
80C196Mx
Demo Board

User’s Manual

March 1997

ii

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions
of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, 1997

CONTENTS
CHAPTER 1
GUIDE TO THIS MANUAL

1.1 MANUAL CONTENTS ... 1-1

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY .. 1-2

1.3 RELATED DOCUMENTS AND PRODUCTS .. 1-5
1.3.1 Data Sheet and User’s Manual Supplement ...1-5
1.3.2 Application Notes ..1-5
1.3.3 World Wide Web ...1-5
1.3.4 FaxBack* Service ..1-6
1.3.5 Bulletin Board System (BBS) ..1-6

1.3.5.1 How to Find MCS 96 Microcontroller Files on the BBS1-7
1.3.5.2 How to Find ApBUILDER Software and Hypertext Documents on the BBS ...1-8

1.4 TECHNICAL SUPPORT .. 1-8

1.5 PRODUCT LITERATURE.. 1-8

CHAPTER 2
GETTING STARTED WITH
THE 80C196MX DEMO BOARD

2.1 DEMO BOARD KIT CONTENTS... 2-1

2.2 APPLYING POWER TO THE DEMO BOARD... 2-2

2.3 INVOKING THE EMBEDDED CONTROLLER MONITOR SOFTWARE AND THE DEM-
ONSTRATION PROGRAM 2-4

CHAPTER 3
INTRODUCTION TO THE
80C196MX DEMO BOARD

3.1 BLOCK AND COMPONENT DIAGRAMS OF THE BOARD.. 3-1

3.2 THE 80C196MC/MH/MD MICROCONTROLLER.. 3-3

3.3 HOST INTERFACE.. 3-3

3.4 80C196MX MEMORY SYSTEM .. 3-3

3.5 MEMORY MODES... 3-3

3.6 USING SRAM AND EPROM ... 3-3
3.6.1 Memory Configurations and Installation ..3-4

3.7 CHANGING THE MICROCONTROLLER MODULE ... 3-5

CHAPTER 4
INTRODUCTION TO THE EMBEDDED CONTROLLER MONITOR (ECM)

4.1 EMBEDDED CONTROLLER MONITOR (ECM).. 4-1

4.2 RESTRICTIONS .. 4-2
i

CONTENTS
CHAPTER 5
ECM96MX COMMANDS

5.1 ECM DEFINED .. 5-1

5.2 COMMAND LINE NOTATION ... 5-1
5.2.1 ECM96Mx Command Notation ...5-1
5.2.2 DOS Command Rules ..5-2

5.3 INITIALIZING AND TERMINATING ECM.. 5-3

5.4 GENERAL ECM96MX COMMANDS ... 5-4

5.5 FILE OPERATIONS... 5-5
5.5.1 Loading and Saving Object Code ...5-5
5.5.2 Include, Log, and List Files ...5-5

5.6 PROGRAM CONTROL.. 5-7
5.6.1 80C196Mx Reset ..5-7
5.6.2 Breakpoint Features ..5-8

5.6.2.1 Breakpoint Operation ..5-8
5.6.2.2 Breakpoint Commands ..5-9

5.6.3 Program Execution Commands ..5-9
5.6.4 Program Sequence Control ..5-11

5.6.4.1 STEP/SUPER-STEP Operation ..5-11
5.6.4.2 STEP and SUPER-STEP Commands ...5-12

5.7 SUPPORTED DATA TYPES ... 5-13
5.7.1 BYTE, WORD, DWORD, and REAL Commands ..5-13
5.7.2 STACK Commands ...5-15
5.7.3 STRING Commands ...5-15
5.7.4 Register Command Variables ...5-15
5.7.5 Displaying and Modifying the Stack Pointer (SP) ..5-16

5.8 ASSEMBLY AND DISASSEMBLY... 5-17
5.8.1 Single Line Assembler (SLA) Commands ...5-17
5.8.2 Disassembly Commands ..5-18

CHAPTER 6
RISM REGISTERS AND COMMANDS

6.1 RISM REGISTERS .. 6-1

6.2 RISM STRUCTURE... 6-2

6.3 RISM COMMAND DESCRIPTIONS.. 6-2

APPENDIX A
COMPONENTS, JUMPERS, AND CONNECTORS

A.1 COMPONENTS .. A-1

A.2 JUMPER DEFINITIONS ... A-3
A.2.1 Memory Configuration Jumpers .. A-3
A.2.2 Analog Power Reference Configuration .. A-3
A.2.3 External Address Capability .. A-3
ii

CONTENTS
A.2.4 Chip-Dependent Jumpers ... A-4
A.2.5 UART Interrupt .. A-4

A.3 POWER SUPPLY CONNECTOR JP2.. A-4

A.4 I/O EXPANSION CONNECTORS JP1, JP3-5 .. A-5

A.5 LED BANK DESCRIPTIONS .. A-8

A.6 25-PIN TO 9-PIN RS-232 INTERFACE.. A-9

A.7 EXTERNAL MEMORY MAP... A-10

APPENDIX B
PARTS LIST
iii

FIGURES

iv

FIGURES

Figure Page
3-1 Component-level Diagram of the 80C196Mx Demo Board ..3-2
A-1 80C196Mx Demo Board Diagram ... A-2
A-2 Power Supply Connector JP2 ... A-4
A-3 LED Bank DP1 .. A-8
A-4 Serial Interface .. A-9

TABLES

TABLES

Table Page

3-1 Memory Configuration ..3-4
3-2 Processor Type Selection ..3-5
5-1 ECM96Mx Command Notation...5-1
5-2 DOS Command Notation..5-2
5-3 Commands for Invoking and Terminating ECM96Mx...5-3
5-4 General ECM96Mx Commands..5-4
5-5 ECM96Mx Commands that Operate on Object Files ...5-5
5-6 Include, Log, and List Commands..5-6
5-7 Breakpoint Command Notations and Descriptions...5-9
5-8 Go and Halt Command Notations and Descriptions...5-10
5-9 STEP and SUPER-STEP Command Notation and Description5-12
5-10 Supported Data Types ...5-13
5-11 BYTE, WORD, DWORD, and REAL Command Notations...5-14
5-12 Stack Command Notations and Descriptions ...5-15
5-13 Register Variable Notations and Descriptions ..5-16
5-14 SLA Command Notations and Descriptions ...5-17
5-15 Disassembler Command Notations and Descriptions ..5-18
6-1 RISM Registers ..6-1
6-2 RISM Command Descriptions ..6-3
A-1 Component List ... A-1
A-2 Jumper Definitions... A-3
A-3 Memory Configuration ... A-3
A-4 Processor Type Selection ... A-4
A-5 8-pin I/O Expansion Connector JP1 .. A-5
A-6 26-pin I/O Expansion Connector JP3 .. A-5
A-7 40-pin I/O Expansion Connector JP4 .. A-6
A-8 26-pin I/O Expansion Connector JP5 .. A-7
A-9 External Memory Map ... A-10
B-1 Parts List ... B-1
v

1
Guide to This Manual

vices.

ni-

x
CM)

p
u de-

the
CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the use of the 80C196Mx Demo Board kit for developing and evaluating
an embedded application design based on the 80C196 MCS® 96 microcontroller. This manual is
intended for design engineers who are already familiar with the principles of microcontrollers.

1.1 MANUAL CONTENTS

This manual has six chapters and two appendices:

Chapter 2, “Getting Started with the 80C196Mx Demo Board” — includes a list of the kit
contents and instructions on initializing the demo board and installing the software.

Chapter 3, “Introduction to the 80C196Mx Demo Board” — describes the 80C196Mx demo
board; it includes a component-level diagram and describes the installation of memory de

Chapter 4, “Introduction to the Embedded Controller Monitor (ECM)” — introduces the
user interface software, which comprises ECM96Mx and RISMMx.

Chapter 5, “ECM96Mx Commands” — describes the part of the Embedded Controller Mo
tor (ECM) that executes on the host PC.

Chapter 6, “RISM Registers and Commands” — describes the commands for the 80C196M
reduced instruction set monitor (RISMMx), the part of the Embedded Controller Monitor (E
that executes on the demo board microcontroller.

Appendix A, “Components, Jumpers, and Connectors” — provides figures and tables to hel
you configure the 80C196Mx demo board and other information for you to consider as yo
velop an application.

Appendix B, “Parts List” — contains a listing of all discrete and active components for
80C196Mx demo board.
1-1

GUIDE TO THIS MANUAL

n’t
or
the
n;

tive
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used throughout this manual.

The pound symbol (#) has two meanings, depending on the context.
When used with a signal name, the symbol means that the signal is
active low. When used in an instruction, the symbol prefixes an
immediate value in immediate addressing mode.

italics Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x and y, where x represents the first variable and y represents the
second variable. For example, in register Px_MODE.y, x represents
the variable that identifies the specific port, and y represents the
register bit variable [7:0 or 15:0].

X Uppercase X (no italics) represents an unknown value or a “do
care” state or condition. The value may be either binary
hexadecimal, depending upon the context. For example,
hexadecimal value FF2XAFH indicates that bits 11:8 are unknow
10XX in binary context indicates that the two LSBs are unknown.

Board Components The following abbreviations are used to represent discrete and ac
components.

Cx capacitor

Dx diode

DPx LED bank

Ex jumper

JPx connector

Lx inductor

Px port

Rx resistor

RPx resistor pack

Sx switch

Ux device socket (e.g., latch, buffer, memory, controller)
1-2

GUIDE TO THIS MANUAL

s

imal
are
imal
ter B

re:
Assert and Deassert The terms assert and deassert refer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (high/low) is defined by the signal name. Active-low signals
are designated by a pound symbol (#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low (equal to or less than VOL);
to assert ALE is to drive it high (equal to or greater than VOH); to
deassert RD# is to drive it high; to deassert ALE is to drive it low.

Instructions Instruction mnemonics are shown in upper case to avoid confusion.
You may use either upper case or lower case in your source code.

NC The term “NC” is an abbreviation for “no connection.” It indicate
that no connection is required.

Numbers Hexadecimal numbers are represented by a string of hexadec
digits followed by the character H. Decimal and binary numbers
represented by their customary notations. (That is, 255 is a dec
number and 11111111 is a binary number. In some cases, the let
is appended to binary numbers for clarity.)

Units of Measure The following abbreviations are used to represent units of measu

A amps, amperes

mA milliamps, milliamperes

Kbyte kilobytes

KHz kilohertz

KΩ kilo-ohms

Mbyte megabytes

MHz megahertz

ms milliseconds

mW milliwatts

ns nanoseconds

pF picofarads

V voltage, volts

VDC voltage, direct current

VAC voltage, alternating current

W watts
1-3

GUIDE TO THIS MANUAL

st-
al
 the
ct
, the

2 is
s a
For
G,

this
elp
ple-
0”),

g

are a
ame
ed

re-
und
nal.

nd
.1,
µA microamps, microamperes

µF microfarads

µs microseconds

Register Bits Bit locations are indexed by 7:0 (or 15:0), where bit 0 is the lea
significant bit and 7 (or 15) is the most-significant bit. An individu
bit is represented by the register name, followed by a period and
bit number. For example, WSR.7 is bit 7 of the window sele
register. In some discussions, bit names are used. For example
name of WSR.7 is HLDEN.

Register Names Register names are shown in upper case. For example, TIMER
the timer 2 register; timer 2 is the timer. If a register name contain
lowercase character, it represents more than one register.
example, Px_REG represents four registers: P1_REG, P2_RE
P3_REG, and P4_REG.

Reserved Bits Certain bits are described as reserved bits. In illustrations, reserved
bits are indicated with a dash (—). These bits are not used in
device, but they may be used in future implementations. To h
ensure that a current software design is compatible with future im
mentations, reserved bits should be cleared (given a value of “
unless otherwise noted.

Set and Clear The terms set and clear refer to the value of a bit or the act of givin
it a value. If a bit is set, its value is “1”; setting a bit gives it a “1”
value. If a bit is clear, its value is “0”; clearing a bit gives it a “0”
value.

Signal Names Signal names are shown in upper case. When several signals sh
common name, an individual signal is represented by the signal n
followed by a number. For example, the EPA signals are nam
EPA0, EPA1, EPA2, etc. Port pins are represented by the port abb
viation, a period, and the pin number (e.g., P1.0, P1.1). A po
symbol (#) appended to a signal name identifies an active-low sig

Command Lines For command line input to software, such as MS-DOS* a
ECM96Mx, this manual uses notation described in Section 5
“ECM96Mx Command Notation.”
1-4

GUIDE TO THIS MANUAL

d-
1.3 RELATED DOCUMENTS AND PRODUCTS

The following lists refer to documents and products that are useful in designing systems using an
80C196Mx embedded microcontroller. The documents are available through Intel Literature.
(Order literature by calling the “FaxBack* Service” on page 1-6 or the phone numbers for “Pro
uct Literature” on page 1-8).

Embedded Microcontrollers Order Number 270646

Embedded Applications Order Number 270648

Development Tools Order Number 272326

Packaging Order Number 240800

1.3.1 Data Sheet and User’s Manual Supplement

The data sheets are included in the Embedded Microcontrollers handbook and are also available
individually.

8XC196MC, 8XC196MD, 8XC196MH Microcontroller User’s Manual Order Number 272181

1.3.2 Application Notes

These application notes are included in the Embedded Applications handbook and are also avail-
able individually.

AP-125, Designing Microcontroller Systems Order Number 210313
for Electrically Noisy Environments

AP-445, 8XC196KR Peripherals: A User’s Point of View Order Number 270873

AP-449, A Comparison of the Event Processor Array (EPA) Order Number 270968
and High Speed Input/Output (HSIO) Unit

1.3.3 World Wide Web

We offer a variety of information on the World Wide Web. Use the following URLs to find in-
formation on our web site:

http://developer.intel.com/design/mcs96/
http://www.intel.com/
1-5

GUIDE TO THIS MANUAL
1.3.4 FaxBack* Service

FaxBack is an on-demand publishing system that sends documents to your fax machine. You can
get product announcements, change notifications, product literature, device characteristics, de-
sign recommendations, and quality and reliability information from FaxBack 24 hours a day, 7
days a week.

1-800-628-2283 U.S. and Canada

916-356-3105 U.S., Canada, Japan, APac

44(0)1793-496646 Europe

Think of the FaxBack service as a library of technical documents that you can access with your
phone. Just dial the telephone number and respond to the system prompts. After you select a doc-
ument, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc-
ument order numbers. Catalogs are updated twice monthly, so call for the latest information. The
following catalogs and information are available at the time of publication:

1. Solutions OEM subscription form

2. Microcontroller and flash catalog

3. Development tools catalog

4. Systems catalog

5. Multimedia catalog

6. Multibus and iRMX® software catalog and BBS file listings

7. Microprocessor, PCI, and peripheral catalog

8. Quality and reliability and change notification catalog

9. iAL (Intel Architecture Labs) technology catalog

1.3.5 Bulletin Board System (BBS)

The bulletin board system (BBS) lets you download files to your computer. The application BBS
has the latest ApBUILDER software, hypertext manuals and datasheets, software drivers, firm-
ware upgrades, application notes and utilities, and quality and reliability data.

916-356-3600 U.S., Canada, Japan, APac (up to 19.2 Kbaud)

44(0)1793-496340 Europe
1-6

GUIDE TO THIS MANUAL

. The
ription

tomatic
14400

 During
r name
t time,

 files,

 area

bject

rox-
ion to
The toll-free BBS (available in the U.S. and Canada) offers lists of documents available from
FaxBack, a master list of files available from the application BBS, and a BBS user’s guide
BBS file listing is also available from FaxBack (see page 1-6 for phone numbers and a desc
of the FaxBack service).

1-800-897-2536 U.S. and Canada only

Any customer with a modem and computer can access the BBS. The system provides au
configuration support for 1200- through 19200-baud modems. Typical modem settings are
baud, no parity, 8 data bits, and 1 stop bit (14400, N, 8, 1).

To access the BBS, just dial the telephone number and respond to the system prompts.
your first session, the system asks you to register with the system operator by entering you
and location. The system operator will set up your access account within 24 hours. At tha
you can access the files on the BBS.

NOTE

If you encounter any difficulty accessing the high-speed modem, try the
dedicated 2400-baud modem. Use these modem settings: 2400, N, 8, 1.

1.3.5.1 How to Find MCS 96 Microcontroller Files on the BBS

Application notes, utilities, and product literature are available from the BBS. To access the
complete these steps:

1. Enter F from the BBS Main menu. The BBS displays the Intel Apps Files menu.

2. Type L and press <Enter>. The BBS displays the list of areas and prompts for the
number.

3. Type 12 and press <Enter> to select MCS 96 Family. The BBS displays a list of su
areas including general and product-specific subjects.

4. Type the number that corresponds to the subject of interest and press <Enter> to list the
latest files.

5. Type the file numbers to select the files you wish to download (for example, 1,6 for files 1
and 6 or 3-7 for files 3, 4, 5, 6, and 7) and press <Enter>. The BBS displays the app
imate time required to download the files you have selected and gives you the opt
download them.
1-7

GUIDE TO THIS MANUAL
1.3.5.2 How to Find ApBUILDER Software and Hypertext Documents on the BBS

The latest ApBUILDER files and hypertext manuals and data sheets are available first from the
BBS. To access the files, complete these steps:

1. Type F from the BBS Main menu. The BBS displays the Intel Apps Files menu.

2. Type L and press <Enter>. The BBS displays the list of areas and prompts for the area
number.

3. Type 25 and press <Enter> to select ApBUILDER/Hypertext. The BBS displays several
options: one for ApBUILDER software and the others for hypertext documents for
specific product families.

4. Type 1 and press <Enter> to list the latest ApBUILDER files or type 2 and press <Enter>
to list the hypertext manuals and datasheets for MCS 96 microcontrollers.

5. Type the file numbers to select the files you wish to download (for example, 1,6 for files 1
and 6 or 3-7 for files 3, 4, 5, 6, and 7) and press <Enter>. The BBS displays the approx-
imate time required to download the selected files and gives you the option to download
them.

1.4 TECHNICAL SUPPORT

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include your voice
telephone number and indicate whether you prefer a response by phone or by fax). Outside the
U.S. and Canada, please contact your local distributor.

1-800-628-8686 U.S. and Canada

916-356-7599 U.S. and Canada

916-356-6100 (fax) U.S. and Canada

1.5 PRODUCT LITERATURE

You can order product literature from the following Intel literature centers.

1-800-468-8118 U.S. and Canada

708-296-9333 U.S. (from overseas)

44(0)1793-431155 Europe (U.K.)

44(0)1793-421333 Germany

44(0)1793-421777 France

81(0)120-47-88-32 Japan (fax only)
1-8

2
Getting Started with
the 80C196Mx
Demo Board

M.

sing
n be
of
CHAPTER 2
GETTING STARTED WITH

THE 80C196MX DEMO BOARD

The 80C196Mx demo board kit contains hardware and software to enable you to write, execute,
monitor, and debug application software. This chapter includes a list of the 80C196Mx demo
board kit contents. It previews the hardware and software design tools, and it steps you through
the procedures for initializing and running the demo board. Following chapters describe the hard-
ware and software in more detail.

2.1 DEMO BOARD KIT CONTENTS

The 80C196Mx Demo Board kit includes the following items:

• 80C196Mx Demo Board

The 80C196Mx demo board ships with an N87C196MH embedded microcontroller in
an 84-lead PLCC package installed. The N87C196MH features 32 KBytes of on-chip
One Time Programmable Read Only Memory (OTPROM). The kit also ships with an
N87C196MC and an N87C196MD microcontroller. The N87C196MC and
N87C196MD support 16 Kbytes of on-chip OTPROM. The rismmx.exe monitor code
(described below) is preprogrammed in all of the microcontroller modules’ OTPRO

The board also includes 64 KBytes of SRAM for user code downloaded u
ECM96Mx. The SRAM is resident in a standard 32-pin JEDEC socket and ca
jumpered for two memory sizes ranging from 64K-256K of SRAM or 256K
EPROM.
2-1

GETTING STARTED WITH THE 80C196MX DEMO BOARD

Mx

M)
uced

for

The
6Mx

ule
and

file

n this

lated
rough
• 3.5” MS-DOS* Diskette

A 3.5” MS-DOS diskette contains software for running and debugging 80C196
programs from a host PC:

— ecm96mx.exe
rismmx.a96
rismmx.lst
rismmx.obj
rismmx.hex

ECM96MX and RISMMx comprise the embedded controller monitor software (EC
for running and debugging your 80C196Mx programs. These programs are introd
in Chapter 4 and described in Chapters 5 and 6.

— mxdemo.a96
mxdemo.lst
mxdemo.obj.

MxDEMO is an 80C196Mx demonstration program. It is a convenient vehicle
experimenting with ECM96Mx and RISMMx commands.

— cstart.a96
cstart.obj

CSTART maintains the chip-select configuration required by the ECM software.
object code file should be linked with user code that is loaded onto the 80C19
demo board.

— hexobj.exe

HEXOBJ converts HEX (hexadecimal) formatted diskette files to Intel object mod
file formats (OMFs), which can then be loaded by ECM96Mx (see “Loading
Saving Object Code” on page 5-5).

— 80c196np.inc

This file contains variable and macro definitions for rismmx.a96. The diskette
should be used when the RISMMx source code is modified and recompiled.

• Technical Documentation

This manual provides you with the information needed to get up and running with the
80C196Mx demo board. For available related documentation, see “Related Documents
and Products” on page 1-5. A set of demo board schematics is also provided i
manual.

2.2 APPLYING POWER TO THE DEMO BOARD

You must provide a +5 VDC power supply for the 80C196Mx demo board. It must be a regu
supply comparable to the ELPAC model WM113. (This and other models are available th
DigiKey Corporation.)
2-2

GETTING STARTED WITH THE 80C196MX DEMO BOARD

serial

) is
oard.
serial

96Mx

tting
ence.
 in
s 9

power

h the

ice to

s not
e.
Use the following procedure to power up the board:

1. Turn off power to the PC and the power supply.

2. Connect the serial port cable from the board’s P1 connector to the com1 or com2
port on your PC.

(The board-to-PC connection is not used until the Embedded Controller Monitor (ECM
invoked. However, the connection should be made before power is supplied to the b
Figure A-1 on page A-2 shows the location of the demo board’s power, ground, and
port connections.)

3. Connect the power cable from the power supply to the JP2 connector on the 80C1
demo board.

WARNING
A regulated +5 VDC power supply must be used. Lower voltage might not
operate the demo board. Higher voltage might damage the demo board. An
unregulated power supply may cause unpredictable failure conditions.

Be sure that the plug from the power supply is oriented properly on the board.
If it is plugged in backward, you may damage components on the board.

4. Turn on the PC and power supply. You should now observe the LED (light-emi
diode) bank at DP1 on the 80C196Mx demo board flashing through a power-up sequ
At power-on, LEDs 1 through 8 briefly turn on and off together. They then blink
sequence continuously under control of the RISMMx program in the EPROM. LED
and 10 remain off during the entire power-up sequence.

If the LED bank is not flashing as described, check the following items:

— Be sure that power is supplied to the board. Check the connection between the
supply cable and the board’s power connector.

— Confirm that the jumper settings are correct for the memory devices shipped wit
board (or for a memory device that you have installed).

— If you have changed a memory device on the board, check the speed of the dev
ensure it meets specifications.

— Press the reset button (S1) on the 80C196Mx demo board. If the board still doe
respond, see “Technical Support” on page 1-8 for information on getting assistanc
2-3

GETTING STARTED WITH THE 80C196MX DEMO BOARD

upts
ern is
 (*),
nds

n the

Mx

the
rn.

x
type:
2.3 INVOKING THE EMBEDDED CONTROLLER MONITOR SOFTWARE AND
THE DEMONSTRATION PROGRAM

After the 80C196Mx demo board is initialized and executing RISMMx from the EPROM, you
can start the Embedded Controller Monitor (ECM) and run the demonstration program.

1. Insert the distribution disk in the drive of your PC.

2. Create a directory for the embedded controller monitor software and copy the contents of
the diskette to the directory. From this directory (for example, c:\ecm), type the following
command at the DOS prompt:

ecm96mx -baud 9600 <Enter>

You can also execute directly from the diskette by entering the following command at the
DOS prompt:

d:\ecm96mx -baud 9600 <Enter>

(If you don’t use the d: drive, substitute the corresponding letter for your drive.)

3. Observe the ECM96Mx monitor screen displayed on your PC.

When the ECM96Mx program is invoked, it communicates with the board and interr
the RISMMx monitor. The continuous LED sequencing terminates, and a steady patt
displayed. The ECM96Mx program displays the baud rate followed by an asterisk
which is the prompt for input. At this point you can use the ECM96Mx comma
described in Chapter 5.

4. To download the demo board demonstration program from the PC to the SRAM o
demo board, type:

load path\mxdemo.obj<Enter>
go<Enter>

where path\ represents the drive and directory where you installed the ECM96
software.

You are now executing the 80C196Mx demonstration program within
ECM96Mx/RISMMx debugger environment. The LEDs now sequence in a new patte

The MxDEMO program is a good vehicle for experimenting with the ECM96M
commands (Chapter 5) and the RISMMx commands (Chapter 6). To return to DOS,

exit <Enter>
2-4

3
Introduction to the
80C196Mx
Demo Board

CHAPTER 3
INTRODUCTION TO THE

80C196MX DEMO BOARD

This chapter describes the 80C196Mx demo board. The board is designed as a basic demonstra-
tion system for evaluating hardware and software performance. This chapter also includes a block
diagram of the board and a diagram of the major components of the board with a brief description
of each functional section.

3.1 BLOCK AND COMPONENT DIAGRAMS OF THE BOARD

The 80C196Mx demo board is shipped with an 80C196MH device in the socket. The 80C196MH
device can be replaced with an 80C196MC or an 80C196MD. For configuring the board for the
preferred device refer to the jumper settings section of this user manual. The diagram illustrates
the four main parts of the board: the 80C196Mx microcontroller, digital I/O, memory, and the
interface between the 80C196Mx and the host PC. Following sections of this chapter describe
these parts. The memory section can accommodate SRAM and EPROM (normal operation and
programming). As shipped, the board has a 64-Kbyte SRAM.
3-1

INTRODUCTION TO THE 80C196MX DEMO BOARD
Figure 3-1. Component-level Diagram of the 80C196Mx Demo Board

Figure 3-1 is a component-level diagram of the demo board. Details of the components are given
in Appendix A, “Components, Jumpers, and Connectors” and Appendix B, “Parts List.”

A5434-01

A
D

0

R
P

2U
2

Serial Port

JP
2

P
1

U
4

R
E

S
E

T

1 JP
4

39
40

JP
1

S
1

2
R

P
1

U
2

A3
A2

A4
A5
A6
A7

T
P

1

P1.4VREF

VREF
AGND

P1.2
P1.3

AGND P1.1
P1.0VREF

VREF
AGND

P0.6
P0.7

AGND P0.5
VREF

P0.3
P0.4

AGND
P0.2

AGND P0.1
P0.0

VREF

VREF

E
3

A

B

C

E
4

E
5

A

B
A

B

E
8

E
7

E
8

R
P

3

D
P

1

U
8 U

1

P
2.4

P
2.3

P
2.2

P
2.1

P
2.0

P
2.5

P
2.6

P
2.7

P
6.6

P
6.7

U
6

1 2
JP

3

G
N

D
P

W
R

P6.6
P6.7

P7.6
P7.7
PL7

P7.3
PL5
PL6

CS#3
P7.4
P7.5

CS#1
MNI

EXTIT
CLK0
VCC

P6.4
P6.5
P7.0
P7.1
P7.2

P6.3
P6.2
P6.1
P6.0
GND

1 2
25 26

JP
5

A

B

C
A

B

A

B

E
6

U
9

U
7

U
3

E
2

A

B

C A

B

C

E
1

A

B

C A

B

C

U
5

A
12

A
11

A
10
A

9

P
2.0

A
15

A
14

A
13

P
2.4

P
2.3

P
2.2

P
2.1

V
C

C
G

N
D

V
C

C
P

2.7
P

2.6
P

2.5

A
D

4
A

D
3

A
D

2
A

D
1

A
8

V
C

C
V

C
C

A0
A1

A
LE

A
D

7
A

D
6

A
D

5

P
5.4

R
D

#
W

R
#

IN
S

T

V
C

C
G

N
D

V
C

C
B

U
S

W
ID

T
H

R
E

A
D

Y
B

H
E®

1997 196M
X

 D
E

M
O

 B
D

 M
A

D
E

 IN
 U

S
A

80C196MXA

B

C
A

B

A

B

25 26
3-2

INTRODUCTION TO THE 80C196MX DEMO BOARD

signed
ation
 also

nd the
ector
 and a
 the

6Mx
nd ex-

 CCR

tions
3-1 on
boots
(See
on-
3.2 THE 80C196MC/MH/MD MICROCONTROLLER

The 8xC196Mx controllers are 16-bit microcontrollers, that are designed primarily to control
three-phase AC induction and DC brushless motors. The 8xC196Mx microcontrollers are based
on Intel’s MCS® 96 architecture and are manufactured on Intel’s CHMOS process.

The N87C196MH features an enhanced three-phase wave form generator specifically de
for use in inverter motor controller applications. This peripheral provides pulse-width modul
and three-phase sine wave generation with minimal CPU intervention. The N87C196MH
features two dedicated serial port peripherals, allowing reduced software overhead.

Refer to the 8XC196MC, 8XC196MD, 8XC196MH Microcontroller User’s Manual (order num-
ber 272181) for more information.

3.3 HOST INTERFACE

The host interface is a connection between the host PC serial port (com1 or com2) a
80C196Mx serial I/O port (Figure 3-1). The com1 or com2 port connects to a 9-pin conn
(P1) on the board and then to the 80C196Mx serial I/O port via an RS-232 interface (U1)
UART (U5). The RS-232 interface uses the non-maskable interrupt (NMI) to signal
80C196Mx that a character from the host is ready for reception.

3.4 80C196MX MEMORY SYSTEM

The 80C196Mx demo board is configured for 8-bit bus width. A key to using the 80C19
memory interface is understanding the relationship between internal memory addresses a
ternal memory addresses. For details see the 8XC196MC, 8XC196MD, 8XC196MH Microcon-
troller User’s Manual (order number 272181).

3.5 MEMORY MODES

The Chip Configuration Registers (CCRs) support a variety of memory bus functions. The
bits select memory modes and are used for address/data bus control. Refer to the 8XC196MC,
8XC196MD, 8XC196MH Microcontroller User’s Manual (order number 272181) for informa-
tion on CCR programming options.

3.6 USING SRAM AND EPROM

The 80C196Mx demo board supports SRAM (static operation) and EPROM (normal opera
and programming). As shipped, the demo board has a 64-Kbyte SRAM in U2 (see Figure
page 3-2), which can be replaced with a 256-Kbyte EPROM. At power-up, the 80C196Mx
from the on-chip OTPROM. You can then download your application code to the SRAM.
“Applying Power to the Demo Board” on page 2-2 and “Invoking the Embedded Controller M
itor Software and the Demonstration Program” on page 2-4.)
3-3

INTRODUCTION TO THE 80C196MX DEMO BOARD

 32

56K
FH.

nge

ard”

itor
3.6.1 Memory Configurations and Installation

The demo board fully supports both SRAM and EPROM devices. Sockets U2 and U6 (Figure 3-1
on page 3-2) accept 28- and 32-pin DIP devices. The ECM96Mx/RISMMx software (Chapter 4,
“Introduction to the Embedded Controller Monitor (ECM)”) limits the usable RAM size to
Kbytes.

The following procedure is for installing memory devices on the board.

1. Turn off power to the board.

2. Insert the memory device in socket U2.

3. Establish the jumper settings as shown in Table 3-1.

Note that the board ships with 64K (8K x 8 bits) or SRAM mapped at A000H to BFFFH. If 2
parts are installed, the decoding scheme used limits access to only 128K at 8000H to BFF

4. If no external analog power reference is used, jumper E7 and E8.

5. If you wish to boot the device from external memory (not on the board), jumper E6.

6. If you are not using the on-board UART and wish to use its memory ra
(0000H-1FFFH) for an external device, remove the jumper on E5 and remove ICU5.

7. Power up the board according to the instructions in “Applying Power to the Demo Bo
on page 2-2.

8. To load the ECM96Mx software, see “Invoking the Embedded Controller Mon
Software and the Demonstration Program” on page 2-4.

Table 3-1. Memory Configuration

E1 E2 Configuration For

B-C A-B 64k and 256K RAM

A-B B-C 256K EPROM
3-4

INTRODUCTION TO THE 80C196MX DEMO BOARD
3.7 CHANGING THE MICROCONTROLLER MODULE

The demo board kit also includes an N87C196MC and an N87C196MD microcontroller. To
change the microcontroller module on the board:

1. Use standard anti-static precautions such as wearing a ground strap.

2. Remove the N87C196MH microcontroller in socket U4 using an IC extractor.

3. Set the jumpers to configure the board for the type of processor that you are using.

4. Power up the board according to the instructions in “Applying Power to the Demo Board”
on page 2-2.

Table 3-2. Processor Type Selection

E3 E4 Configuration For

A-B A-B 196MC/MH

B-C B-C 196MD
3-5

4
Introduction to the
Embedded Controller
Monitor (iECM)

om-

evalua-
AM,
CHAPTER 4
INTRODUCTION TO THE EMBEDDED

CONTROLLER MONITOR (ECM)

This chapter introduces the Embedded Controller Monitor (ECM) user interface. This is the in-
terface between the PC-resident software and the evaluation board firmware. The ECM software
consists of two programs: ecm96mx.exe and mxr_main.hex. The commands for these programs
are described in Chapter 5, “ECM96Mx Commands” and Chapter 6, “RISM Registers and C
mands”.

4.1 EMBEDDED CONTROLLER MONITOR (ECM)

ECM is the software interface between the host system and the user code running on the
tion board. It provides basic debug capabilities, including loading object files into system R
examining and modifying variables, and executing and stepping through code.

The 8xC196Mx evaluation board uses a version of the ECM written for the MCS® 96 microcon-
trollers with extended addressing capability. The ECM environment comprises two independent
programs: mxr_main.hex and ecm96mx.exe. The mxr_main.hex program (referred to as RISM-
MX) resides in the evaluation board ROM; 80C196Mx executes it. The ecm96mx.exe software
(known as ECM96Mx) resides and executes in DOS*- and Windows*-based PCs and BIOS-com-
patible computers.

RISMMx is a reduced instruction set monitor for the 80C196Mx. It executes rudimentary opera-
tions issued by ecm96mx.exe, which operates in the host PC. RISMMx consists of approximately
700 bytes of 80C196Mx code: a short section of initialization code and an interrupt service rou-
tine (ISR) that processes interrupts from the host system. The RISMMx ISR consists of a short
prologue and then a case-jump to one of several handlers.

ECM96Mx, executing in the host PC, provides commands for loading and running code on the
80C196Mx. It also has features that facilitate test and debug tasks. For example, it can use in-
clude, list, and log files to record on-line ECM sessions and construct batch ECM sessions.
4-1

INTRODUCTION TO THE EMBEDDED CONTROLLER MONITOR (ECM)

uation

gisters
Partitioning the ECM into two separate programs supports a number of goals in developing this
system:

• The RISMMx code in the evaluation board is simple and small. This maximizes the space
available for user code.

• The ECM96Mx user interface’s features expand beyond the resources of the eval
board because ECM96Mx runs in the host PC.

• RISMMx and ECM96Mx run concurrently. They allow you to interrogate and modify the
state of the evaluation board system while it is running.

4.2 RESTRICTIONS

The ECM operates under several restrictions:

• Several user stack words are reserved for RISMMx software use when the evaluation board
processes a host interrupt (see the CAUTION on page 5-17). Internal register locations
0001E0H–000201H are reserved for RISMMx code use. Users must ensure that no re
in this partition are used by code operating with the RISMMx.

• A 9600-baud asynchronous serial port must be available on the host PC.

• The TRAP instruction is reserved.
4-2

5
ECM96MX
Commands

-3)
ft-

 PC.
oard.
nitial-

lower-

ples of
CHAPTER 5
ECM96MX COMMANDS

This chapter describes the ECM96Mx commands. To begin using ECM96Mx, see the procedures
for powering up the board (“Connecting the Evaluation Board to the Host System” on page 2
and invoking ECM96Mx for the first time (“Invoking the Embedded Controller Monitor So
ware” on page 2-4).

5.1 ECM DEFINED

ECM96Mx is the portion of the Embedded Controller Monitor (ECM) that runs on the host
It provides several tools with RISMMx for testing and debugging code on the evaluation b
ECM96Mx commands support tasks such as displaying and modifying program variables, i
izing and operating program breakpoints, and single-stepping program execution.

5.2 COMMAND LINE NOTATION

This subsection explains command line notation. Even though the commands are listed in
case, both ECM96Mx and DOS are case-insensitive.

5.2.1 ECM96Mx Command Notation

When entering ECM96Mx commands, use the basic rules below (Table 5-1 includes exam
the rules):

• Use parameters and keywords when using commands that affect specific addresses and
files.

• Use a comma as a Boolean OR. For example [this,that] is interpreted as [this] OR [that].

• Insert a hyphen immediately before the command when invoking ECM96Mx.

Table 5-1. ECM96Mx Command Notation

Rules Example Command Line Notation and Descriptions†

Parameter Example: string byte_address <Enter>

Parameter: byte_address (used to specify a specific address)

Keyword Example: go [from code_address1 till code_address2] <Enter>

Keyword: till (used to indicate a range. In this example, it indicates the
range between the two parameters codeaddress1 and codeaddress2.)

† The square brackets [] indicate an optional argument.
5-1

ECM96MX COMMANDS
5.2.2 DOS Command Rules

When entering DOS commands, follow these basic rules (Table 5-2 includes examples of the
rules):

• Use parameters and keywords when using commands that affect specific addresses and
files.

• Use commas to separate parameters.

Comma Example: dasm [code_address], [count] <Enter>

Comma: used to separate distinct parameters. In this example, it
separates the parameters [code_address] and [count].

Hyphenation Example: ecm96mx [-com1(default), com2] <Enter>

Mandatory item: A hyphen must precede the first command.

Description: only used to invoke ECM96Mx.

Table 5-2. DOS Command Notation

Rules Example Command Line Notation and Descriptions†

Parameter Example: string byte_address <Enter>

Parameter: byte_address (used to specify a specific address)

Keyword Example: go [from code_address1 till code_address2] <Enter>

Keyword: till (used to indicate a range. In this example, it indicates the
range between the two parameters code_address1 and
code_address2.)

Comma Example: dasm [code_address], [count] <Enter>

Comma: used to separate distinct parameters. In this example, it
separates the parameters [code_address] and [count].

† The square brackets [] indicate an optional argument.

Table 5-1. ECM96Mx Command Notation (Continued)

Rules Example Command Line Notation and Descriptions†

† The square brackets [] indicate an optional argument.
5-2

ECM96MX COMMANDS
5.3 INITIALIZING AND TERMINATING ECM

The commands discussed in Table 5-3 invoke and terminate ECM96Mx from DOS, specify nu-
merical bases (octal, decimal, or hexadecimal), and temporarily exit to DOS.

Table 5-3. Commands for Invoking and Terminating ECM96Mx

Command Names Command Notations and Descriptions1,2

ecm96mx Notation: ecm96mx [-option1, option2, optionN] <Enter>

Description: Loads and executes the ECM96Mx software. Command
options are described below. You can enter string options in any order; if
the options are contradictory, the system accepts the last option entered.

If ECM96Mx detects valid CTS (Clear to Send) and DSR (Data Set
Ready) signals from the appropriate COM port, it signs on and displays
one of the following command prompts:

• When the board is executing code, it displays a greater-than
sign (>).

• When the board is not executing code, it displays an asterisk (*).

• When CTS or DSR is not present, ECM96Mx notifies you and asks
if you want to proceed or exit. If you proceed, ECM96Mx may
operate properly, but your serial port or cabling may have a problem
that will prevent proper operation.

com Notation: [-com1 (default), com2]

Description: Specifies the serial communication port to be used for host
interface. The default is COM1.

baud Notation:[-baud 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200]

Description: Specifies the host-evaluation board communication rate.
Baud rates higher than 9600 baud may not be supported on 8088-based
PCs. A baud rate of 9600 baud can load 8 Kbytes of data in about 20
seconds. A baud rate of 57600 can load 8 Kbytes of data in about 4
seconds.

notypes Notation: [-notypes]

Description: Causes the object file loader to ignore type definition
records in the object module. If it is invoked, the I/O routines recognize
only basic data types, such as BYTEs, WORDs, and LONGs. More
complex data types, such as PLM arrays and structures, are not
recognized.

Notes:

1. All commands used to invoke ECM96Mx begin with a hyphen.

2. The square brackets [] indicate an optional argument.
5-3

ECM96MX COMMANDS
5.4 GENERAL ECM96MX COMMANDS

Issue the general commands discussed in Table 5-4 after you invoke ECM96Mx.

Table 5-4. General ECM96Mx Commands

Command Names Command Notations and Descriptions†

dos Notation: dos <Enter>

Description: Lets you temporarily leave ECM96Mx and return to DOS to
run other application software.

To return to ECM96Mx, type:

exit <Enter>

exit Notation: exit <Enter>

Description: This command has two functions:

• Returns the user to ECM96Mx from DOS. When it returns,
ECM96Mx has the conditions that were in effect when it was
temporarily suspended.

• Closes any file that ECM96Mx has opened and exits to DOS. You
can use this command even if the evaluation board is running a
program (execution continues). ECM96Mx sets the selected COM
port to 9600 baud, 8 data bits, no parity, and one stop bit, and then
returns to DOS. The quit command also performs this duty.

base Notations:

• base <Enter>

• base = 10t

• base [= 10o, 10t (breakpoint default), 10h (address default)]
<Enter>

Description: Displays the default arithmetic base. The default base is
used to display variables and to enter numbers into the command
parser. However, you can override the default base during input by
adding an override character to the end of the number. The override
characters are: o (octal), t (decimal), and h (hexadecimal). You must add
the override character immediately after the last digit of the number. Do
not include a space.

Program addresses are always displayed in hexadecimal; and,
breakpoint numbers are always displayed in decimal.

quit Notation: quit <Enter>

Description: Closes any file that ECM96Mx opened and exits to DOS.
You can use this command even if the evaluation board is running a
program (execution continues). ECM96Mx sets the selected COM port to
9600 baud, 8 data bits, no parity, and one stop bit, and then returns to
DOS. The exit command also performs this duty.

† The square brackets [] indicate an optional argument.
5-4

ECM96MX COMMANDS
5.5 FILE OPERATIONS

This section describes the commands that ECM96Mx uses to load and save object code, enter pre-
defined strings of commands, log commands, and record entire debug sessions including user en-
tries and the response generated by ECM96Mx on the host screen.

5.5.1 Loading and Saving Object Code

ECM96Mx accepts object files generated by Tasking (formerly BSO) development tools in the
OMF96 version 3.0 format. ECM96Mx does not accept files containing unresolved externals or
files containing relocateable records. Pass these files through the RL196 linker to resolve the ex-
ternals and/or absolutely locate the relocateable segments.

To load new code from the PC into the 80C196Mx evaluation board, use the load and program
operations. The load command downloads code that will reside in RAM.

Table 5-5 discusses the ECM96Mx commands that currently operate on object files.

5.5.2 Include, Log, and List Files

Include files contain commands that ECM96Mx executes. You can prepare a command sequence
off-line and later have ECM96Mx execute the commands just as if they were entered from the
keyboard. An include file can be tedious to generate with a text editor. However, ECM96Mx can
use a log file to store characters that you enter during an ECM96Mx session. Later, you can use
the log file as an include file to recreate a command sequence. List files keep a running record of
commands you enter and the response ECM96Mx generates.

You can insert comments in list and log files to make them easier to understand. A comment be-
gins with a semicolon (;) and ends with an <Enter> or <Esc> character. The semicolon is part of
the comment. The <Enter> or <Esc> character is not part of the comment.

Table 5-5. ECM96Mx Commands that Operate on Object Files

Command Names Command Notations and Descriptions

load Notation: load filename <Enter>

Description: Loads the content records of the object filename into the
evaluation board’s code RAM or external RAM. The LOAD instruction
cannot be used on ROM.

save Notations:

• save filename <Enter>

• save code_address1 to code_address2 in filename <Enter>

Description: Saves a region of memory as an object file that can be
reloaded into the evaluation board’s memory.
5-5

ECM96MX COMMANDS
When creating a log file, keep in mind you can place characters in the file to help you transform
the file into a list file. You can use the list file to re-create command sequences. List files keep a
running record of both the commands you enter and the responses ECM96Mx generates.

With the list file and log file commands, you can either overwrite existing data in the file or ap-
pend data to the file. By using default filenames, you can gather list and log data in the default
files and avoid having to create and manage a large number of separate files. ECM96Mx appends
the date and time to log files and list files whenever they are opened. This information makes it
easier for you to use a text editor to sort the data from the debug sessions.

The commands involved in include, log, and list operations are discussed in Table 5-6.

Table 5-6. Include, Log, and List Commands

Command Names Command Notations and Descriptions

include Notation: include filename <Enter>

Description: Attempts to open filename as a read-only file. If the file can
be opened, the command parser takes commands from that file. These
commands must contain the exact sequence of ASCII characters you
would type to execute them from the keyboard. Once the command
parser reaches the end of the file, the file closes. Only one include file
can be opened at a time.

pause Notation: pause filename <Enter>

Description: (Use within include files.) Pause is not a file-oriented
command. When the command parser reads this command, it stops
parsing and waits for you to press <Space> from the keyboard. The
<Space> character cannot come from the include file. The pause
command provides a way to pause in the middle of an include file
operation. When you press <Space>, the parser continues parsing
commands within the include file.

list Notations:

• list filename <Enter>

• list <Enter>

Description: Attempts to open filename as a writable file. If a file with
filename already exists, ECM96Mx asks if the file is to be overwritten or if
the new data should be appended to the end of the existing file. It then
opens the file and stamps it with the current date and time from the
system clock. After this, the file records the commands you enter and the
responses ECM96Mx generates.

If you do not enter a filename, the list command uses the last filename
entered as part of a list filename command. If you have not entered any
list filename commands, it uses the default filename “LIST.ECM”

listoff Notation: listoff <Enter>

Description: Closes the last list file specified by the list command. If no
filename is specified, it uses the default filename “LIST.ECM”. ECM96Mx
then stops recording new commands and responses.
5-6

ECM96MX COMMANDS
5.6 PROGRAM CONTROL

Commands in this group control program execution and allow you to reset the microcontroller,
set execution breakpoints, start execution, stop execution, step, and super-step.

5.6.1 80C196Mx Reset

The following command resets the 80C196Mx without resetting the entire evaluation board.

liston Notation: liston <Enter>

Description: Re-opens the list file in the append mode, so recording can
start again. It also stamps the list file with the current date and time from
the system clock. This stops new list information from being recorded.

log Notations:

• log filename <Enter>

• log <Enter>

Description: Attempts to open filename as a writable file. If a file with
filename already exists, ECM96Mx asks if the file is to be overwritten or if
the new data should be appended to the end of the file. It then opens the
file and stamps it with the current data and time. After this, the file
records the commands you enter. This file may contain nonprintable
characters (e.g., <Esc>).

If you do not enter a filename, the log command uses the last filename
entered as part of a log filename command. If you have not entered any
log filename commands, it uses the default filename “LOG.ECM”

logoff Notation: logoff <Enter>

Description: Closes a log file that has been specified by the log
command. ECM96Mx then stops recording new commands.

logon Notation: logon <Enter>

Description: Re-opens the list file in the append mode, so recording can
begin again. LOGON also stamps the list file with the current date and
time from the system clock.

reset Notation: reset chip <Enter>

Description: Physically resets the microcontroller by writing 0XXXX0001B to the
RISM_DATA register. It then issues a “monitor_escape rism” command, which causes
the evaluation board to execute a reset (RST) instruction.

Table 5-6. Include, Log, and List Commands (Continued)

Command Names Command Notations and Descriptions
5-7

ECM96MX COMMANDS

ution
signifi-
 an in-

yte at
AP in-
d dec-
n code
he

break
break
n which
 state
5.6.2 Breakpoint Features

You can use breakpoints to stop execution at specified addresses. You may also use breakpoints
to examine and/or modify registers and memory before resuming execution.

NOTE

When breakpoints are used to halt application code, microcontroller timers and
peripherals (such as EPA, serial ports, and PWM) may remain active.

5.6.2.1 Breakpoint Operation

ECM96Mx provides 16 program execution breakpoints, BR0 to BR15, and a set of commands to
set or clear the breakpoints. A command activates a breakpoint by assigning a specific address of
an instruction where execution is to stop. For example, if “br2 = 0ff209dh <enter>”, exec
halts at address FF209DH. You must set the breakpoint to the address of the first (least
cant) byte of the instruction. If a breakpoint is set to an address that is not the first byte of
struction, execution is unpredictable.

To clear a breakpoint (make it “inactive”) assign a zero to the breakpoint
(e.g., “br2 = 0 <Enter>”). When execution begins, ECM96Mx saves the application code b
any active breakpoint and substitutes a TRAP instruction for the saved byte. When the TR
struction executes, ECM96Mx restores the application code byte to its original address an
rements the application program counter to point at the restored instruction. The applicatio
stops executing immediately before the instruction with a breakpoint. Two things happen on t
screen when a break occurs:

• The prompt changes from a greater-than symbol (>) to an asterisk (*), indicating a halt
condition has occurred.

• The target status (shown in the control panel at the top of the console screen) changes from
“TARGET STATUS...RUNNING” to “TARGET STATUS...STOPPED”.

Many monitor programs similar to ECM96Mx display a message on the console when a
occurs (e.g., “program break at 001234H”). However, ECM96Mx does not output a special
message. Because the system supports concurrent interrogation of the evaluation board o
the application code is running, a break can occur while you are displaying or modifying the
of the evaluation board. Special break messages interrupt command execution.
5-8

ECM96MX COMMANDS

resses.
com-
5.6.2.2 Breakpoint Commands

Breakpoint commands can display breakpoints while the application code is running or stopped.
The commands can activate breakpoints only while the application code is stopped. Table 5-7
lists the breakpoint commands’ notations and descriptions.

NOTE

When possible, avoid using BR0 and BR1 with the breakpoint command.
The GO command with the TILL option can implicitly set BR0 and BR1 and
thereby overwrite the addresses entered with the breakpoint command.

5.6.3 Program Execution Commands

The GO command and its options allow you to start and stop execution at specified add
You can execute this command only if the application code is stopped. In addition, a HALT
mand allows you to stop execution (when the application code is running).

Table 5-7. Breakpoint Command Notations and Descriptions

Command Notations† Command Descriptions

br <Enter> Displays all active breakpoints (i.e., ≠ 0) or informs you
that no breakpoints are active.

br [bp_number = code_address] <Enter> Sets the breakpoint specified by bp_number to the
value code_address. For example, to set breakpoint 3
to the address FF21A0H, type “br3=0ff21a0 <Enter>”.

(The BR command echoes this address as “21a0”; you
can also enter the address FF21A0 as “21a0”.) In this
example, to clear the breakpoint, you would type
“br3 = 0 <Enter>”.

br [bp_number] <Enter> Displays a breakpoint value and optionally changes the
setting. ECM96Mx displays the setting of the selected
breakpoint and waits for input. After typing (or not
typing) a new value, you can press <Enter> or <Esc>:

• <Enter> — Terminates the command.

• <Esc> — Displays the next sequential breakpoint.
Enter an address value to set the breakpoint or
press <Esc> again to display the next breakpoint;
the command wraps around from the last
breakpoint (15) to the first breakpoint (0).

† The square brackets [] indicate an optional argument.
5-9

ECM96MX COMMANDS

t
(so the
 stops
nd you
The GO commands that set breakpoints use BP0 and BP1. Any break value already in one of
these breakpoints is overwritten by the GO commands. As discussed in “Breakpoint Operation”
on page 5-8, program execution stops just before execution of the instruction at the breakpoin
address. ECM96Mx then temporarily deactivates that breakpoint when execution resumes
instruction can be executed) and finally reactivates the breakpoint. However, if execution
at a breakpoint and no other breakpoint is set, the breakpoint is permanently deactivated, a
must use the HALT command to stop the application program.

Table 5-8 lists the GO and HALT commands’ notations and descriptions.

Table 5-8. Go and Halt Command Notations and Descriptions

Command
 Names Command Notations and Descriptions1,2

go Notation: go <Enter>

Description: Starts application code execution with the current value of the appli-
cation’s program counter (PC) and the current breakpoint array.

Notation: go [forever] <Enter>

Description: Clears the breakpoint array and starts execution at the current value of
the application’s PC.

Notation: go [from code_address] <Enter>

Description: Loads the application’s PC with code_address and starts program code
execution with the current breakpoint assignments.

Notation: go [from code_address forever] <Enter>

Description: Loads the application’s PC with code_address, clears the breakpoint
array, and begins program code execution.

Notation: go [from code_address1 till code_address2] <Enter>

Description: Loads the application’s PC with code_address1, sets the first default
breakpoint (BP0) to the value of code_address2, and then begins program code
execution.

Notation: go [from code_address1 till code_address2 or code_address3] <Enter>

Description: Functions like the previous command except that it also sets the second
default breakpoint (BP1) to the value of code_address3.

Notation: go [till code_address] <Enter>

Description: Sets the first default breakpoint (BP0) to code_address and then begins
the program code execution with the current setting of the application’s PC and the
breakpoint array.

Notation: go [till code_address1 or code_address2] <Enter>

Description: Functions like the previous command except that it also sets the second
default breakpoint (BP1) to the value of code_address2.

Notes:

1. Enter all hexadecimal addresses with a leading zero and no spaces (e.g., “0ff1209h”).

2. The square brackets [] indicate an optional argument.
5-10

ECM96MX COMMANDS
5.6.4 Program Sequence Control

The ECM96Mx interface supports the instruction sequence commands necessary to single-step
your application code. These commands are useful for testing and debugging short sections of
code. This section defines the commands and certain limitations presented by this type of pro-
gram flow control.

5.6.4.1 STEP/SUPER-STEP Operation

ECM96Mx provides STEP commands for executing code one instruction at a time. SUPER-
STEP commands are similar, except they treat subroutines and interrupt service routines (ISRs)
as single instructions. Between instructions, you can use ECM96Mx commands to check the
states of the variables changed by the instruction to ensure that the program is operating properly.
STEP commands allow a far more detailed view of program behavior. The disadvantage is that
STEP commands do not occur in real time. This restriction makes it difficult or even impossible
to use STEP commands with code that is dependent upon real-time events.

In some situations, STEP operations with enabled interrupt systems are confusing because inter-
rupt service routines are also sequenced one instruction at a time. To avoid this problem,
ECM96Mx artificially locks out interrupts with the basic STEP command operation.

SUPER-STEP is similar to STEP; however, SUPER-STEP interrupts are not artificially sup-
pressed. An interrupt service routine or a subroutine call (and the body of the subroutine it calls)
is treated as one indivisible instruction by the SUPER-STEP command. This allows you to ignore
the details of subroutines and interrupt service routines while you view code operation. When an
instruction uses SUPER-STEP, all service routines associated with enabled pending interrupts are
executed. This allows limited stepping through code while operation continues in a concurrent
environment; however, the system does not operate in real time. A better approach is to use the
GO command to execute to a specified breakpoint and then STEP through the code.

halt Notation: halt <Enter>

Description: Stops program code execution by forcing the microcontroller to execute
a jump-to-self instruction in a reserved location.

Table 5-8. Go and Halt Command Notations and Descriptions

Command
 Names Command Notations and Descriptions1,2

Notes:

1. Enter all hexadecimal addresses with a leading zero and no spaces (e.g., “0ff1209h”).

2. The square brackets [] indicate an optional argument.
5-11

ECM96MX COMMANDS

t SU-
n does
PA,

lates
 sim-
 op-

es all

 Aside
 com-
ion uses
ECM96Mx implements the STEP operation by using the TRAP instruction. To STEP over a giv-
en instruction, ECM96Mx determines the subsequent instruction (or all possible subsequent in-
structions for a conditional branch) and places a TRAP instruction at these locations. A TRAP is
also set at location FF2080H in case the evaluation board is reset during the STEP. ECM96Mx
allows the application program to execute until the program encounters TRAP locations.
ECM96Mx then restores all overwritten application code bytes.

A SUPER-STEP operation is similar to a STEP; however, ECM96Mx treats the CALL instruc-
tion as a special case. During a STEP, ECM96Mx puts the TRAP at the evaluation board call ad-
dress; during a SUPER-STEP, ECM96Mx places the TRAP at the instruction following the
CALL. When the application’s EI bit is saved, it suppresses interrupts during STEP (but no
PER-STEP); then, ECM96Mx restores the interrupt. To ensure that the executed instructio
not modify the EI bit, ECM96Mx simulates several instructions (PUSHF, POPF, PUSHA, PO
DI, EI) as opposed to the microcontroller executing the instructions. ECM96Mx also simu
the IDLPD instruction during a STEP to prevent the evaluation board from locking up. The
ulation treats the IDLPD as a two-byte NOP. Instruction simulation occurs only with STEP
erations. During a GO or a SUPER-STEP operation, the evaluation board execut
instructions.

5.6.4.2 STEP and SUPER-STEP Commands

ECM96Mx has four STEP commands and four corresponding SUPER-STEP commands.
from the interrupt operation differences discussed earlier, the STEP and SUPER-STEP
mands behave the same way, so they are described here together. The command definit
the phrase “single-step” instead of STEP or SUPER-STEP.

Table 5-9 lists the STEP and SUPER-STEP command notations and descriptions.

Table 5-9. STEP and SUPER-STEP Command Notation and Description

Command Notations† Command Descriptions

[step | super-step] [-option1, option2] <Enter> Single-steps your application code one
instruction at a time.

[step | super-step] [count] <Enter> Single-steps count times.

[step | super-step] [from code_address] <Enter> Loads the application’s PC with the
value of code_address and then single-
steps one time.

[step | super-step] [from code_address, count] <Enter> Loads the application’s PC with the
value of code_address and then single-
steps count times.

† The square brackets [] indicate an optional argument.
5-12

ECM96MX COMMANDS

and
5.7 SUPPORTED DATA TYPES

ECM96Mx provides commands to display and modify program variables, including the follow-
ing data types: BYTE, CHAR, WORD, DWORD, REAL, STACK, and STRING. ECM96Mx
commands allow you to display variables or to initialize them either individually or as regions of
memory that contain variables of the given type. ECM96Mx also supports microcontroller vari-
ables. You can examine the window select register (WSR); and you can examine and modify the
program counter (PC), the program status word (PSW), and the stack pointer (SP).

NOTE

Memory locations 0001E0H–000201H are reserved for use by RISMMx.
ECM96Mx gives a warning if you attempt to modify these memory locations.

Table 5-10 contains definitions for supported data types.

5.7.1 BYTE, WORD, DWORD, and REAL Commands

ECM96Mx has four basic commands to examine and modify BYTE, WORD, DWORD,
REAL variables. There is an additional command for WORD variables only.

Table 5-10. Supported Data Types

Data Types Data Type Definitions

byte A BYTE is an 8-bit variable. No alignment rules are enforced for BYTE variables.

char A CHAR is a special case of a BYTE. CHAR variables are displayed as ASCII
characters.

word A WORD is a 16-bit variable. The address of a WORD is the address of its least
significant byte. A WORD must start at an even byte address.

dword A DWORD is a 32-bit variable. The address of a DWORD is the address of its
least significant byte. A DWORD must start on an address that is evenly divisible
by four. This more restrictive alignment rule applies only to ECM96Mx
commands when the single line assembler is used (see “Single Line Assembler
(SLA) Commands” on page 5-17).

real A REAL is a 32-bit binary floating-point number that conforms to the FPAL-96
definition. The 32 bits contain a sign bit, an 8-bit exponent field, and a 23-bit
fraction field. ECM96Mx commands use standard scientific notation to represent
REAL numbers. Note that FPAL-96 has special representations for +infinity and
for NaNs (Not a Number, used to signal error conditions). If ECM96Mx detects
one of these special values, it outputs an appropriate text string instead of trying
to display the value in scientific notation.

stack A STACK is a 16-bit variable that resides in the system stack. The address of a
stack variable (stack_address) is relative to the current stack pointer and must
be even word aligned.

string A STRING is a sequence of ASCII characters terminated by the NUL character,
which has the binary value of zero.
5-13

ECM96MX COMMANDS

ns.
Table 5-11 lists the BYTE, WORD, DWORD, and REAL commands’ notations and descriptio

Table 5-11. BYTE, WORD, DWORD, and REAL Command Notations

Command Notations1,2 Descriptions

variable [variable_address] <Enter> Examine and possibly modify one or more
variables at sequential addresses.
ECM96Mx displays the hexadecimal
address and the value of the variable in
the default base. You can then terminate
the command, modify the variable, or
examine the variable at the next address:

• <Enter> — Allows you to terminate
the command.

• variable_value — Assign this value
to the variable. Allows you to
terminate the command with
<Enter> or examine the next variable
by pressing <Esc>.

• <Esc> — Allows you to examine the
next variable. You can then
terminate the command (<Enter>),
assign a value (variable_value), or
examine the next variable (<Esc>).

variable [variable_address = variable_value] <Enter> Modify the value of a single variable.

variable [variable_address to variable_address]
<Enter>

Examine the values of the variables in a
range of addresses. In numerical form,
ECM96Mx displays an address followed
by up to 16 bytes of memory as BYTE,
WORD, DWORD, or REAL values.

To stop the output, press <Space>. To
resume the output, press <Space> again.
To terminate the command press
<Enter>.

variable [variable_address1 to variable_address2 =
variable_value] <Enter>

Initialize a region of memory to a given
value. At 9600 baud, setting each value
takes a little over one millisecond. To
terminate the command press <Enter>;
this leaves only a part of the memory
region initialized.

word [word_address1 to word_address2 =
word_address3 to word_address4] <Enter>

Copy a block of memory from the second
address range to the first address range.
This command applies to WORD
variables only. To terminate the
command, press <Enter>; this leaves only
a part of the memory region copied.

1. Replace the variable with BYTE, WORD, DWORD, or REAL (e.g., “word 0ff0080h = 0 <Enter>”).

2. The square brackets [] indicate an optional argument.
5-14

ECM96MX COMMANDS

eval-
rogram
r (SP).
5.7.2 STACK Commands

There are two commands for examining the stack. Both commands can be used whether the ap-
plication program is running or stopped.

Table 5-12 lists the STACK command’s notations and descriptions.

5.7.3 STRING Commands

There is only one form of the STRING command:

5.7.4 Register Command Variables

You can read microcontroller variables at any time, but you can modify them only while the
uation board program is stopped. With these commands you can display and load the p
counter (PC), program status word (PSW), window select register (WSR), and stack pointe
Display is in the default base.

Table 5-12. Stack Command Notations and Descriptions

Command Notations† Command Descriptions

stack stack_address <Enter> Examine the 16-bit variable at a given offset from the
stack pointer. ECM96Mx executes a “word
word_address” command where word_address takes
the value of the system stack pointer stack_address.

stack [stack_address1 to stack_address2]
<Enter>

Examine a sequence of 16-bit variables at a fixed offset
in the system stack. ECM96Mx executes a “word
word_address1 to word_address2” command where
both word_address fields are formed by adding the
corresponding stack_address to the current value of the
system stack pointer.

Press <Space> to stop the output for a long display.

Press <Space> again to resume output, or press
<Enter> to terminate the command.

† The square brackets [] indicate an optional argument.

string Notation: string byte_address

Description: The line begins with a hexadecimal display of byte_address followed
by the NUL-terminated ASCII string starting at that address. For long strings, only
the first 60 characters display. When trailing characters are stripped, decimal points
(.) are substituted for the first three characters stripped.
5-15

ECM96MX COMMANDS
Use the commands in Table 5-13 to access register variables associated with the microcontroller
rather than with the program..

5.7.5 Displaying and Modifying the Stack Pointer (SP)

RISMMx stores two words in the stack pointer area to retain the program counter (PC) and the
program status word (PSW) during an ECM96Mx host interface interrupt. For this reason, when
you display the stack pointer with the SP command or the STACK command, the displayed value
is always offset by a value that compensates for the host interrupt overhead. This makes storing
the host-interrupt related PC and PSW transparent at the evaluation board command level. How-
ever, you must allow for the extra stack space used when calculating total stack space require-
ments. This transparency is convenient but potentially confusing if you display the stack pointer
with the SP command and then either view or directly modify location 18H (the internal register
address of the stack pointer). It is recommended that you do not directly modify the stack pointer
with internal register address 18H.

CAUTION

To avoid conflict with the evaluation board’s stack operations, modify the
stack pointer only with the SP command or by executing application code. Do
not attempt to directly modify the stack pointer via register address 18H.
(Specific implementations of the RISMMx may prevent you from overwriting
register 18H and thereby force the use of the SP command.) Always use the SP
or STACK command to manipulate the stack pointer.

Table 5-13. Register Variable Notations and Descriptions

Register Names Register Command Notations †

program counter Notations:

• pc <Enter>

• pc [= byte_address] <Enter>

program status word Notations:

• psw <Enter>

• psw [= word_value] <Enter>

window select register Notations:

• wsr <Enter>

• wsr [= word_value] <Enter>

stack pointer Notations:

• sp <Enter>

• sp [= word_address] <Enter>

† The square brackets [] indicate an optional argument.
5-16

ECM96MX COMMANDS

ric” in-
6 mi-
ions

 tested.
not in-
circuit
is not
n.
5.8 ASSEMBLY AND DISASSEMBLY

ECM96Mx supports examining and modifying code memory using the standard mnemonics for
the MCS® 96 assembler (ASM96). Although standard mnemonics are used, ECM96Mx does not
build a symbol table of user symbols as assembly mnemonics are entered. This limits the software
to operate as a single line assembler (SLA). References are never made to information entered on
other lines. The SLA does not generate labels. The ECM96Mx SLA accepts mnemonics for all
standard instructions that can be executed by the microcontroller. It does not accept “gene
structions, such as BE or CALL, processed by ASM96 into standard instructions for MCS 9
crocontrollers. Neither does it accept JE, SCALL, or LCALL, which are the specific instruct
understood by an MCS 96 microcontroller.

5.8.1 Single Line Assembler (SLA) Commands

The SLA is useful for assembling short code sequences to patch application code as it is
These on-line software routines are useful for testing or patching programs, but the tool is
tended as a replacement for a full-featured assembler (such as ASM96) working with an in-
emulator. You can invoke the SLA whether application code is being executed or not. It
recommended that you dynamically modify code executed during your modification sessio

Table 5-14 lists the SLA command’s notations and descriptions.

Table 5-14. SLA Command Notations and Descriptions

Command Notations† Command Descriptions

asm [code_address] <Enter> Causes ECM96Mx to enter the SLA mode. The
assembly program counter (APC) is set to
code_address. Assembly language code, entered by
the user, is converted to object code and loaded into
the evaluation board’s memory. ECM96Mx flags
erroneous inputs but remains in the SLA mode. To
terminate this mode, type “end <Enter>” (the only
directive understood by the SLA).

asm <Enter> Functions like the “asm code_address <Enter>”
command except that the APC is not initialized. The
first time the SLA is used, APC is set to FF2080H.
Otherwise, APC points to the byte following the last
instruction generated by the SLA.

† The square brackets [] indicate an optional argument.
5-17

ECM96MX COMMANDS
5.8.2 Disassembly Commands

The disassembler converts binary object code in the evaluation board memory to ASM96 mne-
monics. Use these commands for checking program patches or examining a portion of a program
for which a listing is not available. You can use these commands whether application code is run-
ning or stopped.

Table 5-15 lists the disassembler command’s notations and descriptions.

Table 5-15. Disassembler Command Notations and Descriptions

Command Notation† Command Description

dasm <Enter> Disassembles the instruction currently pointed to by the
application’s program counter (APC).

dasm [count] <Enter> Reads the current value of the application’s program
counter (APC) and disassembles count instructions
beginning at that location. The parameter count must
be less than 256T (100H) so the command parser can
distinguish this command from the command “dasm
code_address <Enter>”. (This restriction does not apply
to the “dasm code_address, count <Enter>”
instruction.)

During lengthy displays, you can stop the output to the
console by pressing <Space> and resume output by
pressing <Space> again. Press <Enter> to terminate
the command.

dasm [code_address] <Enter> Disassembles the instruction at code_address. The
parameter code_address must be greater than or equal
to 256T (100H) so that the command parser can
distinguish it from the “dasm count <Enter>” instruction.

dasm [-code_address, count] <Enter> Disassembles count instructions starting with the
instruction at code_address.

During lengthy displays, you can stop the output to the
console by pressing <Space> and resume output by
pressing <Space> again. Press <Enter> to terminate
the command.

dasm [code_address to code_address]
<Enter>

Disassembles the region of memory specified. If an
instruction crosses the ending address of the region, it
is completely disassembled before the command
terminates.

During lengthy displays, you can stop the output to the
console by pressing <Space> and resume output by
pressing <Space> again. Press <Enter> to terminate
the command.

† The square brackets [] indicate an optional argument.
5-18

6
RISMMx
Commands

CHAPTER 6
RISM REGISTERS AND COMMANDS

This chapter describes the reduced instruction set monitor (RISM). The full RISM command set
described in this chapter exists in the external ROM on the 80C196Mx target board. The target
board runs this software under normal 80C196Mx operation.

6.1 RISM REGISTERS

Table 6-1 discusses RISM registers.

Table 6-1. RISM Registers

Registers Definitions

RISM_DATA A 32-bit register that acts as the primary data interface between software running in the
host (PC) and the RISM running in the target (80C196Mx).

RISM_ADDR A 24-bit register that contains the address to be used for reading and writing target
memory.

RISM_STAT An 8-bit register used to store RISM status and state information. This register
contains the following Boolean flags:

• DLE_FLAG: Indicates the next character received by the RISM should be treated
as a data byte even if its value corresponds to an implemented command.

• RUN_FLAG: Indicates that the target is running user code.

• TRAP_FLAG: Indicates a software TRAP has occurred while running user code
suspending its execution.

USER_PC Saves the user’s program counter while the user’s code is not executing. Note that
program execution must be stopped to use this command.

USER_PSW Saves the user’s program status word while the user’s code is not executing.
6-1

RISM REGISTERS AND COMMANDS
6.2 RISM STRUCTURE
The RISM resides in the target system. It provides the interface between the target system and the
user interface that resides in the host system. It is also compact and simple. This serves two pur-
poses:

• The RISM can reside in a user’s system with minimal impact on available memory.

• The RISM is easy to port into the target’s environment.

The RISM internal state structure is simple: only three internal flags can change the way RISM
deals with a character sent by the host.

• DLE_FLAG: When this flag is set, the next received character is assumed to be a data byte
as opposed to a command byte.

• RUN_FLAG: This flag is set when the target is running user code. It can modify the
operation of some RISM commands.

• TRAP_FLAG: This flag is set when the user code has been halted because the 80C196Mx
executed a TRAP instruction. The TRAP_FLAG is cleared when the RISM starts the
execution of user code.

6.3 RISM COMMAND DESCRIPTIONS

Table 6-2 on page 6-3 details the operation of each command sent to the RISM.
6-2

RISM REGISTERS AND COMMANDS
Table 6-2. RISM Command Descriptions

Value Command Description

00H SET_DLE_FLAG Sets the DLE flag in bit 0 of the MODE register to tell the RISM the next byte
on the serial port is data that should be loaded into the DATA register. The
flag is cleared as soon as the byte is read.

02H TRANSMIT Transmits the low byte of the DATA register to the serial port through the
CHAR register, shifts the DATA register right (long) by eight bits, and
increments ADDR by one.

ADDR DATA SBUF_TX

Before
command

FF 22 14 7A 2F 80 67

After
command

FF 22 15 00 7A 2F 80 67

04H READ_BYTE Puts the contents of the (byte) memory address pointed to by the ADDR
register into the low byte of the DATA register.

Memory
Addr.

ADDR DATA 2215 2214

Before
command

FF 22 14 80 67

After
command

FF 22 14 67 80 67

05H READ_WORD Puts the contents of the (word) memory address pointed to by the ADDR
register into the low byte of the DATA register.

Memory
Addr.

ADDR DATA 2215 2214

Before
command

22 14 80 67

After
command

22 14 80 67 80 67

06H READ_DOUBLE Reads the double-word of memory pointed to the address register and places
the results in the RISM_DATA register.
6-3

RISM REGISTERS AND COMMANDS
07H WRITE_BYTE Puts the low byte of the DATA register into the memory address pointed to by
the ADDR register and increments ADDR by one.

Memory
Addr.

ADDR DATA 2217 2216

Before
command

FF 22 16 2E 11 80 09 FF FF

After
command

FF 22 17 2E 11 80 09 FF 09

NOTE: To write to an OTPROM location, VPP must be at +12.5 VDC. To
write to an internal RAM location, VPP can be at either +5.0 or +12.5
VDC.

08H WRITE_WORD Puts the low word of the DATA register into the memory address pointed to
by the ADDR register and increments ADDR by two.

Memory
Addr.

ADDR DATA 2217 2216

Before
command

FF 22 16 2E 11 80 09 FF FF

After
command

FF 22 18 2E 11 80 09 80 09

NOTE

To write to an OTPROM location, VPP must be at +12.5 VDC. To write to an
internal RAM location, VPP can be at either +5.0 or +12.5 VDC.

09H WRITE_DOUBLE Stores the RISM_DATA register in the double-word of memory pointed to by
the RISM_ADDR register and increments the RISM_ADDR register (by four)
to point at the next memory double-word.

0AH LOAD_ADDRESS Puts the low word of the DATA register into the ADDR register.

ADDR DATA

Before
command

FF F1 05 22 16

After
command

FF 22 16 F1 05 22 16

Value Command Description
6-4

RISM REGISTERS AND COMMANDS
0BH INDIRECT
_ADDRESS

Puts the word from the memory address pointed to by the ADDR register into
the ADDR register.

Memory
Addr.

ADDR 2217 2216

Before
command

FF 22 16 80 09

After
command

FF 80 09 80 09

0CH READ_PSW Loads the RISM_DATA register with the PSW (Program Status Word)
associated with the user’s code. Most RISM implementations must check
RUN_FLAG to determine how to access the user’s PSW.

0DH WRITE_PSW Loads the PSW (Program Status Word) associated with the user’s code from
the RISM_DATA register. The host software will only invoke this command
while user code is not running.

0EH READ_SP Loads the RISM_DATA register with the SP (Stack Pointer) associated with
the user’s code.

0FH WRITE_SP Loads the SP (Stack Pointer) from the RISM_DATA register. This command
also pushes two values into the newly created stack area. These values are
the PC (first) and PSW (second) associated with the idle loop which executes
while user code is not running. The host software will only invoke this
command while user code is not running.

10H READ_PC Loads the RISM_DATA register with the PC (Program Counter) associated
with the user’s code. Most RISM implementations will have to check
RUN_FLAG to determine how to access the user’s PC.

11H WRITE_PC Loads the PC (Program Counter) associated with the user’s code from the
RISM_DATA register. The host software will only invoke this command while
user code is not running.

12H START_USER PUSHes the user PC, PSW, and WSR onto the stack and starts the
application program from the location contained in the user PC. The RISM
PC, PSW, and WSR will also be in the stack, so allow enough room on the
stack for all six words.

You can interrogate memory locations while your program is running. The
RISM interrupts your program to process the command and then returns
execution to your program.

13H STOP_USER Halts execution of the application program, POPs the user PC, PSW, and
WSR from the stack, and PUSHes the RISM PC, PSW, and WSR back onto
the stack. The RISM PC contains the location of the Monitor_Pause routine,
so the RISM returns to Monitor_Pause.

TRAP_ISR A pseudo command that cannot be issued directly by the host software. It is
executed when a TRAP instruction is executed. The TRAP instruction is used
by ECM to implement software breakpoints and single stepping. On the
80C196Mx target board, these functions are supported for code execution
from on-chip code RAM or the external RAM (cannot insert TRAP into ROM).

Value Command Description
6-5

RISM REGISTERS AND COMMANDS
14H REPORT
_STATUS

Loads a value into the DATA register. This value indicates the status of the
application program:

Value Status

00 halted
01 running
02 trapped

15H MONITOR
_ESCAPE

Provides for the addition of RISM commands for special purposes; it uses the
RISM_DATA register to extend the command set of the RISM. If the value of
the lower 16 bits of the RISM_DATA register is one (RISM_DATA =
0XXXX0001H) then the evaluation board microcontroller should execute
either a reset (RST) instruction or a software initialization routine. The basic
RISM requires only one of these “extended” commands.

16H READ_WSR Reads the value in the Windows Selection Register and puts it into the
RISM_DATA register.

17H WRITE_WSR Takes the value in the RISM_DATA register and puts the data into the WSR.
It also resets RI and INT_MASK1A.

18H SET_BAUD Takes the value in the RISM_DATA register and compares it to 7. If the value
is less than or equal to 7, then it is assumed to be an index into the
BAUD_RATE_CAPAB table. Otherwise the value is assumed to be the literal
baud rate value.

19H READ_WORD
_TRANSMIT

Copies the address stored in RISM_ADDR to RISM_DATA when transmits
that back to the host.

1AH SET_BLK_FLAG Is used in conjunction with block copy. When this flag is set, it assumes that
the next N words are data and will be stored at the pre-determined starting
point.

1BH READ
_CHECKSUM

Reads the checksum register and puts the data in RISM_DATA. After the
command is executed, the checksum register is cleared/reset.

Value Command Description
6-6

A
Components,
Jumpers, and
Connectors

APPENDIX A
COMPONENTS, JUMPERS, AND CONNECTORS

This appendix includes figures and tables to increase your understanding of the 80C196Mx demo
board.

A.1 COMPONENTS

Table A-1 lists the major components found on the 80C196Mx demo board. See Figure A-1 for
the location of each component. Refer to Appendix B-1for a complete list of parts used to build
the board.

Table A-1. Component List

Component Label Component Name

JP1 8-pin I/O Expansion

JP2 Power Supply Connector

JP3 26-pin I/O Expansion

JP4 40-pin I/O Expansion

JP5 26-pin I/O Expansion

U1 MAX233

U2 28/32-pin JEDEC SRAM

U3 74HC373

U4 84-pin PLCC N87C196MH

U5 16C550

U6 74HC14

U7 74HC14

U8 74HC240

U9 1.8432 MHz Canned Oscillator

Y1 16 MHz Canned Oscillator

P1 Host Serial Port

S1 Board Reset Switch

DP1 LED Bank

RP1 SIP Resistor Pack

RP2 SIP Resistor Pack

RP3 SIP Resistor Pack
A-1

COMPONENTS, JUMPERS, AND CONNECTORS
Figure A-1. 80C196Mx Demo Board Diagram

A5434-01

A
D

0

R
P

2U
2

Serial Port

JP
2

P
1

U
4

R
E

S
E

T

1 JP
4

39
40

JP
1

S
1

2
R

P
1

U
2

A3
A2

A4
A5
A6
A7

T
P

1

P1.4VREF

VREF
AGND

P1.2
P1.3

AGND P1.1
P1.0VREF

VREF
AGND

P0.6
P0.7

AGND P0.5
VREF

P0.3
P0.4

AGND
P0.2

AGND P0.1
P0.0

VREF

VREF

E
3

A

B

C

E
4

E
5

A

B
A

B

E
8

E
7

E
8

R
P

3

D
P

1

U
8 U

1

P
2.4

P
2.3

P
2.2

P
2.1

P
2.0

P
2.5

P
2.6

P
2.7

P
6.6

P
6.7

U
6

1 2
JP

3

G
N

D
P

W
R

P6.6
P6.7

P7.6
P7.7
PL7

P7.3
PL5
PL6

CS#3
P7.4
P7.5

CS#1
MNI

EXTIT
CLK0
VCC

P6.4
P6.5
P7.0
P7.1
P7.2

P6.3
P6.2
P6.1
P6.0
GND

1 2
25 26

JP
5

A

B

C
A

B

A

B

E
6

U
9

U
7

U
3

E
2

A

B

C A

B

C

E
1

A

B

C A

B

C

U
5

A
12

A
11

A
10
A

9

P
2.0

A
15

A
14

A
13

P
2.4

P
2.3

P
2.2

P
2.1

V
C

C
G

N
D

V
C

C
P

2.7
P

2.6
P

2.5

A
D

4
A

D
3

A
D

2
A

D
1

A
8

V
C

C
V

C
C

A0
A1

A
LE

A
D

7
A

D
6

A
D

5

P
5.4

R
D

#
W

R
#

IN
S

T

V
C

C
G

N
D

V
C

C
B

U
S

W
ID

T
H

R
E

A
D

Y
B

H
E®

1997 196M
X

 D
E

M
O

 B
D

 M
A

D
E

 IN
 U

S
A

80C196MXA

B

C
A

B

A

B

25 26
A-2

COMPONENTS, JUMPERS, AND CONNECTORS
A.2 JUMPER DEFINITIONS

Table A-2 lists the definitions for jumpers on the 80C196Mx Demo Board.

A.2.1 Memory Configuration Jumpers

Note that the board ships with 64K (8K x 8 bits) or SRAM mapped at A000H to BFFFH. If 256K
parts are installed, the decoding scheme used limits access to only 128K at 8000H to BFFFH.

A.2.2 Analog Power Reference Configuration

If no external analog power reference is used, jumper E7 and E8.

A.2.3 External Address Capability

If you wish to boot the device from external memory (not on the board), remove U5.

Table A-2. Jumper Definitions

Jumper Label Pin Number Jumper Options

E1 U2:Pin 1 A-B = VCC

B-C = A14

E2 U7:Pin2 A-B = P5.2

B-C = A14

E3 U4:P1.6 A-B = GND

B-C = P1.6

E4 U4:P1.5 A-B = GND

B-C = P1.5

E5 UARTINT A-B = UARTINT

E6 GND A-B = GND

E7 VREF A-B = VCC

E8 ANGND A-B = AGND

Table A-3. Memory Configuration

E1 E2 Configuration For

B-C A-B 64k and 256K RAM

A-B B-C 256K EPROM
A-3

COMPONENTS, JUMPERS, AND CONNECTORS
A.2.4 Chip-Dependent Jumpers

A.2.5 UART Interrupt

If you are not using the on-board UART and wish to use its memory range (0000H-1FFFH) for
an external device, remove the jumper on E5.

A.3 POWER SUPPLY CONNECTOR JP2

The flag on the JP2 connector is oriented to the edge of the board. Figure A-2 depicts the orien-
tation of the terminals with respect to the demo board.

Figure A-2. Power Supply Connector JP2

Table A-4. Processor Type Selection

E3 E4 Configuration For

A-B A-B 196MC/MH

B-C B-C 196MD

Flag

VSS = Ground

VCC = +5VDC

A5447-01
A-4

COMPONENTS, JUMPERS, AND CONNECTORS
A.4 I/O EXPANSION CONNECTORS JP1, JP3-5

The tables that follow describe the functions of I/O expansion connectors JP1 and JP3-5.

Table A-5. 8-pin I/O Expansion Connector JP1

Pin No Function Name Type Description

1 A0 I/O

Address Lines 0:7. Address lines for de-multiplexed
address bus

2 A1 I/O

3 A2 I/O

4 A3 I/O

5 A4 I/O

6 A5 I/O

7 A6 I/O

8 A7 I/O

Table A-6. 26-pin I/O Expansion Connector JP3 (Sheet 1 of 2)

Pin No Function Name Type Description

1 VREF PWR Reference Voltage for the A/D Converter

2 P0.0 I Analog inputs to the on-chip A/D converter

3 AGND GND Reference Ground for the A/D Converter and Port 0 logic

4 P0.1 I Analog inputs to the on-chip A/D converter

5 VREF PWR Reference Voltage for the A/D Converter

6 P0.2 I Analog inputs to the on-chip A/D converter

7 AGND GND Reference Ground for the A/D Converter and Port 0 logic

8 P0.3 I Analog inputs to the on-chip A/D converter

9 VREF PWR Reference Voltage for the A/D Converter

10 P0.4 I Analog inputs to the on-chip A/D converter

11 AGND GND Reference Ground for the A/D Converter and Port 0 logic

12 P0.5 I Analog inputs to the on-chip A/D converter

13 VREF PWR Reference Voltage for the A/D Converter

14 P0.6 I Analog inputs to the on-chip A/D converter

15 AGND GND Reference Ground for the A/D Converter and Port 0 logic

16 P0.7 I Analog inputs to the on-chip A/D converter

17 VREF PWR Reference Voltage for the A/D Converter

18 P1.0 I Analog inputs to the on-chip A/D converter

19 AGND GND Reference Ground for the A/D Converter and Port 0 logic

20 P1.1 I Analog inputs to the on-chip A/D converter

21 VREF PWR Reference Voltage for the A/D Converter

22 P1.2 I Analog inputs to the on-chip A/D converter
A-5

COMPONENTS, JUMPERS, AND CONNECTORS
23 AGND GND Reference Ground for the A/D Converter and Port 0 logic

24 P1.3 I Analog inputs to the on-chip A/D converter

25 VREF PWR Reference Voltage for the A/D Converter

26 P1.4 I Analog inputs to the on-chip A/D converter

Table A-7. 40-pin I/O Expansion Connector JP4 (Sheet 1 of 2)

Pin No Function Name Type Description

1 VCC PWR Digital Supply Voltage (+5 VDC)

2 VCC PWR Digital Supply Voltage (+5 VDC)

3 A8 I/O Address/Data lines for multiplexed address and data bus

4 AD0 I/O Address/Data lines for multiplexed address and data bus

5 A9 I/O Address/Data lines for multiplexed address and data bus

6 AD1 I/O Address/Data lines for multiplexed address and data bus

7 A10 I/O Address/Data lines for multiplexed address and data bus

8 AD2 I/O Address/Data lines for multiplexed address and data bus

9 A11 I/O Address/Data lines for multiplexed address and data bus

10 AD3 I/O Address/Data lines for multiplexed address and data bus

11 A12 I/O Address/Data lines for multiplexed address and data bus

12 AD4 I/O Address/Data lines for multiplexed address and data bus

13 A13 I/O Address/Data lines for multiplexed address and data bus

14 AD5 I/O Address/Data lines for multiplexed address and data bus

15 A14 I/O Address/Data lines for multiplexed address and data bus

16 AD6 I/O Address/Data lines for multiplexed address and data bus

17 A15 I/O Address/Data lines for multiplexed address and data bus

18 AD7 I/O Address/Data lines for multiplexed address and data bus

19 P2.0 I/O Bi-directional standard I/O port

20 ALE O Address Latch Enable output pin

21 P2.1 I/O Bi-directional standard I/O port

22 INST O Instruction Fetch indicates instruction being fetched from
external memory

23 P2.2 I/O Bi-directional standard I/O port

24 WR# O Write indicates external write occurring when active low

25 P2.3 I/O Bi-directional standard I/O port

26 RD# O Read asserted during external memory read

27 P2.4 I/O Bi-directional standard I/O port

28 P5.4 I/O Multiplexed with ONCE pin (configure as output)

29 P2.5 I/O Bi-directional standard I/O port

30 BHE O Byte High Enable indicates that valid data is being transferred
over the upper half of the system address/data bus

Table A-6. 26-pin I/O Expansion Connector JP3 (Sheet 2 of 2)
A-6

COMPONENTS, JUMPERS, AND CONNECTORS
31 P2.6 I/O Bi-directional standard I/O port

32 READY I Ready is used to lengthen external memory cycles for slow
memory by generating wait states

33 P2.7 I/O Bi-directional standard I/O port

34 BUSWIDTH I Configured in CCB for 16-bit bus cycle or 8-bit bus cycle

35 VCC PWR Digital Supply Voltage (+5 VDC)

36 VCC PWR Digital Supply Voltage (+5 VDC)

37 GND GND Digital Circuit Ground (0 V)

38 GND GND Digital Circuit Ground (0 V)

39 VCC PWR Digital Supply Voltage (+5 VDC)

40 VCC PWR Digital Supply Voltage (+5 VDC)

Table A-8. 26-pin I/O Expansion Connector JP5 (Sheet 1 of 2)

Pin No Function Name Type Description

1 VCC PWR Digital Supply Voltage (+5 VDC)

2 GND GND Digital Circuit Ground (0 V)

3 CLKO O Output of Internal Clock Generator

4 P6.0 O Wave Generator output or standard output port

5 EXTIT I Programmable Interrupt pin

6 P6.1 O Wave Generator output or standard output port

7 NMI I Non-Maskable Interrupt pin

8 P6.2 O Wave Generator output or standard output port

9 CS#1 I Chip Select Address range 4000H-7FFFH

10 P6.3 O Wave Generator output or standard output port

11 P6.6 O Pulse Width Modulator output port

12 P6.4 O Wave Generator output or standard output port

13 P6.7 O Pulse Width Modulator output port

14 P6.5 O Wave Generator output or standard output port

15 CS#3 I Chip Select Address range C000H-FFFFH

16 P7.0 I/O EPA Capture/Compare or standard I/O pins

17 P7.4 I/O EPA Capture/Compare or standard I/O pins

18 P7.1 I/O EPA Capture/Compare or standard I/O pins

19 P7.5 I/O EPA Capture/Compare or standard I/O pins

20 P7.2 I/O EPA Capture/Compare or standard I/O pins

21 P7.6 I/O EPA Capture/Compare or standard I/O pins

22 P7.3 I/O EPA Capture/Compare or standard I/O pins

23 P7.7 I/O EPA Capture/Compare or standard I/O pins

Table A-7. 40-pin I/O Expansion Connector JP4 (Sheet 2 of 2)
A-7

COMPONENTS, JUMPERS, AND CONNECTORS
A.5 LED BANK DESCRIPTIONS

At power-on and whenever the board is reset, LEDs 1 through 8 turn on then off together (see
Figure A-3). Then they blink on in sequence continuously until the host PC sends a command to
the board, power is turned off, or the board is reset. LED 9 remains off during the entire power-
up sequence. LEDs 1 through 8 can be programmed to display port 1.7:0.

Figure A-3. LED Bank DP1

24 P1.5 I Analog inputs to the on-chip A/D converter or standard input
port

25 P1.7 I Analog inputs to the on-chip A/D converter or standard input
port

26 P1.6 I Analog inputs to the on-chip A/D converter or standard input
port

Table A-8. 26-pin I/O Expansion Connector JP5 (Sheet 2 of 2)

A5449-01

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

PWM0#

PWM1#

1

2

3

4

5

6

7

8

9

10
A-8

COMPONENTS, JUMPERS, AND CONNECTORS
A.6 25-PIN TO 9-PIN RS-232 INTERFACE

If your computer has a 25-pin serial port connector, we recommend you buy a standard RS-232
25-pin to 9-pin conversion adapter or cable. Figure A-4 on page A-9 shows you how to assemble
a 25-pin to 9-pin serial port interface adapter cable for the correct connection to the 80C196Mx
demo board.

Figure A-4. Serial Interface

To Evaluation Board

P1

To Host PC

DCD

DSR

RXD

RTS

TXD

CTS

DTR

RI

GND

A2343-02

1

6

2

7

3

8

4

9

5	

1

14

2

15

3

16

4

17

5

18

6

19

7

20

8

21

9

22

10

23

11

24

12

25

13

Shield Ground

TXD

RXD

RTS

CTS

DSR

GND

DTR

DCD

RI

Note :
Signal mnemonics are referenced to the host.
A-9

COMPONENTS, JUMPERS, AND CONNECTORS
A.7 EXTERNAL MEMORY MAP

Table A-9 shows the area in the external memory map that by default are allocated.

Table A-9. External Memory Map

External Address Range Allocation

C000H - FFFFH Available Chips Select

A000H - BFFFH SRAM Standard

8000H - 9FFFFH SRAM Expansion

2000H - 7FFFH Unallocated

0000H - 1FFFH UART at 1E00H
A-10

B
Parts List

APPENDIX B
PARTS LIST

This appendix provides a list of all discrete and active components for the 80C196Mx demo
board.

Table B-1. Parts List

Item # Qty. Description Designators

1 9 0.1µF Cap C3, C6, C7, C8, C9, C10, C12, C13, C15

2 2 1.0µF Cap C2, C11

3 1 1.8432 MHz Crystal U9

4 2 1N4148 Diode D1, D2

5 4 3-Way Jumper E1, E2, E3, E4 (3-pin)

6 1 6.8 µF C1

7 1 8 Header JP1

8 1 8xC196Mx IC, Microcontroller U4

9 5 10K Res R1, R2, R3, R4, R5

10 1 10µF Cap C14

11 1 16.0 MHz Crystal Y1

12 1 16C550, IC UART U5

13 2 30K SIP, Res Pack RP1, RP2

14 2 30pF Cap C4, C5

15 1 74HC14 IC, Logic U6

16 1 74HC139 IC, Logic U7

17 1 74HC240 IC, Logic U8

18 1 74HC373 IC, Logic U3

19 2 100K Res R7, R8

20 1 180 Res R6

21 1 180 ohm SIP, Res Pack RP3

22 1 7164 IC, SRAM U2

23 2 CON26 JP3, JP5

24 1 CON40 JP4

25 1 DP9 Female P1
B-1

PARTS LIST
26 1 HDSP-48XX LED Display DP1

27 1 MAX233 IC, RS232 U1

28 1 Power Connector JP2

29 1 Reset Switch S1

30 4 STD JMPR E5, E6, E7, E8 (2-pin)

31 1 TP TP1

Table B-1. Parts List (Continued)

Item # Qty. Description Designators
B-2

C
Schematics

1
2

3
4

5
6

ABCD

6
5

4
3

2
1

D C B A

D
W

G
 N

o.
R

ev

S
he

et
D

ra
w

n
by

D
at

e

S
iz

e

19
6M

X
 D

E
M

O
 B

O
A

R
D

F
C

S
M

 N
o.

A
lth

ou
gh

 I
nt

el
 h

as
 v

er
ifi

ed
 t

hi
s

de
si

gn
 t

o
be

 f
un

ct
io

na
l,

In
te

l a
ss

um
es

 n
o

re
sp

on
si

bi
lit

y
fo

r
an

y
er

ro
rs

 w
hi

ch
 m

ay
ap

pe
ar

 in
 t

he
 d

es
ig

n.
 I

nt
el

 r
es

er
ve

s
th

e
rig

ht
 t

o
m

od
ify

th
is

 d
es

ig
n

w
ith

ou
t

no
tic

e.

In
te

l C
or

po
ra

tio
n

3

S
P

G
 D

ev
el

op
m

en
t

T
oo

ls
 S

ol
ut

io
ns

50
00

 W
.

C
ha

nd
le

r
B

lv
d.

C
ha

nd
le

r,
 A

Z
 8

52
26

00
01

B

10
:1

1:
03

11
-M

ar
-1

99
7

B

C
:\C

L
IE

N
T

\1
96

M
X

\M
X

96
_B

U
S.

SC
H

E
R

H
of

3
Fi

le

no
t

us
ed

A
D

0
A

D
1

A
D

2
A

D
3

A
D

4
A

D
5

A
D

6
A

D
7

P
5.

0
P

5.
1

P
5.

2
P

5.
3

P
5.

4
P

5.
5

V
R

E
F

A
N

G
N

D

E
X

T
IN

T
N

M
I

P
1.

0
P

1.
1

P
1.

2
P

1.
3

V
C

C

V
C

C

V
C

C

V
C

C

V
C

C

V
C

C

V
C

C

V
C

C

V
C

C

C
S

(C

00
0H

_F
F

F
F

H
)

C
S

(4

00
0H

_7
F

F
F

H
)

 2
2

 4
4

 6
6

 8
8

 1
0

10

 1
2

12

 1
4

14

 1
6

16

 1
8

18

 2
0

20

 2
2

22

 2
4

24

 2
6

26

 2
8

28

 3
0

30

 3
2

32

 3
4

34

 3
6

36

 3
8

38

 4
0

40

 1
1

 3
3

 5
5

 7
7

 9
9

 1
1

11

 1
3

13

 1
5

15

 1
7

17

 1
9

19

 2
1

21

 2
3

23

 2
5

25

 2
7

27

 2
9

29

 3
1

31

 3
3

33

 3
5

35

 3
7

37

 3
9

39

JP
4

C
O

N
40

 2
2

 4
4

 6
6

 8
8

 1
0

10

 1
2

12

 1
4

14

 1
6

16

 1
8

18

 2
0

20

 2
2

22

 2
4

24

 2
6

26

 1
1

 3
3

 5
5

 7
7

 9
9

 1
1

11

 1
3

13

 1
5

15

 1
7

17

 1
9

19

 2
1

21

 2
3

23

 2
5

25

JP
3

C
O

N
26

1 2

JP
2

P
O

W
E

R
 C

O
N

N
E

C
T

O
R

 2
2

 4
4

 6
6

 8
8

 1
0

10

 1
2

12

 1
4

14

 1
6

16

 1
8

18

 2
0

20

 2
2

22

 2
4

24

 2
6

26

 1
1

 3
3

 5
5

 7
7

 9
9

 1
1

11

 1
3

13

 1
5

15

 1
7

17

 1
9

19

 2
1

21

 2
3

23

 2
5

25

JP
5

C
O

N
26

C
L

K
O

U
T

P
1.

4

P
7.

0
P

7.
1

P
7.

2

P
1.

7
P

7.
7

P
7.

6
P

7.
3

P
7.

4
P

7.
5

P
1.

5
P

1.
6

P
0.

0
P

0.
1

P
0.

2
P

0.
3

P
0.

4
P

0.
5

P
0.

6
P

0.
7

P
0[

0.
.7

]

T
X

D
1*

T
X

D
0*

R
X

D
0*

R
X

D
1*

P
1.

0
P

1.
1

P
1.

2
P

1.
3

P
1.

4

A
L

E

W
R

#
R

D
#

R
E

A
D

Y

P
7

on
 M

D
 o

nl
y

P
4.

0
P

4.
1

P
4.

2
P

4.
3

P
4.

4
P

4.
5

P
4.

6
P

4.
7

*
on

 M
H

 o
nl

y
N

C
 o

n
M

H

M
D

 o
nl

y
M

D
 o

nl
y

M
D

 o
nl

y

N
C

 o
n

M
H

P
3.

0
P

3.
1

P
3.

2
P

3.
3

P
3.

4
P

3.
5

P
3.

6
P

3.
7

C
1

6.
8u

F
C

8
0.

1u
F

C
10

0.
1u

F
C

3
0.

1u
F

C
13

0.
1u

F
C

7
0.

1u
F

P
W

M
0#

P
W

M
1#

P
2.

0
P

2.
1

P
2.

2
P

2.
3

P
2.

4
P

2.
5

P
2.

6
P

2.
7

P
6.

6
P

6.
7

V
C

C V
C

C

G
1

A
1

2
Y

1
18

A
2

4
Y

2
16

A
3

6
Y

3
14

A
4

8
Y

4
12

U
8A

74
H

C
24

0

G
19

A
1

11
Y

1
9

A
2

13
Y

2
7

A
3

15
Y

3
5

A
4

17
Y

4
3

U
8B 74

H
C

24
0

C
O

M
1

 A
2

 B
3

 C
4

 D
5

 E
6

 F
7

 G
8

 H
9

 I
10

R
P

3

18
0

oh
m

 S
IP

R
6

18
0

12345678910

20191817161514131211
D

P
1

H
D

SP
-4

8X
X

P
2[

0.
.7

]

P
6[

0.
.7

]

P
6.

0
P

6.
1

P
6.

2
P

6.
3

P
6.

4
P

6.
5

P
6.

6
P

6.
7

P
5.

0
P

5.
1

P
5.

2
P

5.
3

P
5.

4
P

5.
5

P
2.

7
P

2.
6

P
2.

5
P

2.
4

P
2.

3
P

2.
2

P
2.

1
P

2.
0

P
2[

0.
.7

]

P
4[

0.
.7

]
A

8
A

9
A

10
A

11
A

12
A

13
A

14
A

15

A
D

0
A

D
1

A
D

2
A

D
3

A
D

4
A

D
5

A
D

6
A

D
7

P
7.

0
P

7.
1

P
7.

2
P

7.
3

P
7.

4
P

7.
5

P
7.

6
P

7.
7

P
5.

6
U

A
R

T
C

S#

C
12

0.
1u

F
C

6
0.

1u
F

C
15

0.
1u

F

P
L

A
C

E
 C

9
A

T
 J

P
7

A
N

D
 P

L
A

C
E

 R
E

M
A

IN
IN

G
 C

A
P

S
A

T
 C

H
IP

 L
O

C
A

T
IO

N
S.

8
9

U
6D

74
H

C
14

10
11

U
6E

74
H

C
14

12
13

U
6F

74
H

C
14

P
2.

0
P

2.
1

P
2.

2
P

2.
3

P
2.

4
P

2.
5

P
2.

6
P

2.
7

IN
ST

B
H

E
P

5.
4

A
15

B
U

SW
ID

T
H

P
1.

5
P

1.
6

C
S

#1

C
S

#3

P
1.

7

E
X

T
IN

T
N

M
I

C
L

K
O

U
T

1 2 3 4 5 6 7 8

JP
1

8
H

E
A

D
E

R

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

1
2

3
4

5
6

ABCD

6
5

4
3

2
1

D C B A

D
W

G
 N

o.
R

ev

Sh
ee

t
D

ra
w

n
by

D
at

e

Si
ze

19
6M

X
 D

E
M

O
 B

O
A

R
D

FC
SM

 N
o.

A
lth

ou
gh

 I
nt

el
 h

as
 v

er
ifi

ed
 th

is
 d

es
ig

n
to

 b
e

fu
nc

tio
na

l,
In

te
l a

ss
um

es
 n

o
re

sp
on

si
bi

lit
y

fo
r

an
y

er
ro

rs
 w

hi
ch

 m
ay

ap
pe

ar
 in

 th
e

de
si

gn
.

In
te

l r
es

er
ve

s
th

e
rig

ht
 to

 m
od

ify
th

is
 d

es
ig

n
w

ith
ou

t n
ot

ic
e.

In
te

l C
or

po
ra

tio
n

1

SP
G

 D
ev

el
op

m
en

t T
oo

ls
 S

ol
ut

io
ns

50
00

 W
. C

ha
nd

le
r

B
lv

d.
C

ha
nd

le
r,

 A
Z

 8
52

26

00
01

B

10
:1

5:
02

11
-M

ar
-1

99
7

B

C
:\C

L
IE

N
T

\1
96

M
X

\M
X

96
_C

P
U

.S
C

H
E

R
H

of
3

Fi
le

A
D

0
A

D
1

A
D

2
A

D
3

A
D

4
A

D
5

A
D

6
A

D
7

P
6[

0.
.7

]

P
0[

0.
.7

]

V
R

E
F

A
N

G
N

D

P
5[

0.
.5

]

P
2[

0.
.7

]

U
A

R
T

IN
T

N
M

I

E
X

T
IN

T

IN
IT

#

R
E

SE
T

#

A
0

A
1

A
2

P
5.

2
P

5.
3

A
D

0
A

D
1 A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
8

A
9

A
10

A
11

A
12

A
13

A
15

P
6.

1
P

6.
2

P
6.

3
P

6.
4

P
6.

5
P

6.
6

P
6.

7

P
2.

0
P

2.
1

P
2.

2
P

2.
3

P
2.

4
P

2.
5

P
2.

6
P

2.
7

P
1.

1
P

1.
2

P
1.

3
P

1.
4

P
5.

0
P

5.
1

P
5.

2
P

5.
3

P
5.

4
P

5.
5

R
A

M
C

S#

U
A

R
T

IN
T

N
M

I IN
IT

#

P
6.

0

V
C

C

V
C

C

V
C

C

V
C

C

V
C

C
V

C
C

U
A

R
T

C
S#

1
2

E
6

A
0

10

A
1

9

A
2

8

A
3

7

A
4

6

A
5

5

A
6

4

A
7

3

A
8

25

A
9

24

A
10

21

A
11

23

A
12

2

A
13

/C
E

2/
V

C
C

26

A
14

/W
E

/V
C

C
27

C
E

20

O
E

22

V
P

P
/A

14
/A

15
1

O
0

11

O
1

12

O
2

13

O
3

15

O
4

16

O
5

17

O
6

18

O
7

19

U
2

71
64

13

2

E
1

13

2

E
2

C
4

30
pF

C
5

30
pF

C
14

10
uF

R
7

10
0K

R
8

10
0K

C
11

1.
0u

F
C

9
0.

1u
F

1
2

E
7

D
0

3

D
1

4

D
2

7

D
3

8

D
4

13

D
5

14

D
6

17

D
7

18

O
C

1

G
11

Q
0

2

Q
1

5

Q
2

6

Q
3

9

Q
4

12

Q
5

15

Q
6

16

Q
7

19

U
3

74
H

C
37

3

Y
1 16

.0
M

H
z

COM 1

 A 2

 B 3

 C 4

 D 5

 E 6

 F 7

 G 8

 H 9

 I 10

R
P

1
30

K
 S

IP

COM1

 A2

 B3

 C4

 D5

 E6

 F7

 G8

 H9

 I10

R
P

2
30

K
 S

IP

C
2

1.
0u

F

1

T
P

1
A

2

B
3

G
1

Y
0

4

Y
1

5

Y
2

6

Y
3

7

U
7A

74
H

C
13

9

D
1

1N
41

48

D
2

1N
41

48

S1
R

E
SE

T

1
2

E
5

1
2

E
8

C
S#

 (
40

00
H

_7
FF

FH
)

C
S#

 (
C

00
0H

_F
FF

FH
)

X
1

82

X
2

81

P
5.

6/
R

E
A

D
Y

2

R
E

SE
T

33

A
C

H
0/

P
0.

0
62

A
C

H
1/

P
0.

1
61

A
C

H
2/

P
0.

2
60

A
C

H
3/

P
0.

3
59

A
C

H
4/

P
0.

4/
P

M
O

D
E

.0
58

A
C

H
5/

P
0.

5/
P

M
O

D
E

.1
57

A
C

H
6/

P
0.

6/
P

M
O

D
E

.2
/(

E
P

A
C

L
K

 o
n

M
H

)
54

A
C

H
7/

P
0.

7/
P

M
O

D
E

.3
/(

E
P

A
D

IR
 o

n
M

H
)

53

P
1.

1/
A

C
H

9
(R

X
D

0
on

 M
H

)
51

P
1.

2/
A

C
H

10
/T

1C
L

K
 (

T
X

D
1

on
 M

H
)

48

P
1.

3/
A

C
H

11
/T

1D
IR

 (
R

X
D

1
on

 M
H

)
47

P
2.

0/
C

A
P

0/
P

V
E

R
64

P
2.

1/
E

P
A

1/
P

A
L

E
(S

C
K

0/
B

C
L

K
0

on
 M

H
)

65

P
2.

2/
E

P
A

2/
P

R
O

G
 (

E
P

A
1o

n
M

H
)

68

P
2.

4/
C

O
M

P
0/

A
IN

C
73

P
2.

5/
C

O
M

P
1/

P
A

C
T

74

V
R

E
F

56

V
P

P
6

A
N

G
N

D
55

E
A

36

P
6.

0/
W

G
1

46

P
6.

1/
W

G
1

45

P
6.

2/
W

G
2

44

P
6.

3/
W

G
2

42

P
6.

4/
W

G
3

41

P
6.

5/
W

G
3

40

P
6.

6/
P

W
M

0
77

P
6.

7/
P

W
M

1
76

P
3.

0/
A

D
0

31

P
3.

1/
A

D
1

30

P
3.

2/
A

D
2

29

P
3.

3/
A

D
3

28

P
3.

4/
A

D
4

27

P
3.

5/
A

D
5

26

P
3.

6/
A

D
6

25

P
3.

7/
A

D
7

24

P
4.

0/
A

D
8

21

P
4.

1/
A

D
9

20

P
4.

2/
A

D
10

19

P
4.

3/
A

D
11

18

P
4.

4/
A

D
12

17

P
4.

5/
A

D
13

15

P
4.

6/
A

D
14

13

P
4.

7/
A

D
15

12

P
1.

0/
A

C
H

8
(T

X
D

0
on

 M
H

)
52

P
2.

3/
E

P
A

3
(C

O
M

P
 3

 o
n

M
H

)
69

P
5.

0/
A

L
E

/(
A

D
V

 o
n

M
H

)
5

P
5.

2/
W

R
/W

R
L

10

P
5.

3/
R

D
7

P
5.

4
1

P
5.

5/
B

H
E

(/
W

R
H

 o
n

M
H

)
8

P
5.

7/
B

U
SW

ID
T

H
11

E
X

T
IN

T
84

P
2.

6/
C

O
M

P
2/

C
P

V
E

R
75

N
M

I
34

P
2.

7/
C

O
M

P
3

(S
C

K
1/

B
C

L
K

1
on

 M
H

)
70

P
5.

1/
IN

ST
3

C
L

K
O

U
T

 (
N

C
 o

n
M

H
)

16

V
SS

 (
P

1.
5/

A
C

H
13

 o
n

M
D

)
(N

C
 o

n
M

H
)

49

V
SS

 (
P

1.
6

M
D

)
37

N
C

 (
P

1.
7

on
 M

D
)

32

P
1.

4/
A

C
H

12
 (

N
C

 o
n

M
H

)
50

N
C

 (
P

7.
0/

E
P

A
4

on
 M

D
)

22

N
C

 (
P

7.
1/

E
P

A
5

on
 M

D
)

67

N
C

 (
P

7.
2/

C
O

M
P

4
on

 M
D

)
71

N
C

 (
P

7.
3/

C
O

M
P

5
on

 M
D

)
72

N
C

 (
P

7.
4

on
 M

D
)

78

N
C

 (
P

7.
5

on
 M

D
)

79

N
C

 (
P

7.
6

on
 M

D
)

80

N
C

 (
P

7.
7/

FR
E

Q
O

U
T

 o
n

M
D

)
63

U
4

8X
C

19
6M

X

C
L

K
O

U
T

P
7[

0.
.7

]

A 1C3 B
2

E
4

13

2

E
3

P
1.

5
P

1.
6

P
1.

7

P
3.

0
P

3.
1

P
3.

2
P

3.
3

P
3.

4
P

3.
5

P
3.

6
P

3.
7

1E
00

H

A
L

E

R
D

#
W

R
#

P
4[

0.
.7

]

A8
A9
A10
A11
A12
A13
A14
A15

A
14

A
15

P
0.

0
P

0.
1

P
0.

2
P

0.
3

P
0.

4
P

0.
5

P
0.

6
P

0.
7

P
1.

0
P

1.
1

P
1.

2
P

1.
3

P
1.

4

P
1.

0

A
D

2
A

D
3

A
D

4
A

D
5

A
D

6
A

D
7

A
D

0
A

D
1

A
D

2
A

D
3

A
D

4
A

D
5

A
D

6
A

D
7

U
A

R
T

C
S#

P
1.

5
P

1.
6

P
1.

7

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

R
E

A
D

Y
R

E
SE

T
#

B
U

SW
ID

T
H

READY

AD0

AD2
AD1

AD3
AD4
AD5
AD6
AD7

A
D

0
A

D
1

A
D

2
A

D
3

A
D

4
A

D
5

A
D

6
A

D
7

P
7.

0
P

7.
1

P
7.

2
P

7.
3

P
7.

4
P

7.
5

P
7.

6
P

7.
7

A
0

A
1

A
2

A
14

5
6

U
6C

74
H

C
14

A
3

A
4

A
5

A
6

A
7

1
2

3
4

5
6

ABCD

6
5

4
3

2
1

D C B A

D
W

G
 N

o.
R

ev

Sh
ee

t
D

ra
w

n
by

D
at

e

Si
ze

19
6M

X
 D

E
M

O
 B

O
A

R
D

FC
SM

 N
o.

A
lth

ou
gh

 I
nt

el
 h

as
 v

er
ifi

ed
 th

is
 d

es
ig

n
to

 b
e

fu
nc

tio
na

l,
In

te
l a

ss
um

es
 n

o
re

sp
on

si
bi

lit
y

fo
r

an
y

er
ro

rs
 w

hi
ch

 m
ay

ap
pe

ar
 in

 th
e

de
si

gn
.

In
te

l r
es

er
ve

s
th

e
rig

ht
 to

 m
od

ify
th

is
 d

es
ig

n
w

ith
ou

t n
ot

ic
e.

In
te

l C
or

po
ra

tio
n

2

SP
G

 D
ev

el
op

m
en

t T
oo

ls
 S

ol
ut

io
ns

50
00

 W
. C

ha
nd

le
r

B
lv

d.
C

ha
nd

le
r,

 A
Z

 8
52

26

00
01

B

10
:1

7:
10

11
-M

ar
-1

99
7

B

C
:\C

L
IE

N
T

\1
96

M
X

\M
X

96
_S

E
R

.S
C

H
E

R
H

of
3

Fi
le

A
2

A
1

A
0

P
5.

2

R
E

SE
T

#

P
5.

3

U
A

R
T

C
S#

U
A

R
T

IN
T

IN
IT

#

A
D

0
A

D
1

A
D

2
A

D
3

A
D

4
A

D
5

A
D

6
A

D
7

R
E

SE
T

#

U
A

R
T

IN
T

IN
IT

#

594837261
P

1

D
B

9
Fe

m
al

e

T
1I

N
2

T
2I

N
1

R
1O

U
T

3

R
2O

U
T

20

C
1+

8

C
1-

13

V
-

12

V
-

17

V
+

14

T
1O

U
T

5

T
2O

U
T

18

R
1I

N
4

R
2I

N
19

C
2+

11

C
2+

15

C
2-

10

C
2-

16

U
1

M
A

X
23

3

R
5

10
k

W
R

#
R

D
#

A
0

A
1

A
2

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A
0A

1A
2

NC1 D02 D13 D24 D35 D46

D
5

7

D
6

8

D
7

9

R
C

L
K

10

SI
N

11

N
C

12

SO
U

T
13

C
S0

14

C
S1

15

C
S2

*
16

B
A

U
D

O
U

T
*

17

XIN 18

XOUT 19

WR* 20

WR 21

VSS 22

NC 23

RD* 24

RD 25

DDIS 26

TXRDY* 27

ADS* 28

A
2

29
A

1
30

A
0

31
R

X
R

D
Y

*
32

IN
T

R
33

N
C

34
O

U
T

2*
35

R
T

S*
36

D
T

R
*

37
O

U
T

1*
38

M
R

39

CTS*40 DSR*41 DCD*42 RI*43 VCC44

U
5

16
C

55
0

AD0
AD1
AD2
AD3
AD4

A
D

5
A

D
6

A
D

7
V

C
C

N
C

1

G
N

D
4

O
U

T
5

V
C

C
8

U
9

1.
84

32
 M

hz

V
C

C

R
2

10
K

R
3

10
K

R
4

10
K

V
C

C

R
1

10
K

So
ck

et
ed

1
2

U
6A

74
H

C
14

3
4

U
6B

74
H

C
14

	80C196Mx Demo Board User’s Manual
	CHAPTER 1 GUIDE TO THIS MANUAL
	CHAPTER 2 Getting Started with the 80C196Mx Demo B...
	CHAPTER 3 Introduction to the 80C196Mx Demo Board
	CHAPTER 4 Introduction to the Embedded Controller ...
	CHAPTER 5 ECM96Mx Commands
	CHAPTER 6 RISM Registers and Commands
	APPENDIX A Components, Jumpers, and Connectors
	APPENDIX B Parts List

	CHAPTER 1 GUIDE TO THIS MANUAL
	1.1 manual contents
	1.2 Notational Conventions and Terminology
	1.3 Related Documents and Products
	1.3.1 Data Sheet and User’s Manual Supplement
	1.3.2 Application Notes
	1.3.3 World Wide Web
	1.3.4 FaxBack* Service
	1. Solutions OEM subscription form
	2. Microcontroller and flash catalog
	3. Development tools catalog
	4. Systems catalog
	5. Multimedia catalog
	6. Multibus and iRMX® software catalog and BBS fil...
	7. Microprocessor, PCI, and peripheral catalog
	8. Quality and reliability and change notification...
	9. iAL (Intel Architecture Labs) technology catalo...

	1.3.5 Bulletin Board System (BBS)
	1.3.5.1 How to Find MCS 96 Microcontroller Files o...
	1. Enter F from the BBS Main menu. The BBS display...
	2. Type L and press <Enter>. The BBS displays the ...
	3. Type 12 and press <Enter> to select MCS 96 Fami...
	4. Type the number that corresponds to the subject...
	5. Type the file numbers to select the files you w...

	1.3.5.2 How to Find ApBUILDER Software and Hyperte...
	1. Type F from the BBS Main menu. The BBS displays...
	2. Type L and press <Enter>. The BBS displays the ...
	3. Type 25 and press <Enter> to select ApBUILDER/H...
	4. Type 1 and press <Enter> to list the latest ApB...
	5. Type the file numbers to select the files you w...

	1.4 Technical Support
	1.5 Product Literature

	CHAPTER 2 Getting Started with the 80C196Mx Demo B...
	2.1 Demo Board Kit Contents
	2.2 Applying Power to the Demo Board
	1. Turn off power to the PC and the power supply.
	2. Connect the serial port cable from the board’s ...
	3. Connect the power cable from the power supply t...
	4. Turn on the PC and power supply. You should now...

	2.3 Invoking the Embedded Controller Monitor Softw...
	1. Insert the distribution disk in the drive of yo...
	2. Create a directory for the embedded controller ...
	3. Observe the ECM96Mx monitor screen displayed on...
	4. To download the demo board demonstration progra...

	CHAPTER 3 Introduction to the 80C196Mx Demo Board
	3.1 Block and Component Diagrams of the Board
	Figure 3�1. Component-level Diagram of the 80C196M...

	3.2 The 80C196MC/MH/MD Microcontroller
	3.3 Host Interface
	3.4 80C196Mx MEMORY SYSTEM
	3.5 MEMORY MODES
	3.6 Using SRAM and EPROM
	3.6.1 Memory Configurations and Installation
	1. Turn off power to the board.
	2. Insert the memory device in socket U2.
	3. Establish the jumper settings as shown in Table...
	Table 3�1. Memory Configuration
	4. If no external analog power reference is used, ...
	5. If you wish to boot the device from external me...
	6. If you are not using the on-board UART and wish...
	7. Power up the board according to the instruction...
	8. To load the ECM96Mx software, see “Invoking the...

	3.7 CHANGING THE MICROCONTROLLER MODULE
	1. Use standard anti-static precautions such as we...
	2. Remove the N87C196MH microcontroller in socket ...
	3. Set the jumpers to configure the board for the ...
	Table 3�2. Processor Type Selection
	4. Power up the board according to the instruction...

	CHAPTER 4 Introduction to the Embedded Controller ...
	4.1 Embedded Controller Monitor (ECM)
	4.2 Restrictions

	CHAPTER 5 ECM96Mx Commands
	5.1 ECM Defined
	5.2 Command Line Notation
	5.2.1 ECM96Mx Command Notation
	Table 5�1. ECM96Mx Command Notation (Continued)

	5.2.2 DOS Command Rules
	Table 5�2. DOS Command Notation

	5.3 Initializing and Terminating ECM
	Table 5�3. Commands for Invoking and Terminating E...

	5.4 General ECM96Mx Commands
	Table 5�4. General ECM96Mx Commands

	5.5 File Operations
	5.5.1 Loading and Saving Object Code
	Table 5�5. ECM96Mx Commands that Operate on Object...

	5.5.2 Include, Log, and List Files
	Table 5�6. Include, Log, and List Commands (Contin...

	5.6 Program Control
	5.6.1 80C196Mx Reset
	5.6.2 Breakpoint Features
	5.6.2.1 Breakpoint Operation
	5.6.2.2 Breakpoint Commands
	Table 5�7. Breakpoint Command Notations and Descri...

	5.6.3 Program Execution Commands
	Table 5�8. Go and Halt Command Notations and Descr...

	5.6.4 Program Sequence Control
	5.6.4.1 STEP/SUPER-STEP Operation
	5.6.4.2 STEP and SUPER-STEP Commands
	Table 5�9. STEP and SUPER-STEP Command Notation an...

	5.7 Supported Data Types
	Table 5�10. Supported Data Types

	5.7.1 BYTE, WORD, DWORD, and REAL Commands
	Table 5�11. BYTE, WORD, DWORD, and REAL Command No...

	5.7.2 STACK Commands
	Table 5�12. Stack Command Notations and Descriptio...

	5.7.3 STRING Commands
	5.7.4 Register Command Variables
	Table 5�13. Register Variable Notations and Descri...

	5.7.5 Displaying and Modifying the Stack Pointer (...
	CAUTION

	5.8 Assembly and Disassembly
	5.8.1 Single Line Assembler (SLA) Commands
	Table 5�14. SLA Command Notations and Descriptions...

	5.8.2 Disassembly Commands
	Table 5�15. Disassembler Command Notations and Des...

	CHAPTER 6 RISM Registers and Commands
	6.1 RISM Registers
	Table 6�1. RISM Registers

	6.2 RISM Structure
	6.3 RISM Command Descriptions
	Table 6�2. RISM Command Descriptions

	FF
	22
	14
	7A
	2F
	80
	67
	FF
	22
	15
	00
	7A
	2F
	80
	67
	FF
	22
	14
	80
	67
	FF
	22
	14
	67
	80
	67
	22
	14
	80
	67
	22
	14
	80
	67
	80
	67
	FF
	22
	16
	2E
	11
	80
	09
	FF
	FF
	FF
	22
	17
	2E
	11
	80
	09
	FF
	09
	FF
	22
	16
	2E
	11
	80
	09
	FF
	FF
	FF
	22
	18
	2E
	11
	80
	09
	80
	09
	FF
	F1
	05
	22
	16
	FF
	22
	16
	F1
	05
	22
	16
	FF
	22
	16
	80
	09
	FF
	80
	09
	80
	09

	APPENDIX A Components, Jumpers, and Connectors
	A.1 COMPONENTS
	Table A�1. Component List
	Figure A�1. 80C196Mx Demo Board Diagram�

	A.2 JUMPER DEFINITIONS
	Table A�2. Jumper Definitions

	A.2.1 Memory Configuration Jumpers
	Table A�3. Memory Configuration

	A.2.2 Analog Power Reference Configuration
	A.2.3 External Address Capability
	A.2.4 Chip-Dependent Jumpers
	Table A�4. Processor Type Selection

	A.2.5 UART Interrupt
	A.3 POWER SUPPLY CONNECTOR JP2
	Figure A�2. Power Supply Connector JP2�

	A.4 I/O EXPANSION CONNECTORs JP1, JP3-5
	Table A�5. 8-pin I/O Expansion Connector JP1

	1
	A0
	I/O
	2
	A1
	I/O
	3
	A2
	I/O
	4
	A3
	I/O
	5
	A4
	I/O
	6
	A5
	I/O
	7
	A6
	I/O
	8
	A7
	I/O
	Table A�6. 26-pin I/O Expansion Connector JP3 (She...

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	Table A�7. 40-pin I/O Expansion Connector JP4 (She...

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	Table A�8. 26-pin I/O Expansion Connector JP5 (She...

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	A.5 LED Bank Descriptions
	Figure A�3. LED Bank DP1�

	A.6 25-Pin to 9-Pin RS-232 Interface
	Figure A�4. Serial Interface�

	A.7 External Memory Map
	Table A�9. External Memory Map

	APPENDIX B Parts List
	Table B�1. Parts List (Continued)

