
February 1994 Order Number: 271110-003

MILITARY i386TM SX MICROPROCESSOR
Y Full 32-Bit Internal Architecture

Ð 8-, 16-, 32-Bit Data Types
Ð 8 General Purpose 32-Bit Registers

Y Runs Intel386TM Software in a Cost
Effective 16-Bit Hardware Environment
Ð Runs Same Applications and O.S.’s

as the Military i386TM DX Processor
Ð Object Code Compatible with M8086,

M80186, M80286, and i386
Processors

Ð Runs MS-DOS*, OS/2* and UNIX**
Y Very High Performance 16-Bit Data Bus

Ð 20 MHz Clock
Ð Two-Clock Bus Cycles
Ð 20 Megabytes/Sec Bus Bandwidth
Ð Address Pipelining Allows Use of

Slower/Cheaper Memories

Y Integrated Memory Management Unit
Ð Virtual Memory Support
Ð Optional On-Chip Paging
Ð 4 Levels of Hardware Enforced

Protection
Ð MMU Fully Compatible with Those of

the M80286 and i386 DX CPUs

Y Large Uniform Address Space
Ð 16 Megabyte Physical
Ð 64 Terabyte Virtual
Ð 4 Gigabyte Maximum Segment Size

Y Virtual M8086 Mode Allows Execution
of M8086 Software in a Protected and
Paged System

Y High Speed Numerics Support with the
Military i387TM SX Coprocessor

Y On-Chip Debugging Support Including
Breakpoint Registers

Y Complete System Development
Support
Ð Software: C, PL/M, Assembler
Ð Debuggers: PMON-i386 DX,

ICETM-i386 SX
Ð Extensive Third-Party Support: C,

Pascal, FORTRAN, BASIC, Ada*** on
VAX, UNIX**, MS-DOS*, and Other
Hosts

Y High Speed CHMOS IV Technology

Y 88-Lead Pin Grid Array Package
(See Packaging Specification, Order Ý 231369)

Y 100-Lead Plastic Flat Pack Package

Y Available in Four Product Grades:
Ð MIL-STD-883 (PGA), b55§C to

a125§C (TC)
Ð Military Temperature Only (PGA),

b55§C to a125§C (TC)
Ð Extended Temperature (PGA),

b40§C to a110§C (TC)
Ð Extended Temperature (PQFP),

b20§C to a100§C (TC)

The Military i386 SX Microprocessor is a 32-bit CPU with a 16-bit external data bus and a 24-bit external
address bus. The i386 SX CPU brings the high-performance software of the Intel386 Architecture to midrange
systems. It provides the performance benefits of a 32-bit programming architecture with the cost savings
associated with 16-bit hardware systems.

271110–1

i386TM SX Pipelined 32-Bit Microarchitecture

*MS-DOS and OS/2 are trademarks of Microsoft Corporation.
**UNIX is a trademark of AT&T.

***Ada is a trademark of the Department of Defense.

MILITARY i386TM SX MICROPROCESSOR

MILITARY i386TM SX MICROPROCESSOR
CONTENTS PAGE

1.0 PIN DESCRIPTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

2.0 BASE ARCHITECTURE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

2.1 Register Set ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

2.2 Instruction Set ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

2.3 Memory Organization ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

2.4 Addressing Modes ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

2.5 Data Types ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

2.6 I/O Space ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

2.7 Interrupts and Exceptions ÀÀÀÀÀÀÀÀÀÀÀ 18

2.8 Reset and Initialization ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

2.9 Testability ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

2.10 Debugging Support ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22

3.0 REAL MODE ARCHITECTURE ÀÀÀÀÀÀÀ 23

3.1 Memory Addressing ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

3.2 Reserved Locations ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

3.3 Interrupts ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

3.4 Shutdown and Halt ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

3.5 LOCK Operations ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

4.0 PROTECTED MODE
ARCHITECTURE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 25

4.1 Addressing Mechanism ÀÀÀÀÀÀÀÀÀÀÀÀÀ 25

4.2 Segmentation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 25

4.3 Protection ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 30

4.4 Paging ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 34

4.5 Virtual 8086 Environment ÀÀÀÀÀÀÀÀÀÀÀ 37

CONTENTS PAGE

5.0 FUNCTIONAL DATA ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 40

5.1 Signal Description Overview ÀÀÀÀÀÀÀÀ 40

5.2 Bus Transfer Mechanism ÀÀÀÀÀÀÀÀÀÀÀ 47

5.3 Memory and I/O Spaces ÀÀÀÀÀÀÀÀÀÀÀ 47

5.4 Bus Functional Description ÀÀÀÀÀÀÀÀÀ 47

5.5 Self-test Signature ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 65

5.6 Component and Revision
Identifiers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 65

5.7 Coprocessor Interfacing ÀÀÀÀÀÀÀÀÀÀÀÀ 65

6.0 PACKAGE THERMAL
SPECIFICATIONS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 66

7.0 ELECTRICAL SPECIFICATIONS ÀÀÀÀÀ 66

7.1 Power and Grounding ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 66

7.2 Maximum Ratings ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 67

7.3 Operating Conditions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 68

7.4 DC Specifications ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 69

7.5 AC Specifications ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 70

8.0 DIFFERENCES BETWEEN THE
i386TM SX CPU and the i386TM DX
CPU ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 75

9.0 INSTRUCTION SET ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 76

9.1 i386TM SX CPU Instruction
Encoding and Clock Count
Summary ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 76

9.2 Instruction Encoding ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 91

2

MILITARY i386TM SX MICROPROCESSOR

1.0 PIN DESCRIPTION

The following are the i386 SX Microprocessor pin descriptions. The following definitions are used in the pin
descriptions:

I Input signal

O Output signal

I/O Input and Output signal

Ð No electrical connection

Symbol Type Name and Function

CLK2 I CLK2 provides the fundamental timing for the i386 SX Microprocessor. *See
Clock for additional information.

RESET I RESET suspends any operation in progress and places the i386 SX
Microprocessor in a known reset state. *See Interrupt Signals for additional
information.

D15–D0 I/O Data Bus inputs data during memory, I/O and interrupt acknowledge read
cycles and outputs data during memory and I/O write cycles. *See Data Bus
for additional information.

A23–A1 O Address Bus outputs physical memory or port I/O addresses. *See Address
Bus for additional information.

W/R O Write/Read is a bus cycle definition pin that distinguishes write cycles from
read cycles. *See Bus Cycle Definition Signals for additional information.

D/C O Data/Control is a bus cycle definition pin that distinguishes data cycles,
either memory or I/O, from control cycles which are: interrupt acknowledge,
halt, and code fetch. *See Bus Cycle Definition Signals for additional
information.

M/IO O Memory/IO is a bus cycle definition pin that distinguishes memory cycles
from input/output cycles. *See Bus Cycle Definition Signals for additional
information.

LOCK O Bus Lock is a bus cycle definition pin that indicates that other system bus
masters are not to gain control of the system bus while it is active. *See Bus
Cycle Definition Signals for additional information.

ADS O Address Status indicates that a valid bus cycle definition and address (W/R,
D/C, M/IO, BHE, BLE and A23–A1) is being driven at the i386 SX
Microprocessor pins. *See Bus Control Signals for additional information.

NA I Next Address is used to request address pipelining. *See Bus Control
Signals for additional information.

READY I Bus Ready terminates the bus cycle. *See Bus Control Signals for
additional information.

BHE, BLE O Byte Enables indicate which data bytes of the data bus take part in a bus
cycle. *See Address Bus for additional information.

*Located in Section 5.1.

3

MILITARY i386TM SX MICROPROCESSOR

1.0 PIN DESCRIPTION (Continued)

Symbol Type Name and Function

HOLD I Bus Hold Request input allows another bus master to request control of the
local bus. *See Bus Arbitration Signals for additional information.

HLDA O Bus Hold Acknowledge output indicates that the i386 SX Microprocessor
has surrendered control of its local bus to another bus master. *See Bus
Arbitration Signals for additional information.

INTR I Interrupt Request is a maskable input that signals the i386 SX
Microprocessor to suspend execution of the current program and execute an
interrupt acknowledge function. *See Interrupt Signals for additional
information.

NMI I Non-Maskable Interrupt Request is a non-maskable input that signals the
i386 SX Microprocessor to suspend execution of the current program and
execute an interrupt acknowledge function. *See Interrupt Signals for
additional information.

BUSY I Busy signals a busy condition from a processor extension. *See
Coprocessor Interface Signals for additional information.

ERROR I Error signals an error condition from a processor extension. *See
Coprocessor Interface Signals for additional information.

PEREQ I Processor Extension Request indicates that the processor has data to be
transferred by the i386 SX Microprocessor. *See Coprocessor Interface
Signals for additional information.

N/C Ð No Connects should always be left unconnected. Connection of a N/C pin
may cause the processor to malfunction or be incompatible with future
steppings of the i386 SX Microprocessor.

VCC I System Power provides the a5V nominal DC supply input.

VSS I System Ground provides the 0V connection from which all inputs and
outputs are measured.

*Located in Section 5.1.

4

MILITARY i386TM SX MICROPROCESSOR

1.0 PIN DESCRIPTION (Continued)

Top View

(Component Side)

271110–2

Bottom View

(Pin Side)

271110–3

Figure 1.1. i386TM SX 88-Lead Pin Grid Array Pinout

Table 1.1. 88-Lead Pin Grid Array Pin Assignments

Address Data Control VCC VSS N/C

A1 . . . K1 D0 . . . F1 ADS . . . J1 B2 B11 L1

A2 . . . M10 D1 . . . E2 BHE . . . K2 B12 C2

A3 . . . M11 D2 . . . E1 BLE . . . J2 C1 D1

A4 . . . M12 D3 . . . D2 BUSY . . . M7 M2 M1

A5 . . . L12 D4 . . . B3 CLK2 . . . H2 N3 N4

A6 . . . K13 D5 . . . A4 D/C . . . M3 N5 N9

A7 . . . K12 D6 . . . B4 ERROR. . . N8 N10 N11

A8 . . . J12 D7 . . . B5 HLDA . . . F2 A1 A2

A9 . . . J13 D8 . . . A5 HOLD . . . G1 A3 A12

A10 . . . H12 D9 . . . B6 INTR . . . M9 A11 B1

A11 . . . H13 D10 . . . A6 LOCK . . . M5 A13 B13

A12 . . . G13 D11 . . . B7 M/IO . . . L2 C13 M13

A13 . . . G12 D12 . . . A7 NA . . . G2 L13 N2

A14 . . . F13 D13 . . . B8 NMI . . . M8 N1 N6

A15 . . . F12 D14 . . . A8 PEREQ. . . N7 N13 N12

A16 . . . E13 D15 B9 READY. . . H1

A17 . . . E12 RESET . . . M6

A18 . . . D12 W/R M4

A19 . . . D13

A20 . . . C12

A21 . . . B10

A22 . . . A10

A23 . . . A9

NOTE:
N/C (No Connect) pins must not be connected.

5

MILITARY i386TM SX MICROPROCESSOR

1.0 PIN DESCRIPTION (Continued)

NOTE: 271110–47

NC e No Connect

Figure 1.2. i386TM SX Microprocessor Pin Out Top View

Table 1.2 Alphabetical Pin Assignments

Address Data Control N/C VCC VSS

A1 18 D0 1 ADS 16 20 8 2
A2 51 D1 100 BHE 19 27 9 5
A3 52 D2 99 BLE 17 29 10 11
A4 53 D3 96 BUSY 34 30 21 12
A5 54 D4 95 CLK2 15 31 32 13
A6 55 D5 94 D/C 24 43 39 14
A7 56 D6 93 ERROR 36 44 42 22
A8 58 D7 92 FLT 28 45 48 35
A9 59 D8 90 HLDA 3 46 57 41
A10 60 D9 89 HOLD 4 47 69 49
A11 61 D10 88 INTR 40 71 50
A12 62 D11 87 LOCK 26 84 63
A13 64 D12 86 M/IO 23 91 67
A14 65 D13 83 NA 6 97 68
A15 66 D14 82 NMI 38 77
A16 70 D15 81 PEREQ 37 78
A17 72 READY 7 85
A18 73 RESET 33 98
A19 74 W/R 25
A20 75
A21 76
A22 79
A23 80

NOTE:
N/C (No Connect) pins must not be connected.

6

MILITARY i386TM SX MICROPROCESSOR

271110–4

Figure 2.1. i386TM SX Microprocessor Registers

7

MILITARY i386TM SX MICROPROCESSOR

INTRODUCTION

The i386 SX Microprocessor is 100% object code
compatible with the i386 DX, M286 and M8086 mi-
croprocessors. System manufacturers can provide
i386 DX CPU based systems optimized for perform-
ance and i386 SX CPU based systems optimized for
cost, both sharing the same operating systems and
application software. Systems based on the i386 SX
CPU can access the world’s largest existing micro-
computer software base, including the growing
32-bit software base. Only the Intel386 architecture
can run UNIX, OS/2 and MS-DOS.

Instruction pipelining, high bus bandwidth, and a
very high performance ALU ensure short average
instruction execution times and high system
throughput. The i386 SX CPU is capable of execu-
tion at sustained rates of 2.5–3.0 million instructions
per second.

The integrated memory management unit (MMU) in-
cludes an address translation cache, advanced mul-
ti-tasking hardware, and a four-level hardware-en-
forced protection mechanism to support operating
systems. The virtual machine capability of the
i386 SX CPU allows simultaneous execution of ap-
plications from multiple operating systems such as
MS-DOS and UNIX.

The i386 SX CPU offers on-chip testability and de-
bugging features. Four breakpoint registers allow
conditional or unconditional breakpoint traps on
code execution or data accesses for powerful de-
bugging of even ROM-based systems. Other testa-
bility features include self-test, tri-state of output
buffers, and direct access to the page translation
cache.

2.0 BASE ARCHITECTURE

The i386 SX Microprocessor consists of a central
processing unit, a memory management unit and a
bus interface.

The central processing unit consists of the execu-
tion unit and the instruction unit. The execution unit
contains the eight 32-bit general purpose registers
which are used for both address calculation and
data operations and a 64-bit barrel shifter used to
speed shift, rotate, multiply, and divide operations.
The instruction unit decodes the instruction opcodes
and stores them in the decoded instruction queue
for immediate use by the execution unit.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by

providing an extra addressing component, one that
allows easy code and data relocatability, and effi-
cient sharing. The paging mechanism operates be-
neath and is transparent to the segmentation pro-
cess, to allow management of the physical address
space.

The segmentation unit provides four levels of pro-
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The i386 SX Microprocessor has two modes of oper-
ation: Real Address Mode (Real Mode), and Protect-
ed Virtual Address Mode (Protected Mode). In Real
Mode the i386 SX Microprocessor operates as a
very fast M8086, but with 32-bit extensions if de-
sired. Real Mode is required primarily to set up the
processor for Protected Mode operation.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with M8086
semantics, thus allowing M8086 software (an appli-
cation program or an entire operating system) to ex-
ecute. The Virtual 8086 tasks can be isolated and
protected from one another and the host i386 SX
Microprocessor operating system by use of paging.

Finally, to facilitate high performance system hard-
ware designs, the i386 SX Microprocessor bus inter-
face offers address pipelining and direct Byte En-
able signals for each byte of the data bus.

2.1 Register Set

The i386 SX Microprocessor has thirty-four registers
as shown in Figure 2-1. These registers are grouped
into the following seven categories:

General Purpose Registers: The eight 32-bit gen-
eral purpose registers are used to contain arithmetic
and logical operands. Four of these (EAX, EBX,
ECX, and EDX) can be used either in their entirety as
32-bit registers, as 16-bit registers, or split into pairs
of separate 8-bit registers.

Segment Registers: Six 16-bit special purpose reg-
isters select, at any given time, the segments of
memory that are immediately addressable for code,
stack, and data.

Flags and Instruction Pointer Registers: The two
32-bit special purpose registers in Figure 2.1 record
or control certain aspects of the i386 SX Microproc-
essor state. The EFLAGS register includes status
and control bits that are used to reflect the outcome
of many instructions and modify the semantics of

8

MILITARY i386TM SX MICROPROCESSOR

some instructions. The Instruction Pointer, called
EIP, is 32 bits wide. The Instruction Pointer controls
instruction fetching and the processor automatically
increments it after executing an instruction.

Control Registers: The four 32-bit control registers
are used to control the global nature of the i386 SX
Microprocessor. The CR0 register contains bits that
set the different processor modes (Protected, Real,
Paging and Coprocessor Emulation). CR2 and CR3
registers are used in the paging operation.

System Address Registers: These four special
registers reference the tables or segments support-
ed by the M80286/i386 SX/i386 DX CPU’s protec-
tion model. These tables or segments are:

GDTR (Global Descriptor Table Register),

IDTR (Interrupt Descriptor Table Register),

LDTR (Local Descriptor Table Register),

TR (Task State Segment Register).

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debug-
ging. The use of the debug registers is described in
Section 2.10 Debugging Support.

Test Registers: Two registers are used to control
the testing of the RAM/CAM (Content Addressable
Memories) in the Translation Lookaside Buffer por-
tion of the i386 SX Microprocessor. Their use is dis-
cussed in Testability.

EFLAGS REGISTER

The flag register is a 32-bit register named EFLAGS.
The defined bits and bit fields within EFLAGS,
shown in Figure 2.2, control certain operations and
indicate the status of the i386 SX Microprocessor.
The lower 16 bits (bits 0–15) of EFLAGS contain the
16- bit flag register named FLAGS. This is the de-
fault flag register used when executing M8086,
M80286, or real mode code. The functions of the
flag bits are given in Table 2.1.

271110–5

Figure 2.2. Status and Control Register Bit Functions

9

MILITARY i386TM SX MICROPROCESSOR

Table 2.1. Flag Definitions

Bit Position Name Function

0 CF Carry FlagÐSet on high-order bit carry or borrow; cleared otherwise.

2 PF Parity FlagÐSet if low-order 8 bits of result contain an even number of
1-bits; cleared otherwise.

4 AF Auxiliary Carry FlagÐSet on carry from or borrow to the low order four
bits of AL; cleared otherwise.

6 ZF Zero FlagÐSet if result is zero; cleared otherwise.

7 SF Sign FlagÐSet equal to high-order bit of result (0 if positive, 1 if
negative).

8 TF Single Step FlagÐOnce set, a single step interrupt occurs after the
next instruction executes. TF is cleared by the single step interrupt.

9 IF Interrupt-Enable FlagÐWhen set, maskable interrupts will cause the
CPU to transfer control to an interrupt vector specified location.

10 DF Direction FlagÐCauses string instructions to auto-increment (default)
the appropriate index registers when cleared. Setting DF causes auto-
decrement.

11 OF Overflow FlagÐSet if the operation resulted in a carry/borrow into the
sign bit (high-order bit) of the result but did not result in a carry/borrow
out of the high-order bit or vice-versa.

12, 13 IOPL I/O Privilege LevelÐIndicates the maximum CPL permitted to execute
I/O instructions without generating an exception 13 fault or consulting
the I/O permission bit map while executing in protected mode. For
virtual 86 mode it indicates the maximum CPL allowing alteration of the
IF bit.

14 NT Nested TaskÐIndicates that the execution of the current task is
nested within another task.

16 RF Resume FlagÐUsed in conjunction with debug register breakpoints. It
is checked at instruction boundaries before breakpoint processing. If
set, any debug fault is ignored on the next instruction.

17 VM Virtual 8086 ModeÐIf set while in protected mode, the i386 SX
Microprocessor will switch to virtual 8086 operation, handling segment
loads as the 8086 does, but generating exception 13 faults on
privileged opcodes.

1 Set bit to ONE.

3, 5, 15 Set bits to ZERO.

10

MILITARY i386TM SX MICROPROCESSOR

CONTROL REGISTERS

The i386 SX Microprocessor has three control registers of 32 bits, CR0, CR2 and CR3, to hold the machine
state of a global nature. These registers are shown in Figures 2.1 and 2.2. The defined CR0 bits are described
in Table 2.2.

Table 2.2. CR0 Definitions

Bit Position Name Function

0 PE Protection mode enableÐplaces the i386 SX Microprocessor into
protected mode. If PE is reset, the processor operates again in Real
Mode. PE may be set by loading MSW or CR0. PE can be reset only by
loading CR0, it cannot be reset by the LMSW instruction.

1 MP Monitor coprocessor extensionÐallows WAIT instructions to cause a
processor extension not present exception (number 7).

2 EM Emulate processor extensionÐcauses a processor extension not
present exception (number 7) on ESC instructions to allow emulating a
processor extension.

3 TS Task switchedÐindicates the next instruction using a processor
extension will cause exception 7, allowing software to test whether the
current processor extension context belongs to the current task.

31 PG Paging enable bitÐis set to enable the on-chip paging unit. It is reset
to disable the on-chip paging unit.

4 Set bit to ZERO.

2.2 Instruction Set

The instruction set is divided into nine categories of
operations:

Data Transfer
Arithmetic
Shift/Rotate
String Manipulation
Bit Manipulation
Control Transfer
High Level Language Support
Operating System Support
Processor Control

These instructions are listed in Table 9.1 Instruc-
tion Set Clock Count Summary.

All i386 SX Microprocessor instructions operate on
either 0, 1, 2 or 3 operands; an operand resides in a
register, in the instruction itself, or in memory. Most
zero operand instructions (e.g CLI, STI) take only
one byte. One operand instructions generally are
two bytes long. The average instruction is 3.2 bytes
long. Since the i386 SX Microprocessor has a
16 byte prefetch instruction queue, an average of 5
instructions will be prefetched. The use of two oper-
ands permits the following types of common instruc-
tions:

Register to Register
Memory to Register
Immediate to Register
Memory to Memory
Register to Memory
Immediate to Memory.

11

MILITARY i386TM SX MICROPROCESSOR

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
i386 SX Microprocessor (32-bit code), operands are
8 bits or 32 bits; when executing existing M8086 or
M80286 code (16-bit code), operands are 8 bits or
16 bits. Prefixes can be added to all instructions
which override the default length of the operands
(i.e. use 32-bit operands for 16-bit code, or 16-bit
operands for 32-bit code).

2.3 Memory Organization

Memory on the i386 SX Microprocessor is divided
into 8-bit quantities (bytes), 16-bit quantities (words),
and 32-bit quantities (dwords). Words are stored in
two consecutive bytes in memory with the low-order
byte at the lowest address. Dwords are stored in
four consecutive bytes in memory with the low-order
byte at the lowest address. The address of a word or
dword is the byte address of the low-order byte.

In addition to these basic data types, the i386 SX
Microprocessor supports two larger units of memory:
segments and pages. Memory can be divided up
into one or more variable length segments, which
can be swapped to disk or shared between pro-
grams. Memory can also be organized into one or
more 4K byte pages. Finally, both segmentation and
paging can be combined, gaining the advantages of
both systems. The i386 SX Microprocessor supports
both segmentation and pages in order to provide
maximum flexibility to the system designer. Segmen-
tation and paging are complementary. Segmentation
is useful for organizing memory in logical modules,
and as such is a tool for the application programmer,
while pages are useful to the system programmer for
managing the physical memory of a system.

ADDRESS SPACES

The i386 SX Microprocessor has three types of ad-
dress spaces: logical, linear, and physical. A logi-
cal address (also known as a virtual address) con-
sists of a selector and an offset. A selector is the
contents of a segment register. An offset is formed
by summing all of the addressing components
(BASE, INDEX, DISPLACEMENT), discussed in sec-
tion 2.4 Addressing Modes, into an effective ad-
dress. This effective address along with the selector
is known as the logical address. Since each task on
the i386 SX Microprocessor has a maximum of 16K
(214 b1) selectors, and offsets can be 4 gigabytes
(with paging enabled) this gives a total of 246 bits, or
64 terabytes, of logical address space per task. The
programmer sees the logical address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress is truncated into a 24-bit physical address.
The physical address is what appears on the ad-
dress pins.

The primary differences between Real Mode and
Protected Mode are how the segmentation unit per-
forms the translation of the logical address into the
linear address, size of the address space, and pag-
ing capability. In Real Mode, the segmentation unit
shifts the selector left four bits and adds the result to
the effective address to form the linear address.
This linear address is limited to 1 megabyte. In addi-
tion, real mode has no paging capability.

Protected Mode will see one of two different ad-
dress spaces, depending on whether or not paging
is enabled. Every selector has a logical base ad-
dress associated with it that can be up to 32 bits in
length. This 32-bit logical base address is added to
the effective address to form a final 32-bit linear

12

MILITARY i386TM SX MICROPROCESSOR

271110–6

Figure 2.3. Address Translation

address. If paging is disabled this final linear ad-
dress reflects physical memory and is truncated so
that only the lower 24 bits of this address are used
to address the 16 megabyte memory address space.
If paging is enabled this final linear address reflects
a 32-bit address that is translated through the pag-
ing unit to form a 16-megabyte physical address.
The logical base address is stored in one of two
operating system tables (i.e. the Local Descriptor
Table or Global Descriptor Table).

Figure 2.3 shows the relationship between the vari-
ous address spaces.

SEGMENT REGISTER USAGE

The main data structure used to organize memory is
the segment. On the i386 SX Microprocessor, seg-
ments are variable sized blocks of linear addresses
which have certain attributes associated with them.
There are two main types of segments, code and
data. The segments are of variable size and can be
as small as 1 byte or as large as 4 gigabytes (232

bits).

In order to provide compact instruction encoding
and increase processor performance, instructions
do not need to explicitly specify which segment reg-
ister is used. The segment register is automatically
chosen according to the rules of Table 2.3 (Segment
Register Selection Rules). In general, data refer-
ences use the selector contained in the DS register,
stack references use the SS register and instruction

fetches use the CS register. The contents of the In-
struction Pointer provide the offset. Special segment
override prefixes allow the explicit use of a given
segment register, and override the implicit rules list-
ed in Table 2.3. The override prefixes also allow the
use of the ES, FS and GS segment registers.

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero
and create a system with a four gigabyte linear ad-
dress space. This creates a system where the virtual
address space is the same as the linear address
space. Further details of segmentation are dis-
cussed in Section 4, Protected Mode Archi-
tecture.

2.4 Addressing Modes

The i386 SX Microprocessor provides a total of 8
addressing modes for instructions to specify oper-
ands. The addressing modes are optimized to allow
the efficient execution of high level languages such
as C and FORTRAN, and they cover the vast majori-
ty of data references needed by high-level lan-
guages.

REGISTER AND IMMEDIATE MODES

Two of the addressing modes provide for instruc-
tions that operate on register or immediate oper-
ands:

13

MILITARY i386TM SX MICROPROCESSOR

Table 2.3. Segment Register Selection Rules

Type of Implied (Default) Segment Override

Memory Reference Segment Use Prefixes Possible

Code Fetch CS None

Destination of PUSH, PUSHF, INT,

CALL, PUSHA Instructons SS None

Source of POP, POPA, POPF, IRET,

RET Instructions SS None

Destination of STOS,

MOVE, REP STOS, and

REP MOVS instructions ES None

Other data references,

with effective address

using base register of:
[EAX] DS CS,SS,ES,FS,GS
[EBX] DS CS,SS,ES,FS,GS
[ECX] DS CS,SS,ES,FS,GS
[EDX] DS CS,SS,ES,FS,GS
[ESI] DS CS,SS,ES,FS,GS
[EDI] DS CS,SS,ES,FS,GS
[EBP] SS CS,DS,ES,FS,GS
[ESP] SS CS,DS,ES,FS,GS

Register Operand Mode: The operand is located in
one of the 8, 16 or 32-bit general registers.

Immediate Operand Mode: The operand is includ-
ed in the instruction as part of the opcode.

32-BIT MEMORY ADDRESSING MODES

The remaining 6 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by summing any
combination of the following three address elements
(see Figure 2.3):

DISPLACEMENT: an 8-, 16- or 32-bit immediate val-
ue, following the instruction.

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compil-
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char-
acters. The index register’s value can be multiplied
by a scale factor, either 1, 2, 4 or 8. The scaled index
is especially useful for accessing arrays or struc-
tures.

Combinations of these 3 components make up the 6
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-
binations, since the effective address calculation is
pipelined with the execution of other instructions.
The one exception is the simultaneous use of Base
and Index components which requires one addition-
al clock.

As shown in Figure 2.4, the effective address (EA) of
an operand is calculated according to the following
formula:

EA e BaseRegister a (IndexRegister*scaling) a Displacement

1. Direct Mode: The operand’s offset is contained
as part of the instruction as an 8-, 16- or 32-bit
displacement.

2. Register Indirect Mode: A BASE register con-
tains the address of the operand.

3. Based Mode: A BASE register’s contents are
added to a DISPLACEMENT to form the oper-
and’s offset.

4. Scaled Index Mode: An INDEX register’s con-
tents are multiplied by a SCALING factor, and the
result is added to a DISPLACEMENT to form the
operand’s offset.

14

MILITARY i386TM SX MICROPROCESSOR

271110–7

Figure 2.4. Addressing Mode Calculations

5. Based Scaled Index Mode: The contents of an
INDEX register are multiplied by a SCALING fac-
tor, and the result is added to the contents of a
BASE register to obtain the operand’s offset.

6. Based Scaled Index Mode with Displacement:
The contents of an INDEX register are multiplied
by a SCALING factor, and the result is added to
the contents of a BASE register and a DISPLACE-
MENT to form the operand’s offset.

DIFFERENCES BETWEEN 16-BIT AND 32-BIT
ADDRESSES

In order to provide software compatibility with the
M8086 and the M80286, the i386 SX Microproces-
sor can execute 16-bit instructions in Real and Pro-
tected Modes. The processor determines the size of
the instructions it is executing by examining the D bit
in a Segment Descriptor. If the D bit is 0 then all
operand lengths and effective addresses are as-
sumed to be 16 bits long. If the D bit is 1 then the
default length for operands and addresses is 32 bits.
In Real Mode the default size for operands and ad-
dresses is 16 bits.

Regardless of the default precision of the operands
or addresses, the i386 SX Microprocessor is able to
execute either 16- or 32-bit instructions. This is
specified through the use of override prefixes. Two
prefixes, the Operand Length Prefix and the Ad-
dress Length Prefix, override the value of the D bit
on an individual instruction basis. These prefixes are
automatically added by assemblers.

The Operand Length and Address Length Prefixes
can be applied separately or in combination to any
instruction. The Address Length Prefix does not al-
low addresses over 64 Kbytes to be accessed in
Real Mode. A memory address which exceeds
0FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional i386 SX Microprocessor addressing modes.

When executing 32-bit code, the i386 SX Microproc-
essor uses either 8- or 32-bit displacements, and
any register can be used as base or index registers.
When executing 16-bit code, the displacements are
either 8- or 16-bits, and the base and index register
conform to the M80286 model. Table 2.4 illustrates
the differences.

15

MILITARY i386TM SX MICROPROCESSOR

Table 2.4. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing 32-Bit Addressing

BASE REGISTER BX,BP Any 32-bit GP Register

INDEX REGISTER SI,DI Any 32-bit GP Register

Except ESP

SCALE FACTOR None 1, 2, 4, 8

DISPLACEMENT 0, 8, 16-bits 0, 8, 32-bits

2.5 Data Types

The i386 SX Microprocessor supports all of the data
types commonly used in high level languages:

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits, which
spans a maximum of four bytes.

Bit String: A set of contiguous bits; on the i386 SX
Microprocessor, bit strings can be up to 4 gigabits
long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.

Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit quan-
tity. All operations assume a 2’s complement repre-
sentation.

Unsigned Integer (Word): An unsigned 16-bit
quantity.

Unsigned Long Integer (Double Word): An un-
signed 32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.

Unsigned Quad Word: An unsigned 64-bit quantity.

Pointer: A 16- or 32-bit offset-only quantity which
indirectly references another memory location.

Long Pointer: A full pointer which consists of a
16-bit segment selector and either a 16- or 32-bit
offset.

Char: A byte representation of an ASCII Alphanu-
meric or control character.

String: A contiguous sequence of bytes, words or
dwords. A string may contain between 1 byte and 4
gigabytes

BCD: A byte (unpacked) representation of decimal
digits 0–9.

Packed BCD: A byte (packed) representation of two
decimal digits 0–9 storing one digit in each nibble.

When the i386 SX Microprocessor is coupled with its
numerics coprocessor, the i387 SX, then the follow-
ing common floating point types are supported:

Floating Point: A signed 32-, 64-, or 80-bit real num-
ber representation. Floating point numbers are sup-
ported by the i387 SX numerics coprocessor.

Figure 2.5 illustrates the data types supported by the
i386 SX Microprocessor and the i387 SX numerics
coprocessor.

2.6 I/O Space

The i386 SX Microprocessor has two distinct physi-
cal address spaces: physical memory and I/O. Gen-
erally, peripherals are placed in I/O space although
the i386 SX Microprocessor also supports memory-
mapped peripherals. The I/O space consists of 64
Kbytes which can be divided into 64K 8-bit ports or
32K 16-bit ports, or any combination of ports which
add up to no more than 64 Kbytes. The 64K I/O
address space refers to physical addresses rather
than linear addresses since I/O instructions do not
go through the segmentation or paging hardware.
The M/IO pin acts as an additional address line,
thus allowing the system designer to easily deter-
mine which address space the processor is access-
ing.

The I/O ports are accessed by the IN and OUT in-
structions, with the port address supplied as an im-
mediate 8-bit constant in the instruction or in the
EDX register. All 8-bit and 16-bit port addresses are
zero extended on the upper address lines. The I/O
instructions cause the M/IO pin to be driven LOW.
I/O port addresses 00F8H through 00FFH are re-
served for use by Intel.

16

MILITARY i386TM SX MICROPROCESSOR

271110–8

Figure 2.5. i386TM SX Microprocessor Supported Data Types

17

MILITARY i386TM SX MICROPROCESSOR

Table 2.5. Interrupt Vector Assignments

Return Address

Interrupt
Instruction Which

Points to
Function

Number
Can Cause

Faulting
Type

Exception
Instruction

Divide Error 0 DIV, IDIV YES FAULT

Debug Exception 1 any instruction YES TRAP*

NMI Interrupt 2 INT 2 or NMI NO NMI

One Byte Interrupt 3 INT NO TRAP

Interrupt on Overflow 4 INTO NO TRAP

Array Bounds Check 5 BOUND YES FAULT

Invalid OP-Code 6 Any illegal instruction YES FAULT

Device Not Available 7 ESC, WAIT YES FAULT

Double Fault 8
Any instruction that can

ABORT
generate an exception

Coprocessor Segment Overrun 9 ESC NO ABORT

Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT

Segment Not Present 11 Segment Register Instructions YES FAULT

Stack Fault 12 Stack References YES FAULT

General Protection Fault 13 Any Memory Reference YES FAULT

Page Fault 14 Any Memory Access or Code Fetch YES FAULT

Coprocessor Error 16 ESC, WAIT YES FAULT

Intel Reserved 17–32

Two Byte Interrupt 0–255 INT n NO TRAP

*Some debug exceptions may report both traps on the previous instruction and faults on the next instruction.

2.7 Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow in order to handle external events, report errors
or exceptional conditions. The difference between
interrupts and exceptions is that interrupts are used
to handle asynchronous external events while ex-
ceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT n
instruction, the processor treats software interrupts
as exceptions.

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately af-
ter the interrupted instruction.

Exceptions are classified as faults, traps, or aborts,
depending on the way they are reported and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. Traps are exceptions that are
reported immediately after the execution of the in-
struction which caused the problem. Aborts are ex-
ceptions which do not permit the precise location of
the instruction causing the exception to be deter-
mined.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point to the instruction
causing the exception and will include any leading
instruction prefixes. Table 2.5 summarizes the possi-
ble interrupts for the i386 SX Microprocessor and
shows where the return address points to.

18

MILITARY i386TM SX MICROPROCESSOR

The i386 SX Microprocessor has the ability to han-
dle up to 256 different interrupts/exceptions. In or-
der to service the interrupts, a table with up to 256
interrupt vectors must be defined. The interrupt vec-
tors are simply pointers to the appropriate interrupt
service routine. In Real Mode, the vectors are 4-byte
quantities, a Code Segment plus a 16-bit offset; in
Protected Mode, the interrupt vectors are 8 byte
quantities, which are put in an Interrupt Descriptor
Table. Of the 256 possible interrupts, 32 are re-
served for use by Intel and the remaining 224 are
free to be used by the system designer.

INTERRUPT PROCESSING

When an interrupt occurs, the following actions hap-
pen. First, the current program address and Flags
are saved on the stack to allow resumption of the
interrupted program. Next, an 8-bit vector is supplied
to the i386 SX Microprocessor which identifies the
appropriate entry in the interrupt table. The table
contains the starting address of the interrupt service
routine. Then, the user supplied interrupt service
routine is executed. Finally, when an IRET instruc-
tion is executed the old processor state is restored
and program execution resumes at the appropriate
instruction.

The 8-bit interrupt vector is supplied to the i386 SX
Microprocessor in several different ways: exceptions
supply the interrupt vector internally; software INT
instructions contain or imply the vector; maskable
hardware interrupts supply the 8-bit vector via the
interrupt acknowledge bus sequence. Non-Maska-
ble hardware interrupts are assigned to interrupt
vector 2.

Maskable Interrupt

Maskable interrupts are the most common way to
respond to asynchronous external hardware events.
A hardware interrupt occurs when the INTR is pulled
HIGH and the Interrupt Flag bit (IF) is enabled. The
processor only responds to interrupts between in-
structions (string instructions have an ‘‘interrupt win-
dow’’ between memory moves which allows inter-
rupts during long string moves). When an interrupt
occurs the processor reads an 8-bit vector supplied
by the hardware which identifies the source of the
interrupt (one of 224 user defined interrupts).

Interrupts through interrupt gates automatically reset
IF, disabling INTR requests. Interrupts through Trap
Gates leave the state of the IF bit unchanged. Inter-
rupts through a Task Gate change the IF bit accord-
ing to the image of the EFLAGs register in the task’s
Task State Segment (TSS). When an IRET instruc-
tion is executed, the original state of the IF bit is
restored.

Non-Maskable Interrupt

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. When the NMI input
is pulled HIGH it causes an interrupt with an internal-
ly supplied vector value of 2. Unlike a normal hard-
ware interrupt, no interrupt acknowledgment se-
quence is performed for an NMI.

While executing the NMI servicing procedure, the
i386 SX Microprocessor will not service any further
NMI request or INT requests until an interrupt return
(IRET) instruction is executed or the processor is
reset. If NMI occurs while currently servicing an NMI,
its presence will be saved for servicing after execut-
ing the first IRET instruction. The IF bit is cleared at
the beginning of an NMI interrupt to inhibit further
INTR interrupts.

Software Interrupts

A third type of interrupt/exception for the i386 SX
Microprocessor is the software interrupt. An INT n
instruction causes the processor to execute the in-
terrupt service routine pointed to by the nth vector in
the interrupt table.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt is the single step
interrupt. It is discussed in Single Step Trap.

19

MILITARY i386TM SX MICROPROCESSOR

INTERRUPT AND EXCEPTION PRIORITIES

Interrupts are externally generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at in-
struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the i386 SX Microprocessor invokes the
NMI service routine first. If maskable interrupts are
still enabled after the NMI service routine has been
invoked, then the i386 SX Microprocessor will in-
voke the appropriate interrupt service routine.

As the i386 SX Microprocessor executes instruc-
tions, it follows a consistent cycle in checking for
exceptions, as shown in Table 2.6. This cycle is re-

peated as each instruction is executed, and occurs
in parallel with instruction decoding and execution.

INSTRUCTION RESTART

The i386 SX Microprocessor fully supports restarting
all instructions after Faults. If an exception is detect-
ed in the instruction to be executed (exception cate-
gories 4 through 10 in Table 2.6), the i386 SX Micro-
processor invokes the appropriate exception service
routine. The i386 SX Microprocessor is in a state
that permits restart of the instruction, for all cases
but those given in Table 2.7. Note that all such cas-
es will be avoided by a properly designed operating
system.

Table 2.6. Sequence of Exception Checking

Consider the case of the i386 SX Microprocessor having just completed an instruction. It then performs the
following checks before reaching the point where the next instruction is completed:

1. Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or Data
Breakpoints set in the Debug Registers).

2. Check for external NMI and INTR.

3. Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in the Debug
Registers for the next instruction).

4. Check for Segmentation Faults that prevented fetching the entire next instruction (exceptions 11 or 13).

5. Check for Page Faults that prevented fetching the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction (exception 6 if illegal opcode; exception 6 if in Real Mode
or in Virtual 8086 Mode and attempting to execute an instruction for Protected Mode only; or exception
13 if instruction is longer than 15 bytes, or privilege violation in Protected Mode (i.e. not at IOPL or at
CPLe0).

7. If WAIT opcode, check if TSe1 and MPe1 (exception 7 if both are 1).

8. If ESCape opcode for numeric coprocessor, check if EMe1 or TSe1 (exception 7 if either are 1).

9. If WAIT opcode or ESCape opcode for numeric coprocessor, check ERROR input signal (exception 16 if
ERROR input is asserted).

10. Check in the following order for each memory reference required by the instruction:

a. Check for Segmentation Faults that prevent transferring the entire memory quantity (exceptions 11,
12, 13).

b. Check for Page Faults that prevent transferring the entire memory quantity (exception 14).

NOTE:
Segmentation exceptions are generated before paging exceptions.

Table 2.7. Conditions Preventing Instruction Restart

1. An instruction causes a task switch to a task whose Task State Segment is partially ‘‘not present’’ (An
entirely ‘‘not present’’ TSS is restartable). Partially present TSS’s can be avoided either by keeping the
TSS’s of such tasks present in memory, or by aligning TSS segments to reside entirely within a single 4K
page (for TSS segments of 4 Kbytes or less).

2. A coprocessor operand wraps around the top of a 64 Kbyte segment or a 4 Gbyte segment, and spans
three pages, and the page holding the middle portion of the operand is ‘‘not present’’. This condition can
be avoided by starting at a page boundary any segments containing coprocessor operands if the
segments are approximately 64K-200 bytes or larger (i.e. large enough for wraparound of the coproces-
sor operand to possibly occur).

Note that these conditions are avoided by using the operating system designs mentioned in this table.

20

MILITARY i386TM SX MICROPROCESSOR

Table 2.8. Register Values after Reset

Flag Word (EFLAGS) uuuu0002H Note 1

Machine Status Word (CR0) uuuuuu10H

Instruction Pointer (EIP) 0000FFF0H

Code Segment (CS) F000H Note 2

Data Segment (DS) 0000H Note 3

Stack Segment (SS) 0000H

Extra Segment (ES) 0000H Note 3

Extra Segment (FS) 0000H

Extra Segment (GS) 0000H

EAX register 0000H Note 4

EDX register component and stepping ID Note 5

All other registers undefined Note 6

NOTES:
1. EFLAG Register. The upper 14 bits of the EFLAGS register are undefined, all defined flag bits are zero.
2. The Code Segment Register (CS) will have its Base Address set to 0FFFF0000H and Limit set to 0FFFFH.
3. The Data and Extra Segment Registers (DS, ES) will have their Base Address set to 000000000H and Limit set to
0FFFFH.
4. If self-test is selected, the EAX register should contain a 0 value. If a value of 0 is not found then the self-test has
detected a flaw in the part.
5. EDX register always holds component and stepping identifier.
6. All undefined bits are Intel Reserved and should not be used.

DOUBLE FAULT

A Double Fault (exception 8) results when the proc-
essor attempts to invoke an exception service rou-
tine for the segment exceptions (10, 11, 12 or 13),
but in the process of doing so detects an exception
other than a Page Fault (exception 14).

One other cause of generating a Double Fault is the
i386 SX Microprocessor detecting any other excep-
tion when it is attempting to invoke the Page Fault
(exception 14) service routine (for example, if a Page
Fault is detected when the i386 SX Microprocessor
attempts to invoke the Page Fault service routine).
Of course, in any functional system, not only in i386
SX Microprocessor-based systems, the entire page
fault service routine must remain ‘‘present’’ in mem-
ory.

2.8 Reset and Initialization

When the processor is initialized or Reset the regis-
ters have the values shown in Table 2.8. The i386
SX Microprocessor will then start executing instruc-
tions near the top of physical memory, at location
0FFFFF0H. When the first Intersegment Jump or
Call is executed, address lines A20–A23 will drop
LOW for CS-relative memory cycles, and the i386
SX Microprocessor will only execute instructions in
the lower one megabyte of physical memory. This
allows the system designer to use a shadow ROM at
the top of physical memory to initialize the system
and take care of Resets.

RESET forces the i386 SX Microprocessor to termi-
nate all execution and local bus activity. No instruc-
tion execution or bus activity will occur as long as
Reset is active. Between 350 and 450 CLK2 periods
after Reset becomes inactive, the i386 SX Micro-
processor will start executing instructions at the top
of physical memory.

2.9 Testability

The i386 SX Microprocessor, like the i386 Micro-
processor, offers testability features which include a
self-test and direct access to the page translation
cache.

SELF-TEST

The i386 SX Microprocessor has the capability to
perform a self-test. The self-test checks the function
of all of the Control ROM and most of the non-ran-
dom logic of the part. Approximately one-half of the
i386 SX Microprocessor can be tested during self-
test.

Self-Test is initiated on the i386 SX Microprocessor
when the RESET pin transitions from HIGH to LOW,
and the BUSY pin is LOW. The self-test takes about
220 clocks, or approximately 33 milliseconds with a
16 MHz i386 SX CPU. At the completion of self-test
the processor performs reset and begins normal op-
eration. The part has successfully passed self-test if
the contents of the EAX are zero. If the results of the
EAX are not zero then the self-test has detected a
flaw in the part.

21

MILITARY i386TM SX MICROPROCESSOR

271110–9

Figure 2.6. Test Registers

TLB TESTING

The i386 SX Microprocessor also provides a mecha-
nism for testing the Translation Lookaside Buffer
(TLB) if desired. This particular mechanism may not
be continued in the same way in future processors.

There are two TLB testing operations: 1) writing en-
tries into the TLB, and, 2) performing TLB lookups.
Two Test Registers, shown in Figure 2.6, are provid-
ed for the purpose of testing. TR6 is the ‘‘test com-
mand register’’, and TR7 is the ‘‘test data register’’.

2.10 Debugging Support

The i386 SX Microprocessor provides several fea-
tures which simplify the debugging process. The
three categories of on-chip debugging aids are:

1. The code execution breakpoint opcode (0CCH).

2. The single-step capability provided by the TF bit
in the flag register.

3. The code and data breakpoint capability provided
by the Debug Registers DR0–3, DR6, and DR7.

BREAKPOINT INSTRUCTION

A single-byte software interrupt (Int 3) breakpoint in-
struction is available for use by software debuggers.

The breakpoint opcode is 0CCH, and generates an
exception 3 trap when executed.

SINGLE-STEP TRAP

If the single-step flag (TF, bit 8) in the EFLAG regis-
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex-
ception is auto vectored to exception number 1.

DEBUG REGISTERS

The Debug Registers are an advanced debugging
feature of the i386 SX Microprocessor. They allow
data access breakpoints as well as code execution
breakpoints. Since the breakpoints are indicated by
on-chip registers, an instruction execution break-
point can be placed in ROM code or in code shared
by several tasks, neither of which can be supported
by the INT 3 breakpoint opcode.

The i386 SX Microprocessor contains six Debug
Registers, consisting of four breakpoint address reg-
isters and two breakpoint control registers. Initially
after reset, breakpoints are in the disabled state;
therefore, no breakpoints will occur unless the de-
bug registers are programmed. Breakpoints set up in
the Debug Registers are auto-vectored to exception
1. Figure 2.7 shows the breakpoint status and con-
trol registers.

22

MILITARY i386TM SX MICROPROCESSOR

271110–10

Figure 2.7. Debug Registers

3.0 REAL MODE ARCHITECTURE

When the processor is reset or powered up it is ini-
tialized in Real Mode. Real Mode has the same base
architecture as the M8086, but allows access to the
32-bit register set of the i386 SX Microprocessor.
The addressing mechanism, memory size, and inter-
rupt handling are all identical to the Real Mode on
the M80286.

The default operand size in Real Mode is 16 bits, as
in the M8086. In order to use the 32-bit registers and
addressing modes, override prefixes must be used.
In addition, the segment size on the i386 SX Micro-
processor in Real Mode is 64 Kbytes so 32-bit ad-
dresses must have a value less then 0000FFFFH.
The primary purpose of Real Mode is to set up the
processor for Protected Mode operation.

3.1 Memory Addressing

In Real Mode the linear addresses are the same as
physical addresses (paging is not allowed). Physical
addresses are formed in Real Mode by adding the
contents of the appropriate segment register which
is shifted left by four bits to an effective address.
This addition results in a 20-bit physical address or a
1 megabyte address space. Since segment registers
are shifted left by 4 bits, Real Mode segments al-
ways start on 16-byte boundaries.

All segments in Real Mode are exactly 64 Kbytes
long, and may be read, written, or executed. The
i386 SX Microprocessor will generate an exception
13 if a data operand or instruction fetch occurs past
the end of a segment.

23

MILITARY i386TM SX MICROPROCESSOR

Table 3.1. Exceptions in Real Mode

Function
Interrupt Related Return

Number Instructions Address Location

Interrupt table limit 8 INT vector is not Before

too small within table limit Instruction

CS, DS, ES, FS, GS 13 Word memory reference Before

Segment overrun exception with offset e 0FFFFH. Instruction

an attempt to execute

past the end of CS segment.

SS Segment overrun 12 Stack Reference Before

exception beyond offset e 0FFFFH Instruction

3.2 Reserved Locations

There are two fixed areas in memory which are re-
served in Real address mode: the system initializa-
tion area and the interrupt table area. Locations
00000H through 003FFH are reserved for interrupt
vectors. Each one of the 256 possible interrupts has
a 4-byte jump vector reserved for it. Locations
0FFFFF0H through 0FFFFFFH are reserved for sys-
tem initialization.

3.3 Interrupts

Many of the exceptions discussed in section 2.7 are
not applicable to Real Mode operation; in particular,
exceptions 10, 11 and 14 do not occur in Real
Mode. Other exceptions have slightly different
meanings in Real Mode; Table 3.1 identifies these
exceptions.

3.4 Shutdown and Halt

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IFe1), or RESET will force the i386 SX Microproc-
essor out of halt. If interrupted, the saved CS:IP will
point to the next instruction after the HLT.

Shutdown will occur when a severe error is detected
that prevents further processing. In Real Mode,
shutdown can occur under two conditions:

1. An interrupt or an exception occurs (Exceptions 8
or 13) and the interrupt vector is larger than the
Interrupt Descriptor Table.

2. A CALL, INT or PUSH instruction attempts to
wrap around the stack segment when SP is not
even.

An NMI input can bring the processor out of shut-
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least

000FH) and the stack has enough room to contain
the vector and flag information (i.e. SP is greater that
0005H). Otherwise, shutdown can only be exited by
a processor reset.

3.5 LOCK Operation

The LOCK prefix on the i386 SX Microprocessor,
even in Real Mode, is more restrictive than on the
M80286. This is due to the addition of paging on the
i386 SX Microprocessor in Protected Mode and Vir-
tual M8086 Mode. The LOCK prefix is not supported
during repeat string instructions.

The only instruction forms where the LOCK prefix is
legal on the i386 SX Microprocessor are shown in
Table 3.2.

Table 3.2. Legal Instructions for the LOCK Prefix

Opcode
Operands

(Dest, Source)

BIT Test and

SET/RESET Mem, Reg/Immediate

/COMPLEMENT

XCHG Reg, Mem

XCHG Mem, Reg

ADD, OR, ADC, SBB,

AND, SUB, XOR Mem, Reg/Immediate

NOT, NEG, INC, DEC Mem

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above.

The LOCK prefix is not IOPL-sensitive on the i386
SX Microprocessor. The LOCK prefix can be used at
any privilege level, but only on the instruction forms
listed in Table 3.2.

24

MILITARY i386TM SX MICROPROCESSOR

4.0 PROTECTED MODE
ARCHITECTURE

The complete capabilities of the i386 SX Microproc-
essor are unlocked when the processor operates in
Protected Virtual Address Mode (Protected Mode).
Protected Mode vastly increases the linear address
space to four gigabytes (232 bytes) and allows the
running of virtual memory programs of almost unlim-
ited size (64 terabytes (246 bytes)). In addition, Pro-
tected Mode allows the i386 SX Microprocessor to
run all of the existing i386 DX CPU (using only 16
megabytes of physical memory), M80286 and
M8086 CPU’s software, while providing a sophisti-
cated memory management and a hardware-assist-
ed protection mechanism. Protected Mode allows
the use of additional instructions specially optimized
for supporting multitasking operating systems. The
base architecture of the i386 SX Microprocessor re-
mains the same; the registers, instructions, and ad-
dressing modes described in the previous sections
are retained. The main difference between Protect-
ed Mode and Real Mode from a programmer’s view-
point is the increased address space and a different
addressing mechanism.

4.1 Addressing Mechanism

Like Real Mode, Protected Mode uses two compo-
nents to form the logical address; a 16-bit selector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as a 24-bit physical ad-
dress, or if paging is enabled the paging mechanism
maps the 32-bit linear address into a 24-bit physical
address.

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode, the se-
lector is used to specify an index into an operating
system defined table (see Figure 4.1). The table
contains the 32-bit base address of a given seg-
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the i386 SX Microprocessor, as paging
operates beneath segmentation. The page mecha-
nism translates the protected linear address which
comes from the segmentation unit into a physical
address. Figure 4.2 shows the complete i386 SX Mi-
croprocessor addressing mechanism with paging
enabled.

4.2 Segmentation

Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protec-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. All information about each
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in descriptor tables which are recognized
by hardware.

TERMINOLOGY

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege LevelÐOne of the four hierarchical
privilege levels. Level 0 is the most privileged
level and level 3 is the least privileged.

RPL: Requestor Privilege LevelÐThe privilege level
of the original supplier of the selector. RPL is
determined by the least two significant bits of
a selector.

DPL: Descriptor Privilege LevelÐThis is the least
privileged level at which a task may access
that descriptor (and the segment associated
with that descriptor). Descriptor Privilege Lev-
el is determined by bits 6:5 in the Access
Right Byte of a descriptor.

CPL: Current Privilege LevelÐThe privilege level at
which a task is currently executing, which
equals the privilege level of the code segment
being executed. CPL can also be determined
by examining the lowest 2 bits of the CS regis-
ter, except for conforming code segments.

EPL: Effective Privilege LevelÐThe effective privi-
lege level is the least privileged of the RPL
and the DPL. EPL is the numerical maximum
of RPL and DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

DESCRIPTOR TABLES

The descriptor tables define all of the segments
which are used in a i386 SX Microprocessor system.
There are three types of tables which hold descrip-
tors: the Global Descriptor Table, Local Descriptor
Table, and the Interrupt Descriptor Table. All of the
tables are variable length memory arrays and can
vary in size from 8 bytes to 64 Kbytes. Each table
can hold up to 8192 8-byte descriptors. The upper
13 bits of a selector are used as an index into the
descriptor table. The tables have registers associat-
ed with them which hold the 32-bit linear base ad-
dress and the 16-bit limit of each table.

25

MILITARY i386TM SX MICROPROCESSOR

271110–11

Figure 4.1. Protected Mode Addressing

271110–12

Figure 4.2. Paging and Segmentation

271110–13

Figure 4.3. Descriptor Table Registers

26

MILITARY i386TM SX MICROPROCESSOR

Each of the tables has a register associated with it:
GDTR, LDTR, and IDTR; see Figure 2.1. The LGDT,
LLDT, and LIDT instructions load the base and limit
of the Global, Local, and Interrupt Descriptor Tables
into the appropriate register. The SGDT, SLDT, and
SIDT store the base and limit values. These are priv-
ileged instructions.

Global Descriptor Table

The Global Descriptor Table (GDT) contains de-
scriptors which are available to all of the tasks in a
system. The GDT can contain any type of segment
descriptor except for interrupt and trap descriptors.
Every i386 SX CPU system contains a GDT.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

Local Descriptor Table

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-
nism for isolating a given task’s code and data seg-
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to all tasks. A segment cannot be ac-
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro-
vides both isolation and protection for a task’s seg-
ments while still allowing global data to be shared
among tasks.

Unlike the 6-byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in
the GDT (see Figure 2.1).

Interrupt Descriptor Table

The third table needed for i386 SX Microprocessor
systems is the Interrupt Descriptor Table. The IDT
contains the descriptors which point to the location
of the up to 256 interrupt service routines. The IDT
may contain only task gates, interrupt gates, and
trap gates. The IDT should be at least 256 bytes in
size in order to hold the descriptors for the 32 Intel
Reserved Interrupts. Every interrupt used by a sys-
tem must have an entry in the IDT. The IDT entries
are referenced by INT instructions, external interrupt
vectors, and exceptions.

DESCRIPTORS

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte
quantities which contain attributes about a given re-
gion of linear address space. These attributes in-
clude the 32-bit base linear address of the segment,
the 20-bit length and granularity of the segment, the
protection level, read, write or execute privileges,
the default size of the operands (16-bit or 32-bit),
and the type of segment. All of the attribute informa-
tion about a segment is contained in 12 bits in the
segment descriptor. Figure 4.4 shows the general
format of a descriptor. All segments on the i386 SX
Microprocessor have three attribute fields in com-
mon: the P bit, the DPL bit, and the S bit. The P

31 0 BYTE

SEGMENT BASE 15 . . . 0 SEGMENT LIMIT 15 . . . 0
ADDRESS

0

BASE 31 . . . 24 G D 0 AVL
LIMIT

P DPL S TYPE A
BASE

a4
19 . . . 16 23 . . . 16

BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit 1ePresent 0eNot Present
DPL Descriptor Privilege Level 0–3
S Segment Descriptor 0eSystem Descriptor 1eCode or Data Segment Descriptor
TYPE Type of Segment
A Accessed Bit
G Granularity Bit 1eSegment length is page granular 0eSegment length is byte granular
D Default Operation Size (recognized in code segment descriptors only) 1e32-bit segment 0e16-bit segment
0 Bit must be zero (0) for compatibility with future processors
AVL Available field for user or OS

Figure 4.4. Segment Descriptors

27

MILITARY i386TM SX MICROPROCESSOR

(Present) Bit is 1 if the segment is loaded in physical
memory. If Pe0 then any attempt to access this
segment causes a not present exception (exception
11). The Descriptor Privilege Level, DPL, is a two bit
field which specifies the protection level, 0–3, asso-
ciated with a segment.

The i386 SX Microprocessor has two main catego-
ries of segments: system segments and non-system
segments (for code and data). The segment bit, S,
determines if a given segment is a system segment

or a code or data segment. If the S bit is 1 then the
segment is either a code or data segment; if it is 0
then the segment is a system segment.

Code and Data Descriptors (Se1)

Figure 4.5 shows the general format of a code and
data descriptor and Table 4.1 illustrates how the bits
in the Access Right Byte are interpreted.

31 0

SEGMENT BASE 15 . . . 0 SEGMENT LIMIT 15 . . . 0 0

LIMIT
ACCESS BASE

BASE 31 . . . 24 G D 0 AVL
19 . . . 16

RIGHTS
23 . . . 16

a4

BYTE

D/B 1eDefault Instructions Attributes are 32-Bits
0eDefault Instruction Attributes are 16-Bits

AVL Available field for user or OS

G Granularity Bit 1eSegment length is page granular
0eSegment length is byte granular

0 Bit must be zero (0) for compatibility with future processors

Figure 4.5. Code and Data Descriptors

Table 4.1. Access Rights Byte Definition for Code and Data Descriptors

Bit
Name Function

Position

7 Present (P) P e 1 Segment is mapped into physical memory.

P e 0 No mapping to physical memory exists, base and limt are

not used.

6–5 Descriptor Privilege Segment privilege attribute used in privilege tests.

Level (DPL)

4 Segment Descrip- S e 1 Code or Data (includes stacks) segment descriptor

tor (S) S e 0 System Segment Descriptor or Gate Descriptor

3 Executable (E) E e 0 Descriptor type is data segment: If

2 Expansion Direc- ED e 0 Expand up segment, offsets must be s limit. Data

tion (ED) ED e 1 Expand down segment, offsets must be l limit. Segment

1 Writeable (W) W e 0 Data segment may not be written into. (S e 1,

W e 1 Data segment may be written into. * E e 0)

3 Executable (E) E e 1 Descriptor type is code segment: If

2 Conforming (C) C e 1 Code segment may only be executed Code

when CPL t DPL and CPL Segment

remains unchanged. (S e 1,

1 Readable (R) R e 0 Code segment may not be read. E e 1)

R e 1 Code segment may be read. *
0 Accessed (A) A e 0 Segment has not been accessed.

A e 1 Segment selector has been loaded into segment register

or used by selector test instructions.

28

MILITARY i386TM SX MICROPROCESSOR

31 16 0

SEGMENT BASE 15 . . . 0 SEGMENT LIMIT 15 . . . 0 0

BASE 31 . . . 24 G 0 0 0
LIMIT

P DPL 0 TYPE
BASE

a4
19 . . . 16 23 . . . 16

Type Defines

0 Invalid
1 Available 80286 TSS
2 LDT
3 Busy 80286 TSS
4 80286 Call Gate
5 Task Gate (for 80286 or i386TM SX Microprocessor Task)
6 80286 Interrupt Gate
7 80286 Trap Gate

Type Defines

8 Invalid
9 Available i386 SX Microprocessor TSS
A Undefined (Intel Reserved)
B Busy i386 SX Microprocessor TSS
C i386 SX Microprocessor Call Gate
D Undefined (Intel Reserved)
E i386 SX Microprocessor Interrupt Gate
F i386 SX Microprocessor Trap Gate

Figure 4.6. System Descriptors

Code and data segments have several descriptor
fields in common. The accessed bit, A, is set when-
ever the processor accesses a descriptor. The gran-
ularity bit, G, specifies if a segment length is byte-
granular or page-granular.

System Descriptor Formats (Se0)

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 4.6
shows the general format of system segment de-
scriptors, and the various types of system segments.
i386 SX system descriptors (which are the same as
i386 DX CPU system descriptors) contain a 32-bit
base linear address and a 20-bit segment limit.
M80286 system descriptors have a 24-bit base ad-
dress and a 16-bit segment limit. M80286 system
descriptors are identified by the upper 16 bits being
all zero.

Differences Between i386TM SX Microprocessor
and M80286 Descriptors

In order to provide operating system compatibility
with the M80286 the i386 SX CPU supports all of the
M80286 segment descriptors. The M80286 system
segment descriptors contain a 24-bit base address
and 16-bit limit, while the i386 SX CPU system seg-
ment descriptors have a 32-bit base address, a
20-bit limit field, and a granularity bit. The word count
field specifies the number of 16-bit quantities to copy
for M80286 call gates and 32-bit quantities for i386
SX CPU call gates.

Selector Fields

A selector in Protected Mode has three fields: Local
or Global Descriptor Table indicator (TI), Descriptor
Entry Index (Index), and Requestor (the selector’s)
Privilege Level (RPL) as shown in Figure 4.7. The TI
bit selects either the Global Descriptor Table or the
Local Descriptor Table. The Index selects one of 8K
descriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector’s
privilege attributes.

Segment Descriptor Cache

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register’s con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg-
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor’s
value.

29

MILITARY i386TM SX MICROPROCESSOR

271110–14

Figure 4.7. Example Descriptor Selection

4.3 Protection

The i386 SX Microprocessor has four levels of pro-
tection which are optimized to support a multi-task-
ing operating system and to isolate and protect user
programs from each other and the operating system.
The privilege levels control the use of privileged in-
structions, I/O instructions, and access to segments
and segment descriptors. The i386 SX Microproces-
sor also offers an additional type of protection on a
page basis when paging is enabled.

The four-level hierarchical privilege system is an ex-
tension of the user/supervisor privilege mode com-
monly used by minicomputers. The user/supervisor
mode is fully supported by the i386 SX Microproces-
sor paging mechanism. The privilege levels (PL) are
numbered 0 through 3. Level 0 is the most privileged
level.

RULES OF PRIVILEGE

The i386 SX Microprocessor controls access to both
data and procedures between levels of a task, ac-
cording to the following rules.

Ð Data stored in a segment with privilege level p
can be accessed only by code executing at a
privilege level at least as privileged as p.

Ð A code segment/procedure with privilege level p
can only be called by a task executing at the
same or a lesser privilege level than p.

PRIVILEGE LEVELS

At any point in time, a task on the i386 SX Micro-
processor always executes at one of the four privi-
lege levels. The Current Privilege Level (CPL) speci-
fies what the task’s privilege level is. A task’s CPL
may only be changed by control transfers through
gate descriptors to a code segment with a different
privilege level. Thus, an application program running
at PLe3 may call an operating system routine at
PLe1 (via a gate) which would cause the task’s CPL
to be set to 1 until the operating system routine was
finished.

Selector Privilege (RPL)

The privilege level of a selector is specified by the
RPL field. The selector’s RPL is only used to estab-
lish a less trusted privilege level than the current
privilege level of the task for the use of a segment.
This level is called the task’s effective privilege level
(EPL). The EPL is defined as being the least privi-
leged (numerically larger) level of a task’s CPL and a
selector’s RPL. The RPL is most commonly used to
verify that pointers passed to an operating system
procedure do not access data that is of higher privi-
lege than the procedure that originated the pointer.
Since the originator of a selector can specify any
RPL value, the Adjust RPL (ARPL) instruction is pro-
vided to force the RPL bits to the originator’s CPL.

30

MILITARY i386TM SX MICROPROCESSOR

Table 4.2. Descriptor Types Used for Control Transfer

Control Transfer Types Operation Types
Descriptor Descriptor

Referenced Table

Intersegment within the same privilege level JMP, CALL RET, IRET* Code Segment GDT/LDT

Intersegment to the same or higher privilege level CALL Call Gate GDT/LDT

Interrupt within task may change CPL
Interrupt instruction Trap or IDT

Exception External Interrupt

Interrupt Gate

Intersegment to a lower privilege level RET, IRET* Code Segment GDT/LDT

(changes task CPL)

CALL, JMP Task State GDT

Segment

Task Switch CALL, JMP Task Gate GDT/LDT

IRET** Task Gate IDT

Interrupt instruction,

Exception, External

Interrupt

*NT (Nested Task bit of flag register) e 0
**NT (Nested Task bit of flag register) e 1

I/O Privilege

The I/O privilege level (IOPL) lets the operating sys-
tem code executing at CPLe0 define the least privi-
leged level at which I/O instructions can be used. An
exception 13 (General Protection Violation) is gener-
ated if an I/O instruction is attempted when the CPL
of the task is less privileged then the IOPL. The
IOPL is stored in bits 13 and 14 of the EFLAGS reg-
ister. The following instructions cause an exception
13 if the CPL is greater than IOPL: IN, INS, OUT,
OUTS, STI, CLI, LOCK prefix.

Descriptor Access

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Deter-
mining the ability of a task to access a segment in-
volves the type of segment to be accessed, the in-
struction used, the type of descriptor used and CPL,
RPL, and DPL as described above.

Any time an instruction loads a data segment regis-
ter (DS, ES, FS, GS) the i386 SX Microprocessor
makes protection validation checks. Selectors load-
ed in the DS, ES, FS, GS registers must refer only to
data segment or readable code segments.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL, an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL of all
other descriptor types or a privilege level violation
will cause an exception 13. A stack not present fault
causes an exception 12.

PRIVILEGE LEVEL TRANSFERS

Inter-segment control transfers occur when a selec-
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 4.2.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only by
control transfers, using gates, task switches, and in-
terrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13.

31

MILITARY i386TM SX MICROPROCESSOR

271110–15

Type e 9: Available i386 SX Microprocessor TSS.
Type e B: Busy i386 SX Microprocessor TSS.

Figure 4.8. i386TM SX Microprocessor TSS and TSS Registers

32

MILITARY i386TM SX MICROPROCESSOR

271110–16

I/O Ports Accessible: 2x9, 12, 13, 15, 20x24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58x60, 62, 63, 96x127

Figure 4.9. Sample I/O Permission Bit Map

CALL GATES

Gates provide protected indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust-
ed procedures.

TASK SWITCHING

A very important attribute of any multi-tasking/multi-
user operating system is its ability to rapidly switch
between tasks or processes. The i386 SX Micro-
processor directly supports this operation by provid-
ing a task switch instruction in hardware. The task
switch operation saves the entire state of the ma-
chine (all of the registers, address space, and a link
to the previous task), loads a new execution state,
performs protection checks, and commences execu-
tion in the new task. Like transfer of control by
gates, the task switch operation is invoked by exe-
cuting an inter-segment JMP or CALL instruction
which refers to a Task State Segment (TSS), or a
task gate descriptor in the GDT or LDT. An INT n
instruction, exception, trap, or external interrupt may
also invoke the task switch operation if there is a
task gate descriptor in the associated IDT descriptor
slot.

The TSS descriptor points to a segment (see Figure
4.8) containing the entire execution state. A task
gate descriptor contains a TSS selector. The i386
SX Microprocessor supports both 286 and i386 SX
CPU TSSs. The limit of a i386 SX Microprocessor
TSS must be greater than 64H (2BH for a 286 TSS),
and can be as large as 16 megabytes. In the addi-
tional TSS space, the operating system is free to
store additional information such as the reason the
task is inactive, time the task has spent running, or
open files belonging to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
i386 SX Microprocessor called the Task State Seg-
ment Register (TR). This register contains a selector
referring to the task state segment descriptor that
defines the current TSS. A hidden base and limit
register associated with TSS descriptor are loaded
whenever TR is loaded with a new selector. Return-
ing from a task is accomplished by the IRET instruc-

tion. When IRET is executed, control is returned to
the task which was interrupted. The currently exe-
cuting task’s state is saved in the TSS and the old
task state is restored from its TSS.

Several bits in the flag register and machine status
word (CR0) give information about the state of a
task which is useful to the operating system. The
Nested Task bit, NT, controls the function of the
IRET instruction. If NTe0 the IRET instruction per-
forms the regular return. If NTe1 IRET performs a
task switch operation back to the previous task. The
NT bit is set or reset in the following fashion:

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and
the back link field of the new TSS set to the old
TSS selector. The NT bit of the new task is set
by CALL or INT initiated task switches. An in-
terrupt that does not cause a task switch will
clear NT (The NT bit will be restored after exe-
cution of the interrupt handler). NT may also be
set or cleared by POPF or IRET instructions.

The i386 SX Microprocessor task state segment is
marked busy by changing the descriptor type field
from TYPE 9 to TYPE 0BH. A 286 TSS is marked
busy by changing the descriptor type field from
TYPE 1 to TYPE 3. Use of a selector that references
a busy task state segment causes an exception 13.

The VM (Virtual Mode) bit is used to indicate if a task
is a Virtual 8086 task. If VMe1 then the tasks will
use the Real Mode addressing mechanism. The vir-
tual 8086 environment is only entered and exited by
a task switch.

The coprocessor’s state is not automatically saved
when a task switch occurs. The Task Switched Bit,
TS, in the CR0 register helps deal with the coproces-
sor’s state in a multi-tasking environment. Whenever
the i386 SX Microprocessor switches task, it sets
the TS bit. The i386 SX Microprocessor detects the
first use of a processor extension instruction after a
task switch and causes the processor extension not
available exception 7. The exception handler for ex-
ception 7 may then decide whether to save the state
of the coprocessor.

The T bit in the i386 SX Microprocessor TSS indi-
cates that the processor should generate a debug
exception when switching to a task. If Te1 then
upon entry to a new task a debug exception 1 will be
generated.

33

MILITARY i386TM SX MICROPROCESSOR

INITIALIZATION AND TRANSITION TO
PROTECTED MODE

Since the i386 SX Microprocessor begins executing
in Real Mode immediately after RESET it is neces-
sary to initialize the system tables and registers with
the appropriate values. The GDT and IDT registers
must refer to a valid GDT and IDT. The IDT should
be at least 256 bytes long, and the GDT must con-
tain descriptors for the initial code and data seg-
ments.

Protected Mode is enabled by loading CR0 with PE
bit set. This can be accomplished by using the MOV
CR0, R/M instruction. After enabling Protected
Mode, the next instruction should execute an inter-
segment JMP to load the CS register and flush the
instruction decode queue. The final step is to load all
of the data segment registers with the initial selector
values.

An alternate approach to entering Protected Mode is
to use the built in task-switch to load all of the regis-
ters. In this case the GDT would contain two TSS
descriptors in addition to the code and data descrip-
tors needed for the first task. The first JMP instruc-
tion in Protected Mode would jump to the TSS caus-
ing a task switch and loading all of the registers with
the values stored in the TSS. The Task State Seg-
ment Register should be initialized to point to a valid
TSS descriptor.

4.4 Paging

Paging is another type of memory management use-
ful for virtual memory multi-tasking operating
systems. Unlike segmentation, which modularizes
programs and data into variable length segments,
paging divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical
structure of a program. While segment selectors can
be considered the logical ‘name’ of a program mod-
ule or data structure, a page most likely corresponds
to only a portion of a module or data structure.

PAGE ORGANIZATION

The i386 SX Microprocessor uses two levels of ta-
bles to translate the linear address (from the seg-
mentation unit) into a physical address. There are
three components to the paging mechanism of the
i386 SX Microprocessor: the page directory, the
page tables, and the page itself (page frame). All
memory-resident elements of the i386 SX Micro-
processor paging mechanism are the same size,
namely 4 Kbytes. A uniform size for all of the ele-
ments simplifies memory allocation and reallocation
schemes, since there is no problem with memory
fragmentation. Figure 4.10 shows how the paging
mechanism works.

271110–17

Figure 4.10. Paging Mechanism

31 12 11 10 9 8 7 6 5 4 3 2 1 0

System U R
PAGE TABLE ADDRESS 31..12 Software 0 0 D A 0 0 Ð Ð P

Defineable S W

Figure 4.11. Page Directory Entry (Points to Page Table)

34

MILITARY i386TM SX MICROPROCESSOR

31 12 11 10 9 8 7 6 5 4 3 2 1 0

System U R
PAGE FRAME ADDRESS 31..12 Software 0 0 D A 0 0 Ð Ð P

Defineable S W

Figure 4.12. Page Table Entry (Points to Page)

Page Fault Register

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
Page Fault detected.

Page Descriptor Base Register

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory (this value is truncated to a 24-bit
value associated with the i386 SX CPU’s 16 mega-
byte physical memory limitation). The lower 12 bits
of CR3 are always zero to ensure that the Page Di-
rectory is always page aligned. Loading it with a
MOV CR3, reg instruction causes the page table en-
try cache to be flushed, as will a task switch through
a TSS which changes the value of CR0.

Page Directory

The Page Directory is 4 Kbytes long and allows up to
1024 page directory entries. Each page directory en-
try contains information about the page table and
the address of the next level of tables, the Page
Tables. The contents of a Page Directory Entry are
shown in Figure 4.11. The upper 10 bits of the linear
address (A31–A22) are used as an index to select
the correct Page Directory Entry.

The page table address contains the upper 20 bits
of a 32-bit physical address that is used as the base
address for the next set of tables, the page tables.
The lower 12 bits of the page table address are zero
so that the page table addresses appear on 4 Kbyte
boundaries. For a i386 DX CPU system the upper 20
bits will select one of 220 page tables, but for a
i386 SX Microprocessor system the upper 20 bits
only select one of 212 page tables. Again, this is
because the i386 SX Microprocessor is limited to a
24-bit physical address and the upper 8 bits (A24–
A31) are truncated when the address is output on its
24 address pins.

Page Tables

Each Page Table is 4 Kbytes long and allows up to
1024 Page Table Entries. Each Page Table Entry
contains information about the Page Frame and its

address. The contents of a Page Table Entry are
shown in figure 4.12. The middle 10 bits of the linear
address (A21–A12) are used as an index to select
the correct Page Table Entry.

The Page Frame Address contains the upper 20 bits
of a 32-bit physical address that is used as the base
address for the Page Frame. The lower 12 bits of the
Page Frame Address are zero so that the Page
Frame addresses appear on 4 Kbyte boundaries.
For a i386 DX CPU system the upper 20 bits will
select one of 220 Page Frames, but for a i386 SX
Microprocessor system the upper 20 bits only select
one of 212 Page Frames. Again, this is because the
i386 SX Microprocessor is limited to a 24-bit physical
address space and the upper 8 bits (A24–A31) are
truncated when the address is output on its 24 ad-
dress pins.

Page Directory/Table Entries

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit indicates if a Page Directory or Page
Table entry can be used in address translation. If
Pe1, the entry can be used for address translation.
If Pe0, the entry cannot be used for translation. All
of the other bits are available for use by the soft-
ware. For example, the remaining 31 bits could be
used to indicate where on disk the page is stored.

The A (Accessed) bit is set by the i386 SX CPU for
both types of entries before a read or write access
occurs to an address covered by the entry. The D
(Dirty) bit is set to 1 before a write to an address
covered by that page table entry occurs. The D bit is
undefined for Page Directory Entries. When the P, A
and D bits are updated by the i386 SX CPU, the
processor generates a Read- Modify-Write cycle
which locks the bus and prevents conflicts with oth-
er processors or peripherals. Software which modi-
fies these bits should use the LOCK prefix to ensure
the integrity of the page tables in multi-master sys-
tems.

The 3 bits marked system software definable in Fig-
ures 4.11 and Figure 4.12 are software definable.
System software writers are free to use these bits
for whatever purpose they wish.

35

MILITARY i386TM SX MICROPROCESSOR

PAGE LEVEL PROTECTION (R/W, U/S BITS)

The i386 SX Microprocessor provides a set of pro-
tection attributes for paging systems. The paging
mechanism distinguishes between two levels of pro-
tection: User, which corresponds to level 3 of the
segmentation based protection, and supervisor
which encompasses all of the other protection levels
(0, 1, 2). Programs executing at Level 0, 1 or 2 by-
pass the page protection, although segmentation-
based protection is still enforced by the hardware.

The U/S and R/W bits are used to provide User/Su-
pervisor and Read/Write protection for individual
pages or for all pages covered by a Page Table Di-
rectory Entry. The U/S and R/W bits in the second
level Page Table Entry apply only to the page de-
scribed by that entry. While the U/S and R/W bits in
the first level Page Directory Table apply to all pages
described by the page table pointed to by that direc-
tory entry. The U/S and R/W bits for a given page
are obtained by taking the most restrictive of the
U/S and R/W from the Page Directory Table Entries
and using these bits to address the page.

TRANSLATION LOOKASIDE BUFFER

The i386 SX Microprocessor paging hardware is de-
signed to support demand paged virtual memory
systems. However, performance would degrade
substantially if the processor was required to access
two levels of tables for every memory reference. To
solve this problem, the i386 SX Microprocessor
keeps a cache of the most recently accessed pages,
this cache is called the Translation Lookaside Buffer
(TLB). The TLB is a four-way set associative 32-en-
try page table cache. It automatically keeps the most
commonly used page table entries in the processor.
The 32-entry TLB coupled with a 4K page size re-
sults in coverage of 128 Kbytes of memory address-
es. For many common multi-tasking systems, the
TLB will have a hit rate of greater than 98%. This
means that the processor will only have to access
the two-level page structure for less than 2% of all
memory references.

PAGING OPERATION

The paging hardware operates in the following fash-
ion. The paging unit hardware receives a 32-bit lin-
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en-
tries in the TLB to determine if there is a match. If
there is a match (i.e. a TLB hit), then the 24-bit phys-
ical address is calculated and is placed on the ad-
dress bus.

If the page table entry is not in the TLB, the i386 SX
Microprocessor will read the appropriate Page Direc-
tory Entry. If Pe1 on the Page Directory Entry, indi-
cating that the page table is in memory, then the
i386 SX Microprocessor will read the appropriate

Page Table Entry and set the Access bit. If Pe1 on
the Page Table Entry, indicating that the page is in
memory, the i386 SX Microprocessor will update the
Access and Dirty bits as needed and fetch the oper-
and. The upper 20 bits of the linear address, read
from the page table, will be stored in the TLB for
future accesses. If Pe0 for either the Page Directo-
ry Entry or the Page Table Entry, then the processor
will generate a page fault Exception 14.

The processor will also generate a Page Fault (Ex-
ception 14) if the memory reference violated the
page protection attributes. CR2 will hold the linear
address which caused the page fault. Since Excep-
tion 14 is classified as a fault, CS:EIP will point to the
instruction causing the page-fault. The 16-bit error
code pushed as part of the page fault handler will
contain status bits which indicate the cause of the
page fault.

The 16-bit error code is used by the operating sys-
tem to determine how to handle the Page Fault. Fig-
ure 4.13 shows the format of the Page Fault error
code and the interpretation of the bits. Even though
the bits in the error code (U/S, W/R, and P) have
similar names as the bits in the Page Directory/Ta-
ble Entries, the interpretation of the error code bits is
different. Figure 4.14 indicates what type of access
caused the page fault.

15 3 2 1 0

U W

U U U U U U U U U U U U U U Ð Ð P

S R

Figure 4.13. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S e 1) or in Supervisor
mode (U/S e 0)

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W/R e 0) or a Write
(W/R e 1)

P: The P bit indicates whether a page fault was
caused by a not-present page (P e 0), or by a page
level protection violation (P e 1)

U e Undefined

U/S W/R Access Type

0 0 Supervisor* Read

0 1 Supervisor Write

1 0 User Read

1 1 User Write

*Descriptor table access will fault with U/S e 0, even if
the program is executing at level 3.

Figure 4.14. Type of Access Causing Page Fault

36

MILITARY i386TM SX MICROPROCESSOR

OPERATING SYSTEM RESPONSIBILITIES

When the operating system enters or exits paging
mode (by setting or resetting bit 31 in the CR0 regis-
ter) a short JMP must be executed to flush the
i386 SX Microprocessor’s prefetch queue. This en-
sures that all instructions executed after the address
mode change will generate correct addresses.

The i386 SX Microprocessor takes care of the page
address translation process, relieving the burden
from an operating system in a demand-paged sys-
tem. The operating system is responsible for setting
up the initial page tables and handling any page
faults. The operating system also is required to inval-
idate (i.e. flush) the TLB when any changes are
made to any of the page table entries. The operating
system must reload CR3 to cause the TLB to be
flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper-
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
systems sets the P (Present) bit of page table entry
to zero. The TLB must be flushed by reloading CR3.
Operating systems may want to take advantage of
the fact that CR3 is stored as part of a TSS, to give
every task or group of tasks its own set of page
tables.

4.5 Virtual 8086 Environment

The i386 SX Microprocessor allows the execution of
8086 application programs in both Real Mode and in
the Virtual 8086 Mode. The Virtual 8086 Mode al-
lows the execution of 8086 applications, while still
allowing the system designer to take full advantage
of the i386 SX CPU’s protection mechanism.

VIRTUAL 8086 ADDRESSING MECHANISM

One of the major differences between i386 SX CPU
Real and Protected modes is how the segment se-
lectors are interpreted. When the processor is exe-
cuting in Virtual 8086 Mode, the segment registers
are used in a fashion identical to Real Mode. The
contents of the segment register are shifted left 4
bits and added to the offset to form the segment
base linear address.

The i386 SX Microprocessor allows the operating
system to specify which programs use the 8086 ad-

dress mechanism and which programs use Protect-
ed Mode addressing on a per task basis. Through
the use of paging, the one megabyte address space
of the Virtual Mode task can be mapped to any-
where in the 4 gigabyte linear address space of the
i386 SX Microprocessor. Like Real Mode, Virtual
Mode addresses that exceed one megabyte will
cause an exception 13. However, these restrictions
should not prove to be important, because most
tasks running in Virtual 8086 Mode will simply be
existing 8086 application programs.

PAGING IN VIRTUAL MODE

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec-
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo-
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad-
dress produced by a Virtual Mode program to be
divided into as many as 256 pages. Each one of the
pages can be located anywhere within the maximum
16 megabyte physical address space of the i386 SX
Microprocessor. In addition, since CR3 (the Page Di-
rectory Base Register) is loaded by a task switch,
each Virtual Mode task can use a different mapping
scheme to map pages to different physical locations.
Finally, the paging hardware allows the sharing of
the 8086 operating system code between multiple
8086 applications.

PROTECTION AND I/O PERMISSION BIT MAP

All Virtual Mode programs execute at privilege level
3. As such, Virtual Mode programs are subject to all
of the protection checks defined in Protected Mode.
This is different than Real Mode, which implicitly is
executing at privilege level 0. Thus, an attempt to
execute a privileged instruction in Virtual Mode will
cause an exception 13 fault.

The following are privileged instructions, which may
be executed only at Privilege Level 0. Attempting to
execute these instructions in Virtual 8086 Mode (or
anytime CPLt0) causes an exception 13 fault:

LIDT; MOV DRn,REG; MOV reg,DRn;
LGDT; MOV TRn,reg; MOV reg,TRn;
LMSW; MOV CRn,reg; MOV reg,CRn;

CLTS;
HLT;

37

MILITARY i386TM SX MICROPROCESSOR

Several instructions, particularly those applying to
the multitasking and the protection model, are avail-
able only in Protected Mode. Therefore, attempting
to execute the following instructions in Real Mode or
in Virtual 8086 Mode generates an exception 6 fault:

LTR; STR;
LLDT; SLDT;
LAR; VERR;
LSL; VERW;
ARPL;

The instructions which are IOPL sensitive in Protect-
ed Mode are:

IN; STI;
OUT; CLI
INS;
OUTS;
REP INS;
REP OUTS;

In Virtual 8086 Mode the following instructions are
IOPL-sensitive:

INT n; STI;
PUSHF; CLI;
POPF; IRET;

The PUSHF, POPF, and IRET instructions are IOPL-
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag to be virtualized to the virtual 8086
Mode program. The INT n software interrupt instruc-
tion is also IOPL-sensitive in Virtual 8086 mode.
Note that the INT 3, INTO, and BOUND instructions
are not IOPL-sensitive in Virtual 8086 Mode.

The I/O instructions that directly refer to addresses
in the processor’s I/O space are IN, INS, OUT, and
OUTS. The i386 SX Microprocessor has the ability
to selectively trap references to specific I/O ad-
dresses. The structure that enables selective trap-
ping is the I/O Permission Bit Map in the TSS seg-
ment (see Figures 4.8 and 4.9). The I/O permission
map is a bit vector. The size of the map and its loca-
tion in the TSS segment are variable. The processor
locates the I/O permission map by means of the I/O
map base field in the fixed portion of the TSS. The
I/O map base field is 16 bits wide and contains the
offset of the beginning of the I/O permission map.

In protected mode when an I/O instruction (IN, INS,
OUT or OUTS) is encountered, the processor first
checks whether CPLsIOPL. If this condition is true,
the I/O operation may proceed. If not true, the proc-
essor checks the I/O permission map (in Virtual
8086 Mode, the processor consults the map without
regard for the IOPL).

Each bit in the map corresponds to an I/O port byte
address; for example, the bit for port 41 is found at
I/O map base a5, bit offset 1. The processor tests
all the bits that correspond to the I/O addresses
spanned by an I/O operation; for example, a double
word operation tests four bits corresponding to four
adjacent byte addresses. If any tested bit is set, the
processor signals a general protection exception. If
all the tested bits are zero, the I/O operations may
proceed.

It is not necessary for the I/O permission map to
represent all the I/O addresses. I/O addresses not
spanned by the map are treated as if they had one-
bits in the map. The I/O map base should be at
least one byte less than the TSS limit, the last byte
beyond the I/O mapping information must contain
all 1’s.

Because the I/O permission map is in the TSS seg-
ment, different tasks can have different maps. Thus,
the operating system can allocate ports to a task by
changing the I/O permission map in the task’s TSS.

IMPORTANT IMPLEMENTATION NOTE: Beyond
the last byte of I/O mapping information in the I/O
permission bit map must be a byte containing all 1’s.
The byte of all 1’s must be within the limit of the
i386 SX CPU TSS segment (see Figure 4.8).

Interrupt Handling

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are han-
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi-
lege change back to the host i386 SX Microproces-
sor operating system. The i386 SX Microprocessor
operating system determines if the interrupt comes
from a Protected Mode application or from a Virtual
Mode program by examining the VM bit in the
EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and ex-
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The i386 SX Microprocessor operating system in
turn handles the exception or interrupt and then re-
turns control to the 8086 program. The i386 SX Mi-
croprocessor operating system may choose to let
the 8086 operating system handle the interrupt or it
may emulate the function of the interrupt handler.
For example, many 8086 operating system calls are
accessed by PUSHing parameters on the stack, and
then executing an INT n instruction. If the IOPL is set
to 0 then all INT n instructions will be intercepted by
the i386 SX Microprocessor operating system.

38

MILITARY i386TM SX MICROPROCESSOR

An i386 SX Microprocessor operating system can
provide a Virtual 8086 Environment which is totally
transparent to the application software by intercept-
ing and then emulating 8086 operating system’s
calls, and intercepting IN and OUT instructions.

Entering and Leaving Virtual 8086 Mode

Virtual 8086 mode is entered by executing a 32-bit
IRET instruction at CPLe0 where the stack has a 1
in the VM bit of its EFLAGS image, or a Task Switch
(at any CPL) to a i386 SX Microprocessor task
whose i386 SX CPU TSS has a EFLAGS image con-
taining a 1 in the VM bit position while the processor
is executing in the Protected Mode. POPF does not
affect the VM bit but a PUSHF always pushes a 0 in
the VM bit.

The transition out of Virtual 8086 mode to protected
mode occurs only on receipt of an interrupt or ex-
ception. In Virtual 8086 mode, all interrupts and ex-
ceptions vector through the protected mode IDT,
and enter an interrupt handler in protected mode. As
part of the interrupt processing the VM bit is cleared.

Because the matching IRET must occur from level 0,
Interrupt or Trap Gates used to field an interrupt or
exception out of Virtual 8086 mode must perform an
inter-level interrupt only to level 0. Interrupt or Trap
Gates through conforming segments, or through
segments with DPLl0, will raise a GP fault with the
CS selector as the error code.

Task Switches To/From Virtual 8086 Mode

Tasks which can execute in Virtual 8086 mode must
be described by a TSS with the i386 SX CPU format
(type 9 or 11 descriptor). A task switch out of virtual
8086 mode will operate exactly the same as any oth-
er task switch out of a task with a i386 SX CPU TSS.
All of the programmer visible state, including the
EFLAGS register with the VM bit set to 1, is stored in
the TSS. The segment registers in the TSS will con-
tain 8086 segment base values rather than selec-
tors.

A task switch into a task described by a i386 SX
CPU TSS will have an additional check to determine
if the incoming task should be resumed in Virtual
8086 mode. Tasks described by 286 format TSSs
cannot be resumed in Virtual 8086 mode, so no
check is required there (the FLAGS image in 286
format TSS has only the low order 16 FLAGS bits).
Before loading the segment register images from a
i386 SX CPU TSS, the FLAGS image is loaded, so
that the segment registers are loaded from the TSS
image as 8086 segment base values. The task is
now ready to resume in Virtual 8086 mode.

Transitions Through Trap and Interrupt Gates,
and IRET

A task switch is one way to enter or exit Virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and
to enter as part of executing an IRET instruction.
The transition out must use a i386 SX CPU Trap
Gate (Type 14), or i386 SX CPU Interrupt Gate (Type
15), which must point to a non-conforming level 0
segment (DPLe0) in order to permit the trap han-
dler to IRET back to the Virtual 8086 program. The
Gate must point to a non-conforming level 0 seg-
ment to perform a level switch to level 0 so that the
matching IRET can change the VM bit. i386 SX CPU
gates must be used since 286 gates save only the
low 16 bits of the EFLAGS register (the VM bit will
not be saved). Also, the 16-bit IRET used to termi-
nate the 286 interrupt handler will pop only the lower
16 bits from FLAGS, and will not affect the VM bit.
The action taken for a i386 SX CPU Trap or Interrupt
gate if an interrupt occurs while the task is executing
in virtual 8086 mode is given by the following se-
quence:

1. Save the FLAGS register in a temp to push later.
Turn off the VM, TF, and IF bits.

2. Interrupt and Trap gates must perform a level
switch from 3 (where the Virtual 8086 Mode pro-
gram executes) to level 0 (so IRET can return).

3. Push the 8086 segment register values onto the
new stack, in this order: GS, FS, DS, ES. These
are pushed as 32-bit quantities. Then load these 4
registers with null selectors (0).

4. Push the old 8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits), then
pushing the 32-bit ESP register saved above.

5. Push the 32-bit EFLAGS register saved in step 1.

6. Push the old 8086 instruction onto the new stack
by pushing the CS register (as 32-bits), then push-
ing the 32-bit EIP register.

7. Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected mode.

The transition out of V86 mode performs a level
change and stack switch, in addition to changing
back to protected mode. Also all of the 8086 seg-
ment register images are stored on the stack (be-
hind the SS:ESP image), and then loaded with null
(0) selectors before entering the interrupt handler.
This will permit the handler to safely save and re-
store the DS, ES, FS, and GS registers as 286 selec-
tors. This is needed so that interrupt handlers which
don’t care about the mode of the interrupted pro-
gram can use the same prologue and epilogue code
for state saving regardless of whether or not a ‘‘na-
tive’’ mode or Virtual 8086 Mode program was inter-
rupted. Restoring null selectors to these registers

39

MILITARY i386TM SX MICROPROCESSOR

before executing the IRET will cause a trap in the
interrupt handler. Interrupt routines which expect or
return values in the segment registers will have to
obtain/return values from the 8086 register images
pushed onto the new stack. They will need to know
the mode of the interrupted program in order to
know where to find/return segment registers, and
also to know how to interpret segment register val-
ues.

The IRET instruction will perform the inverse of the
above sequence. Only the extended IRET instruc-
tion (operand sizee32) can be used and must be
executed at level 0 to change the VM bit to 1.

1. If the NT bit in the FLAGS register is on, an inter-
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the in-
terrupted task which is to be resumed. Otherwise,
continue with the following sequence:

2. Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value ac-
tive in the interrupted routine.

3. Pop off the instruction pointer CS:EIP. EIP is
popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If
VMe0, this CS load is done as a protected mode
segment load. If VMe1, this will be done as an
8086 segment load.

4. Increment the ESP register by 4 to bypass the
FLAGS image which was ‘popped’ in step 1.

5. If VMe1, load segment registers ES, DS, FS, and
GS from memory locations SS:[ESPa8],
SS:[ESPa12], SS:[ESPa16], and
SS:[ESPe20], respectively, where the new value
of ESP stored in step 4 is used. Since VMe1,
these are done as 8086 segment register loads.

Else if VMe0, check that the selectors in ES, DS,
FS, and GS are valid in the interrupted routine.
Null out invalid selectors to trap if an attempt is
made to access through them.

6. If RPL(CS)lCPL, pop the stack pointer SS:ESP
from the stack. The ESP register is popped first,
followed by 32-bits containing SS in the lower 16
bits. If VMe0, SS is loaded as a protected mode
segment register load. If VMe1, an 8086 seg-
ment register load is used.

7. Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) deter-
mines whether the processor resumes the inter-
rupted routine in Protected mode or Virtual 8086
Mode.

5.0 FUNCTIONAL DATA

The i386 SX Microprocessor features a straightfor-
ward functional interface to the external hardware.
The i386 SX Microprocessor has separate parallel
buses for data and address. The data bus is 16-bits
in width, and bi-directional. The address bus outputs
24-bit address values using 23 address lines and
two byte enable signals.

The i386 SX Microprocessor has two selectable ad-
dress bus cycles: address pipelined and non-ad-
dress pipelined. The address pipelining option al-
lows as much time as possible for data access by
starting the pending bus cycle before the present
bus cycle is finished. A non-pipelined bus cycle
gives the highest bus performance by executing ev-
ery bus cycle in two processor CLK cycles. For maxi-
mum design flexibility, the address pipelining option
is selectable on a cycle-by-cycle basis.

The processor’s bus cycle is the basic mechanism
for information transfer, either from system to proc-
essor, or from processor to system. i386 SX Micro-
processor bus cycles perform data transfer in a mini-
mum of only two clock periods. The maximum trans-
fer bandwidth at 16 MHz is therefore 16 Mbytes/
sec. However, any bus cycle will be extended for
more than two clock periods if external hardware
withholds acknowledgement of the cycle.

The i386 SX Microprocessor can relinquish control
of its local buses to allow mastership by other devic-
es, such as direct memory access (DMA) channels.
When relinquished, HLDA is the only output pin driv-
en by the i386 SX Microprocessor, providing near-
complete isolation of the processor from its system
(all other output pins are in a float condition).

5.1 Signal Description Overview

Ahead is a brief description of the i386 SX Micro-
processor input and output signals arranged by func-
tional groups. Note the overbar above the signal
name indicates the active, or asserted, state occurs
when the signal is at a HIGH voltage. When no over-
bar is present over the signal name, the signal is
asserted when at the LOW voltage level.

Example signal: M/IO Ð HIGH voltage indicates
Memory selected

Ð LOW voltage indicates I/O
selected

The signal descriptions sometimes refer to AC tim-
ing parameters, such as ‘t25 Reset Setup Time’ and
‘t26 Reset Hold Time.’ The values of these parame-
ters can be found in Table 7.4.

40

MILITARY i386TM SX MICROPROCESSOR

CLOCK (CLK2)

CLK2 provides the fundamental timing for the
i386 SX Microprocessor. It is divided by two internal-
ly to generate the internal processor clock used for
instruction execution. The internal clock is com-
prised of two phases, ‘phase one’ and ‘phase two’.
Each CLK2 period is a phase of the internal clock.
Figure 5.2 illustrates the relationship. If desired, the
phase of the internal processor clock can be syn-
chronized to a known phase by ensuring the falling
edge of the RESET signal meets the applicable set-
up and hold times t25 and t26, as shown in Figure
7.7.

DATA BUS (D15–D0)

These three-state bidirectional signals provide the
general purpose data path between the i386 SX Mi-
croprocessor and other devices. The data bus out-
puts are active HIGH and will float during bus hold
acknowledge. Data bus reads require that read-data
setup and hold times t21 and t22, as shown in Figure
7.4, be met relative to CLK2 for correct operation.

271110–18

Figure 5.1. Functional Signal Groups

271110–19

Figure 5.2. CLK2 Signal and Internal Processor Clock

41

MILITARY i386TM SX MICROPROCESSOR

ADDRESS BUS (A23–A1, BHE, BLE)

These three-state outputs provide physical memory
addresses or I/O port addresses. A23–A16 are LOW
during I/O transfers except for I/O transfers auto-
matically generated by coprocessor instructions.
During coprocessor I/O transfers, A22–A16 are driv-
en LOW, and A23 is driven HIGH so that this ad-
dress line can be used by external logic to generate
the coprocessor select signal. Thus, the I/O address
driven by the i386 SX Microprocessor for coproces-
sor commands is 8000F8H, the I/O addresses driv-
en by the i386 SX Microprocessor for coprocessor
data are 8000FCH or 8000FEH for cycles to the i387
SX numerics coprocessor. See Figure 5.3.

The address bus is capable of addressing 16 mega-
bytes of physical memory space (000000H through
FFFFFFH), and 64 kilobytes of I/O address space
(000000H through 00FFFFH) for programmed I/O.
The address bus is active HIGH and will float during
bus hold acknowledge.

The Byte Enable outputs, BHE and BLE, directly in-
dicate which bytes of the 16-bit data bus are in-
volved with the current transfer. BHE applies to
D15–D8 and BLE applies to D7–D0. If both BHE and
BLE are asserted, then 16 bits of data are being
transferred. See Table 5.1 for a complete decoding
of these signals. The byte enables are active LOW
and will float during bus hold acknowledge.

BUS CYCLE DEFINITION SIGNALS (W/R, D/C,
M/IO, LOCK)

These three-state outputs define the type of bus cy-
cle being performed: W/R distinguishes between

write and read cycles, D/C distinguishes between
data and control cycles, M/IO distinguishes between
memory and I/O cycles, and LOCK distinguishes be-
tween locked and unlocked bus cycles. All of these
signals are active LOW and will float during bus hold
acknowledge.

The primary bus cycle definition signals are W/R,
D/C and M/IO, since these are the signals driven
valid as ADS (Address Status output) becomes ac-
tive. The LOCK is driven valid at the same time the
bus cycle begins, which due to address pipelining,
could be after ADS becomes active. Exact bus cycle
definitions, as a function of W/R, D/C, and M/IO are
given in Table 5.2.

LOCK indicates that other system bus masters are
not to gain control of the system bus while it is ac-
tive. LOCK is activated on the CLK2 edge that be-
gins the first locked bus cycle (i.e., it is not active at
the same time as the other bus cycle definition pins)
and is deactivated when ready is returned at the end
of the last bus cycle which is to be locked. The be-
ginning of a bus cycle is determined when READY is
returned in a previous bus cycle and another is
pending (ADS is active) or the clock in which ADS is
driven active if the bus was idle. This means that it
follows more closely with the write data rules when it
is valid, but may cause the bus to be locked longer
than desired. The LOCK signal may be explicitly acti-
vated by the LOCK prefix on certain instructions.
LOCK is always asserted when executing the XCHG
instruction, during descriptor updates, and during the
interrupt acknowledge sequence.

Table 5.1. Byte Enable Definitions

BHE BLE Function

0 0 Word Transfer

0 1 Byte transfer on upper byte of the data bus, D15–D8

1 0 Byte transfer on lower byte of the data bus, D7–D0

1 1 Never occurs

Table 5.2. Bus Cycle Definition

M/IO D/C W/R Bus Cycle Type Locked?

0 0 0 Interrupt Acknowledge Yes

0 0 1 does not occur Ð

0 1 0 I/O Data Read No

0 1 1 I/O Data Write No

1 0 0 Memory Code Read No

1 0 1 Halt: Shutdown: No

Address e 2 Address e 0

BHE e 1 BHE e 1

BLE e 0 BLE e 0

1 1 0 Memory Data Read Some Cycles

1 1 1 Memory Data Write Some Cycles

42

MILITARY i386TM SX MICROPROCESSOR

BUS CONTROL SIGNALS (ADS, READY, NA)

The following signals allow the processor to indicate
when a bus cycle has begun, and allow other system
hardware to control address pipelining and bus cycle
termination.

Address Status (ADS)

This three-state output indicates that a valid bus cy-
cle definition and address (W/R, D/C, M/IO, BHE,
BLE and A23–A1) are being driven at the i386 SX
Microprocessor pins. ADS is an active LOW output.
Once ADS is driven active, valid address, byte en-
ables, and definition signals will not change. In addi-
tion, ADS will remain active until its associated bus
cycle begins (when READY is returned for the previ-
ous bus cycle when running pipelined bus cycles).
When address pipelining is utilized, maximum
throughput is achieved by initiating bus cycles when
ADS and READY are active in the same clock cycle.
ADS will float during bus hold acknowledge. See
sections Non-Pipelined Address and Pipelined
Address in Section 5.4 for additional information on
how ADS is asserted for different bus states.

Transfer Acknowledge (READY)

This input indicates the current bus cycle is com-
plete, and the active bytes indicated by BHE and
BLE are accepted or provided. When READY is
sampled active during a read cycle or interrupt ac-
knowledge cycle, the i386 SX Microprocessor latch-
es the input data and terminates the cycle. When
READY is sampled active during a write cycle, the
processor terminates the bus cycle.

READY is ignored on the first bus state of all bus
cycles, and sampled each bus state thereafter until
asserted. READY must eventually be asserted to ac-
knowledge every bus cycle, including Halt Indication
and Shutdown Indication bus cycles. When being
sampled, READY must always meet setup and hold
times t19 and t20, shown in Section 7.4, for correct
operation.

Next Address Request (NA)

This is used to request address pipelining. This input
indicates the system is prepared to accept new val-
ues of BHE, BLE, A23–A1, W/R, D/C and M/IO
from the i386 SX Microprocessor even if the end of
the current cycle is not being acknowledged on
READY. If this input is active when sampled, the
next address is driven onto the bus, provided the
next bus request is already pending internally. NA is
ignored in CLK cycles in which ADS or READY is
activated. This signal is active LOW and must sat-

isfy setup and hold times t15 and t16, shown in Sec-
tion 7.4, for correct operation. See Pipelined Ad-
dress and Read and Write Cycles for additional
information.

BUS ARBITRATION SIGNALS (HOLD, HLDA)

This section describes the mechanism by which the
processor relinquishes control of its local buses
when requested by another bus master device. See
Entering and Exiting Hold Acknowledge in Sec-
tion 5.4 for additional information.

Bus Hold Request (HOLD)

This input indicates some device other than the
i386 SX Microprocessor requires bus mastership.
When control is granted, the i386 SX Microproces-
sor floats A23–A1, BHE, BLE, D15–D0, LOCK, M/IO,
D/C, W/R and ADS, and then activates HLDA, thus
entering the bus hold acknowledge state. The local
bus will remain granted to the requesting master un-
til HOLD becomes inactive. When HOLD becomes
inactive, the i386 SX Microprocessor will deactivate
HLDA and drive the local bus (at the same time),
thus terminating the hold acknowledge condition.

HOLD must remain asserted as long as any other
device is a local bus master. External pull-up resis-
tors may be required when in the hold acknowledge
state since none of the i386 SX Microprocessor
floated outputs have internal pull-up resistors. See
Resistor Recommendations in Section 7.1 for ad-
ditional information. HOLD is not recognized while
RESET is active. If RESET is asserted while HOLD
is asserted, RESET has priority and places the bus
into an idle state, rather than the hold acknowledge
(high-impedance) state.

HOLD is a level-sensitive, active HIGH, synchronous
input. HOLD signals must always meet setup and
hold times t23 and t24, shown in Figure 7.4, for cor-
rect operation.

Bus Hold Acknowledge (HLDA)

When active (HIGH), this output indicates the i386
SX Microprocessor has relinquished control of its lo-
cal bus in response to an asserted HOLD signal, and
is in the bus Hold Acknowledge state.

The Bus Hold Acknowledge state offers near-com-
plete signal isolation. In the Hold Acknowledge
state, HLDA is the only signal being driven by the
i386 SX Microprocessor. The other output signals or
bidirectional signals (D15–D0, BHE, BLE, A23–A1,
W/R, D/C, M/IO, LOCK and ADS) are in a high-im-
pedance state so the requesting bus master may

43

MILITARY i386TM SX MICROPROCESSOR

control them. These pins remain OFF throughout the
time that HLDA remains active (see Table 5.3). Pull-
up resistors may be desired on several signals to
avoid spurious activity when no bus master is driving
them. See Resistor Recommendations in Section
7.1 for additional information.

When the HOLD signal is made inactive, the i386 SX
Microprocessor will deactivate HLDA and drive the
bus. One rising edge on the NMI input is remem-
bered for processing after the HOLD input is negat-
ed.

Table 5.3. Output pin State During HOLD

Pin Value Pin Names

1 HLDA

Float LOCK, M/IO, D/C, W/R,

ADS, A23–A1, BHE, BLE, D15–D0

In addition to the normal usage of Hold Acknowl-
edge with DMA controllers or master peripherals,
the near-complete isolation has particular attractive-
ness during system test when test equipment drives
the system, and in hardware fault-tolerant applica-
tions.

HOLD Latencies

The maximum possible HOLD latency depends on
the software being executed. The actual HOLD la-
tency at any time depends on the current bus activi-
ty, the state of the LOCK signal (internal to the CPU)
activated by the LOCK prefix, and interrupts. The
i386 SX Microprocessor will not honor a HOLD re-
quest until the current bus operation is complete.
Table 5.4 shows the types of bus operations that
can affect HOLD latency, and indicates the types of
delays that these operations may introduce. When
considering maximum HOLD latencies, designers
must select which of these bus operations are possi-
ble, and then select the maximum latency from
among them.

The i386 SX Microprocessor breaks 32-bit data or
I/O accesses into 2 internally locked 16-bit bus cy-
cles; the LOCK signal is not asserted. The i386 SX
Microprocessor breaks unaligned 16-bit or 32-bit
data or I/O accesses into 2 or 3 internally locked
16-bit bus cycles. Again, the LOCK signal is not as-
serted but a HOLD request will not be recognized
until the end of the entire transfer.

Wait states affect HOLD latency. The i386 SX Micro-
processor will not honor a HOLD request until the
end of the current bus operation, no matter how
many wait states are required. Systems with DMA
where data transfer is critical must insure that
READY returns sufficiently soon.

Table 5.4. Locked Bus Operations Affecting

HOLD Latency in Systems Clocks

Real Mode HOLD Latency Times

INT n 2 * (2 a Wc)

NMI 2 * (2 a Wc)

INTR 2 * (2 a Wc) a 5

CALL LONG (direct) 2 a Wc

JMP LONG (direct) 2 a Wc

CALL LONG (indirect) 2 a Wc *
JMP LONG (indirect) 2 a Wc *

Protected Mode HOLD Latency Times

INT n 9 * (2 a Wc) a 19

NMI 9 * (2 a Wc) a 18

INTR 9 * (2 a Wc) a 18

CALL (same P.L.) 5 * (2 a Wc) a 4 **
CALL INDIRECT (same P.L.) 5 * (2 a Wc) a 4 **
CALL (different P.L.) 9 * (2 a Wc) a 17 **
CALL INDIRECT

(different P.L.) 9 * (2 a Wc) a 17 **
JMP (same P.L.) 5 * (2 a Wc) a 4 ***
JMP INDIRECT (same P.L.) 5 * (2 a Wc) a 4 ***
TASK SWITCH 5 * (2 a Wc) a17

NOTES:
*JMP LONG INDIRECT and CALL LONG INDIRECT are
not supported features of the i386 SX CPU in Real
Mode.

**CALL DIRECT and CALL INDIRECT to a different privi-
lege level must be done via a CALL gate and from a less
privileged level only.

***JMP DIRECT and JMP INDIRECT to a different privilege
level are not allowed even via a CALL gate.

COPROCESSOR INTERFACE SIGNALS
(PEREQ, BUSY, ERROR)

In the following sections are descriptions of signals
dedicated to the numeric coprocessor interface. In
addition to the data bus, address bus, and bus cycle
definition signals, these following signals control
communication between the i386 SX Microproces-
sor and its i387 SX processor extension.

44

MILITARY i386TM SX MICROPROCESSOR

Coprocessor Request (PEREQ)

When asserted (HIGH), this input signal indicates a
coprocessor request for a data operand to be trans-
ferred to/from memory by the i386 SX Microproces-
sor. In response, the i386 SX Microprocessor trans-
fers information between the coprocessor and
memory. Because the i386 SX Microprocessor has
internally stored the coprocessor opcode being exe-
cuted, it performs the requested data transfer with
the correct direction and memory address.

PEREQ is a level-sensitive active HIGH asynchro-
nous signal. Setup and hold times, t29 and t30,
shown in Section 7.4, relative to the CLK2 signal
must be met to guarantee recognition at a particular
clock edge. This signal is provided with a weak inter-
nal pull-down resistor of around 20 K-ohms to
ground so that it will not float active when left uncon-
nected.

Coprocessor Busy (BUSY)

When asserted (LOW), this input indicates the co-
processor is still executing an instruction, and is not
yet able to accept another. When the i386 SX Micro-
processor encounters any coprocessor instruction
which operates on the numerics stack (e.g. load,
pop, or arithmetic operation), or the WAIT instruc-
tion, this input is first automatically sampled until it is
seen to be inactive. This sampling of the BUSY input
prevents overrunning the execution of a previous co-
processor instruction.

The FNINIT, FNSTENV, FNSAVE, FNSTSW,
FNSTCW and FNCLEX coprocessor instructions are
allowed to execute even if BUSY is active, since
these instructions are used for coprocessor initializa-
tion and exception-clearing.

BUSY is an active LOW, level-sensitive asynchro-
nous signal. Setup and hold times, t29 and t30,
shown in Figure 7.4, relative to the CLK2 signal must
be met to guarantee recognition at a particular clock
edge. This pin is provided with a weak internal pull-
up resistor of around 20 K-ohms to VCC so that it will
not float active when left unconnected.

BUSY serves an additional function. If BUSY is sam-
pled LOW at the falling edge of RESET, the i386 SX
Microprocessor performs an internal self-test (see
Bus Activity During and Following Reset in Sec-
tion 5.4). If BUSY is sampled HIGH, no self-test is
performed.

Coprocessor Error (ERROR)

When asserted (LOW), this input signal indicates
that the previous coprocessor instruction generated
a coprocessor error of a type not masked by the
coprocessor’s control register. This input is automat-
ically sampled by the i386 SX Microprocessor when
a coprocessor instruction is encountered, and if ac-
tive, the i386 SX Microprocessor generates excep-
tion 16 to access the error-handling software.

Several coprocessor instructions, generally those
which clear the numeric error flags in the coproces-
sor or save coprocessor state, do execute without
the i386 SX Microprocessor generating exception 16
even if ERROR is active. These instructions are
FNINIT, FNCLEX, FNSTSW, FNSTSWAX,
FNSTCW, FNSTENV and FNSAVE.

ERROR is an active LOW, level-sensitive asynchro-
nous signal. Setup and hold times, t29 and t30,
shown in Figure 7.4, relative to the CLK2 signal must
be met to guarantee recognition at a particular clock
edge. This pin is provided with a weak internal pull-
up resistor of around 20 K-ohms to VCC so that it will
not float active when left unconnected.

INTERRUPT SIGNALS (INTR, NMI, RESET)

The following descriptions cover inputs that can in-
terrupt or suspend execution of the processor’s cur-
rent instruction stream.

Maskable Interrupt Request (INTR)

When asserted, this input indicates a request for in-
terrupt service, which can be masked by the i386 SX
CPU Flag Register IF bit. When the i386 SX Micro-
processor responds to the INTR input, it performs
two interrupt acknowledge bus cycles and, at the
end of the second, latches an 8-bit interrupt vector
on D7–D0 to identify the source of the interrupt.

INTR is an active HIGH, level-sensitive asynchro-
nous signal. Setup and hold times, t27 and t28,
shown in Figure 7.4, relative to the CLK2 signal must
be met to guarantee recognition at a particular clock
edge. To assure recognition of an INTR request,
INTR should remain active until the first interrupt ac-
knowledge bus cycle begins. INTR is sampled at the
beginning of every instruction in the i386 SX Micro-
processor’s Execution Unit. In order to be recog-
nized at a particular instruction boundary, INTR must
be active at least eight CLK2 clock periods before
the beginning of the instruction. If recognized, the
i386 SX Microprocessor will begin execution of the
interrupt.

45

MILITARY i386TM SX MICROPROCESSOR

Non-Maskable Interrupt Request (NMI))

This input indicates a request for interrupt service
which cannot be masked by software. The non-
maskable interrupt request is always processed ac-
cording to the pointer or gate in slot 2 of the interrupt
table. Because of the fixed NMI slot assignment, no
interrupt acknowledge cycles are performed when
processing NMI.

NMI is an active HIGH, rising edge-sensitive asyn-
chronous signal. Setup and hold times, t27 and t28,
shown in Figure 7.4, relative to the CLK2 signal must
be met to guarantee recognition at a particular clock
edge. To assure recognition of NMI, it must be inac-
tive for at least eight CLK2 periods, and then be ac-
tive for at least eight CLK2 periods before the begin-
ning of the instruction boundary in the i386 SX Mi-
croprocessor’s Execution Unit.

Once NMI processing has begun, no additional
NMI’s are processed until after the next IRET in-
struction, which is typically the end of the NMI serv-
ice routine. If NMI is re-asserted prior to that time,
however, one rising edge on NMI will be remem-
bered for processing after executing the next IRET
instruction.

Interrupt Latency

The time that elapses before an interrupt request is
serviced (interrupt latency) varies according to sev-
eral factors. This delay must be taken into account
by the interrupt source. Any of the following factors
can affect interrupt latency:

1. If interrupts are masked, an INTR request will not
be recognized until interrupts are reenabled.

2. If an NMI is currently being serviced, an incoming
NMI request will not be recognized until the
i386 SX Microprocessor encounters the IRET in-
struction.

3. An interrupt request is recognized only on an in-
struction boundary of the i386 SX Microproces-
sor’s Execution Unit except for the following cas-
es:

Ð Repeat string instructions can be interrupted
after each iteration.

Ð If the instruction loads the Stack Segment reg-
ister, an interrupt is not processed until after
the following instruction, which should be an
ESP. This allows the entire stack pointer to be
loaded without interruption.

Ð If an instruction sets the interrupt flag (enabling
interrupts), an interrupt is not processed until
after the next instruction.

The longest latency occurs when the interrupt re-
quest arrives while the i386 SX Microprocessor is
executing a long instruction such as multiplication,
division, or a task-switch in the protected mode.

4. Saving the Flags register and CS:EIP registers.

5. If interrupt service routine requires a task switch,
time must be allowed for the task switch.

6. If the interrupt service routine saves registers that
are not automatically saved by the i386 SX Micro-
processor.

The following Table 5.5 summarizes the unobvious
NMI latency times for real and protected mode oper-
ations. The time is given in processor clocks. One
processor clock is equal to two CLK2 periods. The
variable Wc contains the number of wait states.

Table 5.5. Locked Bus Operations Affecting

HOLD Latency in Systems Clocks

Real Mode NMI Latency Times

INT n 11 * (2 a Wc) a 55

CALL LONG (direct) 6 * (2 a Wc) a 46

JMP LONG (direct) 6 * (2 a Wc) a 55

CALL LONG (indirect) 8 * (2 a Wc) a 50 *
JMP LONG (indirect) 8 * (2 a Wc) a 51 *

Protected Mode NMI Latency Times

INT n 26 * (2 a Wc) a 83

CALL (same P.L.) 20 * (2 a Wc) a 69 **
CALL INDIRECT (same P.L.) 23 * (2 a Wc) a 71 **
CALL (different P.L.) 33 * (2 a Wc) a 104 **
CALL INDIRECT

(different P.L.) 36 * (2 a Wc) a 104 **
JMP (same P.L.) 18 * (2 a Wc) a 64 ***
JMP INDIRECT (same P.L.) 21 * (2 a Wc) a 66 ***
TASK SWITCH 97 * (2 a Wc) a 230

NOTES:
*JMP LONG INDIRECT and CALL LONG INDIRECT are
not supported features of the i386 SX CPU in Real
Mode.

**CALL DIRECT and CALL INDIRECT to a different privi-
lege level must be done via a CALL gate and from a less
privileged level only.

***JUMP DIRECT and JMP INDIRECT to a different privi-
lege level are not allowed even via a CALL gate.

46

MILITARY i386TM SX MICROPROCESSOR

RESET

This input signal suspends any operation in progress
and places the i386 SX Microprocessor in a known
reset state. The i386 SX Microprocessor is reset by
asserting RESET for 15 or more CLK2 periods (80 or
more CLK2 periods before requesting self-test).
When RESET is active, all other input pins are ig-
nored, and all other bus pins are driven to an idle
bus state as shown in Table 5.5. If RESET and
HOLD are both active at a point in time, RESET
takes priority even if the i386 SX Microprocessor
was in a Hold Acknowledge state prior to RESET
active.

RESET is an active HIGH, level-sensitive synchro-
nous signal. Setup and hold times, t25 and t26,
shown in Figure 7.7, must be met in order to assure
proper operation of the i386 SX Microprocessor.

Table 5.6. Pin State (Bus Idle) During Reset

Pin Name Signal Level During Reset

ADS 1

D15–D0 Float

BHE, BLE 0

A23–A1 1

W/R 0

D/C 1

M/IO 0

LOCK 1

HLDA 0

5.2 Bus Transfer Mechanism

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte and word
lengths may be transferred without restrictions on
physical address alignment. Any byte boundary may
be used, although two physical bus cycles are per-
formed as required for unaligned operand transfers.

The i386 SX Microprocessor address signals are de-
signed to simplify external system hardware. Higher-
order address bits are provided by A23–A1. BHE and
BLE provide linear selects for the two bytes of the
16-bit data bus.

Byte Enable outputs BHE and BLE are asserted
when their associated data bus bytes are involved
with the present bus cycle, as listed in Table 5.6.

Table 5.7. Byte Enables and Associated Data

and Operand Bytes

Byte Enable
Associated Data Bus Signals

Signal

BLE D7–D0 (byte 0 Ð least significant)

BHE D15–D8 (byte 1 Ð most significant)

Each bus cycle is composed of at least two bus
states. Each bus state requires one processor clock
period. Additional bus states added to a single bus
cycle are called wait states. See section 5.4 Bus
Functional Description.

5.3 Memory and I/O Spaces

Bus cycles may access physical memory space or
I/O space. Peripheral devices in the system may ei-
ther be memory-mapped, or I/O-mapped, or both.
As shown in Figure 5.3, physical memory addresses
range from 000000H to 0FFFFFFH (16 megabytes)
and I/O addresses from 000000H to 00FFFFH (64
kilobytes). Note the I/O addresses used by the auto-
matic I/O cycles for coprocessor communication are
8000F8H to 8000FFH, beyond the address range of
programmed I/O, to allow easy generation of a co-
processor chip select signal using the A23 and M/IO
signals.

5.4 Bus Functional Description

The i386 SX Microprocessor has separate, parallel
buses for data and address. The data bus is 16-bits
in width, and bidirectional. The address bus provides
a 24-bit value using 23 signals for the 23 upper-order
address bits and 2 Byte Enable signals to directly
indicate the active bytes. These buses are interpret-
ed and controlled by several definition signals.

The definition of each bus cycle is given by three
signals: M/IO, W/R and D/C. At the same time, a
valid address is present on the byte enable signals
(BHE and BLE) and the other address signals (A23–
A1). A status signal, ADS, indicates when the i386
SX Microprocessor issues a new bus cycle definition
and address.

47

MILITARY i386TM SX MICROPROCESSOR

NOTE: 271110–20

Since A23 is HIGH during automatic communication with coprocessor, A23 HIGH and M/IO LOW can be used to easily
generate a coprocessor select signal.

Figure 5.3. Physical Memory and I/O Spaces

271110–21
Fastest non-pipelined bus cycles consist of T1 and T2

Figure 5.4. Fastest Read Cycles with Non-pipelined Address Timing

48

MILITARY i386TM SX MICROPROCESSOR

Collectively, the address bus, data bus and all asso-
ciated control signals are referred to simply as ‘the
bus’. When active, the bus performs one of the bus
cycles below:

1. Read from memory space

2. Locked read from memory space

3. Write to memory space

4. Locked write to memory space

5. Read from I/O space (or coprocessor)

6. Write to I/O space (or coprocessor)

7. Interrupt acknowledge (always locked)

8. Indicate halt, or indicate shutdown

Table 5.2 shows the encoding of the bus cycle defi-
nition signals for each bus cycle. See Bus Cycle
Definition Signals in Section 5.1 for additional infor-
mation.

When the i386 SX Microprocessor bus is not per-
forming one of the activities listed above, it is either

Idle, in RESET, or in the Hold Acknowledge state,
which may be detected externally. The idle state can
be identified by the i386 SX Microprocessor giving
no further assertions on its address strobe output
(ADS) since the beginning of its most recent bus
cycle, and the most recent bus cycle having been
terminated. The hold acknowledge state is identified
by the i386 SX Microprocessor asserting its hold ac-
knowledge (HLDA) output.

The shortest time unit of bus activity is a bus state. A
bus state is one processor clock period (two CLK2
periods) in duration. A complete data transfer occurs
during a bus cycle, composed of two or more bus
states.

The fastest i386 SX Microprocessor bus cycle re-
quires only two bus states. For example, three con-
secutive bus read cycles, each consisting of two bus
states, are shown by Figure 5.4. The bus states in
each cycle are named T1 and T2. Any memory or
I/O address may be accessed by such a two-state
bus cycle, if the external hardware is fast enough.

271110–22
Fastest pipelined bus cycles consist of T1P and T2P

Figure 5.5. Fastest Read Cycles with Pipelined Address Timing

49

MILITARY i386TM SX MICROPROCESSOR

Every bus cycle continues until it is acknowledged
by the external system hardware, using the i386 SX
Microprocessor READY input. Acknowledging the
bus cycle at the end of the first T2 results in the
shortest bus cycle, requiring only T1 and T2. If
READY is not immediately asserted however, T2
states are repeated indefinitely until the READY in-
put is sampled active.

The address pipelining option provides a choice of
bus cycle timings. Pipelined or non-pipelined ad-
dress timing is selectable on a cycle-by-cycle basis
with the Next Address (NA) input.

When address pipelining is selected the address
(BHE, BLE and A23–A1) and definition (W/R, D/C,
M/IO and LOCK) of the next cycle are available be-
fore the end of the current cycle. To signal their
availability, the i386 SX Microprocessor address

status output (ADS) is asserted. Figure 5.5 illustrates
the fastest read cycles with pipelined address tim-
ing.

Note from Figure 5.5 that the fastest bus cycles us-
ing pipelined address require only two bus states,
named T1P and T2P. Therefore cycles with pipe-
lined address timing allow the same data bandwidth
as non-pipelined cycles, but address-to-data access
time is increased by one T-state time compared to
that of a non-pipelined cycle.

READ AND WRITE CYCLES

Data transfers occur as a result of bus cycles, classi-
fied as read or write cycles. During read cycles, data
is transferred from an external device to the proces-
sor. During write cycles, data is transferred from the
processor to an external device.

271110–23

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus
cycle can immediately follow the write cycle.

Figure 5.6. Various Bus Cycles with Non-Pipelined Address (zero wait states)

50

MILITARY i386TM SX MICROPROCESSOR

Two choices of address timing are dynamically se-
lectable: non-pipelined or pipelined. After an idle bus
state, the processor always uses non-pipelined ad-
dress timing. However the NA (Next Address) input
may be asserted to select pipelined address timing
for the next bus cycle. When pipelining is selected
and the i386 SX Microprocessor has a bus request
pending internally, the address and definition of the
next cycle is made available even before the current
bus cycle is acknowledged by READY.

Terminating a read or write cycle, like any bus cycle,
requires acknowledging the cycle by asserting the
READY input. Until acknowledged, the processor in-
serts wait states into the bus cycle, to allow adjust-
ment for the speed of any external device. External
hardware, which has decoded the address and bus
cycle type, asserts the READY input at the appropri-
ate time.

At the end of the second bus state within the bus
cycle, READY is sampled. At that time, if external
hardware acknowledges the bus cycle by asserting
READY, the bus cycle terminates as shown in Figure
5.6. If READY is negated as in Figure 5.7, the i386
SX Microprocessor executes another bus state (a
wait state) and READY is sampled again at the end
of that state. This continues indefinitely until the cy-
cle is acknowledged by READY asserted.

When the current cycle is acknowledged, the
i386 SX Microprocessor terminates it. When a read
cycle is acknowledged, the i386 SX Microprocessor
latches the information present at its data pins.
When a write cycle is acknowledged, the i386 SX
CPU’s write data remains valid throughout phase
one of the next bus state, to provide write data hold
time.

271110–24

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus
cycle can immediately follow the write cycle.

Figure 5.7. Various Bus Cycles with Non-Pipelined Address (various number of wait states)

51

MILITARY i386TM SX MICROPROCESSOR

Non-Pipelined Address

Any bus cycle may be performed with non-pipelined
address timing. For example, Figure 5.6 shows a
mixture of read and write cycles with non-pipelined
address timing. Figure 5.6 shows that the fastest
possible cycles with non-pipelined address have two
bus states per bus cycle. The states are named T1
and T2. In phase one of T1, the address signals and
bus cycle definition signals are driven valid and, to
signal their availability, address strobe (ADS) is
simultaneously asserted.

During read or write cycles, the data bus behaves as
follows. If the cycle is a read, the i386 SX Microproc-
essor floats its data signals to allow driving by the
external device being addressed. The i386 SX Mi-
croprocessor requires that all data bus pins be
at a valid logic state (HIGH or LOW) at the end of
each read cycle, when READY is asserted. The
system MUST be designed to meet this require-
ment. If the cycle is a write, data signals are driven
by the i386 SX Microprocessor beginning in phase
two of T1 until phase one of the bus state following
cycle acknowledgment.

Figure 5.7 illustrates non-pipelined bus cycles with
one wait state added to Cycles 2 and 3. READY is
sampled inactive at the end of the first T2 in Cycles
2 and 3. Therefore Cycles 2 and 3 have T2 repeated
again. At the end of the second T2, READY is sam-
pled active.

When address pipelining is not used, the address
and bus cycle definition remain valid during all wait
states. When wait states are added and it is desir-
able to maintain non-pipelined address timing, it is
necessary to negate NA during each T2 state except
the last one, as shown in Figure 5.7 Cycles 2 and 3.
If NA is sampled active during a T2 other than the
last one, the next state would be T2I or T2P instead
of another T2.

When address pipelining is not used, the bus states
and transitions are completely illustrated by Figure
5.8. The bus transitions between four possible
states, T1, T2, Ti, and Th. Bus cycles consist of T1
and T2, with T2 being repeated for wait states. Oth-
erwise the bus may be idle, Ti, or in the hold ac-
knowledge state Th.

271110–25

Bus States:
T1Ðfirst clock of a non-pipelined bus cycle (i386TM SX CPU drives new address and asserts ADS).
T2Ðsubsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.
TiÐidle state.
ThÐhold acknowledge state (i386 SX CPU asserts HLDA).
The fastest bus cycle consists of two states T1 and T2.
Four basic bus states describe bus operation when not using pipelined address.

Figure 5.8. Bus States (not using pipelined address)

52

MILITARY i386TM SX MICROPROCESSOR

Bus cycles always begin with T1. T1 always leads to
T2. If a bus cycle is not acknowledged during T2 and
NA is inactive, T2 is repeated. When a cycle is ac-
knowledged during T2, the following state will be T1
of the next bus cycle if a bus request is pending
internally, or Ti if there is no bus request pending, or
Th if the HOLD input is being asserted.

Use of pipelined address allows the i386 SX Micro-
processor to enter three additional bus states not
shown in Figure 5.8. Figure 5.12 is the complete bus
state diagram, including pipelined address cycles.

Pipelined Address

Address pipelining is the option of requesting the
address and the bus cycle definition of the next in-

ternally pending bus cycle before the current bus
cycle is acknowledged with READY asserted. ADS
is asserted by the i386 SX Microprocessor when the
next address is issued. The address pipelining op-
tion is controlled on a cycle-by-cycle basis with the
NA input signal.

Once a bus cycle is in progress and the current ad-
dress has been valid for at least one entire bus
state, the NA input is sampled at the end of every
phase one until the bus cycle is acknowledged. Dur-
ing non-pipelined bus cycles NA is sampled at the
end of phase one in every T2. An example is Cycle 2
in Figure 5.9, during which NA is sampled at the end
of phase one of every T2 (it was asserted once dur-
ing the first T2 and has no further effect during that
bus cycle).

271110–26

Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA is only sampled
during wait states. Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipe-
lined cycle with at least one wait state (Cycle 2 above).

Figure 5.9. Transitioning to Pipelined Address During Burst of Bus Cycles

53

MILITARY i386TM SX MICROPROCESSOR

If NA is sampled active, the i386 SX Microprocessor
is free to drive the address and bus cycle definition
of the next bus cycle, and assert ADS, as soon as it
has a bus request internally pending. It may drive the
next address as early as the next bus state, whether
the current bus cycle is acknowledged at that time or
not.

Regarding the details of address pipelining, the
i386 SX Microprocessor has the following character-
istics:

1. The next address may appear as early as the bus
state after NA was sampled active (see Figures
5.9 or 5.10). In that case, state T2P is entered
immediately. However, when there is not an inter-
nal bus request already pending, the next address
will not be available immediately after NA is as-
serted and T2I is entered instead of T2P (see Fig-

ure 5.11 Cycle 3). Provided the current bus cycle
isn’t yet acknowledged by READY asserted, T2P
will be entered as soon as the i386 SX Microproc-
essor does drive the next address. External hard-
ware should therefore observe the ADS output as
confirmation the next address is actually being
driven on the bus.

2. Any address which is validated by a pulse on the
ADS output will remain stable on the address pins
for at least two processor clock periods. The i386
SX Microprocessor cannot produce a new ad-
dress more frequently than every two processor
clock periods (see Figures 5.9, 5.10, and 5.11).

3. Only the address and bus cycle definition of the
very next bus cycle is available. The pipelining ca-
pability cannot look further than one bus cycle
ahead (see Figure 5.11 Cycle 1).

271110–27

Following any bus state (Ti) the address is always non-pipelined and NA is only sampled during wait states. To start
address pipelining after an idle state requires a non-pipelined cycle with at least one wait state (cycle 1 above)
The pipelined cycles (2, 3, 4 above) are shown with various numbers of wait states.

Figure 5.10. Fastest Transition to Pipelined Address Following Idle Bus State

54

MILITARY i386TM SX MICROPROCESSOR

The complete bus state transition diagram, including
operation with pipelined address is given by Figure
5.12. Note it is a superset of the diagram for non-
pipelined address only with the three additional bus
states for pipelined address drawn in.

The fastest bus cycle with pipelined address con-
sists of just two bus states, T1P and T2P (recall for
non-pipelined address it is T1 and T2). T1P is the
first bus state of a pipelined cycle.

271110–28

Figure 5.11. Details of Address Pipelining During Cycles with Wait States

55

MILITARY i386TM SX MICROPROCESSOR

Bus States:
T1Ðfirst clock of a non-pipelined bus cycle (i386 SX CPU
drives new address and asserts ADS).
T2Ðsubsequent clocks of a bus cycle when NA has not been
sampled asserted in the current bus cycle.
T2IÐsubsequent clocks of a bus cycle when NA has been
sampled asserted in the current bus cycle but there is not yet
an internal bus request pending (i386 SX CPU will not drive new
address or assert ADS).
T2PÐsubsequent clocks of a bus cycle when NA has been
sampled asserted in the current bus cycle and there is an inter-
nal bus request pending (i386 SX CPU drives new address and
asserts ADS).
T1PÐfirst clock of a pipelined bus cycle.
TiÐidle state. 271110–29

ThÐhold acknowledge state (i386 SX CPU asserts HLDA).
Asserting NA for pipelined address gives access to three more
bus states: T2I, T2P and T1P.
Using pipelined address, the fastest bus cycle consists of T1P
and T2P.

Figure 5.12. Complete Bus States (including pipelined address)

56

MILITARY i386TM SX MICROPROCESSOR

Initiating and Maintaining Pipelined Address

Using the state diagram Figure 5.12, observe the
transitions from an idle state, Ti, to the beginning of
a pipelined bus cycle T1P. From an idle state, Ti, the
first bus cycle must begin with T1, and is therefore a
non-pipelined bus cycle. The next bus cycle will be
pipelined, however, provided NA is asserted and the
first bus cycle ends in a T2P state (the address for
the next bus cycle is driven during T2P). The fastest
path from an idle state to a bus cycle with pipelined
address is shown in bold below:

Ti, Ti, Ti, T1 - T2 - T2P, T1P - T2P,

idle non-pipelined pipelined

states cycle cycle

T1-T2-T2P are the states of the bus cycle that es-
tablish address pipelining for the next bus cycle,
which begins with T1P. The same is true after a bus
hold state, shown below:

Th, Th, Th, T1 - T2 - T2P, T1P - T2P,

hold acknowledge non-pipelined pipelined

states cycle cycle

The transition to pipelined address is shown func-
tionally by Figure 5.10 Cycle 1. Note that Cycle 1 is
used to transition into pipelined address timing for
the subsequent Cycles 2, 3 and 4, which are pipe-
lined. The NA input is asserted at the appropriate
time to select address pipelining for Cycles 2, 3
and 4.

Once a bus cycle is in progress and the current ad-
dress has been valid for one entire bus state, the NA
input is sampled at the end of every phase one until
the bus cycle is acknowledged. Sampling begins in
T2 during Cycle 1 in Figure 5.10. Once NA is sam-
pled active during the current cycle, the i386 SX Mi-
croprocessor is free to drive a new address and bus
cycle definition on the bus as early as the next bus
state. In Figure 5.10 Cycle 1 for example, the next
address is driven during state T2P. Thus Cycle 1
makes the transition to pipelined address timing,
since it begins with T1 but ends with T2P. Because
the address for Cycle 2 is available before Cycle 2
begins, Cycle 2 is called a pipelined bus cycle, and

it begins with T1P. Cycle 2 begins as soon as
READY asserted terminates Cycle 1.

Examples of transition bus cycles are Figure 5.10
Cycle 1 and Figure 5.9 Cycle 2. Figure 5.10 shows
transition during the very first cycle after an idle bus
state, which is the fastest possible transition into ad-
dress pipelining. Figure 5.9 Cycle 2 shows a tran-
sition cycle occurring during a burst of bus cycles. In
any case, a transition cycle is the same whenever it
occurs: it consists at least of T1, T2 (NA is asserted
at that time), and T2P (provided the i386 SX Micro-
processor has an internal bus request already pend-
ing, which it almost always has). T2P states are re-
peated if wait states are added to the cycle.

Note that only three states (T1, T2 and T2P) are
required in a bus cycle performing a transition from
non-pipelined address into pipelined address timing,
for example Figure 5.10 Cycle 1. Figure 5.10 Cycles
2, 3 and 4 show that address pipelining can be main-
tained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the next cycle by asserting
NA and detecting that the i386 SX Microprocessor
enters T2P during the current bus cycle. The current
bus cycle must end in state T2P for pipelining to be
maintained in the next cycle. T2P is identified by the
assertion of ADS. Figures 5.9 and 5.10 however,
each show pipelining ending after Cycle 4 because
Cycle 4 ends in T2I. This indicates the i386 SX Mi-
croprocessor didn’t have an internal bus request pri-
or to the acknowledgement of Cycle 4. If a cycle
ends with a T2 or T2I, the next cycle will not be
pipelined.

Realistically, address pipelining is almost always
maintained as long as NA is sampled asserted. This
is so because in the absence of any other request, a
code prefetch request is always internally pending
until the instruction decoder and code prefetch
queue are completely full. Therefore, address pipe-
lining is maintained for long bursts of bus cycles, if
the bus is available (i.e., HOLD inactive) and NA is
sampled active in each of the bus cycles.

57

MILITARY i386TM SX MICROPROCESSOR

INTERRUPT ACKNOWLEDGE (INTA) CYCLES

In response to an interrupt request on the INTR in-
put when interrupts are enabled, the i386 SX Micro-
processor performs two interrupt acknowledge cy-
cles. These bus cycles are similar to read cycles in
that bus definition signals define the type of bus ac-
tivity taking place, and each cycle continues until ac-
knowledged by READY sampled active.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A23–A3, A1, BLE LOW, A2 and BHE HIGH). The
byte address driven during the second interrupt ac-
knowledge cycle is 0 (A23–A1, BLE LOW, and BHE
HIGH).

The LOCK output is asserted from the beginning of
the first interrupt acknowledge cycle until the end of
the second interrupt acknowledge cycle. Four idle
bus states, Ti, are inserted by the i386 SX Micro-
processor between the two interrupt acknowledge
cycles for compatibility with spec TRHRL of the
8259A Interrupt Controller.

During both interrupt acknowledge cycles, D15–D0
float. No data is read at the end of the first interrupt
acknowledge cycle. At the end of the second inter-
rupt acknowledge cycle, the i386 SX Microprocessor
will read an external interrupt vector from D7–D0 of
the data bus. The vector indicates the specific inter-
rupt number (from 0–255) requiring service.

271110–30

Interrupt Vector (0–255) is read on D0–D7 at end of second interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle is followed by idle bus states. asserting NA has no practical effect.
Choose the approach which is simplest for your system hardware design.

Figure 5.13. Interrupt Acknowledge Cycles

58

MILITARY i386TM SX MICROPROCESSOR

HALT INDICATION CYCLE

The execution unit halts as a result of executing a
HLT instruction. Signaling its entrance into the halt
state, a halt indication cycle is performed. The halt
indication cycle is identified by the state of the bus

definition signals shown in Section 5.1, Bus Cycle
Definition Signals, and an address of 2. The halt
indication cycle must be acknowledged by READY
asserted. A halted i386 SX Microprocessor resumes
execution when INTR (if interrupts are enabled), NMI
or RESET is asserted.

271110–31

Figure 5.14. Example Halt Indication Cycle from Non-Pipelined Cycle

59

MILITARY i386TM SX MICROPROCESSOR

SHUTDOWN INDICATION CYCLE

The i386 SX Microprocessor shuts down as a result
of a protection fault while attempting to process a
double fault. Signaling its entrance into the shut-
down state, a shutdown indication cycle is per-
formed. The shutdown indication cycle is identified
by the state of the bus definition signals shown in
Bus Cycle Definition Signals, Section 5.1, and an
address of 0. The shutdown indication cycle must be
acknowledged by READY asserted. A shutdown
i386 SX Microprocessor resumes execution when
NMI or RESET is asserted.

ENTERING AND EXITING HOLD
ACKNOWLEDGE

The bus hold acknowledge state, Th, is entered in
response to the HOLD input being asserted. In the
bus hold acknowledge state, the i386 SX Microproc-
essor floats all outputs or bidirectional signals, ex-
cept for HLDA. HLDA is asserted as long as the
i386 SX Microprocessor remains in the bus hold ac-
knowledge state. In the bus hold acknowledge state,
all inputs except HOLD and RESET are ignored.

271110–32

Figure 5.15. Example Shutdown Indication Cycle from Pipelined Cycle

60

MILITARY i386TM SX MICROPROCESSOR

Th may be entered from a bus idle state as in Figure
5.16 or after the acknowledgement of the current
physical bus cycle if the LOCK signal is not asserted,
as in Figures 5.17 and 5.18.

Th is exited in response to the HOLD input being
negated. The following state will be Ti as in Figure
5.16 if no bus request is pending. The following bus
state will be T1 if a bus request is internally pending,
as in Figures 5.17 and 5.18. Th is also exited in re-
sponse to RESET being asserted.

If a rising edge occurs on the edge-triggered NMI
input while in Th, the event is remembered as a non-
maskable interrupt 2 and is serviced when Th is exit-
ed unless the i386 SX Microprocessor is reset be-
fore Th is exited.

RESET DURING HOLD ACKNOWLEDGE

RESET being asserted takes priority over HOLD be-
ing asserted. If RESET is asserted while HOLD re-

mains asserted, the i386 SX Microprocessor drives
its pins to defined states during reset, as in Table
5.5 Pin State During Reset, and performs internal
reset activity as usual.

If HOLD remains asserted when RESET is inactive,
the i386 SX Microprocessor enters the hold ac-
knowledge state before performing its first bus cy-
cle, provided HOLD is still asserted when the i386
SX Microprocessor would otherwise perform its first
bus cycle.

FLOAT (100-LEAD PQFP PACKAGE)

Activating the FLT input floats all i386 SX bidirec-
tional and output signals, including HLDA. Asserting
FLT isolates the i386 SX from the surrounding cir-
cuitry.

As the i386 SX is packaged in a surface mount
PQFP, it cannot be removed from the motherboard
when In-Circuit Emulation (ICE) is needed. The FLT

271110–33

NOTE:
For maximum design flexibility the i386 SX CPU has no internal pullup resistors on its outputs. Your design may require
an external pullup on ADS and other outputs to keep them negated during float periods.

Figure 5.16. Requesting Hold from Idle Bus

61

MILITARY i386TM SX MICROPROCESSOR

input allows the i386 SX to be electrically isolated
from the surrounding circuitry. This allows connec-
tion of an emulator to the i386 SX PQFP without
removing it from the PCB. This method of emulation
is referred to as ON-Circuit Emulation (ONCE).

ENTERING AND EXITING FLOAT

FLT is an asynchronous, active-low input. It is recog-
nized on the rising edge of CLK2. When recognized,
it aborts the current bus cycle and floats the outputs
of the i386 SX (Figure 5.20). FLT must be held low
for a minimum of 16 CLK2 cycles. Reset should be
asserted and held asserted until after FLT is deas-
serted. This will ensure that the i386 SX will exit float
in a valid state.

Asserting the FLT input unconditionally aborts the
current bus cycle and forces the i386 SX into the
FLOAT mode. Since activating FLT unconditionally

forces the i386 SX into FLOAT mode, the i386 SX is
not guaranteed to enter FLOAT in a valid state. After
deactivating FLT, the i386 SX is not guaranteed to
exit FLOAT mode in a valid state. This is not a prob-
lem as the FLT pin is meant to be used only during
ONCE. After exiting FLOAT, the i386 SX must be
reset to return it to a valid state. Reset should be
asserted before FLT is deasserted. This will ensure
that the i386 SX will exit float in a valid state.

FLT has an internal pull-up resistor, and if it is not
used it should be unconnected.

BUS ACTIVITY DURING AND FOLLOWING
RESET

RESET is the highest priority input signal, capable of
interrupting any processor activity when it is assert-
ed. A bus cycle in progress can be aborted at any
stage, or idle states or bus hold acknowledge states
discontinued so that the reset state is established.

271110–34

NOTE:
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24, shown in
Figure 7.4) requirements are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 5.17. Requesting Hold from Active Bus (NA inactive)

62

MILITARY i386TM SX MICROPROCESSOR

RESET should remain asserted for at least 15 CLK2
periods to ensure it is recognized throughout the
i386 SX Microprocessor, and at least 80 CLK2 peri-
ods if self-test is going to be requested at the falling
edge, see Figure 5.19. RESET asserted pulses less
than 15 CLK2 periods may not be recognized. RE-
SET pulses less than 80 CLK2 periods followed by a
self-test may cause the self-test to report a failure
when no true failure exists.

Provided the RESET falling edge meets setup and
hold times t25 and t26, the internal processor clock
phase is defined at that time as illustrated by Figure
5.19 and Figure 7.7.

A self-test may be requested at the time RESET
goes inactive by having the BUSY input at a LOW
level as shown in Figure 5.19. The self-test requires
approximately (220 a 60) CLK2 periods to com-
plete. The self-test duration is not affected by the
test results. Even if the self-test indicates a problem,
the i386 SX Microprocessor attempts to proceed
with the reset sequence afterwards.

After the RESET falling edge (and after the self-test
if it was requested) the i386 SX Microprocessor per-
forms an internal initialization sequence for approxi-
mately 350 to 450 CLK2 periods.

271110–35

NOTE:
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24, shown in
Figure 7.4) requirements are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 5.18. Requesting Hold from Idle Bus (NA active)

63

MILITARY i386TM SX MICROPROCESSOR

271110–36

NOTES:
1. BUSY should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge
occurs.
2. If self-test is requested the outputs remain in their reset state as shown here.

Figure 5.19. Bus Activity from Reset Until First Code Fetch

271110–48

Figure 5.20. Entering and Exiting, FLT

64

MILITARY i386TM SX MICROPROCESSOR

5.5 Self-test Signature

Upon completion of self-test (if self-test was re-
quested by driving BUSY LOW at the falling edge of
RESET) the EAX register will contain a signature of
00000000H indicating the i386 SX Microprocessor
passed its self-test of microcode and major PLA
contents with no problems detected. The passing
signature in EAX, 00000000H, applies to all revision
levels. Any non-zero signature indicates the unit is
faulty.

5.6 Component and Revision
Identifiers

To assist users, the i386 SX Microprocessor after
reset holds a component identifier and revision iden-
tifier in its EDX register. The upper 8 bits of EDX hold
23H as identification of the i386 SX Microprocessor
(the lower nibble, 03H, refers to the Intel386 DX Ar-
chitecture. The upper nibble, 02H, refers to the sec-
ond member of the Intel386 DX Family). The lower
8 bits of EDX hold an 8-bit unsigned binary number
related to the component revision level. The revision
identifier will, in general, chronologically track those
component steppings which are intended to have
certain improvements or distinction from previous
steppings. The i386 SX Microprocessor revision
identifier will track that of the i386 DX CPU where
possible.

The revision identifier is intended to assist users to a
practical extent. However, the revision identifier val-
ue is not guaranteed to change with every stepping
revision, or to follow a completely uniform numerical
sequence, depending on the type or intention of re-
vision, or manufacturing materials required to be
changed. Intel has sole discretion over these char-
acteristics of the component.

Table 5.8. Component and

Revision Identifier History

Stepping Revision Identifier

A0 04H

B 05H

C 08H

5.7 Coprocessor Interfacing

The i386 SX Microprocessor provides an automatic
interface for the Intel387 SX numeric floating-point
coprocessor. The i387 SX coprocessor uses an I/O
mapped interface driven automatically by the i386
SX Microprocessor and assisted by three dedicated
signals: BUSY, ERROR and PEREQ.

As the i386 SX Microprocessor begins supporting a
coprocessor instruction, it tests the BUSY and
ERROR signals to determine if the coprocessor can
accept its next instruction. Thus, the BUSY and
ERROR inputs eliminate the need for any ‘pre-

amble’ bus cycles for communication between proc-
essor and coprocessor. The i387 SX can be given its
command opcode immediately. The dedicated sig-
nals provide instruction synchronization, and elimi-
nate the need of using the WAIT opcode (9BH) for
i387 SX instruction synchronization (the WAIT op-
code was required when the M8086 or M8088 was
used with the M8087 coprocessor).

Custom coprocessors can be included in i386 SX
Microprocessor based systems by memory-mapped
or I/O-mapped interfaces. Such coprocessor inter-
faces allow a completely custom protocol, and are
not limited to a set of coprocessor protocol ‘‘primi-
tives’’. Instead, memory-mapped or I/O-mapped in-
terfaces may use all applicable instructions for high-
speed coprocessor communication. The BUSY and
ERROR inputs of the i386 SX Microprocessor may
also be used for the custom coprocessor interface, if
such hardware assist is desired. These signals can
be tested by the WAIT opcode (9BH). The WAIT in-
struction will wait until the BUSY input is inactive (in-
terruptable by an NMI or enabled INTR input), but
generates an exception 16 fault if the ERROR pin is
active when the BUSY goes (or is) inactive. If the
custom coprocessor interface is memory-mapped,
protection of the addresses used for the interface
can be provided with the i386 SX CPU’s on-chip
paging or segmentation mechanisms. If the custom
interface is I/O-mapped, protection of the interface
can be provided with the IOPL (I/O Privilege Level)
mechanism.

The i387 SX numeric coprocessor interface is I/O
mapped as shown in Table 5.9. Note that the
i387 SX coprocessor interface addresses are be-
yond the 0H-0FFFFH range for programmed I/O.
When the i386 SX Microprocessor supports the i387
SX coprocessor, the i386 SX Microprocessor auto-
matically generates bus cycles to the coprocessor
interface addresses.

Table 5.9. Numeric Coprocessor Port Addresses

Address in i386TM SX i387TM SX Coprocessor

CPU I/O Space Register

8000F8H Opcode Register

8000FCH/8000FEH* Operand Register

*Generated as 2nd bus cycle during Dword transfer.

To correctly map the i387 SX registers to the appro-
priate I/O addresses, connect the CMD0 and CMD1
lines of the i387 SX as listed in Table 5.10.

Table 5.10. Connections for CMD0

and CMD1 Inputs for the i387TM SX

Signal Connection

CMD0 Connect directly

to i386TM SX CPU A2 signal

CMD1 Connect to ground.

65

MILITARY i386TM SX MICROPROCESSOR

Software Testing for Coprocessor Presence

When software is used to test for coprocessor
(i387 SX) presence, it should use only the following
coprocessor opcodes: FINIT, FNINIT, FSTCW mem,
FSTSW mem and FSTSW AX. To use other coproc-
essor opcodes when it is known a coprocessor is
not present, first set EM e 1 in the i386 SX CPU’s
CR0 register.

6.0 PACKAGE THERMAL
SPECIFICATIONS

The case temperature may be measured in any envi-
ronment, to determine whether the i386 SX Micro-
processor is within specified operating range. The
case temperature should be measured at the center
of the top surface opposite the pins.

The ambient temperature is guaranteed as long as
Tc is not violated. The ambient temperature can be
calculated from the ijc and ija from the following
equations:

Tj e Tc a P*ijc

Ta e Tj b P*ija

Tc e Ta a P*[ija b ijc]

Values for ija and ijc are given in table 6.1 for the
100-lead PQFP and 88-lead PGA. ija is given at vari-
ous airflows. Note that Ta can be improved further
by attaching ‘fins’ or a ‘heat sink’ to the package.

7.0 ELECTRICAL SPECIFICATIONS

The following sections describe recommended elec-
trical connections and electrical specifications for
the i386 SX Microprocessor.

7.1 Power and Grounding

The i386 SX Microprocessor is implemented in
CHMOS III technology and has modest power re-
quirements. However, its high clock frequency and
47 output buffers (address, data, control, and HLDA)
can cause power surges as multiple output buffers
drive new signal levels simultaneously. For clean on-
chip power distribution at high frequency, 15 VCC
and 15 VSS pins separately feed functional units of
the i386 SX Microprocessor.

Power and ground connections must be made to all
external VCC and VSS pins of the i386 SX Microproc-
essor. On the circuit board, all VCC pins should be
connected on a VCC plane and all VSS pins should
be connected on a GND plane.

POWER DECOUPLING RECOMMENDATIONS

Liberal decoupling capacitors should be placed near
the i386 SX Microprocessor. The i386 SX Microproc-
essor driving its 24-bit address bus and 16-bit data
bus at high frequencies can cause transient power
surges, particularly when driving large capacitive
loads. Low inductance capacitors and interconnects
are recommended for best high frequency electrical
performance. Inductance can be reduced by short-
ening circuit board traces between the i386 SX Mi-
croprocessor and decoupling capacitors as much as
possible.

Table 6.1. Thermal Resistances (§C/Watt) ijc and ija (See Note).

ija versus Airflow - ft/min (m/sec)

Package ijc
0 200 400 600 800 1000

(0) (1.01) (2.03) (3.04) (4.06) (5.07)

88-Lead PGA 2 25 20 17 14 12 11

100-Lead PQFP 7.5 34.5 29.5 25.5 22.5 21.5 21.0

Fine Pitch

Max. TA calculated at 5.0V and max ICC.

66

MILITARY i386TM SX MICROPROCESSOR

Table 7.1. Recommended Resistor Pull-ups to VCC

Pin Signal Pull-up Value Purpose

J1 ADS 20 K-Ohm g10% Lightly pull ADS inactive during i386TM

SX CPU hold acknowledge states

M5 LOCK 20 K-Ohm g10% Lightly pull LOCK inactive during i386TM

SX CPU hold acknowledge states

RESISTOR RECOMMENDATIONS

The ERROR and BUSY inputs have internal pull-up
resistors of approximately 20 K-Ohms and the PER-
EQ input has an internal pull-down resistor of ap-
proximately 20 K-Ohms built into the i386 SX Micro-
processor to keep these signals inactive when the
i387 NPX is not present in the system (or temporarily
removed from its socket).

In typical designs, the external pull-up resistors
shown in Table 7.1 are recommended. However, a
particular design may have reason to adjust the re-
sistor values recommended here, or alter the use of
pull-up resistors in other ways.

OTHER CONNECTION RECOMMENDATIONS

For reliable operation, always connect unused in-
puts to an appropriate signal level. N/C pins should
always remain unconnected. Connection of N/C
pins to VCC or VSS will result in component mal-
function or incompatibility with future steppings
of the i386 SX Microprocessor.

Particularly when not using interrupts or bus hold (as
when first prototyping), prevent any chance of spuri-
ous activity by connecting these associated inputs to
GND:

Pin Signal

M9 INTR

M8 NMI

G1 HOLD

If not using address pipelining, connect pin G2, NA,
through a pull-up in the range of 20 K-Ohms to VCC.

7.2 Maximum Ratings

Table 7.2. Maximum Ratings

Parameter Maximum Rating

Storage temperature b65§C to a150§C
Case temperature under bias b55§C to a125§C
Supply voltage with respect

to VSS b0.5V to 6.5V

Voltage on other pins b0.5V to (VCCa0.5)V

Table 7.2 gives stress ratings only, and functional
operation at the maximums is not guaranteed. Func-
tional operating conditions are given in section 7.3,
DC Specifications, and section 7.4, AC Specifica-
tions.

Extended exposure to the Maximum Ratings may af-
fect device reliability. Furthermore, although the
i386 SX Microprocessor contains protective circuitry
to resist damage from static electric discharge, al-
ways take precautions to avoid high static voltages
or electric fields.

67

MILITARY i386TM SX MICROPROCESSOR

7.3 Operating Conditions

MIL-STD-883 (PGA Package)

Symbol Description Min Max Units

TC Case Temperature (Instant On) b55 a125 §C
VCC Digital Supply Voltage 4.75 5.25 V

Extended Temperature (PGA Package)

Symbol Description Min Max Units

TC Case Temperature (Instant On) b40 a110 §C
VCC Digital Supply Voltage 4.75 5.25 V

Extended Temperature (PQFP Package)

Symbol Description Min Max Units

TC Case Temperature (Instant On) b20 a100 §C
VCC Digital Supply Voltage 4.75 5.25 V

Military Temperature Only (PGA Package)

Symbol Description Min Max Units

TC Case Temperature (Instant On) b55 a125 §C
VCC Digital Supply Voltage 4.75 5.25 V

68

MILITARY i386TM SX MICROPROCESSOR

7.4 DC Specifications (Over Specified Operating Conditions)

Table 7.3. DC Characteristics

Symbol Parameter Min Max Unit Comments

VIL Input LOW Voltage b0.3* a0.8 V

VIH Input HIGH Voltage 2.0 VCCa0.3* V

VILC CLK2 Input LOW Voltage b0.3* a0.8 V

VIHC CLK2 Input HIGH Voltage VCCb0.8 VCCa0.3* V

VOL Output LOW Voltage

IOLe4mA: A23–A1,D15–D0 0.45 V

IOLe5mA: BHE, BLE, W/R, 0.45 V

D/C, M/IO, LOCK,

ADS, HLDA

VOH Output HIGH Voltage

IOHeb1mA: A23–A1,D15–D0 2.4 V

IOHeb0.2 mA: A23–A1,D15–D0 VCCb0.5 V

IOHeb0.9mA: BHE, BLE, W/R, 2.4 V

D/C, M/IO, LOCK,

ADS, HLDA

IOHeb0.18 mA: BHE, BLE, W/R, VCCb0.5

D/C, M/IO, LOCK,

ADS, HLDA

ILI Input Leakage Current g15 mA 0VsVINsVCC

(for all pins except

PEREQ, BUSY and ERROR)

IIH Input Leakage Current 200 mA VIHe2.4V, Note 1

(PEREQ pin)

IIL Input Leakage Current b400 mA VILe0.45V, Note 2

(BUSY and ERROR pins)

ILO Output Leakage Current g15 mA 0.45VsVOUTsVCC

ICC Supply Current

CLK2 e 32 MHz 275 mA ICC typ e 175 mA, Note 3

CLK2 e 40 MHz 305 mA ICC typ e 200 mA, Note 3

CIN Input Capacitance 10* pF Fce1 MHz

COUT Output or I/O Capacitance 12* pF Fce1 MHz

CCLK CLK2 Capacitance 20* pF Fce1 MHz

Tested at the minimum operating frequency of the part.
*Guaranteed, not tested.

NOTES:
1. PEREQ input has an internal pull-down resistor.
2. BUSY and ERROR inputs each have an internal pull-up resistor.
3. Icc max measurement at worst case load, frequency, VCC and temperature.

69

MILITARY i386TM SX MICROPROCESSOR

7.5 AC Specifications

The AC specifications given in Table 7.4 consist of
output delays, input setup requirements and input
hold requirements. All AC specifications are relative
to the CLK2 rising edge crossing the 2.0V level.

AC spec measurement is defined by Figure 7.1. In-
puts must be driven to the voltage levels indicated
by Figure 7.1 when AC specifications are measured.
Output delays are specified with minimum and maxi-
mum limits measured as shown. The minimum delay
times are hold times provided to external circuitry.

Input setup and hold times are specified as mini-
mums, defining the smallest acceptable sampling
window. Within the sampling window, a synchronous
input signal must be stable for correct operation.

Outputs NA, W/R, D/C, M/IO, LOCK, BHE, BLE,
A23–A1 and HLDA only change at the beginning of
phase one. D15–D0 (write cycles) only change at the
beginning of phase two. The READY, HOLD, BUSY,
ERROR, PEREQ and D15–D0 (read cycles) inputs
are sampled at the beginning of phase one. The NA,
INTR and NMI inputs are sampled at the beginning
of phase two.

271110–37

LEGEND
A Ð Maximum Output Delay Spec
B Ð Minimum Output Delay Spec
C Ð Minimum Input Setup Spec
D Ð Minimum Input Hold Spec

Figure 7.1. Drive Levels and Measurement Points for AC Specifications

70

MILITARY i386TM SX MICROPROCESSOR

AC SPECIFICATIONS TABLES (Over Specified Operating Conditions)

Table 7.4. AC Characteristics

Symbol Parameter
16 MHz 20 MHz

Unit Figure Comments
Min Max Min Max

Operating Frequency 4 16 4 20 MHz Half CLK2 Freq

t1 CLK2 Period 31 125 25 125 ns 7.3

t2a CLK2 HIGH Time 9 8 ns 7.3 at 2V(4)

t2b CLK2 HIGH Time 5 5 ns 7.3 at (VCCb0.8)V(4)

t3a CLK2 LOW Time 9 8 ns 7.3 at 2V(4)

t3b CLK2 LOW Time 7 6 ns 7.3 at 0.8V(4)

t4 CLK2 Fall Time 8 8 ns 7.3 (VCCb0.8)V to 0.8V(4)

t5 CLK2 Rise Time 8 8 ns 7.3 0.8V to (VCCb0.8)V(4)

t6 A23–A1 Valid Delay 4 36 4 30 ns 7.5 CLe120pF

t7 A23–A1 Float Delay 4 40 4 32 ns 7.6 (Note 1)

t8 BHE, BLE, LOCK 4 36 4 30 ns 7.5 CLe75pF(3)

Valid Delay

t9 BHE, BLE, LOCK 4 40 4 32 ns 7.6 (Note 1)

Float Delay

t10 W/R, M/IO, D/C, 6 33 6 26 ns 7.5 CLe75pF(3)

ADS Valid Delay

t11 W/R, M/IO, D/C 6 35 6 30 ns 7.6 (Note 1)

ADS Float Delay

t12 D15–D0 Write Data 4 40 4 38 ns 7.5 CLe120pF(3)

Valid Delay

t13 D15–D0 Write Data 4 35 4 27 ns 7.6 (Note 1)

Float Delay

t14 HLDA Valid Delay 6 33 4 28 ns 7.5 CLe75pF(3)

t15 NA Setup Time 5 5 ns 7.4

t16 NA Hold Time 21 12 ns 7.4

t19 READY Setup Time 19 12 ns 7.4

t20 READY Hold Time 4 4 ns 7.4

t21 D15–D0 Read Data 9 9 ns 7.4

Setup Time

t22 D15–D0 Read Data 6 6 ns 7.4

Hold Time

NOTES:
1. Float condition occurs when maximum output current becomes less than ILO in magnitude, float timings not tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.
3. Tested with CL set at 50 pF and derated to support the indicated distributed capacitive load. See Figure 7.8 for the
capacitive derating curve.
4. Guaranteed, not tested.

71

MILITARY i386TM SX MICROPROCESSOR

Table 7.4. AC Characteristics (Continued)

Symbol Parameter
16 MHz 20 MHz

Unit Figure Comments
Min Max Min Max

t23 HOLD Setup Time 26 17 ns 7.4

t24 HOLD Hold Time 5 5 ns 7.4

t25 RESET Setup Time 13 12 ns 7.7

t26 RESET Hold Time 4 4 ns 7.7

t27 NMI, INTR Setup Time 16 16 ns 7.4 (Note 1)

t28 NMI, INTR Hold Time 16 16 ns 7.4 (Note 1)

t29 PEREQ, ERROR, BUSY 16 14 ns 7.4 (Note 1)

Setup Time

t30 PEREQ, ERROR, BUSY 5 5 ns 7.4 (Note 1)

Hold Time

NOTE:
1. Float conditions occur when maximum output current becomes less than ILO in magnitude, float timings not tested.

AC TEST LOADS

271110–38

AC TIMING WAVEFORMS

271110–39

Figure 7.2. AC Test Loads Figure 7.3. CLK2 Waveform

72

MILITARY i386TM SX MICROPROCESSOR

271110–40

NOTE:
1. To assure recognition of NMI, it must be inactive for at least eight CLK2 periods, and then be active for at least eight
CLK2 periods before the beginning of the instruction boundary in the i386 SX Microprocessor’s Execution Unit.

Figure 7.4. AC Timing WaveformsÐInput Setup and Hold Timing

271110–41

Figure 7.5. AC Timing WaveformsÐOutput Valid Delay Timing

73

MILITARY i386TM SX MICROPROCESSOR

271110–42

Figure 7.6. AC Timing WaveformsÐOutput Float Delay and HLDA Valid Delay Timing

271110–43

Figure 7.7. AC Timing WaveformsÐRESET Setup and Hold Timing and Internal Phase

74

MILITARY i386TM SX MICROPROCESSOR

271110–44

Figure 7.8. Typical Output Valid Delay versus

Load Capacitance at Maximum Operating

Temperature (CL e 120 pF)

271110–45

Figure 7.9. Typical Output Valid Delay versus

Load Capacitance at Maximum Operating

Temperature (CL e 75 pF)

271110–46

Figure 7.10. Typical Output Valid Delay versus

Load Capacitance at Maximum Operating

Temperature (CL e 50 pF)

8.0 DIFFERENCES BETWEEN THE
i386TM SX CPU AND THE i386 DX
CPU

The following are the major differences between the
i386 SX CPU and the i386 DX CPU:

1. The i386 SX CPU has no bus sizing option. The
i386 DX CPU can select between either a 32-bit
bus or a 16-bit bus by use of the BS16 input. The
i386 SX CPU has a 16-bit bus size.

2. The i386 SX CPU generates byte selects on BHE
and BLE (like the M8086 and M80286) to distin-
guish the upper and lower bytes on its 16-bit data
bus. The i386 DX CPU uses four byte selects,
BE0–BE3, to distinguish between the different
bytes on its 32-bit bus.

3. The i386 DX CPU uses A31 and M/IO as selects
for the numerics coprocessor. The i386 SX CPU
uses A23 and M/IO as selects.

4. Both i386 DX CPU and i386 SX CPU have the
same logical address space. The only difference
is that the i386 DX CPU has a 32-bit physical ad-
dress space and the i386 SX CPU has a 24-bit
physical address space. The i386 SX CPU has a
physical memory address space of up to 16
megabytes instead of the 4 gigabytes available to
the i386 DX CPU. Therefore, in i386 SX CPU sys-
tems, the operating system must be aware of this
physical memory limit and should allocate memo-
ry for applications programs within this limit. If a
i386 DX CPU system uses only the lower 16
megabytes of physical address, then there will be
no extra effort required to migrate i386 DX CPU
software to the i386 SX CPU. Any application
which uses more than 16 megabytes of memory
can run on the i386 SX CPU if the operating sys-
tem utilizes the i386 SX CPU’s paging mecha-
nism. In spite of this difference in physical ad-
dress space, the i386 SX CPU and i386 DX CPU
can run the same operating systems and applica-
tions within their respective physical memory con-
straints.

75

MILITARY i386TM SX MICROPROCESSOR

5. The NA pin operation in the i386 SX CPU is identi-
cal to that of the NA pin on the i386 DX CPU with
one exception: the i386 DX CPU NA cannot be
activated on 16-bit bus cycles (where BS16 is
LOW in the i386 DX CPU case), whereas NA can
be activated on any i386 SX CPU bus cycle.

6. The i386 DX CPU prefetch unit fetches code in
four-byte units. The i386 SX CPU prefetch unit
reads two bytes as one unit (like the M80286). In
BS16 mode, the i386 DX CPU takes two consecu-
tive bus cycles to complete a prefetch request. If
there is a data read or write request after the pre-
fetch starts, the i386 DX CPU will fetch all four
bytes before addressing the new request.

7. The contents of all i386 SX CPU registers at reset
are identical to the contents of the i386 DX CPU
registers at reset, except the DX register. The DX
register contains a component-stepping identifier
at reset, i.e.

in i386 DX CPU, DH e 3 indicates i386 DX CPU
after reset

DL e revision number;

in i386 SX CPU, DH e 23H indicates i386 SX
after reset CPU

DL e revision number.

9.0 INSTRUCTION SET

This section describes the instruction set. Table 9.1
lists all instructions along with instruction encoding
diagrams and clock counts. Further details of the
instruction encoding are then provided in the follow-
ing sections, which completely describe the encod-
ing structure and the definition of all fields occurring
within instructions.

9.1 i386TM SX CPU Instruction
Encoding and Clock Count
Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 9.1 be-
low, by the processor clock period (e.g. 62.5 ns for
an i386 SX Microprocessor operating at 16 MHz).
The actual clock count of an i386 SX Microproces-
sor program will average 5% more than the calculat-

ed clock count due to instruction sequences which
execute faster than they can be fetched from memo-
ry.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded,
and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor access to the bus.

4. No exceptions are detected during instruction ex-
ecution.

5. If an effective address is calculated, it does not
use two general register components. One regis-
ter, scaling and displacement can be used within
the clock counts shown. However, if the effective
address calculation uses two general register
components, add 1 clock to the clock count
shown.

Instruction Clock Count Notation

1. If two clock counts are given, the smaller refers to
a register operand and the larger refers to a mem-
ory operand.

2. n e number of times repeated.

3. m e number of components in the next instruc-
tion executed, where the entire displacement (if
any) counts as one component, the entire imme-
diate data (if any) counts as one component, and
all other bytes of the instruction and prefix(es)
each count as one component.

Misaligned or 32-Bit Operand Accesses

Ð If instructions accesses a misaligned 16-bit oper-
and or 32-bit operand on even address add:
2* clocks for read or write
4** clocks for read and write

Ð If instructions accesses a 32-bit operand on odd
address add:
4* clocks for read or write
8** clocks for read and write

Wait States

Wait states add 1 clock per wait state to instruction
execution for each data access.

76

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

GENERAL DATA TRANSFER

MOV e Move:

Register to Register/Memory 1 0 0 0 1 0 0 w mod reg r/m 2/2 2/2* 2 8

Register/Memory to Register 1 0 0 0 1 0 1 w mod reg r/m 2/4 2/4* 2 8

Immediate to Register/Memory 1 1 0 0 0 1 1 w mod 0 0 0 r/m immediate data 2/2 2/2* 2 8

Immediate to Register (short form) 1 0 1 1 w reg immediate data 2 2

Memory to Accumulator (short form) 1 0 1 0 0 0 0 w full displacement 4* 4* 2 8

Accumulator to Memory (short form) 1 0 1 0 0 0 1 w full displacement 2* 2* 2 8

Register Memory to Segment Register 1 0 0 0 1 1 1 0 mod sreg3 r/m 2/5 22/23 2 8, 10, 11

Segment Register to Register/Memory 1 0 0 0 1 1 0 0 mod sreg3 r/m 2/2 2/2 2 8

MOVSX e Move With Sign Extension

Register From Register/Memory 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 w mod reg r/m 3/6* 3/6* 2 8

MOVZX e Move With Zero Extension

Register From Register/Memory 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 w mod reg r/m 3/6* 3/6* 2 8

PUSH e Push:

Register/Memory 1 1 1 1 1 1 1 1 mod 1 1 0 r/m 5/7* 7/9* 2 8

Register (short form) 0 1 0 1 0 reg 2 4 2 8

(short form)
Segment Register (ES, CS, SS or DS)

0 0 0 sreg2 1 1 0 2 4 2 8

FS or GS)
Segment Register (ES, CS, SS, DS,

0 0 0 0 1 1 1 1 1 0 sreg3 0 0 0 2 4 2 8

Immediate 0 1 1 0 1 0 s 0 immediate data 2 4 2 8

PUSHA e Push All 0 1 1 0 0 0 0 0 18 34 2 8

POP e Pop

Register/Memory 1 0 0 0 1 1 1 1 mod 0 0 0 r/m 5/7 7/9 2 8

Register (short form) 0 1 0 1 1 reg 6 6 2 8

(short form)
Segment Register (ES, CS, SS or DS)

0 0 0 sreg 2 1 1 1 7 25 2 8, 9, 10

FS or GS
Segment Register (ES, CS, SS or DS),

0 0 0 0 1 1 1 1 1 0 sreg 3 0 0 1 7 25 2 8, 9, 10

POPA e Pop All 0 1 1 0 0 0 0 1 24 40 2 8

XCHG e Exchange

Register/Memory With Register 1 0 0 0 0 1 1 w mod reg r/m 3/5** 3/5** 2, 6 6, 8

Register With Accumulator (short form) 1 0 0 1 0 reg

8086 Mode

Clk Count
Virtual

3 3

IN e Input from:

Fixed Port 1 1 1 0 0 1 0 w port number ²26 12* 6*/26* 19, 13

Variable Port 1 1 1 0 1 1 0 w ²27 13* 7*/27* 19, 13

OUT e Output to:

Fixed Port 1 1 1 0 0 1 1 w port number ²24 10* 4*/24* 19, 13

Variable Port 1 1 1 0 1 1 1 w ²25 11* 5*/25* 19, 13

LEA e Load EA to Register 1 0 0 0 1 1 0 1 mod reg r/m 2 2

77

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

SEGMENT CONTROL

LDS e Load Pointer to DS 1 1 0 0 0 1 0 1 mod reg r/m 7* 26*/28* 2 8, 10, 11

LES e Load Pointer to ES 1 1 0 0 0 1 0 0 mod reg r/m 7* 26*/28* 2 8, 10, 11

LFS e Load Pointer to FS 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0 mod reg r/m 7* 29*/31* 2 8, 10, 11

LGS e Load Pointer to GS 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 mod reg r/m 7* 26*/28* 2 8, 10, 11

LSS e Load Pointer to SS 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 mod reg r/m 7* 26*/28* 2 8, 10, 11

FLAG CONTROL

CLC e Clear Carry Flag 1 1 1 1 1 0 0 0 2 2

CLD e Clear Direction Flag 1 1 1 1 1 1 0 0 2 2

CLI e Clear Interrupt Enable Flag 1 1 1 1 1 0 1 0 8 8 13

CLTS e Clear Task Switched Flag 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 5 5 3 12

CMC e Complement Carry Flag 1 1 1 1 0 1 0 1 2 2

LAHF e Load AH into Flag 1 0 0 1 1 1 1 1 2 2

POPF e Pop Flags 1 0 0 1 1 1 0 1 5 5 2 8, 14

PUSHF e Push Flags 1 0 0 1 1 1 0 0 4 4 2 8

SAHF e Store AH into Flags 1 0 0 1 1 1 1 0 3 3

STC e Set Carry Flag 1 1 1 1 1 0 0 1 2 2

STD e Set Direction Flag 1 1 1 1 1 1 0 1

STI e Set Interrupt Enable Flag 1 1 1 1 1 0 1 1 8 8 13

ARITHMETIC

ADD e Add

Register to Register 0 0 0 0 0 0 d w mod reg r/m 2 2

Register to Memory 0 0 0 0 0 0 0 w mod reg r/m 7** 7** 2 8

Memory to Register 0 0 0 0 0 0 1 w mod reg r/m 6* 6* 2 8

Immediate to Register/Memory 1 0 0 0 0 0 s w mod 0 0 0 r/m immediate data 2/7** 2/7** 2 8

Immediate to Accumulator (short form) 0 0 0 0 0 1 0 w immediate data 2 2

ADC e Add With Carry

Register to Register 0 0 0 1 0 0 d w mod reg r/m 2 2

Register to Memory 0 0 0 1 0 0 0 w mod reg r/m 7** 7** 2 8

Memory to Register 0 0 0 1 0 0 1 w mod reg r/m 6* 6* 2 8

Immediate to Register/Memory 1 0 0 0 0 0 s w mod 0 1 0 r/m immediate data 2/7** 2/7** 2 8

Immediate to Accumulator (short form) 0 0 0 1 0 1 0 w immediate data 2 2

INC e Increment

Register/Memory 1 1 1 1 1 1 1 w mod 0 0 0 r/m 2/6** 2/6** 2 8

Register (short form) 0 1 0 0 0 reg 2 2

SUB e Subtract

Register from Register 0 0 1 0 1 0 d w mod reg r/m 2 2

78

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

ARITHMETIC (Continued)

Register from Memory 0 0 1 0 1 0 0 w mod reg r/m 7** 7** 2 8

Memory from Register 0 0 1 0 1 0 1 w mod reg r/m 6* 6* 2 8

Immediate from Register/Memory 1 0 0 0 0 0 s w mod 1 0 1 r/m immediate data 2/7** 2/7** 2 8

Immediate from Accumulator (short form) 0 0 1 0 1 1 0 w immediate data 2 2

SBB e Subtract with Borrow

Register from Register 0 0 0 1 1 0 d w mod reg r/m 2 2

Register from Memory 0 0 0 1 1 0 0 w mod reg r/m 7** 7** 2 8

Memory from Register 0 0 0 1 1 0 1 w mod reg r/m 6* 6* 2 8

Immediate from Register/Memory 1 0 0 0 0 0 s w mod 0 1 1 r/m immediate data 2/7** 2/7** 2 8

Immediate from Accumulator (short form) 0 0 0 1 1 1 0 w immediate data 2 2

DEC e Decrement

Register/Memory 1 1 1 1 1 1 1 w reg 0 0 1 r/m 2/6 2/6 2 8

Register (short form) 0 1 0 0 1 reg 2 2

CMP e Compare

Register with Register 0 0 1 1 1 0 d w mod reg r/m 2 2

Memory with Register 0 0 1 1 1 0 0 w mod reg r/m 5* 5* 2 8

Register with Memory 0 0 1 1 1 0 1 w mod reg r/m 6* 6* 2 8

Immediate with Register/Memory 1 0 0 0 0 0 s w mod 1 1 1 r/m immediate data 2/5* 2/5* 2 8

Immediate with Accumulator (short form) 0 0 1 1 1 1 0 w immediate data 2 2

NEG e Change Sign 1 1 1 1 0 1 1 w mod 0 1 1 r/m 2/6* 2/6* 2 8

AAA e ASCII Adjust for Add 0 0 1 1 0 1 1 1 4 4

AAS e ASCII Adjust for Subtract 0 0 1 1 1 1 1 1 4 4

DAA e Decimal Adjust for Add 0 0 1 0 0 1 1 1 4 4

DAS e Decimal Adjust for Subtract 0 0 1 0 1 1 1 1 4 4

MUL e Multiply (unsigned)

Accumulator with Register/Memory 1 1 1 1 0 1 1 w mod 1 0 0 r/m

Multiplier-Byte 12–17/15–20* 12–17/15–20* 2, 4 4, 8

-Word 12–25/15–28* 12–25/15–28* 2, 4 4, 8

-Doubleword 12–41/17–46* 12–41/17–46* 2, 4 4, 8

IMUL e Integer Multiply (signed)

Accumulator with Register/Memory 1 1 1 1 0 1 1 w mod 1 0 1 r/m

Multiplier-Byte 12–17/15–20* 12–17/15–20* 2, 4 4, 8

-Word 12–25/15–28* 12–25/15–28* 2, 4 4, 8

-Doubleword 12–41/17–46* 12–41/17–46* 2, 4 4, 8

Register with Register/Memory 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 mod reg r/m

Multiplier-Byte 12–17/15–20* 12–17/15–20* 2, 4 4, 8

-Word 12–25/15–28* 12–25/15–28* 2, 4 4, 8

-Doubleword 12–41/17–46* 12–41/17–46* 2, 4 4, 8

Register/Memory with Immediate to Register 0 1 1 0 1 0 s 1 mod reg r/m immediate data

-Word 13–26 13–26/14–27 2, 4 4, 8

-Doubleword 13–42 13–42/16–45 2, 4 4, 8

79

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

ARITHMETIC (Continued)

DIV e Divide (Unsigned)

Accumulator by Register/Memory 1 1 1 1 0 1 1 w mod 1 1 0 r/m

DivisorÐByte 14/17 14/17 2, 5 5, 8

ÐWord 22/25 22/25 2, 5 5, 8

ÐDoubleword 38/43 38/43 2, 5 5, 8

IDIV e Integer Divide (Signed)

Accumulator By Register/Memory 1 1 1 1 0 1 1 w mod 1 1 1 r/m

DivisorÐByte 19/22 19/22 2, 5 5, 8

ÐWord 27/30 27/30 2, 5 5, 8

ÐDoubleword 43/48 43/48 2, 5 5, 8

AAD e ASCII Adjust for Divide 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 19 19

AAM e ASCII Adjust for Multiply 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 17 17

CBW e Convert Byte to Word 1 0 0 1 1 0 0 0 3 3

CWD e Convert Word to Double Word 1 0 0 1 1 0 0 1 2 2

LOGIC

Shift Rotate Instructions

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

Register/Memory by 1 1 1 0 1 0 0 0 w mod TTT r/m 3/7** 3/7** 2 8

Register/Memory by CL 1 1 0 1 0 0 1 w mod TTT r/m 3/7* 3/7* 2 8

Register/Memory by Immediate Count 1 1 0 0 0 0 0 w mod TTT r/m immed 8-bit data 3/7* 3/7* 2 8

Through Carry (RCL and RCR)

Register/Memory by 1 1 1 0 1 0 0 0 w mod TTT r/m 9/10* 9/10* 2 8

Register/Memory by CL 1 1 0 1 0 0 1 w mod TTT r/m 9/10* 9/10* 2 8

Register/Memory by Immediate Count 1 1 0 0 0 0 0 w mod TTT r/m immed 8-bit data 9/10* 9/10* 2 8

T T T Instruction

0 0 0 ROL

0 0 1 ROR

0 1 0 RCL

0 1 1 RCR

1 0 0 SHL/SAL

1 0 1 SHR

1 1 1 SAR

SHLD e Shift Left Double

Register/Memory by Immediate 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 mod reg r/m immed 8-bit data 3/7** 3/7**

Register/Memory by CL 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 mod reg r/m 3/7** 3/7**

SHRD e Shift Right Double

Register/Memory by Immediate 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 mod reg r/m immed 8-bit data 3/7** 3/7**

Register/Memory by CL 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 mod reg r/m 3/7** 3/7**

AND e And

Register to Register 0 0 1 0 0 0 d w mod reg r/m 2 2

80

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

LOGIC (Continued)

Register to Memory 0 0 1 0 0 0 0 w mod reg r/m 7** 7** 2 8

Memory to Register 0 0 1 0 0 0 1 w mod reg r/m 6* 6* 2 8

Immediate to Register/Memory 1 0 0 0 0 0 0 w mod 1 0 0 r/m immediate data 2/7* 2/7** 2 8

Immediate to Accumulator (Short Form) 0 0 1 0 0 1 0 w immediate data 2 2

TEST e And Function to Flags, No Result

Register/Memory and Register 1 0 0 0 0 1 0 w mod reg r/m 2/5* 2/5* 2 8

Immediate Data and Register/Memory 1 1 1 1 0 1 1 w mod 0 0 0 r/m immediate data 2/5* 2/5* 2 8

Immediate Data and Accumulator
(Short Form) 1 0 1 0 1 0 0 w immediate data 2 2

OR e Or

Register to Register 0 0 0 0 1 0 d w mod reg r/m 2 2

Register to Memory 0 0 0 0 1 0 0 w mod reg r/m 7** 7** 2 8

Memory to Register 0 0 0 0 1 0 1 w mod reg r/m 6* 6* 2 8

Immediate to Register/Memory 1 0 0 0 0 0 0 w mod 0 0 1 r/m immediate data 2/7** 2/7** 2 8

Immediate to Accumulator (Short Form) 0 0 0 0 1 1 0 w immediate data 2 2

XOR e Exclusive Or

Register to Register 0 0 1 1 0 0 d w mod reg r/m 2 2

Register to Memory 0 0 1 1 0 0 0 w mod reg r/m 7** 7** 2 8

Memory to Register 0 0 1 1 0 0 1 w mod reg r/m 6* 6* 2 8

Immediate to Register/Memory 1 0 0 0 0 0 0 w mod 1 1 0 r/m immediate data 2/7** 2/7** 2 8

Immediate to Accumulator (Short Form) 0 0 1 1 0 1 0 w immediate data 2 2

NOT e Invert Register/Memory 1 1 1 1 0 1 1 w mod 0 1 0 r/m 2/6** 2/6** 2 8

STRING MANIPULATION

CMPS e Compare Byte Word 1 0 1 0 0 1 1 w

Virtual
Count

Mode
8086

Clk

10* 10* 2 8

INS e Input Byte/Word from DX Port 0 1 1 0 1 1 0 w ²29 15 9*/29** 2 19, 8, 13

LODS e Load Byte/Word to AL/AX/EAX 1 0 1 0 1 1 0 w 5 5* 2 8

MOVS e Move Byte Word 1 0 1 0 0 1 0 w 7 7** 2 8

OUTS e Output Byte/Word to DX Port 0 1 1 0 1 1 1 w ²28 14 8*/28* 2 19, 8, 13

SCAS e Scan Byte Word 1 0 1 0 1 1 1 w 7* 7* 2 8

STOS e Store Byte/Word from

AL/AX/EX 1 0 1 0 1 0 1 w 4* 4* 2 8

XLAT e Translate String 1 1 0 1 0 1 1 1 5* 5* 8

REPEATED STRING MANIPULATION

Repeated by Count in CX or ECX

REPE CMPS e Compare String

(Find Non-Match) 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 w 5 a 9n** 5 a 9n** 2 8

81

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

REPEATED STRING MANIPULATION (Continued)

REPNE CMPS e Compare String

(Find Match) 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 w 8086 Mode

Clk Count
Virtual

5a9n** 5a9n** 2 8

REP INS e Input String 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 w ² 13a6n* 7a6n*/ 2 19, 8, 13

27a6n*

REP LODS e Load String 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 w 5a6n* 5a6n* 2 8

REP MOVS e Move String 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 w 7a4n* 7a4n** 2 8

REP OUTS e Output String 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 w ² 12a5n* 6a5n*/ 2 19, 8, 3

26a5n*

REPE SCAS e Scan String

(Find Non-AL/AX/EAX) 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 w 5a8n* 5a8n* 2 8

REPNE SCAS e Scan String

(Find AL/AX/EAX) 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 w 5a8n* 5a8n* 2 8

REP STOS e Store String 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 w 5a5n* 5a5n* 2 8

BIT MANIPULATION

BSF e Scan Bit Forward 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 mod reg r/m 10a3n* 10a3n** 2 8

BSR e Scan Bit Reverse 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 mod reg r/m 10a3n* 10a3n** 2 8

BT e Test Bit

Register/Memory, Immediate 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 mod 1 0 0 r/m immed 8-bit data 3/6* 3/6* 2 8

Register/Memory, Register 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 mod reg r/m 3/12* 3/12* 2 8

BTC e Test Bit and Complement

Register/Memory, Immediate 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 mod 1 1 1 r/m immed 8-bit data 6/8* 6/8* 2 8

Register/Memory, Register 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 mod reg r/m 6/13* 6/13* 2 8

BTR e Test Bit and Reset

Register/Memory, Immediate 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 mod 1 1 0 r/m immed 8-bit data 6/8* 6/8* 2 8

Register/Memory, Register 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 mod reg r/m 6/13* 6/13* 2 8

BTS e Test Bit and Set

Register/Memory, Immediate 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 mod 1 0 1 r/m immed 8-bit data 6/8* 6/8* 2 8

Register/Memory, Register 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 mod reg r/m 6/13* 6/13* 2 8

CONTROL TRANSFER

CALL e Call

Direct Within Segment 1 1 1 0 1 0 0 0 full displacement 7am* 9am* 2 18

Register/Memory

Indirect Within Segment 1 1 1 1 1 1 1 1 mod 0 1 0 r/m 7am*/10am* 9am/ 2 8, 18

12am*

Direct Intersegment 1 0 0 1 1 0 1 0 unsigned full offset, selector 17am* 42am* 2 10, 11, 18

NOTE:
² Clock count shown applies if I/O permission allows I/O to the port in virtual 8086 mode. If I/O bit map denies permission
exception 13 fault occurs; refer to clock counts for INT 3 instruction.

82

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

CONTROL TRANSFER (Continued)

Protected Mode Only (Direct Intersegment)

Via Call Gate to Same Privilege Level 64am 8, 10, 11, 18

Via Call Gate to Different Privilege Level,

(No Parameters) 98am 8, 10, 11, 18

Via Call Gate to Different Privilege Level,

(x Parameters) 106a8xam 8, 10, 11, 18

From 286 Task to 286 TSS 285 8, 10, 11, 18

From 286 Task to i386 SX CPU TSS 310 8, 10, 11, 18

From 286 Task to Virtual 8086 Task (i386 SX CPU TSS) 229 8, 10, 11, 18

From i386 SX CPU Task to 286 TSS 285 8, 10, 11, 18

From i386 SX CPU Task to i386 SX CPU TSS 392 8, 10, 11, 18

From i386 SX CPU Task to Virtual 8086 Task (i386 SX CPU TSS) 309 8, 10, 11, 18

Indirect Intersegment 1 1 1 1 1 1 1 1 mod 0 1 1 r/m 30am 46am 2 8, 10, 11, 18

Protected Mode Only (Indirect Intersegment)

Via Call Gate to Same Privilege Level 68am 8, 10, 11, 18

Via Call Gate to Different Privilege Level,

(No Parameters) 102am 8, 10, 11, 18

Via Call Gate to Different Privilege Level,

(x Parameters) 110a8xam 8, 10, 11, 18

From 286 Task to 286 TSS 8, 10, 11, 18

From 286 Task to i386 SX CPU TSS 8, 10, 11, 18

From 286 Task to Virtual 8086 Task (i386 SX CPU TSS) 8, 10, 11, 18

From i386 SX CPU Task to 286 TSS 8, 10, 11, 18

From i386 SX CPU Task to i386 SX CPU TSS 399 8, 10, 11, 18

From i386 SX CPU Task to Virtual 8086 Task (i386 SX CPU TSS) 8, 10, 11, 18

JMP e Unconditional Jump

Short 1 1 1 0 1 0 1 1 8-bit displacement 7am 7am 18

Direct within Segment 1 1 1 0 1 0 0 1 full displacement 7am 7am 18

Register/Memory Indirect within 1 1 1 1 1 1 1 1 mod 1 0 0 r/m 9am/14am 9am/14am 2 8, 18
Segment

Direct Intersegment 1 1 1 0 1 0 1 0 unsigned full offset, selector 16am 31am 10, 11, 18

Protected Mode Only (Direct Intersegment)

Via Call Gate to Same Privilege Level 53am 8, 10, 11, 18

From 286 Task to 286 TSS 8, 10, 11, 18

From 286 Task to i386 SX CPU TSS 8, 10, 11, 18

From 286 Task to Virtual 8086 Task (i386 SX CPU TSS) 8, 10, 11, 18

From i386 SX CPU Task to 286 TSS 8, 10, 11, 18

From i386 SX CPU Task to i386 SX CPU TSS 8, 10, 11, 18

From i386 SX CPU Task to Virtual 8086 Task (i386 SX CPU TSS) 395 8, 10, 11, 18

Indirect Intersegment 1 1 1 1 1 1 1 1 mod 1 0 1 r/m 17am 31am 2 8, 10, 11, 18

Protected Mode Only (Indirect Intersegment)

Via Call Gate to Same Privilege Level 49am 8, 10, 11, 18

From 286 Task to 286 TSS 8, 10, 11, 18

From 286 Task to i386 SX CPU TSS 8, 10, 11, 18

From 286 Task to Virtual 8086 Task (i386 SX CPU TSS) 8, 10, 11, 18

From i386 SX CPU Task to 286 TSS 8, 10, 11, 18

From i386 SX CPU Task to i386 SX CPU TSS 328 8, 10, 11, 18

From i386 SX CPU Task to Virtual 8086 Task (i386 SX CPU TSS) 8, 10, 11, 18

83

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

CONTROL TRANSFER (Continued)

RET e Return from CALL:

Within Segment 1 1 0 0 0 0 1 1 12am 2 7, 8, 18

Within Segment Adding Immediate to SP 1 1 0 0 0 0 1 0 16-bit displ 12am 2 7, 8, 18

Intersegment 1 1 0 0 1 0 1 1 36am 2 7, 8, 10, 11, 18

Intersegment Adding Immediate to SP 1 1 0 0 1 0 1 0 16-bit displ 36am 2 7, 8, 10, 11, 18

Protected Mode Only (RET):

to Different Privilege Level

Intersegment 72 8, 10, 11, 18

Intersegment Adding Immediate to SP 72 8, 10, 11, 18

CONDITIONAL JUMPS

NOTE: Times Are Jump ‘‘Taken or Not Taken’’

JO e Jump on Overflow

8-Bit Displacement 0 1 1 1 0 0 0 0 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 full displacement 7am or 3 7am or 3 18

JNO e Jump on Not Overflow

8-Bit Displacement 0 1 1 1 0 0 0 1 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 full displacement 7am or 3 7am or 3 18

JB/JNAE e Jump on Below/Not Above or Equal

8-Bit Displacement 0 1 1 1 0 0 1 0 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 full displacement 7am or 3 7am or 3 18

JNB/JAE e Jump on Not Below/Above or Equal

8-Bit Displacement 0 1 1 1 0 0 1 1 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 full displacement 7am or 3 7am or 3 18

JE/JZ e Jump on Equal/Zero

8-Bit Displacement 0 1 1 1 0 1 0 0 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 full displacement 7am or 3 7am or 3 18

JNE/JNZ e Jump on Not Equal/Not Zero

8-Bit Displacement 0 1 1 1 0 1 0 1 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 full displacement 7am or 3 7am or 3 18

JBE/JNA e Jump on Below or Equal/Not Above

8-Bit Displacement 0 1 1 1 0 1 1 0 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 full displacement 7am or 3 7am or 3 18

JNBE/JA e Jump on Not Below or Equal/Above

8-Bit Displacement 0 1 1 1 0 1 1 1 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 full displacement 7am or 3 7am or 3 18

JS e Jump on Sign

8-Bit Displacement 0 1 1 1 1 0 0 0 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 full displacement 7am or 3 7am or 3 18

84

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

CONDITIONAL JUMPS (Continued)

JNS e Jump on Not Sign

8-Bit Displacement 0 1 1 1 1 0 0 1 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 full displacement 7am or 3 7am or 3 18

JP/JPE e Jump on Parity/Parity Even

8-Bit Displacement 0 1 1 1 1 0 1 0 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 full displacement 7am or 3 7am or 3 18

JNP/JPO e Jump on Not Parity/Parity Odd

8-Bit Displacement 0 1 1 1 1 0 1 1 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 full displacement 7am or 3 7am or 3 18

JL/JNGE e Jump on Less/Not Greater or Equal

8-Bit Displacement 0 1 1 1 1 1 0 0 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 full displacement 7am or 3 7am or 3 18

JNL/JGE e Jump on Not Less/Greater or Equal

8-Bit Displacement 0 1 1 1 1 1 0 1 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 full displacement 7am or 3 7am or 3 18

JLE/JNG e Jump on Less or Equal/Not Greater

8-Bit Displacement 0 1 1 1 1 1 1 0 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 full displacement 7am or 3 7am or 3 18

JNLE/JG e Jump on Not Less or Equal/Greater

8-Bit Displacement 0 1 1 1 1 1 1 1 8-bit displ 7am or 3 7am or 3 18

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 full displacement 7am or 3 7am or 3 18

JCXZ e Jump on CX Zero 1 1 1 0 0 0 1 1 8-bit displ 9am or 5 9am or 5 18

JECXZ e Jump on ECX Zero 1 1 1 0 0 0 1 1 8-bit displ 9am or 5 9am or 5 18

(Address Size Prefix Differentiates JCXZ from JECXZ)

LOOP e Loop CX Times 1 1 1 0 0 0 1 0 8-bit displ 11am 11am 18

LOOPZ/LOOPE e Loop with
Zero/Equal 1 1 1 0 0 0 0 1 8-bit displ 11am 11am 18

LOOPNZ/LOOPNE e Loop While
Not Zero 1 1 1 0 0 0 0 0 8-bit displ 11am 11am 18

CONDITIONAL BYTE SET

NOTE: Times Are Register/Memory

SETO e Set Byte on Overflow

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 mod 0 0 0 r/m 4/5* 4/5* 8

SETNO e Set Byte on Not Overflow

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 mod 0 0 0 r/m 4/5* 4/5* 8

SETB/SETNAE e Set Byte on Below/Not Above or Equal

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 mod 0 0 0 r/m 4/5* 4/5* 8

85

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

CONDITIONAL BYTE SET (Continued)

SETNB e Set Byte on Not Below/Above or Equal

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1 mod 0 0 0 r/m 4/5* 4/5* 8

SETE/SETZ e Set Byte on Equal/Zero

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 mod 0 0 0 r/m 4/5* 4/5* 8

SETNE/SETNZ e Set Byte on Not Equal/Not Zero

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 mod 0 0 0 r/m 4/5* 4/5* 8

SETBE/SETNA e Set Byte on Below or Equal/Not Above

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 mod 0 0 0 r/m 4/5* 4/5* 8

SETNBE/SETA e Set Byte on Not Below or Equal/Above

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 mod 0 0 0 r/m 4/5* 4/5* 8

SETS e Set Byte on Sign

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 mod 0 0 0 r/m 4/5* 4/5* 8

SETNS e Set Byte on Not Sign

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 mod 0 0 0 r/m 4/5* 4/5* 8

SETP/SETPE e Set Byte on Parity/Parity Even

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 mod 0 0 0 r/m 4/5* 4/5* 8

SETNP/SETPO e Set Byte on Not Parity/Parity Odd

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 mod 0 0 0 r/m 4/5* 4/5* 8

SETL/SETNGE e Set Byte on Less/Not Greater or Equal

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 mod 0 0 0 r/m 4/5* 4/5* 8

SETNL/SETGE e Set Byte on Not Less/Greater or Equal

To Register/Memory 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 mod 0 0 0 r/m 4/5* 4/5* 8

SETLE/SETNG e Set Byte on Less or Equal/Not Greater

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 mod 0 0 0 r/m 4/5* 4/5* 8

SETNLE/SETG e Set Byte on Not Less or Equal/Greater

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 mod 0 0 0 r/m 4/5* 4/5* 8

ENTER e Enter Procedure 1 1 0 0 1 0 0 0 16-bit displacement, 8-bit level

L e 0 10 10 2 8

L e 1 14 14 2 8

L l 1 17 a 17 a 2 8

8(n b 1) 8(n b 1)

LEAVE e Leave Procedure 1 1 0 0 1 0 0 1 4 4 2 8

86

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

INTERRUPT INSTRUCTIONS

INT e Interrupt:

Type Specified 1 1 0 0 1 1 0 1 type 37 2

Type 3 1 1 0 0 1 1 0 0 33 2

INTO e Interrupt 4 if Overflow Flag Set 1 1 0 0 1 1 1 0

If OF e 1 35 2, 5

If OF e 0 3 3 2, 5

Bound e Interrupt 5 if Detect Value 0 1 1 0 0 0 1 0 mod reg r/m

Out of Range

If Out of Range 44 2, 5 5, 7, 8, 10, 11, 18

If In Range 10 10 2, 5 5, 7, 8, 10, 11, 18

Protected Mode Only (INT)

INT: Type Specified

Via Interrupt or Trap Gate

Via Interrupt or Trap Gate

to Same Privilege Level 71 7, 10, 11, 18

to Different Privilege Level 111 7, 10, 11, 18

From 286 Task to 286 TSS via Task Gate 438 7, 10, 11, 18

From 286 Task to i386 SX CPU TSS via Task Gate 465 7, 10, 11, 18

From 286 Task to virt 8086 md via Task Gate 382 7, 10, 11, 18

From i386 SX CPU Task to 286 TSS via Task Gate 440 7, 10, 11, 18

From i386 SX CPU Task to i386 SX CPU TSS via Task Gate 467 7, 10, 11, 18

From i386 SX CPU Task to virt 8086 md via Task Gate 384 7, 10, 11, 18

From virt 8086 md to 286 TSS via Task Gate 445 7, 10, 11, 18

From virt 8086 md to i386 SX CPU TSS via Task Gate 472 7, 10, 11, 18

From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 275

INT: TYPE 3

Via Interrupt or Trap Gate

to Same Privilege Level 71 7, 10, 11, 18

Via Interrupt or Trap Gate

to Different Privilege Level 111 7, 10, 11, 18

From 286 Task to 286 TSS via Task Gate 382 7, 10, 11, 18

From 286 Task to i386 SX CPU TSS via Task Gate 409 7, 10, 11, 18

From 286 Task to Virt 8086 md via Task Gate 326 7, 10, 11, 18

From i386 SX CPU Task to 286 TSS via Task Gate 384 7, 10, 11, 18

From i386 SX CPU Task to i386 SX CPU TSS via Task Gate 411 7, 10, 11, 18

From i386 SX CPU Task to Virt 8086 md via Task Gate 328 7, 10, 11, 18

From virt 8086 md to 286 TSS via Task Gate 389 7, 10, 11, 18

From virt 8086 md to i386 SX CPU TSS via Task Gate 416 7, 10, 11, 18

From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 223

INTO:

Via Interrupt or Trap Grate

to Same Privilege Level 71 7, 10, 11, 18

Via Interrupt or Trap Gate

to Different Privilege Level 111 7, 10, 11, 18

From 286 Task to 286 TSS via Task Gate 384 7, 10, 11, 18

From 286 Task to i386 SX CPU TSS via Task Gate 411 7, 10, 11, 18

From 286 Task to virt 8086 md via Task Gate 328 7, 10, 11, 18

From i386 SX CPU Task to 286 TSS via Task Gate i386 DX 7, 10, 11, 18

From i386 SX CPU Task to i386 SX CPU TSS via Task Gate 413 7, 10, 11, 18

From i386 SX CPU Task to virt 8086 md via Task Gate 329 7, 10, 11, 18

From virt 8086 md to 286 TSS via Task Gate 391 7, 10, 11, 18

From virt 8086 md to i386 SX CPU TSS via Task Gate 418 7, 10, 11, 18

From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 223

87

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

INTERRUPT INSTRUCTIONS (Continued)

BOUND:

Via Interrupt or Trap Gate

to Same Privilege Level 71 7, 10, 11, 18

Via Interrupt or Trap Gate

to Different Privilege Level 111 7, 10, 11, 18

From 286 Task to 286 TSS via Task Gate 358 7, 10, 11, 18

From 286 Task to i386 SX CPU TSS via Task Gate 388 7, 10, 11, 18

From 268 Task to virt 8086 Mode via Task Gate 335 7, 10, 11, 18

From i386 SX CPU Task to 286 TSS via Task Gate 368 7, 10, 11, 18

From i386 SX CPU Task to i386 SX CPU TSS via Task Gate 398 7, 10, 11, 18

From i386 SX CPU Task to virt 8086 Mode via Task Gate 347 7, 10, 11, 18,

From virt 8086 Mode to 286 TSS via Task Gate 368 7, 10, 11, 18

From virt 8086 Mode to i386 SX CPU TSS via Task Gate 398 7, 10, 11, 18

From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 223

INTERRUPT RETURN

IRET e Interrupt Return 1 1 0 0 1 1 1 1 24 7, 8, 10, 11, 18

Protected Mode Only (IRET)

To the Same Privilege Level (within task) 42 7, 8, 10, 11, 18

To Different Privilege Level (within task) 86 7, 8, 10, 11, 18

From 286 Task to 286 TSS 285 8, 10, 11, 18

From 286 Task to i386 SX CPU TSS 318 8, 10, 11, 18

From 286 Task to Virtual 8086 Task 267 8, 10, 11, 18

From 286 Task to Virtual 8086 Mode (within task) 113

From i386 SX CPU Task to 286 TSS 324 8, 10, 11, 18

From i386 SX CPU Task to i386 SX CPU TSS 328 8, 10, 11, 18

From i386 SX CPU Task to Virtual 8086 Task 377 8, 10, 11, 18

From i386 SX CPU Task to Virtual 8086 Mode (within task) 113

PROCESSOR CONTROL

HLT e HALT 1 1 1 1 0 1 0 0 5 5 12

MOV e Move to and From Control/Debug/Test Registers

CR0/CR2/CR3 from register 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 eee reg 10/4/5 10/4/5 12

Register From CR0–3 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 1 eee reg 6 6 12

DR0–3 From Register 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 eee reg 22 22 12

DR6–7 From Register 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 eee reg 16 16 12

Register from DR6–7 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 eee reg 14 14 12

Register from DR0–3 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 eee reg 22 22 12

TR6–7 from Register 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 eee reg 12 12 12

Register from TR6–7 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 1 eee reg 12 12 12

NOP e No Operation 1 0 0 1 0 0 0 0 3 3

WAITeWait until BUSYÝ pin is negated 1 0 0 1 1 0 1 1 6 6

88

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

PROCESSOR EXTENSION INSTRUCTIONS

Processor Extension Escape 1 1 0 1 1 T T T mod L L L r/m See 8

TTT and LLL bits are opcode i387 SX processor

information for coprocessor. data sheet for

clock counts

PREFIX BYTES

Address Size Prefix 0 1 1 0 0 1 1 1 0 0

LOCK e Bus Lock Prefix 1 1 1 1 0 0 0 0 0 0 13

Operand Size Prefix 0 1 1 0 0 1 1 0 0 0

Segment Override Prefix

CS: 0 0 1 0 1 1 1 0 0 0

DS: 0 0 1 1 1 1 1 0 0 0

ES: 0 0 1 0 0 1 1 0 0 0

FS: 0 1 1 0 0 1 0 0 0 0

GS: 0 1 1 0 0 1 0 1 0 0

SS: 0 0 1 1 0 1 1 0 0 0

PROTECTION CONTROL

ARPL e Adjust Requested Privilege Level

From Register/Memory 0 1 1 0 0 0 1 1 mod reg r/m N/A 20/21** 1 8

LAR e Load Access Rights

From Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 mod reg r/m N/A 15/16* 1 7, 8, 10, 16

LGDT e Load Global Descriptor

Table Register 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 0 1 0 r/m 11* 11* 2, 3 8, 12

LIDT e Load Interrupt Descriptor

Table Register 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 0 1 1 r/m 11* 11* 2, 3 8, 12

LLDT e Load Local Descriptor

Table Register to
Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 0 1 0 r/m N/A 20/24* 1 7, 8, 10, 12

LMSW e Load Machine Status Word

From Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 1 1 0 r/m 10/13 10/13* 2, 3 8, 12

LSL e Load Segment Limit

From Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 mod reg r/m

Byte-Granular Limit N/A 20/21* 1 7, 8, 10, 16

Page-Granular Limit N/A 25/26* 1 7, 8, 10, 16

LTR e Load Task Register

From Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 0 0 1 r/m N/A 23/27* 1 7, 8, 10, 12

SGDT e Store Global Descriptor

Table Register 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 0 0 0 r/m 9* 9* 2, 3 8

SIDT e Store Interrupt Descriptor

Table Register 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 0 0 1 r/m 9* 9* 2, 3 8

SLDT e Store Local Descriptor Table Register

To Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 0 0 0 r/m N/A 2/2* 1 8

89

MILITARY i386TM SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

PROTECTION CONTROL (Continued)

SMSW eStore Machine
Status Word 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 1 0 0 r/m 2/2* 2/2* 2, 3 8, 12

STR eStore Task Register

To Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 0 0 1 r/m N/A 2/2* 1 8

VERR eVerify Read Access

Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 1 0 0 r/m N/A 10/11* 1 7, 8, 10, 16

VERW e Verify Write Access 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 1 0 1 r/m N/A 15/16* 1 7, 8, 10, 16

INSTRUCTION NOTES FOR TABLE 9-1

Notes 1 through 3 apply to Real Address Mode only:
1. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).
2. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully
extends beyond the maximum CS, DS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit.
3. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected
Mode.

Notes 4 through 7 apply to Real Address Mode and Protected Virtual Address Mode:
4. The i386 SX CPU uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most
significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula:
Actual Clock e if m k l 0 then max ([log2 lml], 3) a b clocks:

if m e 0 then 3ab clocks
In this formula, m is the multiplier, and
b e 9 for register to register,
b e 12 for memory to register,
b e 10 for register with immediate to register,
b e 11 for memory with immediate to register.

5. An exception may occur, depending on the value of the operand.
6. LOCK is automatically asserted, regardless of the presence or absence of the LOCK prefix.
7. LOCK is asserted during descriptor table accesses.

Notes 8 through 18 apply to Protected Virtual Address Mode only:
8. Exception 13 fault (general protection violation) will occur if the memory operand in CS, DS, ES, FS or GS cannot be used
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment
limit violation or not present) occurs.
9. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 fault
(general protection violation). The segment’s descriptor must indicate ‘‘present’’ or exception 11 (CS, DS, ES, FS, GS not
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit
violation or not present) occurs.
10. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain
descriptor integrity in multiprocessor systems.
11. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is violated.
12. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).
13. An exception 13 fault occurs if CPL is greater than IOPL.
14. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are
updated only if CPL e 0.
15. The PE bit of the MSW (CR0) cannot be reset by this instruction. Use MOV into CR0 if desiring to reset the PE bit.
16. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero
flag is cleared.
17. If the coprocessor’s memory operand violates a segment limit or segment access rights, an exception 13 fault (general
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation
or not present) will occur if the stack limit is violated by the operand’s starting address.
18. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13
fault (general protection violation) will occur.
19. The instruction will execute in s clocks if CPL s IOPL. If CPL l IOPL, the instruction will take t clocks.

90

MILITARY i386TM SX MICROPROCESSOR

9.2 Instruction Encoding

9.2.1 OVERVIEW

All instruction encodings are subsets of the general
instruction format shown in Figure 8-1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the ‘‘mod r/m’’
byte and ‘‘scaled index’’ byte, a displacement if re-
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en-
coding fields may be defined. These fields vary ac-
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod r/m
byte, specifies the address mode to be used. Certain

encodings of the mod r/m byte indicate a second
addressing byte, the scale-index-base byte, follows
the mod r/m byte to fully specify the addressing
mode.

Addressing modes can include a displacement im-
mediately following the mod r/m byte, or scaled in-
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 9-1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the r/m field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes them-
selves. Table 9-2 is a complete list of all fields ap-
pearing in the instruction set. Further ahead, follow-
ing Table 9-2, are detailed tables for each field.

T T T T T T T T T T T T T T T T mod T T T r/m ss index base d32 l 16 l 8 l none data32 l 16 l 8 l none

7 0 7 0 7 6 5 3 2 0 7 6 5 3 2 0X ä Y X ä Y X ä YX ä Y X ä Y
opcode ‘‘mod r/m’’ ‘‘s-i-b’’ address immediate

(one or two bytes) byte byte displacement dataX ä Y
(T represents an (4, 2, 1 bytes (4, 2, 1 bytes

opcode bit.) register and address or none) or none)

mode specifier

Figure 9-1. General Instruction Format

Table 9-2. Fields within Instructions

Field Name Description Number of Bits

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits) 1

d Specifies Direction of Data Operation 1

s Specifies if an Immediate Data Field Must be Sign-Extended 1

reg General Register Specifier 3

mod r/m Address Mode Specifier (Effective Address can be a General Register) 2 for mod;

3 for r/m

ss Scale Factor for Scaled Index Address Mode 2

index General Register to be used as Index Register 3

base General Register to be used as Base Register 3

sreg2 Segment Register Specifier for CS, SS, DS, ES 2

sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3

tttn For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated 4

Note: Table 9-1 shows encoding of individual instructions.

91

MILITARY i386TM SX MICROPROCESSOR

9.2.2 32-Bit Extensions of the
Instruction Set

With the i386 SX CPU, the 8086/80186/80286 in-
struction set is extended in two orthogonal direc-
tions: 32-bit forms of all 16-bit instructions are added
to support the 32-bit data types, and 32-bit address-
ing modes are made available for all instructions ref-
erencing memory. This orthogonal instruction set ex-
tension is accomplished having a Default (D) bit in
the code segment descriptor, and by having 2 prefix-
es to the instruction set.

Whether the instruction defaults to operations of 16
bits or 32 bits depends on the setting of the D bit in
the code segment descriptor, which gives the de-
fault length (either 32 bits or 16 bits) for both oper-
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a D value of 0 is assumed internally by the
i386 SX CPU when operating in those modes (for
16-bit default sizes compatible with the M8086/
M80186/M80286).

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op-
code bytes and affect only the instruction they pre-
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the value ‘‘opposite’’
from the Default setting. For example, if the default
operand size is for 32-bit data operations, then pres-
ence of the Operand Size Prefix toggles the instruc-
tion to 16-bit data operation. As another example, if
the default effective address size is 16 bits, pres-
ence of the Effective Address Size prefix toggles the
instruction to use 32-bit effective address computa-
tions.

These 32-bit extensions are available in all modes,
including the Real Address Mode or the Virtual 8086
Mode. In these modes the default is always 16 bits,
so prefixes are needed to specify 32-bit operands or
addresses. For instructions with more than one pre-
fix, the order of prefixes is unimportant.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

9.2.3 Encoding of Instruction Fields

Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immedi-
ately ahead.

9.2.3.1 ENCODING OF OPERAND LENGTH (w)
FIELD

For any given instruction performing a data opera-
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

Operand Size Operand Size

w Field During 16-Bit During 32-Bit

Data Operations Data Operations

0 8 Bits 8 Bits

1 16 Bits 32 Bits

9.2.3.2 ENCODING OF THE GENERAL
REGISTER (reg) FIELD

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the ‘‘mod r/m’’ byte, or as the r/m
field of the ‘‘mod r/m’’ byte.

Encoding of reg Field When w Field

is not Present in Instruction

Register Selected Register Selected

reg Field During 16-Bit During 32-Bit

Data Operations Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

101 SI ESI

101 DI EDI

Encoding of reg Field When w Field

is Present in Instruction

Register Specified by reg Field

During 16-Bit Data Operations:

reg
Function of w Field

(when w e 0) (when w e 1)

000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

92

MILITARY i386TM SX MICROPROCESSOR

Register Specified by reg Field

During 32-Bit Data Operations

reg
Function of w Field

(when w e 0) (when w e 1)

000 AL EAX

001 CL ECX

010 DL EDX

011 BL EBX

100 AH ESP

101 CH EBP

110 DH ESI

111 BH EDI

9.2.3.3 ENCODING OF THE SEGMENT
REGISTER (sreg) FIELD

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The sreg field in other instructions is a
3-bit field, allowing the i386 SX CPU FS and GS seg-
ment registers to be specified.

2-Bit sreg2 Field

2-Bit
Segment

sreg2 Field
Register

Selected

00 ES

01 CS

10 SS

11 DS

3-Bit sreg3 Field

3-Bit
Segment

sreg3 Field
Register

Selected

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 do not use

111 do not use

9.2.3.4 ENCODING OF ADDRESS MODE

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determined,
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the ‘‘mod
r/m’’ byte, and a second byte of addressing informa-
tion, the ‘‘s-i-b’’ (scale-index-base) byte, can be
specified.

The s-i-b byte (scale-index-base byte) is specified
when using 32-bit addressing mode and the ‘‘mod
r/m’’ byte has r/m e 100 and mod e 00, 01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the ‘‘mod r/m’’ byte,
also contains three bits (shown as TTT in Figure 8-1)
sometimes used as an extension of the primary op-
code. The three bits, however, may also be used as
a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad-
dressing uses 16-bit address components to calcu-
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef-
fective address. When 16-bit addressing is used, the
‘‘mod r/m’’ byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
‘‘mod r/m’’ byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en-
codings of all 16-bit addressing modes and 32-bit
addressing modes.

93

MILITARY i386TM SX MICROPROCESSOR

Encoding of 16-bit Address Mode with ‘‘mod r/m’’ Byte

mod r/m Effective Address

00 000 DS:[BXaSI]
00 001 DS:[BXaDI]
00 010 SS:[BPaSI]
00 011 SS:[BPaDI]
00 100 DS:[SI]
00 101 DS:[DI]
00 110 DS:d16

00 111 DS:[BX]

01 000 DS:[BXaSIad8]
01 001 DS:[BXaDIad8]
01 010 SS:[BPaSIad8]
01 011 SS:[BPaDIad8]
01 100 DS:[SIad8]
01 101 DS:[DIad8]
01 110 SS:[BPad8]
01 111 DS:[BXad8]

mod r/m Effective Address

10 000 DS:[BXaSIad16]
10 001 DS:[BXaDIad16]
10 010 SS:[BPaSIad16]
10 011 SS:[BPaDIad16]
10 100 DS:[SIad16]
10 101 DS:[DIad16]
10 110 SS:[BPad16]
10 111 DS:[BXad16]

11 000 registerÐsee below

11 001 registerÐsee below

11 010 registerÐsee below

11 011 registerÐsee below

11 100 registerÐsee below

11 101 registerÐsee below

11 110 registerÐsee below

11 111 registerÐsee below

Register Specified by r/m

During 16-Bit Data Operations

mod r/m
Function of w Field

(when we0) (when w e1)

11 000 AL AX

11 001 CL CX

11 010 DL DX

11 011 BL BX

11 100 AH SP

11 101 CH BP

11 110 DH SI

11 111 BH DI

Register Specified by r/m

During 32-Bit Data Operations

mod r/m
Function of w Field

(when we0) (when w e1)

11 000 AL EAX

11 001 CL ECX

11 010 DL EDX

11 011 BL EBX

11 100 AH ESP

11 101 CH EBP

11 110 DH ESI

11 111 BH EDI

94

MILITARY i386TM SX MICROPROCESSOR

Encoding of 32-bit Address Mode with ‘‘mod r/m’’ byte (no ‘‘s-i-b’’ byte present):

mod r/m Effective Address

00 000 DS:[EAX]
00 001 DS:[ECX]
00 010 DS:[EDX]
00 011 DS:[EBX]
00 100 s-i-b is present

00 101 DS:d32

00 110 DS:[ESI]
00 111 DS:[EDI]

01 000 DS:[EAXad8]
01 001 DS:[ECXad8]
01 010 DS:[EDXad8]
01 011 DS:[EBXad8]
01 100 s-i-b is present

01 101 SS:[EBPad8]
01 110 DS:[ESIad8]
01 111 DS:[EDIad8]

mod r/m Effective Address

10 000 DS:[EAXad32]
10 001 DS:[ECXad32]
10 010 DS:[EDXad32]
10 011 DS:[EBXad32]
10 100 s-i-b is present

10 101 SS:[EBPad32]
10 110 DS:[ESIad32]
10 111 DS:[EDIad32]

11 000 registerÐsee below

11 001 registerÐsee below

11 010 registerÐsee below

11 011 registerÐsee below

11 100 registerÐsee below

11 101 registerÐsee below

11 110 registerÐsee below

11 111 registerÐsee below

Register Specified by reg or r/m

during 16-Bit Data Operations:

mod r/m
function of w field

(when we0) (when we1)

11 000 AL AX

11 001 CL CX

11 010 DL DX

11 011 BL BX

11 100 AH SP

11 101 CH BP

11 110 DH SI

11 111 BH DI

Register Specified by reg or r/m

during 32-Bit Data Operations:

mod r/m
function of w field

(when we0) (when we1)

11 000 AL EAX

11 001 CL ECX

11 010 DL EDX

11 011 BL EBX

11 100 AH ESP

11 101 CH EBP

11 110 DH ESI

11 111 BH EDI

95

MILITARY i386TM SX MICROPROCESSOR

Encoding of 32-bit Address Mode (‘‘mod r/m’’ byte and ‘‘s-i-b’’ byte present):

mod base Effective Address

00 000 DS:[EAXa(scaled index)]
00 001 DS:[ECXa(scaled index)]
00 010 DS:[EDXa(scaled index)]
00 011 DS:[EBXa(scaled index)]
00 100 SS:[ESPa(scaled index)]
00 101 DS:[d32a(scaled index)]
00 110 DS:[ESIa(scaled index)]
00 111 DS:[EDIa(scaled index)]

01 000 DS:[EAXa(scaled index)ad8]
01 001 DS:[ECXa(scaled index)ad8]
01 010 DS:[EDXa(scaled index)ad8]
01 011 DS:[EBXa(scaled index)ad8]
01 100 SS:[ESPa(scaled index)ad8]
01 101 SS:[EBPa(scaled index)ad8]
01 110 DS:[ESIa(scaled index)ad8]
01 111 DS:[EDIa(scaled index)ad8]

10 000 DS:[EAXa(scaled index)ad32]
10 001 DS:[ECXa(scaled index)ad32]
10 010 DS:[EDXa(scaled index)ad32]
10 011 DS:[EBXa(scaled index)ad32]
10 100 SS:[ESPa(scaled index)ad32]
10 101 SS:[EBPa(scaled index)ad32]
10 110 DS:[ESIa(scaled index)ad32]
10 111 DS:[EDIa(scaled index)ad32]

NOTE:
Mod field in ‘‘mod r/m’’ byte; ss, index, base fields in
‘‘s-i-b’’ byte.

ss Scale Factor

00 x1

01 x2

10 x4

11 x8

index Index Register

000 EAX

001 ECX

010 EDX

011 EBX

100 no index reg**
101 EBP

110 ESI

111 EDI

**IMPORTANT NOTE:
When index field is 100, indicating ‘‘no index register,’’ then
ss field MUST equal 00. If index is 100 and ss does not
equal 00, the effective address is undefined.

96

MILITARY i386TM SX MICROPROCESSOR

9.2.3.5 ENCODING OF OPERATION DIRECTION
(d) FIELD

In many two-operand instructions the d field is pres-
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 Register/Memory k- - Register
‘‘reg’’ Field Indicates Source Operand;
‘‘mod r/m’’ or ‘‘mod ss index base’’ Indicates
Destination Operand

1 Register k- - Register/Memory
‘‘reg’’ Field Indicates Destination Operand;
‘‘mod r/m’’ or ‘‘mod ss index base’’ Indicates
Source Operand

9.2.3.6 ENCODING OF SIGN-EXTEND (s) FIELD

The s field occurs primarily to instructions with im-
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

s
Effect on Effect on

Immediate Data8 Immediate Data 16l32

0 None None

1 Sign-Extend Data8 to Fill None
16-Bit or 32-Bit Destination

9.2.3.7 ENCODING OF CONDITIONAL TEST
(tttn) FIELD

For the conditional instructions (conditional jumps
and set on condition), tttn is encoded with n indicat-
ing to use the condition (ne0) or its negation (ne1),
and ttt giving the condition to test.

Mnemonic Condition tttn

O Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal 1101
LE/NG Less Than or Equal/Greater Than 1110
NLE/G Not Less or Equal/Greater Than 1111

9.2.3.8 ENCODING OF CONTROL OR DEBUG
OR TEST REGISTER (eee) FIELD

For the loading and storing of the Control, Debug
and Test registers.

When Interpreted as Control Register Field

eee Code Reg Name

000 CR0
010 CR2
011 CR3

Do not use any other encoding

When Interpreted as Debug Register Field

eee Code Reg Name

000 DR0
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding

When Interpreted as Test Register Field

eee Code Reg Name

110 TR6
111 TR7

Do not use any other encoding

97

MILITARY i386TM SX MICROPROCESSOR

DISCLAIMER

‘‘Intel reserves the right to enhance future products by using opcodes that are currently defined as
invalid. Use of invalid opcodes to extend the instruction set may not be compatible with future Intel
products and is therefore discouraged.’’

98

	MILITARY i386 TM SX MICROPROCESSOR
	CONTENTS

	1.0 PIN DESCRIPTION
	INTRODUCTION

	2.0 BASE ARCHITECTURE
	2.1 Register Set
	2.2 Instruction Set
	2.3 Memory Organization
	2.4 Addressing Modes
	2.5 Data Types
	2.6 I/O Space
	2.7 Interrupts and Exceptions
	2.8 Reset and Initialization
	2.9 Testability
	2.10 Debugging Support

	3.0 REAL MODE ARCHITECTURE
	3.1 Memory Addressing
	3.2 Reserved Locations
	3.3 Interrupts
	3.4 Shutdown and Halt
	3.5 LOCK Operation

	4.0 PROTECTED MODE ARCHITCTURE
	4.1 Addressing Mechanism
	4.2 Segmentation
	4.3 Protection
	4.4 Paging
	4.5 Virtual 8086 Environment

	5.0 FUNCTIONAL DATA
	5.1 Signal Description Overview
	5.2 Bus Transfer Mechanism
	5.3 Memory and I/O Spaces
	5.4 Bus Functional Description
	5.5 Self-test Signature
	5.6 Component and Revision Identifiers
	5.7 Coprocessor Interfacing

	6.0 PACKAGE THERMAL SPECIFICATION
	7.0 ELECTRICAL SPECIFICATIONS
	7.1 Power and Grounding
	7.2 Maximum Ratings
	7.3 Operating Conditions
	7.4 DC Specifications
	7.5 AC Specifications

	8.0 DIFFERENCES BETWEEN THE i386 TM SX CPU AND THE i386 DX CPU
	9.0 INSTRUCTION SET
	9.1 i386 TM SX CPU Instruction Encoding and Clock Count Summary
	9.2 Instruction Encoding

	DISCLAIMER

