not permitted for repeating are jumps, calls, and returns.

The opcode for the repeat instructions is the same opcode as the AND instructions. The 80296SA
differentiates the instructions by the destination operand.

Table 3-6. Repeat Instructions

Instruction Decode Description

RPT O00H Unconditional uninterruptible repeat of next instruction
RPTxxx 10-1FH Conditional uninterruptible repeat of next instruction
RPTI 20H Unconditional interruptible repeat of next instruction
RPTIxxx 30-3FH Conditional interruptible repeat of next instruction

3.34.1 Repeat Next (RPT) Instruction

The unconditional uninterruptible repeat next instruction (RPT) is useful for data block moves,
but requires considerable execution time without a chance for interrupt servicing.

The instruction following a RPT instruction code line is repeated the number of times specified
by the word count value in the repeat counter (RPT_CNT) register located at address 04H.

For example, the following lines of code perform a block move of 1,024 words from ICX1 to
ICXO.

3-8

Int€|® DIGITAL SIGNAL PROCESSING

RPT #1024 ;repeat next instruction 1,024 times
LD ICX0,ICX1 ;move data

In this example, the RPT_CNT register is decremented from 1,024 by a count of one after each
load instruction. The repeat sequence is completed when the load instruction is executed with
RPT_CNT decremented to zero.

The machine code for this example of a repeat operation would appear as follows:
41 0004 00 04 RPT #1024

The manner in which the CPU processes the repeat instruction differentiates this operation from
the AND instruction operation. In the machine code example above:

* The first two characters (41H) of the machine code could represent either an immediate
AND or an immediate RPT instruction, because both instructions share the same opcode.

* Following the opcode is the word source operand (0004H), which is the repeat count value
1,024 represented in hexadecimal. Because of the manner in which the stack builds, with
the low byte pushed on the stack followed by the high byte, the number 400H appears as
0004 in the machine code.

* The next two characters following the source operand decode the specific repeat instruction
used. In the example, the decode value for the RPT instruction is (O0H). (Refer to Table 3-6
for the full range of repeat instruction decode values.)

* The remaining two characters (04H) represent the destination word special function register
into which the source word is loaded. It is the destination word machine code that
differentiates the RPT instruction from the AND instruction.

The maximum repeat count is 65,536. This is achieved by initializing the RPT_CNT register with
a count of 0000H.

3.3.4.2 Repeat Next Conditional (RPT xxx) Instruction

The conditional uninterruptible repeat next instruction (R&Jis similar to the RPT instruction
with the added flexibility of an exit condition from the repeat loop.

The instruction following the REXkx instruction is executed until either the RPT_CNT decre-
ments to zero or an exit condition is satisfied.

Conditional exiting of the repeat loop is enabled by selecting one of the sixteen standard branch
suffix conditions and appending it to the root RPT instruction mnemonic. Examples are RPTC,
RPTLE, RPTNE, and so on. Table 3-7 details the entire listing of exit conditions.

Table 3-7. Repeat Instruction Exit Conditions

RPTxxx Decode RPTIxxx Decode . . .
Instruction (Hex) Instruction (Hex) Repeat next instruction until
RPTNST 10 RPTINST 30 negative and sticky bit flags are set
RPTNH 11 RPTINH 31 not higher
RPTGT 12 RPTIGT 32 greater than
RPTNC 13 RPTINC 33 negative and carry flags are set

3-9

80296SA USER'S MANUAL Int6|®

Table 3-7. Repeat Instruction Exit Conditions (Continued)

RPTX.XX Decode RPTIx_xx Decode Repeat next instruction until
Instruction (Hex) Instruction (Hex)
RPTNVT 14 RPTINVT 34 negative and overflow-trap flags are set
RPTNV 15 RPTINV 35 negative and overflow flags are set
RPTGE 16 RPTIGE 36 greater than or equal
RPTNE 17 RPTINE 37 not equal
RPTST 18 RPTIST 38 sticky bit flag is set
RPTH 19 RPTIH 39 higher
RPTLE 1A RPTILE 3A less than or equal
RPTC 1B RPTIC 3B carry flag is set
RPTVT 1C RPTIVT 3C overflow-trap flag is set
RPTV 1D RPTIV 3D overflow flag is set
RPTLT 1E RPTILT 3E less than
RPTE 1F RPTIE 3F equal

3.34.3 Repeat Next Interruptible (RPTI) Instruction

This instruction is the same as the RPT instruction with an added functionality; you can use it to
interrupt between iterations of a repeated instruction.

With the interruptible repeat of the next instruction (RPTI), the interrupt servicing and recovery
is left up to you. This is because, upon interrupt return, the repeat loop will continue operation at
the location following the repeated instruction.

The following example illustrates a 1,024 word data block move from ICX1 to ICX0 using an
RPTI instruction with interrupt recovery.

* The routine first checks whether the count has expired.

¢ If the count has not expired, the repeat loop must have been interrupted. An interruption
halts execution of the code until the interrupt is serviced. Notice that the repeat instruction
can use a register as well as an immediate value.

LD r0,#1024 ;load repeat count value into register
MOVE:RPTI r0 ;repeat number of times in rO
LD ICX0,ICX1 ;move data
CMP RPT_CNT,0 ;check if repeat count equals zero
Jz DONE ;all done if zero
LD rO,RPT_CNT ;repeat was interrupted, reload remaining
;count
SIMP MOVE ;jJump back to repeat to continue
DONE:... ;execution continues

3344 Repeat Next Conditional Interruptible (RPTI xxx) Instruction

The RPTkxxinstruction is the same as the RRYXinstruction with an added functionality: you
can use it to interrupt between iterations of the repeated instruction.

This means there is one more condition to be checked upon exit from the repeat loop. The instruc-
tion following the RPTxxxinstruction is thus executed until either the RPT_CNT decrements to
zero or the exit condition is satisfied (see Table 3-7).

3-10

Int€|® DIGITAL SIGNAL PROCESSING

The following example illustrates a 1,024 word data block move using the RPTIV instruction.
* The routine first checks whether the overflow condition is met.
¢ If the condition is not met, the routine determines whether the count has expired.

¢ If neither the overflow nor the expired count condition is true, the repeat loop must have
been interrupted. An interruption halts execution of the code until the interrupt is serviced.

LD r0,#1024 ;load repeat count value into register
LOOP:RPTIV 10 ;repeat r0 times, or until overflow occurs

ADD rl,[r2]+ ;add [r2] to rl, increment r2

JV MET ;check if condition has been met

CMP RPT_CNT,0 ;check if repeat count has expired

Jz DONE ;if so, exit the loop

LD rO,RPT_CNT ;repeat was interrupted, reload remaining

;count

SIMP LOOP ;jump back to repeat to continue
MET:... ;execution continues
DONE:... ;execution continues

3.3.5 Return from Interrupt (RETI) Instruction

The return from interrupt (RETI) instruction executes a return by popping the program status
word (PSW) and program counter (PC) from the stack and resetting interrupts of a lower or equal
priority.

Upon completion of an interrupt service routine, the RETI instruction causes the program counter
and status flags to be reloaded from the stack and program execution to resume. At the same time,
the RETI instruction clears the highest priority interrupt bit that is set in the in-progress
(IN_PROK) register.

This instruction allows new interrupt requests of a priority greater than the highest priority cur-
rently being serviced. It also ensures that there will be no more than 16 levels of nested maskable
interrupts. The RETI instruction must be used when priority programming is enabled.

3.4 REPEAT COUNTER (RPT_CNT) REGISTER

The repeat counter (RPT_CNT) register is a 16-bit word value initialized by the repeat instruc-
tions (see Figure 3-2). The RPT_CNT value is decremented by one and then tested for zero after
each execution of the repeated instruction.

3-11

80296SA USER'S MANUAL Int6|®

RPT CNT Address: 0004H
- Reset State: XXXXH

The repeat counter (RPT_CNT) register contains a counter for the repeat instruction set.
15 0

Repeat Counter Value

Bit

Number Function

15:0 Repeat Counter Value

This register contains the count value for the instruction following the repeat instruction.
An initial count of zero repeats the next instruction 65,536 times. An initial count of FFFFH
will repeat 65,535 times.

Figure 3-2. Repeat Counter (RPT_CNT) Register

3.5 ACCUMULATOR

The accumulator is a 40-bit register that stores the results of mathematical operations. It can in-
crease the mathematical precision of multiplication instructions while decreasing the overall in-
struction execution time. The 40-bit accumulator is composed of 32 bits, addressable as two
words, and another eight bits for overflow occurences.

However, the accumulator can only perform 40-bit accumulation during unsigned arithmetic op-
erations with saturation disabled. The most significant byte (39:32) of the accumulator is not de-
fined for signed or saturated MAC operations. The accumulator register can be addressed as a
normal special function register (SFR).

3.5.1 Accumulator Register (ACC_0 x)

The ACC_G& register (Figure 3-3) can be used to either determine the current value of the accu-
mulator or to preload a value into the accumulator.

3-12

Int€|® DIGITAL SIGNAL PROCESSING

ACC_0x Address: OCH, OEH, 06H
x=0,2,4 Reset State: OOH

The 40-bit accumulator register (ACC_0x) resides at locations 0C—0FH. You must read from or write to
the accumulator register as two words at locations OCH and OEH, and as one byte at location 06H.

39 32
ACC_04 Accumulator Value (most-significant byte) ‘
31 16
ACC_02 ‘ Accumulator Value (word 1) ‘
15 0
ACC_00 ‘ Accumulator Value (word 0) ‘
Nuﬁﬁ)er Function
39:0 Accumulator Value

You can read this register to determine the current value of the accumulator. You can
write to this register to clear or preload a value into the accumulator.

Figure 3-3. Accumulator (ACC_0 x) Register

Hardware considerations on the 80296SA have restricted the number of instructions that can op-
erate on the accumulator.

¢ Instructions valid for the lower 32 bits of the accumulator (ACC_00 and ACC_02) are as
follows:

All eight MAC-related instructions

LD/ST instructions on words starting at ACC_00 and ACC_02
ADD/SUB instructions on the word starting at ACC_00
ADDC/SUBC instructions on the word starting at ACC_02
MSAC and MVAC instructions

CMPL, SHLL, SHRAL, and NORML instructions

* Instructions valid for the upper 8 bits of the accumulator (ACC_04) are as follows:

3.5.2

LDB/STB instructions on ACC_04 to a word-aligned boundary

MAC, MACR, MACRZ, and MACZ instructions in conjunction with the lower 32 bits
of the accumulator

Accumulator Control and Status Register (ACC_STAT)

The ACC_STAT register (Figure 3-4) controls the operating mode and reflects the status of the
accumulator.

3-13

80296SA USER'S MANUAL Int6|®

The mode bits, saturation mode enable (SME) and fractional mode enable (FME), are effective
only for signed multiplication. Table 3-8 describes the 80296SA's operation with each of the four
possible configurations of these bits.

ACC_STAT Address: OBH
- Reset State: 38H

The accumulator control and status (ACC_STAT) register enables and disables fractional and
saturation modes and contains three status flags that indicate the status of the accumulator’s
contents.

7 0
FME SME — — H — STOVF OVF ‘STSAT‘

Bit Bit

. Function
Number | Mnemonic

7 FME Fractional Mode Enable

Set this bit to enable fractional mode (see Table 3-8 on page 3-15). In this
mode, the result of a signed multiplication instruction is shifted left by one bit
before it is added to the contents of the accumulator.

For unsigned multiplication, this bit is ignored.

6 SME Saturation Mode Enable

Set this bit to enable saturation mode (see Table 3-8 on page 3-15). In this
mode, the result of a signed multiplication operation is not allowed to
overflow or underflow.

For unsigned multiplication, this bit is ignored.

5:3 — Reserved; for compatibility with future devices, write zeros to these bits.

STOVF Sticky Overflow Flag
For unsigned multiplication, this bit is set if a carry out of bit 31 occurs.

Unless saturation mode is enabled, this bit is set for signed multiplication to
indicate that the sign bit of the accumulator and the sign bit of the addend
are equal, but the sign bit of the result is the opposite (see Table 3-8 on
page 3-15).

Software can clear this flag; hardware does not clear it.

1 OVF Overflow Flag

This bit indicates that an overflow occurred during the preceding
accumulation (see Table 3-8 on page 3-15).

This flag is dynamic; it can change after each accumulation.
0 STSAT Sticky Saturation Flag

This bit indicates that a saturation has occurred during accumulation with
saturation mode enabled (see Table 3-8 on page 3-15).

Software can clear this flag; hardware does not clear it.

Figure 3-4. Accumulator Control and Status (ACC_STAT) Register

3-14

Int€|® DIGITAL SIGNAL PROCESSING

Table 3-8. Effect of SME and FME Bit Combinations

SME | FME Description

0 0 Sets the OVF and STOVF flags if the sign bits of the accumulator and the addend (the
number to be added to the contents of the accumulator) are equal, but the sign bit of the
result is the opposite.

0 1 Shifts the addend (the number to be added to the contents of the accumulator) left by one
bit before adding it to the accumulator. Sets the OVF and STOVF flags if the sign bits of the
accumulator and the addend are equal, but the sign bit of the result is the opposite.

1 0 | Accumulates a signed integer value up or down to saturation and sets the STSAT flag.
Positive saturation changes the accumulator value to 7FFFFFFFH; negative saturation
changes the accumulator value to 80000000H. Accumulation proceeds normally after
saturation, which means that the accumulator value can increase from a negative saturation
or decrease from a positive saturation.

1 1 Shifts the addend (the number to be added to the contents of the accumulator) left by one
bit before adding it to the accumulator. Accumulates a signed integer value up or down to
saturation and sets the STSAT flag. Positive saturation changes the accumulator value to
7FFFFFFFH; negative saturation changes the accumulator value to 80000000H.
Accumulation proceeds normally after saturation, which means that the accumulator value
can increase from a negative saturation or decrease from a positive saturation.

3521 Saturation Mode (SME)

Saturation mode (SME) is one of two operating modes that allows you to control the results of
operations on signed numbers.

Saturation occurs when the result of two positive numbers generates a negative sign bit or the re-
sult of two negative numbers generates a positive sign bit. Without saturation mode, an underflow
or overflow occurs and the overflow (OVF) flag is set. Saturation mode prevents an underflow or
overflow of the accumulated value.

In saturation mode, the accumulator’s value is changed to 7FFFFFFFH for a positive saturation
or 80000000H for a negative saturation and the sticky saturation (STSAT) flag is set.

The following two examples illustrate the contents of the accumulator as a result of positive and
negative saturation, respectively:

7FFFFFFFH = 0111 1111 1111 1111 1111 1111 1111 1111 = 231 — 1 = 42147483647
80000000H = 1000 0000 0000 0000 0000 0000 0000 0000 = -2147483648

3.5.2.2 Fractional Mode

Fractional mode is the other operating mode that allows you to control the results of operations
on signed numbers. gigned fractionatontains an imaginary decimal point between the sign bit
(the MSB) and the adjacent bit. These examples illustrate the representation of 32-bit signed frac-
tional numbers:

0.111 1111 1111 1117 1211 1111 1111 1111 = 2147483647 _
2147483648

3-15

80296SA USER'S MANUAL Int6|®

0.000 0000 0000 0000 0000 0000 0000 0000 =0

-1

1.111 1111 1217 1171 1127 1111 1111 1111 = ————— =
2147483648

1.000 0000 0000 0000 0000 0000 0000 0000 = -1

Fractional mode shifts the result of a multiplication instruction left by one bit before writing the
result to the accumulator. This left shift eliminates the extra sign bit when both operands are
signed, leaving a correctly signed result and the correct decimal placement.

3.5.3 Accumulator Operation Limit

The most-significant byte of the 40-bit accumulator is not defined for signed or saturated arith-
metic operations, so only a 32-bit value can be added to, or subtracted from, the accumulator us-
ing the ADDC and SUBC instructions. lllustrated below are examples of two-operand and three-
operand addition and subtraction operations:

ADD ACC_00,#0123H ;add #22330123H to the accumulator

ADDC ACC_02,#2233H ;using two-operand instructions

ADD ACC_00,ACC_00,#0123H ;three-operand version of above
ADDC ACC_02,ACC_02,#2233H ;addition

SUB ACC_00,#0AABBH ;subtract #4433AABBH from the

SUBC ACC_02,#4433H ;accumulator using two-operand
;instructions

SUB ACC_00,ACC_00,#0AABBH ;three-operand version of above

SUBC ACC_02,ACC_02,#4433H ;subtraction

3.6 INDEX REGISTERS

The 80296SA has three pairs of index registers:
¢ index pointer registers IDX0 and IDX1
¢ index control byte registers ICBO and ICB1
¢ index reference registers ICX0 and ICX1

The index pointer registers, IDX0 and IDX1, are 24-bit pointers to any location within the 16-
Mbyte address range.

The index control byte registers, ICBO and ICB1, act as indirect address references with an auto-
matic increment and decrement feature. Use these registers when you want to program the index
pointer registers to automatically increment or decrement at the end of an instruction.

The index reference registers, ICX0 and ICX1, act as indirect address references. Use these index
registers as destination and source addresses when you want to access the index pointer addres
locations.

3-16

Int€|® DIGITAL SIGNAL PROCESSING

3.6.1 Index Pointer (IDX0 and IDX1) Registers

The index registers, IDX0 and IDX1, are 24-bit pointers to any locations within the address space.
(See Figure 3-5).

IDXx Address: 1FCOH, 1FC4H
Xx=0-1 Reset State: XXXXXXH

The 24-bit index register (IDXx) serves as a pointer to any location within the 16-Mbyte address space.
The following restrictions apply:

« IDXO0 and IDX1 must be accessed with windowed direct addressing.
« IDXO0 must point to either a source 1 (SRC1) or a destination (DEST) address.
« IDX1 must point to a source 2 (SRC2) address.

24 0

Index Pointer

Bit

Number Function

24:0 Index Pointer
This register contains 24 bits of data that point to a location within the address range.

Figure 3-5. Index Pointer (IDX x) Registers

To use these pointers, you must first load the index registers with the appropriate 24-bit starting
address of the locations being pointed to. The example below illustrates the loading of IDX0 and
IDX1 registers:

LDB WSR,#7EH ;Select window 7EH

LD IDX0_7E,#4321H ;load IDX0 to point to 654321H
LDB IDX0_7E+2,#65H ;load upper byte

LD IDX1_7E,#0DCBAH ;load IDX1 to point to OFEDCBAH
LDB IDX1_7E+2,#0FEH ;load upper byte

3.6.2 Index Control Byte (ICBO and ICB1) Registers

The index control byte registers, ICBO and ICB1, are used to control the sequencing of the index
registers (see Figure 3-6). You can program the index registers to automatically increment or dec-
rement at the end of an instruction by any value ranging from 0 to 15.

3-17

80296SA USER'S MANUAL Int6|®

Address: 1FC3H, 1FC7H

ICBx
Reset State: OOH

x=0-1

The index control byte (ICBX) register controls the automatic increment and decrement feature of the
index pointers.

7 4 3 0
— — — D || Count
Bit Bit B Function
Number Mnemonic
75 — Reserved; for compatibility with future devices, write zeros to these bits.
4 ID Increment or Decrement

This bit allows the index pointer to increment and decrement.

0 = increment
1 = decrement

3:0 Count Count Value
These bits specify a count value ranging from OH to OFH (15 decimal).

Figure 3-6. Index Control Byte (ICB x) Registers

To enable the automatic increment or decrement feature, you must program the control bytes as
illustrated below:

LDB WSR,#7EH ;Select window 7EH

LDB ICBO_7E,#3H ;auto-increment IDXO0 by 3 bytes

LDB ICB1_7E,#1EH ;auto-decrement IDX1 by 14 bytes
NOTE

The increment or decrement operation takes place only once per instruction,
and at the effective end of the instruction.

3.6.3 Index Reference (ICX0 and ICX1) Registers

The index pointer registers can be accessed indirectly using the index reference registers, ICX0
and ICX1 (see Figure 3-7). Using ICXO0 as a destination or source address and ICX1 as a source
address enables the index registers to act as indirect address references.

3-18

Int€|® DIGITAL SIGNAL PROCESSING

ICXx Address: 0010H, 0016H
Xx=0-1 Reset State: XXXXH

The index reference register (ICXx) allows you to indirectly access the address location being pointed
to by the index pointer.

15 0

Index Reference

Bit

Number Function

15:0 Index Reference

This register contains a word of data that indirectly addresses the index pointer.

Figure 3-7. Index Reference (ICX x) Registers

In the following example the index pointers, IDX0 and IDX1, are accessed via the index reference
registers, ICX0 and ICX1. This example is a continuation of the previous examples used in the
explanation of the index registers and control bytes:

LD ICX0,#20H ;loads 20H into location 654321H and
;increments IDXO0 by 3 bytes

LD r20,ICX1 ;loads content in location OFEDCBAH into
;r20 and decrements IDX1 by 14 bytes

LD ICX0,ICX1 ;loads content in location OFEDCACH into

;location 654324H and increments IDX0

;3 bytes and decrements IDX1 by 14 bytes
ADD ICX0,ICX0,ICX1 ;adds content in locations 654327H and

;OFEDC9EH and stores result in location

;654327H. Increments IDXO0 by 3 bytes,

;even though it is used twice, and

;decrements IDX1 by 14 bytes

3.7 APPLICATION EXAMPLE

The following code segment incorporates the multiply-accumulate and repeat instructions, and
utilizes register indexing to perform a multiply-accumulate of two 100-entry word tables.

In the example:
¢ the coefficient (C1) table is located at address 112233H
¢ the sample (S1) table is located at address 445566H and is to be rotated upward during the

operation
LDB WSR,#7EH ;Select window 7EH
LD IDX0_7E,#22FBH ;load C1 table pointer to the top of C1
LDB IDX0_7E+2,#11H
LD IDX1_7E #562EH ;load S1 table pointer to the top of S1
LDB IDX1_7E+2,#44H
LDB ICBO_7E,#12H ;set-up auto-decrement of IDXO0 by 2 bytes
;for word contents in C1
LDB ICB1_7E #12H ;set-up auto-decrement of IDX1 by 2 bytes

;for word contents in S1

3-19

80296SA USER’S MANUAL

SMAC ICX0,ICX1
RPT #99

SMACR ICX0,ICX1

;multiply-accumulate first entry at top of

;tables and store result in the accumulator
;set-up unconditional uninterruptible repeat
;loop of next instruction
;multiply-accumulate remaining table entries
;and add results to the accumulator. Rotate
;S2 word entries in address memory

The initial six lines of code simply establish the two data tables in address memory and initialize
the table pointers. The remaining code sets up a 100-iteration, uninterrupted multiply-accumulate

loop.

The accumulator stores the results while the contents of table S1 are physically rotated in address
memory from 445566—-44562EH to 445568—-445630H (see Figure 3-8).

C1l S1
IDX0(n) —> X <« IDX1(n)
1122FBH + > 44562EH
X
+ >
X
° ° °
° ° °
° ° °
X
+ >
IDX0(n-100) X '«— IDX1(n-100)
112233H 445566H
New Sample on
Next Filter Pass
A3244-01

3-20

Figure 3-8. Application Code lllustration

Int€|® DIGITAL SIGNAL PROCESSING

In Figure 3-8, table C1 contains your coefficients and table S1 contains your input samples. Each

iteration loop through the table represents one filter pass. (In our example, a filter pass comprises
100 filter taps.) As new data is rotated into the sample table on successive filter passes, the signal
waveform is further interpreted until all the data has been introduced and processed.

The usefulness of such code can be found in signal processing applications where a finite-im-
pulse-response (FIR) filter is used for processing sampled data (see Figure 3-9).

x(0.,n) Filter E—A (y)]

A3245-01

Figure 3-9. FIR Filter Block Diagram

The FIR filter function is represented in equation form as follows:
y(n) = a(0)x(n) +a(1)x(n—-1) +... +a(N)x(n—=N)

where: N = number of filter taps
n = number of samples
a = coefficient
X = input sample
y = filter pass (accumulator)

In our example, the output y(100) is the summation of x(100) to x(0) input samples, where the
first sample x(100) is multiplied by coeffient a(0), the second sample x(99) is multiplied by co-
effient a(1), and so on.

3-21

intel.

Programming
Considerations

intel.

CHAPTER 4

PROGRAMMING CONSIDERATIONS

This section provides an overview of the instruction set of the@/@B3nicrocontrollers and of-

fers guidelines for program development. For detailed information about specific instructions,
see Appendix A.

4.1

The instruction set supports a variety of data types likely to be useful in control applications (see

Table 4-1).

OVERVIEW OF THE INSTRUCTION SET

NOTE

The data-type variables are shown in all capitals to avoid confusion. For
example, BYTEis an unsigned 8-bit variable in an instruction, whibg/is
any 8-bit unit of data (either signed or unsigned).

Table 4-1. Data Type Definitions

No. of . . Addressing
Data Type Bits Signed Possible Values Restrictions

BIT 1 No True (1) or False (0) As components of bytes
BYTE 8 No 0 through 281 (0 through 255) None
SHORT-INTEGER 8 Yes | -27 through +27-1 None

(=128 through +127)
WORD 16 No 0 through 216-1 Even byte address

(0 through 65,535)
INTEGER 16 Yes | —215 through +215-1 Even byte address

(-32,768 through +32,767)
DOUBLE-WORD 32 No 0 through 232-1 An address in the lower
(Note 1) (0 through 4,294,967,295) register file that is evenly

divisible by four

LONG-INTEGER 32 Yes | —231through +231-1 An address in the lower
(Note 1) (-2,147,483,648 through register file that is evenly

+2,147,483,647) divisible by four
QUAD-WORD 64 No 0 through 264-1 An address in the lower
(Note 2) register file that is evenly

divisible by eight

NOTES:

1. The 32-bit operands are supported only in shift operations, as the dividend in 32-by-16 division, and
as the product of 16-by-16 multiplication.
2. QUAD-WORD variables are supported only as the operand for the EBMOVI instruction.

80296SA USER'S MANUAL Int6|®

Table 4-2 lists the equivalent data-type names for both C programming and assembly language.

Table 4-2. Equivalent Data Types for Assembly and C Programming Languages

Data Types Assembly Language Equivalent C Programming Language Equivalent
BYTE BYTE unsigned char
SHORT-INTEGER BYTE char
WORD WORD unsigned int
INTEGER WORD int
DOUBLE-WORD LONG unsigned long
LONG-INTEGER LONG long
QUAD-WORD — —

4.1.1 BIT Operands

A BIT is a single-bit variable that can have the Boolean values, “true” and “false.” The architec-
ture requires that BITs be addressed as components of BYTEs or WORDSs. It does not support the
direct addressing of BITs. (You can, however, test the state of a single bit. For example, the JBC
and JBS instructions are conditional jump instructions that test a specified bit.)

4.1.2 BYTE Operands

A BYTE is an unsigned, 8-bit variable that can take on values from 0 through885. (&rith-

metic and relational operators can be applied to BYTE operands, but the result must be interpret-
ed in modulo 256 arithmetic. Logical operations on BYTEs are applied bitwise. Bits within
BYTEs are labeled from 0 to 7; bit O is the least-significant bit. There are no alignment restric-
tions for BYTES, so they may be placed anywhere in the address space.

4.1.3 SHORT-INTEGER Operands

A SHORT-INTEGER is an 8-bit, signed variable that can take on values from —I2&{eRgh

+127 (+Z-1). Arithmetic operations that generate results outside the range of a SHORT-
INTEGER set the overflow flags in the processor status word (PSW). The numeric result is the
same as the result of the equivalent operation on BYTE variables. There are no alignment restric-
tions on SHORT-INTEGERS, so they may be placed anywhere in the address space.

4-2 I

Int6|® PROGRAMMING CONSIDERATIONS

4.1.4 WORD Operands

A WORD is an unsigned, 16-bit variable that can take on values from 0 through 63%35.(2
Arithmetic and relational operators can be applied to WORD operands, but the result must be in-
terpreted in modulo 65536 arithmetic. Logical operations on WORDs are applied bitwise. Bits
within WORDs are labeled from 0 to 15; bit 0 is the least-significant bit.

WORDSs must be aligned at even byte boundaries in the address space. The least-significant byte
of the WORD is in the even byte address, and the most-significant byte is in the next higher (odd)
address. The address of a WORD is that of its least-significant byte (the even byte address).
WORD operations to odd addresses are not guaranteed to operate in a consistent manner.

4.1.5 INTEGER Operands

An INTEGER is a 16-bit, signed variable that can take on values from —32,768 tdugh

+32,767 (+25-1). Arithmetic operations that generate results outside the range of an INTEGER
set the overflow flags in the processor status word (PSW). The numeric result is the same as the
result of the equivalent operation on WORD variables.

INTEGERSs must be aligned at even byte boundaries in the address space. The least-significant
byte of the INTEGER is in the even byte address, and the most-significant byte is in the next high-
er (odd) address. The address of an INTEGER s that of its least-significant byte (the even byte
address). INTEGER operations to odd addresses are not guaranteed to operate in a consisten
manner.

4.1.6 DOUBLE-WORD Operands

A DOUBLE-WORD is an unsigned, 32-bit variable that can take on values from 0 through
4,294,967,295 @-1). The architecture directly supports DOUBLE-WORD operands only as
the operand in shift operations, as the dividend in 32-by-16 divide operations, and as the product
of 16-by-16 multiply operations. For these operations, a DOUBLE-WORD variable must reside
in the lower register file and must be aligned at an address that is evenly divisible by four. The
address of a DOUBLE-WORD is that of its least-significant byte (the even byte address). The
least-significant word of the DOUBLE-WORD is always in the lower address, even when the
data is in the stack. This means that the most-significant word must be pushed onto the stack first.

DOUBLE-WORD operations that are not directly supported can be easily implemented with two
WORD operations. For example, the following sequences of 16-bit operations perform a 32-bit
addition and a 32-bit subtraction, respectively.

ADD REG1,REG3 ; (2-operand addition)
ADDC REG2,REG4

SUB REG1,REG3 ; (2-operand subtraction)
SUBC REG2,REG4

I 4-3

80296SA USER'S MANUAL Int6|®

4.1.7 LONG-INTEGER Operands

A LONG-INTEGER is a 32-bit, signed variable that can take on values from —2,147,483,648
(=23 through +2,147,483,647 (32-1). The architecture directly supports LONG-INTEGER
operands only as the operand in shift operations, as the dividend in 32-by-16 divide operations,
and as the product of 16-by-16 multiply operations. For these operations, a LONG-INTEGER
variable must reside in the lower register file and must be aligned at an address that is evenly di-
visible by four. The address of a LONG-INTEGER is that of its least-significant byte (the even
byte address).

LONG-INTEGER operations that are not directly supported can be easily implemented with two
INTEGER operations. See the example in “DOUBLE-WORD Operands” on page 4-3.

4.1.8 QUAD-WORD Operands

A QUAD-WORD is a 64-bit, unsigned variable that can take on values from O thréfigh 2

The architecture directly supports the QUAD-WORD operand only as the operand of the EB-
MOVI instruction. For this operation, the QUAD-WORD variable must reside in the lower reg-
ister file and must be aligned at an address that is evenly divisible by eight.

4.1.9 Converting Operands

The instruction set supports conversions between the data types (Table 4-3). The LDBZE (load
byte, zero extended) instruction converts a BYTE to a WORD. CLR (clear) converts a WORD to
a DOUBLE-WORD by clearing (writing zeros to) the upper WORD of the DOUBLE-WORD.
LDBSE (load byte, sign extended) converts a SHORT-INTEGER into an INTEGER. EXT (sign
extend) converts an INTEGER to a LONG-INTEGER.

Table 4-3. Converting Data Types

T(; convert to... . Use Fhis Which performs this function.
rom ... instruction...

BYTE WORD LDBZE Writes zeros to the upper byte.
WORD DOUBLE-WORD | CLR Writes zeros to the upper word.
SHORT-INTEGER | INTEGER LDBSE Writes the sign bit to the upper byte.
INTEGER LONG-INTEGER | EXT Writes the sign bit to the upper word.

4-4 I

Int6|® PROGRAMMING CONSIDERATIONS

4.1.10 Conditional Jumps

The instructions for addition, subtraction, and comparison do not distinguish between unsigned
(BYTE, WORD) and signed (SHORT-INTEGER, INTEGER) data types. However, the condi-
tional jump instructions allow you to treat the results of these operations as signed or unsigned
guantities. For example, the CMP (compare) instruction is used to compare both signed and un-
signed 16-bit quantities. Following a compare operation, you can use the JH (jump if higher) in-
struction for unsigned operands or the JGT (jump if greater than) instruction for signed operands.

4.1.11 Floating Point Operations

The hardware does not directly support operations on REAL (floating point) variables. Those op-
erations are supported by floating point libraries from third-party tool vendors. (S2evblep-

ment Tools HandbookThe performance of these operations is significantly improved by the
NORML instruction and by the sticky bit (ST) flag in the processor status word (PSW). The
NORML instruction normalizes a 32-bit variable; the sticky bit (ST) flag can be used in conjunc-
tion with the carry (C) flag to achieve finer resolution in rounding.

4.1.12 Extended Instructions

This section briefly describes the instructions that enable code execution and data access any-
where in the address space. These instructions are implemented for all MCS 96 microcontrollers
that have extended addressing ports (currently the 8XC196NT, 8XC196NP, 80C196NU, and
80296SA, microcontrollers). They function only in extended addressing modes.

In general, you should avoid creating tables or arrays that cross page boundaries. For example, if
you are building a large array, start it at a base address that will accommodate the entire array
within the same page. If you cannot avoid crossing a page boundary, keep in mind that you must
use extended instructions to access data outside page O0H.

NOTE
In 1-Mbyte mode, ECALL, LCALL, and SCALL always push two words onto
the stack; therefore, a RET must always pop two words from the stack.
Because of the extra push and pop operations, interrupt routines and
subroutines take slightly longer to execute in 1-Mbyte mode than in 64-Kbyte
mode.

EBMOVI Extended interruptible block move. Moves a block of word data
from one memory location to another. This instruction allows you to
move blocks of up to 64K words between any two locations in the
address space. It uses two 24-bit autoincrementing pointers and a 16-
bit counter.

I 4-5

80296SA USER'S MANUAL Int6|®

EBR Extended branch This instruction is an unconditional indirect jump
to anywhere in the address space.

ECALL Extended call This instruction is an unconditional relative call to
anywhere in the address space.

EJMP Extended jump. This instruction is an unconditional relative jump to
anywhere in the address space.

ELD, ELDB Extended load word, extended load byteLoads the value of the
source operand into the destination operand. This instruction allows
you to move data from anywhere in the address space into the lower
register file.

EST, ESTB Extended store word, extended store byteStores the value of the
source(leftmost) operand into the destinatignghtmost) operand.
This instruction allows you to move data from the lower register file
to anywhere in the address space.

4.1.13 Instructions That Were Removed from the 80296SA

The instructions that enable and disable the peripheral transaction server (PTS) were removed
from the 80296SA because it has no PTS.

DPTS, EPTS Disable PTS, enable PTS

4.1.14 Instructions That Were Enhanced for the 80296SA

Several mathematical instructions were enhanced for the 80296SA.

ADDC Add signed word to accumulator with carry. Adds the source and
destination operands and the carry flag and stores the sum into the
destination operand. If the accumulator is the destination and
saturation is enabled in the ACC_STAT register, a saturated addition
is performed.

DIV, DIVB Signed divide word, signed divide byte Divides the destination
operand by the contents of the source operand, using signed
arithmetic. It stores the quotient into the low-order word of the
destination and the remainder into the high-order word. The
80296SA does not require the FEH opcode prefix. The tools use the
sign extension bit (bit 0) in the destination operand register. For
compatibility with earlier MCS 96 microcontrollers, the 80296SA
supports both methods. DIVU with the sign bit is functionally
equivalent to DIV with the sign-extension opcode (FEH).

4-6 I

Int6|® PROGRAMMING CONSIDERATIONS

MUL, MULB Signed multiply word, signed multiply byte Multiplies the source
and destination operands, using signed arithmetic, and stores the
result in the destination operand. The 80296SA does not require the
FEH opcode prefix. The tools use the sign extension bit (bit 0) in the
destination operand register. For compatibility with earlier MCS 96
microcontrollers, the 80296SA supports both methods. MULU with
the sign bit is functionally equivalent to MUL with the sign-
extension opcode (FEH).

SUBC Subtract signed words with borrow Subtracts the source word
operand from the destination word operand. If the carry flag was
clear, SUBC subtracts 1 from the result. It stores the result in the
destination operand and sets the carry flag as the complement of
borrow. If the accumulator is the destination and saturation is enabled
in the ACC_STAT register, a saturated subtraction is performed.

4.1.15 Instructions That Were Added for the 80296SA

Several instructions were added to the 80296SA to support embedded digital signal processing
applications.

MAC Unsigned multiply-accumulate Multiplies two unsigned 16-bit
operands and adds the 32-bit result to the value currently in the
accumulator.

MACR Unsigned multiply-accumulate and relocate source.2Multiplies
two unsigned 16-bit operands, adds the 32-bit result to the value
currently in the accumulator, and moves the source 2 data to (source
2+ 2).

MACRZ Unsigned multiply-accumulate, clear accumulator, and relocate
source 2 Multiplies two unsigned 16-bit operands, clears the
accumulator, stores the 32-bit result to the accumulator, and moves
the source 2 data to (source 2 + 2).

MACZ Unsigned multiply-accumulate and clear accumulatarMultiplies
two unsigned 16-bit operands, clears the accumulator, and stores the
32-hit result to the accumulator.

MSAC Move saturated integer from accumulator Copy (rotate) the
signed value from the accumulator to the specified destination,
through the barrel shifter. If the value in the accumulator is greater
than or less than the extracted low word, then the low word is
replaced by the saturated value.

I 4-7

80296SA USER'S MANUAL Int6|®

MVAC Move double-word from accumulator. Copy (rotate) the signed
value from the accumulator to the specified destination, through the
barrel shifter.

RETI Return from interrupt subroutine . Execute a return by popping the
PSW and PC from the stack and resetting the highest priority set bit
in the in-progress (IN_PRQO{Bregister.

RPT, RPTXxx Repeat, conditional repeat Repeats the next instruction the number
of times specified in the RPT_CNT register. This instruction can be
used in conjunction with a conditional instruction (RPTC, RPTVT,
etc).

RPTI, RPTkxx Interruptible repeat, interruptible conditional repeat . Repeats the
next instruction the number of times specified in the RPT_CNT
register. This instruction can be used in conjunction with a
conditional instruction (RPTIC, RPTIVT, etc).

SMAC Signed multiply-accumulate Multiplies two signed 16-bit operands
and adds the 32-bit result to the value currently in the accumulator.

SMACR Signed multiply-accumulate and relocate source. Multiplies two
signed 16-bit operands, adds the 32-bit result to the value currently in
the accumulator, and moves the source 2 data to (source 2 + 2).

SMACRZ Signed multiply-accumulate, clear accumulator, and relocate
source 2 Multiplies two signed 16-bit operands, clears the accumu-
lator, stores the 32-bit result to the accumulator, and moves the
source 2 data to (source 2 + 2).

SMACZ Signed multiply-accumulate and clear accumulatar Multiplies
two signed 16-bit operands, clears the accumulator, and stores the
32-bit result to the accumulator.

4.2 ADDRESSING MODES

This section describes the addressing modes as they are handled by the hardware. An understand
ing of these details will help programmers to take full advantage of the architecture. Most soft-
ware tools have features that simplify the choice of addressing modes. Please consult the
documentation for your assembler or compiler for details.

4-8 I

Int6|® PROGRAMMING CONSIDERATIONS

The instruction set uses four basic addressing modes:
e direct
* immediate
¢ indirect (with or without autoincrement)
¢ indexed (short-, long-, or zero-indexed)
The stack pointer can be used with indirect addressing to access the top of the stack, and it can

also be used with short-indexed addressing to access data within the stack. The zero register can
be used with long-indexed addressing to access any memory location.

Extended variations of the indirect and indexed modes support the extended load and store in-
structions. An extended load instruction moves a word (ELD) or a byte (ELDB) from any location

in the address space into the lower register file. An extended store instruction moves a word
(EST) or a byte (ESTB) from the lower register file into any location in the address space. An
instruction can contain only one immediate, indirect, or indexed reference; any remaining oper-
ands must be direct references.

The examples in this section assume that temporary registers are defined as shown in Table 4-4.

Table 4-4. Definition of Temporary Registers

Temporary Register Description
AX word-aligned 16-bit register; AH is the high byte of AX and AL is the low byte
BX word-aligned 16-bit register; BL is the low byte of BX
CX word-aligned 16-bit register; CH is the high byte of CX and CL is the low byte
DX word-aligned 16-bit register; DH is the high byte of DX and DL is the low byte
EX double-word-aligned 24-bit register

4.2.1 Direct Addressing

Direct addressing directly accesses a location in the 256-byte lower register file, without involv-
ing the memory controller. Windowing allows you to remap other sections of memory into the
lower register file for direct access (see Chapter 5, “Memory Partitions,” for details). You specify
the registers as operands within the instruction. The register addresses must conform to the align-
ment rules for the operand type. Depending on the instruction, up to three registers can take part
in a calculation. The following instructions use direct addressing:

ADD AX,BX,CX ;AX « BX+CX
ADDB AL,BL,CL ;AL <« BL+CL

MULB AX,BL ;AX < AX xBL
INCB CL ; CL ~CL+1

4-9

80296SA USER'S MANUAL Int6|®

4.2.2 Immediate Addressing

Immediate addressing mode accepts one immediate value as an operand in the instruction. You
specify an immediate value by preceding it with a number symbol (#). An instruction can contain
only one immediate value; the remaining operands must be direct references. The following in-
structions use immediate addressing:

ADD AX,#340 CAX < AX + 340
PUSH #1234H :SP . SP-2

: MEM_WORD(SP) « 1234H
DIVB AX,#10 SAL < AX/10

AH — AXMOD 10

4.2.3 Indirect Addressing

The indirect addressing mode accesses an operand by obtaining its address from a WORD regis-
ter in the lower register file. You specify the register containing the indirect address by enclosing

it in square brackets ([]). The indirect address can refer to any location within the address space,
including the register file. The register that contains the indirect address must be word-aligned,
and the indirect address must conform to the rules for the operand type. An instruction can contain
only one indirect reference; any remaining operands must be direct references. The following in-
structions use indirect addressing:

LD AX,[BX] ; AX ~ MEM_WORD(BX)

ADDB AL,BL,[CX] ; AL « BL + MEM_BYTE(CX)

POP [AX] ; MEM_WORD(AX) ~ MEM_WORD(SP)
;SP - SP+2

4231 Extended Indirect Addressing

Extended load and store instructions can use indirect addressing. The only difference is that the
register containing the indirect address must be a word-aligned 24-bit register to allow access to
the entire 1-Mbyte address space. The following instructions use extended indirect addressing:

ELD AX,[EX] :AX < MEM_WORD(EX)
ELDB AL,[EX] :AL < MEM_BYTE(EX)
EST AX,[EX] : MEM_WORD(EX) « AX
ESTB AL,[EX] : MEM_BYTE(EX) « AL

4232 Indirect Addressing with Autoincrement

You can choose to automatically increment the indirect address after the current access. You spec-
ify autoincrementing by adding a plus sign (+) to the end of the indirect reference. In this case,
the instruction automatically increments the indirect address (by one if the destination is an 8-bit
register or by two if it is a 16-bit register). When your code is assembled, the assembler automat-
ically sets the least-significant bit of the indirect address register. The following instructions use
indirect addressing with autoincrement:

4-10

Int6|® PROGRAMMING CONSIDERATIONS

LD AX,[BX]+ :AX < MEM_WORD(BX)
iBX ~ BX+2

ADDB AL,BL,[CX]+ :AL < BL+MEM_BYTE(CX)
{CX < CX+1

PUSH [AX]+ 'SP . SP-2

: MEM_WORD(SP) — MEM_WORD(AX)
CAX < AX+2

4233 Extended Indirect Addressing with Autoincrement

The extended load and store instructions can also use indirect addressing with autoincrement. The
only difference is that the register containing the indirect address must be a word-aligned 24-bit
register to allow access to the entire 1-Mbyte address space. The following instructions use ex-
tended indirect addressing with autoincrement:
ELD AX,[EX]+ ;AX < MEM_WORD(EX)
JEX < EX+2
ELDB AL,[EX]+ ;AL < MEM_BYTE(EX)
JEX < EX+1
EST AX|[EX]+ ; MEM_WORD(EX) « AX
JEX < EX+2
ESTB AL,[EX]+ ; MEM_BYTE(EX) - AL
JEX < EX+1

4234 Indirect Addressing with the Stack Pointer

You can also use indirect addressing to access the top of the stack by using the stack pointer as
the WORD register in an indirect reference. The following instruction uses indirect addressing
with the stack pointer:

PUSH [SP] ; duplicate top of stack
;SP ~SP-2

Indirect and indexed PUSH and POP operations relative to the stack pointer work differently on
the 80296SA than on the 8XC196NP and 80C196NU. The 8XC196NP and 80C196NU micro-
controllers calculate the address based on the value of thfte8Rt is updated. The 80296SA
works like the 8096BH. That is, it calculates the address based on the value ob#fer8R is
updated.

4.2.4 Indexed Addressing

Indexed addressing calculates an address by adding an offset to a base address. There are thre
variations of indexed addressing: short-indexed, long-indexed, and zero-indexed. Both short- and
long-indexed addressing are used to access a specific element within a structure. Short-indexed
addressing can access up to 256 byte locations, long-indexed addressing can access up to 65,53
byte locations, and zero-indexed addressing can access a single location. An instruction can con-
tain only one indexed reference; any remaining operands must be direct references.

4-11

80296SA USER'S MANUAL Int6|®

42.4.1 Short-indexed Addressing

In a short-indexed instruction, you specify the offset as an 8-bit constant and the base address as
an indirect address register (a WORD). The following instructions use short-indexed addressing.

LD AX,12H[BX] {AX < MEM_WORD(BX + 12H)
MULB AX,BL,3[CX] {AX < BL XMEM_BYTE(CX + 3)

The instruction LD AX,12H[BX] loads AX with the contents of the memory location that resides

at address BX+12H. That is, the instruction adds the constant 12H (the offset) to the contents of
BX (the base address), then loads AX with the contents of the resulting address. For example, if
BX contains 1000H, then AX is loaded with the contents of location 1012H. Short-indexed ad-
dressing is typically used to access elements in a structure, where BX contains the base address
of the structure and the constant (12H in this example) is the offset of a specific element in a struc-
ture.

You can also use the stack pointer in a short-indexed instruction to access a particular location
within the stack, as shown in the following instruction.

LD AX2[SP]

4242 Long-indexed Addressing

In a long-indexed instruction, you specify the base address as a 16-bit variable and the offset as
an indirect address register (a WORD). The following instructions use long-indexed addressing.

LD AX,TABLE[BX] :AX « MEM_WORD(TABLE + BX)

AND AX,BX,TABLE[CX] :AX — BX AND MEM_WORD(TABLE + CX)
ST AX,TABLE[BX] : MEM_WORD(TABLE + BX) « AX

ADDB AL,BL,LOOKUP[CX] :AL « BL+ MEM_BYTE(LOOKUP + CX)

The instruction LD AX, TABLE[BX] loads AX with the contents of the memory location that re-
sides at address TABLE+BX. That is, the instruction adds the contents of BX (the offset) to the
constant TABLE (the base address), then loads AX with the contents of the resulting address. For
example, if TABLE equals 4000H and BX contains 12H, then AX is loaded with the contents of
location 4012H. Long-indexed addressing is typically used to access elements in a table, where
TABLE is a constant that is the base address of the structure and BX is the scaled »fidet (
ement size, in bytes) into the structure.

4.2.4.3 Extended Indexed Addressing

The extended load and store instructions can use extended indexed addressing. The only differ-
ence from long-indexed addressing is that both the base address and the offset must be 24 bits to
support access to the entire 1-Mbyte address space. The following instructions use extended in-
dexed addressing. (In these instructions, OFFSET is a 24-bit variable containing the offset, and
EX is a double-word aligned 24-bit register containing the base address.)

4-12

Int6|® PROGRAMMING CONSIDERATIONS

ELD AX,OFFSETIEX] :AX < MEM_WORD(EX+OFFSET)
ELDB AL,OFFSET[EX] ‘AL . MEM_BYTE(EX+OFFSET)
EST AX,OFFSETIEX] : MEM_WORD(EX+OFFSET) « AX
ESTB AL,OFFSET[EX] : MEM_BYTE(EX+OFFSET) — AL

42.4.4 Zero-indexed Addressing

In a zero-indexed instruction, you specify the address as a 16-bit variable; the offset is zero, and
you can express it in one of three ways: [0], [ZERO_REG], or nothing. Each of the following load
instructions loads AX with the contents of the variable THISVAR.

LD AX,THISVAR[O]

LD AX,THISVAR[ZERO_REG]
LD AX,THISVAR

The following instructions also use zero-indexed addressing:

ADD AX,1234H[ZERO_REG] {AX < AX + MEM_WORD(1234H)
POP 5678H[ZERO_REG] : MEM_WORD(5678H) — MEM_WORD(SP)
'SP _SP+2

4.2.45 Extended Zero-indexed Addressing

The extended instructions can also use zero-indexed addressing. The only difference is that you
specify the address as a 24-bit constant or variable. The following extended instruction uses zero-
indexed addressing. ZERO_REG acts as a 32-bit fixed source of the constant zero for an extended
indexed reference.

ELD AX,23456H[ZERO_REG] :AX < MEM_WORD(23456H)

4.3 CONSIDERATIONS FOR CROSSING PAGE BOUNDARIES

In general, you should avoid creating tables or arrays that cross page boundaries. For example, if
you are building a large array, start it at a base address that will accommodate the entire array
within the same page. If you cannot avoid crossing a page boundary, keep in mind that you must
use extended instructions to access data outside page O0H.

4.4 SOFTWARE PROTECTION FEATURES AND GUIDELINES

The microcontroller has several features to assist in recovering from hardware and software er-
rors. The unimplemented opcode interrupt provides protection from executing unimplemented
opcodes. The hardware reset instruction (RST) can cause a reset if the program counter goes out
of bounds. The RST instruction opcode is FFH, so the processor will reset itself if it tries to fetch
an instruction from unprogrammed locations in honvolatile memory or from bus lines that have
been pulled high.

4-13

80296SA USER'S MANUAL Int6|®

We recommend that you fill unused areas of code with NOPs and periodic jumps to an error rou-
tine or RST instruction. This is particularly important in the code surrounding lookup tables, since
accidentally executing from lookup tables will cause undesired results. Wherever space allows,
surround each table with seven NOPs (because the longest device instruction has seven bytes) anc
a RST or a jump to an error routine. Since RST is a one-byte instruction, the NOPs are unneces-
sary if RSTs are used instead of jumps to an error routine. This will help to ensure a speedy re-
covery from a software error.

4-14

intel.

Memory Partitions

intel.

CHAPTER 5
MEMORY PARTITIONS

This chapter describes the organization of the address space, its major partitions, and the 1-Mbyte
and 64-Kbyte operating modek-Mbyterefers to the address space defined by the 20 external
address pins. In 1-Mbyte mode, code can execute from almost anywhere in the 1-Mbyte space.
In 64-Kbyte mode, code can execute only from the 64-Kbyte area FFOOO0—FFFFFFH. The 64-
Kbyte mode provides compatibility with software written for previous 16-bit 1686 micro-
controllers. In either mode, nearly all of the 1-Mbyte address space is available for data storage.

Other topics covered in this chapter include the following:

* the relationship between the 1-Mbyte address space defined by the 20 external address pins
and the 16-Mbyte address space defined by the 24 internal address bits

¢ awindowingtechnique for accessing the upper register file, peripheral SFRs, internal code
RAM, and sections of external memory with register-direct instructions

¢ extended and nonextended data accesses

5.1 MEMORY MAP OVERVIEW

With 24 internal address bits, the microcontroller can address 16 Mbytes of memory. However,
only 20 of the 24 address bits are implemented by external pins: A19:0 in demultiplexed mode,
or A19:16 and AD15:0 in multiplexed mode. If, for example, an internal 24-bit address is
FF2080H, the 20 external-address pins output F2080H. Further, the address seen by an external
device depends on how many of the extended address pins are connected to the device. (See “In-
ternal and External Addresses” on page 13-1.)

The 20 external-address pins can address 1 Mbyte of external memory. For purposes of discussion
only, it is convenient to view this 1-Mbyte addregmce as sixteen 64-Kbyte pages, humbered
0O0H-OFH (see Figure 5-1 on page 5-2). The 4 upper address pins select a 64-Kbyte page (OOH—
OFH), and the lower 16 address pins select a particular location within a 64-Kbyte page.

Because the 4 most-significant bits (MSBs) of the internal address can take any values without
changing the external address, these 4 bits effectively produce 16 copies of the 1-Mbyte address
space, for a total of 16 Mbytes in 256 pages, 00H-FFH (Figure 5-1). For example, page 01H has
15 duplicates: 11H, 21H, ..., F1H. The shaded areas in Figure 5-1 represent the overlaid areas.

I 5-1

80296SA USER'S MANUAL Int6|®

16 Mbyte 3 Mbyte 2 Mbyte 1 Mbyte
FFH 2FH 1FH OFH
F1H 21H 11H 01H
FOH 20H 10H O00H
Externally
Addressable
A2541-02

Figure 5-1. 16-Mbyte Address Space

The memory pages of interest are 0OH—OEH and FFH. Pages 01H-OEH are external memory with
unspecified contents; they can store either code or data. Pages 00H and FFH, shown in Figure
5-2, have special significance. Page 00H contains the register file and the special-function regis-
ters (SFRs), while page FFH contains special-purpose memory (chip configuration bytes and in-
terrupt vectors) and program memory. The microcontroller fetches its first instruction from
location FF2080H.

Like the 8XC196NP and 80C196NU, the 80296SA incorporates a chip-select unit to simplify ac-
cess to external memory devices. The chip-select unit of the earlier devices decoded only the low-
er 20 address bits, enabling unique access to addresses in pages 00H-0EH and FFH. By decodinc
all 24 bits of the internal address, the 80296SA’s enhanced chip-select unit provides a method for
uniquely addressing external memory devices in pages OFH—FEH, as well. You can assign each
chip-select a range of addresses in up to 1 Mbyte segments. Therefore, with six chip-select out-
puts, the 80296SA can access up to 6 Mbytes of memory. Refer to “The Chip-select Unit” on page
13-8 for details.

NOTE

Because the microcontroller has 24 bits of address internally, all programs
must be written as though it uses all 24 bits. The microcontroller resets from
page FFH, so all code must originate from this page. (Use the assembler
directive, “cseg at OBExH.”) This is true even though your code is actually
stored in external memory.

5-2 I

MEMORY PARTITIONS

Page FFH Page OOH
FFFFFFH | nternal Code RAM (CCB1.1=1) O00FFFFH
£ M CCBL1=0 Internal Code RAMT
FEEgo0H | ©F External Memory (.1=0) OOF800H
FFF7FFH 00F7FFH
External Memoryt
00FO00H
O00EFFFH
External
Program Memory
External Memory
FF2080H
FF207FH External
Special-purpose Memory
FF2000H (CCBs and interrupt vectors) 002000H
FF1FFFH 001FFFH
Peripheral SFRstt
001FO0H
001EFFH
External Memory External Memory
(future SFR expansion)
001COO0H
001BFFH
FF1000H
FFOFFFH
External Memory
External Memory
FF0400H 000400H
FFO3FFH 0003FFH
Reserved
future expansion
osn | e o
000100H Upper Register Filett
0000FFH Lower Register File
FFOO00H 000000H

1 Can be windowed by WSR1
11 Can be windowed by WSR or WSR1

A3052-02

Figure 5-2. Pages FFH and 00H

5-3

80296SA USER’S MANUAL

5.2

MEMORY PARTITIONS

intel.

Table 5-1 is a memory map of the 80296SA. This section describes the partitions.

Table 5-1. 80296SA Memory Map

Hex - Addressing Modes for
Address Description (Note 1, Note 2) Data Accesses
FFFFFF | External device (memory or I/O) in 1-Mbyte mode (CCB1.1=0) Extended
FFF800 | A copy of internal code RAM in 64-Kbyte mode (CCB1.1=1)

FFF7FF

FE2080 External program memory (Note 3) Extended

FF207F . .

FE2000 External special-purpose memory (CCBs and interrupt vectors) Extended

FF1FFF .

FE0400 External device (memory or 1/O) connected to address/data bus Extended

FFO3FF T

FE0000 Reserved for in-circuit emulators —

FEFFFF | Overlaid memory (reserved for future devices); .

OF0000 | locations xFO000—xFO3FFH are reserved for in-circuit emulators

OEFFFF)

010000 External device (memory or 1/0O) connected to address/data bus Extended
OOFFFF | Internal code RAM (code or data); can be windowed by WSR1. In | Indirect, indexed, extended,
00F800 | 64-Kbyte mode, code RAM is identically mapped into page FFH. windowed direct
O00OF7FF | External device (memory or I/O) connected to address/data bus; Indirect, indexed, extended,
00F000 | can be windowed by WSR1 windowed direct
00EFFF)]]

002000 External device (memory or I/0) connected to address/data bus Indirect, indexed, extended
001FFF | Internal peripheral special-function registers (SFRs); Indirect, indexed, extended,
001F00 | can be windowed by WSR or WSR1 windowed direct
001EFF .

001C00 Reserved (future SFR expansion) —

001BFF . . .

000400 External device (memory or I/0O) connected to address/data bus Indirect, indexed, extended
0003FF .) .

000200 Reserved (future register file expansion) —

0001FF | Upper register file (general-purpose register RAM) Indirect, indexed, extended
000100 | can be windowed by WSR or WSR1 windowed direct
0000FF .) . Direct, indirect, indexed,
00001A Lower register file (general-purpose register RAM) extended

000019 .) . .

000000 Lower register file (stack pointer and CPU SFRs) Direct

NOTES:

1. Unless otherwise noted, write OFFH to reserved memory locations and write 0 to reserved SFR bits.

2. The contents or functions of reserved locations may change in future device revisions, in which case a
program that relies on one or more of these locations might not function properly.

3. External memory occupies the boot memory partition, FF2080—FF7FFH. After reset, the default chip-
select line (CS0#) is active; the first instruction fetch is from FF2080H.

5-4

Int€|® MEMORY PARTITIONS

5.2.1 External Memory

Several partitions in pages 00H and FFH and all of pages 01H-OEH are assigned to external
memory (see Table 5-1). Data can be stored in any part of this memory. Instructions can be stored
in any part of this memory in 1-Mbyte mode, but can be stored only in page FFH in 64-Kbyte
mode. Chapter 13, “Interfacing with External Memory,” describes the external memory interface
and shows examples of external memory configurations.

5.2.2 Program and Special-purpose Memory

Program memory and special-purpose memory occupy a 56-Kbyte memory partition from
FF2000-FFFFFFH.

5.2.2.1 Program Memory in Page FFH

The program memory in page FFH is implemented by external memory devices. Nearly all of
page FFH is available for storing executable code:

* FFF800-FFFFFFH in 1-Mbyte mode only (occupied by code RAM in 64-Kbyte mode)
* FF2080-FFF7FFH (after a reset, the first instruction fetch is from FF2080H)
* FFO400-FF1FFFH

The 1-Kbyte section FFO000-FFO3FFH is reserved for in-circuit emulators, and the 128-byte sec-
tion FF2000—FF207FH is used for special-purpose memory (the chip configuration bytes and in-
terrupt vectors). In 1-Mbyte mode, the remainder of page FFH is available for storing code. In
64-Kbyte mode, however, the upper 2-Kbyte region FFF800—FFFFFFH is occupied by an iden-
tical copy of the internal code RAM from page 00H. In 64-Kbyte mode, code must execute from
page FFH and data must reside in page 00H for nonextended instructions. Mapping the internal
code RAM into both pages allows you to access data and constaiar atataandnear con-
stantsin page O0OH and execute code in page FFH.

The memory device that contains code also commonly contains constants or lookup tables. To
access these tables and constanteasdataandnear constants/ou can configure a chip-select
output to select the corresponding address range in the memory device. Refer to “The Chip-select
Unit” on page 13-8 for details.

NOTE

We recommend that you write FFH (the opcode for the RST instruction) to
unused program memory locations. This causes a reset if a program begins to
execute in unused memory.

I 5-5

80296SA USER'S MANUAL Int6|®

5.2.2.2 Special-purpose Memory

Special-purpose memory resides in locations FF2000-FF207FH (Table 5-2). It contains several
reserved memory locations, the chip configuration bytes (CCBSs), and the interrupt vectors.

Table 5-2. 80296SA Special-purpose Memory Addresses

Hex Address Description

FF207F :
FE2040 Reserved (each byte must contain FFH)
FF203F .
FE2030 Upper interrupt vectors
FF202F ;
FE201C Reserved (each byte must contain FFH)
FF201B Reserved (must contain 20H)
FF201A CCB1
FF2019 Reserved (must contain 20H)
FF2018 CCBO
FF2017 i
FE2010 Reserved (each byte must contain FFH)
FF200F Lower interrupt vectors
FF2000 P

5.2.23 Reserved Memory Locations

Several memory locations are reserved for testing or for use in future products. Do not read or
write these locations except to initialize them to the values shown in Table 5-2. The function or
contents of these locations may change in future revisions; software that uses reserved locations
may not function properly.

5224 Interrupt Vectors

The upper and lower interrupt vectors must contain the addresses of interrupt service routines for
the interrupt controller. See Table 6-3, “Interrupt Sources, Vectors, and Priorities,” on page 6-6
for more information.

5.2.25 Chip Configuration Bytes

The chip configuration bytes (CCBO0 and CCB1) specify the operating environment. They specify
the bus width, bus mode (multiplexed or demultiplexed), write-control mode, wait states, power-
down enabling, and the operating mode (1-Mbyte or 64-Kbyte mode). The chip-select control
registers can change some of these parameters.

5-6

Int€|® MEMORY PARTITIONS

The chip configuration bytes are the first bytes fetched from memory when the microcontroller
leaves the reset state. The post-reset sequence loads the CCBs into the chip configuration regis-
ters (CCRs). Once they are loaded, the CCRs cannot be changed until the next reset. Typically,
the CCBs are programmed once when your program is compiled and are not redefined during nor-
mal operation. “Chip Configuration Registers and Chip Configuration Bytes” on page 13-17 de-
scribes the CCBs and CCRs.

5.2.3 Internal RAM (Code RAM)

The 80296SA has 2 Kbytes of internal RAM at 00OF800-00FFFFH. Although it is calied
RAMto distinguish it fronregister RAM this internal RAM can store both executable code and
data. This memory is typically used for the stack or for time-critical code and data.

In 64-Kbyte mode, code must execute from page FFH, so this partition is mapped identically into
page FFH. Mapping this partition into both pages allows you to aneessonstantandnear

datain page O0H and execute code in page FFH. In 1-Mbyte mode, code can execute from any
page, so this partition resides only in page 00H, leaving FFF800-FFFFFFH available for an ex-
ternal memory or 1/O device.

The 80296SA allows you window64-byte segments of this internal RAM into the lower reg-
ister file. Accesses to the code RAM take two states longer than accesses to register RAM, but
one state faster than accesses to external memory. (See “Windowing” on page 5-13.)

5.2.4 Peripheral Special-function Registers (SFRs)

Locations 1FO0-1FFFH provide access to the peripheral SFRs (see Table 5-3). Locations in this
range that are omitted from the table are reserved. The peripheral SFRs are I/O control registers;
they are physically located in the on-chip peripherals. Peripheral SFRs can be windowed and they
can be addressed as bytes, except as noted in the table.

I 5-7

L]
80296SA USER’'S MANUAL "Ttel ®
Table 5-3. Peripheral SFRs
Interrupt SFRs EPORT SFRs
Address |High (Odd) Byte LOWB(yE;/en) Address High (Odd) Byte Low (Even) Byte
T1IFFOH | VECT_ADDR (H) | VECT_ADDR (L) || 1FE6H |EP_PIN Reserved
TIFEEH | INT_CON3 (H) | INT_CON3 (L) 1FE4H | EP_REG Reserved
TIFECH | INT_CON2 (H) | INT_CON2 (L) 1FE2H | EP_DIR Reserved
TIFEAH | INT_CON1 (H) | INT_CON1 (L) 1FEOH | EP_MODE Reserved
TIFE8H | INT_CONO (H) | INT_CONO (L)
Ports 1-4 SFRs Serial I/O and PWM SFRs
Address |High (Odd) Byte LowB(yEtZen) Address High (Odd) Byte Low (Even) Byte
1FDEH | P4_PIN P3_PIN 1FBEH | Reserved Reserved
1FDCH | P4 REG P3_REG 1FBCH | SP_BAUD (H) SP_BAUD (L)
1FDAH | P4_DIR P3_DIR 1FBAH | SP_CON SBUF_TX
1FD8H | P4_MODE P3_MODE 1FB8H | SP_STATUS SBUF_RX
1FD6H | P2_PIN P1_PIN 1FB6H | Reserved CON_REGO
1FD4H | P2_REG P1 REG 1FB4H | Reserved PWM2_CONTROL
1FD2H | P2_DIR P1_DIR 1FB2H | Reserved PWM1_CONTROL
1FDOH | P2_MODE P1_MODE 1FBOH | Reserved PWMO_CONTROL
1FCEH | Reserved Reserved 1FAEH | Reserved Reserved
Auto-Indexing and Interrupt SFRs Reserved Locations
Address |High (Odd) Byte LowB(yEt;/en) Address High (Odd) Byte Low (Even) Byte
1FCCH | Reserved EXTINT_CON 1FACH | Reserved Reserved
T1IFCAH | INT_PROG1 (H) | INT_PROG1 (L) 1FAAH | Reserved Reserved
1FC8H | NMI_PEND INT_PROGO 1FA8H | Reserved Reserved
1FC6H | ICB1 IDX1 (H)fT 1FAG6H | Reserved Reserved
1FC4H | IDX1 (M)tt IDX1 (L)ft 1FA4H | Reserved Reserved
1FC2H | ICBO IDX0 (H)tf 1FA2H | Reserved Reserved
1FCOH | IDX0 (M)tt IDX0 (L)ft 1FAOH | Reserved Reserved

T Must be addressed as a word.

Tt These 24-bit registers must be accessed with windowed direct addressing. Use a word instruction to
access the lower word and a byte instruction to access the upper byte.

5-8

intel.

Table 5-3. Peripheral SFRs (Continued)

MEMORY PARTITIONS

EPA, Timer 1, and Timer 2 SFRs Chip-select SFRs

Address |High (Odd) Byte LowB(yEtZen) Address High (Odd) Byte Low (Even) Byte
1F9EH | Reserved EPA_PEND 1F6EH | Reserved Reserved
1F9CH | Reserved EPA_MASK 1F6CH | Reserved BUSCON5
1F9AH | Reserved Reserved T1F6AH | ADDRMSKS5 (H) ADDRMSKS5 (L)
1F98H | Reserved Reserved T1F68H | ADDRCOMS (H) ADDRCOMS5 (L)
T1F96H | TIMER2 (H) TIMER2 (L) 1F66H | Reserved Reserved
1F94H | Reserved T2CONTROL 1F64H | Reserved BUSCON4
T1F92H | TIMERL1 (H) TIMER1 (L) T1F62H | ADDRMSK4 (H) ADDRMSKA4 (L)
1F90H | Reserved T1CONTROL T1IF60H | ADDRCOM4 (H) ADDRCOM4 (L)
T1F8EH | EPA3_TIME (H) EPA3_TIME (L) 1F5EH | Reserved Reserved
T1F8CH | EPA3_CON (H) EPA3_CON (L) 1F5CH | Reserved BUSCON3
T1IF8AH | EPA2_TIME (H) | EPA2_TIME (L) T1IF5AH | ADDRMSK3 (H) ADDRMSK3 (L)
1F88H | Reserved EPA2_CON T1IF58H | ADDRCOMS3 (H) ADDRCOMS3 (L)
EPA, Timer 1, and Timer 2 SFRs (Continued) Chip-select SFRs (Continued)

Address |High (Odd) Byte LOWB(yE;/en) Address High (Odd) Byte Low (Even) Byte
T1F86H | EPAL_TIME (H) | EPA1_TIME (L) 1F56H | Reserved Reserved
T1F84H | EPA1_CON (H) EPA1_CON (L) 1F54H | Reserved BUSCON2
T1F82H | EPAO_TIME (H) | EPAO_TIME (L) T1F52H | ADDRMSK2 (H) ADDRMSK2 (L)
1F80H | Reserved EPAO_CON T1F50H | ADDRCOM2 (H) ADDRCOM2 (L)
1F7EH | Reserved Reserved 1F4EH | Reserved Reserved
1F7CH | Reserved Reserved 1FACH | Reserved BUSCON1
1F7AH | Reserved Reserved T1F4AAH | ADDRMSK1 (H) ADDRMSK1 (L)
1F78H | Reserved Reserved T1F48H | ADDRCOML1 (H) ADDRCOML1 (L)
1F76H | Reserved Reserved 1F46H | Reserved Reserved
1F74H | Reserved Reserved 1F44H | Reserved BUSCONO
1F72H | Reserved Reserved T1F42H | ADDRMSKO (H) ADDRMSKO (L)
1F70H | Reserved Reserved T1F40H | ADDRCOMO (H) ADDRCOMO (L)

T Must be addressed as a word.

Tt These 24-bit registers must be accessed with windowed direct addressing. Use a word instruction to

access the lower word and a byte instruction to access the upper byte.

5-9

80296SA USER’S MANUAL

intel.

5.2.5 Register File

The register file is divided into an upper register file and a lower register file (Figure 5-3). The
upper register file consists of general-purpose register RAM. The lower register file contains ad-
ditional general-purpose register RAM along with the stack pointer (SP) and the CPU special-
function registers (SFRs). The 80296SA is the first MCS 96 microcontroller to use three-port
RAM for the register file. This enhancement allows the CPU to read two source operands at the
same time it writes the destination operand from the previous instruction.

Table 5-4 on page 5-11 lists the register file memory addresses. The RALU accesses the lower

register file directly, without the use of the memory controller. It also accessed@vedoca-
tion directly (see “Windowing” on page 5-13). Registers in the lower register file and registers
being windowed can be accessed with direct addressing.

NOTE

The register file must not contain code. An attempt to execute an instruction
from a location in the register file causes the memory controller to fetch the
instruction from external memory.

Page 00H Address
e 01FFH
/', General-purpose
Rl Register RAM
Address ot ’ 0100H
01FFH Upper o /', General-purpose 00FFH
0100H Register File // Register RAM 001AH
00FFH ower | Stack Pointer 88%33
oooon | _RedisterFile | CPU SFRs goa
A3051-01

5-10

Figure 5-3. Register File Memory Map

Int€|® MEMORY PARTITIONS

Table 5-4. Register File Memory Addresses

Address Description Addressing Modes
Range
01FFH . . .) Indirect, indexed, extended,
0100H General-purpose register RAM; upper register file windowed direct
O00FFH . . .) . - .
001AH General-purpose register RAM; lower register file Direct, indirect, indexed, extended
0019H . . .) .
0018H Stack pointer (SP); lower register file Direct
0017H) .
0000H CPU special-function registers (SFRs); lower register file | Direct

5.251 General-purpose Register RAM

The lower register file contains general-purpose register RAM. The stack pointer locations can
also be used as general-purpose register RAM when stack operations are not being performed.
The RALU can access this memory directly, using direct addressing.

The upper register file also contains general-purpose register RAM. The RALU normally uses
indirect or indexed addressing to access the RAM in the upper register file. Windowing enables
the RALU to use direct addressing to access this memory, providing fast context switching of in-
terrupt tasks and faster program execution. (Refer to Chapter 4, “Programming Considerations,”
for a discussion of addressing modes, and see “Windowing” on page 5-13 for details on window-
ing.) The stack is most efficient when located in the internal code RAM or the upper register file.

NOTE
The upper register file of some earlier MES6 microcontrollers extends
from 0100-03FFH (768 bytes), while the 80296SA’s extends only from 0100—
01FFH (512 bytes). If you are migrating your design from an earlier device to
the 80296SA, check your software to determine whether you need to modify it
to relocate data from the top 256 bytes of the upper register file to another area.

5.25.2 Stack Pointer (SP)

Memory locations 0018H and 0019H contain the stack pointer (SP). The SP contains the address
of the stack. The SP must point to a word (even) address that is two bytes (for 64-Kbyte mode)
or four bytes (for 1-Mbyte mode) greater than the desired starting address. Before the CPU exe-
cutes a subroutine call or interrupt service routine, it decrements the SP (by two in 64-Kbyte
mode; by four in 1-Mbyte mode). Next, it copies (PUSHes) the address of the next instruction

5-11

80296SA USER'S MANUAL Int6|®

from the program counter onto the stack. It then loads the address of the subroutine or interrupt
service routine into the program counter. When it executes the return-from-subroutine (RET or

RET]I) instruction at the end of the subroutine or interrupt service routine, the CPU loads (POPSs)

the contents of the top of the stack (that is, the return address) into the program counter. Finally,
it increments the SP (by two in 64-Kbyte mode; by four in 1-Mbyte mode).

Subroutines may be nested. That is, each subroutine may call others. The CPU PUSHes the con-
tents of the program counter onto the stack each time it executes a subroutine call. The stack
grows downward as entries are added. The only limit to the nesting depth is the amount of avail-
able memory. As the CPU returns from each nested subroutine, it POPs the address off the top of
the stack, and the next return address moves to the top of the stack.

Your program must load a word-aligned (even) address into the stack pointer. Select an address
that is two bytes (for 64-Kbyte mode) or four bytes (for 1-Mbyte mode) greater than the desired
starting address because the CPU automatically decrements the stack pointer before it pushes the
first byte of the return address onto the stack. Remember that the stack grows downward, so allow
sufficient room for the maximum number of stack entries. The stack must be located in page O0H,
in either the internal register file, the internal code RAM, or external RAM. The stack can be used
most efficiently when it is located in the upper register file or internal code RAM.

The following examples initialize the stack at the top of the upper register file and at the top of
the internal code RAM, respectively.

LD SP, #200H ;Stack begins at 01FEH and grows downward
LD SP, #0000H ;Stack begins at FFFEH and grows downward

The following example causes a linker/locator to initialize the stack at a location it chooses:

LD SP, #STACK ;Stack begins where the linker/locator places it

Consult the documentation for your specific development tools for further information.

5.25.3 CPU Special-function Registers (SFRs)

Locations 0000-0017H in the lower register file are the CPU SFRs. Table 5-5 lists the CPU SFRs
for the 80296SA, and Appendix C describes them.

5-12

Table 5-5. 80296SA CPU SFRs

Address |High (Odd) Byte Low (Even) Byte
0016H | ICX1 (H) ICX1 (L)
0014H | WSR1 WSR
0012H | INT_MASK1 INT_PEND1
TO010H | ICXO0 (H) ICXO0 (L)
fOO0OEH | ACC_03 ACC_02
fO00CH | ACC_01 ACC_00
000AH | ACC_STAT Reserved
0008H | INT_PEND INT_MASK
0006H Reserved ACC_04
T0004H | RPT_CNT (H) RPT_CNT (L)
0002H | ONES_REG (H) | ONES_REG (L)
0000H | ZERO_REG (H) | ZERO_REG (L)

MEMORY PARTITIONS

T Must be addressed as a word.

5.3 WINDOWING

Windowingexpands the amount of memory that is accessible with direct addressing. Direct ad-
dressing can access the lower register file with short, fast-executing instructions. With window-
ing, direct addressing can also access the upper register file and peripheral SFRs.

Windowing maps a segment of higher memory (the upper register file, peripheral SFRs, internal
code RAM, or external memory) into the lower register file. The 80296SA has two window se-
lection registers, WSR and WSR1. WSR selects a 32-, 64-, or 128-byte segment of the upper reg-
ister file or peripheral SFRs to be windowed into the top of the lower register file space. WSR1
selects a 32- or 64-byte segment of internal memory (the upper register file or peripheral SFRs),
or a 64-byte segment of internal RAM or external memory to be mapped into the middle of the
lower register file. (Figure 5-2 on page 5-3 shows the memory locations that can be windowed.)

Because the areas in the lower register file do not overlap, two windows can be in effect at the
same time. This allows you to directly address a block of peripheral SFRs in one window and a
block of register RAM in another. For example, you can activate a 128-byte window using WSR
and a 64-byte window using WSR1 (Figure 5-4). These two windows occupy locations 0040-
O00FFH in the lower register file, leaving locations 001A-003FH for use as general-purpose reg-
ister RAM, locations 0018—-0019H for the stack pointer or general-purpose register RAM, and lo-
cations 0000-0017H for the CPU SFRs.

I 5-13

80296SA USER’S MANUAL

01FFH

0180H
017FH

0140H

00FFH

0080H
007FH

0040H
003FH

0000H

128-byte Window
(WSR = 13H)

64-byte Window
(WSR1 = 25H)

WSR Window in
Lower Register File

WSR1 Window in
Lower Register File

A3054-01

5.3.1 Selecting a Window

The window selection register (Figure 5-5) has two functions. The HLDEN bit (WSR.7) enables
and disables the bus-hold protocol (see Chapter 13, “Interfacing with External Memory”); it is
unrelated to windowing. The remaining bits select a window to be mapped into the top of the low-
er register file. Window selection register 1 (Figure 5-6) selects a second window to be mapped

Figure 5-4. Windowing

into the middle of the lower register file.

Table 5-6 provides a quick reference of WSR values for windowing the peripheral SFRs. Table
5-7 on page 5-16 lists the WSR values for windowing the upper register file. Table 5-8 and Table
5-9 on page 5-17 list the WSR values for windowing internal code RAM and external memory,

respectively.

5-14

Int€|® MEMORY PARTITIONS

WSR Address: 0014H
Reset State: OOH

The window selection register (WSR) has two functions. One bit enables and disables the bus-hold
protocol. The remaining bits select windows. Windows map sections of RAM into the top of the lower
register file, in 32-, 64-, or 128-byte increments. PUSHA saves this register on the stack and POPA
restores it.

7 0
HLDEN w6 w5 W4 H w3 w2 w1 ‘ WO ‘

Bit Bit

) Function
Number | Mnemonic

7 HLDEN HOLD#, HLDA# Protocol Enable

This bit enables and disables the bus-hold protocol (see Chapter 13, “Inter-
facing with External Memory”). It has no effect on windowing.

0 = disable
1 = enable
6:0 W6:0 Window Selection

These bits specify the window size and number. See Table 5-6 on page
5-16 or Table 5-7 on page 5-16.

Figure 5-5. Window Selection (WSR) Register

WSR1 Address: 0015H
Reset State: OOH

Window selection 1 (WSR1) register selects a 32- or 64-byte segment of the upper register file or
peripheral SFRs, or a 64-byte segment of code RAM or external memory, to be windowed into the
middle of the lower register file.

NOTE: The PUSHA and POPA instructions do not save and restore WSR1.
7 0
w7 W6 W5 w4 | | w3 w2 w1 | WO |

Bit Bit

. Function
Number | Mnemonic

7:0 W7:0 Window Selection

These bits specify the window location, size, and number. See Table 5-6 for
peripheral SFR windows. Table 5-7 for upper register file windows, Table
5-8 for internal code RAM windows, or Table 5-9 for external memory
windows.

Figure 5-6. Window Selection 1 (WSR1) Register

5-15

80296SA USER’S MANUAL

Table 5-6. Selecting a Window of Peripheral SFRs

intel.

WSR or WSR1 WSR or WSR1
SFR Value for 32-byte Value for 64-byte WSR Value for
Peripherals Locations Window Window 128-byte Window
(Hex) (OOEO-O0OFFH or (00C0-00FFH or (0080-00FFH)
0060-007FH) 0040-007FH)
EPORT, interrupts 1FEO-1FFF 7FH
Ports 1-4, interrupts,
auto-indexing 1FCO-1FDF 7EH 3FH
PWM and SIO 1FAO-1FBF 7DH
EPA and timers 1F80-1F9F 7CH 3EH 1FH
Chip selects 4-5 1F60-1F7F 7BH
Chip selects 0-3 1F40-1F5F 7AH 3DH 1EH
Table 5-7. Selecting a Window of the Upper Register File
Register RAM WSR or WSR1 Value WSR or WSR1 Value WSR Value
Locations for 32-byte Window for 64-byte Window for 128-byte Window
(Hex) (OOEO-00FFH or 0060-007FH) | (00C0-00FFH or 0040-007FH) (0080—-00FFH)
01EO0-O01FF 4FH
01CO0-01DF 4EH 27H
01A0-01BF 4DH
0180-019F 4CH 26H 13H
0160-017F 4BH
0140-015F 4AH 25H
0120-013F 49H
0100-011F 48H 24H 12H

5-16

intel.

MEMORY PARTITIONS

Table 5-8. Selecting a Window of the Internal Code RAM

Internal Internal

Code RAM obyte Window Code RAM obyte Window

(Hex) (0040-007FH) (Hex) (0040-007FH)
FFCO-FFFF BFH FBCO-FBFF AFH
FF80-FFBF BEH FB80-FBBF AEH
FF40-FF7F BDH FB40-FB7F ADH
FFOO-FF3F BCH FBOO-FB3F ACH
FECO-FEFF BBH FACO-FAFF ABH
FE80-FEBF BAH FA80-FABF AAH
FE40-FE7F B9H FA40-FATF A9H
FEOO-FE3F B8H FAOO-FA3F A8H
FDCO-FDFF B7H FOCO-F9FF A7TH
FD80-FDBF B6H F980-F9BF A6H
FD40-FD7F B5H F940-F97F A5H
FDOO-FD3F B4H F900-F93F A4dH
FCCO-FCFF B3H F8CO-F8FF A3H
FC80-FCBF B2H F880-F8BF A2H
FC40-FC7F B1H F840-F87F Al1H
FCO0-FC3F BOH F800—F83F AOH

Table 5-9. Selecting a Window of External Memory

External Memory WSR1 value for External Memory WSR1 Value for

Locations (Hex) 64-byte Window Locations (Hex) 64-byte Window

(0040-007FH) (0040-007FH)
F7CO-F7FF 9FH F3CO-F3FF 8FH
F780-F7BF 9EH F380-F3BF 8EH
F740-F77F 9DH F340-F37F 8DH
F700-F73F 9CH F300-F33F 8CH
F6CO-F6FF 9BH F2CO0-F2FF 8BH
F680—F6BF 9AH F280-F2BF 8AH
F640-F67F 99H F240-F27F 89H
F600-F63F 98H F200-F23F 88H
F5CO-F5FF 97H F1CO-F1FF 87H
F580-F5BF 96H F180-F1BF 86H
F540-F57F 95H F140-F17F 85H
F500-F53F 94H F100-F13F 84H
FACO-F4FF 93H FOCO-FOFF 83H
F480-F4BF 92H FO080-FOBF 82H
F440-F47F 91H FO040-FO7F 81H
F400-F43F 90H FOOO-FO3F 80H

5-17

80296SA USER'S MANUAL Int6|®

5.3.2 Addressing a Location Through a Window

After you have selected the desired window, you need to know the direct address of the memory
location (the address in the lower register file). For SFRs, refer to the WSR tables in Appendix
C. For other memory locations, calculate the direct address as follows:

1. Subtract the base address of the area to be remapped from the address of the desired
location. This gives you the offset of that particular location.

2. Add the offset to the base address of the window (from Table 5-10). The result is the direct

address.
Table 5-10. Windowed Base Addresses
Window Size WSR Wind(_)wed Base Address_ WSR1 Wind_owed Base A_ddress_,
(Base Address in Lower Register File) (Base Address in Lower Register File)
32-byte 00EOH 0060H
64-byte 00COH 0040H
128-byte 0080H —

Appendix C includes a table of the windowable SFRs with the window selection register values

and direct addresses for each window size. The following examples explain how to determine the
WSR value and direct address for any windowable location. An additional example shows how

to set up a window by using the linker locator.

5.3.2.1 32-byte Windowing Example

Assume that you wish to access location 014BH (a location in the upper register file used for gen-
eral-purpose register RAM) with direct addressing through a 32-byte window. Table 5-7 on page
5-16 shows that you need to write 4AH to the window selection register. It also shows that the
base address of the 32-byte memory area is 0140H. To determine the offset, subtract that base ad.
dress from the address to be accessed (014BH — 0140H = 000BH). Add the offset to the base ad-
dress of the window in the lower register file (from Table 5-10). The direct address is 0OEBH
(OO00BH + 00EOH) for a WSR window or 006BH (000BH + 0060H) for a WSR1 window.

5-18 I

Int€|® MEMORY PARTITIONS

5.3.2.2 64-byte Windowing Example

Assume that you wish to access the SFR at location 1F8CH with direct addressing through a 64-
byte window. Table 5-6 on page 5-16 shows that you need to write 3EH to the window selection
register. It also shows that the base address of the 64-byte memory area is 1F80H. To determine
the offset, subtract that base address from the address to be accessed (1F8CH — 1F80H = 000CH)
Add the offset to the base address of the window in the lower register file (from Table 5-10). The
direct address is 00CCH (000CH + 00COH) for a WSR window or 004CH (000CH + 0040H) for

a WSR1 window.

5.3.2.3 128-byte Windowing Example

Assume that you wish to access the SFR at location 1F82H with direct addressing through a 128-
byte window. Table 5-6 on page 5-16 shows that you need to write 1FH to the window selection
register. It also shows that the base address of the 128-byte memory area is 1F80H. To determine
the offset, subtract that base address from the address to be accessed (1F82H — 1F80H = 0002H)
Add the offset to the base address of the window in the lower register file (from Table 5-10). The
direct address is 0082H (0002H + 0080H).

5.3.2.4 Using the Linker Locator to Set Up a Window

In this example, the linker locator is used to set up a window. The linker locator locates the win-
dow in the upper register file and determines the value to load in the WSR for access to that win-
dow. (Please consult the manual provided with the linker locator for details.)

*kkkkkkkk modl *kkkkkkkkkkkkk

mod1 module main ;Main module for linker
public functionl
extrn ?WSR ;Must declare ?WSR as external

wsr equ 14h:byte
sp equ 18h:word

oseg
varl: dsw 1 ;Allocate variables in an overlayable segment
var2: dsw 1
var3: dsw 1

cseg

functionl:
push wsr ;Prolog code for wsr

I 5-19

80296SA USER’S MANUAL

ldb wsr, #?WSR ;Prolog code for wsr
add varl, var2, var3 ;Use the variables as registers

Idb wsr, [sp] ;Epilog code for wsr
add sp, #2 ;Epilog code for wsr
ret

end

it e Vo Ts Attt

public function2
extrn ?WSR

wsr equ 14h:byte
sp equ 18h:word

oseg
varl: dsw 1
var2; dsw 1
var3: dsw 1

cseg
function2:
push wsr ;Prolog code for wsr
ldb wsr, #?WSR ;Prolog code for wsr

add varl, var2, var3

Idb wsr, [sp] ;Epilog code for wsr
add sp, #2 ;Epilog code for wsr
ret

end

The following is an example of a linker invocation to link and locate the modules and to deter-

mine the proper windowing.

RL196 MOD1.0BJ, MOD2.0BJ registers(100h-01ff) windowsize(32)

The above linker controls tell the linker to use registers 0100-01FFH for windowing and to use
a window size of 32 bytes. (These two controls enable windowing.)

The following is the map listing for the resultant output module (MOD1 by default):

5-20

intel.

SEGMENT MAP FOR mod1(MOD1):

TYPE
RESERVED

STACK
*kk GAP *kk

OVRLY

OVRLY
*kk GAP *kk

CODE

CODE
*kk GAP *kk

BASE LENGTH ALIGNMENT MODULE NAME

0000H 001AH
001AH 0006H WORD
0020H OOEOH
0100H 0006H WORD
0106H 0006H WORD
010CH 1F74H
2080H 0011H BYTE
2091H 0011H BYTE
20A2H DF5EH

MOD2
MOD1

MOD2
MOD1

This listing shows the disassembled code:

| PUSH WSR
| LDB WSR,#48H

| ADD EOH,E2H,E4H

|LDB WSR,[SP]

| ADD SP,#02H

| RET

2080H ;C814
2082H ;B14814
2085H JA44E4AE2EQ
2089H ;B21814
208CH ;65020018
2090H ;FO

2091H ,C814
2093H ;B14814
2096H ;A44EAE8EG
209AH ;B21814
209DH ;65020018
20A1H ;FO

| LDB WSR,[SP]
| ADD SP,#02H
| RET

| PUSH WSR
| LDB WSR,#48H

| ADD E6H,E8H,EAH

5.3.3 Windowing and Addressing Modes

Once windowing is enabled, the windowed locations can be accessed both through the window
using direct addressing and through the actual addresses using indirect or indexed addressing.
The lower register file locations that are covered by the window are always accessible by indirect
or indexed operations. To re-enable direct access to the entire lower register file, clear bits 6:0 of
the WSR and all bits of WSR1. To enable direct access to a particular location in the lower reg-

MEMORY PARTITIONS

ister file, you may select a smaller window that does not cover that location.

When windowing is enabled:

¢ adirect instruction that uses an address within the lower register file actually accesses the

window in the upper register file;

¢ an indirect or indexed instruction that uses an address within either the lower register file or

the upper register file accesses the actual location in memory.

5-21

80296SA USER'S MANUAL Int6|®

The following sample code illustrates the difference between direct and indexed addressing when
using windowing.

PUSHA ; Pushes the contents of WSR onto the stack
LDB WSR, #13H ; Selects window 13H, a 128-byte block

; (windows 0180-01FFH into 0080—00FFH)

; The next instruction uses direct addr

ADD 40H, 80H ; mem_word(40H) —mem_word(40H) + mem_word(180H)

; The next two instructions use indirect addr
ADD 40H, 80H[0] ; mem_word(40H) ~mem_word(40H) + mem_word(80H +0)
ADD 40H, 180H[0] ; mem_word(40H) ~mem_word(40H) + mem_word(180H +0)
POPA ; reloads the previous contents into WSR

5.4 FETCHING CODE AND DATA IN THE 1-MBYTE AND 64-KBYTE MODES

When the microcontroller leaves reset, the MODE®64 bit (CCB1.1) selects the 1-Mbyte or 64-
Kbyte mode. The mode cannot be changed until the next reset.

In 64-Kbyte mode, code must execute from page FFH. In 1-Mbyte mode, code can execute from
any page. In either mode, data must reside in page 00H for nonextended instructions, but it can
reside in any page for extended instructions. In either mode, data and constants that reside in page
00H are calledhear dataandnear constantsData and constants outside page 00H are dalied
dataandfar constants

5-22

intel.

Interrupts

intel.

CHAPTER 6
INTERRUPTS

The 80296SAs interrupt controller can be programmed to either emulate the defined priority
scheme of the 80C196NU or support a programmable priority scheme. This chapter describes the
interrupt control circuitry, priority schemes, and latency.

6.1 OVERVIEW OF THE INTERRUPT CONTROL CIRCUITRY

The interrupt control circuitry within a microcontroller permits real-time events to control pro-
gram flow. When an event generates an interrupt, the microcontroller suspends the execution of
current instructions while it performs some service in response to the interrupt. When the inter-
rupt is serviced, program execution resumes at the point where the interrupt occurred. An internal
peripheral, an external signal, or an instruction can generate an interrupt request. In the simplest
case, the microcontroller receives the request, performs the service, and returns to the task that
was interrupted.

The interrupt sources fall into two categories. The unimplemented opcode, software trap, and
NMI interrupt sources have a set priority and are always enabled. All other sources can be indi-
vidually enabled and programmed to one of fourteen priority levels.

Upon reset, the 80296SA is configured to emulate the fixed priority scheme of the 80C196NU.
In this mode, interrupts have a predefined priority scheme and vector address. Interrupts are ser-
viced by interrupt service routines that you provide (Figure 6-2). The lower 16 bits of the address-
es of these interrupt service routines are stored in the upper and lower interrupt vectors in special-
purpose memory (Figure 5-2). The CPU automatically adds FFOOOOH to the 16-bit vector in spe-
cial-purpose memory to calculate the address of the interrupt service routine, and then executes
the routine.

The 80296SA can also operate in a programmable priority mode. When this mode is enabled,
your software defines the priority of each programmable interrupt. A multiplexer is associated
with interrupt priorities 0—14 (Figure 6-1). (Interrupt priority 2 is undefined and reserved for com-
patibility with future devices.) The interrupt control registers (INT_G{8¢lect the interrupt in-

put that passes through the multiplexer. When an interrupt request occurs, it sets the
corresponding bit in the interrupt pending register (INT_PEND or INT_PEND1). The interrupt
mask registers (INT_MASK or INT_MASK1) enable or disable each interrupt request. When the
CPU acknowledges an interrupt, hardware sets the corresponding bit in the in-progress registers
(IN_PROK) and clears the bit in the interrupt pending register. To decrease the execution time
of interrupt service routines, the 80296SA allows you to copy the interrupt vector table into in-
ternal code RAM where it can be accessed directly (see “Internal RAM (Code RAM)” on page
5-7). Hardware generates an 8-bit jump address and adds it to the base address in the interrupt
vector register (VECT_ADDR) to generate the complete vector address.

I 6-1

80296SA USER’S MANUAL

EXTINT3 [}

EXTINT2 [}

OVR2_3

OVRO_1

EPA3

EPA2

EPAL

EPAO

RI

TI

EXTINTL [}

ExTINTO [}

OVRTM2

OVRTM1

Priority Control

——
Interrupt
Request
To Core

|
Interrupt
Acknowledge
From Core

"
Interrupt
In Progress

 —

Encoded
Active
Interrupt

Mask Registers

Unimplemented Opcode >
Software TRAP > | IN_PROGO"
NYE®' >
INT_CON3T
Priorityl4
> | INT_PEND1
INT_MASK1 >
IN_PROG1t
[) [)
[) [)
[) [)
INT_MASK >
\ Priority0
> INT_PEND
INT_CONOT VECT_ADDR
Interrupt Interrupt Pending and Interrupt Priority

Resolver

T You must enable programmable priority (NMI_PEND.7=1) for the INT_CONXx and IN_PROGXx registers

to effect operation.

A4312-01

6-2

Figure 6-1. Interrupt Structure Block Diagram

Int6|® INTERRUPTS

Interrupt Request Occurs

NMI
pending
?

Yes

Programmable
priority enabled

| INT_CONX assigns priority |

| Set INT_PEND.x bit |

Return

Return

Priority resolver

{ Highest Priority Interrupt

Clear INT_PEND.x bit and set IN_PROGL1.x bit
if programmable priority is enabled

PUSH PC on stack

Y

Call to interrupt service routine
and execute interrupt service routine

| POP PC from stack |

[+ RETI and clear IN_PROG1.x bit |

T The RETI instruction must be used when priority-programming is enabled.

A4313-01

Figure 6-2. Interrupt Service Flow Diagram

6-3

80296SA USER'S MANUAL Int6|®

6.2 INTERRUPT SIGNALS AND REGISTERS

Table 6-1 describes the external interrupt signals and Table 6-2 describes the interrupt control and

status registers.

Table 6-1. Interrupt Signals

Interrupt

Signal Type

Description

EXTINTO |
EXTINT1
EXTINT2
EXTINT3

External Interrupts

In normal operating mode, a rising edge on EXTINTx sets the EXTINTx interrupt
pending bit. EXTINTx is sampled during phase 2 (CLKOUT high). The minimum edge
time is one state time. The minimum level time is two state times.

In standby and powerdown modes, asserting the EXTINT x signal for at least 50 ns
causes the device to resume normal operation. The interrupt need not be enabled, but
the pin must be configured as a special-function input. If the EXTINTx interrupt is
enabled, the CPU executes the interrupt service routine. Otherwise, the CPU executes
the instruction that immediately follows the command that invoked the power-saving
mode.

In idle mode, asserting any enabled interrupt causes the device to resume normal
operation.

EXTINTO shares a package pin with P2.2, EXTINT1 shares a package pin with P2.4,
EXTINT2 shares a package pin with P3.6, and EXTINT3 shares a package pin with
P3.7.

NMI |

Nonmaskable Interrupt

In normal operating mode, a rising edge on NMI generates a nonmaskable interrupt.
NMI has the highest priority of all interrupts except trap and unimplemented opcode.
Assert NMI for greater than one state time to guarantee that it is recognized.

If NMI is held high during and immediately following reset, the microcontroller will
execute the NMI vector when code execution begins. To prevent an inadvertent NMI
interrupt vector, the first instruction (at FF2080H) must clear the NMI pending interrupt
bit.

ANDB INT_PEND1, #7FH.

Table 6-2. Interrupt Registers

Mnemonic

Address Description

EPA_MASK

1F9CH EPA Interrupt Mask Register

This register enables/disables the four capture overrun interrupts
(OVRO-3).

EPA_PEND

1F9EH EPA Interrupt Pending Register

The bits in this register are set by hardware to indicate that a
capture overrun has occurred.

EXTINT_CON

1FCCH External Interrupt Control Register

This register enables you to individually select the edge or level
that causes an interrupt request on each external interrupt input.

6-4

Int6|® INTERRUPTS

Table 6-2. Interrupt Registers (Continued)

Mnemonic Address Description
IN_PROGO 1FC8H In-progress Registers
IN_PROG1 1FCAH The bits in these registers are set to indicate that an interrupt is

being serviced. The IN_PROGO register tracks the unimplemented
opcode interrupt (UOP) and the software trap interrupt. The
IN_PROGL1 register tracks the NMI and maskable interrupts in
terms of the priority that was assigned to them in the INT_CONXx

registers.

INT_CONO 1FE8H Interrupt Control Registers

INT_CON1 1FEAH These registers allow you to program the priority of the maskable

INT_CON2 1FECH interrupts.

INT_CONS3 1FEEH

INT_MASK 0008H Interrupt Mask Registers

INT_MASK1 0013H The bits in these registers enable or disable each maskable
interrupt (that is, each interrupt except unimplemented opcode,
software trap, and NMI).

INT_PEND 0009H Interrupt Pending Registers

INT_PEND1 0012H The bits in these registers are set by hardware to indicate that an
interrupt is pending. Software can also set these bits.

NMI_PEND 1FC9H Nonmaskable Interrupt Pending Register
The bits in these registers are set by hardware to indicate that an
unimplemented opcode or trap interrupt is pending. NMI_PEND
also contains a programmable-priority-enable bit (PEN), which
when set, causes the interrupt controller to reassign the interrupt
priorities as defined by the INT_CONXx register.

PSW No direct access | Processor Status Word

This register contains one bit that globally enables or disables
servicing of all maskable interrupts.The bit is set by executing the
enable interrupts (EI) instruction and cleared by executing the
disable interrupts (DI) instruction.

VECT_ADDR 1FFOH Interrupt Vector Base-address Register

This register contains the upper sixteen address bits of the
interrupt-vector table. When the CPU acknowledges an interrupt
request, the vector-generation unit in the interrupt controller
generates a jump address and then adds it to the contents of the
base-address register to generate the complete vector address.

6.3 INTERRUPT SOURCES, PRIORITIES, AND VECTOR ADDRESSES

Table 6-3 lists the interrupts sources, their default priorities (17 is highest and 0 is lowest), and
their default vector addresses. Higher priority interrupts are serviced before lower priority inter-
rupts. A low-priority interrupt is always interrupted by a higher priority interrupt but not by an-
other interrupt of equal or lower priority. The absolute highest priority interrupt is not interrupted
by any other interrupt source.

6-5

80296SA USER'S MANUAL Int6|®

The unimplemented opcode and software trap interrupts are not prioritized; they go directly to
the interrupt resolver for servicing. These two interrupts are of higher priority than NMI and the
other interrupts.

The priority of all maskable interrupts is programmable. In order to enable programmable prior-
ities, you must first set the programmable-priority-enable bit in the NMI_PEND register (Figure
6-3 on page 6-7). Also, you must use the RETI instruction when priority programming is enabled.
The four interrupt control registers (INT_C@Nlefine the interrupt priority when programma-

ble priority is enabled. Each register has four, 4-bit fields that map a particular interrupt source to
a specific priority and corresponding vector address. You assign the priorities by writing the hex
value for each interrupt source to the appropriate 4-bit field (Figure 6-4 on page 6-8). If a priority
is unused, write FH to the corresponding 4-bit field.

Table 6-3. Interrupt Sources, Vectors, and Priorities

_ Default Default
Interrupt Source Mnemonic Name Priority VecFor

Location t
Unimplemented Opcode — — 1711 FF2012H
Software TRAP Instruction | — — 161t FF2010H
Nonmaskable Interrupt NMI INT15 15tf FF203EH
EXTINT3 Pin EXTINT3 INT14 14 FF203CH
EXTINT2 Pin EXTINT2 INT13 13 FF203AH
EPA2 & 3 Overruns OVR2_3 INT12 12 FF2038H
EPAO & 1 Overruns OVRO_1 INT11 11 FF2036H
EPA Capture/Compare 3 EPA3 INT10 10 FF2034H
EPA Capture/Compare 2 EPA2 INTO9 9 FF2032H
EPA Capture/Compare 1 EPA1 INTO8 8 FF2030H
EPA Capture/Compare 0 EPAO INTO7 7 FF200EH
SIO Receive RI INTO6 6 FF200CH
SIO Transmit Tl INTO5 5 FF200AH
EXTINT1 Pin EXTINT1 INTO4 4 FF2008H
EXTINTO Pin EXTINTO INTO3 3 FF2006H
Reserved Reserved INTO2 2 FF2004H
Timer 2 Overflow OVRTM2 INTO1 1 FF2002H
Timer 1 Overflow OVRTM1 INTOO 0 FF2000H

T Upon reset, the 80296SA defaults to the 80C196NU-compatible priority scheme.
(The higher the number, the higher the priority.)

Tt Fixed priority

Int6I® INTERRUPTS
NMI_PEND Address: 1FC9H
- Reset State: 00H

When hardware detects an interrupt request, it sets the corresponding bit in the interrupt pending
registers (NMI_PEND, INT_PEND, or INT_PEND1). When the vector is taken, the hardware clears the
pending bit. Software can generate an interrupt by setting the corresponding interrupt pending bit.
NMI_PEND also contains a programmable-priority-enable bit (PEN), which when set, causes the
interrupt controller to reassign the interrupt priorities as defined by the INT_CONX register.

7 0
PEN — — — || = — UoP TRAP
Bit Bit Function
Number Mnemonic
7 PEN Programmable-priority Enable
When PEN is set, the interrupt controller uses the interrupt priority
scheme defined in the INT_CONXx register.
When PEN is cleared, the interrupt controller uses the default interrupt
priorities.
6:2 — Reserved; for compatibility with future devices, write zeros to these bits.
1:0 UoP Any set bit indicates that the corresponding interrupt is pending. The
TRAP pending bit is cleared when processing transfers to the corresponding
interrupt vector.
Bit Mnemonic Interrupt Description
UOP Unimplemented Opcode
TRAP Software Trap

Figure 6-3. NMI Pending (NMI_PEND) Register

6-7

80296SA USER'S MANUAL Int6|®

INT_CONXx Address: See Table 6-4
X =0-3 Reset State: See Table 6-4

The interrupt control registers (INT_CONX) allow you to program the priority of the maskable
interrupts. To assign a priority to an interrupt, write the interrupt's default priority hex value to the
desired priority field. Before you can use this register, you must enable the programmable priority
mode by setting bit 7 in NMI_PEND.

15 8 7 0
INT_CONS3 ‘ —_ ‘ PR14 ‘ PR13 ‘ PR12 |
15 8 7 0
INT_CON2 ‘ PR11 ‘ PR10 ‘ PR9 ‘ PRS ‘
15 8 7 0
INT_CON1 ‘ PR7 ‘ PR6 ‘ PR5 ‘ PR4 ‘
15 8 7 0
INT_CONO ‘ PR3 ‘ — ‘ PR1 ‘ PRO |
Bit Bit .
Number Mnemonic Function
INT_CONS3.15:12 — Priority Fields
INT_CON3.11:8 PR14 Write to these priority fields to program the interrupt
priority and vector location. To assign an interrupt to a
INT_CONB3.7:4 PR13 specific priority, write its interrupt default priority hex value
INT_CON3.3:0 PR12 to the desired priority field. Write FH to any unused priority

field, including reserved priority fields, 2 and 15.

INT_CON2.15:12 PRI1 For example, if you were to assign interrupt source EPA3

INT_CON2.11:8 PR10 (default priority value 10) to priority twelve (PR12), the
branching scheme for the EPA3 service routine would

INT_CON2.7:4 PR9 change from vector location FF2034H to FF2038H. This is

INT CON2.3:0 PRS possible by simply writing AH to bit field INT_CON3.3:0.

INT_CON1.15:12 PR7
INT_CON1.11:8 PR6

INT_CONL1.7:4 PR5
INT_CON1.3:0 PR4
INT_CONO0.15:12 | PR3
INT_CONO.11:8 —

INT_CONO.7:4 PR1
INT_CONO.3:0 PRO

Figure 6-4. Interrupt Control (INT_CON x) Registers

6-8

Int6|® INTERRUPTS

Table 6-4. INT_CON x Address and Reset States

Register Address Reset State
INT_CONO 1FES8H 3210H
INT_CON1 1FEAH 7654H
INT_CON2 1FECH BA98H
INT_CONS3 1FEEH FEDCH

For example, the following code assigns priorities to the EPAO, EXTINT1, EXTINTO, RI, Tl, and
OVRTML1 interrupts, with EPAO having the highest priority and OVRTML1 the lowest. All other
interrupts are unused.

;Enable priority scheme
LDB TEMP, #80H ;
STB TEMP, NMI_PENDI0] ;enables programmable priority scheme

;Add code to set up windows for direct access of INT_CONX registers.
;Assign priorities

LD INT_CONS3, #OFFF7H ;assigns EPAO (interrupt 7) to priority and vector 12
LD INT_CON2, #OF4FFH ;assigns EXTINT1 (interrupt 4) to priority and vector 10
LD INT_CONL1, #0F365H ;assigns EXTINTO (interrupt 3) to priority and vector 6,
;RI (interrupt 6) to priority and vector 5, and
;TI (interrupt 5) to priority and vector 4
LD INT_CONO, #0FFOFH ;assigns OVRTML1 (interrupt 0) to priority and vector 1

;Enable interrupts

ORB INT_MASK, #72H ;enables interrupts assigned to vectors 1, 4, 5, and 6
ORB INT_MASK1, #14H ;enables interrupts assigned to vectors 10 and 12
El

6.3.1 Reassigning Vector Addresses

Interrupt vectors can be located anywhere in the user-accessible region of the 16-Mbyte address
space on a 256-byte boundary. For faster execution of interrupt service routines, store the inter-
rupt vector table in internal code RAM. To reassign the vectors, write the upper 16 bits of the in-
terrupt vector table’s base address to the VECT_ADDR register (Figure 6-5). When the CPU
acknowledges an interrupt request, the interrupt controller generates an 8-bit jump address and
adds it to the base address to generate a complete vector address. The 8-bit jump address repre
sents the default vector location. The complete 24-bit vector address will be of the form,
VECT_ADDR (upper word) plus the default vector location (lower byte).

80296SA USER'S MANUAL Int6|®

VECT_ADDR Address: 1FFOH
B Reset State: FF20H

The base-address register (VECT_ADDR) contains the upper sixteen address bits of the interrupt-
vector table. When the CPU acknowledges an interrupt request, the vector-generation unit in the
interrupt controller generates a lower byte default vector location and then adds it to the contents of
the base-address register to generate the complete vector address.

15 8
‘ VA23 ‘ VA22 ‘ VA21 ‘ VA20 ‘ ‘ VA9 ‘ VA18 ‘ VAL7 ‘ VA16 ‘
7 0
| vais | vaia | vaiz | varz || van [vao [vas | wvas |
Bit Bit Function
Number Mnemonic
15:0 VA23:8 Interrupt Vector Address Bits 23 through 8
This register contains the upper address bits for the indirect interrupt-
vector-address table.

Figure 6-5. Interrupt Vector Address (VECT_ADDR) Register

6.3.2 Special Interrupts

Three special interrupt sources are always enabled: unimplemented opcode, software trap, and
NMI. These interrupts are not affected by the EI (enable interrupts) and DI (disable interrupts)
instructions, and they cannot be masked. Be aware that these interrupts are often assigned to spe
cial functions in development tools.

6.3.2.1 Unimplemented Opcode

If the CPU attempts to execute an unimplemented opcode, an indirect vector occurs. This pre-
vents random software execution during hardware and software failures. The interrupt vector
should contain the starting address of an error routine that will not further corrupt an already er-
roneous situation. When an unimplemented opcode interrupt occurs, no other interrupt request
can be acknowledged until after the next instruction executes.

6.3.2.2 Software Trap

The TRAP instruction (opcode F7H) causes an interrupt call that is vectored through location
FF2010H (default). This interrupt is useful when debugging software or generating software in-
terrupts. Only the unimplemented opcode interrupt can interrupt a software trap interrupt.

6.3.2.3 NMI

The external NMI pin generates a nonmaskable interrupt for implementation of critical interrupt
routines. NMI has a higher priority than all the prioritized interrupts. (Only the unimplemented
opcode and software trap interrupts have higher priority.) It is passed directly from the transition
detector to the priority resolver, and it vectors indirectly through location FF203EH.

6-10

Int6|® INTERRUPTS

If your system does not use the NMI interrupt, connect the NMI pins§dadvprevent spurious
interrupts.

6.3.3 External Interrupt Signals

The external interrupt control (EXTINT _CON) register (Figure 6-6) enables you to select the lev-

el or edge that causes an interrupt request on each external interrupt signal. You can program each
external interrupt signal to generate an interrupt request when either a high level, low level, rising
edge, or falling edge occurs. The minimum level time is two states, and the minimum edge time
is one state.

The external interrupt signals share package pins with the following I/O port signals:
EXTINTO/P2.2, EXTINT1/P2.4, EXTINT2/P3.6, and EXTINT3/P3.7. To prevent false inter-
rupts, first configure the port pins and then clear the interrupt pending registers before globally
enabling interrupts. If the interrupt pending registers are not cleared before globally enabling in-
terrupts, then writing to the Px_MODE register will set the corresponding pending bits and pro-
duce a false interrupt. See “External Interrupt Signals (Ports 2 and 3)” on page 7-9.

EXTINT_CON Address: 1FCCH
- Reset State: 00H

The external interrupt control (EXTINT_CON) register enables you to individually select the action that
causes an interrupt request on each external interrupt input.

7 0
LEV3 LEV2 LEV1 LEvo || PoL3 POL2 POL1 POLO
Bit Bit Function
Number Mnemonic
74 LEV3:0 These bits control what action on the external interrupt pins generates an
30 POL3:0 interrupt request. LEV3 and POL3 program the EXTINT3 pin, LEV2 and

POL2 program EXTINTZ2, and so on.
LEVX POLX

0 0 rising edge on EXTINT x generates an interrupt request
0 1 falling edge on EXTINTX generates an interrupt request
1 0 high level on EXTINTx generates an interrupt request
1 1 low level on EXTINTX generates an interrupt request

Figure 6-6. External Interrupt Control (EXTINT_CON) Register

6.3.4 Shared Interrupt Requests

The four EPA capture/compare channel overrun error interrupts are multiplexed into two interrupt
requests. Channels 0 and 1 share the OVRO_1 interrupt request and channels 2 and 3 share the
OVRZ2_3 interrupt request. Each source can generate the interrupt only if your software enables
both the actual source interrupt request and the shared interrupt request. Enable the source inter-
rupt requests by setting the appropriate bits in the EPA_MASK register (Figure 10-13 on page
10-24). Then enable the shared interrupt by setting the appropriate bit in the interrupt mask reg-
ister.

6-11

80296SA USER'S MANUAL Int6|®

The interrupt service routine should read the EPA_PEND register (Figure 10-16 on page 10-26)
to determine the source of the interrupt. Before executing the return from interrupt (RETI) in-
struction, the interrupt service routine should check whether any of the other interrupt sources are
pending.

6.4 INTERRUPT LATENCY

Interrupt latency is the total delay between the time that the interrupt request is generated (not
acknowledged) and the time that the microcontroller begins executing the interrupt service rou-
tine. A three-state delay occurs between the time that the interrupt request is detected and the time
that it is acknowledged. An interrupt request is acknowledged when the current instruction or un-
interruptable instruction sequence completes execution. An interrupt request will not be acknowl-
edged until after the third instruction in the pipeline finishes executing. This additional delay
occurs because instructions are prefetched from external memory and assembled a minimum of
four state times before they are executed. Thus, the maximum delay between interrupt request and
acknowledgment is three state times plus a four-state minimum instruction fetch time and the ex-
ecution time of the next instruction.

When a standard interrupt request is acknowledged, the hardware clears the interrupt pending bit
and forces a call to the address contained in the corresponding interrupt vector.

6.4.1 Situations that Increase Interrupt Latency

If an interrupt request occurs while any of the following instructions are executing, the interrupt
will not be acknowledged until after timext instruction is executed:

* the signed prefix opcode (FE) for the two-byte, signed multiply and divide instructions
(the signed prefix opcode is supported on the 80296SA, but not required)

¢ any of these eighgrotectednstructions DI, El, POPA, POPF, PUSHA, PUSHF (see
Appendix A for descriptions of these instructions)

¢ any of the read-modify-write instructions: AND, ANDB, OR, ORB, XOR, XORB
¢ all eight multiply-accumulate (MAC) instructions

¢ the non-interruptable repeat instructions (RPT, B®Tand the instruction that is being
repeated

¢ windowed accesses to external peripherals or external memory

¢ the unimplemented opcode interrupt and the software trap interrupt

6.4.2 Calculating Latency

The maximum latency occurs when the interrupt request occurs too late (four states prior to end
of current instruction) for acknowledgment following the current instruction. The following
worst-case calculation assumes that the current instruction is not a protected instruction and that
the stack, interrupt vector, and interrupt service routine are all located in external memory. Also
assumed are, zero wait states, 16-bit buswidth, and demultiplexed mode. To calculate latency, add
the following terms:

6-12

Int6|® INTERRUPTS

¢ Time for the interrupt request to be detected (4 state times).

— One state each to clock edge, synchronize interrupt, prioritize interrupt, and request
interrupt.

¢ Time for the current instruction to finish execution (4 state times).

— If this is a protected instruction, the instruction that follows it must also execute before
the interrupt can be acknowledged. Add the execution time of the instruction that
follows a protected instruction.

¢ Time for the next instruction to execute. (See Appendix A for instruction execution times.)

— The longest instruction, DIV, takes 25 state times. However, the BMOV or RPT
instruction could actually take longer if it is transferring a large block of data or
repeating a divide instruction. If your code contains routines that transfer large blocks
of data or use the RPT instruction, you may get a more accurate worst-case value if you
use the BMOV or RPT execution time in your calculation instead of DIV.

* The response time to get the vector and force the call, and fetch the first instruction of the
service routine.

— in 64-Kbyte mode, 10 state times.
— in 1-Mbyte mode, 12 state times.

6.4.2.1 Worst-case Interrupt Latency

Figure 6-7 illustrates worst-case interrupt latency. In 64-Kbyte mode, the worst-case delay for an
interrupt is 43 state times (4 + 4 + 25 + 10). In 1-Mbyte mode, the worst-case delay increases to
45 state times (4 + 4 + 25 + 12) with the stack in external memory. This delay time does not in-
clude the time needed to execute the first instruction in the interrupt service routine or to execute
the instruction following a protected instruction.

1-Mb 4 4321 (—25%%10—)+8_)+4:I
64-Kb 4321 | €«——25— > <€«—12———><« 8 >« 4

Interrupt | Ending “DIV" End Call is Fetch First "PUSHA" Stack
Detection| Instruction "DIV" Forced Instruction External

-~ >
Interrupt Routine
Interrupt
Interrupt
Pending Set Cleared

1-Mbyte Mode — 45 State Times
64-Kbyte Mode — 43 State Times

|
&<

Y

A3359-01

Figure 6-7. Worst-case Interrupt Response Time

6-13

80296SA USER’S MANUAL

6.5 PROGRAMMING THE INTERRUPTS

Table 6-5 describes how to program each maskable interrupt.

Table 6-5. Programming the Interrupts

To:

Your code must:

Operate with 80C196NU-compatible
interrupt priorities

Reset the 80296SA microcontroller. Upon deassertion of
RESET#, the 80296SA defaults to the 80C196NU-compatible
interrupt controller structure.

Modify the priority of the maskable
interrupts

Set the programmable-priority-enable bit in the NMI_PEND
register (Figure 6-3 on page 6-7).

Assign the interrupt priorities by writing the hex values for each
interrupt source to the appropriate 4-bit field in the appropriate
INT_CONX register (Figure 6-4 on page 6-8).

Reassign the default vector addresses

Write the upper 16 bits of the interrupt table’'s new base
address to the VECT_ADDR register (Figure 6-5 on page
6-10).

Enable interrupt controller service for the
maskable interrupts

Execute the El instruction.

Disable interrupt controller service for the
maskable interrupts

Execute the DI instruction.

Disable an individual maskable interrupt

Clear the interrupt’s mask bit in the INT_MASK or INT_MASK1
register (Figure 6-8 or 6-9).

Enable a maskable interrupt

Set the interrupt’'s mask bit in the INT_MASK or INT_MASK1
register (Figure 6-8 or 6-9).

Disable an OVRO_1 or OVR2_3 interrupt
source

Clear the interrupt’'s mask bit in the EPA_MASK register
(Figure 10-13 on page 10-24).

Enable an OVRO_1 or OVR2_3 interrupt
source

Set the interrupt’'s mask bit in the EPA_MASK register (Figure
10-13 on page 10-24).

6-14

Int6|® INTERRUPTS

INT_MASK Address: 0008H
- Reset State: 00H

The interrupt mask (INT_MASK) register enables or disables (masks) individual interrupt requests.
(The EI and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK is the
low byte of the processor status word (PSW). PUSHF or PUSHA saves the contents of this register
onto the stack and then clears this register. Interrupt calls cannot occur immediately following this
instruction. POPF or POPA restores it.

7 0
| Pr7 | PRe PR5 PR4 || PR3 — PR1 PRO
Bit)
Number Function
7:0 Setting a bit enables the interrupt that is assigned to the corresponding priority. The default

interrupt priorities are as follows:

Default Priority Interrupt Source

EPA Capture/Compare Channel 0
SIO Receive

SIO Transmit

EXTINT1 pin

EXTINTO pin

Reserved

Timer 2 Overflow/Underflow
Timer 1 Overflow/Underflow

OFRPNWAMIOTON

Figure 6-8. Interrupt Mask (INT_MASK) Register

6-15

80296SA USER'S MANUAL Int6|®

INT_MASK1 Address: 0013H
- Reset State: 00H

The interrupt mask 1 (INT_MASKZ1) register enables or disables (masks) individual interrupt requests.
(The El and Dl instructions enable and disable servicing of all maskable interrupts.) INT_MASK1 can
be read from or written to as a byte register. PUSHA saves this register on the stack and POPA
restores it.

7 0
‘ NMI ‘ PR14 PR13 PR12 ‘ ‘ PR1L PR10 PR9 PRS
Bit .
Number Function
7:0 Setting a bit enables the interrupt that is assigned to the corresponding priority. The default

interrupt priorities are as follows:
Default Priority Interrupt Source

15 Nonmaskable Interrupt’

14 EXTINT3 pin

13 EXTINT2 pin

12 EPA Capture Channel 2 or 3 Overruntf
1 EPA Capture Channel 0 or 1 Overruntt
10 EPA Capture/Compare Channel 3

9 EPA Capture/Compare Channel 2

8 EPA Capture/Compare Channel 1

T NMI is always enabled and is always assigned to priority 15. This nonfunctional mask
bit exists for design symmetry with the INT_PENDL register. Always write zero to this
bit.

Tt An overrun on the EPA capture/compare channels can generate the shared capture
overrun interrupts. Write to EPA_MASK to enable the interrupt sources; read
EPA_PEND to determine which source caused the interrupt.

Figure 6-9. Interrupt Mask 1 (INT_MASK1) Register

6.5.1 Determining the Source of an Interrupt

When hardware detects an interrupt, it sets the corresponding bit in the INT_PEND or
INT_PEND1 register (Figures 6-11 or 6-12). It sets the bit even if the individual interrupt is dis-
abled (masked). Software can read INT_PEND and INT_PEND1 to determine which interrupts
are pending. If a shared overrun interrupt (OVRO_1 or OVR2_3) is pending, software can read
the EPA_PEND register (Figure 10-16 on page 10-26) to determine the source of the interrupt
request.

When priority-programming is enabled and the CPU acknowledges an interrupt request, hard-
ware latches the interrupt pending bit into the corresponding IN_PROGO or IN_PROG1 register
bit (Figure 6-10) and clears the bit in the INT_PEND or INT_PEND1 register. After the interrupt
service routine is finished, RETI is executed. Hardware clears the highest priority bit in the
IN_PROGregisters. If a higher priority interrupt occurs while an interrupt service routine is ex-

6-16

Int6|® INTERRUPTS

ecuting, the higher priority interrupt is serviced and the IN_PRRAiGor the lower priority in-
terrupt remains set until its interrupt service is executed.

NOTE
Reading the IN_PROSregisters outside the interrupt service routine is not
recommended, as they will contain indeterminate data.

IN_PROGx Address: 1FC8H, 1FCAH
X =0-1 Reset State: 00H, 0000H

The interrupt in-progress registers (IN_PROGX) track which interrupt is currently being serviced. The
IN_PROGO register tracks the unimplemented opcode interrupt (UOP) and the software trap interrupt.
The IN_PROGL1 register tracks the maskable interrupts in terms of the priority that was assigned to
them in the INT_CONXx registers. IN_PROGX registers should only be used when priority-programming
is enabled.

7 0
IN_PROGO | — | — | = | = || = | = | vop | Trar |
15 8
IN_PROG1 ‘ NMI ‘ PR14 ‘ PR13 ‘ PR12 H PR11 ‘ PRlO‘ PR9 ‘ PR8 ‘
7 0
| PrR7 | PrR6é | PRs | PR4 || PR3 | — | PRL | PRO |
Nulr?;it)er Mne?ritonic Function
IN_PROGO0.7:2 | — Reserved; for compatibility with future devices, write zeros to these
IN_PROG1.2 bits.
IN_PROGO0.1 UOP Any set bit indicates that the interrupt routine with the corresponding

programmed priority level is executing. When processing transfers to

IN_PROG0.0 TRAP an interrupt service routine, hardware sets the bit that corresponds to

IN_PROG1.15 NMI the interrupt’s programmed priority level. When the return from
- - interrupt (RET]I) instruction is executed, at the end of an interrupt
IN_PROG1.14:3 | PR14:3 service routine, hardware clears the bit that corresponds to the

IN_PROG1.1:0 | PR1O interrupt’s programmed priority level.

The UOP, TRAP, and NMI are fixed priority interrupts.

Figure 6-10. Interrupt In-progress (IN_PROG x) Registers

Software can generate an interrupt by setting a bit in INT_PEND or INT_PEND1 register. We
recommend the use of the read-modify-write instructions, such as AND and OR, to modify these
registers.

ANDB INT_PEND, #11111110B; Clears the OVRTM1 pending bit
ORB INT_PEND, #00000001B; Sets the OVRTM1 pending bit

Other methods could result in a partial interrupt cycle. For example, an interrupt could occur dur-
ing an instruction sequence that loads the contents of the interrupt pending register into a tempo-
rary register, modifies the contents of the temporary register, and then writes the contents of the

6-17

80296SA USER'S MANUAL Int6|®

temporary register back into the interrupt pending register. If the interrupt occurs during one of
the last four states of the second instruction, it will not be acknowledged until after the completion
of the third instruction. Because the third instruction overwrites the contents of the interrupt pend-

ing register, the jump to the interrupt vector will not occur.

INT_PEND Address: 0009H
Reset State: OOH

When hardware detects an interrupt request, it sets the corresponding bit in the interrupt pending
(NMI_PEND, INT_PEND, or INT_PEND1) registers. When the vector is taken, the hardware clears
the pending bit. Software can generate an interrupt by setting the corresponding interrupt pending bit.

7 0
| PrR7 | PR6 PR5 PR4 || PR3 — PR1 PRO
Bit .
Number Function
7:0 Any set bit indicates that the interrupt that is assigned to the corresponding priority is

pending. The interrupt bit is cleared when processing transfers to the corresponding
interrupt vector.

The default interrupt priorities are as follows:

Default Priority Interrupt Source

EPA Capture/Compare Channel 0
SIO Receive

SIO Transmit

EXTINT1 pin

EXTINTO pin

Reserved

Timer 2 Overflow/Underflow
Timer 1 Overflow/Underflow

OFRrNWAMUTON

Figure 6-11. Interrupt Pending (INT_PEND) Register

6-18

intel.

When hardware detects an interrupt request, it sets the corresponding bit in the interrupt pending
(NMI_PEND, INT_PEND, or INT_PEND1) registers. When the vector is taken, the hardware clears
the pending bit. Software can generate an interrupt by setting the corresponding interrupt pending bit.

INTERRUPTS
INT_PEND1 Address: 0012H
- Reset State: 00H

7 0
| nmi [PRi4 PR13 PRI2 || PRI PR10 PR PR8
Bit)
Number Function
7:0 Any set bit indicates that the interrupt that is assigned to the corresponding priority is

pending. The interrupt bit is cleared when processing transfers to the corresponding
interrupt vector.

The default interrupt priorities are as follows:
Default Priority Interrupt Source

15 Nonmaskable Interrupt®

14 EXTINT3 pin

13 EXTINT2 pin

12 EPA Capture Channel 2 or 3 Overruntf
1 EPA Capture Channel 0 or 1 Overruntt
10 EPA Capture/Compare Channel 3

9 EPA Capture/Compare Channel 2

8 EPA Capture/Compare Channel 1

T NMI is always assigned to priority 15.

Tt An overrun on the EPA capture/compare channels can generate the shared capture
overrun interrupts. Write to EPA_MASK to enable the interrupt sources; read
EPA_PEND to determine which source caused the interrupt.

Figure 6-12. Interrupt Pending 1 (INT_PEND1) Register

6-19

intel.

/O Ports

intel.

CHAPTER 7
/O PORTS

The microcontroller contains two 4-bit I/O ports and three 8-bit I/O ports. Each port pin can func-
tion as a general-purpose I/O signal or as a special-function signal. General-purpose I/O signals
provide a mechanism to transfer information between the microcontroller and the surrounding
system circuitry. They can read system status, monitor system operation, output microcontroller
status, configure system options, generate control signals, provide serial communication, and so
on. Special-function signals are associated with on-chip peripherals or system functions.

7.1 1/0 PORTS OVERVIEW

Most port pins can serve as low-speed input/output signals (I/O mode) or as signals for peripheral
and/or system functions (special-function mode). Each port pin can function as a complementary
or open-drain signal. For complementary signals, the microcontroller drives a one or a zero on
the pin. For open-drain signals, the microcontroller either floats the pin, making it available as a
high impedance input, or pulls the pin low. Each port contains dedicated special-function registers
(SFRs) that allow you to select a pin’s mode, configuration, and output value, and read a pin’s
input value.

For each port, Table 7-1 lists the number of pins and associated peripheral or system function.

Table 7-1. Microcontroller 1/0O Ports

Port Pins Associated Peripheral(s) or System Function
Extended Port (EPORT) 4 Extended address lines
Port 1 8 EPA, SIO, timers
Port 2 8 SIO, interrupts, bus control, clock generation
Port 3 8 Chip-select unit, interrupts
Port 4 4 PWM

For each port pin, Table 7-2 lists the 1/O and special-function signal names, the special-function
signal type, and the special-function signal’'s associated peripheral or system function. For de-
scriptions of a pin’s special-function signal, see “Using the Special-function Signals” on page
7-6.

7-1

80296SA USER’S MANUAL

Table 7-2. Microcontroller Port Signals

intel.

. Special-function Special-function ‘Special-f‘unction
Port 1/0 Signal Signal Signal Type Signal Perlpher_al or
System Function
Extended Port | EPORT.0 Al6 O Extended address bus
EPORT.1 Al7 O Extended address bus
EPORT.2 Al8 O Extended address bus
EPORT.3 Al19 O Extended address bus
Port 1 P1.0 EPAO /10 EPA
P11 EPA1 110 EPA
P1.2 EPA2 110 EPA
P1.3 EPA3 110 EPA
P14 T1CLK | Timer 1
P15 T1DIR | Timer 1
P1.6 T2CLK [Timer 2
P17 T2DIR | Timer 2
Port 2 P2.0 TXD (0] Serial I/0 unit
P2.1 RXD 110 Serial I/O unit
P2.2 EXTINTO | Interrupts
P2.3 BREQ# (0] Bus controller
P2.4 EXTINT1 | Interrupts
P25 HOLD# | Bus controller
P2.6 HLDA# (@) Bus controller
pP2.7 CLKOUT (0] Clock generator
Port 3 P3.0 CS0# (0] Chip-select unit
P3.1 CS1# (0] Chip-select unit
P3.2 CS2# (0] Chip-select unit
P3.3 CS3# (0] Chip-select unit
P3.4 CSa# (@) Chip-select unit
P3.5 CS5# (0] Chip-select unit
P3.6 EXTINT2 | Interrupts
P3.7 EXTINT3 | Interrupts
Port 4 P4.0 PWMO (e} PWM
P4.1 PWM1 (e} PWM
P4.2 PWM2 (e} PWM
P4.3 — — —

Table 7-3 lists the registers associated with the ports.

7-2

intel.

I/0 PORTS

Table 7-3. Port Control and Status Registers

Mnemonic Address Description
EP_DIR 1FE3H Port Direction Register
P1_DIR 1FD2H Each bit controls the configuration of the corresponding pin.
P2_DIR 1FD3H Clearing a bit configures a pin as a complementary output; setting
P3_DIR 1FDAH a bit configures a pin as a high-impedance input or an open-drain
P4_DIR 1FDBH output.
EP_MODE 1FE1H Port Mode Register
P1_MODE 1FDOH Each bit controls the mode of the corresponding pin. Setting a bit
P2_MODE 1FDIH configures a pin as a special-function signal; clearing a bit
P3_MODE 1FD8H configures a pin as a general-purpose 1/O signal.
P4_MODE 1FD9H
EP_PIN 1FE7H Port Pin Register
P1_PIN 1FD6H Each bit reflects the current state of the corresponding pin,
P2_PIN 1FD7H regardless of the pin’s mode and configuration.
P3_PIN 1FDEH
P4_PIN 1FDFH
EP_REG 1FE5H Port Data Output Register
P1_REG 1FD4H For I/O Mode (P x_MODE.x = 0)
P2_REG 1FD5H o .
P3_REG 1FDCH When a port pin is c_onflgured as a complementary output
P4_REG 1FDDH (Px_DIR.x = 0), setting the corresponding port data bit drives a

one on the pin, and clearing the corresponding port data bit
drives a zero on the pin.

When a port pin is configured as a high-impedance input or an
open-drain output (Px_DIR.x = 1), clearing the corresponding
port data bit drives a zero on the pin, and setting the corre-
sponding port data bit floats the pin, making it available as a
high-impedance input.

For Special-function Mode (P x_MODE.x = 1)
When a port pin is configured as an output (either comple-
mentary or open-drain), the corresponding port data bit value is
immaterial because the corresponding on-chip peripheral or
system function controls the pin.

To configure a pin as a high-impedance input, set both the
Px_DIR and Px_REG bits.

The remainder of this chapter explains how to configure the ports, discusses using the port spe-

cial-function signals, and describes the internal port structures.

7.2 CONFIGURING THE PORT PINS

Each port pin can be configured independently to operate as a special-function signal or an 1/0
signal. In addition, these signals can be independently configured to operate as complementary

outputs, high-impedance inputs, or open-drain outputs.

7-3

80296SA USER'S MANUAL Int6|®

7.2.1 Configuring Ports 1-4 and EPORT

Using the port mode register, you can individually configure each port 1-4 and EPORT pin to
operate either as a general-purpose 1/O signal (I/O mode) or as a special-function signal (special-
function mode). In either mode, three configurations are possible: complementary output, high-
impedance input, or open-drain output. The port direction and data output registers select the con-
figuration for each pin. Complementary output means that the microcontroller drives the signal
high or low. High-impedance input means that the microcontroller floats the signal. Open-drain
output means the microcontroller drives the signal low or floats it. For I/O mode, the port data
output register determines whether the microcontroller drives the signal high, drives it low, or
floats it. For special-function mode, the on-chip peripheral or system function determines wheth-
er the microcontroller drives the signal high or low for complementary outputs.

The port 1-4 and EPORT pins are weakly pulled high during and after reset. Initializing the pins
by writing to the port mode register turns off the weak pull-ups. To ensure that the ports are ini-
tialized correctly, follow this suggested initialization sequence:

1. Wirite to BX_DIR (or EP_DIR) to configure the individual pins. Clearing a bit configures a
pin as a complementary output. Setting a bit configures a pin as a high-impedance input or
open-drain output.

2. Write to k_MODE (or EP_MODE) to select either 1/O or special-function mode. Writing
to Px_MODE (regardless of the value written) turns off the weak pull-ups. Even if the
entire port is to be used as /O (its default configuration after rg@et)must write to
Px_MODE (or EP_MODE) to ensure that the weak pull-ups are turned off

3. Write to X_REG (or EP_REG).

For complementary output configurations:

In /0 mode, write the data that is to be driven by the pins to the correspondiR§®

(or EP_REG) bits. In special-function mode, the value is immaterial because the on-chip
peripheral or system function controls the pin. However, you must still write REG

(or EP_REG) to initialize the pin.

For high-impedance input or open-drain output configurations

In I/O mode, write to B REG (or EP_REG) to either float the pin, making it available as

a high impedance input, or pull it low. Setting the correspondindRPG (or EP_REG)

bit floats the pin; clearing the corresponding REG (or EP_REG) bit pulls the pin low.

In special-function mode, if the on-chip peripheral uses the pin as an input signal, you
must set the corresponding REG (or EP_REG) bit so that the pin can be driven exter-
nally. If the on-chip peripheral uses the pin as an output signal, the value of the corre-
sponding R REG (or EP_REG) bit is immaterial because the on-chip peripheral or
system function controls the pin. However, you must still writetdREG (or EP_REG)

to initialize the pin.

Table 7-4 lists the control register values for each possible configuration.

7-4 I

I nt6| ® I/0O PORTS

Table 7-4. Control Register Values for Each Configuration

Desired Pin Configuration Configuration Register Settings
General-purpose /O Signal P x DIR | Px MODE | Px_REG
Complementary, driving 0 0 0 0
Complementary, driving 1 0 0 1
Open drain, strongly driving 0 1 0 0
Input (high impedance) 1 0 1
Special-function Signal P x DIR | Px MODE | Px REG
Complementary, output value controlled by peripheral 0 1 X
Open drain, output value controlled by peripheral 1 1 X
Input (high impedance) 1 1 1

7.2.2 Port Configuration Example

Assume that you wish to configure the pins of a port as shown in Table 7-5.

Table 7-5. Port Configuration Example

Port Pin(s) Configuration Data
Px.0, Px.1 high-impedance input high impedance
Px.2, Px.3 open-drain, driving 0 0
Px.4 open-drain, output with external pull-up 1 (because of external pull-up)
Px.5, Px.6 complementary, driving O 0
Px.7 complementary, driving 1 1

To do so, you could use the following example code segment. Table 7-6 shows the state of each
pin after reset and after execution of each line of the example code.
LDB Px_DIR,#00011111B

LDB Px_MODE,#00000000B
LDB Px_REG,#10010011B

80296SA USER’S MANUAL

Table 7-6. Port Pin States After Reset and After Example Code Execution

intel.

Resulting Pin States f

Action or Code

Px.7 | Px.6 | Px5 | Px4 | Px3 | Px.2 | Px.1 | Px.0
Reset WK WK WK WK WK WK WK WK
LDB Px_DIR, #00011111B 1 1 1 WK WK WK WK WK
LDB Px_MODE, #00000000B 1 1 1 HZ HZ HZ HZ HZ
LDB Px_REG, #10010011B 1 0 0 17t 0 0 HZ HZ

T WK = weakly pulled high, HZ = high impedance.
1 Pulled high by external pull-up.

7.3 USING THE SPECIAL-FUNCTION SIGNALS

Most port pins can function as either general-purpose I/O signals or as special-function signals.
The following sections describe the special-function signals and outline special considerations

for using these signals.

7.3.1 Address Signals (EPORT)

The extended port pins can function as address signals or general-purpose I/O signals (Table 7-7).
To use an extended port pin as an address signal, set the corresponding EP_MODE bit, selecting
special-functon mode. When an extended port pin is configured as an address signal, the micro-

controller automatically configures the pin as a complementary output.

Table 7-7. Address Signals

Address Signal 1/0 Signal

Address Signal Description

A19:16 EPORT.3:0 Description :

Considerations :

float.

Address Lines 16-19. These address lines provide address bits
16-19 during the entire external memory cycle, supporting
extended addressing of the 1-Mbyte address space.

During the CCB fetch, all EPORT pins are strongly driven high.
Designers should ensure that this does not conflict with external
systems that are outputting signals to the EPORT.

When EPORT pins are floated during idle, powerdown, or hold,
the external system must provide circuitry to prevent CMOS
inputs on external devices from floating. During powerdown, the
EPORT input buffers on pins configured for their extended-
address function are disconnected from the pins, so a floating pin
will not cause increased power consumption.

Open-drain outputs require an external pull-up resistor. Inputs
must be driven or pulled high or low; they must not be allowed to

I nt6| ® I/0O PORTS

During reset, the EPORT pins are forced to their extended-address functions and are weakly
pulled high. During the CCB fetch, FFH is strongly driven onto the pins. This value remains
strongly driven until either the pin is configured for I/O or a different extended address is access-
ed. If the pins remain configured as extended-address functions, they are placed in a high-imped-
ance state during idle, powerdown, standby, and hold. If they are configured as I/O, they retain
their 1/0 function during those modes. See Figure 11-7 on page 11-8 and Table B-5 on page B-11
for additional information.

7.3.2 Bus-control Signals (Port 2)

Some port 2 pins function as either general-purpose I/O signals or as bus-control signals (Table
7-8). To use a port 2 pin as a bus-control signal, set the corresponding P2_MODE bit, selecting
special-functon mode. To configure a port 2 pin as a complementary output signal, clear the cor-
responding P2_DIR bit. To configure a port 2 pin as an input signal, set the corresponding

P2_DIR and P2_REG bits. To configure a port 2 pin as an open-drain output, set the correspond-
ing P2_DIR bit.

Table 7-8. Bus-control Signals

Bus-control 110

Signal Signal Bus-control Signal Description and Considerations

BREQ# P2.3 Description :

Bus Request. This active-low output signal is asserted during a hold cycle when
the bus controller has a pending external memory cycle.

Considerations :

When the bus-hold protocol is enabled (WSR.7 is set), the P2.3/BREQ# pin can
function only as BREQ#, regardless of the configuration selected through the port
configuration registers (P2_MODE, P2_DIR, and P2_REG). An attempt to change
the pin configuration is ignored until the bus-hold protocol is disabled (WSR.7 is
cleared).

CLKOUT pP2.7 Description :

Clock Output. Output of the internal clock generator. The CLKOUT frequency is %2
the internal operating frequency (f).

Considerations :

Following reset, the microcontroller automatically configures P2.7 as CLKOUT. Itis
not held high. When P2.7 is configured as CLKOUT (P2_MODE.7 = 1), it is always
a complementary output.

80296SA USER'S MANUAL Int6|®

Table 7-8. Bus-control Signals (Continued)

Bus-control 110

) . Bus-control Signal Description and Considerations
Signal Signal

HLDA# P2.6 Description :

Bus Hold Acknowledge. The HLDA# pin is used in systems with more than one

processor using the system bus. The microcontroller asserts HLDA# to indicate

that it has freed the bus in response to HOLD# and another processor can take

control. (This signal is active low to avoid misinterpretation by external hardware
immediately after reset.)

Considerations :

When the bus-hold protocol is enabled (WSR.7 is set), the P2.6/HLDA# pin can
function only as HLDA#, regardless of the configuration selected through the port
configuration registers (P2_MODE, P2_DIR, and P2_REG). An attempt to change
the pin configuration is ignored until the bus-hold protocol is disabled (WSR.7 is
cleared).

HOLD# P25 Description :

Bus Hold Request. An external device uses this active-low input signal to request
control of the bus.

Considerations :

When the bus-hold protocol is enabled (WSR.7 is set), the P2.5/HOLD# pin can
function only as HOLD#, regardless of the configuration selected through the port
configuration registers (P2_MODE, P2_DIR, P2_REG). An attempt to change the
pin configuration is ignored until the bus-hold protocol is disabled (WSR.7 is
cleared).

7.3.3 Chip-select Signals (Port 3)
Some port 3 pins function as chip-select signals or general-purpose 1/O (Table 7-9). To use a port

3 pin as a chip-select signal, set the corresponding P3_MODE bit, selecting special-function
mode, and clear the corresponding P3_DIR bit, selecting a complementary output configuration.

Table 7-9. Chip-select Signals

Chip-select Signal 1/0O Signal Chip-select Signal Descriptions and Considerations

CS5:0# P3.5:0 Description :

Chip-select Lines 0-5. The active-low output CSx# is asserted
during an external memory cycle when the address to be
accessed is in the range programmed for chip select x.

Considerations :

Pins P3.5:0 are weakly pulled high during reset. After reset, P3.0
defaults to the CS0# function. This chip-select signal detects
address ranges that contain the CCBs and FF2080H (program
start-up address).

7-8

I nt6| ® I/0O PORTS

7.3.4 EPA and Timer Signals (Port 1)

The port 1 pins can function as EPA and timer signals or general-purpose 1/O signals (Table 7-10).
To use the port 1 pins as EPA and timer signals, set the corresponding P1_MODE bits, selecting
special-function mode. To configure an EPA or timer signal as a complementary output, clear the
corresponding P1_DIR bit. To configure an EPA or timer signal as an input, set the corresponding
P1_DIR and P1_REG bits. To configure an EPA or timer signal as an open-drain output, set the
corresponding P1_DIR bit.

Table 7-10. EPA and Timer Signals

EPA or Timer 110

Signal Signal EPA or Timer Signal Descriptions and Considerations

EPA3:0 P1.3:0 Description :

Event Processor Array (EPA) Capture/Compare Channels. High-speed
input/output signals for the EPA capture/compare channels.

Considerations :

Following reset, these pins are weakly pulled high until your software
writes configuration data into Px_MODE.

T1CLK P1.4 Description :

T2CLK P16 Timer x External Clock. External clock for timer x. Timer x increments (or
decrements) on both rising and falling edges of TxCLK.

Considerations :

Following reset, pins P1.4 and P1.6 are weakly pulled high until your
software writes configuration data into P1_MODE.

T1DIR P1.5 Description :

T2DIR P17 Timer x External Direction. External direction (up/down) for timer x. Timer
x increments when TxDIR is high and decrements when it is low.

Considerations :

Following reset, pins P1.5 and P1.7 are weakly pulled high until your
software writes configuration data into P1_MODE.

7.3.5 External Interrupt Signals (Ports 2 and 3)

Some port 2 and 3 pins can function as external interrupt signals or as general-purpose I/O signals
(Table 7-11). To configure a port 2 or 3 pin as an external interrupt, set the correspanfitig, P

Px_ MODE, and R_REG bits. Setting thex°PMODE bit could cause the device to set the corre-
sponding interrupt pending bit, indicating an interrupt request; therefore, we recommend the fol-
lowing sequence to prevent a false interrupt request:

1. Disable interrupts by executing the DI instruction.
2. Setthe R DIRY.

3. Setthe R MODEy.

4. Setthe R REGY.

80296SA USER'S MANUAL Int6|®

5. Clear the external interrupt pending bit.

6. Enable interrupts (optional) by executing the El instruction.

Table 7-11. External Interrupt Signals

External Interrupt

Signal 1/0O Signal External Interrupt Signal Description and Considerations
EXTINTO p2.2 Description :
EXTINT1 p2.4 External Interrupts. In normal operating mode, a rising edge on
EXTINT2 P3.6 EXTINTx sets the EXTINTXx interrupt pending bit. EXTINT x is
EXTINT3 P3.7 sampled during phase 2 (CLKOUT high). The minimum high time

is one state time.

In standby and powerdown modes, asserting the EXTINTx signal
for at least 50 ns causes the device to resume normal operation.
The interrupt need not be enabled, but the pin must be
configured as a special-function input. If the EXTINTXx interrupt is
enabled, the CPU executes the interrupt service routine.
Otherwise, the CPU executes the instruction that immediately
follows the command that invoked the power-saving mode.

In idle mode, asserting any enabled interrupt causes the device
to resume normal operation.

Considerations :

Setting the Px_MODE bit for P2.2, P2.4, P3.6, or P3.7 could
cause the microcontroller to set the corresponding external
interrupt pending bit; therefore, to prevent a false interrupt
request, clear the interrupt pending bits before globally enabling
interrupts.

7.3.6 PWM Signals (Port 4)
The port 4 pins can function as PWM signals or general-purpose I/O signals (Table 7-12). To use

a port 4 pin as a PWM signal, set the corresponding P4_MODE bit, selecting special-function
mode, and clear the corresponding P4_DIR bit, configuring the pin as a complementary output.

Table 7-12. PWM Signals

PWM Signal I/0O Signal PWM Signal Description and Considerations

PWM2:0 P4.2:0 Description :

Pulse Width Modulator Outputs. These are PWM output pins with
high-current drive capability.

Considerations :

Following reset, pins P4.2:0 are weakly pulled high until your
software writes configuration data into P4_MODE.

7-10

I nt6| ® I/0O PORTS

7.3.7 Serial I/O Port Signals (Ports 1 and 2)

Some port 1 and 2 pins can function as SIO signals or general-purpose I/O signals (Table 7-13).
To use a port 1 or 2 pin as an SIO signal, set the correspondifDPE bit, selecting special-
function mode. To configure an SIO signal as a complementary output, clear the corresponding
Px_DIR bit. To configure an SIO signal as an input, set the corresporndiijf®and R_REG

bits. To configure an SIO signal as an open-drain output, set the correspondixg Bit.

Table 7-13. SIO Signals
SIO Signal I/0O Signal SIO Signal Description and Considerations

RXD pP2.1 Description :

Receive Serial Data. In modes 1, 2, and 3, RXD receives serial
port input data. In mode 0, it functions as either an input or an
open-drain output for data.

Considerations :

Following reset, pin P2.1 is weakly pulled high until your software
writes configuration data into P2_MODE.

T1CLK P14 Description :

Timer 1 External Clock. External clock for the serial I/O baud-rate
generator input (program selectable).

Considerations :

Following reset, pin P1.4 is weakly pulled high until your software
writes configuration data into P1_MODE.

TXD P2.0 Description :

Transmit Serial Data. In serial I/O modes 1, 2, and 3, TXD
transmits serial port output data. In mode 0, it is the serial clock
output.

Considerations :

Following reset, pin P2.0 is weakly pulled high until your software
writes configuration data into P2_MODE.

7.4 1/0 PORT INTERNAL STRUCTURES

The following sections describe the internal structure of the ports.

7.4.1 Internal Structure for the Extended I/O Port (EPORT)

Figure 7-1 shows the internal structure for the EPORT. Consult the datasheet for specifications
on the amount of current that the EPORT pins 0—4 can source and sink.

During reset, the falling edge of RESET# generates a short pulse that turns on the medium pull-
up transistor Q3, which remains on for about 300 ns, causing the pin to change rapidly to its reset
state. The active-low level of RESET# turns on transistor Q4, which weakly holds the pin high.
When RESET# is inactive, both Q3 and Q4 are off; Q1 and Q2 determine output drive.

7-11

80296SA USER'S MANUAL Int6|®

If RESET#, HOLD#, idle, or powerdown is asserted, the gates that control Q1 and Q2 are dis-
abled and Q1 and Q2 remain off. Otherwise, the gates are enabled and complementary or open-
drain operation is possible.

For complementary output mode, the gates that control Q1 and Q2 must be enabled. The Q2 gate
is always enabled (except when RESET#, HOLD#, idle, or powerdown is asserted). Either clear-
ing EP_DIR (selecting complementary modeyetting EP_MODE (selecting address mode) en-
ables the logic gate preceding Q1. The value of DATA determines which transistor is turned on.
If DATA is equal to one, Q1 is turned on and the pin is pulled high. If DATA is equal to zero, Q2

is turned on and the pin is pulled low.

For open-drain output mode, the gate that controls Q1 must be disabled. Setting EP_DIR (select-
ing open-drain modeind clearing EP_MODE (selecting I/O mode) disables the logic gate pre-
ceding Q1. The value of DATA determines whether Q2 is turned on. If DATA is equal to one, both
Q1 and Q2 remain off and the pin is left in high-impedance state (floating). If DATA is equal to
zero, Q2 is turned on and the pin is pulled low.

Input mode is obtained by configuring the pin as an open-drain output (EP_DIR set and

EP_MODE clear) and writing a one to EP_REGn this configuration, Q1 and Q2 are both off,
allowing an external device to drive the pin. To determine the value of the I/O pin, read EP_PIN.

7-12 I

intel.

I/O PORTS
Internal Bus
RESET# vee
— N
EP_REG 0
— DATA 1
Address Bit from 1 [[ot
Address MUX L HB
1/0 Pin
<—>|EP_MODEI
VA |
| «—=[EP DR »-
POWERDOWN# L
IDLE# =
HOLD# Vss
Sample
Latch 150Q to 200Q R1
EP_PIN Buffer
< o A=<
rl LE
Read Port |
PH1 Clock Vce
Medium
Pullup

300ns Delay . [
0 o Q3
RESET#—4 > O

Weak
Pullup

[o

A0241-02

Figure 7-1. EPORT Internal Structure

7-13

80296SA USER'S MANUAL Int6|®

7.4.2 Internal Structure for Ports 1-4

Figure 7-2 shows the logic for driving the output transistors, Q1 and Q2. Consult the datasheet
for specifications on the amount of current that each port can source or sink.

In I/O mode (selected by clearing a port mode registgrthié port data output and the port di-
rection registers are input to the multiplexers. These signals combine to drive the gates of Q1 and
Q2 so that the output is high, low, or high impedance.

In special-function mode (selected by setting a port mode register bit), SFDIR and SFDATA are
input to the multiplexers. These signals combine to drive the gates of Q1 and Q2 so that the output
is high, low, or high impedance. Special-function output signals clear SFDIR; special-function
input signals set SFDIR. Even if a pin is to be used in special-function mode, you must still ini-
tialize the pin as an input or output by writing to the port direction register.

Resistor R1 provides ESD protection for the pin. Input signals are buffered. The ports use
Schmitt-triggered buffers for improved noise immunity. The signals are latched into the port pin
register sample latch and output onto the internal bus when the port pin register is read.

The falling edge of RESET# turns on transistor Q3, which remains on for about 300 ns, causing
the pin to change rapidly to its reset state. The active-low level of RESET# turns on transistor Q4,
which weakly holds the pin high. Q4 remains on, weakly holding the pin high, until your software
writes to the port mode register.

NOTE

P2.7 is an exception. After reset, P2.7 carries the CLKOUT signal rather than
being held high. When CLKOUT is selected, it is always a complementary
output.

7-14 I

intel.

I/O PORTS
Internal Bus
Vee
|I Px_REG II 0\|
SFDATA lJ _DO—C“: Q1
1 .
1/0 Pin
Fx DIR | M
Px_DIR
Lo I 0 |
L
SFDIR 1
/
[| Vss
Px_MODE
| M |
Sample
Latch 150Q to 200Q R1
Px_PIN
e o 5 <]I
l\l LE
Read Port |
PH1 Clock Vee
Medium
Pullup
300ns Delay
0 O Q3
RESETH# O
Vce
Weak
RESET# ‘ R Pullup
‘ q4[o
Any Write to Px_MODE S

A0238-04

Figure 7-2. Ports 1-4 Internal Structure

7-15

intel.
8

Serial I/0 (SIO) Port

intel.

CHAPTER 8
SERIAL 1/O (SIO) PORT

A serial input/output (SIO) port provides a means for the system to communicate with external
devices. This microcontroller has a serial I/0 (SIO) port that shares pins with port 2. This chapter
describes the SIO port and explains how to configure it.

8.1 SERIAL I/O (SIO) PORT FUNCTIONAL OVERVIEW

The serial I/O port is an asynchronous/synchronous port that has a universal asynchronous receiv-
er and transmitter (UART) and four modes of operation; one synchronous mode (mode 0) and
three asynchronous modes (modes 1, 2, and 3). It consists of a dedicated receiver, transmitter,
control logic, two interrupt signals, and a baud-rate generator.

The transmitter and receiver contain buffers and shift registers. The buffers are accessible as spe-
cial-function registers (SFRs). Write transmit data to the transmit buffer (SBUF_TX) and read re-
ceived data from the receive buffer (SBUF_RX). Unlike the buffers, the shift registers are internal
registers and are not accessible as SFRs. For receptions, data is shifted into the receive shift reg-
ister, least-significant bit first, via the receive data pin (RXD). After the last bit (eighth bit for
mode 0 or stop bit for modes 1, 2, and 3) is shifted in, the receiver transfers the data from the
receive shift register to SBUF_RX where it can be accessed. For transmissions, data in SBUF_TX
is transferred to the transmit shift register then shifted out through the serial transmit pin (RXD
for mode 0 or TXD for modes 1, 2, and 3).

The serial /0O port contains a serial port control (SP_CON) register and a serial port status
(SP_STATUS) register. SP_CON configures the SIO channel for one of the operating modes and
for receptions or transmissions. SP_STATUS contains status and error flags. These registers are
discussed in detail in “Programming the Control Register” on page 8-10 and “Determining Serial
Port Status” on page 8-16.

The serial 1/0 port has two interrupt signals, allowing for interrupt-driven transmit and receive
service routines. The receive interrupt (RI) indicates that the receive buffer (SBUF_RX) contains
received data, available for reading. The transmit interrupt (T1) indicates that the transmit buffer
(SBUF_TX) is empty, available for writing.

The serial I/O port contains a 15-bit baud-rate generator. Either the internal peripheral clock or a
signal input on the T1CLK pin can provide the clock signal. The baud-rate register (SP_BAUD)
selects the clock source and the baud rate. For synchronous mode 0, the baud-rate generator con
trols the baud rate output on the serial clock pin (TXD). For asynchronous modes 1, 2, and 3, the
baud-rate generator controls the transmit and receive shift clocks.

I 8-1

80296SA USER'S MANUAL Int6|®

The SIO channel signals, registers, and interrupts are shown in Figures 8-1 and 8-2. The signals
and registers are described in the following section.

Receiver
Receive Shift Reg Receive
RXD
Transmit Input for receptions
Output for transmissions
SBUF_RX T
SP_CON.3

Transmitter

Transmit Shift Reg

di
Control Logic

<:> | SP_CON | Tl Interrupt

Internal Bus

SP_STATUS RI Interrupt
/1

SP_BAUD.15

Baud-rate

T1CLK 0 Generator

(] ™o

f Prescale 1 SP_BAUD

(+2)
SP_CON.6

A3342-01

Figure 8-1. SIO Block Diagram (Mode 0)

As shown in Figure 8-1, the RXD pin is the data pin and the TXD pin is the clock pin for syn-
chronous mode 0 operation. In this mode, the baud-rate generator drives eight pulses out the TXD
pin and the UART shifts data, least-significant bit first, into or out of the microcontroller via the
RXD pin. The UART samples data when the TXD pulse is low. “Synchronous Mode (Mode 0)”
on page 8-6 describes mode 0 in detalil.

8-2

|nte|® SERIAL 1/0 (SIO) PORT

Receiver

Receive Shift Reg

SBUF_RX

Transmitter

o

Transmit Shift Reg

SBUF_TX
|
Control Logic

Tl Interrupt

<:> | SP_CON I
RI Interrupt

| SP_STATUS I

SP_BAUD.15

Baud-rate
T1CLK 0 Generator

f Prescale 1 | SP_BAUD I

(+2)

Internal Bus

SP_CON.6

A3343-01

Figure 8-2. SIO Block Diagram (Mode 1, 2, and 3)

As shown in Figure 8-2, the RXD pin is the receive data pin and the TXD pin is the transmit data
pin for asynchronous modes 1, 2, and 3. Either the internal operating frequency (f), which can be
divided by two, or an input signal on the T1CLK pin provides the clock input to the baud-rate
generator. “Asynchronous Modes (Modes 1, 2, and 3)" on page 8-7 describes modes 1, 2, and 3

in detail.

8.2 SERIAL I/O PORT SIGNALS AND REGISTERS

Table 8-1 describes the SIO signals and Table 8-2 describes the control and status registers.

8-3

80296SA USER’S MANUAL

Table 8-1. Serial Port Signals

Serial
Serial Port Port -
Signal Signal Description
Type
RXD 1/0 Receive Serial Data
In modes 1, 2, and 3, RXD receives serial port input data. In mode 0, it
functions as either an input or an open-drain output for data.
RXD shares a package pin with P2.1.
T1CLK | Timer 1 Clock
The internal operating fregency (f) or an input signal on T1CLK provides
the clock source for the baud-rate generator. Clearing SP_BAUD.15
selects T1CLK as the clock source.
T1CLK shares a package pin with P1.4.
TXD (@] Transmit Serial Data
In serial I/O modes 1, 2, and 3, TXD transmits serial port output data. In
mode 0, it is the serial clock output.
TXD shares a package pin with P2.0.
Table 8-2. Serial Port Control and Status Registers
Mnemonic Address Description
INT_MASK 0008H Interrupt Mask
Setting the TI bit enables the transmit interrupt; clearing the bit
disables (masks) the interrupt.
Setting the RI bit enables the receive interrupt; clearing the bit
disables (masks) the interrupt.
INT_PEND 0009H Interrupt Pending
When set, the Tl bit indicates a pending transmit interrupt.
When set, the RI bit indicates a pending receive interrupt.
P1_DIR 1FD2H Port Direction Register
P2_DIR 1FCBH Each bit controls the configuration of the corresponding pin.
Clearing a bit configures the corresponding pin as a complementary
output; setting a bit configures the corresponding pin as an open-
drain output or a high-impedance input.
Write to P2_DIR.1, P1_DIR.4, and P2_DIR.0 to configure RXD,
T1CLK, and TXD. (See “Configuring the Serial Port Pins” on page
8-10.)
P1_MODE 1FDOH Port Mode Register
P2_MODE 1FC9H

Each bit controls the mode of the corresponding pin. Setting a bit
configures a pin as a special-function signal; clearing a bit
configures a pin as a general-purpose 1/O signal.

Set P2_DIR.1, P1_DIR.4, and P2_DIR.0 to configure pins P2.1,
P1.4, and P2.0 as RXD, T1CLK, and TXD. (See “Configuring the
Serial Port Pins” on page 8-10.)

8-4

intel.

SERIAL 1/0 (SIO) PORT

Table 8-2. Serial Port Control and Status Registers (Continued)

Mnemonic

Address

Description

P1_PIN
P2_PIN

1FD6H
1FCFH

Port Pin Register

Each bit reflects the current state of the corresponding pin,
regardless of the pin’s mode and configuration.

P1_REG
P2_REG

1FD4H
1FDCH

Port Data Output Register
For 1/0 Mode (P x_MODE.x = 0)

When a port pin is configured as a complementary output
(Px_DIR.x = 0), setting the corresponding port data bit drives a
one on the pin, and clearing the corresponding port data bit
drives a zero on the pin.

When a port pin is configured as a high-impedance input or an
open-drain output (Px_DIR.x = 1), clearing the corresponding
port data bit drives a zero on the pin, and setting the corre-
sponding port data bit floats the pin, making it available as a
high-impedance input.

For Special-function Mode (P x_MODE.x = 1)

When a port pin is configured as an output (either comple-
mentary or open-drain), the corresponding port data bit value is
immaterial because the corresponding on-chip peripheral or
system function controls the pin.

To configure a pin as a high-impedance input, set both the
Px_DIR and Px_REG bits.

Write to P2_REG.1, P1_REG.4, and P2_REG.0 to configure RXD,
T1CLK, and TXD. (See “Configuring the Serial Port Pins” on page

SBUF_RX

1FB8H

Serial Port Receive Buffer
This register contains data received from the RXD pin.

SBUF_TX

1FBAH

Serial Port Transmit Buffer

This register contains data that is ready for transmission. In modes
1, 2, and 3, writing to SBUF_TX starts a transmission. In mode 0,
writing to SBUF_TX starts a transmission only if the receiver is
disabled (SP_CON.3 = 0).

SP_BAUD

1FBCH, 1FBDH

Serial Port Baud Rate

This register selects the serial port baud rate and clock source. The
most-significant bit selects the clock source. The lower 15 bits
represent the baud value, an unsigned integer that determines the
baud rate.

SP_CON

1FBBH

Serial Port Control

This register selects the serial mode and enables or disables the
receiver for all modes. For modes 1 and 3, it enables parity. For
mode 2, and for mode 3 with parity disabled, it contains the ninth bit
to be transmitted. It also enables or disables the divide-by-two
prescaler and the baud-rate down-counter.

8-5

80296SA USER'S MANUAL Int6|®

Table 8-2. Serial Port Control and Status Registers (Continued)

Mnemonic Address Description

SP_STATUS | 1FBY9H Serial Port Status

This register contains the serial port status bits. It has status bits for
receive overrun error (OE), transmit buffer empty (TXE), framing
error (FE), transmit interrupt (T1), receive interrupt (RI), and received
parity error (RPE) or received bit 8 (RB8). Reading SP_STATUS
clears all bits except TXE; writing a byte to SBUF_TX clears the TXE
bit.

8.3 SERIAL PORT MODES

This section describes the serial port operating modes. Mode 0 is a synchronous mode. Mode 1
is an eight-bit asynchronous mode with optional parity. Modes 2 and 3 are nine-bit asynchronous
modes. Like mode 1, mode 3 has optional parity. For mode 2, the SIO flags receptions (by setting
the RI status bit and RI pending bit) only when the ninth data bit received is a one. This is useful
for multiprocessor communication, which is described in detail in “Multiprocessor Communica-
tions” on page 8-9.

8.3.1 Synchronous Mode (Mode 0)

In mode 0, the TXD pin outputs a set of eight clock pulses, while the RXD pin either transmits
or receives data. Data is transferred eight bits at a time, with the least-significant bit first. Figure
8-3 shows a diagram of the relative timing of these signals.

TXD \ / \ / \ , \ , \ ’ \ [7 \ / 7 \ /
RXD (out) pL__X b2 X b3 X D4 X b5 X D6__X D7 }»—
RXD () oo —

A0109-03

Figure 8-3. Mode 0 Timing

When using the internal clock source (f), the TXD clock signal remains low for 4t with the pres-
caler disabled (SP_CON.6 = 0) or 8t with the prescaler enabled (SP_CON.6 = 1). When using an
external clock source on the T1CLK signal, the TXD clock signal remains low for 4t (the TICLK
signal bypasses the prescaler, as shown in Figure 8-1 on page 8-2).

8-6

|nte|® SERIAL 1/0 (SIO) PORT

The serial I/0 port has a receive interrupt (R1) and a transmit interrupt (T1) that indicate when the
receive buffer is full or the transmit buffer is empty. Additionally, the serial port status
(SP_STATUS) register contains Rl and Tl flags. During a reception, the SIO sets the RI flag in
SP_STATUS after it samples the eighth data bit. The RI pending bit in the interrupt pending reg-
ister is set immediately before the RI flag is set. During a transmission, the SIO sets the Tl flag
immediately after it transmits the eighth data bit. The TI pending bit in the interrupt pending reg-
ister is set when the Tl flag in SP_STATUS is set.

In mode O, the receiver must be enabled for receptions and disabled for transmissions. (The
SP_CON register contains a bit that enables or disables the receiver. See “Programming the Con-
trol Register” on page 8-10.) When the receiver is enabled, clearing the receive interrupt (RI) flag
in SP_STATUS starts a reception. When the receiver is disabled, writing to SBUF_TX starts a
transmission.

Disabling the receiver stops a reception in progress and inhibits further receptions. When the re-
ceiver is enabled, clearing the Rl flag in SP_STATUS starts a reception; therefore, to avoid a cor-
rupted reception, disable the receiver before clearing the RI flag. This can be handled in an
interrupt environment by using software flags or in straight-line code by polling the interrupt
pending register to signal the completion of a reception.

8.3.2 Asynchronous Modes (Modes 1, 2, and 3)

Modes 1, 2, and 3 are full-duplex serial modes, meaning that they have dedicated receive and
transmit data signals. Mode 1 is the standard eight-bit, asynchronous mode used for normal serial
communications. With parity disabled, mode 1 transmits or receives eight data bits; with parity
enabled, mode 1 transmits or receives seven data bits and a parity bit. Modes 2 and 3 are nine-bit
asynchronous modes typically used for interprocessor communications (see “Multiprocessor
Communications” on page 8-9). Like mode 1, mode 3 has optional parity. With parity disabled,
mode 3 transmits or receives nine data bits; with parity enabled, mode 3 transmits or receives
eight data bits and a parity bit.

When the serial port is configured for mode 1, 2, or 3, writing to SBUF_TX causes the serial port
to start transmitting data. (The transmitter transfers the data to the transmit shift register and starts
shifting the data out through TXD.) New data placed in SBUF_TX is transferred to the shift reg-
ister only after the stop bit of the previous data has been sent. If the receiver is enabled, a falling
edge on the RXD input causes the serial port to begin receiving data. Disabling the receiver stops
a reception in progress and inhibits further receptions. (See “Programming the Control Register”
on page 8-10.)

To minimize noise-related errors, the SIO samples the data line three times and uses majority log-
ic to identify a valid start bit. That is, if two of the three samples are low, the bit is a valid start bit.

I 8-7

80296SA USER'S MANUAL Int6|®

8.3.2.1 Mode 1

Mode 1 is the standard asynchronous communications mode with optional parity. If parity is en-
abled, the receiver checks for even or odd parity, and the transmitter sends data with even or odd
parity. When parity is disabled, the data frame used in this mode (Figure 8-4) consists of ten bits:
a start bit (0), eight data bits (LSB first), and a stop bit (1). When parity is enabled, the eighth data
bit becomes the parity bit; therefore, the data frame consists of a start bit (0), seven data bits (LSB
first), a parity bit, and a stop bit (1).

8 Bits of Data or 7 Bits of Data
with Parity Bit

Top\ stat /' Do X b1 X D2 X D3 X D4 X D5 X D6 X D7 / stop
— —=

=< 10-bit Frame }i

A0245-02

Figure 8-4. Serial Port Frames for Mode 1

The transmit and receive functions are controlled by separate shift clocks. The baud-rate genera-
tor controls both the transmit and receive shift clocks. The transmit shift clock starts when the
baud-rate generator is initialized. The receive shift clock is reset when a start bit (falling edge) is
received. Therefore, the transmit clock may not be synchronized with the receive clock, although
both will be at the same frequency.

The SIO sets the transmit interrupt (T1) and receive interrupt (RI) flags in SP_STATUS to indicate
completed operations. During a reception, the SIO sets both the RI flag and the Rl interrupt pend-
ing bit just before it receives the end of the stop bit. During a transmission, the SIO sets the Tl
flag immediately after it starts to transmit the stop bit.

When connecting more than two microcontrollers with the serial port in half-duplex (that is, using
a single data signal for both transmit and receive operations), it is important to wait for a reception
to complete before starting to transmit. The receiving processor must wait for one bit time after
the RI flag is set before starting to transmit. Otherwise, the transmission could corrupt the stop
bit, causing a problem for other microcontrollers listening on the link.

8-8

|nte|® SERIAL 1/0 (SIO) PORT

8.3.2.2 Mode 2

Mode 2 is the asynchronous, ninth-bit recognition mode. Figure 8-5 shows the data frame used
in this mode. It consists of a start bit (0), nine data bits (LSB first), and a stop bit (1). During trans-
missions, write data bits 0—7 to the transmit buffer (SBUF_TX) and write data bit 8 (the ninth data
bit) to the transmit bit 8 (TB8) bit in the serial port control (SP_CON) register. The SIO clears the
TB8 bit after every transmission, so you must set it (if desired) before each write to SBUF_TX.
During receptions, the receive buffer (SBUF_RX) contains data bits 07, and bit 7 in the serial
port status (SP_STATUS) register contains data bit 8 (the ninth data bit received).

stop \ Stat /' D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7 X D8 / Stop
I< 8 Bits of Data T

Programmable 9th Bit
=< 11-bit Frame }H

A0111-01

Figure 8-5. Serial Port Frames in Mode 2 and 3

As in mode 1, in mode 2, the SIO sets the transmit interrupt (TI) flag in SP_STATUS to indicate
completed transmissions. During a transmission, the SIO sets the Tl flag immediately after it
starts to transmit the stop bit. Unlike mode 1, in mode 2, the SIO sets the receive interrupt (RI)
flag in SP_STATUS only when the ninth data bit received is set. During a reception, when the
ninth data bit is set, both the RI flag and the RI interrupt pending bit are set just before the end of
the stop bit. This feature provides an easy way to have selective reception on a data link. (See
“Multiprocessor Communications” on page 8-9.) Parity is not available in mode 2.

8.3.2.3 Mode 3

Mode 3 is the asynchronous, ninth-bit mode with optional parity. The data frame for this mode is

identical to that of mode 2 (Figure 8-5 on page 8-9). Mode 3 differs from mode 2 during trans-

missions in that parity can be enabled, in which case the ninth bit becomes the parity bit. When
parity is disabled, data bits 0—7 are written to the serial port transmit buffer (SBUF_TX), and the

ninth data bit is written to SP_CON.4 (TB8). In mode 3, a reception always sets the Rl interrupt
pending bit, regardless of the state of the ninth bit. If parity is disabled, the SP_STATUS register
bit 7 (RB8) contains the ninth data bit received. If parity is enabled, then the SP_STATUS register
bit 7 becomes the received parity error (RPE) flag.

8.3.24 Multiprocessor Communications

Modes 2 and 3 are provided for multiprocessor communications. In mode 2, during receptions,
the serial port sets the Rl flag in SP_STATUS and the Rl interrupt pending bit only when the ninth
data bit received (SP_STATUS.7, the RB8 bit) is a one. In mode 3, the serial port sets the Rl flag
and the Rl interrupt pending bit regardless of the value of the ninth data bit received.

I 8-9

80296SA USER'S MANUAL Int6|®

One way to use these modes for multiprocessor communication is to set the master processor to
mode 3 and the slave processors to mode 2. When the master processor wants to transmit a block
of data to one of several slaves, it sends out an address frame that identifies the target slave. The
ninth bit is always set in the address frame, so an address frame interrupts all slaves. Each slave
examines the address byte to check whether it is being addressed. The addressed slave switche
to mode 3 to receive the data frames, which are sent with the ninth bit cleared. The slaves that are
not addressed continue to operate in mode 2, and therefore are not interrupted by the data frames,
which are sent with the ninth data bit cleared.

8.4 PROGRAMMING THE SERIAL PORT

To use the SIO port, you must configure the port pins to serve as special-function signals and set
up the SIO channel.

8.4.1 Configuring the Serial Port Pins

Before you can use the serial port, you must configure the associated port pins to serve as special-
function signals. Table 8-1 on page 8-4 describes the pins associated with the serial port, Table
8-2 on page 8-4 describes the port configuration registers, and Table 8-3 explains how to config-
ure the pins.

Table 8-3. Port Register Settings for the SIO Signals

Port Register
Settings

Signal Configuration

RXD (mode 0) Input for receptions P2 DIR1=1
Open-drain output for transmissions P2 _MODE.1 =1
(external pull-up required)

RXD (modes 1, 2, and 3) Input P2 DIR.1=1
P2_MODE.1=1
P2_REG.1=1

T1CLK Input P1 DIR4=1
P1_MODE.4=1
P1 REG.4=1

TXD Complementary output P2_DIR.0O=0
P2_MODE.O =1

8.4.2 Programming the Control Register

The SP_CON register (Figure 8-6) selects the communication mode and enables or disables the
receiver for all modes. For modes 1 and 3, SP_CON enables or disables even or odd parity. For
modes 2 and 3, SP_CON contains the ninth data bit to be transmitted. Selecting a new mode stops
any transmission or reception in progress on the channel.

8-10

intel.

SERIAL 1/0 (SIO) PORT

SP_CON

Address: 1FBBH
Reset State: 80H

The serial port control (SP_CON) register selects the communications mode and enables or disables the
receiver for all modes. For modes 1 and 3, it enables or disables even or odd parity. For modes 2 and 3,
it contains the ninth data bit to be transmitted. It also enables or disables the divide-by-two prescaler and

the baud-rate down counter.

7 0
BGD PRS PAR TB8 || REN PEN Mt [Mo
Bit Bit Function
Number Mnemonic

7 BGD Baud-rate Generator Disable
This bit allows power conservation when the SIO is not being used. The
default disables the baud-rate counter at power-up or reset. You must clear
this bit to enable the counter.
0 = enable the baud-rate counter
1 = disable the baud-rate counter (default at power-up or reset)

6 PRS Prescale
The internal operating frequency (f), which can be divided by two, or an
input signal on the T1CLK pin provides the baud-rate generator clock
source (SP_BAUD.15 determines the clock source). The PRS bit enables
the divide-by-two prescaler for the internal operating frequency:
0 = disables the prescaler (baud-rate generator clock source equals f)
1 = enables the prescaler (baud-rate generator clock source equals f/2)
When T1CLK is selected as the baud-rate generator clock source
(SP_BAUD.15 = 0), this bit is ignored.

5 PAR Parity Selection Bit
In modes 1 and 3, this bit selects even or odd parity.
0 = even parity
1 = odd parity
For modes 0 and 2, this bit is ignored.

4 TB8 Transmit Ninth Data Bit
This is the ninth data bit that will be transmitted in mode 2 or 3. This bit is
cleared after each transmission, so you must write to this bit before writing
to SBUF_TX. For mode 3, when parity is enabled (SP_CON.2 = 1), the
transmitter sets or clears this bit so that the byte being transmitted contains
the correct parity.

Figure 8-6. Serial Port Control (SP_CON) Register

8-11

80296SA USER’S MANUAL

intel.

SP_CON (Continued)

Address: 1FBBH
Reset State: 80H

The serial port control (SP_CON) register selects the communications mode and enables or disables the
receiver for all modes. For modes 1 and 3, it enables or disables even or odd parity. For modes 2 and 3,
it contains the ninth data bit to be transmitted. It also enables or disables the divide-by-two prescaler and

the baud-rate down counter.

7 0
BGD PRS PAR TB8 || REN PEN M. | mo |
Bit Bit Function
Number Mnemonic

3 REN Receive Enable
In mode 1, 2, or 3, setting this bit enables receptions. When this bit is set, a
falling edge on the RXD pin starts a reception. In these modes, this bit has
no effect on transmissions.
In mode O, clearing this bit enables transmissions and setting it enables
receptions.
Clearing this bit stops a reception in progress and inhibits further
receptions. In mode 0, clearing the RI flag in the SP_STATUS register
starts a reception; therefore, to avoid corrupting your reception, clear this
bit before clearing the RI bit.

2 PEN Parity Enable
In modes 1 and 3, setting this bit enables parity. For mode 1, when this bit
is set, the seventh data bit takes the parity value on transmissions and
SP_STATUS.7 becomes the receiver parity error bit. For mode 3, when this
bit is set, SP_CON.4 (TB8) takes the parity value on transmissions and
SP_STATUS.7 becomes the receive parity error bit.
Clear this bit for mode 2.
For mode 0, this bit is ignored.

1:0 M1:0 Mode Selection
These bits select the communications mode.
M1 MO
0 0 mode 0, synchronous
0 1 mode 1, 8-bit asynchronous with optional parity
1 0 mode 2, 9-bit asynchronous with optional receive interrupt
1 1 mode 3, 9-bit asynchronous with optional parity

8-12

Figure 8-6. Serial Port Control (SP_CON) Register (Continued)

|nte|® SERIAL 1/0 (SIO) PORT

8.4.3 Programming the Baud Rate and Clock Source

The SP_BAUD register (Figure 8-7) selects the clock input for the baud-rate generator and de-
fines the baud rate for all serial I/O modes. For mode 0, this register determines the baud rate out-
put on the serial clock pin (TXD). For modes 1, 2, and 3, this register controls the transmit and
receive shift clocks.

I 8-13

80296SA USER'S MANUAL Int6|®

SP_BAUD Address: 1FBCH
B Reset State: 0000H

The serial port baud rate (SP_BAUD) register selects the clock source and serial port baud rate. The
most-significant bit selects the clock source. The lower 15 bits represent baud value, an unsigned
integer that determines the baud rate.

The maximum baud value is 32,767 (7FFFH). In asynchronous modes 1, 2, and 3, the minimum baud
value is 0001H. In synchronous mode 0, the minimum baud value is 0001H for transmissions and
0002H for receptions.

WARNING: Writing to the SP_BAUD register during a reception or transmission can corrupt the
received or transmitted data. Before writing to SP_BAUD, check SP_STATUS or the interrupt pending
register to ensure that the reception or transmission is complete.

15 8
‘ CLKSRC ‘ BV14 ‘ BV13 ‘ BV12 ‘ ‘ BV1l ‘ BV10 ‘ BV ‘ BVS ‘
7 0
‘ BV7 ‘ BV6 ‘ BV5 ‘ BV4 ‘ ‘ BV3 ‘ BV2 ‘ BV1 ‘ BVO ‘

Bit Bit

. Function
Number Mnemonic

15 CLKSRC Serial Port Clock Source

This bit determines whether the baud-rate generator is clocked from an
internal or an external source.

0 = signal on the T1CLK pin (external source)
1 = internal operating frequency (f or f/2)

When using T1CLK as the clock source (CLKSRC = 0), the maximum input
frequency on the T1CLK pin is f/4.

When using the internal operating frequency (CLKSRC = 1), the prescale bit
in the serial port control register (SP_CON.6) determines whether the
frequency of the baud-rate generator clock source is equal to the internal
operating frequency (f) or half the internal operating frequency (f/2).

14:0 BV14:0 These bits constitute the baud value.

Use the following equations to determine the baud value for a given baud
rate.

Synchronous mode 0:*

f T1CLK
1 or

Baud Value = ——M8 —— —_—
Baud Rate x 2 Baud Rate

Asynchronous modes 1, 2, and 3:

f 1 T1CLK

Baud Value = —mM8M8M8@ ™ — or —_—_—
Baud Rate x 16 Baud Rate x 8

T For mode 0 receptions, the baud value must be 0002H or greater. For
mode 0 transmissions, the baud value must be 0001H or greater.

Figure 8-7. Serial Port Baud Rate (SP_BAUD) Register

8-14

intel.

Using the internal peripheral clock at 25 MHz, the maximum baud rate for mode 0 is 4.17 Mbaud

for receptions and 6.25 Mbaud for transmissions. The maximum baud rate for modes 1, 2, and 3
is 1.56 Mbaud for both receptions and transmissions. Using the internal peripheral clock at 50
MHz, the maximum baud rates are doubled: 8.33 Mbaud for mode 0 receptions, 12.5 Mbaud for
mode 0 transmissions, and 3.13 Mbaud for modes 1, 2, and 3.

SERIAL 1/0 (SIO) PORT

Table 8-4 shows the SP_BAUD values for common baud rates when using a 25 MHz internal pe-
ripheral clock. These values also apply when using a 50 MHz internal peripheral clock with the
prescaler enabled (SP_CON.6 = 1). Table 8-5 shows the SP_BAUD value for 9600 baud when
using a 50 MHz clock input with the prescaler disabled. Because of rounding, the baud value for-
mula is not exact and the resulting baud rate is slightly different than desired. The tables show the
percentage of error when using the sample SP_BAUD values. In most cases, a serial link will
work with up to a 5.0% difference in the receiving and transmitting baud rates.

Table 8-4. SP_BAUD Values When Using the Internal Clock at 25 MHz

SP_BAUD Register Value T % Error
Baud Rate

Mode 0 Mode 1, 2, 3 Mode 0 Mode 1, 2, 3
9600 8515H 80A2H 0 -0.15
4800 8A2BH 8145H 0 -0.15
2400 9457H 828AH 0 0
1200 A8BOH 8515H 0 0
300 Tt 9457H Tt 0

T Bit 15 is always set when the internal peripheral clock is selected as the clock source for the baud-rate

generator.

Tt For mode 0 operation at 25 MHz, the minimum baud rate is 381.47 (baud value = 7FFFH).
For mode 0 operation at 300 baud, the maximum internal clock frequency is 19.6608 MHz (baud value

= 7FFFH).

Table 8-5. SP_BAUD Values When Using the Internal Clock at 50 MHz

SP_BAUD Register Value T % Error
Baud Rate
Mode 0 Mode 1, 2, 3 Mode 0 Mode 1, 2, 3
9600 8A2BH 8145H 0 -0.15

T Bit 15 is always set when the internal peripheral clock is selected as the clock source for the baud-rate

generator.

8-15

80296SA USER'S MANUAL Int6|®

8.4.4 Enabling the Serial Port Interrupts

The serial port has both a transmit interrupt (TI) and a receive interrupt (R1). These interrupts in-
dicate completed operations. For mode 0 receptions, the SIO sets the Rl interrupt pending bit after
it samples the eighth data bit. For mode 1 and 3 receptions, the SIO sets the Rl interrupt pending
bit just before it receives the end of the stop bit. For mode 2 receptions, the SIO sets the Rl inter-
rupt pending bit just before it receives the end of the stop bit only if the ninth data bit received
was set. For mode 0 transmissions, the SIO sets the Tl interrupt pending bit immediately after it
transmits the eighth data bit. For mode 1, 2, and 3 transmissions, the SIO sets the Tl flag imme-
diately after it starts to transmit the stop bit.

To enable an interrupt, set the corresponding mask bit in the interrupt mask register (see
INT_MASK on page C-35) and execute the El instruction to globally enable servicing of inter-
rupts. See Chapter 6, “Interrupts,” for more information about interrupts.

8.4.5 Determining Serial Port Status

The SP_STATUS register (Figure 8-8) contains several bits that reflect the status of the serial port.
Reading SP_STATUSlears all bitsexcept TXE. To check the status of the serial port, copy the
contents of the SP_STATUS register into a shadow register and then execute bit-test instructions
such as JBC and JBS on the shadow register. Otherwise, the first bit-test instruction will clear the
SP_STATUS register, losing all status information. Since the shadow register is not cleared when
read, this method allows you to execute more than one bit-test instruction on the serial port status
information. You can also read the interrupt pending register (see INT_PEND on page C-37) to
determine the status of the serial port interrupts.

8-16 I

|nte|® SERIAL 1/0 (SIO) PORT

SP STATUS Address: 1FB9H
B Reset State: O0BH

The serial port status (SP_STATUS) register contains bits that indicate the status of the serial port.
7 0
RPE/RBS RI T FE || T OE — | =]

Bit Bit

. Function
Number Mnemonic

7 RPE/RB8 Received Parity Error/Received Bit 8

For modes 1 and 3, RPE is set if parity is enabled (SP_CON.2 = 1) and the
data received does not contain the correct parity, as programmed in
SP_CON.

For mode 2, and for mode 3 with parity disabled, this bit is the ninth data bit
received. (The serial port receive buffer contains the received data bits 0-7.
The received data bit 8 is written to this bit.)

Reading SP_STATUS clears this bit.

6 RI Receive Interrupt
This bit indicates whether an incoming data byte has been received.

For modes 0, 1, and 3, this bit is set when the last bit (eighth bit for mode 0,
or stop bit for modes 1 and 3) is sampled. For mode 2, this bit is set when
the stop bit is detected only if the ninth bit received (SP_STATUS, RB8) is a
one. Reading SP_STATUS clears this bit.

5 TI Transmit Interrupt

This bit indicates whether a data byte has finished transmitting.

For mode 0 transmissions, the SIO sets this bit immediately after it
transmits the eighth data bit. For mode 1, 2, and 3 transmissions, the SIO
sets this bit immediately after it starts to transmit the stop bit. Reading
SP_STATUS clears this bit.

4 FE Framing Error

For modes 1, 2, and 3, this bit is set if the receiver does not detect a valid
stop bit within the appropriate period of time. Reading SP_STATUS clears
this bit.

For mode 0, this bit has no function.

3 TXE SBUF_TX Empty

The SIO sets this bit, along with the Tl flag, if the transmit buffer and the
transmit shift register are both empty. When set, this bit indicates that two
bytes can be written to the transmit buffer. Writing to the transmit buffer
clears this bit.

2 OE Overrun Error

The SIO sets this bit if data in the receive shift register is loaded into
SBUF_RX before the previous byte in SBUF_RX is read. Reading
SP_STATUS clears this bit.

1:0 — Reserved; for compatibility with future devices, write zeros to these bits.

Figure 8-8. Serial Port Status (SP_STATUS) Register

8-17

intel.

Pulse-width
Modulator

intel.

CHAPTER 9
PULSE-WIDTH MODULATOR

The pulse-width modulator (PWM) module has three output pins, each of which can output a
PWM signal with a fixed frequency and a variable duty cycle. These outputs can be used to drive
motors that require an unfiltered PWM waveform for optimal efficiency, or they can be filtered
to produce a smooth analog signal.

In addition, the 80296SA allows you to disable the PWM duty-cycle generator to conserve power
when the peripheral is not being used.

This chapter provides a functional overview of the pulse-width modulator module, describes how
to program it, and provides sample circuitry for converting the PWM outputs to analog signals.

9.1 PWM FUNCTIONAL OVERVIEW

The PWM module has three channels, each of which consists of a control register
(PWMx_CONTROL), a buffer, a comparator, an RS flip-flop, and an output pin. Two other com-
ponents, an eight-bit counter and a clock prescaler, are shared across the PWM module’s three
channels, completing the circuitry (see Figure 9-1).

I 9-1

80296SA USER'S MANUAL Int6|®

aY
8
%;)' PWMx_CONTROL <i<— Load
7 Buffer
/ 8
|
| Bufferx |
A8
|
| Comparatorx =
CON_REGO A
RS Flip-flopx
Port 4
~~ Prescaler p >R Control
8
/ -

Internal 00 Q >{[P4_moDE |—{]
Clock I+ | 01 =| Up Counter - PWMx P4.x/
Signal L o1 ° >S5 Output PWMxX

Overflow
11
Shared Circuitry
A3390-01

Figure 9-1. PWM Block Diagram

9.2 PWM SIGNALS AND REGISTERS

Table 9-1 describes the PWM’s signals and Table 9-2 briefly describes the control and status reg-
isters.

Table 9-1. PWM Signals

Port Pin Spig\lfnzll Sigr?e;/lv'll\'/)llpe Description

P4.0 PWMO (@] Pulse-width modulator 0 output with high-drive capability.
P4.1 PWM1 (@] Pulse-width modulator 1 output with high-drive capability.
P4.2 PWM2 (0] Pulse-width modulator 2 output with high-drive capability.

intel.

PULSE-WIDTH MODULATOR

Table 9-2. PWM Control and Status Registers

Mnemonic

Address

Description

CON_REGO

1FB6H

PWM Control Register

This register controls the clock prescaler and duty-cycle
generator.

Bits zero and one (CLKO, CLK1) control the output period
of the PWM channels by enabling or disabling the divide-
by-two or divide-by-four clock prescaler.

Bit seven (DCD) controls the duty-cycle generator by
enabling or disabling the PWMx_CON register.

PWMO_CONTROL
PWM1_CONTROL
PWM2_CONTROL

1FBOH
1FB2H
1FB4H

PWM Duty Cycle

This register controls the PWM duty cycle. A zero loaded
into this register causes the PWM to output a low continu-
ously (0% duty cycle). An FFH in this register causes the
PWM to have its maximum duty cycle (99.6% duty cycle).

P4_DIR

1FDBH

Port Direction Register

Each bit controls the configuration of the corresponding
pin. Clearing a bit configures a pin as a complementary
output; setting a bit configures a pin as a high-impedance
input or an open-drain output.

P4 _MODE

1FD9H

Port Mode Register

Each bit controls the mode of the corresponding pin.
Setting a bit configures a pin as a special-function signal;
clearing a bit configures a pin as a general-purpose 1/0
signal.

P4_PIN

1FDFH

Port Pin Register

Each bit reflects the current state of the corresponding
pin, regardless of the pin’s mode and configuration.

P4 _REG

1FDDH

Port Data Output Register
For 1/0 Mode (P x_MODE.x = 0)

When a port pin is configured as a complementary
output (Px_DIR.x = 0), setting the corresponding port
data bit drives a one on the pin, and clearing the corre-
sponding port data bit drives a zero on the pin.

When a port pin is configured as a high-impedance
input or an open-drain output (Px_DIR.x = 1), clearing
the corresponding port data bit drives a zero on the
pin, and setting the corresponding port data bit floats
the pin, making it available as a high-impedance input.
For Special-function Mode (P x_MODE.x = 1)
When a port pin is configured as an output (either
complementary or open-drain), the corresponding port
data bit value is immaterial because the corresponding
on-chip peripheral or system function controls the pin.

To configure a pin as a high-impedance input, set both
the Px_DIR and Px_REG bits.

9-3

80296SA USER'S MANUAL Int6|®

9.3 PWM OPERATION

Two bits, CON_REGO0.0 (CLKO) and CON_REGO0.1 (CLK1), control the PWM output frequency
by enabling or disabling the divide-by-two and divide-by-four clock prescaler.

Each control register (PW# CONTROL) controls the duty cycle (the pulse width stated as a
percentage of the period) of the corresponding PWM output. Each control register contains an
eight-bit value that is loaded into a buffer when the eight-bit counter rolls over from FFH to O0H.
The comparators compare the contents of the buffers to the counter value. Since the value written
to the control register is buffered, you can write a new eight-bit value to P WONTROL reg-

ister at any time. However, the comparators recognize the new value only after the current eight-
bit count expires. The new value is used during the next PWM output period.

The counter continually increments until it rolls over to 00H, at which time the PWM output is
driven high and the contents of the control registers are loaded into the buffers. The PWM output
remains high until the counter value matches the value in the buffer, at which time the output is
pulled low. When the counter resets again (i.e., when an overflow occurs) the output is switched
high. (Loading PWM_CONTROL with O0H forces the output to remain low.) Figure 9-2 shows
typical PWM output waveforms.

The PWM can generate a duty cycle ranging in length from 0% to 99.6% of the pulse. To deter-
mine the desired duty cycle measurement, you must apply a multiplier (2, 4, or 8) to the
PWMx_CONTROL value to compensate for the divided input frequency from the divide-by-two
circuitry. (See Figure 2-5 on page 2-7 for additional information.)

Clearing CLK1 and CLKO disables the prescaler, generating a pulse that is 512 state times in
length. With the prescaler disabled, the correct BWGADNTROL multiplier is two.

Setting CLKO enables the PWM's divide-by-two clock prescaler, generating a pulse that is 1,024
state times in length. With the divide-by-two clock prescaler enabled, the correct
PWMx_CONTROL multiplier is four. For example, assume that CLKO is set and the value you
write to the PWNMN_CON register is 19H (25 decimal). To arrive at the appropriate duty cycle,
you must multiply the value stored in PWMCON by four, then divide that result by the total
pulse length (1,024). This calculation results in a duty cycle value of approximately 10% (.0977).

Setting CLK1 enables the divide-by-four clock prescaler, generating a pulse that is 2,048 state
times in length. With the divide-by-four prescaler enabled, the correct:PW®INTROL mul-

tiplier is eight. (When CLK1 is set, the divide-by-four clock prescaler is enabled and CLKO is
ignored.)

9-4 I

Int6|® PULSE-WIDTH MODULATOR

Duty PWM Control
Cycle Register Value Output Waveform

0% 00H 0

10% 19H 0

1

s son o [1L
i
|

90% E6H 0

99.6% FFH 0

A0119-02

Figure 9-2. PWM Output Waveforms

9.4 PWM PERIPHERAL DISABLE CONTROL

The 80296SA implements an additional power conservation feature that is new to tReo®ICS
microcontroller family. This feature allows you to individually disable the PWM duty-cycle gen-
erator when your system is not using the PWM peripheral.

The DCD bit in the PWM clock control register (CON_REGO on page 9-7) enables and disables
the duty-cycle generator. Setting DCD enables the duty-cycle generator; clearing DCD disables
it. The DCD bit is cleared at reset (duty-cycle generator enabled). If your system uses the PWM,
ensure that your code leaves the DCD bit cleared. If your system is not using the PWM, you can
set the DCD bit to conserve power.

Bit seven that implements this new feature (DCD in CON_REGO) is reserved in previous MCS
96 microcontrollers; it is documented as “Reserved; for compatibility with future devices, write

zero to this bit.” Therefore, code written for a previous MCS 96 microcontroller system that uses
this peripheral will enable the duty-cycle generator as part of the initialization.

9.5 PROGRAMMING THE FREQUENCY AND PERIOD

CLKO and CLK1 determine the output frequency by enabling or disabling the clock prescaler.
Use the following formulas to calculate the output frequengy,{Fand output period @y,

I 9-5

80296SA USER’S MANUAL

intel.

Clock Prescaler +2 Clock Prescaler +4 Clock Prescaler

Disabled Enabled Enabled
) f f f
Fowwm (in MHz) = — Toza —_—
. 1024
Towm (iNps) = e - -

The PWM module provides three selectable, fixed PWM output frequencies for a specified inter-
nal operating frequency (f). Table 9-3 shows the PWM output frequencies for common operating
frequencies. The values of CLKO and CLK1 in the CON_REGO register determine the output fre-
guency by enabling or disabling the divide-by-two and divide-by-four clock prescalers.

NOTE

Use the EPA module to produce variable PWM output frequencies (see
“Operating in Compare Mode” on page 10-12).

Table 9-3. PWM Output Frequencies

CLK1 CLKO f
12.5 MHz 25 MHz 50 MHz
24.41 kHz 48.83 kHz 97.66 kHz
12.21 kHz 24.41 kHz 48.83 kHz
X 6.10 kHz 12.21 kHz 24.41 kHz

9-6

Int6|® PULSE-WIDTH MODULATOR

CON_REGO Address: 1FB6H
- Reset State: 7CH

The control (CON_REGDO) register controls the clock prescaler for the three pulse-width modulators
(PWMO-PWM2) and enables or disables the duty-cycle generator.

7 0
pcDt — — — H — — CLK1 ‘CLKO‘

Bit Bit

. Function
Number | Mnemonic

7 DCD Duty Cycle Disable Control

This bit controls the duty-cycle generator for power conservation. Upon
reset, the generator is enabled.

0 = enabled; PWM duty cycle generator is turned on
1 = disabled; PWM duty cycle generator is turned off

6:2 — Reserved; for compatibility with future devices, write zeros to these bits.

1:0 CLK1:0 Enable PWM Clock Prescaler

These bits control the PWM output period on the three pulse-width
modulators (PWM2:0).

CLK1 CLKO

0 0 disable clock prescaler

0 1 enable divide-by-two prescaler; PWM output period is
1024 state times

1 X enable divide-by-four prescaler; PWM output period is

2048 state times
T This bit was called PWM_HALT in earlier documentation for the 80296SA.

Figure 9-3. Control (CON_REGO) Register

9.6 PROGRAMMING THE DUTY CYCLE

The value written to the PWMCONTROL register controls the width of the high pulse, effec-
tively controlling the duty cycle. The eight-bit value written to the control register is loaded into
a buffer, and this value is used during the next petise the following formula to calculate a
desired pulse width by extrapolating an appropriate value for RMERANTROL from the range
00-FFH, and then write the value to the PWKIONTROL register.

80296SA USER'S MANUAL Int6|®

Pulse width (in pus)

Duty Cycle (in %)

Clock Prescaler +2 Clock Prescaler +4 Clock Prescaler
Disabled Enabled Enabled

_ PWMx_CON x 2 PWMx_CON x 4 PWMx_CONx8

- T T T

Pulsewidth
— x 100

PWM

where:
PWMx_CON = eight-bit decimal value to load into the PWMx_CONTROL register
Pulse width = width of each high pulse
f = operating frequency, in MHz
Towm = output period on the PWM pin, in ps
PWMx_CONTROL Address: See Table 9-2 on page 9-3
x=0-2 Reset: 00H

7

The PWM control (PWMx_CONTROL) register determines the duty cycle of the PWM x channel. A
zero loaded into this register causes the PWM to output a low continuously (0% duty cycle). An FFH in
this register causes the PWM to have its maximum duty cycle (99.6% duty cycle).

PWM Duty Cycle

Bit

Number

Function

7:0

PWM Duty Cycle

This register controls the PWM duty cycle. A zero loaded into this register causes the
PWM to output a low continuously (0% duty cycle). An FFH in this register causes the
PWM to have its maximum duty cycle (99.6% duty cycle).

Figure 9-4. PWM Control (PWM x_CONTROL) Registers

Int6|® PULSE-WIDTH MODULATOR

9.6.1 Sample Calculations

For example, assume that the operating frequency is 25 MHz, the desired period of the PWM out-
put waveform is either 20.48 ps (512 state times) if the prescaler is disabled or 40.96 ps (1,024
state times) if the divide-by-two prescaler is enabled. If RAMGMONTROL equals 8AH (138
decimal), the pulse is held high for 11.04 ps (and low for 9.44 ps) of the total 20.48 ps period,
resulting in a duty cycle of approximately 54% with the prescaler disabled. If the divide-by-two
prescaler is enabled, the same values would produce a period of 40.96 us with the pulse being
held high for 22.08 ps (and low for 18.88 pus), for the same duty cycle, approximately 54%.

9.6.2 Enabling the PWM Outputs

Each PWM output shares a pin with a port, so you must configure it as a special-function output
signal before using the PWM function. To do so, follow this sequence:

1. Clear the corresponding bit of P4_DIR (see Table 9-4).
2. Set the corresponding bit of P4_MODE (see Table 9-4).
3. Set or clear the corresponding bit of P4_REG (see Table 9-4).

Table 9-4 shows the alternate port function along with the register setting that selects the PWM
output instead of the port function.

Table 9-4. PWM Output Alternate Functions

PWM Output Alternate Port Function PWM Output Enabled When
PWMO P4.0 P4_DIR.0 =0, P4_MODE.O =1, P4_REG =X
PWM1 P4.1 P4_DIR.1=0,P4 MODE.1=1,P4_REG =X
PWM2 P4.2 P4_DIR.2=0,P4_MODE.2 =1, P4_REG =X

9.6.3 Generating Analog Outputs

The PWM modules can generate a rectangular pulse train that varies in duty cycle and period.
Filtering this output will create a smooth analog signal. To make a signal swing over the desired
analog range, first buffer the signal and then filter it with either a simple RC network or an active
filter. Figure 9-5 is a block diagram of the type of circuit needed to create the smooth analog sig-
nal.

I 9-9

80296SA USER'S MANUAL Int6|®

Mcs® 96 Buffer Filter Power
Microcontroller to Make_ (Passive Amp
PWM > OUtp;taﬁWIng > Ac(t)i:/e) > (Optional) > g?)?;ljou%
Rtgil (Optional)
A2391-01

Figure 9-5. D/A Buffer Block Diagram

Figure 9-6 shows a sample circuit used for low output currents (less thaAl@bnsider tem-
perature and power-supply drift when selecting components for the external D/A circuitry. With
proper components, a highly accurate 8-bit D/A converter can be made using the PWM.

PWM
R - Analog
N : Output
T
®
M.MCS t%ll T4ACXXX C Op Amp
icrocontroller Buffer I

Consider both ripple and response time requirements when selecting R and C.

A2390-02

Figure 9-6. PWM to Analog Conversion Circuitry

9-10

intel.

10

Event Processor
Array (EPA)

intel.

CHAPTER 10
EVENT PROCESSOR ARRAY (EPA)

Control applications often require high-speed event control. For example, the controller may need
to periodically generate pulse-width modulated outputs or an interrupt. In another application, the
controller may monitor an input signal to determine the status of an external device. The event
processor array (EPA) was designed to reduce the CPU overhead associated with these types of
event control. This chapter describes the EPA and its timers and explains how to configure and
program them.

10.1 EPA FUNCTIONAL OVERVIEW

The EPA performs input and output functions associated with two timer/counters, timer 1 and
timer 2 (Figure 10-1). In the input mode, the EPA monitors an input pin for an event: a rising edge,
a falling edge, or an edge in either direction. When the event occurs, the EPA records the value
of the timer/counter, so that the event is tagged with a time. This is callgoucapture Input
captures are buffered to allow two captures before an overrun occurs.

In the output mode, the EPA monitors a timer/counter and compares its value with a value stored

in a register. When the timer/counter value matches the stored value, the EPA can trigger an event:
a timer reset or an output event (set a pin, clear a pin, toggle a pin, or take no action). This is called
anoutput compare

Each input capture or output compare sets an interrupt pending bit. This bit can optionally cause
an interrupt. The EPA has four capture/compare channels, EPA3:0.

I 10-1

80296SA USER’S MANUAL

Timer-Counter Unit

TIMER1

TIMER2

erao [

Capture/Compare
Channel 0

—> EPAO Interrupt

epa1 [}

Capture/Compare
Channel 1

— EPAL Interrupt

era2 [}

epAs [JF—

Capture/Compare
Channel 2

—> EPAZ2 Interrupt

Capture/Compare
Channel 3

—> EPA3 Interrupt

A2352-02

Figure 10-1. EPA Block Diagram

10.2 EPA AND TIMER/COUNTER SIGNALS AND REGISTERS

Table 10-1 describes the EPA and timer/counter input and output signals. Each signal shares a pin
with a general-purpose 1/O signal, as shown in the first column. Table 10-2 briefly describes the

registers for the EPA capture/compare channels and timer/counters.

Table 10-1. EPA and Timer/Counter Signals

Port Pin EPA Signals SignEaIID?ype Description
P1.3.0 EPA3:0 /0 High-speed input/output for capture/compare
channels 0-3.
P14 T1CLK [External clock source for timer 1.
P1.5 T1DIR [External direction control for timer 1.
P1.6 T2CLK [External clock source for timer 2.
P1.7 T2DIR [External direction control for timer 2.

10-2

intel.

EVENT PROCESSOR ARRAY (EPA)

Table 10-2. EPA Control and Status Registers

Mnemonic

Address

Description

EPA_MASK

1F9CH

EPA Interrupt Mask

Four bits (OVRO0, OVR1, OVR2, and OVR3) in this 8-bit
register enable and disable (mask) the individual capture
overrun interrupt sources associated with capture/compare
channels EPA3:0. OVRO0 and OVR1 share one interrupt mask
bit (OVRO_1) in INT_MASK1; OVR2 and OVR3 share
another interrupt mask bit (OVR2_3) in INT_MASK1.

EPA_PEND

1F9EH

EPA Interrupt Pending

Four bits (OVRO, OVR1, OVR2, and OVR3) in this 8-bit
register indicate an overrun status for the associated
capture/compare channels, EPA3:0. OVRO0 and OVR1 share
one interrupt pending bit (OVRO0_1) in INT_PEND1; OVR2
and OVR3 share another interrupt pending bit (OVR2_3) in
INT_PENDL1.

EPAO_CON
EPA1_CON
EPA2_CON
EPA3_CON

1F60H
1F64H, 1F65H
1F68H
1F6CH, 1F6DH

EPAXx Capture/Compare Control

These registers control the functions of the capture/compare
channels. EPA1_CON and EPA3_CON require an extra byte
because they contain an additional bit for PWM remap mode.
These two registers must be addressed as words; the others
can be addressed as bytes.

EPAO_TIME
EPAL1_TIME
EPA2_TIME
EPA3_TIME

1F62H
1F66H
1F6AH
1F6EH

EPAXx Capture/Compare Time

In capture mode, these registers contain the captured timer
value. In compare mode, these registers contain the time at
which an event is to occur. In capture mode, these registers
are buffered to allow two captures before an overrun occurs.
In compare mode, however, they are not buffered.

INT_MASK

0008H

Interrupt Mask

Three bits in this 8-bit register (OVRTM1, OVRTM2, and
EPAO) enable and disable (mask) the three interrupts
associated with the corresponding bits in the INT_PEND
register.

INT_MASK1

0013H

Interrupt Mask 1

Five bits in this 8-bit register (EPA1, EPA2, EPA3, OVRO_1,
and OVR2_3) enable and disable (mask) the five interrupts
associated with the corresponding bits in the INT_PEND1
register.

INT_PEND

0009H

Interrupt Pending

Any set bit in this 8-bit register indicates a pending interrupt.
The three bits associated with EPA interrupts are OVRTM1,
OVRTM2, and EPAO.

INT_PEND1

0012H

Interrupt Pending 1

Any set bit in this 8-bit register indicates a pending interrupt.
The five bits associated with EPA interrupts are EPA1, EPA2,
EPA3, OVRO_1, and OVR2_3.

10-3

80296SA USER'S MANUAL Int6|®

Table 10-2. EPA Control and Status Registers (Continued)

Mnemonic Address Description

P1 _DIR 1FD2H Port Direction Register

Each bit controls the configuration of the corresponding pin.
Clearing a bit configures a pin as a complementary output;
setting a bit configures a pin as a high-impedance input or an
open-drain output.

P1_MODE 1FDOH Port Mode Register

Each bit controls the mode of the corresponding pin. Setting a
bit configures a pin as a special-function signal; clearing a bit
configures a pin as a general-purpose I/O signal.

P1_PIN 1FD6H Port Pin Register

Each bit reflects the current state of the corresponding pin,
regardless of the pin’'s mode and configuration.

P1_REG 1FD4H Port Data Output Register
For 1/0 Mode (P x_MODE.x = 0)

When a port pin is configured as a complementary output
(Px_DIR.x = 0), setting the corresponding port data bit
drives a one on the pin, and clearing the corresponding
port data bit drives a zero on the pin.

When a port pin is configured as a high-impedance input
or an open-drain output (Px_DIR.x = 1), clearing the corre-
sponding port data bit drives a zero on the pin, and setting
the corresponding port data bit floats the pin, making it
available as a high-impedance input.

For Special-function Mode (P x_MODE.x = 1)

When a port pin is configured as an output (either comple-
mentary or open-drain), the corresponding port data bit
value is immaterial because the corresponding on-chip
peripheral or system function controls the pin.

To configure a pin as a high-impedance input, set both the
Px_DIR and Px_REG bits.
T1CONTROL 1F90H Timer x Control

T2CONTROL 1F94H This register enables/disables timer x, controls whether it
counts up or down, selects the clock source and direction,
and determines the clock prescaler setting.

TIMER1 1F92H Timer x Value
TIMER2 1F96H This register contains the current value of timer x.

10.3 TIMER/COUNTER FUNCTIONAL OVERVIEW
The EPA has two up/down timer/counters, timer 1 and timer 2, which can be clocked internally

or externally. Each is calledtianer if it is clocked internally and eounterif it is clocked exter-
nally. Figure 10-2 illustrates the timer/counter structure for timers 1 and 2.

10-4

|nte|® EVENT PROCESSOR ARRAY (EPA)

T2CONTROL.2:0
3
Timer 2
T2CLK ! 1_
f4 Prescaler
Module Clock
Quadrature Count —
Overflow/ 3
Timer 1 Overflow Underflow
OVRTM
Interrupt
T2DIR [}——
T2CONTROL.6 o
N Direction
Quadrature Direction J
T1CONTROL.2:0
i s Timer 1
Ticik [}
Prescaler
fl4 — Module Clock
Quadrature Count —— Overflow/
——>
Underflow
OVRTM
T1DIR D_ Interrupt
T1CONTROL.6 —i Direction
Quadrature Direction ——
A0250-03

Figure 10-2. EPA Timer/Counters

The timer/counters can be used as time bases for input captures, output compares, and pro-
grammed interrupts (software timers). When a counter increments from FFFFH to 0000H or dec-
rements from 0001H to 0000H, the counter-overflow/underflow interrupt pending bit is set. This
bit can optionally cause an interrupt. The clock source, direction-control source, count direction,
and resolution of the input capture or output compare are all programmable (see “Programming
the Timers” on page 10-14). The maximum count rate is one-half the internal clock rate, or f/4
(see “Internal Timing” on page 2-8). This provides a minimum resolution for an input capture or
output compare of 80 ns (at f = 50 MHz).

10-5

80296SA USER'S MANUAL Int6|®

4 x prescaler_divisor

resolution = -
where:
prescaler_divisor is the clock prescaler divisor from the TXCONTROL registers (see
“Timer 1 Control (TLCONTROL) Register” on page 10-15 and
“Timer 2 Control (T2CONTROL) Register” on page 10-16).
f is the internal operating frequency. See “Internal Timing” on page 2-8 for details.

NOTE
The prescaler_divisor equals one when you u€& K as the clock source.

10.3.1 Cascade Mode (Timer 2 Only)

Timer 2 can be used in cascade mode. In this mode, the timer 1 overflow output is used as the
timer 2 clock input. Either the direction control bit of the timer 2 control register or the direction
control assigned to timer 1 controls the count direction. This method, caedding can pro-

vide a slow clock for idle mode timeout control or for slow pulse-width modulation (PWM) ap-
plications (see “Generating a Low-speed PWM Output” on page 10-12).

10.3.2 Quadrature Clocking Modes

Both timer 1 and timer 2 can be used in quadrature clocking mode. This mode usds3ltke T

and T™XDIR pins as quadrature inputs, as shown in Figure 10-3. External quadrature-encoded sig-
nals (two signals at the same frequency that differ in phase’ba@0input, and the timer incre-
ments or decrements by one count on each rising edge and each falling edge. BecaGd&the T

and ™XDIR inputs are sampled by the internal phase clocks, transitions must be separated by at
least two state times for proper operation. The count is clocked by PH2, which is PH1 delayed by
one-half period. The sequence of the signal edges and levels controls the count direction. Refer
to Table 10-3 and Figure 10-4 for sequencing information.

A typical source of quadrature-encoded signals is a shaft-angle decoder, shown in Figure 10-3.
Its output signals X and Y are input t«dLK and TxDIR, which in turn output signals
X_internal and Y_internal. These signals are used in Table 10-3 and Figure 10-4 to describe the
direction of the shaft.

10-6

EVENT PROCESSOR ARRAY (EPA)

Optical
Reader

‘\ Decrement 7
|
X I
I
I
/ Y, :
N | TXCLK
- D Q DQ DQ
| |
| [[—
I
\ | TXDIR
Il> :I DQ DQ DQ
I
I

\ Increment ST T T T T T 2;0_2;6_8; ____________

PH2
PH1

X_internal

Y_internal

A4299-01

Figure 10-3. Quadrature Mode Interface

Table 10-3. Quadrature Mode Truth Table

State of X_internal
(TxCLK)

State of Y_internal
(TxDIR)

Count Direction

0

Increment

Increment

Increment

Increment

Decrement

Decrement

Decrement

Rlo|- |- |k |lo|- |-

1
|
1
0
1
1
|

Decrement

10-7

80296SA USER'S MANUAL Int6|®

LN

v S | R B VS N I VS S D B VS

COUNTZX x+1:Xx+2:Xx+3:Xx+4X x+5:X x+6:X x+5:x x+4:X x+3:x x+2:X x+1:x:

A0269-02

Figure 10-4. Quadrature Mode Timing and Count

10.4 EPA CHANNEL FUNCTIONAL OVERVIEW

Each capture/compare channel can perform the following tasks.

¢ capture the current timer value when a specified transition occurs on the EPA pin

¢ clear, set, or toggle the EPA pin when the timer value matches the programmed value in the

event-time register
* generate an interrupt when a capture or compare event occurs

® generate an interrupt when a capture overrun occurs

Each EPA channel has a control register, £R2ON; an event-time register, ERATIME; and

a timer input (Figure 10-5). The control register selects the timer, the mode, and either the event
that causes a timer/counter value to be captured or the event that is to occur at a given tim-
er/counter value. The event-time register holds the captured timer value in capture mode or the
event time in compare mode. See “Programming the Timers” on page 10-14 for configuration in-

formation.

10-8

|nte|® EVENT PROCESSOR ARRAY (EPA)

Timer/Counter Unit
— External clocking (TxCLK) with up to 6-bit prescaler

TIMER1 .
|<«— Quadrature clocking through TxCLK and TxDIR
Clock on | «— Internal clocking with up to 6-bit prescaler
TIMERL overflow ~ 7} TIMER2
™ EPA Capture/Compare
. Capture Overrun Channel x
OVRx — ' '
Interrupt : * * * '
| A Capture ! EPA Pin
< EPAX_TIME > Bfﬁer ' A | X I 0
Y o LA
A Compare , | :)
- , > A | N | TGL | A !
> V 1 ! ' 1
: Y 1|
e ! ' ' 1
- < ‘ i 1 N
EPA | ! o
Interrupt ! ' X I
o —v—)| Reset Timer | ' |
EPAX CON | ___Overwrite 1 ' : i
— ! ' 1
! 1 . X ' 1
X L Mode Contral _ > _’V'_O_d? _S_el_e_Ct_"f“ ______ . |
l TRemap !
~NJ B e e -

T EPA1 and 3 only. If enabled for EPA1, EPAO shares the EPAL pin. If enabled for EPA3, EPA2
shares the EPA3 pin.

A0270-02

Figure 10-5. A Single EPA Capture/Compare Channel

10.4.1 Operating in Capture Mode

In capture mode, when a valid event occurs on the pin, the value of the selected timer is captured
into a buffer. The timer value is then transferred from the buffer to thex HPE register,

which sets the EPA interrupt pending bit as shown in Figure 10-6. If enabled, an interrupt is gen-
erated. If a second event occurs before the CPU reads the first timer valuexiiT BF&, the

current timer value is loaded into the buffer and held there. After the CPU reads thd BFA

register, the contents of the capture buffer are automatically transferred inkoTHRE and the

EPA interrupt pending bit is set again.

10-9

80296SA USER'S MANUAL Int6|®

TIMERX

Event Occurs
<€ S at EPA Pin

Capture Buffer

EPA

Interrupt <@ == ======--

Pending Bit
Set

Read-out Time Value

A2458-02

Figure 10-6. EPA Simplified Input-capture Structure

If a third event occurs before the CPU reads the event-time register, the overwrite bit
(EPAX_CON.0) determines how the EPA will handle the event. If the bit is clear, the EPA ignores
the third event. If the bit is set, the third event time overwrites the second event time in the capture
buffer. Both situations set the overrun interrupt pending bit, and if the interrupt is enabled, they
generate an overrun interrupt. Table 10-4 summarizes the possible actions when a valid event oc-

curs.

NOTE

In order for an event to be captured, the signal must be stable for at least two
state times both before and after the transition occurs (Figure 10-7).

Event 1 1{

| 2 State | 2 State
Times Times

Event 2 ‘ \

| 2 State | 2 State |
Times Times

A3130-01

Figure 10-7. Valid EPA Input Events

10-10

|nte|® EVENT PROCESSOR ARRAY (EPA)

Table 10-4. Action Taken When a Valid Edge Occurs

Overwrite Bit Status of) .
(EPAX_CON.0) Capture Buffer Action Taken When a Valid Edge Occurs
-) & EPAXx_TIME
0 empty Edge is captured and event time is loaded into the capture buffer and
EPAXx_TIME register.
0 full New data is ignored — no capture, EPA interrupt, or transfer occurs;
OVRXx interrupt pending bit is set.
1 empty Edge is captured and event time is loaded into the capture buffer and
EPAXx_TIME register.
1 full Old data is overwritten in the capture buffer; OVRXx interrupt pending
bit is set.

An input capture event does not set the interrupt pending bit until the captured time value actually
moves from the capture buffer into the EPAIME register.

104.1.1 EPA Overruns

Overruns occur when an EPA input transitions at a rate that cannot be handled by the EPA inter-
rupt service routine. If no overrun handling strategy is in place, and if the following three condi-
tions exist, a situation may occur where both the capture buffer and the HRK register

contain data, and no EPA interrupt pending bit is set:

¢ an input signal with a frequency high enough to cause overruns is present on an enabled
EPA pin, and

¢ the overwrite bit is set (EBACON.O = 1; old data is overwritten on overrun), and

¢ the EPA_TIME register is read at the exact instant that the EPA recognizes the captured
edge as valid.

The input frequency at which this occurs depends on the length of the interrupt service routine as
well as other factors. Unless the interrupt service routine includes a check for overruns, this situ-
ation will remain the same until the device is reset or thexEPME register is read. The act of
reading EPAX_TIME allows the buffered time value to be moved into EPAME. This clears

the buffer and allows another event to be captured. Remember that the act of transferring the buff-
er contents to the ERATIME register is what actually sets the BERAterrupt pending bit and
generates the interrupt.

10-11

80296SA USER'S MANUAL Int6|®

10.4.1.2 Preventing EPA Overruns

Either of the following methods can be used to prevent or recover from an EPA overrun situation.

* Clear EPA_CON.O

When the overwrite bit (EBA CON.0) is zero and both the ERPATIME register and the
buffer contain data, the EPA does not consider a captured edge until theTBRE regis-

ter is read and the data in the capture buffer is transferred te ERAE. This prevents
overruns by ignoring new input capture events when both the capture buffer and
EPAXx_TIME contain valid capture times. The O¥IRending bit in EPA_PEND is set to
indicate that an overrun occurred.

* Enable the OVRinterrupt and read the ERATIME register within the ISR

If an overrun occurs, the overrun (OXHRnterrupt will be generated. The OXkhterrupt
will then be acknowledged and its interrupt service routine will read the HPWE regis-

ter. After the CPU reads the ERATIME register, the buffered data moves from the buffer
to the EPAX_TIME register. This sets the EPA interrupt pending bit.

10.4.2 Operating in Compare Mode

When the selected timer value matches the event-time value, the action specified in the control
register occurs (i.e., no output occurs or the pin is set, cleared, or toggled). If the re-enable bit
(EPAX_CON.3) is set, the action reoccurs on every timer match. If the re-enable bit is cleared, the
action does not reoccur until a new value is written to the event-time register. See “Programming
the Capture/Compare Channels” on page 10-18 for configuration information.

In compare mode, you can use the EPA to produce a pulse-width modulated (PWM) output. The
following sections describe two possible methods.

10.4.2.1 Generating a Low-speed PWM Output

You can generate a low-speed, pulse-width modulated output with a single EPA channel and a
standard interrupt service routine. Configure the EPA channel as follows: compare mode, toggle
output, and the compare function re-enabled. Select standard interrupt service, enable the EPA
interrupt, and globally enable interrupts with the El instruction. When the assigned timer/counter
value matches the value in the BPAIME register, the EPA toggles the output pin and generates

an interrupt. The interrupt service routine loads a new value inte HPME.

10-12 I

|nte|® EVENT PROCESSOR ARRAY (EPA)

The maximum output frequency depends upon the total interrupt latency and the interrupt-service
execution times used by your system. As additional EPA channels and the other functions of the
microcontroller are used, the maximum PWM frequency decreases because the total interrupt la-
tency and interrupt-service execution time increases. To determine the maximum, low-speed

PWM frequency in your system, calculate your system’s worst-case interrupt latency and worst-

case interrupt-service execution time, and then add them together. The worst-case interrupt la-
tency is the total latency of all the interrupts used in your system. The worst-case interrupt-ser-
vice execution time is the total execution time of all interrupt service routines.

Assume a system with a single EPA channel, a single enabled interrupt, and the following inter-
rupt service routine.

;If EPAO-3 interrupt is generated
;Add code to set-up windows for direct access of registers.
EPAO-3_ISR:
PUSHA
LD EPAXx_CON, #toggle_command
ADD EPAx_TIME, TIMER X, [next_duty ptr]; Load next event time
POPA
RETI

The worst-case interrupt latency for a single-interrupt system is 45 state times for external stack
usage (see “Worst-case Interrupt Latency” on page 6-13). To determine the execution time for an
interrupt service routine, add up the execution time of the instructions (Table A-9).

The total execution time for the ISR that services the EPA interrupts is 18 state times. Therefore,
a single capture/compare channel can be updated every 63 state times assuming external stack
usage (45 + 18). Each PWM period requires two updates (one setting and one clearing), so the
execution time for a PWM period equals 126 state times. When the input frequency on XTAL1

is 25 MHz and the phase-locked loop is disabled, the PWM period is 20 pus and the maximum
PWM frequency is 50 kHz.

10.4.2.2 Generating the High-speed PWM Output

You can generate a high-speed, pulse-width modulated output with a pair of remapped EPA chan-
nels and a dedicated timer/counter. When configuring the channels, set the re-enable bit in the
control register. The first channel toggles the output when the timer value matcheS BF&,

and at some later time, the second channel toggles the outpuaada@sets the timer/counter.

This restarts the cycle. No interrupts are required, resulting in the highest possible speed. Your
code must calculate the appropriate EPAIME values and load them at the correct time in the
cycle in order to change the frequency or duty cycle.

10-13

80296SA USER'S MANUAL Int6|®

With this method, the resolution of the EPA (selected by HEONTROL registers; see Figure

10-8 on page 10-15 and Figure 10-9 on page 10-16) determines the maximum PWM output fre-
guency. (Resolution is the minimum time required between consecutive captures or compares.)
When the input frequency on XTAL1 is 25 MHz and the phase-locked loop is disabled, a 160 ns
resolution results in a maximum PWM of 6.25 MHz.

10.5 PROGRAMMING THE EPA AND TIMER/COUNTERS

This section discusses configuring the port pins for the EPA and the timer/counters, describes
how to program the timers and the capture/compare channels, and explains how to enable the EPA
interrupts.

10.5.1 Configuring the EPA and Timer/Counter Signals

Before you can use the EPA, you must configure the appropriate port signals to serve as the spe-
cial-function signals for the EPA and, optionally, for the timer/counter clock source and direction
control signals. See “Configuring the Port Pins” on page 7-3 for information about configuring
the ports.

Table 10-1 on page 10-2 lists the signals associated with the EPA and the timer/counters. Signals
that are not being used for an EPA channel or timer/counter can be configured as general-purpose
I/O signals.

10.5.2 Programming the Timers

The control registers for the timers are TLCONTROL (Figure 10-8) and T2CONTROL (Figure
10-9). Write to these registers to configure the timers. Write to the TIMER1 and TIMER?2 regis-
ters (see Table 10-2 on page 10-3 for addresses) to load a specific timer value.

10-14 I

intel.

EVENT PROCESSOR ARRAY (EPA)

T1CONTROL

Address: 1F90H
Reset State: OOH

The timer 1 control (TLCONTROL) register determines the clock source, counting direction, and count
rate for timer 1.

7 0
CE uD M2 mMi || Mo P2 PL [Po
Bit Bit Function

Number | Mnemonic
7 CE Counter Enable
This bit enables or disables the timer. From reset, the timers are disabled
and not free running.
0 = disables timer
1 = enables timer
6 ub Up/Down
This bit determines the timer counting direction, in selected modes (see
mode bits, M2:0).
0 = count down
1 = count up
5:3 M2:0 EPA Clock Direction Mode Bits
These bits determine the timer clocking source and direction control source.
M2 M1 MO Clock Source Direction Source
0 0 0 fl4 UD bit (TLCONTROL.6)
X 0 1 T1CLK pin’r UD bit (TLCONTROL.6)
0 1 0 fl4 T1DIR pin
0 1 1 T1CLK pin’r T1DIR pin
1 1 1 T1CLK and T1DIR quadrature clocking
TIf an external clock is selected, the timer counts on both the rising and
falling edges of the clock.

2:0 P2:0 EPA Clock Prescaler Bits

These bits determine the clock prescaler value. The prescaler can be used

only if the clock source is /4. It has no effect on the T1CLK or quadrature

clock inputs.

P2 P1 PO Prescaler Divisor Resolution T

0 0 0 divide by 1 (disabled) 160 ns

0 0 1 divide by 2 320 ns

0 1 0 divide by 4 640 ns

0 1 1 divide by 8 1.28 ps

1 0 0 divide by 16 2.56 ps

1 0 1 divide by 32 5.12 ps

1 1 0 divide by 64 10.24 ps

1 1 1 divide by 128 20.48 ps

T At f =25 MHz. Use the formula on page 10-6 to calculate the resolution at
other frequencies.

Figure 10-8. Timer 1 Control (TLCONTROL) Register

10-15

80296SA USER'S MANUAL Int6|®

T2CONTROL Address: 1F94H
Reset State: OOH

The timer 2 control (T2ZCONTROL) register determines the clock source, counting direction, and count
rate for timer 2.

7 0
CE uD M2 M1 H MO P2 P1 ‘ PO ‘

Bit Bit

) Function
Number | Mnemonic

7 CE Counter Enable

This bit enables or disables the timer. From reset, the timers are disabled
and not free running.

0 = disables timer
1 = enables timer

6 ub Up/Down

This bit determines the timer counting direction, in selected modes (see
mode bits, M2:0).

0 = count down
1 = count up

Figure 10-9. Timer 2 Control (T2CONTROL) Register

10-16

|nte|® EVENT PROCESSOR ARRAY (EPA)

T2CONTROL (Continued) Address: 1F94H
Reset State: 0OH

The timer 2 control (T2CONTROL) register determines the clock source, counting direction, and count
rate for timer 2.

7 0
CE uD M2 M1 H MO P2 P1 \ PO \

Bit Bit

. Function
Number | Mnemonic

5:3 M2:0 EPA Clock Direction Mode Bits
These bits determine the timer clocking source and direction source.
M2 M1 MO Clock Source Direction Source

/4 UD bit (T2CONTROL.6)
T2CLK pin' UD bit (T2CONTROL.6)
/4 T2DIR pin
T2CLK pin' T2DIR pin

timer 1 overflow UD bit (T2CONTROL.6)
timer 1 overflow same as timer 1
T2CLK and T2DIR quadrature clocking

T If an external clock is selected, the timer counts on both the rising and
falling edges of the clock.
2:0 P2:0 EPA Clock Prescaler Bits

These bits determine the clock prescaler value. The prescaler can be used
only if the clock source is /4. It has no effect on the T2CLK or quadrature

PR RPOOXO
PR ORRLROO
PrOORORO

clock inputs.

P2 P1 PO Prescaler Resolution T
0 0 0 divide by 1 (disabled) 160 ns

0 0 1 divide by 2 320 ns

0 1 0 divide by 4 640 ns

0 1 1 divide by 8 1.28 us

1 0 0 divide by 16 2.56 ps

1 0 1 divide by 32 5.12 us

1 1 0 divide by 64 10.24 ps

1 1 1 divide by 128 20.48 ps

T Resolution at f = 25 MHz.Use the formula on to calculate the resolution at
other frequencies.

Figure 10-9. Timer 2 Control (T2CONTROL) Register (Continued)

10-17

80296SA USER'S MANUAL Int6|®

TIMERX
x=1-2

Address: 1F92H, 1F96H
Reset State: 0000H

This register contains the value of timer x. This register can be written, allowing timer x to be initialized
to a value other than zero.

15 0
Timer Value
Bit .
Number Function
15:0 Timer Value

Read the current timer x value from this register or write a new timer x value to this
register.

Figure 10-10. Timer x Time (TIMER x) Registers

10.5.3 Programming the Capture/Compare Channels

The EPA_CON register controls the function of its assigned capture/compare channel. The reg-
isters for EPAO and EPA2 are identical. The registers for EPA1 and EPA3 have an additional bit,
the remap bit (RM), which is used to enable and disable remapping for high-speed PWM gener-

ation. This added bit (bit 8) requires an additional byte, so EPA1_CON and EPAINGSQKe
addressed asords, while the others can be addressed as bytes.

To program a compare event, always write to XER2ON (Figure 10-11) first to configure the
EPA capture/compare channel, and then load the event time into HRAE. To program a cap-
ture event, you need only write to EPACON. Table 10-5 shows the effects of various combina-

tions of EPA_CON bit settings for channels 0 and 2.

10-18

EVENT PROCESSOR ARRAY (EPA)

Table 10-5. Example EPA Control Register Settings

Capture Mode

TB | CE | MODE | RE — ROT | ON/RT)
Operation
7 6 5| 4 3 2 1 0
X 0 0 0 — 0 — 0 None
X 0 0 1 — 0 X X Capture on falling edges
X 0 1]0 — 0 X X Capture on rising edges
X 0 1 1 — 0 X X Capture on both edges
X 0 X |1 — 0 1 X Reset opposite timer
X 0 1| X | — 0 1 X Reset opposite timer
Compare Mode
TB | CE | MODE | RE — ROT | ON/RT)
Operation
7 6 5| 4 3 2 1 0
X 1 0|0 X 0 — 0 None
X 1 0|0 X 0 X 0 Generate interrupt only (software timer)
X 1 0 1 X 0 X X Clear output pin
X 1 110 X 0 X X Set output pin
X 1 1 1 X 0 X X Toggle output pin
X 1 X | X X 0 0 1 Reset same timer
X 1 X | X X 0 1 1 Reset opposite timer
NOTES:
1. — =bitis not used
2. X =bit may be used, but has no effect on the described operation. These bits cause other operations

to occur.

10-19

80296SA USER'S MANUAL Int6|®

EPAx_CON Address: See Table 10-2 on page 10-3
x=0-3 Reset: 0000H

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO and EPA2 are identical. The registers for EPA1 and EPA3 have an
additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON and
EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8
=13 [= [= [= [= J[=[] =[]]Frw |
7 0
| | ce | mt | mo || RE | — [ROT | ONRT |
7 0
x=0,2 | | ce | mt | mo || RE | — [ROT | ONRT |
Nulr?’r:{)er Mne?ritonic Function
15:9" — Reserved; always write as zeros.
gt RM Remap Feature
The remap feature applies to the compare mode of the EPAL1 and EPA3
only.

When the remap feature of EPAL is enabled, EPA capture/compare channel
0 shares output pin EPA1 with EPA capture/compare channel 1. When the
remap feature of EPA3 is enabled, EPA capture/compare channel 2 shares
output pin EPA3 with EPA capture/compare channel 3.

0 = remap feature disabled
1 = remap feature enabled

7 B Time Base Select
Specifies the reference timer.

0 =timer 1 is the reference timer and timer 2 is the opposite timer
1 =timer 2 is the reference timer and timer 1 is the opposite timer

A compare event (clearing, setting, or toggling an output pin; and/or
resetting either timer) occurs when the reference timer matches the time
programmed in the event-time register.

When a capture event (falling edge, rising edge, or an edge change on the
EPAX pin) occurs, the reference timer value is saved in the EPA event-time
register (EPAx_TIME).

6 CE Compare Enable

Determines whether the EPA channel operates in capture or compare
mode.

0 = capture mode
1 = compare mode

T These bits apply to the EPA1_CON and EPA3_CON registers only.

Figure 10-11. EPA Control (EPA x_CON) Registers

10-20

|nte|® EVENT PROCESSOR ARRAY (EPA)

EPAX_CON (Continued) Address: See Table 10-2 on page 10-3
x=0-3 Reset: 0000H

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO and EPA2 are identical. The registers for EPA1 and EPA3 have an
additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON and
EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8

s [T =T =T = [=T =T =T%]

7 0

‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ — ‘ ROT ‘ ON/RT ‘

7 0

X=0,2 ‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ — ‘ ROT ‘ ON/RT ‘
Bit Bit

. Function
Number | Mnemonic

5:4 M1:0 EPA Mode Select

In capture mode, specifies the type of event that triggers an input capture.
In compare mode, specifies the action that the EPA executes when the
reference timer matches the event time.

M1 MO Capture Mode Event

0 0 no capture

0 1 capture on falling edge
1 0 capture on rising edge
1 1 capture on either edge
M1 MO Compare Mode Action
0 0 no output

0 1 clear output pin

1 0 set output pin
1 1 toggle output pin

3 RE Re-enable

Re-enable applies to the compare mode only. It allows a compare event to
continue to execute each time the event-time register (EPAx_TIME)
matches the reference timer rather than only upon the first time match.

0 = compare function is disabled after a single event
1 = compare function always enabled

2 — Reserved; always write as zero.
T These bits apply to the EPA1_CON and EPA3_CON registers only.
Figure 10-11. EPA Control (EPA x_CON) Registers (Continued)

10-21

80296SA USER'S MANUAL Int6|®

EPAX_CON (Continued) Address: See Table 10-2 on page 10-3
x=0-3 Reset: 0000H

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO and EPA2 are identical. The registers for EPA1 and EPA3 have an
additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON and
EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8

s [T =T =T = [=T =T =T%]

7 0

‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ — ‘ ROT ‘ ON/RT ‘

7 0

X=0,2 ‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ — ‘ ROT ‘ ON/RT ‘
Bit Bit

. Function
Number | Mnemonic

1 ROT Reset Opposite Timer
Controls different functions for capture and compare modes.
In Capture Mode:

0 = causes no action
1 = resets the opposite timer

In Compare Mode:
Selects the timer that is to be reset if the RT bit is set.

0 = selects the reference timer for possible reset
1 = selects the opposite timer for possible reset

0 ON/RT Overwrite New/Reset Timer

The ON/RT bit functions as overwrite new in capture mode and reset timer
in compare mode.

In Capture Mode (ON):

An overrun error is generated when an input capture occurs while the event-
time register (EPAx_TIME) and its buffer are both full. When an overrun
occurs, the ON bit determines whether old data is overwritten or new data is
ignored:

0 = ignores new data

1 = overwrites old data in the buffer

In Compare Mode (RT):

0 = disables the reset function
1 = resets the ROT-selected timer

T These bits apply to the EPA1_CON and EPA3_CON registers only.

Figure 10-11. EPA Control (EPA x_CON) Registers (Continued)

10-22

|nte|® EVENT PROCESSOR ARRAY (EPA)

EPAX_TIME Address: Table 10-2
x=0-3 Reset: XXXXH

The EPA time (EPAx_TIME) registers are the event-time registers for the EPA channels. In capture
mode, the value of the reference timer is captured in EPAX_TIME when an input transition occurs.
Each event-time register is buffered, allowing the storage of two capture events at once. In compare
mode, the EPA triggers a compare event when the reference timer matches the value in EPAx_TIME.
EPAXx_TIME is not buffered for compare mode.

15 0
EPA Timer Value
Bit .
Number Function
15:0 EPA Timer Value

When an EPA channel is configured for capture mode, this register contains the value of
the reference timer when the specified event occurred.

When an EPA channel is configured for compare mode, write the compare event time to
this register.

Figure 10-12. EPA Time (EPA x_TIME) Registers

10.6 ENABLING THE EPA INTERRUPTS

The EPA generates four individual event interrupts, EPA3:0, from the four capture/compare chan-
nels and two timer interrupts, OVRTM1 and OVRTM2, from timer 1 and timer 2. These inter-
rupts are directly mapped into the interrupt pending registers (INT_PEND and INT_PEND1).
The capture overrun interrupts from EPAO and EPA1 share the OVRTML1 interrupt which maps
into OVRO_1 (bit 4) of INT_PENDZ1,; the capture overrun interrupts from EPA2 and EPA3 share
the OVRTM2 interrupt which maps into OVR2_3 (bit 5) of INT_PEND1. To enable the inter-
rupts, set the corresponding bits in the two 8-bit interrupt mask registers (INT_MASK and
INT_MASK1). To enable the individual sources of the capture overrun interrupts OVRO_1 and
OVR2_3, set the corresponding bits in the EPA mask register (EPA_MASK). Chapter 6, “Inter-
rupts,” discusses the interrupts in greater detail.

10-23

80296SA USER’S MANUAL

intel.

EPA_MASK

Address:
Reset State:

1F9CH
AAH

The EPA interrupt mask (EPA_MASK) register enables or disables (masks) the shared EPA3:0 overrun
interrupts (OVR3:0).

7 0
— owrRs | — [owe || — OVR1 — OVRO
Bit Bit Function
Number Mnemonic
7,531 — Reserved; for compatibility with future devices, write zeros to these bits.
6,4,2,0 OVR3 Setting this bit enables the corresponding source as a shared overrun
OVR2 interrupt source. The shared overrun interrupts (OVRO_1 and OVR2_3)
OVR1 are enabled by setting their interrupt enable bits in the interrupt mask 1
OVRO (INT_MASK1) register.
Figure 10-13. EPA Interrupt Mask (EPA_MASK) Register
INT MASK Address: 0008H
- Reset State: O0H

The interrupt mask (INT_MASK) register enables or disables (masks) individual interrupt requests.
(The El and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK is the
low byte of the processor status word (PSW). PUSHF or PUSHA saves the contents of this register
onto the stack and then clears this register. Interrupt calls cannot occur immediately following this
instruction. POPF or POPA restores it.

interrupt priorities are as follows:

Default Priority Interrupt Source

EPA Capture/Compare Channel 0
SIO Receive

SIO Transmit

EXTINT1 pin

EXTINTO pin

Reserved

Timer 2 Overflow/Underflow
Timer 1 Overflow/Underflow

OFRrNWAMOOON

7 0
| PR7 | PR6 PR5 PR4 || PR3 — PR1 PRO
Bit .
Number Function
7:0 Setting a bit enables the interrupt that is assigned to the corresponding priority. The default

10-24

Figure 10-14. Interrupt Mask (INT_MASK) Register

|nte|® EVENT PROCESSOR ARRAY (EPA)

INT_MASK1 Address: 0013H
- Reset State: 00H

The interrupt mask 1 (INT_MASKZ1) register enables or disables (masks) individual interrupt requests.
(The El and Dl instructions enable and disable servicing of all maskable interrupts.) INT_MASK1 can
be read from or written to as a byte register. PUSHA saves this register on the stack and POPA
restores it.

7 0
‘ NMI ‘ PR14 PR13 PR12 ‘ ‘ PR1L PR10 PR9 PRS
Bit .
Number Function
7:0 Setting a bit enables the interrupt that is assigned to the corresponding priority. The default

interrupt priorities are as follows:
Default Priority Interrupt Source

15 Nonmaskable InterruptT

14 EXTINT3 pin

13 EXTINT2 pin

12 EPA Capture Channel 2 or 3 overrun't
11 EPA Capture Channel 0 or 1 overrun't
10 EPA Capture/Compare Channel 3

9 EPA Capture/Compare Channel 2

8 EPA Capture/Compare Channel 1

T NMlis always enabled and is always assigned to priority 15. This nonfunctional mask
bit exists for design symmetry with the INT_PENDL register. Always write zero to this
bit.

Tt An overrun on the EPA capture/compare channels can generate the shared capture
overrun interrupts. Write to EPA_MASK to enable the interrupt sources; read
EPA_PEND to determine which source caused the interrupt.

Figure 10-15. Interrupt Mask 1 (INT_MASK1) Register

10.7 DETERMINING EVENT STATUS

In compare mode, an interrupt pending bit is set each time a match occurs on an enabled event
(even if the interrupt is specifically masked in the mask register). In capture mode, an interrupt
pending bit is set each time a programmed event is captured and the event time moves from the
capture buffer to the EBATIME register. If the capture buffer is full when an event occurs, an
overrun interrupt pending bit is set.

Timer overflows/underflows and capture overruns also set interrupt pending bits. Even if an in-
terrupt is masked, software can poll the interrupt pending registers to determine whether an event
has occurred.

10-25

80296SA USER'S MANUAL Int6|®

EPA_PEND Address: 1F9EH
B Reset State: AAH

When hardware detects a pending EPAO-3 overrun interrupt request (OVR3:0), it sets the corre-
sponding bit in the EPA interrupt pending register (EPA_PEND).

Reading EPA_PEND clears all bits.

7 0
— owrRs | — [owe || — OVR1 — OVRO
Bit .
Number Function
7,5 3,1 Reserved. These bits are undefined.
6,4,2,0 Any set bit indicates that the corresponding overrun interrupt source is pending.

Figure 10-16. EPA Interrupt Pending (EPA_PEND) Register

The EPA interrupt pending register, EPA_PEND, has the same bit structure as the EPA_MASK
register. EPA_PEND is similar to an interrupt pending register in that it shows the status of the
individual capture/compare overrun interrupts. The bits in EPA_PEND can be polled to deter-
mine the exact source of an OVRO_1 or OVR2_3 interrupt. However, hardware does not clear
status bits in this register when it vectors to the interrupt service routine for an interrupt pair
(OVRO_1, OVR2_3). Instead it clears the OVRO_1 or OVR2_3 bit in the EPA_MASK register.
Also, software cannot generate an interrupt by setting a bit in EPA_PEND.

Reading EPA_PENDRIears all bits To check the status of the overrun interrupts, copy the con-
tents of the EPA_PEND register into a shadow register and then execute bit-test instructions such
as JBC and JBS on the shadow register. Otherwise, the first bit-test instruction will clear the reg-
ister, losing all status information. Since the shadow register is not cleared when read, this method
allows you to execute more than one bit-test instruction.

10-26

intel.

11

Minimum Hardware
Considerations

intel.

CHAPTER 11
MINIMUM HARDWARE CONSIDERATIONS

The 80296SA has several basic requirements for operation within a system. This chapter de-
scribes options for providing the basic requirements and discusses other hardware considerations.

11.1 MINIMUM CONNECTIONS

Table 11-1 lists the signals that are required for the device to function and Figure 11-1 shows the
connections for a minimum configuration.

Table 11-1. Minimum Required Signals

Signal

Name Type Description

RESET# 110 Reset

A level-sensitive reset input to, and an open-drain system reset output from, the
microcontroller. Either a falling edge on RESET# or an internal reset turns on a pull-
down transistor connected to the RESET# pin for 16 state times. In the powerdown,
standby, and idle modes, asserting RESET# causes the chip to reset and return to
normal operating mode. After a device reset, the first instruction fetch is from
F2080H in external memory. The program and special-purpose memory locations
(F2000-F2FFFH) reside in external memory.

RPD | Return from Powerdown
Timing pin for the return-from-powerdown circuit.

If your application uses powerdown mode, connect a capacitort between RPD and
Vg if either of the following conditions is true.

¢ the internal oscillator is the clock source
« the phase-locked loop (PLL) circuitry is enabled

The capacitor causes a delay that enables the oscillator and PLL circuitry to
stabilize before the internal CPU and peripheral clocks are enabled.

The capacitor is not required if your application uses powerdown mode and if both
of the following conditions are true.

« an external clock input is the clock source
« the phase-locked loop circuitry is disabled

If your application does not use powerdown mode, leave this pin unconnected.
T Calculate the value of the capacitor using the formula found on page 12-12.

Vee PWR Digital Supply Voltage
Connect each V. pin to the digital supply voltage.
Vss GND Digital Circuit Ground

These pins supply ground for the digital circuitry. Connect each Vg pin to ground
through the lowest possible impedance path.

11-1

80296SA USER’S MANUAL

intel.

Table 11-1. Minimum Required Signals (Continued)

Signal o
Name Type Description
XTAL1 | Input Crystal/Resonator or External Clock Input
Input to the on-chip oscillator, internal phase-locked loop circuitry, and the internal
clock generators. The internal clock generators provide the peripheral clocks, CPU
clock, and CLKOUT signal. When using an external clock source instead of the on-
chip oscillator, connect the clock input to XTAL1. The external clock signal must
meet the V,,, specification for XTALL.
XTAL2 O Inverted Output for the Crystal/Resonator

Output of the on-chip oscillator inverter. Leave XTAL2 floating when the design uses
an external clock source instead of the on-chip oscillator.

11.1.1 Unused Inputs

For predictable performance, it is important to tie unused inputs t@M/go Otherwise, they
can float to a mid-voltage level and draw excessive current. Unused interrupt inputs may generate

spurious interrupts if left unconnected.

11.1.2

Chapter 7, “I/O Ports,” contains information about initializing and configuring the ports. See

I/0O Port Pin Connections

“Configuring the Port Pins” on page 7-3.

11-2

Int6|® MINIMUM HARDWARE CONSIDERATIONS

(Note 1)
20 pF 20 pF

=

Vee XTAL2 XTAL1
I— Vee RESET# o
0.01 pF (Note 2) l
.
I 4.7 uF
Vss NMI "
= L
RPD
(Note 3)
MCS® 96 Vee
+ Microcontroller _-l-
I 22 uF READY
- BHE# |—
— PLLEN1
- RD# |—
Bus Control
WR# (Note 4)
ONCE
L INST |—
ALE |
PLLEN2 —

Notes:

1. See the datasheet for the oscillator frequency range (Fyra 1) and the crystal manufacturer's
datasheet for recommended load capacitors.

2. The number of V¢ and Vgg pins varies with package type (see datasheet). Be sure to connect
all V¢ pins to the supply voltage and all Vgg pins to ground.

3. Connect the capacitor to RPD when using powerdown mode and the internal oscillator or
phase-locked loop circuitry. Otherwise, RPD may float.

4. No connection is required.

A3185-01

Figure 11-1. Minimum Hardware Connections

11.2 APPLYING AND REMOVING POWER

When power is first applied to the microcontroller, RESET# must remain continuously low for at
least one state time after the power supply is within tolerance and the oscillator/clock has stabi-
lized; otherwise, operation might be unpredictable. Similarly, when powering down a system,
RESET# should be brought low beforg\fs removed; otherwise, an inadvertent write to an ex-
ternal location might occur. Carefully evaluate the possible effect of power-up and power-down
sequences on a system.

11-3

80296SA USER'S MANUAL Int6|®

11.3 NOISE PROTECTION TIPS

The fast rise and fall times of high-speed CMOS logic often produce noise spikes on the power
supply lines and outputs. To minimize noise, it is important to follow good design and board lay-
out techniques. We recommend liberal use of decoupling capacitors and transient absorbers. Add
0.01 pF bypass capacitors betweep &nd each Yspin to reduce noise (Figure 11-2). Place the
capacitors as close to the device as possible. Use the shortest possible path to gghinest V

to ground and each other.

mcs® g6
Microcontroller

Vee
Vss
Vss
Vss

:»—I| |T— J_ Digital

t = Ground
| | Plane

+5V 5V
Return

Power Source

T Use 0.01 uF bypass capacitors for maximum decoupling.

A3069-02

Figure 11-2. Power and Return Connections

Multilayer printed circuit boards with separatg Mand ground planes also help to minimize
noise. For more information on noise protection, refer to APD&8igning Microcontroller Sys-
tems for Noisy Environmenfsrder number 210313) and AP-7HEMI Design Techniques for
Microcontrollers in Automotive Applicatiorisrder number 272324).

11-4 I

Int6|® MINIMUM HARDWARE CONSIDERATIONS

11.4 THE ON-CHIP OSCILLATOR CIRCUITRY

The on-chip oscillator circuit (Figure 11-3) consists of a crystal-controlled, positive reactance os-
cillator. In this application, the crystal operates in a parallel resonance mode. The feedback resis-
tor, Rf, consists of paralleledchannel ang-channel FETs controlled by the internal powerdown
signal. In powerdown mode, Rf acts as an open and the output drivers are disabled, which disables
the oscillator. Both the XTAL1 and XTALZ2 pins have built-in electrostatic discharge (ESD) pro-
tection.

NOTE

Although the maximum external clock input frequency is 50 MHz, the
maximum oscillator input frequency is limited to 25 MHz.

To internal

circuitry Vee
A |
——0

Rf ’
XTALL XTAL2
(Input) D_‘ (Output)

Vss

Oscillator Enable#
(from powerdown circuitry)

A0076-03

Figure 11-3. On-chip Oscillator Circuit

Figure 11-4 shows the connections between the external crystal and the device. When designing
an external oscillator circuit, consider the effects of parasitic board capacitance, extended oper-
ating temperatures, and crystal specifications. Consult the manufacturer’'s datasheet for perfor-
mance specifications and required capacitor values. With high-quality components, 20 pF load

capacitors (Q) are usually adequate for frequencies above 1 MHz.

11-5

80296SA USER'S MANUAL Int6|®

Noise spikes on the XTAL1 or XTAL2 pin can cause a miscount in the internal clock-generating
circuitry. Capacitive coupling between the crystal oscillator and traces carrying fast-rising digital
signals can introduce noise spikes. To reduce this coupling, mount the crystal oscillator and ca-
pacitors near the device and use short, direct traces to connect to XTAL1, XTAL2;afd V
further reduce the effects of noise, use grounded guard rings around the oscillator circuitry and
ground the metallic crystal case.

XTALL
Mcs® 96

p —|
—|— Microcontroller
—[T 1\

11 XTAL2
c2

Quartz Crystal

Note:

Mount the crystal and capacitors close to the device using
short, direct traces to XTAL1, XTAL2, and Vgg. When
using a crystal, C1=C2=20 pF. When using a ceramic
resonator, consult the manufacturer for recommended
oscillator circuitry.

A0273-03

Figure 11-4. External Crystal Connections

In cost-sensitive applications, you may choose to use a ceramic resonator instead of a crystal os-
cillator. Ceramic resonators may require slightly different load capacitor values and circuit con-
figurations. Consult the manufacturer’s datasheet for the requirements.

11.5 USING AN EXTERNAL CLOCK SOURCE

To use an external clock source, apply a clock signal to XTAL1 and let XTAL2 float (Figure
11-5). To ensure proper operation, the external clock source must meet the minimum high and
low times (T« and T,) and the maximum rise and fall transition timeg, (I and Ty,)

(Figure 11-6). The longer the rise and fall times, the higher the probability that external noise will
affect the clock generator circuitry and cause unreliable operation. See the datasheet for required
XTAL1 voltage drive levels and actual specifications.

11-6

Int6|® MINIMUM HARDWARE CONSIDERATIONS

4.7 kQt
External
Clock Input XTALL

Mcs® 96
Clock Driver Microcontroller

No Connection XTAL2

T Required if TTL driver is used. Not needed if CMOS driver is used.

A0274-03

Figure 11-5. External Clock Connections

la— Txrixx =] Tyixy = |-—— — a— TxHXL
0.7V +05V 0.7V +05V
— Txx —a]
XTALL 0.3Vc—05V 0.3V -05V
- T -

A2119-02

Figure 11-6. External Clock Drive Waveforms

At power-on, the interaction between the internal amplifier and its feedback capacitance (i.e., the
Miller effect) may cause a load of up to 100 pF at the XTAL1 pin if the signal at XTAL1 is weak
(such as might be the case during start-up of the external oscillator). This situation will go away
when the XTALL input signal meets the \and \{, specifications (listed in the datasheet). If
these specifications are met, the XTALL pin capacitance will not exceed 20 pF.

11.6 RESETTING THE DEVICE

Reset forces the device into a known state. As soon as RESET# is asserted, the 1/0 pins, the con-
trol pins, and the registers are driven to their reset states. Table B-5 on page B-11 lists the reset
states of the pins. The device remains in its reset state until RESET# is deasserted. When RE-
SET# is deasserted, the bus controller fetches the chip configuration bytes (CCBs), loads them
into the chip configuration registers (CCRs), and then fetches the first instruction. Figure 11-7
shows the reset-sequence timing.

11-7

80296SA USER'S MANUAL Int6|®

| |
RESET# 4 gg—o- !
Pin -I—P ! !
| |
Internal 1 | r
Reset | |
et inigigigigigipipipipipipigigigigipipipigipipipigigip
| |
ALE [] [1
1 1
! ' > = (Notel)
RD# T | t I T
| |
| |
cso# | ! [
| |
| |
CS5:1# ! 1
I t 1
: ! 2018H ! 201AH -
A150 __X . A)
: : CCB1
AD7:0 ooH X 18H X CCBO X X XX }-
| |
l | (Note 2)
AD15:8 __00H X 20H Strongly Driven X X 20H Strong. Drv. X)
|)
1 1
A19:16 x | OFH Strongly Driven |)
| |
Bus parameters defined by CCBO (bus width, multiplexed
or demultiplexed mode, number of wait states) take effect
here (at start of second bus cycle). BUSCONO is changed
here by value of CCBO.
Notes:
1. Depends on number of wait states defined in CCBO.
2. If bus is multiplexed, AD15:8 strongly drive 20H.
If bus is demultiplexed, AD15:8 drive the data that is currently on the high byte of the internal bus.
A3186-01

Figure 11-7. Reset Timing Sequence

The following events will reset the device (see Figure 11-8):
¢ an external device pulls the RESET# pin low
¢ the CPU issues the reset (RST) instruction
* the CPU issues an idle/powerdown/standby (IDLPD) instruction with an illegal key
operand

The following paragraphs describe each of these reset methods in more detail.

11-8

Int6|® MINIMUM HARDWARE CONSIDERATIONS

Internal External

1
1
1
Vee !
Reset State l€«—— Clock ,
Internal Machine Roort !
Reset . RST :
Signal Trigger < '
1
Stop 1
1

I RESET#
1

oy : O
CLR ~200 Q

Q4|I:Q1

SET

RST Instruction
IDLPD Invalid Key _

T See the datasheet for minimum and maximum Rggy values.
A2416-01

Figure 11-8. Internal Reset Circuitry

11.6.1 Generating an External Reset

To reset the device, hold the RESET# pin low for at least one state time after the power supply is
within tolerance and the oscillator has stabilized. When RESET# is first asserted, the device turns
on a pull-down transistor (Q1) in Figure 11-8 for 16 state times. This enables the RESET# signal
to function as the system reset.

The simplest way to reset the microcontroller is to insert a capacitor between the RESET# pin
and Vg as shown in Figure 11-9. The microcontroller has an internal pull-up resigtg), @b

shown in Figure 11-8. RESET# should remain asserted for at least one state timgattes V
on-chip oscillator, and the phase-locked loop circuitry have stabilized and met the operating con-
ditions specified in the datasheet. A capacitor of 4.7 pF or greater should provide sufficient reset
time, as long as M rises quickly.

11-9

80296SA USER'S MANUAL Int6|®

RESET#
.
4.7 HF mcs® g6

i I Microcontroller

A0276-02

Figure 11-9. Minimum Reset Circuit

Other devices in the system may not be reset because the capacitor will keep the voltage above
V, . Since RESET# is asserted for only 16 state times, it may be necessary to lengthen and buffer
the system-reset pulse. Figure 11-10 shows an example of a system-reset circuit. In this example,
D2 creates a wired-OR gate connection to the reset pin. An internal reset, system power-up, or
SW1 closing will generate the system-reset signal.

Vee
Vee
(1) ,
D1 R o2 @
4.7 kQ
kK1 RESET#
e
SW1
¢ Schmitt Triggers mcs® o6
i Microcontroller

System reset signal
to external circuitry
Notes:
1. D1 provides a faster cycle time for repetitive power-on resets.
2. Optional pull-up for faster recovery.

A0277-03

Figure 11-10. Example of a System Reset Circuit

11.6.2 Issuing the Reset (RST) Instruction
The RST instruction (opcode FFH) resets the device by pulling RESET# low for 16 state times.

It also clears the processor status word (PSW), sets the master program counter (PC) to F2080H,
and resets the special function registers (SFRs).

11-10

Int6|® MINIMUM HARDWARE CONSIDERATIONS

11.6.3 Issuing an lllegal IDLPD Key Operand

The device resets itself if an illegal key operand is used with the idle/powerdown/standby
(IDLPD) command. The legal keys are “1” for idle mode, “2” for powerdown mode, and “3” for
standby mode. If any other value is used, the device executes a reset sequence. (See Appendix A
for a description of the IDLPD command.)

I 11-11

intel.

12

Special Operating
Modes

intel.

CHAPTER 12
SPECIAL OPERATING MODES

The 80296SA provides three power saving modes: idle, standby, and powerdown. It also provides
an on-circuit emulation (ONCE) mode that electrically isolates the microcontroller from the other
system components. This chapter describes each mode and explains how to enter and exit each.

In addition, the 80296SA allows you to disable the PWM duty-cycle generator and the serial port
baud-rate generator to conserve power when those peripherals are not being used.

12.1 SPECIAL OPERATING MODE SIGNALS AND REGISTERS

Table 12-1 lists the signals and Table 12-2 lists the registers that are mentioned in this chapter.

Table 12-1. Operating Mode Control Signals

Signal o
Name Type Description

CLKOUT O Clock Output
Output of the internal clock generator. The CLKOUT frequency is ¥z the internal
operating frequency (f). CLKOUT has a 50% duty cycle.
CLKOUT shares a package pin with P2.7.

EXTINT3 | External Interrupts

EXTINT2 In normal operating mode, a rising edge on EXTINT x sets the EXTINTXx interrupt

EXTINT1 pending bit. EXTINT x is sampled during phase 2 (CLKOUT high). The minimum

EXTINTO edge time is one state time. The minimum level time is two state times.
In standby and powerdown modes, asserting the EXTINT x signal for at least
50 ns causes the device to resume normal operation. The interrupt need not be
enabled, but the pin must be configured as a special-function input. If the
EXTINTx interrupt is enabled, the CPU executes the interrupt service routine.
Otherwise, the CPU executes the instruction that immediately follows the
command that invoked the power-saving mode.
In idle mode, asserting any enabled interrupt causes the device to resume normal
operation.
EXTINTO shares a package pin with P2.2, EXTINT1 shares a package pin with
P2.4, EXTINT2 shares a package pin with P3.6, and EXTINT3 shares a package
pin with P3.7.

ONCE | On-circuit Emulation
Holding ONCE high during the rising edge of RESET# places the device into on-
circuit emulation (ONCE) mode. This mode puts all pins into a high-impedance
state, thereby isolating the device from other components in the system. The
value of ONCE is latched when the RESET# pin goes inactive. While the device
is in ONCE mode, you can debug the system using a clip-on emulator.
To exit ONCE mode, reset the device by pulling the RESET# signal low. To
prevent inadvertent entry into ONCE mode, connect the ONCE pin to V.

12-1

80296SA USER'S MANUAL Int6|®

Table 12-1. Operating Mode Control Signals (Continued)

Signal o
Name Type Description
PLLENZ2:1 | Phase-locked Loop 1 and 2 Enable
These input pins enable the on-chip clock multiplier feature and select either the
doubled or the quadrupled clock speed:
PLLEN2 PLLEN1 Mode
0 0 1x mode; PLL disabled; f = Fy, 1
0 1 2x mode; PLL enabled; f = 2F,7,.1
1 0 Reserved'
1 1 4x mode; PLL enabled; f = 4F,;, 1
T This reserved combination causes the device to enter an unsupported test
mode.
RESET# 110 Reset
A level-sensitive reset input to, and an open-drain system reset output from, the
microcontroller. Either a falling edge on RESET# or an internal reset turns on a
pull-down transistor connected to the RESET# pin for 16 state times. In the
powerdown, standby, and idle modes, asserting RESET# causes the chip to reset
and return to normal operating mode. After a device reset, the first instruction
fetch is from F2080H in external memory. The program and special-purpose
memory locations (F2000—F2FFFH) reside in external memory.
RPD | Return from Powerdown

Timing pin for the return-from-powerdown circuit.

If your application uses powerdown mode, connect a capacitor between RPD and
Vg if either of the following conditions are true.

« the internal oscillator is the clock source

« the phase-locked loop (PLL) circuitry is enabled (see PLLEN2:1 signal
description)

The capacitor causes a delay that enables the oscillator and PLL circuitry to
stabilize before the internal CPU and peripheral clocks are enabled.

The capacitor is not required if your application uses powerdown mode and if
both of the following conditions are true.

¢ an external clock input is the clock source
« the phase-locked loop circuitry is disabled
If your application does not use powerdown mode, leave this pin unconnected.

12-2

intel.

SPECIAL OPERATING MODES

Table 12-2. Operating Mode Control and Status Registers

Mnemonic

Address Description

CCRO

2018H Chip Configuration 0

Enables or disables the IDLPD #2 and IDLPD #3 instructions.
When enabled, the IDLPD #2 instruction causes the microcon-
troller to enter powerdown mode and the IDLPD #3 instruction
causes the microcontroller to enter standby mode. This register
also selects the write-control mode and contains the bus-control
parameters for fetching chip configuration byte 1.

CON_REGO

1FB6H PWM Control Register

This register controls the clock prescaler and duty-cycle
generator.

Bits 0 and 1 (CLKO, CLK1) control the output period of the PWM
channels by enabling or disabling the divide-by-two or divide-by-
four clock prescaler.

Bit 7 (DCD) controls the duty cycle generator by enabling or
disabling the PWMx_CONTROL register.

INT_MASK

0008H Interrupt Mask

Bits 3 and 4 of this register enable and disable (mask) external
interrupts EXTINTO and EXTINTL.

INT_MASK1

0013H Interrupt Mask 1

Bits 5 and 6 of this register enable and disable (mask) external
interrupts EXTINT2 and EXTINT3.

INT_PEND

0009H Interrupt Pending

Bits 3 and 4 of this register are set to indicate pending external
interrupts EXTINTO and EXTINTL.

INT_PEND1

0012H Interrupt Pending 1

Bits 5 and 6 of this register are set to indicate pending external
interrupts EXTINT2 and EXTINTS3.

P2 DIR
P3_DIR

1FD3H Port Direction Register

1FDAH Each bit controls the configuration of the corresponding pin.

Clearing a bit configures a pin as a complementary output; setting
a bit configures a pin as a high-impedance input or an open-drain
output.

P2_MODE
P3_MODE

1FD1H Port Mode Register

1FD8H Each bit controls the mode of the corresponding pin. Setting a bit
configures a pin as a special-function signal; clearing a bit
configures a pin as a general-purpose /O signal.

P2_PIN
P3_PIN

1FD7H Port Pin Register

1F7EH Each bit reflects the current state of the corresponding pin,
regardless of the pin’'s mode and configuration.

12-3

80296SA USER'S MANUAL Int6|®

Table 12-2. Operating Mode Control and Status Registers (Continued)

Mnemonic Address Description
P2_REG 1FD5H Port Data Output Register
P3_REG 1FDCH For 1/0 Mode (P x_ MODE.x = 0)

When a port pin is configured as a complementary output
(Px_DIR.x = 0), setting the corresponding port data bit drives a
one on the pin, and clearing the corresponding port data bit
drives a zero on the pin.

When a port pin is configured as a high-impedance input or an
open-drain output (Px_DIR.x = 1), clearing the corresponding
port data bit drives a zero on the pin, and setting the corre-
sponding port data bit floats the pin, making it available as a
high-impedance input.

For Special-function Mode (P x_MODE.x = 1)

When a port pin is configured as an output (either comple-
mentary or open-drain), the corresponding port data bit value
is immaterial because the corresponding on-chip peripheral or
system function controls the pin.

To configure a pin as a high-impedance input, set both the
Px_DIR and Px_REG bits.

SP_CON 1FBBH Serial Port Control

This register selects the serial mode and enables or disables the
receiver for all modes. For modes 1 and 3, it enables parity. For
mode 2, and for mode 3 with parity disabled, it contains the ninth
bit to be transmitted. It also enables or disables the divide-by-two
prescaler and the baud-rate down-counter.

12.2 REDUCING POWER CONSUMPTION

Each power-saving mode conserves power by disabling portions of the internal clock circuitry
(Figure 12-1). The following paragraphs describe each mode in detail.

12-4

Int6|® SPECIAL OPERATING MODES

Disable
PLL
(Powerdown)
FX‘IA'ALI |J-| Phase ;
XTALL D L Comparator Filter
2
=
3 =
. Phase-
-
2 locked
xTAL2 [} g Oscillator
&
3 .
Disable = Disable Clock Input Phase-locked Loop
Oscillator s (Powerdown) Clock Multiplier
(Powerdown) <
f Divide-by-two
Circuit
£ Disable Clocks
PLLEN1 D 2 (Standby, Powerdown)
\
PLLEN2
D Peripheral Clocks (PH1, PH2)
Clock CLKOUT
Generators
—| |—> CPU Clocks (PH1, PH2)
Disable Clocks
(Idle, Standby, Powerdown)
A3063-02

Figure 12-1. Clock Control During Power-saving Modes

12.3 IDLE MODE

In idle mode, the microcontroller’s power consumption decreases to approximately 40% of nor-
mal consumption. Internal logic holds the CPU clocks at logic zero, causing the CPU to stop ex-
ecuting instructions. Neither the phase-locked loop circuitry, the peripheral clocks, nor CLKOUT
are affected, so the special-function registers (SFRs) and register RAM retain their data, and the
peripherals and interrupt system remain active. Table B-5 on page B-11 lists the values of the pins

during idle mode.

12-5

80296SA USER'S MANUAL Int6|®

The microcontroller enters idle mode after executing the IDLPD #1 instruction. Any enabled in-
terrupt source, either internal or external, or a hardware reset can cause the device to exit idle
mode. When an interrupt occurs, the CPU clocks restart and the CPU executes the corresponding
interrupt service or PTS routine. When the routine is complete, the CPU fetches and then executes
the instruction that follows the IDLPD #1 instruction.

NOTE

To prevent an accidental return to full power, hold the external interrupt pins
(EXTINTX) low while the device is in idle mode.

12.4 STANDBY MODE

In standby mode, the microcontroller’'s power consumption decreases to approximately 10% of
normal consumption. Internal logic holds the CPU and peripheral clocks at logic zero, which
causes the CPU to stop executing instructions, the system bus control signals to become inactive,
and the peripherals to turn off. The phase-locked loop (PLL) circuitry and the on-chip oscillator
continue to operate. Table B-5 on page B-11 lists the values of the pins during standby mode.

12.4.1 Enabling and Disabling Standby Mode

The PD bit in the chip configuration register 0 (CCRO0.0) either enables or disables both standby
and powerdown modes. Because CCRO cannot be accessed by code, the PD bit value is definec
in chip configuration byte 0 (CCBO0.0). Setting the PD bit enables both standby and powerdown
modes and clearing it disables both modes. CCRO is loaded from CCBO when the microcontroller
returns from reset. (See “Chip Configuration Registers and Chip Configuration Bytes” on page
13-17 for further clarification.)

12.4.2 Entering Standby Mode

Before entering standby mode, complete the following tasks:

* Complete all serial port transmissions or receptions. Otherwise, when the device exits
standby, the serial port activity will continue where it left off and incorrect data may be
transmitted or received.

¢ Disable the serial port baud-rate generator by setting SP_CON.7.
¢ Disable the PWM duty-cycle generator by setting CON_REGO.7.
¢ Put all other peripherals into an inactive state.

12-6 I

Int6|® SPECIAL OPERATING MODES

After completing these tasks, execute the IDLPD #3 instruction to enter standby mode.

NOTE

To prevent an accidental return to full power, hold the external interrupt pins
(EXTINTX) low while the device is in standby mode.

12.4.3 Exiting Standby Mode

The device will exit standby mode when a transition oexdarnal interrupt pin (EXTINT3:0)

or a hardware reset occurs. An interrupt need not be enabled for it to bring the microcontroller
out of standby, but the pin must be configured as a special-function input (see “Configuring the
Port Pins” on page 7-3).

When an external interrupt brings the device out of standby mode, the corresponding pending bit
is set in the interrupt pending register. If the interrupt is enabled, the microcontroller executes the
interrupt service routine, then fetches and executes the instruction following the IDLPD #3 in-
struction. If the interrupt is disabled (masked), the microcontroller fetches and executes the in-
struction following the IDLPD #3, instruction and the pending bit remains set until the interrupt
is serviced or software clears it.

125 POWERDOWN MODE

Powerdown mode places the microcontroller into a very low power state by disabling the internal
oscillator, the phase-locked loop circuitry, and the clock generators. Internal logic holds the CPU
and peripheral clocks at logic zero, which causes the CPU to stop executing instructions, the sys-
tem bus-control signals to become inactive, the CLKOUT signal to become high, and the periph-
erals to turn off. Power consumption drops into the microwatt range (refer to the datasheet for
exact specifications)c} is reduced to device leakage. Table B-5 on page B-11 lists the values of
the pins during powerdown mode. IfMs maintained above the minimum specification, the spe-
cial-function registers (SFRs) and register RAM retain their data.

12.5.1 Enabling and Disabling Powerdown Mode

The PD bit in the chip configuration register 0 (CCRO0.0) either enables or disables both standby
and powerdown modes. CCRO cannot be accessed by code; the PD bit value is defined in chip
configuration byte 0 (CCBO.0). If the PD bit is set, both standby and powerdown modes are en-
abled. If the PD bit is clear, both are disabled. CCRO is loaded from CCBO when the microcon-
troller returns from reset. (See “Chip Configuration Registers and Chip Configuration Bytes” on
page 13-17 for further clarification.)

I 12-7

80296SA USER'S MANUAL Int6|®

12.5.2 Entering Powerdown Mode

Before entering powerdown, complete the following tasks:

* Complete all serial port transmissions or receptions. Otherwise, when the device exits
powerdown, the serial port activity will continue where it left off and incorrect data may be
transmitted or received.

¢ Disable the serial port baud-rate generator by setting bit SP_CON.7.
¢ Disable the PWM duty cycle generator by setting CON_REGO0.7.
¢ Put all other peripherals into an inactive state.

After completing these tasks, execute the IDLPD #2 instruction to enter powerdown mode.

NOTE

To prevent an accidental return to full power, hold the external interrupt pins
(EXTINTX) low while the device is in powerdown mode.

12.5.3 Exiting Powerdown Mode

The microcontroller will exit powerdown mode when either of the following events occurs:
* ahardware reset is generated

* atransition occurs on an external interrupt pin

125.3.1 Generating a Hardware Reset

The microcontroller will exit powerdown if RESET# is asserted. Asserting RESET# causes the
chip to reset and return to normal operating mode. If the phase-locked loop (PLL) clock circuitry
is enabled or if the design uses an external clock input signal, you must hold RESET# low for at
least 2 ms to allow the PLL to stabilize before the internal CPU and peripheral clocks are enabled.
If the design uses the on-chip oscillator, then either a falling edge on RESET# or an internal reset
turns on a pull-down transistor connected to the RESET# pin for 16 state times.

12.5.3.2 Asserting an External Interrupt Signal

The other way to exit powerdown mode is to assert an external interrupt signal (EXTINT3:0) for
at least 50 ns. Although EXTINT3:0 are normally sampled inputs, the powerdown circuitry uses
them as level-sensitive inputs. An interrupt need not be enabled to bring the microcontroller out
of powerdown, but the pin must be configured as a special-function input (see “Configuring the
Port Pins” on page 7-3). Figure 12-2 shows the power-up and power-down sequence when using
an external interrupt to exit powerdown.

12-8

Int6|® SPECIAL OPERATING MODES

When the external interrupt brings the microcontroller out of powerdown mode, the correspond-
ing pending bit is set in the interrupt pending register. If the interrupt is enabled, the device exe-
cutes the interrupt service routine, then fetches and executes the instruction following the IDLPD
#2 instruction. If the interrupt is disabled (masked), the device fetches and executes the instruc-
tion following the IDLPD #2, instruction and the pending bit remains set until the interrupt is ser-
viced or software clears the pending bit.

XTAL1||||||||

CLKOUT i

|

1L
1L

L
PHli i_i

Internal Powerdown

Sew L
EXTINTX ! ! ! ! '(
L T

Timeout | I—l
(Internal) N ;

A3159-01

Figure 12-2. Power-up and Power-down Sequence When Using an External Interrupt

When using the external interrupt signal to exit powerdown mode, we recommend that you con-
nect the external capacitor shown in Figure 12-3 to the RPD pin. The discharging of the capacitor
causes a delay that allows the oscillator and phase-locked loop circuitry to stabilize before the
internal CPU and peripheral clocks are enabled.

12-9

80296SA USER'S MANUAL Int6|®

MCS®96
Microcontroller

C1

L

A2389-02

Figure 12-3. External RC Circuit

During normal operation (before entering powerdown mode), an internal pull-up holds the RPD
pin at V... When the external interrupt signal is asserted, the internal oscillator circuitry is en-
abled and turns on a weak internal pull-down (approximatelg)0Tkhis weak pull-down caus-

es the external capacitor,)Go begin discharging at a typical rate of 200 When the RPD pin

voltage drops below the threshold voltage (about 2.5 V), the internal phase clocks are enabled and
the device resumes code execution.

At this time, a Schmitt-triggered detection circuit prompted by the switching voltage levels
strongly drives a logic one, quickly pulling the RPD pin back updo($ee recovery time in Fig-

ure 12-4). The time constant (RC) follows an exponential charging curve. However, since there is
no external resistor on the RPD pin, the time constant goes to zero and the recovery time is in-
stantaneous.

V. =V [1-eY7]; (1=RC,=0)
VC = VCC
where:

V. = Charging capacitor voltage

12-10

Int6|® SPECIAL OPERATING MODES

12.5.3.3 Selecting C ,

With the resistance of the discharge path designed into the silicon with an internal pull-down re-
sistor, the selection of an external capacitqy ¢an be critical. Ideally, you want to select a com-
ponent that will produce a sufficient discharge time to permit the internal oscillator circuitry to
stabilize. Because many factors can influence the discharge time requirement, you should always
fully characterize your design under worst-case conditions to verify proper operation.

5 * 5V
s 4 EXT*lNTx
3 T---~_ H=-=-=-=-=-=-=-=-=-=-==-==-=-====-=
RPD, Volts S~ '
1
1
2 + 1
1
. 1
. 200 pA C, Discharge - : 12V
Code Execution > 8V
Resumes
T
2 4 6 8 10 12 14 16 18 20 22
Time, ms
Vee = 5V
==== Ve = 3V
A2385-02

Figure 12-4. Typical Voltage on the RPD Pin While Exiting Powerdown

12-11

80296SA USER'S MANUAL Int6|®

When selecting the capacitor, determine the worst-case discharge time needed for the oscillator
to stabilize, then use this formula to calculate an appropriate valug.for C

Tpis X!
L= —
Vi
where:

C, is the capacitor value, in farads
Tois is the worst-case discharge time, in seconds
| is the discharge current, in amperes
Vi is the threshold voltage

NOTE
If powerdown is re-entered and exited beforekarges to ¥, it will take
less time for the voltage to ramp down to the threshold. Therefore, the device
will take less time to exit powerdown.

For example, assume that the oscillator needs at least 12.5 ms to dischargel215 ms), Y
is 2.5V, and the discharge current is 220 The minimum G capacitor size is fiF.

_ (0.0125)(0.0002) _ ,

E
25 !

1

When using an external oscillator, the value p€&h be very small, allowing rapid recovery from
powerdown. For example, a 100 pF capacitor discharges inu4.25

CixVi _ (1.0x1079(25)
[0.0002

TDIS -

= 1.25 us

12.6 ONCE MODE

On-circuit emulation (ONCE) mode isolates the microcontroller from other components in the
system to allow printed-circuit-board testing or debugging with a clip-on emulator. During
ONCE mode, all pins except XTAL1, XTAL2,¥ and \}. are weakly pulled high or low.
RESET# must be held high; otherwise, the microcontroller will exit ONCE mode and enter the
reset state.

12-12

Int6|® SPECIAL OPERATING MODES

Holding the ONCE signal high during the rising edge of RESET# causes the microcontroller to
enter ONCE mode. The ONCE signal is latched when RESET# goes inactive. Internally, the
ONCE pin s tied to a medium-strength pull-down. To prevent accidental entry into ONCE mode,
connect the ONCE pin to ¢

Exit ONCE mode by asserting the RESET# signal. Normal operations resume when RESET#
goes high.

12.7 ADDITIONAL POWER CONSERVATION FEATURES

The 80296SA implements additional power conservation features that are new to tRosI1CS
microcontroller family. This feature allows you to individually disable the PWM duty-cycle gen-
erator and the serial I/O port’s baud-rate generator when your system is not using these peripher-
als.

The DCD bit in the PWM clock control register (CON_REGO on page C-7) enables and disables
the duty-cycle generator. Setting DCD enables the duty-cycle generator; clearing DCD disables
it. The DCD bit is cleared at reset (duty-cycle generator enabled). If your system uses the PWM,
ensure that your code leaves the DCD bit cleared. If your system is not using the PWM, you can
set the DCD bit to conserve power.

The BCD bhit in the serial port control register (SP_CON on page C-11) enables and disables the
baud-rate generator. Setting BCD enables the baud-rate generator; clearing BCD disables it. The
BCD bit is set at reset (baud-rate generator disabled). If your system uses the SIO, ensure that
your code clears the BCD bit. If your system is not using the serial I1/0O port, you need not write
to SP_CON.

The bits that implement these new features (DCD in CON_REGO and BCD in SP_CON) are re-
served in previous MCS 96 microcontrollers; they are documented as “Reserved; for compatibil-
ity with future devices, write zero to this bit.” Therefore, code written for a previous MCS 96
microcontroller system that uses these peripherals will enable the duty-cycle generator and baud-
rate generator as part of the initialization.

12.8 RESERVED TEST MODES

Holding PLLEN1 low while PLLENZ is held high causes the device to enter an unsupported test
mode. Table 12.7 shows the proper PLLEN1 and PLLENZ2 connections for valid clock modes.

I 12-13

80296SA USER’S MANUAL

intel.

Table 12-3. 80296SA Clock Modes

PLLEN2 PLLEN1 Mode
0 0 Clock-multiplier circuitry disabled.
0 1 Doubled; clock doubling circuitry enabled. Internal clock is twice
the XTAL1 input.
1 0 Reserved.
CAUTION: This combination causes the device to enter an
unsupported test mode.
1 1 Quadrupled; clock quadrupling circuitry enabled. Internal clock is

four times the XTALL input.

12-14

intel.

13

Interfacing with
External Memory

intel.

CHAPTER 13
INTERFACING WITH EXTERNAL MEMORY

The microcontroller can interface with a variety of external memory devices. Six chip-selects can
be individually programmed for bus width, the number of wait states, and a multiplexed or de-
multiplexed address/data bus. With the chip-select remap feature, the microcontroller can access
a memory device using two different bus configurations. Other features of the external memory
interface include ready control for inserting additional wait states, a bus-hold protocol that en-
ables external devices to take control of the bus, and two write-control modes for writing words
and bytes to memory. These features provide a great deal of flexibility when interfacing with ex-
ternal memory systems.

In addition to describing the signals and registers related to external memory, this chapter discuss-
es the process of fetching the chip configuration bytes and configuring the external bus. It also
provides examples of external memory configurations and chip-select setup.

13.1 INTERNAL AND EXTERNAL ADDRESSES

The address that external devices see is different from the address that the microcontroller gener-
ates internally. The microcontroller has 24 address bits internally, but only 20 address pins
(A19:0) externally. The absence of the upper four address bits at the external pins causes different
internal addresses to have the same external address. For example, the internal addresse:
FF2080H, 7F2080H, and 0F2080H all appear at the 20 external pins as F2080H. The upper four
bits of the internal address have no effect on the external address.

The address seen by an external device also depends on the number of address lines that the ex
ternal system uses. If the address on the external pins (A19:0) is F2080H, and only A17:0 are con-

nected to the external device, the external device sees 32080H. The upper four address lines
(A19:16) are implemented by the EPORT. Table 13-1 shows how the external address depends

on the number of EPORT lines used to address the external device.

Table 13-1. Example of Internal and External Addresses

Address on the EPORT Pins Address Seen b
Internal Address Microcontroller Connected to the 1 by
. h External Device
Pins External Device
Al6 12080H
Al7:16 32080H
xF2080H F2080H
Al18:16 72080H
A19:16 F2080H

I 13-1

80296SA USER’S MANUAL

intel.

13.2 EXTERNAL MEMORY INTERFACE SIGNALS AND REGISTERS

Table 13-2 lists the signals and Table 13-3 lists the registers that are mentioned in this chapter.
Some of the microcontroller port pins can function as either bus-control signals or general pur-
pose 1/O signals. “Using the Special-function Signals” on page 7-6 describes how to configure a

port pin as either a general purpose I/O signal or a bus-control signal.

Table 13-2. Bus-control Signals

Signal
Name

Port Pin

Type

Description

A15:0

(0]

System Address Bus

These address lines provide address bits 0—15 during the entire
external memory cycle during both multiplexed and demultiplexed bus
modes.

A19:16

EPORT.3:0

Address Lines 16-19

These address lines provide address bits 16—-19 during the entire
external memory cycle during both multiplexed and demultiplexed bus
modes, supporting extended addressing of the 1-Mbyte address
space.

NOTE: Internally, there are 24 address bits; however, only 20 exter-
nal address pins (A19:0) are implemented. The internal
address space is 16 Mbytes (000000-FFFFFFH) and the
external address space is 1 Mbyte (00000-FFFFFH). The
device resets to F2080H in external memory.

A19:16 share package pins with EPORT.3:0.

AD15:0

110

Address/Data Lines

The function of these pins depends on the bus size and mode.

16-bit Multiplexed Bus Mode :

AD15:0 drive address bits 0-15 during the first half of the bus cycle
and drive or receive data during the second half of the bus cycle.
8-bit Multiplexed Bus Mode :

AD15:8 drive address bits 8-15 during the entire bus cycle. AD7:0
drive address bits 0—7 during the first half of the bus cycle and drive or
receive data during the second half of the bus cycle.

16-bit Demultiplexed Mode :

AD15:0 drive or receive data during the entire bus cycle.

8-bit Demultiplexed Mode :

AD7:0 drive or receive data during the entire bus cycle. AD15:8 drive
the data that is currently on the high byte of the internal bus.

ALE

Address Latch Enable

This active-high output signal is asserted only during external memory
cycles. ALE signals the start of an external bus cycle and indicates
that valid address information is available on the system address/data
bus (A19:16 and AD15:0 for a multiplexed bus; A19:0 for a
demultiplexed bus).

An external latch can use this signal to demultiplex address bits 0-15
from the address/data bus in multiplexed mode.

13-2

INTERFACING WITH EXTERNAL MEMORY

Table 13-2. Bus-control Signals (Continued)

Signal
Name

Port Pin

Type

Description

BHE#

o

Byte High Enablet

During 16-bit bus cycles, this active-low output signal is asserted for
word and high-byte reads and writes to external memory. BHE#
indicates that valid data is being transferred over the upper half of the
system data bus. Use BHE#, in conjunction with address bit O (AO for
a demultiplexed address bus, ADO for a multiplexed address/data
bus), to determine which memory byte is being transferred over the
system bus:

BHE# ADO or A0 Byte(s) Accessed

0 0 both bytes

0 1 high byte only

1 0 low byte only
BHE# shares a package pin with WRH#.

T The chip configuration register 0 (CCRO) determines whether this
pin functions as BHE# or WRH#. CCRO0.2 = 1 selects BHE#;
CCRO0.2 = 0 selects WRH#.

BREQ#

P2.3

Bus Request

This active-low output signal is asserted during a hold cycle when the
bus controller has a pending external memory cycle. When the bus-
hold protocol is enabled (WSR.7 is set), the P2.3/BREQ# pin can
function only as BREQ#, regardless of the configuration selected
through the port configuration registers (P2_MODE, P2_DIR, and
P2_REG). An attempt to change the pin configuration is ignored until
the bus-hold protocol is disabled (WSR.7 is cleared).

The device can assert BREQ# at the same time as or after it asserts
HLDA#. Once it is asserted, BREQ# remains asserted until HOLD# is
removed.

BREQ# shares a package pin with P2.3.

CLKOUT

pP2.7

Clock Output

Output of the internal clock generator. The CLKOUT frequency is %2
the internal operating frequency (f). CLKOUT has a 50% duty cycle.

CLKOUT shares a package pin with P2.7.

CS5:0#

P3.5:0

Chip-select Lines 0-5

The active-low output CSx# is asserted during an external memory
cycle when the address to be accessed is in the range programmed
for chip select x or chip select x+1 if remapping is enabled. If the
external memory address is outside the range assigned to the six chip
selects, no chip-select output is asserted and the bus configuration
defaults to the CS5# values.

Immediately following reset, CS0# is automatically assigned to the
range F2000—F20FFH.

CS5:0# share package pins with P3.5:0.

13-3

80296SA USER’S MANUAL

intel.

Table 13-2. Bus-control Signals (Continued)

Signal
Name

Port Pin

Type

Description

HLDA#

P2.6

o

Bus Hold Acknowledge

This active-low output indicates that the CPU has released the bus as
the result of an external device asserting HOLD#. When the bus-hold
protocol is enabled (WSR.7 is set), the P2.6/HLDA# pin can function
only as HLDA#, regardless of the configuration selected through the
port configuration registers (P2_MODE, P2_DIR, and P2_REG). An
attempt to change the pin configuration is ignored until the bus-hold
protocol is disabled (WSR.7 is cleared).

HLDA# shares a package pin with P2.6.

HOLD#

P2.5

Bus Hold Request

An external device uses this active-low input signal to request control
of the bus. When the bus-hold protocol is enabled (WSR.7 is set), the
P2.5/HOLD# pin can function only as HOLD#, regardless of the
configuration selected through the port configuration registers
(P2_MODE, P2_DIR, and P2_REG). An attempt to change the pin
configuration is ignored until the bus-hold protocol is disabled (WSR.7
is cleared).

HOLD# shares a package pin with P2.5.

INST

Instruction Fetch

This active-high output signal is valid only during external memory bus
cycles. When high, INST indicates that an instruction is being fetched
from external memory. The signal remains high during the entire bus
cycle of an external instruction fetch. INST is low for data accesses,
including interrupt vector fetches and chip configuration byte reads.
INST is low during internal memory fetches.

RD#

Read

Read-signal output to external memory. RD# is asserted only during
external memory reads.

READY

Ready Input

This active-high input can be used to insert wait states in addition to
those programmed in the chip configuration byte 0 (CCBO) and the
bus control x register (BUSCONXx). CCBO is programmed with the
minimum number of wait states (0, 5, 10, 15) for an external fetch of
CCB1, and BUSCONX is programmed with the minimum number of
wait states (0-15) for all external accesses to the address range
assigned to the chip-select x channel. If the programmed number of
wait states is greater than zero and READY is low when this
programmed number of wait states is reached, additional wait states
are added until READY is pulled high. If the programmed number of
wait states is equal to zero, hold the READY pin high. Programming
the number of wait states equal to zero and holding the READY pin
low produces unpredictable results.

13-4

INTERFACING WITH EXTERNAL MEMORY

Table 13-2. Bus-control Signals (Continued)

Signal

Name Port Pin Type Description
WR# — O | Writef
This active-low output indicates that an external write is occurring.
This signal is asserted only during external memory writes.
WR# shares a package pin with WRL#.
T The chip configuration register 0 (CCRO0) determines whether this
pin functions as WR# or WRL#. CCRO0.2 = 1 selects WR#; CCR0.2 =
0 selects WRL#.
WRH# — O | Write Hight
During 16-bit bus cycles, this active-low output signal is asserted for
high-byte writes and word writes to external memory. During 8-bit bus
cycles, WRH# is asserted for all write operations.
WRH# shares a package pin with BHE#.
T The chip configuration register 0 (CCRO0) determines whether this
pin functions as BHE# or WRH#. CCRO0.2 = 1 selects BHE#;
CCRO0.2 = 0 selects WRH#.
WRL# — O | Write Lowt
During 16-bit bus cycles, this active-low output signal is asserted for
low-byte writes and word writes to external memory. During 8-bit bus
cycles, WRL# is asserted for all write operations.
WRL# shares a package pin with WR#.
T The chip configuration register 0 (CCRO) determines whether this
pin functions as WR# or WRL#. CCRO0.2 = 1 selects WR#; CCR0.2 =
0 selects WRL#.
Table 13-3. External Memory Interface Registers
Reg|ste_r Address Description
Mnemonic
ADDRCOMO 1F40H Address Compare
ADDRCOM1 1FA48H Holds address bits 8-23 of the base address of the address range assigned
ADDRCOM2 1F50H to CSxit.
ADDRCOM3 1F58H
ADDRCOM4 1F60H
ADDRCOM5 1F68H
ADDRMSKO 1F42H Address Mask
ADDRMSK1 1FAAH Determines the size of the address range (256 bytes—1 Mbyte) assigned to
ADDRMSK2 1F52H CSxt.
ADDRMSK3 1F5AH
ADDRMSK4 1F62H
ADDRMSK5 1F6AH

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

13-5

80296SA USER'S MANUAL Int6|®

Table 13-3. External Memory Interface Registers (Continued)

Register
Mnemonic

Address

Description

BUSCONO
BUSCONL1
BUSCON2
BUSCON3
BUSCON4
BUSCONS5

1F44H
1F4CH
1F54H
1F5CH
1F64H
1F6CH

Bus Control

Determines the bus configuration for external accesses to the address range
assigned to CSx# and enables or disables remapping. The bus parameters
are 8- or 16-bit bus width, multiplexed or demultiplexed address/data lines,
and the number of wait states inserted into each bus cycle.

CCRO

T

Chip Configuration 0

Enables or disables the IDLPD #2 and IDLPD #3 instructions. When
enabled, the IDLPD #2 instruction causes the microcontroller to enter
powerdown mode and the IDLPD #3 instruction causes the microcontroller to
enter standby mode. This register also selects the write-control mode and
contains the bus-control parameters for fetching chip configuration byte 1.

CCR1

Chip Configuration 1
Selects the 64-Kbyte or 1-Mbyte addressing mode.

EP_DIR

1FE3H

Extended Port Direction

In I/0O mode, each bit of the extended port 1/O direction (EP_DIR) register
controls the configuration of the corresponding pin. Clearing a bit configures
a pin as a complementary signal; setting a bit configures a pin as an open-
drain signal.

Any pin that is configured for its extended-address function is forced to the
complementary output mode except during reset, hold, idle, powerdown, and
standby.

EP_MODE

1FE1H

Extended Port Mode

Each bit of the extended port mode (EP_MODE) register controls whether
the corresponding pin functions as a general-purpose 1/O signal or as a
special-function (extended address or chip-select) signal. Setting a bit
configures a pin as a special-function signal; clearing a bit configures a pin
as a general-purpose /O signal.

EP_PIN

1FE7H

Extended Port Input

Each bit of the extended port input (EP_PIN) register reflects the current
state of the corresponding pin, regardless of the pin configuration.

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

13-6

intel.

INTERFACING WITH EXTERNAL MEMORY

Table 13-3. External Memory Interface Registers (Continued)

Register
Mnemonic

Address

Description

EP_REG

1FE5H

Extended Port Data Output

For I/O Mode (EP_MODE. x = 0)
When a port pin is configured as a complementary output (EP_DIR.x =
0), setting the corresponding EP_REG bit drives a one on the pin and
clearing the corresponding EP_REG bit drives a zero on the pin.
When a port pin is configured as a high impedance input or an open-drain
output (EP_DIR.x = 1), clearing the corresponding EP_REG bit drives a
zero on the pin and setting the corresponding EP_REG bit floats the pin,
making it available as a high impedance input.

For Special-function Mode (EP_MODE. x =1)

When an EPORT pin is configured as an extended-address signal, the
EP_REG bit value is immaterial because the address bus controls the
pin.

P2_DIR
P3_DIR

1FD3H
1FDAH

Port Direction Register

Each bit controls the configuration of the corresponding pin. Clearing a bit
configures a pin as a complementary output; setting a bit configures a pin as
a high-impedance input or an open-drain output.

P2_MODE
P3_MODE

1FD1H
1FD8H

Port Mode Register

Each bit controls the mode of the corresponding pin. Setting a bit configures
a pin as a special-function signal; clearing a bit configures a pin as a general-
purpose /O signal.

P2_PIN
P3_PIN

1FD7H
1FDEH

Port Pin Register

Each bit reflects the current state of the corresponding pin, regardless of the
pin’s mode and configuration.

P2_REG
P3_REG

1FD5H
1FDCH

Port Data Output Register
For 1/0 Mode (P x_MODE.x = 0)

When a port pin is configured as a complementary output (Px_DIR.x = 0),
setting the corresponding port data bit drives a one on the pin, and
clearing the corresponding port data bit drives a zero on the pin.

When a port pin is configured as a high-impedance input or an open-
drain output (Px_DIR.x = 1), clearing the corresponding port data bit
drives a zero on the pin, and setting the corresponding port data bit floats
the pin, making it available as a high-impedance input.

For Special-function Mode (P x_MODE.x = 1)

When a port pin is configured as an output (either complementary or
open-drain), the corresponding port data bit value is immaterial because
the corresponding on-chip peripheral or system function controls the pin.

To configure a pin as a high-impedance input, set both the Px_DIR and
Px_REG bits.

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

13-7

80296SA USER'S MANUAL Int6|®

13.3 THE CHIP-SELECT UNIT

The chip-select unit provides six outputs, CS5:0#, for selecting an external device during an ex-
ternal bus cycle. During an external memory access, a chip-select ouxgus@Sserted if the
address falls within the address range assigned to that chip-select. The bus width, the number of
wait states, and multiplexed or demultiplexed address/data lines are programmed independently
for each of the six chip-selects. If the external address is outside the range of the six chip-selects,
the chip-select 5 bus control register determines the wait states, bus width, and multiplexing for
the current bus cycle, and no chip-select is asserted.

Figure 13-1 illustrates the microcontroller’s calculation of a chip-select outpeit 166a given
external memory address. Address bits 8-23 of the memory address are compared (XORed) bit-
wise with the 16 least-significant bits (BASE23:8) of the ADDRCOBYister. If all of the bits

match, C8# is asserted. Additionally, if some bits do not matchs#dS still asserted if, for each
nonmatching bit in ADDRCOM the corresponding bit in ADDRMSKs cleared. The 16 least-
significant bits are named MASK23:8 for their function in masking bits BASE23:8.

Address ADDRCOMx ADDRMSKXx
23 87 0 15 015 1211 0
| | | BASE 23:8 | |1|1|1|1| MASK19:8 |
bit 23 bit 15 bit 15

g S
/.
23 87 0 15 0 15 1211 0

| | | BASE 23:8 | |1|1|1|1| MASK19:8 |

B,

bit 8 bit 0 bit 0

4

A3268-01

Figure 13-1. Calculation of a Chip-select Output

13-8 I

Int€|® INTERFACING WITH EXTERNAL MEMORY

13.3.1 Defining Chip-select Address Ranges

This section describes the ADDRCQMNdADDRMSKX registers and how to set them up for

a desired address range. The ADDRCOR®Dister (Figure 13-2) and ADDRMSHegister (Fig-

ure 13-3) control the assertion of each chip-select output. The BASE23:8 bits in the ADDRCOM
register determine the base address of the address range. The MASK23:8 bits in the ADDRMSK
register determine the size of the address range.

ADDRCOMx Address: Table 13-3 on page 13-5
x=0-5 Reset State: (x=0) FF20H
(x = 1-5) 0000H

The address compare (ADDRCOMYX) register specifies the base (lowest) address of the address range.
The base address of a 2M-byte address range must be on a 2"-byte boundary.

15 8
\ BASE23 \ BASE22 \ BASE21 \ BASE20 H BASE19 \ BASE18 \ BASE17 \ BASE16 \
7 0
‘ BASE15 ‘ BASE14 ‘ BASE13 ‘ BASE12 H BASE1L ‘ BASE10 ‘ BASE9 ‘ BASES ‘

Bit Bit]
Number Mnemonic Function
15:0 BASE?23:8 Base Address Bits

Write address bits 23—-8 of the base address of the address range
assigned to chip-select x to these bits.

Figure 13-2. Address Compare (ADDRCOM x) Registers

13-9

80296SA USER'S MANUAL Int6|®

ADDRMSK x Address: Table 13-3 on page 13-5
x=0-5 Reset State: FFFFH

The address mask (ADDRMSKX) register, together with the address compare register, defines the
address range that is assigned to the chip-select x output, CSx#. The address mask register
determines the size of the address range, which must be 27 bytes, where n=8, 9, . ., 20. For a 2"-byte
address range, calculate n; = 24— n, and set the n; most-significant bits of MASK23:8 in the address
mask register.

15 8
| MASK23 | MASK22 | MASK21 | MASK20 | | MASK19 | MASK18 | MASK17 | MASK16 |
7 0

‘ MASK15 ‘ MASK14 ‘ MASK13 ‘ MASK12 H MASK11 ‘ MASK10 ‘ MASK9 ‘ MASKS ‘

Bit Bit Function
Number Mnemonic
15:0 MASK23:8 Address Mask Bits

For a 2M-byte address range, set the n; most-significant bits of
MASK23:8, where ny =24 — n.

Since 20 external address lines are available, the maximum address
range size is 1 Mbyte (220). Therefore, always write ones to the 4 most-
significant mask bits (MASK23:20).

Figure 13-3. Address Mask (ADDRMSK x) Registers

Observe the following restrictions in choosing an address range for a chip-select output:
* The addresses in the address range must be contiguous.

* The size of the address range must 'bby2es, whera = 8, 9, ..., 20. This corresponds to
block sizes of 256 bytes, 512 bytes, ..., 1 Mbyte.

* The base address of &l2yte address range must be ofdote boundary (that is, the base
address must be evenly divisible b¥).2For example, the base address of a 256-Kbyte
range must be 00000H, 40000H, 80000H, or COO00H. Table 13-4 shows the base addresses
for some address-range sizes.

13-10

intel.

Table 13-4. Base Addresses for Several Sizes of the Address Range

INTERFACING WITH EXTERNAL MEMORY

Address- 1 Mbyte 512 Kbyte 256 Kbyte 512 bytes 256 bytes
Range Size (220 (219) (218) (29) (28)

FFDOOH FFFOOH

FFBOOH FFEOOH

Base COO000H 00600H 00300H

Addresses

80000H 00400H 00200H

80000H 40000H 00200H 00100H

00000H 00000H 00000H 00000H 00000H

For an address range satisfying these restrictions, set up the ADDR&W@MDDRMSKk reg-
isters as follows:

* Place address bits 23-8 of the base address into bits BASE23:8 in the ADDREgier
(Figure 13-2).

e For an address range of Bytes, set the; most-significant bits of MASK23:8 in the
ADDRMSKX register (Figure 13-3), wherg = 24 —n.

For example, assume that chip-select outpsitto be assigned to a 32-Kbyte address range with
base address EEOOOOH. The address range sizei$®24 = 25, andn, = 24 -15 = 9. To set up
the registers, write address bits 23-8 of EEO0O00H to BASE23:8 in the ADDR@&jidter, and

set the 9 most-significant bits of MASK23:8 in the ADDRM®&I€gister:

ADDRCOMx = EEOOH
ADDRMSKXx = FF80H

Note that the 32-Kbyte address range could not have 4000H as base address, for example, becaus
4000H is not on a 32-Kbyte boundary.

“Example of a Chip-select Setup” on page 13-15 shows another example of setting up the chip-
select unit.

13.3.2 Controlling Bus Parameters

For each chip-select output address range, the bus control register B SEi@Me 13-4 de-
termines the wait states, the bus width, and the address/data multiplexing. Also, this register con-
tains a bit for increasing data and address hold times for write operations and a bit for remapping
chip-select output+1 (CS+1#) to chip-select output (CS«#). This configuration enables you

to access the same memory device using two different bus configurations. See “Example of a
Chip-select Setup Using the Remap Feature” on page 13-16.

I 13-11

80296SA USER'S MANUAL Int6|®

The chip-select output signals share package pins with port 3. Use the port registers to configure
these pins as general-purpose I/O signals or as chip-select signals (see “Chip-select Signals (Port
3)” on page 7-8). The bus configuration programmed in BUSK&lies to address range
regardless of the port 3 pin configurations.

BUSCONXx Address: Table 13-3 on page 13-5
X =0-5 Reset State: (x=0) OFH
(x=1-5) 0O0H

For the address range assigned to chip-select x, the bus control (BUSCONX) register specifies the
number of wait states, the bus width, and the address/data multiplexing for all external bus cycles that
access address range x. BUSCONXx also determines whether chip-select output x will be activated
when the address region for chip select x+1 is accessed. This option makes accessing a memory
device using two different bus configurations possible.

The chip-select output signals share package pins with port 3. Use the port registers to configure these
pins as general-purpose /O signals or as chip-select signals (see “Chip-select Signals (Port 3)” on
page 7-8). The bus configuration programmed in BUSCONX applies to address range x, regardless of
the port 3 pin configurations.

7 0
DEMUX BW16 REMAP WRWS ‘ ‘ WS3 WS2 WS1 WSO
Bit Bit Function
Number Mnemonic
7 DEMUX Address/Data Multiplexing

This bit specifies the address/data multiplexing on AD15:0 for all external
accesses to the address range assigned to chip-select x output.

0 = multiplexed
1 = demultiplexed

6 BW16 Bus Width

This bit specifies the bus width for all external accesses to the address
range assigned to chip-select x output.

0 = 8 hits

1 =16 bits

5 REMAP Remap

Setting this bit remaps chip-select output x+1 (CSx+1#) to chip-select
output x (CSx#). In other words, accessing chip select x's address region
activates CSx# and configures the bus as programmed in BUSCONX.
Accessing chip select x+1's address region also activates CSx# but
configures the bus as programmed in BUSCONXx+1. See “Example of a
Chip-select Setup Using the Remap Feature” on page 13-16.

0 = remapping disabled

1 = remapping enabled (CSx+1# is remapped to CSx#)

Note: For chip-select channel 5, setting this bit remaps CS0# to CS5#. In
this case, x=5 and x+1 = 0.

Figure 13-4. Bus Control (BUSCON x) Registers

13-12

Int€|® INTERFACING WITH EXTERNAL MEMORY

BUSCONXx (Continued) Address: Table 13-3 on page 13-5
X =0-5 Reset State: (x=0) OFH
(x = 1-5) O0OH

For the address range assigned to chip-select x, the bus control (BUSCONX) register specifies the
number of wait states, the bus width, and the address/data multiplexing for all external bus cycles that
access address range x. BUSCONXx also determines whether chip-select output x will be activated
when the address region for chip select x+1 is accessed. This option makes accessing a memory
device using two different bus configurations possible.

The chip-select output signals share package pins with port 3. Use the port registers to configure these
pins as general-purpose /O signals or as chip-select signals (see “Chip-select Signals (Port 3)” on
page 7-8). The bus configuration programmed in BUSCONX applies to address range x, regardless of
the port 3 pin configurations.

7 0
DEMUX BW16 REMAP WRWS ‘ ‘ WS3 WS2 WS1 WSO
Bit Bit Function
Number Mnemonic
4 WRWS Write Operation Wait State

When this bit is set, the bus controller adds one state time (2t) to write
operations within the address region specified by chip select x.

0 = data and address hold time remains unchanged
1 = data and address hold time increases by one state time (2t)

See the datasheet for the write operation data and address hold time
specification (T ax)-

3.0 WS3:0 Wait States

These bits, along with the READY pin, control the number of wait states
for all external accesses to the address range assigned to the chip-select
X channel. Write the desired minimum number of wait states (0-15) to
WS3:0. If the programmed number of wait states is greater than zero and
READY is low when this programmed number of wait states is reached,
additional wait states are added until READY is pulled high. If the
programmed number of wait states is equal to zero, hold the READY pin
high. Programming the number of wait states equal to zero and holding
the READY pin low produces unpredictable results.

Figure 13-4. Bus Control (BUSCON x) Registers (Continued)

13-13

80296SA USER'S MANUAL Int6|®

13.3.3 Chip-select Unit Initial Conditions

A chip reset produces the following initial conditions for the chip-select unit:
* ADDRMSKx = FFFFH.

¢ ADDRCOMO = FF20H. This asserts CSO0# for the 256-byte address range FF2000-
FF20FFH.

¢ ADDRCOM1 through ADDRCOMS5 = 0000H.

* For the fetch of chip configuration byte 0 (CCB0), BUSCONOQO is initialized for an 8-bit bus
width, multiplexed mode, and 15 wait states (DEMUX =0, BW16 =0, WSO =1, WS1 =1).

¢ Before the fetch of chip configuration byte 1 (CCB1), the values of DEMUX, BW16, WSO,
and WS1 in BUSCONO are loaded from CCBO. The external bus is configured according to
the new values.

13.3.4 Programming the Chip-select Registers

The chip-select channels are prioritized; channel 0 has the lowest priority and channel 5 has the
highest priority. By activating only the channel with the highest priority, the chip-select unit
avoids bus contention that could occur if two chip-select channels were programmed with over-
lapping address ranges and different bus-parameters by activating only the channel with the high-
est priority. For example, if both channels 3 and 4 were configured for the address range 78000—
7FFFFH, accessing address 79000H would assert chip-select output 4 and configure the bus as
programmed in the bus control 4 register. Chip-select output 3 would remain unchanged.
Use the following sequence to program the chip-select registers after reset:
1. Program chip-select output O:

1.1. Clear ADDRMSKO.

1.2. Write to ADDRCOMO to establish the desired base address.

1.3. Write to ADDRMSKO to establish the desired address range.

1.4. Write the desired bus-parameter values to BUSCONO.

2. While executing in the address range defined in step 1 for chip-select output 0, use the
following sequence to program chip-select outputs 1-5. Beginxwith.

2.1. Load ADDRMSk with FFFFH.

2.2. Write to ADDRCOM to establish the desired base address.
2.3. Write to ADDRMSk to establish the desired address range.
2.4. Write the desired bus-parameter values to BUSCON

2.5. Repeat steps 2.1-2.4 jor 2-5.

13-14 I

Int€|® INTERFACING WITH EXTERNAL MEMORY

13.3.5 Example of a Chip-select Setup

This section shows an example of setting up the chip-select unit and provides details of the chip-
select output calculation. This example shows how to set up the chip-select registers for the sys-
tem shown in Figure 13-5. For each address range, the BUS(e@ister (see Figure 13-4) spec-

ifies the address/data multiplexing (bit 7), the bus width (bit 6), and the number of wait states (bits
0-3). Table 13-5 lists the characteristics of the three chip-select outputs and the corresponding
contents of BUSCON

. Flash SRAM
Microcontroller 256KX16 BKx8
CSo# CE#
CS2# CE#
Al18:1 Al12:0
Al19:.0 Al17:0 p—— A12:0
AD15:0 AD7:0
AD15:0 D15:0 p— D70
OE# WE# OE# WE#
RD# l |
WR#
. 82510
220 A2:0 UART Rxd
AD7:0
D7:0 Txd
CSi1# CE#
A2433-04

Figure 13-5. Example System for Setting Up Chip-select Outputs

Table 13-5. BUSCON x Registers for the Example System

Chip- N ' . Contents of
Silt(;att Multiplexing Bus Width Wait States BUSCON x
CSo# Demultiplexed 16 bits 0 COH
CS1# Demultiplexed 8 bits 3 83H
CS2# Demultiplexed 8 bits 0 80H

13-15

80296SA USER'S MANUAL Int6|®

The location and size of an address range are specified by the ADDR@@Mter and the
ADDRMSKX register (see Figure 13-2 on page 13-9 and Figure 13-3 on page 13-10). The 8-
Kbyte SRAM is assigned to address range 37E000-37FFFFH and uses chip-select output 2. Ad-
dress bits 23-8 of the base address (37EO000H) are written to the BASE23:8 bits in the
ADDRCOMZ2 register, which then contains 37E0H.

The address range for CS2# is 8 Kbytes8rh®tes 6 = 13). The number of bits to be set in
MASK23:8 of ADDRMSK?2 is 24 — 13 = 11. After the 11 most-significant bits of MASK23:8 are
set, ADDRMSK2 contains FFEOH. Results for CS0# and CS1# are found similarly (see Table
13-6).

Table 13-6. Results for the Chip-select Example

ggg& Address Size of ng?;bggttji](n Contents of Contents of
Output Range Address Range ADDRMSK x ADDRCOMx | ADDRMSK x
CSO# | 380000-3FFFFFH | 512 Kbytes = 219 pytes | ny=24-19=5 3800H F800H
CS1# | EOLEO0-EO1EFFH | 256 bytes = 28 bytes n=24-8=16 EO1EH FFFFH
CS2# | 37E000-37FFFFH | 8 Kbytes = 213 bytes n=24-13=11 37EOQOH FFEOH

13.3.6 Example of a Chip-select Setup Using the Remap Feature

The remap feature allows access to a memory device using two different bus configurations. With
this feature, the microcontroller can easily access code and data, with different bus configura-
tions, that reside in a single memory device. The following example illustrates how to configure
chip-select channels 0 and 5 to access code and data from a single memory device.

Assume that boot code resides in a memory device starting at address FF2000H and data resides
in the same memory device starting at address 2000H. The following code demonstrates how to
use the remap feature so that an access to address region 2000—A000H configures the bus for twc
wait states and activates the chip-select channel 5 output (CS5#), while an access to address re-
gion FF2000—FFAOOOH configures the bus for one wait state and also activates CS5#.

;Set up correct window for addressing chip-select registers with direct
;addressing.

LDB WSR,#3DH

;Configure chip-select channel 5 for an 8-Kbyte address region starting at 2000H
;with the following bus parameters: 2 wait states, demultiplexed address data
;bus, and 16-bit bus width. Also, enable remapping so that accesses to chip-
;select channel 0’s address region will active CS5# rather than CS0#.

LDB BUSCONS5_3D,#0E2H ;channel 5 set up for 2 wait, remap, demux, 16-bit bus
LD ADDRCOMS5_3D,#0020H ;channel 5 base address 2000H
LD ADDRMSK5_3D,#0FFEOH ;8-Kbyte region (n1=9)

13-16

Int€|® INTERFACING WITH EXTERNAL MEMORY

;Configure chip-select channel 0 for an 8-Kbyte address region starting at
;FF2000H with the following bus parameters: 1 wait state, demultiplexed address
;data bus, and 16-bit data bus width.

LDB BUSCONO_3D,#0C1H ;channel 0 set up for 1 wait, demux, 16-bit bus
LD ADDRCOMO_3D,#0FF20H ;channel O base address FF2000H
LD ADDRMSKO_3D,#0FFEOH ;8-Kbyte region (n1=9)

;Nonextended instruction to chip-select channel 5's address region activates
;CS5# with bus parameters as programmed in BUSCONS.

LD TEMP,3000H[0]

;Extended instruction to chip-select channel 0’s address region activates CS5#
;with bus parameters as programmed in BUSCONO.

ELD TEMP,0FF3000H[0]

13.4 CHIP CONFIGURATION REGISTERS AND CHIP CONFIGURATION BYTES

Two chip configuration registers (CCRs) have bits that set parameters for chip operation and ex-
ternal bus cycles. The CCRs cannot be accessed by code. They are loaded from the chip config-
uration bytes (CCBs), which reside at addresses FF2018H (CCBO0) and FF201AH (CCB1). Since
the CCBs are stored in external memory, their external addresses depend on the number of
EPORT lines used in the external system (see “Internal and External Addresses” on page 13-1).

When the microcontroller returns from reset, the bus controller fetches the CCBs and loads them
into the CCRs. From this point, these CCR bit values define the chip configuration until the mi-

crocontroller is reset again. The CCR bits are described in Figures 13-6 and 13-7. The remainder
of this section describes the state of the chip following reset and the process of fetching the CCBs.

13-17

80296SA USER'S MANUAL Int6|®

CCRO no direct accesst

The chip configuration 0 (CCRO) register enables or disables the IDLPD #2 and IDLPD #3 instructions
and selects the write-control mode. It also contains the bus-control parameters for fetching chip config-
uration byte 1.

7 0
1 1 ws1 wso || DEMUX | BHE# BW16 PD
Bit Bit .
Number Mnemonic Function
7:6 1 To guarantee proper operation, write ones to these bits.
5:4 WS1:0 Wait States

These bits, along with the READY pin, control the number of wait states
that are used for an external fetch of chip configuration byte 1 (CCB1).

WS1 WSO

0 0 0 wait states
0 1 5 wait states
1 0 10 wait states
1 1 15 wait states

If the programmed number of wait states is greater than zero and READY
is low when this programmed number of wait states is reached, additional
wait states are added until READY is pulled high. If the programmed
number of wait states is equal to zero, hold the READY pin high.
Programming the number of wait states equal to zero and holding the
READY pin low produces unpredictable results.

3 DEMUX Select Demultiplexed Bus

Selects the demultiplexed bus mode for an external fetch of CCB1:
0 = multiplexed — address and data are multiplexed on AD15:0.

1 = demultiplexed — data only on AD15:0.

2 BHE# Write-control Mode

Selects the write-control mode, which determines the functions of the

BHE#/WRH# and WR#/WRL# pins for external bus cycles:

0 = write strobe mode: the BHE#/WRH# pin operates as WRH#, and the
WR#/WRL# pin operates as WRL#.

1 = standard write-control mode: the BHE#/WRH# pin operates as
BHE#, and the WR#/WRL# pin operates as WR#.

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

Figure 13-6. Chip Configuration 0 (CCRO) Register

13-18

Int€|® INTERFACING WITH EXTERNAL MEMORY

CCRO (Continued) no direct access’

The chip configuration 0 (CCRO) register enables or disables the IDLPD #2 and IDLPD #3 instructions
and selects the write-control mode. It also contains the bus-control parameters for fetching chip config-
uration byte 1.

7 0
1 1 WS1 WSO | | DEMUX BHE# BW16 PD
Bit Bit Function
Number Mnemonic
1 BW16 Buswidth Control
Selects the bus width for an external fetch of CCB1.:
0 = 8-bit bus
1 = 16-bit bus
0 PD Powerdown Enable

Enables or disables the IDLPD #2 and IDLPD #3 instructions. When
enabled, the IDLPD #2 instruction causes the microcontroller to enter
powerdown mode and the IDLPD #3 instruction causes the microcon-
troller to enter standby mode.

0 = disable powerdown and standby modes
1 = enable powerdown and standby modes

If your design uses powerdown or standby mode, set this bit when you
program the CCBs. If it does not, clearing this bit when you program the
CCBs will prevent accidental entry into powerdown or standby mode.
(Chapter 12, “Special Operating Modes,” discusses powerdown and
standby modes.)

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

Figure 13-6. Chip Configuration 0 (CCRO0) Register (Continued)

CCR1 no direct accesst

The chip configuration 1 (CCR1) register selects the 64-Kbyte or 1-Mbyte addressing mode.
7 0
1 1 | o | 1 || 0 MoDE64 | o |

[N

Bit Bit

. Function
Number Mnemonic

7:6 1 To guarantee proper operation, write ones to these bits.
5 0 To guarantee proper operation, write zero to this bit.
4:3 1 To guarantee proper operation, write ones to these bits.
2 0 To guarantee proper operation, write zero to this bit.

The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

Figure 13-7. Chip Configuration 1 (CCR1) Register

13-19

80296SA USER'S MANUAL Int6|®

CCRL (Continued) no direct access’

The chip configuration 1 (CCR1) register selects the 64-Kbyte or 1-Mbyte addressing mode.

7 0
1 1 o | 1 || 1 0 MODE64 | 0 |

Bit Bit

. Function
Number Mnemonic

1 MODE®64 Addressing Mode

Selects 64-Kbyte or 1-Mbyte addressing.
0 = selects 1-Mbyte addressing

1 = selects 64-Kbyte addressing

In 1-Mbyte mode, code can execute from almost anywhere in the
address space. In 64-Kbyte mode, code can execute only from page
FFH. (See “Fetching Code and Data in the 1-Mbyte and 64-Kbyte Modes”
on page 5-22 for more information.)

0 0 Reserved; for compatibility with future devices, write zero to this bit.

The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

Figure 13-7. Chip Configuration 1 (CCR1) Register (Continued)

Upon leaving the reset state, the microcontroller is configured for normal operation. This section
describes the state of the chip following reset and summarizes the steps in the configuration pro-
cess. Following reset, the chip automatically fetches the two chip configuration bytes from exter-
nal memory.

Since the CCBs are stored in external ROM, chip-select output 0 (CS0#) should be connected to
that device. Chip-select output 0 is initialized for the address range FF2000-FF20FFH, which in-
cludes the CCB locations. Following the CCB fetches, the microcontroller fetches the instruction
at FF2080H.

The microcontroller uses the following bus control parameters for the CCBO fetch:
¢ Bus multiplexing (DEMUX): multiplexed
¢ Bus width (BW16): 8 bits

* Wait states (WSO, WS1): 15 wait states. The READY pin is active for the CCB0 and CCB1
fetches and can be used to insert additional wait states (see “Wait States (Ready Control)”
on page 13-29).

CCBO can be fetched over a 16-bit bus, even though BW16 defaults to 8 bits for the CCBO fetch.
The upper address pins, A19:8 and AD15:8, are strongly driven during the CCBO fetch because
an 8-bit bus is assumed. Therefore, if you have a 16-bit data bus, write the value 20H to FF2019H
to avoid contention on AD15:8. Pins A19:0 are driven in the multiplexed mode. You can access

the memory using A19:0 and use AD15:0 for data only.

13-20

Int€|® INTERFACING WITH EXTERNAL MEMORY

CCBQO itself contains bits that specify DEMUX, BW16, WSO, and WS1. These values are used to
control the CCBL1 fetch, and following the fetch, they are stored in the chip-select output 0 bus
control register, BUSCONO (see “Chip-select Unit Initial Conditions” on page 13-14). The bits
in CCBO and CCB1 are described in “Chip Configuration Registers and Chip Configuration
Bytes” on page 13-17.

After RESET# is deasserted, the following pins are initialized:

* The P2.7/CLKOUT pin operates as CLKOUT (as during reset). Be sure that the CLKOUT
signal does not damage external hardware.

* The P3.0/CSO0# pin operates as CS0#, which is asserted for the CCB fetches. If you plan to
use the P3.0 pin as an input, you must reconfigure it from its post-reset operation as an
output.

* The BHE#/WRH# pin operates as BHE#.
¢ The WR#/WRL# pin operates as WR#.
¢ The bus-hold function is disabled internally (WSR.7 = 0).

* The READY pin is active (that is, the chip responds to external requests for additional wait
states).

* The INST pin is low (deasserted).

* The AD15:0 pins are active.

* The following port pins are weakly held high: P1.7:0, P2.6, P2.4:0, P3.7:1, and P4.7:0.
* The EPORT.3:0 pins are forced high.

Following reset, you should initialize the stack pointer and initialize the chip-select outputs using
the procedure in “Example of a Chip-select Setup” on page 13-15.

13.5 BUS WIDTH AND MULTIPLEXING
The external bus can operate with a 16-bit or an 8-bit data bus and with a multiplexed or demul-

tiplexed address/data bus. Figure 13-8 shows the external bus signals during operation in the four
combinations of bus width and multiplexing.

I 13-21

80296SA USER'S MANUAL Int6|®

Bus Control Bus Control
A19:16 %16—19 A19:16 Address Bits 16-19
(EPORT) (EPORT)
Address Bits 0-15
Address Bits 0-15 AL5:0 ﬂ
ALSO Driven with the data currently

on the internal bus.

16-bit Data
IS G—
AD15:0
8-bit Data
LI —
Microcontroller Microcontroller
16-bit Demultiplexed Bus 8-bit Demultiplexed Bus
Bus Control Bus Control
A19:16 Address Bits 16-19 A19:16 Address Bits 16-19
(EPORT) ———— (EPORT)
Address Bits 0-15
Address Bits 0-15
A15:0
A15:.0
Address Bits 8-15
16-bit Multiplexed AD15:8 >
Address/Data 8-bit Multiplexed
AD15:0 Address/Data
10 C—
Microcontroller Microcontroller
16-bit Multiplexed Bus 8-bit Multiplexed Bus

A2364-04

Figure 13-8. Multiplexing and Bus Width Options

13-22

intel.

A design can incorporate external devices that operate with different bus widths and multiplex-
ing. The bus parameters used during a particular bus cycle are determined by the chip-select out-
put that is assigned to the address being accessed. Figure 13-9 shows the address and data bt
configurations for the four combinations of bus width and multiplexing. For detailed waveforms,
see “16-bit Bus Timings” on page 13-25 and “System Bus AC Timing Specifications” on page

INTERFACING WITH EXTERNAL MEMORY

13-38.
ALE / \ / \ ALE / \ / \
A19:0 | Address | A19:0 | Address |
AD15:0 | Data | AD15:8 | Drivent |
AD7:0 | Data |

16-bit Demultiplexed Bus

ALE __/ \ / \

A19:0 |

Address |

AD15:0 | Address | Data |

16-bit Multiplexed Bus

1t AD15:8 drive the data currently on the high byte of the internal bus.

8-bit Demultiplexed Bus

ALE __/ \ / \

A19:0 | Address |
AD15:8 | Address |
AD7:0 | Address | Data |

8-bit Multiplexed Bus

A2463-02

Figure 13-9. Bus Activity for Four Types of Buses

In an 8- or 16-bit demultiplexed mode (top of Figure 13-8 and Figure 13-9), the external device
receives the address from A19:0. In a 16-bit system, the data is on AD15:0. In an 8-bit system,
the data is on AD7:0, and AD15:8 drive the data currently on the high byte of the internal bus.

In multiplexed mode (bottom half of Figure 13-8 and Figure 13-9), both A19:0 and AD15:0 drive
the address. A19:0 drive the address throughout the entire bus cycle. For a 16-bit bus width,
AD15:0 drive the address for the first half of the bus cycle and drive or receive data during the

second half. In the 8-bit case, AD15:8 drive the address during the entire bus cycle.

13-23

80296SA USER'S MANUAL Int6|®

In multiplexed mode, with the full address on the bus for only half of the cycle, the external de-
vice has less time to receive it and to respond. As a result, for the same bus-cycle [gagth (4t
multiplexed system requires a faster external device (unless wait states are added to the bus cy-
cle). Although the multiplexed mode has this disadvantage, it is useful for compatibility with de-
vices designed for multiplexed operation.

In a 16-bit system (left side of Figure 13-8 and Figure 13-9) one data word can be transferred over
AD15:0 in a single bus cycle. In an 8-bit system, one data word is transferred as two bytes over
AD7:0 in successive bus cycles, and AD15:8 drive the upper eight address bits for the entire bus
cycle.

The flexibility of the chip-select unit enables you to specify the bus width, the number of wait
states, and a multiplexed or demultiplexed bus for each of the six chip-select outputs. The system
in Figure 13-5 on page 13-15 illustrates a mixture of 8-bit and 16-bit devices with different num-
bers of wait states.

13.5.1 A 16-bit Example System

Figure 13-10 shows a 16-bit system in demultiplexed mode. The<2®dkash memory receives

the address on A18:1; data is transferred on AD15:0. Using the WR# signal as shown, this system
writes words, not single bytes, to the memory. (Using WRL# and WRH#, you can write single
bytes on a 16-bit bus.)

13-24 I

INTERFACING WITH EXTERNAL MEMORY

CS1#
CSo# I
CS# CS#
: Flash Flash
M troll
icrocontrotier 256Kx16 256Kx16
A18:1 Al18:1
A19:.0 Al17:0 p—— A17:0
AD15:0 AD15:0
AD15:0 D15:0 p—— D15:0
OE# WE# OE# WE#
RD# l |
WR#

A2438-04

Figure 13-10. 16-bit External Devices in Demultiplexed Mode

13.5.2 16-bit Bus Timings

Figure 13-11 shows idealized 16-bit external-bus timings for the microcontroller. The signals are
divided into two groups: signals for a demultiplexed bus (top) and signals for a multiplexed bus
(bottom). Several bus signals are omitted from the figure to focus on a comparison of multiplexed
and demultiplexed buses. The timing parameters are addressed in “Comparison of Multiplexed
and Demultiplexed Buses” on page 13-29. Comprehensive timing specifications for the micro-
controller are shown in Figures 13-19 and 13-20.

CLKOUT and ALE are the same in multiplexed and demultiplexed buses. The CLKOUT period
is twice the internal oscillator period (2t). The bus cycles shown here, which have no wait states,
require two CLKOUT periods (two state times, or 4t).

The rising edge of the address latch enable (ALE) signal indicates that the microcontroller is driv-
ing an address onto the bus (A19:16 and AD15:0 for a multiplexed bus, A19:0 for a demulti-
plexed bus). The microcontroller presents a valid address before ALE falls. In a multiplexed
system, the ALE signal is used to strobe a transparent latch (such as a 74AC373), which captures
the address from AD15:0 and holds it while the bus controller puts data onto AD15:0.

I 13-25

80296SA USER’S MANUAL

Demultiplexed

CLKOUT

ALE

A19:0

CSx#

RD#

AD15:0
(read)

WR#

AD15:0
(write)

Multiplexed
CLKOUT
ALE

Al19:16

RD#

AD15:0
(read)

WR#

AD15:0
(write)

[\

X Adiress o X
\ [
N\ /A
TN S—
T /
' Data out W

X

Extended Address Out

csx# \

-/

\

Y Address out (_Data In))INININ

| W

Data Out

X Address Out)X(

Data Out

)X(Address Out

A4310-01

Figure 13-11. Timings for Multiplexed and Demultiplexed 16-bit Buses

13-26

Int€|® INTERFACING WITH EXTERNAL MEMORY

13.5.3 8-bit Bus Timings

Figure 13-12 shows idealized 8-bit timings for the microcontroller. One cycle is required for an
8-bit read or write. A 16-bit access requires two cycles. The first cycle accesses the lower byte,
and the second cycle accesses the upper byte. Except for requiring an extra cycle to write the
bytes separately, the timings are the same as on the 16-bit bus, and the comparison between the
multiplexed and demultiplexed cases is also the same. The demultiplexed bus can accommodate
slower memory devices than the multiplexed bus can.

13-27

80296SA USER'S MANUAL Int6|®

Demultiplexed

cxour /N /N S S
ALE / \ / \ /

A19:0 —{ Address Out X Address Out X

AD15:8 X High Address Out X High Address Out X

RD# /N /S
ADT0 b)) (Coman)

(read)

WR# \—/—\—/7
AD7:0 7 Data Out x Data Out X

(write)

Multiplexed

ckour _/ \/ _/ _/ _/ v
ALE / \ / \ /

A19:16 —(Extended Address Out X Extended Address Out X

RD# / \ / \ /
AD7:0 —(Data In)»—(Low Address OW Data In)»—(Low Address OlF)—(Data In)»—(

(read)

AD15:8
WR# \ / \ / \ /

ADT7:0 (DataOut X Low Address Out X Data Out X Low Address Out X Data Out X
(write)

AD15:8 X High Address Out X High Address Out X

A2471-03

Figure 13-12. Timings for Multiplexed and Demultiplexed 8-bit Buses

13-28

Int€|® INTERFACING WITH EXTERNAL MEMORY

13.5.4 Comparison of Multiplexed and Demultiplexed Buses

In a multiplexed system, where AD15:0 carry both address and data, bus activities are time-com-
pressed in comparison with a demultiplexed system, where the address and data have separate
pins (A19:0 and AD15:0). The compression is reflected in differences in specifications for the
demultiplexed and multiplexed bus. The demultiplexed bus can accommodate slower memory
devices. (Consult the microcontroller datasheet for the latest specifications.)

13.6 WAIT STATES (READY CONTROL)

An external device can use the READY input to lengthen an external bus cycle. When an external
address is placed on the bus, the external device can pull the READY signal low to indicate it is
not ready. In response, the microcontroller inserts wait states to lengthen the bus cycle until the
external device asserts the READY signal. Each wait state adds one CLKOUT period to the bus
cycle (2t).

The READY signal is effective for all bus cycles, including the CCBO fetch (which has 15 inter-
nal wait states). Bits WS0 and WS1 in CCBO specify the wait states for the CCB1 fetch. There-
after, the WS3:0 bits in the BUSCQNegisters control the wait states, and the READY signal
can be used to insert additional wait states. (See “Controlling Bus Parameters” on page 13-11.)

The external device must meet setup and hold timings when using the READY signal to insert
wait states into a bus cycle (see Figures 13-13 through 13-14 and Table 13-7). Because a decoded.
valid address is used to generate the READY signal, the setup time is specified relative to the ad-
dress being valid. This specification,J,, indicates how much time the external device has to
decode the address and assert READY after the address is valid.

The external device must hold READY low until the minimugp, ¥ timing specification is met.
Typically, this is a minimum of 0 ns from the time CLKOUT goes low. Do not exceed the maxi-
mum T vx Specification or additional (unwanted) wait states might be added. Refer to the
datasheets for the currentJ,, and T,y specifications.

I 13-29

80296SA USER'S MANUAL Int6|®

|<—> TeLyx (Mmax)

cwour S /L /[L

e <_>1 Teuvx (min)—>| I‘—
READY N\ L

ALE \)_

e TRRH*2L]
RD# \ /
[« TRDv+2t ——>

Tavpy + 2t ————>

AD15:0
(read) X Address Out) (Data In X:

fe—— Twiwn*2t ——
WR# \ /—

— Towmt2
AD15:0
(write) X Address Out X Data Out X:
BHE#, INST X X
A19:16 :X Extended Address Out X

csx#t T\ /[

A3248-02

Figure 13-13. READY Timing Diagram — Multiplexed Mode

13-30 I

intel.

INTERFACING WITH EXTERNAL MEMORY

|<—> TcHyx (max)

cwour S/ T/ [/ L

READY

(—TAVYV ‘)‘ Tenyx (Min)
—>| |<— |

| Tihn + 2t |

ALE _4/—\ /_

i TRRH*2L

RD# | \ /

l«———————— TRpy+2t —mM >

. le—-————— Taypy * 2t ————— >
AD15:0 \ Sy)_
(read) __ / \
| Twiwh + 2t |

WR# T[T\ [

AD15:0 | Towm 2 I
(write) X Data Out X:
BHE#, INST %{X X
A19:16 _X Extended Address Out X
csx# \ /.

A3258-01

Figure 13-14. READY Timing Diagram — Demultiplexed Mode

Table 13-7. READY Signal Timing Definitions

Symbol Definition

Tavov Address Valid to Input Data Valid
Maximum time the memory device has to output valid data after the microcontroller outputs a
valid address.

Tavvy Address Valid to READY Setup
Maximum time the external device has to pull READY low after the microcontroller outputs the
address to guarantee that at least one wait state will occur.

Tenvx READY Hold after CLKOUT High
If maximum specification is exceeded, additional wait states may occur.

Telyx READY Hold after CLKOUT Low

Minimum time the level of the READY signal must be valid after CLKOUT falls.

13-31

80296SA USER'S MANUAL Int6|®

Table 13-7. READY Signal Timing Definitions (Continued)

Symbol Definition
Tian ALE Cycle Time
Minimum time between ALE pulses.
Tovwh Data Valid to WR# High
Time between data being valid on the bus and the microcontroller deasserting WR#.
Trioy RD# Low to Input Data Valid
Maximum time the memory system has to output valid data after the microcontroller asserts
RD#.
Trirn RD# Low to RD# High
RD# pulse width.
Twiwn WR# Low to WR# High

WR# pulse width.

13.7 BUS-HOLD PROTOCOL

The microcontroller supports a bus-hold protocol that allows external devices to gain control of
the address/data bus. The protocol uses three signals, all of which are port 2 special functions:
HOLD#/P2.5 (bus-hold request), HLDA#/P2.6 (bus-hold acknowledge), and BREQ#/P2.3 (bus
request). When an external device wants to use the microcontroller bus, it asserts the HOLD# sig-
nal. The microcontroller samples HOLD# while CLKOUT is low. If HOLD# is asserted, the mi-
crocontroller responds by releasing the bus and asserting HLDA#. During this hold time, the
address/data bus floats, and signals#;8LE, RD#, WR#/WRL#, BHE#/WRH#, and INST are
weakly held in their inactive states. Figure 13-15 shows the timing for the bus-hold protocol, and
Table 13-8 lists the timing parameters and their definitions. Refer to the datasheet for timing pa-

rameter values.

13-32

Int€|® INTERFACING WITH EXTERNAL MEMORY

cxour \ /L N\ S I\ / \L

Thven > I“ Thven >
HOLD# Hold Latency
4 5%
TeLHaL > (= Totnan > l<

£e

HLDA# o7

NS
v

TeierL > |

TCLBRH > -

55—
BREQ# e
T 5%
HALARZ > = Thanax >
A19:0, AD15:0 —(- —s$
27
T
CSxi, BHEH, H"A"LBZ > |- TuaHey >
INST, RD#, WR# T Weakly held inactive \ /
WRL#, WRH# '3 T s L
Tewn > ':
ALE / \
5% 2
l—)
Start of strongly driven ALE
A2460-03
Figure 13-15. HOLD#, HLDA# Timing
Table 13-8. HOLD#, HLDA# Timing Definitions
Symbol Parameter
Toven HOLD# Setup Time
Tethal CLKOUT Low to HLDA# Low
TeLan CLKOUT Low to HLDA# High
Telsre CLKOUT Low to BREQ# Low
Teisru CLKOUT Low to BREQ# High
Thaaz HLDA# Low to Address Float
Thanax HLDA# High to Address No Longer Float
Thasz HLDA# Low to CSx#, BHE#, INST, RD#, WR#, WRL#,
WRH# Weakly Driven
Thansy HLDA# High to CSx#, BHE#, INST, RD#, WR#, WRL#,
WRH# valid
Tein Clock Falling to ALE Rising

T Assumes CLKOUT is equal to twice the internal operating period (2t).

13-33

80296SA USER'S MANUAL Int6|®

When the external device is finished with the bus, it relinquishes control by driving HOLD# high.
In response, the microcontroller deasserts HLDA# and resumes control of the bus.

If the microcontroller has a pending external bus cycle while another device has control of the
bus, it asserts BREQ# to request control of the bus. After the external device responds by releas-
ing HOLD#, the microcontroller exits hold and then deasserts BREQ# and HLDA#.

13.7.1 Enabling the Bus-hold Protocol

To use the bus-hold protocol, set the hold enable bit (HLDEN) in the window selection register
(WSR.7). Setting HLDEN configures the P2.5/HOLD, #P2.3/BREQ#, and P2.6/HLDA# pins to
function only as HOLD#, BREQ#, and HLDA#, regardless of the configuration selected through
the port configuration registers (P2_MODE, P2_DIR, and P2_REG). An attempt to change a
pin’s configuration is ignored until the bus-hold protocol is disabled (WSR.7 is cleared).

13.7.2 Disabling the Bus-hold Protocol

To disable hold requests, clear WSR.7. The microcontroller does not take control of the bus im-
mediately after HLDEN is cleared. Instead, it waits for the current hold request to finish and then
disables the bus-hold feature and ignores any new requests until the bit is set again.

Sometimes it is important to prevent another device from taking control of the bus while a block
of code is executing. One way to protect a code segment is to clear WSR.7 and then execute a
JBC instruction to check the status of the HLDA# signal. The JBC instruction prevents the RALU
from executing the protected block until current hold requests are serviced and the hold feature
is disabled. This is illustrated in the following code:

DI ;Disable interrupts to prevent
;code interruption

PUSH WSR ;Disable hold requests and

LDB WSR,#1FH ;window Port 2

WAIT: JBC P2_PIN,6, WAIT ;Check the HLDA# signal. If set,

;add protected instruction here

POP WSR ;Enable hold requests

El ;Enable interrupts

13-34 I

Int€|® INTERFACING WITH EXTERNAL MEMORY

13.7.3 Hold Latency

When an external device asserts HOLD#, the microcontroller finishes the current bus cycle and
then asserts HLDA#. The time it takes the microcontroller to assert HLDA# after the external de-
vice asserts HOLD# is calldwld latency(see Figure 13-15 on page 13-33). Table 13-9 lists the
maximum hold latency for each type of bus cycle.

Table 13-9. Maximum Hold Latency

Maximum Hold Latency

Bus Cycle Type (state times)

Internal execution or idle mode | 1.5

16-bit external execution 2.5 + 1 per wait state

8-bit external execution 2.5 + 2 per wait state

13.7.4 Regaining Bus Control

While HOLD# is asserted, the microcontroller continues executing code until it needs to access
the external bus. If executing from internal memory, it continues until it needs to perform an ex-
ternal memory cycle. If executing from external memory, it continues executing until the queue
is empty or until it needs to perform an external data cycle. As soon as it needs to access the ex-
ternal bus, the microcontroller asserts BREQ# and waits for the external device to deassert
HOLD#. After asserting BREQ#, the microcontroller cannot respond to any interrupt requests,
including NMI, until the external device deasserts HOLD#. One state time after HOLD# goes
high, the microcontroller deasserts HLDA# and, with no delay, resumes control of the bus.

If the microcontroller is reset while in hold, bus contention can occur. For example, a device with-
out internal ROM would try to fetch the chip configuration byte from external memory after
RESET# was brought high. Bus contention would occur because both the external device and the
microcontroller would attempt to access memory. One solution is to use the RESET# signal as
the system reset; then all bus masters (including the microcontroller) are reset at once. Chapter
11, “Minimum Hardware Considerations,” shows system reset circuit examples.

13.8 WRITE-CONTROL MODES

The microcontroller has two write-control modes: the standard mode, which uses the WR# and
BHE# signals; and the write strobe mode, which uses the WRL# and WRH# signals. Otherwise,
the two modes are identical. The modes are selected by chip configuration register 0 (Figure 13-6
on page 13-18.)

Figure 13-16 shows the waveforms of the asserted write-control signals in the two modes. Note
that only BHE# is valid throughout the bus cycle.

13-35

80296SA USER'S MANUAL Int6|®

Standard Mode Write Strobe Mode

Active for low- or high-byte write. Active for low-byte write.
BHE# \ / WRH# \ /
Active for high-byte write. Active for high-byte write.

A2472-02

Figure 13-16. Write-control Signal Waveforms

Table 13-10 compares the values of the write-control signals for write operations in the standard
mode and the write strobe mode. The table lists values of WR# and BHE# and values of WRL#
and WRH# for byte and word writes on an 8-bit and a 16-bit bus.

Table 13-10. Write Signals for Standard and Write Strobe Modes

Standard Write Strobe
Bus Word/Byte + (CCR0.2=1) (CCR0.2=0)
Width Written | A0 OTARO
WR# BHE# WRL# WRH#
Low Byte 0 0 1 0
8 High Byte 1 1
0 0
Word
1 lllegal Illegal
Low Byte 0 0 1 0
High Byte 1 0 0 1
16 gn By
0 0 0 0
Word
1 lllegal lllegal

T AO for a demultiplexed address bus; ADO for a multiplexed address/data bus.

To select the standard write-control mode, set CCRO.2. In standard mode, the WR#/WRL# pin
operates as WR#, and the BHE#/WRH# pin operates as BHE#. WR# is asserted for every external
memory write. BHE# is asserted for word accesses (read and write) and for byte accesses to odd
addresses. BHE# can be used to select the bank of memory that stores the high (odd) byte. Figure
13-10 on page 13-25 illustrates use of the standard mode in a 16-bit system. In this example, WR#
writes words to the 16-bit flash memory. To write individual bytes, you can use the decoding logic

in Figure 13-17 or use the write strobe mode.

13-36

Int€|® INTERFACING WITH EXTERNAL MEMORY

To write single bytes on a 16-bit bus requires separate low-byte and high-byte write signals
(WRL# and WRH#). Figure 13-17 shows a sample circuit that combines WR#, BHE#, and ad-

dress hit 0 (A0 for a demultiplexed address bus, ADO for a mulitplexed address/data bus) to pro-
duce these signals. This additional logic is unnecessary, however. In the write strobe mode,
WRL# and WRH# are available at the microcontroller’s external pins.

Demultiplexed Mode
BHE#
WRH#
WR#
WRL#

Multiplexed Mode
BHE#
WRH#
WR#
WRL#

373

A0104-02

Figure 13-17. Decoding WRL# and WRH#

The write strobe mode eliminates the need to externally decode high-byte and low-byte write sig-
nals to external 16-bit memory on a 16-bit bus. When the write strobe mode is selected, the
WR#/WRL# pin operates as WRL#, and the BHE#/WRH# pin operates as WRH#. In the 16-bit

bus mode, WRL# is asserted for all low-byte writes (even addresses) and all word writes, and
WRH# is asserted for all high-byte writes (odd addresses) and all word writes. In the 8-bit bus
mode, WRH# and WRL# are asserted for both even and odd addresses (see Table 13-10).

I 13-37

80296SA USER'S MANUAL Int6|®

Figure 13-18 illustrates the use of the write strobe mode in a mixed 8-bit and 16-bit system with
two flash memories and one SRAM. The WRL# signal, which is generated for all 8-bit writes
(Table 13-10), is used to write bytes to the SRAM. Note that the RD# signal is sufficient for sin-
gle-byte reads on a 16-bit bus. Both bytes are put onto the data bus and the memory controller
discards the unwanted byte.

CS1#
CSOo# T I
A18:1 CE# A18:1 CE# A12:0 CE#
A19:0 p—— A17:0 e A17:0 —— A12:0
AD15:8 il D7:0
. Flash Flash SRAM
Microcontroller 256K 8 256Kx8 8K x8
High Low
AD7:0 AD7:0
AD7:0 ——— e D70 ———— D70
WE# OE# WE# OE# WE# OE#
RD# l l I
WRH#
WRL#
A2439-04

Figure 13-18. A System with 8-bit and 16-bit Buses

13.9 SYSTEM BUS AC TIMING SPECIFICATIONS

Refer to the latest datasheet for the AC timings to make sure your system meets specifications.
The major external bus timing specifications are shown in Figures 13-19 and 13-20.

13-38

intel.

INTERFACING WITH EXTERNAL MEMORY

TeLeL

—>l< TcLLH

CLKOUT _/

[

TLLCH ==

[«— TcHpv

TrLCL

|

< TRHLH —>

T

ALE /

e TLLRL

TLHLH

TRLRH

—>l<— TrLAZ

<—— TrRHDZ —>|

TLHLL

<— TwHLH —>|

l<Tchwn

TwHox —>

RD#
<— TrRLDV —
<— TaviL Tiiax
Tavpy —>
Aead Aress Oou_}—————(Datain TN
—
e TLLWL
TwLwH
WR# \—/
] T
AD15:0 Add [o) — D—>|O
i) X ress Out)X(ata Out

)X(Address Out

j<— TwHBx: TRHBX

BHE#, INST X

A

|<—>| TwHax: TRHAX

AD15:8

High Address Out

A

(8-bit mode)

A19:16 :)(

Extended Address Out

X

csx#t \

—>| j<— TwhsH: TRHSH

/

A3251-01

Figure 13-19. Multiplexed System Bus Timing

13-39

80296SA USER'S MANUAL Int6|®

TcHeL TeleL { t
TCLLH —>{< ‘ > |<TcHwWH
CLKOUT _/ I\ —\—/_
TLHLH
TWHLH —>
—>t< TiicH TRHLH TLHLL—>|
ALE \
TRHRL —>|
TRHDZ —>
T —> <— TRHAX
l<— 'AVRL TRLRH
RD#
< TcHpy —
TrLDV
Tavbv
] Tsipv
AD150 b h————
—t<—TwicL TwHox —>
e TavywL—>] —{ < TwHax
TwLwH
WR# \
i TovwH
A(E,)v lrie(; X Data Out)X
—>| < TwHBX: TRHBX
BHE#, INST
A19:.0 :X Address Out
csxt\ /

A3253-02

Figure 13-20. Demultiplexed System Bus Timing

13.9.1 Deferred Bus-cycle Mode

The microcontroller offers a deferred bus-cycle mode. This bus mode reduces bus contention
when using the microcontroller in demultiplexed mode with slow memories. As shown in Figure
13-21, a delay of 2t occurs in the first bus cycle following a chip-select output change or the first
write cycle following a read cycle.

13-40

Int€|® INTERFACING WITH EXTERNAL MEMORY

cxour /S S\ S\ S
’% Timin 2t —»‘ TwHLH * 2t

<—>|TRHLH i TAvRL + 2t
‘H

ALE

Tavpy + 2t |
0150 Gl S
[>
WR# \
A(I\DN][:iec)) Data Out X Data Out | X Data Out X
BHE#, INST X X
A19:0 :X Address Out Valid Valid X
CSx# X X X

A3247-02

Figure 13-21. Deferred Bus-cycle Mode Timing Diagram

13.9.2 Explanation of AC Symbols

Each symbol consists of two pairs of letters prefixed by “T” (for time). The characters in a pair
indicate a signal and its condition, respectively. Symbols represent the time between the two sig-
nal/condition points. For example, &, is the time between signal L (ALE) condition L (Low),

and signal R (RD#) condition L (Low). Table 13-11 defines the signal and condition codes.

13-41

80296SA USER'S MANUAL Int6|®

Table 13-11. AC Timing Symbol Definitions

Character Signal(s)
A AD15:0 or A:0
B BHE#
C CLKOUT
D AD15:0 (Input Data)
H HOLD#
HA HLDA#
L ALE
Q AD15:0 (Output Data)
R RD#
S CSx#
W WR#, WRL#
Character Condition
H High
L Low
\Y Valid
X No Longer Valid
z Floating (low impedance)

13.9.3 AC Timing Definitions

Tables 13-12 and 13-13 define the AC timing specifications that the memory system must meet
and those that the microcontroller will provide.

Table 13-12. External Memory Systems Must Meet These Specifications

Symbol Definition

Tavov Address Valid to Input Data Valid

Maximum time the memory device has to output valid data after the microcontroller outputs a
valid address.

Terov CLKOUT High to Input Data Valid
Maximum time the memory system has to output valid data after CLKOUT rises.

Tovwh Data Valid to WR# High
Time between data being valid on the bus and the microcontroller deasserting WR#.

Trupz RD# High to Input Data Float

Time after RD# is inactive until the memory system must float the bus. If this timing is not met,
bus contention will occur.

13-42

Int€|® INTERFACING WITH EXTERNAL MEMORY

Table 13-12. External Memory Systems Must Meet These Specifications (Continued)

Symbol Definition

Triov RD# Low to Input Data Valid
Maximum time the memory system has to output valid data after the microcontroller asserts
RD#.

Tsiov CSx# Valid to Input Data Valid
Maximum time the memory device has to output valid data after the microcontroller outputs a
valid chip-select output.

Table 13-13. The Microcontroller Meets These Specifications

Symbol Definition

f Operating frequency

Frequency of the signal input on the XTAL1 pin times the clock multiplier (x); xis 1, 2, or 4,
depending on the clock mode. The internal bus speed of the microcontroller is /2.

t Operating period (1/f)

All AC Timings are referenced to t.
TavrL Address Setup to RD# Low

Length of time the address is valid before RD# falls.
Tavwi Address Setup to WR# Low

Length of time the address is valid before WR# falls.
TeneL CLKOUT High Period

Needed in systems that use CLKOUT as clock for external devices.

Tehwn CLKOUT High to WR# High
Time between CLKOUT going high and WR# going inactive.

TermL CLKOUT High to WR# Low

Time between CLKOUT going high and WR# going active.
TeleL CLKOUT Cycle Time

Normally 2t.
Teun CLKOUT Falling to ALE Rising

Use to derive other timings.
Tin ALE Cycle Time

Minimum time between ALE pulses.
T ALE High Period

Use this specification when designing the external latch.
Tiiax Address Hold after ALE Low

Length of time the address is valid after ALE falls. Use this specification when designing the
external latch.

Tiicn ALE Falling to CLKOUT Rising
Use to derive other timings.

13-43

80296SA USER'S MANUAL Int6|®

Table 13-13. The Microcontroller Meets These Specifications (Continued)

Symbol

Definition

TLLRL

ALE Low to RD# Low

Length of time after ALE falls before RD# is asserted. Could be needed to ensure proper
memory decoding takes place before a device is enabled.

TLLWL

ALE Low to WR# Low

Length of time after ALE falls before WR# is asserted. Could be needed to ensure proper
memory decoding takes place before a device is enabled.

TRHAX

(Multiplexed Mode) AD15:8/CSx# Hold after RD# High

Minimum time that the high byte of the address in 8-bit mode will be valid after RD# inactive.
(Demultiplexed Mode) A19:0/CSx# Hold after RD# High

Minimum time that the address will be valid after RD# inactive.

TRHBX

BHE#, INST Hold after RD# High
Minimum time that these signals will be valid after RD# inactive.

TRHLH

RD# High to ALE Rising

Time between the microcontroller deasserting RD# and the next ALE. Useful in calculating time
between RD# inactive and next address valid.

TRHRL

RD# High to RD# Low
Minimum RD# inactive time.

TRHSH

A19:0/CSx# Hold after RD# High
Minimum time that the address and chip-select output are held after RD# inactive.

TRLAZ

RD# Low to Address Float
Used to calculate when the microcontroller stops driving the address on the bus.

TRLCL

RD# Low to CLKOUT Low
Length of time from RD# asserted to CLKOUT falling edge.

TRLRH

RD# Low to RD# High
RD# pulse width.

TWHAX

(Multiplexed Mode) AD15:8/CSx# Hold after WR# High

Minimum time that the high byte of the address in 8-bit mode will be valid after WR# inactive.
(Demultiplexed Mode) A19:0/CSxi# Hold after WR# High

Minimum time that the address will be valid after WR# inactive.

TWHE!)(

BHE#, INST Hold after WR# High
Minimum time that these signals will be valid after WR# inactive.

TWHLH

WR# High to ALE High

Time between the microcontroller deasserting WR# and next ALE. Also used to calculate WR#
inactive and next Address valid.

Twhox

Data Hold after WR# High
Minimum time after WR# rises that the data stays valid on the bus.

13-44

Int9|® INTERFACING WITH EXTERNAL MEMORY

Table 13-13. The Microcontroller Meets These Specifications (Continued)

Symbol Definition

Twush A19:0/CSx# Hold after WR# High

Minimum time that the address and chip-select output are held after WR# inactive.
TwicL WR# Low to CLKOUT Low

Minimum and maximum time between WR# being asserted and CLKOUT going low.
Twiwn WR# Low to WR# High

WR# pulse width.

13-45

intel.

A

Instruction Set
Reference

APPENDIX A
INSTRUCTION SET REFERENCE

This appendix provides reference information for the instruction set of the family oPMES
microcontrollers. It defines the processor status word (PSW) flags, describes each instruction,
shows the relationships between instructions and PSW flags, and shows hexadecimal opcodes,
instruction lengths, and execution times. It includes the following tables.

* Table A-1 on page A-2 is a map of the opcodes.
* Table A-2 on page A-4 defines the processor status word (PSW) flags.

¢ Table A-3 on page A-5 shows the effect of the PSW flags or a specified register bit on
conditional jump instructions.

* Table A-4 on page A-5 defines the symbols used in Table A-6.

* Table A-5 on page A-6 defines the variables used in Table A-6 to represent instruction
operands.

* Table A-6 beginning on page A-7 lists the instructions alphabetically, describes each of
them, and shows the effect of each instruction on the PSW flags.

* Table A-7 beginning on page A-57 lists the instruction opcodes, in hexadecimal order,
along with the corresponding instruction mnemonics.

* Table A-8 on page A-64 lists instruction lengths and opcodes for each applicable addressing
mode.

* Table A-9 on page A-72 lists instruction execution times, expressed in state times.

NOTE

The # symbol prefixes an immediate value in immediate addressing mode.
Chapter 4, “Programming Considerations,” describes the operand types and
addressing modes.

I A-1

80296SA USER’S MANUAL

Table A-1. Opcode Map (Left Half)

Opcode X0 x1 X2 x3 X4 x5 X6 X7
0x SKIP CLR NOT NEG XCH DEC EXT INC
di
1x CLRB NOTB NEGB XCHB DECB EXTB INCB
di
SIMP
2x
JBC
3x))
bito | biti | itz | bit3 bita | bits | bite | bit7
ax AND 3op, RPT, RPTxxx, RPTI, & RPTIxxx (5 ADD 3op
di im in | i di | im in | i
ANDB 3op ADDB 3op
5x))) .)) . .
di | im | in | ix di | im | in | ix
AND 20p ADD 20p
6x))) . .)))
di | im | in | iX di | im | in | ix
ANDB 20p ADDB 20p
7x))) .)) . .
di | im | in | ix di | im in | ix
OR XOR
8x))) .))) .
di | im | in | iX di | im | in | ix
ORB XORB
9x .)) .
di | im | in | iX di | im | in | ix
LD ADDC
Ax) .) .)) . .
di | im | in | iX di | im | in | ix
LDB ADDCB
Bx) . .)
di im in | iX di im in | ix
Cx ST BMOV ST STB CMPL STB
di in iX di in iX
Dx INST JNH JGT JINC INVT INV JGE INE
Ex DINZ DINZW TIIMP BR/EBR | EBMOVI RETI EJMP LIMP
in
Fx RET ECALL PUSHF POPF PUSHA POPA IDLPD TRAP
NOTE: The first digit of the opcode is listed vertically, and the second digit is listed horizontally. The

related instruction mnemonic is shown at the intersection of the two digits. Shading indicates
reserved opcodes. If the CPU attempts to execute an unimplemented opcode, an interrupt
occurs. For more information, see “Unimplemented Opcode” on page 6-10.

INSTRUCTION SET REFERENCE

Table A-1. Opcode Map (Right Half)

Opcode X8 X9 XA xB xC xD XE xF
SHR SHL SHRA XCH SHRL SHLL SHRAL | NORML
0x ix MVAC
MSAC
1x SHRB SHLB SHRAB XCHB EST EST ESTB ESTB
iX in iX in ix
SCALL
2x
JBS
3x .)
bit 0 | bit 1 | bit 2 bit 3 bit 4 | bit 5 | bit 6 | bit 7
SUB 30p MUL & MULU 3op 3)(4)
MAC, MACR, MACRZ, MACZ, SMAC,
ax SMACR, SMACRZ, SMACZ
d | im | in iX d | m | in | i
5x SUBB 30p MULB & MULUB 3op (3)
d | im | in ix d | m | in | i
SUB 20p MUL & MULU 20op ©3)(4)
MAC, MACR, MACRZ, MACZ, SMAC,
6x SMACR, SMACRZ, SMACZ
d | im | in ix d | m | in | ix
7 SUBB 20p MULB & MULUB 20p ()
d | im | in iX d | m | in | i
CMP DIV & DIVU (®)
8x
di | im | in iX di | im | in | ix
CMPB DIVB & DIVUB (3)
9x
di | im | in iX di | im | in | iX
SUBC LDBZE
Ax)) .)
di | im | in ix di | im | in | ix
SUBCB LDBSE
Bx . .) . .)))
di | im | in iX di im in | ix
PUSH POP BMOVI POP
Cx
di im in iX di in ix
JST JH JLE Jc VT MY LT JE
Dx
E ELD ELD ELDB ELDB @) LCALL
X
in ix in iX
Fx CLRC SETC DI El CLRVT NOP (4) RST
NOTES:

1. This opcode is reserved, but it does not generate an unimplemented opcode interrupt.

2. Other MCS® 96 microcontroller products require a prefix opcode of FE to indicate signed multiplica-
tion and division. For the 80296SA, setting bit zero in the destination register indicates signed multipli-
cation. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

3. Optional prefix opcode for signed multiplication and division instructions.

4. The multiply-accumulate (MAC) instructions that use the relocate function do not support immediate
addressing.

5. The RPT, RPTxxx, RPTI and RPTIxxx instructions do not support indexed addressing.

A-3

80296SA USER'S MANUAL Int6|®

Table A-2. Processor Status Word (PSW) Flags

Mnemonic Description

C The carry flag is set to indicate an arithmetic carry from the MSB of the ALU or the state of
the last bit shifted out of an operand. If a subtraction operation generates a borrow, the carry
flag is cleared.

C Value of Bits Shifted Off
0 <% LSB
1 > LSB

Normally, the result is rounded up if the carry flag is set. The sticky bit flag allows a finer
resolution in the rounding decision.

C ST Value of Bits Shifted Off

00 =0
01 >0and <% LSB
10 =% LSB
11 >1 LSBand <1LSB
N The negative flag is set to indicate that the result of an operation is negative. The flag is

correct even if an overflow occurs. For all shift operations and the NORML instruction, the
flag is set to equal the most-significant bit of the result, even if the shift count is zero.

ST The sticky bit flag is set to indicate that, during a right shift, a “1” has been shifted into the
carry flag and then shifted out. This bit is undefined after a multiply operation. The sticky bit
flag can be used with the carry flag to allow finer resolution in rounding decisions. See the
description of the carry (C) flag for details.

\% The overflow flag is set to indicate that the result of an operation is too large to be
represented correctly in the available space.

For shift operations, the flag is set if the most-significant bit of the operand changes during
the shift. For divide operations, the quotient is stored in the low-order half of the destination
operand and the remainder is stored in the high-order half. The overflow flag is set if the
quotient is outside the range for the low-order half of the destination operand. (Chapter 4,
“Programming Considerations,” defines the operands and possible values for each.)

Instruction Quotient Stored in: V Flag Set if Quotient is:

DIVB Short-integer <-128 or > +127 (< 80H or > 7FH)
DIV Integer < -32768 or > +32767 (< 8000H or > 7FFFH)
DIVUB Byte > 255 (FFH)
DIVU Word > 65535 (FFFFH)
VT The overflow-trap flag is set when the overflow flag is set, but it is cleared only by the CLRVT,

JVT, and JNVT instructions. This allows testing for a possible overflow at the end of a
sequence of related arithmetic operations, which is generally more efficient than testing the
overflow flag after each operation.

z The zero flag is set to indicate that the result of an operation was zero. For multiple-precision
calculations, the zero flag cannot be set by the instructions that use the carry bit from the
previous calculation (e.g., ADDC, SUBC). However, these instructions can clear the zero
flag. This ensures that the zero flag will reflect the result of the entire operation, not just the
last calculation. For example, if the result of adding together the lower words of two double
words is zero, the zero flag would be set. When the upper words are added together using
the ADDC instruction, the flag remains set if the result is zero and is cleared if the result is not
zero.

A-4

intel.

Table A-3 shows the effect of the PSW flags or a specified condition on conditional jump instruc-
tions. Table A-4 defines the symbols used in Table A-6 to show the effect of each instruction on

the PSW flags.

INSTRUCTION SET REFERENCE

Table A-3. Effect of PSW Flags or Specified Conditions on Conditional Jump Instructions

Instruction Jumps to Destination if Continues if
DJINZ decremented byte # 0 decremented byte =0
DINZW decremented word # 0 decremented word = 0
JBC specified register bit = 0 specified register bit = 1
JBS specified register bit = 1 specified register bit =0
JNC C=0 Cc=1
JNH C=00RZ=1 C=1ANDZ=0
JC c=1 C=0
JH C=1ANDZ=0 C=00RZ=1
JGE N=0 N=1
JGT N=0ANDZ=0 N=10RZ=1
JLT N=1 N=0
JLE N=10RZ=1 N=0ANDZ=0
JNST ST=0 ST=1
JST ST=1 ST=0
JNV V=0 V=1
JV V=1 V=0
INVT VT =0 VT =1 (clears VT)
JVT VT =1 (clears VT) VT =0
INE Z=0 Z=1
JE Z=1 Z=0

Table A-4. PSW Flag Setting Symbols
Symbol Description

0 The instruction sets or clears the flag, as appropriate.

— The instruction does not modify the flag.

! The instruction may clear the flag, if it is appropriate, but cannot set it.

1 The instruction may set the flag, if it is appropriate, but cannot clear it.

1 The instruction sets the flag.

0 The instruction clears the flag.

? The instruction leaves the flag in an indeterminate state.

80296SA USER'S MANUAL Int6|®

Table A-5 defines the variables that are used in Table A-6 to represent the instruction operands.

Table A-5. Operand Variables

Variable Description

aa A 2-bit field within an opcode that selects the basic addressing mode used. This field is present
only in those opcodes that allow addressing mode options. The field is encoded as follows:

00 register-direct 01 immediate 10 indirect 11 indexed

baop A byte operand that is addressed by any addressing mode.

bbb A 3-bit field within an opcode that selects a specific bit within a register.

bitno A 3-bit field within an opcode that selects one of the eight bits in a byte.

breg A byte register in the internal register file. When it could be unclear whether this variable refers

to a source or a destination register, it is prefixed with an S or a D. The value must be in the
range of 00—FFH.

cadd An address in the program code.

Dbreg’ A byte register in the lower register file that serves as the destination of the instruction
operation.

disp Displacement. The distance between the end of an instruction and the target label.

Diregt A 32-bit register in the lower register file that serves as the destination of the instruction

operation. Must be aligned on an address that is evenly divisible by 4. The value must be in the
range of 00—FCH.

Dwregt A word register in the lower register file that serves as the destination of the instruction
operation. Must be aligned on an address that is evenly divisible by 2. The value must be in the
range of 00—FEH.

Ireg A 32-bit register in the lower register file. Must be aligned on an address that is evenly divisible
by 4. The value must be in the range of 00—FCH.

ptr2_reg | A double-pointer register, used with the EBMOVI instruction. Must be aligned on an address
that is evenly divisible by 8. The value must be in the range of 00—F8H.

preg A pointer register. Must be aligned on an address that is evenly divisible by 4. The value must
be in the range of 00—FCH.

Sbreg' A byte register in the lower register file that serves as the source of the instruction operation.

Slreg’ A 32-bit register in the lower register file that serves as the source of the instruction operation.
Must be aligned on an address that is evenly divisible by 4. The value must be in the range of
00—FCH.

Swregt A word register in the lower register file that serves as the source of the instruction operation.
Must be aligned on an address that is evenly divisible by 2. The value must be in the range of

00—FEH.

treg A 24-bit register in the lower register file. Must be aligned on an address that is evenly divisible
by 4. The value must be in the range of 00—FCH.

waop A word operand that is addressed by any addressing mode.

w2_reg A double-word register in the lower register file. Must be aligned on an address that is evenly
divisible by 4. The value must be in the range of 00—FCH. Although w2_reg is similar to Ireg,
there is a distinction: w2_reg consists of two halves, each containing a 16-bit address; Ireg is
indivisible and contains a 32-bit number.

wreg A word register in the lower register file. When it could be unclear whether this variable refers
to a source or a destination register, it is prefixed with an S or a D. Must be aligned on an
address that is evenly divisible by 2. The value must be in the range of 00—FEH.

XXX The three high-order bits of displacement.

T The D or S prefix is used only when it could be unclear whether a variable refers to a destination or a
source register.

A-6

Int€|® INSTRUCTION SET REFERENCE

Table A-6. Instruction Set

Mnemonic Operation Instruction Format
ADD ADD WORDS. Adds the source and DEST, SRC
(2 operands) | destination word operands and stores the ADD wreg, waop

sum into the destination operand.

(DEST) « (DEST) + (SRC) (011001aa) (waop) (wreg)

PSW Flag Settings
Z | N|C |V |VT]|ST
o|o|0| 0 T —

ADD ADD WORDS. Adds the two source word DEST, SRC1, SRC2
(3 operands) | operands and stores the sum into the ADD
destination operand.

(DEST) « (SRC1) + (SRC2)

Dwreg, Swreg, waop
(010001aa) (waop) (Swreg) (Dwreg)

PSW Flag Settings
Z | N|C |V |VT]|ST
Oo|o|0|0 | —

ADDB ADD BYTES. Adds the source and DEST, SRC
(2 operands) Qestination b_yte _operands and stores the sum | Apppg
into the destination operand.

(DEST) « (DEST) + (SRC)

breg, baop
(011101aa) (baop) (breg)

PSW Flag Settings
Z | N|C |V |VT|ST
0 0 0 0 T —

ADDB ADD BYTES. Adds the two source byte DEST, SRC1, SRC2
(3 operands) | operands and stores the sum into the ADDB
destination operand.

(DEST) « (SRC1) + (SRC2)

Dbreg, Shreg, baop
(010101aa) (baop) (Shreg) (Dbreg)

PSW Flag Settings
Z | N | C |V |VT|ST
0 0 0 0 | —

80296SA USER'S MANUAL Int6|®

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format

ADDC ADD WORDS WITH CARRY. Adds the DEST, SRC
source and destination word operands and ADDC
the carry flag (0 or 1) and stores the sum into
the destination operand. If the accumulator | (101001aa) (waop) (wreg = ACC_02)
(ACC) is the destination, the addition will
conform to the accumulator control and
status (ACC_STAT) register requirements for
saturation.

(DEST) « (DEST) + (SRC) + C

wreg, waop

PSW Flag Settings
Z | N|C |V |VT|ST
! 0 0 0 T —

ADDCB ADD BYTES WITH CARRY. Adds the source DEST, SRC
and destination byte operands a_nd the carry | AppcB breg, baop
flag (0 or 1) and stores the sum into the
destination operand. (101101aa) (baop) (breg)

(DEST) « (DEST) + (SRC) + C

PSW Flag Settings
Z | N|C |V |VT]|ST
! o|0| 0 T —

AND LOGICAL AND WORDS. ANDs the source DEST, SRC

(2 operands) | and destin_ation word o_pergnds and stores AND wreg, waop
the result into the destination operand. The
result has ones in only the bit positions in (011000aa) (waop) (wreg)

which both operands had a “1” and zeros in
all other bit positions.

(DEST) « (DEST) AND (SRC)

PSW Flag Settings
Z | N|C |V |VT]|ST
Oo|o0|]o 0| — | —

AND LOGICAL AND WORDS. ANDs the two DEST, SRC1, SRC2
(3 operands) | source word operands and stores the result AND Dwreg, Swreg, waop

into the destination operand. The result has
ones in only the bit positions in which both (010000aa) (waop) (Swreg) (Dwreg)

operands had a “1” and zeros in all other bit
positions.

(DEST) « (SRC1) AND (SRC2)

PSW Flag Settings
Z | N|C |V |VT]|ST
Oo|o|o 0| — | —

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
ANDB LOGICAL AND BYTES. ANDs the source DEST, SRC
(2 operands) | and destination byte operands and stores the | ANDB breg, baop

result into the destination operand. The result
has ones in only the bit positions in which
both operands had a “1” and zeros in all other
bit positions.

(DEST) « (DEST) AND (SRC)

PSW Flag Settings
Z N | C |V |VT|ST
0 0 0 0| — | —

(011100aa) (baop) (breg)

ANDB
(3 operands)

LOGICAL AND BYTES. ANDs the two source
byte operands and stores the result into the
destination operand. The result has ones in
only the bit positions in which both operands
had a “1” and zeros in all other bit positions.

(DEST) « (SRC1) AND (SRC2)

PSW Flag Settings
Z N | C |V |VT|ST
0 0 0 0| — | —

DEST, SRC1, SRC2
ANDB Dbreg, Shreg, baop
(010100aa) (baop) (Shreg) (Dbreg)

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

BMOV

BLOCK MOVE. Moves a block of word data
from one location in memory to another. The
source and destination addresses are
calculated using the indirect with autoin-
crement addressing mode. A long register
(PTRS) addresses the source and destination
pointers, which are stored in adjacent word
registers. The source pointer (SRCPTR) is
the low word and the destination pointer
(DSTPTR) is the high word of PTRS. A word
register (CNTREG) specifies the number of
transfers. The blocks of word data can be
located anywhere in page 00H, but should
not overlap. Because the source (SRCPTR)
and destination (DSTPTR) pointers are 16
bits wide, this instruction uses nonextended
data moves. It cannot operate across page
boundaries.

COUNT « (CNTREG)

LOOP: SRCPTR ~ (PTRS)
DSTPTR « (PTRS +2)
(DSTPTR) « (SRCPTR)
(PTRS) « SRCPTR +2
(PTRS +2) « DSTPTR +2
COUNT « COUNT -1

if COUNT # 0 then
go to LOOP

end_if

PSW Flag Settings
Z | N|C |V |VT]|ST

PTRS, CNTREG
BMOV Ireg, wreg
(11000001) (wreg) (Ireg)

NOTE: The pointers are autoincre-
mented during this instruction.
However, CNTREG is not decre-
mented. Therefore, it is easy to
unintentionally create a long,
uninterruptible operation with the
BMOV instruction. Use the
BMOVI instruction for an interrupt-
ible operation.

A-10

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

register.
PC — (DEST)

PSW Flag Settings
VA N C V | VT | ST

Mnemonic Operation Instruction Format
BMOVI INTERRUPTIBLE BLOCK MOVE. Moves a PTRS, CNTREG
block of word data from one location in BMOVI Ireg, wreg
memory to another. The instruction is
identical to BMOV, except that BMOV!I is (11001101) (wreg) (Ireg)
interruptible. The source and destination
addresses are calculated using the indirect NOTE: The pointers are autoincre-
with autoincrement addressing mode. A long mented during this instruction.
register (PTRS) addresses the source and However, CNTREG is decre-
destination pointers, which are stored in mented only when the instruction
adjacent word registers. The source pointer is interrupted. When BMOVI is
(SRCPTR) is the low word and the interrupted, CNTREG is updated
destination pointer (DSTPTR) is the high to store the interim word count at
word of PTRS. A word register (CNTREG) the time of the interrupt. For this
specifies the number of transfers. This reason, you should always reload
register must reside in the lower register file; CNTREG before starting a
it cannot be windowed. The blocks of word BMOVI.
data can be located anywhere in page 00H,
but should not overlap. Because the source
(SRCPTR) and destination (DSTPTR)
pointers are 16 bits wide, this instruction uses
nonexteneded data moves. It cannot operate
across page boundaries. (If you need to
cross page boundaries, use the EBMOVI
instruction.)
COUNT « (CNTREG)
LOOP: SRCPTR ~ (PTRS)
DSTPTR « (PTRS +2)
(DSTPTR) « (SRCPTR)
(PTRS) « SRCPTR +2
(PTRS +2) « DSTPTR +2
COUNT « COUNT -1
if COUNT # 0 then
go to LOOP
end_if
PSW Flag Settings
Z | N|C |V |VT|ST
BR BRANCH INDIRECT. Continues execution at DEST
the address specified in the operand word BR [wreg]

(11100011) (wreg)

NOTE: In 1-Mbyte mode, the BR instruc-
tion always branches to page
FFH. Use the EBR instruction to
branch to an address on any other

page.

A-11

80296SA USER’S MANUAL

Table A-6. Instruction Set (Continued)

operand. The flags are altered, but the
operands remain unaffected. If a borrow
occurs, the carry flag is cleared; otherwise, it
is set.

(DEST) - (SRC)

PSW Flag Settings
Z | N|C |V |VT]|ST
o|o|0|0 T | =

Mnemonic Operation Instruction Format
CLR CLEAR WORD. Clears the value of the DEST
operand. CLR wreg
(DEST) < 0 (00000001) (wreg)
PSW Flag Settings
N | C |V |VT|ST
1 0 0 0| — | —
CLRB CLEAR BYTE. Clears the value of the DEST
operand. CLRB breg
(DEST) < 0 (00010001) (breg)
PSW Flag Settings
N | C |V |VT|ST
1 0 0 0| — | —
CLRC CLEAR CARRY FLAG. Clears the carry flag.
C<0 CLRC
(11111000)
PSW Flag Settings
Z N | C |V |VT|ST
J— N 0 J— J— J—
CLRVT CLEAR OVERFLOW-TRAP FLAG. Clears
the overflow-trap flag. CLRVT
VT <0 (11111100)
PSW Flag Settings
Z | N|C |V |VT|ST
J— - J— J— 0 J—
CMP COMPARE WORDS. Subtracts the source DEST, SRC
word operand from the destination word CMP wreg, waop

(100010aa) (waop) (wreg)

A-12

Int€|® INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
CMPB COMPARE BYTES. Subtracts the source DEST, SRC
byte operand from the destination byte CMPB breg, baop
operand. The flags are altered, but the
operands remain unaffected. If a borrow (100110aa) (baop) (breg)
occurs, the carry flag is cleared; otherwise, it
is set.

(DEST) - (SRC)

PSW Flag Settings
Z N C V | VT | ST
0 0 0 0 1 —

CMPL COMPARE LONG. Compares the DEST, SRC
magnitudes of two double-word (Iqr]g) _ CMPL Direg, Slreg
operands. The operands are specified using
the direct addressing mode. The flags are (11000101) (Slreg) (Direg)
altered, but the operands remain unaffected.
If a borrow occurs, the carry flag is cleared;
otherwise, it is set.

(DEST) - (SRC)

PSW Flag Settings
Z N C V | VT | ST
0 0 0 0 0 —

DEC DECREMENT WORD. Decrements the value DEST
of the operand by one. DEC wreg
(DEST) ~ (DEST) -1 (00000101) (wreg)

PSW Flag Settings
Z N | C |V |VT|ST
0 0 0 0 | —

DECB DECREMENT BYTE. Decrements the value DEST
of the operand by one. DECB breg
(DEST) « (DEST) -1 (00010101) (breg)

PSW Flag Settings
z N C V | VT | ST
O] O] 1 —

A-13

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

DI

DISABLE INTERRUPTS. Disables maskable
interrupts. Interrupt calls cannot occur after
this instruction.

Interrupt Enable (PSW.1) < 0

PSW Flag Settings
Z | N|C |V |VT]|ST

DI
(11111010)

DIV

DIVIDE INTEGERS. Divides the contents of
the destination long-integer operand by the
contents of the source integer word operand,
using signed arithmetic. It stores the quotient
into the low-order word of the destination
(i.e., the word with the lower address) and the
remainder into the high-order word. The
following two statements are performed
concurrently.

(low word DEST) « (DEST)/(SRC)
(high word DEST) ~ (DEST) MOD (SRC)

PSW Flag Settings
z N C |V |VT|ST
N —_ N O 1 J—

DEST, SRC
DIV Ireg, waop
(11111110) (100011aa) (waop) (Ireg)

DIVB

DIVIDE SHORT-INTEGERS. Divides the
contents of the destination integer operand
by the contents of the source short-integer
operand, using signed arithmetic. It stores the
quotient into the low-order byte of the
destination (i.e., the word with the lower
address) and the remainder into the high-
order byte. The following two statements are
performed concurrently.

(low byte DEST) « (DEST)/ (SRC)
(high byte DEST) « (DEST) MOD (SRC)

PSW Flag Settings
z N C |V |VT|ST
J— I J— O 1 N

DEST, SRC
DIVB wreg, baop
(11111110) (100111aa) (baop) (wreg)

A-14

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

DIVU

DIVIDE WORDS, UNSIGNED. Divides the
contents of the destination double-word
operand by the contents of the source word
operand, using unsigned arithmetic. It stores
the quotient into the low-order word (i.e., the
word with the lower address) of the
destination operand and the remainder into
the high-order word. The following two
statements are performed concurrently.

(low word DEST) « (DEST)/(SRC)
(high word DEST) ~ (DEST) MOD (SRC)

PSW Flag Settings
z N C |V |VT|ST
N —_ N O 1 J—

DEST, SRC
DIVU Ireg, waop
(100011aa) (waop) (Ireg)

DIVUB

DIVIDE BYTES, UNSIGNED. This instruction
divides the contents of the destination word
operand by the contents of the source byte
operand, using unsigned arithmetic. It stores
the quotient into the low-order byte (i.e., the
byte with the lower address) of the
destination operand and the remainder into
the high-order byte. The following two
statements are performed concurrently.

(low byte DEST) « (DEST)/ (SRC)
(high byte DEST) « (DEST) MOD (SRC)

PSW Flag Settings
Z | N| C |V |VT|ST
J— J— J— O 1 J—

DEST, SRC
DIVUB wreg, baop
(100111aa) (baop) (wreg)

DJINZ

DECREMENT AND JUMP IF NOT ZERO.
Decrements the value of the byte operand by
1. If the result is 0, control passes to the next
sequential instruction. If the result is not 0,
the instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —128 to +127.
(COUNT) « (COUNT) -1
if (COUNT) # 0 then

PC — PC + 8-bit disp
end_if

PSW Flag Settings
z N C V | VT | ST

DJINZ breg, cadd
(11100000) (breg) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-15

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

DINZW

DECREMENT AND JUMP IF NOT ZERO
WORD. Decrements the value of the word
operand by 1. If the result is O, control passes
to the next sequential instruction. If the result
is not 0, the instruction adds to the program
counter the offset between the end of this
instruction and the target label, effecting the
jump. The offset must be in the range of —-128
to +127.
(COUNT) « (COUNT) -1
if (COUNT) # 0 then

PC — PC + 8-bit disp
end_if

PSW Flag Settings
Zz N C V | VT | ST

DJINZW wreg, cadd
(11100001) (wreg) (disp)

NOTE: The displacement (disp) is sign-

extended to 24 bits

EBMOVI

EXTENDED INTERRUPTIBLE BLOCK
MOVE. Moves a block of word data from one
memory location to another. This instruction
allows you to move blocks of up to 64K words
between any two locations in the 16-Mbyte
address space. This instruction is inter-
ruptible.

The source and destination addresses are
calculated using the extended indirect with
autoincrement addressing mode. A quad-
word register (PTRS) addresses the 24-bit
pointers, which are stored in adjacent double-
word registers. The source pointer (SRCPTR)
is the low double-word and the destination
pointer is the high double-word of PTRS. A
word register (CNTREG) specifies the
number of transfers. This register must reside
in the lower register file; it cannot be
windowed. The blocks of data can reside
anywhere in memory, but should not overlap.

COUNT « (CNTREG)
LOOP: SRCPTR « (PTRS)
DSTPTR « (PTRS +2)
(DSTPTR) « (SRCPTR)
(PTRS) « SRCPTR +2
(PTRS +2) « DSTPTR + 2
COUNT « COUNT 1

if COUNT # 0 then

go to LOOP

PSW Flag Settings
VA N C V | VT | ST

PTRS, CNTREG

EBMOVI prt2_reg, wreg
(11100100) (wreg) (prt2_req)

NOTES:

The pointers are autoincre-
mented during this instruction.
However, CNTREG is decre-
mented only when the instruc-
tion is interrupted. When
EBMOVI is interrupted,
CNTREG is updated to store
the interim word count at the
time of the interrupt. For this
reason, you should always
reload CNTREG before starting
an EBMOVI.

For 20-bit addresses, the offset
must be in the range of
+524287 to —524288.

A-16

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
EBR EXTENDED BRANCH INDIRECT. Continues DEST
execution at the address specified in the EBR cadd
operand word register. This instruction is an
unconditional indirect jump to anywhere in or
the 16-Mbyte address space. EBR [treg]
EBR shares its opcode (E3) with the BR (11100011) (treg)
instruction. To differentiate between the two,
the compiler sets the least-significant bit of])
treg for the EBR instruction. For example: NOTE: For 20-bit addresses, the offset
EBR [50] becomes E351 when compiled. must be in the range of +524287
to —-524288.
PC — (DEST)
PSW Flag Settings
z N C V | VT | ST
ECALL EXTENDED CALL. Pushes the contents of
the program counter (the return address) ECALL cadd
onto the stack, then adds to the program
counter the offset between the end of this (1111 0001) (disp-low) (disp-high) (disp-ext)
instruction and the target label, effecting the
call. The operand may be any address inthe | NOTE: For 20-bit addresses, the offset
address space. must be in the range of +524287
This instruction is an unconditional relative to —524288.
call to anywhere in the 16-Mbyte address
space. It functions only in extended
addressing mode.
SP « SP-4
(SP) «~ PC
PC « PC + 24-bit disp
PSW Flag Settings
Zz N C V | VT | ST
El ENABLE INTERRUPTS. Enables maskable
interrupts following the execution of the next | g
statement. Interrupt calls cannot occur
(11111011)

immediately following this instruction.
Interrupt Enable (PSW.1) « 1

PSW Flag Settings
Z N | C |V |VT|ST

A-17

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
EJMP EXTENDED JUMP. Adds to the program
_counter_the offset between the end of_ this EJMP cadd
instruction and the target label, effecting the) .) .
jump. The operand may be any address in (11100110) (disp-low) (disp-high) (disp-ext)
the entire address space. The offset must be
in the range of +8,388,607 to 8,388,608 for | NOTE: For 20-bit addresses, the offset
24-bit addresses. must be in the range of +524287
This instruction is an unconditional, relative to -524288.
jump to anywhere in the 16-Mbyte address
space. It functions only in extended
addressing mode.
PC — PC + 24-bit disp
PSW Flag Settings
Z | N|C |V |VT|ST
== =] =122
ELD EXTENDED LOAD WORD. Loads the value DEST, SRC
of th_e source word operand into the ELD wreg, [treg]
destination operand. o
o j ext. indirect: (11101000) (treg) (wreg)
This instruction allows you to move data from)))
anywhere in the 16-Mbyte address space into | €Xt- indexed: (11101001) (treg) (disp-low)
the lower register file. (disp-high) (disp-ext) (wreg)
ext. indirect: (DEST) « (SRC)
ext indexed: (DEST) — (SRC) + 24-bit disp NOTE: For 20-b|_t addresses, the offset
must be in the range of +524287
PSW Flag Settings to -524288.
Zz N C V | VT | ST
ELDB EXTENDED LOAD BYTE. Loads the value of DEST, SRC
gheers:#drce byte operand into the destination | g| pg breg, [treg]
peranc. ext. indirect: (11101010) (treg) (breg)
This instruction allows you to move data from .) .
anywhere in the 16-Mbyte address space into | €Xt- indexed: (11101011) (treg) (disp-low)
the lower register file. (disp-high) (disp-ext) (breg)
ext. indirect: (DEST) « (SRC)
ext indexed: (DEST) - (SRC) + 24-bit dISp NOTE: For 20-b|t addresses, the offset
must be in the range of +524287
PSW Flag Settings t0 -524288.
Z | N|C |V |VT|ST

A-18

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

of the operand throughout the high-order
word of the operand.
if DEST.15 = 1 then
(high word DEST) « OFFFFH
else
(high word DEST) « 0
end_if

PSW Flag Settings
Z | N|C |V |VT]|ST
Oo|o0|o 0| — | —

Mnemonic Operation Instruction Format
EST EXTENDED STORE WORD. Stores the SRC, DEST
yalue of the source (Igftmost) word operand | g1 wreg, [treg]
into the destination (rightmost) operand. o
. . ext. indirect: (00011100) (treg) (wreg)
This instruction allows you to move data from .))
the lower register file to anywhere in the 16- | €Xt. indexed: (00011101) (treg) (disp-low)
Mbyte address space. (disp-high) (disp-ext) (wreg)
ext. indirect: (DEST) « (SRC)
ext indexed: (DEST) - (SRC) + 24-bit dISp NOTE: For 20-b|t addresses, the offset
must be in the range of +524287
PSW Flag Settings t0 524288,
z N C V | VT | ST
ESTB EXTENDED STORE BYTE. Stores the value SRC, DEST
of the source (Ief_tmost) byte operand into ESTB breg, [treg]
the destination (rightmost) operand. .
. . ext. indirect: (00011110) (treg) (breg)
This instruction allows you to move data from .) .
the lower register file to anywhere in the 16- | €Xt. indexed: (00011111) (treg) (disp-low)
Mbyte address space. (disp-high) (disp-ext) (breg)
ext. indirect: (DEST) « (SRC)
ext indexed: (DEST) - (SRC) + 24-bit dISp NOTE: For 20-b|t addresses, the offset
must be in the range of +524287
PSW Flag Settings t0 -524288.
z N C V | VT | ST
EXT SIGN-EXTEND INTEGER INTO LONG-
INTEGER. Sign-extends the low-order word | gy Ireg

(00000110) (Ireg)

A-19

80296SA USER’S MANUAL

Table A-6. Instruction Set (Continued)

on the 8-bit value of the KEY operand, this
instruction causes the device to:

enter idle mode, if KEY=1,

enter powerdown mode, if KEY=2,
enter standby mode, if KEY=3,

execute a reset sequence,

if KEY = any value other than 1, 2, or 3.

The bus controller completes any prefetch
cycle in progress before the CPU stops or
resets.

if KEY = 1 then
enter idle
else if KEY = 2 then
enter powerdown
else if KEY = 3 then
enter standby
else
execute reset

PSW Flag Settings
z[N]c|v]vr]stT
KEY =1,2 0r3

KEY = any value other than
1,2,0r3

oloflofolo]o

Mnemonic Operation Instruction Format
EXTB SIGN-EXTEND SHORT-INTEGER INTO
INTEGER. Sign-extends the low-order byte EXTB wreg
of the operand throughout the high-order byte
of the operand. (00010110) (wreg)
if DEST.7 =1 then
(high byte DEST) « OFFH
else
(high byte DEST) « 0
end_if
PSW Flag Settings
z N | C |V |VT|ST
0 0 0 0| — | —
IDLPD IDLE/POWERDOWN/STANDBY. Depending

IDLPD #key
(11110110) (key)

A-20

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

INC

INCREMENT WORD. Increments the value
of the word operand by 1.

(DEST) — (DEST)+1

PSW Flag Settings
z N | C |V |VT|ST
0 0 0 0 1 0

INC wreg
(00000111) (wreg)

INCB

INCREMENT BYTE. Increments the value of
the byte operand by 1.

(DEST) « (DEST) +1

PSW Flag Settings
Z | N|C |V |VT]|ST
O| 0|00 T —

INCB breg
(00010111) (breg)

JBC

JUMP IF BIT IS CLEAR. Tests the specified
bit. If the bit is set, control passes to the next
sequential instruction. If the bit is clear, this
instruction adds to the program counter the
offset between the end of this instruction and
the target label, effecting the jump. The offset
must be in the range of —128 to +127.

if (specified bit) = 0 then
PC ~ PC + 8-hit disp

PSW Flag Settings
Zz N C V | VT | ST

JBC breg, bitno, cadd
(00110bbb) (breg) (disp)

NOTE: The displacement (disp) is sign-

extended to 24 bits.

JBS

JUMP IF BIT IS SET. Tests the specified bit. If
the bit is clear, control passes to the next
sequential instruction. If the bit is set, this
instruction adds to the program counter the
offset between the end of this instruction and
the target label, effecting the jump. The offset
must be in the range of —-128 to +127.
if (specified bit) = 1 then

PC — PC + 8-bit disp

PSW Flag Settings
Zz N C V | VT | ST

JBS breg, bitno, cadd
(00111bbb) (breg) (disp)

NOTE: The displacement (disp) is sign-

extended to 24 bits.

A-21

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
JC JUMP IF CARRY FLAG IS SET. Tests the
carry flag. If the carry flag is clear, control ic cadd
passes to the next sequential instruction. If)
the carry flag is set, this instruction adds to (11011011) (disp)
the program counter the offset between the
end of this instruction and the target label, NOTE: The displacement (disp) is sign-
effecting the jump. The offset must be in the extended to 24 bits.
range of —128 to +127.
if C=1then
PC — PC + 8-bit disp
PSW Flag Settings
z N C V | VT | ST
JE JUMP IF EQUAL. Tests the zero flag. If the
flag is clear, control passes to the next JE cadd
sequential instruction. If the zero flag is set,)
this instruction adds to the program counter | (11011111) (disp)
the offset between the end of this instruction
and the target I_abel, effecting the jump. The NOTE: The displacement (disp) is sign-
offset must be in the range of —128 to +127. extended to 24 bits.
if Z=1then
PC ~ PC + 8-hit disp
PSW Flag Settings
z N C V | VT | ST
JGE JUMP IF SIGNED GREATER THAN OR
EQUAL. Tests the negative flag. If the JGE cadd
negative flag is set, control passes to the next)
sequential instruction. If the negative flagis | (11010110) (disp)
clear, this instruction adds to the program
counter the offset between the end of this NOTE: The displacement (disp) is sign-
instruction and the target label, effecting the extended to 24 bits.
jump. The offset must be in the range of —-128
to +127.
if N = 0 then
PC ~ PC + 8-hit disp
PSW Flag Settings
z N C V | VT | ST

A-22

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JGT

JUMP IF SIGNED GREATER THAN. Tests
both the zero flag and the negative flag. If
either flag is set, control passes to the next
sequential instruction. If both flags are clear,
this instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —128 to +127.

if N =0 AND Z = 0 then
PC — PC + 8-bit disp

PSW Flag Settings
Z | N|C |V |VT]|ST

JGT cadd
(11010010) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JH

JUMP IF HIGHER (UNSIGNED). Tests both
the zero flag and the carry flag. If either the
carry flag is clear or the zero flag is set,
control passes to the next sequential
instruction. If the carry flag is set and the zero
flag is clear, this instruction adds to the
program counter the offset between the end
of this instruction and the target label,
effecting the jump. The offset must be in
range of —128 to +127.

if C=1 AND Z = 0 then
PC — PC + 8-bit disp

PSW Flag Settings
Z | N|C |V |VT]|ST

JH cadd
(11011001) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JLE

JUMP IF SIGNED LESS THAN OR EQUAL.
Tests both the negative flag and the zero flag.
If both flags are clear, control passes to the
next sequential instruction. If either flag is set,
this instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —128 to +127.

ifN=10OR Z=1then
PC ~ PC + 8-hit disp

PSW Flag Settings
Zz N C V | VT | ST

JLE cadd
(11011010) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-23

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JLT

JUMP IF SIGNED LESS THAN. Tests the
negative flag. If the flag is clear, control
passes to the next sequential instruction. If
the negative flag is set, this instruction adds
to the program counter the offset between the
end of this instruction and the target label,
effecting the jump. The offset must be in the
range of —128 to +127.

if N =1 then
PC — PC + 8-bit disp

PSW Flag Settings
Z | N|C |V |VT]|ST

JLT cadd
(11011110) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JNC

JUMP IF CARRY FLAG IS CLEAR. Tests the
carry flag. If the flag is set, control passes to
the next sequential instruction. If the carry
flag is clear, this instruction adds to the
program counter the offset between the end
of this instruction and the target label,
effecting the jump. The offset must be in the
range of —128 to +127.

if C=0then
PC — PC + 8-bit disp

PSW Flag Settings
Z | N|C |V |VT|ST

JNC cadd
(11010011) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JNE

JUMP IF NOT EQUAL. Tests the zero flag. If
the flag is set, control passes to the next
sequential instruction. If the zero flag is clear,
this instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —128 to +127.

if Z=0then
PC — PC + 8-bit disp

PSW Flag Settings
Z | N|C |V |VT|ST

JNE cadd
(11010111) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-24

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JNH

JUMP IF NOT HIGHER (UNSIGNED). Tests
both the zero flag and the carry flag. If the
carry flag is set and the zero flag is clear,
control passes to the next sequential
instruction. If either the carry flag is clear or
the zero flag is set, this instruction adds to the
program counter the offset between the end
of this instruction and the target label,
effecting the jump. The offset must be in
range of —128 to +127.

if C=0OR Z =1then
PC — PC + 8-bit disp

PSW Flag Settings
Z | N|C |V |VT]|ST

JNH cadd
(11010001) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JNST

JUMP IF STICKY BIT FLAG IS CLEAR. Tests
the sticky bit flag. If the flag is set, control
passes to the next sequential instruction. If
the sticky bit flag is clear, this instruction adds
to the program counter the offset between the
end of this instruction and the target label,
effecting the jump. The offset must be in
range of —128 to +127.

if ST =0 then
PC — PC + 8-bit disp

PSW Flag Settings
Z | N|C |V |VT|ST

INST cadd
(11010000) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JNV

JUMP IF OVERFLOW FLAG IS CLEAR.
Tests the overflow flag. If the flag is set,
control passes to the next sequential
instruction. If the overflow flag is clear, this
instruction adds to the program counter the
offset between the end of this instruction and
the target label, effecting the jump. The offset
must be in range of —-128 to +127.

if V.= 0 then
PC ~ PC + 8-hit disp

PSW Flag Settings
Zz N C V | VT | ST

INV cadd
(11010101) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-25

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

INVT

JUMP IF OVERFLOW-TRAP FLAG IS
CLEAR. Tests the overflow-trap flag. If the
flag is set, this instruction clears the flag and
passes control to the next sequential
instruction. If the overflow-trap flag is clear,
this instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in range of —-128 to +127.

if VT =0 then
PC ~ PC + 8-hit disp

PSW Flag Settings
Z | N|C |V |VT|ST
— || — | =10 | =

INVT cadd
(11010100) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JST

JUMP IF STICKY BIT FLAG IS SET. Tests
the sticky bit flag. If the flag is clear, control
passes to the next sequential instruction. If
the sticky bit flag is set, this instruction adds
to the program counter the offset between the
end of this instruction and the target label,
effecting the jump. The offset must be in
range of —-128 to +127.

if ST = 1 then
PC ~ PC + 8-bit disp

PSW Flag Settings
Zz N C V | VT | ST

JST cadd
(11011000) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JV

JUMP IF OVERFLOW FLAG IS SET. Tests
the overflow flag. If the flag is clear, control
passes to the next sequential instruction. If
the overflow flag is set, this instruction adds
to the program counter the offset between the
end of this instruction and the target label,
effecting the jump. The offset must be in
range of —128 to +127.

if V=1 then
PC — PC + 8-bit disp

PSW Flag Settings
Z | N|C |V |VT|ST

JV cadd
(11011101) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-26

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
VT JUMP IF OVERFLOW-TRAP FLAG IS SET.
Tests the overflow-trap flag. If the flag is clear, | jyT cadd
control passes to the next sequential)
instruction. If the overflow-trap flag is set, this | (11011100) (disp)
instruction clears the flag and adds to the
program counter the offset betweenthe end | NOTE: The displacement (disp) is sign-
of this instruction and the target label, extended to 24 bits.
effecting the jump. The offset must be in
range of —-128 to +127.
if VT = 1 then
PC ~ PC + 8-hit disp
PSW Flag Settings
Z | N|C |V |VT|ST
— || — | =10 | =
LCALL LONG CALL. Pushes the contents of the
program counter (the return address) onto LCALL cadd
the stack, then adds to the program counter]))
the offset between the end of this instruction | (11101111) (disp-low) (disp-high)
and the target label, effecting the call. The
offset must be in the range of —32,768 to NOTE: The displacement (disp) is sign-
+32,767. extended to 24 bits in the 1-Mbyte
64-Kbyte mode: addressing mode. This displace-
SP « SP-2 ment may cause the program
(SP) « PC counter to cross a page boundary.
PC « PC + 16-hit disp
1-Mbyte mode:
SP ~ SP-4
(SP) «~ PC
PC — PC + 24-bit disp
PSW Flag Settings
Zz N C V | VT | ST
LD LOAD WORD. Loads the value of the source DEST, SRC
word operand into the destination operand. LD wreg, waop

(DEST) « (SRC)

PSW Flag Settings
Z | N|C |V |VT]|ST

(101000aa) (waop) (wreg)

A-27

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
LDB LOAD BYTE. Loads the value of the source DEST, SRC
byte operand into the destination operand. LDB breg, baop
(DEST) < (SRC) (101100aa) (baop) (breg)
PSW Flag Settings
Z | N|C |V |VT|ST
LDBSE LOAD BYTE SIGN-EXTENDED. Sign- DEST, SRC
extends the value of the source short- LDBSE wreg, baop
integer operand and loads it into the '
destination integer operand. (101111aa) (baop) (wreg)
(low byte DEST) « (SRC)
if DEST.15 = 1 then
(high word DEST) « OFFH
else
(high word DEST) « 0
end_if
PSW Flag Settings
Z | N | C |V |VT|ST
LDBZE LOAD BYTE ZERO-EXTENDED. Zero- DEST, SRC
extends the value of the source byte operand | | pgzE wreg, baop
and loads it into the destination word '
operand. (101011aa) (baop) (wreg)
(low byte DEST) « (SRC)
(high byte DEST) « 0
PSW Flag Settings
Z | N|C |V |VT|ST
LIMP LONG JUMP. Adds to the program counter
the offset between the end of this instruction | | jmyp cadd
and the target label, effecting the jump. The)))
offset must be in the range of —32,768 to (11100111) (disp-low) (disp-high)
+32,767.
64-Kbyte mode: NOTE: The displacement (disp) is sign-
PC « PC + 16-hit disp extended to 24 bits in the 1-Mbyte
1-Mbyte mode: addressing mode. This displace-
PC < PC + 24-bit disp ment may cause the program
counter to cross a page boundary.
PSW Flag Settings
Z | N | C |V |VT|ST
== =] =12

A-28

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

destination word operands, using unsigned
arithmetic, and adds the 32-bit result to the
value currently stored in the 40-bit accumu-
lator.

(ACC) — (ACC) x (SRC) + ACC

PSW Flag Settings
Z | N|C |V |VT|ST

Mnemonic Operation Instruction Format
MAC MULTIPLY UNSIGNED WORDS, SRC
(2 operands) | ACCUMULATE. Multiplies the source and MAC waop

(011011aa) (waop) (00)

MAC
(3 operands)

MULTIPLY UNSIGNED WORDS,
ACCUMULATE. Multiplies the two source
word operands, using unsigned arithmetic,
and adds the 32-bit result to the value
currently stored in the 40-bit accumulator.

(ACC) — (SRC1) x (SRC2) + ACC

PSW Flag Settings
Z | N | C |V |VT|ST

SRC1, SRC2
MAC wreg, waop
(010011aa) (waop) (wreg) (00)

MACR
(2 operands)

MULTIPLY UNSIGNED WORDS,
ACCUMULATE, ROTATE. Multiplies the
source and destination word operands, using
unsigned arithmetic, and adds the 32-bit
result to the value currently stored in the 40-
bit accumulator. The source (SRC) register
contents are relocated in memory to SRC
address + 2.

(ACC) — (ACC) x (SRC) + ACC and
(SRC) «— (SRC) + 2

PSW Flag Settings
Z | N|C |V |VT]|ST

SRC
MACR waopt
(011011aa) (waop) (04)

T The multiply-accumulate (MAC)
instructions that use the relocate function
do not support immediate addressing.

A-29

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

source word operands, using unsigned
arithmetic, and adds the 32-bit result to the
value currently stored in the 40-bit accumu-
lator. The source 2 (SRC2) register contents
are relocated in memory to SRC2 address +
2.

(ACC) — (SRCL1) x (SRC2) + ACC and
(SRC2) « (SRC2) + 2

PSW Flag Settings
Z | N|C |V |VT]|ST

Mnemonic Operation Instruction Format
MACR MULTIPLY UNSIGNED WORDS, SRC1, SRC2
(3 operands) | ACCUMULATE, ROTATE. Multiplies the two | pmaCR wreg, waopt

(010011aa) (waop) (wreg) (04)

T The multiply-accumulate (MAC)
instructions that use the relocate function
do not support immediate addressing.

MACRZ
(2 operands)

MULTIPLY UNSIGNED WORDS, ZERO

ACCUMULATOR, ACCUMULATE, ROTATE.

Multiplies the source and destination word
operands, using unsigned arithmetic, clears
the 40-bit accumulator, and stores the 32-bit
result to the accumulator. The source (SRC)
register contents are relocated in memory to
SRC address + 2.

temp « (ACC) x (SRC)
(ACC) <~ 0
(ACC) « temp and (SRC) « (SRC) +2

PSW Flag Settings
Zz N C V | VT | ST

SRC
MACRZ waop?
(011011aa) (waop) (0C)

T The multiply-accumulate (MAC)
instructions that use the relocate function
do not support immediate addressing.

MACRZ
(3 operands)

MULTIPLY UNSIGNED WORDS, ZERO
ACCUMULATOR, ACCUMULATE, ROTATE.
Multiplies the source and destination word
operands, using unsigned arithmetic, clears
the 40-bit accumulator, and stores the 32-bit
result to the accumulator. The source 2
(SRC2) register contents are relocated in
memory to SRC2 address + 2.

temp « (SRC1) x (SRC2)
(ACC) < 0
(ACC) — temp and (SRC2) « (SRC2) + 2

PSW Flag Settings
Zz N C V | VT | ST

SRC1, SRC2
MACRZ wreg, waopt
(010011aa) (waop) (wreg) (0C)

T The multiply-accumulate (MAC)
instructions that use the relocate function
do not support immediate addressing.

A-30

Int€|® INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format

MACZ MULTIPLY UNSIGNED WORDS, ZERO SRC
(2 operands) | ACCUMULATOR, A_CCL_JMULATE. Multiplies | macz waop

the source and destination word operands,
using unsigned arithmetic, clears the 40-bit | (011011aa) (waop) (08)
accumulator, and stores the 32-bit result to
the accumulator.

temp < (ACC) x (SRC)
(ACC) <~ 0
(ACC) « temp

PSW Flag Settings
Z | N | C |V |VT|ST

MACZ MULTIPLY UNSIGNED WORDS, ZERO SRC1, SRC2
(3 operands) | ACCUMULATOR, ACCUMULATE. Multiplies | pacz
the source and destination word operands,
using unsigned arithmetic, clears the 40-bit | (010011aa) (waop) (wreg) (08)
accumulator, and stores the 32-bit result to
the accumulator.

temp « (SRC1) x (SRC2)

(ACC) < 0

(ACC) « temp

wreg, waop

PSW Flag Settings
Z | N|C |V |VT]|ST

A-31

80296SA USER’S MANUAL

Table A-6. Instruction Set (Continued)

the range 0-31 (0—1FH) or as a register in
the range 32-255 (20—-FFH). The value in the
register must be in the range 0-31. The bit
pointer indicates the position of the bit that
will assume the most-significant bit position of
the low destination word (bit 15), the
destination sign bit. If the value in the
accumulator is greater (more positive) or less
(more negative) than the low destination word
(bits 0-15), then the low destination word will
be replaced by the full-scale positive
saturated value (7FFFH) or by the full-scale
negative saturated value (8000H).

count « (SRC)-15
temp « 31
do while temp # -1
If (SRC) > 15, then
(DEST) « ACC.temp ROTATE
RIGHT BY count
If (SRC) < 15, then
(DEST) « ACC.temp ROTATE
LEFT BY count
If (SRC) = 15, then
(DEST) « ACC.temp
temp « temp-1
end_while

PSW Flag Settings
Z | N|C |V |VT]|ST

Mnemonic Operation Instruction Format
MSAC MOVE SATURATED ACCUMULATOR. DEST, SRC
Rotates a 32-bit signed value from the 40-bit | \isac Ireg, breg
accumulator to a register or memory location
at a double-word boundary address using a | (00001101) (breg) (Ireg)
32-bit barrel shifter. The bit pointer (the SRC) | or
is specified either as an immediate value in MSAC Ireg, #pointer

(00001101) (pointer) (Ireg)

NOTE: The following table identifies the
instructions executed by opcode
ODH and the necessary setups.

Ireg.1 Ireg.0 Execute

0 0 SHLL

0 1 MVAC

1 0 Reserved
1 1 MSAC

A-32

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
MUL MULTIPLY INTEGERS. Multiplies the source DEST, SRC
(2 operands) | and destination integer operands, using MUL Ireg, waop

signed arithmetic, and stores the 32-bit result
into the destination long-integer operand.
The sticky bit flag is undefined after the
instruction is executed.

(DEST) « (DEST) x (SRC)

PSW Flag Settings
Z N C V | VT

ST

—|=1=1=1=1>

(11111110) (011011aa) (waop) (Ireg)

NOTE: A destination address in the range
00-0FH enables the multiply-
accumulate function. For exam-
ple, if the destination address is
08H, the accumulator is cleared
and then the results of the multiply
are added. However, if the desti-
nation address is O0H, the results
of the multiply are added to the
current contents of the accumula-
tor.

MUL
(3 operands)

MULTIPLY INTEGERS. Multiplies the two
source integer operands, using signed
arithmetic, and stores the 32-bit result into
the destination long-integer operand. The
sticky bit flag is undefined after the instruction
is executed.

(DEST) « (SRC1) x (SRC2)

PSW Flag Settings
Z N C V | VT | ST

—|=1=1=1=1>

DEST, SRC1, SRC2
MUL Ireg, wreg, waop
(11111110) (010011aa) (waop) (wreg) (Ireg)

NOTE: A destination address in the range
00-0FH enables the multiply-
accumulate function. For exam-
ple, if the destination address is
08H, the accumulator is cleared
and then the results of the multiply
are added. However, if the desti-
nation address is 00H, the results
of the multiply are added to the
current contents of the accumula-
tor.

MULB
(2 operands)

MULTIPLY SHORT-INTEGERS. Multiplies
the source and destination short-integer
operands, using signed arithmetic, and stores
the 16-bit result into the destination integer
operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) « (DEST) x (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST

— |- =]=]=]>

DEST, SRC
MULB wreg, baop
(11111110) (011111aa) (baop) (wreg)

A-33

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

MULB
(3 operands)

MULTIPLY SHORT-INTEGERS. Multiplies
the two source short-integer operands,
using signed arithmetic, and stores the 16-bit
result into the destination integer operand.
The sticky bit flag is undefined after the
instruction is executed.

(DEST) « (SRC1) x (SRC2)

PSW Flag Settings

z|N|c|v|vr|sT
— — | 2

DEST, SRC1, SRC2
MULB wreg, breg, baop
(11111110) (010111aa) (baop) (breg) (wreg)

MULU
(2 operands)

MULTIPLY WORDS, UNSIGNED. Multiplies
the source and destination word operands,
using unsigned arithmetic, and stores the 32-
bit result into the destination double-word
operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) « (DEST) x (SRC)

PSW Flag Settings

z|N|c|v |vr]|sT
— — | 2

DEST, SRC
MULU Ireg, waop
(011011aa) (waop) (Ireg)

NOTE: A destination address in the range
00-0FH enables the multiply-
accumulate function. For exam-
ple, if the destination address is
08H, the accumulator is cleared
and then the results of the multiply
are added. However, if the desti-
nation address is 00H, the results
of the multiply are added to the
current contents of the accumula-
tor.

MULU
(3 operands)

MULTIPLY WORDS, UNSIGNED. Multiplies
the two source word operands, using
unsigned arithmetic, and stores the 32-bit
result into the destination double-word
operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) « (SRC1) x (SRC2)

PSW Flag Settings

z|N|c|v|vr]|sT
— — | 2

DEST, SRC1, SRC2
MULU Ireg, wreg, waop
(010011aa) (waop) (wreg) (Ireg)

NOTE: A destination address in the range
00-0FH enables the multiply-
accumulate function. For exam-
ple, if the destination address is
08H, the accumulator is cleared
and then the results of the multiply
are added. However, if the desti-
nation address is 00H, the results
of the multiply are added to the
current contents of the accumula-
tor.

A-34

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

MULUB
(2 operands)

MULTIPLY BYTES, UNSIGNED. Multiplies
the source and destination operands, using
unsigned arithmetic, and stores the word
result into the destination operand. The sticky
bit flag is undefined after the instruction is
executed.

(DEST) « (DEST) x (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST

— |- =]=]=]>

DEST, SRC
MULUB wreg, baop
(011111aa) (baop) (wreg)

MULUB
(3 operands)

MULTIPLY BYTES, UNSIGNED. Multiplies
the two source byte operands, using
unsigned arithmetic, and stores the word
result into the destination operand. The sticky
bit flag is undefined after the instruction is
executed.

(DEST) « (SRC1) x (SRC2)

PSW Flag Settings
Z | N|C |V |VT]|ST

— = =|=|=1>

DEST, SRC1, SRC2
MULUB wreg, breg, baop
(010111aa) (baop) (breg) (wreg)

A-35

80296SA USER’S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
MVAC MOVE ACCUMULATOR. Allows a 32-bit DEST, SRC
signed value to be rotated from the 40-bit MVAC Ireg, breg
accumulator to a register or memory location '
at a double-word boundary address using a | (00001101) (breg) (Ireg)
32-bit barrel shifter. The bit pointer (the SRC) | or
is specified either as an immediate value in MVAC lreg, #pointer
the range 0-31 (0—1FH) or as a register in "
the range 32-255 (20-FFH). The value in the | (00001101) (pointer) (Ireg)
register must be in the range 0-31. The bit
pointer indicates the position of the bit that NOTE: The following table identifies the
will assume the most-significant bit position of instructions executed by opcode
the low destination word (bit 15), the ODH and the necessary setups.
destination sign bit.

Ireg.1 Ireg.0 Execute
count « (SRC)-15 0 0 SHLL
temp « 31 0 1 MVAC
do while temp # -1

If (SRC) > 15, then 1 0 Reserved
(DEST) « ACC.temp ROTATE 1 1 MSAC
RIGHT BY count
If (SRC) < 15, then
(DEST) « ACC.temp ROTATE
LEFT BY count
If (SRC) = 15, then
(DEST) « ACC.temp
temp « temp-1
end_while
PSW Flag Settings
Z | N|C |V |VT]|ST
NEG NEGATE INTEGER. Negates the value of the
integer operand. NEG wreg
(DEST) ~ —(DEST) (00000011) (wreg)
PSW Flag Settings
Z | N|C |V |VT]|ST
O| 0|00 T —
NEGB NEGATE SHORT-INTEGER. Negates the
value of the short-integer operand. NEGB breg
(DEST) ~ —(DEST) (00010011) (breg)
PSW Flag Settings
Z | N|C |V |[VT]|ST
O| 0|00 T —

A-36

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

NOP

NO OPERATION. Does nothing. Control
passes to the next sequential instruction.

PSW Flag Settings
Z | N|C |V |VT|ST

NOP
(11111101)

NORML

NORMALIZE LONG-INTEGER. Normalizes
the source (leftmost) long-integer operand.
(That is, it shifts the operand to the left until
its most significant bit is “1” or until it has
performed 31 shifts). If the most significant
bit is still “0” after 31 shifts, the instruction
stops the process and sets the zero flag. The
instruction stores the actual number of shifts
performed in the destination (rightmost)
operand.

(COUNT) < 0
do while
(MSB (DEST) = 0) AND (COUNT) < 31)
(DEST) ~ (DEST) x 2
(COUNT) « (COUNT) +1
end_while

PSW Flag Settings
Z | N | C |V |VT|ST
0 ? 0O |—|— | —

SRC, DEST
NORML lIreg, breg
(00001111) (breg) (Ireg)

NOT

COMPLEMENT WORD. Complements the
value of the word operand (replaces each “1”
with a “0” and each “0” with a “1").

(DEST) « NOT (DEST)

PSW Flag Settings
Z | N|C |V |VT]|ST
Oo|o0|]o 0| — | —

NOT wreg
(00000010) (wreg)

NOTB

COMPLEMENT BYTE. Complements the
value of the byte operand (replaces each “1”
with a “0” and each “0” with a “1").

(DEST) — NOT (DEST)

PSW Flag Settings
Z N | C |V |VT|ST
0 0 0 0| — | —

NOTB breg
(00010010) (breg)

A-37

80296SA USER’S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

OR

LOGICAL OR WORDS. ORs the source word
operand with the destination word operand
and replaces the original destination operand
with the result. The result has a “1” in each bit
position in which either the source or
destination operand had a “1”.

(DEST) — (DEST) OR (SRC)

PSW Flag Settings
Z N | C |V |VT|ST
0 0 0 0| — | —

DEST, SRC
OR wreg, waop
(100000aa) (waop) (wreg)

ORB

LOGICAL OR BYTES. ORs the source byte
operand with the destination byte operand
and replaces the original destination operand
with the result. The result has a “1” in each bit
position in which either the source or
destination operand had a “1”.

(DEST) « (DEST) OR (SRC)

PSW Flag Settings
Z | N|C |V |VT]|ST
Oo|o0|]o 0| — | —

DEST, SRC
ORB breg, baop
(100100aa) (baop) (breg)

POP

POP WORD. Pops the word on top of the
stack and places it at the destination
operand.

(DEST) « (SP)

SP « SP+2

PSW Flag Settings
Z | N|C |V |VT]|ST

POP waop
(110011aa) (waop)

A-38

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

POPA

POP ALL. This instruction is used instead of
POPF, to support the eight additional
interrupts. It pops two words off the stack and
places the first word into the
INT_MASK1/WSR register pair and the
second word into the PSW/INT_MASK
register-pair. This instruction increments the
SP by 4. Interrupt calls cannot occur
immediately following this instruction.

INT_MASKL/WSR « (SP)
SP — SP+2
PSW/INT_MASK « (SP)
SP — SP+2

PSW Flag Settings
z N | C |V |VT|ST
O 0 O 0 0 0

POPA
(11110101)

POPF

POP FLAGS. Pops the word on top of the
stack and places it into the PSW. Interrupt
calls cannot occur immediately following this
instruction.

(PSW)/INT_MASK « (SP)
SP « SP+2

PSW Flag Settings
Z N | C |V |VT|ST
0 0 0 0 0 0

POPF
(11110011)

PUSH

PUSH WORD. Pushes the word operand
onto the stack.

SP « SP-2

(SP) « (DEST)

PSW Flag Settings
Z | N|C |V |VT]|ST

PUSH waop
(110010aa) (waop)

A-39

80296SA USER’S MANUAL

Table A-6. Instruction Set (Continued)

intel.

PSW Flag Settings
Z | N|C |V |VT]|ST

Mnemonic Operation Instruction Format
PUSHA PUSH ALL. This instruction is used instead of
PUSHF, to support the eight additional PUSHA
interrupts. It pushes two words —
PSW/INT_MASK and INT_MASKL/WSR — | (11110100)
onto the stack.
This instruction clears the PSW, INT_MASK,
and INT_MASK1 registers and decrements
the SP by 4. Interrupt calls cannot occur
immediately following this instruction.
SP ~ SP-2
(SP) « PSWI/INT_MASK
PSW/INT_MASK « 0
SP « SP-2
(SP) « INT_MASK1/WSR
INT_MASK1 « 0
PSW Flag Settings
N | C |V |VT|ST
0 0 0 0 0 0
PUSHF PUSH FLAGS. Pushes the PSW onto the top
of the stack, then clears it. Clearing the PSW | pysHE
disables interrupt servicing. Interrupt calls
cannot occur immediately following this (11110010)
instruction.
SP « SP-2
(SP) « PSWI/INT_MASK
PSW/INT_MASK « 0
PSW Flag Settings
N | C |V |VT|ST
0 0 0 0 0 0
RET RETURN FROM SUBROUTINE. Pops the
PC off the top of the stack. RET
64-Kbyte mode: 1-Mbyte mode: (11110000)
PC « (SP) PC « (SP)
SP « SP+2 SP «~ SP+4

A-40

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

RETI

RETURN FROM INTERRUPT. Pops the PC
off the top of the stack. If in 1-Mbyte mode, it
also pops the PSW off the stack. Resets
highest priority bit set in the in-progress
(IN_PROGX) register. The RETI instruction
must be used when priority programming is
enabled.

64-Kbyte mode:
PC < (SP)
SP « SP+2

1-Mbyte mode:
PC/PSW « (SP)
SP « SP+4

PSW Flag Settings
Z | N|C |V |VT]|ST
Oo|0 (00|00

RETI
(11100101)

RPT

REPEAT NEXT INSTRUCTION. The
instruction following is repeated x number of
times based on the word count value in the
repeat count (RPT_CNT) register, located at
SFR address 04H. The RPT and repeated
instruction will complete before interrupts are
allowed. The maximum count possible is
65,536, achieved by initializing a count of
0000H to the RPT_CNT register.

(RPT_CNT) « (SRC)

PSW Flag Settings
Z | N|C |V |VT]|ST

SRC
RPT waop'
(010000aa) (waop) (00) (04)

T The RPT, RPTxxx, RPTI and RPTIxxx
instructions do not support indexed
addressing.

A-41

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

repeated x number of times based on the
word count value in the repeat count
(RPT_CNT) register, located at SFR address
04H. The RPTI instruction may be interrupted
between iterations of the repeated
instruction. The maximum count possible is
65,536, achieved by initializing a count of
0000H to the RPT_CNT register.

(RPT_CNT) < (SRC)

PSW Flag Settings
Zz N C V | VT | ST

Mnemonic Operation Instruction Format
RPTxxx REPEAT NEXT INSTRUCTION, SRC
CONDITIONAL. The in_struction following is RPTxxx waopt
repeated x number of times based on the
word count value in the repeat count (010000aa) (waop) (wreg) (04)
(RPT_CNT) register, located at SFR address
O4H, or until the specified condition (xxx) is RPTxxx wreg(H)
satisfied. The RPTxxx and repeated
instruction will complete before interrupts are RPTNST 10
allowed. The maximum count possible is RPTNH 1
65,536, achieved by initializing a count of RPTGT 12
0000H to the RPT_CNT register. RPTNC 13
RPTNVT 14
RPTGE 16
PSW Flag Settings RPTNE 17
Z|N|C|V |vT|sT RPTST 18
RPTH 19
S S S E— — — RPTLE 1A
RPTC 1B
RPTVT 1Cc
RPTV 1D
RPTLT 1E
RPTE 1F
T The RPT, RPTxxx, RPTI and RPTIxxx
instructions do not support indexed
addressing.
RPTI REPEAT NEXT INSTRUCTION, SRC
INTERRUPTIBLE. The instruction following is | gpTy waop'

(010000aa) (waop) (20) (04)

T The RPT, RPTxxx, RPTI and RPTIxxx
instructions do not support indexed
addressing.

A-42

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

the PC to FF2080H, and the pins and SFRs
to their reset values. Executing this
instruction causes the RESET# pin to be
pulled low for 16 state times.

SFR « Reset Status
Pin — Reset Status
PSW « 0

PC — FF2080H

PSW Flag Settings
Z N | C |V |VT|ST
0 0 0 0 0 0

Mnemonic Operation Instruction Format
RPTIxxx REPEAT NEXT INSTRUCTION, SRC
CONDITIONAL a_md INTERRUPTIBLE. The RPTIxxx waop'
instruction following is repeated x number of
times based on the word count value in the | (010000aa) (waop) (wreg) (04)
repeat count (RPT_CNT) register, located at
SFR ‘a_ddress 04H, or u_ntiI the specified RPTIxxx wreg(H)
condition (xxx) is satisfied. The RPTIxxx
instruction may be interrupted between RPTINST 30
iterations of the repeated instruction. The RPTINH 31
maximum count possible is 65,536, achieved RPTIGT 32
by initializing a count of 0000H to the RPTINC 33
RPT_CNT register. RPTINVT 34
RPTINV 35
(RPT_CNT) « (SRC) RPTIGE 36
RPTINE 37
PSW Flag Settings RPTIST 38
Z|N|C|V |vT|sT RPTIH 39
RPTILE 3A
B S S E—— —— RPTIC 3B
RPTIVT 3C
RPTIV 3D
RPTILT 3E
RPTIE 3F
T The RPT, RPTxxx, RPTI and RPTIxxx
instructions do not support indexed
addressing.
RST RESET SYSTEM. Initializes the PSW to zero,

RST
(11111111)

A-43

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

with a value in the range of 0 to 31 (1FH),
inclusive. The right bits of the result are filled
with zeros. The last bit shifted out is saved in
the carry flag.

temp < (COUNT)

do while temp # 0
C « High order bit of (DEST)
(DEST) « (DEST) x 2
temp « temp-1

end_while

PSW Flag Settings
Z | N|C |V |VT]|ST
Oo|o|0|0 T =

Mnemonic Operation Instruction Format
SCALL SHORT CALL. Pushes the contents of the
program counter (the return address) onto SCALL cadd
the stack, then adds to the program counter .
the offset between the end of this instruction | (00101xxx) (disp-low)
and the target label, effecting the call. The
offset must be in the range of —1024 to NOTE: The displacement (disp) is sign-
+1023. extended to 16-bits in the 64-
64-Kbyte mode: 1-Mbyte mode: Kbyte addressing mode and to 24
SP « SP-2 SP « SP-4 bits in the 1-Mbyte addressing
(SP) « PC (SP) « PC mode. This displacement may
PC «~ PC +11-bitdisp PC « PC +11-bit disp cause the program counter to
cross a page boundary in 1-Mbyte
PSW Flag Settings mode.
VA N C V | VT | ST
SETC SET CARRY FLAG. Sets the carry flag.
Ce1 SETC
(11111001)
PSW Flag Settings
Z | N | C |V |VT|ST
— | — 1 — | — | —=
SHL SHIFT WORD LEFT. Shifts the destination
word operand to the left as many times as SHL wreg, #count
specified by the count operand. The count '
may be specified either as an immediate (00001001) (count) (wreg)
value in the range of 0 to 15 (OFH), inclusive, | or
or as the content of any register (L0—0FFH) SHL wreg, breg

(00001001) (breg) (wreg)

A-44

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

SHLB

SHIFT BYTE LEFT. Shifts the destination
byte operand to the left as many times as
specified by the count operand. The count
may be specified either as an immediate
value in the range of 0 to 15 (OFH), inclusive,
or as the content of any register (L0—OFFH)
with a value in the range of 0 to 31 (1FH),
inclusive. The right bits of the result are filled
with zeros. The last bit shifted out is saved in
the carry flag.

temp < (COUNT)

do while temp # 0
C « High order bit of (DEST)
(DEST) « (DEST) x 2
temp « temp-1

end_while

PSW Flag Settings
Z | N|C |V |VT]|ST
o|o|0| 0 T —

SHLB breg, #count
(00011001) (count) (breg)
or

SHLB breg, breg
(00011001) (breg) (breg)

SHLL

SHIFT DOUBLE-WORD LEFT. Shifts the
destination double-word operand to the left
as many times as specified by the count
operand. The count may be specified either
as an immediate value in the range of 0 to 15
(OFH), inclusive, or as the content of any
register (10—0FFH) with a value in the range
of 0 to 31 (1FH), inclusive. The right bits of
the result are filled with zeros. The last bit
shifted out is saved in the carry flag.

temp < (COUNT)

do while temp # 0
C « High order bit of (DEST)
(DEST) « (DEST) x 2
temp « temp-1

end_while

PSW Flag Settings
Z | N|C |V |VT]|ST
Oo|o|0| 0 T | =

SHLL Ireg, #count
(00001101) (count) (Ireg)
or

SHLL Ireg, breg
(00001101) (breg) (Ireg)

NOTE: The following table identifies the
instructions executed by opcode
ODH and the necessary setups.

Ireg.1 Ireg.0
0 0
0 1
1 0
1 1

Execute
SHLL
MVAC
Reserved
MSAC

A-45

80296SA USER’S MANUAL

Table A-6. Instruction Set (Continued)

many times as specified by the count
operand. The count may be specified either
as an immediate value in the range of 0 to 15
(OFH), inclusive, or as the content of any
register (10-OFFH) with a value in the range
of 0 to 31 (1FH), inclusive. If the original high
order bit value was “0,” zeros are shifted in. If
the value was “1,” ones are shifted in. The
last bit shifted out is saved in the carry flag.

temp < (COUNT)

do while temp # 0
C « Low order bit of (DEST)
(DEST) ~ (DEST)/2
temp « temp-1

end_while

PSW Flag Settings
Z | N|C |V |VT]|ST
0| 0|0 0| — | O

Mnemonic Operation Instruction Format
SHR LOGICAL RIGHT SHIFT WORD. Shifts the
destination word op(_erand to the right as SHR wreg, #count
many times as specified by the count
operand. The count may be specified either | (00001000) (count) (wreg)
as an immediate value in the range of 0to 15 | or
(OF_H), inclusive, or as the content of any SHR wreg, breg
register (10—OFFH) with a value in the range
of 0 to 31 (1FH), inclusive. The left bits of the | (00001000) (breg) (wreg)
result are filled with zeros. The last bit shifted
out is saved in the carry flag. NOTES: This instruction clears the
temp < (COUNT) sticky bit flag at the beginning
do while temp Z 0 of the instruction. If at any time
C « Low order bit of (DEST) during the shift a “1” is shifted
(DEST) « (DEST)/2 into the carry flag and another
temp < temp-1 shift cycle occurs, the instruc-
end_while tion sets the sticky bit flag.
- In this operation, (DEST)/2 rep-
PSW Flag Settings resents unsigned division.
Y4 N C V | VT | ST
O 0 O 0| — | O
SHRA ARITHMETIC RIGHT SHIFT WORD. Shifts
the destination word operand to the right as SHRA wreg, #count

(00001010) (count) (wreg)
or

SHRA wreg, breg
(00001010) (breg) (wreg)

NOTES: This instruction clears the
sticky bit flag at the beginning
of the instruction. If at any time
during the shift a “1” is shifted
into the carry flag and another
shift cycle occurs, the instruc-

tion sets the sticky bit flag.

In this operation, (DEST)/2 rep-
resents signed division.

A-46

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
SHRAB ARITHMETIC RIGHT SHIFT BYTE. Shifts the
destination byte operand to the right as many | syraAB breg, #count
times as specified by the count operand. The
count may be specified either as an (00011010) (count) (breg)
immediate value in the range of 0 to 15 or
(OFH), inclusive, or as the content of any SHRAB breg, breg
register (10—OFFH) with a value in the range
of 0 to 31 (LFH), inclusive. If the original high | (00011010) (breg) (breg)
order bit value was “0,” zeros are shifted in. If
the value was “1,” ones are shifted in. The NOTES: This instruction clears the
last bit shifted out is saved in the carry flag. sticky bit flag at the beginning
temp < (COUNT) of the instruction. If at any time
do while temp # 0 during the shift a “1” is shifted
C « Low order bit of (DEST) into the carry flag and another
(DEST) ~ (DEST)/2 shift cycle occurs, the instruc-
temp « temp-1 tion sets the sticky bit flag.
end_while
In this operation, (DEST)/2 rep-
PSW Flag Settings resents signed division.
z N C V | VT | ST
O g O 0 —_ O
SHRAL ARITHMETIC RIGHT SHIFT DOUBLE-
WORD. Shifts the destination double-word SHRAL Ireg, #count
operand to the right as many times as
specified by the count operand. The count (00001110) (count) (Ireg)
may be specified either as an immediate or
value in the range of 0 to 15 (OFH), inclusive, | gyrAL Ireg, breg

or as the content of any register (L0—OFFH)
with a value in the range of 0 to 31 (1FH),
inclusive. If the original high order bit value
was “0,” zeros are shifted in. If the value was
“1,” ones are shifted in.

temp < (COUNT)

do while temp # 0
C « Low order bit of (DEST)
(DEST) ~ (DEST)/2
temp « temp-1

end_while

PSW Flag Settings
Z | N|C |V |VT]|ST
0| 0|0 0| — | O

(00001110) (breg) (Ireg)

NOTES:

This instruction clears the
sticky bit flag at the beginning
of the instruction. If at any time
during the shift a “1” is shifted
into the carry flag and another
shift cycle occurs, the instruc-
tion sets the sticky bit flag.

In this operation, (DEST)/2 rep-
resents signed division.

A-47

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

any register (10-0FFH) with a value in the
range of 0 to 31 (1FH), inclusive. The left bits
of the result are filled with zeros. The last bit
shifted out is saved in the carry flag.

temp < (COUNT)

do while temp # 0
C « Low order bit of (DEST)
(DEST) « (DEST)/2)
temp « temp-1

end_while

PSW Flag Settings
Z | N|C |V |VT]|ST
0 0 0 0| — | O

Mnemonic Operation Instruction Format
SHRB LOGICAL RIGHT SHIFT BYTE. Shifts the

destination byte operand to the right as many | syrp breg, #count

times as specified by the count operand. The '

count may be specified either as an (00011000) (count) (breg)

immediate value in the range of 0 to 15 or

(OF_H), inclusive, or as the content of any SHRB breg, breg

register (10—OFFH) with a value in the range

of 0 to 31 (1FH), inclusive. The left bits of the | (00011000) (breg) (breg)

result are filled with zeros. The last bit shifted

out is saved in the carry flag. NOTES: This instruction clears the

temp < (COUNT) sticky bit flag at the beginning

do while temp Z 0 of the instruction. If at any time
C « Low order bit of (DEST) during the shift a “1” is shifted
(DEST) « (DEST)/2 into the carry flag and another
temp « temp-1 shift cycle occurs, the instruc-

end_while tion sets the sticky bit flag.

PSW Flag Settings In this operation, (DEST)/2 rep-
7 N C v VT | sT resents unsigned division.
O 0 O 0| — | O
SHRL LOGICAL RIGHT SHIFT DOUBLE-WORD.

Shift_s the destinati(_)n double—worq operandto | gyRL Ireg, #count

the right as many times as specified by the

count operand. The count may be specified | (00001100) (count) (Ireg)

either as an immediate value in the range of 0 | or

to 15 (OFH), inclusive, or as the content of SHRL Ireg, breg

(00001100) (breg) (Ireg)

NOTES: This instruction clears the
sticky bit flag at the beginning
of the instruction. If at any time
during the shift a “1” is shifted
into the carry flag and another
shift cycle occurs, the instruc-

tion sets the sticky bit flag.

In this operation, (DEST)/2 rep-
resents unsigned division.

A-48

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
SIMP SHORT JUMP. Adds to the program counter
the offset between the end_ of this _instruction SIMP cadd
and the target label, effecting the jump. The .
offset must be in the range of —1024 to (00100xxx) (disp-low)
+1023, inclusive.
PC « PC + 11-bit disp NOTE: The displacement (disp) is sign-
extended to 16 bits in the 64-
PSW Flag Settings Kbyte addressing mode and to 24
bits in the 1-Mbyte addressing
Z N ClV |VvT|ST mode. This displacement may
— |- —1—1— cause the program counter to
cross a page boundary in 1-Mbyte
mode.
SKIP TWO BYTE NO-OPERATION. Does nothing.
_Control'passe_s to the next sequential _ SKIP breg
instruction. This is actually a two-byte NOP in
which the second byte can be any value and | (00000000) (breg)
is simply ignored.
PSW Flag Settings
Z N C V | VT | ST
SMAC MULTIPLY SIGNED WORDS, SRC
(2 operands) | ACCUMULATE. Multiplies the source and SMAC waop

destination word operands, using signed
arithmetic, and adds the 32-bit result to the
value currently stored in the 40-bit accumu-
lator.

(ACC) — (ACC) x (SRC) + ACC

PSW Flag Settings
Z | N|C |V |VT]|ST

— = =|=|=12

(011011aa) (waop) (01)

SMAC
(3 operands)

MULTIPLY SIGNED WORDS,
ACCUMULATE. Multiplies the two source
word operands, using signed arithmetic, and
adds the 32-bit result to the value currently
stored in the 40-bit accumulator.

(ACC) — (SRC1) x (SRC2) + ACC

PSW Flag Settings
Z | N | C |V |VT|ST

— — — — — ?

SRC1, SRC2
SMAC wreg, waop
(010011aa) (waop) (wreg) (01)

A-49

80296SA USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

SMACR
(2 operands)

MULTIPLY SIGNED WORDS,
ACCUMULATE, ROTATE. Multiplies the
source and destination word operands, using
signed arithmetic, and adds the 32-bit result
to the value currently stored in the 40-bit
accumulator. The source (SRC) register
contents are relocated in memory to SRC
address + 2.

(ACC) — (ACC) x (SRC) + ACC and
(SRC) « (SRC) + 2

PSW Flag Settings
Z | N|C |V |VT]|ST

— — — — — ?

SRC
SMACR waopt
(011011aa) (waop) (05)

T The multiply-accumulate (MAC)
instructions that use the relocate function
do not support immediate addressing.

SMACR
(3 operands)

MULTIPLY SIGNED WORDS,
ACCUMULATE, ROTATE. Multiplies the two
source word operands, using signed
arithmetic, and adds the 32-bit result to the
value currently stored in the 40-bit accumu-
lator. The source 2 (SRC2) register contents
are relocated in memory to SRC2 address +
2.

(ACC) — (SRC1) x (SRC2) + ACC and
(SRC2) « (SRC2) + 2

PSW Flag Settings
Z | N|C |V |VT]|ST

— == =|=12

SRC1, SRC2
SMACR wreg, waopt
(010011aa) (waop) (wreg) (05)

T The multiply-accumulate (MAC)
instructions that use the relocate function
do not support immediate addressing.

SMACRZ
(2 operands)

MULTIPLY SIGNED WORDS, ZERO
ACCUMULATOR, ACCUMULATE, ROTATE.
Multiplies the source and destination word
operands, using signed arithmetic, clears the
40-bit accumulator, and stores the 32-bit
result to the accumulator. The source (SRC)
register contents are relocated in memory to
SRC address + 2.

temp — (ACC) x (SRC)
(ACC) « 0
(ACC) — temp and (SRC) — (SRC) + 2

PSW Flag Settings
Z | N|C |V |VT]|ST

— == =|=12

SRC
SMACRZ waop'
(011011aa) (waop) (0D)

T The multiply-accumulate (MAC)
instructions that use the relocate function
do not support immediate addressing.

A-50

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
SMACRZ MULTIPLY SIGNED WORDS, ZERO SRC1, SRC2
(3 operands) | ACCUMULATOR, ACCUMULATE, ROTATE. | gmACRZ wreg, waop®

Multiplies the source and destination word
operands, using signed arithmetic, clears the
40-bit accumulator, and stores the 32-bit
result to the accumulator. The source 2
(SRC2) register contents are relocated in
memory to SRC2 address + 2.

temp « (SRC1) x (SRC2)
(ACC) < 0
(ACC) — temp and (SRC2) « (SRC2) + 2

PSW Flag Settings
Zz N C V | VT | ST

— |- =]=]=]>

(010011aa) (waop) (wreg) (OD)

T The multiply-accumulate (MAC)
instructions that use the relocate function
do not support immediate addressing.

SMACZ
(2 operands)

MULTIPLY SIGNED WORDS, ZERO
ACCUMULATOR, ACCUMULATE. Multiplies
the source and destination word operands,
using signed arithmetic, clears the 40-bit
accumulator, and stores the 32-bit result to
the accumulator.

temp « (ACC) x (SRC)

(ACC) < 0

(ACC) « temp

PSW Flag Settings
Z | N|C |V |VT]|ST

— == =|=12

SRC
SMACZ waop
(011011aa) (waop) (09)

SMACZ
(3 operands)

MULTIPLY SIGNED WORDS, ZERO
ACCUMULATOR, ACCUMULATE. Multiplies
the source and destination word operands,
using signed arithmetic, clears the 40-bit
accumulator, and stores the 32-bit result to
the accumulator.

temp « (SRC1) x (SRC2)

(ACC) < 0

(ACC) « temp

PSW Flag Settings
Z | N|C |V |VT]|ST

— == =|=12

SRC1, SRC2
SMACZ wreg, waop
(010011aa) (waop) (wreg) (09)

A-51

80296SA USER’S MANUAL

Table A-6. Instruction Set (Continued)

operand, stores the result in the destination
operand, and sets the carry flag as the
complement of borrow.

(DEST) « (DEST) - (SRC)

PSW Flag Settings
Z | N|C |V |VT
0 0 0 0 1

ST

Mnemonic Operation Instruction Format
ST STORE WORD. Stores the value of the SRC, DEST
source (_Ieftm_ost) word operand into the ST wreg, waop
destination (rightmost) operand.
(110000aa) (waop) (wreg)
(DEST) «~ (SRC)
PSW Flag Settings
Z | N|C |V |VT|ST
STB STORE BYTE. Stores the value of the source SRC, DEST
(leftmost) byte operand into the destination | g7g breg, baop
(rightmost) operand. '
(110001aa) (baop) (breg)
(DEST) «~ (SRC)
PSW Flag Settings
Z | N|C |V |VT|ST
SUB SUBTRACT WORDS. Subtracts the source DEST, SRC
(2 operands) | word operand from the destination word SUB wreg, waop

(011010aa) (waop) (wreg)

SUB
(3 operands)

SUBTRACT WORDS. Subtracts the first
source word operand from the second, stores
the result in the destination operand, and sets
the carry flag as the complement of borrow.

(DEST) « (SRC1) - (SRC2)

PSW Flag Settings
Z | N|C |V |VT
0 0 0 0 1

ST

DEST, SRC1, SRC2

SUB Dwreg, Swreg, waop

(010010aa) (waop) (Swreg) (Dwreg)

A-52

Int€|® INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
SUBB SUBTRACT BYTES. Subtracts the source DEST, SRC
(2 operands) | byte operand from the destination byte SUBB breg, baop
operand, stores the result in the destination '
operand, and sets the carry flag as the (011110aa) (baop) (breg)

complement of borrow.
(DEST) ~ (DEST) - (SRC)

PSW Flag Settings
Z | N|C |V |VT]|ST
o|o|0| 0 T —

SUBB SUBTRACT BYTES. Subtracts the first DEST, SRC1, SRC2
(3 operands) | source byte operand from the second, stores

h L SUBB
the result in the destination operand, and sets
the carry flag as the complement of borrow. | (0101102a) (baop) (Sbreg) (Dbreg)

(DEST) « (SRC1) - (SRC2)

Dbreg, Sbreg, baop

PSW Flag Settings
Z | N | C |V |VT|ST
0 0 0 0 | —

SUBC SUBTRACT WORDS WITH BORROW. DEST, SRC
Subtracts the source word operand from the | gygc
destination word operand. If the carry flag
was clear, SUBC subtracts 1 from the result. | (101010aa) (waop) (wreg = ACC_02)
It stores the result in the destination operand
and sets the carry flag as the complement of
borrow. If the accumulator (ACC) is the desti-
nation, the subtraction will conform to the
accumulator control and status (ACC_STAT)
register requirements for saturation.

(DEST) « (DEST) - (SRC) — (1-C)

wreg, waop

PSW Flag Settings
Z | N | C |V |VT|ST
! 0 0 0 | —

A-53

80296SA USER’S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

SUBCB

SUBTRACT BYTES WITH BORROW.
Subtracts the source byte operand from the
destination byte operand. If the carry flag was
clear, SUBCB subtracts 1 from the result. It
stores the result in the destination operand
and sets the carry flag as the complement of
borrow.

(DEST) « (DEST) - (SRC) — (1-C)

PSW Flag Settings
Z | N|C |V |VT]|ST
! o0 |0 T —

DEST, SRC
SUBCB breg, baop
(101110aa) (baop) (breg)

TIIMP

TABLE INDIRECT JUMP. Causes execution
to continue at an address selected from a
table of addresses.

The first word register, TBASE, contains the
16-bit address of the beginning of the jump
table. TBASE can be located in RAM up to
FEH without windowing or above FFH with
windowing. The jump table itself can be
placed at any nonreserved memory location
on a word boundary in page FFH.

The second word register, INDEX, contains
the 16-bit address that points to a register
containing a 7-bit value. This value is used to
calculate the offset into the jump table. Like
TBASE, INDEX can be located in RAM up to
FEH without windowing or above FFH with
windowing. Note that the 16-bit address
contained in INDEX is absolute; it disregards
any windowing that may be in effect when the
TIIMP instruction is executed.

The byte operand, #MASK, is 7-bitimmediate
data to mask INDEX. #MASK is ANDed with
INDEX to determine the offset (OFFSET).
OFFSET is multiplied by two, then added to
the base address (TBASE) to determine the
destination address (DEST X) in page FFH.

[INDEX] AND #MASK = OFFSET
(2 x OFFSET) + TBASE = DEST X
PC « (DEST X)

PSW Flag Settings
Z | N|C |V |VT]|ST

TIIMP TBASE, [INDEX], #MASK
(11100010) [INDEX] (#MASK) (TBASE)

NOTE: TIIJMP multiplies OFFSET by two
to provide for word alignment of
the jump table.

A-54

Int€|® INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
TRAP SOFTWARE TRAP. This instruction causes
an interrupt call that is vectored through TRAP

location FF2010H. The operation of this
instruction is not affected by the state of the (11110111)
interrupt enable flag (1) in the PSW. Interrupt
calls cannot occur immediately following this

instruction.

64-Kbyte mode: 1-Mbyte mode:

SP « SP-2 SP « SP-4
(SP) — PC (SP) « PC

PC « (2010H) PC « (OFF2010H)

PSW Flag Settings
Z N | C |V |VT|ST

XCH EXCHANGE WORD. Exchanges the value of DEST, SRC
the source word operand with that of the XCH wreg, waop
destination word operand. ')
(00000100) (waop) (wreg) direct
(DEST) « (SRC) (00001011) (waop) (wreg) indexed
PSW Flag Settings
Z | N|C |V |[VT]|ST
XCHB EXCHANGE BYTE. Exchanges the value of DEST, SRC
the source byte operand with that of the XCHB breg, baop
destination byte operand. ')
(00010100) (baop) (breg) direct
(DEST) « (SRC) (00011011) (baop) (breg) indexed
PSW Flag Settings
Z | N|C |V |VT]|ST
XOR LOGICAL EXCLUSIVE-OR WORDS. XORs DEST, SRC

the source word operand with the destination | yor
word operand and stores the result in the
destination operand. The result has ones in | (100001a&) (waop) (wreg)
the bit positions in which either operand (but
not both) had a “1” and zeros in all other bit
positions.

(DEST) « (DEST) XOR (SRC)

wreg, waop

PSW Flag Settings
Z N | C |V |VT|ST
0 0 0 0| — | —

A-55

80296SA USER’S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

XORB

LOGICAL EXCLUSIVE-OR BYTES. XORs
the source byte operand with the destination
byte operand and stores the result in the
destination operand. The result has ones in
the bit positions in which either operand (but
not both) had a “1” and zeros in all other bit
positions.

(DEST) « (DEST) XOR (SRC)

PSW Flag Settings
Z | N|C |V |VT]|ST
Oo|o|o 0| — | —

DEST, SRC
XORB breg, baop
(100101aa) (baop) (breg)

A-56

Int€|® INSTRUCTION SET REFERENCE

Table A-7 lists the instruction opcodes, in hexadecimal order, along with the corresponding in-
struction mnemonics.

Table A-7. Instruction Opcodes

Hex Code Instruction Mnemonic
00 SKIP
01 CLR
02 NOT
03 NEG
04 XCH Direct
05 DEC
06 EXT
07 INC
08 SHR
09 SHL
0A SHRA
0B XCH Indexed
0C SHRL
0D SHLL, MVAC, & MSAC
OE SHRAL
OF NORML
10 Reserved
11 CLRB
12 NOTB
13 NEGB
14 XCHB Direct
15 DECB
16 EXTB
17 INCB
18 SHRB
19 SHLB
1A SHRAB
1B XCHB Indexed
1C EST Indirect
1D EST Indexed
1E ESTB Indirect
1F ESTB Indexed
20-27 SIMP
NOTES:

1. This opcode is reserved, but it does not generate an unimplemented opcode interrupt.

2. Other MCS® 96 microcontrollers require a prefix (FE) to indicate signed multiplication and divi-
sion. For the 80296SA, setting bit zero in the destination register indicates signed multiplica-
tion. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-57

80296SA USER’S MANUAL

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic
28-2F SCALL
30-37 JBC
38-3F JBS
40 AND, RPT, RPTxxx, RPTI, & RPTIxxx Direct (3 ops)
41 AND, RPT, RPTxxx, RPTI, & RPTIxxx Immediate (3 ops)
42 AND, RPT, RPTxxx, RPTI, & RPTIxxx Indirect (3 ops)
43 AND Indexed (3 ops)
44 ADD Direct (3 ops)
45 ADD Immediate (3 ops)
46 ADD Indirect (3 ops)
47 ADD Indexed (3 ops)
48 SUB Direct (3 ops)
49 SUB Immediate (3 ops)
4A SUB Indirect (3 ops)
4B SUB Indexed (3 ops)
4C MUL (3 ops), MULU (3 ops), MAC, MACR, MACRZ, MACZ, SMAC, SMACR,
SMACRZ, SMACZ Direct (Note 2)
4D MUL (3 ops), MULU (3 ops), MAC, MACZ, SMAC, SMACZ Immediate (Note 2)
4E MUL (3 ops), MULU (3 ops), MAC, MACR, MACRZ, MACZ, SMAC, SMACR,
SMACRZ, SMACZ Indirect (Note 2)
aF MUL (3 ops), MULU (3 ops), MAC, MACR, MACRZ, MACZ, SMAC, SMACR,
SMACRZ, SMACZ Indexed (Note 2)
50 ANDB Direct (3 ops)
51 ANDB Immediate (3 ops)
52 ANDB Indirect (3 ops)
53 ANDB Indexed (3 ops)
54 ADDB Direct (3 ops)
55 ADDB Immediate (3 ops)
56 ADDB Indirect (3 ops)
57 ADDB Indexed (3 ops)
58 SUBB Direct (3 ops)
59 SUBB Immediate (3 ops)
5A SUBB Indirect (3 ops)
5B SUBB Indexed (3 ops)
5C MULUB Direct (3 ops) (Note 2)
5D MULUB Immediate (3 ops) (Note 2)
5E MULUB Indirect (3 ops) (Note 2)
NOTES:

1. This opcode is reserved, but it does not generate an unimplemented opcode interrupt.

2. Other MCS® 96 microcontrollers require a prefix (FE) to indicate signed multiplication and divi-
sion. For the 80296SA, setting bit zero in the destination register indicates signed multiplica-
tion. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-58

Int9|® INSTRUCTION SET REFERENCE

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic
5F MULUB Indexed (3 ops) (Note 2)
60 AND Direct (2 ops)

61 AND Immediate (2 ops)
62 AND Indirect (2 ops)
63 AND Indexed (2 ops)
64 ADD Direct (2 ops)

65 ADD Immediate (2 ops)
66 ADD Indirect (2 ops)
67 ADD Indexed (2 ops)
68 SUB Direct (2 ops)

69 SUB Immediate (2 ops)
6A SUB Indirect (2 ops)
6B SUB Indexed (2 ops)

MUL (2 ops), MULU (2 ops), MAC, MACR, MACRZ, MACZ, SMAC, SMACR,
SMACRZ, SMACZ Direct (Note 2)

6D MUL (2 ops), MULU (2 ops), MAC, MACZ, SMAC, SMACZ Immediate (Note 2)
MUL (2 ops), MULU (2 ops), MAC, MACR, MACRZ, MACZ, SMAC, SMACR,

6C

6E SMACRZ, SMACZ Indirect (Note 2)

6F MUL (2 ops), MULU (2 ops), MAC, MACR, MACRZ, MACZ, SMAC, SMACR,
SMACRZ, SMACZ Indexed (Note 2)

70 ANDB Direct (2 ops)

71 ANDB Immediate (2 ops)

72 ANDB Indirect (2 ops)

73 ANDB Indexed (2 ops)

74 ADDB Direct (2 ops)

75 ADDB Immediate (2 ops)

76 ADDB Indirect (2 ops)

77 ADDB Indexed (2 ops)

78 SUBB Direct (2 ops)

79 SUBB Immediate (2 ops)

7A SUBB Indirect (2 ops)

7B SUBB Indexed (2 ops)

7C MULUB Direct (2 ops) (Note 2)

7D MULUB Immediate (2 ops) (Note 2)

7E MULUB Indirect (2 ops) (Note 2)

7F MULUB Indexed (2 ops) (Note 2)

80 OR Direct

NOTES:

1. This opcode is reserved, but it does not generate an unimplemented opcode interrupt.

2. Other MCS® 96 microcontrollers require a prefix (FE) to indicate signed multiplication and divi-
sion. For the 80296SA, setting bit zero in the destination register indicates signed multiplica-
tion. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-59

80296SA USER'S MANUAL Int6|®

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic

81 OR Immediate
82 OR Indirect
83 OR Indexed
84 XOR Direct
85 XOR Immediate
86 XOR Indirect
87 XOR Indexed
88 CMP Direct
89 CMP Immediate
8A CMP Indirect
8B CMP Indexed
8C DIVU Direct (Note 2)
8D DIVU Immediate (Note 2)
8E DIVU Indirect (Note 2)
8F DIVU Indexed (Note 2)
90 ORB Direct
91 ORB Immediate
92 ORB Indirect
93 ORB Indexed
94 XORB Direct
95 XORB Immediate
96 XORB Indirect
97 XORB Indexed
98 CMPB Direct
99 CMPB Immediate
9A CMPB Indirect
9B CMPB Indexed
9C DIVUB Direct (Note 2)
9D DIVUB Immediate (Note 2)
9E DIVUB Indirect (Note 2)
9F DIVUB Indexed (Note 2)
A0 LD Direct
Al LD Immediate
A2 LD Indirect
A3 LD Indexed
Ad ADDC Direct

NOTES:

1. This opcode is reserved, but it does not generate an unimplemented opcode interrupt.

2. Other MCS® 96 microcontrollers require a prefix (FE) to indicate signed multiplication and divi-
sion. For the 80296SA, setting bit zero in the destination register indicates signed multiplica-
tion. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-60

Int6|® INSTRUCTION SET REFERENCE

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic
A5 ADDC Immediate
A6 ADDC Indirect
A7 ADDC Indexed
A8 SUBC Direct
A9 SUBC Immediate
AA SUBC Indirect
AB SUBC Indexed
AC LDBZE Direct
AD LDBZE Immediate
AE LDBZE Indirect
AF LDBZE Indexed
BO LDB Direct
B1 LDB Immediate
B2 LDB Indirect
B3 LDB Indexed
B4 ADDCB Direct
B5 ADDCB Immediate
B6 ADDCB Indirect
B7 ADDCB Indexed
B8 SUBCB Direct
B9 SUBCB Immediate
BA SUBCB Indirect
BB SUBCB Indexed
BC LDBSE Direct
BD LDBSE Immediate
BE LDBSE Indirect
BF LDBSE Indexed
CO ST Direct
C1 BMOV
C2 ST Indirect
C3 ST Indexed
C4 STB Direct
C5 CMPL
C6 STB Indirect
C7 STB Indexed
C8 PUSH Direct

NOTES:
1. This opcode is reserved, but it does not generate an unimplemented opcode interrupt.
2. Other MCS® 96 microcontrollers require a prefix (FE) to indicate signed multiplication and divi-

sion. For the 80296SA, setting bit zero in the destination register indicates signed multiplica-
tion. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-61

80296SA USER'S MANUAL Int6|®

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic
C9 PUSH Immediate
CA PUSH Indirect
CB PUSH Indexed
CcC POP Direct
CD BMOVI
CE POP Indirect
CF POP Indexed
DO JNST
D1 JNH
D2 JGT
D3 JNC
D4 JINVT
D5 JNV
D6 JGE
D7 JNE
D8 JST
D9 JH
DA JLE
DB JC
DC VT
DD JV
DE JLT
DF JE
EO DJINZ
El DINZW
E2 TIIMP
E3 BR Indirect, 64-Kbyte mode

EBR Indirect, 1-Mbyte mode
E4 EBMOVI
E5 RETI
E6 EJMP
E7 LIMP
E8 ELD Indirect
E9 ELD Indexed
EA ELDB Indirect
EB ELDB Indexed
NOTES:

1. This opcode is reserved, but it does not generate an unimplemented opcode interrupt.

2. Other MCS® 96 microcontrollers require a prefix (FE) to indicate signed multiplication and divi-
sion. For the 80296SA, setting bit zero in the destination register indicates signed multiplica-
tion. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-62

intel.

INSTRUCTION SET REFERENCE

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic
EC-ED Reserved
EE Reserved (Note 1)
EF LCALL
FO RET
F1 ECALL
F2 PUSHF
F3 POPF
F4 PUSHA
F5 POPA
F6 IDLPD
F7 TRAP
F8 CLRC
F9 SETC
FA DI
FB El
FC CLRVT
FD NOP
FE Optional (Note 2)
FF RST
NOTES:
1. This opcode is reserved, but it does not generate an unimplemented opcode interrupt.
2. Other MCS® 96 microcontrollers require a prefix (FE) to indicate signed multiplication and divi-

sion. For the 80296SA, setting bit zero in the destination register indicates signed multiplica-
tion. The FE prefix opcode is not required and is supported only for compatibility. The preferred

usage is to eliminate the prefix and set bit zero in the destination register.

A-63

80296SA USER'S MANUAL Int6|®

Table A-8 lists instructions along with the number of bytes and opcodes for each applicable ad-
dressing mode. A dash (—) in any column indicates “not applicable.”

Table A-8. Number of Bytes for Each Instruction and Hexadecimal Opcodes

Arithmetic (Group)

Direct Immediate Indirect Indexed (1)
Mnemonic Bytes
Bytes |Opcode |Bytes [Opcode [Bytes Qpcode SIL Opcode
ADD (2 ops) 3 64 4 65 3 66 4/5 67
ADD (3 ops) 4 44 5 45 4 46 5/6 47
ADDB (2 ops) 3 74 3 75 3 76 4/5 77
ADDB (3 ops) 4 54 4 55 4 56 5/6 57
ADDC 3 A4 4 A5 3 A6 4/5 A7
ADDCB 3 B4 3 B5 3 B6 4/5 B7
CLR 2 01 — — — — — —
CLRB 2 11 — — — — — —
CMP 3 88 4 89 3 8A 4/5 8B
CMPB 3 98 3 99 3 9A 4/5 9B
CMPL 3 C5 — — — — — —
DEC 2 05 — — — — — —
DECB 2 15 — — — — — —
EXT 2 06 — — — — — —
EXTB 2 16 — — — — — —
INC 2 07 — — — — — —
INCB 2 17 — — — — — —
SUB (2 ops) 3 68 4 69 3 6A 4/5 6B
SUB (3 ops) 4 48 5 49 4 4A 5/6 4B
SUBB (2 ops) 3 78 3 79 3 7A 4/5 7B
SUBB (3 ops) 4 58 4 59 4 5A 5/6 5B
SUBC 3 A8 4 A9 3 AA 4/5 AB
SUBCB 3 B3 3 B9 3 BA 4/5 BB
NOTES:

1. Forindexed instructions, the first column lists instruction bytes as S/L, where S is the number of bytes
for the short-indexed instruction and L is the number of bytes for the long-indexed instruction.

2. Forthe SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated
with the eight bits to form an 11-bit, two’s complement offset.

3. Other MCS® 96 microcontroller products require a prefix opcode of FE to indicate signed multiplica-
tion and division. For the 80296SA, setting bit zero in the destination register indicates signed multipli-
cation. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-64

intel.

INSTRUCTION SET REFERENCE

Table A-8. Number of Bytes for Each Instruction and Hexadecimal Opcodes (Continued)

Arithmetic (Group I1)

Direct Immediate Indirect Indexed (1)
Mnemonic Bytes
Bytes |Opcode |Bytes [Opcode [Bytes Opcode SIL Opcode
DIV 3 4 (FE) 8C 5 (FE) 8D 4 (FE) 8E 5/6 (FE) 8F
DIV 3 8C 4 8D 3 8E 4/5 8F
DIVB (3 4 (FE) 9C 4 (FE) 9D 4 (FE) 9E 5/6 (FE) 9F
DIVB 3 9C 3 9D 3 9E 4/5 9F
DIVU 3 8C 4 8D 3 8E 4/5 8F
DIVUB 3 9C 3 9D 3 9E 4/5 9F
MUL (2 ops) @ 4 (FE) 6C 5 (FE) 6D 4 (FE) 6E 5/6 (FE) 6F
MUL (2 ops) 3 6C 4 6D 3 6E 4/5 6F
MUL (3 ops) @ 5 (FE) 4C 6 (FE) 4D 5 (FE) 4E 6/7 (FE) 4F
MUL (3 ops) 4 4C 5 4D 4 4E 5/6 4F
MULB (2 ops) @ 4 (FE) 7C 4 (FE) 7D 4 (FE) 7E 5/6 (FE) 7F
MULB (2 ops) 3 7C 3 7D 3 7E 4/5 7F
MULB (3 ops) ® 5 (FE) 5C 5 (FE) 5D 5 (FE) 5E 6/7 (FE) 5F
MULB (3 ops) 4 5C 4 5D 4 5E 5/6 5F
MULU (2 ops) 3 6C 4 6D 3 6E 4/5 6F
MULU (3 ops) 4 ac 5 4D 4 4E 5/6 aF
MULUB (2 ops) 3 7C 3 7D 3 7E 4/5 7F
MULUB (3 ops) 4 5C 4 5D 4 5E 5/6 5F

NOTES:

1. Forindexed instructions, the first column lists instruction bytes as S/L, where S is the number of bytes
for the short-indexed instruction and L is the number of bytes for the long-indexed instruction.

2. Forthe SCALL and SIMP instructions, the three least-significant bits of the opcode are concatenated
with the eight bits to form an 11-bit, two’s complement offset.

3. Other MCS® 96 microcontroller products require a prefix opcode of FE to indicate signed multiplica-
tion and division. For the 80296SA, setting bit zero in the destination register indicates signed multipli-
cation. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-65

80296SA USER'S MANUAL Int6|®

Table A-8. Number of Bytes for Each Instruction and Hexadecimal Opcodes (Continued)

Arithmetic (Group IlI)

Direct Immediate Indirect Indexed (1)
Mnemonic Bytes
Bytes |Opcode |Bytes Opcode [Bytes Opcode SIL Opcode

MAC (2 ops) 3 6C 4 6D 3 6E 4/5 6F
MAC (3 ops) 4 4ac 5 4D 4 4E 5/6 aF
MACR (2 ops) 3 6C — — 3 6E 4/5 6F
MACR (3 ops) 4 ac — — 4 4E 5/6 aF
MACRZ (2 ops) 3 6C — — 3 6E 4/5 6F
MACRZ (3 ops) 4 4C — — 4 4AE 5/6 AF
MACZ (2 ops) 3 6C 4 6D 3 6E 4/5 6F
MACZ (3 ops) 4 4C 5 4D 4 4E 5/6 AF
SMAC (2 ops) 3 6C 4 6D 3 6E 4/5 6F
SMAC (3 ops) 4 4C 5 4D 4 4E 5/6 4F
SMACR (2 ops) 3 6C — — 3 6E 4/5 6F
SMACR (3 ops) 4 4C — — 4 4E 5/6 4F
SMACRZ (2 ops) 3 6C — — 3 6E 4/5 6F
SMACRZ (3 ops) 4 4C — — 4 4E 5/6 4F
SMACZ (2 ops) 3 6C 4 6D 3 6E 4/5 6F
SMACZ (3 ops) 4 4C 5 4D 4 4E 5/6 4F

NOTES:

1. Forindexed instructions, the first column lists instruction bytes as S/L, where S is the number of bytes
for the short-indexed instruction and L is the number of bytes for the long-indexed instruction.

2. Forthe SCALL and SIMP instructions, the three least-significant bits of the opcode are concatenated
with the eight bits to form an 11-bit, two’s complement offset.

3. Other MCS® 96 microcontroller products require a prefix opcode of FE to indicate signed multiplica-
tion and division. For the 80296SA, setting bit zero in the destination register indicates signed multipli-
cation. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-66

intel.

INSTRUCTION SET REFERENCE

Table A-8. Number of Bytes for Each Instruction and Hexadecimal Opcodes (Continued)

Logical

Direct Immediate Indirect Indexed (1)
Mnemonic Bytes
Bytes |Opcode |Bytes Opcode [Bytes Opcode SIL Opcode
AND (2 ops) 3 60 4 61 3 62 4/5 63
AND (3 ops) 4 40 5 41 4 42 5/6 43
ANDB (2 ops) 3 70 3 71 3 72 4/5 73
ANDB (3 ops) 4 50 4 51 4 52 5/6 53
NEG 2 03 — — — — — —
NEGB 2 13 — — — — — —
NOT 2 02 — — — — — —
NOTB 2 12 — — — — — —
OR 3 80 4 81 3 82 4/5 83
ORB 3 90 3 91 3 92 4/5 93
XOR 3 84 4 85 3 86 4/5 87
XORB 3 94 3 95 3 96 4/5 97
Stack
Direct Immediate Indirect Indexed (1)
Mnemonic Bytes
Bytes |Opcode |Bytes [Opcode [Bytes Qpcode SIL Opcode
POP 2 CC — — 2 CE 3/4 CF
POPA 1 F5 — — — — — —
POPF 1 F3 — — — — — —
PUSH 2 c8 3 Cc9 2 CA 3/4 CB
PUSHA 1 F4 — — — — — _
PUSHF 1 F2 — — — — — —
NOTES:

1. Forindexed instructions, the first column lists instruction bytes as S/L, where S is the number of bytes
for the short-indexed instruction and L is the number of bytes for the long-indexed instruction.

2. Forthe SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated
with the eight bits to form an 11-bit, two’s complement offset.

3. Other MCS® 96 microcontroller products require a prefix opcode of FE to indicate signed multiplica-
tion and division. For the 80296SA, setting bit zero in the destination register indicates signed multipli-
cation. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-67

80296SA USER’S MANUAL

intel.

Table A-8. Number of Bytes for Each Instruction and Hexadecimal Opcodes (Continued)

Data
Direct Immediate Extended-indirect E_xtended-
Mnemonic indexed
Bytes |Opcode |Bytes [Opcode [Bytes Opcode Bytes Opcode
EBMOVI — — — — 3 E4 — —
ELD — — — — 3 E8 6 E9
ELDB — — — — 3 EA 6 EB
EST — — — — 3 1C 6 1D
ESTB — — — — 3 1E 6 1F
Direct Immediate Indirect Indexed (1)
Mnemonic Bytes
Bytes |Opcode |Bytes [Opcode [Bytes Qpcode SIL Opcode
BMOV — — — — 3 C1 — —
BMOVI — — — — 3 CD — —
LD 3 A0 4 Al 3 A2 4/5 A3
LDB 3 BO 3 B1 3 B2 4/5 B3
LDBSE 3 BC 3 BD 3 BE 4/5 BF
LDBZE 3 AC 3 AD 3 AE 4/5 AF
ST 3 CO0 — — 3 C2 4/5 C3
STB 3 C4 — — 3 C6 4/5 C7
XCH 3 04 — — — — 4/5 0B
XCHB 3 14 — — — — 4/5 1B
NOTES:

1. Forindexed instructions, the first column lists instruction bytes as S/L, where S is the number of bytes
for the short-indexed instruction and L is the number of bytes for the long-indexed instruction.

2. Forthe SCALL and SIMP instructions, the three least-significant bits of the opcode are concatenated
with the eight bits to form an 11-bit, two’s complement offset.

3. Other MCS® 96 microcontroller products require a prefix opcode of FE to indicate signed multiplica-
tion and division. For the 80296SA, setting bit zero in the destination register indicates signed multipli-
cation. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-68

intel.

INSTRUCTION SET REFERENCE

Table A-8. Number of Bytes for Each Instruction and Hexadecimal Opcodes (Continued)

Jump
Direct Immediate Extended-indirect E_xtended-
Mnemonic indexed
Bytes |Opcode |Bytes [Opcode [Bytes Opcode Bytes Opcode
EBR — — — — 2 E3 — —
EJMP — — — — — — 4 E6
Direct Immediate Indirect Indexed (1)
Mnemonic Bytes
Bytes | Opcode |Bytes Opcode [Bytes QOpcode SIL Opcode
BR — — — — 2 E3 — —
LIMP — — — — — — —/3 E7
SIMP (2 — — — — — — 2/— 20-27
TIIMP — — — — — — —I4 E2
Call
Direct Immediate Extended-indirect E_xtended-
Mnemonic indexed
Bytes |Opcode |Bytes Opcode [Bytes Opcode Bytes Opcode
ECALL — — — — — — 4 F1
_ Direct Immediate Indirect Indexed (1)
Mnemonic
Bytes |Opcode |Bytes [Opcode [Bytes Opcode Bytes Opcode
LCALL — — — — — — 3 EF
RET — — — — 1 FO — —
RETI — — — — 1 E5 — —
SCALL @) — — — — — — 2 28-2F
TRAP 1 F7 — — — — — —
NOTES:

1. Forindexed instructions, the first column lists instruction bytes as S/L, where S is the number of bytes
for the short-indexed instruction and L is the number of bytes for the long-indexed instruction.

2. Forthe SCALL and SIMP instructions, the three least-significant bits of the opcode are concatenated
with the eight bits to form an 11-bit, two’s complement offset.

3. Other MCS® 96 microcontroller products require a prefix opcode of FE to indicate signed multiplica-
tion and division. For the 80296SA, setting bit zero in the destination register indicates signed multipli-
cation. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-69

80296SA USER'S MANUAL Int6|®

Table A-8. Number of Bytes for Each Instruction and Hexadecimal Opcodes (Continued)

Conditional Jump

Direct Immediate Indirect Indexed (1)
Mnemonic Bytes

Bytes |Opcode |Bytes ©Opcode [Bytes Qpcode SIL Opcode
DJINZ — — — — — — 3/— EO
DINZW — — — — — — 3/— El
JBC — — — — — — 3/— 30-37
JBS — — — — — — 3/— 38-3F
JC — — — — — — 2/— DB
JE — — — — — — 2/— DF
JGE — — — — — — 2/— D6
JGT — — — — — — 2/— D2
JH — — — — — — 2/— D9
JLE — — — — — — 2/— DA
JLT — — — — — — 2/— DE
JNC — — — — — — 2/— D3
INE — — — — — — 2/— D7
INH — — — — — — 2/— D1
JINST — — — — — — 2/— DO
INV — — — — — — 2/— D5
INVT — — — — — — 2/— D4
JST — — — — — — 2/— D8
JV — — — — — — 2/— DD
IVT — — — — — — 2/— DC
NOTES:

1. Forindexed instructions, the first column lists instruction bytes as S/L, where S is the number of bytes
for the short-indexed instruction and L is the number of bytes for the long-indexed instruction.

2. Forthe SCALL and SIMP instructions, the three least-significant bits of the opcode are concatenated
with the eight bits to form an 11-bit, two’s complement offset.

3. Other MCS® 96 microcontroller products require a prefix opcode of FE to indicate signed multiplica-
tion and division. For the 80296SA, setting bit zero in the destination register indicates signed multipli-
cation. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-70

Int9|® INSTRUCTION SET REFERENCE

Table A-8. Number of Bytes for Each Instruction and Hexadecimal Opcodes (Continued)

Shift
) Direct Immediate Indirect Indexed
Mnemonic
Bytes |Opcode |Bytes [Opcode [Bytes Opcode Bytes Opcode
MSAC 3 0D 3 0D — — — —
MVAC 3 0D 3 0D — — — —
NORML 3 OF 3 OF — — — —
SHL 3 09 3 09 — — — —
SHLB 3 19 3 19 — — — —
SHLL 3 0D 3 0D — — — —
SHR 3 08 3 08 — — — —
SHRA 3 0A 3 0A — — — —
SHRAB 3 1A 3 1A — — — —
SHRAL 3 OE 3 OE — — — —
SHRB 3 18 3 18 — — — —
SHRL 3 (0]03 3 (0]03 — — — —
Special
) Direct Immediate Indirect Indexed
Mnemonic
Bytes |Opcode |Bytes Opcode [Bytes Opcode Bytes Opcode

CLRC 1 F8 — — — — — —
CLRVT 1 FC — — — — — —
DI 1 FA — — — — — —
El 1 FB — — — — — —
IDLPD — — 1 F6 — — — —
NOP 1 FD — — — — — —
RPT 4 40 5 41 4 42 — —
RPTxxx 4 40 5 41 4 42 — —
RPTI 4 40 5 41 4 42 — —
RPTIxxx 4 40 5 41 4 42 — —
RST 1 FF — — — — — —
SETC 1 F9 — — — — — —
SKIP 2 00 — — — — — —
NOTES:

1. Forindexed instructions, the first column lists instruction bytes as S/L, where S is the number of bytes
for the short-indexed instruction and L is the number of bytes for the long-indexed instruction.

2. Forthe SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated
with the eight bits to form an 11-bit, two’s complement offset.

3. Other MCS® 96 microcontroller products require a prefix opcode of FE to indicate signed multiplica-
tion and division. For the 80296SA, setting bit zero in the destination register indicates signed multipli-
cation. The FE prefix opcode is not required and is supported only for compatibility. The preferred
usage is to eliminate the prefix and set bit zero in the destination register.

A-71

80296SA USER'S MANUAL Int9|®

Table A-9 lists instructions alphabetically within groups, along with their execution times, ex-
pressed in state times.

Table A-9. Instruction Execution Times (in State Times)

Arithmetic (Group)

Indirect Indexed

Mnemonic Direct |Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. |Mem. [Reg. [Mem. |Reg. |Mem.

ADD (2 ops)
ADD (3 ops)
ADDB (2 ops)
ADDB (3 ops)
ADDC
ADDCB

CLR

CLRB

CMP

CMPB

CMPL

DEC

DECB

EXT

EXTB

INC

INCB

SUB (2 ops)
SUB (3 ops)
SUBB (2 ops)
SUBB (3 ops)
SUBC
SUBCB 1 1 2 4 2 2 4 2 4

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-2 on page 5-6 for address information.

[e T N T
NININININ(N
E S N N S Y
NN N (N[N [N
N N RN
NN N N[N [N
EE S R Y
NININININ(N
o N R Y

|-
NN
E- Y
NN
E- Y
NN
RN N
NN
RN N

Rlirlkr|lr|rRrRrr|N|R(R[N|R|RrRR|R|R|R Rk~
|
|
|
|
|
|
|
|
|

PR |R |k~
NIN[NIN [N
N N R
(CHESRINEINRINY
(CHESRINEINRINY
o N - N
NIN[NIN [N
o N N N

Al

A-72

intel.

INSTRUCTION SET REFERENCE

Table A-9. Instruction Execution Times (in State Times) (Continued)

Arithmetic (Group 1)

Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. |Mem. |Reg. [Mem. |Reg. [Mem.
DIV 22 22 23 25 23 25 23 25 23 25
DIVB 14 14 15 17 15 17 15 17 15 17
DIVU 22 22 23 25 23 25 23 25 23 25
DIVUB 14 14 15 17 15 17 15 17 15 17
MUL (2 ops) 3 3 4 6 4 6 4 6 4 6
MUL (3 ops) 3 3 4 6 4 6 4 6 4 6
MULB (2 ops) 1 1 2 4 2 4 2 4 2 4
MULB (3 ops) 1 1 2 4 2 4 2 4 2 4
MULU (2 ops) 3 3 4 6 4 6 4 6 4 6
MULU (3 ops) 3 3 4 6 4 6 4 6 4 6
MULUB (2 ops) 1 1 2 4 2 4 2 4 2 4
MULUB (3 ops) 1 1 2 4 2 4 2 4 2 4

Arithmetic (Group 11I)
Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. |Mem. [Reg. [Mem. |Reg. |Mem.
MAC 2 2 3 5 3 5 3 5 3 5
MACR 2 — 3 5 3 5 3 5 3 5
MACRZ 2 — 3 5 3 5 3 5 3 5
MACZ 2 2 3 5 3 5 3 5 3 5
SMAC 2 2 3 5 3 5 3 5 3 5
SMACR 2 — 3 5 3 5 3 5 3 5
SMACRZ 2 — 3 5 3 5 3 5 3 5
SMACZ 2 2 3 5 3 5 3 5 3 5

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-2 on page 5-6 for address information.

A-73

80296SA USER'S MANUAL Int6|®

Table A-9. Instruction Execution Times (in State Times) (Continued)

Logical
Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. |Mem. |Reg. [Mem. |Reg. [Mem.
AND (2 ops) 1 1 2 4 2 4 2 4 2 4
AND (3 ops) 1 1 2 4 2 4 2 4 2 4
ANDB (2 ops) 1 1 2 4 2 4 2 4 2 4
ANDB (3 ops) 1 1 2 4 2 4 2 4 2 4
NEG 1 — — — — — — — — —
NEGB 1 — — — — — — — — —
NOT 1 — — — — — — — — —
NOTB 1 — — — — — — — — —
OR 1 1 2 4 2 4 2 4 2 4
ORB 1 1 2 4 2 4 2 4 2 4
XOR 1 1 2 4 2 4 2 4 2 4
XORB 1 1 2 4 2 4 2 4 2 4

Stack (Register)
Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. |Mem. [Reg. [Mem. |Reg. |Mem.
POP 1 — 2 2 2 2 2 2 2 2
POPA 3 — — — — — — — — —
POPF 2 — — — — — — — — —
PUSH 1 1 2 4 2 4 2 4 2 4
PUSHA 8 — — — — — — — — —
PUSHF 4 — — — — — — — — —

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-2 on page 5-6 for address information.

A-74

intel.

INSTRUCTION SET REFERENCE

Table A-9. Instruction Execution Times (in State Times) (Continued)

Stack (Memory)
Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. |Mem. |Reg. [Mem. |Reg. |[Mem.
POP 3 — 4 4 4 4 4 4 4 4
POPA 7 — — — — — — — — —
POPF 3 — — — — — — — — —
PUSH 1 1 2 4 2 4 2 4 2 4
PUSHA 12 — — — — — — — — —
PUSHF 6 — — — — — — — — —

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-2 on page 5-6 for address information.

A-75

80296SA USER’S MANUAL

Table A-9. Instruction Execution Times (in State Times) (Continued)

intel.

Data
Mnemonic Extended-indirect (Normal)
EBMOVI register/register 9 + 1 per word + 10 per interrupt
memory/register 9 + 3 per word + 10 per interrupt
memory/memory 9+ 5 per word + 10 per interrupt
Mnemonic Indirect
BMOV register/register 5+ 1 per word
memory/register 5 + 3 per word
memory/memory 5+ 5 per word
BMOVI register/register 5+ 1 per word + 6 per interrupt
memory/register 5+ 3 per word + 6 per interrupt
memory/memory 5+ 5 per word + 6 per interrupt
Extended-indirect
Mnemonic Direct |Immed. Extended-indexed
Normal Autoinc.
ELD — — 2 4 3 5 2 4
ELDB — — 2 4 3 5 2 4
EST — — 2 2 3 5 2 2
ESTB — — 2 2 3 5 2 2
Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long
Reg. | Mem. | Reg. |Mem. [Reg. [Mem. |Reg. |Mem.
LD 1 1 2 4 2 4 2 4 2 4
LDB 1 1 2 4 2 4 2 4 2 4
LDBSE 1 1 2 4 2 4 2 4 2 4
LDBZE 1 1 2 4 2 4 2 4 2 4
RPT 1 1 2 4 2 4 — — — —
RPTxxx 1 1 2 4 2 4 — — — —
RPTI 1 1 2 4 2 4 — — — —
RPTIxxx 1 1 2 4 2 4 — — — —
ST 1 — 2 2 2 2 2 2 2 2
STB 1 — 2 2 2 2 2 2 2 2
XCH 2 — — — — — 3 5 3 5
XCHB 2 — — — — — 3 3 5

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-2 on page 5-6 for address information.

A-76

intel.

INSTRUCTION SET REFERENCE

Table A-9. Instruction Execution Times (in State Times) (Continued)

Jump
Mnemonic Direct |Immed. Extended-indirect
Extended-indexed
Normal Autoinc.
EBR — — 1 — —
EJMP — — — — 1
Indirect Indexed
Mnemonic Direct |Immed
Normal Autoinc. Short Long
BR — — 1 1 — —
LIMP — — — — — 1
SIMP — — — — 1 —
TIIMP —
register/register . . . 6 .
memory/register 6
memory/memory 8
Call (Register)
Extended-indirect
Mnemonic Direct |Immed. Extended-indexed
Normal Autoinc.
ECALL
1-Mbyte mode — — — — 2
Indirect Indexed
Mnemonic Direct |Immed.
Normal Autoinc. Short Long
LCALL 2
1-Mbyte mode — — — — — 1
64-Kbyte mode
RET
1-Mbyte mode — — 2 — — —
64-Kbyte mode 1
RETI
1-Mbyte mode — — 2 — — —
64-Kbyte mode 1
SCALL 2
1-Mbyte mode — — — — 1
64-Kbyte mode
TRAP — 4
1-Mbyte mode — 3 — — —
64-Kbyte mode

A-77

80296SA USER’S MANUAL

intel.

Table A-9. Instruction Execution Times (in State Times) (Continued)

Call (Memory)

Extended-indirect

Mnemonic Direct (Immed. Extended-indexed
Normal Autoinc.
ECALL
1-Mbyte mode — — — — 4
Indirect Indexed
Mnemonic Direct |Immed.)
Normal Autoinc. Short Long
LCALL
1-Mbyte mode — — — — — 4
64-Kbyte mode 1
RET
1-Mbyte mode — — 6 — — —
64-Kbyte mode 3
RETI
1-Mbyte mode — — 6 — — —
64-Kbyte mode 3
SCALL 4
1-Mbyte mode — — — — 1
64-Kbyte mode
TRAP —
1-Mbyte mode — 6 — — —
64-Kbyte mode 3

A-78

intel.

Table A-9.

Instruction Execution Times (in State Times) (Continued)

INSTRUCTION SET REFERENCE

Conditional Jump

Mnemonic

Short-Indexed

DJINZ

DINZW

JBC

JBS

JC

JE

JGE

JGT

JH

JLE

JLT

JNC

JNE

JNH

JNST

JNV

JNVT

JST

JV

JVT

RlRr|Rr|Rr|IR|P[R(P[R|R|R|PR|R|RR[R|R|R|NM|N

Shift

Mnemonic

Direct

MSAC

MVAC

NORML

SHL

SHLB

SHLL

SHR

SHRA

SHRAB

SHRAL

SHRB

SHRL

N[INFP|IPIFPIN|IP[PIWOW|W

A-79

80296SA USER’S MANUAL

intel.

Table A-9. Instruction Execution Times (in State Times) (Continued)

Special

Mnemonic

Direct

Immed.

Indirect

Indexed

Normal

Autoinc.

Short

Long

CLRC

CLRVT

DI

El

N

IDLPD
Valid key
Invalid key

NOP

RST

SETC

SKIP

N (RS-

A-80

intel.

B

Signal Descriptions

APPENDIX B
SIGNAL DESCRIPTIONS

This appendix provides reference information for the pin functions of the 80296SA.

B.1 FUNCTIONAL GROUPINGS OF SIGNALS

Table B-1 lists the signals for the 80296SA, grouped by function. A diagram of each package that
is currently available shows the pin location of each signal.

NOTE

The datasheets are revised more frequently than this manual. As new packages
are supported, the pin-out diagrams will be added to the datasheets first. If
your package type is not shown in this appendix, refer to the latest datasheet to
find the pin locations.

Table B-1. 80296SA Signals Arranged by Function

Address & Data Processor Control Input/Output Bus Control & Status
A19:0 CLKOUT EPORT3:0 ALE
AD15:0 EXTINT3:0 P1.3:0/EPA3:0 BHE#/WRH#
NMI P1.4/T1CLK BREQ#
Power & Ground ONCE P1.5/T1DIR CS5:0#
Vee PLLEN1 P1.6/T2CLK HLDA#
Vss PLLEN2 P1.7/T2DIR HOLD#
RESET# P2.0/TXD INST
RPD P2.1/RXD RD#
XTAL1 pP2.7:2 READY
XTAL2 P3.7:0 WR#/WRL#
P4.2:0/PWM2:0
P4.3

B-1

80296SA USER’S MANUAL

T
I 3
@ <
B ~ a
o, 0,43 29 =
H* W ~
DHmmaPNu 8800323933980 858 88
COIEZEXCOA>> AL LLLLLLZ> XX>> 0
annoonooonoonNnonnNnoonoonn
LTONAODON~NOUOTONAODON O MN A
MNMAENMNNMNMNNOOOOOOOVWOOVWOWLLLLWLLLLWLLLWLW
#HTHM [#3M 0S
€140d3/ 6TV O 6
2'140d3/ 81V O 8y
ss) O Ly
20, o oy
T'180d3 / LTV O oy
0°140d3 / 9TV 44
STav O @z e
[= =8 44
e1av o < $a v
zTav o %) S0 or
1TaV O ©Q oo 6
orTav I mm 8e
o
wm<| 2 8< L€
= m 5 @ 9
8av 0 Wm Ge
00/ >
s ge &
— >
9av z€
sav o 1€
7av o o
eav 62
zav o 8z
1av o Vx4
oav 9z
o - NOOOOHdNMS I
HANMOTONDON~0OO A A A AN NNNNN
D000 0000000 00000000
HS OO QN MT 0 © SHH#HHHE O TN
s
TEEARRAAS L TE
2 S40000” OOE
@ Socnm sl
mmoMmom oMM~
oY M W W WY WY
o
o

#VATH/9¢d
#dTOH /§'2d
TINILX3/ ¥'ed
#0349/ €ed
OLINILX3/Z'ed
axyd/ted
axl/oed
mm>

UU>

€vd

ZNMd / Z'7d
TNMd / T'vd
OWMd / 0'td
didel/L'1d
mm>

Y1021/ 9'Td
UU>
dIdTL/S1d
M1OTL/ ¥'1d
€Vda/€'1d
Zvda /e id
vda/T'1d
UU>
0vda/0'1d
€INILXT/ L'ed

A3154-02

Figure B-1. 80296SA 100-pin SQFP Package

B-2

Int€|® SIGNAL DESCRIPTIONS

o
==
x o
o0
oo
w ol
O=HANMS L~~~
HNNMISTWON 00 A Idddddd o~ O
[ajayayayaNaNalsialy/lafalalaNalalalR=ICTINS]
AALCLCLCLCLS> > AL CICCIC>
noooaonnooonnoonnnnnn
DOV~ OUTNANHODOMNOL T MN
-gmmmmmmmmmmwwwwwwwoow
ADO o 1 80 A Vss
NC O 2 79 @ A18/ EPORT.2
RESET#] 3 78 A A19/ EPORT.3
NMI] 4 77 A WR# | WRL#
NC 5 76 | RD#
A6 75 [BHE# /| WRH#
ALH7 74 A ALE
VecH 8 733 INST
Vss 9 72 A READY
A2 10 71 ARPD
A3 11 70 A ONCE
A 12 S80296SA 69 A PLLEN2
A5 13 68 A Vee
A6 O 14 67 A Vss
A7 15 66 1 A8
Vec] 16 65 3 A9
Ves O 17 64 [A10
PLLEN1 18 ; 63 A ALl
P3.0/CSO0#] 19 View of component as 62 [A12
P3.1/0S1# o 20 mounted on PC board 61 1 AL3
P3.2/CS2# 21 60 1 A14
P3.3/CS3# 22 59 [A15
Vss] 23 58 1 Vss
P3.4/CS4#] 24 57 A XTALL
P3.5/CS5#] 25 56 [XTAL2
P3.6 / EXTINT2 E 26 55 [Vsg
NC ¢ 27 54 [P2.7 / CLKOUT
P3.7 / EXTINT3] 28 53 A Vee
P1.0/EPAO 29 52 A P2.6 / HLDA#
Vee 30 51 [P2.5 / HOLD#
HANMNMTODONODONDOANMSETODONOODO
OO MOHOMHMOMHMOMOMIETITIITITITTT TN
jJugupgugugugugugupopugod
HNOXY ¥ OX OrodaNm OonNNO H -
KEE3oygYosEzr o RBEQE
SSSFE £ orgss SSEEE
S35 y == > = X @
dadY? © ~odo ooy
S - *ads
o o

A3155-02

Figure B-2. 80296SA 100-pin QFP Package

B.2 SIGNAL DESCRIPTIONS

Table B-2 defines the columns used in Table B-3, which describes the signals.

B-3

80296SA USER'S MANUAL Int6|®

Table B-2. Description of Columns of Table B-3

Column Heading Description

Name Lists the signals, arranged alphabetically. Many pins have two functions, so
there are more entries in this column than there are pins. Every signal is
listed in this column.

Type Identifies the pin function listed in the Name column as an input (I), output
(O), bidirectional (I/0), power (PWR), or ground (GND).

Note that all inputs except RESET# are sampled inputs. RESET# is a level-
sensitive input. During powerdown mode, the powerdown circuitry uses
EXTINT as a level-sensitive input.

Description Briefly describes the function of the pin for the specific signal listed in the
Name column. Also lists any alternate fuctions that share package pins with
the signal.

Table B-3. Signal Descriptions

Name Type Description

A15:0 (0] System Address Bus

These address lines provide address bits 0-15 during the entire external
memory cycle during both multiplexed and demultiplexed bus modes.

A19:16 110 Address Lines 16-19

These address lines provide address bits 16—19 during the entire external

memory cycle during both multiplexed and demultiplexed bus modes,

supporting extended addressing of the 1-Mbyte address space.

NOTE: Internally, there are 24 address bits; however, only 20 external
address pins (A19:0) are implemented. The internal address space is
16 Mbytes (000000-FFFFFFH) and the external address space is 1
Mbyte (00000-FFFFFH). The device resets to F2080H in external
memory.

A19:16 share package pins with EPORT.3:0.

AD15:0 /10 Address/Data Lines

The function of these pins depends on the bus size and mode.

16-bit Multiplexed Bus Mode :

AD15:0 drive address bits 0—15 during the first half of the bus cycle and drive or
receive data during the second half of the bus cycle.

8-bit Multiplexed Bus Mode :

AD15:8 drive address bits 8-15 during the entire bus cycle. AD7:0 drive
address bits 0—7 during the first half of the bus cycle and drive or receive data
during the second half of the bus cycle.

16-bit Demultiplexed Mode :

AD15:0 drive or receive data during the entire bus cycle.

8-bit Demultiplexed Mode :

AD7:0 drive or receive data during the entire bus cycle. AD15:8 drive the data
that is currently on the high byte of the internal bus.

SIGNAL DESCRIPTIONS

Table B-3. Signal Descriptions (Continued)

Name Type Description

ALE (0] Address Latch Enable
This active-high output signal is asserted only during external memory cycles.
ALE signals the start of an external bus cycle and indicates that valid address
information is available on the system address/data bus (A19:16 and AD15:0
for a multiplexed bus; A19:0 for a demultiplexed bus).
An external latch can use this signal to demultiplex address bits 0-15 from the
address/data bus in multiplexed mode.

BHE# 0 Byte High Enablet
During 16-bit bus cycles, this active-low output signal is asserted for word and
high-byte reads and writes to external memory. BHE# indicates that valid data
is being transferred over the upper half of the system data bus. Use BHE#, in
conjunction with address bit 0 (A0 for a demultiplexed address bus, ADO for a
multiplexed address/data bus), to determine which memory byte is being
transferred over the system bus:
BHE# ADO or AO Byte(s) Accessed
0 0 both bytes
0 1 high byte only
1 0 low byte only
BHE# shares a package pin with WRH#.
T The chip configuration register 0 (CCRO0) determines whether this pin

functions as BHE# or WRH#. CCRO0.2 = 1 selects BHE#; CCRO0.2 = 0 selects
WRH#.

BREQ# (0] Bus Request
This active-low output signal is asserted during a hold cycle when the bus
controller has a pending external memory cycle. When the bus-hold protocol is
enabled (WSR.7 is set), the P2.3/BREQ# pin can function only as BREQ#,
regardless of the configuration selected through the port configuration registers
(P2_MODE, P2_DIR, and P2_REG). An attempt to change the pin
configuration is ignored until the bus-hold protocol is disabled (WSR.7 is
cleared).
The device can assert BREQ# at the same time as or after it asserts HLDA#.
Once it is asserted, BREQ# remains asserted until HOLD# is removed.
BREQ# shares a package pin with P2.3.

CLKOUT (0] Clock Output
Output of the internal clock generator. The CLKOUT frequency is %2 the internal
operating frequency (f). CLKOUT has a 50% duty cycle.
CLKOUT shares a package pin with P2.7.

CS5:0# o Chip-select Lines 0-5

The active-low output CSx# is asserted during an external memory cycle when
the address to be accessed is in the range programmed for chip select x or chip
select x+1 if remapping is enabled. If the external memory address is outside
the range assigned to the six chip selects, no chip-select output is asserted and
the bus configuration defaults to the CS5# values.

Immediately following reset, CS0# is automatically assigned to the range
F2000-F20FFH.

CS5:0# share package pins with P3.5:0.

B-5

80296SA USER'S MANUAL Int6|®

Table B-3. Signal Descriptions (Continued)

Name Type Description

EPA3:0 110 Event Processor Array (EPA) Capture/Compare Channels
High-speed input/output signals for the EPA capture/compare channels.
EPA3:0 share package pins with P1.3:0.

EPORT.3:0 /0 Extended Addressing Port
This is a standard 4-bit, bidirectional port.
EPORT.3:0 share package pins with A.19:16.

EXTINT3:0 | External Interrupts

In normal operating mode, a rising edge on EXTINTXx sets the EXTINTx
interrupt pending bit. EXTINTx is sampled during phase 2 (CLKOUT high). The
minimum edge time is one state time. The minimum level time is two state
times.

In standby and powerdown modes, asserting the EXTINT x signal for at least
50 ns causes the device to resume normal operation. The interrupt need not be
enabled, but the pin must be configured as a special-function input. If the
EXTINTx interrupt is enabled, the CPU executes the interrupt service routine.
Otherwise, the CPU executes the instruction that immediately follows the
command that invoked the power-saving mode.

In idle mode, asserting any enabled interrupt causes the device to resume
normal operation.

EXTINTO shares a package pin with P2.2, EXTINT1 shares a package pin with
P2.4, EXTINT2 shares a package pin with P3.6, and EXTINT3 shares a
package pin with P3.7.

HLDA# (0] Bus Hold Acknowledge

This active-low output indicates that the CPU has released the bus as the result
of an external device asserting HOLD#. When the bus-hold protocol is enabled
(WSR.7 is set), the P2.6/HLDA# pin can function only as HLDA#, regardless of
the configuration selected through the port configuration registers (P2_MODE,
P2_DIR, and P2_REG). An attempt to change the pin configuration is ignored
until the bus-hold protocol is disabled (WSR.7 is cleared).

HLDA# shares a package pin with P2.6.

HOLD# | Bus Hold Request

An external device uses this active-low input signal to request control of the
bus. When the bus-hold protocol is enabled (WSR.7 is set), the P2.5/HOLD#
pin can function only as HOLD#, regardless of the configuration selected
through the port configuration registers (P2_MODE, P2_DIR, and P2_REG). An
attempt to change the pin configuration is ignored until the bus-hold protocol is
disabled (WSR.7 is cleared).

HOLD# shares a package pin with P2.5.

INST (0] Instruction Fetch

This active-high output signal is valid only during external memory bus cycles.
When high, INST indicates that an instruction is being fetched from external
memory. The signal remains high during the entire bus cycle of an external
instruction fetch. INST is low for data accesses, including interrupt vector
fetches and chip configuration byte reads. INST is low during internal memory
fetches.

B-6

SIGNAL DESCRIPTIONS

Table B-3. Signal Descriptions (Continued)

Name

Type

Description

NMI

Nonmaskable Interrupt

In normal operating mode, a rising edge on NMI generates a nonmaskable
interrupt. NMI has the highest priority of all interrupts except trap and
unimplemented opcode. Assert NMI for greater than one state time to
guarantee that it is recognized.

If NMI is held high during and immediately following reset, the microcontroller
will execute the NMI vector when code execution begins. To prevent an
inadvertent NMI interrupt vector, the first instruction (at FF2080H) must clear
the NMI pending interrupt bit.

ANDB INT_PEND1, #7FH.

ONCE

On-circuit Emulation

Holding ONCE high during the rising edge of RESET# places the device into
on-circuit emulation (ONCE) mode. This mode puts all pins into a high-
impedance state, thereby isolating the device from other components in the
system. The value of ONCE is latched when the RESET# pin goes inactive.
While the device is in ONCE mode, you can debug the system using a clip-on
emulator.

To exit ONCE mode, reset the device by pulling the RESET# signal low. To
prevent inadvertent entry into ONCE mode, connect the ONCE pin to Vgg.

P1.7:0

110

Port 1

This is a standard, 8-bit, bidirectional port that shares package pins with
individually selectable special-function signals.

Port 1 shares package pins with the following signals: P1.0/EPAOQ, P1.1/EPAL,

P1.2/EPA2, P1.3/EPA3, P1.4/T1CLK, P1.5/T1DIR, P1.6/T2CLK, and
P1.7/T2DIR.

P2.7:0

110

Port 2

This is a standard, 8-hit, bidirectional port that shares package pins with
individually selectable special-function signals.

Port 2 shares package pins with the following signals: P2.0/TXD, P2.1/RXD,
P2.2/EXTINTO, P2.3/BREQ#, P2.4/EXTINT1, P2.5/HOLD#, P2.6/HLDA#, and
P2.7/CLKOUT.

P3.7:0

110

Port 3

This is a standard, 8-bit, bidirectional port that shares package pins with
individually selectable special-function signals.

Port 3 shares package pins with the following signals: P3.0/CS0#, P3.1/CS1#,

P3.2/CS2#, P3.3/CS3#, P3.4/CS4#, P3.5/CS5#, P3.6/EXTINT2, and
P3.7/EXTINTS.

P4.3:0

110

Port 4
This ia a 4-bit bidirectional, standard 1/O port with high-current drive capability.

Port 4 shares package pins with the following signals: P4.0/PWMO,
P4.1/PWM1, and P4.2/PWM2. P4.3 has a dedicated package pin.

B-7

80296SA USER’S MANUAL

intel.

Table B-3. Signal Descriptions (Continued)

Name Type Description
PLLENZ2:1 | Phase-locked Loop 1 and 2 Enable
These input pins enable the on-chip clock multiplier feature and select either
the doubled or the quadrupled clock speed:
PLLEN2 PLLEN1 Mode
0 0 1x mode; PLL disabled; f = Fy 1
0 1 2x mode; PLL enabled; f = 2F 7,1
1 0 Reserved?t
1 1 4x mode; PLL enabled; f = 4F 7,1
T This reserved combination causes the device to enter an unsupported test
mode.
PWM2:0 (@] Pulse Width Modulator Outputs
These are PWM output pins with high-current drive capability.
PWM2:0 share package pins with P4.2:0.
RD# (0] Read
Read-signal output to external memory. RD# is asserted only during external
memory reads.
READY | Ready Input
This active-high input can be used to insert wait states in addition to those
programmed in the chip configuration byte 0 (CCBO0) and the bus control x
register (BUSCONXx). CCBO is programmed with the minimum number of wait
states (0, 5, 10, 15) for an external fetch of CCB1, and BUSCONX is
programmed with the minimum number of wait states (0-15) for all external
accesses to the address range assigned to the chip-select x channel. If the
programmed number of wait states is greater than zero and READY is low
when this programmed number of wait states is reached, additional wait states
are added until READY is pulled high. If the programmed number of wait states
is equal to zero, hold the READY pin high. Programming the number of wait
states equal to zero and holding the READY pin low produces unpredictable
results.
RESET# lfe} Reset

A level-sensitive reset input to, and an open-drain system reset output from, the
microcontroller. Either a falling edge on RESET# or an internal reset turns on a
pull-down transistor connected to the RESET# pin for 16 state times. In the
powerdown, standby, and idle modes, asserting RESET# causes the chip to
reset and return to normal operating mode. After a device reset, the first
instruction fetch is from F2080H in external memory. The program and special-
purpose memory locations (F2000—-F2FFFH) reside in external memory.

B-8

SIGNAL DESCRIPTIONS

Table B-3. Signal Descriptions (Continued)

Name

Type

Description

RPD

Return from Powerdown
Timing pin for the return-from-powerdown circuit.

If your application uses powerdown mode, connect a capacitor between RPD

and Vg if either of the following conditions are true.

« the internal oscillator is the clock source

« the phase-locked loop (PLL) circuitry is enabled (see PLLENZ2:1 signal
description)

The capacitor causes a delay that enables the oscillator and PLL circuitry to

stabilize before the internal CPU and peripheral clocks are enabled.

The capacitor is not required if your application uses powerdown mode and if
both of the following conditions are true.

« an external clock input is the clock source

« the phase-locked loop circuitry is disabled

If your application does not use powerdown mode, leave this pin unconnected.

RXD

/10

Receive Serial Data

In modes 1, 2, and 3, RXD receives serial port input data. In mode 0, it
functions as either an input or an open-drain output for data.

RXD shares a package pin with P2.1.

T1CLK

Timer 1 External Clock

External clock for timer 1. Timer 1 increments (or decrements) on both rising
and falling edges of TICLK. Also used in conjunction with T1DIR for
quadrature counting mode.

and
External clock for the serial I/O baud-rate generator input (program selectable).
T1CLK shares a package pin with P1.4.

T2CLK

Timer 2 External Clock

External clock for timer 2. Timer 2 increments (or decrements) on both rising
and falling edges of T2CLK. It is also used in conjunction with T2DIR for
quadrature counting mode.

T2CLK shares a package pin with P1.6.

T1DIR

Timer 1 External Direction

External direction (up/down) for timer 1. Timer 1 increments when T1DIR is high
and decrements when it is low. Also used in conjunction with T1CLK for
quadrature counting mode.

T1DIR shares a package pin with P1.5.

T2DIR

Timer 2 External Direction

External direction (up/down) for timer 2. Timer 2 increments when T2DIR is high
and decrements when it is low. It is also used in conjunction with T2CLK for
quadrature counting mode.

T2DIR shares a package pin with P1.7.

TXD

Transmit Serial Data

In serial I/O modes 1, 2, and 3, TXD transmits serial port output data. In mode
0, it is the serial clock output.

TXD shares a package pin with P2.0.

B-9

80296SA USER'S MANUAL Int6|®

Table B-3. Signal Descriptions (Continued)

Name Type Description
Vee PWR | Digital Supply Voltage
Connect each V. pin to the digital supply voltage.
Vss GND | Digital Circuit Ground

These pins supply ground for the digital circuitry. Connect each Vg pin to
ground through the lowest possible impedance path.
WR# 0 Writet

This active-low output indicates that an external write is occurring. This signal is
asserted only during external memory writes.

WR# shares a package pin with WRL#.

T The chip configuration register 0 (CCRO0) determines whether this pin
functions as WR# or WRL#. CCRO0.2 = 1 selects WR#; CCRO0.2 = 0 selects
WRL#.

WRH# 0 Write Hight

During 16-bit bus cycles, this active-low output signal is asserted for high-byte
writes and word writes to external memory. During 8-bit bus cycles, WRH# is
asserted for all write operations.

WRH# shares a package pin with BHE#.

T The chip configuration register 0 (CCRO0) determines whether this pin
functions as BHE# or WRH#. CCR0.2 = 1 selects BHE#; CCRO0.2 = 0 selects
WRH#.

WRL# 0 Write LowT

During 16-bit bus cycles, this active-low output signal is asserted for low-byte
writes and word writes to external memory. During 8-bit bus cycles, WRL# is
asserted for all write operations.

WRL# shares a package pin with WR#.

T The chip configuration register 0 (CCRO0) determines whether this pin
functions as WR# or WRL#. CCRO0.2 = 1 selects WR#; CCRO0.2 = 0 selects
WRL#.

XTAL1 | Input Crystal/Resonator or External Clock Input

Input to the on-chip oscillator, internal phase-locked loop circuitry, and the
internal clock generators. The internal clock generators provide the peripheral
clocks, CPU clock, and CLKOUT signal. When using an external clock source
instead of the on-chip oscillator, connect the clock input to XTAL1. The external
clock signal must meet the V,, specification for XTAL1.

XTAL2 (0] Inverted Output for the Crystal/Resonator

Output of the on-chip oscillator inverter. Leave XTAL2 floating when the design
uses an external clock source instead of the on-chip oscillator.

B.3 DEFAULT CONDITIONS
Table B-5 lists the values of the signals of the 80296SA during various operating conditions. Ta-

ble B-4 defines the symbols used to represent the pin status. Refer to the DC Characteristics table
in the datasheet for actual specifications fgr,W, , Vo, and .

B-10

intel.

SIGNAL DESCRIPTIONS

Table B-4. Definition of Status Symbols

Symbol Definition Symbol Definition
0 Voltage less than or equal to V,, V, MDO Medium pull-down
1 Voltage greater than or equal to Vg, Vi, MD1 Medium pull-up
Hiz High impedance WKO Weak pull-down
Loz0 Low impedance; strongly driven low WK1 Weak pull-up
Lozl Low impedance; strongly driven high ODIO Open-drain /O
Table B-5. 80296SA Default Signal Conditions
Immediately
Port Alternate While . After : Pdoov\\/lvenr- Bus
Signals Functions RESE_T# is RESE'_I'# is Idle and Hold Idle
Active Inactive Standby
(Note 11)
P1.3:0 EPA3:0 WK1 WK1 (Note 1) (Note 1) (Note 1) —
P1.4 T1CLK WK1 WK1 (Note 1) (Note 1) (Note 1) —
P1.5 T1DIR WK1 WK1 (Note 1) (Note 1) (Note 1) —
P1.6 T2CLK WK1 WK1 (Note 1) (Note 1) (Note 1) —
P1.7 T2DIR WK1 WK1 (Note 1) (Note 1) (Note 1) —
P2.0 TXD WK1 WK1 (Note 1) (Note 1) (Note 1) —
pP2.1 RXD WK1 WK1 (Note 1) (Note 1) (Note 1) —
pP2.2 EXTINTO WK1 WK1 (Note 1) (Note 1) (Note 1) —
pP2.3 BREQ# WK1 WK1 (Note 1) (Note 1) 0 —
pP2.4 EXTINT1 WK1 WK1 (Note 1) (Note 1) (Note 1) —
P2.5 HOLD# WK1 WK1 (Note 1) (Note 1) Force O —
P2.6 HLDA# WK1 WK1 (Note 1) (Note 1) 0 —
pP2.7 CLKOUT CLKOUT CLKOUT (Note 1) (Note 2) (Note 1) —
active; active;
Loz0/1 LoZ0/1
P3.0 CSO# WK1 0 (Note 3) (Note 3) (Note 4) —
P3.5:1 CSb5:1# WK1 WK1 (Note 3) (Note 3) (Note 4) —
P3.6 EXTINT2 WK1 WK1 (Note 1) (Note 1) (Note 1) —
P3.7 EXTINT3 WK1 WK1 (Note 1) (Note 1) (Note 1) —
P4.2:0 PWM2:0 WK1 WK1 (Note 1) (Note 1) (Note 1) —
P4.3 — WK1 WK1 (Note 1) (Note 1) (Note 1) —
EPORT.3:0 | A19:16 WK1 1 (Note 5) (Note 5) (Note 6) | (Note 8)
— A15:0 WK1 (Note 12) (Note 7) (Note 7) Hiz Loz0
— AD15:8 WK1 (Note 12) (Note 7) (Note 7) Hiz Loz0
— AD7:0 WK1 HiZ (Note 7) (Note 7) Hiz LoZ0
— ALE WKO 0 (Note 9) (Note 9) WKO LoZ0
— BHE# WK1 1 (Note 10) | (Note 10) WK1 LoZ1l
— INST WKO 0 (Note 9) (Note 9) WKO LoZ0

B-11

80296SA USER’S MANUAL

Table B-5. 80296SA Default Signal Conditions (Continued)

_ Immediately Power-
Port Alternate | prdMe | e oETy s Idle down Hold Bus
Signals Functions . h and Idle
Active Inactive Standb
(Note 11) y
— NMI WKO WKO WKO WKO WKO —
— ONCE MDO MDO MDO MDO MDO —
— PLLEN1 Hiz Hiz Hiz Hiz Hiz —
— PLLEN2 MDO MDO MDO MDO MDO —
— RD# WK1 1 (Note 10) | (Note 10) WK1 LoZ1
— READY WK1 WK1 WK1 WK1 WK1 —
— RESET# 0 WK1 WK1 WK1 WK1 —
— RPD LoZ1 LoZ1 Lozl Lozl Lozl —
— WR# WK1 1 (Note 10) | (Note 10) WK1 LoZ1
— XTAL1 Osc input, Osc input, Oscinput, | Oscinput, | Osc input, —
Hiz Hiz Hiz Hiz Hiz
— XTAL2 Osc output, | Osc output, Osc (Pwrdown) Osc —
Loz0/1 Loz0/1 output, Hiz output,
Loz0/1 (Standby) Loz0/1
Osc
output,
LoZ0/1
NOTE:
1. IfPx MODE.y= 0, then port is as programmed. If Px MODE.y = 1, then as specified by the associated
peripheral.
2. If P2_MODE.7 = 0, then port is as programmed. If P2_MODE.7 = 1, then 1.
3. When used as chip select: if HLDA# = 0, then WK1. If HLDA# = 1, then LoZ1. When used as port: then
port is as programmed.
4. When used as chip select, WK1. When used as port, then port is as programmed.
5. When used as extended address, if HLDA# = 1, then 0; if HLDA# = 0, then HiZ
When used as EPORT, then port value.
6. When used as extended address, then HiZ. When used as EPORT, then port value.
7. If HLDA# = 1, then LoZ0. If HLDA# = 0, then HiZ.
8. When used as extended address, then previous address. When used as EPORT, then port value.
9. IfHLDA# = 1, then LoZO0. If HLDA# = 0, then WKO.
10. If HLDA# =1, then LoZ1. If HLDA# = 0, then WK1.
11. The values in this column are valid until your software writes to Px_MODE.
12. These signals are driven. The value changes during different periods within the bus cycle.

B-12

intel.

Registers

APPENDIX C
REGISTERS

This appendix provides reference information about the microcontroller registers. Table C-1 lists
the modules and major components of the microcontroller with their related configuration and
status registers. Table C-2 lists the registers, arranged alphabetically by mnemonic, along with
their names, addresses, and reset values. Following the tables, individual descriptions of the reg-
isters are arranged alphabetically by mnemonic.

Table C-1. Modules and Related Registes

Chip Configuration Chipaezlegig)nits CPU DSP
CCRO ADDRCOMXx ONES_REG ACC_0x(x=0,2,4)
CCR1 ADDRMSKXx PSW ACC_STAT
BUSCONXx RPT_CNT ICBx (x=0-1)
SP ICXx (x=0-1)
ZERO_REG IDXx (x =0-1)

(x EPOALS) Extended Port |(/)(():Pf_r£15) Interrupts
EPA_MASK EP_DIR Px_DIR EXTINT_CON
EPA_PEND EP_MODE Px_MODE IN_PROGX (x = 0-1)
EPAX_CON EP_PIN Px_PIN INT_CONX (x = 0-3)
EPAX_TIME EP_REG Px_REG INT_MASK

INT_MASK1
INT_PEND
INT_PEND1
NMI_PEND
VECT_ADDR
Memory Control (sz\/\(/)'\fz) Serial Port ()‘Eiz”lir_sz)
WSR CON_REGO SBUF_RX TIMERX
WSR1 PWMx_CONTROL SBUF_TX TXCONTROL
SP_BAUD
SP_CON
SP_STATUS

80296SA USER'S MANUAL Int6|®

Table C-2. Register Name, Address, and Reset State

Registe_r Register Name Hex Reset
Mnemonic Address State
ACC_00 Accumulator 0 000CH 0000H
ACC_02 Accumulator 2 000EH 0000H
ACC_04 Accumulator 4 0006H 0OH
ACC_STAT Accumulator Control and Status 000BH 38H
ADDRCOMO Address Compare 0 1F40H FF20H
ADDRCOM1 Address Compare 1 1F48H 0000H
ADDRCOM2 Address Compare 2 1F50H 0000H
ADDRCOM3 Address Compare 3 1F58H 0000H
ADDRCOMA4 Address Compare 4 1F60H 0000H
ADDRCOM5 Address Compare 5 1F68H 0000H
ADDRMSKO Address Mask 0 1F42H FFFFH
ADDRMSK1 Address Mask 1 1F4AH FFFFH
ADDRMSK2 Address Mask 2 1F52H FFFFH
ADDRMSK3 Address Mask 3 1F5AH FFFFH
ADDRMSK4 Address Mask 4 1F62H FFFFH
ADDRMSKS5 Address Mask 5 1F6AH FFFFH
BUSCONO Bus Control 0 1F44H OFH
BUSCON1 Bus Control 1 1F4CH 00H
BUSCON2 Bus Control 2 1F54H OOH
BUSCON3 Bus Control 3 1F5CH 00H
BUSCON4 Bus Control 4 1F64H 00H
BUSCONS Bus Control 5 1F6CH 0OH
CCRO Chip Configuration 0 t XXH
CCR1 Chip Configuration 1 T XXH
CON_REGO PWM Clock Prescaler Control 0 1FB6H 7CH
EP_DIR Extended Port I/O Direction 1FE3H FFH
EP_MODE Extended Port Mode 1FE1H FFH
EP_PIN Extended Port Pin Input 1FE7H XXH
EP_REG Extended Port Data Output 1FE5H 00H
EPA_MASK EPA Mask 1F9CH AAH

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after a device
reset. The CCBs reside in honvolatile memory at addresses FF2018H (CCBO0) and FF201AH
(CCBL1).

C-2

intel.

REGISTERS
Table C-2. Register Name, Address, and Reset State (Continued)

Mnemonic Register Name Address Sate
EPA_PEND EPA Pending 1F9EH AAH
EPAO_CON EPA Capture/Compare 0 Control 1F80H OO0H
EPA1_CON EPA Capture/Compare 1 Control 1F84H 0000H
EPA2_CON EPA Capture/Compare 2 Control 1F88H OOH
EPA3_CON EPA Capture/Compare 3 Control 1F8CH 0000H
EPAO_TIME EPA Capture/Compare 0 Time 1F82H 0000H
EPA1_TIME EPA Capture/Compare 1 Time 1F86H 0000H
EPA2_TIME EPA Capture/Compare 2 Time 1F8AH 0000H
EPA3_TIME EPA Capture/Compare 3 Time 1F8EH 0000H
EXTINT_CON External Interrupt Control 1FCCH 00H
ICBO Index Control Byte 0 1FC3H OOH
ICB1 Index Control Byte 1 1FC7H 00H
ICX0 Index Reference 0 0010H XXXXH
ICX1 Index Reference 1 0016H XXXXH
IDX0 Index Pointer O 1FCOH XXXXXXH
IDX1 Index Pointer 1 1FC4H XXXXXXH
IN_PROGO Interrupt In Progress 0 1FC8H OOH
IN_PROG1 Interrupt In Progress 1 1FCAH 0000H
INT_CONO Interrupt Control O 1FE8H 3210H
INT_CON1 Interrupt Control 1 1FEAH 7654H
INT_CON2 Interrupt Control 2 1FECH BA98H
INT_CON3 Interrupt Control 3 1FEEH FEDCH
INT_MASK Interrupt Mask 0008H OOH
INT_MASK1 Interrupt Mask 1 0013H 0OH
INT_PEND Interrupt Pending 0009H 00H
INT_PEND1 Interrupt Pending 1 0012H 00H
NMI_PEND NMI Pending 1FC9H OOH
ONES_REG Ones Register 0002H FFFFH
P1_DIR Port 1 1/0 Direction 1FD2H FFH
P2_DIR Port 2 1/0 Direction 1FD3H 7FH
P3_DIR Port 3 I/O Direction 1FDAH FEH

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after a device
reset. The CCBs reside in honvolatile memory at addresses FF2018H (CCBO0) and FF201AH

(CCB1).

C-3

80296SA USER’S MANUAL

c-4

Table C-2. Register Name, Address, and Reset State (Continued)

Registe_r Register Name Hex Reset
Mnemonic Address State
P4_DIR Port 4 1/0 Direction 1FDBH FFH
P1_MODE Port 1 Mode 1FDOH 0OH
P2_MODE Port 2 Mode 1FD1H 80H
P3_MODE Port 3 Mode 1FD8H 01H
P4_MODE Port 4 Mode 1FD9H 0OH
P1_PIN Port 1 Pin Input 1FD6H XXH
P2_PIN Port 2 Pin Input 1FD7H XXH
P3_PIN Port 3 Pin Input 1FDEH XXH
P4_PIN Port 4 Pin Input 1FDFH XXH
P1_REG Port 1 Data Output 1FD4H FFH
P2_REG Port 2 Data Output 1FD5H FFH
P3_REG Port 3 Data Output 1FDCH FFH
P4_REG Port 4 Data Output 1FDDH FFH
PSW Processor Status Word no direct
access
PWMO_CONTROL | PWM 0 Control 1FBOH 0OH
PWM1_CONTROL | PWM 1 Control 1FB2H OOH
PWM2_CONTROL | PWM 2 Control 1FB4H 0OH
RPT_CNT Repeat Counter 0004H XXXXH
SBUF_RX Serial Port Receive Buffer 1FB8H OOH
SBUF_TX Serial Port Transmit Buffer 1FBAH 00H
SP Stack Pointer 0018H XXXXH
SP_BAUD Serial Port Baud Rate 1FBCH 0000H
SP_CON Serial Port Control 1FBBH 80H
SP_STATUS Serial Port Status 1FB9H 0BH
T1CONTROL Timer 1 Control 1F90H OOH
T2CONTROL Timer 2 Control 1F94H 00H
TIMER1 Timer 1 Value 1F92H 0000H
TIMER2 Timer 2 Value 1F96H 0000H
VECT_ADDR Interrupt Vector Address Select 1FFOH FF30H
WSR Window Selection 0014H 00H

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after a device
reset. The CCBs reside in honvolatile memory at addresses FF2018H (CCBO0) and FF201AH

(CCB1).

intel.

REGISTERS
Table C-2. Register Name, Address, and Reset State (Continued)
Register . Hex Reset
Mnemonic Register Name Address State
WSR1 Window Selection 1 0015H 00H
ZERO_REG Zero Register 0000H 0000H

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after a device
reset. The CCBs reside in honvolatile memory at addresses FF2018H (CCBO0) and FF201AH

(CCB1).

C-5

80296SA USER'S MANUAL Int6|®

ACC_0x
ACC_0x Address: OCH, OEH, 06H
x=0,24 Reset State: 0OH

The 40-bit accumulator register (ACC_0x) resides at locations 0C—OFH. You must read from or write to
the accumulator register as two words at locations OCH and OEH, and as one byte at location 06H.

39 32
ACC_04 Accumulator Value (most-significant byte) ‘
31 16
ACC_02 ‘ Accumulator Value (word 1) ‘
15 0
ACC_00 ‘ Accumulator Value (word 0) ‘
NuIani:Jer Function
39:0 Accumulator Value

You can read this register to determine the current value of the accumulator. You can
write to this register to clear or preload a value into the accumulator.

C-6

intel.

REGISTERS

ACC_STAT

ACC_STAT

contents.
7

Address: OBH
Reset State: 38H

The accumulator control and status (ACC_STAT) register enables and disables fractional and
saturation modes and contains three status flags that indicate the status of the accumulator’s

0

FME

SME

_ _ H _ STOVF OVF ‘STSAT

Bit
Number

Bit
Mnemonic

Function

7

FME

Fractional Mode Enable

Set this bit to enable fractional mode (see “Effect of SME and FME Bit
Combinations”). In this mode, the result of a signed multiplication instruction
is shifted left by one bit before it is added to the contents of the accumulator.

For unsigned multiplication, this bit is ignored.

SME

Saturation Mode Enable

Set this bit to enable saturation mode (see “Effect of SME and FME Bit
Combinations”). In this mode, the result of a signed multiplication operation
is not allowed to overflow or underflow.

For unsigned multiplication, this bit is ignored.

Reserved; for compatibility with future devices, write zeros to these bits.

STOVF

Sticky Overflow Flag
For unsigned multiplication, this bit is set if a carry out of bit 31 occurs.

Unless saturation mode is enabled, this bit is set for signed multiplication to
indicate that the sign bit of the accumulator and the sign bit of the addend
are equal, but the sign bit of the result is the opposite (see “Effect of SME
and FME Bit Combinations”).

Software can clear this flag; hardware does not clear it.

OVF

Overflow Flag

This bit indicates that an overflow occurred during the preceding accumu-
lation (see “Effect of SME and FME Bit Combinations”).

This flag is dynamic; it can change after each accumulation.

STSAT

Sticky Saturation Flag

This bit indicates that a saturation has occurred during accumulation with
saturation mode enabled (see “Effect of SME and FME Bit Combinations”).

Software can clear this flag; hardware does not clear it.

C-7

80296SA USER'S MANUAL Int6|®

ACC_STAT

Table C-3. Effect of SME and FME Bit Combinations
SME | FME Description

0 0 Sets the OVF and STOVF flags if the sign bits of the accumulator and the addend (the
number to be added to the contents of the accumulator) are equal, but the sign bit of the
result is the opposite.

0 1 Shifts the addend (the number to be added to the contents of the accumulator) left by one
bit before adding it to the accumulator. Sets the OVF and STOVF flags if the sign bits of the
accumulator and the addend are equal, but the sign bit of the result is the opposite.

1 0 | Accumulates a signed integer value up or down to saturation and sets the STSAT flag.
Positive saturation changes the accumulator value to 7FFFFFFFH; negative saturation
changes the accumulator value to 80000000H. Accumulation proceeds normally after
saturation, which means that the accumulator value can increase from a negative saturation
or decrease from a positive saturation.

1 1 Shifts the addend (the number to be added to the contents of the accumulator) left by one
bit before adding it to the accumulator. Accumulates a signed integer value up or down to
saturation and sets the STSAT flag. Positive saturation changes the accumulator value to
7FFFFFFFH; negative saturation changes the accumulator value to 80000000H. Accumu-
lation proceeds normally after saturation, which means that the accumulator value can
increase from a negative saturation or decrease from a positive saturation.

C-8

intel.

REGISTERS

ADDRCOMXx

ADDRCOMx

X =0-5

The address compare (ADDRCOMX) register specifies the base (lowest) address of the address range.
The base address of a 2"-byte address range must be on a 2-byte boundary.

15 8
‘ BASE23 ‘ BASE22 ‘ BASE21 ‘ BASE20 H BASE19 ‘ BASE18 ‘ BASEL17 ‘ BASE16 ‘
7 0
‘ BASE15 ‘ BASE14 ‘ BASE13 ‘ BASE12 H BASE11 ‘ BASE10 ‘ BASE9 ‘ BASES ‘
Bit Bit . Function
Number Mnemonic
15:0 BASE23:8 Base Address Bits

Write address bits 23-8 of the base address of the address range

assigned to chip-select x to these bits.

Table C-4. ADDRCOM x Addresses and Reset States

Register Address Reset States
ADDRCOMO 1F40H FF20H
ADDRCOM1 1F48H 0000H
ADDRCOM2 1F50H 0000H
ADDRCOM3 1F58H 0000H
ADDRCOM4 1F60H 0000H
ADDRCOMS5 1F68H 0000H

C-9

80296SA USER’S MANUAL

ADDRMSKx

intel.

X =0-5

15

ADDRMSK x

The address mask (ADDRMSKX) register, together with the address compare register, defines the
address range that is assigned to the chip-select x output, CSx#. The address mask register
determines the size of the address range, which must be 27 bytes, where n=8, 9, . ., 20. For a 2"-byte
address range, calculate n; = 24— n, and set the n; most-significant bits of MASK23:8 in the address
mask register.

8

\ MASK23 \ MASK22 \ MASK21 \ MASK20 \ \ MASK19 \ MASK18 \ MASK17 \ MASK16 \

7

0

‘ MASK15 ‘ MASK14 ‘ MASK13 ‘ MASK12 H MASK11 ‘ MASK10 ‘ MASK9 ‘ MASKS ‘

Bit Bit]
Number Mnemonic Function
15:0 MASK?23:8 Address Mask Bits

For a 2"-byte address range, set the n; most-significant bits of
MASK23:8, where n; =24 — n.

Since 20 external address lines are available, the maximum address
range size is 1 Mbyte (220). Therefore, always write ones to the 4 most-
significant mask bits (MASK23:20).

C-10

Table C-5. ADDRMSK x Addresses and Reset States

Register Address Reset State
ADDRMSKO 1F42H FFFFH
ADDRMSK1 1F4AH FFFFH
ADDRMSK2 1F52H FFFFH
ADDRMSK3 1F5AH FFFFH
ADDRMSK4 1F62H FFFFH
ADDRMSK5 1F6AH FFFFH

Int6|® REGISTERS

BUSCONX

BUSCONXx
X =0-5

For the address range assigned to chip-select x, the bus control (BUSCONX) register specifies the
number of wait states, the bus width, and the address/data multiplexing for all external bus cycles that
access address range x. BUSCONXx also determines whether chip-select output x will be activated
when the address region for chip select x+1 is accessed. This option makes accessing a memory
device using two different bus configurations possible.

The chip-select output signals share package pins with port 3. Use the port registers to configure these
pins as general-purpose /O signals or as chip-select signals (see “Chip-select Signals (Port 3)” on
page 7-8). The bus configuration programmed in BUSCONX applies to address range x, regardless of
the port 3 pin configurations.

7 0
DEMUX BW16 REMAP WRWS ‘ ‘ WS3 WS2 Ws1 WSO
Bit Bit .
Number Mnemonic Function
7 DEMUX Address/Data Multiplexing

This bit specifies the address/data multiplexing on AD15:0 for all external
accesses to the address range assigned to chip-select x output.

0 = multiplexed
1 = demultiplexed
6 BW16 Bus Width

This bit specifies the bus width for all external accesses to the address
range assigned to chip-select x output.

0 = 8 bits
1 =16 bits
5 REMAP Remap

Setting this bit remaps chip-select output x+1 (CSx+1#) to chip-select
output x (CSx#). In other words, accessing chip select x’s address region
activates CSx# and configures the bus as programmed in BUSCONX.
Accessing chip select x+1's address region also activates CSx# but
configures the bus as programmed in BUSCONXx+1. See “Example of a
Chip-select Setup Using the Remap Feature” on page 13-16.

0 = remapping disabled
1 = remapping enabled (CSx+1# is remapped to CSx#)

Note: For chip-select channel 5, setting this bit remaps CS0# to CS5#. In
this case, x=5and x+1 = 0.

C-11

80296SA USER'S MANUAL Int6|®

BUSCONXx

BUSCON X (Continued)
x=0-5

For the address range assigned to chip-select x, the bus control (BUSCONX) register specifies the
number of wait states, the bus width, and the address/data multiplexing for all external bus cycles that
access address range x. BUSCONXx also determines whether chip-select output x will be activated
when the address region for chip select x+1 is accessed. This option makes accessing a memory
device using two different bus configurations possible.

The chip-select output signals share package pins with port 3. Use the port registers to configure these
pins as general-purpose /O signals or as chip-select signals (see “Chip-select Signals (Port 3)” on
page 7-8). The bus configuration programmed in BUSCONX applies to address range x, regardless of
the port 3 pin configurations.

7 0
DEMUX | Bwie | REMAP | WRws || ws3 Ws2 ws1 WSO
Bit Bit Function
Number Mnemonic
4 WRWS Write Operation Wait State

When this bit is set, the bus controller adds one state time (2t) to write
operations within the address region specified by chip select x.

0 = data and address hold time remains unchanged
1 = data and address hold time increases by one state time (2t)

See the datasheet for the write operation data and address hold time
specification (T ax)-

3.0 WS3:0 Wait States

These bits, along with the READY pin, control the number of wait states
for all external accesses to the address range assigned to the chip-select
x channel. Write the desired minimum number of wait states (0-15) to
WS3:0. If the programmed number of wait states is greater than zero and
READY is low when this programmed number of wait states is reached,
additional wait states are added until READY is pulled high. If the
programmed number of wait states is equal to zero, hold the READY pin
high. Programming the number of wait states equal to zero and holding
the READY pin low produces unpredictable results.

Table C-6. BUSCON x Addresses and Reset States

Register Address Reset State
BUSCONO 1F44H OFH
BUSCON1 1F4CH 0OH
BUSCON2 1F54H 00H
BUSCON3 1F5CH 0OH
BUSCON4 1F64H 0OH
BUSCONS5 1F6CH 00H

C-12

Int6|® REGISTERS

CCRO

CCRO no direct accesst

The chip configuration 0 (CCRO) register enables or disables the IDLPD #2 and IDLPD #3 instructions
and selects the write-control mode. It also contains the bus-control parameters for fetching chip config-
uration byte 1.

7 0
1 1 ws1 wso || DEMUX | BHE# BW16 PD
Bit Bit Function
Number Mnemonic
7:6 1 To guarantee proper operation, write ones to these bits.
5:4 WS1:0 Wait States

These bits, along with the READY pin, control the number of wait states
that are used for an external fetch of chip configuration byte 1 (CCB1).

WS1 WSO

0 0 0 wait states
0 1 5 wait states
1 0 10 wait states
1 1 15 wait states

If the programmed number of wait states is greater than zero and READY
is low when this programmed number of wait states is reached, additional
wait states are added until READY is pulled high. If the programmed
number of wait states is equal to zero, hold the READY pin high.
Programming the number of wait states equal to zero and holding the
READY pin low produces unpredictable results.

3 DEMUX Select Demultiplexed Bus
Selects the demultiplexed bus mode for an external fetch of CCB1:

0 = multiplexed — address and data are multiplexed on AD15:0.
1 = demultiplexed — data only on AD15:0.

2 BHE# Write-control Mode
Selects the write-control mode, which determines the functions of the
BHE#/WRH# and WR#/WRL# pins for external bus cycles:

0 = write strobe mode: the BHE#/WRH# pin operates as WRH#, and the
WR#/WRL# pin operates as WRL#.

1 = standard write-control mode: the BHE#/WRH# pin operates as
BHE#, and the WR#/WRL# pin operates as WR#.

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

C-13

80296SA USER'S MANUAL Int6|®

CCRO

CCRO (Continued) no direct access?

The chip configuration 0 (CCRO) register enables or disables the IDLPD #2 and IDLPD #3 instructions
and selects the write-control mode. It also contains the bus-control parameters for fetching chip config-
uration byte 1.

7 0
1 1 ws1 WSO ‘ ‘ DEMUX | BHE# BW16 PD
Bit Bit .
Number Mnemonic Function
1 BW16 Buswidth Control
Selects the bus width for an external fetch of CCB1:
0 = 8-bit bus
1 = 16-bit bus
0 PD Powerdown Enable

Enables or disables the IDLPD #2 and IDLPD #3 instructions. When
enabled, the IDLPD #2 instruction causes the microcontroller to enter
powerdown mode and the IDLPD #3 instruction causes the microcon-
troller to enter standby mode.

0 = disable powerdown and standby modes
1 = enable powerdown and standby modes

If your design uses powerdown or standby mode, set this bit when you
program the CCBs. If it does not, clearing this bit when you program the
CCBs will prevent accidental entry into powerdown or standby mode.
(Chapter 12, “Special Operating Modes,” discusses powerdown and
standby modes.)

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

C-14

Int6|® REGISTERS

CCR1
CCR1 no direct access’
The chip configuration 1 (CCR1) register selects the 64-Kbyte or 1-Mbyte addressing mode.
7 0
1 1 o | 1 || 1 0 MODE64 | 0 |
Nuatber Mne?r:tonic Function
7:6 1 To guarantee proper operation, write ones to these bits.
5 0 To guarantee proper operation, write zero to this bit.
4:3 1 To guarantee proper operation, write ones to these bits.
2 0 To guarantee proper operation, write zero to this bit.
1 MODE®64 Addressing Mode
Selects 64-Kbyte or 1-Mbyte addressing.
0 = selects 1-Mbyte addressing
1 = selects 64-Kbyte addressing
In 1-Mbyte mode, code can execute from almost anywhere in the
address space. In 64-Kbyte mode, code can execute only from page
FFH. (See “Fetching Code and Data in the 1-Mbyte and 64-Kbyte Modes”
on page 5-22 for more information.)
0 0 Reserved; for compatibility with future devices, write zero to this bit.

The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset. The CCBs
reside at addresses FF2018H (CCBO0) and FF201AH (CCB1).

C-15

80296SA USER'S MANUAL Int6|®

CON_REGO

CON_REGO Address: 1FB6H
Reset State: 7CH

The control (CON_REGO) register controls the clock prescaler for the three pulse-width modulators
(PWMO-PWM2) and enables or disables the duty-cycle generator.

7 0
DCDt _ _ _ H _ _ CLK1 ‘CLKO‘

Bit Bit

. Function
Number | Mnemonic

7 DCD Duty Cycle Disable Control

This bit controls the duty-cycle generator for power conservation. Upon
reset, the generator is enabled.

0 = enabled; PWM duty cycle generator is turned on
1 = disabled; PWM duty cycle generator is turned off

6:2 — Reserved; for compatibility with future devices, write zeros to these bits.

1:0 CLK1:0 Enable PWM Clock Prescaler

These bits control the PWM output period on the three pulse-width
modulators (PWM2:0).

CLK1 CLKO

0 0 disable clock prescaler

0 1 enable divide-by-two prescaler; PWM output period is
1024 state times

1 X enable divide-by-four prescaler; PWM output period is

2048 state times
T This bit was called PWM_HALT in earlier documentation for the 80296SA.

C-16

intel.

REGISTE

RS

EP_DIR

EP_

DIR

Address: 1FE3H
Reset State: FFH

In I/0 mode, each bit of the extended port I/O direction (EP_DIR) register controls the direction of the
corresponding pin. Clearing a bit configures a pin as a complementary output; setting a bit configures
a pin as either a high-impedance input or an open-drain output. (Open-drain outputs require external
pull-ups.)
Any pin that is configured for its extended-address function is forced to the complementary output
mode except during reset, hold, idle, powerdown, and standby.

7 0
— — — — || Pi3 PIN2 PINL PINO
Bit Bit B Function
Number Mnemonic
74 — Reserved; for compatibility with future devices, write ones to these bits.
3:0 PIN3:0 Extended Address Port Pin x Direction

Each bit controls the configuration of the corresponding pin. Clearing a
bit configures a pin as a complementary output; setting a bit configures a
pin as a high-impedance input or an open-drain output.

C-17

80296SA USER’S MANUAL

EP_MODE

intel.

EP_MODE

Address: 1FE1H
Reset State: FFH

Each bit of the extended port mode (EP_MODE) register controls whether the corresponding pin
functions as a general-purpose 1/O signal or as an extended-address signal. Setting a bit configures a
pin as an extended-address signal; clearing a bit configures a pin as a general-purpose 1/O signal.

7 0
— — — — || Pi3 PIN2 PINL PINO
Bit Bit B Function
Number Mnemonic
7:4 — Reserved; for compatibility with future devices, write zeros to these bits.
3:0 PIN3:0 Extended Address Port Pin x Mode

This bit determines the mode of EPORT.x:

0 = general-purpose I/O signal
1 = extended-address signal

C-18

intel.

REGISTERS

EP_PIN

EP_PIN

Each bit of the extended port pin (EP_PIN) register reflects the current state of the corresponding pin,
regardless of the pin configuration.

Address: 1FE7H
Reset State: XXH

7 0
— — — — || Ppns PIN2 PIN1 PINO
Bit Bit Function
Number Mnemonic
74 — Reserved. These bits are undefined.
3:0 PIN3:0 Extended Address Port Pin x Input
This bit contains the current state of EPORT.x.

C-19

80296SA USER'S MANUAL Int6|®

EP_REG

EP_REG Address: 1FE5H
Reset State: 00H

Each bit of the extended port data output (EP_REG) register contains data to be driven out by the
corresponding pin. When a pin is configured as a general-purpose 1/O signal (EP_MODE.x = 0), the
result of a CPU write to EP_REG is immediately visible on the pin.

During nonextended data accesses, EP_REG contains the value of the memory page that is to be
accessed. For compatibility with software tools, clear the EP_REG bit for any EPORT pin that is
configured as an extended-address signal (EP_MODE.x set).

For nonextended data accesses, the 80296SA forces the page address to 00H. You cannot change
pages by modifying EP_REG.

7 0
— — — — || Ppns PIN2 PINL PINO
Bit Bit Function
Number Mnemonic
7:4 — Reserved; for compatibility with future devices, write zeros to these bits.
3:0 PIN3:0 Extended Address Port Pin x Output
If EPORT.x is to be used as an output, write the data that it is to drive
out.
If EPORT.x is to be used as an input, set this bit.

C-20

Int6|® REGISTERS

EPA_MASK
EPA MASK Address: 1F9CH
- Reset State: AAH
The EPA interrupt mask (EPA_MASK) register enables or disables (masks) the shared EPA3:0 overrun
interrupts (OVR3:0).
7 0
— owrs | — [owe || — OVR1 — OVRO
Bit Bit Function
Number Mnemonic
7,531 — Reserved; for compatibility with future devices, write zeros to these bits.
6,4,2,0 OVR3 Setting this bit enables the corresponding source as a shared overrun
OVR2 interrupt source. The shared overrun interrupts (OVRO_1 and OVR2_3)
OVR1 are enabled by setting their interrupt enable bits in the interrupt mask 1
OVRO (INT_MASKZ1) register.

C-21

80296SA USER'S MANUAL Int6|®

EPA_PEND

EPA_PEND

Address: 1F9EH
Reset State: AAH

When hardware detects a pending EPA0-3 overrun interrupt request (OVR3:0), it sets the corre-
sponding bit in the EPA interrupt pending register (EPA_PEND).
Reading EPA_PEND clears all bits.

7 0
— owrs | — [owe || — OVR1 — OVRO
Bit .
Number Function
7,5 3,1 Reserved. These bits are undefined.
6,4,2,0 Any set bit indicates that the corresponding overrun interrupt source is pending.

C-22

Int6|® REGISTERS

EPAX_CON

EPAX_CON
Xx=0-3

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO and EPA2 are identical. The registers for EPA1 and EPA3 have an
additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON and
EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8
x=t3 | = | = [=] =l =]=1=1Rum|
7 0
| | ce | mt | mo || RE | — [ROT | ONRT |
7 0
x=0,2 | ® | ce | mit | mo || RE | — [ROT | ONRT |
Nulr?’r:{)er Mne?ritonic Function
15:91 — Reserved; always write as zeros.
8t RM Remap Feature
The remap feature applies to the compare mode of the EPAL1 and EPA3
only.

When the remap feature of EPAL is enabled, EPA capture/compare channel
0 shares output pin EPA1 with EPA capture/compare channel 1. When the
remap feature of EPA3 is enabled, EPA capture/compare channel 2 shares
output pin EPA3 with EPA capture/compare channel 3.

0 = remap feature disabled
1 = remap feature enabled

7 B Time Base Select
Specifies the reference timer.

0 = timer 1 is the reference timer and timer 2 is the opposite timer
1 =timer 2 is the reference timer and timer 1 is the opposite timer

A compare event (clearing, setting, or toggling an output pin; and/or
resetting either timer) occurs when the reference timer matches the time
programmed in the event-time register.

When a capture event (falling edge, rising edge, or an edge change on the
EPAX pin) occurs, the reference timer value is saved in the EPA event-time
register (EPAx_TIME).

6 CE Compare Enable

Determines whether the EPA channel operates in capture or compare
mode.

0 = capture mode
1 = compare mode

T These bits apply to the EPAL_CON and EPA3_CON registers only.

C-23

80296SA USER'S MANUAL Int6|®

EPAX_CON

EPAX_CON (Continued)
x=0-3

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO and EPA2 are identical. The registers for EPA1 and EPA3 have an
additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON and
EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8
x=1,3 ‘ — ‘ - ‘ — ‘ — ‘ ‘ — ‘ — ‘ — ‘ RM ‘
7 0
‘ B ‘ CE ‘ M1 ‘ MO ‘ ‘ RE ‘ — ‘ ROT ‘ ON/RT ‘
7 0
x=0,2 \ B \ CE \ M1 \ MO H RE \ _ \ ROT \ ON/RT \
Bit Bit

. Function
Number | Mnemonic

5:4 M1:0 EPA Mode Select

In capture mode, specifies the type of event that triggers an input capture.
In compare mode, specifies the action that the EPA executes when the
reference timer matches the event time.

M1 MO Capture Mode Event

0 0 no capture

0 1 capture on falling edge
1 0 capture on rising edge
1 1 capture on either edge
M1 MO Compare Mode Action
0 0 no output

0 1 clear output pin

1 0 set output pin
1 1 toggle output pin

3 RE Re-enable

Re-enable applies to the compare mode only. It allows a compare event to
continue to execute each time the event-time register (EPAx_TIME)
matches the reference timer rather than only upon the first time match.

0 = compare function is disabled after a single event
1 = compare function always enabled

2 — Reserved; always write as zero.
T These bits apply to the EPA1_CON and EPA3_CON registers only.

C-24

Int6|® REGISTERS

EPAX_CON

EPAX_CON (Continued)
x=0-3

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO and EPA2 are identical. The registers for EPA1 and EPA3 have an
additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON and
EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8
x=1,3 ‘ — ‘ - ‘ — ‘ — ‘ ‘ — ‘ — ‘ — ‘ RM ‘
7 0
‘ B ‘ CE ‘ M1 ‘ MO ‘ ‘ RE ‘ — ‘ ROT ‘ ON/RT ‘
7 0
x=0,2 \ B \ CE \ M1 \ MO H RE \ _ \ ROT \ ON/RT \
Bit Bit

. Function
Number | Mnemonic

1 ROT Reset Opposite Timer
Controls different functions for capture and compare modes.
In Capture Mode:

0 = causes no action
1 = resets the opposite timer

In Compare Mode:
Selects the timer that is to be reset if the RT bit is set.
0 = selects the reference timer for possible reset
1 = selects the opposite timer for possible reset
0 ON/RT Overwrite New/Reset Timer
The ON/RT bit functions as overwrite new in capture mode and reset timer
in compare mode.
In Capture Mode (ON):

An overrun error is generated when an input capture occurs while the event-
time register (EPAx_TIME) and its buffer are both full. When an overrun
occurs, the ON bit determines whether old data is overwritten or new data is
ignored:

0 = ignores new data

1 = overwrites old data in the buffer
In Compare Mode (RT):

0 = disables the reset function
1 = resets the ROT-selected timer

T These bits apply to the EPA1_CON and EPA3_CON registers only.

C-25

80296SA USER’S MANUAL

EPAX_CON

C-26

Table C-7. EPA x_CON Addresses and Reset States

Register Address gfastzt
EPAO_CON 1F80H 0OH
EPA1_CON 1F84H 0000H
EPA2_CON 1F88H 0OH
EPA3_CON 1F8CH 0000H

intel.

REGISTERS

EPAX_TIME

EPAX_TIME

Xx=0-3

The EPA time (EPAX_TIME) registers are the event-time registers for the EPA channels. In capture
mode, the value of the reference timer is captured in EPAX_TIME when an input transition occurs.
Each event-time register is buffered, allowing the storage of two capture events at once. In compare
mode, the EPA triggers a compare event when the reference timer matches the value in EPAx_TIME.

EPAX_TIME is not buffered for compare mode.

15 0
EPA Timer Value
Bit .
Number Function
15:0 EPA Timer Value

When an EPA channel is configured for capture mode, this register contains the value of
the reference timer when the specified event occurred.

When an EPA channel is configured for compare mode, write the compare event time to

this register.

Table C-8. EPA x_TIME Addresses and Reset States

Register Address Reset State
EPAO_TIME 1F82H 0000H
EPA1_TIME 1F86H 0000H
EPA2_TIME 1F8AH 0000H
EPA3_TIME 1F8EH 0000H

Cc-27

80296SA USER’S MANUAL

EXTINT_CON

intel.

EXTINT_CON

Address: 1FCCH
Reset State: 00OH

The external interrupt control (EXTINT_CON) register enables you to individually select the action that
causes an interrupt request on each external interrupt input.

7 0
LEV3 LEV2 LEV1 LEvo || PoL3 POL2 POL1 POLO
Bit Bit Function
Number Mnemonic
7:4 LEV3:0 These bits control what action on the external interrupt pins generates an
30 POL3:0 interrupt request. LEV3 and POL3 program the EXTINT3 pin, LEV2 and

POL2 program EXTINTZ2, and so on.

LEVX
0

0
1
1

POLXx
0

1
0
1

rising edge on EXTINT x generates an interrupt request
falling edge on EXTINTXx generates an interrupt request
high level on EXTINTx generates an interrupt request
low level on EXTINTx generates an interrupt request

C-28

Int6|® REGISTERS

ICBXx
ICBx Address: 1FC3H, 1FC7H
x=0-1 Reset State: OOH

The index control byte (ICBXx) register controls the automatic increment and decrement feature of the
index pointers.

7 4 3 0
— — — ID ‘ ‘ Count
Bit Bit : Function
Number Mnemonic
75 — Reserved; for compatibility with future devices, write zeros to these bits.
4 ID Increment or Decrement

This bit allows the index pointer to increment and decrement.

0 = increment
1 = decrement

3:0 Count Count Value
These bits specify a count value ranging from OH to OFH (15 decimal).

C-29

80296SA USER’S MANUAL

intel.

ICXx
ICXx Address: 0010H, 0016H
x=0-1 Reset State: XXXXH

The index reference register (ICXx) allows you to indirectly access the address location being pointed
to by the index pointer.

15 0
Index Reference
Bit .
Number Function
15:0 Index Reference
This register contains a word of data that indirectly addresses the index pointer.

C-30

]
Int€|® REGISTERS
IDXx
IDXx Address: 1FCOH, 1FC4H
X =0-1 Reset State: XXXXXXH

The 24-bit index register (IDXx) serves as a pointer to any location within the 16-Mbyte address space.

The following restrictions apply:
¢ |IDXO0 and IDX1 must be accessed with windowed direct addressing.

¢ |DXO0 must point to either a source 1 (SRC1) or a destination (DEST) address.
¢ IDX1 must point to a source 2 (SRC2) address.

24 0
Index Pointer
Bit .
Number Function
24:0 Index Pointer
This register contains 24 bits of data that point to a location within the address range.

C-31

80296SA USER'S MANUAL Int6|®

IN_PROGx
IN_PROGx Address: 1FC8H, 1FCAH
Xx=0-1 Reset State: 00H, 0000H

The interrupt in-progress registers (IN_PROGX) track which interrupt is currently being serviced. The
IN_PROGO register tracks the unimplemented opcode interrupt (UOP) and the software trap interrupt.
The IN_PROGL1 register tracks the maskable interrupts in terms of the priority that was assigned to
them in the INT_CONXx registers. IN_PROGX registers should only be used when priority-programming
is enabled.

7 0
IN_PROGO | — | — | =] =]| = | = | vop | 1raP |
15 8
IN_PROG1 | N | PRi4 | PR13 | PR12 || PR11 | PR10 | PRO | PR8 |
7 0
| PR7 | PRe | PRs | PR4 || PR3 | — | PR1L | PRO |
Nuﬁjt)er Mne?ritonic Function
IN_PROGO0.7:2 | — Reserved; for compatibility with future devices, write zeros to these
IN_PROG1.2 bits.
IN_PROGO0.1 UoP Any set bit indicates that the interrupt routine with the corresponding

programmed priority level is executing. When processing transfers to
IN_PROGO.0 TRAP an interrupt service routine, hardware sets the bit that corresponds to
IN PROG1.15 NMI the interrupt’s programmed priority level. When the return from

— interrupt (RETI) instruction is executed, at the end of an interrupt
IN_PROG1.14:3 | PR14:3 service routine, hardware clears the bit that corresponds to the
IN_PROG1.1:0 | PRLO interrupt's programmed priority level.

The UOP, TRAP, and NMI are fixed priority interrupts.

C-32

intel.

REGISTERS

INT_CONX

INT_CONXx
Xx=0-3

The interrupt control registers (INT_CONYXx) allow you to program the priority of the maskable
interrupts. To assign a priority to an interrupt, write the interrupt’s default priority hex value to the
desired priority field. Before you can use this register, you must enable the programmable priority
mode by setting bit 7 in NMI_PEND.

15 8 7 0
INT_CON3 ‘ — PR14 ‘ PR13 ‘ PR12
15 8 7 0
INT_CON2 \ PR1L PR10 \ PR9 \ PR8
15 8 7 0
INT_CON1 ‘ PR7 PR6 ‘ PR5 ‘ PR4
15 8 7 0
INT_CONO \ PR3 — \ PR1 \ PRO
Bit Bit Function
Number Mnemonic
INT_CON3.15:12 — Priority Fields
INT CON3.11:8 PR14 Write to these priority fields to program the interrupt
— priority and vector location. To assign an interrupt to a
INT_CON3.7:4 PR13 specific priority, write its interrupt default priority hex value
INT CON3.3:0 PR12 to the desired priority field. Write FH to any unused priority
= field, including reserved priority fields, 2 and 15.
INT_CON2.15:12 PRI For example, if you were to assign interrupt source EPA3
INT_CON2.11:8 PR10 (default priority value 10) to priority twelve (PR12), the
X branching scheme for the EPA3 service routine would
INT_CON2.7:4 PR9 change from vector location FF2034H to FF2038H. This is
INT CON2.3:0 PRS possible by simply writing AH to bit field INT_CON3.3:0.
INT_CON1.15:12 PR7
INT_CON1.11:8 PR6
INT_CONL1.7:4 PR5
INT_CONL1.3:0 PR4
INT_CONO.15:12 PR3
INT_CONO.11:8 —
INT_CONO.7:4 PR1
INT_CONO.3:0 PRO

C-33

80296SA USER’S MANUAL

INT_CONX

C-34

Table C-9. INT_CON x Address and Reset States

Register Address Reset State
INT_CONO 1FE8H 3210H
INT_CON1 1FEAH 7654H
INT_CON2 1FECH BA98H
INT_CON3 1FEEH FEDCH

Int6|® REGISTERS

INT_MASK
INT_MASK Address: 0008H
- Reset State: 00H

The interrupt mask (INT_MASK) register enables or disables (masks) individual interrupt requests.
(The El and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK is the
low byte of the processor status word (PSW). PUSHF or PUSHA saves the contents of this register
onto the stack and then clears this register. Interrupt calls cannot occur immediately following this
instruction. POPF or POPA restores it.

7 0
| PrR7 | PR6 PR5 PR4 || PR3 — PR1 PRO
Bit .
Number Function
7:0 Setting a bit enables the interrupt that is assigned to the corresponding priority. The default

interrupt priorities are as follows:

Default Priority Interrupt Source

EPA Capture/Compare Channel 0
SIO Receive

SIO Transmit

EXTINT1 pin

EXTINTO pin

Reserved

Timer 2 Overflow/Underflow
Timer 1 Overflow/Underflow

OFRrNWAMIOON

C-35

80296SA USER'S MANUAL Int6|®

INT_MASK1

INT_MASK1 Address: 0013H
Reset State: OOH

The interrupt mask 1 (INT_MASK1) register enables or disables (masks) individual interrupt requests.
(The El and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK1 can
be read from or written to as a byte register. PUSHA saves this register on the stack and POPA
restores it.

7 0
| nmi [PR14 PR13 PRI2 || PRI PR10 PR PR8
Bit .
Number Function
7:0 Setting a bit enables the interrupt that is assigned to the corresponding priority. The default

interrupt priorities are as follows:
Default Priority Interrupt Source

15 Nonmaskable Interrupt®

14 EXTINT3 pin

13 EXTINT2 pin

12 EPA Capture Channel 2 or 3 Overruntf
11 EPA Capture Channel 0 or 1 Overruntf
10 EPA Capture/Compare Channel 3

9 EPA Capture/Compare Channel 2

8 EPA Capture/Compare Channel 1

T NMI is always enabled and is always assigned to priority 15. This nonfunctional mask
bit exists for design symmetry with the INT_PENDL register. Always write zero to this
bit.

Tt An overrun on the EPA capture/compare channels can generate the shared capture
overrun interrupts. Write to EPA_MASK to enable the interrupt sources; read
EPA_PEND to determine which source caused the interrupt.

C-36

|nte|® REGISTERS
INT_PEND

INT_PEND Address: 0009H

- Reset State: 00H

When hardware detects an interrupt request, it sets the corresponding bit in the interrupt pending
(NMI_PEND, INT_PEND, or INT_PEND1) registers. When the vector is taken, the hardware clears
the pending bit. Software can generate an interrupt by setting the corresponding interrupt pending bit.

7 0
| PrR7 | PR6 PR5 PR4 || PR3 — PR1 PRO
Bit .
Number Function
7:0 Any set bit indicates that the interrupt that is assigned to the corresponding priority is

pending. The interrupt bit is cleared when processing transfers to the corresponding
interrupt vector.

The default interrupt priorities are as follows:

Default Priority Interrupt Source

EPA Capture/Compare Channel 0
SIO Receive

SIO Transmit

EXTINT1 pin

EXTINTO pin

Reserved

Timer 2 Overflow/Underflow
Timer 1 Overflow/Underflow

OFRrNWKAMUTON

C-37

80296SA USER'S MANUAL Int6|®

INT_PEND1

INT_PEND1 Address: 0012H
Reset State: OOH

When hardware detects an interrupt request, it sets the corresponding bit in the interrupt pending
(NMI_PEND, INT_PEND, or INT_PEND1) registers. When the vector is taken, the hardware clears
the pending bit. Software can generate an interrupt by setting the corresponding interrupt pending bit.

7 0
| nwi | PR14 PR13 PRI2 || PRU PR10 PRO PRS
Bit .
Number Function
7:0 Any set bit indicates that the interrupt that is assigned to the corresponding priority is

pending. The interrupt bit is cleared when processing transfers to the corresponding
interrupt vector.

The default interrupt priorities are as follows:
Default Priority Interrupt Source

15 Nonmaskable Interrupt’

14 EXTINT3 pin

13 EXTINT2 pin

12 EPA Capture Channel 2 or 3 Overruntf
11 EPA Capture Channel 0 or 1 Overruntf
10 EPA Capture/Compare Channel 3

9 EPA Capture/Compare Channel 2

8 EPA Capture/Compare Channel 1

T NMI is always assigned to priority 15.

Tt An overrun on the EPA capture/compare channels can generate the shared capture
overrun interrupts. Write to EPA_MASK to enable the interrupt sources; read
EPA_PEND to determine which source caused the interrupt.

C-38

Int6|® REGISTERS

NMI_PEND
NMI_PEND Address: 1FC9H
- Reset State: 00H

When hardware detects an interrupt request, it sets the corresponding bit in the interrupt pending
registers (NMI_PEND, INT_PEND, or INT_PENDZ1). When the vector is taken, the hardware clears the
pending bit. Software can generate an interrupt by setting the corresponding interrupt pending bit.
NMI_PEND also contains a programmable-priority-enable bit (PEN), which when set, causes the
interrupt controller to reassign the interrupt priorities as defined by the INT_CONXx register.

! 0
PEN — — — | | — — UoP TRAP
Bit Bit]
Number Mnemonic Function
7 PEN Programmable-priority Enable

When PEN is set, the interrupt controller uses the interrupt priority
scheme defined in the INT_CONX register.

When PEN is cleared, the interrupt controller uses the default interrupt

priorities.
6:2 — Reserved; for compatibility with future devices, write zeros to these bits.
1.0 UOP Any set bit indicates that the corresponding interrupt is pending. The
TRAP pending bit is cleared when processing transfers to the corresponding

interrupt vector.

Bit Mnemonic Interrupt Description
UoP Unimplemented Opcode
TRAP Software Trap

C-39

80296SA USER’S MANUAL

ONES_REG

intel.

ONES_REG

Address: 02H
Reset State: FFFFH

The two-byte ones register (ONES_REG) is always equal to FFFFH. It is useful as a fixed source of all

ones for comparison operations.

15 0
Ones
Bit .
Number Function
15:0 Ones
These bits are always equal to FFFFH.

C-40

Int6|® REGISTERS

Px_DIR

Px_DIR
x=1-4

Each pin of port x can operate as a complementary output, high-impedance input or an open-drain
output. The port x I/O direction (Px_DIR) register determines the configuration for each port x pin.
When a port pin is configurated as a complementary output, the microcontroller drives the signal high
or low. When a port pin is configured as a high-impedance input or an open-drain output, the micro-
controller drives the signal low or floats it.

7 0

x=1-3 ‘ PIN7 ‘ PING ‘ PINS ‘ PIN4 H PIN3 ‘ PIN2 ‘ PIN1 ‘ PINO ‘
7 0

x=4 ‘ — ‘ — ‘ — ‘ — H PIN3 ‘ PIN2 ‘ PIN1 ‘ PINO ‘

Nulr?;it)er Mne?ritonic Function

7.0t PIN7:0 Port x Pin y Direction

Each bit controls the configuration of the corresponding pin. Clearing a
bit configures a pin as a complementary output; setting a bit configures
a pin as a high-impedance input or an open-drain output.

T The bits shown as dashes (—) are reserved; for compatibility with future devices, write ones to these
bits.

Table C-10. Px_DIR Addresses and Reset States

Register Address Reset State
P1_DIR 1FD2H FFH
P2_DIR 1FD3H 7FH
P3_DIR 1FDAH FEH
P4_DIR 1FDBH FFH

C-41

80296SA USER'S MANUAL Int6|®

Px_MODE

Px_MODE
x=1-4

Each bit of the port x mode (Px_MODE) register controls whether the corresponding pin functions as a
general-purpose 1/O signal or as a special-function signal.

7 0
x=1-3 ‘ PIN7 ‘ PING ‘ PIN5 ‘ PIN4 H PIN3 ‘ PIN2 ‘ PINL ‘ PINO ‘
7 0
x=4 ‘ — ‘ — ‘ — ‘ — H PIN3 ‘ PIN2 ‘ PIN1 ‘ PINO ‘
Nuiii)er Mneﬁ”iltonic Function
7.0t PIN7:0 Port x Pin y Mode

This bit determines the mode of the corresponding port pin:

0 = general-purpose I/O signal
1 = special-function signal

The following table lists the special-function signals for each pin.

T The bits shown as dashes (—) are reserved; for compatibility with future devices, write zeros to these
bits.

Table C-11. Px_MODE Addresses and Reset States

Register Address Reset State
P1_MODE 1FDOH O00H
P2_MODE 1FD1H 80H
P3_MODE 1FD8H 01H
P4_MODE 1FD9H O00OH

C-42

.
Int9|® REGISTERS
Px_MODE
Table C-12. Special-function Signals for Ports 1-4
Port 1 Port 2 Port 3 Port 4
Special- Special- Special- Special-
Pin function Pin function Pin function Pin function
Signal Signal Signal Signal
P1.0 EPAO P2.0 TXD P3.0 CSOo# P4.0 PWMO
P1.1 EPA1 P2.1 RXD P3.1 CSi1# P4.1 PWM1
P1.2 EPA2 P2.2 EXTINTO P3.2 CS2# P4.2 PWM2
P1.3 EPA3 P2.3 BREQ# P3.3 CS3# P4.3 —
P1.4 T1CLK P2.4 EXTINT1 P3.4 CS4a#
P1.5 T1DIR P2.5 HOLD# P3.5 CS5#
P1.6 T2CLK P2.6 HLDA# P3.6 EXTINT2
P1.7 T2DIR P2.7 CLKOUT P3.7 EXTINT3

C-43

80296SA USER’S MANUAL

Px_PIN

intel.

Px_PIN
x=1-4

Each bit of the port x pin (Px_PIN) register reflects the current state of the corresponding pin,
regardless of the pin configuration.

7 0
x=1-3 ‘ PIN7 ‘ PING ‘ PIN5 ‘ PIN4 ‘ ‘ PIN3 ‘ PIN2 ‘ PINL ‘ PINO ‘
7 0
x=4 ‘ — ‘ — ‘ — ‘ — ‘ ‘ PIN3 ‘ PIN2 ‘ PIN1 ‘ PINO ‘
Bit Number Mne?'ritonic Function
7:0t PIN7:0 Port x Pin y Input Value
This bit contains the current state of Px.y.

T The bits shown as dashes (—) are reserved; their values are undefined.

C-44

Table C-13. P x_PIN Addresses and Reset States

Register Address Reset State
P1_PIN 1FD6H XXH
P2_PIN 1FD7H XXH
P3_PIN 1FDEH XXH
P4_PIN 1FDFH XXH

Int6|® REGISTERS

Px_REG

Px_REG
x=1-4

For an input, set the corresponding port x data output (Px_REG) register bit.

For an output, write the data to be driven out by each pin to the corresponding bit of Px_REG. When a
pin is configured as a general-purpose 1/O signal (Px_MODE.y = 0), the result of a CPU write to
Px_REG is immediately visible on the pin. When a pin is configured as a special-function signal
(Px_MODE.y = 1), the associated on-chip peripheral or off-chip component controls the pin. The CPU
can still write to Px_REG, but the pin is unaffected until it is switched back to its standard 1/O function.

This feature allows software to configure a pin as a general-purpose /O signal (clear Px_MODE.}y),
initialize or overwrite the pin value, then configure the pin as a special-function signal (set
Px_MODE.y). In this way, initialization, fault recovery, exception handling, etc., can be done without
changing the operation of the associated peripheral.

7 0
x=1-3 ‘ PIN7 ‘ PING ‘ PIN5 ‘ PIN4 H PIN3 ‘ PIN2 ‘ PINL ‘ PINO ‘
7 0
x=4 ‘ — ‘ — ‘ — ‘ — H PIN3 ‘ PIN2 ‘ PIN1 ‘ PINO ‘
Bit Number Mne?'ritonic Function
7:0t PIN7:0 Port x Pin y Data Output

For 1/0 Mode (P x_MODE.y = 0)
When a port pin is configured as a complementary output
(Px_DIR.y = 0), setting the corresponding port data output bit drives
a one on the pin and clearing the corresponding port data output bit
drives a zero on the pin.

When a port pin is configured as a high-impedance input or an
open-drain output (Px_DIR.y = 1), clearing the corresponding port
data output bit drives a zero on the pin and setting the corre-
sponding port data output bit floats the pin, making it available as a
high-impedance input.

For Special-function Mode (P x_MODE.y = 1)
When a port pin is configured as an output (either complementary
or open-drain), the corresponding port data output bit value is
immaterial because the corresponding on-chip peripheral or system
function controls the pin.

To configure a pin as a high-impedance input, set both the Px_DIR
and Px_REG bits.

T The bits shown as dashes (—) are reserved; for compatibility with future devices, write zeros to
these bits.

C-45

80296SA USER’S MANUAL

Px_REG

C-46

Table C-14. Px_REG Addresses and Reset States

Register Address Reset State
P1_REG 1FD4H FFH
P2_REG 1FD5H FFH
P3_REG 1FDCH FFH
P4_REG 1FDDH FFH

Int6|® REGISTERS

PSW

PSW no direct access

The processor status word (PSW) actually consists of two bytes. The high byte is the status word,
which is described here; the low byte is the INT_MASK register. The status word contains one bit
(PSW.1) that globally enables or disables servicing of all maskable interrupts, one bit (PSW.2) that
enables or disables the peripheral transaction server (PTS), and six Boolean flags that reflect the
state of a user’s program.

The status word portion of the PSW cannot be accessed directly. To access the status word, push the
value onto the stack (PUSHF), then pop the value to a register (POP test_reg). The PUSHF and
PUSHA instructions save the PSW in the system stack and then clear it; POPF and POPA restore it.

15 8
| z N v VT || € PSE I ST |

‘ See INT_MASK on page C-35 ‘

Bit Bit

. Function
Number Mnemonic

15 z Zero Flag

This flag is set to indicate that the result of an operation was zero. For
multiple-precision calculations, the zero flag cannot be set by the instruc-
tions that use the carry bit from the previous calculation (e.g., ADDC,
SUBC). However, these instructions can clear the zero flag. This
ensures that the zero flag will reflect the result of the entire operation, not
just the last calculation. For example, if the result of adding together the
lower words of two double words is zero, the zero flag would be set.
When the upper words are added together using the ADDC instruction,
the flag remains set if the result is zero and is cleared if the result is not
zero.

14 N Negative Flag

This flag is set to indicate that the result of an operation is negative. The
flag is correct even if an overflow occurs. For all shift operations and the
NORML instruction, the flag is set to equal the most-significant bit of the
result, even if the shift count is zero.

13 \% Overflow Flag

This flag is set to indicate that the result of an operation is too large to be
represented correctly in the available space. For shift operations (SHL,
SHLB, and SHLL), the flag is set if the most-significant bit of the operand
changes during the shift. For divide operations, the quotient is stored in
the low-order half of the destination operand and the remainder is stored
in the high-order half. The overflow flag is set if the quotient is outside
the range for the low-order half of the destination operand. (Chapter 4,
“Programming Considerations,” defines the operands and possible
values for each. See the PSW flag descriptions in Appendix A for
details.)

C-47

80296SA USER'S MANUAL Int6|®

PSW

PSW (Continued) no direct access

The processor status word (PSW) actually consists of two bytes. The high byte is the status word,
which is described here; the low byte is the INT_MASK register. The status word contains one bit
(PSW.1) that globally enables or disables servicing of all maskable interrupts, one bit (PSW.2) that
enables or disables the peripheral transaction server (PTS), and six Boolean flags that reflect the
state of a user’s program.

The status word portion of the PSW cannot be accessed directly. To access the status word, push the
value onto the stack (PUSHF), then pop the value to a register (POP test_reg). The PUSHF and
PUSHA instructions save the PSW in the system stack and then clear it; POPF and POPA restore it.

15 8
‘ z N v VT H € PSE | ST ‘

| See INT_MASK on page C-35 |

Bit Bit

. Function
Number Mnemonic

12 VT Overflow-trap Flag

This flag is set when the overflow flag is set, but it is cleared only by the
CLRVT, JVT, and JNVT instructions. This allows testing for a possible
overflow at the end of a sequence of related arithmetic operations, which
is generally more efficient than testing the overflow flag after each
operation.

11 C Carry Flag

This flag is set to indicate an arithmetic carry or the last bit shifted out of
an operand. It is cleared if a subtraction operation generates a borrow.
Normally, the result is rounded up if the carry flag is set. The sticky bit
flag allows a finer resolution in the rounding decision. (See the PSW flag
descriptions in Appendix A for details.)

10 PSE PTS Enable

This bit globally enables or disables the peripheral transaction server
(PTS). The EPTS instruction sets this bit; DPTS clears it.

0 = disable PTS

1 =enable PTS

9 | Interrupt Disable (Global)

This bit globally enables or disables the servicing of all maskable
interrupts. The bits in INT_MASK and INT_MASK?1 individually enable or
disable the interrupts. The El instruction sets this bit; DI clears it.

0 = disable interrupt servicing
1 = enable interrupt servicing
8 ST Sticky Bit Flag

This flag is set to indicate that, during a right shift, a “1” was shifted into
the carry flag and then shifted out. It can be used with the carry flag to
allow finer resolution in rounding decisions.

C-48

intel.

REGISTERS

PWMx_CONTROL

PWMx_CONTROL

X=0-2

The PWM control (PWMx_CONTROL) register determines the duty cycle of the PWM x channel. A
zero loaded into this register causes the PWM to output a low continuously (0% duty cycle). An FFH in
this register causes the PWM to have its maximum duty cycle (99.6% duty cycle).

7

PWM Duty Cycle

Bit
Number

Function

7:0

PWM Duty Cycle

This register controls the PWM duty cycle. A zero loaded into this register causes the
PWM to output a low continuously (0% duty cycle). An FFH in this register causes the

PWM to have its maximum duty cycle (99.6% duty cycle).

Table C-15. PWM x_CONTROL Addresses and Reset States

Register Address Reset State
PWMO_CONTROL 1FBOH OOH
PWM1_CONTROL 1FB2H OOH
PWM2_CONTROL 1FB4H 00H

C-49

80296SA USER'S MANUAL Int6|®

RPT_CNT

RPT_CNT Address: 0004H
Reset State: XXXXH

The repeat counter (RPT_CNT) register contains a counter for the repeat instruction set.
15 0

Repeat Counter Value

Bit

Number Function

15:0 Repeat Counter Value

This register contains the count value for the instruction following the repeat instruction.
An initial count of zero repeats the next instruction 65,536 times. An initial count of FFFFH
will repeat 65,535 times.

C-50

Int6|® REGISTERS

SBUF_RX

SBUF_RX Address: 1FB8H
Reset State: 00H

The serial port receive buffer (SBUF_RX) register contains data received from the serial port. The
serial port receiver is buffered and can begin receiving a second data byte before the first byte is read.
Data is held in the receive shift register until the last data bit is received, then the data byte is loaded
into SBUF_RX. If data in the shift register is loaded into SBUF_RX before the previous byte is read,
the overflow error bit is set (SP_STATUS.2). The data in SBUF_RX will always be the last byte
received, never a combination of the last two bytes.

7 0

Data Received

Bit

Number Function

7:0 Data Received
This register contains the last byte of data received from the serial port.

C-51

80296SA USER'S MANUAL Int6|®

SBUF_TX

SBUF_TX

Address: 1FBAH
Reset State: 00H

The serial port transmit buffer (SBUF_TX) register contains data that is ready for transmission. In
modes 1, 2, and 3, writing to SBUF_TX starts a transmission. In mode 0, writing to SBUF_TX starts a
transmission only if the receiver is disabled (SP_CON.3=0).

7 0
Data to Transmit
Bit .
Number Function
7:0 Data to Transmit
This register contains a byte of data to be transmitted by the serial port.

C-52

Int6|® REGISTERS

SP

Sp Address: 18H

Reset State: XXXXH
The system’s stack pointer (SP) can point anywhere in page 00H; it must be word aligned and must
always be initialized before use. The stack pointer is decremented before a PUSH and incremented
after a POP, so you should initialize the stack pointer to two bytes (in 64-Kbyte mode) or four bytes (in
1-Mbyte mode) above the highest stack location. If stack operations are not being performed,
locations 18H and 19H may be used as standard registers.

15 0
Stack Pointer

Bit

Number Function

15:0 Stack Pointer
This register makes up the system’s stack pointer.

C-53

80296SA USER'S MANUAL Int6|®

SP_BAUD

SP_BAUD Address: 1FBCH
Reset State: 0000H

The serial port baud rate (SP_BAUD) register selects the clock source and serial port baud rate. The
most-significant bit selects the clock source. The lower 15 bits represent baud value, an unsigned
integer that determines the baud rate.

The maximum baud value is 32,767 (7FFFH). In asynchronous modes 1, 2, and 3, the minimum baud
value is 0001H. In synchronous mode 0, the minimum baud value is 0001H for transmissions and
0002H for receptions.

WARNING: Writing to the SP_BAUD register during a reception or transmission can corrupt the
received or transmitted data. Before writing to SP_BAUD, check SP_STATUS or the interrupt pending
register to ensure that the reception or transmission is complete.

15 8
| CLKSRC | BV14 | BV13 | BV12 | | BV11 | BV10 | BV9 | BVS |
7 0
‘ BV7 ‘ BV6 ‘ BV5 ‘ BV4 ‘ ‘ BV3 ‘ BV2 ‘ BV1 ‘ BVO ‘

Bit Bit

. Function
Number Mnemonic

15 CLKSRC Serial Port Clock Source

This bit determines whether the baud-rate generator is clocked from an
internal or an external source.

0 = signal on the T1CLK pin (external source)
1 = internal operating frequency (f or f/2)

When CLKSRC equals one, the prescale bit in the serial port control
register (SP_CON.6) determines whether the frequency of the baud-rate
generator clock source is equal to the internal operating frequency (f) or half
the internal operating frequency (f/2).

14:0 BV14:0 These bits constitute the baud value.

Use the following equations to determine the baud value for a given baud
rate.

Synchronous mode 0:*

f 1 T1CLK

Baud vValue = ——M —— — or _
Baud Rate x 2 Baud Rate

Asynchronous modes 1, 2, and 3:

f 1 or T1CLK

Baud vValue = —m8M8M8 — — e
Baud Rate x 16 Baud Rate x 8

T For mode 0 receptions, the baud value must be 0002H or greater.
Otherwise, the resulting data in the receive shift register will be incorrect.

C-54

|nte|® REGISTERS
SP_CON
SP_CON Address: 1FBBH
- Reset State: 80H

The serial port control (SP_CON) register selects the communications mode and enables or disables the
receiver for all modes. For modes 1 and 3, it enables or disables even or odd parity. For modes 2 and 3,
it contains the ninth data bit to be transmitted. It also enables or disables the divide-by-two prescaler and

the baud-rate down counter.

7 0
BGD PRS PAR TB8 || REN PEN ML [Mo
Bit Bit Function
Number Mnemonic

7 BGD Baud-rate Generator Disable
This bit allows power conservation when the SIO is not being used. The
default disables the baud-rate counter at power-up or reset. You must clear
this bit to enable the counter.
0 = enable the baud-rate counter
1 = disable the baud-rate counter (default at power-up or reset)

6 PRS Prescale
The internal operating frequency (f), which can be divided by two, or an
input signal on the T1CLK pin provides the baud-rate generator clock
source (SP_BAUD.7 determines the clock source). The PRS bit enables
the divide-by-two prescaler for the internal operating frequency:
0 = disables the prescaler (baud-rate generator clock source equals f)
1 = enables the prescaler (baud-rate generator clock source equals f/2)
When T1CLK is selected as the baud-rate generator clock source
(SP_BAUD.7 = 0), this bit is ignored.

5 PAR Parity Selection Bit
In modes 1 and 3, this bit selects even or odd parity.
0 = even parity
1 = odd parity
For modes 0 and 2, this bit is ignored.

4 TB8 Transmit Ninth Data Bit
This is the ninth data bit that will be transmitted in mode 2 or 3. This bit is
cleared after each transmission, so you must write to this bit before writing
to SBUF_TX. For mode 3, when parity is enabled (SP_CON.2 = 1), the
transmitter sets or clears this bit so that the byte being transmitted contains
the correct parity.

C-55

80296SA USER'S MANUAL Int6|®

SP_CON

SP_CON (Continued) . Actic;rteis: lFngE
eset State:

The serial port control (SP_CON) register selects the communications mode and enables or disables the
receiver for all modes. For modes 1 and 3, it enables or disables even or odd parity. For modes 2 and 3,
it contains the ninth data bit to be transmitted. It also enables or disables the divide-by-two prescaler and
the baud-rate down counter.

7 0
BGD PRS PAR TBS ‘ ‘ REN PEN M1 ‘ MO ‘
Bit Bit Function

Number Mnemonic
3 REN Receive Enable

In mode 1, 2, or 3, setting this bit enables receptions. When this bit is set, a
falling edge on the RXD pin starts a reception. In these modes, this bit has
no effect on transmissions.

In mode 0, clearing this bit enables transmissions and setting it enables
receptions.

Clearing this bit stops a reception in progress and inhibits further
receptions. In mode 0, clearing the RI flag in the SP_STATUS register
starts a reception; therefore, to avoid corrupting your reception, clear this
bit before clearing the RI bit.

2 PEN Parity Enable

In modes 1 and 3, setting this bit enables parity. For mode 1, when this bit
is set, the seventh data bit takes the parity value on transmissions and
SP_STATUS.7 becomes the receiver parity error bit. For mode 3, when this
bit is set, SP_CON.4 (TB8) takes the parity value on transmissions and
SP_STATUS.7 becomes the receive parity error bit.

Clear this bit for mode 2.

For mode O, this bit is ignored.

1.0 M1:0 Mode Selection
These bits select the communications mode.

M1 MO

0 mode 0, synchronous

1 mode 1, 8-bit asynchronous with optional parity

0 mode 2, 9-bit asynchronous with optional receive interrupt
1 mode 3, 9-bit asynchronous with optional parity

PP, OO

C-56

Int6|® REGISTERS

SP_STATUS
SP_STATUS Address: 1FB9H
B Reset State: OBH

The serial port status (SP_STATUS) register contains bits that indicate the status of the serial port.
7 0
RPE/RBS RI Tl FE || e OE - | = |

Bit Bit

. Function
Number Mnemonic

7 RPE/RB8 Received Parity Error/Received Bit 8

For modes 1 and 3, RPE is set if parity is enabled (SP_CON.2 = 1) and the
data received does not contain the correct parity, as programmed in
SP_CON.

For mode 2, and for mode 3 with parity disabled, this bit is the ninth data bit
received. (The serial port receive buffer contains the received data bits 0-7.
The received data bit 8 is written to this bit.)

Reading SP_STATUS clears this bit.

6 RI Receive Interrupt
This bit indicates whether an incoming data byte has been received.

For modes 0, 1, and 3, this bit is set when the last bit (eighth bit for mode O,
or stop bit for modes 1 and 3) is sampled. For mode 2, this bit is set when
the stop bit is detected only if the ninth bit received (SP_STATUS, RB8) is a
one. Reading SP_STATUS clears this bit.

5 TI Transmit Interrupt

This bit indicates whether a data byte has finished transmitting.

For mode 0 transmissions, the SIO sets this bit immediately after it
transmits the eighth data bit. For mode 1, 2, and 3 transmissions, the SIO

sets this bit immediately after it starts to transmit the stop bit. Reading
SP_STATUS clears this bit.

4 FE Framing Error

For modes 1, 2, and 3, this bit is set if the receiver does not detect a valid
stop bit within the appropriate period of time. Reading SP_STATUS clears
this bit.

For mode 0, this bit has no function.
3 TXE SBUF_TX Empty

The SIO sets this bit, along with the Tl flag, if the transmit buffer and the
transmit shift register are both empty. When set, this bit indicates that two
bytes can be written to the transmit buffer. Writing to the transmit buffer
clears this bit.

2 OE Overrun Error

The SIO sets this bit if data in the receive shift register is loaded into
SBUF_RX before the previous byte in SBUF_RX is read. Reading
SP_STATUS clears this bit.

1:0 — Reserved; for compatibility with future devices, write zeros to these bits.

C-57

80296SA USER'S MANUAL Int6|®

T1CONTROL

T1CONTROL Address: 1F90H
Reset State: OOH

The timer 1 control (TLCONTROL) register determines the clock source, counting direction, and count
rate for timer 1.

7 0
CE uD M2 M1 H MO P2 P1 \ PO \

Bit Bit

. Function
Number | Mnemonic

7 CE Counter Enable

This bit enables or disables the timer. From reset, the timers are disabled
and not free running.

0 = disables timer
1 = enables timer
6 ubD Up/Down

This bit determines the timer counting direction, in selected modes (see
mode bits, M2:0).

0 = count down
1 =count up

5:3 M2:0 EPA Clock Direction Mode Bits
These bits determine the timer clocking source and direction control source.
M2 M1 MO Clock Source Direction Source

0 0 0 fl4 UD bit (TLCONTROL.6)
X 0 1 T1CLK pint UD bit (TLCONTROL.6)
0 1 0 fl4 T1DIR pin

0 1 1 T1CLK pint T1DIR pin

1 1 1 T1CLK and T1DIR quadrature clocking

T If an external clock is selected, the timer counts on both the rising and
falling edges of the clock.

2:0 P2:0 EPA Clock Prescaler Bits

These bits determine the clock prescaler value. The prescaler can be used
only if the clock source is /4. It has no effect on the T1CLK or quadrature

clock inputs.

P2 P1 PO Prescaler Divisor Resolution 1
0 0 0 divide by 1 (disabled) 160 ns

0 0 1 divide by 2 320 ns

0 1 0 divide by 4 640 ns

0 1 1 divide by 8 1.28 ps

1 0 0 divide by 16 2.56 us

1 0 1 divide by 32 5.12 ps

1 1 0 divide by 64 10.24 ps

1 1 1 divide by 128 20.48 ps

T At f = 25 MHz. Use the formula on page 10-6 to calculate the resolution at
other frequencies.

C-58

Int6|® REGISTERS

T2CONTROL
T2CONTROL Address: 1F94H
Reset State: OOH

The timer 2 control (T2CONTROL) register determines the clock source, counting direction, and count
rate for timer 2.

7 0
CE uD M2 M1 H MO P2 P1 \ PO \

Bit Bit

. Function
Number | Mnemonic

7 CE Counter Enable

This bit enables or disables the timer. From reset, the timers are disabled
and not free running.

0 = disables timer
1 = enables timer

6 ubD Up/Down

This bit determines the timer counting direction, in selected modes (see
mode bits, M2:0).

0 = count down
1 =count up

C-59

80296SA USER'S MANUAL Int6|®

T2CONTROL

T2CONTROL (Continued) Address: 1F94H

Reset State: OOH

The timer 2 control (T2CONTROL) register determines the clock source, counting direction, and count
rate for timer 2.

7 0
CE uD M2 M || Mo P2 PL | Po |
Bit Bit Function

Number | Mnemonic
5:3 M2:0 EPA Clock Direction Mode Bits
These bits determine the timer clocking source and direction source.
M2 M1 MO Clock Source Direction Source
0 0 0 fl4 UD bit (T2CONTROL.6)
X 0 1 T2CLK pint UD bit (T2CONTROL.6)
0 1 0 fl4 T2DIR pin
0 1 1 T2CLK pint T2DIR pin
1 0 0 timer 1 overflow UD bit (T2CONTROL.6)
1 1 0 timer 1 overflow same as timer 1
1 1 1 T2CLK and T2DIR quadrature clocking
T If an external clock is selected, the timer counts on both the rising and
falling edges of the clock.
2:0 P2:0 EPA Clock Prescaler Bits

These bits determine the clock prescaler value. The prescaler can be used
only if the clock source is /4. It has no effect on the T2CLK or quadrature
clock inputs.

P2 P1 PO Prescaler Resolution t
0 0 0 divide by 1 (disabled) 160 ns

0 0 1 divide by 2 320 ns

0 1 0 divide by 4 640 ns

0 1 1 divide by 8 1.28 ps

1 0 0 divide by 16 2.56 us

1 0 1 divide by 32 5.12 ps

1 1 0 divide by 64 10.24 ps

1 1 1 divide by 128 20.48 ps

T Resolution at f = 25 MHz.Use the formula on to calculate the resolution at
other frequencies.

C-60

Int6|® REGISTERS

TIMERX

TIMERX
Xx=1-2

This register contains the value of timer x. This register can be written, allowing timer x to be initialized
to a value other than zero.

15 0
Timer Value
Bit)
Number Function
15:0 Timer Value
Read the current timer x value from this register or write a new timer x value to this
register.

C-61

80296SA USER'S MANUAL Int6|®

VECT_ADDR

VECT_ADDR Address: 1FFOH
Reset State: FF20H

The base-address register (VECT_ADDR) contains the upper sixteen address bits of the interrupt-
vector table. When the CPU acknowledges an interrupt request, the vector-generation unit in the
interrupt controller generates a lower byte default vector location and then adds it to the contents of
the base-address register to generate the complete vector address.

15 8
| vazs | vazz | vazr | vao || vaie [wvais [vair | vaie |
7 0
‘ VA15 ‘ VAL4 ‘ VA13 ‘ VA12 ‘ ‘ VAL ‘ VA0 ‘ VA9 ‘ VA8 ‘
Bit Bit Function
Number Mnemonic
15:0 VA23:8 Interrupt Vector Address Bits 23 through 8
This register contains the upper address bits for the indirect interrupt-
vector-address table.

C-62

Int6|® REGISTERS

WSR
WSR Address: 0014H
Reset State: 00OH

The window selection register (WSR) has two functions. One bit enables and disables the bus-hold
protocol. The remaining bits select windows. Windows map sections of RAM into the top of the lower
register file, in 32-, 64-, or 128-byte increments. PUSHA saves this register on the stack and POPA
restores it.

7 0

HLDEN W6 w5 wa H w3 w2 w1 ‘ W0 ‘

Bit Bit

. Function
Number | Mnemonic

7 HLDEN HOLD#, HLDA# Protocol Enable

This bit enables and disables the bus-hold protocol (see Chapter 13, “Inter-
facing with External Memory”). It has no effect on windowing.

0 = disable

1 =enable

6:0 W6:0 Window Selection

These bits specify the window size and number. The following table shows
the WSR settings and direct addresses for windowable SFRs.

Table C-16. WSR Settings and Direct Addresses for Windowable SFRs

32-byte Windows | 64-byte Windows | 128-byte Windows
Register Memory (0OE0—-00FFH) (00CO—00FFH) (0080—00FFH)
Mnemonic Location . . .
WSR | pddress | WSR | addross | WSR | address
ADDRCOMOoO* 1F40H 7AH 00EOH 3DH 00COH 1EH 00COH
ADDRCOM1T 1F48H 7AH O0OE8H 3DH 00C8H 1EH 00C8H
ADDRCOM2t 1F50H 7AH OOFOH 3DH 00DOH 1EH 00DOH
ADDRCOM3* 1F58H 7AH 00F8H 3DH 00D8H 1EH 00D8H
ADDRCOM4T 1F60H 7BH O0OEOH 3DH OOEOH 1EH OOEOH
ADDRCOM5T 1F68H 7BH O0OE8H 3DH OOE8H 1EH OOE8H
ADDRMSKOT 1F42H 7AH 00E2H 3DH 00C2H 1EH 00C2H
ADDRMSK1T 1F4AH 7AH O0OEAH 3DH 00CAH 1EH 00CAH
ADDRMSK2* 1F52H 7AH 00F2H 3DH 00D2H 1EH 00D2H
ADDRMSK3* 1F5AH 7AH O00FAH 3DH 00DAH 1EH 00DAH
ADDRMSK4T 1F62H 7BH 00E2H 3DH 00E2H 1EH 00E2H
ADDRMSK5T 1F6AH 7BH OOEAH 3DH O00EAH 1EH O0EAH

T Must be addressed as a word.

C-63

80296SA USER'S MANUAL Int6|®

WSR
Table C-16. WSR Settings and Direct Addresses for Windowable SFRs (Continued)

32-byte Windows | 64-byte Windows | 128-byte Windows

Register Memory (OOEO—OOFFH) (00CO-00FFH) (0080-00FFH)

Mnemonic Location : ’ ’

WSR | pddress | WSR | addross | WSR | address

BUSCONO 1F44H 7AH O00E4H 3DH 00C4H 1EH 00C4H
BUSCON1 1F4CH 7AH 00ECH 3DH 00CCH 1EH 00CCH
BUSCON2 1F54H 7AH 00F4H 3DH 00D4H 1EH 00D4H
BUSCON3 1F5CH 7AH O0OFCH 3DH 00ODCH 1EH 00ODCH
BUSCON4 1F64H 7BH 00E4H 3DH O00E4H 1EH O00OE4H
BUSCONS5 1F6CH 7BH 00ECH 3DH 00ECH 1EH 00ECH
CON_REGO 1FB6H 7DH 00F6H 3EH 00F6H 1FH 00B6H
EP_DIR 1FE3H 7FH 00E3H 3FH 00E3H 1FH 00E3H
EP_MODE 1FE1H 7FH 00E1H 3FH 00E1H 1FH 00E1H
EP_PIN 1FE7H 7FH 00E7H 3FH 00E7H 1FH 00E7H
EP_REG 1FE5H 7FH 00E5H 3FH 00E5H 1FH 00E5H
EPA_MASKT 1F9CH 7CH 00FCH 3EH 00DCH 1FH 009CH
EPA_PEND 1F9EH 7CH OOFEH 3EH OODEH 1FH 009EH
EPAO_CON 1F80H 7CH O00OEOH 3EH 00COH 1FH 0080H
EPA1_CONT 1F84H 7CH 00E4H 3EH 00C4H 1FH 0084H
EPA2_CON 1F88H 7CH 0OES8H 3EH 00C8H 1FH 0088H
EPA3_CON' 1F8CH 7CH 00ECH 3EH 00CCH 1FH 008CH
EPAO_TIMET 1F82H 7CH 00E2H 3EH 00C2H 1FH 0082H
EPAL_TIME? 1F86H 7CH OOE6H 3EH 00C6H 1FH 0086H
EPA2_TIME? 1F8AH 7CH O0OEAH 3EH 00CAH 1FH 008AH
EPA3_TIMET 1F8EH 7CH OOEEH 3EH 00CEH 1FH 008EH
EXTINT_CON 1FCCH 7EH 00ECH 3FH 00CCH 1FH 00CCH
ICBO 1FC3H 7EH 00E3H 3FH 00C3H 1FH 00C3H
ICB1 1FC7H 7EH 00E7H 3FH 00C7H 1FH 00C7H
IDXOT (bits 0-15) 1FCOH 7EH 00EOH 3FH 00COH 1FH 00COH
IDXO (bits 16-23) 1FC2H 7EH 00E2H 3FH 00C2H 1FH 00C2H
IDX1T (bits 0-15) 1FC4H 7EH 00E4H 3FH 00C4H 1FH 00C4H
IDX1 (bits 16-23) 1FC6H 7EH 00E6H 3FH 00C6H 1FH 00C6H
IN_PROGO 1FC8H 7EH 00E8H 3FH 00C8H 1FH 00C8H
IN_PROG1t 1FCAH 7EH 00EAH 3FH 00CAH 1FH 00CAH

T Must be addressed as a word.

C-64

intel.

REGISTERS
WSR
Table C-16. WSR Settings and Direct Addresses for Windowable SFRs (Continued)
32-byte Windows | 64-byte Windows | 128-byte Windows
Register Memory (OOEO—OOFFH) (00CO-00FFH) (0080-00FFH)
Mnemonic Location : ’ ’

WSR | pddress | WSR | addross | WSR | address
INT_CONO' 1FE8H 7FH OOE8H 3FH OOE8H 1FH OOE8H
INT_CON1t 1FEAH 7FH O0OEAH 3FH O0EAH 1FH O0OEAH
INT_CON2t 1FECH 7FH 00ECH 3FH 00ECH 1FH 00ECH
INT_CONS' 1FEEH 7FH OOEEH 3FH OOEEH 1FH OOEEH
NMI_PEND 1FC9H 7EH 00E9H 3FH 00C9H 1FH 00C9H
P1_DIR 1FD2H 7EH 00F2H 3FH 00D2H 1FH 00D2H
P2_DIR 1FD3H 7EH O0OF3H 3FH 00D3H 1FH 00D3H
P3_DIR 1FDAH 7EH 00FAH 3FH 00DAH 1FH 00DAH
P4_DIR 1FDBH 7EH OO0FBH 3FH 00DBH 1FH 00DBH
P1_MODE 1FDOH 7TEH OOFOH 3FH 00DOH 1FH 00DOH
P2_MODE 1FD1H 7EH 00F1H 3FH 00D1H 1FH 00D1H
P3_MODE 1FD8H 7EH 00F8H 3FH 0O0D8H 1FH 00D8H
P4_MODE 1FD9H 7TEH 00F9H 3FH O0D9H 1FH 00D9H
P1_PIN 1FD6H 7EH 00F6H 3FH 00D6H 1FH 00D6H
P2_PIN 1FD7H 7EH 00F7H 3FH 00D7H 1FH 00D7H
P3_PIN 1FDEH 7EH O0OFEH 3FH OO0DEH 1FH 00DEH
P4_PIN 1FDFH 7EH OOFFH 3FH OO0DFH 1FH OODFH
P1_REG 1FD4H 7EH 00F4H 3FH 00D4H 1FH 00D4H
P2_REG 1FD5H 7EH 00F5H 3FH 00D5H 1FH 00D5H
P3_REG 1FDCH 7EH OOFCH 3FH 00DCH 1FH 00DCH
P4_REG 1FDDH 7EH OOFDH 3FH 00DDH 1FH O0ODDH
PWMO_CONTROL 1FBOH 7DH 00FOH 3EH 00FOH 1FH 00BOH
PWM1_CONTROL 1FB2H 7DH 00F2H 3EH 00F2H 1FH 00B2H
PWM2_CONTROL 1FB4H 7DH 00F4H 3EH 00F4H 1FH 00B4H
SBUF_RX 1FB8H 7DH 00F8H 3EH 00F8H 1FH 00B8H
SBUF_TX 1FBAH 7DH 00FAH 3EH 00FAH 1FH 00BAH
SP_BAUD 1FBCH 7DH O0FCH 3EH 00FCH 1FH 00BCH
SP_CON 1FBBH 7DH O0FBH 3EH 00FBH 1FH 00BBH
SP_STATUS 1FB9H 7DH O00OF9H 3EH 00F9H 1FH 00B9H
T1CONTROL 1F90H 7CH OOFOH 3EH 00DOH 1FH 0090H

T Must be addressed as a word.

C-65

80296SA USER’S MANUAL

intel.

WSR
Table C-16. WSR Settings and Direct Addresses for Windowable SFRs (Continued)
32-byte Windows | 64-byte Windows | 128-byte Windows
Register Memory (OOEO—OOFFH) (00CO-00FFH) (0080-00FFH)
Mnemonic Location . ’ h

WSR | agdress | WSR | address | "SR | address
T2CONTROL 1F94H 7CH 00F4H 3EH 00D4H 1FH 0094H
TIMER1t 1F92H 7CH 00F2H 3EH 00D2H 1FH 0092H
TIMER2 1F96H 7CH 00F6H 3EH 00D6H 1FH 0096H
VECT_ADDT 1FFOH 7FH OOFOH 3FH OOFOH 1FH OOFOH

T Must be addressed as a word.

C-66

Int6|® REGISTERS

WSR1
WSR1 Address: 0015H
Reset State: OOH

Window selection 1 (WSR1) register selects a 32- or 64-byte segment of the upper register file or
peripheral SFRs, or a 64-byte segment of code RAM or external memory, to be windowed into the
middle of the lower register file.

NOTE: The PUSHA and POPA instructions do not save and restore WSR1.
7 0
W7 W6 W5 W4 ‘ ‘ W3 W2 w1 ‘ WO ‘

Bit Bit

. Function
Number | Mnemonic

7:0 W7:0 Window Selection

These bits specify the window size and number. The following table shows
the WSRL1 settings and direct addresses for windowable SFRs.

Table C-17. WSR1 Settings and Direct Addresses for Windowable SFRs

32-byte Windows 64-byte Windows
Register Memory (0060-007FH) (0040-007FH)

Mnemonic Location Direct Direct

WSR1 Address WSR1 Address

ADDRCOMO* 1F40H 7AH 0060H 3DH 0040H
ADDRCOM1T 1F48H 7AH 0068H 3DH 0048H
ADDRCOM2T 1F50H 7AH 0070H 3DH 0050H
ADDRCOM3* 1F58H 7AH 0078H 3DH 0058H
ADDRCOM4T 1F60H 7BH 0060H 3DH 0060H
ADDRCOM5T 1F68H 7BH 0068H 3DH 0068H
ADDRMSKOT 1F42H 7AH 0062H 3DH 0042H
ADDRMSK1t 1F4AH 7AH 006AH 3DH 004AH
ADDRMSK2T 1F52H 7AH 0072H 3DH 0052H
ADDRMSK3T 1F5AH 7AH 007AH 3DH 005AH
ADDRMSK4t 1F62H 7BH 0062H 3DH 0062H
ADDRMSK5T 1F6AH 7BH 006AH 3DH 006AH
BUSCONO 1F44H 7AH 0064H 3DH 0044H
BUSCON1 1F4CH 7AH 006CH 3DH 004CH
BUSCON2 1F54H 7AH 0074H 3DH 0054H
BUSCON3 1F5CH 7AH 007CH 3DH 005CH

T Must be addressed as a word.

C-67

80296SA USER'S MANUAL Int6|®

WSR1

Table C-17. WSR1 Settings and Direct Addresses for Windowable SFRs (Continued)

32-byte Windows 64-byte Windows

Register Memory (0060—-007FH) (0040—-007FH)

Mnemonic Location : :

WSRL | pddress | WSRD | address
BUSCON4 1F64H 7BH 0064H 3DH 0064H
BUSCON5 1F6CH 7BH 006CH 3DH 006CH
CON_REGO 1FB6H 7DH 0076H 3EH 0076H
EP_DIR 1FE3H 7FH 0063H 3FH 0063H
EP_MODE 1FE1H 7FH 0061H 3FH 0061H
EP_PIN 1FE7H 7FH 0067H 3FH 0067H
EP_REG 1FE5H 7FH 0065H 3FH 0065H
EPA_MASKT 1F9CH 7CH 007CH 3EH 005CH
EPA_PEND 1F9EH 7CH 007EH 3EH 005EH
EPAO_CON 1F80H 7CH 0060H 3EH 0040H
EPA1_CON? 1F84H 7CH 0064H 3EH 0044H
EPA2_CON 1F88H 7CH 0068H 3EH 0048H
EPA3_CONT 1F8CH 7CH 006CH 3EH 004CH
EPAO_TIME? 1F82H 7CH 0062H 3EH 0042H
EPA1_TIME? 1F86H 7CH 0066H 3EH 0046H
EPA2_TIMET 1F8AH 7CH 006AH 3EH 004AH
EPA3_TIME? 1F8EH 7CH 006EH 3EH 004EH
EXTINT_CON 1FCCH 7EH 006CH 3FH 004CH
ICBO 1FC3H 7EH 0063H 3FH 0043H
ICB1 1FC7H 7EH 0067H 3FH 0047H
IDXOT (bits 0-15) 1FCOH 7EH 0060H 3FH 0040H
IDXO0 (bits 16-23) 1FC2H 7EH 0062H 3FH 0042H
IDX1T (bits 0-15) 1FC4H 7EH 0064H 3FH 0044H
IDX1 (bits 16—23) 1FC6H 7EH 0066H 3FH 0046H
IN_PROGO 1FC8H 7EH 0068H 3FH 0048H
IN_PROG1* 1FCAH 7EH 006AH 3FH 004AH
INT_CONOT 1FE8H 7FH 0068H 3FH 0068H
INT_CON1T 1FEAH 7FH 006AH 3FH 006AH
INT_CON2* 1FECH 7FH 006CH 3FH 006CH
INT_CON3T 1FEEH 7FH 006EH 3FH 006EH

T Must be addressed as a word.

C-68

intel.

REGISTERS

WSR1

Table C-17. WSR1 Settings and Direct Addresses for Windowable SFRs (Continued)

32-byte Windows
(0060-007FH)

64-byte Windows
(0040-007FH)

Register Memory
Mnemonic Location : :

WSRL | pddress | WSRD | address
NMI_PEND 1FC9H 7EH 0069H 3FH 0049H
P1_DIR 1FD2H 7EH 0072H 3FH 0052H
P2_DIR 1FD3H 7EH 0073H 3FH 0053H
P3_DIR 1FDAH 7EH 007AH 3FH 005AH
P4_DIR 1FDBH 7EH 007BH 3FH 005BH
P1_MODE 1FDOH 7EH 0070H 3FH 0050H
P2_MODE 1FD1H 7EH 0071H 3FH 0051H
P3_MODE 1FD8H 7EH 0078H 3FH 0058H
P4_MODE 1FD9H 7EH 0079H 3FH 0059H
P1_PIN 1FD6H 7EH 0076H 3FH 0056H
P2_PIN 1FD7H 7EH 0077H 3FH 0057H
P3_PIN 1FDEH 7EH 007EH 3FH 005EH
P4_PIN 1FDFH 7EH 007FH 3FH 005FH
P1_REG 1FD4H 7EH 0074H 3FH 0054H
P2_REG 1FD5H 7EH 0075H 3FH 0055H
P3_REG 1FDCH 7EH 007CH 3FH 005CH
P4_REG 1FDDH 7EH 007DH 3FH 005DH
PWMO_CONTROL 1FBOH 7DH 0070H 3EH 0070H
PWM1_CONTROL 1FB2H 7DH 0072H 3EH 0072H
PWM2_CONTROL 1FB4H 7DH 0074H 3EH 0074H
SBUF_RX 1FB8H 7DH 0078H 3EH 0078H
SBUF_TX 1FBAH 7DH 007AH 3EH 007AH
SP_BAUD 1FBCH 7DH 007CH 3EH 007CH
SP_CON 1FBBH 7DH 007BH 3EH 007BH
SP_STATUS 1FBYH 7DH 0079H 3EH 0079H
T1CONTROL 1F90H 7CH 0070H 3EH 0050H
T2CONTROL 1F94H 7CH 0074H 3EH 0054H
TIMER1T 1F92H 7CH 0072H 3EH 0052H
TIMER2 1F96H 7CH 0076H 3EH 0056H
VECT_ADD? 1FFOH 7FH 0070H 3FH 0070H

T Must be addressed as a word.

C-69

80296SA USER’S MANUAL

ZERO_REG

intel.

ZERO_REG

Address: O00H
Reset State: 0000H

The two-byte zero register (ZERO_REG) is always equal to zero. It is useful as a fixed source of the

constant zero for comparisons and calculations.

15 0
Zero
Bit .
Number Function
15:0 Zero
This register is always equal to zero.

C-70

intel.

Glossary

intgl.
GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in this man-
ual. (Chapter 1 discusses notational conventions and general terminology.)

1-Mbyte mode The addressing mode that allows code to reside
anywhere in the addressing space.

64-Kbyte mode The addressing mode that allows code to reside only
in page FFH.

accumulator A register or storage location that forms the result of

an arithmetic or logical operation.

The 80296SA has several new mathematical instruc-
tions and a dedicated, 40-bit accumulator that stores
the result of a mathematical operation. This
accumulator increases the mathematical precision of
multiplication instructions while decreasing
instruction execution time.

ALU Arithmetic-logic unit. The part of thdRALU that
processes arithmetic and logical operations.

assert The act of making a signal active (enabled). The
polarity (high or low) is defined by the signal name.
Active-low signals are designated by a pound symbol
(#) suffix; active-high signals have no suffix. To assert
RD# is to drive it low; to assert ALE is to drive it
high.

barrel shifter Logic that performs a circular shift (rotate) for
multiply-accumulate operations. A circular shift
circulates the bits of a register around the two ends,
without losing any bits.

The 80296SA uses a 32-bit barrel shifter to extract the
result of a multiply-accumulate operation from the
accumulator and remove the sign extension. The
barrel shifter is also useful for logically shifting the
accumulator, as in a result of an encryption algorithm.

bit A binary digit.

BIT A single-bit operand that can take on the Boolean
values, “true” and “false.”

byte Any 8-bit unit of data.

Glossary-1

80296SA USER’S MANUAL

BYTE

CCBs

CCRs

chip-select unit

clear

deassert

demultiplexed bus

digital signal processing

doping

double-word
DOUBLE-WORD

Glossary-2

intel.

An unsigned, 8-bit variable with values from 0
through 2-1.

Chip configuration bytes. The chip configuration
registers CCR9 are loaded with the contents of the
CCBs after a reset.

Chip configuration registers. Registers that define the
environment in which the microcontroller will be
operating. The chip configuration registers are loaded
with the contents of thECBsafter a reset.

The integrated module that selects an external
memory device during an external bus cycle.

The “0” value of a bit or the act of giving it a “0”
value. See alsset

The act of making a signal inactive (disabled). The
polarity (high or low) is defined by the signal name.
Active-low signals are designated by a pound symbol
(#) suffix; active-high signals have no suffix. To

deassert RD# is to drive it high; to deassert ALE is to
drive it low.

The configuration in which the microcontroller uses
separate lines for address and data (address on A19:0;
data on AD15:0 for a 16-bit bus or AD7:0 for an 8-bit
bus). See alsmultiplexed bus

Extracting information from complex digital signals
by analyzing the signals with various mathematical
algorithms. The 80296SA’s signal processing
hardware and increased mathematical performance
and precision, along with appropriate software
algorithms, enable it to perform digital signal
processing functions.

The process of introducing a periodic table Group I
or Group V element into a Group IV element (e.g.,
silicon). A Group Il impurity (e.g., indium or
gallium) results in ap-type material A Group V
impurity (e.g., arsenic or antimony) results in ran
type material

Any 32-bit unit of data.

An unsigned, 32-bit variable with values from 0
through 22-1.

DSP
EPA

EPORT

ESD

external address

far constants

far data

FET
f

fractional mode

hold latency

index register

input leakage

integer

INTEGER

GLOSSARY

Seedigital signal processing

Event processor array. An integrated peripheral that
provides high-speed input/output capability.

Extended addressing port. The port that provides the
additional address lines to support extended
addressing.

Electrostatic discharge.

A 20-bit address is presented on the microcontroller’s
pins. The address decoded by an external device
depends on how many of these address pins the
external system uses. See atdernal address

Constants that can be accessed only with extended
instructions. See alstear constants

Data that can be accessed only with extended instruc-
tions. See alsnear data

Field-effect transistor.

Lowercase “f" represents the frequency of the internal
clock.

A mode of themultiply-accumulatdunction in which

the multiplier result is shifted left one bit before being
written to theaccumulator This left shift eliminates
the extra sign bit when both operands are signed,
leaving a correctly signed result.

The time it takes the microcontroller to assert HLDA#
after an external device asserts HOLD#.

A register used as a pointer to a memory location. The
80296SA has two 24-bit index registers that can be
automatically incremented or decremented by 1, 2, or
4 bytes. These registers are useful for indexing
through data tables or coefficient tables.

Current leakage from an input pin to power or ground.

Any member of the set consisting of the positive and

negative whole numbers and zero.
A 16-bit, signed variable with values from 22
through +3°-1.

Glossary-3

80296SA USER’S MANUAL

internal address

interrupt controller

interrupt latency

interrupt service routine

interrupt vector

ISR
LONG-INTEGER

LSB

LSwW

MAC

maskable interrupts

MSB

MSW

Glossary-4

intel.

The 24-bit address that the microcontroller generates.
See als@xternal address

The module responsible for handling interrupts that
are to be serviced binterrupt service routineshat
you provide. Also called thprogrammable interrupt
controller (PIC)

The total delay between the time that an interrupt is
generated (not acknowledged) and the time that the
microcontroller begins executing threrrupt service
routine Determine the instruction in your code that
has the longest execution time and use that execution
time in calculating interrupt latency.

A software routine that you provide to service an
interrupt.

A location that holds the starting address of an
interrupt service routine

Seeinterrupt service routine.

A 32-bit, signed variable with values from 3l

through +3%-1.

Least-significant bit of a byte or least-significant byte
of a word.

Least-significant word of a double-word or quad-
word.

The core mnemonic for sevenalultiply-accumulate
instructions.

All interrupts except unimplemented opcode,

software trap, and NMI. Maskable interrupts can be
disabled (masked) by the individual mask bits in the
interrupt mask registers, and their servicing can be
disabled by the DI (disable interrupt service)

instruction.

Most-significant bit of dyteor most-significant byte
of aword.

Most-significant word of a double-word or quad-
word.

intel.

multiplexed bus
multiply-accumulate
n-channel FET
n-type material
near constants

near data

nonmaskable interrupts

npn transistor

OTPROM

p-channel FET

p-type material

PC

GLOSSARY

The configuration in which the microcontroller uses
both A19:0 and AD15:0 for address and also uses
AD15:0 for data. See alstemultiplexed bus

An operation performed by the 80296SA’'s new
mathematical instructions anddigital signal
processinghardware. The result of the operation is
stored in a dedicated, 40-bitcumulator

A field-effect transistor with am-type conducting
path (channel).

Semiconductor material with introduced impurities
(doping causing it to have an excess of negatively
charged carriers.

Constants that can be accessed with nonextended
instructions. Constants in page O0H are near
constants. See al§ar constants

Data that can be accessed with nonextended instruc-
tions. Data in page OOH is near data. Seefalsdata

Interrupts that cannot be masked (disabled). The
nonmaskable interrupts are unimplemented opcode,
software trap, and NMI. The DI (disable interrupt

service) and El (enable interrupt service) instructions
have no effect on nonmaskable interrupts.

A transistor consisting of one partype materiabnd
two partsn-type material

One-time-programmable read-only memory. Similar
to EPROM but it comes in an unwindowed package
and cannot be erased.

A field-effect transistor with gp-type conducting
path.

Semiconductor material with introduced impurities
(doping causing it to have an excess of positively
charged carriers.

Program counter.

Glossary-5

80296SA USER’S MANUAL

phase-locked loop

PIC

pipeline

PLL

prioritized interrupt

program memory

protected instruction

PSW

Glossary-6

intel.

A component of the clock generation circuitry. The
phase-locked loop (PLL) and the two input pins
(PLLEN1 and PLLEN2) combine to enable the
microcontroller to attain its maximum operating
frequency with an external clock whose frequency is
either equal to, one-half, or one-fourth that maximum
frequency or with an external oscillator whose
frequency is either one-half or one-fourth that
maximum frequency.

Programmable interrupt controller. The module
responsible for handling interrupts that are to be
serviced by interrupt service routinesthat you
provide. Also called simply thiaterrupt controller

A feature of the 80296SA architecture that enables
simultaneous processing of up to four instructions.
The pipeline has four stages: fetch, decode,
read/execute, and execute/write. This design achieves
significantly faster instruction throughput than was
possible with previous MC%96 microcontrollers.

Seephase-locked loap

NMI or any maskable interrupt Two of the
nonmaskable interruptéunimplemented opcode and
software trap) are not prioritized; they vector directly
to theinterrupt service routingvhen executed.

A partition of memory where instructions can be
stored for fetching and execution.

An instruction that prevents an interrupt from being
acknowledged until after the next instruction

executes. The protected instructions are DI, El, RPT,
RPTxxx POPA, POPF, PUSHA, and PUSHF.

Processor status word. The high byte of the PSW is
the status byte, which contains one bit that globally
enables or disables servicing of all maskable
interrupts and six Boolean flags that reflect the state
of the current program. The low byte of the PSW is
the INT_MASK register. A PUSHA or POPA
instruction saves or restores both bytes (PSW +
INT_MASK); a PUSHF or POPF saves or restores
only the PSW.

intel.

QUAD-WORD

RALU
reserved memory

sampled inputs

saturation mode

set

SFR
SHORT-INTEGER

sign extension

sink current

GLOSSARY

Pulse-width modulator. A peripheral that generates
waveforms with a fixed, selectable frequency and a
variable duty cycle.

An unsigned, 64-bit variable with values from 0
through 2*-1. The QUAD-WORD variable is

supported only as the operand for the EBMOVI
instruction.

Register arithmetic-logic unit. A part of the CPU that
consists of theALU, the PSW the mastePC, the
microcode engine, a loop counter, and six registers.

A memory location that is reserved for factory use or
for future expansion. Do not use a reserved memory
location except to initialize it.

All input pins, with the exception of RESET#, are
sampled inputs. The input pin is sampled one state
time before the read buffer is enabled. Sampling
occurs during PH1 (while CLKOUT is low) and
resolves the value (high or low) of the pin before it is
presented to the internal bus. If the pin value changes
during the sample time, the new value may or may not
be recorded during the read.

RESET# is a level-sensitive input.

Saturation occurs when the result of two positive

numbers generates a negative sign bit or the result of
two negative numbers generates a positive sign bit.
Saturation mode prevents an underflow or overflow

of the accumulated value.

The “1” value of a bit or the act of giving it a “1”
value. See alsdear.

Special-function register.

An 8-bit, signed variable with values from -2
through +2-1.

A method for converting data to a larger format by
filling the upper bit positions with the value of the

sign. This conversion preserves the positive or
negative value of signed integers.

Current flowinginto a device to ground. Always a
positive value.

Glossary-7

80296SA USER’S MANUAL

source current

SP

special interrupt

special-purpose memory

standard interrupt

state time (or state)

UART

wait state

word
WORD

zero extension

Glossary-8

intel.

Current flowingout of a device from Y. Always a
negative value.

Stack pointer.

Any of the threenonmaskablanterrupts (unimple-
mented opcode, software trap, or NMI).

A partition of memory used for storing tlierrupt
vectors chip configuration bytes, and several
reserved locations.

Any maskable interruptthat is assigned to the
interrupt controller for processing by atnterrupt
service routine

The basic time unit of the microcontroller; the
combined period of the two internal timing signals,
PH1 and PH2. Because the microcontroller can
operate at many frequencies, this manual defines time
requirements in terms dftate timesrather than in
specific units of time.

Lowercase “t” represents the period of the internal
clock.

Universal asynchronous receiver and transmitter. A
part of the serial 1/0 port.

Time spent waiting for an operation to take place.
Wait states are added to external bus cycles to allow a
slow memory device to respond to a request from the
microcontroller.

Any 16-bit unit of data.

An unsigned, 16-bit variable with values from 0O
through 26-1.

A method for converting data to a larger format by
filling the upper bit positions with zeros.

intel.

Index

intel.

#, defined, 1-3, A-1
128-byte windowing example, 5-19
16-hit data bus timing diagram, 13-26
1-Mbyte mode, 5-1
incrementing SP, 5-12
32-byte windowing example, 5-18
64-byte windowing example, 5-19
64-Kbyte mode, 5-1, 5-5
incrementing SP, 5-12
80C196NU, converting from, 2-16
8-bit data bus timing diagram, 13-28

A
A15:0, B-4
A19:.0, 5-1
A19:16, B-4
AC symbol explanations, 13-41
AC timing specifications, 13-38-13-45
Accumulator operating modes
fractional mode, 3-15
saturation mode, 3-15
setting mode bits (SME and FME), 3-15
Accumulator register, 3-13, C-6
Accumulator status register, 3-14, C-7
AD15:0, 5-1,B-4
after reset, 13-21
ADD instruction, A-2, A-7, A-58, A-59, A-64,
A-72
ADDB instruction, A-2, A-7, A-58, A-59, A-64,
A-72
ADDC instruction, 3-3, 4-6, A-2, A-8, A-60, A-61,
A-64, A-72
ADDCB instruction, A-2, A-8, A-61, A-64, A-72
ADDRCOMx, 13-8
example, 13-16
initial conditions, 13-14
initializing, 13-14
Address compare registers, 13-9, C-9
Address mask registers, 13-10, C-10
Address pins for CCBO fetch, 13-20
Address signal considerations, 7-6
Address space, 5-1
1-Mbyte address space, 5-1
external, 5-1

INDEX

internal, 5-1
partitions, 5-4-5-13
special-purpose memorgeeSpecial-purpose
memory
Address/data bus, 13-32
bus width,Seebus width
contention, 13-20, 13-35
for CCBO fetch, 13-20
for CCBL1 fetch, 13-21
multiplexing, 13-1, 13-8, 13-15, 13-21-13-28
Addresses
CPU SFRs, 5-13
internal and external, 1-3, 13-1
notation, 1-3
peripheral SFRs, 5-8
registers, C-2
Addressing modes, 4-8-4-13, A-6
direct addressing, 4-9
extended indexed addressing, 4-12
extended indirect addressing, 4-10
extended indirect autoincrement addressing,
4-11
extended zero-indexed addressing, 4-13
immediate addressing, 4-10
indexed addressing, 4-11
indirect addressing, 4-10
indirect autoincrement addressing, 4-10
long-indexed addressing, 4-12
short-indexed addressing, 4-12
zero-indexed addressing, 4-13
ADDRMSKX, 13-8
example, 13-16
initial conditions, 13-14
initializing, 13-14
ALE, 13-25, B-5
during bus hold, 13-32
idle, powerdown, reset status, B-11
ALU, 2-5
Analog outputs, generating, 9-9
AND instruction, A-2, A-8, A-58, A-59, A-67,
A-74
ANDB instruction, A-2, A-9, A-58, A-59, A-67,
A-74
Application notes, ordering, 1-7

Index-1

80296SA USER'S MANUAL

Applications, typical, 2-1

Architecture, overview, 2-3

Arithmetic instructions, A-64, A-65, A-66, A-72,
A-73

Assert, defined, 1-3

B

Barrel shifter
wrapping affect, 3-6
BAUD_VALUE, 8-14
Baud-rate generator, SIO port, 8-13
BHE#, B-5
during bus hold, 13-32
See alsavrite-control signals
BHE#/WRH# after reset, 13-21
BIT, defined, 4-2
Bit-test instructions, A-21
Block diagram
core, 2-4
core and peripherals, 2-3
detailed, 2-2
EPA, 10-2
FIR filter, 3-21
PWM, 9-2
BMOV instruction, A-2, A-10, A-61, A-68
BMOV!I instruction, A-3, A-11, A-62, A-68
BR (indirect) instruction, A-2, A-11, A-62, A-69,
A-77
BREQ#, 13-32, B-5
Bulletin board service (BBS), 1-8, 1-9
Bus contentionSeeaddress/data bus, contention
Bus control registers, 13-12, C-11
Bus controller, 2-6
Bus hold pin status, B-11
Bus mode
deferred bus-cycle, 13-40
deferred bus-cycle timing, 13-41
options, 13-22
Bus width, 13-8
16-bit bus signals, 13-25
8- and 16-bit comparison, 13-21-13-28
8-bit bus signals, 13-27
and write-control signals, 13-36
CCBO fetch, 13-20
control bit, 13-20
options, 13-22
selecting, 13-1

Index-2

intel.

Bus-control, signal considerations, 7-7
BUSCONk
example, 13-15
initial conditions, 13-14
initializing, 13-14
Bus-hold protocol, 13-1, 13-32-13-35
and code execution, 13-35
and interrupts, 13-35
and resetSeaeset
disabling, 13-34
enabling, 5-14, 13-34
hold latency, 13-35
regaining bus control, 13-35
signals, 13-32
See als@ort 2, BREQ#, HLDA#,
HOLD#
software protection, 13-34
timing parameters, 13-32
BYTE, defined, 4-2

C
Call instructions, A-69, A-77, A-78
Capture mode, 10-9
Carry (C) flag, A-4, A-5, A-12, A-22, A-23, A-24,
A-25, A-44
Cascading timers, 10-6
CCBs, 5-6,11-7, 13-17
fetching, 13-14, 13-20, 13-21, 13-29
See alsochip configuration bytes
CCRs, 5-7,11-7,12-6, 12-7, 13-17
See alsochip configuration registers
Chip configuration, 2-13
and reset, 13-17
bytes, 13-17
chip configuration register 0, 2-14, 13-18,
C-13
chip configuration register 1, 2-15, 13-19,
C-15
registers, 13-17
Chip select, 13-1, 13-8-13-17
address calculation, 13-8
address compare registers, 13-9, C-9
address mask registers, 13-10, C-10
address-range size, 13-10
base addresses, 13-11
bus control registers, 13-12, C-11
conditions after reset, 13-14

intel.

controlling bus parameters, 13-11

during bus hold, 13-32
example, 13-11, 13-15
initializing, 13-20
overview, 2-6
programming, 13-14
signal considerations, 7-8
using remap feature, 13-16
Circuit
internal reset, 11-9
minimum reset, 11-10
on-chip oscillator, 11-5
system reset, 11-10
Clear, defined, 1-3
CLKOUT, B-5
after reset, 13-21
and HOLD#, 13-32
and internal timing, 2-8, 2-10
and PLLEN2:1, 2-10
and READY, 13-29

idle, powerdown, reset status, B-11

reset status, 7-14
Clock

circuitry, 2-7

external, 11-6

generator, 11-6

input signal, 2-8

internal, and idle mode, 12-5, 12-6, 12-7

modes, 12-14
phases, internal, 2-8
Clock prescaler
divide-by-four, 9-4
divide-by-two, 9-4

CLR instruction, A-2, A-12, A-57, A-64, A-72
CLRB instruction, A-2, A-12, A-57, A-64, A-72
CLRC instruction, A-3, A-12, A-63, A-71, A-80
CLRVT instruction, A-3, A-12, A-63, A-71, A-80
CMP instruction, A-3, A-12, A-60, A-64, A-72
CMPB instruction, A-3, A-13, A-60, A-64, A-72
CMPL instruction, 3-13, A-2, A-13, A-61, A-64,

A-72

Code execution, 2-6

instruction pipeline, 2-5
Code memory, 5-2
Code/data RAM, 5-7
Compare mode, 10-12
CompuServe, 1-8
Conditional jump instructions, A-5

INDEX

Conditional jumps, 4-5
Configuring
bus-control signals, 7-7
chip-select signals, 7-8
EPA and timer signals, 7-9
EPORT, 7-4
extended address signals, 7-6
external interrupt signals, 7-9
port1, 7-4
port 2, 7-4
port 3, 7-4
port4, 7-4
PWM signals, 7-10
SIO signals, 7-11, 8-10
Connections
external clock, 11-7
external crystal, 11-6
power and return, 11-4
Core, 2-3
CPU, 2-4
CPU SFR addresses, 5-13
CSO0# after reset, 13-21
CS5:0#, B-5

D
Data instructions, A-68, A-76
Data types, 4-1-4-4
addressing restrictions, 4-1
converting between, 4-4
defined, 4-1
iC-96, 4-2
signed and unsigned, 4-1, 4-5
values permitted, 4-1

Datasheets
on WWW, 1-8
ordering, 1-7

Deassert, defined, 1-3
DEC instruction, A-2, A-13, A-57, A-64, A-72
DECB instruction, A-2, A-13, A-57, A-64, A-72
Deferred bus-cycle mode, 13-40
Demultiplexed mode, 13-23
system bus timing, 13-40
DEMUX bit, 13-20
Design considerations, 2-16
Device
minimum hardware configuration, 11-1
pin reset status, B-11

Index-3

80296SA USER'S MANUAL

reset, 11-7,11-8, 11-9, 11-10, 11-11
Dl instruction, A-3, A-14, A-63, A-71, A-80
Digital Signal ProcessingeeDSP
Digital-to-analog converter, 9-10
Direct addressing, 4-9
and register RAM, 5-11
and windows, 5-13, 5-21, 5-22
DIV instruction, 4-6, A-14, A-65, A-73
DIVB instruction, 4-6, A-14, A-65, A-73
DIVU instruction, A-3, A-15, A-60, A-65, A-73
DIVUB instruction, A-3, A-15, A-60, A-65, A-73
DJNZ instruction, A-2, A-5, A-15, A-62, A-70,
A-79
DJINZW instruction, A-2, A-5, A-16, A-62, A-70,
A-79
Documents
ordering, 1-6, 1-8
related, 1-6-1-7
DOUBLE-WORD, defined, 4-3
DSP, 3-1-3-21
accumulator register, 3-13, C-6
accumulator status register, 3-14, C-7
application example, 3-19
barrel shifter, 3-6
coefficient table, 3-19
index control bytes, 3-18, C-29
index reference registers, 3-19, C-30
index registers, 3-17, C-31
instructions, 3-2
multiply-accumulate operations, 3-4
purpose, 3-1
registers, 3-1
repeat counter register, 3-12, C-50
sample table, 3-19

E

EBMOVI instruction, 4-5, A-2, A-16, A-62, A-68

EBR (indirect) instruction, 4-6, A-2, A-17, A-62,
A-69, A-77

ECALL instruction, 4-6, A-2, A-17, A-63, A-69,
A-78

EE opcode, and unimplemented opcode interrupt,
A-3, A-57

El instruction, A-3, A-17, A-63, A-71, A-80

EJMP instruction, 4-6, A-2, A-18, A-62, A-69,
A-77

ELD instruction, 4-6, A-3, A-18, A-62, A-68, A-76

Index-4

intel.

ELDB instruction, 4-6, A-3, A-18, A-62, A-68,
A-76
Energy conservation
disabling PWM, 12-13
disabling SIO, 12-13
EPA, 2-12, 10-1-10-25
block diagram, 10-2
capture data overruns, 10-22
choosing capture or compare mode, 10-20
clock prescaler, 10-15, 10-17
compare channels programming, 10-19
controlling the clock source and direction,
10-15, 10-17
determining event status, 10-25
enabling a timer/counter, 10-15, 10-16
enabling remapping, 10-20
overruns, 10-11, 10-12
programming, 10-18
re-enabling the compare event, 10-21
registers, 10-3
resetting the timer in compare mode, 10-22
resetting the timers, 10-22
selecting the capture/compare event, 10-21
selecting the time base, 10-20
selecting up or down counting, 10-15, 10-16
signal considerations, 7-9
signals, 10-2
See alsoport 1, port 6, PWM, timer/counters
EPA control registers, 10-20, C-23
EPA interrupt mask register, 10-24, C-21
EPA interrupt pending register, 10-26, C-22
EPA time registers, 10-23, C-27
EPA3:0, B-6
EPORT, 2-12
after reset, 13-21
and external address, 13-1
configuring, 7-4
data output register, C-20
I/O direction register, C-17
idle, powerdown, reset status, B-11
internal structure, 7-11
mode register, C-18
overview, 7-1
pin register, C-19
EPORT.3:0, B-6
ESD protection, 7-14, 11-5
EST instruction, 4-6, A-3, A-19, A-57, A-68, A-76

intel.

ESTB instruction, 4-6, A-3, A-19, A-57, A-68,
A-76

Event processor arrageeEPA
Execution unit, 2-5
EXT instruction, A-2, A-19, A-57, A-64, A-72
EXTB instruction, A-2, A-20, A-57, A-64, A-72
Extended address pins, 5-1
Extended addressing, 2-12

code execution, 4-5

instructions, 4-5, 4-6
Extended indexed addressing, 4-12
Extended indirect addressing, 4-10

Extended indirect autoincrement addressing, 4-11

Extended port data output register, C-20
Extended port I/O direction register, C-17
Extended port mode register, C-18
Extended port register, C-19
Extended zero-indexed addressing, 4-13
External interrupt control register, 6-11, C-28
External interrupt signal considerations, 7-10
External memory, 5-2
EXTINT, 6-4

and idle mode, 12-6

and powerdown mode, 12-7, 12-8

hardware considerations, 12-9
EXTINTX, 12-1, B-6

F
f, defined, 1-3
FaxBack service, 1-8
FE opcode and inhibiting interrupts, 6-12
Features, overview, 2-1
Feedback resistor, 11-5
Finite-impluse-response (FIR) filter, 3-21
Floating point library, 4-5
Formulas
capacitor size (powerdown circuit), 12-12
charging capacitor voltage (external RC
circuit for RPD), 12-10
clock period (t), 2-9
PH1 and PH2 frequency, 2-9
PWM frequency, 9-6
PWM period, 9-6
SIO baud rate, 8-14
state time, 2-9
Frequency (f), 2-9
I:XTALZI.' 2_9

INDEX

H

Handbooks, ordering, 1-6

Hardware
addressing modes, 4-8-4-13
applying power, 11-3
connections, 11-4, 11-6, 11-7
device considerations, 11-1-11-11
device reset, 11-7,11-9, 11-10, 11-11
minimum configuration, 11-1
NMI considerations, 6-11
noise protection, 11-4
pin reset status, B-11
removing power, 11-3
SIO port considerations, 8-8

Help desk, 1-8

HLDA#, 13-32, B-6

HLDEN bit, 5-14, 13-21

Hold latency Seebus-hold protocol

HOLD#, 13-32, B-6

Hold, pin status, B-11

I/O ports
after reset, 13-21
overview, 7-1
Idle mode, 2-11, 12-5-12-6, 12-7
entering, 12-6
exiting, 12-7
pin status, B-11
timeout control, 10-6
IDLPD instruction, A-2, A-20, A-63, A-71, A-80
IDLPD #1, 12-6
IDLPD #2, 12-8
IDLPD #3, 12-7
illegal operand, 11-8, 11-11
Immediate addressing, 4-10
INC instruction, A-2, A-21, A-57, A-64, A-72
INCB instruction, A-2, A-21, A-57, A-64, A-72
Index control bytes, 3-18, C-29
programming, 3-18
Index pointer registers
loading the registers, 3-17
Index reference registers, 3-19, C-30
accessing the index pointer, 3-19
Index registers, 3-17, C-31
Indexed addressing, 4-11
and register RAM, 5-11

Index-5

80296SA USER'S MANUAL

and windows, 5-22
long-indexed, 4-12
short-indexed, 4-12
with extended instructions, 4-12
zero-indexed addressing, 4-13
Indirect addressing, 4-10
and register RAM, 5-11
with autoincrement, 4-10
with extended instructions, 4-10
with extended instructions and autoincrement,
4-11
with the stack pointer, 4-11
Indirect autoincrement addressing, 4-10
Input capture, 10-1
Input pins
level-sensitive, B-4
sampled, B-4
INST, B-6
after reset, 13-21
Instruction fetch
reset location, 5-2
See alsd-Mbyte mode, 64-Kbyte mode
Instruction set
added instructions, 4-7
and PSW flags, A-5
code execution, 2-6
conventions, 1-3
enhanced instructions, 3-2, 4-6
execution times, A-72-A-74
extended instructions, 4-5
lengths, A-64-A-72
opcode map, A-2-A-3
opcodes, A-57-A-63
overview, 4-1-4-8
protected instructions, 6-12
reference, A-1-A-3
removed instructions, 4-6
INTEGER, defined, 4-3
Internal RAM, 5-7
Interrupt controller, 2-13
Interrupts, 6-1-6-19
and bus-holdSeebus-hold protocol
block diagram, 6-2
control registers, 6-8, C-33
determining source, 6-16

external interrupt control register, 6-11, C-28

external interrupt signals, 6-11
inhibiting, 6-12

Index-6

intel.

in-progress registers, 6-17, C-32
latency, 6-12—-6-13
calculating, 6-12

mask 1 register, 6-16, 10-25, C-36

mask register, 6-15, 10-24, C-35

NMI pending register, 6-7, C-39

overview, 6-1

pending 1 register, 6-19, C-38

pending register, 6-18, C-37

priorities, 6-6

programming, 6-14-6-19

reassigning vector addresses, 6-9

registers, 6-4

serving, flow diagram, 6-3

shared requests, 6-11

signals, 6-4

sources, 6-6

unused inputs, 11-2

vector address register, 6-10, C-62

vectors, 6-6

vectors, memory locations, 5-6
Italics, defined, 1-4

J
JBC instruction, A-2, A-5, A-21, A-58, A-70, A-79
JBS instruction, A-3, A-5, A-21, A-58, A-70, A-79
JC instruction, A-3, A-5, A-22, A-62, A-70, A-79
JE instruction, A-3, A-5, A-22, A-62, A-70, A-79
JGE instruction, A-2, A-5, A-22, A-62, A-70, A-79
JGT instruction, A-2, A-5, A-23, A-62, A-70, A-79
JH instruction, A-3, A-5, A-23, A-62, A-70, A-79
JLE instruction, A-3, A-5, A-23, A-62, A-70, A-79
JLT instruction, A-3, A-5, A-24, A-62, A-70, A-79
JNC instruction, A-2, A-5, A-24, A-62, A-70,
A-79
JNE instruction, A-2, A-5, A-24, A-62, A-70, A-79
JNH instruction, A-2, A-5, A-25, A-62, A-70,
A-79
JNST instruction, A-2, A-5, A-25, A-62, A-70,
A-79
JNV instruction, A-2, A-5, A-25, A-62, A-70,
A-79
JNVT instruction, A-2, A-5, A-26, A-62, A-70,
A-79
JST instruction, A-3, A-5, A-26, A-62, A-70, A-79
Jump instructions, A-77
conditional, A-5, A-70, A-79

intel.

unconditional, A-69
Jumps, conditional, 4-5
JV instruction, A-3, A-5, A-26, A-62, A-70, A-79
JVT instruction, A-3, A-5, A-27, A-62, A-70, A-79

L
Latency, 6-12
See alsdus-hold protocol, interrupts
worst-case, 6-13
LCALL instruction, A-3, A-27, A-63, A-69, A-78
LD instruction, A-2, A-27, A-60, A-68, A-76
LDB instruction, A-2, A-28, A-61, A-68, A-76
LDBSE instruction, A-3, A-28, A-61, A-68, A-76
LDBZE instruction, A-3, A-28, A-61, A-68, A-76
Level-sensitive input, B-4
LIMP instruction, A-2, A-28, A-62, A-69, A-77
Logical instructions, A-67, A-74
LONG-INTEGER, defined, 4-4
Lookup tables, software protection, 4-14

M

MAC instruction, 3-5, 4-7, A-29, A-58, A-59,
A-66, A-73

MACR instruction, 3-5, 4-7, A-29, A-58, A-59,
A-66, A-73

MACRZ instruction, 3-5, 4-7, A-30, A-58, A-59,
A-66, A-73

MACZ instruction, 3-5, 4-7, A-31, A-58, A-59,
A-66, A-73

Manual contents, summary, 1-1-1-2

Measurements, defined, 1-5

Memory interface unit, 2-6

Memory map, 5-4, 5-10
partitions, 5-4-5-13

Memory, external, 13-1-13-45
bus-control signals, 13-2
registers, 13-5

Memory, reserved locations, 5-6

Microcode engine, 2-4

Miller effect, 11-7

Mode 0, SIO, 8-2, 8-6

Mode 1, SIO, 8-3, 8-7, 8-8

Mode 2, SIO, 8-3, 8-7

Mode 3, SIO, 8-3, 8-7, 8-9

MODESG64 bit, 5-22

MSAC instruction, 4-7, A-32, A-57, A-71, A-79
code example, 3-6

INDEX

MUL instruction, 4-7, A-33, A-58, A-65, A-73
MULB instruction, 4-7, A-33, A-34, A-63, A-65,
A-73
Multiplexed mode, 13-23
system bus timing, 13-39
Multiply-accumulate operations, 2-6, 3-4
decoding instruction mnemonic, 3-4
Multiprocessor communications
SIO port, 8-9
Multiprocessor communications, SIO port, 8-9
MULU instruction, A-3, A-34, A-58, A-59, A-65,
A-73
MULUB instruction, A-3, A-35, A-58, A-59,
A-65, A-73
MVAC instruction, 4-8, A-36, A-57, A-71, A-79
code example, 3-8

N
Naming conventions, 1-3-1-5
NEG instruction, A-2, A-36, A-57, A-67, A-74
Negative (N) flag, A-4, A-5, A-22, A-23, A-24
NEGB instruction, A-2, A-36, A-57, A-67, A-74
NMI, 6-4, 6-10, B-7
and bus-hold protocol, 13-35
hardware considerations, 6-11
idle, powerdown, reset status, B-12
NMI pending register, 6-7, C-39
Noise, reducing, 7-14, 11-4, 11-6
NOP instruction, A-3, A-37, A-63, A-71, A-80
two-byte, SeeSKIP instruction
NORML instruction, 3-13, A-3, A-37, A-57, A-71,
A-79
NOT instruction, A-2, A-37, A-57, A-67, A-74
Notational conventions, 1-3-1-5
NOTB instruction, A-2, A-37, A-57, A-67, A-74
Numbers, conventions, 1-4

O
ONCE mode, 2-13, 12-12
entering, 12-13
exiting, 12-13
ONCE signal, B-7
Ones register, C-40
Opcodes, A-57
EE, and unimplemented opcode interrupt,
A-3, A-57
FE, and signed multiply and divide, A-3

Index-7

80296SA USER'S MANUAL

map, A-2
reserved, A-3, A-57
Operand typesSeedata types
Operand variables, A-6
Operating modes, 5-1
See alsd-Mbyte mode, 64-Kbyte mode
OR instruction, A-2, A-38, A-59, A-60, A-67,
A-74
ORB instruction, A-2, A-38, A-60, A-67, A-74
Oscillator
and powerdown mode, 12-7
external crystal, 11-6
on-chip, 11-5
Output compare, 10-1
Overflow (V) flag, A-4, A-5, A-25, A-26
Overflow-trap (VT) flag, A-4, A-5, A-12, A-26,
A-27

P

pP2.7.0, B-7

P3.7:0, B-7

P4.7.0, B-7

Packages
100-pin QFP, B-3
100-pin SQFP, B-2

Pages (memory), 5-1

considerations for large tables or arrays, 4-13

page O0OH, 5-3
page FFH, 5-2, 5-3
Parity, 8-9
PC (program counter) master, 2-5, 2-6
Period (t), 2-9
Peripheral disable control
BCD bit, 12-6
DCD bit, 12-6
PWM DCD bit, 9-5
Peripheral SFRs, 5-7
Peripherals, internal, 2-12
Phone numbers, customer support, 1-8
Pinout
100-pin QFP, B-3
100-pin SQFP, B-2
Pin-out diagrams, B-2, B-3
PLLEN2:1, 2-9,12-14, B-8
and CLKOUT, 2-10
POP instruction, A-3, A-38, A-62, A-67, A-74,
A-75

Index-8

intel.

POPA instruction, A-2, A-39, A-63, A-67, A-74,
A-75
POPF instruction, A-2, A-39, A-63, A-67, A-74,
A-75

Port 1, 2-12, B-7
configuring, 7-4
idle, powerdown, reset status, B-11
internal structure, 7-14
overview, 7-1
See als&PA

Port 2, 2-12, B-7
configuring, 7-4
idle, powerdown, reset status, B-11
internal structure, 7-14
overview, 7-1
P2.7 reset status, 7-14
See als®I0 port

Port 3, 2-12, B-7
configuring, 7-4
idle, powerdown, reset status, B-11
internal structure, 7-14
overview, 7-1

Port 4, 2-12, B-7
configuring, 7-4
idle, powerdown, reset status, B-11
internal structure, 7-14
overview, 7-1

Port, serial,SeeSIO port

Ports
configuration example, 7-5
configuring the pins, 7-3
control and status registers, 7-3
data output registers, C-45
general-purpose 1/0, 2-12
I/O direction registers, C-41
input buffers, 7-14
internal structure, 7-11-7-14
mode registers, C-42
pin registers, C-44
possible configurations, 7-5
signals, 7-2
using asynchronous serial I/O signals, 7-11
using bus-control signals, 7-7
using chip-select signals, 7-8
using EPA and timer signals, 7-9
using extended address signals, 7-6
using external interrupt signals, 7-9
using PWM signals, 7-10

intel.

using special-function signals, 7-6
Power consumption, reducing, 2-11, 12-7
Power management logic, 2-7, 2-11
Powerdown mode, 2-11, 12-7-12-12

circuitry, external, 12-12

disabling, 12-6, 12-7

enabling, 12-7

entering, 12-6, 12-8

exiting, 12-8

with EXTINT, 12-8-12-12
with RESET#, 12-8
pin status, B-11
Prefetch queue, 2-6
Processor status word, C-47
Product information, ordering, 1-6
Program memory, 5-2, 5-5
PSW, 2-6
flags, and instructions, A-5
Pulse-width modulatoSeePWM
PUSH instruction, A-3, A-39, A-61, A-62, A-67,
A-74, A-75

PUSHA instruction, A-2, A-40, A-63, A-67, A-74,
A-75

PUSHEF instruction, A-2, A-40, A-63, A-67, A-74,
A-75

PWM, 2-12, 9-1-9-9

alternate functions, 9-9

and cascading timer/counters, 10-6

block diagram, 9-2

clock prescaler, 9-4

control register, 9-7, C-16

control registers, 9-8, C-49

DCD bit, 9-5

duty cycle, 9-3, 9-5

enabling outputs, 9-9

generating analog outputs, 9-9

highest-speed, 10-13

low-speed, 10-6, 10-12

operation, 9-4

overview, 9-1

peripheral disable bit, 9-5

programming duty cycle, 9-5

programming the frequency and period, 9-5

registers, 9-3

signal considerations, 7-10

signals, 9-2

typical output waveforms, 9-5

with dedicated timer/counter, 10-13

INDEX

PWMO, 9-2,9-9
PWM1, 9-2,9-9
PWM2, 9-2,9-9
PWM2:0, B-8

Q

QFP, 100-pin, B-3

Quad flatpack, B-3
QUAD-WORD, defined, 4-4

R
RAM, internal
code/data RAM, 5-7
register RAM, 5-10
RD#, 13-38, B-8
during bus hold, 13-32
idle, powerdown, reset status, B-12
READY, 13-29-13-32, B-8
after reset, 13-21
for CCB fetches, 13-20
idle, powerdown, reset status, B-12
timing definitions, 13-31
timing requirements, 13-29
REAL variables, 4-5
Register bits
naming conventions, 1-4
reserved, 1-4
Register file, 2-4, 2-5, 5-10
addresses, 5-10, 5-11
and windows, 5-10, 5-13
lower, 5-10, 5-11, 5-13
restrictions, 5-10
upper, 5-11
See alsavindows
Register RAM, 2-5, 5-10, 5-11
and direct addressing, 5-11
and idle mode, 12-5
and indexed addressing, 5-11
and indirect addressing, 5-11
and powerdown mode, 12-7
Registers
ACC_(%, 3-13,C-6
ACC_STAT, 3-14,C-7
ADDRCOM¥, 13-9, C-9
addresses and reset states, C-2
ADDRMSKX, 13-10, C-10
BUSCONk, 13-12, C-11

Index-9

80296SA USER'S MANUAL

CCRO, 2-14, 13-18, C-13
CCR1, 2-15,13-19, C-15
CON_REGO, 9-7, C-16
EP_DIR, C-17

EP_MODE, C-18

EP_PIN, C-19

EP_REG, C-20

EPA_MASK, 10-24, C-21
EPA_PEND, 10-26, C-22
EPAx_CON, 10-20, C-23
EPAX_TIME, 10-23, C-27
external memory interface, 13-5
EXTINT_CON, 6-11, C-28
grouped by modules, C-1
ICBx, 3-18, C-29

ICXx, 3-19, C-30

IDXx, 3-17, C-31

IN_PRO&, 6-17, C-32
INT_CONx, 6-8, C-33
INT_MASK, 6-15, 10-24, C-35
INT_MASK1, 6-16, 10-25, 12-3, C-36
INT_PEND, 6-18, C-37
INT_PEND1, 6-19, 12-3, C-38
naming conventions, 1-4
NMI_PEND, 6-7, C-39
ONES_REG, C-40

P2_DIR, 12-3

P2_MODE, 12-3

P2_REG, 124

P3 DIR, 12-3

P3_MODE, 12-3

P3_REG, 12-4

PSWw, C-47
PWMx_CONTROL, 9-8, C-49
Px_DIR, C-41

Px_MODE, C-42

Px_PIN, C-44

Px REG, C-45

reset states and addresses, C-2
RPT_CNT, 3-12, C-50
SBUF_RX, C-51

SBUF_TX, C-52

SP, C-53

SP_BAUD, 8-14, 8-15, C-54
SP_CON, 8-11, 12-4, C-55
SP_STATUS, 8-17, C-57
T1CONTROL, 10-15, C-58
T2CONTROL, 10-16, C-59

Index-10

intel.

TIMERX, 10-18, C-61
VECT_ADDR, 6-10, C-62
WSR, 5-15, C-63
WSR1, 5-15, C-67
ZERO_REG, C-70
Remap feature, chip selet unit, 13-16
Remapping internal ROM, 5-22
Repeat counter register, 3-12, C-50
Repeat instruction
exit conditions, 3-9
Reserved bits, defined, 1-4
Reserved memory locations, 5-6
Reserved SFRs, defined, 1-4
Reset, 11-8, 13-20
and bus-hold protocol, 13-35
and CCB fetches, 5-7
and chip select, 13-14
and operating mode selection, 5-22
circuit diagram, 11-10
circuitry, internal, 11-9
pin status, B-11
status CLKOUT/P2.7, 7-14
with illegal IDLPD operand, 11-11
with RESET# pin, 11-9
with RST instruction, 11-8, 11-10
Reset states registers, C-2
RESET#, 11-1, B-8
and CCB fetch, 11-7
and device reset, 11-7, 11-8, 11-9, 13-35
and ONCE mode, 12-13
and powerdown mode, 12-8
idle, powerdown, reset status, B-12
pins after deassertion, 13-21
Resonator, ceramic, 11-6
RET instruction, A-2, A-40, A-63, A-69, A-77,

A-78
RETI instruction, 3-11, 4-8, A-41
Rf, 11-5
ROM, internal remapping, 5-22
RPD, B-9

external RC circuit, 12-10

selecting capacitor, 12-12

typical voltage while exiting powerdown,
12-11

RPT instruction, 4-8, A-41, A-58, A-71, A-76

code example, 3-8

conditional, RPXxxinstruction, A-42, A-58,
A-71, A-76

intel.

RPTI instruction, 4-8, A-42, A-58, A-71, A-76
code example, 3-10
conditional, RPTtxxinstruction, A-43, A-58,
A-71, A-76
RPTIxxxinstruction, 3-10, 4-8
code example, 3-11
RPTxxxinstruction, 3-9, 4-8
RST instruction, 11-8, 11-10, A-3, A-43, A-63,
A-71, A-80
RXD
and SIO port mode 0, 8-6, 8-7
and SIO port modes 1, 2, and 3, 8-7

S
Sampled input, B-4
SCALL instruction, A-3, A-44, A-58, A-64, A-69,
A-77, A-78
Serial I/O port,SeeSIO port
Set, defined, 1-3
SETC instruction, A-3, A-44, A-63, A-71, A-80
SFRs
and idle mode, 12-5
and powerdown mode, 12-7
CPU, 5-12
peripheral, 5-7
and windows, 5-13, 5-16
table of, 5-8
Shift instructions, A-71, A-79
SHL instruction, A-3, A-44, A-57, A-71, A-79
SHLB instruction, A-3, A-45, A-57, A-71, A-79
SHLL instruction, 3-13, A-3, A-45, A-57, A-71
SHORT-INTEGER, defined, 4-2
SHR instruction, A-3, A-46, A-57, A-71, A-79
SHRA instruction, A-3, A-46, A-57, A-71, A-79
SHRAB instruction, A-3, A-47, A-57, A-71, A-79
SHRAL instruction, 3-13, A-3, A-47, A-57, A-71,
A-79
SHRB instruction, A-3, A-48, A-57, A-71, A-79
Shrink quad flatpack, B-2
SHRL instruction, A-3, A-48, A-57, A-71, A-79
Signals, B-1-B-10
default conditions, B-11
descriptions, B-4-B-10
external memory interface, 13-2
functional listings, B-1
naming conventions, 1-5
status symbols defined, B-11

INDEX

SIO port, 2-12, 8-1-8-17
9-bit data,Seemode 2, mode 3
baud rate register, 8-14, C-54
calculating baud rate, 8-14, 8-15
configuring signals, 8-10
control register, 8-11, C-55
enabling interrupts, 8-16
half-duplex considerations, 8-8
mode 0, 8-6
block diagram,
mode 1, 8-7, 8-8
block diagram,
frame, 8-8
mode 2, 8-7, 8-9
block diagram,
frame, 8-9
mode 3, 8-7, 8-9
block diagram,
frame, 8-9
multiprocessor communications, 8-9
overview, 8-1
programming, 8-10
receive buffer register, C-51
registers, 8-4
selecting baud rate, 8-13-8-15
signal considerations, 7-11
signals, 8-4
status, 8-16
status register, 8-17, C-57
synchronous mod&eemode 0
transmit buffer register, C-52
See alsanode 0, mode 1, mode 2, mode 3,
port 2
SJMP instruction, A-2, A-49, A-57, A-64, A-69,
A-77
SKIP instruction, A-2, A-49, A-57, A-71, A-80
SMAC instruction, 3-5, 4-8, A-49, A-58, A-59,
A-66, A-73
SMACR instruction, 3-5, 4-8, A-50, A-58, A-59,
A-66, A-73
SMACRZ instruction, 3-5, 4-8, A-50, A-58, A-59,
A-66, A-73
SMACZ instruction, 3-5, 4-8, A-51, A-58, A-59,
A-66, A-73
Software
device reset, 11-10
protection, 4-13, 13-34
trap interrupt, 6-6, 6-10, 6-12

8-2

8-3

8-3

Index-11

80296SA USER'S MANUAL

Software protection
RST instruction, 4-13
unimplemented opcode interrupt, 4-13
SP_STATUS, 8-17
Special instructions, A-71, A-80
Special operating modes
SFRs, 12-3
signals, 12-1
Special-purpose memory, 5-2, 5-5, 5-6
SQFP, 100-pin, B-2
ST instruction, A-2, A-52, A-61, A-68, A-76
Stack instructions, A-67, A-74, A-75
Stack pointer, 5-11, C-53
and subroutine call, 5-11
initializing, 5-12
location, 5-12
Standby mode, 2-11, 12-6
State time
and clock multipler, 2-9
and input frequency, 2-9
at various frequencies, 2-9
defined, 2-8
STB instruction, A-2, A-52, A-61, A-68, A-76
Sticky bit (ST) flag, A-4, A-5, A-25, A-26
SUB instruction, A-3, A-52, A-58, A-59, A-64,
A-72
SUBB instruction, A-3, A-53, A-58, A-59, A-64,
A-72
SUBC instruction, 3-3, 4-7, A-3, A-53, A-61,
A-64, A-72
SUBCB instruction, A-3, A-54, A-61, A-64, A-72
Subroutines, nested, 5-12
Support services, 1-7
Symbols, signal status, B-11

T
t, defined, 1-5

T1CLK, B-9

T1DIR, B-9

T2CLK, B-9

T2DIR, B-9

Tech support, 1-8

Terminology, 1-3

TIIMP instruction, A-2, A-54, A-62, A-69, A-77
Timer 1 control register, 10-15, C-58

Timer 2 control register, 10-16, C-59

Timer registers, 10-18, C-61

Index-12

intel.

Timer, signal considerations, 7-9
Timer/counters, 2-12
and PWM, 10-12, 10-13
cascading, 10-6
count rate, 10-5
programming, 10-14
resolution, 10-5
SFRs, 10-3
signals, 10-2
See als&PA
Timing
HLDA#, 13-32
HOLD#, 13-32
instruction execution, A-72—-A-74
internal, 2-7, 2-8
interrupt latency, 6-12—6-13
interrupts, 6-13
SIO port mode 0, 8-6
Timing definitions, READY, 13-31
Timing diagrams
16-bit data bus, 13-26
8-bit data bus, 13-28
Timing requirements, READY, 13-29
TRAP instruction, 6-10, A-2, A-55, A-63, A-69,
A-77, A-78
TRAP interrupt, 6-6
TXD
and SIO port mode 0, 8-6
and SIO port modes 1, 2, and 3, 8-7

U
UART, SeeSIO port

Unimplemented opcode interrupt, 6-6, 6-10, 6-12

Units of measure, defined, 1-5
Universal asynchronous receiver and transmitter
(UART), SeeSIO port

\Y,

Variables, operand, A-6
Voltage
Voo 11-1, B-10
V¢g 11-1, B-10

W
Wait states, 13-8, 13-29-13-30
for CCBO fetch, 13-20
Window selection 1 register, 5-15, C-67

int6I® INDEX

Window selection register, 5-15, C-63 XOR instruction, A-2, A-55, A-60, A-67, A-74
Windows, 5-13-5-22 XORB instruction, A-2, A-56, A-60, A-67, A-74

128-byte example, 5-19 XTAL1, 11-2, B-10

32-byte example, 5-18 and Miller effect, 11-7

64-byte example, 5-19 and SIO baud rate, 8-15

addressing, 5-18, 5-19 hardware connections, 11-6

and addressing modes, 5-21 XTAL2, 11-2, B-10

and direct addressing, 5-13 hardware connections, 11-6

base address, 5-18

direct addresses, 5-18, C-63, C-67 Y

examples, 5-14 y, defined, 1-4, 1-5

of peripheral SFRs, 5-16

of upper register file, 5-16 7

register RAM, 5-16
selecting, 5-14
setting up with linker loader, 5-19
SFR direct addresses, C-63, C-67
table of, 5-17
WSR values and direct addresses, C-63
WSR1 values and direct addresses, C-67
Word accesses, and write-control signals, 13-36
WORD, defined, 4-3
World Wide Web, 1-8
Worst-case interrupt latency, 6-13
WR#, B-10
during bus hold, 13-32
idle, powerdown, reset status, B-12
See alsavrite-control signals
WR#/WRL# after reset, 13-21
WRH#, 13-35, 13-37, B-10
See alsavrite-control signals
Write strobe mode, example, 13-38
Write-control modes, 13-1, 13-35-13-38
byte writes and word writes, 13-37
standard, 13-35
Write-control signals, 13-35, 13-36
decoding logic, 13-36
WRL#, 13-35, 13-37, B-10
See alsavrite-control signals

Zero (Z) flag, A-4, A-5, A-22, A-23, A-24, A-25

Zero register, C-70

Zero-indexed addressing with extended
instructions, 4-13

X

X, defined, 1-5

x, defined, 1-4, 1-5

XCH instruction, A-2, A-3, A-55, A-57, A-68,
A-76

XCHB instruction, A-2, A-3, A-55, A-57, A-68,
A-76

Index-13

	80296SA Microcontroller User’s Manual
	Copyright Page
	CONTENTS

	CHAPTER 1 Guide to This Manual
	1.1 Manual Contents
	1.2 Notational Conventions and Terminology
	1.3 Related Documents
	1.4 Application Support Services
	1.4.1 World Wide Web
	1.4.2 CompuServe Forums
	1.4.3 FaxBack Service
	1.4.4 Bulletin Board System (BBS)

	CHAPTER 2 Architectural Overview
	2.1 Typical Applications
	2.2 Functional Overview
	2.2.1 Core
	2.2.1.1 CPU
	2.2.1.2 Register File

	2.2.2 Execution Unit
	2.2.3 Memory Interface Unit
	2.2.4 Bus Controller and Chip-select Unit

	2.3 Internal Timing
	2.3.1 Clock and Power Management Logic
	2.3.2 Internal Timing

	2.4 Internal Peripherals
	2.4.1 I/O Ports
	2.4.2 Serial I/O (SIO) Port
	2.4.3 Event Processor Array (EPA) and Timer/Counte...
	2.4.4 Pulse-width Modulator (PWM)
	2.4.5 Interrupt Controller

	2.5 Special Operating Modes
	2.6 Chip Configuration Registers
	2.7 Design Considerations for 80C196NU to 80296SA ...

	CHAPTER 3 Digital Signal Processing
	3.1 Digital Signal Processing Overview
	3.2 DSP Registers
	3.3 Enhanced Instruction Set
	3.3.1 Addition and Subtraction (ADDC and SUBC) Ins...
	3.3.1.1 ADDC Instruction
	3.3.1.2 SUBC Instruction

	3.3.2 Multiply-Accumulate (MAC) Instructions
	3.3.3 Move (MSAC and MVAC) Instructions
	3.3.3.1 Move Saturated Integer From Accumulator (M...
	3.3.3.2 Move Double-word from Accumulator (MVAC) I...

	3.3.4 Repeat (RPT, RPTI, RPTxxx, RPTIxxx) Instruct...
	3.3.4.1 Repeat Next (RPT) Instruction
	3.3.4.2 Repeat Next Conditional (RPTxxx) Instructi...
	3.3.4.3 Repeat Next Interruptible (RPTI) Instructi...
	3.3.4.4 Repeat Next Conditional Interruptible (RPT...

	3.3.5 Return from Interrupt (RETI) Instruction

	3.4 Repeat Counter (RPT_CNT) Register
	3.5 Accumulator
	3.5.1 Accumulator Register (ACC_0x)
	3.5.2 Accumulator Control and Status Register (ACC...
	3.5.2.1 Saturation Mode (SME)
	3.5.2.2 Fractional Mode

	3.5.3 Accumulator Operation Limit

	3.6 Index Registers
	3.6.1 Index Pointer (IDX0 and IDX1) Registers
	3.6.2 Index Control Byte (ICB0 and ICB1) Registers...
	3.6.3 Index Reference (ICX0 and ICX1) Registers

	3.7 Application Example

	CHAPTER 4 Programming Considerations
	4.1 Overview of the Instruction Set
	4.1.1 BIT Operands
	4.1.2 BYTE Operands
	4.1.3 SHORT-INTEGER Operands
	4.1.4 WORD Operands
	4.1.5 INTEGER Operands
	4.1.6 DOUBLE-WORD Operands
	4.1.7 LONG-INTEGER Operands
	4.1.8 QUAD-WORD Operands
	4.1.9 Converting Operands
	4.1.10 Conditional Jumps
	4.1.11 Floating Point Operations
	4.1.12 Extended Instructions
	4.1.13 Instructions That Were Removed from the 802...
	4.1.14 Instructions That Were Enhanced for the 802...
	4.1.15 Instructions That Were Added for the 80296S...

	4.2 Addressing Modes
	4.2.1 Direct Addressing
	4.2.2 Immediate Addressing
	4.2.3 Indirect Addressing
	4.2.3.1 Extended Indirect Addressing
	4.2.3.2 Indirect Addressing with Autoincrement
	4.2.3.3 Extended Indirect Addressing with Autoincr...
	4.2.3.4 Indirect Addressing with the Stack Pointer...

	4.2.4 Indexed Addressing
	4.2.4.1 Short-indexed Addressing
	4.2.4.2 Long-indexed Addressing
	4.2.4.3 Extended Indexed Addressing
	4.2.4.4 Zero-indexed Addressing
	4.2.4.5 Extended Zero-indexed Addressing

	4.3 Considerations for Crossing Page Boundaries
	4.4 Software Protection Features and Guidelines

	CHAPTER 5 Memory Partitions
	5.1 Memory Map Overview
	5.2 Memory Partitions
	5.2.1 External Memory
	5.2.2 Program and Special-purpose Memory
	5.2.2.1 Program Memory in Page FFH
	5.2.2.2 Special-purpose Memory
	5.2.2.3 Reserved Memory Locations
	5.2.2.4 Interrupt Vectors
	5.2.2.5 Chip Configuration Bytes

	5.2.3 Internal RAM (Code RAM)
	5.2.4 Peripheral Special-function Registers (SFRs)...
	5.2.5 Register File
	5.2.5.1 General-purpose Register RAM
	5.2.5.2 Stack Pointer (SP)
	5.2.5.3 CPU Special-function Registers (SFRs)

	5.3 Windowing
	5.3.1 Selecting a Window
	5.3.2 Addressing a Location Through a Window
	5.3.2.1 32-byte Windowing Example
	5.3.2.2 64-byte Windowing Example
	5.3.2.3 128-byte Windowing Example
	5.3.2.4 Using the Linker Locator to Set Up a Windo...

	5.3.3 Windowing and Addressing Modes

	5.4 Fetching Code and Data in the 1-Mbyte and 64-K...

	CHAPTER 6 Interrupts
	6.1 Overview of the Interrupt Control Circuitry
	6.2 Interrupt Signals and Registers
	6.3 Interrupt Sources, Priorities, and Vector Addr...
	6.3.1 Reassigning Vector Addresses
	6.3.2 Special Interrupts
	6.3.2.1 Unimplemented Opcode
	6.3.2.2 Software Trap
	6.3.2.3 NMI

	6.3.3 External Interrupt Signals
	6.3.4 Shared Interrupt Requests

	6.4 Interrupt Latency
	6.4.1 Situations that Increase Interrupt Latency
	6.4.2 Calculating Latency
	6.4.2.1 Worst-case Interrupt Latency

	6.5 Programming the Interrupts
	6.5.1 Determining the Source of an Interrupt

	CHAPTER 7 I/O Ports
	7.1 I/O Ports Overview
	7.2 Configuring the Port Pins
	7.2.1 Configuring Ports 1–4 and EPORT
	7.2.2 Port Configuration Example

	7.3 Using the Special-function Signals
	7.3.1 Address Signals (EPORT)
	7.3.2 Bus-control Signals (Port 2)
	7.3.3 Chip-select Signals (Port 3)
	7.3.4 EPA and Timer Signals (Port 1)
	7.3.5 External Interrupt Signals (Ports 2 and 3)
	7.3.6 PWM Signals (Port 4)
	7.3.7 Serial I/O Port Signals (Ports 1 and 2)

	7.4 I/O Port Internal Structures
	7.4.1 Internal Structure for the Extended I/O Port...
	7.4.2 Internal Structure for Ports 1–4

	CHAPTER 8 Serial I/O (SIO) Port
	8.1 Serial I/O (SIO) Port Functional Overview
	8.2 Serial I/O Port Signals and Registers
	8.3 Serial Port Modes
	8.3.1 Synchronous Mode (Mode 0)
	8.3.2 Asynchronous Modes (Modes 1, 2, and 3)
	8.3.2.1 Mode 1
	8.3.2.2 Mode 2
	8.3.2.3 Mode 3
	8.3.2.4 Multiprocessor Communications

	8.4 Programming the Serial Port
	8.4.1 Configuring the Serial Port Pins
	8.4.2 Programming the Control Register
	8.4.3 Programming the Baud Rate and Clock Source
	8.4.4 Enabling the Serial Port Interrupts
	8.4.5 Determining Serial Port Status

	CHAPTER 9 Pulse-width Modulator
	9.1 PWM FUNCTIONAL OVERVIEW
	9.2 PWM Signals and Registers
	9.3 pwm operation
	9.4 pwm peripheral disable control
	9.5 Programming the Frequency and Period
	9.6 Programming the Duty Cycle
	9.6.1 Sample Calculations
	9.6.2 Enabling the PWM Outputs
	9.6.3 Generating Analog Outputs

	CHAPTER 10 Event Processor Array (EPA)
	10.1 EPA Functional Overview
	10.2 EPA and Timer/Counter Signals and Registers
	10.3 Timer/Counter Functional Overview
	10.3.1 Cascade Mode (Timer 2 Only)
	10.3.2 Quadrature Clocking Modes

	10.4 EPA Channel Functional Overview
	10.4.1 Operating in Capture Mode
	10.4.1.1 EPA Overruns
	10.4.1.2 Preventing EPA Overruns

	10.4.2 Operating in Compare Mode
	10.4.2.1 Generating a Low-speed PWM Output
	10.4.2.2 Generating the High-speed PWM Output

	10.5 Programming the EPA and Timer/Counters
	10.5.1 Configuring the EPA and Timer/Counter Signa...
	10.5.2 Programming the Timers
	10.5.3 Programming the Capture/Compare Channels

	10.6 Enabling the EPA Interrupts
	10.7 Determining Event Status

	APPENDIX A Instruction Set Reference
	APPENDIX B Signal Descriptions
	APPENDIX C Registers
	ACC_0x
	ACC_STAT
	ADDRCOMx
	ADDRMSKx
	BUSCONx
	CCR0
	CCR1
	CON_REG0
	EP_DIR
	EP_MODE
	EP_PIN
	EP_REG
	EPA_MASK
	EPA_PEND
	EPAx_CON
	EPAx_TIME
	EXTINT_CON
	ICBx
	ICXx
	IDXx
	IN_PROGx
	INT_CONx
	INT_MASK
	INT_MASK1
	INT_PEND
	INT_PEND1
	NMI_PEND
	ONES_REGV
	Px_MODE
	Px_DIR
	Px_MODE
	Px_PIN
	Px_REG
	Px_REG
	PSW
	PWMx_CONTROL
	RPT_CNT
	SBUF_RX
	SBUF_TX
	SP
	SP_BAUD
	SP_CON
	SP_STATUS
	T1CONTROL
	T2CONTROL
	TIMERx
	VECT_ADDR
	WSR
	WSR1
	ZERO_REG

	GLOSSARY
	INDEX
	FIGURES
	Figure 2�1. 80296SA Detailed Block Diagram
	Figure 2�2. 80296SA Block Diagram
	Figure 2�3. Block Diagram of the Core
	Figure 2�4. Instruction Pipeline
	Figure 2�5. Clock Circuitry
	Figure 2�6. Internal Clock Phases (Assuming PLL is...
	Figure 2�7. Effect of Clock Mode on CLKOUT Frequen...
	Figure 2�8. Chip Configuration 0 (CCR0) Register (...
	Figure 2�9. Chip Configuration 1 (CCR1) Register (...
	Figure 3�1. MSAC Instruction Example
	Figure 3�2. Repeat Counter (RPT_CNT) Register
	Figure 3�3. Accumulator (ACC_0x) Register �
	Figure 3�4. Accumulator Control and Status (ACC_ST...
	Figure 3�5. Index Pointer (IDXx) Registers
	Figure 3�6. Index Control Byte (ICBx) Registers �
	Figure 3�7. Index Reference (ICXx) Registers
	Figure 3�8. Application Code Illustration
	Figure 3�9. FIR Filter Block Diagram
	Figure 5�1. 16-Mbyte Address Space
	Figure 5�2. Pages FFH and 00H
	Figure 5�3. Register File Memory Map
	Figure 5�4. Windowing
	Figure 5�5. Window Selection (WSR) Register �
	Figure 5�6. Window Selection 1 (WSR1) Register �
	Figure 6�1. Interrupt Structure Block Diagram
	Figure 6�2. Interrupt Service Flow Diagram
	Figure 6�3. NMI Pending (NMI_PEND) Register �
	Figure 6�4. Interrupt Control (INT_CONx) Registers...
	Figure 6�5. Interrupt Vector Address (VECT_ADDR) R...
	Figure 6�6. External Interrupt Control (EXTINT_CON...
	Figure 6�7. Worst-case Interrupt Response Time
	Figure 6�8. Interrupt Mask (INT_MASK) Register �
	Figure 6�9. Interrupt Mask 1 (INT_MASK1) Register ...
	Figure 6�10. Interrupt In-progress (IN_PROGx) Regi...
	Figure 6�11. Interrupt Pending (INT_PEND) Register...
	Figure 6�12. Interrupt Pending 1 (INT_PEND1) Regis...
	Figure 7�1. EPORT Internal Structure
	Figure 7�2. Ports 1–4 Internal Structure
	Figure 8�1. SIO Block Diagram (Mode 0)
	Figure 8�2. SIO Block Diagram (Mode 1, 2, and 3)
	Figure 8�3. Mode 0 Timing
	Figure 8�4. Serial Port Frames for Mode 1
	Figure 8�5. Serial Port Frames in Mode 2 and 3
	Figure 8�6. Serial Port Control (SP_CON) Register ...
	Figure 8�7. Serial Port Baud Rate (SP_BAUD) Regist...
	Figure 8�8. Serial Port Status (SP_STATUS) Registe...
	Figure 9�1. PWM Block Diagram
	Figure 9-2. PWM Output Waveforms
	Figure 9�3. Control (CON_REG0) Register �
	Figure 9�4. PWM Control (PWMx_CONTROL) Registers �...
	Figure 9�5. D/A Buffer Block Diagram
	Figure 9�6. PWM to Analog Conversion Circuitry
	Figure 10-1. EPA Block Diagram
	Figure 10�2. EPA Timer/Counters
	Figure 10�3. Quadrature Mode Interface
	Figure 10�4. Quadrature Mode Timing and Count
	Figure 10�5. A Single EPA Capture/Compare Channel
	Figure 10�6. EPA Simplified Input-capture Structur...
	Figure 10�7. Valid EPA Input Events
	Figure 10�8. Timer 1 Control (T1CONTROL) Register ...
	Figure 10�9. Timer 2 Control (T2CONTROL) Register ...
	Figure 10�10. Timer x Time (TIMERx) Registers
	Figure 10�11. EPA Control (EPAx_CON) Registers (Co...
	Figure 10�12. EPA Time (EPAx_TIME) Registers �
	Figure 10-13. EPA Interrupt Mask (EPA_MASK) Register
	Figure 10�14. Interrupt Mask (INT_MASK) Register �...
	Figure 10�15. Interrupt Mask 1 (INT_MASK1) Registe...
	Figure 10-16. EPA Interrupt Pending (EPA_PEND) Register
	Figure B-1. 80296SA 100-pin SQFP Package
	Figure B-2. 80296SA 100-pin QFP Package

	TABLES
	Table 1�1. Handbooks and Product Information �
	Table 1�2. Application Notes �
	Table 1�3. MCS® 96 Microcontroller Datasheets�
	Table 1�4. Intel Application Support Services
	Table 2�1. Features of the 80296SA
	Table 2�2. State Times at Various Frequencies
	Table 2�3. Relationships Between Input Frequency, ...
	Table 3�1. DSP Control and Status Registers (Conti...
	Table 3�2. Enhanced Instruction Set for the 80296S...
	Table 3�3. Multiply-Accumulate Instruction Bit Def...
	Table 3�4. Multiply-Accumulate Instruction Set �
	Table 3�5. Accumulator Usage Examples
	Table 3�6. Repeat Instructions �
	Table 3�7. Repeat Instruction Exit Conditions (Con...
	Table 3�8. Effect of SME and FME Bit Combinations
	Table 4�1. Data Type Definitions �
	Table 4�2. Equivalent Data Types for Assembly and ...
	Table 4�3. Converting Data Types
	Table 4�4. Definition of Temporary Registers
	Table 5�1. 80296SA Memory Map �
	Table 5�2. 80296SA Special-purpose Memory Addresse...
	Table 5�3. Peripheral SFRs (Continued)
	Table 5�4. Register File Memory Addresses �
	Table 5�5. 80296SA CPU SFRs
	Table 5�6. Selecting a Window of Peripheral SFRs
	Table 5�7. Selecting a Window of the Upper Registe...
	Table 5�8. Selecting a Window of the Internal Code...
	Table 5�9. Selecting a Window of External Memory �...
	Table 5�10. Windowed Base Addresses
	Table 6�1. Interrupt Signals
	Table 6�2. Interrupt Registers (Continued)
	Table 6�3. Interrupt Sources, Vectors, and Priorit...
	Table 6�4. INT_CONx Address and Reset States
	Table 6�5. Programming the Interrupts �
	Table 7�1. Microcontroller I/O Ports �
	Table 7�2. Microcontroller Port Signals �
	Table 7�3. Port Control and Status Registers �
	Table 7�4. Control Register Values for Each Config...
	Table 7�5. Port Configuration Example
	Table 7�6. Port Pin States After Reset and After E...
	Table 7�7. Address Signals �
	Table 7�8. Bus-control Signals (Continued)
	Table 7�9. Chip-select Signals
	Table 7�10. EPA and Timer Signals �
	Table 7�11. External Interrupt Signals �
	Table 7�12. PWM Signals
	Table 7�13. SIO Signals �
	Table 8�1. Serial Port Signals �
	Table 8�2. Serial Port Control and Status Register...
	Table 8�3. Port Register Settings for the SIO Sign...
	Table 8�4. SP_BAUD Values When Using the Internal ...
	Table 8�5. SP_BAUD Values When Using the Internal ...
	Table 9�1. PWM Signals �
	Table 9�2. PWM Control and Status Registers �
	Table 9�3. PWM Output Frequencies �
	Table 9�4. PWM Output Alternate Functions �
	Table 10�1. EPA and Timer/Counter Signals �
	Table 10�2. EPA Control and Status Registers (Cont...
	Table 10�3. Quadrature Mode Truth Table
	Table 10�4. Action Taken When a Valid Edge Occurs
	Table 10�5. Example EPA Control Register Settings ...
	Table A-1. Opcode Map (Left Half)
	Table A-2. Processor Status Word (PSW) Flags
	Table A-3. Effect of PSW Flags or Specified Conditions on Conditional Jump Instructions
	Table A-4. PSW Flag Setting Symbols
	Table A-5. Operand Variables
	Table A-6. Instruction Set
	Table A-7. Instruction Opcodes
	Table A-8. Number of Bytes for Each Instruction and Hexadecimal Opcodes
	Table A-9. Instruction Execution Times (in State Times)
	Table B-1. 80296SA Signals Arranged by Function
	Table B-2. Description of Columns of Table B-3
	Table B-3. Signal Descriptions
	Table B-4. Definition of Status Symbols
	Table B-5. 80296SA Default Signal Conditions
	Table C-1. Modules and Related Registes
	Table C-2. Register Name, Address, and Reset State
	Table C-3. Effect of SME and FME Bit Combinations
	Table C-4. ADDRCOMx Addresses and Reset States
	Table C-5. ADDRMSK x Addresses and Reset States
	Table C-6. BUSCON x Addresses and Reset States
	Table C-7. EPA x_CON Addresses and Reset States
	Table C-8. EPA x_TIME Addresses and Reset States
	Table C-9. INT_CON x Address and Reset States
	Table C-10. P x_DIR Addresses and Reset States
	Table C-11. P x_MODE Addresses and Reset States
	Table C-12. Special-function Signals for Ports 1–4
	Table C-13. P x_PIN Addresses and Reset States
	Table C-14. P x_REG Addresses and Reset States
	Table C-15. PWMx_CONTROL Addresses and Reset States
	Table C-16. WSR Settings and Direct Addresses for Windowable SFRs
	Table C-17. WSR1 Settings and Direct Addresses for Windowable SFRs

